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Preface

This book, Melanoma Development: Molecular Biology, Genetics and Clinical 
Application, in its second edition provides a comprehensive insight into the molecu-
lar changes of malignant melanoma and implications for therapeutic approaches. In 
this updated version, all chapters were revised and important new developments and 
findings of the recent 4 years were added.

The recent clinical success in treating melanoma by inhibitors to mutated BRAF 
or activated MEK or by stimulating the immune system by checkpoint blockage is 
very encouraging. After years without strong effects of therapeutical attempts, there 
is hope that melanoma is curable or at least can be shifted into chronic disease. Of 
course, more research is strongly needed for a comprehensive understanding of the 
molecular processes leading to melanoma and of ways to therapy resistance. 
Nevertheless, the first steps are made with possibilities leading to significantly pro-
longed survival of the patients with metastasized melanoma. This is a highly inspir-
ing and promising development which should further boost melanoma research.

I am again very grateful to all the authors for their interesting, forward-looking 
contributions and for their support of this book project. I feel that this book, after the 
success on the first edition, will further enhance the development in the field of 
melanoma research. Melanoma Development: Molecular Biology, Genetics and 
Clinical Application aims to contribute to this body of knowledge.

Erlangen, Germany Anja K. Bosserhoff, PhD 
June 2016
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1Clinicopathologic Overview 
of Melanoma

Anja Bosserhoff and Luigi Strizzi

Human melanoma is the most rapidly increasing malignant skin disease in 
Caucasians (Siegel et al. 2015). Once considered a rare disease, the lifetime risk 
for developing melanoma in the US has increased from approximately 1 in 1500 
during the 1930s to its present risk of approximately 1 in 60 (Giblin and Thomas 
2007). The American Cancer Society’s recent cancer report estimates that 76,380 
new cases of melanoma will be diagnosed and 10,130 deaths will result from mela-
noma during 2016 in the United States (American Cancer Society 2016). Important 
risk factors for developing melanoma include increased number of melanocytic 
nevi, a family history of melanoma, or a history of previous melanoma (Seykora 
and Elder 1996; Psaty et al. 2010). Prolonged sun exposure associated with 
increased outdoor activity has been suggested to play an important role in the epi-
demiologic increase in the incidence of melanoma (Leiter and Garbe 2008; Moan 
et al. 2008). Acute exposure of the skin to ultraviolet radiation (UVR) can induce 
varying degrees of erythema, pigmentation, and impairment of immune function 
(Matsumura and Ananthaswamy 2004). Increased numbers of melanocytic nevi 
associated with sunburn and intermittent or “holiday” sun exposure has been sug-
gested as a major risk factor for developing melanoma in different studies (Elwood 
and Jopson 1997; Newton-Bishop et al. 2010). In fact, the Clark model for mela-
noma suggests a stepwise progression from hyperplastic and dysplastic nevi to 
melanoma (Clark et al. 1984).

From a clinical perspective, melanocytic nevi are benign proliferations that 
appear as flat or slightly raised pigmented growths generally found on sun-exposed 
skin. Histologically, these are formed by proliferating melanocytes that gradually 
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assume a more round or oval shape from their normal dendritic-like morphology, 
forming nests along the basal layer and growing towards the dermis as cords. As the 
nevus cells grow into the dermis, melanin production significantly decreases as 
tyrosinase activity is progressively lost in a process known as “maturation.” 
Dysplastic nevi can progress from preexisting benign nevi or form ex novo in a new 
location. Clinically, they are larger than most benign nevi, have irregular borders, 
and appear with varying degree of pigmentation. Dysplastic nevi are composed of 
irregularly shaped cells with hyperchromic nuclei. Discordance in the diagnosis of 
benign, dysplastic, and melanoma based on morphology alone, however, has con-
tinued to plague even experienced pathologists (Ackerman 1996; Lodha et al. 2008; 
Shoo et al. 2010). Different molecular biomarkers have been proposed to help to 
differentiate benign nevi from malignant melanomas and are still being validated. 
Recent studies, for example, have claimed high success rates in discriminating 
benign lesions from melanoma with the use of multiple tissue marker arrays 
(Kashani-Sabet et al. 2009) or different fluorescence in situ hybridization (FISH) 
DNA probes (Gerami et al. 2009). The ideal goal would be to develop high through-
put analytical systems that would increase the feasibility of adopting such multi- 
marker approaches at all diagnostic centers.

There remains the fact that some melanomas can also form in areas of the body 
not exposed to the sun, such as mucous membranes (DeMatos et al. 1998; Das et al. 
2010) or arise independently of previous nevi suggesting that other factors, alone or 
in combination, are also involved in the pathogenesis of melanoma. Recent advances 
in the understanding of the different cellular signaling events in melanoma have 
shed some light on the identification of potential underlying molecular mechanisms. 
To this regard, downstream signaling events caused by mutations in NRAS and 
BRAF as well as PI3K/Akt, MAPK/ERK, and c-KIT activity have been found to 
play a role in melanoma signaling (Kyrgidis et al. 2010). Since exposure to UVR 
can lead to DNA damage, sun exposure may represent an obvious cause of these 
mutations. However, the identification of some of these genetic mutations in con-
genital nevi as well seems to argue against the fact that UVR is the sole culprit of 
these mutations. As mentioned previously, a family history of melanoma is an 
important predictor of melanoma risk (Psaty et al. 2010), indicating that genetic 
predisposing factor(s) must also play a role during melanomagenesis, as for instance, 
with CDKN2A, where up to 40 % of members of melanoma-prone families show 
germ-line mutations in this tumor suppressor gene (Hansson 2010).

As described in the Clark model for melanoma progression, early melanoma is 
characterized by localized growth referred to as “radial growth phase” or “thin mela-
noma.” During this phase, the melanoma cells tend to grow between the layers of the 
epidermis and superficial dermis with significantly low risk for metastasis. Surgical 
excision of these relatively flat lesions is associated with high cure rates. With time, 
the melanoma assumes a more nodular appearance as the relatively larger and irregu-
lar melanoma cells begin to penetrate vertically and invade the dermis (“vertical 
growth phase”). The depth of invasion of the melanoma related to the anatomical 
structures of the dermis and subcutaneous tissue or measured directly in millimeters 
is used to predict clinical outcome with deeper (or thicker) lesions associated with 
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reductions in overall patient survival (Balch et al. 2009). Other factors, such as the 
presence of tumor ulceration or increased mitotic rates, also negatively affect prog-
nosis (Balch et al. 2009). The metastatic process of melanoma is facilitated once 
melanoma cells begin to invade vascular and lymphatic structures. At this point che-
motherapy is the therapeutic option of choice. Current treatment strategies for 
advanced stage melanoma employing cytotoxic agents are often accompanied by 
important side effects and associated with relatively low percentages of objective 
response rates (Atallah and Flaherty 2005). Similarly, molecular redundancy and 
cross-talk between multiple signaling pathways appear to have undermined the effi-
cacy hoped to achieve with targeted molecular biotherapy (Shain and Bastian 2016). 
Generally, anti-cancer drugs appear to have some initial effect usually due to killing 
of the majority of the cancer cells sensitive to the chemotherapeutic agent. However, 
increased signaling of cell survival pathways, enhanced DNA repair mechanisms or 
mutations of molecular targets in melanoma cells often lead to resistance to therapy. 
Attempts continue at identifying novel diagnostic markers and molecular targets 
important for melanomagenesis and disease progression. Work is also needed to 
detect and quantify chemoresistance and to better understand the molecular mecha-
nisms that are involved in inducing drug resistance in melanoma. Results from these 
efforts could help to identify those patients most likely to present resistance to treat-
ment and that would otherwise benefit from a combinatorial approach.

1.1  Chapters of the Book

In the individual chapters of this book, all aspects of basic biology of melanoma are 
addressed. Further, general mechanisms and therapeutic approaches based on this 
knowledge are described.

The second chapter by Zalpha Abdel-Malek, Viki B. Swope, and Arup Indra 
concentrates on melanocytes, the cellular origin of malignant melanoma. For a 
general understanding of the molecular processes in melanoma development, 
epidemiology, as illustrated in Chap. 3 by Marianne Berwick, is of major impor-
tance enhancing our knowledge of the tumor inducing stimuli. Basic genetic and 
genomic changes are summarized in Chap. 4 by Allen Ho, Göran Jönsson, and 
Hensin Tsao.

The following chapters are focusing on changes in basic molecular regulation. 
Here, chapters on transcriptional regulation by Satoru Yokoyama and David 
Fisher; on miRNAs by Maria Mione, Leonel Munoz, Janika Liebig, and Anja 
Bosserhoff; on cell signaling by Yann Cheli, Eric Lau, and Ze’ev A. Ronai; on 
proteases by Paola Zigrino and Cornelia Mauch; and on molecules in cell–cell 
and cell–matrix contacts by Silke Kuphal and Nicolas Haass give insight into 
molecular details.

The next chapters summarize characteristics of molecular processes in mela-
noma. The chapter by Jürgen Eberle Lothar F. Fecker describes changes in apoptotic 
processes in malignant melanoma, and Helen Rizos, Sebastian Haferkamp, and 
Lyndee L Scurr summarize the knowledge on the role of senescence.

1 Clinicopathologic Overview of Melanoma
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As melanoma is a complex disease understanding is enforced by looking at gen-
eral biological mechanisms and the analysis of other cell types than melanoma cells 
existing in a melanoma tumor. Chapters on melanoma stem cell by Markus Frank; 
on lessons from embryology by Alec Gramann, William Tyler Frantz, and Craig 
J. Ceol; and on the influence of the tumor microenvironment by Lawrence W. Wu, 
Meenhard Herlyn, and Gao Zhang are summarizing the available information.

A chapter by Birgit Schittek and Thomas Tüting concentrates on model systems 
which are available in melanoma research.

The last two chapters comment on the current status of melanoma therapy: Ryan 
J. Sullivan and Keith T. Flaherty summarize the new approaches targeting cellular 
signaling whereas the chapter of Alexander M.M. Eggermont, Caroline Robert, and 
Dirk Schadendorf focuses on the new era of immunotherapy in melanoma.
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2Revisiting Epidermal Melanocytes: 
Regulation of Their Survival, 
Proliferation, and Function  
in Human Skin

Zalfa A. Abdel-Malek, Viki B. Swope, and Arup Indra

2.1  Introduction

Melanocytes are cells specialized in the synthesis of the pigment melanin, in the 
form of eumelanin, the brown/black, and pheomelanin, the red/yellow pigment (Ito 
and Wakamatsu 2003). Melanocytes reside in the cutaneous epidermis, within hair 
follicles, in the eye, the leptomeninges, the inner ear, and in the heart (Brito and Kos 
2008; Goldgeier et al. 1984; Tachibana 1999; Yajima and Larue 2008). Melanin 
produced by melanocytes provides the skin, hair, and eyes with their distinctive 
coloration. In this chapter, we focus on epidermal melanocytes, since they have 
been the most thoroughly investigated due to their importance in photoprotection 
against sun-induced skin cancers, and for being the precursors for cutaneous mela-
noma, the deadliest form of skin cancer, and their involvement in pigmentary disor-
ders, such as albinism and vitiligo. We, hereby, provide a brief summary of the 
properties of melanocytes, review how cutaneous pigmentation is regulated, and 
discuss the significance of paracrine and autocrine factors and their signaling path-
ways in modulating the survival, proliferation, and function of melanocytes, 
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constitutively, and in response to solar ultraviolet radiation (UV), a major environ-
mental stressor and etiological factor for skin cancers, including melanoma 
(Gilchrest et al. 1999). We end by briefly describing how the knowledge gained 
about the regulation of melanocytes can be translated into preventative and thera-
peutic strategies for melanoma.

2.2  Unique Properties of Melanocytes

In the human epidermis, melanocytes reside on the basement membrane, at the epi-
dermal–dermal junction (Jimbow and Fitzpatrick 1975). Melanocytes differ from 
keratinocytes, the main structural cells of the epidermis, in many respects. Unlike 
basal keratinocytes that are highly proliferative and capable of regenerating the epi-
dermal layers, melanocytes have a low proliferation potential. Keratinocytes 
undergo a well-defined differentiation program that culminates in their death by an 
apoptosis-like process (reviewed by Eckert et al. 1997). On the other hand, most 
melanoblasts, the precursors for melanocytes, become fully differentiated upon 
reaching their final destination, the epidermis, after their migration during embry-
onic development from the neural crest (Bronner-Fraser 1993). Melanocytes are 
resistant to apoptosis, as they are endowed with anti-apoptotic mechanisms, exem-
plified by constitutive expression of the anti-apoptotic protein Bcl2 (Plettenberg 
et al. 1995). Contrary to keratinocytes, melanocytes have a very long life span and 
survive for decades in the epidermis (Quevedo et al. 1969). However, the longevity 
of melanocytes and their resistance to apoptosis is a double-edged sword, since 
these properties make them vulnerable to mutations that arise over the years, par-
ticularly due to repetitive sun exposure, and might culminate in melanoma forma-
tion in high-risk individuals. These properties also explain the resistance of 
melanoma tumors to various chemotherapeutic agents and to radiation therapy. 
Given the significance of melanocytes in protection of the skin from UV-induced 
skin cancers, it is critical to maintain genomic stability of these cells to insure their 
proper function and ability to preserve epidermal homeostasis.

2.3  Factors That Determine Cutaneous Pigmentation

Cutaneous pigmentation is determined by the rate of synthesis of melanins (eumela-
nin and pheomelanin) by melanocytes, the relative eumelanin and pheomelanin con-
tents, and the rate of transfer of melanosomes, melanin-containing organelles, from 
melanocytes to keratinocytes (Pathak et al. 1980). These are the main factors that 
account for individual differences in skin pigmentation. Melanosomes contain 
enzymes that catalyze melanin synthesis, namely, tyrosinase, the rate-limiting enzyme 
for melanin synthesis, tyrosinase-related protein (TYRP-1), and dopachrome tau-
tomerase (DCT), also known as tyrosinase-related protein 2 (TRP-2) (reviewed by 
Hearing 2005). The activity of tyrosinase and the protein levels of these three melano-
genic enzymes correlate directly with melanin content of melanocytes (Abdel-Malek 
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et al. 1993; Wakamatsu et al. 2006). Melanosomes also express on their membrane 
OA1, a G-protein-coupled receptor that is activated by L-DOPA, an intermediate in 
the melanin synthetic pathway, and a substrate for tyrosinase (Hearing 2005). The 
number of melanocytes does not significantly differ among individuals with different 
pigmentary phenotypes (Szabo 1954). The difference in pigmentation lies primarily 
in the rate of melanin synthesis, which is determined by many genes expressed in 
melanocytes, and code for regulatory proteins, including melanogenic enzymes, 
growth factor receptors, and transcription factors, as well as structural proteins that 
make up the melanosome. The difference in constitutive pigmentation among indi-
viduals is primarily dictated by eumelanin, which correlates directly with the extent of 
pigmentation (Hennessy et al. 2005; Wakamatsu et al. 2006).

Melanocytes interact with keratinocytes by donating fully melanized (mature) mela-
nosomes (Pathak et al. 1980). Melanocytes are dendritic cells, and their dendrites serve as 
conduits for the transport of melanosomes to surrounding keratinocytes. In turn, keratino-
cytes participate in regulating the transfer of melanosomes by expressing protease-acti-
vated receptor 2 (PAR-2), a G-protein-coupled receptor that is activated upon proteolytic 
cleavage by trypsin, or by binding of its agonist, Ser-Leu-Ile-Gly-Arg-Leu-NH2 
(SLIGRL), resulting in increased melanosome phagocytosis in a Rho-dependent manner 
(Scott et al. 2003; Seiberg et al. 2000). Expression of PAR-2 by keratinocytes is up-regu-
lated by UV exposure in vitro and in vivo (Scott et al. 2001). In the epidermis, the ratio of 
melanocytes to keratinocytes is 1:34, and the interaction of these cells via transfer of 
melanosomes has been coined the epidermal melanin unit. Melanosome transfer is 
important for normal and uniform skin pigmentation, is increased upon stimulation of 
melanogenesis, and is critical for optimal photoprotection.

2.4  Pigmentation: The Main Photoprotective Mechanism 
in the Skin Against Solar UV

Solar UV is the main environmental factor that affects skin pigmentation and the 
main etiological factor for skin cancers, including melanoma (Epstein 1983; 
Gilchrest et al. 1999; Pathak 1991). Melanin synthesized by melanocytes is the 
main photoprotective mechanism in the skin (Gilchrest et al. 1999; Halder and 
Bridgeman-Shah 1995; Pathak et al. 1980). Melanosomes transferred to keratino-
cytes form supranuclear caps that protect the nucleus from impinging UV rays 
(Kobayashi et al. 1998). Melanin in the epidermis is also photoprotective for dermal 
fibroblasts, preventing photoaging caused by UV, particularly long wavelength 
UVA (Gilchrest and Rogers 1993). An interesting paradigm is that increased mela-
nin synthesis is part of the DNA damage response of melanocytes, as treatment of 
human skin with DNA oligonucleotides that are homologous to the telomere 3′ 
overhang sequence (T-oligos) enhanced nucleotide excision repair and subsequently 
increased epidermal melanin content (Arad et al. 2006).

The photoprotective effects of melanin are mainly conferred by eumelanin, since 
pheomelanin seems to have detrimental rather than beneficial effects. Eumelanin 
acts as a scavenger of reactive oxygen species produced upon exposure to UV, and 
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thus reduces the oxidative damage to DNA, proteins, and lipids (Bustamante et al. 
1993). On the other hand, pheomelanin might be a pro-oxidant, resulting in oxida-
tive DNA damage that causes melanoma formation in melanoma-prone mice 
expressing the activating mutation in Braf, Braf v600E, in the absence of UV or any 
other carcinogen (Mitra et al. 2012). Additionally, pheomelanin seems to exacerbate 
the formation or the effects of peroxynitrite in UV-irradiated melanocytes, resulting 
in increased formation of cyclobutane pyrimidine dimers (CPDs), the major form of 
DNA photoproducts, even after cessation of UV exposure (Premi et al. 2015).

There is overwhelming clinical and epidemiological evidence for the role of 
melanin in prevention of sun-induced skin cancers (Epstein 1983; Halder and 
Bridgeman-Shah 1995; Newton Bishop and Bishop 2005). The incidence of these 
cancers is by far higher in individuals with fair skin and low melanin content, than 
in individuals with dark skin containing high levels of melanin, mainly eumelanin. 
Experimental evidence shows that exposure to UV results in less DNA photoprod-
ucts in dark-skinned individuals with high melanin (mainly eumelanin) content than 
in light-skinned individuals with low melanin content (Tadokoro et al. 2003). 
Similarly, an inverse relationship between eumelanin content and the induction of 
DNA photoproducts was found in cultured human melanocytes derived from donors 
with different pigmentary phenotypes, with CPDs being lowest in melanocytes with 
the highest eumelanin content, and highest in melanocytes that have least eumelanin 
content (Hauser et al. 2006; Smit et al. 2001).

2.5  Evidence for a Paracrine/Autocrine Network 
in Human Skin

A symbiotic relationship exists between cutaneous melanocytes, keratinocytes, and 
fibroblasts. It is well established that a complex and well-regulated paracrine/auto-
crine network is present in human skin and that this network is modulated in 
response to stress, such as in response to UV or inflammation. In turn, the paracrine/
autocrine factors mediate many of the stress responses of epidermal cells. Many of 
the cytokines and growth factors synthesized by keratinocytes and fibroblasts play 
important roles in regulating melanocyte function and survival (summarized in 
Table 2.1 and Fig. 2.1). The first evidence for keratinocyte-derived paracrine factors 
that affect melanocytes came from the observation that medium conditioned by cul-
tured human keratinocytes stimulated the proliferation and melanogenesis of cul-
tured normal human melanocytes (Gordon et al. 1989). Additional evidence came 
from the observation that melanocytes co-cultured with keratinocytes exhibited a 
dose-dependent increase in melanogenesis following irradiation with very low 
doses of UVB, while melanocytes in monoculture required irradiation with at least 
a ten-fold higher dose of UVB in order to stimulate pigmentation (Duval et al. 
2001). These latter results implicated keratinocyte-derived factors in the melano-
genic response of melanocytes to UVB. Medium conditioned with human fibro-
blasts also stimulated the proliferation of cultured human melanocytes (Imokawa 
et al. 1998). Mutations in genes that code for paracrine factors or their receptors, 
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such as stem cell factor or its receptor c-kit, or endothelin (ET)-3 and the endothe-
lin-B receptor (ENDBR), result in pigmentary abnormalities (piebaldism or 
Hirschprung’s disease, respectively) due to reduced melanoblast survival and migra-
tion during embryonic development (Giebel and Spritz 1991; Puffenberger et al. 

Table 2.1 Summary of known paracrine/autocrine factors, their cell of origin in the skin, and 
their effects on melanocytes

Factor Synthesized by
Role in 
pigmentation Melanocyte function

POMC derived:
α-MSH, ACTH

KC, MC ↑ MC1R agonist (↑ cAMP)

POMC derived:
β-endorphin

KC, MC ↑ Inhibits cAMP, unknown 
signaling pathway

Agouti signaling 
protein (ASIP)

Skin, cell of origin
Unknown

↓ MC1R antagonist

Human β defensin 3 
(HBD3)

KC ↑ In dog and  
mouse; ? In human

MC1R antagonist

Bone morphogenetic 
factor (BMP-4)

KC, MC ↓ ↓ Tyrosinase activity, ↓ 
TRP-1, ↓ MC1R

Noggin Cell of origin in 
human skin 
unknown

↑ Antagonist of BMP-4

Interleukin-1 α/β KC, MC ↓ ↓ Tyrosinase activity, ↓ 
proliferation

Tumor necrosis 
factor-α (TNF-α)

KC ↓ ↓ Tyrosinase activity, ↓ 
proliferation

Endothelin-1 (ET-1) KC ↑ ↑ Tyrosinase activity, ↑ 
proliferation, ↑ survival

Stem cell factor (SCF) KC, FB ↑ ↑ Proliferation, ↑ survival, 
↑ dendricity

Hepatocyte growth 
factor (HGF)

KC, FB ↑ ↑ Proliferation, ↑migration

Basic fibroblast growth 
factor (bFGF)

KC, FB ↑ ↑ Proliferation

Prostaglandins
PGE2 and PGF2α

KC, MC ↑ ↑ Dendricity, ↑ tyrosinase 
activity

Leukotrienes
LTC4 and LTD4

KC ↑ ↑ Proliferation

Corticotropin releasing 
hormone

KC, MC ↑ ↑ cAMP, ↑ POMC gene 
(↑ACTH)

Nerve growth factor 
(NGF)

KC – ↑ Dendricity, ↑ migration, 
↑ survival

Neurotrophin 3 (NT-3) KC, FB – ↑ Survival

Semaphorin 7a KC, FB – ↑ Spreading, ↑ dendricity

Neuregulin-1 (NRG-1) KC, FB ↑ ↑ Pigmentation, ↑ 
dendricity, ↑ MC size

Nitric oxide KC, MC ↑ ↑ Melanogenesis
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1994). Collectively, these results provide evidence for the existence of a paracrine 
network in human skin that modulates melanocyte function, proliferation, and sur-
vival under constitutive conditions and in response to UV.

2.5.1  The Melanocortin 1 Receptor Physiological Agonists 
and Antagonists Are Epidermal-Derived Factors That 
Regulate Eumelanin and Pheomelanin Synthesis

There has been particular interest in understanding the regulation of eumelanin and 
pheomelanin synthesis by melanocytes, given the significance of eumelanin in pho-
toprotection, and to elucidate the underlying causes for the diversity of human 

Fig. 2.1 Summary of the major participants in the paracrine/autocrine network that regulates mela-
nocyte function, survival, and proliferation and the regulation of this network by UV. Irradiation of 
the skin with UV up-regulates the expression of the primary cytokines TNF-α and IL-1α by keratino-
cytes, both of which directly affect melanocytes. In turn, IL-1α increases the production of α-MSH 
and ACTH by keratinocytes and melanocytes, as well as HBD3, ET-1, HGF, and SCF by keratino-
cytes. In response to UV, CRH production is increased by both keratinocytes and melanocytes. CRH 
affects melanocytes directly and indirectly by increasing the expression of POMC, and hence its 
derivatives α-MSH, ACTH, and β-endorphin. Melanocytes and keratinocytes synthesize BMP-4, 
which affects melanocytes directly, and might also inhibit POMC production by keratinocytes and 
melanocytes. Additionally, both keratinocytes and melanocytes synthesize PGE2 and PGF2α. 
Keratinocytes synthesize bFGF and semaphorin 7a, and also NGF, which affects melanocytes 
directly, as well as indirectly by enhancing the production of NT-3 by keratinocytes. Fibroblasts 
contribute to the paracrine network by synthesizing HGF, SCF, NT-3, semaphorin 7a, and NRG-1
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pigmentation. Stimulation of eumelanin synthesis results mainly from activation of 
the melanocortin 1 receptor (MC1R), a Gs-protein-coupled receptor expressed on 
melanocytes (Chhajlani and Wikberg 1992; Hunt et al. 1995; Mountjoy et al. 1992; 
Suzuki et al. 1996). The physiological agonists for the human MC1R are 
α-melanocyte-stimulating hormone (α-MSH) and adrenocorticotropic hormone 
(ACTH), which bind the MC1R with the same affinity (Suzuki et al. 1996). Pro- 
opiomelanocortin, the precursor for ACTH and α-MSH, is synthesized and pro-
cessed by cultured keratinocytes and melanocytes, and its expression in the skin is 
increased by UV exposure (Chakraborty et al. 1996; Corre et al. 2006; Suzuki et al. 
2002; Wakamatsu et al. 1997). Actually, the presence of MSH peptides in human 
skin was reported decades ago, long before a physiological role for these peptides 
in human pigmentation was identified (Thody et al. 1983). Therefore, MC1R ago-
nists are paracrine/autocrine factors that are expected to participate in the UV 
response of melanocytes (as described later in this review). This is supported by the 
observation that activation of the cAMP pathway by α-MSH is critical for 
UV-induced melanogenesis (i.e., tanning response), and enables human melano-
cytes to overcome the UV-induced growth arrest (Im et al. 1998a).

Agouti signaling protein (ASIP) is the physiological antagonist of the MC1R 
that acts as an inverse agonist, competing with α-MSH for receptor binding, and 
abrogating the activation of the cAMP pathway, the main signaling pathway of the 
activated MC1R (Suzuki et al. 1997). Concomitant treatment of cultured human 
melanocytes with α-MSH and ASIP blocked the mitogenic and melanogenic effects 
of α-MSH. In mice, the recessive yellow mutation that causes loss of function of the 
mc1r results in a yellow coat color (Robbins et al. 1993). Similarly, overexpression 
of agouti results in the same pigmentary phenotype, due to inhibition of eumelanin 
synthesis, in addition to other pleiotropic effects resulting from interaction of ASIP 
with other melanocortin receptors, which include obesity, diabetes, and increased 
susceptibility to develop tumors (Siracusa 1994). Pheomelanin synthesis is consid-
ered to be the default pathway, which takes place in the absence of MC1R signaling, 
unlike eumelanin synthesis that has stringent requirements, including high concen-
trations of tyrosine, the substrate for tyrosinase, and activation of the MC1R, which 
leads to stimulation of cAMP formation and increase in activities and protein levels 
of the melanogenic enzymes tyrosinase, TYRP-1, and TRP-2 (Abdel-Malek et al. 
1995; Sakai et al. 1997).

Another factor that affects eumelanin/pheomelanin synthesis is human β-defensin 
3 (HBD3), an antimicrobial peptide which was cloned from human keratinocytes 
and is best known for its role in innate immunity (Candille et al. 2007; Harder et al. 
2001). Genetic studies on dogs revealed that mutation in the HBD3 gene resulted in 
black coat color, an effect that was postulated to be due to inhibition of ASIP bind-
ing to the MC1R (Candille et al. 2007). Receptor binding assays revealed that 
HBD3 acts as a competitive inhibitor of α-MSH binding to the MC1R. HBD3 acts 
as an antagonist of the MC1R expressed on human melanocytes, abrogating the 
effects of α-MSH on cAMP formation (Swope et al. 2012). Brief pretreatment with 
either HBD3 or ASIP prevented cultured human melanocytes from responding to 
α-MSH with stimulation of cAMP synthesis. This effect might be due to MC1R 
desensitization, another mechanism of limiting the response to α-MSH.
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2.5.2  Antagonistic Effects of Bone Morphogenetic Protein 
and Noggin on Pigmentation and Their Potential 
Regulation of MC1R Agonists and Antagonists

Two interesting modulators of melanogenesis are bone morphogenetic protein-4 
(BMP-4) and noggin, which modulate melanogenesis directly, and possibly indirectly, 
by regulating the expression of the MC1R agonists and ASIP. BMP-4 is a member of 
the TGF-β superfamily and has been shown to be produced by both human melano-
cytes and keratinocytes and to inhibit melanogenesis in human melanocytes (Yaar 
et al. 2006). The inhibitory effect of BMP-4 involved reduction in the levels of the 
melanogenic enzymes tyrosinase, and TYRP-1, as well as MC1R (Park et al. 2009; 
Yaar et al. 2006). The BMP-4 receptors-1A, -1B, and -2 are expressed by human 
melanocytes, confirming the role of BMP-4 as a paracrine/autocrine factor (Yaar et al. 
2006). Irradiation of melanocytes with UV down-regulated the expression of BMP-4 
receptor-1B, which might be one mechanism by which UV stimulates melanogenesis 
(i.e., tanning), which requires activation of MC1R and its cAMP signaling pathway 
(Im et al. 1998b). Studies on mouse coat color showed that noggin acts as an antago-
nist of BMP-4, and noggin overexpression reduced the expression of ASIP (Sharov 
et al. 2005). On the other hand, BMP-4 enhanced the expression of ASIP by primary 
mouse keratinocytes and fibroblasts. Moreover, in the pituitary gland, BMP-4 
repressed the expression of Pro-opiomelanocortin (POMC) by corticotrophs (Nudi 
et al. 2005). In addition to increasing ASIP, potential inhibition of POMC production 
in the skin and reduction of MC1R expression in melanocytes might be a mechanism 
by which BMP-4 inhibits pigmentation, and reversal of these effects by noggin might 
be a mechanism to stimulate melanogenesis. The effects of BMP-4 and noggin add 
another layer of complexity to the regulation of melanogenesis upstream of POMC 
and ASIP, and the modulation of MC1R expression.

2.5.3  Identification of the Nature of Paracrine Factors 
for Melanocytes in the Skin

Basic fibroblast growth factor (bFGF), basic fibroblast growth factor (bFGF), the 
cytokines interleukin (IL)-1α and tumor necrosis factor (TNF)-α, as well as hepato-
cyte growth factor (HGF) and stem cell factor (SCF) that are induced by these cyto-
kines (Imokawa et al. 1998). It has long been known that production of primary 
cytokines, namely, IL-1 α and TNF-α, by keratinocytes is up-regulated by UV 
(Kock et al. 1990; Kupper et al. 1987) and that these cytokines regulate the synthesis 
of potent mitogenic and melanogenic factors by keratinocytes, such as α-MSH and 
endothelin-1 (ET-1) (Chakraborty et al. 1996; Imokawa et al. 1992). Human mela-
nocytes were also found to synthesize IL-1α and β and to respond to IL-1α and 
TNF-α with inhibition of proliferation and melanogenesis, suggesting that these 
cytokines directly modulate melanocyte function and proliferation (Swope et al. 
1991, 1994). Using whole human genome microarray analysis, it was shown that 
repetitive irradiation of human skin in situ by UVB resulted in altered expression of 
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genes that encode for paracrine factors or their receptors. These genes included 
those that encode for HGF, bFGF, IL-1 α and β, and GM-CSF, and for the PAR-2 
receptor, the SCF receptor c-kit, the endothelin-1 B receptor ENDBR, and 
MC1R. These in vitro and in vivo findings provide compelling evidence that many 
factors that regulate melanocytes are synthesized locally in the skin.

The first keratinocyte-derived paracrine factor for melanocytes to be identified 
was bFGF, an essential mitogen for melanocytes (Halaban et al. 1988). Basic FGF 
stimulates melanocyte proliferation by binding and activating a specific tyrosine 
kinase receptor (Pittelkow and Shipley 1989). Another important keratinocyte- 
derived paracrine factor is ET-1, which induces melanocyte proliferation, melano-
genesis, and migration (Horikawa et al. 1995; Tada et al. 1998b; Yada et al. 1991; 
Yohn et al. 1993). Human melanocytes predominantly express ENDBR, a Gq- 
coupled receptor, which when bound by either ET-1 or ET-3, activates PKC, intra-
cellular calcium mobilization, and nonreceptor tyrosine kinases (Imokawa et al. 
1992; Tada et al. 1998b). Mutations in either the gene for endothelin-3 (which dur-
ing embryonic development, mimics ET-1 in its effects and mechanism of action) or 
ENDBR result in Hirschprung’s disease Type II, which is characterized by hypopig-
mentation due to inefficient migration of melanoblasts from the embryonic neural 
crest and their reduced survival, and by aganglionic megacolon due to absence of 
neural crest-derived ganglia (Puffenberger et al. 1994). Treatment of cultured human 
keratinocytes with IL-1α or irradiation of human skin in vivo induced the produc-
tion of ET-1 (Imokawa et al. 1992). These results suggest a role for ET-1 in the UV 
response of melanocytes, which is described later in this review.

Two important paracrine factors that are synthesized by both keratinocytes and 
fibroblasts are SCF and HGF (Imokawa et al. 1998; Matsumoto et al. 1991). Stem cell 
factor elicits its mitogenic and survival effects on melanocytes by activating a specific 
tyrosine kinase receptor, c-kit, and mutations in the Kit gene result in piebaldism, 
which is characterized by depigmented skin patches as a consequence of death of 
melanocytes during their migratory route during embryonic development to populate 
the epidermis (Giebel and Spritz 1991). In adult skin, SCF is required for melanocyte 
maintenance, since injection of c-kit antibody resulted in loss of pigmentation due to 
melanocyte death (Grichnik et al. 1998). Hepatocyte growth factor, which activates 
the tyrosine kinase receptor c-Met, allows for melanocyte homing to the epidermis 
during embryonic development and stimulates human melanocyte proliferation 
(Matsumoto et al. 1991). The observation that HGF transgenic mice have extensive 
skin melanosis provides genetic evidence for the significance of HGF in directing the 
migration of melanocytes to the epidermis (Otsuka et al. 1998).

2.5.4  Eicosanoids as Paracrine/Autocrine Factors 
for Melanocytes

The eicosanoids, prostaglandins (PGs), and leukotrienes (LTs) are lipid-signaling 
intermediates that are derived from arachidonic acid via the cyclooxygenase and 
lipooxygenase pathway, respectively. Although the major source of PGs in the skin 
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is the keratinocytes, experimental evidence showed that melanocytes also synthe-
size the major two forms of PGs, PGE2 and PGF2α, in response to UV irradiation 
(Scott et al. 2005). Human melanocytes express cyclooxygenase (COX)-1 and −2, 
the latter of which is the inducible form, and the rate-limiting enzyme for the syn-
thesis of PGs (Nicolaou et al. 2004). Si-RNA mediated knock-down of COX-2 in 
melanocytes decreased the expression of tyrosinase, TYRP-1, TRP-2, gp100, and 
MITF and also reduced tyrosinase enzyme activity, suggesting utility of COX2 
inhibitors against hyperpigmentary disorder such as melasma, postinflammatory 
hyperpigmentation, and solar lentigo (Kim et al. 2012). Human melanocytes express 
FP receptor, the receptor for PGF2α in vitro and in vivo, and expression of this recep-
tor is up-regulated upon UV exposure (Scott et al. 2005; Starner et al. 2010). 
Melanocytes responded to PGF2α with stimulation of dendricity and melanogenesis 
that was evidenced by increased activity and protein levels of tyrosinase. Multiple 
irradiations of cultured melanocytes with moderate noncytotoxic doses of UV 
induced the synthesis of PGE2 via activation of cytoplasmic phospholipase A2 
(cPLA2), the rate-limiting enzyme in eicosanoid synthesis (Starner et al. 2010). 
Epidermal melanocytes were found to produce PGE2 under basal conditions, which 
further increased after arachidonic acid stimulation (Gledhill et al. 2010). Human 
melanocytes express two of the four PGE2 G-protein-coupled receptors, EP2 and 
EP4, and treatment with PGE2 increased cAMP formation and stimulated prolifera-
tion and tyrosinase activity (Starner et al. 2010). Recently, PGE2 has been shown to 
drive melanosome transfer by promoting filopodia formation in melanocytes (Ma 
et al. 2014). The leukotrienes (LT)C4 and D4 were found to be potent mitogens for 
cultured human melanocytes (Morelli et al. 1989). These results demonstrate the 
participation of eicosanoids and their receptors in the autocrine/paracrine network 
that regulates melanocyte proliferation and functions and the response to UV.

2.5.5  An Equivalent of the Hypothalamic/Pituitary/Adrenal  
Axis Is Present in Human Skin

Studies from various laboratories provided evidence that the skin is a “neuroendo-
crine organ,” which contains an equivalent of the systemic stress-induced hypotha-
lamic/pituitary/adrenal axis. Skin cells, including melanocytes, express 
corticotropin-releasing hormone (CRH) mRNA and protein, and also its receptor 
CRH-R1 (Funasaka et al. 1999; Slominski 1998; Slominski et al. 1995). Treatment 
of human melanocytes with CRH resulted in increased cAMP levels and up- 
regulated the expression of POMC gene. The latter effect led to increased produc-
tion of the POMC derivative ACTH, which contains within its structure the entire 
amino acid sequence of α-MSH. These two bioactive peptides are produced upon 
processing of POMC by the enzymes pro-convertase 1 and 2, respectively. The sig-
nificance of POMC in human pigmentation was supported by the observation that 
mutations in the human POMC gene that affected its expression resulted in red hair 
phenotype, in addition to metabolic abnormalities, such as adrenal insufficiency and 
obesity (Krude et al. 1998). In melanocytes, ACTH induced the production of 
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cortisol and corticosterone, which feedback negatively to inhibit the production of 
ACTH and thus terminate the response to stress (Slominski et al. 2005). These 
series of events recapitulate the functional hierarchy in the hypothalamic/pituitary/
adrenal axis and provide further evidence for the participation of the melanocyte in 
the cutaneous stress response by producing and responding to stress-induced 
factors.

In addition to α-MSH and ACTH, β-endorphin, a third POMC-derived bioactive 
peptide, is produced in vitro and in situ by keratinocytes and melanocytes upon the 
cleavage of β-lipotropic hormone (β-LPH) (Kauser et al. 2003; Slominski 1998). 
Production of β-endorphin by melanocytes correlated with their differentiation sta-
tus, as determined by their dendricity and pigmentation, indicating that β-endorphin 
functions as an autocrine factor (Kauser et al. 2003). Melanocytes and keratinocytes 
express functional μ-opiate receptors, and treatment of cultured human melanocytes 
with β-endorphin stimulated proliferation, dendricity, and melanogenesis (Kauser 
et al. 2003). In melanocytes, both β-endorphin and μ-opiate receptors co-localized 
in premelanosomes and stage II melanosomes, suggesting that the ligand and recep-
tor internalize into immature melanosomes where they induce melanogenesis. 
Unlike melanocortins, which elicit their effects by activating the cAMP pathway, 
β-endorphin inhibited adenylate cyclase, thus reduced cAMP levels. The signaling 
pathway(s) that mediates the effects of β-endorphin on melanocytes is yet to be 
determined. The increase in β-endorphin production in response to UV might 
explain the “addictive” behavior of sun worshippers and the feeling of wellness 
associated with sun exposure.

2.5.6  Neurotrophins as Members of the Cutaneous 
Neuroendocrine Paracrine Network

Given that the cutaneous epidermis and the nervous system arise from a common 
ectodermal origin, it was postulated that growth factors that regulate the survival 
and function of neurons play a role in the maintenance of epidermal homeostasis. 
Neutrophins (NTs) are family of neuronal growth factors comprised of nerve growth 
factor (NGF), brain-derived neurotrophic factor (BDNF), NT-3, and NT-4, two of 
which, namely, NGF and NT-3, are synthesized in the skin (reviewed by Botchkarev 
et al. 2006). Human keratinocytes, particularly basal keratinocytes with the highest 
proliferation capacity, were found to synthesize and release NGF, which in turn 
enhanced the secretion of NT-3, also synthesized by dermal fibroblasts (Marconi 
et al. 2003; Yaar et al. 1994). Neurotrophins share about 50 % amino acid sequence 
homology and interact with tyrosine kinase receptors (Trk) A, B, and C, the high 
affinity receptors for NGF, BDNF, and NT-3, respectively. All NTs interact with the 
low-affinity p75 NT receptor, a member of the TNF-α family of receptors. Depending 
on the intracellular adaptor molecules that interact with p75 receptor, its signaling 
may be linked to the JNK-p53-Bax pro-apoptotic pathway, or to the NF-kB survival 
pathway. Human melanocytes responded to NGF with increased migration and den-
dricity, and additionally, with inhibition of apoptosis after UV irradiation via 
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increasing the levels of the anti-apoptotic Bcl2 (Stefanato et al. 2003; Yaar et al. 
1991; Zhai et al. 1996). Both NGF and NT-3 increase the survival of human mela-
nocytes maintained in growth factor-depleted culture medium (Yaar et al. 1994; 
Zhai et al. 1996). Human melanocytes express p75NT receptor, and this is increased 
upon UV irradiation (Yaar et al. 1994). Melanocytes also express low levels of 
TrkC, the receptor for NT-3, and TrkA expression is induced upon stimulation of 
protein kinase C. Based on these studies, it was concluded that NGF, which is the 
most prevalent NT that is constitutively produced by keratinocytes, insures the sur-
vival of melanocytes by inhibiting UV-induced apoptosis, and NT-3 that is strongly 
expressed in fibroblasts might also contribute to melanocyte maintenance.

2.5.7  Semaphorin 7a: A Neuronal Factor Synthesized 
in Human Skin

Sempahorin 7 is a member of the secreted and membrane-bound semaphorin family 
of proteins that function in neuronal pathfinding and axonal guidance (Yazdani and 
Terman 2006). It was the first glycosylphosphatidylinositol-linked semaphorin to be 
identified and shown to bind plexin C1 and β1-integrin receptor (Pasterkamp et al. 
2003; Sato and Takahashi 1998; Tamagnone et al. 1999). Semaphorin 7a was found 
to be expressed in the skin in vivo and in keratinocytes and fibroblasts, as demon-
strated in vitro (Scott et al. 2008). In response to UV, fibroblasts exhibited a marked 
increase in semaphorin 7a expression. The role of semaphorin 7a as a paracrine 
factor for melanocytes was demonstrated by the finding that co-culturing of mela-
nocytes with cells expressing semaphorin 7a led to increased spreading and dendric-
ity and that melanocytes responded directly to treatment with exogenous semaphorin 
7a. These effects were mediated by binding the β1-integrin receptor and were inhib-
ited by plexin C1. These results identify a novel neuronal factor expressed in the 
skin, which regulates melanocyte spreading and dendricity positively via β1-integrin 
receptor, or negatively by interacting with Plexin C1. These effects might have sig-
nificant implications on melanosome transfer, an important determinant of cutane-
ous pigmentation.

2.5.8  Neuregulin-1: A Neuroendocrine Factor Synthesized 
by Human Epidermal and Dermal Cells

The neuroendocrine factor Neuregulin-1 (NRG-1) was identified as a fibroblast- 
derived factor that regulates constitutive human pigmentation (Choi et al. 2010). 
Neuregulin-1 is a secreted growth factor that is expressed in the central nervous 
system and is critical for neuronal differentiation, migration, and dendrite formation 
(Krivosheya et al. 2008). The effects of NRG-1 are mediated by binding to ErbB3 
and ErbB4 receptors, tyrosine kinase receptors that belong to the family of epider-
mal growth factor receptors, which dimer upon ligand binding. NRG1/ErbB3 sig-
naling has been shown to inhibit later stage differentiation of melanoblasts derived 
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from neural tubes of mouse embryos but is dispensable for melanoblast specifica-
tion and melanocyte maturation and promotes undifferentiated, migratory, and pro-
liferative features (Buac et al. 2009). Neuregulin-1 treatment increased melanocyte 
proliferation, invasion, and altered morphology together with decreased levels of 
differentiation genes (Buac et al. 2009). Cultured human fibroblasts derived from 
skin type VI donors expressed higher levels of NRG-1 than fibroblasts derived from 
skin type II donors (Choi et al. 2010). In vivo, NRG-1 was highly expressed in the 
epidermis as well as the dermis of skin type VI donors but was expressed at very low 
levels only in the dermis of skin type II donors (Choi et al. 2010). Furthermore, 
treatment with exogenous NRG-1 gave rise to increase in pigmentation, melanocyte 
size, and dendricity in cultured skin substitutes, and these effects were more pro-
nounced in skin substitutes representative of skin type VI than in their counterparts 
representative of skin types IV or II. The bioactive motif of NRG1 that is involved 
in modulating melanin production in human melanocytes has been characterized 
and was found to increase melanin production without affecting proliferation (Choi 
et al. 2012). ErbB3 expression was higher in melanocytes derived from dark skin 
than in melanocytes cultured from light skin, suggesting that activation of this 
receptor is responsible for the melanogenic effects of NRG-1 (Choi et al. 2012). On 
the other hand, ErbB4 expression was expressed at higher levels in melanocytes 
derived from light skin, compared to melanocytes from dark skin. These findings 
implicate NRG-1 and its receptors in regulating constitutive pigmentation.

2.6  Role of Melanocyte- and Keratinocyte-Derived Nitric 
Oxide in Regulating Pigmentation

In addition to enhancing the production of a large panel of paracrine and autocrine 
growth factors, UV stimulates the production of nitric oxide (NO) by both keratino-
cytes and melanocytes (Romero-Graillet et al. 1996, 1997). In keratinocytes, this 
effect was mediated by increased constitutive NO synthase (Romero-Graillet et al. 
1997) and might involve the activation of Akt (Dimmeler et al. 1999). In lipopoly-
saccharide (LPS)- treated human melanocytes, the inducible NO synthase (iNOS) 
gene expression was suppressed by activin, which also inhibited toll-like receptors  
(TLR) and cytokine expression (Kim et al. 2015). The melanogenic effect of UV 
was abrogated to a large extent upon treatment with NO scavengers, while treatment 
of melanocytes with exogenous NO donors stimulated melanogenesis and dendric-
ity, lending direct evidence for the melanogenic effect of NO (Romero-Graillet et al. 
1997). This effect of NO was mediated by increasing the levels of cGMP, and treat-
ment of melanocytes with guanylate cyclase inhibitors blocked the UV-induced 
melanogenesis (Romero-Graillet et al. 1996). It is possible that the melanogenic 
effect of cGMP is indirect, resulting from inhibition of cAMP phosphodiesterase, 
which leads to increased cAMP levels, the principle mechanism for stimulation of 
melanogenesis. In B16 and human melanoma cells, α-MSH increased the 
UV-induced NO levels, and as in normal human melanocytes, NO stimulated mela-
nogenesis (Tsatmali et al. 2000). This melanogenic effect was abrogated by 
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inhibition of iNOS. The findings that α-MSH modulates the production of NO raises 
the question whether NO functions as an autocrine factor or as a second messenger 
that mediates the effects of α-MSH.

Abnormal levels of NO can have detrimental effects on melanocytes. It has been 
recently shown that variants of iNOS gene, −954 G/C and Ex 16 + 14 C/T, might be 
genetic susceptibility markers for nonsegmental vitiligo among Egyptians (Zayed 
et al. 2015). Exposure of human melanocytes to UV induced the formation of super-
oxide and NO, which combine to form peroxynitrite that excites an electron in frag-
ments of the pigment melanin leading to the formation of CPDs even after cessation 
of UV exposure (Premi et al. 2015). Peroxynitrite solubilizes melanin into frag-
ments or releases pre-melanin monomers from melanosomes, leading to migration 
of these fragments or monomers to the nucleus, where they induce CPDS. Not only 
the initial induction of CPDs but also latent formation of CPDs, coined “dark 
CPDs,” was found to be twice as high in the skin of UVA-irradiated K14-Kitle/e 
mice (homozygous for the loss of function recessive yellow mutation in Mc1r) than 
in the skin of their counterparts with black coat color. These results suggest that 
pheomelanin sensitizes melanocytes to excessive CPDs, which might be attributed 
to either increased peroxynitrite formation or sensitivity of pheomelanin to per-
oxynitrite. Further investigation of the role of NO in the UV response of human 
melanocytes should shed light on its effects on UV-induced DNA damage in indi-
viduals with different pigmentary phenotypes, and on the risk for melanoma.

2.7  Signaling Pathways Responsible for Regulating 
Melanocyte Proliferation, Survival, and Function

The first melanocyte growth medium was based on the use of phorbol esters that 
activate protein kinase C, and cAMP inducers, such as cholera toxin (Eisinger and 
Marko 1982). This underscored the significance of these signaling pathways in sus-
taining the survival, proliferation, and function of human melanocytes. Later, it was 
shown that paracrine growth factors for melanocytes that activate tyrosine kinase 
receptors, such as bFGF, SCF, and HGF, as well as ET-1, can substitute for phorbol 
esters in the culture medium and stimulate proliferation by activating the MAP 
kinases ERK1/2 (Bohm et al. 1995; Swope et al. 1995a; Tada et al. 1998b). 
Activation of ERK1/2 resulted in phosphorylation, hence activation of the transcrip-
tion factor cyclic AMP response element binding protein (CREB), upstream from 
the melanocyte master regulator, the transcription factor MITF (Bohm et al. 1995; 
Tada et al. 2002). Signaling pathways that were involved in ERK1/2 activation 
included protein kinasec (PKC), tyrosine kinases, and intracellular calcium mobili-
zation. The cAMP pathway has long been known to be essential for stimulating 
melanogenesis in pigment cells (Hirobe and Takeuchi 1977; Pawelek et al. 1973). 
The main signaling pathway for α-MSH is the cAMP-dependent pathway, and 
α-MSH is primarily a melanogenic factor for human melanocytes (Abdel-Malek 
et al. 1992). In contrast to other growth factors, such as bFGF or ET-1, α-MSH and 
other cAMP inducers are poor activators of the ERK1/2 pathway, yet α-MSH 
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interacts synergistically with factors that stimulate PKC, tyrosine kinases, or intra-
cellular calcium mobilization to activate these MAP kinases and their downstream 
targets, leading to increased melanocyte proliferation and melanogenesis (Herraiz 
et al. 2011; Tada et al. 2002). Based on these findings, a melanocyte growth medium 
supplemented with bFGF, ET-1, and α-MSH was described and found to support the 
long-term proliferation of human melanocytes (Swope et al. 1995b).

The transcription factor Mitf is a member of the basic helix–loop–helix leucine 
zipper transcription factors and is considered the “master regulator” in melanocytes 
(reviewed by Steingrimsson et al. 2004). Germline mutations in Mitf result in 
Waardenburg Syndrome type 2, characterized by congenital white forelock, senso-
neural deafness, and asymmetric iris color. The significance of Mitf lies in its ability 
to regulate the expression of many target genes that are involved in melanin synthe-
sis, proliferation, and survival of melanocytes (reviewed by Cheli et al. 2009). Direct 
targets for Mitf are the genes for the melanogenic enzymes Tyrosinase, TYRP1, DCT, 
and the melanosomal genes PMel 17, OA1, as well as Rab27A that is involved in 
melanosome transfer. Other Mitf target genes are Bcl2, BIRC7, and DICER that are 
involved in regulating melanocyte survival, KIT, NGFR, and ENDBR genes that 
encode for receptors for melanocyte growth and survival factors (SCF, NGF, and 
ET-1, respectively), and APE/Ref1 that regulates the redox state, as well as HIF1α, 
which is induced by hypoxia. Additional targets for Mitf include the cell cycle regu-
latory genes TBX2 and CDK2, as well as CDKN1A (p21) and CDKN2A.

It is well-established that Mitf is regulated by the ERK1/2 pathway. Treatment 
of melanoma cells with SCF activated ERK, which resulted in the phosphorylation 
of Mitf on Ser 73 and Ser 409 (Wu et al. 2000). The SCF-induced phosphorylation 
of Mitf on Ser 73 transiently increased its transcriptional activity, as evidenced by 
increasing tyrosinase expression, and subsequently targeted Mitf for ubiquitination 
(Hemesath et al. 1998; Wu et al. 2000). Activation of the cAMP pathway in mouse 
and human melanoma cells by α-MSH or forskolin also resulted in the phosphory-
lation of Mitf (Price et al. 1998). Treatment of cultured human melanocytes with 
α-MSH and/or ET-1 in the presence of bFGF increased total protein levels of Mitf, 
as well as its phosphorylated form (Kadekaro et al. 2005). Mitf was also regulated 
transcriptionally, as shown by global gene analysis of melanocytes treated with 
α-MSH (Kadekaro et al. 2010). Loss of Zinc Finger E-box binding protein 2 
(ZEB1) in melanocytes has been shown to induce melanoblast migration defects 
and melanocyte differentiation defects in vivo, accompanied by down-regulation 
of MITF (Denecker et al. 2014). Results identified a signaling network in which 
transcription factor ZEB2 regulates MITF to control melanocyte differentiation. 
Phosphodiesterase 4D3 has been identified as a direct target of the MSH/cAMP/
MITF pathway, which creates a negative feedback loop inducing refractoriness to 
sustained stimulation of the cAMP pathway in melanocytes (Khaled et al. 2010). 
Wnt3a has been shown to play an important role in melanocyte homeostasis by 
up-regulating the expression of MITFA and its downstream targets in vitro (Guo 
et al. 2012a). In vivo, Wnt3a signaling is activated in mouse follicular melanocytes 
during anagen stage of the hair cycling and promotes melanin synthesis through 
induction of MITF (Guo et al. 2012b).
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Exposure to UV activated the stress MAP kinases p38 and JNK/SAPK, which 
regulate the activity of downstream transcription factors that mediate the stress 
response (Ono and Han 2000; Rosette and Karin 1996). Increase in pigmentation, 
i.e., tanning, is considered part of the stress response, which is mediated by the 
paracrine/autocrine network that is activated by UV. The transcription factor 
Upstream Stimulating Factor-1 (USF-1) was activated by p38 and proved to be an 
important regulator of MC1R and POMC expression in melanocytes exposed to UV 
(Corre et al. 2004). In addition, USF-1 up-regulated the expression of Tyrosinase, 
TYRP-1, and DCT. Phosphorylation of USF-1 resulted in its activation and enhanced 
its ability to bind DNA (Galibert et al. 1997). Another transcription factor, ATF2, 
known to regulate genes involved in DNA repair, such as XPC and ERCC1, apopto-
sis, such as Bcl2, and the cell cycle, such as CDK4, was also activated by p38, as 
well as by JNK (Fuchs et al. 2000; Hayakawa et al. 2004), and thus is expected to 
play an important role in the DNA damage response of melanocytes to UV. Global 
gene analysis of human melanocytes irradiated with UV or treated with α-MSH 
revealed that ATF2 and its target genes Bcl2, CDK4, and ERCC1 were reduced in 
expression by UV, and up-regulated in expression by α-MSH (Kadekaro et al. 
2010). The modulation of ATF2 and Bcl2 expression by UV and α-MSH was con-
firmed by Western blotting, indicating that ATF2 participates in the UV response of 
human melanocytes. Recently, it was reported that exposure of human melanocytes 
to UV induced the phosphorylation of ATF2 on Tyrosine 69 and 71, and pretreat-
ment with ET-1 augmented this effect (von Koschembahr et al. 2015). Interestingly, 
ET-1 induced ATF2 phosphorylation even without any UV exposure, suggesting 
that this potent paracrine factor primes melanocytes to respond avidly in order to 
counteract the genotoxic effects of UV. The impact of phospho-ATF2 on repair of 
UV-induced DNA damage remains to be determined.

The p53 transcription factor is considered a universal sensor of genotoxic stress 
(Chouinard et al. 2002; Huang et al. 1999; Liu et al. 1996). It is known to accumu-
late following UV exposure due to its stabilization and induces growth arrest in 
order to allow for DNA repair, and this was shown to occur in human melanocytes 
(Liu et al. 1996; Marrot et al. 2005; Medrano et al. 1995). P53 was regulated by p38, 
and in turn, it regulated the expression of Tyrosinase and TYRP-1 (Chouinard et al. 
2002; Khlgatian et al. 2002; Nylander et al. 2000). In mouse skin, p53 was found to 
up-regulate the expression of POMC, the precursor for melanocortins, and 
β-endorphin that stimulate melanogenesis (Cui et al. 2007). Another study found 
that mutations in the ribosomal protein s (Rps) genes, Rps6, Rps19, and Rps20 gave 
rise to dark skin, due to epidermal melanocytosis (McGowan et al. 2008). The dark 
skin phenotype was dependent on increased p53 in keratinocytes, which led to 
increased expression of SCF that encodes for a potent mitogen and melanogenic 
factor for melanocytes. These intriguing results observed in mouse skin implicate 
p53 in regulating the expression of important paracrine factors known to have sig-
nificant impact on melanocytes.

Recently, a positive feedback loop between p53, SCF, and ET-1 was described 
(Murase et al. 2009). Inducing high levels of p53 in cultured human keratinocytes 
resulted in increased production of SCF and ET-1, and treatment of cultured human 
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melanocytes with either SCF or ET-1 increased phosphorylation of p53 on Ser 15, 
which led to its stabilization. In contrast, silencing or inhibition of p53 in melano-
cytes resulted in decreased Kit expression, inhibition of Mitf, as well as reduced 
tyrosinase levels and melanin content. In cultured skin substitutes, inhibition of p53 
suppressed melanogenesis and led to reduced pigmentation, and silencing of p53 
in vivo inhibited pigmentation of UV-irradiated mouse ears. These effects of p53 
confirm its significance in regulating pigmentation, particularly the tanning response 
to UV. It was recently shown that p53 directly regulates ET-1 expression in human 
epidermal keratinocytes, as well as mouse epidermis, and controls UV-induced 
melanocyte homeostasis in the skin of adult mice (Hyter et al. 2013). These results 
underscore the significance of p53 in the maintenance of melanocyte homeostasis 
via regulating expression of paracrine factors that regulate melanocyte proliferation, 
pigmentation, and survival.

The type II nuclear hormone receptor and transcription factor Retinoid-X- 
Receptor α (RXRα) has been shown to regulate mouse keratinocyte and melanocyte 
homeostasis following acute UV irradiation (Wang et al. 2011). Activation of RXRα 
expressed in keratinocytes regulated in a cell-autonomous manner their prolifera-
tion through secretion of heparin-binding EGF-like growth factor, GM-CSF, IL-1α, 
and cyclooxygenase-2 and activation of mitogen-activated protein kinase pathways. 
Expression of several keratinocyte-derived paracrine growth factors such as ET-1, 
hepatocyte growth factor, α-MSH, stem cell factor, and fibroblast growth factor-2 
was elevated/altered in skin of mice lacking RXRα in epidermal keratinocytes, 
which in a non-cell-autonomous manner modulated melanocyte proliferation and 
activation after UV exposure (Wang et al. 2011).

In comparison, in vivo melanocyte-specific ablation of RXRα and RXRβ in mice 
led to altered expression of pro- and anti-apoptotic genes following UV exposure 
and increased survival of these melanocytes, as compared to their wild-type coun-
terpart (Coleman et al. 2014). These results underscore a “cell autonomous” role of 
melanocytic RXRs in controlling melanocyte survival post-UV exposure.

2.8  The MC1R: A Main Determinant of the Diversity 
of Human Pigmentation and a Melanoma 
Susceptibility Gene

The MC1R is a highly polymorphic gene, with about 200 allelic variants expressed 
in different human populations (reviewed by Garcia-Borron et al. 2005, 2014). The 
MC1R is considered a main determinant of the diversity of human pigmentation, 
with the wild-type MC1R predominantly expressed in Africa, where high eumelanin 
content in the skin is critical for optimal photoprotection. A few of the MC1R vari-
ants, mainly R151C, R160W, and D294H, are strongly associated with red hair 
phenotype (Box et al. 1997; Smith et al. 1998). Expression of any two of these vari-
ants in the homozygous or compound heterozygous state results in loss of function 
of the receptor, disrupting its ability to signal when bound by its agonists (Kadekaro 
et al. 2010; Scott et al. 2002). Epidemiological studies from different populations in 
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different geographical locations demonstrated that these allelic variants are also 
associated with poor tanning ability and increased risk for melanoma and nonmela-
noma skin cancers (Box et al. 2001; Kadekaro et al. 2010; Kennedy et al. 2001; 
Palmer et al. 2000). The MC1R gene is considered a low penetrance melanoma 
susceptibility gene. However, co-expression of one of the MC1R red hair-associated 
variants with a mutation in the highly penetrant p16 gene significantly increases the 
risk for melanoma above that caused by the p16 mutation alone (Demenais et al. 
2010). Stimulation of eumelanin synthesis by activation of the MC1R confers pho-
toprotection; however, the effect of MC1R genotype on melanoma risk is indepen-
dent of the effect on pigmentation, suggesting that MC1R determines the risk for 
melanoma by other mechanisms (Kennedy et al. 2001; Landi et al. 2005; Palmer 
et al. 2000; Stratigos et al. 2006). That the MC1R plays a central role in regulating 
human pigmentation is further supported by the findings that its expression is up- 
regulated by its agonist α-MSH and by ET-1 (Kadekaro et al. 2010; Swope et al. 
2012; Tada et al. 1998a).

2.9  Role of ET-1 and Melanocortins in the DNA Damage 
Response of Melanocytes

In 2005, novel roles for melanocortins and ET-1 were discovered. In addition to the 
well-known effects of these factors on melanogenesis and proliferation, they 
increased the survival of UV-irradiated human melanocytes, enhanced nucleotide 
excision repair, and reduced oxidative damage by inhibiting the generation of 
hydrogen peroxide (Kadekaro et al. 2005). The global effects of ET-1 and α-MSH 
are shown in Fig. 2.2. Genetic deletion of ET-1 in murine epidermis decreased der-
mal melanocytes in adult skin without altering melanocyte homeostasis in newborn 
skin (Hyter et al. 2013). Topical treatment with the EDNRB antagonist BQ788 
abrogated UV-induced melanocyte activation and recapitulated the phenotype of 
ET-1 deletion in mice. Endothelin-1 from epidermal keratinocytes in a non-cell 
autonomous manner controlled melanocyte proliferation, DNA damage, and apop-
tosis following UVB irradiation (Hyter et al. 2013). Treatment of cultured human 
melanocytes with ET-1 reduced the induction and enhanced the repair of CPDs (von 
Koschembahr et al. 2015). These effects were mediated by increased phosphoryla-
tion of p38 and JNK, mainly due to increased intracellular Ca2+ mobilization, a 
signaling pathway activated by ENDBR. Treatment with ET-1 also increased the 
phosphorylation of ATF-2, known to be involved in DNA repair.

Enhancement of nucleotide excision repair capacity by α-MSH was reported 
independently by other investigative teams (Bohm et al. 2005; Smith et al. 2008). 
Treatment of human melanocytes with the potent α-MSH analog NDP-MSH 
increased the transcription of NR4A subfamily of orphan nuclear receptors, which 
played a role in the MC1R-mediated repair of DNA photoproducts (Bohm et al. 
2005; Smith et al. 2008). Furthermore, treatment of cultured human melanocytes 
with α-MSH reduced the induction of 8-oxo-guanosine, thus confirming reduction 
of oxidative DNA damage (Song et al. 2009). The survival effects of α-MSH and 
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ET-1 on UV-irradiated human melanocytes were mediated by activating the MC1R 
and ENDBR, respectively, and were independent of increased melanogenesis, since 
they were observed in tyrosinase-negative albino melanocytes (Kadekaro et al. 
2005). These survival effects were mediated by activating Akt and Mitf, and main-
taining high levels of Bcl2, a known Mitf target (Kadekaro et al. 2005; McGill et al. 
2002). The recent finding that Mitf activation by α-MSH up-regulated the expres-
sion of DICER, a RNase II endonuclease that digests premature miRNA to yield 
mature miRNA, which reduced the expression of the pro-apoptotic BIM (Levy et al. 
2010), suggested that decreased BIM expression is involved in the survival effects 
of α-MSH and ET-1.

The effects of α-MSH on nucleotide excision repair, generation of reactive oxy-
gen species, and oxidative DNA damage received considerable attention, given the 
high polymorphism of the MC1R that results in the differential responses of mela-
nocytes derived from donors with different MC1R genotypes to α-MSH and UV 
(Kadekaro et al. 2010; Scott et al. 2002). These effects required functional MC1R 
as they were absent in melanocytes that express loss of function receptors. The 
cAMP pathway mediated the effects of α-MSH on DNA damage, since these effects 
were also induced by forskolin, a direct activator of adenylate cyclase. Further evi-
dence for the significance of MC1R in reducing the burden of UV-induced DNA 

Fig. 2.2 The global effects of α-MSH and ACTH, and ET-1 on melanocytes and their response to 
UV exposure. Exposure to UV increases the production of ET-1 by keratinocytes, and α-MSH and 
ACTH by keratinocytes and melanocytes. The melanocortins α-MSH and ACTH, as well as ET-1, 
up-regulate the expression of the MC1R. Activation of MC1R and ENDBR results in enhanced 
repair of DNA photoproducts, reduction in generation of reactive oxygen species that lead to oxi-
dative DNA damage, increased melanocyte survival and proliferation, as well as melanogenesis. 
The effects of these factors on UV-induced DNA damage are expected to maintain genomic stabil-
ity of melanocytes and reduce the chance for malignant transformation to melanoma
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damage was provided by the finding that transfection of melanocytes expressing 
loss-of-function MC1R with the wild-type gene restored the ability to respond to 
α-MSH by enhanced repair of DNA photoproducts, reduced generation of reactive 
oxygen species, and increased survival (Kadekaro et al. 2010). These findings pro-
vide a molecular mechanism for the increased melanoma susceptibility associated 
with expression of loss of function variants of the MC1R, as melanocytes expressing 
these variants have compromised DNA repair capacity and sustained oxidative 
stress.

Oxidative DNA damage seems to play an important role in melanocyte transfor-
mation to melanoma. Unlike basal or squamous cell carcinomas that originate from 
keratinocytes, melanoma tumors rarely have UV signature mutations that result 
from unrepaired pyrimidine dimers, as in the p53 gene (Brash et al. 1991; Lubbe 
et al. 1994). This suggests that other forms of DNA damage are causative for mela-
noma. Treatment with α-MSH immediately (within minutes) reduced the generation 
of hydrogen peroxide in UV-irradiated melanocytes (Kadekaro et al. 2005; Kadekaro 
et al. 2010; Song et al. 2009). This effect absolutely required functional MC1R was 
inhibited by ASIP and was absent in melanocytes that express loss-of-function 
receptor. Additionally, α-MSH increased the activity of catalase, a first-line-of- 
defense antioxidant enzyme, and counteracted the inhibitory effect of UV on cata-
lase activity and protein levels in melanocytes expressing functional MC1R (Song 
et al. 2009). Recently, it was reported that catalase was transported with melano-
somes to keratinocytes (Maresca et al. 2010). This intriguing finding suggests that 
melanocytes protect keratinocytes not only by transferring melanin contained within 
melanosomes that reduce the penetration of UV rays to nuclear DNA but also by 
providing additional catalase, which might further reduce reactive oxygen species, 
and prevent oxidative damage. Besides increasing the activity and levels of catalase, 
α-MSH also up-regulated the protein levels of ferritin, an iron sequestrant in mela-
nocytes (Song et al. 2009). Treatment with α-MSH also activated the transcription 
factor Nrf-2, which regulates the expression of phase II detoxifying enzymes that 
contain antioxidant response element (ARE) in their promoter (Kokot et al. 2009). 
Examples of such enzymes are hemeoxygenase-1 (HO-1), γ-glutamylcysteine- 
synthase, γ-glutathione S-transferase, which were up-regulated by α-MSH in 
UV-irradiated melanocytes (Kokot et al. 2009).

Microarray analysis of genes altered in expression by α-MSH and/or UV in 
melanocytes expressing functional versus nonfunctional MC1R revealed that the 
former responded to α-MSH by altered expression of many genes, particularly those 
that regulate melanogenesis (e.g., melanogenic enzymes, melanosome biogenesis, 
transcription factors, growth factor receptors), survival, cell cycle, DNA repair, and 
oxidative stress, while the latter showed no changes in gene expression, further 
confirming the refractoriness of these cells to α-MSH (Kadekaro et al. 2010). In 
general, α-MSH up-regulated, while UV down-regulated transcription. Importantly, 
α-uMSH reversed the effects of UV on many genes, including some that are involved 
in the DNA damage response to UV, particularly melanogenesis, DNA repair, cell 
cycle, oxidative stress, and apoptosis. These effects of α-MSH were only evident in 
melanocytes expressing functional MC1R and were absent in melanocytes 
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expressing loss-of-function receptor, lending further explanation for why certain 
MC1R genotypes that cause loss of function of MC1R are associated with increased 
susceptibility to mutagenesis and melanoma formation.

Further evidence for the involvement of the α-MSH/MC1R axis in the DNA 
damage response of melanocytes was provided by the following findings. Treatment 
of human melanocytes with α-MSH was shown to phosphorylate the DNA damage 
sensors ataxia telangiectasia Rad3-related (ATR) and ataxia telangiectasia mutated 
(ATM) and their downstream kinases Chk1 and Chk2 (Swope et al. 2014). These 
phosphorylation events led to increased formation of γ-H2AX, the phosphorylated 
form of histone 2AX (H2AX) known to be critical for recruitment of DNA repair 
enzymes involved in nucleotide excision repair, the main pathway for repair of 
DNA photoproducts, to the sites of DNA damage. An increase in the protein levels 
of XPC, the DNA damage recognition enzyme, was also observed in response to 
α-MSH treatment. These effects were recapitulated by treatment with forskolin, 
providing evidence that they are mediated by activating the cAMP pathway, and 
were absent in melanocytes expressing loss-of-function MC1R. Subsequently, it 
was reported that activation of the cAMP-dependent protein kinase A (PKA) by 
α-MSH or forskolin resulted in the phosphorylation of ATR on Ser 435 and the 
binding of ATR to XPA and their co-localization to DNA photoproducts (Jarrett 
et al. 2014). As expected, these events that lead to activation of nucleotide excision 
repair by α-MSH were absent in melanocytes expressing nonfunctional MC1R. The 
same authors showed that these effects of α-MSH were negated by the MC1R 
antagonists ASIP and HBD3 (Jarrett et al. 2015), thus providing unequivocal evi-
dence for the significance of the activated MC1R in modulating nucleotide excision 
repair in melanocytes. The findings that reactive oxygen and nitrogen species can 
contribute to the formation of CPDs in melanin-containing cells, i.e., melanocytes 
as well as keratinocytes, following cessation of UV exposure points to the impor-
tance of repair of DNA photoproducts for maintenance of genomic stability in these 
cells, and for prevention of melanoma as well as nonmelanoma skin cancers (Premi 
et al. 2015).

2.10  Targeting the MC1R by Melanocortin Analogs

Since decades, there has been interest in targeting the MC1R to increase skin pig-
mentation (tanning). This strategy was initially based on utilizing potent melanocor-
tin analogs for sunless safe tanning that is photoprotective. Injecting human subjects 
with the potent and best known α-MSH analog NDP-MSH was found to be effective 
in inducing tanning in the absence of sun exposure (Levine et al. 1991). Later, this 
analog was found to reduce the induction of DNA photoproducts in sun-exposed 
human skin (Barnetson et al. 2006). Recently, clinical trials demonstrated the effi-
cacy of NDP-MSH in repigmentation of vitiligo skin (Lim et al. 2015), which may 
be attributed to the known mitogenic and survival effects of α-MSH (Abdel-Malek 
et al. 1995; Kadekaro et al. 2005). Given that vitiligo skin is under oxidative stress 
due to high levels of hydrogen peroxide (Rokos et al. 2002), treatment with 
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NDP- MSH is expected to have antioxidant effects, thus inhibiting melanocyte 
death. However, despite the effectiveness of NDP-MSH, it is not specific to the 
MC1R, as it can bind the other melanocortin receptors, MC3, 4, and 5R, which 
account for its off-target effects. For the goal of developing small analogs of α-MSH 
for topical application to prevent skin cancers, including melanoma, tetrapeptide 
analogs of α-MSH were developed, and shown to surpass α-MSH in their potency 
to stimulate melanogenesis, and to reduce UV-induced DNA damage and apoptosis 
(Abdel- Malek et al. 2006). More recently, tripeptide analogs were developed and 
shown to be capable of activating the MC1R and reducing UV-induced DNA dam-
age (Abdel- Malek et al. 2009). Developing MC1R-selective analogs of α-MSH will 
reduce the off-target effects, and developing small analogs will facilitate their topi-
cal delivery, which should reduce systemic effects. These analogs require functional 
MC1R and are expected to confer photoprotection for individuals with wild type 
MC1R, or who are heterozygous for MC1R variants that reduce receptor function, 
or mutant for other melanoma susceptibility genes, such as the highly penetrant p16 
or PTEN (Demenais et al. 2010; Sosman and Margolin 2009). Others have proposed 
the use of forskolin, an activator of adenylate cyclase, for melanoma prevention 
(D’Orazio et al. 2006). Since forskolin activates the cAMP pathway, it has similar 
photoprotective effects as α-MSH (Kadekaro et al. 2010). However, forskolin is 
nonspecific, and its target, adenylate cyclase, is ubiquitously expressed in all cell 
types, which precludes its selective use for photoprotection.

The effects of ET-1 on repair of DNA photoproducts was evident in human mela-
nocytes regardless of their MC1R genotype, as these effects were observed in mela-
nocytes expressing loss-of-function MC1R (von Koschembahr et al. 2015). These 
results suggest that the ET-1/ENDBR axis might be an attractive target for photo-
protective strategies. Given that ET-1 and its receptors are ubiquitously expressed, 
they cannot be targeted directly to activate the DNA damage response of melano-
cytes. However, the downstream effectors of ENDBR that are involved in the DNA 
damage response in melanocytes might be targeted, and this would have global 
benefit against UV-induced genotoxicity and melanomagenesis, independent of 
MC1R genotype.

2.11  What Normal Melanocytes Teach About Melanoma: 
Revise

Normally, melanocytes in the skin are quiescent, and their homeostasis is maintained 
via their interaction with keratinocytes and with their microenvironment. During the 
early stages of melanomagenesis, melanocytes acquire the ability to proliferate and 
escape from cell cycle regulation by uncoupling from keratinocytes (reviewed by 
Haass and Herlyn 2005). This is achieved by down-regulating the expression of the 
adhesion molecules E-cadherin, P-cadherin, and desmoglein in response to binding of 
the paracrine factor HGF to c-Met and activation of ERK1/2 and IP3 kinase (Li et al. 
2001). Similarly, ET-1 can down-regulate E-cadherin (Jamal and Schneider 2002). 
Further studies showed that overexpression of bFGF in a human xenograft model 
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followed by UVB irradiation gave rise to hyperplastic melanocytic cells with high-
grade atypia, reminiscent of lentiginous melanoma (Berking et al. 2001). 
Overexpression of bFGF concomitantly with ET-3 and SCF, followed by UVB expo-
sure, led to the formation of nests of atypical melanocytes representing melanoma in 
situ, some of which progressed into invasive melanoma (Berking et al. 2004). These 
paracrine factors are up-regulated in expression by UV, and sun exposure might lead 
in vivo to deregulation of their expression, or expression of their receptors, e.g., 
ENDBR (Demunter et al. 2001). It is not known how the UV-induced levels of these 
factors compare to their levels when they are overexpressed in xenograft models. 
Until this is determined, the role of bFGF, ET-3 (or ET-1), and SCF in melanomagen-
esis remains unclear. As discussed earlier, some paracrine factors for melanocytes are 
synthesized by fibroblasts. Given the importance of tumor-associated fibroblasts in 
melanoma progression and invasion, it is critical to understand how these factors 
might be deregulated and their role in melanomagenesis.

The MAP kinase ERK1/2 and IP3 kinase pathways are important regulators of 
melanocyte homeostasis. Mutations that disrupt these pathways, such as the activat-
ing BRAFV900E mutation, upstream of ERK1/2, and loss of PTEN that causes con-
tinuous activation of AKT, thus increased proliferation and survival, are common in 
melanoma (Davies et al. 2002; Sosman and Margolin 2009). Therefore, understand-
ing the regulation of normal melanocytes provides insight into the pathways that 
lead to melanoma formation, and the opportunity to target components of these 
pathways for melanoma therapy, as in the currently used BRAF inhibitors that hold 
promise for melanoma treatment.
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3Melanoma Epidemiology

Marianne Berwick

3.1  Introduction

The incidence of cutaneous melanoma is steadily increasing, mainly in populations 
of European origin and is thus an important public health issue throughout the world. 
The pattern of mortality varies by country, age, and sex. In general, older males con-
tinue to have an increase in mortality, while younger males and females have a down-
ward trend. This chapter reviews these trends and suggests a perspective. The chapter 
covers worldwide incidence and mortality patterns, the relationship of host character-
istics to incidence and mortality, and the relationship of environmental factors to risk.

3.2  Rates and Trends

Incidence rates for melanoma have continued to increase since 1960 through 2016 
and are highest among the developed countries with some potential increases among 
developing countries (Table 3.1), pointing to either a change in behavior, a change 
in screening, or a combination of both. Among non-Caucasian populations, inci-
dence rates are relatively low and quite variable (see Fig. 3.1). World rates vary 
between a low of 0.2 per 100,000 among females in India to 55.8 per 100,000 
among males in Queensland, Australia. Note that rates in this chapter are standard-
ized to the world population, which is generally younger than the populations in 
developed countries, and so when evaluating rates, it is important to understand the 
population used for standardization. Thus, for the same time period, the Queensland 
Cancer Council cites melanoma rates in Queensland among males as 76.4, but this 
is standardized to the Australian population.
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Table 3.1 Rates for  
age-standardizeda melanoma  
incidence (per 100,000;  
IARC, 2012, Cancer  
Incidence in Five Continents,  
Volume X), both sexes, by  
level of development

Population Number Age- standardized rate

World population 232,130 3.0

More developed 
regions

191,066 9.6

Less developed regions 41,064 0.8
aStandardized to the anticipated world population, 2012

Male
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Fig. 3.1 Age standardized incidence and mortality rates of melanoma throughout the world 
 (standardized to the world population)
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Melanoma is notable for higher rates among non-Hispanic whites and this is 
noted in the USA Surveillance, Epidemiology, and End Results (SEER) registries, 
where the rates for white males are 28/100,000 and white females 17.8/100,000 
compared to rates for Hispanic white males of 4.4/100,000 and 4.2/100,000 for 
Hispanic white females (Guy et al. 2015) (see Figs. 3.2 and 3.3).

Several recent analyses have reported on increasing incidence rates among 
Hispanics in California and Florida (Cockburn et al. 2006; Rouhani et al. 2010; 
Clairwood et al. 2014). However, although both groups represent a large proportion 
of the NCI SEER (Surveillance, Epidemiology, and End Results) analytic group, the 
overall the age- adjusted melanoma incidence rates do not reflect an increase overall 
among those who are identified as Hispanic, in either males or females.

Fig. 3.2 Incidence rates for melanoma among males in the US SEER sites

Fig. 3.3 Incidence rates for melanoma among females in the US SEER sites
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When melanoma is identified among racial/ethnic groups other than whites, it is 
often at a deeper Breslow thickness and more advanced stage. This may be due to a 
lack of awareness of melanoma risk among these groups. Unfortunately, but logi-
cally, most risk models (Olsen et al. 2015) and melanoma awareness campaigns 
have been developed for white subjects, those at highest risk.

Mortality due to melanoma has continued to increase among white males world-
wide; however, this may be focused on males over the age of 65. Over three decades 
(1969–1999), mortality rates from melanoma increased 157 % in men aged 65 and 
older (Geller et al. 2002) (Fig. 3.4). There has been a trend toward a plateau among 
females as noted in both the Australian data and the US data (Fig. 3.5). Unfortunately, 
this trend is not evident worldwide. In the UK, for example, the increase in mortality 
among women is continuing at a slower rate.

A thoughtful analysis by Erickson and Driscoll (2010) suggests that the dis-
crepancy between a rapid increase in incidence and slower increase in mortality 
in combination with the increase in thick minimally invasive melanomas relative 
to thicker melanomas may be the result of intensive surveillance and a concomi-
tantly increased biopsy rate, or “over-diagnosis” (suggested by Welch and Black 
2010). Over- diagnosis can be noted when the curve for incidence is relatively 
steep and that for mortality is flat or relatively so. This situation exists in Australia 
and the United States, although mortality is not actually flat among the older age 
groups but is continuing to increase. Such an analysis is supported by Cho et al. 
(2014) but not by Shaikh et al. (2016) or Criscione and Weinstock (2010). The 
difference appears to lie in an emphasis by Shaikh et al. on tumor thickness, 
whereas Cho et al. focus on the pattern of increased 5-year survival (as with kid-
ney and thyroid cancer) accompanied by increased incidence, but no change in 
mortality. Other projections suggest that incidence and mortality is declining from 

Fig. 3.4 Mortality rates for melanoma among males in the US SEER sites
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melanoma (Guy et al. 2015 [mortality]; Autier et al. 2015; and among children 
and adolescents, Campbell et al. 2015).

In addition, there has been an approximately doubling of in situ tumors between 
1988 and 2006. Until we are able to distinguish the faster growing, more aggressive 
tumors that are likely to lead to death from the more slowly growing tumor that may 
never cause problems, we will not be able to address this issue in a way to improve 
public health. Several investigators (Liu et al. 2006; Grob et al. 2002) have made 
attempts at evaluating these aggressive tumors from more slowly growing tumors; 
however, these methods are not yet standard and are unlikely to be applied 
globally.

Years of life lost (YLL) is a particularly salient method for estimating the burden 
of melanoma on a population. Thiam et al. (2015) estimated the highest YLL in 
Australia (19.9 years for males, 22.7 years for females) while Brazil appeared to 
have the lowest estimate (17.2 YLL for males and 19.0 for females).

3.3  Host Factors

3.3.1  Age and Sex

Lachiewicz and colleagues (2008) describe melanoma as a heterogeneous cancer 
with tumors with different biological mechanisms having different survival pat-
terns. In an analysis of age-specific incidence rates, it is clear that there are two 
peaks of incidence in melanoma, one at 54 years and one at 74 years, with truncal 
melanoma peaking earlier and melanoma of the face and ears peaking later. The 

Fig. 3.5 Mortality rates for melanoma among females in the US SEER sites
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median age of melanoma diagnosis overall ranges between 57 and 62 years. 
Unfortunately, melanoma among young women has been recently increasing in the 
US and is currently the cancer with the highest incidence among young women 
aged 15–24 (Purdue et al. 2008), and the site with the highest incidence is the trunk 
(Bradford et al. 2010). In the US, the age-specific incidence of melanoma among 
young women has generally been higher than that of males under the age of 40.

This pattern of the age-specific melanoma incidence is quite distinct for males 
and females, with a higher incidence among females up to the age of 45–50 when 
the age-specific rate for males climbs steeply while that for females continues to 
increase at a far slower rate. A “Clemmensen’s hook” has been described for mela-
noma incidence, a similar pattern as seen in breast cancer, where there is a change 
in the slope of incidence near menopause, indicating a potential role for female 
hormones in the etiology of the disease (Fig. 3.6). It should be pointed out that while 
Australia’s melanoma incidence rates are approximately three times those in the 
US, they are approximately nine times those in Ireland (Table 3.1). This statistic is 
rather startling and underlines the critical importance of the mixture of phenotype 
and intense solar exposure in Australia where much of the population migrated from 
Ireland and the UK. Given the great difference in incidence rates, the similarity of 
the age-specific rates between the US and Australia is all the more striking.

While sex differences in incidence are obvious, there are also differences in sur-
vival which are less clear (Crocetti et al. 2015) with women having a 34 % reduced 
risk of dying from melanoma compared to men. Biological, environmental, and 
behavioral factors underlie the differences (Roh et al. 2015), but more specifically, 
there is little understood as to precisely how Roh et al. summarize selected studies 
of the gender difference and find that the adjusted risk estimate for females com-
pared to males ranges from 0.53 (deVries et al. 2008) to 0.84 (Balch et al. 2001). 

Fig. 3.6 Age at diagnosis for males (blue squares) and females (red triangles) in the US
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Overall, female survival is generally better than males at all stages (Khosrotehrani 
et al 2015) even when controlling for risk factors such as age, thickness, nodal 
metastasis, distant metastasis, and ulceration.

3.3.2  Melanoma and Pregnancy

Given the survival advantage of females and the presence of a Clemmensen’s hook 
in the incidence rates as well as the consistent pattern of age-specific incidence rates 
between an area of high incidence (Australia) and moderate incidence (the US), 
much speculation has focused on the hormonal aspects of melanoma. The role of 
pregnancy and melanoma incidence and survival has received the most attention. The 
bulk of evidence amassed over the past half century, however, suggests that preg-
nancy does not significantly affect the risk of developing malignant melanoma 
(Kjems and Krag 1993). Further, pregnancy does not appear to adversely influence 
overall survival from the disease. Results from some studies suggested that pregnant 
women with melanoma were more likely than their nonpregnant counterparts to 
exhibit adverse prognostic indicators, specifically, thicker lesions and shorter time to 
recurrence. Nonetheless, most studies found no difference in overall survival between 
pregnant and nonpregnant women with melanoma (Byrom et al. 2015). Recent 
reports from large-scale, population-based studies support these conclusions. Newly 
discovered estrogen receptors have led to new hypotheses about the role of estrogen 
in melanoma and these are under intense investigation (de Giorgi et al. 2009).

3.3.3  Body Site

In addition to the distinctly different pattern of incidence between males and 
females, the anatomic site for the development of melanoma varies distinctively 
among males and females. Many observers feel that this is due to specific patterns 
of sun exposure, but a minority think that there may be a sex-linked genetic factor 
that influences the distribution of melanomas by anatomic site. This conjecture is 
yet to be proven. In almost every registry in the world, women have a preponderance 
of melanomas on the leg while males have a majority of melanomas on the trunk. 
This difference has been modifying over time as women develop more melanomas 
on the trunk. Lachiewicz et al. (2008) demonstrated, as others have previously, that 
males and females have different incidences of melanoma on the trunk and head and 
neck, with the male excess on the trunk occurring at approximately age 54, while 
the head and neck incidence among males peaks at age 77.

These data are consistent with Whiteman’s “divergent pathway” model 
(Whiteman et al. 2003) where those with an inherently low propensity for melano-
cyte proliferation require chronic sun exposure to habitually exposed sites, such as 
the face, to develop melanoma, whereas those with a high propensity for melano-
cyte proliferation develop melanomas on sites with unstable melanocytes – or aber-
rant melanogenesis, such as the trunk – with intermittent solar damage.
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3.3.4  Pigmentation

As can be noted in Table 3.1, melanoma occurs most often among light-skinned 
individuals. Melanin type and content of both melanocytes and keratinocytes are 
critical for determining skin phenotype. Individual photoprotection of the skin is 
based primarily on the level of constitutive, or genetically determined, pigmentation 
afforded by the types and amounts of melanin synthesized and distributed in the 
skin. Constitutive pigmentation of the skin with higher melanin content protects the 
epidermis from DNA damage (Yamaguchi et al. 2006). The melanocortin 1 receptor 
(MC1R) seems to regulate the activity of melanocytes and thus is a critical genetic 
factor in melanin synthesis and is discussed in Chap. 2. Other genes, such as OCA2, 
for example, are clearly involved as well (Barón et al. 2014).

Those with light hair, light eyes, and skin that burns easily are at most risk for 
developing melanoma from ultraviolet (UV) exposure whether it is from the sun or 
from artificial tanning devices.

Genetics plays a role in risk to any UV and all the factors involved have not yet 
been determined. Recent publications show that those exposed to solar UV have a 
wide variety of responses to UV (see Tran et al. 2008) in terms of cellular response 
to DNA damage, DNA repair capacity (Wei et al. 2003), and vitamin D synthesis 
due to vitamin D receptor polymorphisms (Orlow et al. 2012), among others.

It is critical to note that individuals with similar levels of constitutive pigmenta-
tion may have different responses to UV (Bykov et al. 2000; Wagner et al. 2002). 
These differences may be due to variation in pigmentation genes. Data from the 
University of Pennsylvania (Kanetsky et al. 2010) and Australia (Palmer et al. 2000) 
demonstrate that pigmentary phenotype alone is not an adequate indicator of mela-
noma risk. Individuals who display darker phenotype characteristics (dark hair, 
brown eyes, and ability to tan) and who carry any variant MC1R alleles show an 
increased risk for melanoma (Pasquali et al. 2015).

3.3.5  Nevi

An important pigmentary-related factor is nevus density; individuals with many 
nevi are at consistently higher risk for developing melanoma. In fact, a large number 
of nevi have been shown to be the strongest known risk factor for developing mela-
noma among Caucasians (Armstrong and Kricker 2001). Even in the absence of 
clinically atypical nevi, a very high number of nevi (e.g., more than 100) have been 
shown to significantly increase risk for melanoma (Huynh et al. 2003). Patients with 
great many nevi may be missing a genetic checkpoint, the absence of which may 
permit the development of a higher number of nevi and increase melanoma risk. 
Nevus density is a simple characteristic that is likely to be useful in determining risk 
for melanoma among all persons and measuring genetic factors underlying nevus 
density should improve risk estimation.

There is an apparent interaction between sun exposure and nevus density with 
regard to the site of the melanoma (Karlsson et al. 2015). For example, in Australia, 
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sex differences in nevus density on the back and lower extremities are similar to sex 
differences for melanoma – men having higher rates on the back, women having 
higher rates on the legs – areas that are not chronically exposed to the sun (Green 
1992). A similar distribution of nevi and melanoma has been noted (Juhl et al. 
2009). Whiteman et al. (2003) have proposed a model for cutaneous melanoma in 
which two pathways – chronic exposure to the sun and melanocyte instability – rep-
resent divergent pathways for developing melanoma. Under this model, people with 
an inherently low propensity for melanocyte proliferation require chronic sun expo-
sure to drive clonal expansion of transformed epidermal melanocytes. Melanomas 
arising in this group of people would occur on habitually sun-exposed body sites, 
such as the face. In contrast, the model would predict that in individuals with an 
inherently high propensity for melanocyte proliferation (e.g., high nevus counts), 
exposure to sunlight early in life would be required to start the process of carcino-
genesis. These individuals would be expected to develop tumors on body sites with 
unstable melanocyte populations such as the trunk.

3.3.6  Family History

First-degree relatives of melanoma patients have a higher risk of the disease than 
individuals without positive family history (Greene and Fraumeni 1979), suggesting 
that a distinct hereditary component exists. Familial melanoma accounts for an esti-
mated 5–10 % of all cases of melanoma, and characteristics that distinguish the 
familial from the nonfamilial form of the disease include younger age at first diag-
nosis, better survival, thinner lesions, multiple primary lesions, and increased occur-
rence of non-melanoma cancers (Begg et al. 2004; Aguilera et al. 2014). Ford 
pooled data from eight case–control studies and found that an individual’s risk of 
melanoma increases by about twofold if he has an affected first-degree relative 
(Ford et al. 1995), and this effect was independent of host factors such as age, nevus 
count, hair and eye color, and freckling. Familial relative risk remained similar in all 
of the studies, even though melanoma incidence varied by about ten-fold in the 
study areas.

3.3.7  Immunologic Factors

A major enigma is that the host immune system is clearly associated with the devel-
opment and progression of melanoma, but the mechanism by which it does so is not 
established. In some studies, melanoma incidence increased in frequency and 
aggressiveness after organ transplantation and immunosuppressive therapy (Vajdic 
et al. 2009; Dinh and Chong 2007). There is also evidence that immune reactions 
are altered after UV exposure in the skin (locally) and perhaps throughout the body 
(systemically) (Murphy et al. 1993; Hersey et al. 1983; Norval 2006). Thus, mela-
noma represents a unique model for studying the human immune system and the 
role of vitamin D in coordinating important changes in cancer development. Clearly, 
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the new more effective therapies that target the immune system underscore the 
importance of the immune system in the development and progression of melanoma 
(Naidoo et al. 2014).

Some data are available as to how the human immune system may alter during or 
as a result of UVB radiation exposure (Bechetoille et al. 2007; Muller et al. 2008; 
Seité et al. 2003; Berthier-Vergnes et al. 2001). However, very little is known about 
how and why the immune surveillance mechanism actually fails to destroy mela-
noma precursor lesions. Melanomas are extremely antigenic because melanoma 
cells produce high amounts of melanoma-specific proteins (Gould Rothberg and 
Rimm 2010). Even though certain T cell clones can recognize those proteins, they 
remain in a suppressed status; therefore, they cannot actively eradicate cancerous 
melanocyte growths. Lymphocytic infiltrates, mostly CD8+ or CD4+ CD25+ Fox3+ 
T regulator cells, have been detected in and around tumor sites in several cancers 
(Nedergaard et al. 2007). It is generally thought that UV exposure can induce direct 
immunosuppression; however, there are no strong data relating systemic and local 
immune reactions to UV with the etiology of melanoma. Finally, tumor-infiltrating 
lymphocyte status of the tumor is strongly associated with survival, indicating that 
immunological factors are critical for the development and prognosis of melanoma 
(Thomas et al. 2014).

3.4  Environmental Factors

3.4.1  Sun Exposure

Sun exposure is generally equated with ultraviolet radiation exposure, although the 
evidence does not rule out other unmeasured exposures associated with the sun. In 
the public mind, a major correlation exists between increased outdoor activity and 
increased skin cancer rates. In fact, there are no data available to substantiate such a 
relationship; that is, although there has been a dramatic increase in melanoma inci-
dence over the last 50 years, no data show that there has been an increase in outdoor 
activity during the past 50 or so years although the trend toward wearing less cloth-
ing is self-evident (Chang et al. 2014).

The data to support an association between sun exposure and the development of 
melanoma are indirect. There has been a latitude gradient for the incidence of mela-
noma among Caucasians, such that the highest rates are nearest the equator. In 
Europe, this gradient has been confounded by the fact that those with darker pig-
mentary phenotype live in the Southern areas of Europe and those with lighter phe-
notype in the Northern, so that the gradient in Italy, for example, was actually 
reversed. However, this does not explain the higher melanoma rates in Norway than 
in Sweden. Furthermore, new data suggest that trends for incidence and mortality 
are “evening out” in terms of latitude. Armstrong and Kricker (1993) estimate that 
between 68 % and 90 % of all melanomas are caused by sun exposure. Most would 
not dispute this estimate; however, the major point here is that it is likely intermit-
tent sun exposure among susceptible individuals that leads to melanoma as noted 
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among the UK migrants to Australia. Noticing that personal annual UV doses are 
low and melanoma is increasing rapidly, Merrill et al. (2015) suggest that low vita-
min D and possibly viral infections may play a role in this paradox.

3.4.1.1  Patterns of Sun Exposure: Intermittent, Chronic, 
and Cumulative Sun Exposure

Although there is no standard measure of sun exposure in research, sun exposure 
can be generally classified as “Intermittent” or “Chronic,” and the effects may be 
considered as acute or cumulative. Intermittent sun exposure is that obtained spo-
radically, during recreational activities usually, and particularly by indoor workers 
who have only weekends or vacations to be outdoors and have not adapted to the 
sun. Chronic sun exposure is incurred by consistent sun exposure, usually by out-
door work, but also among those people who are outdoors a great deal. Cumulative 
sun exposure is the additive amount of sun exposure that one receives over a life-
time. Cumulative sun exposure may reflect the additive effects of intermittent sun 
exposure or chronic sun exposure or both. Thomas et al. (2010) recently demon-
strated that solar elastosis, a breakdown of collagen and elastin in the epidermis, 
when located near the site of a melanoma is directly linked to high levels of ultravio-
let radiation at the site. Surprisingly, Berwick et al. (2005) demonstrated that solar 
elastosis is associated with better survival from melanoma, independent of age or 
histologic subtype of the tumor.

Indeed, different patterns of sun exposure appear to lead to different types of skin 
cancer among susceptible individuals. In Europe, Rosso et al. (1996) quantified sug-
gestions by Kricker et al. (1995) that basal cell carcinoma and squamous cell carci-
noma have different patterns such that squamous cell carcinoma appears to have a 
threshold at approximately 70,000 h of exposure to sun after which incidence 
increases sharply, regardless of whether it is chronic sun exposure or intermittent 
sun exposure. This is highly consistent with the molecular genetic evidence 
(Kraemer et al. 1994) where combined analysis of skin cancer mutations from sev-
eral laboratories found the p53 tumor suppressor gene mutated in 90 % of human 
squamous cell carcinomas and approximately 50 % of basal cell carcinoma. 
Approximately 70 % of tumors exhibited the characteristic UVB footprint, a C to T 
or a CC to TT mutation at specific codons.

It is a surprise to many that analytic epidemiologic studies have shown only 
modest risks at best for the role of sun exposure in the development of melanoma 
incidence, and three systematic reviews have demonstrated extremely similar esti-
mates of effect for the role of intermittent sun exposure, an odds ratio of 1.6 (Gandini 
et al. 2005; Nelemans et al. 1995; Elwood and Jopson 1997). It is important to note 
that chronic sun exposure, as in those occupationally exposed to sunlight, is protec-
tive for the development of melanoma, with an odds ratio of 0.7–0.9, equivocal for 
the development of basal cell carcinoma, and a risk factor for squamous cell carci-
noma. As Elwood and Jopson point out, the measurement of sun exposure is com-
plex and any discrepancies among studies could be sorted out by conducting new 
studies using compatible protocols in different populations with different levels of 
sun exposure.
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A clearer explanation for the rise in melanoma incidence that takes into account 
the different effects of chronic and intermittent sun exposure, proposed by Gallagher 
et al. (1989), is that as people have replaced outdoor occupations with indoor, they 
have engaged in more intermittent sun exposure. Gallagher showed that the decrease 
in outdoor occupations, or chronic exposure which is not a risk factor for mela-
noma, could explain the increase in melanoma incidence in Canada.

The evidence for cumulative exposure comes from two sources to date: migrant 
studies and studies of lifetime exposure, controlling for intermittent and occupa-
tional exposure. Data from Australia and Italy show that individuals who migrate at 
a young age (less than 10 years) from areas of low exposure, such as the UK, to 
areas of high exposure, such as Australia or Israel, have a lifetime risk of developing 
melanoma that is similar to that of the new country. On the other hand, individuals 
who migrate later in life, adolescence or older, from areas of low solar exposure to 
areas of high solar exposure, have a risk that is quite reduced (Whiteman et al. 2001; 
see Table 3.1). These data have often been cited to indicate that childhood sun expo-
sure is more important than adult sun exposure in the development of melanoma. 
However, they can also be interpreted to indicate that the length of exposure is criti-
cal rather than the time of exposure; that is, those who migrate early in life have a 
longer period for intense exposure compared to those who migrate later in life.

3.4.1.2  Effect Varies by Skin Type
The pattern of sun exposure that appears to induce melanoma development is com-
plex and is clearly different by skin type (i.e., propensity to burn, ability to tan). 
Armstrong et al. (1997) have proposed a model consistent with data from other 
epidemiologic studies (White et al. 1994, among others) where risk for melanoma 
increases with increasing sun exposure among those who tan easily, but only with a 
small amount after which risk decreases with increasing exposure. Among subjects 
who are intermediate in their ability to tan, risk continues to increase slowly and 
then at some point declines with increasing exposure. On the other hand, those sub-
jects who have great difficulty tanning have an almost linear increase in risk with 
increasing sun exposure. This model recognizes that individuals are differentially 
susceptible to sun exposure and have different levels of risk based on skin type. 
Moreover, it suggests that different types or patterns of sun exposure are associated 
with different levels of risk for melanoma.

It is worthwhile looking at the estimates of effect of sun exposure on the develop-
ment of melanoma in tandem with the other major risk factors for the development 
of melanoma – nevi number and pigmentary phenotype. Work is ongoing to deter-
mine the interrelationship of genetic susceptibility and these phenotypic character-
istics (Begg and Berwick 1997). In unpublished data from a population-based case 
control study in Connecticut (Berwick et al. 1996), the investigators estimated the 
risk for developing melanoma for nevus number, pigmentary phenotype, and sun 
exposure in early life as well as sun exposure 10 years prior to the diagnosis of 
melanoma, adjusting for age and sex. The risk for melanoma with numerous nevi in 
this study is six times that of someone with few nevi. The risk for melanoma with 
the most sensitive pigmentary phenotype is almost six times that of someone with 
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the least sensitive phenotype. However, the risk for melanoma with increasing early 
life sun exposure or increasing later life sun exposure is only two times that of 
someone with the least sun exposure. Clearly, genetically determined characteristics 
such as nevi and pigmentary phenotype are more powerful determinants of mela-
noma risk than is sun exposure.

3.4.1.3  Sunburn
The role of sunburns in the development of melanoma is a critical issue. This aspect 
of sun exposure is the one most often cited as key to determining melanoma risk. In 
fact, it can be forcefully argued that sunburn itself is not on the pathway to the 
development of melanoma, but that it is an important marker for the combination of 
genetically susceptible phenotype and excessive sun exposure. Numerous articles in 
the lay media as well as dermatology journals stress the importance of a specific 
number of sunburns in increasing risk for melanoma. However, a critical look at 
these studies will show that the relative risk for developing melanoma, when 
adjusted for host characteristics, is often not statistically significant and is not 
always impressive. Data from Europe (Autier and Dore 1998) support the concept 
that childhood sun exposure is not fully represented by sunburning episodes.

While sunburn is the most visible and immediate effect of overexposure to UV, 
it is also the one that the public is most likely to associate with the development of 
melanoma. The emerging consensus, however, is that it is unlikely that sunburn is 
causally associated with melanoma; it is more likely that sunburn is a clear indicator 
of the interaction between too much sun exposure and a susceptible phenotype, that 
is severe solar exposure to skin unaccustomed to it.

3.4.1.4  Suberythemic Exposure
Indeed, a great deal of research is currently being focused on suberythemic expo-
sures, that is, those doses of ultraviolet radiation that do not cause an actual burn but 
that may have biologic significance. Certainly, exposures to the UVA portion of the 
UV spectrum may lead to the development of melanoma (Moan et al. 1999; Vogel 
et al. 2014).

Measurement error is a more serious problem in evaluating sunburn history than 
other sun-associated variables (English et al. 1998; Westerdahl et al. 1996; Berwick 
and Chen 1995). At least three studies have conducted test–retest reliability studies 
and concluded that sunburn history is poorly recalled with only a little over half the 
subjects giving the same answer at two points in time to the question: “Have you 
ever been sunburned severely enough to cause pain or blisters for 2 days or more?” 
Other sun-associated variables, such as time spent outdoors during recreation, for 
example, appear to be more reliably remembered (English et al. 1998; Petersen 
et al. 2013).

3.4.1.5  Timing of Sun Exposure
Much has been made of the critical time of sun exposure in the development of 
melanoma. This concept has not yet been proven. In fact, it is likely that all times in 
life are important in the development of melanoma. Data from a case–control study 
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of melanoma conducted in Connecticut show that intermittent exposure in the 10 
years prior to the diagnosis of melanoma is just as important as intermittent expo-
sure in early life. The argument that 70 % of one’s sun exposure is likely obtained 
before the age of 20 may be true; however, this often-quoted statistic is merely an 
estimate (Stern 2005). With the changes in lifestyle of the 1990s and the early 
twenty-first century, it is quite possible that individuals in the latter half of life 
receive a very substantial amount of sun exposure as a result of early retirement and 
flexible work schedules. At the same time, there are numerous forces at work to 
diminish the outdoor experiences of young people: the tremendous increase in video 
games and computers as well as the increasing atomization of neighborhoods, so 
that “pick up” games of kick the can are no longer as easy to organize.

The preponderance of data shows that excessive intermittent sun exposure at any 
age increases risk for melanoma. Although the public and many researchers feel that 
sun exposure during early childhood is the critical period for melanoma induction, 
there are no empirical data to support this view, attractive though it is.

Autier and Dore (1998) attempted to address the issue as to whether early life or 
later life sun exposure was the critical factor in determining melanoma risk. They 
found that both time periods were important. An interesting comparison shows the 
joint effects of sun exposure during childhood and adulthood. They find, as one 
might expect, that the highest risk among adults is for those who had high intermit-
tent sun exposure as children. Conversely, those who had low sun exposure during 
childhood and high sun exposure in adulthood had a similar risk to those who had 
high exposure during childhood and low exposure during adulthood.

Other data support the idea that intermittent sun exposure leads to increased risk at 
any age. Holly et al. (1995) showed that more than seven painful sunburns during 
elementary school increased risk twofold (OR = 2.0, 95 % CI = 1.4, 2.9) and that more 
than seven sunburns after the age of 30 (the age of women in this study ranged from 
18 to 59) increased risk twofold (OR = 2.0, 95 % CI = 1.1, 3.8). In sum, data from very 
different setting seem to suggest that intermittent sun exposure is critical to the risk for 
developing melanoma. In the published studies that looked at both early life and adult 
sun exposure, there is very little difference between the effects of sun exposure at 
either stage, but that lifelong intermittent sun exposure is indeed cumulative.

3.4.1.6  Occupational or Chronic Sun Exposure
The reasons for the differing trends in melanoma risk between occupational and 
intermittent sun exposure are not well understood. Analyses of melanoma time 
trends from Canada (Bulliard and Cox 1999), New Zealand (Bulliard and Cox 
2000), Germany (Garbe et al. 1994), Australia (Garbe et al. 2000; Marrett et al. 
2001), and Denmark indicate that changes in lifestyle factors, such as sun exposure 
behaviors and fashion, correlate (Osterlind et al. 1988) strongly with increases in 
melanoma on skin areas exposed intermittently to the sun (trunk, upper arms, and 
upper legs). With regard to chronic occupational sun exposure, it is also possible 
that additional phenotypic differences among workforce members may be influenc-
ing the direction and intensity of melanoma risk. In a study of occupational mela-
noma from Spain (Espinosa Arranz et al. 1999), higher melanoma risk was observed 
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among construction workers than among farmers. The melanoma risk in construc-
tion workers became more significant when adjusted for skin type, age, freckle 
count (odds ratio (OR) 4.3; 95 % confidence interval (CI) 1.8, 9.9), and number of 
nevi (OR 2.8; 95 % CI 1.4, 5.8), while the risk in farmers remained protective even 
with these adjustments.

3.4.2  Tanning Beds

Tanning beds have been increasing in number and popularity throughout the world, 
particularly but not exclusively in more northern latitude. Great concern has been 
expressed by the International Agency on Cancer (IARC) that this increase will lead to 
increases in melanoma risk. IARC convened an expert panel of epidemiologists (IARC 
2007) who performed a meta-analysis of 19 studies that have evaluated the association 
between sunbed exposure and melanoma and other skin cancers to that time. This anal-
ysis showed a significant summary, or overall, relative risk for melanoma of 1.8 (95 % 
CI 1.4, 2.3) for “first exposure under the age of 35”; a relative risk of 1.2 that was sta-
tistically significant (95 % CI 1.0, 1.3) for “ever use.” Controversy has, however, con-
tinued over the carcinogenic properties of tanning beds. The tanning industry “sells” 
tanning beds as a safe alternative to UV exposure for both tanning as well as vitamin D 
biosynthesis. As most tanning beds are not regulated (Nilsen et al. 2016), the amount 
of UV exposure from using tanning beds is far higher than the same amount of time 
spent in the sun. Usage of tanning beds have been subject to regulations, with Brazil in 
2009 and Australia in 2015 banning all tanning beds and the EU and many states in the 
US banning them for use by minors (Sinclair et al. 2014; Bulger et al 2015).

A recent study conducted in Minnesota has published high and significant risks 
for developing melanoma among tanning bed users. Among 1,167 cases and 1,101 
controls, 62.9 % of cases and 51.1 % of controls had tanned indoors (adjusted OR 
1.7; 95 % CI 1.4, 2.1). Melanoma risk was pronounced among users of both UVB- 
enhanced (adjusted OR 2.9; 95 % CI 2.0, 4.0) and primarily UVA-emitting devices 
(adjusted OR 4.4; 95 % CI 2.5, 8.0). Risk increased with use: years (P < 0.006), 
hours (P < 0.0001), or sessions (P = 0.0002). ORs were elevated within each initia-
tion age category; among indoor tanners, years used was more relevant for mela-
noma development (Lazovich et al. 2010). Thus, epidemiologic data suggest that 
tanning beds are not safer than solar ultraviolet radiation and that they may have 
independent effects from solar exposure that increase risk for melanoma.

A major problem in evaluating the risk from tanning beds and sunlamps is that 
they have changed over time in terms of their usage and their spectral output. In 
addition, the dosage of UV is extremely difficult to obtain as most tanning parlors 
do not calibrate their equipment or measure their output. When comparing dosage 
of tanning lamps to solar radiation, it is important to estimate the proportion of the 
body irradiated. From 15 % to 50 % of the total body is uncovered during outdoor 
activities, but up to 95–100 % of the total body is uncovered during indoor tanning. 
Therefore, the dosage is likely to be far greater than from a similar amount of out-
door solar exposure.
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Females tend to use sunbeds more than males, particularly young women. Recent 
data from the United States National Cancer Institute show that the incidence of 
melanoma is growing among young females (Purdue et al. 2008). In addition, sun-
bed usage in the US is most prevalent among young women (Lazovich and Forster 
2005). These statistics point up the fact that sunbed usage is an area for serious 
concern. In fact, Veierød et al.’s (2003) evaluation of use of sunbeds found that those 
who used sunbeds at ages 20–29 years once or more per month had a statistically 
significant relative risk of developing melanoma of 2.6 (95 % CI 1.5, 4.5). This fact 
will be crucial to guide prevention in the future.

Most studies have shown an increased risk for melanoma associated with sunbed 
use, but there are multiple qualifications that need to be taken into account. In the 
first place, it is difficult to disentangle the use of artificial UV from natural UV 
exposure. Many authors, for example, Wester et al. (1999), have found frequent tan-
ning in sunlight correlated with sunbed use.

Gallagher et al. (2005) asks the critical question: “If there is a causal relation-
ship, how important is the risk?” This is a difficult question to respond to at this 
point in time for a number of reasons: (1) Assessment of sunbed use needs 
improvement as well as assessment of spectral output. Although we see good 
agreement for individual’s recall of sunbed usage, it is likely that the timing and 
the exposure are not all the same for all individuals. (2) It is unclear whether one 
can compare sunbed use and sunbathing; is there the same biological mecha-
nism? (3) Most studies have taken place in higher latitudes in North America and 
Europe where the background ambient ultraviolet radiation is low; it would be 
useful to have more data from lower latitudes with higher levels of ambient UV, 
such as Australia and Southern US. (4) Ecological studies are inconsistent – even 
at similar latitudes with very good data. In Denmark Faurschou and Wulf (2007) 
concluded that sunbed risk for BCC is important but not CMM. However, in the 
UK, Diffey (2007) estimated that sunbed risk for CMM in women is dramatic 
and may have caused as many as 182 cases of CMM in women and 49 in males 
in the last 8 years.

3.4.3  Other Environmental Factors

Other environmental factors are receiving new attention.

3.4.3.1  Pesticides and Herbicides
Dennis’ group evaluated data from the Agricultural Health Workers’ Study and 
found significant associations between cutaneous melanoma and maneb/mancozeb 
(trend P = 0.006), parathion (trend P = 0.003), and carbaryl (trend P = 0.013). Other 
associations with benomyl and ever use of arsenical pesticides were also suggested 
(Dennis et al. 2010). Seggato et al. (2015) found that indoor domestic use of pesti-
cides may be an independent environmental risk factor for melanoma. Lerro et al. 
(2015) reported borderline associations for the use of acetochlor and melanoma 
incidence among acetochlor users in the Agricultural Health Workers’ Study.
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3.4.3.2  Arsenic
Arsenic has been suspected of involvement, since it is a known cocarcinogen with 
UV in exacerbating development of non-melanoma skin cancer (Rossman et al. 
2004). However, most elevated levels of As are found in areas with populations who 
are highly resistant to UV-induced melanoma (Taiwan, Bangladesh) and so even a 
significant increase in malignant melanoma skin cancer rate would not be detected 
in epidemiology studies in those populations. A significant positive association has 
been shown between body arsenic levels (toenail arsenic) and melanoma risk in a 
(predominantly) Caucasian Iowa population, demonstrating that interactions 
between sunlight and arsenic may contribute to melanoma in these populations 
(Beane Freeman et al. 2004). Yager et al. (2016) found an interaction between DNA 
damage and UV among cases with melanoma, suggesting genetic predisposition

3.4.3.3  Polychlorinated Biphenyls (PCBs)
Some epidemiologic studies have suggested that exposure to organochlorine com-
pounds might increase the risk of melanoma, but these studies have lacked biological 
measures of exposure and have not been able to control for the major environmental risk 
factor for melanoma – sun exposure. Gallagher and co-workers (2011) were able to 
conduct a pilot study with the ability to adjust for sun sensitivity and sun exposure. 
Plasma was collected from 80 cases and 310 controls in British Columbia. Assays for 14 
PCB congeners and 11 organochlorine pesticide residues were conducted: risk of mela-
noma and plasma levels of non-dioxin-like PCBs (adjusted OR 7.0, 95 % CI 2.3, 21.4 
among those in the highest quartile) as well as several PCB congeners, organochlorine 
pesticides, or metabolites. This study suggests that other environmental factors in addi-
tion to UV radiation may play an important role in the etiology of melanoma.

3.4.3.4  Diet
Although dietary behaviors have not previously been shown to be associated with the 
development of melanoma, there is current interest in the role of coffee consumption. A 
meta-analysis and systematic review (Yew et al. 2016) of coffee consumption shows that 
the pooled relative risk for coffee drinkers for melanoma was 0.75 (95 % CI 0.63–0.89, 
P = 0.001), although there is some suggestion of publication bias. This conclusion was 
supported by another meta-analysis by Wang et al. (2016) which reached similar con-
clusions. A study evaluating the quality of the diet and risk of melanoma in an Italian 
population (Malagoli et al. 2015) found that the DASH diet (Dietary Approaches to Stop 
Hypertension) was significantly inversely associated with melanoma in women. Data on 
alcohol’s relationship to melanoma have been mixed. A thorough pooled analysis by 
Miura et al. (2015) finds no strong support for such an hypothesis.

3.5  Summary

Melanoma is clearly a complex disease for which we do not have simple answers. 
This chapter has attempted to delineate some of the challenges in understanding the 
trends for melanoma incidence and mortality. Although we do not yet understand 
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fully the etiology of melanoma, there seems to be a relatively clear message for the 
public: “Be cautious all your life. Enjoy the sun in moderation. Stay away from 
large bursts of sun exposure, particularly on untanned skin.”
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4.1  MAPK and PI3K Pathways and Melanoma

There is substantial evidence that two of the major pathways central for melanoma 
development are the mitogen-activated protein kinase (MAPK) and phosphati-
dylinositol 3-kinase (PI3K) pathways. Indeed, nearly 25 % of melanomas have acti-
vating mutations of NRAS, an additional 15 % have loss of Nf1 function, and a small 
fraction of melanomas have either KIT activating changes or translocations/fusions 
of ALK or ROS with other genes, which result in increased MAPK signaling (Bastian 
2014). Moreover, the clinical success of targeting the MAPK pathway in the treat-
ment of metastatic melanoma underscores the central role this pathway plays in 
melanoma pathogenesis. The first oncogene to be identified in melanoma was NRAS 
(Padua et al. 1984), which is known to be mutated not only in melanoma but also in 
other cancers. It would take an additional 20 years before the next established mela-
noma oncogene was discovered. In a comprehensive mutation screen of protein 
kinases in human cancer conducted by the Wellcome Trust Sanger Institute, BRAF, 
the immediate downstream effector of NRAS, was found to be somatically mutated 
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in >60 % of metastatic melanomas (Davies et al. 2002). The dual role of Nras in 
activating both the MAPK and PI3K pathways and Braf in activating the MAPK 
pathway underscores the importance and therapeutic opportunities the defects in 
these pathways presents. Here, we summarize the genetic alterations found in these 
pathways and their consequences.

4.1.1  MAPK Pathway

Braf is a serine threonine kinase and a member of the “classical” MAPK pathway, 
which regulates cell growth, survival, and differentiation. Braf is highly expressed 
in melanocytes and neuronal tissue, both of which are of neural crest origin. MAPK 
pathway activation is mediated by receptor tyrosine kinases and G-protein-coupled 
receptors, which subsequently activates the Ras family members and then the Raf 
kinase family (Araf, Braf, and Craf). The Raf kinases activate Mek1/2, which in 
turn stimulates Erk1/2, thereby triggering the eventual expression of genes involved 
in proliferation or differentiation (Fig. 4.1). It was demonstrated early on that muta-
tions in BRAF was a common genetic event in nevi, suggesting that it is an early 
event in melanoma progression (Pollock et al. 2003). This led several groups to 
investigate whether BRAF germline mutations were present in melanoma kindreds 
not accounted for by CDKN2A mutation; however, no germline mutations were 
identified thereby excluding the role of BRAF as a melanoma susceptibility gene 

Fig. 4.1 Molecular lesions in melanoma signaling genes. Many components of the melanoma 
growth signaling cascade are mutated and activated. Red activated, gray inactivated, green normal 
function. Drugs (shown in boxes) that have been approved (bold), or in trial (non-bold, italics), are 
indicated
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(Casula et al. 2004; Jackson et al. 2005; Laud et al. 2003). The single most common 
mutation found in BRAF is the T1799A point mutation leading to an amino acid 
substitution of glutamic acid to valine at position 600 located in the kinase domain 
of the BRAF gene and in total >80 % of all BRAF mutations occur at this locus 
(Hocker and Tsao 2007). Other putative oncogenic mutations occur at other codons 
in exon 15 or in exon 11, both of which correspond to the kinase domain as well 
(Hocker and Tsao 2007). The frequency of mutations in melanoma varies from 30 
to 70 % depending on the study; in the largest study on primary cutaneous melano-
mas, a BRAF mutation rate of 48.9 % was reported (Ellerhorst et al. 2011). Studies 
have demonstrated that BRAF/RAS mutant melanomas are driven, at least in part, by 
MAPK signaling (Hodis et al. 2012; Krauthammer et al. 2012). Noteworthy, BRAF 
mutation frequency differs in melanoma depending on certain clinical and patho-
logical subsets. In melanomas arising from chronically sun-exposed body sites as 
well as in melanomas not related to sun exposure (mucosal and acral melanomas), 
the rate of BRAF mutagenesis is quite low, whereas the opposite is observed for 
melanomas arising on intermittently sun-exposed areas (such as trunk and back) 
(Curtin et al. 2005; Maldonado et al. 2003). Whether the difference is actually based 
on body site or histological subtype is difficult to tease apart since melanomas aris-
ing on chronically sun-exposed sites often are lentigo maligna melanomas (LMM) 
and melanomas on intermittently sun-exposed sites often are superficial spreading 
(SSM) or nodular melanomas (NMM) (Curtin et al. 2005). NRAS, the second most 
commonly mutated oncogene in cutaneous melanoma (~15–25 %), is known to acti-
vate both the MAPK and the PI3K pathways (Ellerhorst et al. 2011; Bastian 2014). 
Although some associate NRAS mutations with chronic actinic damage and nodular 
melanomas, NRAS mutations were not found to be specific for a melanoma subtype 
and were noted among melanomas from non-sun-damaged skin (Curtin et al. 2005). 
Most importantly, BRAF and NRAS mutations occur in a mutually exclusive manner 
and in all about 75 % of all melanomas harbor mutations in either of the genes 
(Hocker and Tsao 2007; Curtin et al. 2005). Additional RAS genes seem to have 
only a minor impact in melanoma. In recent studies, a few somatic mutations were 
detected in KRAS (Brose et al. 2002; Reifenberger et al. 2004). Likewise, HRAS 
mutations are rare in melanomas; however, 12 % of Spitz nevi harbor a genomic 
gain of the HRAS locus and simultaneously 67 % of nevi harboring a gain concomi-
tantly carry a mutation in the HRAS gene (Bastian et al. 2000). In some rarer forms 
of melanoma, such as uveal melanoma, BRAF, KIT, and NRAS mutations are 
extremely rare. Instead, mutations in the heterotrimeric GNAQ gene were identified 
in 46 % of uveal melanomas. Mutations occurred at a single locus (GnaqQ209L) 
located in the Ras-like domain, and in vitro studies verified that the Q209L mutation 
activated the MAPK pathway suggesting an alternative route for BRAF and NRAS 
mutation (Onken et al. 2008; Van Raamsdonk et al. 2010). Indeed, pre-clinical stud-
ies examining inhibition of Mek and Akt pathways in uveal melanoma cells demon-
strate decreased cell viability in a synergistic manner (Ambrosini et al. 2013). 
GNAQ mutations are also frequently detected in blue nevi, suggesting that it is an 
early genetic event similar to the findings of BRAF mutations in nevi (Van 
Raamsdonk et al. 2009). Additionally, in vivo analysis indicates that mutation of 
GNAQ is not sufficient for full progression to melanoma. This is also true for BRAF 
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and NRAS mutations suggesting overlapping functional properties of these three 
proteins. The discovery of somatic mutations of GNAQ in uveal melanoma led 
research groups to investigate mutation patterns of heterotrimeric G proteins in 
melanoma. The group of Yardena Samuels examined the mutation spectrum of 35 
genes in melanoma samples. Somatic changes were detected in 17 % of all samples 
with GNG10 and GNAZ having highest frequency of mutations (Cardenas-Navia 
et al. 2010). Mutations in GNA11 were found in 32 % of uveal melanomas in a 
mutually exclusive pattern with GNAQ mutations (Van Raamsdonk et al. 2010).

Patients with high-risk ocular melanomas in the context of COMMON 
(cutaneous/ocular melanoma, atypical melanocytic proliferations and other neo-
plasms) syndrome have somatic-inactivating mutations of BAP1 (Njauw et al. 2012). 
Furthermore, a germline mutation of BAP1 has been associated with uveal mela-
noma, suggesting a tumor suppression function (Höiom et al. 2013). However, the 
role of Bap1 in cutaneous melanoma may be more nuanced as Bap1 has been shown 
to have a growth-sustaining role in cutaneous melanoma cells (Kumar et al. 2015).

Genome-wide screens to discern whether molecular patterns associated to BRAF 
mutation exist have been performed. Pavey et al. used microarray expression profil-
ing to distinguish BRAF and NRAS mutant and wild-type cell lines. A set of 83 
genes was identified to clearly discriminate BRAF mutant and BRAF wild-type cells 
(Pavey et al. 2004), and the approach was later verified in additional data sets 
(Johansson et al. 2007). It has also been demonstrated that distinct genomic changes 
in BRAF-mutated cells where chromosomes 7 (harboring BRAF), 10q (harboring 
PTEN), 11q, 14q, and 20q were identified are discriminatory (Jonsson et al. 2007). 
The observation of concomitant BRAFV600 mutation and PTEN loss is further 
enforced by a significant association between BRAFV600 mutation and PTEN 
somatic mutation (Jonsson et al. 2007; Tsao et al. 2004). These genetic data are cor-
roborated by a recent study where a mouse model with conditional melanocyte- 
specific expression of BRAFV600E developed melanocytic hyperplasias. Moreover, 
when PTEN was abrogated, mice developed melanomas with 100 % penetrance and 
subsequently induced metastases in the lymph nodes and lungs (Dankort et al. 
2009). These data emphasize the cooperativity between the PI3K and the MAPK 
pathways for melanoma tumorigenesis, and thus activating mutations of BRAF as 
well as inactivating changes in PTEN represent one molecular partnership to attain 
the desired effect. Taken together, these results suggest that BRAF mutant melano-
mas develop via a distinct genetic pathway.

The success of therapeutic targeting of Braf in metastatic melanoma underscores 
the importance of understanding the genetics underlying melanoma pathogenesis 
(see Chap. 16). The first drug tested that targets Braf was Sorafenib, which was later 
found to be ineffective in the clinical setting (Eisen et al. 2006). Vemurafenib, a 
potent Braf inhibitor, is approved for patients with BrafV600E-mutated melanomas 
that are unresectable or metastatic (Chapman et al. 2011). The phase III trial, BRIM- 
3, comparing vemurafenib versus dacarbazine as a first-line therapy for BrafV600E- 
mutated metastatic melanoma demonstrated improved median progression-free 
survival (PFS; 5.3 versus 1.6 months) and better overall survival (OS; 84 % versus 
64 %) at 6 months in the vemurafenib versus dacarbazine groups, respectively. The 
early positive results of BRIM-3 led to unblinding, allowing patients on the 
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dacarbazine arm to cross over to vemurafenib. Dabrafenib is another selective Braf 
inhibitor recently approved for the treatment of BrafV600E mutation positive, unre-
sectable, or metastatic melanoma. The phase III trial, BREAK-3, comparing dab-
rafenib versus dacarbazine demonstrated improved median PFS when compared to 
those in the dacarbazine arm, 5.1 versus 2.7 months, respectively, with a hazard 
ratio (HR) for progression of 0.30 (95 % CI 0.18–0.51; p < 0.0001) (Hauschild et al. 
2012). The true difference in overall survival cannot be assessed due to the pre-
defined crossover of progressing dacarbazine patients into the dabrafenib arm.

The discovery of BRAF mutations suggested that other members of the MAPK 
pathway may prove to be attractive therapeutic targets. Mek 1/2 are effector proteins 
downstream of Braf. Moreover, exome sequencing of metastatic melanoma speci-
mens identified somatic mutations in MEK1 and MEK2 as potential clinically sig-
nificant aberrations, characterizing MEK1 and MEK2 mutations in 8 % of melanomas 
(Nikolaev et al. 2011). Trametinib is a selective Mek 1/2 inhibitor recently approved 
for the treatment of patients with BrafV600E/K—mutant metastatic melanoma. The 
phase III trial, METRIC, comparing trametinib to chemotherapy (dacarbazine or 
paclitaxel) in the treatment of patients with BrafV600E/K mutant-positive metastatic 
melanoma demonstrated significant improvement in median PFS (1.5 versus 
4.8 months; HR = 0.45; 95 % CI 0.33–0.63; p < 0.001) and 6-month OS (67 % versus 
81 %; HR = 0.54; 95 % CI 0.32–0.92; p = 0.01), despite being permitted to crossover 
to trametinib (Flaherty et al. 2012a).

Notwithstanding these promising results with single agent selective Braf inhibi-
tor use, clinical responses are typically short-lived with a PFS of approximately 7 
months (Chapman et al. 2011; Hauschild et al. 2012). This led to several approaches 
to improve the durability of response, including using combination strategies and 
intermittent dosing schedules to delay selection of resistant tumor cells (Das Thakur 
et al. 2013; Flaherty et al. 2012b; Long et al. 2014; Robert et al. 2015). A phase III 
trial, COMBI-v, comparing first-line trametinib plus dabrafenib to dabrafenib alone 
in patients with BrafV600E/K mutant metastatic melanoma demonstrated improve-
ments in the median PFS (9.3 months versus 8.8 months; HR = 0.75; 95 % CI 0.57–
0.99; p = 0.03) in the combination group (Long et al. 2014). Furthermore, an 
open-label phase III trial comparing first line dabrafenib plus trametinib to vemu-
rafenib alone in patients with BrafV600E/K mutant metastatic melanoma showed a 
significant improvement in OS with combination therapy versus vemurafenib 
(HR = 0.69; 95 % CI 0.53–0.89; p = 0.005); median PFS was 11.4 versus 7.3 months, 
respectively (HR = 0.56; 95 % CI 0.46–0.69; p < 0.001) (Robert et al. 2015). A phase 
III study demonstrated the combination of vemurafenib and the MEK inhibitor 
cobimetinib improved PFS (9.9 versus 6.2 months; HR = 0.51; 95 % CI 0.39–0.68; 
p < 0.001) and OR (68 % versus 45 %; p < 0.001) when compared to vemurafenib 
alone (Larkin et al 2014). Taken together, these results suggest that combination 
therapy can attenuate resistance to Braf inhibition and has replaced single agent 
targeted therapy.

Genetic studies into the molecular mechanisms underlying resistance to Braf- 
targeted therapy can provide future avenues to prolong responses to therapy. 
Potential mechanisms of resistance include intrinsic and acquired modes of resis-
tance. There are a number of proposed intrinsic mechanisms of resistance related to 
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cell cycle regulation. The amplification of cyclin D1, observed in 15–20 % of Braf 
mutant melanomas, has been associated with high rates of resistance to Braf inhibi-
tors by allowing for cell cycle entry when MAPK signaling is abrogated (Smalley 
et al. 2008). Additionally, one study methodically screened kinase-coding genes for 
any that conferred resistance to a Braf inhibitor and identified Cot overexpression as 
a mediator of Braf inhibitor resistance. COT activation, which functions upstream 
of Mek, results in Raf-independent MEK and Erk activation (Johannessen et al. 
2010). Loss or inactivation of Pten has also been associated with resistance to Braf 
inhibitors (Paraiso et al. 2011). However, Pten expression has been correlated with 
shorter PFS in patients treated with dabrafenib (Nathanson et al. 2013). Moreover, 
the deletion of the retinoblastoma protein (Rb) attenuates Raf dependence in 
BrafV600E-mutated melanoma cells (Xing et al. 2012).

Acquired Braf inhibitor resistance in melanoma cells is mediated through a num-
ber of different proposed mechanisms. The reactivation of the MAPK pathway by 
bypassing mutant Braf is the most frequently described mechanism of acquired 
resistance to mutant Braf inhibition. Nras activating mutations promote enhanced 
Raf dimerization. Upon binding of the Braf inhibitor to one member of the dimer, 
allosteric transactivation of the drug-free Raf protein results in the downstream sig-
naling (Nazarian et al. 2010). Furthermore, constitutive signaling by receptor tyro-
sine kinases results in signal transduction either through Craf or through the PI3K 
pathway (Nazarian et al. 2010; Sun et al. 2014). A number of different resistance 
mechanisms within the PI3K pathway that results in MAPK reactivation have been 
described including mutations in AKT and regulatory members of the PI3K pathway 
(Rizos et al. 2014). Alternative splicing of mutant Braf and copy number amplifica-
tion of mutant Braf have also been described (Poulikakos et al. 2011; Shi et al. 
2012). These results suggest that understanding the genetic alterations in melanoma 
cells pre- and post-exposure to targeted therapies can shed light onto the develop-
ment of more effective therapeutic strategies.

4.1.2  PI3K Pathway

As in the MAPK pathway, Nras is also an essential part of the PI3K pathway. Here, 
Ras induces membrane translocation and activates PI3K, which in turn leads to 
phosphorylation and activation of one of the major targets of the PI3K pathway, 
AKT. Mutations in members of the PI3K pathway have been extensively studied in 
several cancers. Although PIK3CA (p110α subunit of PI3K) is a common oncogene 
in breast (~30 %) and colon (~15 %) cancers (Ogino et al. 2009; Saal et al. 2005), it 
is rarely altered in melanoma (Omholt et al. 2006). It appears that melanomas pref-
erentially activate the PI3K pathway through inactivation of PTEN—another key 
component of the PI3K pathway. PTEN, located on chromosome 10, is deleted in 
30–50 % of melanomas and is a major tumor suppressor gene commonly abrogated 
in human tumors. Somatic mutations of PTEN are rare in primary melanomas 
(Reifenberger et al. 2004; Tsao et al. 2004), whereas the frequency increases in 
metastases and melanoma cell line cultures (Guldberg et al. 1997; Pollock et al. 
2002; Tsao et al. 2004); this may indicate a selective advantage for cells with a 
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PTEN deficiency. There are three isoforms of Akt—Akt1, 2, and 3; however, there 
are several lines of evidence suggesting that Akt3 is the main player in melanoma. 
It has been shown that Akt3 is the predominant active form in melanoma cells and 
the AKT3 gene is located on chromosome 1q a region commonly gained in primary 
melanoma. At least one metastatic tumor has been described to harbor the focal 
amplification of the AKT3 locus (Jonsson et al. 2007). Moreover, a rare point muta-
tion (E17K) in the pleckstrin homology domain, which results in constitutive activa-
tion, was identified in melanoma cells (Davies et al. 2008).

Regulators of the PI3K pathway also impact melanoma pathogenesis. Prex2 is a 
PTEN-regulating protein that was demonstrated to accelerate tumor formation of 
in vivo immortalized human melanocytes (Berger et al. 2012). PREX2 alterations were 
initially identified on sequencing of genomes of 25 metastatic melanomas and matched 
germline DNA. It was then confirmed in 14 % of an independent extension cohort of 
107 human melanomas. Other attractive targets in the PI3K pathway have been identi-
fied including MTOR, IRS4, PIK3R4, PIK3R5, and NFKB1 (Shull et al. 2012).

Therapeutic targeting of the PI3K pathway in melanoma has shown early prom-
ise in pre-clinical studies. The dual inhibition of Braf and the PI3K pathway dem-
onstrated induction of melanoma cell apoptosis via a mechanism independent of 
Mek signaling (Sánchez-Hernández et al. 2012). Furthermore, combinations of 
Braf, Mek, and PI3K inhibitors overcame acquired resistance to the Braf inhibitor 
dabrafenib (Greger et al. 2012). However, phase II trials examining the combina-
tions of everolimus with temozolomide and temsirolimus or tipifarnib with sorafenib 
failed to demonstrate promising clinical activity for metastatic melanoma (Margolin 
et al. 2012; Dronca et al. 2014). The reason for this appears to be interruption of 
negative feedback loops mediated by mTorc1, causing activation of PI3K, Akt, and 
Erk (Carracedo et al. 2008).

As mentioned above, the activation of the PI3K pathway is one proposed mecha-
nism of resistance to Braf and MEK inhibitors. Furthermore, vemurafenib and selu-
metinib, a selective MEK inhibitor, co-resistant Braf mutant melanoma cell lines have 
been shown to be dependent on AKT induction for survival (Atefi et al. 2011). 
Therefore, efforts to target the PI3K pathway for inhibition as a means of combating 
Braf and MEK inhibitor resistance are underway (Greger et al. 2012). AKT inhibition 
overcame acquired resistance to both Braf and MEK inhibition with the exception of 
vemurafenib-resistant melanoma cells that acquired a NRAS mutation (Atefi et al. 
2011). BRAFV600E mutant melanoma cells harboring MEK or NRAS mutations demon-
strated resistance to dabrafenib and trametinib monotherapy. However, the addition of 
a PI3K inhibitor to dabrafenib resulted in improved growth inhibition (Greger et al. 
2012). These studies suggest that combination therapy that includes concomitant inhi-
bition of the PI3K pathway may prolong clinical responses in Braf mutant melanoma.

4.1.3  The CDKN2A Network

The chromosome 9p21 locus is commonly targeted by loss-of-heterozygosity 
(LOH) or deletions in melanoma. The importance of this locus is underscored 
by the identification of somatic as well as germline mutations in CDKN2A 
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(Hayward 2003; Jonsson et al. 2007). Patients with CDKN2A mutations carry an 
increased risk of melanoma of 70 % over their lifetimes (Hayward 2003). 
CDKN2A is unique in the way that it encodes for two different proteins, p16INK4A 
and p14ARF, each transcribed in a separate reading frame. The two genes share 
one exon but have two distinct first exons (exon 1α and exon 1β). The CDKN2A 
locus was discovered through linkage analysis of melanoma kindreds and 
molecular assays showing limited homozygous deletions in some melanoma 
cell lines (Kamb et al. 1994; Weaver-Feldhaus et al. 1994). It was subsequently 
shown that germline mutations in CDKN2A could explain a substantial fraction 
of melanoma kindreds (Hayward 2003; Lin et al. 2008). Mutations in CDKN2A 
are also detected in sporadic multiple primary melanoma patients with a fre-
quency around 9 % (Puig et al. 2005). In cultured melanoma cells, CDKN2A is 
frequently inactivated by homozygous deletions whereas small deletions or 
mutations are more common as germline changes. For both germline and 
somatic mutations, many of the reported changes reside in exon 2, which 
impinges on both p16INK4A and p14ARF while mutations only affecting the p14ARF 
transcript are rare. Within the retinoblastoma (RB) pathway, both the Rb protein 
and the p16INK4A act as tumor suppressors by regulating the cell cycle. Whereas 
Rb has been shown to have a limited role in melanoma development, p16INK4A 
appears to be the major tumor suppressor in this pathway for melanoma. The 
key function of p16INK4A is as an inhibitor at the G1-to-S cell cycle restriction 
point where it binds to Cdk4 and thus unable Cdk4 to bind to cyclinD1, which 
subsequently would lead to phosphorylation and inactivation of Rb. This ulti-
mately releases the E2f transcription factors thereby transcriptionally upregulat-
ing S-phase-related genes. The p16INK4A also plays an important role in cellular 
senescence, a mechanism that restricts the emergence of immortalized cells; 
however, the explanation for this is elegantly reviewed elsewhere (Bennett 
2003). By contrast, p14ARF suppresses oncogenic transformation by binding and 
inhibiting Hdm2 whose function is to abrogate p53 function by targeting it for 
degradation via the ubiquitin pathway (Momand et al. 1992). The amplification 
of both CDK4 and MDM2 has been observed in a subset of melanomas and has 
also been associated with preserved expression of p16INK4A and p14ARF 
(Muthusamy et al. 2006). Additionally, melanomas with wild- type BRAF and 
NRAS frequently display increased gene copy number of CDK4 and CCND1, 
which are direct downstream targets of the MAPK pathway (Curtin et al. 2005). 
These melanomas frequently represent chronically sun-damaged, acral- or 
mucosal-type lesions. The relevance of the TP53 gene is uncertain since 22 % of 
melanoma cell lines are mutated at this locus while only 12 % of primary cuta-
neous melanomas are mutated (Hocker and Tsao 2007). In one study, a mutation 
frequency of 30 % of mucosal melanomas was found (Ragnarsson-Olding et al. 
2002), suggesting subtype-specific mutation patterns. The low prevalence of 
p53 mutations in melanoma as compared to other cancers might be explained by 
the high frequency of CDKN2A inactivation. Evidence on the functional asso-
ciation between p14ARF and p53 became clear when the interaction between 
Hdm2 and p14ARF was elucidated (Zhang et al. 1998).
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4.2  Somatic Changes in the Pigmentation Pathway 
of Melanoma

It was early demonstrated that the biology of pigmentation is an essential part of 
melanoma development. Several epidemiological studies demonstrate that dark 
skinned individuals have a decreased risk of developing melanoma and red-haired 
and light skinned people are at an increased risk of melanoma (Cho et al. 2005; 
Swerdlow et al. 1986). One of the key regulators of pigmentation is MC1R located 
on chromosome 16q and acts by inducing production of dark eumelanin over the red 
pheomelanin (Rouzaud et al. 2005). The dark eumelanin is thought to be more pro-
tective against UV radiation than the red pheomelanin. Genetic variants of the 
MC1R gene are, not unexpectedly, associated with an increased risk of melanoma as 
reviewed elsewhere (Nelson and Tsao 2009). Also, genetic variants in other genes 
or loci (TYR, ASIP, OCA2, TYRP1, SLC24A4, TPCN2, and 9p21) connected to the 
pigmentation pathway have been shown to confer melanoma risk through a recent 
set of with genome-wide association (GWAS) studies (Bishop et al. 2009; Brown 
et al. 2008; Gudbjartsson et al. 2008). Although these GWAS results clearly link 
MC1R to risk, no MC1R somatic mutations were identified in a cohort of 103 pri-
mary melanomas suggesting that MC1R is not a frequent target of somatic alteration 
(Kim et al. 2008). Furthermore, there are studies that demonstrate that the presence 
of MC1R variants increase the melanoma penetrance in CDKN2A carriers (Fargnoli 
et al. 2010). The r variant p.R163Q is associated with increased risk of melanoma in 
high sun exposed geographies (Córdoba-Lanús et al. 2014). In 2005, Garraway 
et al. used the NCI 60 panel of cell lines and an integrative genomics approach to 
map novel oncogenes. High-resolution genomic maps indicated lineage restricted 
copy number changes and integrated with gene expression profiling data-supervised 
methods identified MITF as amplified and highly expressed in a subset of melano-
mas (Garraway et al. 2005). It was at that time known that Mitf was a master regula-
tor of the melanocyte lineage. When investigating MITF gene copy number status in 
a set of primary melanomas, an inverse relationship was observed between gene 
copy number and survival. Intriguingly, all MITF-amplified cell lines harbored 
BRAF mutation as well as inactivated p16INK4A, suggesting a cooperative effect of 
these genetic defects. Consequently, the overexpression of MITF in combination 
with oncogenic BRAF in immortalized melanocytes transformed these thereby con-
firming the oncogenic potential of MITF in melanoma. Furthermore, two indepen-
dent studies identified the rare functional variant in MITFE318K that increases 
melanoma risk and also predisposes to renal cell carcinoma. MITFE318K occurs at 
a conserved SUMOylation position, decreasing the number of SUMO-modified 
Mitf isoforms. This leads to increased Mitf transcriptional activity (Yokoyama et al. 
2011; Bertolotto et al. 2011). Several major pathways such as normal pigment cell 
physiology, melanocyte survival, cell cycle regulation, and growth are known to be 
downstream activities of Mitf. An elegant study by McGill et al. showed that BCL2 
is a transcriptional target of Mitf confirming the growth regulatory function of Mitf 
since Bcl2 is an antiapoptotic factor (McGill et al. 2002). Moreover, additional tar-
gets of Mitf include Tbx2, Met, and Cdk2 representing mechanisms that provide 
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growth advantage (Carreira et al. 2000; Du et al. 2004; McGill et al. 2006). The 
regulation of Mitf has been investigated and regulatory pathways include Notch, 
Mc1r, Wnt, endothelin receptor, KIT, and MAPK pathways. These pathways are 
known to genetically interact with MITF, such as PAX3 and SOX10, and are involved 
in neural crest development (Potterf et al. 2000; Verastegui et al. 2000) (see Chaps. 
2 and 4). The critical function of Mitf in melanoma as well as the finding of MITF- 
amplified melanomas led to the discovery of somatic mutations of MITF in a subset 
of melanomas. In the study by Cronin et al., eight cases of 50 metastatic melanoma 
lines were either amplified or mutated for MITF. In line with these results, an addi-
tional three cases harbored mutation of the SOX10 gene, an upstream regulator of 
MITF, in a mutually exclusive fashion with MITF alterations (Cronin et al. 2009). 
Correlation between mutations in the Mitf pathway and BRAF/NRAS mutation sta-
tus supported the observation made by Garraway et al. that these alterations are 
cooperative genetic events (Garraway et al. 2005). Overall, this study observed that 
approximately 20 % of metastatic melanoma harbors genetic alterations of the Mitf 
pathway. Chromosome 7p gains/amplifications is commonly found in melanoma 
and with this in mind, Jane-Valbuena et al. set out to search for a potential novel 
oncogene in melanoma. Using high-density SNP arrays, ETV1 was pinpointed as an 
attractive target (Jane-Valbuena et al. 2010). Functional analysis revealed that the 
oncogenic potential of ETV1 was dependent on concomitant activation of the 
MAPK pathway and upregulated mRNA levels of MITF. Additional studies of other 
members of the Mitf pathway will most likely unravel additional gene alterations.

As an initiator of several melanocytic signaling pathways, KIT has a central role 
in the development of melanoma. It has been demonstrated that KIT mutations in 
melanoma are mutually exclusive with BRAF and NRAS mutations. c-Kit is a recep-
tor tyrosine kinase and has been proven to be able to activate both the MAPK and 
PI3K pathways (Fig. 4.1). Particular high frequency of mutations was identified in 
melanomas arising on palms, soles, and subungual sites (acral melanomas) as well 
as on mucosal membranes (mucosal melanomas) (Curtin et al. 2006). Additionally, 
the gain or amplification of the KIT locus (chromosome 4q12) was observed prefer-
entially in mucosal, acral, or chronically sun-damaged melanomas and a substantial 
number of mutated tumors also harbored amplification suggesting an additive effect 
of amplification and mutation. In melanomas that harbor c-kit mutations, mutations 
leading to substitutions at L576P and K642E have been shown to account for 55 % 
of c-Kit mutated melanomas (Beadling et al. 2008). These findings set the stage for 
clinical targeting of c-Kit in melanoma patients. Initial trials with imatinib, an ATP- 
competitive inhibitor of several tyrosine kinases including c-Kit, did not demon-
strate statistically significant results, likely because these early trials did not select 
for patients with known c-Kit mutated tumors (Ugurel et al. 2005). More recent 
trials have selected for patients with known c-kit mutated metastatic melanoma. In 
one phase II, single-group, open-label trial exploring the effect of c-Kit inhibition 
with imatinib mesylate in patients with KIT-altered melanoma, clinically significant 
results were found. In this study, 23.4 % of the patients had KIT mutations and/or 
amplifications, with a median PFS of 12.0 weeks and an OS of 46.3 weeks. The 
K642E or L576P substitutions within c-Kit were present in all responses observed 
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(Carvajal et al. 2011). Further molecular studies are required to characterize specific 
genetic alterations in c-kit to allow for more effective therapeutic targeting.

Like KIT, β-catenin is also involved in melanocyte lineage development. Wnt 
ligand binding results in nuclear translocation of β-catenin, resulting in gene trans-
duction. The overexpression of β-catenin in neural crest cells results in pigment cell 
formation, while conditional inactivation of β-catenin led to loss of melanoblasts 
(Dorsky et al. 1998; Hari et al. 2002). Many studies have shown that β-catenin is 
critical for the transformation of melanocytes. Increased level of nuclear β-catenin 
is a consequence of a cascade initially started by canonical Wnt signaling and has 
been found in 50 % of melanomas (Kielhorn et al. 2003). In mice, functional analy-
sis has revealed that β-catenin cooperates with NRAS oncogenesis by repressing 
p16INK4A (Delmas et al. 2007). However, somatic mutations of β-catenin are 
detected in only a small fraction of melanomas suggesting that there are other 
unknown mechanisms responsible for the localization of β-catenin in the nucleus. 
Recent work has suggested that Wnt signaling in melanoma cells regulates their 
interaction with the tumor microenvironment. One study demonstrated that Wnt1 is 
anti-lymphangiogenic by suppressing melanoma derived VEGF-C expression 
(Niederleithner et al. 2012). Intriguingly, recent evidence has demonstrated that 
melanoma intrinsic β-catenin signaling results in the lack of T cell infiltration in 
melanoma animal models and patient-derived biopsies (Spranger et al. 2015). 
Further work will be required to define strategies to effectively target β-catenin sig-
naling in melanoma cells as this has implications for not only targeted therapies in 
melanoma but also checkpoint blockade regimens.

4.3  Novel Pathways in Melanoma

To identify novel key regulators of melanoma oncogenesis and metastasis several 
approaches have been taken where an integrative approach combining gene expres-
sion profiling and SNP arrays identified MITF as lineage-specific oncogene in mela-
noma as discussed previously. An alternative approach employed by Kim et al. 
includes comparative oncogenomics using a Ras inducible nonmetastatic mouse 
model to identify clones that had accumulated genetic changes conferring meta-
static capacity (Kim et al. 2006). With this approach, a focal amplification on mouse 
chromosome 13 containing eight genes was identified using high-resolution com-
parative genomic hybridization. When analyzing mRNA transcript levels, NEDD9 
was pinpointed as the target gene. To confirm the results found in the mouse model, 
a number of primary and metastatic melanomas were genome-wide screened for 
copy number changes. In all, 36 % of metastatic and 8 % of primary melanomas 
harbored the amplification of 6p25-p24 (syntenic to mouse chromosome 13) as well 
as increased gene and protein expression of NEDD9. Furthermore, the knockdown 
of NEDD9 inhibited proliferation and invasion corroborating the metastatic capac-
ity of Nedd9-activated melanoma cells.

There has also been a systematic genetic screen of the matrix metalloproteinase 
(MMP) superfamily of genes (Palavalli et al. 2009) in melanomas. Matrix 
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metalloproteinases (MMPs) are proteolytic enzymes that degrade the basement 
membrane and the extracellular matrix. This suggests an involvement of MMPs in 
cancer metastasis; however, clinical trials using MMP inhibitors are largely unsuc-
cessful in clinical trials.

MMP8-deficient mice, however, exhibit an increased skin cancer risk suggesting 
a tumor suppressor role of MMP8 in skin cancers including melanoma (Lopez-Otin 
et al. 2009). Notably, MMP8 and MMP27 were mutated in 6–8 %, respectively, of 
the melanoma cases investigated. Furthermore, mutations of MMP8 were frequently 
accompanied by LOH, suggesting that MMP8 acts as a tumor suppressor gene in 
melanoma. Functional analysis of MMP8 mutant cells displayed decreased prolif-
eration as compared to MMP8 wild-type cells. By contrast, when investigating 
migratory capacity of MMP8 mutant cells these displayed decreased migration abil-
ity. Taken together, MMPs seem to play some role in melanoma development.

Recent work has identified alterations in genes that play a role in telomere mainte-
nance as promoting susceptibility to melanoma. Telomeres consist of tandem nucleo-
tide repeats located at chromosomal ends and maintain genomic stability and 
chromosomal stability by protecting chromosome ends from degradation, end-to- end 
fusion, and atypical recombination. The enzyme telomerase replenishes telomeres as 
the telomere ends become shorter with each cell division. In one recent study, Horn 
et al. used multipoint linkage analyses and target-enriched high- throughput sequencing 
to identify a germline mutation in the promoter of telomerase reverse transcriptase 
(TERT) in a melanoma-prone family. Tert is part of a ribonucleoprotein complex that 
maintains telomere length. They also found recurrent ultraviolet signature somatic 
mutations within the TERT promoter in 74 % of human cell lines derived from meta-
static melanomas that they examined (Horn et al. 2013). In another recent report, germ-
line mutations in ACD and TERF2IP, two members of the shelterin complex that 
protects telomeres, were found in melanoma- prone families using next-generation 
sequencing. The study included 510 melanoma- prone families without mutations in 
known melanoma-susceptibility genes (Aoude et al. 2015). Furthermore, two indepen-
dent studies identified germline variants in protection of telomere 1 (POT1) in CDKN2A 
wild-type melanoma-prone families. Pot1 plays a role in protecting telomere ends by 
preventing inappropriate processing of the exposed chromosome ends and regulating 
telomerase function (Robles- Espinoza et al. 2014; Shi et al. 2014). These findings sug-
gest that telomere maintenance plays a role in melanoma susceptibility.

4.4  Genome-Wide Screening Approaches in Melanoma

Recent technical developments have allowed researchers to investigate gene copy 
number changes on a global basis. In melanoma, the availability of frozen tissue is 
a major drawback when it comes to genome-wide analyses; hence, many studies in 
melanoma have been performed with melanoma cell lines or short-term cultures. 
Several research groups have investigated the detailed landscape of gene copy num-
ber changes in melanoma lines (Gast et al. 2010; Jonsson et al. 2007; Stark and 
Hayward 2007). Interestingly, a fairly homogenous pattern of DNA copy number 
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changes was observed with several chromosomes altered in more than 50 % of the 
cases. Frequent losses were observed on chromosomes 4, 6, 8, 9, 10, and 11, whereas 
frequent gains were found on chromosomes 1, 7, 8, 17, and 20. These regions are 
corroborated by high-density SNP array analysis with frequent LOH at these regions 
(Stark and Hayward 2007). Additionally, 11q13, 3p14, and 1p12 were recurrently 
amplified including candidate oncogenes such as CCND1, MITF, and NOTCH2. 
Homozygous deletions are frequently identified in melanoma lines with the 
CDKN2A locus being affected in 40–60 % and PTEN in 10–15 %. Moreover, less 
frequent deletions include genes such as PTPRD, HDAC4, and PARD3 suggesting 
novel tumor suppressor genes in melanoma.

In 2005, a vanguard study described genome-wide assessment of DNA copy 
number changes in 126 primary melanomas (Curtin et al. 2005). Tumors were 
divided into four groups based on sun-induced damage and on whether the tumor 
was classified as acral or mucosal melanoma. Specifically, acral and mucosal mela-
nomas were found to harbor an increased frequency of genomic alterations as well 
as higher frequency of gene amplifications. Furthermore, chromosome 10q dele-
tions were more common in melanomas without chronic sun-damaged skin, whereas 
focal gains of the CCND1 locus were more frequent in the group with chronic sun- 
damaged skin. This elegant analysis of genetic alterations displayed that subgroups 
can be identified in melanoma and a strong relationship between sun exposure and 
genome-wide DNA copy number patterns exist.

Primary and metastatic melanomas have been subjected to transcriptomic analy-
sis. Using supervised and integrative methods a number of genes with a significant 
expression deregulation between primary and metastatic melanoma were identified. 
The proinvasive ability of these genes was subsequently validated with functional 
assays (Kabbarah et al. 2010).

New genome-wide sequencing approaches have been used to identify epigenetic 
targets in melanoma pathogenesis. More specifically, regulators of chromatin 
remodeling such as members of the SWI/SNF complex, a nucleosome remodeling 
complex, have recently been implicated. Inactivating mutations in SWI/SNF family 
member genes (ARID1A, ARID1B, ARID2, and SMARCA4) and in members of 
another chromatin remodeling complex, the poly comb complex, (EZH2, BMI1, and 
JARID1B/KDM5B) were altered in melanoma (Hodis et al. 2012; Kuźbicki et al. 
2013; Chang et al. 2015; Tiffen et al. 2015). While the exact mechanism of how 
alterations in chromatin remodeling drive melanoma disease progression is unclear, 
cellular de-differentiation is one proposed mechanism (Sarris et al. 2014). 
Preliminary studies have demonstrated that EZH2, a member of the poly comb 
complex, is overexpressed in melanoma cells and suppresses tumor suppressor pro-
teins (Tiffen et al. 2015). Other epigenetic alterations that have been suggested as 
mediating melanoma disease progression are noncoding RNAs. These molecules 
have been known to be aberrantly expressed in melanoma; however, the specific 
role in melanoma pathogenesis is yet unknown (Greenberg et al. 2014). As new 
technologies emerge to identify genetic alterations in melanoma, functional studies 
will be required to characterize the mechanism by which these alterations contribute 
to disease progression.
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In summary, during the past few years there have been an explosion of genomic 
analyses in melanoma. The heterogeneous nature of melanoma is clearly reflected 
in genome-wide DNA copy number changes and the numerous genetic alterations 
found.

4.5  Progression of Melanoma: The Genomic Approach

The classical histopathological pathway of progression described by Clark is initi-
ated in the benign nevus where proliferation of normal melanocytes begins. The 
next step includes the formation of dysplastic nevi and this may occur in pre- existing 
nevi or at a new location. The formation of radial growth phase melanomas occurs 
when melanocytes acquire the ability to proliferate intraepidermally. One of the 
most critical steps in the development of melanoma includes the progression from 
radially growing melanomas (i.e., radial growth phase, RGP) to vertically advanc-
ing melanomas (i.e., vertical growth phase, VGP) where cells have the ability to 
invade the dermis. This deep invasion allows melanoma cells to spread to distant 
organs, form metastases, and potentially create a lethal event. Dissemination can 
occur by either lymphatic or hematogenous routes. Since access to these vascular 
structures is a prerequisite for metastatic spread, it is not surprising that a simple 
measure of vertical invasion, i.e., Breslow thickness, has survived the test of time.

The genetic factors related to this histopathological progression are starting to 
emerge. The presence of somatic BRAF mutations in nevi (Pollock et al. 2003) sug-
gests that this is an early event and that BRAF activation alone is not sufficient for 
melanocytes to transform into a malignant state. Moreover, there is no significant 
difference in the frequency BRAF or NRAS mutations within control nevi or 
melanoma- associated nevi (Tschandl et al. 2013). Subsequent genetic events are 
more uncertain, though p16INK4A loss is considered to be an important early step 
since germline mutations in CDKN2A have been found in a significant fraction of 
melanoma kindreds and homozygous deletions and deleterious mutations of 
CDKN2A occur in a large fraction of melanoma cell lines. Also, it is evident that 
mice with Cdkn2a loss cooperate with activating MAPK lesions to drive melanoma 
formation (Chin et al. 1997). In addition to CDKN2A, loss of PTEN should also be 
considered to be a critical event. This is supported by human studies where deleteri-
ous PTEN alterations have been described (Tsao et al. 2000, 2004) and also by mice 
studies where Pten loss has been shown to induce metastatic melanoma in combina-
tion with activating Braf alleles (Dankort et al. 2009). Moreover, PTEN depletion 
and subsequent PI3K pathway activation abrogates BrafV600E-induced senescence in 
melanocytes (Vredeveld et al. 2012). Furthermore, simultaneous CDKN2A and 
LKB1 inactivation in BrafV600E melanocytes results in activation of both mTorc1 and 
Akt, resulting in rapid melanoma formation in mice (Damsky et al. 2015).

Beyond discrete genetic events, markers that define the switch from RGP to VGP 
have also been examined. One of the hallmarks in the switch between RGP and 
VGP include the loss of E-cadherin expression and simultaneously increased 
expression of N-cadherin affecting cell adhesion mechanisms. In addition, these 
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expression differences stimulate β-catenin and thereby increase the survival of mel-
anoma cells. In a more comprehensive screen, Haqq et al. investigated gene expres-
sion difference between RGP and VGP (Haqq et al. 2005). Interestingly, loss of 
expression for a set of genes was observed in the vertical growth phase of the mela-
noma; these include CDH3 and MMP10 among other genes. Furthermore, the same 
gene set effectively partitions metastatic melanomas into two groups, which might 
indicate that metastases could develop from either the radial growth or the vertical 
growth phase of melanoma. The authors also identified gene sets that differed 
between normal skin, nevi, primary melanoma, and two types of metastatic mela-
noma suggesting that molecular patterns of progression do exist. Likewise, Sabatino 
et al. characterized melanoma cell lines derived from metachronous metastases 
from a single melanoma patient (Sabatino et al. 2008). Genome-wide copy number 
analysis supported a cancer stem cell model where a suggestive progenitor cell har-
bors a core set of genomic aberrations and that metastatic progression is not a 
sequential event. In a similar study by Harbst et al. metastases obtained from five 
patients were investigated for genomic imbalances, gene expression profiles, and 
methylation profiles (Harbst et al. 2010). Here, evidence for two models of meta-
static progression was provided. The first model was supported by genomic aberra-
tion patterns of a case with three metachronous metastases. Homozygous deletions 
at chromosomes 3p26 and 6q23 were found in two consecutive metastases originat-
ing from the same primary tumor in a mutually exclusive manner corroborating the 
findings of Sabatino et al. (2008). Investigation of the E-cadherin and N-cadherin 
mRNA levels indicates variability as to when the actual switch in expression occurs. 
For one case the switch had obviously occurred prior to the metastases investigated, 
whereas in two of the cases the switch became apparent at the development of the 
second metastasis (Fig. 4.2). Interestingly, methylation analysis provided additional 
evidence for PTEN’s role in melanoma progression. Silencing of the PTEN gene 
was evident in the last of three consecutive metastases originating from a single 
primary melanoma. An alternative model of sequential progression was also found. 
In another case, the primary tumor as well as two consecutive metastases displayed 
almost indistinguishable genomic profiles. Furthermore, gene expression and meth-
ylation profiles support a common origin for metastases originating from the same 
primary tumor. In all, this indicates that at least two types of mechanisms can con-
tribute to melanoma metastases.

To further detail the genetic landscape of melanoma progression, high- throughput 
DNA sequencing has begun to provide a framework of melanoma evolution. One 
recent study investigated the succession of genetic events contributing to the malignant 
transformation of melanocytes. In 37 melanocytic neoplasms specifically chosen for 
melanomas with histologically distinct precursors, benign lesions had BRAFV600 
mutations exclusively. Intermediate lesions harbored NRAS and additional driver muta-
tions. Of the lesions examined, 77 % of intermediate lesions and melanomas in situ 
harbored TERT promoter mutations, suggesting that these mutations a selected for 
early in the malignant transformation. CDKN2A inactivation was found exclusively in 
invasive melanomas. PTEN and TP53 mutations were found only in advanced primary 
melanomas. Moreover, the mutational burden characteristic of ultraviolet radiation 
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increased from benign through intermediate lesions to melanoma (Hunter Shain et al. 
2015). In seeming contradiction to the traditional models of sequential genetic altera-
tions and subsequent clonal selection leading the melanoma pathogenesis, recent stud-
ies have demonstrated that normal skin already contains a high burden of driver 
mutations. There are six genes (Notch 1, 2, 3, P53, FAT1, and RBM10) that were dem-
onstrated to have an excess of nonsilent mutations, suggesting there is a selection pres-
sure for these mutations, and as such, represent drivers. One-quarter of middle-aged 
skin contains a mutation in one of these genes (Martincorena et al. 2015). However, the 
sizes of clones containing these mutations are relatively limited and similar across indi-
viduals, indicating that the growth of clones slows early in their expansion. How this 
occurs is unknown at this time and warrants further investigation as it likely represents 
a checkpoint preventing malignant transformation.

Fig. 4.2 Two models of tumor progression as suggested by Harbst et al. (2010). Model 1: The 
indistinguishable genomic profiles, as well as inheritance of the BRAF mutation, suggest sequen-
tial tumor progression. Model 2: Metastasis-specific gene copy number aberrations exclude the 
possibility of a sequential process and indicate to the evolvement of at least two distinct subclones 
with metastatic potential. However, both a core set of genomic aberrations and presence of the 
BRAF mutation in all lesions confirm common origin of the tumors. Major chromosomal changes 
are indicated. CPC indicates a common metastatic precursor cell/clone that harbors indicated chro-
mosomal aberrations inherited by all the metastases from that tumor. In bold, copy number aberra-
tions observed in the primary tumor. HMZ homozygous deletion
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These recent studies where a genomic approach was taken indicates the exten-
sive complexity in progression of malignant melanoma and more in-depth genetic 
studies are eagerly awaited.

4.6  Molecular Classification of Melanoma

Several groups have used molecular parameters in an attempt to recover a subclas-
sification of melanoma. Viros et al. used a combination of histomorphologic and 
genetic features to classify a comprehensive set of melanomas (Viros et al. 2008). 
Interestingly, BRAF-mutated melanomas displayed characteristic features such as 
nest formation of intraepidermal melanocytes and larger, rounder, and more pig-
mented tumor cells. By contrast, NRAS-mutated melanomas did not show any spe-
cific morphologic characteristics. A survival benefit was also identified in patients 
predicted to be BRAF mutated, most likely due to a different route of metastasis. As 
mentioned previously, Curtin et al. described a classification based on genetic alter-
ations and primary tumor location and sun-damaged tumor surrounding skin (Curtin 
et al. 2005). A more recent study also used genome-wide DNA copy number 
changes as a way of subclassifying melanoma metastases. Here, three classes were 
found and showed different event-free survival (Kabbarah et al. 2010). An alterna-
tive way of molecularly classifying cancer is by using genome-wide assessment of 
mRNA transcript levels though the lack of frozen tissue from primary melanomas 
has led to only one study with sufficient clinical annotation (Kabbarah et al. 2010). 
In that study, 83 primary melanomas in the vertical growth phase with a Breslow 
thickness of at least 1 mm were subjected to global gene expression profiling. 
Applying supervised methods on melanomas from patients with or without 4-year 
distant metastasis-free survival a prognostic set of 254 genes was identified. The 
investigation of clinical parameters in the two prognostic groups revealed differ-
ences with regard to Breslow thickness, AJCC stage, melanoma type, ulceration, 
and mitotic rate—features all known to be strong prognostic factors in melanoma. 
Indeed, a comparison of the prognostic gene set and a gene set derived based on 
Breslow thickness revealed a considerable overlap. Genes related to DNA repair 
and cell cycle increased with thickness as well as with poor prognosis. A more care-
ful analysis of the prognostic gene set showed that DNA replication and DNA repair 
are the most significant pathways (Kauffmann et al. 2008). These results have also 
been corroborated by a recent study applying an alternative microarray platform 
(Jewell et al. 2010).

Technical developments have enabled researchers to start exploring global gene 
expression profiles from formalin-fixed paraffin-embedded (FFPE) tissue (April 
et al. 2009). In melanoma, the first studies used a microarray platform consisting of 
a restricted set of cancer-related genes (n = 502) (Conway et al. 2009; Jewell et al. 
2010; Mitra et al. 2010). However, these have been directed toward identifying sin-
gle molecular biomarkers and not in classifying melanomas. Through such 
approaches, the expression level of osteopontin was identified as the gene with 
strongest association with reduced relapse-free survival (Conway et al. 2009). 

4 Melanoma Genetics and Genomics



80

Subsequent studies with sentinel lymph node status confirmed the prognostic sig-
nificance of osteopontin and DNA repair genes (Jewell et al. 2010; Mitra et al. 
2010). Studies using whole-genome approaches of gene expression analysis of 
archival FFPE RNA open up a wide range of opportunities for investigating the 
genomic landscape of primary malignant melanoma.

Global gene expression patterns have to a larger extent been applied to 
advanced stage or metastatic melanomas where availability of frozen tissue is not 
the main limitation. As alluded to earlier, one study used a gene set derived from 
a discriminatory analysis between radial growth and vertical growth phase of a 
single primary melanoma (Haqq et al. 2005). In this study, the investigators also 
detected two subtypes of metastatic melanoma. Type I metastases displayed 
increased expression of genes presumably downregulated in the vertical growth 
phase of primary melanoma, whereas type II metastases were characterized by 
increased expression of genes related to pigmentation such as MITF, MLANA, 
and TYR. More recently, Jönsson et al. set out to discern a biological subclassifi-
cation with clinical impact in stage IV melanoma (Jonsson et al. 2010). Gene 
expression profiles were obtained for 57 lymph node or subcutaneous metasta-
ses. Unsupervised hierarchical clustering algorithms identified four molecular 
classes. These were subsequently characterized and named according to the gene 
expression pattern of the class. The first group, high-immune response, expressed 
high levels of immune response-related genes such as LCK, CXCL12, and HLA 
class I and II antigen. The second class, proliferative, expressed decreased levels 
of immune response-related genes as well as a trend toward higher Ki67 staining. 
High levels of genes such as MITF, TYR, DCT, and MLANA characterized the 
third class (pigmentation class). This is in line with the findings of Haqq et al. 
who identified a subclass in metastatic melanoma that had high expression of 
genes that characterize the radial growth phase of a single primary melanoma as 
well as high expression of pigmentation-related genes (Haqq et al. 2005). Finally, 
the normal-like subclass was characterized by melanomas expressing genes such 
as TRIM29, KRT17, and KRT10. Most importantly, this biological subclassifica-
tion scheme displayed a significant association to clinical outcome with the pro-
liferative subtype as a poor prognostic group, which was validated in an 
independent cohort of stage III melanomas (Fig. 4.3). In a study by Bugonvic 
et al., a prognostic gene expression signature supports the finding of improved 
survival in patients with tumors having increased expression of immune response-
related genes (Bogunovic et al. 2009). Additionally, all patients included in the 
Jönsson et al. study were enrolled in a prospective trial of DTIC treatment. This 
allowed the investigators to correlate treatment response with molecular sub-
class. Indeed, a significant association between the pigmentation subclass and a 
stable disease at 3 months of treatment was identified suggesting that pigmenta-
tion might be a predictive target of DTIC response. Further molecular character-
ization of subclasses implied different frequencies of genomic imbalances and 
targeted gene deletions, e.g., CDKN2A homozygous deletion was significantly 
associated with the proliferative class. In all, this study indicates that a molecular 
classification is tenable and could be clinically meaningful. These results have 
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subsequently been validated in primary and metastatic melanomas (Harbst et al. 
2012 and Cirenajwis et al. 2015). Finally, it has been demonstrated that tumors 
from CDKN2A germline mutation carriers are indistinguishable from sporadic 
melanomas and found in all four molecular subclasses (Staaf et al. 2014).

In one recent hallmark study, an integrative analysis of cutaneous melanomas 
establishes a genetic framework for molecular classification into four subtypes: 
mutant BRAF, mutant RAS, mutant NF1, and triple wild-type. Enrichment of KIT 
mutations, focal amplifications, and structural rearrangements were features of the 
triple-wild-type subgroup. There was no significant difference in clinical outcome 
between subtypes. However, a subset of each molecular subtype with a significant 
immune signature was associated with improved survival, which has significant 
implications for immunotherapy (Cancer Genome Atlas Network 2015).

In summary, the classification of melanoma based on molecular patterns will 
most likely be an important parameter in future medical oncology since the advent 
of targeted and immunotherapy showing promising results in melanoma will require 
molecular stratification prior to treatment.

Fig. 4.3 Molecular classification of malignant melanoma. (a) Subclassification of stage IV mela-
nomas based on gene expression patterns as suggested by Jönsson et al. (2010). Four classes were 
identified each broadly characterized by expression of set of genes involved in immune response 
and pigmentation. (b) Box plot of MITF gene expression levels in each class displaying an 
increased expression in the Pigmentation class
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4.7  Next-Generation Sequencing: Approaches in Melanoma

The availability of novel high-throughput sequencing methods such as human 
genome sequencing has revolutionized cancer research during the past few years. In 
a pioneering study from the Wellcome Trust Sanger Institute, a single melanoma 
cancer genome was sequenced with a tremendous gain in biologic insight (Pleasance 
et al. 2010). One of the main findings of the study was the observation that the mela-
noma genome was littered with C > T mutations 3′ to a pyrimidine site, a hallmark 
of mutations attributed by UV-induced DNA damage. This single finding puts to 
rest the controversy that melanomas are in fact not subject to UV mutagenesis 
(Hocker and Tsao 2007) (see also Chap. 3). It is also possible to sequence RNA 
transcripts using next-generation sequencing. An elegant study by Berger et al. used 
this approach to analyze short-term melanoma cultures (Berger et al. 2010). In the 
analysis, 11 novel melanoma gene fusions produced by underlying genomic rear-
rangements were found. However, none of these changes were recurrent suggesting 
that the gene fusions could be “passenger” events. Interestingly, in a screen for 
novel prostate cancer fusion genes, BRAF was identified and because of the high 
mutation rate of somatic mutations of BRAF in melanoma the screen was extended 
to include melanomas; however, only one case out of 131 harbored a rearranged 
BRAF gene corroborating the low prevalence of recurrent gene fusions in melanoma 
(Palanisamy et al. 2010).

A very important study demonstrating the significance and enormous potential 
of next-generation sequencing was published in 2009 (Emery et al. 2009). Here, a 
somatic MEK mutation was observed in a metastatic lesion showing resistance to 
treatment of an MEK inhibitor. In vitro analysis displaying further evidence of 
MEK-mutated clones demonstrated resistance to both a MEK inhibitor as well as to 
a Raf inhibitor. However, when combining Mek and Raf inhibitors resistance to 
targeted therapies of the MAPK pathway is circumvented.

As has been described above, next-generation sequencing has been leveraged to 
identify mechanisms of resistance to targeted therapy in metastatic melanoma. As 
an example, Van Allen et al. performed whole-exome sequencing on formalin-fixed, 
paraffin-embedded tumors and demonstrated that common pathways of selective 
Braf inhibitor resistance in melanoma cells include BRAF mutant amplification, 
STAT3 upregulation, or mutations in other members of the MAPK pathway (Van 
Allen et al. 2014). Mutations in downstream MAPK members results in constitutive 
activation of Mek, independent of the upstream Braf kinase and insensitive to Mek 
inhibitors.

With the recent success of immunotherapy in the treatment of metastatic mela-
noma (see Chap. 17), novel high-throughput technologies have been used to pre-
dict those patients that will likely benefit from immunotherapy targeting CTLA-4 
or PD1/PD-L1. Whole exome sequencing was performed on tumor and blood 
samples from melanoma patients treated with the CTLA-4 inhibitors ipilimumab 
or tremelimumab. This revealed a neoantigen peptide landscape specifically pres-
ent in tumors with a strong response to CTLA-4 blockade. More specifically, there 
was an association between high mutational load and clinical benefit with CTLA-4 
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immune checkpoint blockade (Snyder et al. 2014). In another recent study, whole 
exomes from CTLA-4 blockade pretreatment melanoma tumor biopsies and 
matched germline tissue samples were examined. Clinical benefit was associated 
with overall mutational load, neoantigen load, and expression of cytolytic markers 
in the immune microenvironment (Van Allen et al. 2015). Similar findings have 
been demonstrated with respect to PD-1 immune checkpoint inhibitors. Tumors 
that have a high somatic mutational frequency, above 10 somatic mutations per 
megabase of coding DNA, such as melanomas, were shown to respond best to 
PD-1 inhibitors (Lawrence et al. 2013).

4.8  Summary

In summary, the genetic and genomic landscape of melanoma has radically changed 
over the past decade. Advances in our understanding of cancer genetics and the 
advent of powerful technologies will undoubtedly transform our vision of the 
molecular underpinnings of melanoma within the next few years. In this chapter, we 
have been able to survey only some of the principles and technologies that underlie 
the ongoing genomic revolution. It is clear that only the tip of the iceberg has come 
into view.
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5Transcriptional Regulation in Melanoma

Satoru Yokoyama and David E. Fisher

5.1  MITF (Microphthalmia-Associated Transcription Factor)

MITF is a basic helix–loop–helix leucine zipper protein, which binds to E-box 
sequences (5′-CA(C/T)GTG-3′) as a homo- or heterodimer with other MiT family 
members (itself, TFE3, TFEB, or TFEC) (Hemesath et al. 1994; Yasumoto et al. 
1994). MITF has many isoforms, which are transcribed from different initial exons 
and exhibit tissue-specific expression patterns depending upon promoter usage 
(Hershey and Fisher 2005). Among isoforms, MITF-M, with its exon1M, is highly 
expressed in melanocyte-lineage cells (Fuse et al. 1996).

MITF has been shown to be required for melanocyte development, differentia-
tion, and survival (see also Chap. 2). Mutations of MITF in humans cause 
Waardenburg syndrome (WS) 2A, which is an autosomal dominant auditory–pig-
mentary syndrome characterized by pigmentary abnormalities of the hair, skin, and 
eyes and congenital sensorineural hearing loss (Tassabehji et al. 1994). Appropriate 
regulation of MITF is required for cell growth/survival in melanocytes and MITF 
amplification has been reported in 10–20 % of human melanomas (Garraway et al. 
2005). In addition, human clear cell sarcoma is a frequently pigmented soft tissue 
sarcoma, which harbors a chromosomal translocation producing the EWS-ATF1 
fusion protein (Davis et al. 2006). This chimeric oncoprotein is thought to mimic 
the normally cAMP-regulated ability of ATF1 to activate M-MITF expression, 
instead of constitutively activating the M-MITF promoter. The result is dysregulated 
M-MITF expression in clear cell sarcoma which likely accounts for the tumor’s 
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melanin production as well as oncogenic behavior (Davis et al. 2006). In addition,  
~20 % of metastatic melanomas were found to harbor somatic coding mutations, 
which may represent an additional oncogenic mechanism (Cronin et al. 2009) and 
recently a novel MITF mutation (E318K), which affects sumoylation of MITF, has 
been identified in familial and sporadic melanoma (Yokoyama et al. 2011).

MITF transactivates multiple genes related to cell cycle (CDK2, p16, p21, and 
Tbx2), pigmentation/differentiation (TYR, TYRP1, DCT, MART1, AIM-1, 
TRPM1, and PMEL17), apoptosis (HIF1A, BCL2, BCL2A1), and motility 
(c-MET, mir- 211) (Fig. 5.1).

MITF transcription is regulated by other transcription factors, including PAX3, 
SOX10, CREB, FOXD3, LEF-1, and ONECUT-2. CREB/ATF1-mediated regulation 
of MITF is important for physiological expression in melanocytes, under the control 
of cAMP or other signals. MITF is also posttranslationally regulated by phosphory-
lation (via MAPK, GSK-3b, and RSK) (Mansky et al. 2002; Takeda et al. 2000; 
Weilbaecher et al. 2001; Wu et al. 2000), sumoylation (Miller et al. 2005; Murakami 
and Arnheiter 2005), caspase-dependent cleavage (Larribere et al. 2005), and ubiq-
uitination. The MAPK-phosphorylated MITF is ubiquitinated and degraded via the 
proteosome pathway. MITF activity can be suppressed by the overexpression of 
PIAS3, which directly binds to MITF and inhibits DNA binding (Levy et al. 2002).

Recent work has indicated that nonspecific histone deacetylase inhibitors (HDACi) 
could potently repress MITF expression in melanoma cells. Suppressed MITF expres-
sion and cell growth were produced in melanoma cell lines and in mouse xenografts 
in response to treatment with a variety of HDACi (Yokoyama et al. 2008).

5.2  cAMP-Responsive Element (CRE)-Binding Protein/
Activating Transcription Factor-1 (CREB/ATF-1)

CREB/ATF-1 is one of the most important transcription factors in G-protein- 
coupled receptor (GPCR) signaling. In normal melanocytes, CREB/ATF-1 is 
required for pigmentation signaling from melanocortin receptor type 1 (MC1R) to 
MITF, which plays a central role in pigmentation as mentioned above (Price et al. 
1998). α-Melanocyte-stimulating hormone (α-MSH) is produced after UV exposure 
in human skin (Lin and Fisher 2007; Yamaguchi and Hearing 2009) then bound to 
MC1R, which is a GPCR, in melanocytes. MC1R activates protein kinase A via 
cAMP production. Activated PKA phosphorylates CREB at Ser133, which induces 
transcription activity via a highly conserved CREB-binding site (cAMP-responsive 
element; CRE) (5′-TGANNTCA-3′) in the M-MITF promoter.

EWS-ATF1 fusion protein plays an oncogenic role in human clear cell sarcoma 
via MITF (Davis et al. 2006). It is reported that the transition of melanoma cells 
from radial to vertical growth phase is associated with the overexpression of CREB/
ATF-1. Dominant-negative CREB (KCREB) can decrease melanoma tumorigenic-
ity (possibly via MITF) and metastatic potential (via MMP-2 and MCAM/MUC18) 
in nude mice (Xie et al. 1997). Taken together, CREB/ATF1 contributes importantly 
to melanoma behavior.
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Fig. 5.1 MITF is involved in the induction of melanoma, melanocyte differentiation, cell-cycle 
progression, and survival. Black lines represent some of the signaling pathways connected to 
MITF, such as steel factor (SCF) and endothelin-3 (EDN3), and α-melanocyte-stimulating hor-
mone (α-MSH). White circles and squares represent transcription factor-binding sites on the 
MITF-M promoter. MITF protein is posttranslationally regulated by phosphorylation via MAPK, 
GSK-3β, and RSK. PIAS3 suppresses the DNA-binding of MITF. MITF protein binds to consen-
sus sequences, a subset of E-boxes, present in promoter or enhancer elements containing the con-
sensus CATGTG or CACGTG. MITF regulates multiple targets in melanocytes and melanoma 
cells involved in various cellular processes such as cell-cycle control, survival, motility, invasion, 
differentiation, and/or pigmentation
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5.3  SOX (Sry-Box) Family (SOX9 and SOX10)

The SOX family is comprised of approximately 20 transcription factors named after 
the original member, Sry (sex-determining region Y), because they all share a simi-
lar high-mobility group (HMG) domain (Soullier et al. 1999), which recognizes the 
consensus sequence (5′-(A/T)(A/T)CAA(A/T)G-3′). SOX proteins bind DNA as a 
monomer or a dimer and then regulate the transcription of target genes (Jiao et al. 
2004; Ludwig et al. 2004; Peirano and Wegner 2000).

Among SOX family members, SOX10 is one of the major players in melanocyte 
development, and some recent data have suggested a significant role for SOX9 as 
well. In humans, SOX10 mutation causes WS type 4, which is characterized by 
sensorineural deafness/hypopigmentation associated with WS and enteric agangli-
onosis associated with Hirschprung’s disease (Herbarth et al. 1998; Southard-Smith 
et al. 1998). SOX8 and SOX9 play roles in neural crest development, which is the 
origin of melanocytes (Cheung and Briscoe 2003; Maka et al. 2005).

UV exposure induces SOX9 via a cAMP/PKC-dependent pathway (Passeron 
et al. 2007) and SOX9 increases MITF and DCT expression in an SOX10- 
independent manner. In the case of SOX10, there is little information about its own 
transcriptional regulation. The tyrosine kinase TYRO3 can control SOX10 nuclear 
localization, resulting in subsequent SOX10-dependent increases in MITF, together 
with melanoma cell proliferation and survival (Zhu et al. 2009).

SOX10 regulates MITF, EDNRB, and c-ret, which are also related to WS and 
Hirschprung’s disease. The function of SOX10 in melanomagenesis is still unknown, 
though SOX10 somatic mutations were reported in ~7 % of metastatic melanomas 
(Cronin et al. 2009) and SOX10 knockdown induced vemurafenib-resistance 
through activation of TGF-β signaling (Sun et al. 2014). These suggest that SOX10 
could have a tumor-suppressive function in melanoma.

5.4  PAX3 (Paired Box 3)

PAX proteins represent a highly conserved family of transcription factors required 
for the development of multiple tissue types. Pax3 is a particularly interesting mem-
ber of the Pax family, which coordinates the development of certain neural crest- 
derived lineages including skeletal muscle and melanocytes (Tassabehji et al. 1993). 
In humans, specific PAX3 mutations may cause either WS type 1 or type 3 charac-
terized by abnormalities of the central nervous system, face, eye, nose, cochlea, and 
hair pigmentation.

PAX3 has two DNA binding domains: a paired domain and a homeodomain 
(Goulding et al. 1991). The paired domain binds the consensus sequence (5′-GT 
(T/C)(C/A)(C/T)(G/C)(G/C)-3′), whereas the homeodomain recognizes DNA con-
taining a core sequence (5′-TAAT-3′). Pax3 can serve as a transcriptional activator 
or repressor by binding different partner proteins, such as SOX10 and TAZ (as acti-
vators) and TLE4 (Grg4 in mice), KAP1, and HP1γ (as repressors) (Bondurand 
et al. 2000; Hsieh et al. 2006; Lang et al. 2005; Murakami et al. 2006).
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As predicted from WS types1/3, PAX3 regulates MITF, c-Ret, WNT1, and TGF- 
β2, which are required for the development of neural crest derivatives. PAX3 also 
regulates pigmentation genes (DCT and TRP1), which are related to melanocyte 
differentiation.

PAX3 overexpression is observed in many primary melanomas, melanoma cell 
lines, and melanoma sections (Barr et al. 1999; Medic and Ziman 2010; Plummer 
et al. 2008; Scholl et al. 2001). Even though Pax3’s precise function in melanoma is 
not known, anti-apoptotic genes (PTEN, BCL-XL), differentiation-related genes 
(FGFR4, C-MET, MYF-5, MyoD, MSX2, HES1, and NGN2), and metastasis- 
related genes (CXCR4 and MET) (Kubic et al. 2015a, b) has been identified as 
PAX3 target genes, suggesting PAX3 could play an important role in melanoma.

5.5  Snail Superfamily (Snail and Slug)

Snail family members encode transcription factors of the zinc-finger type (Boulay 
et al. 1987). They share a similar organization, being composed of a highly con-
served carboxy-terminal region, which contains 4–6 zinc fingers, and a more diver-
gent amino-terminal region. The consensus binding site for Snail-related genes 
contains a core of six bases, 5′-CAGGTG-3′ (Mauhin et al. 1993), which also cor-
responds to a subset of the E-box motif (5′-CANNTG-3′). On binding to their 
E-boxes, Snail family members act as transcriptional repressors (Batlle et al. 2000; 
Cano et al. 2000). In humans, the mutation of SLUG causes WS type 2D, which is 
characterized by an auditory–pigmentary syndrome characterized by pigmentary 
abnormalities of the hair, skin, and eyes and congenital sensorineural hearing loss 
(Sanchez-Martin et al. 2002). SLUG was also identified as an MITF target gene.

SNAIL/SLUG is related to the epithelial-to-mesenchymal transition (EMT), 
which is thought to be a key step in development and cancer metastasis (Polyak and 
Weinberg 2009). The activation of Snail expression plays an important role in 
downregulation of E-cadherin, contributing to tumorigenesis of malignant melano-
mas (Poser et al. 2001) (see also Chap. 9). In vitro and in vivo experiments suggest 
that Slug is required for the metastasis of the transformed melanoma cells (Gupta 
et al. 2005) and for the survival through PUMA suppression.

5.6  FOXD3 (Forkhead Box D3)

FOX transcription factors represent a closely related family of proteins that mediate 
cell-cycle progression, survival, and differentiation (Myatt and Lam 2007). The 
FOX transcription factors contain a conserved FOX or winged helix domain, which 
is required for binding to a consensus DNA sequence and for activating target gene 
transcription.

Foxd3 acts as transcriptional repressor via a consensus binding site (5′-A(A/T)
T(A/G) TTTGTTT-3′) and is expressed in migratory neural crest (NC) cells that 
give rise to multiple lineages. The downregulation of FOXD3 results in an increase 
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in the number of differentiating melanocytes in quail NC cultures, and in premature 
dorsolateral migration of chick NC cells (Kos et al. 2001). Conversely, the misex-
pression of FOXD3 in melanoblasts results in a failure of NC cells to enter the 
dorsolateral pathway. The ectopic expression of FOXD3 represses MITF in cultured 
NC cells and in B16-F10 melanoma cells via inhibition of PAX3 binding to MITF 
promoter (Thomas and Erickson 2009).

In melanoma, it was reported that B-RAFV600E, which is one of the major muta-
tions, suppresses FOXD3 levels in human melanoma cells and FOXD3 expression 
represses melanoma growth by inhibiting the G1-S transition (Abel and Aplin 
2010). Recently, some of FOXD3 targets were identified such as ERBB3 and 
TWIST1, both of which are related to melanoma malignant phenotypes (Abel et al. 
2013; Weiss et al. 2014).

5.7  ETS Family Members

ETS transcription factors have a conserved DNA-binding domain (the ETS domain) 
of about 85 amino acids. The ETS domain, which bears a winged helix–turn–helix 
protein fold, mediates binding to a core DNA sequence (5′-GGA(A/T)-3′), with adja-
cent sequences influencing binding affinities (Sharrocks 2001). ETS transcription fac-
tors are important in many biological settings such as cell growth, differentiation, and 
survival and in processes that include hematopoiesis, angiogenesis, wound healing, 
cancer, and inflammation. At least 27 ETS family members have been described in 
mammalian cells and nearly two-thirds are ubiquitously expressed in adult tissues.

Multiple members of the ETS family undergo oncogenic dysregulation in cancer, 
often through chromosomal translocation. In Ewing’s sarcoma (EWS), EWS-ETV1 
translocations result in highly transforming chimeric ETS fusion proteins (Bailly 
et al. 1994; Ouchida et al. 1995). Chromosomal translocations involving ETV1 and 
other ETS genes were found in more than 40 % of prostate cancers (Tomlins et al. 
2005). Most commonly, these translocations interpose the promoter and 5′ coding 
exons of the TMPRSS2 gene upstream of an ETS factor gene (ERG, ETV1, ETV4, 
or ETV5), resulting in androgen-dependent regulation and elevated the expression 
of these genes.

In melanoma, translocations involving Ets family members have not yet been 
described. However, the amplification of the ETV1 locus (>40 %) and dependency 
on ETV1 expression for melanoma proliferation were reported (Jane-Valbuena 
et al. 2010). The oncogenic activity of ETV1 is thought to be mediated by another 
oncogene, MITF.

5.8  BRN2 (POU3F2/N-Oct-3)

POU domain transcription factors are present in many cell lineages where they per-
form varying functions, either as ubiquitous regulators of “house-keeping” genes or 
as developmental- and lineage-specific coordinators of cell fate decisions. The POU 
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domain is a highly conserved DNA binding structure, which was first found to rec-
ognize the canonical octameric sequence (5′-ATGCAAAT-3′) (Pruijn et al. 1986, 
1987). Later, two subdomains, POUs and POUh, were identified to bind to DNA 
sequences 5′-ATGC and 3′-AAAT, respectively (Sturm and Herr 1988). POU pro-
teins are capable of homodimerization on DNA target binding sites and interaction 
with a variety of other proteins, such as SOX family members (Wegner 2005). A 
major interaction between the POU family and SOX family involves OCT4 
(POU5F1) and SOX2 in embryonic stem cells (Yuan et al. 1995). BRN2, SOX10, 
SOX9, and PAX3 are expressed in melanocytes and physical interactions among 
SOX10, PAX3, and BRN2 have been reported (Smit et al. 2000). BRN2 acts as a 
repressor of MITF expression in melanoma cells via direct binding to a region adja-
cent to the TATA box, resulting in suppressing the differentiated melanocytic phe-
notype and enhancing tumor metastasis (Goodall et al. 2008). BRN2 also regulates 
melanoma invasion and metastasis through suppressing PDE5A expression 
(Arozarena et al. 2011).

5.9  AP-1 (Activator Protein 1)/ATF2 (Activating 
Transcription Factor 2)

The AP-1 transcription factor is a dimeric complex that comprises members of the 
JUN, FOS, ATF (activating transcription factor), and MAF (musculoaponeurotic 
fibrosarcoma) protein families (Vogt 2002). AP-1 proteins are known as basic 
leucine- zipper (bZIP) proteins because they dimerize through a leucine-zipper motif 
and contain a basic domain for interaction with DNA. The AP-1 complex can form 
various different combinations of heterodimers or homodimers, and these combina-
tions determine the genes that are regulated by AP-1. AP-1 upregulates transcription 
of genes containing the TPA response element (TRE; 5′-TGA(G/C)TCA-3′).

ATF2 is well characterized and thought to play a key role in melanoma (Bhoumik 
et al. 2007). ATF2 activity is regulated by phosphorylation on threonine (Thr) resi-
dues 69 and 71 via stress-activated kinases JNK, RalGDS-Src-P38 pathway, ATM, 
and Ras-MEK-ERK (Bhoumik et al. 2005; Gupta et al. 1995; Ouwens et al. 2002). 
Stimuli that activate these kinases, including exposure to proinflammatory cyto-
kines, UV irradiation, DNA damage, or changes in ROS, are among the inducers of 
ATF2 transcriptional activity. Following phosphorylation, ATF2 activates transcrip-
tion through heterodimerization with other transcription factors, among which c-Jun 
has been best characterized. ATF2/c-Jun heterodimers preferentially bind to the 
consensus sequence (5′-T(G/T)ACNTCA-3′). In addition to phosphorylation, ATF2 
is also regulated by ubiquitin-dependent degradation by the proteasome, which is 
dependent on the association with JNK (Fuchs et al. 2000). ATF2 also functions in 
the DNA damage response by associating with the TIP60 HAT complex (Bhoumik 
et al. 2008). The TIP60 complex is required for ATM self-phosphorylation via acet-
ylation. ATF2 regulates ATM activation by control of TIP60 stability and activity.

Through its dimerization with specific partners, ATF2 regulates the expression of 
its transcriptional targets. These are stress/DNA damage response genes (c-Jun, 
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c-fos, ATM, XPA, RAD23B, etc.), growth/tumorigenesis genes (cyclin A. cyclin 
D1, MMP2, TNF-α, etc.), and physiological homeostasis genes (tyrosine hydroxy-
rase, collagen, VCAM-1, PGC-1α, etc.).

There are several lines of striking evidence regarding ATF2 function in mela-
noma (Bhoumik et al. 2007). Nuclear ATF2 expression is a strong predictor of poor 
survival in melanoma patients (Berger et al. 2003) and interfering with ATF2 tran-
scriptional activity can inhibit proliferation of melanoma cells in culture and forma-
tion of tumors and metastasis in mouse models. On the other hand, ATF2 located at 
mitochondria increases mitochondrial permeability and promotes apoptosis, sug-
gesting that cytosolic ATF2 works as a tumor suppressor (Lau et al. 2012). Recent 
studies shows that AP-1 might be one of the key regulators of the invasive state in 
melanoma (Kappelmann et al. 2013; Verfaillie et al. 2015).

5.10  AP-2

The AP-2 family of transcription factors consists in humans and mice of five mem-
bers, AP-2a, AP-2b, AP-2c, AP-2d, and AP-2e (Hilger-Eversheim et al. 2000). All 
AP-2 proteins share a highly conserved helix–span–helix dimerization motif at the 
carboxyl terminus, followed by a central basic region and a less conserved domain 
rich in proline and glutamine at the amino terminus. The proteins are able to form 
hetero- as well as homodimers. The helix–span–helix motif together with the basic 
region mediates DNA binding, and the proline- and glutamine-rich region is respon-
sible for transactivation. AP-2 has been shown to bind to the palindromic consensus 
sequence (5′-GCCNNNGGC-3′) found in various cellular and viral enhancers. 
AP-2 activity is regulated through a number of signal transduction pathways. 
Phorbol esters and signals that enhance cAMP levels induce AP-2 activity indepen-
dent of protein synthesis, whereas retinoic acid treatment of teratocarcinoma cell 
lines results in transient induction of AP-2 mRNA levels at a transcription level 
(Buettner et al. 1993; Luscher et al. 1989).

Many experiments have demonstrated the functions of AP-2 in melanoma (Bar- 
Eli 2001). For example, loss of AP-2 expression increases tumor growth and metas-
tasis in melanoma cells (Jean et al. 1998) and dominant-negative AP-2 (AP-2B) 
augments melanoma tumor growth in vivo (Gershenwald et al. 2001). AP-2 function 
is mediated via its regulated expression of target genes, which appear to be involved 
in proliferation, cell-cycle regulation (HER-2, p21/WAF-1), apoptosis (c-KIT, Bcl-2, 
FAS/APO-1), adhesion (MCAM/MUC18, E-cadherin), and invasion:angiogenesis 
(MMP-2, plasminogen activator inhibitor type I, VEGF, and PAR-1).

5.11  LEF/TCF/β-Catenin (Canonical Wnt Signaling)

LEF1/β-catenins are downstream mediators of canonical Wnt signaling and are 
involved in a variety of processes in development and tumorigenesis. The Wnt fam-
ily consists of over 19 members, all of which are hydrophobic cysteine-rich secreted 
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molecules that share a high level of homology. The ligand subtype determines 
which Wnt signaling pathway will be activated. For example, Wnt1, 3a, and 7 acti-
vate the canonical pathway, whereas Wnt5a, 5b, and 11 activate the noncanonical 
pathway (Weeraratna 2005). Receptors of Wnt ligands include the Frizzled (FZD) 
family of receptors (Zilberberg et al. 2004). The detailed WNT signaling are 
described in altered signal transdution pathway in melanoma (Chap. 7).

The transcription factors of the LEF/TCF (lymphoid enhancer factor/T-cell- 
specific factor) family are the most downstream components of the Wnt signaling 
cascade. Today, four family members are known in mammals: LEF-1, TCF-1, TCF-
3, and TCF-4. All share a homologous “HMG box” DNA-binding domain and rec-
ognize the conserved consensus sequence (5′-AGATCAAAGGG-3′) in their target 
gene promoters, including cyclin D1, MITF, c-myc, MMP-7, and others.

Wnt1 and Wnt3A are the predominant family members involved in melanocyte 
development and both activate β-catenin. β-Catenin mutations were found in 6 out 
of 26 melanoma cell lines but appeared to be rare among primary melanoma tumor 
specimens. Truncating mutations of the adenomatous polyposis coli (APC) gene 
that regulates β-catenin levels are also rare in melanoma. β-Catenin is still required 
for melanoma survival even though mutations in Wnt signaling are rare (Takeda 
et al. 2000; Widlund et al. 2002). Recently, active b-catenin signaling in melanoma 
cells suppresses T-cell infiltration into tumor tissues, resulting in anti-PD-L1/anti- 
CTLA- 4 monoclonal antibody therapy (Spranger et al. 2015).

5.12  Notch Signaling

The Notch signaling pathway is a key developmental cell–cell interaction mecha-
nism, which regulates processes such as cell proliferation, cell fate, differentiation, 
or stem cell maintenance. All receptors and ligands are single-pass transmembrane 
proteins with large extracellular domains that consist primarily of epidermal growth 
factor (EGF)-like repeats. In mammals, four Notch receptors (Notch1-4) and five 
ligands (Jagged-1 and 2, and Delta-like [Dll] 1, 3, and 4) have been described 
(Greenwald 1998).

The detailed Notch signaling are described in “Altered Signal Transduction 
Pathway in Melanoma” (Chap. 7). After proteolytic cleavage of intracellular domain 
of Notch (NIC), it translocates to the nucleus where it binds to CSL transcription 
factors (CBF1 in humans) and thereby activates transcription of Notch target genes 
via consensus Notch-binding site (5′- TGGGAA -3′). In the absence of Notch sig-
naling, CSL functions as a transcriptional repressor via interactions with several 
corepressors.

The Notch signaling pathway is involved in tumorigenesis, as aberrant Notch 
signaling is frequently observed in certain cancers. Depending on the cell type 
and context, Notch can promote cell proliferation and cancer growth, or act as a 
tumor suppressor (Radtke and Raj 2003; Wilson and Radtke 2006). There is 
increasing evidence that Notch acts as an oncogene in the development of mela-
nomas, with several receptors (Notch1 and Notch2), ligands (Jagged-1, Jagged-2, 
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and Dll1), as well as target genes (HES1, HEY1, and MCAM) upregulated at 
early stages of melanocytes transformation and tumor progression (Hoek et al. 
2004). Notch1 is thought to play an important role stage-specifically to promote 
the progression of primary melanoma (Balint et al. 2005). Recently, melanoma–
keratinocytes contact could induce Notch signaling activation in melanoma, 
resulting in the induction of metastatic microRNA, mir-222/221, and finally mela-
noma metastasis (Golan et al. 2015).

5.13  NF-kB (Nuclear Factor Kappa-Light-Chain-Enhancer 
of Activated B Cells)

NF-kB proteins were initially identified as pivotal transcription factors in chronic 
inflammatory diseases (Sen and Baltimore 1986). Accumulating evidence indi-
cates that NF-kB is activated by a wide variety of stimuli such as cytokines and 
chemokines via AKT-signaling, MAPK-signaling, or NIK (NF-kB interacting 
kinase) (Perkins 2012). NF-kB is a homo- or heterodimeric complex consisting of 
proteins of the Rel-family. Rel-proteins can be divided into 2 groups depending 
on their mode of synthesis and transactivation properties. One class combines p65 
(also known as REL A), REL B, and c-REL, which are all directly synthesized in 
their mature forms. The second class consists of p105 (also known as NFkB1) and 
p100 (also known as NFkB2), which are synthesized as large precursors and 
matured via phosphorylation and proteolysis into p52 and p50, respectively. The 
most commonly detected dimers are p65/p50, p65/p65, and p50/p50. NF-kB rec-
ognizes the DNA consensus (5′-GGG(A/G) NN(C/T)(C/T)CC-3′) (Amiri and 
Richmond 2005).

In the absence of stimuli such as cytokines or chemokines, NF-kB binds with 
IkBα protein and localizes in the cytoplasm. In the presence of stimuli, IkB kinase 
(IKK) complex is activated via kinases including AKT, ERK, or NIK and then IkBα 
is phosphorylated, ubiquitinated, and degraded. IkBα degradation induces translo-
cation of NF-kB from the cytoplasm to the nucleus, and target genes are transcrip-
tionally activated.

Many NF-kB-regulated genes have been reported, which are related to carcino-
genesis, including apoptosis (TRAF1, TRAF2, c-IAP1/2, ML-IAP, and survivin), 
proliferation (cyclin D1 and CDK2), metastasis (COX2, ICAM-1, VCAM-1, 
ELAM-1, and MMPs), and angiogenesis (CXCL-1/8, IL-1, and TNF).

Constitutive activation of NF-kB is an emerging feature in melanoma and various 
target genes, CXCL1 and CXCL8, are highly expressed in most melanoma cell lines 
(Yang and Richmond 2001). Recently, RIP1, which is one of the upstream genes of 
NF-kB, has shown to be upregulated in melanoma, resulting in NF-kB activation 
and melanoma proliferation (Liu et al. 2015). Furthermore, knockdown of IKKbeta 
reduces the growth of the melanoma lesions in mouse studies, and conditional dele-
tion of Ikkbeta in melanocytes blocks HRAS-induced melanomagenesis. Taken 
together, NF-kB-signaling may play an important role in melanoma growth/survival 
and melanomagenesis (Yang et al. 2010).
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5.14  SMAD/SKI

The transforming growth factor-β (TGF-β) family of growth factors comprises more 
than 40 members, including TGF-β, activins, bone morphogenetic proteins (BMP), 
and nodal. They are ubiquitous multifunctional cytokines that regulate cellular 
activities, such as proliferation, differentiation, migration, survival, embryonic 
development, angiogenesis, or immune surveillance (Massague 2000). Binding of 
the TGF family to their receptors causes the assembly of a receptor complex that 
phosphorylates Smad2/3, which in turn bind to Smad4 and accumulate in the 
nucleus where they act as transcription factors, usually via Smad-binding sites (5′-
AGAC-3′) (Nakao et al. 1997).

In normal tissues and cells, including melanocytes, transforming growth factor β 
(TGF-β) contributes to homeostasis by blocking cell-cycle progression via upregu-
lation of the cyclin-dependent kinase inhibitors p15 and p21Waf-1, and downregu-
lation of c-MYC (Reynisdottir et al. 1995; Warner et al. 1999). There are other 
targets regulated by TGF-β-smad signaling, including VEGF, BMPR-II, ets2, and 
PAI-1. Epithelial-to mesenchymal transition is also induced by TGF-β, which is 
related to tissue development and cancer metastasis.

The ski oncogene was discovered in its viral form, v-ski, as the transforming 
gene of the defective Sloan–Kettering virus (Stavnezer et al. 1981). SKI has been 
shown to interact with Smad2/3/4 and to recruit a transcriptional repressor of the 
N-CoR family and histone deacetylases (HDACs), resulting in repression of Smad- 
driven transcription (Khan et al. 2001). As the inactivation of the TGF-β pathway 
has been observed in a variety of human cancers, including melanomas, primary 
invasive melanomas in vivo exhibit nuclear, and cytoplasmic localization of SKI, 
whereas in melanoma metastasis, SKI is mostly localized in the cytoplasm and 
expressed at very high levels (Reed et al. 2001). SKI might inhibit smad-driven 
transcription of p21 in melanoma, resulting in escaping TGF-β-induced anti- 
proliferative activity. SKI is also a potent stimulator of Wnt/β-catenin signaling in 
human melanoma cells by binding to FHL2, which in turn activates MITF and 
Nr-CAM promoters in a β-catenin-dependent manner (Chen et al. 2003). SKI may 
participate as a regulator of melanoma progression by activating β-catenin signaling 
and repressing the TGF-β pathway. Consistent with SKI oncogenic function, TGF-β 
plays a tumor suppressive role through MITF suppression in melanoma (Pierrat 
et al. 2012).

5.15  STAT3 (Signal Transducer and Activator 
of Transcription 3)

STAT proteins were originally discovered as mediators of cytokine receptor signal-
ing and are both cytoplasmic signaling molecules and nuclear transcription factors 
that activate diverse genes (Schindler et al. 1992; Shuai et al. 1992). There are seven 
STAT proteins (STAT1–4, 5A, 5B, and 6) in mammals (Li 2008). In the canonical 
mode of JAK–STAT signaling, the activation of the pathway is initiated by binding 
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of a peptide ligand (e.g., a cytokine) to transmembrane receptors. This leads to 
receptor dimerization and cross-activation of receptor-associated JAK kinases 
(JAK1-3 or tyrosine kinase 2 (TYK2)), which in turn phosphorylate tyrosine resi-
dues in the cytoplasmic tail of the receptor. These phosphotyrosine residues func-
tion as docking sites for latent cytoplasmic STAT proteins, which are then 
phosphorylated by JAK on a crucial C-terminal tyrosine residue near the 700 amino 
acid position. Phosphorylated STAT proteins dimerize via Src-homology 2 (SH2)–
domain–phosphotyrosine interactions and translocate to the nucleus, where they 
function as transcriptional activators, inducing the expression of target genes via 
their consensus binding site (5′-TTC(N)nGAA-3′).

STAT3 regulates genes related to survival/apoptosis (survivin, BCL2-XL, and MCL-
1), proliferation (MYC and cyclin D1), metastasis (HIF-1, VEGF, and MMP- 2), and 
immune checkpoint molecule (PD-L1) though some of its targets are not yet known to 
be directly regulated by STAT3 (i.e., may be indirectly regulated downstream of STAT3).

Protein inhibitor of activated STAT3 (PIAS3) has been identified as an inhibitor 
of STAT3 and MITF and may also regulate melanocyte growth. The overexpression 
of PIAS3 in melanoma cell lines inhibits the transcriptional activity of both MITF 
and STAT3 and induces apoptosis (Levy et al. 2002).

The overexpression of activated Stat3 containing two cysteine residue mutations 
can mediate cellular transformation (Bromberg et al. 1999). Among the human can-
cers that display constitutively activated STAT3 are a variety of hematologic malig-
nancies, including myeloma, leukemias, and lymphomas, as well as solid tumors, 
including breast, lung, prostate, ovarian cancers, and melanoma (Buettner et al. 
2002). In melanoma, several receptor tyrosine kinases including c-Met, EGFR, 
ERRB2, and ERRB4, which are known to activate src kinases, are overexpressed or 
activated. STAT3 inhibition in melanoma cell lines or melanoma tumor models has 
been shown to induce cell death/tumor regression (Niu et al. 1999; Niu et al. 2001), 
inhibit angiogenesis (Xu et al. 2005), prevent metastasis (Xie et al. 2004), and acti-
vate antitumor immune responses (Wang et al. 2004).

5.16  HIF1A (Hypoxia-Inducible Factor 1α)

HIF-1 is the key transcriptional regulator of the cellular response to a hypoxic envi-
ronment. HIF1 plays a key role in many cellular processes that participate in 
responses to reduced oxygen and energy supply. HIF1 consists of a heterodimer 
with HIF1α and HIF1β and binds to the hypoxia responsive element (HRE, 5′- 
RCGTG-3′). Under normoxic conditions, HIF-1α is hydroxylated on proline resi-
due 402 (Pro-402) and/or Pro-564 by prolyl hydroxylase domain protein 2 (PHD2). 
Prolyl-hydroxylated HIF-1α is bound by the von Hippel–Lindau tumor suppressor 
protein (VHL), which recruits an E3-ubiquitin ligase that targets HIF-1α for protea-
somal degradation (Maxwell et al. 1999). Under hypoxic conditions, the prolyl and 
asparaginyl hydroxylation reactions are inhibited by substrate (O2) deprivation and/
or the mitochondrial generation of reactive oxygen species (ROS), which may oxi-
dize Fe(II) present in the catalytic center of the hydroxylases.
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HIF1 target genes have been identified in tumors, and are related to angiogenesis 
(VEGF), motility (CXCR4), proliferation (BNIP3), and the reprogramming of can-
cer metabolism (SLC2A1, SLC2A3, LDHA, MCT4, and PDK1).

HIF1α expression is regulated at the transcriptional and translational levels by 
the PI3K/AKT and MAPK/ERK pathways. Interestingly, PTEN loss or BRAFV600E, 
which overactivate the PI3K/AKT or MAPK/ERK pathways, respectively, increase 
HIF1α expression and melanoma survival under hypoxic condition through HIF-1α 
(Kumar et al. 2007). HIF1α has been reported to be an MITF target gene (Busca 
et al. 2005) and also an regulator of MITF though DEC1 (Feige et al. 2011).

5.17  Tbx-2/3 (T-Box Binding Protein 2/3)

Members of the T-box family of transcription factors play important roles in the 
regulation of cell-fate decisions and morphogenesis during development. This fam-
ily binds the 20 nucleotide partially palindromic sequence T[G/C]
ACACCTAGGTGTGAAATT. Brachyury can bind as a monomer or a dimmer 
whereas Tbx-2 binds as a monomer to brachyury single half-sites, recognizing the 
consensus sequences GTGTGA, GGGTGA, or GTGTTA (Carreira et al. 2000). 
Several T-box genes are involved in the progression of cancer. The amplification of 
Tbx2/3 is reported in breast cancer (Fan et al. 2004; Sinclair et al. 2002). Both are 
also expressed in normal melanocytes and have been found to be strongly upregu-
lated in a subset of melanoma cell lines (Carreira et al. 1998; Hoek et al. 2004; 
Vance et al. 2005).

Tbx2 and Tbx3 function as transcriptional repressors. Tbx2 represses TYRP-1, 
which is one of the pigmentation enzymes, p21, and p19. Through its targeting of 
p21 and p19, Tbx2 may be required to maintain proliferation and suppress senes-
cence in melanomas (Vance et al. 2005). E-cadherin is also known to be a target 
gene of Tbx3 and potentially Tbx2. Tbx3 may be related to the transition from 
radial growth phase (RGP) to vertical growth phase (VGP) and could contribute to 
metastatic potential via suppression of E-cadherin expression.

TBX2 is regulated transcriptionally and posttranslationally by the p38 stress sig-
naling pathway in response to UVC irradiation (Abrahams et al. 2008). TBX2 is also 
reported to be an MITF and PAX3 target gene (Carreira et al. 2000; Liu et al. 2013).

5.18  C-MYC

c-Myc is a basic helix–loop–helix leucine zipper protein, which binds to a subset of 
E-box (5′-CANNTG-3′) consensus sequences. This gene was discovered as a trans-
located oncogene in Burkitt’s lymphoma, resulting in c-MYC overexpression under 
the control of the immunoglobulin enhancer or promoter (Taub et al. 1982). 
Dysregulated expression and/or amplification of C-MYC have been known to be an 
important event for many tumors. The c-myc locus (8q24) is amplified in 30–50 % 
melanoma (Kraehn et al. 2001). Moreover, the BRAFV600E and NRASQ61R-specific 
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senescence program is suppressed by c-myc overexpression in melanoma (Zhuang 
et al. 2008). c-MYC also regulates a melanoma oncogene, RAB7 (Alonso-Curbelo 
et al. 2014).

c-MYC-dependent transactivation requires heterodimerization with a partner 
protein Max. This dimerization with Max is also essential for Myc proliferative and 
oncogenic function (Amati et al. 1993; Ferre-D’Amare et al. 1993). The inhibition 
of the dimerization with Max might be a potential therapeutic target. Thus far, the 
most “drug-able” transcription factors are ligand-dependent ones (particularly 
nuclear hormone receptors), although efforts to successfully target other transcrip-
tion factors will hopefully bear fruit in the future.

5.19  p53

p53 is one of the most important human tumor suppressors (Lozano 2007; Riley 
et al. 2008). It plays important roles in controlling the DNA damage response, cell- 
cycle progression (p21, p16, p14, etc.), and apoptosis (APAF-1, PUMA, etc.) by 
regulating its targets transcriptionally. Deletion or loss-of-function mutations are 
found in diverse human cancers (see also Chap. 4).

UV causes DNA damage in human skin and correlates with melanoma inci-
dence. Pigmentation may prevent epidermal cells from UV-induced DNA damage. 
p53 plays a role in the pigmentation response via transcriptional activation of the 
POMC promoter in keratinocytes, which encodes α-melanocyte-stimulating hor-
mone (Cui et al. 2007).

A number of groups have reported mutational analysis of the p53 gene in mela-
noma. Low-frequency (0–10 %) p53 mutation or loss of heterozygosity in mela-
noma has been observed (Volkenandt et al. 1991), suggesting that there are additional 
mechanisms to suppress the function of p53. One mechanism involves the MDM2 
gene, which encodes an E3 ubiquitin ligase that binds directly to p53 and ubiquiti-
nates it, targeting p53 for proteosomal degradation. In melanoma progression, 
MDM2 has been shown to be highly expressed in 6 % of dysplastic nevi, 27 % of 
melanoma in situ, and 56 % of invasive primary and metastatic melanomas (Polsky 
et al. 2001).

 Conclusions
The importance of transcription factors in melanocyte development and melano-
magenesis has been summarized in this chapter (Table 5.1). Multiple transcrip-
tion factors have been shown to be activators or suppressors of melanoma 
proliferation, survival, metastasis, and apoptosis. The complexity of their activi-
ties remains to be fully elucidated and will undoubtedly employ newer technolo-
gies including analyses of epigenetic marks, chromatin remodeling, and 
identification of coactivator or corepressor multiprotein complexes. For most 
transcription factors, we do not currently have effective therapeutic strategies 
available to permit their pharmacologic modulation. Exceptions include nuclear 
hormone receptors, which require small molecule ligand-dependent activation or 
certain drug-able strategies affecting pathways that indirectly control 
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transcription factors. Hopefully increasing accumulation of information about 
transcription factor biochemistry and the pathways which modulate their activi-
ties will provide new clues to novel therapeutic targeting strategies aimed at tran-
scription factors in melanoma.

Table 5.1 Overview of relevant transcription factors for melanoma

Gene Binding sequences
Cancer-related 
biological function

Cancer-related 
target genes

MITF CA[C/T]GTG Cell-cycle progression, 
survival

CDK2, p16, p21, 
TBX2, TRPM1, 
HIF1A, BCL2, 
c-MET

CREB TGANNTCA Tumorigenicity CCND1, MITF (by 
EWS-ATF1)

SOX10 [A/T][A/T]CAA[A/T]G Unknown MITF

PAX3 GT[T/C] [C/A] [C/T] 
[G/C] [G/C], TAAT

Motility (by 
PAX3-FOXO1)

MITF, PTEN, 
BCL-XL, c-MET

Snail 
superfamily

CAGGTG Epithelial–
mesenchymal transition

E-cadherin 
(CDH1), claudin, 
occludin

FOXD3 A[A/T]T[A/G]TTTGTTT Suppressor of growth MITF

ETS family GGA[A/T] Tumorigenicity MITF (not direct 
target)

BRN2 ATGC, AAAT Metastasis MITF

AP-1 TGA[G/C]TCA Proliferation, metastasis ATM, XPA, cyclin 
A, CCND1, 
MMP2, TNF-α

AP-2 GCCNNNGGC Melanoma progression p21, c-KIT, BCL2, 
MMP2, CDH1

LEF/
TCF/β-catenin

AGATCAAAGGG Survival CCND1, MITF, 
c-MYC, MMP7

Notch (NIC) TGGGAA Melanoma progression HES, HEY1, 
MCAM

NFkB GGG[A/G]NN[C/T][C/T]
CC

Growth, survival c-IAP1/2, survivin, 
CCND1, CDK2, 
CXCL-1/8

SMAD/SKI AGAC Melanoma progression p21, VEGF, ETS2, 
PAI-1

STAT3 TTCNnGAA Melanoma survival, 
angiogenesis

Survivin, BCL-XL, 
MCL-1, HIF1A, 
c-MYC, CCND1, 
MMP2, VEGF

HIF1A [A/G]CGTG Angiogenesis, 
metastasis, proliferation

VEGF, CXCR4, 
BNIP

TBX2/3 G[G/T]GTTA, GTGTTA Metastasis p21, p19, CDH1

c-MYC CANNTG Suppress the 
senescence

BCL2

p53 [A/G] [A/G] [A/G]C[A/T] 
[T/A]-G[C/T] [C/T] [C/T]

Cell-cycle progression, 
DNA damage response

p21, p16, p14, 
PUMA
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6.1  MiRNA Biogenesis and Function

6.1.1  Transcription of miRNA Genes and Processing 
in the Nucleus

MicroRNA genes are embedded in intergenic as well as intragenic regions of the 
human genome, encoding either a single miRNA species or a cluster of multiple 
miRNAs in a polycistronic manner (Lee et al. 2002). In the first step of miRNA 
expression, miRNA genes are transcribed into pri-miRNAs (primary miRNA tran-
scripts; Fig. 6.1). In most cases, transcription is accomplished by RNA poly-
merase II, resulting in 5′-methyl-guanosine capped and polyadenylated 
pri-miRNAs, which contain local stem-loop structures and are up to several kilo-
bases in length (Cai et al. 2004; Lee et al. 2004). Some specific miRNAs are ini-
tially transcribed by RNA polymerase III (Borchert et al. 2006). While still in the 
nucleus, the pri- miRNA is endonucleolytically cleaved by the so-called 
microprocessor complex composed of the RNAse III enzyme Drosha (RNASEN) 
and its co-factor DGCR8 [DiGeorge syndrome critical region on chromosome 8; 
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also known as Pasha (Partner of Drosha) in Drosophila melanogaster and C. ele-
gans] (Landthaler et al. 2004; Lee et al. 2003).

DGCR8 interacts with the ~33 bp stem-loop as well as with the adjacent unpaired 
flanking regions within the pri-miRNA, thus supporting Drosha-mediated cleavage 
in the stem region, about 11 bp away from the junction of ssRNA (single-stranded 
RNA) to dsRNA (double-stranded RNA) (Han et al. 2006; Zeng and Cullen 2005). 
The resulting pre-miRNA (~70 bp in length) is rapidly translocated to the cytoplasm 
via the Ran-GTP-dependent nuclear export factor exportin 5 (XPO5), a member of 
the nuclear transport receptor family (Kim 2004). Export of only correctly pro-
cessed pre-miRNAs is ensured by recognition of the >14 bp dsRNA stem together 
with a short (1–8 nucleotides) 3′ overhang (Zeng and Cullen 2003). Exceptions to 
this rule have been reported, as in the case of cell adhesion complexes sequestering 
microprocessor components for the localized production of mature miRNAs from 
nuclear-exported pri-miRNAs (Kourtidis et al. 2015). Interestingly, a number of 
pre-miRNAs can be exported from the nucleus without undergoing processing by 

Fig. 6.1 Schematic overview of miRNA biogenesis and function. Please refer to Sect. 6.1 for 
detailed explanations on the molecular mechanisms involved in each step
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Drosha. These so-called miRtrons are located in very short introns and are capable 
of forming a hairpin resembling pre-miRNA molecules after they were released 
from their host transcripts by splicing and debranching (Berezikov et al. 2007).

6.1.2  Cytoplasmic Processing and Modes of miRNA Mediated 
Gene Silencing

In the cytoplasm, maturation of pre-miRNAs occurs via a multi-enzyme complex 
called RISC (RNA induced silencing complex) loading complex (RLC). This RLC 
is composed of the RNase III enzyme Dicer, the double-stranded RNA-binding 
domain proteins TRBP (TAR RNA-binding protein) and PACT (protein activator of 
PKR), as well as AGO2 (Argonaute-2), which builds the core of the complex 
(Gregory et al. 2005; MacRae et al. 2008). TRBP and PACT facilitate Dicer- 
mediated cleavage of the pre-miRNA, which occurs near the terminal loop and 
results in an RNA duplex of ~22 nucleotides with two nucleotide overhangs on each 
3′ terminus (Hutvagner et al. 2001; Knight and Bass 2001). In some cases, AGO2 – 
which exhibits robust RNaseH-like endonucleolytic activity – can support Dicer 
processing by cleaving the 3′ arm of specific pre-miRs (Diederichs and Haber 
2007). Subsequently, Dicer and its interactors TRBP and PACT dissociate from the 
complex, and the miRNA duplex is separated into the guide strand (which is com-
plementary to the target mRNAs and is thus functional in gene silencing) and the 
passenger strand (miRNA*), which usually gets degraded. It would appear that 
there is no universal helicase responsible for the unwinding of the miRNA duplex, 
but specific helicases may differentially regulate subgroups of miRNAs (Winter 
et al. 2009). In other cases, a helicase is not required at all for duplex unwinding 
(Pillai et al. 2005; Wu and Belasco 2005). The guide strand is characterized by the 
presence of a thermodynamically less stable base pair at the 5′ end of the duplex and 
is loaded onto the RISC complex after unwinding (Khvorova et al. 2003). Of note, 
miRNA* strands are not always simply by-products of miRNA biogenesis but are 
sometimes also acting as functional miRNAs on the miRISC (miRNA-containing 
RISC) (Chiang et al. 2010; Ghildiyal et al. 2010; Okamura et al. 2009). Nowadays, 
therefore the nomenclature changed to -5p or -3p miRNAs.

The assembly of the miRISC, also called miRNP (micro-ribonucleoprotein), is a 
dynamic process coupled with the preceding steps of pre-miRNA processing. Key 
components of the miRISC are proteins of the Argonaute (AGO) family, FMRP 
(fragile X mental retardation protein), and P-body components including GW182 
and RCK/p54, which are essential for inducing miRNA-mediated gene repression 
(Filipowicz et al. 2008). Guided by the mature miRNA, the miRISC subsequently 
binds to target sequences in the 3′ untranslated regions (3′UTRs) of regulated tran-
scripts, in order to inhibit their translation into functional proteins. To date, the 
general rules for the initial miRNA:mRNA interaction, which are fundamental for 
target recognition, are only incompletely determined experimentally and bioinfor-
matically (Brennecke et al. 2005; Doench and Sharp 2004; Grimson et al. 2007; 
Lewis et al. 2005; Nielsen et al. 2007; Reyes Herrera and Ficarra 2012; Zheng et al. 
2013; Peterson et al. 2014). In animals, miRNAs almost exclusively bind to their 
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target mRNAs with imperfect complementarity. Nevertheless, an indispensible pre-
requisite for efficient transcript targeting is continuous base-pairing of miRNA 
nucleotides 2–8, which are called the miRNAs “seed-sequence” (Bartel 2009). It is 
actually this miRNA seed which is the major determinant of a miRNA’s target rep-
ertoire. Nevertheless, apart from the miRNA seed sequence targets, mRNAs usually 
have multiple cis-elements in their 3′UTRs that can be bound by other trans- factors, 
namely, RNA binding proteins (RBPs) (reviewed by Ho and Marsden 2014). 
Different mechanisms of interplay between RBPs and miRNAs/RISC can deter-
mine a synergistic or a competing relationship with an mRNA, destabilizing or sta-
bilizing its translation. When both kinds of molecules target the same cis- element, 
the mechanism may involve the interaction between the RBP and the miRNA or 
components of the RISC. When they bind different cis-elements, the effect is more 
likely to depend on which molecule binds first (influenced by subcellular localiza-
tion of the process), the number of cis-element in the 3′UTR of a given mRNA, and 
the ability of one molecule to displace the other from the target. The RBP involved 
in mRNA stability can be classified according to their target sequences into AU-rich 
elements (ARE)-binding proteins, and pyrimidine (C/CU)-rich element binding 
proteins. In any case RBP-mediated degradation or translation is dependent on 
miRNA-containing RISC (Ho and Marsden 2014). These additional regulatory lay-
ers of mRNA fate stress the necessity of experimentally validating any bioinfor-
matically predicted miRNA target, i.e., based purely upon complementary nucleotide 
sequence.

The resulting miRNA-induced posttranscriptional silencing of target genes is 
mediated either by destabilization of the corresponding mRNA (Behm-Ansmant 
et al. 2006b; Giraldez et al. 2006; Wu et al. 2006; Wu and Belasco 2005; Guo et al. 
2010) or by repression of protein translation (Pillai et al. 2005; Standart and Jackson 
2007), both pathways acting cooperatively but yet independently of each other. 
Current knowledge suggests that destabilization of target mRNAs starts with recruit-
ment of the P-body component GW182 (glycine-tryptophan protein of 182 kDa) by 
Argonaute proteins (Till et al. 2007). GW182 subsequently mediates binding of the 
CAF1:CCR4:NOT1 deadenylase complex to the target mRNA. Deadenylation is 
then followed by removal of the 5′-methyl-guanosine cap via the DCP1:DCP2 
decapping complex, ultimately leading to 5′ → 3′ exonucleolytic degradation of 
mRNA by exonuclease XRN1 (Behm-Ansmant et al. 2006a; Eulalio et al. 2007, 
2009; reviewed by Hausser and Zavolan 2014). By contrast, there still is a lack of 
consensus concerning the mechanism(s) by which miRNAs induce repression of 
translation. While many experiments refer to the initiation of translation as a target 
for repression, there is also evidence that various post-initiation steps could be 
affected (reviewed by Chekulaeva and Filipowicz 2009). Present research aims to 
unravel whether miRNAs are actually capable of controlling translation by multiple 
mechanisms or if these discrepancies were due to different experimental approaches 
utilized in the past (Cannell et al. 2008; Kong et al. 2008). Figure 6.1 summarizes 
the mechanisms involved in miRNA biogenesis and function.
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6.1.3  Regulation of miRNA Biogenesis, Function, and Decay

The general pathway of miRNA biogenesis and function – as well as the clearance 
of miRNAs through decay – is complicated by a large number of regulatory mecha-
nisms, in which a vast quantity of yet unidentified proteins is likely to be involved. 
There may be specific alterations to the pathway for every individual miRNA or at 
least distinct subgroups of miRNAs (reviewed by Krol et al. 2010).

The expression of miRNAs can be regulated at the level of transcription (reviewed 
by Davis and Hata 2009; Turner and Slack 2009) or at various steps during the pro-
cessing of the pri-miR into mature miRNA (reviewed by Davis and Hata 2009). The 
latter mechanism commonly involves the regulation of constituents of the miRNA 
processing machinery, like Drosha/DGCR8 (Han et al. 2009; Triboulet et al. 2009) 
and Dicer/TRBP (Chendrimada et al. 2005; Melo et al. 2009; Paroo et al. 2009). 
Additionally, accessory proteins can directly interact with miRNA precursors either 
repressing or stimulating their further processing (reviewed by Winter et al. 2009). 
By contrast, modulation of miRNA function is mainly based on mechanisms affect-
ing proteins of the miRISC, predominantly AGO2 and GW182 (reviewed by Krol 
et al. 2010). With regard to melanoma, it has been suggested that the transcriptional 
regulation of Dicer by MITF might be a major determinant in melanocyte cell sur-
vival and differentiation (Levy et al. 2010a, b; please refer to Sect. 6.2 for detailed 
information). In addition, recent literature described the strong reduction of AGO2 
expression in melanoma, influencing miRNA functionality (Voeller et al. 2013; 
Sand et al. 2012a). Further studies analyzed changes in expression level of Dicer, 
Drosha and additional processing enzymes (Jafari et al. 2013; Jafarnejad et al. 2013; 
Ma et al. 2011), but leave the definition of the role of these changes mainly open.

To date, little is known about the regulation of miRNA decay. Nevertheless, recent 
findings implicate that sequences present at the 3′ end of specific miRNAs or, more 
generally, enzyme catalyzed modifications to the 3′ end of miRNAs may determine 
the rate of miRNA clearance (Hwang et al. 2007; Jones et al. 2009; Katoh et al. 2009). 
Interestingly, degradation of mature miRNAs seems to depend on their activity. In the 
absence of its complementary targets, a miRNA may be specifically released from the 
miRISC. Thereby, its 5′ end gets accessible to the 5′ → 3′ exonuclease XRN-2, which 
subsequently degrades the miRNA (Chatterjee and Grosshans 2009).

These findings clearly show that miRNAs are not only active regulators of gene 
expression but are themselves subject to sophisticated control. Adding even more 
complexity, miRNAs have recently been shown to not exclusively repress gene 
expression but to conversely enhance translation of specific transcripts under certain 
cellular conditions – although these cases are still clearly the exception rather than 
the rule (Vasudevan et al. 2007, 2008).

New studies recently further showed an important role of RNA editing via ade-
nosine deaminase acting on RNA (ADAR) enzymes in miR functions (Shoshan 
et al. 2015; Dietrich and Bosshoff 2015).
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6.2  Impact of Specific miRNAs on Melanomagenesis

In contrast to other types of tumors, studies on the impact of specific miRNA spe-
cies on melanomagenesis have not been conducted before the year 2008. 
Nevertheless, many miRNAs deregulated in melanoma cells compared to normal 
melanocytes have been characterized in regard to their target genes as well as their 
impact on melanoma cell function since then (Fig. 6.2 and Table 6.1). The following 
paragraph aims to integrate those findings in their meaningful context and to point 
out how miRNA-related research expanded our knowledge on the molecular mech-
anisms contributing to formation and progression of malignant melanoma. However, 
it cannot be comprehensive due to many new findings in the field. We try to inte-
grate all miRs coming from arrays or miR sequencing approaches, which are con-
firmed by independent methods to be differentially expressed. However, based on 
multiple approaches published, we mainly focused on deregulated miRNAs, where 
functional consequences have been described.

6.2.1  Networking of miRNAs and MITF

It is not surprising that the very first miRNA identified to influence melanoma 
progression is involved in modulating the expression level of the key regulator of 
melanocyte cell fate—microphthalmia-associated transcription factor (MITF; see 
Chaps. 5 and 12). In their study, Bemis et al. (2008) set out to characterize an 

Fig. 6.2 Schematic overview of miRNAs deregulated during melanoma formation and pro-
gression (Reprinted from Mueller and Bosserhoff (2009), strongly modified. With kind permis-
sion from the Br J Cancer)

M. Mione et al.
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allele for melanoma susceptibility, previously determined to be located on chro-
mosome 1p22 (Gillanders et al. 2003; Walker et al. 2004). It turned out that this 
genomic locus encodes a miRNA – miR-137 – capable of negatively regulating 
MITF expression (Bemis et al. 2008). Interestingly, the miR-137 primary tran-
script harbors a significantly higher number of a 15 bp VNTR (variable number of 
tandem repeats) in a subset of melanoma cell lines displaying high MITF expres-
sion than it does in melanoma cell lines displaying low levels of MITF. Those 
extra copies of the 15 bp VNTR alter the pri-miR-137 secondary structure in a 
way precluding its further processing into mature miR-137 (Bemis et al. 2008). 
Strikingly, the re-expression of functionally active miR-137 in those cell lines 
resulted in a decline of MITF levels.

As already suggested in the report cited above, it meanwhile turned out that sev-
eral other miRNAs are involved in regulating MITF as well. Also based on a mela-
noma associated genomic aberration – amplification of chromosomal locus 7q31-34, 
which harbors the c-MET and BRAF oncogenes – Segura et al. (2009) detected 
enhanced expression of miR-182 in melanoma cell lines and tissue samples. MiR-
182 levels increased with tumor progression and were additionally inversely corre-
lated with the expression of MITF and FOXO3 (a transcription factor of the forkhead 
family). Both transcription factors were confirmed to be direct targets of miR-182. 
Furthermore, it was shown that for the expression of this miRNA the migration of 
melanoma cells in vitro as well as their metastatic potential in vivo, whereas silenc-
ing of miR-182 impedes melanoma cell invasion and triggers apoptosis (Segura 
et al. 2009). The stimulatory effect of miR-182 over- expression on melanoma cell 
migration was abolished by the concomitant over- expression of MITF or FOXO3, 
making those proteins the key mediators of miR-182’s effects.

Interestingly, it has been reported that cancer cells can circumvent the miRNA- 
mediated regulation of oncogenes to which they are addicted, by expressing tran-
scripts with shortened 3′UTRs (Mayr and Bartel 2009). Thereby, selective pressure 
favors cells that generate alternative transcripts of oncogenes missing the miRNA 
target sequence(s) in their 3′UTR. Prompted by those findings, Goswami et al. 
(2015) unraveled that a specific MITF isoform, harboring a shortened 3′UTR, is 
preferentially expressed by their set of melanoma cell lines in contrast to normal 
melanocytes. This alternative MITF transcript lacks the miR-137 and miR-182 
binding sites but yet contains two target sequences for another miRNA, miR-340 
(Goswami et al. 2015). The authors were able to show that miR-340 actually inhibits 
the expression of the alternative MITF transcript in their melanoma cells. Even 
more remarkable, a protein commonly over-expressed in melanoma termed CRD-BP 
(coding region determinant binding protein; Elcheva et al. 2008) is able to bind to 
the alternative MITF 3′UTR, thereby masking the miR-340 target sites and restor-
ing MITF expression (Goswami et al. 2015). On a functional level, either the inhibi-
tion of miR-340 or the over-expression of CRD-BP resulted in a significantly 
enhanced ability of melanoma cells to form colonies in soft agar.

In addition to these findings, Haflidadottir et al. (2010) attempted to perform a 
comprehensive analysis on miRNA binding sites located in the MITF full length 
3′UTR. Although not paying attention to a potential alternative 3′UTR shortening, 
they identified miR-148 and miR-101 as additional regulators of MITF expression 
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in melanoma cell lines (Haflidadottir et al. 2010). In addition, miR-218, previously 
shown to be deregulated (Philippidou et al. 2010), miR-101, and miR-155 were 
revealed to directly modulate MITF expression (Guo et al. 2014; Luo et al. 2013a, 
b; Arts et al. 2015). Interestingly, miR-155, which is down-regulated in melanoma 
cells compared to melanocytes, is an example of a miRNA exerting a multilevel 
regulation over a signaling pathway, the WNT pathway, making it an attractive can-
didate as a therapeutic weapon. MiR-155 also interacts with the 3′UTR of the tran-
scriptional regulator SKI, reducing its levels when exogenously expressed (Levati  
2011). SKI is an important WNT/β-catenin inducer, leading to high MITF expres-
sion. Therefore, MITF should also be indirectly regulated by miRNAs that act upon 
WNT signaling, such as miR-155. Another indirect regulator of MITF is miR-203, 
which down-regulates MITF and its downstream effector Rab27a in melanoma cell 
lines by targeting its promoting transcription factor CREB1 (cAMP response ele-
ment-binding protein 1) (Noguchi et al. 2014a, b).

MiRNAs can also mediate environmental effects via key transcription factors as 
MITF in melanocytes. Dynoodt et al. (2013a, b) observed a dramatic 15-fold 
decrease of miR-145 in UV-irradiated and forskolin treated mouse melanocytes. 
Over-expression or knockdown of this miRNA, respectively, decreased and 
increased the levels of MITF (among other proteins) and had a direct impact on the 
pigmentary process.

Taking all these findings into consideration, the question is how miRNA- 
mediated regulation impacts MITF expression in melanomagenesis. Reports on the 
role of MITF in formation and progression of malignant melanoma had initially 
been controversial. Nowadays, a model is proposed in which an intermediate level 
of MITF expression favors the proliferation and tumorigenic potential of melanoma 
cells, while a too high level results in cell cycle arrest and differentiation and a too 
low level results in cell cycle arrest and apoptosis (see Chaps. 4 and 5, and refer-
ences therein). Although the expression of MITF has already been shown to be 
regulated through a plethora of mechanisms (including e.g., transcriptional control 
and post-translational modifications), miRNAs as well as 3′UTR binding proteins 
(acting as “target protectors”) seem to represent an additional layer of complexity in 
adjusting MITF levels. Most likely, in melanoma cells the favored outcome “inter-
mediate MITF level” can be achieved by the deregulation of every single wire (or a 
combination of several wires) in the MITF network. Hereby, the deregulation of 
miRNA-based mechanisms is one way to adjust MITF at the preferred level or to 
fine-tune it, respectively. This may also provide additional insights into melanoma’s 
heterogeneity regarding MITF expression (reviewed by Bell and Levy 2011).

However, MITF is not only subject to regulation by miRNAs – vice versa, MITF 
regulates the expression of a subset of miRNAs in melanoma cell lines and may 
even influence global miRNA expression in cells of the melanocytic lineage. 
Ozsolak et al. (2008) identified the putative transcription start sites of as much as 
175 miRNAs by combining nucleosome positioning patterns with chromatin immu-
noprecipitation (ChIP) screens for promoter signatures. This report significantly 
contributed to our current knowledge on the characteristics of miRNA promoters. 
Furthermore, the authors utilized the obtained data to identify a subset of 10 
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miRNAs and miRNA clusters, respectively, whose expression is MITF regulated by 
screening miRNA promoters for E-box elements (the binding sites for MITF in 
gene promoters; see Chap. 5). The cohort of miRNAs identified to be MITF tran-
scriptional targets includes, e.g., miR-148b, miR-221/222, the miR-106a-363 clus-
ter, miR-125, as well as several members of the let-7 family (Ozsolak et al. 2008). 
Interestingly, some of these miRNAs have already been proven to target genes play-
ing a role in pigmentation and survival of melanocytes or to be involved in melano-
magenesis. In melanocyte primary cultures, Wang et al. (2012) found 16 up- regulated 
and 6 down-regulated miRNAs through microarray profiling in MITF knocked-
down (with siRNAs) melanocytes, compared to normal melanocytes. Using the 
TAM annotation method (Lu et al. 2010), they found that the miR-188 family was 
enriched, while the miR-221 family was depleted. Both groups of miRNAs were 
involved in cell-cycle, cell proliferation, and stem-cell regulation, and both groups 
were reported to be enriched in melanoma. Thus, the effects of MITF knockdown 
do not recapitulate the changes of microRNA expression reported in melanoma.

As miRNAs can be localized in introns of protein-coding genes, the expression 
of the protein and the miRNA are highly correlated. Noteworthy, intronic miR-211 
was found responsible for the tumor suppressor effect attributed to its host gene, 
TRMP1 (Melastatin), upon MITF-promoted expression (Levy 2010; De Luca et al. 
2015). MiR-211 contributes to melanoma cell adhesion by targeting NUAK1 (Bell 
et al. 2014), but as new targets for this miRNA emerge, its role in melanoma as a 
therapeutic target or as a biomarker has to be further characterized (Margue et al. 
2013).

Additionally, Levy et al. (2010b) reported that MITF is able to transcriptionally 
regulate Dicer expression in melanocytes. Their study started with the observation 
that during melanocyte differentiation a population of miRNAs was up-regulated at 
the pre-miR level, whereas another population of miRNAs displayed stabile pre- 
miR but yet enhanced mature miRNA levels. Subsequently, it turned out that MITF 
is capable of inducing Dicer transcription by interacting with two E-box elements in 
the Dicer promoter, thus enforcing pre-miRNA processing (Levy et al. 2010a, b). 
Interestingly, melanocyte-specific knockout of Dicer in an in vivo mouse model 
resulted in a profound loss of both melanocyte stem cells and differentiated melano-
cytes. The authors assigned this impressive impact of Dicer on melanocyte survival 
to its ability to enhance the expression of miRNAs of the miR-17–92 cluster. Hereby, 
miR-17 targeting the pro-apoptotic Bim (Bcl-2 interacting mediator of cell death) 
protein may play a major role (Levy et al. 2010a, b) and further links the MITF- 
mediated regulation of Dicer to mechanisms involved in melanomagenesis.

Interestingly, further miRs regulating MITF were identified in the context of 
vitiligo and other pigmentation disorders. Here, miR-25 and miR-675 were proven 
to directly control MITF (Shi et al. 2016; Kim et al. 2014b).

These findings indicate that the melanocyte-specific transcription factor MITF 
might exert its powerful impact on pigmentation and lineage survival genes not only 
by direct transcriptional mechanisms but also that the effects of MITF are further 
enhanced by miRNAs as intermediates. Obviously, this will also enhance – or even 
potentiate – its oncogenic properties in melanoma formation and progression.
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6.2.2  Oncogenic Role of miR-221/222 in Melanoma

Clustered on the X-chromosome, miR-221 and miR-222 are thought to be tran-
scribed as a common precursor and to regulate overlapping or functionally related 
targets. Reports on an over-expression of these miRNAs in several types of tumors 
in which they regulate the expression of the c-KIT receptor tyrosine kinase (e.g., 
Felli et al. 2005; He et al. 2005; le Sage et al. 2007) led Felicetti et al. (2008b) to 
investigate a potential involvement of miR-221/222 in melanomagenesis (for fur-
ther information on c-KIT in melanoma please refer to Chap. 7). They unraveled 
that loss of the tumor suppressive protein PLZF (promyelocytic leukemia zinc fin-
ger) leads to a stepwise up-regulation of miR-221/222 during melanoma progres-
sion (Felicetti et al. 2008a, b). These two miRNAs in turn are able to induce two 
distinct but functionally convergent oncogenic pathways by repressing c-KIT as 
well as p27Kip1 (CDKN1B). In accordance, the over-expression of miR-221/222 in a 
moderately aggressive melanoma cell line resulted in an enhancement of prolifera-
tion rate, migratory and invasive potential, as well as anchorage-independent 
growth, paralleled by a significantly increased in vivo tumorigenicity (Felicetti et al. 
2008a, b). Vice versa, the treatment of highly aggressive metastatic melanoma cells 
with inhibitory molecules (antagomiRs) against miR-221/222 not only caused 
obverse effects in vitro but – most strikingly – effectively inhibited in vivo tumor 
growth after bolus intratumor injection.

Expanding those findings, Igoucheva and Alexeev (2009) implicated that loss of 
c-KIT receptor expression in melanoma might be completely depending on miR- 
221/222 over-expression instead of being related to the down-regulation of the tran-
scription factor AP-2 (see Chap. 5) as previously reported. This conclusion was 
drawn as there was no correlation detectable between AP-2 and c-KIT expression 
levels in their set of 27 melanoma cell lines but a strong inverse correlation of c-KIT 
and miR-221 expression levels was observed (Igoucheva and Alexeev 2009).

Including data generated in other tumor types, Howell et al. (2010) constructed 
an interesting network focusing on miR-221/222’s regulatory effects in melanoma. 
It has been demonstrated that miR-221/222 regulate the expression of PTEN in 
aggressive non-small lung cancer and hepatocarcinoma cells (Garofalo et al. 2009). 
In the light of an increasingly important role of the AKT/PI3K pathway in melano-
magenesis as well as a confusingly low rate of PTEN mutations detected in mela-
noma tissue samples (see Chap. 7), studies investigating a miRNA-mediated 
regulation of PTEN seem to be a promising option.

Additionally, Das et al. (2010) reported the existence of a 3′ → 5′ exonuclease, 
human polynucleotide phosphorylase (hPNPaseold-35), specifically degrading mature 
miR-221 in melanoma cells. In response to the over-expression of hPNPaseold-35, the 
cellular miR-221 level decreased and its repressive impact on p27Kip1 expression 
was abolished (Das et al. 2010). As hPNPaseold-35 is a type I interferon (IFN) induc-
ible protein, the authors were able to unravel a pathway in which IFN-β-mediated 
growth arrest is based on induction of hPNPaseold-35, which subsequently degrades 
miR-221 and therefore triggers the up-regulation of p27Kip1. Of note, hPNPaseold-35 
had previously been shown to degrade c-Myc mRNA, thereby causing G1 cell cycle 
arrest by p27Kip1 activation involving another pathway (Sarkar et al. 2003, 2006). 
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Nevertheless, the over-expression of miR-221 in melanoma cells was sufficient to 
render them resistant against IFN-β-mediated growth arrest (Das et al. 2010).

In conclusion, miR-221/222 have already been established to be potent onco-
genic miRNAs in melanoma. This is further supported by newer findings even sug-
gesting miR-221/222 as potent tumor markers for melanoma (Inada et al. 2015; 
Felli et al. 2016). Several mechanisms are involved in regulating their expression, 
including transcriptional control by PLZF (Felicetti et al. 2008a, b) and MITF 
(Ozsolak et al. 2008), as well as positive and negative feedback loops involving their 
target genes (reviewed by Howell et al. 2010) and specific exonucleolytic degrada-
tion by hPNPaseold-35 (Das et al. 2010). Although the up-regulation of miR-221/222 
may not be the sole cause for loss of c-KIT in melanoma cells, miRNA-mediated 
c-KIT repression could serve as an additional mechanism to escape c-KIT depen-
dent apoptosis in a subset of melanomas harboring activating mutations in BRAF 
(Igoucheva and Alexeev 2009). Further, miR-221/222 over-expression may be 
responsible for resistance against IFN-β treatment (Becker et al. 2002) in at least 
some melanomas (Das et al. 2010).

6.2.3  Tumor-Suppressive Role of let-7 miRNA Family Members 
in Melanoma

One of the major breakthroughs regarding miRNAs in biomedical research took 
place in 2005 when Frank Slacks’ group reported a causal link between the down- 
regulation of miRNA let-7 and the formation of lung cancer (Johnson et al. 2005). 
Thereby, the tumor-suppressive effect of let-7 miRNA family members in lung car-
cinomas is based on their potential to regulate the expression of the RAS oncogene. 
Strikingly, it meanwhile turned out that loss of the expression of at least some let-7 
family members seems to be a common event in the progression of several types of 
human cancers (reviewed by Boyerinas et al. 2010 – and that this is true for mela-
noma as well).

Performing an expression pattern analysis on 157 different miRNAs in laser- 
microdissected tissues comprising ten benign melanocytic nevi and ten primary 
melanomas, Schultz et al. (2008) found five members of the let-7 family (let-7a, 
let-7b, let-7d, let-7e, and let-7g) to be strongly down-regulated in the melanoma 
samples. Focusing only on let-7b in their subsequent experiments, they showed that 
introducing artificial let-7b molecules into melanoma cells decreased levels of a set 
of cell cycle regulators, in detail cyclins D1, D3, and A as well as cyclin-dependent 
kinase (CDK) 4 (Schultz et al. 2008). While the authors were able to give some 
evidence for a direct interaction of let-7b with the cyclin D1 3′UTR, they also point 
out that at least a few of the remaining let-7b effects described might be rather indi-
rect. Nevertheless, the transfection of melanoma cell lines with artificial let-7b 
resulted in a reduced number of proliferating cells (less cells were detected to be in 
S-phase, accompanied with an increased number of cells in G1) as well as a strong 
reduction of the cells’ potential to form colonies in soft agar (Schultz et al. 2008).

Almost synchronously, Mueller and Bosserhoff (2008) reported loss of expres-
sion of a second member of the let-7 miRNA family – let-7a – to have a potent 
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impact on the invasive potential of melanoma cells. Analyzing the regulation of 
integrin beta3 expression in detail, they found that (in contrast to other cell types) 
promoter-dependent mechanisms are only subsidiary in melanoma cells whereas 
the cellular let-7a level is the main determinant of integrin beta3 protein production 
(Muller and Bosserhoff 2008). Strikingly, the introduction of artificial let-7a mole-
cules into a highly aggressive melanoma cell line lacking endogenous let-7a expres-
sion resulted in an about 75 % reduced invasive potential in vitro. Vice versa, 
blocking endogenous let-7a in otherwise normal melanocytes using anti-miRs was 
sufficient to induce migratory behavior in this cell-type (Muller and Bosserhoff 
2008). The authors attributed these effects mainly to let-7a’s impact on integrin 
beta3, as the up-regulation of the classical vitronectin receptor alphaVbeta3 has 
repeatedly been shown to be correlated with malignant potential and aggressive 
tumor growth in melanoma (Albelda et al. 1990; Danen et al. 1994, 1995; Van Belle 
et al. 1999). However, like presumably every miRNA known, let-7a targets a cohort 
of additional transcripts and this fact might strengthen or even potentiate its role in 
melanoma progression. Mueller and Bosserhoff (2008) highlight the suppression of 
N-Ras by let-7a, which they used to monitor the efficiency of let-7a transfection in 
their experiments. Although the significance of additional Ras knockdown is uncer-
tain against the background of activating BRAF mutations, it might prove particu-
larly effective in a subset of melanomas harboring activating mutations in N-Ras 
(see Chaps. 7 and 12).

Importantly, new sequencing studies helped to clearly differentiate the subforms 
of let-7 and revealed the regulation of all of these in melanoma (Kozubek et al. 
2013; Qi et al. 2014).

Corroborating findings in other tumor types, members of the let-7 family of miR-
NAs take on a role as potent tumor suppressors in malignant melanoma as well. The 
complete set of let-7 target genes still remains to be established to identify the most 
important mediators of let-7’s effects. Nevertheless, already at this point, the most 
intriguing fact about let-7 is its ability to interfere with constituents of several dis-
tinct pathways involved in malignant transformation of cells in general and in mela-
nomagenesis in special.

6.2.4  Tumor-Suppressive Role of miR-196a in Melanoma

Another miRNA confirmed to act as a tumor suppressor in malignant melanoma 
cells is miR-196a. Thereby, it currently seems that this miRNA exerts much of its 
function by regulating the expression of at least two class I homeodomain contain-
ing transcription factors, HOX-B7 and HOX-C8 (Braig et al. 2010; Mueller and 
Bosserhoff 2010a).

The expression of miR-196a has been shown to be strongly reduced in mela-
noma cell lines as well as in a small set of tissue samples derived from primary 
cutaneous melanomas and melanoma metastases, respectively (Braig et al. 2010; 
Mueller and Bosserhoff 2010a). In line with general reports characterizing miR- 
196a as a potent regulator of HOX gene expression (e.g., Yekta et al. 2004), reduced 
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miR-196a levels inversely correlate with strongly enhanced the expression of the 
HOX transcription factors HOX-B7 and HOX-C8 in melanoma cells (Braig et al. 
2010; Mueller and Bosserhoff 2010a). 3′UTR reporter assays confirmed that miR-
196a is actually capable to directly interact with the HOX-B7 (Braig et al. 2010) and 
HOX-C8 (Mueller and Bosserhoff 2010a) transcripts, thereby preventing their 
translation into protein.

Due to these efforts, Braig et al. (2010) were able to link loss of miR-196a to the 
over-expression of BMP4 (bone morphogenetic protein 4), an event strongly 
enhancing the migratory potential of melanoma cells (Hsu et al. 2005; Rothhammer 
et al. 2005, 2008). In their model proposed, diminished levels of miR-196a cause 
induction of the transcription factor HOX-B7, which in turn activates bFGF (basic 
fibroblast growth factor) production. In the end, this results in an enforced expres-
sion of BMP4, most likely mediated by transcription factors of the Ets family (Braig 
et al. 2010). Additionally, Mueller and Bosserhoff (2010a) demonstrated that miR- 
196a indirectly modulates the expression of several genes potentially involved in 
melanoma progression by regulating HOX-C8 levels. Many of the HOX-C8 target 
genes described in literature are related to oncogenic processes like cell adhesion, 
cytoskeleton remodeling, tumor formation, and invasive behavior of tumor cells 
(Lei et al. 2005, 2006). The authors demonstrated that at least three of them – cad-
herin- 11, calponin-1, and osteopontin – appear to be deregulated in melanoma cells 
partially due to the over-expression of HOX-C8 (Mueller and Bosserhoff 2010a).

In the course of the studies cited, melanoma cell clones were generated, which 
stably re-express miR-196a at a level almost equal to that detected in normal mela-
nocytes (Braig et al. 2010; Mueller and Bosserhoff 2010a). Remarkably, those cells 
were characterized by an about 50 % and 40 % reduction in their migratory (Braig 
et al. 2010) and invasive potential, respectively, as well as by diminished tumorige-
nicity after subcutaneous injection into nude mice as shown in a preliminary experi-
mental setup (Mueller and Bosserhoff 2010a). Vice versa, the treatment of otherwise 
normal melanocytes with anti-miRs against miR-196a was sufficient to induce 
migratory behavior in this cell type (Braig et al. 2010).

As true for miR-221/222 and let-7, there is a need to extend the set of known, 
melanoma-relevant miR-196a target genes to eventually draw a complete picture of 
the molecules mediating this miRNAs’ effects on melanomagenesis. This could be 
of importance as newer studies suggest a link of an SNP in miR196a to levels of 
intracellular reactive oxygen species and sensitivity to apoptotic signals (Huang 
et al. 2013). It also seems like the deregulation of HOX protein levels might well be 
worth a detailed examination as several studies clearly defined a link between aber-
rant HOX gene expression and cancer development (reviewed by Piérard and 
Piérard-Franchimont 2012; Shah and Sukumar 2010). Interestingly, a report high-
lighting miR-196 family members as metastasis suppressors in breast cancer (Li 
et al. 2010) additionally strengthens the tumor-suppressive role of miR-196a in 
malignant melanoma. By contrast, detection of increased miR-196a levels in other 
types of tumors when compared to their healthy biological correlates (e.g., 
Bloomston et al. 2007; Luthra et al. 2008; Maru et al. 2009; Schimanski et al. 2009) 
clearly point toward a tissue-specific role of this miRNA. Considering its targets, 
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the HOX genes, as “tumor modulators” harboring the potential to act as both onco-
genes and tumor suppressor genes depending on the respective tissue context 
(Abate-Shen 2002), seem to be rather plausible but add a further level of complexity 
to this area of research.

6.2.5  Tumor-Suppressive Role of the miR-34 Family 
in Melanoma

Recently, several reports conclusively demonstrated that the p53 tumor suppressor 
protein directly induces the expression of miR-34 miRNA family members and 
probably exerts a significant portion of its expansive impact on cell-cycle control 
and regulation of apoptosis through these mediators (reviewed by Hermeking 2010). 
Accordingly, the ectopic expression of miR-34 genes has profound effects on cell 
proliferation and survival causing cell-cycle arrest in G1 phase, inhibiting colony 
formation in soft agar, as well as inducing cellular senescence and apoptosis, respec-
tively (Bommer et al. 2007; Chang et al. 2007; Corney et al. 2007; He et al. 2007; 
Raver-Shapira et al. 2007; Tarasov et al. 2007; Welch et al. 2007). Therefore, genes 
involved in cell-cycle regulation and apoptosis control are significantly enriched in 
the large set of confirmed miR-34 targets comprising Bcl-2, CCND1, CCNE2, 
CDK2, CDK4, CREB, MET, MYC, SIRT1, and many more (for a comprehensive 
list, see Hermeking 2010). Some of the studies defining this potent onco- suppressive 
role of miR-34 members in various tumor entities also include data regarding mela-
noma (Lodygin et al. 2008; Lujambio et al. 2008; Migliore et al. 2008). Newer data 
revealed miR-34a/c to regulate the NK2D ligand ULBP2 and thereby modulate 
tumor cell recognition by NK cells (Heinemann et al. 2012). The following para-
graph aims to summarize these findings and recombine them with results generated 
in other cancer types to present a perspective on the possibly far-reaching but yet 
underestimated influence of miR-34 on melanomagenesis.

In humans, the miRNAs of the miR-34 family are encoded by two different loci 
with one locus encoding miR-34a and the other locus encoding a common precursor 
for miR-34b/c. The high similarity shared by all three mature miR-34 forms gener-
ates points to an overlapping although not completely identical repertoire of target 
transcripts. Lodygin et al. (2008) demonstrated that the expression of miR-34a is 
commonly silenced in a variety of tumors as a consequence of promoter hypermeth-
ylation. This is also true for melanoma cells as 19 of 44 (43.2 %) investigated mela-
noma cell lines as well as 20 of 32 (62.5 %) primary melanomas investigated 
displayed hypermethylation of the miR-34a promoter resulting in loss of miR-34a 
pri-miRNA expression (Lodygin et al. 2008). CpG methylation presumably occurs 
at a region 100–500 bp upstream of the miR-34a transcription start site which also 
includes the p53 binding site. By contrast, normal melanocytes derived from two 
different donors did not display miR-34a promoter methylation, implicating that 
this mechanism represents a tumor-specific event. Interestingly, miR-34a is encoded 
at chromosome 1p36 – a chromosomal locus repeatedly described to harbor a gene 
for melanoma susceptibility, which surprisingly has not been identified to date (e.g., 
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Ng et al. 2008; Poetsch et al. 2003). LOH for 1p36 had been detected in 77 % of 
nodular melanomas, 86 % of metastatic melanomas, but only 20 % of superficially 
spreading melanomas (Poetsch et al. 2003). Additionally, in neuroblastoma, a cor-
relation between 1p36 loss and miR-34a down-regulation had been confirmed (Wei 
et al. 2008). It is therefore tempting to speculate, that in melanoma cells either loss 
of 1p36, hypermethylation of the miR-34a promoter or a combination of both mech-
anisms may result in loss of miR-34a and its tumor-suppressive function.

CpG island methylation had also been found to be the cause for silencing of miR- 
34b/c in melanoma and several other types of cancer (Kozaki et al. 2008; Lujambio 
et al. 2008; Toyota et al. 2008). Thereby, the study of Lujambio et al. (2008) strik-
ingly unraveled a highly significant correlation between miR-34b/c promoter hyper-
methylation and the presence of lymph node metastases in a panel of melanoma 
tissue samples. A report published by Migliore et al. (2008) implicates that this 
might be due to the release of c-MET expression from miR-34b/c-mediated repres-
sion. Performing a bioinformatical search for miRNAs targeting c-MET they found 
miR-34b/c as well as miR-199* to be able to suppress c-MET production and there-
fore the ability of cancer cells to respond to HGF (hepatocyte growth factor) stimu-
lation – even if they harbored c-MET gene amplification or over-expression resulting 
in high levels of constitutively active receptor (Migliore et al. 2008). In their study, 
melanoma-derived primary cells expressed only limited amounts of miR-34c (and 
therefore possibly also of miR-34b). The transfection of synthetic miR-34b/c mol-
ecules into these cells led to the down-regulation of c-MET expression as well as to 
impairment of c-MET-mediated motility in vitro (Migliore et al. 2008). The MET 
oncogene encodes a tyrosine kinase receptor which upon activation by binding its 
ligand HGF (also called scatter factor) activates a complex biological program 
which in the end results in invasive growth and metastatic dissemination of tumor 
cells (Birchmeier et al. 2003). In melanoma, the over- expression of c-MET has 
repeatedly been reported and its transcriptional activation had been linked to 
increased levels of SOX10, PAX3, and MITF whereas loss of Plexin B1 prevents 
suppression of c-MET activation by absent receptor–receptor interactions (e.g., 
Cruz et al. 2003; Kiriakidou et al. 2004; Mascarenhas et al. 2010; Puri et al. 2007). 
It is known from other tumor types that c-MET expression can also be induced dur-
ing hypoxia (through binding of HIF-1α to the MET promoter; Pennacchietti et al. 
2003) or activation of several oncogenes including Ets family members (Gambarotta 
et al. 1996; Ivan et al. 1997; Webb et al. 1998). While HGF is a paracrine mitogen 
for normal melanocytes, most melanoma cells gain the potential to produce HGF 
themselves thereby establishing sustained autocrine stimulation of the receptor (Li 
et al. 2001). Notably, correlations between c-MET expression and the metastatic 
potential of melanoma cells as well as patient survival have been described (Barnhill 
and Mihm 1993; Natali et al. 1993; Slominski et al. 2001).

These findings implicate that the loss of expression of miR-34 family members – 
potentially caused by multiple mechanisms (including aberrant methylation and 
chromosomal aberrations) – might be a central event in the progression of primary 
melanomas on to invasive and metastatic disease. They may additionally shed new 
light on the controversially disputed role of p53 in melanomagenesis. Whereas 
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silencing of p53 is acknowledged to be one of the most influential events in the 
formation of virtually all tumor types, its role in melanoma has been neglected due 
to a low frequency of missense mutations detected (0–10 %; reviewed by Box and 
Terzian 2008). However, as indicated by several studies performed in animal mod-
els, the impact of p53 on melanomagenesis should be revisited; e.g., Terzian et al. 
(2010) recently demonstrated that high levels of p53 prevent the conversion of nevi 
into malignant and metastatic melanomas. Some of the conflicting effects observed 
might be explained by alterations in the expression of miR-34 family members 
impairing p53’s ability to maintain its tumor suppressive function in advanced mel-
anomas. That is, their rapidly growing TP-ras0/+ tumors (Terzian et al. 2010) might 
overcome the tumor-suppressive effect of high-level stabilized wild-type p53 by 
losing miR-34 expression. In summary, these observations might also harbor some 
exciting insights into a key aspect contributing to the pronounced chemotherapy 
resistance of melanoma (Soengas and Lowe 2003) as loss of miR-34 expression had 
been linked to resistance against apoptosis induced by p53 activating agents (Zenz 
et al. 2009; Yamasaki et al. 2012).

6.2.6  Other miRNAs with a Functional Impact 
on Melanomagenesis

6.2.6.1  MiR-193b
Profiling the expression of 470 miRNAs in a set of formalin-fixed paraffin- embedded 
(FFPE) specimens derived from eight benign nevi and eight metastatic melanomas, 
Chen et al. (2010) detected 31 miRNAs to be differentially expressed in the mela-
noma samples (13 up-regulated, 18 down-regulated miRNAs). The authors selected 
the miRNA most strongly down-regulated, miR-193b, for a more detailed func-
tional analysis. The introduction of artificial miR-193b molecules into three differ-
ent melanoma cell lines resulted in a reduction of their proliferative capacity of 
between 30 and 60 % marked by an increased number of cells in G1 phase whereas 
the fractions of cells detected to be in S phase or G2 phase decreased (Chen et al. 
2010). Combining whole genome cDNA microarray profiling and bioinformatic 
miRNA target prediction the authors identified cyclin D1 (CCND1) as a potential 
target for miR-193b. Subsequent 3′UTR reporter assays confirmed miR-193b to be 
a further miRNA targeting CCND1 in melanoma – in addition to let-7b (see above). 
The same group followed up the finding on the deregulation of miR-193b and 
revealed Stathmin1, a regulator of microtubule dynamics, and MCL1 (myeloid cell 
leukemia sequence 1) to be a direct target (Chen et al. 2013).

6.2.6.2  miR-532-5p
Members of the Runt-related (RUNX) family of transcription factors function as 
scaffolds interacting with co-regulatory factors often involved in tissue differentia-
tion (Javed et al. 2005). Driven by findings on a tumor-suppressive role of RUNX3 in 
several types of tumors, Kitago et al. (2009) detected a significant down-regulation 
of this transcription factor on mRNA level in their set of 82 primary melanomas and 
41 melanoma metastases as compared to 12 normal skin samples. Thereby, RUNX3 
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down-regulation displayed a nonlinear association with AJCC stage of the tumors 
with AJCC stage IV classified metastatic melanomas showing an even stronger 
reduction of RUNX3 expression compared to primary tumors. Interestingly, multi-
variate analysis revealed that the down-regulation of RUNX3 mRNA was related to 
disease outcome in those patients (Kitago et al. 2009). In contrast to tumors derived 
from other tissues (Ito 2004), loss of RUNX3 expression was not due to promoter 
hypermethylation in the melanoma samples but seems to be associated with 
increased expression of miR-532-5p. Kitago et al. (2009) detected this miRNA to be 
significantly over-expressed in their metastatic cell lines compared to melanocytes 
as well as in the metastatic melanoma samples compared to primary tumors point-
ing toward an enforced expression of miR-532-5p as progression to metastatic dis-
ease occurs. While the transfection of anti-miRs against miR-532-5p into a 
metastatic melanoma cell line resulted in the increased expression of RUNX3 on 
mRNA and protein level, a direct interaction of the miRNA with a target site in the 
RUNX3 3′UTR has not yet been confirmed. Another interesting fact is that miR- 
532- 5p is actually encoded at Xp11.23 which is located next to Xp11.3 – the 
genomic locus encoding miR-221/222 (see above).

6.2.6.3  miR-155
Levati et al. (2009) analyzed several miRNAs known to be involved in oncogenic 
processes for their expression in a panel of melanoma cell lines. In the majority of 
cell lines used, they detected an enhanced expression of miRNAs belonging to the 
miR-17-92 cluster – miR-17-5p, miR-18a, miR-20a, and miR-92a – as well as a 
diminished expression of miR-146a, miR-146b, and miR-155 compared to normal 
melanocytes (Levati et al. 2009). As miR-155 down-regulation was most promi-
nent, the authors decided to examine this miRNA’s impact on melanoma cell func-
tion. The transfection of artificial miR-155 molecules into melanoma cells inhibited 
proliferation by between 30 and 98 % in 12 out of 13 cell lines tested. Subsequent 
experiments performed in four of the cell lines implicated that this impairment of 
melanoma cell proliferation was at least partly based on induction of apoptosis in 
miR-155 transfected cells, further they revealed the regulation of the transcriptional 
repressor SKI (Levati et al. 2009; Levati et al. 2011). Reports on other types of 
tumors point towards a tissue-specific function of miR-155 ascribing the latter 
oncogenic as well as a tumor-suppressive potential depending on cellular context 
(e.g., Gartel and Kandel 2008; Volinia et al. 2006). The functional impact of miR- 
155 down-regulation on melanomagenesis remains to be defined as it appears to be 
only weakly expressed already in normal melanocytes. MiR-155 was recently 
shown to regulate MITF (Arts et al. 2015; see Sect. 6.2.1) and TYRP1 (El Hajj et al. 
2015) shedding some light on its potential function. In addition, miR-155 was asso-
ciated with patient outcome and might therefore be of prognostic potential 
(Jayawardana et al. 2015).

6.2.6.4  miR-210
Zhang and co-workers reported a correlation between elevated pri-miR-210 levels in 
melanoma tissues and shorter metastasis-free survival of the patients in Kaplan–Meier 
analysis (Zhang et al. 2009). MiR-210 is the miRNA species most prominently 
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induced during hypoxia (reviewed by Huang et al. 2010). In their study, Zhang et al. 
(2009) demonstrated that the over-expression of this miRNA overrides hypoxia-
induced cell-cycle arrest by indirectly activating the cell cycle and metabolic regulator 
MYC via repression of its antagonist MNT in several tumor cell lines. It was therefore 
hypothesized that miR-210 is involved in the regulation of mitochondrial biogenesis 
and central carbon metabolism to adapt tumor cells to hypoxic episodes and to further 
provide them a competitive advantage in developing tumors once normal oxygen lev-
els are restored (Morrish 2009). Hypoxia and HIF signaling have also been shown to 
be implicated in melanomagenesis and melanoma metastasis (reviewed by Bedogni 
and Powell 2009), especially as a potential constitutive HIF-1 activity has been 
described for melanoma (Kuphal et al. 2010). Unfortunately, besides the Kaplan–
Meier analysis cited above, no data regarding melanoma cells is provided by Zhang 
and colleagues which performed all their experiments in cell lines derived from other 
tumor types. However, Satzger et al. (2010) detected significantly enhanced the 
expression of miR-210 in 16 primary melanoma samples as compared to 11 melano-
cytic nevi investigated. miR-210 expression did not correlate with recurrence-free 
survival or overall survival in an extended set of 112 primary tumors (Satzger et al. 
2010). Additionally, considering a currently disputed bipolar effect of hypoxia and 
miR-210 on tumorigenesis and a modulation of tumor cell susceptibility to lysis by 
antigen-specific cytotoxic T cells (Huang et al. 2009; Noman et al. 2012), a lot more 
research will be necessary to define the specific impact of miR-210 on the progression 
of this disease. Recently, miR-210 was clearly associated with early recurrence and 
may be useful as a diagnostic marker (Ono et al. 2015).

6.2.6.5  miR-125b
Several studies revealed a strong downregulation of miR-125b expression in mela-
noma (Glud et al. 2010). Based on these studies, multiple effects on melanoma cells 
have been shown, for example, Kappelmann et al. (2013) described a regulation of 
c-Jun by miR-125b. Here, the regulative effect can only be found on protein level 
hinting at a post-transcriptional regulation by modulation translation of c-Jun. 
Further, Mixed linked kinase 3 (MLK3) was proven to be regulated by miR-125b 
and thereby induced in melanoma, supporting cell growth and invasion (Zhang et al. 
2014). Nyholm et al. (2014) could implicate miR-125b in the induction of senes-
cence, thereby further confirming that the lack of miR-125b in melanoma is impli-
cated in tumor development.

6.2.6.6  miR-21
A recent review by Melnik (2015) summarized the importance of miR-21 in mela-
noma. In contrast to most described and previously analyzed miRs, miR-21 is 
upregulated in melanoma and associated with progression (Grignol et al. 2011; 
Satzger et al. 2012). A functionally regulation of melanoma cell apoptosis but also 
a probably even more important regulating of invasive processes were demonstrated 
(Satzger et al. 2012; Yang et al. 2015; Martin del Campo et al. 2015). Here, FBXO11 
and TIMP3 were shown to be direct targets of miR-21. Interestingly, NRAS and 
BRAF mutations are associated with miR-21 induction (Melnik 2015).
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6.2.6.7  Additional Deregulated miRNAs
In Table 6.1, all miRNAs are listed, where deregulation was confirmed by more than 
one group and target genes have been identified. Additionally, miR-101, miR-106a, 
miR-106b, miR-107, miR-130a, miR-135b, miR-142, miR-149*, miR-150, miR- 
15b, miR-17, miR-18a, miR-1826, miR-185, miR-19a, miR-19b, miR-195, miR- 
199a, miR-1908, miR-20a, miR-21, miR-210, miR-212, miR-224, miR-25, 
miR-29a, miR-301a, miR-3151, miR-335, miR-340, miR-373, miR-378, miR-432, 
miR-509-3p, miR-514a, miR-532-5p, miR-638, miR-93 were described as upregu-
lated and miR-10b, miR-125a, miR-125b, miR-126*, miR-127-3p, miR-130a-3p, 
miR-130b-3p, miR-134, miR-137, miR-141, miR-143, miR-144-3p, miR-145, 
miR-149, miR-183, miR-184, miR-191, miR-192, miR-193a, miR-193b, miR-194, 
miR-196a, miR-200b, miR-203, miR-204, miR-205, miR-218, miR-23b, miR- 
23b- 3p, miR-26a, miR-27b, miR-29c, miR-30b, miR-30a-3p, miR-31, miR-33a, 
miR-34b, miR-34c, miR-376a/c, miR-429, miR-451a, miR-455-3p, miR-455, miR- 
524, miR-573, miR-663, miR-7, miR-768-3p, miR-98, miR-99a, let-7a, let-7b, and 
let-7e were downregulated in melanoma (see also Fig. 6.2).

6.3  Lessons to Learn from miRNA Expression Profiling 
in Malignant Melanoma

In addition to analyses focusing upon the functional impact of single miRNA spe-
cies on melanoma progression, several studies performing global miRNA expres-
sion profiling or determining expression patterns of miRNA subsets in melanoma 
cell lines and tissue samples have been conducted. In the beginning, this topic was 
only addressed as a part of large scale profiling studies in which few melanoma 
samples had been included (Blower et al. 2007; Gaur et al. 2007; Lu et al. 2005; 
Zhang et al. 2006; reviewed by Mueller and Bosserhoff 2009). Therefore, it had 
been difficult to deduce information on alterations in the miRNA profile of mela-
noma cells clearly distinguishing them from normal melanocytes with only these 
data published.

From 2008 on, research specifically aimed to identify differences in the miRNA 
expression patterns of normal melanocytes, nevi, and melanoma cells. The objective 
was to either identify single deregulated miRNAs as targets for in-depth functional 
characterization (Chen et al. 2010; Molnar et al. 2008; Mueller et al. 2009; 
Philippidou et al. 2010; Schultz et al. 2008) or to identify potential melanoma bio-
markers (Caramuta et al. 2010; Glud et al. 2009; Jukic et al. 2010; Leidinger et al. 
2010; Liu et al. 2009; Ma et al. 2009; Segura et al. 2010). Further, some groups 
analyzed limited sets of miRNAs already known to be involved in tumorigenic 
mechanisms to confirm their deregulated expression in melanoma as well (Levati 
et al. 2009; Satzger et al. 2010). Another experimental approach utilized next gen-
eration sequencing to potentially identify the complete miRNAome of the melano-
cytic lineage (Stark et al. 2010; discussed in detail in Mueller and Bosserhoff 
2010b). The data obtained during these studies can be exploited in different ways. 
On the one hand, the deregulated expression of miRNAs that had already been 
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functionally characterized in melanoma before can be confirmed in larger sets of 
cell lines or tissue samples, as well as new candidates for functional analysis can be 
identified depending on the degree of deregulation detected. On the other hand, 
miRNA classifiers suited for diagnostic and/or prognostic purposes could be cre-
ated – based less presumably on a single miRNA but rather on a larger set of miR-
NAs. Ding et al. (2015) focused on 21 miRNAs that were up-regulated and 42 that 
were down-regulated in a metastatic as well as in a nonmetastatic melanoma cell 
line compared to a melanocyte cell line. These included miR-148-3p, miR-129-5p, 
miR-34-5p, miR-363-3p, and miR-374b-5p, and the networks constructed for their 
putative target genes were related with cell morphology, cell development, and 
DNA replication. They also discovered a novel miRNA to be annotated (Ding 
2015). Nevertheless, Kozubek et al. (2013) observed a consistent lower expression 
of miR-203, miR-204-5p, miR-205-5p, miR-211-5p, miR-23b-3p, miR-26a-5p, and 
miR-26b-5p in human melanoma biopsies compared to nevi. Furthermore, miR- 
211- 5p expression levels could accurately distinguish invasive melanoma, in situ 
melanoma, and dysplastic nevi from common nevi in a discovery cohort using Next 
Generation Sequencing, (NGS) and in an independent validation cohort using qRT-
PCR. Importantly, this signature differed significantly from the one discriminating 
between melanoma cell lines and melanocytes (Kozubek 2013), stressing the impor-
tance and feasibility of this approach with archived FFPE specimens matched to 
invaluable clinical information. The Cancer Genome Atlas (TCGA, http://cancerge-
nome.nih.gov/) has recently released data on microRNA expression in melanoma, 
which, together with the genomic alterations through DNA, RNA, and protein-
based analysis of 333 primary and/or metastatic melanomas, has allowed classifica-
tion of cutaneous melanomas into four categories (TCGA network 2015).

6.3.1  Confirmation of Deregulated Expression of Single miRNAs 
and Identification of New miRNA Candidates 
for Functional Characterization

The mis-expression of many of the miRNAs discussed in Sect. 6.2 was confirmed in 
independent sample sets during profiling studies highlighting their importance in 
melanoma progression (data included in Table 6.1). For example, down-modulation 
of let-7a in melanoma tissues has repeatedly been detected. In summary, those find-
ings point to a model in which normal skin melanocytes as well as benign nevi show 
the high expression of let-7a which then successively gets diminished during mela-
noma progression with melanoma metastases displaying the lowest let-7a levels 
(Chen et al. 2010; Glud et al. 2009; Ma et al. 2009; Philippidou et al. 2010). Further, 
a reduced expression of let-7b (Chen et al. 2010) and miR-196a (Caramuta et al. 
2010; Philippidou et al. 2010) as well as an enhanced expression of miR-221/222 
(Mueller et al. 2009; Philippidou et al. 2010) has concurrently been observed in dif-
ferent sets of melanoma cell lines and tissue samples. These are examples of posi-
tive correlations, indicating that miRNA profiling studies can clearly be utilized to 
support and strengthen findings obtained during functional studies, which are 
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usually performed in vitro in rather small sets of cell lines. However, microarray 
data should be taken into account with care unless validated by qRT-PCR or 
Northern blotting.

Although consistent results have been obtained in regard to specific and promi-
nent aberrations in miRNA expression, there are also some discrepancies, and the 
overall correlation between independent miRNA profiling studies in melanoma is 
rather poor. For instance, Caramuta et al. (2010) reported let-7b to be up-regulated 
in their melanoma specimens and Satzger et al. (2010) did not find miR-222 signifi-
cantly up-regulated in their set of tissue samples. Further, Caramuta et al. (2010) 
detected reduced levels of miR-15b in melanoma cells –  in sharp contrast to Satzger 
and co-workers (2010) who detected miR-15b to be strongly up-regulated (see 
below). Adding to the confusion, a highly pronounced variation was observed in the 
expression levels of single miRNAs between melanoma cell lines and tissue sam-
ples, respectively (Caramuta et al. 2010; Philippidou et al. 2010; Satzger et al. 
2010). As an example, Segura et al. (2010) found the expression of miR-155 rather 
up-regulated in melanoma lesions compared to benign nevi, which is in stark con-
trast to the functional report published by Levati et al. (2009) (see above). This 
caveat might be resolved by the findings from Philippidou et al. (2010) who detected 
miR-155 to be down-regulated in melanoma cell lines compared to normal melano-
cytes, but up-regulated when comparing melanoma tissue samples to benign nevi.

This, among other things, indicates that the interpretation of data obtained during 
miRNA profiling studies is heavily depending on the type of sample used as baseline 
control. As isolated melanocytes show, a high degree of variation in their miRNA 
expression profiles dependent not only on donor source but also on passage number 
(as already known from their cDNA and protein profiles), each study should include 
an extended set of melanocytes derived from different donors and intervals of propa-
gation in cell culture should be adequately limited. Interestingly, the miRNA profiles 
generated from tissue samples seem between independent studies than do expression 
profiles generated from cell lines (e.g., Philippidou et al. 2010, compared to Glud 
et al. 2009). However, when analyzing tissue specimens most commonly benign nevi 
are used as baseline control and therefore serve as biological correlate for melanoma 
cells. Undoubtedly, nevi cells cannot be considered equivalent to normal skin mela-
nocytes as they already harbor potentially malignant genetic alterations rendering 
them abnormal by definition (for a detailed discussion, see Mueller and Bosserhoff 
2010b). Additionally, tissue samples are prone to contamination by nonmelanocytic 
cells derived from the surrounding tumor stroma. Therefore, microdissection should 
be established a standard in sample preparation in order to obtain reliable results.

Of note, not only the baseline control will influence interpretation of miRNA 
profiling data but so will data processing. Although challenging, a consensus must 
be aspired on normalization of miRNA microarray data as well as on a common 
stable reference gene for qRT-PCR based miRNA profiling methods (reviewed by 
Meyer et al. 2010). Moreover, as NGS setups find their way into everyday labora-
tory use (see also Stark et al. 2010, and related discussion by Mueller and Bosserhoff 
2010b) the general debate on the best method for miRNA expression profiling is 
fueled further (reviewed by Git et al. 2010).
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The high variability observed in the profiling studies cited above indicates that 
miRNAs consistently detected to be deregulated in independent sample sets 
might be best candidates to actually playing a central role in melanomagenesis. 
Indeed, some miRNAs meet this claim. The most prominent example is miR-
17-5p, which together with other members of the well-characterized oncogenic 
miR-17-92 cluster (reviewed by Olive et al. 2010) has been reported to be up-
regulated in melanoma cells (Chen et al. 2010; Levati et al. 2009; Mueller et al. 
2009; Philippidou et al. 2010). Interestingly, Levy et al. (2010a, b) recently 
hypothesized that miR- 17- mediated suppression of the proapoptotic BIM protein 
may play a significant role in survival of melanocytic cells in the absence of Bcl-
2. Further, reduced expression of miR-200 family members which play a major 
role in epithelial-to-mesenchymal transition (reviewed by Bracken et al. 2009) 
had concordantly been demonstrated by several groups indicating a role of these 
miRNAs in the progression to advanced melanoma as well (Chen et al. 2010; 
Philippidou et al. 2010; Schultz et al. 2008). The down-regulation of miR-194 
(Caramuta et al. 2010; Mueller et al. 2009) and miR-211 (Caramuta et al. 2010; 
Chen et al. 2010; Jukic et al. 2010) as well as the up-regulation of miR-210 
(Caramuta et al. 2010; Philippidou et al. 2010) and miR- 373 (Mueller et al. 2009; 
Philippidou et al. 2010) are further examples for deregulated expression of miR-
NAs not yet analyzed for their specific functions in malignant melanoma. 
Thereby, the role of miR-373 in melanoma might be more sophisticated than in 
other types of tumors (Mueller et al. 2009; Satzger et al. 2010).

This implicates that a lot more miRNAs might be functionally involved in the 
formation and progression of malignant melanoma than the few we started to ana-
lyze in detail so far. Fortunately, a reasonable amount of miRNA profiling data are 
now available to support the identification of candidate miRNAs for future func-
tional validation. Nevertheless, for every single miRNA, it remains to be elucidated 
if its deregulated expression really is a defect driving melanoma progression or if it 
just has to be considered a passenger defect not reflective of the fundamental molec-
ular mechanisms underlying tumorigenesis.

6.3.2  Identification of miRNA Biomarkers Suitable 
for Diagnostics and Prognostics in Melanoma

In the beginnings of cancer-related miRNA research, groundbreaking publica-
tions demonstrated that (1) many miRNAs are encoded at genomic loci match-
ing to fragile sites or regions associated with cancers (Calin et al. 2004) as well 
as that (2) miRNA expression profiles reflect the developmental lineage and the 
differentiation state of solid tumors (Lu et al. 2005; Volinia et al. 2006). 
Strikingly, poorly differentiated tumors can be successfully classified by their 
miRNA expression profile, in contrast to their mRNA profile – leading Rosenfeld 
and colleagues to construct a 48 miRNA classifier capable to determine the ori-
gin of metastatic tumors of unknown primary origin with high accuracy (Gaur 
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et al. 2007; Lu et al. 2005; Rosenfeld et al. 2008). With regard to melanoma, 
these studies unrevealed that 85.9 % of genomic loci harboring one or more of 
283 examined miRNA genes exhibited DNA copy number alterations and that 
some of these changes were specific to this tumor type (Zhang et al. 2006). In 
addition, a set of 15 miRNAs expressed at significantly different levels sepa-
rated the eight melanoma cell lines included in the NCI-60 panel from the other 
cancer cell lines investigated (Gaur et al. 2007). Taken together, these findings 
paved the way to explore the potential of miRNA expression profiling to iden-
tify miRNA biomarkers with a diagnostic and/or prognostic value in malignant 
melanoma.

Fortunately, in accordance to other tumor tissues, FFPE specimens derived 
from melanocytic lesions are suitable starting material for miRNA expression 
profiling (Glud et al. 2009; Liu et al. 2009; Ma et al. 2009). In the light of a very 
limited availability of fresh-frozen melanoma samples (due to therapeutic 
guidelines requiring microscopic analysis of the whole primary tumor to deter-
mine histopathological prognostic parameters, including Breslow thickness), as 
well as of the large quantity of archival material stored in pathological institutes 
worldwide this really opens avenues for miRNA biomarker discovery. First 
interesting results already point out that miRNA profiles actually do harbor the 
potential to be utilized in diagnostics and prognostics of melanoma in the future. 
In this way, Satzger and colleagues (2010) found significant association of high 
miR-15b expression with poor recurrence- free survival and overall survival in 
Kaplan–Meier analysis of a total of 128 melanoma patients (median follow-up 
43.1 months). They also showed that the up-regulation of miR-15b was a statis-
tically significant independent parameter of disease-free survival and overall 
survival in multivariate Cox analysis in addition to Breslow thickness and ulcer-
ation of the primary tumor (Satzger et al. 2010). In addition, Caramuta et al. 
(2010) described low levels of miR-191 and high levels of miR-193b in mela-
noma lymph node metastases to be associated with shorter survival after diag-
nosis of metastatic dissemination into the regional lymph nodes analyzing 16 
melanoma patients.

In contrast to these studies focusing on single miRNA markers associated 
with melanoma survival, Segura et al. (2010) constructed a miRNA classifier 
consisting of six miRNAs (miR-150, miR-342-3p, miR-455-3p, miR-145, miR-
155, and miR- 497) indicative for melanoma prognosis. Based on this classifier, 
they were able to predict post-recurrence survival in their set of 59 FFPE mela-
noma metastases (derived from patients with detailed clinical follow-up) with an 
estimated accuracy of about 80 %. Notably, the miRNA classifier was also able 
to significantly risk- stratify stage III melanoma patients into “better” and “worse” 
prognostic categories based on survival probability in contrast to the AJCC stan-
dard classification system (stages IIIB and IIIC; Segura et al. 2010, detailed dis-
cussion in Mueller and Bosserhoff 2010b). Pointing towards clinical application 
by using three retrospective cohorts (training, validation cohorts profiled with 
miRNA arrays and an independent cohort assessed through qPCR), Hanniford 
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et al. (2015) identified a miRNA classifier in primary melanoma tumors. The 
classifier consists of a four miRNA signature including miR-150-5p, miR-
15b-5p, miR-16-5p, and miR-374-3p, which, combined with the current clinico-
pathological staging system, could increase the prognostic value for the risk of 
developing brain metastasis of the clinicopathological staging alone. Interestingly, 
miR-150-5p, which was less abundant in primary melanomas that metastasized 
to the brain, correlated with tumor infiltrating lymphocytes, reflecting tumor-
tissue-specific miRNA signature, as opposed to just a cancer-cell-specific signa-
ture, putting forward a new advantage of approaches profiling miRNAs from 
human FFPE samples (Hanniford 2015).

In the era of personalized medicine, miRNA classifiers may represent good prog-
nosis markers and can help in decision making. Pinto et al. compared BRAF mutated 
versus BRAF nonmutated melanoma patients, finding that miR-192 exhibited a 
higher expression in BRAF-mutated patients compared to a panel of 15 other miR-
NAs. This high expression, together with miR-193*, and low expression of miR- 
132 was associated with worse clinical outcome (Pinto et al. 2015).

6.3.3  Circulating miRNA in Melanoma

While the reports cited above rely on miRNA expression profiling in tissue sam-
ples, Leidinger et al. (2010) analyzed blood cell miRNA profiles in 35 melanoma 
patients and 20 healthy control individuals. Utilizing a subset of 16 significantly 
regulated miRNAs, they were able to separate melanoma patients from healthy 
individuals with an accuracy of 97.4 %, a specificity of 95 % and a sensitivity of 
98.9 % (Leidinger et al. 2010). This study provides first evidence that miRNA 
expression profiles generated from peripheral blood cells could be engaged to 
distinguish patients suffering melanoma from healthy individuals in a noninva-
sive routine diagnostic approach. In 2008, Mitchell et al. made an important 
breakthrough when they made a comparative profiling of circulating miRNAs 
extracted from plasma and serum samples. Furthermore, they were able to detect 
specific miRNAs in circulation from a murine prostate tumor xenograft model 
and to find circulating miRNAs which can be used to distinguish between healthy 
and prostate cancer patients (Mitchell et al. 2008). Having demonstrated that 
miRNAs were degraded when exposed to RNases present in blood plasma and 
serum, one of the most intriguing questions regarded the mechanism through 
which miRNAs could be stably detected in samples after at least 24 h at room 
temperature or after repeated freezing and thawing cycles.

To date, there are three stabilizing mechanisms for circulating miRNAs. 
These are (1) exosome-transported miRNAs (Valadi et al. 2007; Hunter et al. 
2008), (2) HDL-transported miRNAs (Vickers et al. 2011), and (3) miRNA–pro-
tein complexes, where AGO2 appears to play a central role, raising the hypoth-
esis that cells release functional miRNA-induced silencing complexes (miRISC) 
into the circulation (Arroyo et al. 2011). Although most of the efforts have been 
directed towards the structural and functional characterization of exosomes 
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(which are also loaded with functional mRNA and proteins), the group headed 
by Muneesh Tewari has more recently generated strong evidence showing that 
the exosomal fraction of miRNA represents around 15 % of the total circulating 
miRNA, being the great majority of these molecules in the vesicle-free (i.e., 
miRNA-protein complexes) compartment (Arroyo et al. 2011; Chevillet et al. 
2014). Moreover, these mechanisms are not mutually exclusive, and, as their 
roles and mechanisms are progressively understood, they open new avenues for 
diagnostic and therapeutic clinical use.

In brief, miR-320 and miR-150 were found particularly abundant in exosomes 
from cells of different types (normal and cancer cells) (Zhang et al. 2015). MiR-451 
is abundant in exosomes derived from non-cancer cells, while miR-214 and miR-
155 are enriched in exosomes derived from tumor cell lines or peripheral blood of 
cancer patients (Zhang et al., 2015). Further, miR-17, miR-19a, miR-21, miR-126, 
and miR- 149, were found at significantly higher levels in plasma exosomes derived 
from a cohort of metastatic melanoma patients compared to a cohort of healthy 
controls, a cohort of nonrecurrent treated familial melanoma patients carriers of 
mutated CDKN2A/p16, and a cohort of carriers of the same mutation that had no 
evidence of disease (Pfeffer et al. 2015).

Stark et al. (2015b) tested a panel of seven miRNAs in blood samples of stage 
III and IV melanoma patients compared to controls that detected the presence of 
melanoma with a sensitivity of 93 % and a specificity of at least 82 %. This panel 
was found to be a better predictor for progression recurrence and survival than 
current serological clinical markers (Stark et al. 2015a, b). In a broader approach, 
Margue et al. (2015) used qRT-PCR arrays to compare the serum miRNomes of 
52 melanoma patients with 30 healthy volunteers, and the serum profiles with 
tissue miRNA profiles. They found miR-30b-5p, miR-3754a-5p, among others, 
to be exclusively expressed in tissue samples, while miR-3201 and miR-122-5p 
had a higher expression in serum samples. Importantly, the serum miRNome 
could distinguish only later stage melanoma patients from healthy volunteers, 
raising doubts about circulating miRNAs as early diagnostic biomarkers, while 
establishing an important database platform as a reference for further studies 
(Margue 2015).

As true as for other cancers where tumor markers for early neoplastic trans-
formation remain to be discovered, melanoma biomarkers distinguishing between 
nevi and early melanoma are urgently needed – especially considering the ability 
to metastasize a very early event in the progression of malignant melanoma. 
MicroRNA biomarkers hopefully not only suite this purpose but may also be 
utilized for separating primary melanomas which will lead (or have already led) 
to metastasis from nonmetastasizing tumors. Regarding prognostic applications 
of miRNAs, a central goal has to be the identification of miRNA classifiers 
(which are representative of molecular biomarkers in general) that can subse-
quently be incorporated into established staging systems relying solely on mor-
phological criteria. In the end, this will hopefully allow better separation of 
patients into treatment groups, based on their risk and prognosis. Thereby, 
patients responsive to one kind of adjuvant treatment could be identified while 
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nonresponders could be spared negative effects of treatment. However, for prog-
nostic as well as diagnostic applications, large-scale studies in comprehensive 
sets of tissue or blood samples (for which detailed clinical data have to be avail-
able) are needed ultimately to prove the usefulness of single miRNAs or miRNA 
classifiers which already have been proposed as melanoma biomarkers to date. 
Taken together, although miRNA analysis is unlikely to replace the existing tools 
for tumor diagnosis and management (like immunohistological staining or estab-
lished serum marker-proteins), miRNA biomarkers promise huge benefits if used 
to complement established methodologies.

6.3.4  MiRs as Therapeutical Targets or Therapeutic Options

The unique features of miRNAs and the increasing evidence of their role in disease 
have stimulated the biotechnology industry to develop miRNA targeting strategies or 
use synthetic miRNAs as therapeutic agents. MiRNAs are often conserved among 
species in sequence and function, which makes them particularly attractive for the 
development and testing of anti-miR drugs. The success of antisense technologies in 
research has paved the way to the development of anti-miRs, using specific chemis-
tries to increase stability and pharmacokinetics (reviewed by van Rooij et al. 2012). 
Anti-miRs are modified antisense oligonucleotides targeting a mature miRNA 
through complementary sequence. An anti-miR should be cell-permeable, stable in 
the circulation and have high specificity to the target microRNA. The most success-
ful anti-miRs are based on LNA (Locked Nucleic Acid) chemistry, one of them, the 
antagomiR Miravirsen, targeting miR-122, has reached phase II clinical trial in 
patients infected with Hepatitis C virus (HCV) (https://www.clinicaltrials.gov/ct2/
results?term=Miravirsen&Search=Search). In addition, synthetic microRNAs, called 
mimics or mimetics, are being designed to use them as weapons against specific gene 
products. These are usually RNA duplexes carrying specific modifications that will 
increase their stability and cell permeability. These modifications include linkers, 
such as cholesterol or nanoparticles (reviewed by Esau and Monia 2007). To increase 
tissue or cell specificity and prevent side-effects due to general uptake, delivery in 
viral vectors, such as the AAV has been used. Specificity is achieved via different 
virus serotypes with tissue tropism, or tissue-specific promoters.

Only a few of these microRNA therapeutic agents have reached clinical trials, 
among them MRX34, mimicking the tumor suppressor miR-34, is being tested in a 
phase I trial in different cancers including metastatic melanoma (https://www.clini-
caltrials.gov/ct2/show/NCT01829971?term=mirna+therapeutics&rank=115). In 
summary, there is great hope that the success of these clinical trials will boost fur-
ther development from the pharmacological industry.

 Conclusion

Undoubtedly, a sense of euphoria encases the scientific community when con-
sidering future therapeutic and biomarker applications based on miRNAs. This 
attitude is strengthened as first diagnostic kits (Asuragen Inc.; Rosetta 
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Genomics) made their way into commercial application and a first miRNA-
based drug entered phase IIa clinical trials in the USA and Europe (Santaris 
Pharma A/S) – with some equally promising miRNA therapeutics subjected to 
tests in preclinical studies (Regulus Therapeutics Inc.; Mirna Therapeutics 
Inc.). While we successfully demonstrated that miRNAs are new players in 
melanomagenesis, we are yet far away from a complete understanding of the 
impact those tiny molecules exert on formation and progression of this malig-
nancy. Expanding our knowledge on melanoma-relevant miRNAs will be an 
indispensable prerequisite to develop therapeutic approaches based on miRNA 
to eventually allow the effective treatment of melanoma patients in the future. 
Nevertheless, already at this point it seems like miRNAs could at least fill some 
of the gaps in our yet limited knowledge of the molecular mechanisms underly-
ing this deadly disease. A beginning has been made – a long but promising way 
is still ahead.
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7Altered Signal Transduction Pathways 
in Melanoma

Yann Cheli, Eric Lau, and Ze’ev A. Ronai

7.1  Introduction

Signal transduction pathways are central to all cellular biological processes, as they 
provide the link between extracellular or intracellular stimuli and an array of regula-
tory proteins, including protein kinases, ubiquitin ligases, and transcription factors. 
Given this, it is not surprising that signal transduction pathways are often deregu-
lated in cancer. Indeed, melanoma is a paradigm for rewired signaling because most 
critical mutations discovered in this tumor type are centered around relatively few 
major signaling cues, the most significant of which are the mitogen-activated pro-
tein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) pathways. Both 
pathways contain regulatory components with catalytic activities, making them the 
preferred targets for therapy. Here, we summarize our current understanding of the 
major deregulated signaling pathways in melanoma and the implications of such 
deregulation for tumor biology.

7.1.1  Extracellular Receptors

Among the receptors reported to be deregulated in melanoma are numerous 
membrane- bound G protein-coupled receptors and receptor tyrosine kinases 
(RTKs), including MC1R (melanocortin 1 receptor), c-Kit (mast/stem cell growth 
factor receptor), c-Met (hepatocyte growth factor receptor), IGFR (insulin-like 
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growth factor receptor), and Frizzled (WNT receptor). Deregulation of other RTKs, 
including AXL, epidermal growth factor receptor (EGFR), fibroblast growth factor 
receptor (FGFR), and vascular endothelial growth factor receptor (VEGFR), has 
also been implicated in the resistance of melanomas to certain treatments such as 
BRAF inhibitors (BRAFi) (Fargnoli et al. 2010; Landi et al. 2006; Mattei et al. 
1994; Topcu-Yilmaz et al. 2010; van Ginkel et al. 2004).

7.1.1.1  MC1R
MC1R is a melanocyte-specific G protein-coupled receptor that binds to 
α-melanocyte-stimulating hormone (α-MSH, Fig. 7.1). MC1R–α-MSH interactions 
play a central role in the regulation of both pigmentation, by inducing generation of 
eumelanin and cAMP, and melanocyte proliferation (Hunt et al. 1995; Mountjoy 
et al. 1992; Robinson and Healy 2002; Suzuki et al. 1996).

MC1R exhibits genetic variance, with mutations at the hot spot residues R151C, 
R160W, and D294H being the most significant. The mutations reduce receptor 
function and result in a phenotype of fair, freckled skin and red hair (Kadekaro et al. 
2003). Stimulation of MC1R by α-MSH normally potentiates p16INK4A tumor 
suppressor activity after UV exposure (Pavey et al. 2002); these specific mutations 
are associated with reduced UV-induced DNA damage repair efficiency and 
increased melanoma risk (Scott et al. 2002; Song et al. 2009). In contrast, overex-
pression of MC1R variants has been shown to render cells insensitive to α-MSH- 
mediated suppression of cell proliferation (Robinson and Healy 2002), suggesting 
that polymorphic variants of MC1R may enhance melanoma susceptibility or pro-
gression by attenuating p16INK4A function, at least in part.

Although MC1R is neither genetically nor epigenetically silenced (Kim et al. 
2008a), expression of the functionally impaired variants compromises receptor 
activity and correlates with increased melanoma risk (Landi et al. 2006). Carriers of 
MC1R variants who have mutations in CDK2NA also have a higher melanoma risk 
(Fargnoli et al. 2010). Notably, germline mutations of MC1R are associated with an 
increased incidence of BRAF mutations in melanoma (Landi et al. 2006). Likewise, 
inactivation of MC1R in the BrafV600E:Pten−/− mouse melanoma model increases the 
incidence of melanoma independently of UV radiation (Mitra et al. 2012).

Mutation of G proteins themselves, in particular the α-subunit of G(q) (GNAQ), 
may induce alterations in early melanoma lesions (Kusters-Vandevelde et al. 2010; 
Lamba et al. 2010; Van Raamsdonk et al. 2009). GNAQ is mutated within a RAS- 
like domain at position Q209L, which renders the protein constitutively active and 
amplifies PKC and MAPK signaling. Accordingly, overexpression of the GNAQ 
Q209L mutant is sufficient to confer anchorage independence and increase the 
tumorigenicity of immortalized melanocytes.

7.1.1.2  Receptor Tyrosine Kinases
Many cell surface receptors for growth factors, hormones, and cytokines are RTKs. 
Ligand binding activates the intrinsic RTK enzymatic activity, often by autophos-
phorylation, with subsequent phosphorylation of tyrosine residues on many sub-
strates, including PLCγ, PI3K, and MAPK, which drive cell proliferation 
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differentiation, survival, and cell migration. Among the growth factor RTKs deregu-
lated in melanoma are AXL, EGFR, c-Kit, c-Met, and IGFR, which bind to growth 
arrest-specific 6 (Gas6), epidermal growth factor (EGF), stem cell factor (SCF), 
hepatocyte growth factor (HGF), and insulin-like growth factor (IGF), respectively 
(Fig. 7.2). Ligand binding by these receptors activates the downstream RAS–RAF–
MEK–MAPK and PI3K–AKT signaling pathways independently of any existing 
MAPK pathway mutations and promotes cell survival and proliferation. Changes in 

MC1R

Transcription of MITF gene 

a-MSH

PKA

CREB

Transcriptional regulation 
of pigmentation & proliferation genes

Ras

Raf

cAMP

MEK

ERK

RSK

Adenylate cyclase

G protein

MITF

Fig. 7.1 α-MSH and MC1R receptor signaling. Binding of α-melanocyte stimulating hormone 
(α-MSH) to its cognate receptor melanocortin-1 receptor (MC1R) activates G protein-coupled 
adenylate cyclase and increases cytoplasmic cAMP levels. cAMP initiates a cascade that sequen-
tially activates protein kinase A (PKA), CREB, and transcription of MITF. In parallel, cAMP acti-
vates the RAS–RAF–MAPK–RSK cascade, which results in MITF activation. MITF then 
modulates the transcription of downstream pigmentation and proliferation genes. Branches of this 
signaling pathway that are upregulated in melanoma are indicated in black. The dashed arrow 
indicates modulation of transcriptional programming by MITF to favor tumorigenesis
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Fig. 7.2 Growth factor receptors and MAPK signaling. Membrane-bound growth factor receptors 
(c-Kit, c-Met, IGFR, AXL, EGFR) generally signal inwards through adaptor complexes containing 
proteins, such as GRB-SOS, which recruit the RAS family members HRAS, KRAS, or NRAS for 
activation. In melanoma, NRAS is the most commonly mutated protein and plays a predominant 
role in activation of the downstream effector kinases, RAF and MEKK. The RAF family of effector 
kinases includes A-, B-, and CRAF. Although signaling through ARAF has been less studied, in 
melanoma, it appears that BRAF- and CRAF- mediated signaling predominate. BRAF and CRAF 
activate downstream MEKK, MEK, and RSK. MEK activation leads to further downstream activa-
tion of JNKK1–JNK1 and ERK, as well as their cytoplasmic or nuclear transcriptional targets. 
Together, BRAF and ERK activate RSK to suppress LKB1, which would otherwise activate 
AMPK. In melanoma, this arm of AMPK activation, which normally regulates cell growth and 
survival, is downregulated (gray dashed arrow). Branches of the MAPK pathway that are upregu-
lated in melanoma appear in black
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the expression of these receptors have been implicated in several tumor types; in 
melanoma, altered expression has not been observed uniformly but may be associ-
ated with specific phases of tumor development.

7.1.1.3  AXL
AXL RTK is ubiquitously expressed in epithelial, mesenchymal, and hematopoietic 
tumors, and in the corresponding non-transformed cells. AXL was discovered in 
patients with chronic myeloproliferative disorder, and has since been implicated in 
the proliferation and drug resistance of numerous cancers, including melanoma 
(Paccez et al. 2014).

AXL is upregulated in ocular melanomas and melanoma cell lines, where it pro-
motes cell proliferation and confers a survival advantage under serum starvation 
conditions (van Ginkel et al. 2004). Increased AXL expression is also found in both 
NRAS- or BRAF-mutated tumors, although the incidence is higher in NRAS mutant 
melanomas. Of interest, AXL expression inversely correlates with melanoma dif-
ferentiation and microphthalmia-associated transcription factor (MITF) expression 
(Muller et al. 2014), and the combination of low MITF and high AXL expression is 
associated with a highly invasive phenotype. Pharmacological AXL inhibitors 
attenuate but do not abolish the invasive phenotype (Sensi et al. 2011), indicating a 
role for other RTKs and/or signaling pathways in the invasive phenotype. In response 
to chemotherapy, a subset of tumor cells that exhibit a senescence phenotype show 
elevated production and secretion of cytokines (Ohanna et al. 2011), with concomi-
tant activation of STAT3 and AXL and increased migration and invasion properties 
in surrounding cells (Ohanna et al. 2013).

Lastly, a major clinical obstacle in melanoma therapy is the acquisition of resis-
tance to either BRAFi or MEKi. The mechanisms underlying such resistance include 
upregulation of AXL, among many RTKs, which coincides with low levels of MITF 
and activation of NF-kB and JAK1 (Konieczkowski et al. 2014). Accordingly, treat-
ment of resistant melanomas with a pharmacological inhibitor of AXL augments the 
effect of the BRAFi or MEKi and enhances cell death (Muller et al. 2014).

7.1.1.4  EGFR
EGFR is a transmembrane receptor for members of the EGF family of growth fac-
tors. Increased expression or mutation of the EGFR gene is commonly seen in a 
number of tumor types, including colorectal, breast, and non-small cell lung can-
cers, where it is thought to serve as an oncogenic driver.

EGFR upregulation has been implicated as a mechanism of therapy resistance 
for several tumor types, including melanoma. Consistent with this, co- administration 
of BRAFi and EGFRi appears to attenuate ERK activity and sensitizes resistant 
melanomas to BRAFi or MEKi inhibition (Girotti et al. 2013). The resistance of 
BRAFV600E mutant colorectal cancer to BRAFi therapy has also been associated 
with high EGFR expression, which enables reactivation of ERK via RAS and CRAF 
to bypass BRAF inhibition (Corcoran et al. 2012).

Elevated EGFR expression, as observed in resistant melanoma, has been linked to 
SOX10 and MITF expression (Ji et al. 2015). Furthermore, EGFR upregulation is often 
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accompanied by upregulation of other RTKs that are associated with SOX10 and 
TGF-β signaling, including platelet-derived growth factor receptor β (Sun et al. 2014).

Interestingly, SOX10 was also found to regulate the expression of the ubiquitin 
ligase RNF125, which controls JAK1 stability through ubiquitin–proteasome- 
dependent degradation. BRAFi-resistant melanomas exhibit downregulation of 
SOX10 and concomitant inhibition of RNF125 expression. Consequently, JAK1 
stability and availability increase, and the expression of several RTKs, including 
EGFR and AXL, is stimulated. As might be expected, inhibition of JAK1 effec-
tively reduces the expression of RTKs and overcomes the resistance of melanomas 
to BRAFi (Kim et al. 2015).

7.1.1.5  c-Kit
c-Kit expression is apparent in early or radial growth phase melanomas. Although 
the penetrance appears to be low, a c-Kit-activating mutation, L576P, has been 
reported in melanoma (Antonescu et al. 2007; Rivera et al. 2008; Willmore-Payne 
et al. 2006). Interestingly, however, downregulation of c-Kit expression is associ-
ated with melanoma progression (Giehl et al. 2007; Janku et al. 2005; Montone 
et al. 1997; Natali et al. 1992). These observations suggest that upregulation of c-Kit 
and its ligand SCF may be required to establish the primary lesions, but that contin-
ued expression of c-Kit is not needed for invasion and metastasis. The disparity of 
mutations in or altered expression of c-Kit among different melanomas was initially 
overlooked in clinical trials of c-Kit-specific inhibitors. In more recent trials, clini-
cal efficacy has been observed when patient cohorts harboring c-Kit mutations were 
treated with the highly selective pharmacological inhibitor, Gleevec (Terheyden 
et al. 2010). How inhibition of c-Kit contributes to melanoma progression remains 
an important topic for investigation. The c-Kit ligand SCF is a keratinocyte-secreted 
factor, and it has been proposed that downregulation of c-Kit in melanoma cells may 
allow them to escape SCF-induced cell death. Indeed, in vitro studies have shown 
that re-expression of c-Kit in metastatic melanoma sensitizes the cells to SCF- 
mediated apoptosis and reduces their tumorigenic and metastatic potential in vivo 
(Bar-Eli 1997; Huang et al. 1996; Willmore-Payne et al. 2005).

Although the mechanism by which c-Kit is downregulated during melanoma 
progression remains unclear, a recent study found that downregulation may be epi-
genetically linked to expression of microRNAs (miRNAs) (see also Chap. 6), spe-
cifically miR-221 and miR-222, which were shown to suppress expression of both 
c-Kit and p27Kip (Felicetti et al. 2008).

7.1.1.6  c-Met
c-Met-dependent signaling is amplified in melanoma, although genetic mutations or 
modifications that result in aberrant activation of c-Met do not appear to be com-
mon. Two c-Met mutations, N948S and R988C, have been identified in melanoma 
cell lines and tumor tissues and shown to activate c-Met signaling through several 
downstream effectors, including MITF, tyrosinase, and AKT and its effectors (Chin 
et al. 2006; Puri et al. 2007). However, c-Met upregulation has also been observed 
in melanoma, particularly in the later stages of disease (Natali et al. 1993). This has 
been suggested to play a role in metastasis, especially in the liver (Rusciano et al. 
1995). Genetic amplification and activation of c-Met concomitant with Src 
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activation has been reported in BRAFi-resistant melanoma cells; accordingly, 
genetic or pharmacological inhibition of c-Met attenuated the proliferation and 
invasion of the BRAFi-resistant cells (Vergani et al. 2011).

c-Met upregulation can be induced by a number of mechanisms. One is via MITF, 
which is induced by MC1R–α-MSH signaling, as mentioned above (Rouzaud et al. 
2006; Rusciano et al. 1999). Indeed, impaired MC1R function, which is frequently 
observed in melanoma, is indicative of deregulated c-Met at both the genetic and 
protein levels.

The ubiquitin ligase skeletotrophin is another protein implicated in the regula-
tion of c-Met. In melanoma, expression of skeletotrophin is lost due to increased 
SNAIL-mediated transcriptional repression. Re-expression of skeletotrophin 
impairs the invasive capacity of melanoma cells in vitro, and this correlates with a 
reduction in c-Met mRNA transcripts (Takeuchi et al. 2006). MicroRNAs have been 
shown to contribute to increased c-Met levels in melanoma. miR-34a is normally 
expressed in melanocytes but is downregulated in melanoma. Here too, re- expression 
of miR-34a in vitro reduces c-Met expression and suppresses the growth, migration, 
and invasive capacities of melanoma cells (Yan et al. 2009).

7.1.1.7  IGFR1
IGF1R is another growth factor receptor that is upregulated in progressively malig-
nant melanoma (Mallikarjuna et al. 2006). In early melanoma lesions, IGF1R 
appears to enhance cellular growth and survival by promoting MAPK- and 
ß-catenin-dependent signaling pathways; however, IGF1R-dependent stimulation 
of these two pathways may be dispensable in later stage melanomas where other 
oncogenes are constitutively activated (Satyamoorthy et al. 2001).

Upregulation of IGF1R is associated with both malignant progression and resis-
tance to apoptotic stimuli. Antisense-mediated inhibition of IGF1R is sufficient to 
inhibit the growth of mouse melanoma cells in nude mice (Resnicoff et al. 1994), 
and monoclonal antibody-targeted inhibition of IGF1R in human melanoma cells 
similarly inhibits their growth and invasion in xenograft mouse models (Maloney 
et al. 2003). Furthermore, disruption of IGF1R can sensitize melanoma cells to 
TRAIL-induced apoptosis (Karasic et al. 2010) and increase radiosensitivity of 
melanoma by impairing the ATM-mediated DNA damage response (Macaulay et al. 
2001). Moreover, inhibition of IGF1R is sufficient to suppress growth of human 
melanomas harboring the BRAFV600E mutation (discussed further below), indicating 
that IGF1R inhibition can override signaling events that circumvent the known 
IGF1R effector, the RAS-MAPK signaling axis (Yeh et al. 2006). High levels of 
IGF1R have been reported in BRAFi-resistant cells, and have been implicated in 
upregulation of the PI3K pathway (Villanueva et al. 2010).

7.2  Cellular Kinases and Transcription Factors

7.2.1  WNT–ß-catenin

The WNT–ß-catenin signaling pathway plays an important regulatory role in mela-
nocyte development and is deregulated in melanoma (see also Chap. 5). WNT is a 
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secreted ligand for the membrane receptor, Frizzled (Fig. 7.3), and WNT binding 
activates the cytoplasmic Frizzled effector, Dishevelled. Consequently, Dishevelled 
inhibits GSK3ß–Axin–APC-mediated degradation of ß-catenin, stabilizing its lev-
els and allowing nuclear import to execute its transcriptional functions. Activation 
of the WNT–ß-catenin pathway facilitates ß-catenin-mediated upregulation of 
MITF, which promotes melanocyte differentiation and development (Dorsky et al. 
2000; Takeda et al. 2000). MITF can itself bind to ß-catenin, thereby tilting the 
transcriptional activity towards MITF targets and generating a positive feedback 
loop (Schepsky et al. 2006).

As expected, melanomas harboring activating ß-catenin mutations also have 
increased MITF levels (Doglioni et al. 2003). In turn, MITF upregulation has been 
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shown to increase multivesicular body synthesis and consequently WNT signaling, 
allowing the cells to enter a proliferative stage (Ploper et al. 2015). Interestingly, 
ß-catenin also upregulates the transcription factor Brn-2, which transcriptionally 
represses Mitf and simultaneously enhances invasive melanoma behavior. Brn-2 
expression also characterizes distinct subsets of MITF-negative melanoma cells 
(Goodall et al. 2008). The implications of MITF heterogeneity within the same and 
different tumors is the subject of intense investigation.

WNT–ß-catenin signaling is upregulated in melanoma, and although only 
~3 % of melanoma biopsies harbor ß-catenin mutations, ~30 % of human mela-
nomas exhibit increased nuclear localization of ß-catenin (Larue and Delmas 
2006). Increased WNT signaling directly upregulates Mitf and Brn-2 expres-
sion, with concomitant suppression of p16INK4A transcription; these changes 
act in concert to drive melanoma growth and proliferation (Delmas et al. 2007; 
Goodall et al. 2004a; Widlund et al. 2002). Nuclear localization of ß-catenin is 
observed in melanomas carrying mutant phosphatase and tensin homolog 
(PTEN) phosphatase and has been implicated in melanomagenesis by cooperat-
ing with NRASQ61K to increase caveolin-dependent transcriptional activity. This 
effectively bypasses the senescence phenotype elicited by mutant NRAS alone 
and promotes metastasis, in part by internalization of E-cadherin (Conde-Perez 
et al. 2015).

Interestingly, the functional role of WNT signaling in melanoma development 
varies with the specific WNT isoform. WNT3, an activator of the canonical WNT 
signaling axis, is anti-tumorigenic and its expression correlates with primary/
nevi lesions and decreased proliferation of tumor models in vitro and in vivo. 
Furthermore, WNT3 expression correlates with upregulation of genes control-
ling melanocyte development and differentiation, including Axin, Tcf7, and Mitf 
(Chien et al. 2009). In contrast, WNT5A, which activates the non-canonical 
WNT signaling axis, appears to antagonize the transcriptional effects of 
WNT3A. Indeed, WNT5A is pro-tumorigenic, cooperating with other signaling 
pathways (e.g., PKC) to enhance the metastatic and invasive behavior of mela-
noma cells, which most likely occurs through its known function in the re-distri-
bution of adhesion receptors (Weeraratna et al. 2002; Witze et al. 2008). 
Consistent with this, WNT5A-positive melanoma tumors appear to exhibit 
increased invasiveness and decreased proliferation compared with WNT5A-
negative but MITF- and Melan-A-positive tumors, supporting a model of prolif-
erative vs invasive phenotype switching during tumor progression (Eichhoff 
et al. 2010). Of note, increased WNT5A expression was also seen in tumors with 
acquired BRAFi resistance, and its inhibition re-sensitized tumors to BRAFi and 
reduced their proliferation, in part via attenuation of p-AKT activity (Anastas 
et al. 2014).

Melanomas with activated WNT–β-catenin signaling have a strong immunosup-
pressive effect on dendritic cells and cytotoxic T lymphocytes, mediated by 
increased IL-10 secretion and reduced IFN-γ secretion by the T cells. In this regard, 
it is interesting to note that activated WNT–β-catenin signaling has been linked with 
resistance to immunotherapy (Spranger et al. 2015; Yaguchi et al. 2012).
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7.2.2  MAPK Signaling Axis

Alterations in the expression or activity of AXL, EGFR, MC1R, c-Kit, c-Met, IGFR, 
and WNT are examples of the most external layers of perturbed signaling cues that 
promote melanoma formation and progression. Several of the signaling pathways 
downstream of these receptors are themselves deregulated in melanoma.

The majority of melanomas display deregulated MAPK signaling due to muta-
tions in the NRAS or BRAF genes. As a consequence, the downstream kinases and 
transcription factors are rendered constitutively active, regardless of aberrations 
upstream of NRAS or BRAF. In this section, we review our current understanding 
of alterations in the MAPK signaling axis and the implications for melanoma devel-
opment or progression.

The MAPK pathway is coupled to upstream membrane receptors by the RAS 
family of small G proteins; HRAS, KRAS, and NRAS (Bos 1989; Dhillon et al. 
2007). In non-transformed cells, the RAS proteins are responsive to activation by 
c-Kit, c-Met, IGFR, and WNT, for example, and transduce activating signals through 
interplay with the RAF family of effector serine/threonine kinases; ARAF, BRAF, 
and CRAF. Signals are then transduced by sequential activation of a cascade of 
MAP kinases: MEK, MEKK, and finally, ERK (Fig. 7.2). Of these proteins, NRAS 
and BRAF are the most commonly mutated in melanoma, with ~15 % and more 
than 50 % of melanomas harboring NRAS and BRAF mutations, respectively 
(Davies et al. 2002; Fecher et al. 2007). Further downstream, MEK mutations have 
also been reported, particularly in the context of acquired resistance to chemother-
apy. For instance, MEK1 mutations occur at low incidence overall, but they are most 
frequently reported following BRAFi therapy and confer resistance to MEKi and 
BRAFi (Emery et al. 2009; Murugan et al. 2009).

While most melanoma-associated mutations in NRAS occur at amino acid 61, 
BRAF deregulation is attributed to mutations at several hotspots, most prominently 
V600E, resulting in a constitutively active kinase (Wan et al. 2004). Indeed, the 
catalytic activity of BRAFV600E was calculated to be ~10-fold higher than that of 
wild-type BRAF (Brummer et al. 2006). While mutant BRAF and NRAS share 
some downstream effectors, most notably ERK, they each also activate unique 
downstream components. As illustrated in Fig. 7.2, BRAF activity also affects 
MEK–ERK kinases and RSK. These kinases in turn suppress the activity of the 
LKB1–AMPK signaling pathway, thereby promoting melanoma proliferation 
(Esteve-Puig et al. 2009; Zheng et al. 2009). As a result of their unique contributions 
to signaling, BRAF and NRAS mutants have distinct characteristics with respect to 
melanoma development and progression.

As noted above, ERK is the downstream kinase most commonly affected by 
NRAS and BRAF mutations in melanoma, and constitutive or super-activation of 
ERK perturbs critical regulators of cellular behavior. For example, BRAFV600E 
antagonizes apoptosis via ERK-dependent inhibition of the apoptotic proteins Bad, 
Bim, and PUMA, and upregulation of anti-apoptotic proteins such as Mcl-1 (Jiang 
et al. 2008; Sheridan et al. 2008; Wang et al. 2007b). Enhanced ERK activation also 
alters cell cycle control and proliferation by suppressing the negative cell cycle 
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regulator p27/Kip1 (Kortylewski et al. 2001) and, importantly, by modulating the 
expression of melanocyte MITF isoforms and inducing the M-MITF 6a isoform 
(Primot et al. 2010; Wellbrock et al. 2008). MAPK/ERK activation can further 
enhance the proliferative capacity of melanoma cells by promoting upregulation of 
other transcription factors such as c-Jun and Brn-2, either by increasing their stabil-
ity (c-Jun) or increasing their expression (Brn-2) (Goodall et al. 2004a, b; Lopez- 
Bergami et al. 2007). Mutant BRAF-mediated ERK signaling also impinges on 
invasive cellular behaviors resulting from changes in growth or invasion regulatory 
proteins such as Plexin B or matrix metalloproteinase-1 (Argast et al. 2009; 
Huntington et al. 2004). Indeed, activation of the RAS–RAF–MAPK–ERK path-
way has been implicated in immune evasion by modulating the production of immu-
nosuppressive cytokines such as IL-6, IL-10, and VEGF by melanoma cells 
(Sumimoto et al. 2006).

Constitutive upregulation of ERK signaling results in rewiring of signaling path-
ways, a common occurrence in many tumors, including melanoma. For example, 
rewired ERK signaling causes constitutive activation of c-Jun via two complemen-
tary pathways. ERK-mediated upregulation of RSK–CREB increases c-Jun tran-
scription, whereas ERK-mediated phosphorylation of GSK3ß inhibits its ability to 
phosphorylate c-Jun on residue 243, which is required for targeting of c-Jun for 
ubiquitination and degradation by FBW7 (Nateri et al. 2004; Wei et al. 2005), 
thereby resulting in increased c-Jun stability (Lopez-Bergami et al. 2007). In turn, 
c-Jun induces transcription of a large set of targets genes that include cell cycle 
regulators such as Cyclin D as well as components of other signaling pathways. One 
is the PKC adaptor protein RACK1, which potentiates both PKC and JNK signal-
ing. As a result, RACK1–PKC signaling increases JNK activity and further activates 
its substrates, including c-Jun, thus enforcing a feed-forward signaling pathway. 
Another c-Jun transcriptional target implicated in melanoma development is the 
kinase PDK1, which activates AKT. The c-Jun-mediated increase in PDK1 tran-
scription, and thus activation of both the AKT and PKC pathways. Inhibition of 
c-Jun effectively attenuates melanoma development in a xenograft mouse model, 
and this can be rescued by re-expression of PDK1 (Lopez-Bergami et al. 2010). 
Thus, ERK signaling causes activation of the JNK, PKC, PDK1, and AKT path-
ways, representing a paradigm for rewired signaling.

Constitutive activation of MAPK itself is sufficient for transformation of immor-
talized melanocytes through elevation of angiogenic and invasive behavior second-
ary to upregulation of VEGF and MMP-2 (Govindarajan et al. 2003). However, 
synergistic crosstalk between upregulated MAPK signaling and other major signal-
ing axes (e.g., PI3K–AKT–MTOR), can further promote additional tumorigenic 
behaviors such as the enhanced proliferation observed in uveal melanoma (Babchia 
et al. 2010).

Upregulated or constitutive activation of the MAPK signaling cascade correlates 
with poor clinical outcome (Houben et al. 2004), which is commonly attributed to 
activating mutations at different branch points along the signaling pathway. Thus, 
HRAS and KRAS mutations appear to correlate with benign Spitz nevi and primary 
lesions, whereas NRAS is most frequently mutated in primary and metastatic 
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melanoma and is characteristic of chronically sun-exposed lesions (Ball et al. 1994; 
Jafari et al. 1995; Jiveskog et al. 1998; Shukla et al. 1989; van Dijk et al. 2005; van 
Elsas et al. 1995). Immediately downstream of the RAS proteins are the RAF kinases, 
of which BRAF is the most frequently mutated (specifically BRAFV600E) in mela-
noma. The more dominant oncogenic role of BRAF compared with ARAF and 
CRAF is most likely due to its higher kinase activity (Emuss et al. 2005; Lee et al. 
2005). Although BRAF germline mutations have been reported, they are not com-
mon in familial melanoma (Lang et al. 2003), suggesting that BRAF mutations occur 
during melanoma development. Interestingly, BRAFV600E and NRAS mutations 
appear to be mutually exclusive in melanoma; a phenomenon that may be influenced 
by type and site of origin of the melanoma tumor. For example, BRAF mutation does 
not appear to correlate with the degree of sun exposure, as is the case for NRAS 
mutations (Davies et al. 2002). Interestingly, NRAS mutations induce a switch in the 
dominant usage of RAF isoforms from BRAF to CRAF (Dumaz et al. 2006).

Mutant BRAF is also found in congenital nevi and other non-malignant lesions, 
where it is associated with upregulation of senescence markers such as senescence- 
associated ß-galactosidase (SA-ß-gal) and mosaic p16INK4A induction (Michaloglou 
et al. 2005). Indeed, mutations of NRAS and BRAF (V600E) alone can promote cel-
lular senescence in vitro, which not only illustrates oncogene- induced senescence but 
also highlights the need for other oncogenic events to drive tumor progression (see 
also Chaps. 4, 5, and 11). Nevertheless, ERK activity does not always correlate with 
BRAF activation, most likely due to variations in the functional status of ERK phos-
phatases. It has been proposed that some ERK phosphatases might be less active in 
malignant than non-malignant cells, although it is not yet clear whether and how ERK 
phosphatases might be deregulated in melanoma. In this regard, BRAF mutation 
alone is insufficient to transform melanocytes, and secondary mutations that confer 
uncontrolled cell cycle progression are required. The notion that BRAF acts coopera-
tively to induce melanoma development is supported by observations in zebrafish, 
where mutant BRAF promotes nevi development but additional oncogenic changes, 
such as loss of p53, can promote progression to invasive lesions (Patton et al. 2005).

Other secondary mutations that can support uncontrolled proliferation include 
p16INK4A and p19INK4D (see cell cycle section). Although it is unclear what role 
p16INK4A may play in BRAF-driven senescence, loss of p16INK4A can facilitate 
melanoma tumor formation driven by mutant RAS (Ackermann et al. 2005; Chin 
et al. 1997). Interestingly, cooperative stabilization of ß-catenin results in silencing 
of p16INK4A, and in combination with mutant NRAS, this is sufficient to promote 
melanoma progression (Delmas et al. 2007). Additional signaling mechanisms that 
contribute to oncogene-induced senescence and earlier barriers to melanoma pro-
gression continue to be identified. For example, early oncogene-induced activation 
of the ER stress-activated unfolded protein response was found to halt tumorigene-
sis independently of conventional senescence mechanisms (Denoyelle et al. 2006).

Although epigenetic perturbations that promote activation of these pathways 
remain largely obscure, the mutational status of melanoma tumors is known to cor-
relate with some characteristic epigenetic profiles. For example, melanomas with 
BRAF mutations exhibit changes in several miRNAs, such as downregulation of 
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miR-193a, miR-338, and miR-565, and upregulation of miR-191 (Caramuta et al. 
2010). A further level of complexity is suggested by the finding that pseudogene 
transcripts can act as false miRNA “decoy” targets (a.k.a., competitive endogenous 
RNAs), thereby absorbing and nullifying the function of miRNAs targeting specific 
endogenous transcripts (Chen 2010; Poliseno et al. 2010; Karreth et al. 2015). Such 
regulation has been demonstrated for PTEN and BRAF and may effectively alter the 
expression of other genes that are central to the control of melanoma development. 
As increasing effort is devoted to sequencing the melanoma genome, a wealth of 
pseudogenes contributing to different stages of melanoma biology are expected to 
be identified (Pleasance et al. 2010).

7.2.3  PTEN–PI3K–AKT

The phosphatidylinositol-3-kinase–AKT (PI3K–AKT) pathway is also frequently 
deregulated in melanoma (Inoue-Narita et al. 2008; Robertson 2005), although the 
mechanisms underlying the deregulation of many components remain largely elu-
sive. Like the MAPK pathway, the PI3K pathway is an effector signaling cascade 
positioned downstream of the membrane receptors described earlier, including c-Met 
and IGFR1. PI3K converts phosphatidylinositol-4,5 bisphosphate (PIP2), located on 
the cytoplasmic face of the plasma membrane, into the secondary lipid signaling 
molecule, phosphatidylinositol-3,4,5 trisphosphate (PIP3). In turn, PIP3 activates the 
downstream effector AKT/protein kinase B. The three members of the AKT family 
of serine/threonine kinases (AKT1, AKT2, and AKT3) have well- characterized pro-
survival functions (Datta et al. 1999; Madhunapantula and Robertson 2009) (Fig. 7.4), 
with AKT3 appearing to be the isoform most affected in melanoma.

One mechanism by which AKT signaling is enhanced is via deregulation of PIP2 
processing by perturbation of inositol polyphosphate 4-phosphatase type II 
(Gewinner et al. 2009). However, upregulation of AKT activity in melanoma can 
largely be attributed to deregulation of its negative regulator, PTEN (Parmiter et al. 
1988). Although loss of PTEN protein is prevalent in melanoma (Chudnovsky et al. 
2005), deregulation by mutation accounts for only a small fraction of melanomas 
with deregulated PTEN. Accordingly, while PTEN is commonly mutated in mela-
noma cell lines, such genetic mutations are rare in actual tumor samples, particu-
larly those of metastatic grade (Goel et al. 2006; Pollock et al. 2002; Wu et al. 
2003). These observations indicate that downregulation or loss of PTEN in patient’s 
tumors results from additional transcriptional and post-translational modifications, 
with the latter being the most common. Although not shown yet in melanoma, the 
ubiquitin ligase NEDD-4, which targets PTEN for destruction, is upregulated in 
numerous cancer types, including gastric and colorectal cancers (Kim et al. 2008b; 
Trotman et al. 2007; Wang et al. 2007a). Oncogenic deregulation of PTEN also 
occurs via Fyn-related kinase (FRK, previously known as RAK), which is overex-
pressed in melanoma and numerous other cancers. FRK phosphorylates PTEN, 
thereby abrogating its interaction with NEDD-4 and increasing its availability 
(Brauer and Tyner 2009; Yim et al. 2009).
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Other forms of epigenetic silencing of PTEN include promoter methylation, 
which is observed in up to 62 % of patients with metastatic melanoma 
(Mirmohammadsadegh et al. 2006). In effect, loss of PTEN promotes an excess of 
PIP3 and activation of AKT and its downstream targets, resulting in increased 
growth and survival of melanoma. Notably, activated AKT which is affected by 
deregulated PTEN is inversely correlated with a positive clinical outcome for mela-
noma patients (Dai et al. 2005).

In addition to loss of PTEN, direct changes to AKT family members can modu-
late the PI3K pathway in melanoma. Of the three AKT isoforms, AKT3 is specifi-
cally and significantly upregulated in sporadic melanoma tumors, particularly those 
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of metastatic grade (Robertson 2005; Stahl et al. 2004). Although AKT3 upregula-
tion has mainly been attributed directly to an increase in genomic copy number, a 
recent report has identified a novel activating mutation of AKT3 (E17K) in some 
melanoma cases (Davies et al. 2008). Targeted siRNA-mediated silencing of AKT3 
is sufficient to suppress melanoma progression and induce cell death, emphasizing 
the oncogenic potential of deregulated AKT3 activation.

AKT signaling affects numerous cellular process: it influences cell cycle dynamics 
through regulation of the G1/S phase regulator Cyclin D3 (Spofford et al. 2006); affects 
cell growth, metabolism, and proliferation via control of VEGF expression and inter-
play with mTOR and the TORC1 and TORC2 complexes (Bhaskar and Hay 2007; 
Govindarajan et al. 2007; Levine et al. 2006); contributes to invasive behavior by 
NF-kB-mediated regulation of matrix metalloproteinase-2 and -9 (Kim et al. 2001); 
and suppresses apoptosis by inhibiting the expression of pro-apoptotic proteins such as 
Bad and caspase-9 (Cardone et al. 1998; Datta et al. 1997). Each of these AKT effects 
can be attenuated or suppressed by the antagonistic function of PTEN. Importantly, 
deregulation of the ERK–c-Jun signaling axis in melanoma leads to c-Jun-mediated 
transcriptional upregulation of PDK1, further enhancing AKT activation (Lopez-
Bergami et al. 2010). PDK1 has also been demonstrated to make critical AKT-
independent contributions to tumorigenesis via activation of its substrate SGK3/CISK; 
this has been shown for breast cancer, among others (Vasudevan et al. 2009).

Recent studies using genetic melanoma models have substantiated the role of 
PDK1 in the development and progression of melanoma. Thus, melanocyte-specific 
inactivation of PDK1 in the BrafV600E::Pten−/− mouse model delayed the formation of 
tumors and largely abolished the metastatic lesions commonly seen in this model. 
Consistent with these findings, examination of melanoma tissue microarrays 
revealed upregulation of PDK1 in primary melanomas compared with nevi 
(Scortegagna et al. 2014). Further dissection of the pathways underlying the PDK1 
effects on melanoma development identified a role for the PDK1 substrate SGK3. 
Indeed, inhibition of SGK3 partially phenocopied the changes seen upon PDK1 
inhibition. Interestingly, a synthetic lethal screen for kinases that may synergize 
with PDK1 in eliciting these effects identified PI3K, suggesting that concerted inhi-
bition of the PI3K–PDK1 axis alone may suffice to inhibit growth of BRAF-mutant 
melanomas (Scortegagna et al. 2014, 2015).

7.3  Cell Cycle Regulation

Malignant melanoma cells are highly proliferative and often exhibit genomic insta-
bility (Hazan et al. 2002; Henrique et al. 2000; Satoh et al. 2000; Soyer 1991; 
Steinbeck et al. 1996; Urso et al. 1992). Such an aggressive proliferative state results 
from the specific expansion of transformed cells with imbalanced signal transduc-
tion favoring proliferation while deregulating normal replicative senescence and 
apoptotic signaling (Bennett 2008). Accordingly, the stringent cell cycle regulatory 
mechanisms that govern cell proliferation in normal skin tissues are frequently 
impaired during melanoma development. For instance, proper function of the G1/S 
checkpoint that restricts cell cycle progression is often lost in melanoma (Sauroja 
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et al. 2000). Similar perturbations in signaling can be traced to specific familial 
mutations or epigenetic dysregulation that result in the downregulation of tumor 
suppressor genes that negatively regulate the cell cycle or the upregulation of onco-
genic genes that promote cell cycle progression.

Patients afflicted with familial melanoma commonly exhibit conserved mutations 
in 9p21, a chromosomal locus associated with deregulation of cell cycle control. The 
9p21 locus comprises the CDK2NA gene, which encodes p16INK4A and its alternate 
reading frames p14ARF and p19ARF. These proteins negatively regulate cell cycle 
progression and contribute to senescence through their control of cell cycle-promot-
ing proteins such as Cyclin D and E and the transcription factor E2F1 (Fig. 7.5) 
(Bandyopadhyay and Medrano 2000; Ranade et al. 1995). Furthermore, p16INK4A 
binds to and inhibits the cell cycle-promoting kinase CDK4, with concomitant effects 
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on Rb and its control of E2F in the cell cycle. Germline mutations in CDK2NA have 
been reported in melanoma (Koh et al. 1995; Ranade et al. 1995) and result in ampli-
fied CDK4-mediated signaling, thereby perturbing normal cell cycle control. The 
increased CDK4 activity observed in melanoma can also result from mutations in the 
CDK4 gene (Chudnovsky et al. 2005). These perturbations impair proper cell cycle 
control and appropriate entry of melanocytes into senescence (Bandyopadhyay and 
Medrano 2000; Haferkamp et al. 2008; Rane et al. 2002).

Mutational perturbation of the alternate reading frame gene product p14ARF 
also promotes cellular proliferation. Indeed, mutation of ARF has been demon-
strated to synergize with RAS mutations in promoting melanoma tumor develop-
ment (Ha et al. 2007). p14ARF normally contributes to p53 function by targeting 
and suppressing the p53 negative regulator, Mdm2. Thus, although mutations in p53 
are relatively rare in melanoma, its activity can be downregulated by the increased 
Mdm2 levels induced by mutational silencing of ARF (Freedberg et al. 2008). Of 
note, there have been few reports on upregulation of Mdm2 or downregulation of 
p53 expression or activity in melanoma (Bardeesy et al. 2001) (see also Chap. 4). 
Hence, the precise contribution of p53 to melanoma development remains unclear. 
Among the possibilities currently being explored is that p53 is partially inactivated, 
impairing its ability to control cell cycle arrest or apoptotic cues in melanoma.

Enhanced proliferation of melanoma cells can also be elicited by alterations in 
other negative regulators of cell cycle progression, including Rb. Notably, Rb is 
silenced in melanoma (Yang et al. 2005) as a result of nonsense mutations or of 
inactivating phosphorylation of the translated protein (Bartkova et al. 1996; Brantley 
and Harbour 2000). Loss of Rb function can also contribute to abrogation of mela-
nocyte senescence (Haferkamp et al. 2008).

In addition to genetic mutations, alterations in the epigenetic regulation of core 
cell cycle and proliferation genes also contribute to melanoma development and 
progression. Direct modification of chromatin structure, such as by aberrant pro-
moter hypermethylation, results in the CDK2NA silencing reported in multiple 
melanoma types (Straume et al. 2002; van der Velden et al. 2001). CDKN2A silenc-
ing can also be achieved via upregulation of repressor proteins. One example in 
melanoma is overexpression of the CDKN2A transcriptional repressor Id1 (Healey 
et al. 2010). Suppression of p16INK4A in melanoma is also mediated by ß-catenin 
(Delmas et al. 2007). The histone methyltransferase EZH2 has been implicated in 
the epigenetic repression of the CDK2NA locus and is upregulated in melanoma via 
a non-canonical NF-kB pathway. Inhibition of this pathway promotes senescence 
by inducing re-expression of p16INK and p21 (De Donatis et al. 2016).

Recent studies have highlighted the role played by miRNAs in the epigenetic 
control of melanoma progression (Jukic et al. 2010). Several miRNAs that suppress 
proliferation are downregulated during melanoma progression, including miR-let-7 
and miR-34a. miR-let-7 targets numerous cell cycle proteins, including Cyclin D1/
D3/A, and is expressed at lower levels in melanoma compared with nevi (Schultz 
et al. 2008). Expression of miR-34a, a transcriptional target of p53, is sufficient to 
induce G1 arrest/senescence and can act as a tumor suppressor by targeting c-Met. 
However, in melanoma, miR-34a is silenced by aberrant CpG promoter methylation 
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(Lodygin et al. 2008), which derepresses the cell cycle proteins Rb, CDC2, and 
E2F3, among others (Satzger et al. 2010; Yan et al. 2009). Deregulation of other 
miRNAs, including miR-210 and miR-15b, have been demonstrated to promote 
melanoma tumorigenesis (Satzger et al. 2010; Zhang et al. 2009) (see also the sec-
tion on miRNAs and melanoma).

7.4  Therapeutic Targets

The MAPK–MEK–ERK and PTEN–P13K–AKT pathways are recognized to be 
critical determinants of melanoma development and progression, and an intensive 
effort is under way to develop inhibitors of components of these pathways 
(Madhunapantula and Robertson 2009; Meier et al. 2005; Russo et al. 2009). A 
series of specific inhibitors of BRAFV600E showed impressive results in early clinical 
trials (Kumar et al. 2004). However, the initial success was tempered by the high 
incidence of therapy-resistant tumors, limiting the effectiveness of these specific 
drugs (Flaherty et al. 2010). In recent years, extensive work on the molecular basis 
for this resistance has pointed to diverse mechanisms, most of which cause amplifi-
cation of the downstream MAPK signaling pathway and bypass the effects of the 
BRAFi. One emerging approach to overcome resistance is the use of immunothera-
peutic drugs that do not directly target the tumor per se, but instead unleash the 
anti-tumor immune response. Among these therapies are antibodies to CTLA-4 and 
PD-1, which overcome the drug-resistant tumor phenotype by blocking inhibitory 
immune checkpoints. These agents have recently been assessed as first-line therapy 
or as combination therapies with selective BRAFi or MEKi (Larkin et al. 2015; 
Menzies and Long 2013).

7.4.1  Overcoming Resistance to Targeted Therapies

To date, the use of single agents as first-line therapy has demonstrated only limited 
clinical efficacy. This disappointing outcome has been attributed to the unexpected 
plasticity of tumors, as reflected by their ability to adapt to harsh growth conditions and 
become resistant to initially effective drugs. The mechanisms for achieving resistance 
largely center on signal transduction pathways that have been rewired, either by genetic 
mutation or alteration in epigenetic control (Smalley et al. 2009; Emery et al. 2009).

Although BRAF inhibitors suppress tumor growth, the effect is transient, and the 
tumor cells eventually develop one or more “salvage” mechanisms that bypass 
BRAF or MEK inhibition. Such mechanisms include upregulation of activated 
CRAF activity (Gollob et al. 2006; Hatzivassiliou et al. 2010; Kaplan et al. 2011; 
Montagut et al. 2008; Paraiso et al. 2010; Tsai et al. 2008; Wellbrock and Hurlstone 
2010); mutation of NRAS, which leads to CRAF activation and bypasses BRAF 
inhibition (Nazarian et al. 2010); upregulation of COT, which activates ERK in a 
MEK-dependent and RAF-independent manner (Johannessen et al. 2010); and 
upregulation of RTKs (Nazarian et al. 2010) (see section 7.1.1.2 on RTKs).
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Melanomas may also develop resistance to BRAF-targeting therapies via upreg-
ulation of AKT3-dependent mechanisms (Shao and Aplin 2010), which is consis-
tent with the reported cooperation between mutant BRAF and active AKT (Dankort 
et al. 2009). Additionally, resistance to BRAFi can be achieved by alternative splic-
ing of BRAF (Wellbrock et al. 2004), which results in a protein lacking the RAS- 
binding domain due to a silent mutation in intron 8 (Salton et al. 2015). This BRAF 
isoform dimerizes even in the presence of low levels of RAS, conferring drug resis-
tance through reactivation of the ERK pathway.

Combined targeting of MEK and BRAF results in additive and synergistic effects 
on progression-free survival of melanoma patients, with a 67 % response rate and 
93 % overall survival at 6 months (Flaherty et al. 2012a; Flaherty et al. 2012b). 
Nevertheless, resistance to MEKi emerges through the same mechanisms seen in 
BRAFi resistance, including increased CRAF activity and mutation of both NRAS 
and MEK1 (Greger et al. 2012).

Most tumor resistance mechanisms result in increased activity of the translation 
initiation complex, which supports the translation of cancer-driving genes such as 
oncogenes and cell cycle/DNA damage response genes. Hence, partial disruption of 
the eIF4F complex is a potential therapeutic strategy for drug-resistant tumors, 
including melanoma. In support of this approach, recent studies have demonstrated 
efficacy in overcoming melanoma resistance to therapy by targeting eIF4F with 
silvestrol and several flavaglines (Boussemart et al. 2014), and by targeting a key 
component of the eIF4F complex, eIF4G1, with the small molecule SBI-756 (Feng 
et al. 2015).

7.4.2  Immunotherapy

A great deal of effort has been devoted to the use of immune-based therapies to 
overcome drug resistance in melanoma (Hu-Lieskovan et al. 2014; Vanneman and 
Dranoff 2012), but the success rate has been low and pronounced toxicity has been 
observed in most cases. The notion that the immune system could be manipulated 
to enable a global attack on tumors was initially met with skepticism, largely due to 
fears that uncontrolled activation would lead to autoimmunity. However, the pio-
neering work of Drs. Allison and Honjo introduced the immune checkpoint mole-
cules, CTLA-4 and PD-1, respectively, as new paradigms for cancer immunotherapy 
(Leach et al. 1996; Okazaki et al. 2013; Peggs et al. 2006). Targeting of CTLA-4 
circumvents downregulation of T-cell proliferation, whereas PD-1 blockade is likely 
to affect both activation of T cells and the direct anti-tumor activity of effector T 
cells.

Clinical trials with anti-CTLA-4 antibodies have shown unexpected success, 
with an overall response rate of about 20 %, albeit with notable toxicity (Attia et al. 
2005; Hodi et al. 2010). Clinical trials with anti-PD-1 antibodies have achieved 
greater response rates (30–40 %) and significant increases in patient survival 
(Topalian et al. 2014). More recently, combination therapy with anti-CTLA-4 and 
anti-PD-1 achieved about 60 % response rate and 79 % 2-year survival rate (Topalian 
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et al. 2014). Other ongoing work includes the evaluation of combination therapies 
of immune checkpoint blockers with BRAFi or MEKi, which have shown promis-
ing results in pre-clinical experiments (Hu-Lieskovan et al. 2015).

7.5  Epilogue

Our understanding of the mechanisms underlying the development, progression, 
and drug resistance of melanoma has increased significantly in recent years. At the 
same time, we have come to appreciate that a major obstacle to achieving sustained 
therapeutic responses is the innate plasticity of tumor cells, which allows them to 
adapt to harsh conditions, withstand therapy, and acquire metastatic ability. This 
means that the rewired signaling observed in tumor cells could be further changed 
by the tumor microenvironment or by stress imposed by the chemotherapeutic 
drugs. Thus, we must divert from our current approach to cancer therapy—more 
intense targeting of a mutated pathway—to find new therapeutic modalities. These 
include fine-tuning the immune checkpoint machinery to enable a concerted 
immune attack on the tumor, and targeting the central mechanisms that provide a 
global advantage to the tumors. Among the latter mechanisms are the translation 
initiation complex and the unfolded protein response, which are cardinal nodes for 
tumor-driving genes and may offer a more global approach to targeting the plastic 
tumor. These molecular hubs have already garnered attention and we may expect an 
exciting new cadre of modulators to reach clinical evaluation in the coming years.
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8Proteases in Melanoma

Paola Zigrino and Cornelia Mauch

8.1  Introduction

Activity of proteolytic enzymes expressed by tumor cells is involved in sustaining 
cellular growth and invasion. In addition, cross-communication of tumor cells and 
the stromal compartment, thereby including cellular and structural components, fur-
ther contributes to cancer progression. Such interactions are particularly important 
for the dissociation of tumor cells from the primary tumor, the invasion of the sur-
rounding connective tissue, and the penetration of vessel walls. While tumor cells 
invade and degrade the neighboring stroma, they generate a permissive microenvi-
ronment convenient for their growth, migration, and metastatic spread.

The tumor stroma, including that of melanoma, is composed of matrix proteins 
and a rich cellular population that includes fibroblasts, smooth muscle cells, endo-
thelial cells, dendritic cells, macrophages, and other inflammatory cells. Several 
molecular modifications of the microenvironment occur by the activity of tumor 
cells or by stimulated stromal cells and include release of matrix or cell surface- 
bound factors, bioactive matrix fragments as well as cell–cell and cell–matrix con-
tacts (see also Chap. 14). All these events are controlled by the activity of several 
proteolytic enzymes produced by either tumor or stromal cells (Fig. 8.1). The major 
proteases involved in these processes are classified into serine-, cysteine-, aspartyl-, 
and metalloproteinases according to structural characteristics of their active enzy-
matic center. In this review, we will give an overview of the expression and activity 
of those enzymes that have been implicated in the development of malignant mela-
noma and their role in the pathogenesis of this disease.
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8.2  MMPs

Expression of matrix metalloproteinases (MMPs) in normal skin is almost undetect-
able; however, a low but constant expression of some MMPs is necessary for skin 
homeostasis. In normal skin, matrix remodeling occurs by a slow but continuous 
synthesis, constitutive degradation and reconstruction of matrix components. MMPs 
are strongly involved in the controlled degradation of connective tissue during 
wound repair, in the regulation of tissue architecture, and in embryonic develop-
ment (reviewed in Page-McCaw et al. 2007).

Increased expression of MMPs has been observed in different malignancies and 
has been implicated in enhanced extracellular matrix (ECM) degradation. On the 
contrary, altered ECM deposition and degradation resulting from modifications of 
the endogenous tissue inhibitors of metalloproteinases (TIMPs) and collagenase 
expression such as during aging may lead to a higher cancer incidence (Lu et al. 

UV exposure 
mutations etc.

Melanocytes

Nevus

Dysplastic nevus

Primary melanoma
(radial and vertical growth phase)

Melanoma metastasis

Tumor-proteases

Stroma-proteases

Fig. 8.1 Transformation of melanocytes or a nevus to melanoma. Benign transformation of mela-
nocytes due to accumulation of mutations (e.g., upon UV exposure) into a nevus which progresses 
into a dysplastic nevus. The following step into a malignant radial and vertical growth melanoma 
is characterized by the activity of several proteolytic enzymes. Proteolytic enzymes either derived 
from tumor cells or activated stroma mediate cellular functions, leading to malignant cell progres-
sion through the tissue and contributes to the intravasation of melanoma cells into blood and lymph 
vessels
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2011) (see also Chap. 11). On a cellular level, once induced, MMPs may be either 
expressed on the cell surface, leading to pericellular proteolysis, or secreted, thus 
exerting their activity in the surrounding areas. Interestingly, membrane-associated 
proteases can also exert their activity in peritumoral areas as they can be associated 
and released through exosomes. This was observed in a proteomic profiling of exo-
somes derived from various melanoma cell lines. In this study, expression of MMP- 
14, ADAM-10, and also the inhibitor TIMP-3 was identified in these structures 
(Lazar et al. 2015).

In melanoma tissues, MMPs are mainly located at the tumor–stroma border and 
are produced by either tumor cells or stromal cells that are activated by tumor- 
derived soluble factors (Moro et al. 2014). In addition, growth factors and cytokines 
secreted by tumor-infiltrating inflammatory cells also modulate MMP expression in 
melanoma and stroma cells (Coussens et al. 2002).

In vitro and in vivo analysis have indicated an important role of the matrix itself 
for the induction of MMPs such as MMP-2/-9, and MMP-14 in invasive melanoma 
(Hofmann et al. 2000; Kurschat et al. 1999). Expression of MMP-14 was mainly 
localized in melanoma cells located at the invasive front of the tumor (Hofmann 
et al. 2000; Kurschat et al. 2002). This indicates that localization of both MMP-2 
and MMP-14 at the interface between tumor and stroma may be required for 
enzyme activation and matrix degradation and highlights how the different cells 
cooperatively act to promote tumor progression. Indeed, the activity of MMP-2 in 
these peripheral areas of the tumors was suggested to be necessary to process col-
lagen type I, to cleave fibronectin, and to promote adhesion and migration of mela-
noma cells (Jiao et al. 2012). Expression of the interstitial collagenases MMP-1 
and −13, which are key enzymes in the cleavage of fibrillar collagens, was detected 
during the invasive vertical growth phase in melanoma cells thus indicating that 
this is a late event in melanocytic tumor progression (Airola et al. 1999). Expression 
of MMP-1 was also found in melanoma cells from radial growth phase (RGP) and 
lead to enhanced tumor growth and conferred metastatic capability in vivo 
(Blackburn et al. 2009). Interestingly, despite the fact that MMP-1 displays several 
promoter polymorphisms correlating with tumor ulceration status, it does not sig-
nificantly associate with overall survival and other clinical factors (Liu et al. 2012; 
Wang et al. 2011).

However, even though the studies from Airola et al. (1999) show expression of 
both collagenolytic enzymes in tumor cells in vivo, several other in vivo and in vitro 
studies have indicated production of these enzymes primarily by peritumoral fibro-
blasts (Loffek et al. 2005; Uria et al. 1997; Wandel et al. 2000; Zigrino et al. 2009). 
We have recently shown that stromal expression of MMP-13 plays an important role 
in tumor growth of melanoma. Melanoma cells injected into the skin of MMP-13 
depleted mice formed smaller tumors and developed fewer metastases as compared 
to wild type animals (Zigrino et al. 2009). Reduced tumor growth and metastasis is 
likely caused by the lack of peritumoral MMP-13, which is found to be strongly 
expressed in tumor-associated fibroblast-like cells. In addition, we and others could 
also show that MMP-13 modulates tumor vascularization by mediating the release 
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of matrix-bound vascular endothelial growth factor (Lederle et al. 2010). In line 
with these data, MMP-13 has been associated with metastasis and poor survival in 
melanoma patients (Zhao et al. 2015). Interestingly, in this study, processing of 
laminin-332 or VE-cadherin by MMP-13 was shown to accelerate metastasis, but 
inhibited vasculogenic mimicry in vitro. Increased production of MMP-2 and 
MMP-14, and deposition of the γ2 chain of laminin 332 and/or its cleavage frag-
ments have been observed in melanoma cells in vitro (Seftor et al. 2001). This pro-
cess also likely contributes to tumor progression in vivo where the cleaved form of 
laminin 332 was found in tumors and in tissues undergoing remodeling but not in 
quiescent tissues (Lohi 2001; Patarroyo et al. 2002).

Besides MMP-13, several other MMPs were shown to contribute to both pro- 
and anti-angiogenic processes during tumor development. Recent studies have iden-
tified a novel mechanism by which MMP-1 promotes angiogenesis. MMP-1 
proteolytically activates protease activated receptor-1 (PAR1), a thrombin receptor 
that is highly expressed in endothelial cells (Blackburn and Brinckerhoff 2008; 
Boire et al. 2005).

MMP-14 can facilitate endothelial cell migration and tube formation processes 
in vitro and in vivo (Chun et al. 2004; Mimura et al. 2009). In contrast, the anti- 
angiogenic activity of MMPs has been shown by MMP-12 and MMP-9 that hydro-
lyze plasminogen to form the angiogenesis inhibitor angiostatin (Patterson and 
Sang 1997; Raza et al. 2000). The importance of MMP-14 in invasive and angio-
genic processes was recently highlighted by in vivo studies showing inhibition of 
human tumor xenograft upon supplying a specific antibody against active MMP-14 
(Devy et al. 2009). Meanwhile, various endogenous angiogenesis inhibitors were 
identified which are released by MMP-mediated proteolytical cleavage of plasma 
proteins or ECM components, such as collagen XVIII for the generation of end-
ostatins, perlecan for that of endorepellin, and collagen IV for the generation of 
tumstatin (Fjeldstad and Kolset 2005; Hamano and Kalluri 2005). Thus, the balance 
between MMP’s pro- and anti-angiogenic activities and their tissue inhibitors is 
likely to dictate the outcome during tumor development. Apart from its role in 
angiogenesis, MMP-14 expression in melanoma cells was shown to be important 
for the processing of Notch1, which in turn sustains melanoma growth (Ma et al. 
2014). As a feedback loop, Notch1 can drive furin expression thus leading to 
enhanced expression and activation of MMP-14 and ADAM-10 both contributing to 
melanoma development (Qiu et al. 2015). Most importantly, MMP-14 can nega-
tively regulate transcription of the tumor suppressor SPRY4 via an MMP-2/RAC1 
pathway and alter melanoma cell motility, even though it is unclear whether proteo-
lytic activity is required for this event (Shaverdashvili et al. 2015). Two further 
membrane-associated MMPs, the MT2-MMP (MMP-15) and MT3-MMP (MMP- 
16) are increased in primary and metastatic melanoma cells. In addition, MMP-16 
is overexpressed in human melanoma metastases and metastatic melanoma cell 
lines (Ohnishi et al. 2001). Interestingly, expression of MMP-16 is associated with 
rapid fibrin and poor collagen invasion, suggesting that MMP-16 might be impor-
tant for infiltration of melanoma cells into the perivascular space which is frequently 
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abundant with fibrin (Tatti et al. 2011). More recently, it has been shown that MMP- 
16 regulates expression of MMP-14 and L1CAM thereby supporting nodular-type 
growth of melanoma cells and steering the cell collectives into lymphatic vessels 
(Tatti et al. 2015). MT4-MMP (MMP-17) was shown to be highly expressed in two 
melanoma cell lines (A375 and G-361) as well as in normal skin, the precise role of 
MMP-17 expression has not been investigated thus far in the context of melanoma 
(Grant et al. 1999).

MMP-9 was also found to possess tumor-inhibiting activity. By grafting mela-
noma or lung carcinoma cells in either wild type or MMP-9 depleted animals it was 
demonstrated that this metalloproteinase functions as a metastasis suppressor but 
does not interfere with the growth of grafted tumors (Gutierrez-Fernandez et al. 
2007). MMP-9 mediates the enzymatic cleavage of the basement membrane colla-
gen type IV, generating the proteolytic fragment, tumstatin, that functions as an 
endogenous inhibitor of pathological angiogenesis and suppresses the activity of 
endothelial cells as well as growth of melanomas (Hamano and Kalluri 2005). In 
addition, using bone marrow transplantation in MMP-9 knockout mice with bone 
marrow-derived cells of MMP-9 control animals, peritumoral inflammatory cells 
were identified as the stromal source of MMP-9 during epithelial carcinogenesis 
and are required to sustain tumor growth (Coussens et al. 2000). Thus, to address 
the role of an MMP for tumor progression solely by expression studies may be 
insufficient, whereas addressing enzymatic activities may rule out the specific role 
of a proteolytic enzyme in pathological processes.

Another important role of MMPs is the shedding of cell surface receptors such 
as cleavage of E-cadherin (see also Chap. 9). Shedding of these cell–cell receptors 
has been shown to occur by the activity of MMP-7 and MMP-3, thereby regulating 
the invasive capacities of transformed or injured epithelial cells (McGuire et al. 
2003; Noe et al. 2001). A significant increase in serum-soluble E-cadherin levels 
was detected in melanoma patients with advanced disease; thus suggesting that in 
melanoma, shedding, apart from transcriptional regulation of the receptor, contrib-
utes to render melanoma cells refractory to regulation mediated by keratinocytes 
(Billion et al. 2006; Hsu et al. 2000). Another example for MMP-mediated receptor 
shedding is that of CD44, known as the receptor for hyaluronan. Cleavage of CD44 
by MMP-14 results in increased melanoma cell motility in vitro and likely plays a 
role for tumor progression in vivo (Kajita et al. 2001; Nakamura et al. 2004). Due to 
its structure as a transmembrane protein, MMP-14 was demonstrated to localize at 
specialized membrane areas such as lamellipodia. In agreement with this observa-
tion, high local concentrations of active MMP-14 on the cell membrane are believed 
to play an important role in cellular migration of melanoma cells (Friedl and Wolf 
2008). It was also suggested that cancer cells may invade independently of protease 
activities employing an amoeboid-type of migration (Wolf et al. 2003). In amoeboid 
melanoma cells, this migratory “modus” would occur via regulation of actomyosin 
contraction by a proteolysis-independent mechanism mediated by MMP-9 (Orgaz 
et al. 2014). Interestingly, by using a zebrafish melanoma model, it could be shown 
that invasive cells switch from a protease-independent to an MMP-14-dependent 
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invasion mode, which allows cooperative invasion of poorly invasive cells, thus 
preserving heterogeneity in the tumor (Chapman et al. 2014).

It is now generally accepted that MMPs may exert both pro- and anti-tumoral 
activities. Thus, despite their increased expression and correlation with advanced 
stages of tumors, caution must be taken in interpreting expression data solely. One 
example is the neutrophil collagenase, MMP-8. MMP-8 ablation in mice strongly 
increased the incidence of skin tumors. Notably, restoring the neutrophil pool by 
bone marrow transplantation re-established the natural protection against tumor 
development in male mice (Balbin et al. 2003). In addition, in high invasive breast 
cancer cells, transduction with MMP-8 decreased the metastatic performance 
in vitro and in vivo (Montel et al. 2004). A study by Palavalli et al. (2009) has identi-
fied 23% somatic mutations of MMPs in human melanoma, and five of these were 
found in the MMP-8 gene associated with the loss of its enzymatic activity. Forced 
expression of the wild type gene resulted in reduced melanoma growth in vivo sug-
gesting that this MMP is a tumor suppressor (Palavalli et al. 2009). Later, Debniak 
et al. (2011) suggested that MMP-8 gene variation might be associated with an 
increased risk of malignant melanoma (Debniak et al. 2011).

8.3  ADAMs

ADAMs (a disintegrin and metalloproteinases) are likely to contribute to the proteo-
lytic events necessary for tumor invasion and metastasis (Bergers and Coussens 
2000; Schlondorff and Blobel 1999). Most of these proteins contain a metallopro-
teinase, a disintegrin, a cysteine-rich domain, and a transmembrane domain, some 
are also found as secreted proteins (Edwards et al. 2008). Based on their domain 
structure, these proteins can exert modulating effects on both the migratory behav-
ior of tumor cells as well as on the proteolytic processes with regard to tumor inva-
sion. In support of this, their overexpression has been detected in a variety of tumors 
(reviewed in Murphy 2008). Extensive expression analysis has been performed on 
breast and pancreatic carcinomas where expression of ADAM-9, −10, −12, and 
−15 have been reported to be increased (Murphy 2008). However, very limited 
information is available on the role of the different ADAM family members in the 
pathogenesis of melanoma. In our own studies, we found ADAM-9 being strongly 
expressed in primary melanomas and low in metastases (Zigrino et al. 2005). The 
importance of ADAM-9 in melanoma growth was further substantiated in animals 
depleted of ADAM-9 expression (Abety et al. 2012; Guaiquil et al. 2009). Moreover, 
down-regulation of ADAM-9 synthesis (by miR-126&126*) in the tumor cell but 
not in the stroma of the host, resulted in reduced melanoma growth and metastasis 
in nude mice (Felli et al. 2013). Presently, the contribution of this protease to devel-
opment, invasion, and metastasis of melanoma is unclear. Another member, ADAM- 
10, was also found to be regulated in melanoma. However, opposite expression 
levels were detected at high amounts in metastases and at low levels in primary 
tumors (Lee et al. 2010). Although the exact role of ADAM-10 in tumorigenesis is 
not understood, the very recent identification of ADAM-10 mediated constitutive 
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shedding of CD44 in human melanoma cells favors the idea that this protease facili-
tates melanoma cell proliferation (Anderegg et al. 2009). More recently, ADAM-10 
has been correlated with poor progression-free survival of uveal melanoma patients. 
In vitro, despite cleaving the HGF receptor c-met, ADAM-10 also mediates HGF- 
induced uveal melanoma cell invasion (Gangemi et al. 2014).

In human tissues, ADAM-15 is expressed in melanocytes and endothelial cells of 
benign nevi and melanoma tissue; however, it is significantly downregulated in 
melanoma metastases compared to primary tumors (Ungerer et al. 2010). ADAM- 
15 overexpression in melanoma cells reduced invasion and growth in vitro, suggest-
ing a tumor suppressor role for ADAM-15 in melanoma. Constitutive inactivation of 
ADAM-15 resulted in reduced growth and metastasis of injected melanoma cells to 
lungs and lymph nodes, thus suggesting a pro-metastatic role of ADAM-15 in mela-
noma when expressed by the host (Horiuchi et al. 2003; Schonefuss et al. 2012).

ADAM-8 has been recently described as a negative regulator of retinal vascular-
ization and of growth of heterotopically injected B16F0 melanoma cells (Guaiquil 
et al. 2010) by modulating processing of several molecules involved in angiogenetic 
processes such as CD31, EphB4, and ephrinB2. However, in human melanoma, 
expression of this protease has not been investigated. Inactivation of ADAM-17 in 
endothelial cells significantly reduced pathological neovascularization in a mouse 
model for retinopathy of prematurity, and affected the growth of heterotopically 
injected murine melanoma cells. Surprisingly, differences in tumor growth could 
not be attributed to altered vascularization as no differences in CD31-positive tumor 
vessels were detected but rather hypothetically to the generation of factors from 
endothelial cells that contribute to tumor growth (Weskamp et al. 2010). However, 
all these data are derived from mouse models (see also Chap. 15) and whether these 
events may also be affected by these ADAMs during development of human mela-
noma is not clear yet.

Processes mediated by ADAM proteases may be relevant for melanoma growth 
and invasion, and these include shedding of ectodomains such as the epidermal 
growth factors. By shedding the ectodomains, soluble, diffusible factors are released 
and can carry out different biological functions as compared to their membrane- 
anchored protein form. An example is the EGF pathway, which is active in various 
cancer cell types and sustains their survival, proliferation, and motility (Edwards 
et al. 2008). One of the oldest examples for this is the release of the cytokine TNF-α 
from its inactive membrane-anchored form by ADAM-17 (Black and White 1998). 
In human melanoma, ADAM-17 gene is strongly overexpressed in tumors with 
advanced stage and its expression correlates with the increased TNF-α expression in 
the blood of patients (Cireap and Narita 2013). Another shedding event relevant for 
cancer development is that of the ligands of the activating natural killer cell recep-
tor, NKG2D, MHC class I chain-related molecule A and B (MICA and MICB). This 
shedding studied in vitro in cervix cancer cells is thought to be one of the mecha-
nisms that promote resistance to the immunosurveillance by NK cells (Waldhauer 
et al., 2008). Another NK cell ligand, namely, B7-H6 is shed by ADAM-10 and −17 
and, interestingly, levels of B7-H6 in blood from melanoma patients were found 
elevated (Schlecker et al. 2014). In other cancer cells, such as hepatocellular 
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carcinoma, ADAM-9 was responsible for the shedding of MICA and treatment with 
anticancer drug Sorafenib, causing decreased expression of ADAM-9 followed by 
increased MICA expression at the cell surface (Kohga et al. 2010). Recently, shed-
ding of the NKG2D ligand MICA was shown to be mediated by MMP-14 and to 
occur independently from ADAMs (Liu et al. 2010). Which protease is responsible 
for the shedding of these NKGD2 ligands is likely the result of the expression pro-
file in the tumor cell type involved and needs further investigation.

Shedding of surface receptors mediating cellular interactions was demonstrated 
for ADAM proteases. E-, N-, and VE-cadherins are substrates for ADAM-10 (Reiss 
and Saftig 2009) and their shedding results in profound alterations in cellular inter-
actions, migration, and cell proliferation. ADAM-10-mediated L1 release is involved 
in the motility and invasion of lymphoma, lung carcinoma, and melanoma cells 
(Gutwein et al. 2000; Lee et al. 2010).

Apart from modulating cell adhesion by shedding events, one important aspect 
of ADAMs is their direct involvement in mediating adhesive events through their 
adhesive domains. In vitro studies have shown that ADAM-15 interacts with αvβ3 
and α5β1 integrins (Nath et al. 1999), whereas ADAM-2 binds to α6β1 integrin and 
ADAM-9 to α6β1, αvβ5, and α3β1 integrins (Almeida et al. 1995; Nath et al. 2000; 
Zhou et al. 2001). The interactions of ADAM proteases with cellular receptors have 
been proven to be of major importance in cell adhesion and fusion processes as for 
instance during spermatogenesis and myo- and osteogenesis (Edwards et al. 2008). 
In vitro studies have shown that ADAM-9 can mediate cell–cell interaction of fibro-
blasts and melanoma cells thereby lead synthesis of proteolytic enzymes in stromal 
cells (Zigrino et al. 2011). However, ADAM-9 can also be expressed in a soluble 
form. The secretion of a soluble splice variant of ADAM-9 by activated stromal 
cells is known to induce colon carcinoma cell invasion in vitro through binding to 
α6β4 and α2β1 integrins (Mazzocca et al. 2005). Recent studies have identified driver 
mutations in ADAMs, namely, ADAM-29 and −7, which often occur in melanoma 
and enhance cell migration or alter cell adhesive capacity (Wei et al. 2011). 
Nevertheless, limited information is available on the role of the different ADAM 
family members in the pathogenesis of melanoma.

8.4  ADAMTS

The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) 
have also been implicated in cancer development and progression (Rocks et al. 
2008). These proteins are characterized by the presence of additional thrombospon-
din domains which are believed to function as a sulfated glycosaminoglycan bind-
ing domain (Tang 2001). High levels of ADAMTS transcripts were detected in 
tumor biopsies and cell lines from osteosarcoma and melanoma (Cal et al. 2002). 
ADAMTS-4 exists in three forms all co-expressed in human cancer tissues (Rao 
et al. 2013). ADAMTS-4 and its proteolytically active N-terminal autocatalytic 
fragment promoted B16 melanoma growth and angiogenesis in mice, whereas its 
catalytically inactive mutant increased tumor cell apoptosis (Rao et al. 2013). A 
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single thrombospondin-type 1 repeat domain was essential and sufficient for the 
anti-tumorigenic activity displayed by the catalytically inactive ADAMTS-4 iso-
forms. Considering the diversity in the function of these various forms and their 
co-expression in the same tissue, it was suggested that a balance between pro- and 
anti-tumorigenic ADAMTS-4 isoforms would dictate the functional outcome (Rao 
et al. 2013). Overexpression of full-length ADAMTS-5 diminished angiogenesis, 
reduced proliferation, and increased apoptosis of tumor cells thus suppressing B16 
melanoma growth in mice (Kumar et al. 2012). Finally, ADAMTS-18 was identified 
as a player in melanoma progression as mutations in the protein reduced growth- 
factor dependency of tumor cells, increased migration in vitro and led to increased 
metastasis in vivo (Wei et al. 2010).

The expression and activity of several ADAMTS proteins have not yet been care-
fully analyzed in melanoma. However, given the various functions attributed to 
these enzymes in the development of other diseases, their involvement in melanoma 
development is also conceivable.

8.5  Cathepsins

Cathepsins described in melanomas are both cysteine (B, H, K, and L) and aspartyl 
proteases (D and E). These enzymes are predominantly intracellularly localized 
within the lysosomal compartment. Some of these enzymes can be associated with 
the plasma membrane of melanoma cells in vitro or can be secreted from lysosomes 
upon cell contact with collagen type I (Klose et al. 2006; Moin et al. 1998). Frohlich 
et al. (2001) have analyzed the expression of cathepsins in normal skin, nevi, and 
melanoma samples to obtain information about their role and their regulation in 
melanoma. Activities and expression of the cathepsins B and L were found to be 
increased in all melanocytic lesions (Frohlich et al. 2001). In human melanoma and 
nevi, cathepsin B is prevalently expressed by melanoma cells, whereas cathepsin L 
is expressed by tumor-associated fibroblasts surrounding invading melanoma cells 
(Yin et al. 2012). In vitro, cathepsin B was shown to regulate expression/activity of 
TGF-β thereby leading to fibroblast activation and promotion of tumor invasion 
(Yin et al. 2012). In contrast, Humbert and Lebrun (2013) found that TGF-β strongly 
upregulated PAI-1 expression thus reducing plasmin activity and led to inhibition of 
invasion (Humbert and Lebrun 2013). The reasons for these discrepancies have not 
been addressed, but will need further clarifications.

Cathepsin H expression correlated inversely with the invasive potential of the 
lesion (Frohlich et al. 2001). The aspartyl protease cathepsin D has been detected in 
tumor cells as well as in the peritumoral stroma in melanoma (Kageshita et al. 
1995). Expression of cathepsin D has also been inversely correlated with melanoma 
such that its expression is downregulated in melanoma cells as compared to mela-
nocytes, thus suggesting a role for this enzyme in cellular transformation (Bernard 
et al. 2003). In vitro, cathepsin B activity was shown to be necessary for the invasion 
of dermal connective tissue by highly invasive melanoma cells (Dennhofer et al. 
2003). Furthermore, forced expression of cathepsin L in human melanoma cells 
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increased their metastatic potential thus increasing their tumorigenicity (Jean et al. 
1996). Neutralization of cathepsin L in vivo by lentiviral transduction of melanoma 
cells with the anti-cathepsin L ScFv fusion protein resulted in inhibition of the 
tumorigenic and metastatic phenotype of human melanoma (Rousselet et al. 2004). 
In contrast, the work from Matarrese et al. (2010) showed that cathepsin B but not 
L and D inhibition by several targeting approaches could efficiently reduce tumor 
growth and metastatic potential of human melanoma cells in vitro and in vivo 
(Matarrese et al. 2010).

Another recently described cysteine protease expressed in melanoma is cathep-
sin K. This enzyme has been extensively studied during bone resorption processes 
where it mediates the degradation of various collagens (Bossard et al. 1996). 
Whereas cathepsin K is not expressed in normal skin, its expression has been local-
ized in skin fibroblasts during scar formation (Runger et al. 2007). Cathepsin K has 
been detected in nevi and it is increased in human primary cutaneous melanoma and 
metastasis (Quintanilla-Dieck et al. 2008). A potential function ascribed to cathep-
sin K in melanoma cells is the intracellular degradation of collagen type IV 
(Quintanilla-Dieck et al. 2008).

8.6  Serine Proteases

Among the group of serine proteases involved in extracellular matrix degradation, 
plasmin, plasminogen activators, thrombin, cathepsin G, and elastases are of par-
ticular interest.

The serine protease plasmin can activate most proMMPs in vitro (Murphy et al. 
1999). However, it has not been proven whether the function as proMMP activator 
is also fulfilled in vivo. Their proteolytic activity has also been shown towards extra-
cellular matrix components and cell surface receptors thereby influencing the tumor 
microenvironment in multiple ways (Andreasen et al. 2000).

Release of elastin fragments by the serine protease elastase was shown to enhance 
melanoma cell invasion through type I collagen and increase angiogenesis by the 
induction of MMP-14 expression (Hornebeck et al. 2005). One hypothesis advanced 
by Antonicelli et al. is that these peptides could catalyze the vertical growth phase 
transition in melanoma through increased expression of MMP-2 and MMP-14 
(Antonicelli et al. 2007). Plasminogen activation by the urokinase type (uPA) or the 
tissue type plasminogen activators (tPA) generates plasmin whose expression is 
associated with ECM degradation (Li and Wun 1998). Generated plasmin can also 
excise the angiostatin fragment from plasminogen thus regulating angiogenic pro-
cesses. uPA is bound to the surface of tumor cells by means of a specific receptor 
(uPAR) and engagement of this receptor can act as a survival factor for melanoma 
by down-regulating p53 and therefore inducing an anti-apoptotic effect (Besch et al. 
2007). uPA expression has been correlated with the ability of blue nevi to transform, 
as respective gene ablation in mice inhibited melanoma formation (Shapiro et al. 
1996). A synergism between the uPA/uPAR system and MMP-9 was shown to 
mediate the IFN-γ- and TNF-α-induced invasive phenotype of murine melanoma 
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cells (Bianchini et al. 2006). Increased uPA and MMP-2/-9 expression, accompa-
nied by down-regulation of E-cadherin, was observed following overexpression of 
PKC-γ in mammary cells leading to acquired invasive abilities of those cells which 
became tumorigenic and able to spontaneously metastasize (Mazzoni et al. 2003). 
Overexpression of Hsp27 in the melanoma line A375 led to a reduced malignant 
phenotype by increased expression of E-cadherin and of both uPA and its inhibitor 
PAI-1 (Aldrian et al. 2003).

Human melanoma cells produce tPA which is bound to the cell surface (de Vries 
et al. 1996). In vivo, high tPA expression has been correlated with good prognosis 
(Ferrier et al. 2000). In these studies, lesions with more than 51% tPA-positive 
tumor cells were found to have the best prognosis, as compared to those with lower 
expression. Further, taking together tPA positivity, Breslow thickness, microscopic 
ulceration, and sex, showed that the extent of tPA tumor cell positivity was an inde-
pendent prognostic factor for a distant metastasis-free interval and for the duration 
of survival (Ferrier et al. 2000). A potential reason for the better outcome is the 
generation of angiostatin, upon activation of plasmin and thereby cleavage of plas-
minogen, which may inhibit tumor-induced angiogenic processes.

Another serine protease that has also been investigated in melanoma is thrombin. 
Thrombin cleaves the N-terminus of protease-activated receptor-1 (PAR-1) that 
binds the receptor and activates signaling via G-proteins (Shapiro et al. 2000). 
PAR-1 can also be activated by ligands other than thrombin such as trypsin and 
plasmin (Kawabata and Kuroda 2000). PAR-1 is overexpressed predominantly in 
melanoma primary tumors and in metastatic lesions as compared with common 
melanocytic nevi (Massi et al. 2005). The importance of activating this pathway is 
described in a recent report from Melnikova et al. (2009). The authors showed that 
PAR-1 activation leads to the expression of melanoma cell adhesion molecule 
MCAM/MUC18 (MUC18) thereby mediating melanoma cell adhesion to micro-
vascular endothelial cells, transendothelial migration, and ultimately, lung metasta-
sis retention. The altered expression of a variety of kallikreins has also been 
associated with melanoma and among these increased hKLK7 was significantly 
associated with good prognosis and survival (Martins et al. 2011). However, KLK-7 
mediated cleavage of midkine leads to reduced pro-proliferative and pro-migratory 
activity in melanoma cells in vitro (Yu et al. 2015). The apparent discrepancy with 
the in vivo human expression data may be explained in light of additional KLK-7 
proteolytic activities towards, e.g., CYR61 and tenascin-C (Yu et al. 2015), which 
have not yet been investigated.

8.7  Summary

Although fundamental knowledge about the molecular processes of tumor progres-
sion has increased in recent years, the clinical application is still limited.

Concerns remain about the consequences of inhibiting the biological function of 
cell proteolytic enzymes. Several reports have contributed to gain knowledge of the 
regulation of proteases and their substrates and highlighted that this process is 
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complex and multifactorial. Experimental evidence strongly suggests that proteases 
of the same class may display a dual function depending on the cellular source and 
act as both a tumor-promoter and suppressor. Further generation of mouse models 
for in vivo analysis of protease depletion, will help in clarifying the importance of 
their activity for physiology and pathology. In addition, for more specific targeting, 
a deeper knowledge of the proteolytic functions is needed and the field of degrado-
mics has already started to uncover new proteases and physiological substrates. 
These studies identified new and known regulatory pathways that are controlled by 
proteolytic processing. The problematic for targeting of protease activity (e.g., of 
MMPs) in vivo has been further discussed by Dufour and Overall (2013).

The direct targeting of these proteases in a cell-specific manner with, for exam-
ple, monoclonal antibodies or inactivating peptides, or the inhibition of the activity 
of their processed substrates may be developed as potentially useful therapeutic 
strategies.
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9Cell–Cell Contacts in Melanoma 
and the Tumor Microenvironment

Silke Kuphal and Nikolas K. Haass

Abbreviations

CDH Cadherin
Cx Connexin(s)
Dsc 1–3 Desmocollin
Dsg Desmoglein
GJ Gap junction
GJIC Gap junctional intercellular communication

9.1  Melanoma Microenvironment

This is an update of our previous reviews on this topic (Haass et al. 2004, 2005; 
Kuphal and Haass 2011; Brandner and Haass 2013).

The state of a cell – quiescence, proliferation, differentiation or cell death – is 
under normal conditions determined by homeostasis (Bissell and Radisky 2001).  
A symbiotic relationship between a melanocyte and approximately 36 associated 
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keratinocytes, which forms the epidermal melanin unit, maintains this homeostatic 
balance of the human epidermis (Fitzpatrick and Breathnach 1963; Jimbow et al. 
1976). Within the stratum basale, the melanocytes keep a lifelong stable ratio of 1:5 
with the keratinocytes (Fitzpatrick et al. 1979). This balance is maintained through 
regulated induction of melanocyte division coordinated through intercellular com-
munication, which can be endocrine and paracrine via soluble factors and/or by 
direct contact via cell–cell and cell–matrix adhesion, or gap junctional intercellular 
communication (GJIC) (Haass et al. 2004, 2005). Dysregulation of this homeostasis 
may cause an imbalance of the epidermal melanin unit and trigger uncontrolled 
proliferation of the melanocytes, which may lead to the development of a nevus and/
or a melanoma (Haass and Herlyn 2005).

Alterations in the interaction between neoplastic cells and their immediate 
microenvironment play a key role in these processes (Hanahan and Weinberg 2000, 
2011; Park et al. 2000). The tumor microenvironment includes (1) the tumor stroma 
composed of fibroblasts, endothelial cells, immune cells, soluble molecules, and the 
extracellular matrix (ECM); (2) the tissue where the tumor had originated from; and 
(3) different sub-compartments within the tumor itself. Signals to and from the 
stroma via cell–cell and cell–matrix contact and/or via secretion of cytokines and 
growth factors may lead to a remodeling of the tumor microenvironment and conse-
quently to promotion of melanoma development, growth, and metastasis by induc-
ing angiogenesis, invasion, and migration (Villanueva and Herlyn 2008; Zigler et al. 
2011). In addition to the interaction with the tumor stroma, primary melanoma pro-
gression as well as cutaneous melanoma metastases impact on the epidermal tumor 
microenvironment: the multilayered epithelium of the skin (Haass et al. 2010). 
Finally, different microenvironmental conditions within the tumor itself are created 
by differential access to nutrients and oxygen (Groebe and Mueller-Klieser 1991; 
Minchinton and Tannock 2006; Santiago-Walker et al. 2009; Haass et al. 2014; 
Haass 2015).

The microenvironment is not only important for the primary tumor, but also for 
colonization of a secondary organ. The “seed and soil” hypothesis implies that the 
metastatic process depends on the tumorigenic capacity of the cells and – again – on 
their interactions with the microenvironment (Fidler 2003).

9.2  Adherent Junction of Cadherins

Cross-talk between benign precursor cells, malignant cells, and surrounding host 
cells influences tumor development. Already in 1914, Theodor Boveri recog-
nized the importance of changes in tumor cell adhesion for the development of 
cancer (Boveri 1914). Among the molecules involved in this intercellular com-
munication are cadherins, which play a critical role for the homeostasis of nor-
mal skin and also during tumor formation and progression (Fig. 9.1). The 
identification of cadherins in the late 1970s and early 1980s was primarily moti-
vated by an interest in understanding the mechanisms of cell adhesion during 
development (Franke 2009).
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Cell–cell as well as cell–matrix adhesions are critical for cells and tissues to 
respond to mechanical stimuli from their environment. Both cell–cell and cell–
matrix adhesions bear intrinsic mechanosensitivity, which allows them to promptly 
respond to stress and effectively propagate signals controlling cell shape and motil-
ity. This mechanosensitive response has been associated with pronounced changes 
in the size and molecular composition of specific adhesion sites and, consequently, 
the signals evoked by those adhesion sites. In polarized epithelia of vertebrates, the 
adherent junction is part of the tripartite junctional complex localized at the juxtalu-
minal region, which compromises the tight junction (TJ, see below), adherent junc-
tion (AJ), and desmosomes (macula adherens).

More than 80 proteins belong to the cadherin superfamily and are separated into 
the following “adherent junction” (AJ) subgroups in vertebrates:

 1. Classical adhesive cadherins of type 1 (6 members) and type 2 (13 members), 
e.g., E-, N-, P-, R-, and VE-cadherin. The classical cadherin family comprises 19 
members that share a common domain organization of five repetitive extracel-
lular calcium-binding subdomains (Overduin et al. 1995). Most of these classical 
cell–cell adhesion molecules are connected to the actin filaments and microtu-
bules of the cellular cytoskeleton via catenins. The four known catenins, alpha-, 
beta-, gamma (plakoglobin)-, and delta (p120)-catenin, are important regulatory 
elements either for sustained cell–cell adhesion or signaling cascades into the 
cell.

 2. The “nonclassical” desmosomal cadherins, transmembrane proteins of desmo-
somes are, for example, desmocollin 1–3 (Dsc 1–3) and desmoglein 1–4 (Dsg 
1–4). They are connected to intermediate filaments.

 3. Finally, there are nonclassical cadherins, like the protocadherins (e.g., protocad-
herin 15, cadherin 23), H-cadherin, and cadherin-like molecules (e.g., Fat, 
Dachsous, Flamingo, or Ret) belonging to the cadherin superfamily.

The most important classical cell–cell adhesion molecules of the skin and dur-
ing melanoma development are E (epithelial)-cadherin (CDH-1), N 
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Fig 9.1 Overview of the cadherin repertoire in skin and melanoma (Illustration R.J. Bauer)
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(neuronal)-cadherin (CDH-2), and P (placental)-cadherin (CDH-3), which belong 
to the group of calcium- dependent glycoproteins. Certainly, this group of classical 
adhesion molecules can be extended with atypical VE (vascular endothelial)-cad-
herin (CDH- 5, CD144) and the nonclassical cadherin H (heart)-cadherin 
(T-cadherin, CDH-13) (Fig. 9.1). In normal epidermis, melanocytes and keratino-
cytes are mostly connected via E-cadherin, P-cadherin, and H-cadherin (Kuphal 
et al. 2009; Nishimura et al. 1999; Tang et al. 1994). Whereas melanocytes in the 
basal layer of the epidermis seem to contain predominantly E-cadherin and 
H-cadherin, those residing in hair follicles are rich in P-cadherin (Nishimura et al. 
1999). In contrast, N-cadherin is expressed on fibroblasts and vascular endothelial 
cells of normal skin (Hsu et al. 1996).

9.2.1  Loss of E-Cadherin in Tumorigenesis

E-cadherin is the major cadherin in polarized epithelial cells. Furthermore, the 
crosstalk between melanocytes and keratinocytes mediated by E-cadherin plays an 
important role in human epidermis. The normal melanocytic phenotype and con-
trolled proliferation of melanocytes are strictly regulated by keratinocytes via 
E-cadherin. The E-cadherin knockout mouse is lethal in early embryonic stages 
(Larue et al. 1994) supporting the finding that E-cadherin has an essential role in 
morpho- and organogenesis. In skin development, there is evidence that E- and 
P-cadherin play some role in guiding melanocyte precursor cells to their final desti-
nation in the epidermis (Nishimura et al. 1999).

Malignant transformation of melanocytes is frequently attended by loss of 
E-cadherin expression and induction of N-cadherin (Hsu et al. 1996). This leads to 
the loss of the regulatory dominance of keratinocytes over melanocytes. The degen-
erated melanocytes/melanoma cells express N-cadherin to get into contact to fibro-
blasts and vascular endothelial cells during migration and invasion into the tumor 
stroma, dermis, lymph, and blood vessels (Hsu et al. 2000) (Fig. 9.2). The switch of 
the cadherin class is an interesting phenomenon of melanoma cells and in epithe-
lial–mesenchymal transition (EMT) in general.

However, immunohistochemical examination of primary melanomas and their 
metastases has revealed that a proportion of melanoma cells are still E-cadherin- 
positive and present little, if any, N-cadherin (Danen et al. 1996; Hsu et al. 1996; 
Sanders et al. 1999; Silye et al. 1998). Therefore, the cadherin switch as an obliga-
tory prerequisite of malignant behavior is still controversial and might depend on 
the subtype of the melanoma examined. However, immunohistochemistry data 
could not show whether the expressed E-cadherin is really functionally active 
regarding adhesion or still possesses signaling function. The general consensus is 
that E-cadherin is a tumor invasion suppressor.

9.2.1.1  Regulators of E-Cadherin
The mechanism by which E-cadherin expression is lost during malignancy differs 
between tumor entities. Loss of E-cadherin function can be caused by various 
genetic or epigenetic mechanisms. In patients with diffuse gastric cancer and breast 
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cancer, the E-cadherin gene is mutated, leading to the expression of a nonfunc-
tional protein (Strathdee 2002). The consequence is abnormal expression and 
abnormal subcellular localization of cadherin or the components of the cadherin-
containing adhesion complex. Further, the CDH-1 gene locus can be epigenetically 
silenced by hypermethylation, leading to downregulation of E-cadherin expression 
which is known from several cancer entities, e.g., hepatocellular carcinoma (Kanai 
et al. 1997), squamous cell carcinoma (Saito et al. 1998), and thyroid cancer (Graff 
et al. 1998).

In most cases, E-cadherin expression is downregulated at the transcriptional 
level. The zinc-finger containing transcriptional repressor Snail1, which is a master 
regulator of neural crest cell specification and melanocyte migration during devel-
opment in vertebrates, is mainly responsible for the loss of E-cadherin in melanoma 
(Batlle et al. 2000; Poser et al. 2001). The level of Snail1 expression correlates 
directly with the loss of E-cadherin expression, and forces overexpression of Snail 
in primary melanocytes downregulates E-cadherin expression (Poser et al. 2001). 
Slug (Hajra et al. 2002; Bolós et al. 2003), Snail2, ZEB1 and ZEB2 (Eger et al. 
2005; Caramel et al. 2013), and SIP1 (Comijn et al. 2001), also members of the zinc 
finger transcription factor family of Snail, are further regulators of E-cadherin in 
melanoma, as well as basic helix–loop–helix transcription factors E12/47 (Perez- 
Moreno et al. 2001) and Twist (Yang et al. 2004). Additionally, the T-box transcrip-
tion factor Tbx3 is overexpressed in melanoma, which enhances melanoma 
invasiveness through prevention of E-cadherin expression (Rodriguez et al. 2008). 
Furthermore, within human melanoma lesions, GLI-2, a mediator of hedgehog sig-
naling, is associated with loss of E-cadherin (Alexaki et al. 2010).

Proteolytic degradation of E-cadherin by matrix metalloproteinases (MMPs) is 
another mechanism by which E-cadherin-mediated cell–cell adhesion can be 
ablated. In this case, cell surface E-cadherin becomes soluble by cleavage of the 
extracellular domain, a process known as ectodomain shedding. For melanoma, 
Adam-10 is responsible for E-cadherin shedding (Billion et al. 2006) (see also 
Chap. 8).

A family of microRNAs, such as miR-200a, miR-200b, miR-200c, and miR-205 
was reported to control the expression level of E-cadherin during the epithelial–
mesenchymal transition. The microRNA targets the transcriptional repressors ZEB1 
and ZEB2 of E-cadherin (Gregory et al. 2008; Hurteau et al. 2007). As one example 
for cancer, loss of miR-200c expression is significantly correlated with early stage 
T1 bladder tumor progression (Wiklund et al. 2011). Another miRNA, miR-373, 
induces expression of genes with complementary promoter sequences. It was found 
that miR-373 induces E-cadherin expression by recognizing a target site in the pro-
moter of the cdh-1 gene (Place et al. 2008). Liu et al. 2012 showed that miR-9 is 
downregulated in metastatic melanomas compared with primary melanomas. A 
tumor suppressor effect after re-expression of miR-9 in melanoma is mediated 
through its direct binding to sites within the NF-kB 3′-UTR, resulting in suppres-
sion of Snail1 and upregulation of E-cadherin. However, whether microRNAs are 
responsible for regulating cadherins directly and specifically in melanoma is still 
not known (see also Chap. 6).
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9.2.2  Loss of P-Cadherin During Tumorigenesis

In human skin, P-cadherin is expressed mainly on cells of the epidermal basal layer 
(Furukawa et al. 1997) and those melanocytes residing in hair follicles (Nishimura 
et al. 1999). Concerning carcinogenesis, the effective role of P-cadherin remains an 
object of debate, since it can behave differently depending on the molecular context 
and tumor cell model studied. In melanoma cells, loss of full-length P-cadherin was 
reported (Bachmann et al. 2005; Van Marck et al. 2005; Jacobs et al. 2011). 
Therefore, P-cadherin has a similar tumor-suppressive behavior to E-cadherin. 
Additionally, a truncated 50 kDa form of the N-terminal part of P-cadherin was 
found, which appeared to be secreted from the melanoma cells. If this secreted form 
of P-cadherin is expressed from melanoma cells, it is responsible for cell migration 
and invasion (Bauer et al. 2005, 2006; Bauer and Bosserhoff 2006).

9.2.3  Loss of T-Cadherin During Tumorigenesis

T-cadherin (truncated-cadherin, cadherin 13, gene name CDH13) or H-cadherin, 
named for its strong expression in the heart, is an atypical member of the cadherin 
family, lacking the classical HisAlaVal recognition motif at its N-terminus, lacking 
the typical transmembrane and cytosolic domains and possessing a glycosylphos-
phatidylinositol moiety that anchors T-cadherin into the outer plasma membrane.

Immunohistochemistry of melanoma tissue samples showed positive T-cadherin 
staining of the endothelial cells. T-cadherin expression in endothelial cells was dem-
onstrated to be redox sensitive (Joshi et al. 2008). The melanoma cells themselves 
showed loss of T-cadherin whereas healthy skin showed staining of melanocytes 
and keratinocytes of the basal layer of the epidermis. Loss of T-cadherin in mela-
noma is associated with migration and invasion of the cells (Kuphal et al. 2009). In 
general, the exact functional role and signaling of T-cadherin for melanoma cells 
itself and for the intratumoral angiogenesis are not clarified, so far. It was only 
shown that loss of T-cadherin in melanoma regulates AKT signaling and desensi-
tizes for apoptosis (Bosserhoff et al. 2014). Also, a connection of loss of T-cadherin 
to tumor progression was speculated (Rubina et al. 2013) but not evidenced, until 
today.

9.2.4  N-Cadherin Expression During Tumorigenesis

N-cadherin plays a pivotal role in cell adhesion between melanoma cells and both 
dermal fibroblasts and vascular endothelial cells. During the cadherin class switch, 
loss of E-cadherin expression is accompanied by induced N-cadherin expression, 
which confers new adhesive properties on the cells (Fig. 9.2). The shift in cadherin 
profile during melanoma progression has been found not only in vitro but also 
in vivo (Hsu et al. 1996; Sanders et al. 1999). Experimentally, melanoma cell migra-
tion across fibroblasts is impaired upon addition of an N-cadherin neutralizing 
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antibody (Li et al. 2001). The functional relevance of N-cadherin is to conduct 
migration and invasion of melanoma cells whereas N-cadherin expression corre-
lates with progression to advanced-stage melanoma. The cell adhesion molecule 
N-cadherin has been suggested to represent a melanoma progression marker 
(Watson-Hurst and Becker 2006).

The switch of the cadherin class from E-cadherin to N-cadherin is directly con-
nected. The transcriptional repressor Snail not only regulates E-cadherin repression 
but also represses the expression of the deubiquitinating enzyme CYLD. Loss of 
CYLD expression in melanoma in turn led to ubiquitination of Bcl-3 which is a 
transcriptional regulator of N-cadherin expression (Massoumi et al. 2009).

9.2.5  VE-Cadherin Expression During Tumorigenesis

The term vasculogenic mimicry describes the formation of vascular-like tubular 
structures and patterned networks through the connection of melanoma cells. The 
vascular structures are essential for the supply of the tumor. Several key molecules 
are responsible for the formation and maintenance of the tubular networks and these 
molecules are also often essential in normal blood vessels. One molecule expressed 
during vasculogenic mimicry of melanoma cells is VE-cadherin, previously consid-
ered to be endothelial cell specific. Analyzing VE-cadherin in detail demonstrated 
an interaction with EphrinA2 (EphA2), a tyrosine kinase. VE-cadherin engages the 
membrane-bound ligand of EphA2 and becomes phosphorylated on its tyrosines at 
the cytoplasmic domain. The mutual impact of VE-cadherin and EphA2 results in 
loosening of cell–cell adhesion and allowing for an increase in cell migration, inva-
sion, and vasculogenic mimicry. Further studies describe the role of VE-cadherin 
for melanoma transendothelial migration. Here, p38 MAP kinase is necessary for 
increased VE-cadherin-mediated junction disassembly important for the migration 
processes of melanoma cells (Hendrix et al. 2001, 2003; Khanna et al. 2010).

9.2.6  FAT Expression During Tumorigenesis

FAT1, FAT2, FAT3, and FAT4 are human homologs of Drosophila Fat, which is 
involved in tumor suppression and planar cell polarity (PCP). FAT molecules belong 
to the cadherin-like protein family. FAT1 and FAT4 undergo the first proteolytic 
cleavage by Furin and are predicted to undergo the second cleavage by γ-secretase 
to release intracellular domain (ICD). Recently, it was shown using Northern blot-
ting that human melanoma cell lines variably but universally express FAT1 and less 
commonly FAT2, FAT3, and FAT4. Both normal melanocytes and keratinocytes 
also express comparable FAT1 mRNA relative to melanoma cells. However, in mel-
anoma cells, the non-cleaved proform of FAT1 is also expressed at the cell surface 
together with the furin-cleaved heterodimer. Moreover, furin-independent process-
ing generates a potentially functional proteolytic product in melanoma cells, a per-
sistent 65-kDa membrane-bound cytoplasmic fragment no longer in association 
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with the extracellular fragment. In vitro localization studies of FAT1 showed that 
melanoma cells display high levels of cytosolic FAT1 protein. Such differences in 
protein distribution appear to reconcile with the different protein products generated 
by dual FAT1 processing. It was suggested that the uncleaved FAT1 could promote 
altered signaling, and the novel products of alternate processing provide a dominant 
negative function in melanoma (Sadeqzadeh et al. 2011). Among the human FAT 
gene family, FAT4 gene is recurrently mutated in several types of human cancers, 
such as melanoma (40 %), pancreatic cancer (8 %), HNSCC (6 %), and gastric can-
cer (5 %) (Nikolaev et al. 2011).

9.2.7  Signaling of Cadherins

In contrast to integrins, evidence for cadherin-induced outside–in signaling came 
into focus only slowly. Over the last 10 years, a number of studies have appeared to 
agree that signaling cascades emanating from cadherins play an important role in 
confluency-dependent growth arrest, migration, invasion, and differentiation. 
Changes in expression or function of cell adhesion molecules can therefore contrib-
ute to tumor progression both by altering the adhesion status and by affecting cell 
signaling. To date, no enzymatic activity has been attributed to the cytoplasmic tails 
of adhesion molecules like E-cadherin or N-cadherin. The signaling capability ema-
nates from intracellularly bound kinases and phosphatases that link to the cytoplas-
mic tail of adhesion receptors (Fig. 9.3).

9.2.7.1  Signaling Cascades of E-Cadherin
Four modes of E-cadherin signaling are known:

 1. Modulation of receptor tyrosinase signaling (RTK) (see also Chap. 7)
 2. Inhibition of the Wnt signaling pathway (see also Chap. 7)
 3. Regulation of cytoplasmic β-catenin signaling
 4. Regulation of signaling through Rho GTPases

One way by which E-cadherin transmits growth-inhibiting outside–in signals 
appears to follow a strikingly similar scheme to that of the integrins. By using an 
immortalized nontumorigenic keratinocyte cell line, HaCaT, as a model system, Pece 
and Gutkind (2000) provide evidence that the assembly of calcium-dependent adher-
ens junctions leads to a rapid and remarkable increase in the state of activation of 
MAPK and that this event is mediated by E-cadherin. Furthermore, it was found in 
these studies about HaCaTs that E-cadherin stimulates the MAPK pathway through 
ligand-independent activation of receptor tyrosine kinases, in particular EGF-receptors 
(Pece and Gutkind 2000). They speculated that upon adherens junction formation, 
signals emanating as a result of the E-cadherin-EGFR interaction might be involved 
in maintaining the functional and structural integrity of quiescent epithelia and, as a 
function of the adhesion status of the cells, possibly in promoting epithelial cell dif-
ferentiation rather than proliferation. In contrast, another group detected signaling 
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Fig. 9.3 Schematic depiction of cadherin signaling in melanoma. The transcriptional repressor 
Snail inactivates E-cadherin expression in melanoma. With the loss of E-cadherin cytosolic beta- 
catenin activates the MAP kinase p38, which stimulates the transcriptional activity of 
NFkappaB. NFkappaB has N-cadherin as target gene. Additionally, Snail represses the expression 
of the tumor suppressor Cyld, which in turn leads to ubiquitination of Bcl-3 which also has 
N-cadherin as target gene. The overexpression of N-cadherin activates signaling cascades of SRC 
and PKB/Akt which leads to tumor progression (Illustration R.J. Bauer)
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cascade inhibition through EGF-receptor/E-cadherin complex formation in mela-
noma and breast cancer cells (Qian et al. 2004). Unfortunately, most of the literature 
on E-cadherin signaling does not cover melanoma. Studies on keratinocytes and other 
cancer cell types revealed that the E-cadherin complex associates and cooperates with 
an EGF-receptor family member to activate the PI3K/Akt pathway in a Src-family 
kinase-dependent manner (Muller et al. 2008; Perrais et al. 2007) (see also Chap. 7).

Some studies showed that homophilic ligation of E-cadherin signals directly 
through Rho GTPase activity (Braga 2000; Braga et al. 1997). Loss of E-cadherin 
in melanoma may involve changes in the organization of the cytoskeleton which is 
exerted by members of the Rho family. They control not only the cytoskeletal orga-
nization but also cell motility, migration, and tumor progression to malignancy at 
the same time. As example, E-cadherin suppresses RhoA activity in melanoma by 
activating p190RhoGAP (Molina-Ortiz et al. 2009). E-cadherin overexpression led 
to association of p190RhoGAP and p120ctn on the plasma membrane where 
E-cadherin bounds p120ctn. Recently, it was shown that E-cadherin also regulates 
RhoC GTPase. Here, loss of E-cadherin activates the expression of the RhoC in 
melanoma through upregulation of the transcription factor ETS-1, which results in 
increased c-Jun protein stabilization and activation (Spangler et al. 2012).

In addition to its role in adhesion, nuclear β-catenin is involved in Wnt signal 
transduction, and it interacts with transcription factors of the leukocyte enhancer 
factor (LEF)/T-cell factor (TCF) family to regulate transcription of target genes 
implicated in cell growth control such as cyclin D1 and c-myc (van Noort and 
Clevers 2002). By sequestering β-catenin at the cell surface, E-cadherin has been 
shown to antagonize nuclear β-catenin signaling pathways and to induce growth 
inhibition (Gottardi et al. 2001; Shtutman et al. 1999). Furthermore, β-catenin 
bound to E-cadherin inhibits phosphorylation of p38 and prevents activation of 
NFkappaB. Unbound cytoplasmic β-catenin activates the signaling pathway ending 
at transcriptional activation of N-cadherin expression in melanoma cells (Kuphal 
et al. 2004). In general, it was shown by Onder et al. (2008) that loss of E-cadherin 
promotes metastasis via multiple downstream transcriptional pathways. The publi-
cation presents ~84 of 617 genes differentially expressed in shE-cadherin human 
breast epithelial cells (HMLE). They presented, e.g., twist and TCF-8 among other 
19 transcription factors as upregulated after loss of E-cadherin.

9.2.7.2  Signaling Cascades of N-Cadherin
N-cadherin-mediated intercellular interactions promote survival and migration of 
melanoma cells through activation of cytoplasmic signaling cascades. The Src fam-
ily kinases are involved in the regulation of N-cadherin-mediated cell adhesion and 
signaling during, e.g., melanoma cell transendothelial migration. Src is localized at 
the heterotypic contacts of N-cadherin and becomes activated when melanoma cells 
are transmigrating across the endothelium. Activated Src has the Tyrosine-860 at the 
cytoplasmic domain of N-cadherin as target site for phosphorylation. The phos-
phorylation leads to disruption of β-catenin binding followed by nuclear transloca-
tion of this molecule to activate gene transcription of genes responsible for 
proliferation (Qi et al. 2006). N-cadherin mediates cell adhesion-activated antiapop-
totic protein Akt/PKB and subsequently increases β-catenin and inactivates pro-
apoptotic factor Bad (Li et al. 2001).
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9.2.8  Desmosomes/Hemidesmosomes

Desmosomes, composed of desmogleins and desmocollins, are localized spot-like 
adhesions randomly arranged on the lateral sides of plasma membranes and are also 
members of the cadherin family. The extracellular domain of the desmosome is 
called the extracellular core domain (ECD) or the Desmoglea, and is bisected by an 
electron-dense midline where the desmoglein and desmocollin proteins bind to each 
other. On the cytoplasmic side of the plasma membrane, there are two dense struc-
tures called the outer dense plaque (ODP) and the inner dense plaque (IDP). In the 
ODP, the cytoplasmic domains of the cadherins desmoglein and desmocollin attach 
to desmoplakin via plakoglobin and plakophilin, while in the IDP, desmoplakin 
attaches to the intermediate filaments such as keratine filaments.

A number of melanoma cell lines synthesize, in the absence of desmosomes, the 
desmosomal cadherin desmoglein 2 (Dsg2) as a frequent plasma membrane glyco-
protein that is not assembled into any junction but is dispersed over large parts of the 
cell surface. Indeed, in tissue microarrays, Dsg2 has been demonstrated in a sizable 
subset of nevi and primary melanomas (Rickelt et al. 2008). In contrast, Dsg1, 
Dsg3, and desmocollins 1–3, were absent in the analyzed melanoma cell lines but 
plakoglobin and plakophilin3 were also expressed in several melanoma cell lines 
(Schmitt et al. 2007). Future studies will have to clarify the diagnostic and prognos-
tic significance of these different adhesion protein subtypes.

9.3  Integrins

Integrins are transmembrane adhesion receptors localized at cell–matrix contact 
sites where they link ECM (extracellular matrix) components, e.g., vitronectin, 
fibronectin, laminin, osteopontin, or collagen, to the actin cytoskeleton and interact 
with multiple structural and signaling molecules including talin, kindlin, paxillin, 
vinculin, α-actinin, FAK (focal adhesion kinase), ILK (integrin-linked kinase), Rho 
GTPases, and SHC (Berrier and Yamada 2007; Papusheva and Heisenberg 2010). 
The latter are important mediators downstream of integrins by which they interact 
either directly or indirectly to effect adhesion-dependent responses (Playford and 
Schaller 2004). The metastatic transformation of melanocytes is associated with 
altered expression of integrins, which transduce signals upon ligation to ECM pro-
teins that regulate tumor growth and metastasis, apoptosis, differentiation as well as 
tumor angiogenesis. Integrin receptors are functional dimers of α- and β-integrin 
subunits, which each have a large ectodomain, a single transmembrane domain, and 
a generally short cytoplasmic tail (except for β4 integrin). The combination of dif-
ferent α- and β-subunits determines the substrate specificity of the dimer (Danen 
and Sonnenberg 2003). There are at least 18 known α-chains and 8 β-chains, allow-
ing for at least 24 unique heterodimers.

The pattern of integrins on the cell surface is usually very specific, which makes 
the cell fit perfectly into its surrounding environment. Importantly, integrin expres-
sion patterns differ considerably in vitro versus in vivo. Thus, in vitro studies may 
not translate into the in vivo situation.
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Several publications have shown that the expression levels mainly of αvβ3, α2β1, 
α3β1, α4β1, and α5β1 appear to increase from primary melanomas to metastatic 
melanoma tissue sections, whereas there was a significant decrease in α1β1, α2β1, 
and α6β1 expression levels in metastatic melanoma compared to primary melanoma 
(Friedl et al. 1998; Natali et al. 1993; Schadendorf et al. 1993). Although many 
integrins have been implicated in mediating melanoma growth and metastasis, per-
haps none have been studied as much as the vitronectin receptor, αvβ3 (Danen et al. 
1995; Mortarini and Anichini 1993; Seftor et al. 1999). αvβ3 integrin adheres to 
vitronectin, fibronectin, laminin, collagen, and osteopontin. Binding fibronectin and 
vitronectin induces the expression of MMP-2, which is able to degrade the collagen 
of the basement membrane (Felding-Habermann et al. 2002). Furthermore, osteo-
pontin’s RGD-sequence (Arg–Gly–Asp) has high binding affinity and specificity to 
αvβ3. As the aggressiveness of melanoma has been associated with high osteopon-
tin expression (Sieg et al. 2000), this interaction of αvβ3 and osteopontin is impor-
tant for melanoma progression. Interaction between αvβ3 and extracellular matrix 
molecules serves to promote cell attachment, spreading, and migration. αvβ3 integ-
rin also undergoes heterophilic binding with two members of the immunoglobulin 
superfamily of cell adhesion molecules, PECAM-1 and L1. The αv subunit is widely 
expressed on melanomas regardless of disease stage. This stands in contrast to the 
β3 subunit, which is predominantly expressed on melanoma cells in the vertical 
growth phase. The onset of β3 integrin expression is one of the most specific mark-
ers of the transition from radial growth phase to vertical growth phase of melanoma 
(Albelda et al. 1990; Danen et al. 1995; Natali et al. 1997). Although many studies 
on human melanoma cell lines have correlated αvβ3 integrin expression with pro-
gression and metastasis, in vivo studies are less clear.

9.3.1  Integrin Signaling in Melanoma

Apart from being involved in the attachment of cells to the ECM, integrins are also 
responsible for signaling between the cells and the environment. Signaling works 
bidirectionally: “outside–in signaling” can control behavior, proliferation, cell 
polarity, cell growth, and migration. “Inside–out signaling,” on the other hand, 
changes the integrins from a passive, weak binding state into an active, adhesive 
state and alters the interaction of the receptors with the extracellular environment. 
Integrins are receptors for cell movement in response to binding to ECM of the 
basement membrane or connective tissue or plasma membrane receptors expressed 
on endothelial cell surfaces. Additionally, integrins bind cytoplasmic adaptor pro-
teins of the actin-myosin filaments and create a plasticity that allows the cell to 
move. In summary, integrins are bivalent linker proteins, binding simultaneously to 
extracellular ligands as well as cytoplasmic proteins including intracellular signal-
ing molecules. They influence, for example, tyrosine kinases, serine/threonine 
kinases, phosphoinositides, and signaling cascades which determine the fate of a 
cell, letting it grow, proliferate, or die whenever it is necessary in the context of the 
whole organism. This paragraph introduces some of the most important and best 
studied proteins which are known to interact with integrins in melanoma.
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There is the non-receptor protein tyrosinase kinase FAK (focal adhesion kinase) 
(Fig. 9.4) that co-localizes with integrins in focal adhesions. FAK becomes phos-
phorylated and then controls processes like cell spreading, proliferation, motility, 
vasculogenic mimicry, and survival (Schaller 2001). Proteins like c-SRC, SHC, 
CSK, PI3K, and GRB2 are known to interact with FAK to transfer the signaling into 
the cytoplasm and to link FAK signaling also to MAP kinases (Chakraborty et al. 
2002) (see also Chap. 7). FAK expression seems to be required in melanoma cells 
for substrate adhesion. It has been shown that in melanoma FAK is constitutively 
active and that it is essential for maintaining adhesiveness in melanoma cells 
(Hamamura et al. 2008; Kahana et al. 2002).

Fig. 9.4 Schematic depiction of the signaling pathways leading from integrins to focal adhesion 
kinase (FAK) and integrin-linked kinase (ILK), respectively, and further reactions of the cell 
(Illustration R.J. Bauer)
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Furthermore, the integrin-linked kinase (ILK), a serine/threonine kinase, is 
implicated in connecting cell–extracellular matrix interaction and growth factor sig-
naling to cell survival, cell migration, invasion, anchorage-independent growth, 
angiogenesis, and epithelial–mesenchymal transition. It has been shown that strong 
ILK expression was significantly associated with melanoma thickness, migration, 
and invasion (Wong et al. 2007). Increased expression of integrin-linked kinase is 
correlated with melanoma progression and poor patient survival (Dai et al. 2003). 
ILK directly phosphorylates PKB/Akt and glycogen synthase kinase-3 (GSK- 
3beta), which is inactivated upon phosphorylation (Delcommenne et al. 1998; 
Troussard et al. 1999). SHC is another protein which is implicated in integrin sig-
naling. It is an adaptor protein capable of binding phosphotyrosine-containing 
sequences. So far, studies have demonstrated that SHC signaling is involved in path-
ways, which play a role in the development of malignancies like c-Myc activation 
(Gotoh et al. 1997), survival signaling (Friedmann et al. 1996; Sakai et al. 2000), 
cytoskeletal organization, and mitogenic signaling through RAS. It has been pro-
posed that SHC is a substrate for FAK.

Also, the ERK/MAP kinase cascade is a pathway in which integrin-mediated 
adhesion is involved. In the ERK pathway, various stimuli of many important inte-
grin signaling molecules like FAK or SHC converge and are able to influence nearly 
every profound cellular activity (Meier et al. 2005).

Epidermal growth factor receptor (EGFR) is also activated by integrins to 
generate cellular responses such as adhesion-dependent cell survival and prolif-
eration in response to ECM. Subsequently, integrin-mediated EGFR activation 
induces ERK/MAP kinase signaling (Howe et al. 2002; Jost et al. 2001). 
Furthermore, Caveolin-1 (CAV1) is the main structural component of caveolae, 
which are plasma membrane invaginations that participate in vesicular traffick-
ing and signal transduction events. Following integrin activation, B16F10 cells 
expressing CAV1 display reduced expression levels and activity of FAK and Src 
proteins. Furthermore, CAV1 expression markedly reduces the expression of 
integrin β3 in B16F10 melanoma cells. These findings provide experimental evi-
dence that CAV1 may function as an antimetastatic gene in malignant melanoma 
(Trimmer et al. 2010).

9.4  Immunoglobulin Gene Superfamily of Cell Adhesion 
Molecules (CAMs)

Whereas normal melanocytes express few cell–cell adhesion receptors of the immu-
noglobulin gene superfamily of cell adhesion molecules (CAMs), melanoma cells 
show an increase in expression of melanoma cell adhesion molecule (MCAM, Mel- 
CAM, MUC18, CD146), L1 cell adhesion molecule (L1-CAM, CD171), activated 
leukocyte cell adhesion molecule (ALCAM, CD166), vascular cell adhesion mole-
cule 1 (VCAM-1, CD106), intercellular cell adhesion molecule 1 (ICAM-1, CD54), 
and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM-1, 
CD66a) (reviewed in Haass et al. 2005).
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9.4.1  Melanoma Cell Adhesion Molecule (MCAM, Mel-CAM, 
MUC18, CD146)

Mel-CAM mediates homologous and heterologous interactions between melanoma 
cells and endothelial cells, respectively, via a heterophilic Ca2+-independent adhesion 
to its ligand (Shih et al. 1997a, b; Johnson et al. 1997). Recently, Laminin-411 (α4β1γ1 
integrin) and Galectin-1 have been identified as Mel-CAM ligands (Flanagan et al. 
2012; Jouve et al. 2013; Yazawa et al. 2015). In melanocytic cells, expression of Mel-
CAM is first found in nevi, when the cells have separated from the epidermal kerati-
nocytes and have migrated into the dermis (Shih et al. 1994; Kraus et al. 1997). With 
progression to malignancy, Mel-CAM expression gradually increases and is highest 
in metastatic melanoma cells (Xie et al. 1997; Johnson et al. 1996; Shih et al. 1994; 
Lehmann et al. 1987, 1989). In vitro and in vivo data supporting an important role of 
Mel-CAM in melanoma progression was demonstrated in several experimental stud-
ies (reviewed in Haass et al. 2005; Lei et al. 2015). Recently, the zinc finger transcrip-
tion factor ZBTB7A was found to repress melanoma metastasis by directly binding to 
the promoter and transcriptionally repressing Mel-CAM (Liu et al. 2015).

An evaluation of tissue arrays of primary and metastatic melanomas revealed that in 
patients meeting the current criteria for sentinel lymph node dissection, both Mel-
CAM expression positivity and intensity were independently predictive of survival and 
development of lymph node disease in primary melanoma over and above established 
markers of prognosis, such as Breslow thickness. Mel-CAM-negative patients had a 
5-year survival of 92 % compared with 40 % for Mel-CAM-positive patients (Pearl 
et al. 2008). Recently, a study on 175 patients revealed that sequential molecular detec-
tion of Mel-CAM mRNA in the peripheral blood correlated with poor prognosis. The 
authors suggested to utilize Mel-CAM expression as a “molecular warning of progres-
sion” even in early stage patients in otherwise disease-free conditions (Rapanotti et al. 
2014). However, larger trials to confirm this finding as a biomarker are still pending.

9.4.2  L1-Cell Adhesion Molecule (L1-CAM, CD171)

L1-CAM, originally described as a neuronal cell adhesion molecule, has also been 
detected in a number of other non-neuroendocrine tissues and in several malignant 
tumors, including melanoma (Nolte et al. 1999; Thies et al. 2002b). L1-CAM medi-
ates adhesion both via homophilic (L1-CAM-L1-CAM) and heterophilic (L1-CAM- 
αvβ3 integrin) mechanisms (Hortsch 1996). In melanoma/melanoma cell and in 
melanoma/endothelial cell interactions, L1-CAM binds to αvβ3 integrin (Montgomery 
et al. 1996). The interaction of L1-CAM and αvβ3 integrin plays an important role in 
transendothelial migration of melanoma cells (Voura et al. 2001) whereas overex-
pression of L1-CAM promotes conversion from radial to vertical growth phase 
melanoma without upregulation of αvβ3 integrin expression (Meier et al. 2006). 
There is an increase in L1-CAM immunoreactivity in melanomas and metastases of 
melanoma compared to acquired melanocytic nevi (Fogel et al. 2003). A study that 
systematically identified novel melanoma-specific genes confirmed that L1-CAM is 
not expressed in normal skin and melanocytic nevi, but is highly and differentially 
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expressed in primary melanoma tissues and melanoma lymph node metastases 
(Talantov et al. 2005). Evaluation of specimens of nevi, primary melanomas, senti-
nel lymph nodes, and distant metastases showed that L1-CAM can serve as a highly 
sensitive and specific diagnostic marker for melanoma (Thies et al. 2007). A 10-year 
retrospective biomarker study, evaluating 100 melanoma specimens, showed that 
the expression of L1-CAM in human primary cutaneous melanoma is significantly 
associated with metastatic spread and that L1-CAM expression is an independent 
predictor for the risk of metastasis (Thies et al. 2002b). A recent study revealed that 
the CE7 epitope of L1-CAM on a variety of tumors (however, melanoma was not 
included in the study) may be amenable to targeting by CE7R+ T cells, making it a 
promising target for adoptive immunotherapy (Hong et al. 2014).

9.4.3  Activated Leukocyte Cell Adhesion Molecule (ALCAM, 
CD166)

ALCAM is involved in homophilic (ALCAM-ALCAM) (Degen et al. 1998) and 
heterophilic (ALCAM-CD6) (Patel et al. 1995) cell–cell adhesion interactions. 
ALCAM is expressed in metastatic human melanoma cells, whereas it is absent in 
non-metastatic cells (Degen et al. 1998). Immunohistochemistry on a series of com-
mon nevi, primary melanomas, and melanoma metastases revealed that ALCAM 
expression correlates with melanoma progression (van Kempen et al. 2000). 
ALCAM is therefore proposed to be a molecular melanoma progression marker. 
Intact cell adhesion function of ALCAM favored primary tumor growth and repre-
sented a rate-limiting step for tissue invasion, which supported the view that 
dynamic control of ALCAM plays an important role in progression (van Kempen 
et al. 2004). An immunohistochemical biomarker study, evaluating tissue microar-
rays showed that a significantly greater percentage of melanomas (combined pri-
mary and metastatic) than nevi contained cells that expressed ALCAM (Klein et al. 
2007). Interestingly, a recent study evaluating ALCAM expression and long-term 
survival in melanoma patients suggested that, in primary melanomas, high ALCAM 
expression was a marker of negative outcome, but in regional lymph node mela-
noma metastases low expression of ALCAM was a feature associated with unfavor-
able prognosis (Donizy et al. 2015). ALCAM upregulation in metastatic melanoma 
cells is driven by miR-214 and depends on transcriptional mechanisms mediated by 
TFAP2 and posttranscriptional mechanisms mediated by miR-148b, which itself is 
controlled by TFAP2. Therefore, miR-214 and miR-148b have opposite effects on 
melanoma cell dissemination and are part of a regulatory loop (Penna et al. 2013).

9.4.4  Intercellular Adhesion Molecule-1 (ICAM-1, CD54)

ICAM-1 can be induced in a cell-specific manner by several cytokines, e.g., TNF-α 
(tumor necrosis factor-alpha), IL-1 (interleukin-1), and IFN-γ (interferon-gamma). 
The ligands of ICAM-1 are αLβ2 (lymphocyte function-associated antigen 1, LFA-1) 
and Mac1 on lymphocytes (van de Stolpe and van der Saag 1996). ICAM-1 
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correlates with melanoma progression and increased risk of metastasis (Johnson 
et al. 1989). Its expression in melanoma is stronger than in common nevi and 
increases with the Breslow index in primary melanomas (Natali et al. 1990, 1997; 
Schadendorf et al. 1993, 1995). The observation that stage I patients with ICAM-1-
positive melanomas had a significantly shorter disease-free interval and overall sur-
vival than those with ICAM-1-negative tumors (Natali et al. 1997) and that the 
suppression of ICAM-1 in an animal model reduced the metastatic capacity (Miele 
et al. 1994), supported the role of ICAM-1 in melanoma progression and metastasis. 
However, the specific role of ICAM-1 in melanoma progression remains to be deter-
mined. Expression of ICAM-1 may promote aggregate formation with leucocytes, 
which can enhance survival in the vascular system and encourage extravasation 
(Aeed et al. 1988). On the other hand, ICAM-1 is shed from melanoma cells 
(Giavazzi et al. 1992) – possibly in a form that inhibits lymphocyte–tumor cell 
interaction and thus contributes to tumor survival (Becker et al. 1993). A recent 
study has unraveled a mechanism by which shear flow-regulated melanoma cell 
adhesion to the endothelium can upregulate endothelial ICAM-1 expression (Zhang 
et al. 2014). Elevated ICAM-1 levels may serve as receptors to recruit neutrophils 
and bind fibrin, which assists melanoma cell adhesion and migration. An increase 
of ICAM-1 expression on endothelial cells could be a result of direct ligation of 
tumor CD44 and endothelial E-selectin, through the PKCα-p38-SP-1 pathway. This 
suggests a new mechano- signaling cascade triggered by stretching E-selectin to 
induce ICAM-1 expression (Zhang et al. 2014).

9.4.5  Carcinoembryonic Antigen-Related Cell Adhesion 
Molecule 1 (CEACAM-1, CD66a)

CEACAM1 is involved in intercellular adhesion and subsequent signal trans-
duction events in a number of epithelia. In epithelial cells, CEACAM1 is 
believed to act as a growth suppressor, since its expression was shown to be lost 
or significantly down- or dysregulated in carcinomas of liver, prostate, endo-
metrium, breast, and colon (reviewed in Haass et al. 2005). On the other hand, 
CEACAM1 is upregulated in non-small cell lung cancer (Sienel et al. 2003). 
CEACAM1 interacts with the β3 integrin subunit via the CEACAM1 cytoplas-
mic domain. CEACAM1 and the β3 integrin subunit co-localize at the tumor–
stroma interface of invading melanoma masses, suggesting that 
CEACAM1–integrin β3 interaction plays a role in melanoma cell migration and 
invasion (Brummer et al. 2001). The expression of CEACAM1 in primary mel-
anomas is associated with the subsequent development of metastatic disease 
(Thies et al. 2002a). Furthermore, the overexpression of CEACAM1 in 
CEACAM1-negative melanocytic cells and melanoma cell lines increases the 
migratory and invasive growth potentials in vitro (Ebrahimnejad et al. 2004) 
supporting the role of CEACAM1 in melanoma progression and metastasis. 
Evaluation of specimens of nevi, primary melanomas, sentinel lymph nodes, 
and distant metastases showed that CEACAM1 can serve as a highly sensitive 
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and specific diagnostic marker for melanoma (Thies et al. 2007). Indeed, 
CEACAM1 was shown to be one of the seven plasma markers best able to iden-
tify metastatic melanoma patients (Kluger et al. 2011).

9.5  Gap Junctions/Connexins

Connexins belong to a family of transmembrane proteins that form gap junctions 
(GJs), cell–cell junctions that are essential for intercellular communication. Gap 
junctional intercellular communication (GJIC) in the skin is involved in mainte-
nance of homeostasis, regulation of proliferation, differentiation, barrier function, 
and recruitment of inflammatory cells. GJIC is thus a critical factor in the life and 
death balance of cells (Djalilian et al. 2006; Langlois et al. 2007; Maass et al. 2004; 
Man et al. 2007) (reviewed in Kretz et al. 2004; Mese et al. 2007). Furthermore, 
GJIC is critical in keratinocyte–melanocyte interaction (Hsu et al. 2000; 
Satyamoorthy et al. 2001). Alternatively, connexins can form hemichannels, which 
allow release (e.g., ATP, NAD+) or putative uptake of molecules and ions to and 
from the cellular environment (Barr et al. 2013; Chandrasekhar and Bera 2012). 
Finally, connexins, especially Cx43, interact with structural and signaling mole-
cules, which may add further functions to these molecules (Herve et al. 2007).

GJs form channels between adjacent cells allowing the intercellular transport 
of small metabolites, second messengers, and ions (Loewenstein 1981; Spray 
1994). In addition to molecular weight and size, the ability of a solute to trans-
verse these channels depends on its net charge, shape, and interactions with spe-
cific connexins that constitute gap junctions in particular cells (Goldberg et al. 
2004). Each GJ channel consists of two hemichannels called connexons, each 
formed by six connexins (reviewed in Richard 2000). Twenty-one connexins 
have been identified, 11 of which are in the skin (Di et al. 2001; Willecke et al. 
2002; Zucker et al. 2013). GJs can be homotypic, heterotypic, homomeric, and 
heteromeric (reviewed in Richard 2000). A connexon is homomeric if it is com-
posed of six identical connexin subunits (e.g., Cx32 only), or heteromeric if it is 
composed of more than one connexin species (e.g., Cx32 and Cx43 and/or oth-
ers). Channels are homotypic if both connexons are homomeric of the same type, 
heterotypic if homomeric connexons are of different types, and heteromeric if 
both connexons are heteromeric. Not all connexins are equally compatible at 
forming a connexon – even though they may co-exist in the same cell (reviewed 
in Haass et al. 2004). The type of connexin- forming GJ channels influences their 
selectivity and thereby controls the specificity of GJIC. For example, channels 
formed by Cx26 prefer cations, while those formed by Cx32 prefer anions 
(Brissette et al. 1994; Elfgang et al. 1995; Veenstra 1996). Thus, the up- or down-
regulation of a certain connexin in a tissue may change its GJIC considerably. In 
addition, connexins can also form hemichannels, which have been shown to be 
able to exchange molecules with the extracellular microenvironment. These 
hemichannels are relevant for signal propagation and especially for calcium 
homeostasis (reviewed in Evans et al. 2006).
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9.5.1  Connexins Are Conditional Tumor Suppressors

Loss of gap junctional activity and/or downregulation of connexins have been 
reported both in cell lines as well as in tissues of many tumor types, such as 
hepatocellular carcinoma, gastric carcinoma, prostate cancer, lung cancer, gli-
oma, mammary carcinoma, basal cell carcinoma, squamous cell carcinoma, and 
melanoma. This phenomenon was first observed half a century ago (Loewenstein 
and Kanno 1966) and summarized in a number of review articles (Cronier et al. 
2009; Mesnil et al. 2005; Naus and Laird 2010). The type of connexins lost dur-
ing tumor progression varies according to tumor type. In the 1980s and 1990s, a 
series of studies were published showing that reagents and/or oncogenes that 
promote tumor onset or progression frequently inhibit GJIC or downregulate 
connexin expression (Lampe 1994; Trosko et al. 1990; Atkinson et al. 1981). The 
role of connexins as potential tumor suppressors was also shown in gene knock-
down studies (Shao et al. 2005). Correspondingly, ectopic expression of connex-
ins in tumors restored functional communication and reduced tumor proliferation 
and growth both in vitro and in vivo (reviewed in Naus and Laird 2010). 
Importantly, ectopic expression of connexins partially differentiated transformed 
cells (Zhu et al. 1991; McLachlan et al. 2006; Hellmann et al. 1999; Hirschi et al. 
1996). Moreover, functional abrogation of connexins, using antisense or domi-
nant-negative mutant approaches, have demonstrated an enhancement of the 
malignant phenotype in several tumor types, such as Cx26 in HeLa cells (Duflot-
Dancer et al. 1997), Cx32 in hepatocellular carcinoma (Dagli et al. 2004), 
Cx43 in lung cancer (Avanzo et al. 2004), Cx43 in glioma (Omori and Yamasaki 
1998), and Cx43 in bladder carcinoma (Krutovskikh et al. 1998). Finally, Cx32 
knock-out mice have an increased incidence of tumor onset when challenged 
with carcinogens (Temme et al. 1997; King and Lampe 2004a, b; Moennikes 
et al. 2000).

This may lead to the assumption that connexins are general tumor suppressors, 
but it appears that this is only the case in the earlier steps of cancerogenesis. In 
fact, the role of connexins in invasion and metastasis is very complex, and con-
nexins might facilitate invasion, intravasation, extravasation, and metastasis 
(Krutovskikh et al. 1994; el-Sabban and Pauli 1991, 1994; Ito et al. 2000; Saunders 
et al. 2001; Lin et al. 2002; Miekus et al. 2005; Pollmann et al. 2005; Kanczuga-
Koda et al. 2006; Bates et al. 2007; Li et al. 2007; Dobrowolski et al. 2008; 
Cotrina et al. 2008; Elzarrad et al. 2008; Ezumi et al. 2008). The following model 
supports both the tumor suppressor and the tumor driver theories (Cronier et al. 
2009): for the step from primary to invasive tumors, there is a need for disruption 
of intercellular junctions including GJs, consistent with the model that connexins 
are tumor suppressors. In contrast, for the tumor cell dissemination and metastasis 
steps, increased cell contacts and communication are needed in order to enable 
interaction with the tumor stroma – especially between cancer cells and endothe-
lial cells. Therefore, connexins might be better classified as conditional tumor 
suppressors that modulate cell proliferation as well as adhesion and migration 
(Naus and Laird 2010).
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9.5.2  Cx43 in Cancer

Cx43 is decreased in prostate cancer (Tsai et al. 1996), mammary cancer (Hirschi et al. 
1996), glioma (Huang et al. 1999), lung cancer (Jinn et al. 1998; Zhang et al. 1998), 
bladder carcinoma (Krutovskikh et al. 2000), cervical carcinoma (King et al. 2000), 
and various skin cancers including melanoma (Haass et al. 2006; Tada and Hashimoto 
1997; Wilgenbus et al. 1992). Electron microscopy investigations have shown that 
basal and squamous cell carcinomas do not have fully developed GJs, and that Cx43 is 
not restricted to these poorly developed GJs but is present in the cytoplasm (Tada and 
Hashimoto 1997). In several cancers, Cx43 acts as a tumor suppressor gene with loss 
of Cx43 contributing to metastasis (Czyz 2008; Gershon et al. 2008; Shen et al. 2007). 
Functional abrogation of Cx43 enhances the malignant phenotype in lung cancer 
(Avanzo et al. 2004), glioma (Omori and Yamasaki 1998), and bladder carcinoma 
(Krutovskikh et al. 1998).

In contrast to other cancers, hepatocellular carcinoma is associated with an 
induction of Cx43, which is, however, localized in the cytoplasm, and thus is not 
involved in GJIC (Krutovskikh et al. 1994). The loss of GJIC might help the tumor 
cells to survive, as GJIC has been shown to spread cell-killing signals, most likely 
Ca2+ ions (Krutovskikh et al. 2002). In addition, downregulation of Cx43 expression 
or function resulted in increased proliferation and migration in primary keratino-
cytes, implying a contribution of Cx43 to controlling early stages of tumorigenesis 
(Mori et al. 2006; Wright et al. 2009; Pollok et al. 2011). Finally, increased opening 
of hemichannels formed by connexins resulted in cell death in cochlear supporting 
cells of the ear and in keratinocytes of the epidermis (Xu and Nicholson 2013).

Conversely, expression of Cx43 has also been shown to increase tumor metasta-
sis in breast cancer, glioma as well as in melanoma through increased attachment 
and communication with the vascular endothelium (Bates et al. 2007; Kanczuga- 
Koda et al. 2006; Cotrina et al. 2008; Lin et al. 2002; el-Sabban and Pauli 1991, 
1994; Pollmann et al. 2005; Elzarrad et al. 2008).

9.5.3  Cx32 in Cancer

Cx32 is downregulated in gastric carcinoma (Uchida et al. 1995), lung cancer (Jinn 
et al. 1998), and hepatocellular carcinoma (Eghbali et al. 1991; Loewenstein and Rose 
1992; Krutovskikh et al. 1994; Yamaoka et al. 1995). In the latter case, the remaining 
Cx32 is localized in the cytoplasm or in the plasma membrane free from contact with 
other cells. In addition, it was found that there was no mutation in the coding sequence 
of Cx32 in hepatocellular carcinoma; instead, it appears that the aberrant localization 
of Cx32 is a consequence of the disruption of Cx32 gap junction plaque formation 
(Krutovskikh et al. 1994). Functional abrogation of Cx32 enhances the malignant phe-
notype in hepatocellular carcinoma (Dagli et al. 2004). Cx32 knock-out mice have an 
increased incidence of tumor onset when challenged with carcinogens (Temme et al. 
1997; King and Lampe 2004a, b; Moennikes et al. 2000). In contrast to most other 
tumors, Cx32 is upregulated in some breast cancer cells (Saunders et al. 2001).
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9.5.4  Cx26 in Cancer

Whereas in mammary carcinoma cells, there is a downregulation of both Cx43 and 
Cx26 (Hirschi et al. 1996); in human basal cell carcinoma, Cx43 is downregulated 
but there is an induction of Cx26 (Haass et al. 2006; Wilgenbus et al. 1992). Cx26 
is also highly expressed in HeLa cells, where its functional abrogation enhances the 
malignant phenotype (Duflot-Dancer et al. 1997).

9.5.5  Connexins in Melanoma

Reflecting the situation in many other cancer types as discussed above, the role of 
connexins and GJIC is still highly controversial also in melanoma and its tumor 
microenvironment.

Cx43 is the most-studied connexin in melanoma. Western blotting revealed Cx43 
protein expression in foreskin-derived melanocytes and several melanoma cell lines 
(Hsu et al. 2000). This was confirmed by immunofluorescence detecting Cx43 
expression in human melanoma cell lines (Lin et al. 2010). While neither study 
quantified the Cx43 protein expression levels, a qRT-PCR and immunofluorescence 
study demonstrated lower Cx43 expression levels in human melanoma cell lines 
compared to human melanocytes (Schiffner et al. 2011). Also, a microarray study 
revealed that Cx43 was expressed at low levels in human melanoma cell lines and, 
importantly, that its overexpression suppressed anchorage-independent growth in 
colony-forming efficiency assays, suggesting a tumor-suppressor role of Cx43 in 
melanoma (Su et al. 2000). By qRT-PCR, no expression for Cx26, Cx30, Cx31.1, 
Cx36, and Cx37; low expression for Cx30.3 and Cx31; and higher expression levels 
for Cx32, Cx40, Cx43, and Cx45 were detected in human melanoma cell lines 
(Zucker et al. 2013). Surprisingly, Western blotting showed much higher Cx43 
expression levels in migrating than in non-migrating cells (Zucker et al. 2013). 
Consistently, high levels of Cx43 protein expression were found in human meta-
static melanoma cell lines (Villares et al. 2009). Loss of protease-activated receptor-
 1 (PAR-1) expression resulted in the loss of Cx43 and, correspondingly, 
overexpression of PAR-1 contributed to melanoma metastasis via upregulation of 
Cx43 (Villares et al. 2009, 2011). Interestingly, while initial levels of Cx43 were 
low in B16 mouse melanoma cells, Cx43 protein levels increased after infection 
with bacteria or treatment with interferon-γ (Saccheri et al. 2010). This was fol-
lowed by the transfer of preprocessed antigenic peptides from melanoma cells to 
dendritic cells, which then presented those peptides on their surface and activated 
cytotoxic T cells against the tumor antigen. Correspondingly, melanoma cells in 
which Cx43 had been silenced, failed to elicit a cytotoxic antitumor response after 
infection with bacteria (Saccheri et al. 2010).

In addition to the discussed in vitro data, there are also a number of studies on 
human melanoma tissue. Using immunofluorescence on human tissue samples, we 
did not detect Cx43 (nor Cx26 and Cx30) in nevi, primary melanomas, or cutaneous 
melanoma metastases, while the internal controls (adjacent epidermis) were positive 
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in the expected layers (Haass et al. 2006, 2010). In contrast, using immunohisto-
chemistry, other groups reported Cx43 expression in human melanoma tissue, higher 
than in human nevi (Rezze et al. 2011; Sargen et al. 2013). However, neither of these 
studies provided high magnification images to confirm the subcellular localization 
nor did they show appropriate positive and negative controls. Indeed, in both studies, 
Cx43 expression in melanoma cells appeared to be cytoplasmic and hence would 
argue for a cell–cell or cell–matrix communication-independent role of these con-
nexins. This would not support the mechanism for melanoma survival in brain metas-
tasis proposed by Lin and colleagues, who showed that reactive astrocytes protect 
metastatic melanoma cells in the brain from chemotherapy by sequestering intracel-
lular calcium through direct cell–cell communication (Lin et al. 2010). Moreover, in 
the Rezze and Sargen studies, the expression pattern of Cx43 in nevi and different 
melanoma stages appeared very variable and the typical Cx43 staining in the epider-
mis was missing (Rezze et al. 2011; Sargen et al. 2013). An Oncomine analysis of 
human tissue showed that increased Cx43 (and Cx26) gene expression in primary 
lesions correlated with metastasis and poor patient survival (Stoletov et al. 2013).

Cx26 and Cx30 are much less studied. Cx26 was found to be upregulated in the 
highly aggressive BL6 sub-line of B16 mouse melanoma cells compared to the less 
aggressive F10 sub-line (Ito et al. 2000). F10 cells transfected with wild-type Cx26 
exhibited similar metastatic behavior to the BL6 cells. Correspondingly, BL6 cells 
transfected with a dominant-negative Cx26 mutant showed the less aggressive 
behavior characteristic of F10 cells. Cx26 was not found to be expressed in human 
melanoma in situ but was upregulated in invasive melanomas (Ito et al. 2000). 
However, in this study, Cx26 staining in both melanoma cells and epidermal kerati-
nocytes was cytoplasmic. Moreover, the study did not distinguish between Cx26 
and Cx30. In contrast, we showed in immunofluorescence studies on human mela-
noma tissue samples, that all areas of melanocytic nevi, primary melanomas, and 
cutaneous melanoma metastases lacked Cx26 and Cx30 expression (Haass et al. 
2006, 2010) – similar to our findings in Merkel cell carcinoma (Haass et al. 2003a). 
This was confirmed by other groups who did not detect Cx26 in melanoma using 
immunohistochemistry on human tissue samples (Sargen et al. 2013) or did not find 
Cx26 and Cx30 expression in human melanoma cell lines using qRT-PCR (Zucker 
et al. 2013). Contrastingly, a positive correlation between Cx26 expression and 
metastatic potential was reported using Cx26 shRNA in B16 mouse melanoma cells 
(Stoletov et al. 2013). This was supported by an Oncomine analysis of human tis-
sue, which showed that increased Cx26 expression in primary lesions correlated 
with metastasis and poor patient survival (Stoletov et al. 2013).

Interestingly, loss of Pannexin 1, a channel-forming glycoprotein remotely 
related to connexins, attenuated melanoma progression by reversion to a melanocyte- 
like phenotype (Penuela et al. 2013).

The Oncomine data (Stoletov et al. 2013) do not seem to match the data on pri-
mary melanomas in other studies; however, it would be interesting to re-analyze 
these data more in detail. As there appears to be a correlation to tumor thickness, is 
there no or little expression on thin tumors and a differential expression pattern in 
different areas of thick melanomas?

9 Cell–Cell Contacts in Melanoma and the Tumor Microenvironment



250

The discrepancies between the different studies in Cx43, Cx26, and Cx30 in 
melanoma may be due to the following reasons:

 1. Several studies investigated the molecules on mRNA level only. The presence of 
mRNA does not necessarily mean that the respective protein is present.

 2. In tissues, it is difficult to separate between connexins present in melanoma cells 
and those present in epidermal, mesenchymal, or endothelial tissues enclosed by 
the tumor.

 3. Immunohistochemistry is often dependent on staining conditions and can result 
in false-positive and false-negative results. Appropriate positive and negative 
controls showing the sensitivity and specificity of the antibody are indispensable 
for the interpretation of these results. For example, the Cx26 antibody used in 
some of the discussed studies shows cross-reactivity with Cx30.

Importantly, most of the apparent discrepancies in this paragraph can be explained 
by a model, which implies that connexins are tumor suppressors during early mela-
nomagenesis but tumor drivers during metastasis (Cronier et al. 2009). During early 
melanomagenesis, the respective connexins are typically located in the cell mem-
branes indicating that they are functioning through GJIC. In contrast, in advanced 
stages, connexins are typically located in the cytoplasm indicating a different func-
tion – possibly through interaction with signaling molecules.

9.5.6  Connexins in the Epidermal Tumor Environment 
of Melanoma

Keratinocytes communicate with melanocytes but not with melanoma cells via 
GJIC; instead, melanoma cells communicate among themselves and with fibro-
blasts and endothelial cells (Hsu et al. 2000). This switch in communication part-
ners coincides with the E- to N-cadherin switch, suggesting that the gain of 
N-cadherin with the concurrent loss of E-cadherin facilitates GJ formation with 
fibroblasts and endothelial cells (Hsu et al. 2000). Additionally, GJ formation in 
human melanoma cell lines appears to require MCAM (Satyamoorthy et al. 2001). 
This switch will allow melanoma cells to de-couple from the epidermal microenvi-
ronment and to communicate with cell types important for their metastatic spread. 
Several studies have suggested that connexins may promote metastasis in mela-
noma and other tumors by forming intercellular connections between cancer cells 
and vascular endothelium that are able to initiate tumor cell diapedesis (Hsu et al. 
2000; Villares et al. 2009; el-Sabban and Pauli 1991, 1994; Saito-Katsuragi et al. 
2007; Pollmann et al. 2005). Melanoma cells expressing higher levels of Cx43 show 
increased coupling to vascular endothelial cells (el-Sabban and Pauli 1991) and the 
ability of tumor cells to metastasize appears to correlate with the ability of tumor 
cells to communicate with endothelial cells (Pollmann et al. 2005). Also, Cx26 may 
contribute to the metastasis of melanoma by facilitating communication between 
melanoma cells and their surrounding endothelial cells (Saito-Katsuragi et al. 2007). 
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Cx26 expression is associated with lymphatic vessel invasion and poor prognosis in 
human breast cancer (Naoi et al. 2007).

Melanoma brain metastases are surrounded and infiltrated by astrocytes, and 
these astrocytes can play a role similar to their established ability to protect neurons 
from apoptosis (Lin et al. 2010). In co-culture experiments, astrocytes reduced 
apoptosis in human melanoma cells treated with various chemotherapeutic drugs. 
This chemoprotective effect was dependent on physical contact and GJIC between 
astrocytes, which express high levels of Cx43, and tumor cells. Moreover, the pro-
tective effect of astrocytes resulted from their sequestering calcium from the cyto-
plasm of tumor cells. These data suggest that brain metastases can harness the 
neuroprotective effects of reactive astrocytes for their own survival (Lin et al. 2010). 
In a chick embryo model, B16 mouse melanoma cells, which express Cx26 but not 
Cx43, colonized the chicken brain forming numerous microtumors invading along 
the preexisting vasculature (Stoletov et al. 2013). In contrast, Cx26 knockdown B16 
cells formed significantly fewer and less invasive tumors, suggesting that in meta-
static melanoma cells Cx26 expression enhances microtumor formation in the brain 
in association with the existing vasculature (Stoletov et al. 2013).

While these studies demonstrate the interaction of melanoma cells with the 
stroma and the role of connexins and/or GJIC in the early and late steps of melano-
magenesis, interactions between melanoma and the epidermal tumor microenviron-
ment (ETM) – the multilayered epithelium of the skin – are poorly understood. In 
this regard, we have demonstrated the induction of Cx26 and Cx30 in the epidermis 
adjacent to malignant tumors (e.g., melanoma and Merkel cell carcinoma), but not 
in the epidermis adjacent to benign tumors (e.g., melanocytic nevi and angiomas) 
(Haass et al. 2003a, 2006). Subsequently, we found correlation between (a) tumor 
thickness (Breslow index) and vertical Cx26 and Cx30 expression in the ETM, (b) 
tumor thickness and horizontal Cx26 dissemination in the ETM, (c) metastasis and 
horizontal Cx26 expression in the ETM, and (d) vertical epidermal expression pat-
terns of Cx26 and Cx30 and the proliferative index in the ETM. We thus provided 
evidence for the association of ETM alteration with tumor malignancy and progres-
sion (Haass et al. 2010). The results of this study, which included dysplastic nevi as 
well as thin melanomas which are often difficult to distinguish (reviewed in Haass 
and Smalley 2009), suggest that membrane expression of Cx26 and Cx30 in the 
epidermal tumor microenvironment may be a useful diagnostic aid for the distinc-
tion of melanomas and melanocytic nevi (Haass et al. 2010). As neither Cx26 nor 
Cx30 are expressed in the melanoma itself, but both are induced in its tumor micro-
environment, they may be useful complementary melanoma markers.

Cx26 and Cx30 upregulation in the epidermal tumor microenvironment did not 
correlate with the proliferative index of the melanoma cells, but correlated signifi-
cantly with the proliferative index in the epidermis. In transgenic mice expressing 
Cx26 ectopically, proliferation was increased in the epidermis (Djalilian et al. 
2006), suggesting that Cx26 influences keratinocyte proliferation and not vice 
versa. Interestingly, Cx26 overexpressing mice showed a delay in wound healing, 
which needs to be explored with regards to ulceration, a biomarker associated with 
very poor prognosis for melanoma patients (Balch et al. 2001). In our study, all 
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melanomas with ulceration showed Cx26 (and Cx30) expression in all layers of the 
epidermal tumor microenvironment (Haass et al. 2010). Induction of angiogenesis 
by the hyperplastic epithelium could stimulate growth and progression of mela-
noma (McCarty et al. 2003). This suggests a positive feedback mechanism: tumor 
cells induce alterations in keratinocytes, which results in the production of growth 
factors which, in turn, stimulate tumor survival via endothelial cells. The induction 
of Cx26 and Cx30 in the epidermis adjacent to melanoma putatively leading to 
GJIC or signaling via hemichannels may play a role in this feedback mechanism by 
inducing proliferation and other functions. An interruption of this vicious circle 
may provide a novel therapeutic approach.

9.6  Tight Junctions

In simple epithelia and endothelia, tight junctions (TJs) are responsible for the for-
mation and maintenance of the tissue barrier between distinct compartments by 
controlling the paracellular pathway (“barrier function”) (reviewed in Stevenson 
and Keon 1998; Tsukita et al. 2001). Subsequently, the involvement of TJs in the 
barrier function of a complex epithelium, the epidermis, was shown (Pummi et al. 
2001; Brandner et al. 2002, 2003; Furuse et al. 2002; Langbein et al. 2002). In addi-
tion, TJs prevent the diffusion of membrane proteins and lipids from the apical to 
the basolateral side of an epithelial cell sheet, helping to maintain cell polarity 
(“fence function”) (reviewed in Mitic and Anderson 1998; Tsukita et al. 2001). 
Therefore, TJs are crucial for the epithelium to generate chemical and electrical 
gradients that is necessary for vectorial transport processes such as absorption and 
secretion (reviewed in Martin and Jiang 2009). Moreover, TJ molecules act as inter-
mediates and transducers in cell signaling, thus playing a role in the processes of 
polarity, cell differentiation, cell growth, and differentiation. Finally, TJs act as cell–
cell adhesion molecules and as a barrier to cell migration (reviewed in Martin and 
Jiang 2009).

TJs are composed of integral transmembrane proteins (claudin 1–24, occludin, 
and junctional adhesion molecules A-C, 4 (JAMs)), peripheral plaque proteins 
(zonula occludens (ZO) proteins 1–3, MAGI 1–3, MUPP-1, PAR-3, PAR-6, AF-6, 
CASK, and CAROM), and associated proteins (symplekin, ZONAB, cingulin, Rab- 
13, Rab-3B, c-src, α-catenin, PKA, ZAK, and Rho GTPases). The molecular com-
position of TJs is highly complex and varies according to the cell type and degree of 
differentiation. TJ molecules from neighboring cells associate and form paired 
strands which seal the paracellular pathway and which contain aqueous pores or 
paracellular channels, explaining the ion and size selectivity for passaging mole-
cules of TJ (Tsukita and Furuse 2000).

In cancer, disruption of TJs should occur in three critical steps: (1) detachment of 
the tumor cell from the primary tumor, (2) intravasation of the tumor through the 
endothelium, and (3) extravastion of the circulating tumor cell (reviewed in Martin 
and Jiang 2009). Early studies have shown a correlation between lack of TJs and 
tumor differentiation and there is evidence that TJs need to be overcome by cancer 
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cells in order to metastasize (reviewed in Martin and Jiang 2001, 2009). Cancer 
cells frequently exhibit deficiencies in TJ function, as well as decreased differentia-
tion and cell polarity (Weinstein et al. 1976; Soler et al. 1999). Loss of TJ integrity 
may be particularly important in allowing the diffusion of nutrients and other fac-
tors necessary for the survival and growth of the tumor cells (Mullin et al. 1997). In 
addition, decreased polarity and differentiation may be important for the metastatic 
phenotype, where individual cells must leave the primary site and enter the blood 
vessels to reach distant sites (Ren et al. 1990).

Electron microscopy studies in human thyroid tumors showed that TJs decrease 
in number and are attenuated during carcinogenesis, which is associated with loss 
of tumor differentiation (Kerjaschki et al. 1979). Expression of TJ proteins is 
decreased in some cancer types, e.g., ZO-1 and occludin in gastrointestinal adeno-
carcinoma (Kimura et al. 1997), occludin in epithelial-derived tumors (Li and 
Mrsny 2000), claudin 3 in glioblastoma multiforme (Wolburg et al. 2003), claudin 
1 in sporadic and hereditary breast cancer (Kramer et al. 2000), and claudin 7 in 
ductal carcinoma of the breast (Kominsky et al. 2003). On the other hand, some TJ 
molecules appear to be upregulated in some cancers. We found protein expression 
of claudins 3, 4, and 5, occludin, and ZO-1 in Merkel cell carcinoma cells (Haass 
et al. 2003b). Strikingly, expression of some claudin family members is highly ele-
vated in various human cancers, e.g., claudin 7 in two breast cancer cell lines (Nacht 
et al. 1999), claudin 1 in colorectal cancer (Miwa et al. 2000), and claudins 3 and 
4 in ovarian (Hough et al. 2001; Rangel et al. 2003) and prostate cancer (Long et al. 
2001).

The expression of TJ proteins in melanoma tissues and cultured melanoma cells 
was described on RNA and on protein level (Cohn et al. 2005; Smalley et al. 2005; 
Leotlela et al. 2007; Schmitt et al. 2007; Morita et al. 2008). In a tissue array study, 
Claudin-1 was found to be significantly reduced in metastatic melanoma (Cohn 
et al. 2005). These data were, however, directly contradicted by another study 
(Leotlela et al. 2007). In this study Claudin-1 appeared to contribute to melanoma 
cell invasion, as transient transfection of melanoma cells with Claudin-1 increased 
metalloproteinase 2 (MMP-2) secretion and activation, and subsequently, motility 
of melanoma cells as demonstrated by wound-healing assays. Conversely, knock-
down of CLDN1 by siRNA resulted in the inhibition of motility, as well as decreases 
in MMP-2 secretion and activation (Leotlela et al. 2007).

In contrast to most cancers, where levels of ZO-1 are typically downregulated, 
leading to increased motility, we found that ZO-1 expression is upregulated in mela-
noma cells and is located at adherens junctions between melanoma cells and fibro-
blasts (Smalley et al. 2005). Immunofluorescence and co-immunoprecipitation 
studies showed co-localization of ZO-1 with N-cadherin. Downregulation of 
ZO-1 in melanoma cells through RNA interference produced marked changes in 
cell morphology – leading to a less dendritic, more rounded phenotype. Consistent 
with a role in N-cadherin-based adhesion, RNAi-treated melanoma cells were less 
adherent and invasive when grown in a collagen gel. These data provided the first 
evidence that increased ZO-1 expression in melanoma contributes to the oncogenic 
behavior of this tumor and further illustrated that protein products of genes, such as 
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ZO-1, can function in either a pro- or anti-oncogenic manner when expressed in 
different cellular contexts (Smalley et al. 2005).

In summary, while it appears that functional TJs may be tumor suppressors, the 
upregulation of certain TJ proteins can contribute to oncogenic behavior. The relation-
ship between TJ protein overexpression and cancer initiation or progression is thus 
unclear at present, but may be explained by the lack of functional TJs and that the upreg-
ulated TJ proteins therefore likely function through TJ-independent mechanisms.
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10Regulation of Apoptosis in Melanoma 
Cells: Critical Targets for Therapeutic 
Strategies

Jürgen Eberle and Lothar F. Fecker

10.1  Introduction: Critical Roles of Apoptosis Deficiency 
for Melanoma

While the incidence of most solid tumors has decreased or stabilized in the last 
decades, melanoma incidence continued to rise with approximately 3 % per year 
(Siegel et al. 2014). The until recently almost unbroken high mortality resulted from 
an early dissemination associated with pronounced chemotherapy resistance. In the 
past, neither chemotherapy regimens nor biotherapy (IL-2 and IFN-α) or vaccina-
tion protocols could significantly improve the fatal situation of metastasized mela-
noma patients (Fang et al. 2008; Garbe et al. 2012). This has changed recently with 
the development of selective BRAF inhibitors and targeted immune modulators 
such as anti-CTLA4 and anti-PD1, which for the first time could significantly 
improve the overall survival (Menzies and Long 2014; Hughes et al. 2015). 
Nevertheless, after initial tumor reduction and clinical improvement, tumor relapse 
and therapy resistance often follow within only a few months (Chen and Davies 
2014), thus challenging for combination therapies that may further improve the 
clinical outcome.

Although different cellular mechanisms may contribute to therapy resistance in 
cancer, apoptosis deficiency appears as a major cause. This is explained by the fact 
that the final elimination of cancer cells by proapoptotic programs represents a 
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common final path of most anticancer therapies. For example, different chemothera-
peutic drugs cause cellular or DNA damage, which induces cell-intrinsic proapop-
totic pathways, and also, BRAF inhibitors have been related to an induction of 
apoptosis or sensitization for proapoptotic programs (Eberle et al. 2007b; Beck 
et al. 2013; Berger et al. 2014). Furthermore, immune stimulation results in cyto-
toxic T-lymphocytes, which express death ligands to trigger extrinsic proapoptotic 
pathways in target cancer cells (Martinez-Lostao et al. 2015).

Proapoptotic pathways serve as essential safeguard mechanisms preventing 
the growth of abnormal tumor cells in multicellular organisms (Eberle et al. 
2007a). Thus, intrinsic proapoptotic pathways are activated by different kinds of 
cellular stress situations and dysfunction, also including typical characteristics 
of cancer cells as oncogene activation. Furthermore, the elimination of cancer 
cells in an immune response is based on the extrinsic induction of apoptosis. 
Thus, resistance to apoptosis appears as a prerequisite of early cancer growth, 
and in the second run, it may enable tumor cells to survive anticancer therapy 
(Hanahan and Weinberg 2011).

Melanoma is a particular example for pronounced chemotherapy resistance and 
large resistance to immune cells. The latter is suggested by the frequently high immu-
noreactivity in initial tumor stages and high numbers of tumor-infiltrating lympho-
cytes (Fig. 10.1). Nevertheless, the tumor grows and may finally form metastases. 
Thus, the sensitization of melanoma cells for apoptosis may support the therapeutic 
effects both of BRAF inhibitors (intrinsic proapoptotic pathways) and of immuno-
therapy due to a strengthening of extrinsic proapoptotic pathways (Fig. 10.2).

Fig. 10.1 Immunogenicity of melanoma. Massive lymphocytic tumor infiltrates are seen in a sec-
tion of a primary melanoma. Lymphocytes: gray with small nuclei. Melanoma cells: stained red by 
S100 antibody
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Apoptosis deficiency is based on an inactivation of proapoptotic factors or the 
activation of antiapoptotic factors. Both options are linked to activated survival 
pathways. In normal tissues, homeostasis is maintained by a well-balanced equilib-
rium of cell proliferation and cell death. In this way, programmed cell death (apop-
tosis) represents an active cellular process, whose physiological endpoint is 
phagocytosis by macrophages or neighboring cells (Kerr et al. 1972). Due to this 
key function, apoptosis pathways are tightly regulated. Various cellular options for 
counter-regulation, necessary for the survival of normal cells, abet tumor cells to 
escape from apoptosis control.
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Fig. 10.2 Signaling pathways for regulation of apoptosis. Extrinsic proapoptotic pathways (left) 
are triggered by death ligands released from immune cells in an immune response, whereas intrin-
sic proapoptotic pathways (right side) are initiated upon cellular damage via p53 activation or via 
proapoptotic kinases. Kinases are affected in the opposite way by survival pathways, e.g., the 
BRAF-initiated MAP kinase pathway. Prosurvival and proapoptotic kinases in particular control 
the activity of antiapoptotic Bcl-2 proteins (Bcl-2, Bcl-xL, A1, Mcl-1, and Bcl-w) as well as the 
proapoptotic BH3-only proteins. Two multiprotein complexes, the death-inducing signaling com-
plex (DISC) and the apoptosome are employed for caspase activation. Caspase 8/10 binding to the 
DISC is mediated by the adaptor protein FADD and the interaction of death domains (orange) and 
death effector domains (green), while binding of caspase-9 to the apoptosome is mediated by the 
caspase recruitment domains (orange). The caspase-8/-10 homolog cFLIP inhibits activation of 
the initiator caspases at the DISC, while cIAPs block effector caspases (-3, -6, -7). FADD, Fas- 
associated death domain; Csp, caspase; tBid, truncated Bid; APAF-1, apoptotic protease-activating 
factor-1; ATP, adenosine triphosphate; Cyt C, cytochrome C; BH3-only, BH3-only proteins. 
c-FLIP cellular homolog of FLICE-inhibitory protein, c-IAPs cellular inhibitor of apoptosis pro-
teins, CM cytoplasmic membrane. Scissors indicate protease activity
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10.2  Intrinsic Apoptosis Pathways

Intrinsic proapoptotic pathways can be induced by different kinds of cellular stress situ-
ations as by DNA damage, hypoxia, oncogene activation, or other intrinsic problems. 
They can be mediated by the tumor suppressor and transcription factor p53 or by pro-
apoptotic kinases (Fig. 10.2). P53 is negatively regulated by ubiquitin ligation through 
HDM-2 resulting in its early degradation. In response to cellular stress situations, it is 
stabilized by different kinds of protein modifications as by phosphorylation. Apoptosis 
by p53 is related to transcriptional upregulation of death receptors and proapoptotic 
Bcl-2 proteins as Bax, Noxa, Puma, Bik/Nbk, and Bid (Zuckerman et al. 2009).

The large family of pro- and antiapoptotic Bcl-2 proteins control mitochondria- 
mediated apoptosis pathways. Bcl-2 proteins are characterized by up to four con-
served Bcl-2 homology domains (BH1–BH4) (Fig. 10.3). Whereas most 
antiapoptotic proteins as Bcl-2 share all four domains, proapoptotic proteins subdi-
vide in multidomain proteins as Bax, Bak, and Bok which enclose BH1, BH2, and 
BH3 as well as the large subfamily of BH3-only proteins (Chipuk et al. 2010). Other 
proteins reveal further domain combinations. Thus, Bcl-xS (BH3, BH4) and Bcl-xAK 
(BH2, BH4), which derive from the Bcl-x gene by alternative splicing, showed char-
acteristic proapoptotic functions in melanoma cells by activating the Bak or the Bax 
and Bak pathway, respectively (Plötz et al. 2012a, b).

Multidomain proapoptotic proteins as Bax and Bak are believed to induce pores 
in mitochondrial membranes for release of mitochondrial factors, such as cyto-
chrome C. They are negatively controlled by antiapoptotic Bcl-2 family members, 

Bax, Bak, Bok

Bcl-xS

Bcl-xAK

Bcl-2, Bcl-xL, Bcl-w
A1/Bfl-1, Mcl-1Antiapoptotic

Proapoptotic
multidomain

Proapoptotic
BH3-only

BH4 BH3 BH1 BH2 TM

Nbk, Bim, Hrk, Bnip3

Bid, Bad, Noxa, Bmf, 
Puma, Spike

Fig. 10.3 Structure of pro- and antiapoptotic Bcl-2 proteins. A schematic view is given of the 
principle structures of Bcl-2 proteins. The presence of up to four Bcl-2 homology domains (BH) is 
indicated. Unlike the schematic view, Bcl-2 proteins have variable lengths. Besides the main 
groups of multidomain antiapoptotic, multidomain proapoptotic (Bax/Bak group), and BH3-only 
proteins, two proapoptotic splice variants of Bcl-x with an unusual domain structure are shown. 
BH3-only proteins may have a transmembrane domain (TM) or not
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which neutralize proapoptotic Bcl-2 proteins through heterodimerization, thus pro-
tecting the mitochondrial membrane integrity. Finally, BH3-only proteins function 
as sensors in apoptosis control. When activated by cellular stress signals, they bind 
to antiapoptotic Bcl-2 proteins thus to free Bax and Bak. Some were even reported 
to activate Bax in a direct way as Bid and Bim (Chipuk et al. 2010).

Bax and Bak are mutually exchangeable, seen in mice deficient for either one of 
the two. These mice are viable, whereas the double knockout strongly impairs devel-
opmental apoptosis, resulting in perinatal death. Also cultured cells deficient for both 
proteins are largely apoptosis-resistant (Lindsten et al. 2000). Deficiency of Bcl-xL is 
also lethal, whereas Bcl-2 knockout mice are viable, but reveal developmental defects 
particularly concerning increased apoptosis in melanocyte precursors, thus underlin-
ing the particular role of Bcl-2 for the melanocytic lineage (Korsmeyer 1999).

The balance between pro- and antiapoptotic Bcl-2 proteins controls the permea-
bility of the outer mitochondrial membrane. Once a certain threshold is reached, a 
rapid release of mitochondrial intermembrane factors is induced, which exert spe-
cific proapoptotic functions in the cytoplasm, as reported for cytochrome C, endo-
nuclease G, AIF (apoptosis-inducing factor), Smac/DIABLO, and HtrA2/Omi. Thus, 
cytochrome C released into the cytosol induces formation of the apoptosome, a pro-
tein complex consisting of Apaf-1, ATP, cytochrome C, and the initiator caspase- 9 
(Chipuk et al. 2010). Here, caspase-9 is activated by induced proximity, which initi-
ates a subsequent caspase signaling cascade. Caspases (aspartate-specific cysteine 
proteases) represent hallmarks in apoptosis. They are synthesized as inactive zymo-
gens and activate each other by proteolytic processing. Proapoptotic caspases sepa-
rate in initiator caspases (2, 8, 9, and 10) and effector caspases (3, 6, and 7), which 
have a large number of cellular target proteins (Pop and Salvesen 2009) (Fig. 10.2).

10.3  Extrinsic Apoptotic Pathways

Cytotoxic T-lymphocytes and natural killer cells employ death ligands as tumor 
necrosis factor (TNF-α), CD95L/FasL, and TNF-related apoptosis-inducing ligand 
(TRAIL), which trigger extrinsic apoptosis in target cells (Fig. 10.2) (Chan and 
Housseau 2008). They bind to four death receptors (TNF-R1, CD95, TRAIL-R1/
DR4, and TRAIL-R2/DR5), whereas decoy receptors (DcR 1–3 and OPG) do not 
forward the proapoptotic signal (Fig. 10.4). Characteristic for the proapoptotic pro-
gram is receptor oligomerization upon ligand binding and formation of membrane- 
bound, death-inducing signaling complexes (DISC). Here, attached initiator 
caspases (8 and 10) become activated due to induced proximity and/or autocatalytic 
proteolysis. Besides their proapoptotic function, death receptors may also activate 
NF-kB and MAPK-related pathways, and NF-kB is also activated by TNF-R2, 
which does not trigger caspases (Guicciardi and Gores 2009) (Fig. 10.4). The 
NF-kB-mediated transcriptional activation of antiapoptotic proteins as c-FLIP, Bcl- 
xL, and c-IAPs may enable a balanced response to death signals (Karin 2006).

Thus, both extrinsic and intrinsic pathways result in the activation of initiator 
caspases, which in turn promote a caspase cascade leading to active effector 
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caspases. These cleave a large subset of cellular proteins (death substrates) includ-
ing enzymes for DNA repair and modification as well as signaling and structural 
proteins, in this way reprogramming the cell for apoptosis (Fischer et al. 2003). 
Crosstalk between the pathways may lead to mutual enhancements, e.g., transacti-
vation of death receptors by p53 or cleavage and activation of the proapoptotic 
Bcl-2 protein Bid by caspase-8. Truncated Bid is a BH3-only protein and involved 
in activation of the mitochondrial pathway (Fig. 10.2).

10.4  Less Obvious Roles of p53 in Melanoma

The tumor suppressor gene p53 is mutated in around 50 % of human cancer cases but 
only in 10–20 % of human melanoma (Mar et al. 2013). Nevertheless, the tumor- 
suppressive function of p53 in melanoma cells is largely lost. The important role of p53 
for suppression of melanoma growth is suggested by the rapid proliferation of 
BRAFV600E-mutated melanocytes on loss of p53 function (Yu et al. 2009). Inactivation 
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Fig. 10.4 Death receptors and death ligands. Receptors of TNF-α, CD95L/FasL, and TRAIL are 
shown. They enclose four death receptors, characterized by the death domain (black), four decoy 
receptors (DcR, OPG), and TNF-R2. While the death domain is lacking or not functional in DcR-1 
and DcR-2, respectively, DcR-3 and OPG lack a functional transmembrane domain. Finally, the 
cytoplasma domain of TNF-R2 does not trigger DISC formation but a complex to activate 
NF-kB. The four death receptors can activate both pathways (caspases and NF-kB). FADD, Fas- 
associated death domain; TRADD, TNF receptor-associated death domain; TRAF, TNF receptor- 
associated factor; CM, cytoplasma membrane. Outside the cytoplasma membrane, the receptors 
have 2–4 cysteine-rich domains (hexagons)
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of the p53 pathway may also result from overexpression/amplification of its antago-
nists MDM2 and MDM4 as well as from mutation/deletion of CDKN4, which encodes 
the cell cycle inhibitor p16 as well as the MDM2 inhibitor p14ARF (Lu et al. 2014).

In addition, p53 transcriptional activity may be modulated. Thus, p53 frequently 
found accumulated in the nucleus of melanoma cells seems to exhibit only little tran-
scriptional activity, likely indicative for a post-translational inactivation. Accordingly, 
melanoma cell lines with wild-type p53 did not respond to exogeneous p53 overex-
pression, whereas apoptosis was induced in p53-mutated melanoma cells by overex-
pression of a functional p53 (Satyamoorthy et al. 2000). Transcriptional activity of 
p53 is critically modulated by the evolutionarily conserved ASPP family of proteins. 
Thus, phosphorylated nuclear iASPP was found in 90 % of wild-type p53-expressing 
melanoma cell lines. Compared to unphosphorylated cytoplasmic iASPP, phosphory-
lated nuclear iASPP binds p53 better and is more potent in inhibiting p53’s apoptotic 
function. Furthermore, high levels of phosphorylated nuclear iASPP are associated 
with poor survival in melanoma patients (Lu et al. 2013).

10.5  Role of Caspase Downregulation and Inhibitor 
of Apoptosis Proteins

The initiator caspases 8 and 10, which are essential for death ligand-induced apop-
tosis (Fig. 10.2), are frequently downregulated in tumors, which may result from 
gene silencing by DNA methylation. In melanoma cell lines, both caspases are 
highly expressed but are downregulated in cells selected for TRAIL resistance 
(Kurbanov et al. 2007).

Many proapoptotic pathways merge at the level of effector caspases, which are 
suppressed by cIAPs (Nachmias et al. 2004). In melanoma, expression of survivin, 
livin/ML-IAP, and X-linked IAP (XIAP) correlated with drug resistance, progres-
sion, and survival, and their downregulation increased melanoma cell chemosensi-
tivity in vitro and in xenotransplants (Yan et al. 2006). The antiapoptotic function of 
XIAP in melanoma cells, which is antagonized by Smac release, is suggested by an 
incomplete processing of caspase-3 upon TRAIL treatment. The role of the Smac/
XIAP rheostat in TRAIL-induced apoptosis was proven by XIAP overexpression 
and/or by Smac knockdown, which both protected melanoma cells from TRAIL- 
induced apoptosis (Hornle et al. 2011; Quast et al. 2012; Berger et al. 2013). High 
XIAP activities thus appear as one of the major barriers for efficient apoptosis 
induction in melanoma (Quast et al. 2014).

10.6  The Role of Bcl-2 Proteins in Melanoma Apoptosis 
Resistance

The mitochondrial, proapoptotic pathway is critically controlled by three groups of 
Bcl-2 proteins (Figs. 10.2 and 10.3). The expression of both antiapoptotic proteins 
as Bcl-2, Bcl-xL, and Mcl-1 as well as many proapoptotic proteins as Bax, Bak, Bid, 
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Bad, PUMA, and Noxa was reported in melanoma cells. A high Bcl-2/Bax ratio 
correlated to apoptosis resistance, and exogeneous Bcl-2 overexpression almost 
abrogated melanoma cell sensitivity for many strategies as CD95L, TRAIL, 
ceramide and kinase inhibitors (Eberle et al. 2007b; Quast et al. 2014). Expression 
and activity of antiapoptotic Bcl-2 proteins is controlled by different survival path-
ways (Fig. 10.2), e.g., Bcl-2 is controlled by microphthalmia-associated transcrip-
tion factor (MITF) or Bcl-xL is controlled by NF-kB (Eberle et al. 2007b; Karin 
2006).

Despite the significant role of Bcl-2 in melanocyte cell survival, its contribution 
to chemoresistance of metastasized melanoma remains unclear because Bcl-2 levels 
did not correlate with prognosis in primary melanoma and even reduced expression 
was found in metastases, whereas Bcl-xL and Mcl-1 were upregulated (Zhuang et al. 
2007). On the other hand, several proapoptotic Bcl-2 proteins may be upregulated 
in course of chemotherapy or kinase inhibition. Thus, taurolidine-induced apoptosis 
in melanoma cells correlated with enhanced Bax and reduced Bcl-2 expression (Sun 
et al. 2007), or Puma and Bim were upregulated by BRAF inhibition (Beck et al. 
2013; Berger et al. 2014). Particularly, the expression of proapoptotic Bcl-2 proteins 
as Bax and Bak appears of prognostic value, as their downregulation in primary 
melanomas was correlated with unfavorable prognosis (Fecker et al. 2006), and 
inactivation of Bax appeared as a critical step in TRAIL resistance of melanoma 
cells (Quast et al. 2014).

Thus, high expression of antiapoptotic Bcl-2 proteins in melanoma and/or low 
activity of proapoptotic family members may elevate the threshold for an activation 
of the mitochondrial pathway and may thus critically contribute to chemoresistance. 
In agreement, significant induction of apoptosis was enabled by overexpression of 
different proapoptotic Bcl-2 proteins in melanoma (Eberle et al. 2007b; Plötz et al. 
2012a, b; Plötz et al. 2013).

10.7  Blockage of Death Receptor–Mediated Pathways 
in Melanoma

Despite a high immunoreactivity, proliferating melanomas withstand apoptosis 
induction by immune cells (Fig. 10.1). Expression of TNF-α, CD95L, and TRAIL 
was proven for melanoma-infiltrating lymphocytes (Thomas and Hersey 1998). 
This indicates a high selective pressure for melanomas to acquire death ligand resis-
tance. Accordingly, molecular changes in the death receptor-mediated pathways are 
frequently seen. Thus, melanoma cell lines often reveal resistance to CD95 activa-
tion, and cultures of metastases were more resistant than those of primary tumors. 
Loss of CD95 expression and missense mutations in the death domain as well as 
high Bcl-2 or Mcl-1 expression have been related to resistance to CD95 (Chetoui 
et al. 2008; Eberle et al. 2007b).

Also, resistance to TNF-α and loss of TNF-R1 have been reported for melanoma 
cells, which may be correlated to promoter hypermethylation (Kaminski et al. 
2004). In contrast, neither mutations of TRAIL death receptors nor involvement of 
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decoy receptors (DcR-1, DcR-2) have been identified in melanoma cells so far. 
However, expression of TRAIL-R1, which mediates high TRAIL sensitivity in mel-
anoma cells when expressed, was frequently lost. In contrast, TRAIL-R2 is consti-
tutively expressed, but the downstream pathways may be inactive as shown in 
melanoma cell lines (Kurbanov et al. 2005). Inactivation of TRAIL-R2 may result 
from its decreased glycosylation or from high c-FLIP expression (Wagner et al. 
2007; Geserick et al. 2008).

Whereas no clear correlation was found to the expression of antiapoptotic fac-
tors, TRAIL resistance in TRAIL-selected melanoma cells clearly correlated with 
downregulation of proapoptotic regulators as initiator caspases, DR4 and BH3-only 
proteins (Kurbanov et al. 2007). Furthermore, melanoma resistance to TRAIL was 
explained by three major steps, namely, high levels of antiapoptotic Bcl-2 proteins, 
high levels of inhibitor of apoptosis proteins (cIAPs), and suppressed Bax activity 
(Quast et al. 2014).

10.8  Roles of MAP Kinase Pathways in Apoptosis Resistance

Central signaling pathways downstream of growth factor receptors as of MAPKs, 
PI3K/Akt, and NF-kB are not only critically implicated in enhanced proliferation of 
cancer cells but also in their apoptosis resistance (see also Chap. 13). As seen by 
BRAF mutations, these survival pathways are activated in melanoma. They contrib-
ute to the control of a number of apoptosis regulators either by affecting the tran-
scriptional level through regulation of respective transcription factors or by 
regulating the activity of apoptosis factors directly through phosphorylation (Eberle 
et al. 2007b).

High activity of the canonical MAPK pathway via RAF, MEK, and ERK in mel-
anoma is mainly attributed to the activating mutations in B-Raf and N-Ras (Davies 
et al. 2002). Downstream are a multitude of transcription factors that also control 
the expression of many apoptosis regulators. For example, the transcription factor 
MITF plays a particular role in apoptosis resistance of melanoma cells due to its 
upregulation of Bcl-2 as well as the cIAP Livin (Dynek et al. 2008). Further tran-
scription factors involved in apoptosis resistance have been identified within the Ets 
and CREB/ATF families, which may contribute to upregulation of also Bcl-2 or of 
Bcl-xL downstream of MAPK activation (Eberle et al. 2007b) (see also Chap. 7). An 
example for the direct regulation of apoptosis factors by kinases is the inactivation 
of the BH3-only proteins, Bad, Bim, and Puma, through phosphorylation by MAPKs 
(Inamdar et al. 2010; Beck et al. 2013; Berger et al. 2014). Thus, selective BRAF 
inhibitors induced apoptosis and/or sensitized for proapoptotic strategies, e.g., for 
TRAIL (Beck et al. 2013; Berger et al. 2014). Similarly, targeting of the MAPK 
pathway downstream of BRAF as by MEK inhibitors induced apoptosis, sensitized 
melanoma cells for TRAIL, and reduced the growth of lung metastases in mice 
(Inamdar et al. 2010; Berger et al. 2014). These effects have been related to upregu-
lation or activation of the BH3-only proteins Puma, Bim, and Bmf, downregulation 
of Mcl-1, as well as activation of Bax (VanBrocklin et al. 2009; Wang et al. 2007; 
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Quast et al. 2014). Thus, clinical efficiency of MAPK inhibitors appears as strongly 
related to enhanced apoptosis sensitivity, which may be further improved by combi-
nation therapies.

10.9  Targeting of the PI3K/Akt/mTOR Pathway

A central role in cell survival has been ascribed to the phosphoinositide 3-kinase 
(PI3K)/AKT pathway, which is related to increased chemoresistance in many 
tumors (see also Chap. 16). Akt may directly phosphorylate and inactivate several 
proapoptotic proteins such as Bax, Bad, and caspase-9, and may further inactivate 
proapoptotic transcription factors such as FoxO and p53. In addition, AKT is linked 
to the survival pathway of mTOR (mammalian target of rapamycin), which inhibits 
cell death pathways as apoptosis and autophagy (Stiles 2009). Melanomas reveal 
high immunoreactivity for activated, phosphorylated AKT, which may partly be 
related to mutations of its inhibitor phosphatase and tensin homolog on chromo-
some 10 (PTEN). Antiapoptotic activities of AKT have been described for mela-
noma cells, such as inactivation of Bad and activation of IKK (I-kB kinase) leading 
to a cross-activation of the NF-kB pathway. The critical role of the AKT survival 
pathway in melanoma was demonstrated by expression of a dominant negative AKT 
mutant, by its siRNA downregulation as well as by overexpression of PTEN, which 
all triggered apoptosis (Robertson 2005).

By using small molecule approaches, inhibition of PI3K-reduced melanoma growth 
in mice, particularly in combination with inhibition of MEK (Inamdar et al. 2010), and 
both AKT and mTOR inhibition consistently enhanced apoptosis and chemosensitivity 
of melanoma cells (Sinnberg et al. 2009). Also, the farnesyl transferase inhibitor lona-
farnib, which inhibits mTOR signaling, enhanced sorafenib- induced apoptosis in mela-
noma cells, which was related to induction of ER stress and downregulation of Mcl-1 
(Niessner et al. 2011). However, inhibitors of AKT as well as of mTOR did not result 
in significant clinical responses in metastatic melanoma patients, when used as mono-
therapy (Eberle et al. 2007b). But PI3K and AKT inhibitors showed synergistic 
enhancement of apoptosis in combination with TRAIL, which was explained by a 
novel so far not well described pathway that is based on the generation of reactive 
oxygen species (ROS) (Quast et al. 2013). Thus although inhibition of this pathway 
may not be sufficient by itself, combination strategies may be an option.

10.10  New Proapoptotic Strategies by BH3 Mimetics

To further improve the clinical efficiency of melanoma therapy, combinations of sur-
vival pathway inhibitors with proapoptotic strategies appear as highly promising. 
Frequently, chemotherapeutics were used in combinations, which cause cellular stress 
situations as DNA damage to trigger apoptosis via intrinsic pathways. A selective induc-
tion of apoptosis in cancer cells may, however, be more efficient and better tolerated.
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When considering the important role of mitochondrial proapoptotic pathways in 
melanoma, approaches that target the Bcl-2 protein family appear of particular 
interest. Thus Bcl-2 antisense strategies have been applied, which revealed in vitro 
and in mouse models significant apoptosis induction and sensitization for chemo-
therapy. However, in clinical trials in melanoma, the combination of Bcl-2 antisense 
with chemotherapy did not prove as effective enough (Bedikian et al. 2006). This 
may be related to the finding that Bcl-2 may be even downregulated in metastatic 
melanoma and may be substituted by other antiapoptotic Bcl-2 proteins (Zhuang 
et al. 2007). Thus, the simultaneous targeting of several antiapoptotic Bcl-2 proteins 
may be necessary. Alternatively, proapoptotic Bcl-2 proteins may be overexpressed 
to trigger the rheostat of pro- and antiapoptotic Bcl-2 proteins from the other side. 
The efficiency of such strategies has been demonstrated by plasmid or adenovirus- 
mediated overexpression of Bax, Bik/NBK, Bcl-xS, Bcl-xAK, and Bim (Eberle et al. 
2007b; Plötz et al. 2012a, b, 2013).

Of particular interest are effectors that mimic the BH3 domain of proapop-
totic Bcl-2 proteins. BH3 is required for the interaction between proapoptotic 
Bcl-2 proteins and the hydrophobic pocket of antiapoptotic Bcl-2 proteins 
formed by BH1, BH2, and BH3. These are peptides or small molecules structur-
ally related to BH3 domains of different proteins and may have the potential to 
block different antiapoptotic Bcl-2 proteins (Adams and Cory 2007; Plötz and 
Eberle 2014).

There are several preclinical reports on the effects of BH3 mimetics in mela-
noma. Thus, the natural BH3 mimetic gossypol, a compound of cotton seeds, 
induced cell death in melanoma cells with even higher efficacy than some che-
motherapeutics (Shelley et al. 1999). Apoptosis resistance due to high levels of 
antiapoptotic Bcl-2 proteins was overcome by the BH3 mimetic TW-37 when 
used in combination with the MEK inhibitor U0126 (Verhaegen et al. 2006). A 
synergistic induction of mitochondrial apoptosis has been reported in melanoma 
cells by combination of the BH3 mimetic ABT-737 and the proteasome inhibi-
tor MG-132, which resulted in simultaneous upregulation of Noxa (Miller et al. 
2009). Efficient induction of apoptosis has also been described for the combina-
tion of ABT-737 and a Mcl-1 knockdown (Keuling et al. 2009). A combination 
of obatoclax, a BH3 mimetic with inhibitory activity against Mcl-1, with an ER 
stress-inducing compound resulted in marked induction of apoptosis in mela-
noma cells, which was dependent on Mcl-1 inhibition and again induction of 
Noxa (Jiang et al. 2009).

New BH3 mimetics designed by computer-based modeling are presently 
developed and more effective ones, preferentially targeting several antiapop-
totic Bcl-2 proteins, may be expected in the future. Considering the high 
dependency of apoptosis induction in melanoma cells on the mitochondrial 
pathway, BH3 mimetics provide hope for an efficient targeting of melanoma  
(Plötz and Eberle 2014; Liu et al. 2015). The complex mutual regulation of 
Bcl-2 proteins, however, needs further clarification in melanoma to optimize 
these approaches.
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10.11  TRAIL as a Combination Partner

As suggested by the high immunoreactivity of melanoma (Fig. 10.1) and by its 
frequent resistance to death ligands (Kurbanov et al. 2007), strategies for enhancing 
death ligand sensitivity and for overcoming resistance appear as also highly promis-
ing. In contrast to chemotherapy, death ligands trigger apoptosis independently of 
p53 and thus may overcome drug resistance related to p53 inactivation. Although 
CD95 agonistic antibodies and TNF-α have shown efficiency in mouse xenotrans-
plants, their application in patients is largely prevented due to systemic inflamma-
tion (TNF-α) or liver toxicity (CD95L) (Kelley and Ashkenazi 2004; Trauth et al. 
1989). Their selective expression in gene therapeutic approaches, however, remains 
an alternative strategy. Thus, expression of CD95L prevented growth of melanoma 
xenotransplants in mice (Eberle et al. 2003), and its selective expression via 
melanoma- selective replication-competent adenoviral vectors appeared as an effi-
cient approach for targeting melanoma cells (Fecker et al. 2010).

As compared to TNF-α and CD95L, systemic application of TRAIL is much bet-
ter tolerated. Induction of apoptosis and eradication of xenotransplants were dem-
onstrated in a variety of tumor models, whereas toxicity for normal cells remained 
at a low level. Both TRAIL receptors (DR4 and DR5) may be targeted by recombi-
nant TRAIL or by selective agonistic antibodies, which showed efficiency and syn-
ergistic effects with chemotherapy in preclinical studies. TRAIL also demonstrated 
antitumor activities in clinical trials; it appeared, however, not as efficient enough 
when used as monotherapy, as shown in a phase III trial with agonistic DR4 anti-
bodies for therapy of patients with refractory colorectal cancer (Newsom-Davis 
et al. 2009; Trarbach et al. 2010).

All melanoma cell lines express TRAIL-R1/DR5, which may or may not medi-
ate TRAIL sensitivity. However, all melanoma cell lines that have TRAIL-R1/
DR4 in addition revealed pronounced sensitivity to TRAIL. Importantly, the major-
ity of primary melanomas are DR4-positive, as proven by immunohistochemistry, 
thus suggesting principle TRAIL sensitivity (Kurbanov et al. 2005). However, DR4- 
positive melanoma cells respond to TRAIL treatment with an inducible TRAIL 
resistance that was correlated to downregulation of DR4 and initiator caspases as 
well as to an inactivation of Bax (Kurbanov et al. 2007; Quast et al. 2014). 
Chemotherapy, which may upregulate death receptors (Singh et al. 2003), protea-
some inhibitors, which may prevent death receptor degradation (Kurbanov et al. 
2007) or IFN-γ, which may upregulate initiator caspases (Fulda and Debatin 2006), 
may thus be helpful in countering TRAIL resistance. Furthermore, several signal 
pathway inhibitors showed high efficiency in combination with TRAIL as they 
mediated Bax activation (Quast et al. 2014).

Indeed, melanoma cells could be sensitized for TRAIL by multiple different 
strategies, e.g., resveratrol (Ivanov et al. 2008), chemotherapeutics (Fecker et al. 
2011), the multi-kinase inhibitor indirubin (Berger et al. 2011), the ion channel 
inhibitor TRAM-34 (Quast et al. 2012), IKK inhibition (Berger et al. 2013), PI3K 
or AKT inhibition (Quast et al. 2013) as well as BRAF and MEK inhibition (Berger 
et al. 2014). A common principle of TRAIL sensitization appeared to be the 
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inhibition of the cell cycle by different inhibitors and the activation of Bax (Quast 
et al. 2015). Due to the multiple strategies that could sensitize melanoma cells for 
TRAIL, this ligand appears as an ideal combination partner for melanoma therapy.
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11Senescence

Helen Rizos, Sebastian Haferkamp, and Lyndee L. Scurr

11.1  Introduction

Cellular senescence is regarded as an intrinsic stress response mechanism that lim-
its the proliferative lifespan of cells. Senescence is induced by various signals, 
including telomere attrition (a response often referred to as replicative senescence), 
activated oncogenes (a process known as oncogene-induced senescence), DNA 
damage, oxidative lesions, and suboptimal culture conditions (reviewed in Collado 
and Serrano 2006). Irrespective of the initiating trigger, the hallmark of cellular 
senescence is permanent proliferative arrest, and whereas quiescent cells can be 
stimulated to resume proliferation, senescence cells cease to respond to mitogenic 
stimuli.

The limited proliferative capacity of normal human cells was recognised by 
Hayflick and Moorehead more than five decades ago (Hayflick and Moorhead 
1961). They reported that primary human fibroblasts ceased proliferating after serial 
cultivation in vitro and although these arrested fibroblasts remained metabolically 
active for many weeks, they did not initiate DNA replication despite adequate cul-
ture conditions. Replicative senescence has since been described in many normal 
somatic human cells, including epidermal keratinocytes and melanocytes as well as 
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in cells derived from rodents, birds, and several other species (Campisi 2001; Kim 
et al. 2002). The Hayflick limit is often used to refer to the maximum number of 
population doublings for any given cell population.

11.2  Characteristics of Senescent Cells

Senescent cells have been identified both in vitro and in vivo using a series of pheno-
typic features and markers that are not exclusive to the senescent state but act as pow-
erful predictors of senescence when used in combination (reviewed in Collado and 
Serrano 2006; Campisi and d’Adda di Fagagna 2007). Increased activity of acidic 
ß-galactosidase, termed senescence-associated ß-galactosidase (SA-ß-gal) is the most 
widely accepted marker of senescent cells (Dimri et al. 1995). The expression of this 

Fig. 11.1 Senescence is associated with positive SA-ß-gal activity and appearance of condensed 
chromatin. B-RAFV600E-induced senescence in human melanocytes is characterised by rapid cell 
cycle arrest (reduced Ki67), appearance of SAHF (DAPI foci), and increased SA-ß-gal activity 
(left panel). Cells enlarged to show DAPI-stained SAHF foci are indicated with arrows. SAHF are 
enriched for markers of heterochromatin, including H3K9Me and HMGA2 (right panels)

H. Rizos et al.



291

enzyme correlates strongly with the senescence state (Fig. 11.1), although it can also 
be induced by cellular stresses such as serum withdrawal and prolonged cell culture 
(Severino et al. 2000). SA-ß-gal activity derives from residual lysosomal ß-galactosi-
dase activity at the suboptimal pH 6.0 (pH 4.5 is optimal) and reflects the increased 
lysosomal content of senescent cells (Kurz et al. 2000; Lee et al. 2006). The appear-
ance of DAPI-stained heterochromatic regions, known as senescence-associated het-
erochromatic foci (SAHF) (Fig. 11.1), which promote the stable repression of certain 
E2F target genes involved in proliferation, is also associated with senescence (Narita 
et al. 2003). SAHF occur preferentially with oncogene-induced DNA replication 
stress, and although global heterochromatin marks can co-exist with cellular prolif-
eration, the accumulation of repressive chromatin marks at the promoters of E2F-
target genes is a marker of oncogene-induced senescence (Di Micco et al. 2011). Each 
SAHF contains portions of a single condensed chromosome, which is enriched for 
common markers of heterochromatin, including heterochromatin protein 1γ, histone 
H3 methylated at lysine 9 (H3K9Me), and the non-histone chromatin protein, HMGA2 
(Fig. 11.1) (Narita et al. 2003; reviewed in Adams 2007).

Several other markers of senescence have also been described and validated, 
including accumulation of the cyclin-dependent kinase (CDK) inhibitors p16INK4a, 
p15INK4b, an anti-apoptotic bcl-2 member Mcl-1, and the transcription factor Dec1 
(Collado and Serrano 2005). Levels of the p53 transcription target and CDK inhibi-
tor p21Waf1, the plasminogen activator inhibitor-1 (PAI-1) protein and miR-34 family 
of microRNAs are also elevated in senescent cells (Goldstein et al. 1994; Wong and 
Riabowol 1996; He et al. 2007). Finally, morphological changes such as cell 
enlargement with a concomitant increase in nuclear size, vacuolisation, and cell flat-
tening are typical of senescent cells in vitro (reviewed in Sharpless and Sherr 2015).

11.3  Senescent Cells In Vivo

The existence of senescence cells in vivo has important implications for multicel-
lular organisms; the onset of stress-induced premature senescence may prevent the 
development of malignant cancer, but the accumulation of damaged senescent cells 
may eventually compromise tissue integrity and prove detrimental.

11.3.1  Cellular Senescence and Cancer

The observation that aberrant activity of many oncogenes, including RAS, c-MYC, 
and B-RAF, triggers senescence in vitro (reviewed in Gorgoulis and Halazonetis 
2010) suggested that oncogene-induced senescence may act as a barrier to tumouri-
genesis. Compelling evidence for the tumour suppressor role of oncogene-induced 
senescence stems from studies in mouse cancer models and human tumours. For 
instance, pre-malignant lesions in the lung (which developed in a conditional knock-
 in mouse model expressing oncogenic K-RASG12D) contained many cells expressing 
markers of oncogene-induced senescence including p16INK4a, p15INK4b, SAHF, and 
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SA-ß-gal, whereas lung adenocarcinomas were almost completely devoid of cells 
positive for these markers (Collado and Serrano 2005). Similarly, constitutively active 
N-RASG12D prevented lymphomagenesis by triggering potent senescence in murine 
lymphocytes (Braig et al. 2005) and H-RASG12V triggered a dose-dependent senes-
cence response in mammary epithelia (Sarkisian et al. 2007). Further, inactivation of 
the PTEN tumour suppressor, which acts as a phosphoinositide 3-kinase (PI3K) path-
way inhibitor, in mouse prostate triggered an acute senescence response that sup-
pressed the development of invasive adenocarcinoma (Chen et al. 2005). Finally, 
consistent with tumour suppression, oncogene-induced senescent cells exhibit a met-
abolic shift favouring mitochondrial oxidative phosphorylation, rather than the abnor-
mal glycolytic metabolism common to cancer (Kaplon et al. 2013; Li et al. 2013).

Senescence markers are also abundant in human pre-malignant lesions of the 
skin, colon, prostate, and nervous system, whereas they are almost completely 
absent in malignant tumours (Chen et al. 2005; Michaloglou et al. 2005; Bartkova 
et al. 2006; Courtois-Cox et al. 2006; Kuilman et al. 2008). Perhaps the most com-
pelling data come from studies with human naevi (moles), which are small benign 
tumours of melanocytes that frequently harbour oncogenic mutations in the B-RAF 
kinase (Pollock et al. 2003). Naevi remain growth arrested for decades and rarely 
become melanomas (Kuwata et al. 1993; Maldonado et al. 2004), presumably 
because aberrant B-RAF signalling induces potent senescence (Michaloglou et al. 
2005; Gray-Schopfer et al. 2006; Dankort et al. 2009; Dhomen et al. 2009; Goel 
et al. 2009). Human naevi display some features of oncogene-induced senescence, 
including intact telomeres (the repetitive sequences at the ends of each chromo-
some), increased p16INK4a expression, and positive SA-ß-gal activity (Miracco et al. 
2002; Michaloglou et al. 2005; Mooi and Peeper 2006), although the expression of 
senescence-associated features, including SA-ß-gal, that should distinguish human 
naevus cells from primary and transformed melanocytes remains controversial 
(Cotter et al. 2007, 2008; Michaloglou et al. 2008; Tran et al. 2012). There is also 
some discord regarding the clonality of B-RAFV600E mutations in melanocytic naevi, 
although recent data using sensitive droplet digital PCR in combination with immu-
nohistochemistry support the notion that oncogenic B-RAF initiates melanocytic 
hyperplasia (Ichii-Nakato et al. 2006; Lin et al. 2009; Yeh et al. 2013).

11.3.2  Cellular Senescence and Aging

Evidence that replicative (telomere-associated) senescence reflects organismal aging 
and may contribute to age-related decrements in tissue structure and function is more 
contentious. Certainly, telomeres progressively shorten with each cell division and 
DNA damage foci marking telomere dysfunction increase with age to approximately 
20 % in very old primates (Herbig et al. 2006). Further, cells with a senescent pheno-
type are prevalent at sites of age-related diseases, such as osteoarthritis and athero-
sclerosis (Chang and Harley 1995; Price et al. 2002) and mice lacking the mitotic 
regulator BubR1 or the p53 homologue, p63, developed age- related pathologies that 
were associated with cellular senescence (Baker et al. 2004; Keyes et al. 2005).
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SAHF-positive senescent fibroblasts also increase with age in primate skin 
(Herbig et al. 2006) and SA-ß-gal-positive senescent cells were found to accumulate 
in the skin of elderly people (Dimri et al. 1995; Dekker et al. 2009) although this 
latter result was not reproduced (Severino et al. 2000). Conversely, in some 13 stud-
ies involving 79 patients with accelerated aging disorders, such as Werner and 
Hutchinson–Gilford syndromes, the replicative capacity of fibroblasts was consis-
tently lower than fibroblasts derived from age-matched controls (reviewed in Davis 
et al. 2007; Maier and Westendorp 2009). Early reports described a weak inverse 
relationship between replicative lifespan of fibroblasts in vitro and the chronological 
age of the donor, although there was large variability in the data and recent studies 
using larger cohorts have found no significant association between age and replica-
tive lifespan (Cristofalo et al. 1998; reviewed in Maier and Westendorp 2009). It is 
worth considering that the majority of these studies utilise mass cell cultures, so that 
the Hayflick limit, which is comparable in young and older individuals, reflects the 
cells with the longest proliferative capacity. This does not preclude the possibility 
that overall replicative capacity declines with age, in fact the replicative lifespan of 
individual human fibroblast clones were related to donor age (McCarron et al. 1987).

The accumulation of senescent cells may contribute to the aging process by 
depleting the regenerative potential of stem cells or by altering tissue structure and 
function. Many studies suggest that the expression of p16INK4a, which increases dur-
ing senescence and with age in many rodent, baboon, and human tissues (Zindy 
et al. 1997; Melk et al. 2003; Krishnamurthy et al. 2004; Herbig et al. 2006; Edwards 
et al. 2007; Liu et al. 2009), limits the proliferative capacity of self-renewing stem 
cells and thus impairs tissue regeneration. Mice lacking p16INK4a retain stem cell 
division and tissue regeneration with advancing age (Janzen et al. 2006; 
Krishnamurthy et al. 2006; Molofsky et al. 2006; Signer et al. 2008). In contrast, 
p16INK4a inhibits the reprogramming of differentiated human cells into induced plu-
ripotent stem cells. Reprogramming can be likened to a rejuvenation process and 
there is an age-related decline in reprogramming efficiency that can be reversed by 
inactivation of the p16INK4a gene (Banito et al. 2009; Li et al. 2009).

In spite of the substantial evidence linking p16INK4a expression with senescence 
and molecular aging in humans, a recent study suggested that p16INK4a, and its 
homologue p15INK4b, may have anti-aging functions. This work was based on a 
mouse model genetically engineered to carry two copies of the INK4a/ARF locus, 
which encodes the p16INK4a, p19ARF, and p15INK4b tumour suppressor proteins. 
These mice were less susceptible to cancer, showed increased median longevity and 
a lower incidence of aging-associated kidney lesions and DNA damage response 
(Matheu et al. 2009). Although, the additional p15INK4b and p19ARF genes compli-
cate interpretation of these data, it is conceivable that the role of p16INK4a in aging 
reflects its expression. The progressive upregulation of p16INK4a may delay aging by 
reducing cell proliferation and maintaining stem cell reserves. In contrast, the acute, 
mitogen-driven upregulation of p16INK4a may promote aging by initiating senes-
cence and permanently preventing stem cell proliferation and tissue regeneration.

Senescent cells may also contribute to aging by altering tissue structure and 
function; senescent cells secrete many extracellular matrix associated factors and 
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inflammatory proteins. Many of these secreted factors, including TGFß, IL-6, and 
PAI1, accumulate with aging. Some, including PAI1 and matrix metalloproteinases, 
may damage or alter tissue integrity (reviewed in Campisi and d’Adda di Fagagna 
2007; Kuilman and Peeper 2009).

Taken together, these findings suggest that irreversibly growth-arrested senes-
cent cells can act as a barrier against tumour formation in young organisms, but their 
net accumulation may reach a point that compromises tissue function and stem cell 
renewal leading to the development of deleterious phenotypes with age (Campisi 
and d’Adda di Fagagna 2007).

11.4  Critical Pathways in Cellular Senescence

Although diverse stimuli can induce a senescence response, they appear to converge 
on two pathways that initiate and maintain this programme. These pathways are regu-
lated by the tumour suppressor proteins p53 and the retinoblastoma protein (pRb), 
both of which are frequently lost in human cancer cells (Sherr 1996). Importantly, 
although cancer cells have partially lost the capacity to initiate senescence, the senes-
cence response can be re-engaged by restoring the p53 and pRb pathways, and tumour 
regression through senescence may be achieved. It has been shown, for instance, that 
re-instating p16INK4a in human tumour cells resulted in the establishment and mainte-
nance of a senescence response (Sugrue et al. 1997; Haferkamp et al. 2008).

The senescent states induced by the p53 and pRb pathways may be distinct and 
whether cells engage one or the other pathway appears to reflect the type of stress 
signal, the tissue and species of origin. Recent data also reveal senescence-inducing 
pathways that appear to be independent of the p53- and pRb-pathways. For instance, 
neither p53 nor p16INK4a were required for H-RAS-induced senescence in melanocytes 
and senescence induced by B-RAFV600E or N-RASQ61R did not depend on p16INK4a or 
p53 (Denoyelle et al. 2006; Zhuang et al. 2008; Haferkamp et al. 2009a, b).

11.4.1  The p53 Pathway and Senescence

p53 engages a formidable proliferative arrest by transactivating genes, such as 
p21Waf1 and the miR-34 class of microRNAs (Smith et al. 1996; Brown et al. 1997; 
He et al. 2007) primarily in response to DNA-damage checkpoint signals triggered 
by telomere dysfunction and activated oncogenes (Ramirez et al. 2001; Herbig et al. 
2004; Bartkova et al. 2006; Di Micco et al. 2006). Shortened dysfunctional telo-
meres are recognised as DNA double-strand breaks and lead to the activation of the 
DNA damage checkpoint (d’Adda di Fagagna et al. 2003). Aberrant oncogenic 
activity also triggers DNA replication stress and a DNA damage response, possibly 
via the suppression of RRM2, a key rate-limiting regulatory unit in dNTP synthesis 
(Bartkova et al. 2006; Aird et al. 2013). Thus, senescent cells are characterised by 
persistent DNA damage foci, termed DNA segments with chromatin alterations 
reinforcing senescence (DNA-SCARS). DNA-SCARS are associated with 
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promyelocytic leukaemia protein nuclear bodies and the accumulation of activated 
DNA damage response mediators, including ataxia telangiectasia mutated (ATM) 
and checkpoint-2 (Chk2) kinases (Rodier et al. 2011).

Dampening the DNA damage checkpoint via the inactivation of p53-regulators 
(including ATM and Chk2) or p53 itself can overcome oncogene-induced and 
telomere- dependent senescence in human fibroblasts (d’Adda di Fagagna et al. 
2003; Di Micco et al. 2006). Similarly, inactivation of the upstream p53 activator, 
ARF, overcame oncogene-induced senescence in mouse embryo fibroblasts (MEFs) 
(Serrano et al. 1996; Kamijo et al. 1997), while the loss of p21Waf1 caused cells to 
bypass telomere-dependent replicative- and oncogene-induced senescence in nor-
mal human fibroblasts and MEFs, respectively (Brown et al. 1997; Pantoja and 
Serrano 1999; Wei and Sedivy 1999).

Despite the substantial evidence that p53 promotes senescence, recent data indi-
cate that physiological p53 signalling promotes longevity and favours quiescence 
over senescence (Matheu et al. 2007, 2008; Demidenko et al. 2010). Mice engi-
neered to express mildly elevated levels of wild-type p53 display strong resistance 
to tumourigenesis, normal longevity but decreased levels of aging-associated dam-
age (Garcia-Cao et al. 2002, 2006). In contrast, mice expressing constitutively acti-
vate forms of p53 showed accelerated aging and an increase in the proportion of 
senescent cells in vivo (Dumble et al. 2004; Hinkal et al. 2009). It is likely that the 
cellular context of the p53 response dictates whether quiescence or senescence is 
triggered. For instance, inhibition of the growth-promoting mTOR pathway by p53 
favours quiescence, whereas the simultaneous activation of p53 signalling along 
with mTOR (i.e., via oncogenic RAS, loss of PTEN) promotes senescence 
(Fig. 11.2) (Alimonti et al. 2010; Galluzzi et al. 2010; Korotchkina et al. 2010).

11.4.2  The p16INK4a/pRb Pathway

Although inactivation of the p53 pathway can reverse the senescence arrest in some 
cells, there is an emerging consensus that this reversal is blocked in cells with an 
activated p16INK4a/pRb pathway (Sakamoto et al. 1993; Beausejour et al. 2003; 
Herbig et al. 2004). Active, hypophosphorylated pRb interacts with E2F transcrip-
tion factors and facilitates chromosome condensation at E2F target promoters. The 
reorganisation of chromatin leads to the formation of SAHF and the stable repres-
sion of proliferation-promoting genes, resulting in the irreversible growth arrest 
associated with senescence (Narita et al. 2003).

p16INK4a is a positive regulator of pRb and is crucial in generating SAHFs (Narita 
et al. 2003). Not surprisingly, p16INK4a also acts as a tumour suppressor and is fre-
quently inactivated in established human tumours and inactivating melanoma- 
associated mutations in p16INK4a are inherited in melanoma-dense kindreds 
(Goldstein et al. 2006). In fact, p16INK4a-deficient human melanocytes, derived from 
melanoma affected individuals, show an extended lifespan and can be immortalised 
by ectopic expression of telomerase reverse transcriptase, whereas normal melano-
cytes display neither of these features (Bennett 2003; Sviderskaya et al. 2003). 
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Furthermore, replicative- and oncogene-induced senescence are accompanied by 
accumulation of p16INK4a in primary human cells (Alcorta et al. 1996; Hara et al. 
1996; Serrano et al. 1997), while ectopically expressed p16INK4a initiates a senes-
cence programme characterised by cell cycle arrest, senescence-associated changes 
in cell morphology, increased SA-ß-gal activity, and the appearance of SAHF (Dai 
and Enders 2000; Haferkamp et al. 2008).

Fig. 11.2 Diverse stress stimuli activate cellular senescence via the DNA damage checkpoint 
response. Persistent DNA damage leads to the activation of the p53-signalling cascade, which 
favours senescence when the mTOR growth-promoting pathway is switched on. p53 also signals 
through the pRb tumour suppressor pathway via the transcriptional induction of the CDK inhibitor 
p21Waf1 (not shown). pRb activation is reinforced by the CDK inhibitor, p16INK4a, which is induced 
by oncogenic signalling, in part by inhibition of c-MYC-CDK2 transcription activity. Sustained 
damage to DNA also promotes the secretion of a large number of proteins, a phenomenon known 
as the senescence-associated secretory phenotype (SASP), via ATM and p38MAPK-mediated acti-
vation of NF-kB. SASP can have different effects on cancer and aging; it can suppress cancer by 
reinforcing the senescent state and inhibiting mitogenic signals, it can activate the innate immune 
response leading to improved clearance of tumour cells, it can impair the function of stem cells and 
promote aging, and it can stimulate the proliferation of neighbouring tumour cells
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p16INK4a expression is maintained at low levels prior to senescence by miR-24, a 
negative-regulator microRNA that suppresses p16INK4a translation. As cells near 
senescence, miR-24 expression diminishes and p16INK4a protein accumulates (Lal 
et al. 2008). Oncogenic signalling also induces p16INK4a expression by reducing the 
levels of the p16INK4a transcriptional repressors Bmi-1 and Id1 (Jacobs et al. 1999a; 
Ohtani et al. 2001) and increasing the activity of the p16INK4a transcription enhanc-
ers, Ets-2 and MITF (Fig. 11.3) (Ohtani et al. 2001; Loercher et al. 2005). 
Importantly, Bmi-1 is a direct transcription target of c-MYC, and reduced c-MYC 
signalling is associated with oncogenic N-RAS and B-RAF activity in melanocytes 
(Zhuang et al. 2008). Thus, decreased c-MYC activity leads to senescence by regu-
lating Bmi-1 and p16INK4a (Jacobs et al. 1999b; Guney et al. 2006). Further, Bmi-1 
deficiency inhibits stem cell renewal via p16INK4a induction in mice and Bmi-1 
downregulation was associated with increased p16INK4a expression in human kerati-
nocytes derived from older individuals (Molofsky et al. 2003, 2005; Park et al. 
2003; Cordisco et al. 2010).

11.4.3  The Senescence-Associated Secretory Network

Senescent cells secrete a complex range of chemokines, interleukins, proteases, and 
growth factors that are associated with inflammation and malignancy. Collectively, 
these senescence-associated soluble factors have been termed the senescence- 
associated secretory phenotype (SASP) and the senescence-messaging secretome 
(SMS) (Coppe et al. 2008; Kuilman and Peeper 2009; Gorgoulis and Halazonetis 
2010). Detailed lists of SASP factors have been provided in several recent articles 
and are briefly summarised in Table 11.1 (Kuilman and Peeper 2009; Coppe et al. 
2010; Gorgoulis and Halazonetis 2010, reviewed in Lasry and Ben-Neriah 2015). 
This review will focus on the role of SASP in senescence and its relationship with 
DNA damage response, p53 and pRb pathways.

SASP is not triggered by senescence but is induced in response to persistent 
DNA damage signalling and via activation of the stress-inducible kinase p38MAPK, 

Ets-2,MITF

miR-24, c-MYC, Id1, Bmi-1

Low p16INK4a

proliferation
High p16INK4a

senescence

Fig. 11.3 Acute activation of the CDK inhibitor p16INK4a favours senescence. Aberrant oncogenic 
activity promotes p16INK4a accumulation by suppressing the MYC, Id1, and Bmi-1 transcription 
factors, while inducing the accumulation of the Ets-2 and MITF transcription regulators. As cells 
near replicative senescence the p16INK4a-inhibitory microRNA, miR24, is depleted and p16INK4a 
translation is restored
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both of which lead to the phosphorylation and activation of the transcription factor 
target, NF-kB. DNA-damaged induced ATM and p38MAPK synergistically phos-
phorylated and activated the NF-kB transcription factor, which induced the majority 
of SASP factors in senescent human fibroblasts (Freund et al. 2011). SASP relies on 
upstream elements of the DNA damage response cascade, including NBS1 (a sensor 
of DNA damage), ATM kinase and its target Chk2, but does not require the down-
stream DNA damage signalling target p53. Thus, cells induced to senescence in 
response to p16INK4a, in the absence of DNA damage, do not initiate SASP. Similarly, 
oncogenic RAS promotes senescence with limited SASP in ATM-deficient cells 
(Rodier et al. 2009). Although SASP is not restricted to the senescence programme, 
it can reinforce senescence growth arrest. For instance, human fibroblasts depleted 
for IL-6 bypassed B-RAFV600E-induced senescence and showed a strong suppression 
of other inflammatory regulators including IL-8, IL-1α, and IL-1β (Kuilman et al. 
2008). Similarly, the disruption of SASP via inhibition of NF-kB confirmed the 
importance of SASP in stabilising cell cycle arrest and promoting immune clear-
ance (Chien et al. 2011). SASP molecules IL-8 and the chemokine receptor 2 
(CXCR2) ligands support senescence by boosting the DNA damage response, while 
IGFBP7, IL-6, and PAI-1 contribute to senescence by inhibiting proliferative and 
mitogenic pathways (Kortlever et al. 2006; Acosta et al. 2008; Kuilman et al. 2008; 
Wajapeyee et al. 2008; Acosta and Gil 2009). Thus, the onset of a protracted DNA 
damage response controls senescence by initiating a rapid p53- and/or pRb- 
dependent proliferative arrest, followed by induction of a DNA damage responsive 
cytokine secretory response (Fig. 11.2).

The secretion of soluble factors into the extracellular environment can also have 
pro-tumourigenic effects. This probably reflects a complex combination of cellular 
and genetic context along with the level of SASP activity. SASP factors such as IL-6 
and IL-8 can promote cancer progression by stimulating proliferation, angiogene-
sis, invasiveness, and inducing epithelial–mesenchymal transition (Ancrile et al. 
2007; Coppe et al. 2008; Kuilman et al. 2008; Rodier et al. 2009). Others, such as 
matrix metalloproteinases, promote breast tumourigenesis by altering the differen-
tiation of epithelial tumour cells and increasing tumour cell migration by weakening 

Table 11.1 The senescence-associated secretory phenotype

Soluble signalling factors

Interleukins IL-6, −7, −1a, −1b, −13, −15

Chemokines IL-8; GROa, −ß; MCP-2, −4; HCC-4; cotaxin-3; MIP-3a, −1a; 
IGFBP-2, −3, −4, −5, −6, −7; G-CSF; GM-CSF

Growth factors EGF; bFGF; HGF; IGF, SCF; TGFß, NGF; VEGF

Non-protein factors Nitric oxide, reactive oxygen species

Serine proteases

MMP-1, −3, −10, −12, −13, −14; TIMP-1, −2; PAI-1, −2

Secreted insoluble factors

Fibronectin, collagen, laminin

A subset of factors significantly altered during senescence

H. Rizos et al.



299

tissue integrity (Liu and Hornsby 2007; Acosta and Gil 2009). The combined loss of 
p53 with the aberrant activation of RAS amplifies and accelerates the development 
of SASP and this coincides with the potent stimulation of growth, invasiveness, and 
epithelial–mesenchymal transition of nonaggressive human cancer cells (Coppe 
et al. 2008). In vivo cytokine secretion is a feature of preneoplastic lesions of the 
colon and breast, which display markers of DNA damage and senescence, while 
IL-6 expression correlates with ATM (DNA damage sensor) kinase activity in inva-
sive ductal breast carcinomas (Kuilman et al. 2008; Rodier et al. 2009). Conversely, 
the selective suppression of SASP factors with the mTORC1 inhibitor rapamycin, 
which also inhibited IL1A-NF-kB signalling, diminished the ability of senescent 
fibroblasts to stimulate prostate tumour growth in mice (Laberge et al. 2015).

Finally, the innate immune system can be activated by SASP inflammatory cyto-
kines and can effectively restrict oncogenic SASP activity by clearing damaged and 
senescent cells (Xue et al. 2007). The accumulation of inflammatory cytokines is 
associated with several age-associated diseases, and it is not surprising that accumu-
lation of SASP factors such as IL-6, TGFß, PAI, and fibronectin also correlate with 
aging (Goldstein et al. 1994; Rasoamanantena et al. 1994; Ershler and Keller 2000; 
Carrieri et al. 2004; Herbig et al. 2006; Rossi et al. 2007). Although the precise 
impact of the SASP in vivo remains unresolved, these data indicate that damaged 
senescent cells mount a complex cytokine response that communicates with neigh-
bouring cells, modifies the tissue microenvironment, and leads to multiple patholo-
gies. In particular, cytokines may reinforce senescence in surrounding non-malignant 
cells (Acosta et al. 2013), generate a potent immune response to clear damaged 
cells, affect the function of stem cells, or even promote tumourigenesis of high- 
grade pre-malignant and malignant cells in a paracrine manner (Fig. 11.2).

11.4.4  p53- and p16INK4a-Independent Oncogene-Induced 
Senescence in Melanocytes

Recent reports have shown that pro-oncogenic forms of the H- and N-RAS GTPases, 
and their downstream kinase B-RAF, are not functionally equivalent and each may 
induce senescence via distinct programmes that do not require pRb or p53. Certainly, 
the inactivation of p16INK4a, pRb, or p53 did not prevent cell cycle arrest, DNA dam-
age signalling, or SA-ß-gal activity in human melanocytes transduced to express 
these oncogenes (Michaloglou et al. 2005; Denoyelle et al. 2006; Zhuang et al. 
2008; Haferkamp et al. 2009a, b). One alternative pathway appears to involve the 
endoplasmic reticulum-associated unfolded protein response (UPR). Ectopic 
expression of H-RASG12V in human melanocytes induced the UPR and inhibition of 
this response (by silencing expression of several UPR proteins) suppressed H-RAS- 
induced senescence (Denoyelle et al. 2006). The RAS-mediated activation of the 
PI3K pathway was required for UPR induction and this was most potently achieved 
by oncogenic H-RAS, as UPR was poorly induced by N-RAS and not activated by 
B-RAF. Consistent with these data, Spitz naevi expressing mutated H-RAS showed 
a significantly greater expansion of the endoplasmic reticulum and activation of the 
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UPR compared to benign naevi expressing mutated B-RAF or N-RAS (Denoyelle 
et al. 2006). It has been suggested that UPR-induced senescence may account for 
the bias against H-RAS mutations in melanoma (Denoyelle et al. 2006), although it 
should be noted that the efficiency of UPR signalling declines during aging (Naidoo 
2009a, b) and melanomas seem to have adapted to the presence of extreme endo-
plasmic reticulum stress (Jiang et al. 2007; Hersey and Zhang 2008).

Another alternative senescence pathway has been proposed for oncogenic B-RAF in 
human melanocytes. Ectopic expression of the oncogenic transcription factor c-MYC 
was found to partially rescue B-RAFV600E-induced senescence, and more weakly, 
N-RASQ61R-induced senescence of human melanocytes. c-MYC did not influence the 
UPR pathway and this may account for the inability of c-MYC to overcome N-RAS-
induced senescence (Zhuang et al. 2008). Suppression of c-MYC has been shown to 
induce senescence in several mouse tumour models, including lymphoma, osteosarcoma, 
and hepatocellular carcinoma (Wu et al. 2007), and in human melanoma cells expressing 
B-RAFV600E or N-RASQ61R (Zhuang et al. 2008). The requirement for p16INK4a or p53 in 
senescence caused by c-MYC depletion remains controversial; intact p16INK4a, pRb, and 
p53 were required in mouse tumours for the initiation of senescence by c-MYC inactiva-
tion (Wu et al. 2007), whereas c-MYC depletion led to senescence of p16INK4a-null and 
p53-null human melanoma cells (Zhuang et al. 2008). The impact of p16INK4a and p53 
expression on c-MYC activity in human melanocytes remains to be investigated. 
Importantly, c-MYC is frequently upregulated in human tumours and is up to sevenfold 
higher in metastatic melanomas compared to benign naevi (Zhuang et al. 2008).

The anti-senescence function of c-MYC requires phosphorylation of MYC at 
Ser-62 by cyclin E/CDK2. CDK2 acts as a c-MYC transcription co-factor altering 
the MYC-dependent regulation of genes, such as Bmi-1, p16INK4a, and p21Waf1, all of 
which participate in senescence control. Inhibition of CDK2 leads to the upregula-
tion of p16INK4a and p21Waf1 and the repression of Bmi-1. Thus, MYC can induce 
senescence in MEFs lacking CDK2, but not in wild-type MEFs (Hydbring et al. 
2010; Hydbring and Larsson 2010). This has important implications, as the inhibi-
tion of CDK2 (via pharmacological inhibition or induction of the CDK2 inhibitor 
p27Kip1) can drive MYC-transformed cells into senescence and prevents c-MYC 
from bypassing RAS-induced senescence (reviewed in Hydbring and Larsson 
2010). Accordingly, depletion of CDK2 delayed MYC-induced B-cell lymphomas, 
−neuroblastoma cells, −breast cancers, and -melanoma cell lines (Du et al. 2004; 
Deans et al. 2006; Molenaar et al. 2009; Campaner et al. 2010) and deletion of Skp2 
(an oncogenic E3 ligase that targets p27Kip1 and MYC for degradation) suppressed 
tumourigenesis through senescence (Lin et al. 2010).

11.5  Re-establishing Senescence Mechanisms

The concept of re-instating senescence as a cancer therapy is being approached with 
caution because the retention of damaged senescent cancer cells that are metaboli-
cally active and capable of secreting cytokines and growth factors could be harmful. 
It is important to consider, however, that many current cancer treatments cause 
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senescence as a result of acute DNA damage (te Poele et al. 2002; Roberson et al. 
2005), and the presence of senescent cells in colon carcinomas contributed to 
improved overall outcome to therapy (Haugstetter et al. 2010). The existence of 
sporadic senescent cells in tumours may indicate a retained susceptibility to senes-
cence induction and this may translate to sensitivity to senescence-inducing 
therapies.

Senescence can be triggered by reactivating tumour suppressor molecules or tar-
geting oncogenes. For instance, reactivation of p53 induces a potent senescence 
response in sarcomas and liver carcinomas that were subsequently cleared by the 
innate immune system (Ventura et al. 2007; Xue et al. 2007). Presumably, SASP mol-
ecules were responsible for the activation of the immune cells. Targeting the onco-
genic E3-ubiquitin ligase, Skp2, triggered senescence in H-RASG12V expressing or 
PTEN-deficient prostate cancer cells (Lin et al. 2010). Likewise, deleting CDK2 
induced senescence in c-MYC expressing MEFs (Campaner et al. 2010). Importantly, 
senescence was also triggered in these oncogenic model systems with small molecule 
inhibitors of Skp2 and CDK2 function (Lin et al. 2010). Similarly, the selective inhibi-
tion of B-RAF and MEK triggered senescence in B-RAFV600E- mutant human mela-
noma cells and inhibition of MEK sensitised melanoma cells to radiotherapy 
(Haferkamp et al. 2013; Schick et al. 2015). Intriguingly, melanoma resistance to 
B-RAF inhibition commonly involves the hyperactivation of MAPK signalling, often 
via mutational activation of NRAS, MEK, or B-RAF amplification, and this appears 
to confer a fitness deficit to tumour cells by promoting senescence (Das Thakur et al. 
2013). These data coincide with genetic evidence that RAS and B-RAF mutations are 
mutually exclusive in cancer, and recent evidence confirming that co-expression of 
mutant KRAS and B-RAF resulted in elevated MAPK activity, increased p16INK4a 
production, and promoted SA-ß-gal in MEFs (Cisowski et al. 2016).

The pharmacological induction of senescence has been shown to suppress the 
in vivo growth of prostate cancer cells (Alimonti et al. 2010; Lin et al. 2010), and 
therapy-induced senescence is detectable in tumour biopsies after neoadjuvant 
chemotherapy (Roberson et al. 2005). Mouse models of chemotherapy have also 
shown that MYC-initiated lymphomas responded to cycloheximide by inducing 
tumour cell senescence, which contributed to better prognosis (Schmitt et al. 
2002). This suggests that delivery of chemotherapy to cells undergoing senes-
cence could be used to augment senescence or to transform cell cycle arrest into 
cell death.

Heterochromatin may also prove a useful target in oncogene-expressing senes-
cent and proliferating tumour cells. The condensation of chromatin hinders access 
of DNA damage response proteins to DNA lesions and this diminishes DNA dam-
age response signalling (Di Micco et al. 2011). Perturbation of heterochromatin, 
using histone deacetylase (HDAC) inhibitors, augmented DNA damage response 
activity, induced apoptosis and tumour regression in a K-RAS-driven colorectal 
cancer xenograft model (Di Micco et al. 2011). HDAC inhibitors have shown 
encouraging anti-tumour activity with manageable toxicities in clinical trials, and 
several have been granted approval by the US Food and Drug Administration for 
cancer treatment (West and Johnstone 2014).
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Despite the contribution of senescence to tumour suppression, the possibility 
that drug-induced senescent cancer cells may accumulate and contribute to drug 
resistance and tumour recurrence must be considered. As described above, the 
secretion of inflammatory factors can stimulate tumour cell proliferation and 
angiogenesis, and escape from drug-induced senescence in breast cancer cells 
resulted in the generation of aggressive tumour clones with stem cell-like proper-
ties (Achuthan et al. 2011).

 Conclusions

Together, these data confirm that senescence plays an important role in suppress-
ing tumourigenesis and possibly predicting treatment outcome. The long-term 
impact of senescent tumour cells in vivo remains largely unknown and much 
more work is needed to resolve the complex regulation of the pro- and anti-
tumourigenic activities of senescent cells. The finding that the senescent pheno-
type can be uncoupled from cell cycle arrest suggests that it may be possible to 
minimise the detrimental aspects of senescence (Dulic et al. 2000; Wang et al. 
2004; Rodier et al. 2009). For instance, p53 activity and the miR-146 class of 
microRNAs suppress excessive SASP activity (Coppe et al. 2008; Bhaumik et al. 
2009) and ectopic expression of CDK inhibitors, including p16INK4a and p21Waf1, 
can induce senescence without SASP (Coppe et al. 2011). Disrupting SASP, 
however, weakened the proliferative arrest and diminished the immune recogni-
tion and clearance of senescent Eμ-MYC lymphoma cells in vivo (Chien et al. 
2011). Thus, in order to maximise the therapeutic potential of senescence, we 
may need to establish a new equilibrium that favours immune-mediated clear-
ance of permanently arrested preneoplastic cells, while limiting the deleterious 
paracrine effects that disrupt tissue homeostasis.
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12Melanoma Stem Cells

Tobias F.I. Schatton and Markus H. Frank

12.1  Introduction

The hypothesis that cancers and tissue stem cells might share several biological 
traits is many decades old (Bruce and Van Der Gaag 1963; Hamburger and Salmon 
1977; Park et al. 1971). Indeed, the defining stem cell traits of (a) self-renewal, (b) 
differentiation, and (c) potential to proliferate nearly indefinitely are commonly 
observed among cancer subpopulations (Reya et al. 2001). Moreover, interactions 
with stromal elements and signaling pathways that govern physiologic stem cell 
behavior were also found to play important roles during tumor development (Frank 
et al. 2010). Together, these observations have led to the cancer stem cells (CSCs) 
theory of tumor initiation and growth, which postulates that the tumorigenic pro-
cess relies on a reservoir of self-renewing, aggressive cells that confer clinical viru-
lence, that is, CSCs (Reya et al. 2001). Such tumorigenic minority populations or 
CSCs have since been characterized in a growing number of tumor entities 
(Schatton et al. 2009), including in human melanoma (Boiko et al. 2010; 
Boonyaratanakornkit et al. 2010; Schatton et al. 2008).

In this chapter, we will review the current knowledge of CSCs and their biologi-
cal features with particular emphasis on human malignant melanoma and discuss 
controversial aspects of the CSC theory. Furthermore, we will explore the 
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implications of the findings of melanoma as a CSC-driven disease for the develop-
ment of more effective treatment modalities for melanoma patients.

12.2  What Is a “Cancer Stem Cell”?

It has long been established that tumors comprise multiple phenotypically and func-
tionally distinct populations of cancer cells (Hanahan and Weinberg 2000). Several 
theories have been put forward to account for the occurrence of such tumor hetero-
geneity. According to the classic view of tumorigenesis, tumor heterogeneity can be 
explained by both intrinsic factors (i.e., progressive accumulations of genetic altera-
tions over time) and extrinsic stimuli (e.g., distinct cues from the tumor microenvi-
ronment, Hanahan and Weinberg 2000). The so-called stochastic theory of tumor 
initiation postulates that all malignant cells within a cancer, regardless of their phe-
notype, possess equivalent capacities to proliferate, form new tumors, and cause 
relapse (Nowell 1976). The CSC hypothesis, on the other hand, provides an alterna-
tive explanation for tumor heterogeneity (Reya et al. 2001): It posits that cancers, 
like physiologic tissues, are organized as developmentally defined hierarchies of 
cells with divergent differentiation features and disparate capabilities for self- 
renewal and neoplastic proliferation. The CSC concept thus proposes that only a 
subpopulation of tumor cells within a cancer, namely CSCs, bears the competence 
to fuel tumor growth by continuously undergoing self-renewal and differentiation, 
whereas the bulk of differentiated cancer components lacks the capacity for tumor 
initiation and unlimited proliferation (Murphy et al. 2014) (Fig. 12.1).

According to a consensus definition (Clarke et al. 2006), a CSC is a cell within a 
tumor that possesses the capacity to undergo both self-renewing cell divisions that 
expand the CSC pool, and cell divisions that result in more differentiated cancer cell 
progeny. Therefore, CSCs can only be defined experimentally by their ability to 
recapitulate the generation of a continuously growing tumor (Clarke et al. 2006). 

a b

Fig. 12.1 The cardinal features of CSCs. Illustrated are (a) the defining features of CSCs, that is, 
(1) self-renewal capacity, (2) differentiation capacity, and (3) increased tumorigenic potential. (b) 
TME characteristics, that is, secreted factors, host immunity, and stromal cell interactions also 
regulate CSC-dependent tumor growth
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Accordingly, the experimental characterization of a putative CSC population relies 
on the use of an in vivo model system that allows for a rigorous confirmation of the 
traits used to define CSCs. The gold standard assay that fulfills this criterion for 
identification of human CSC populations is serial xenotransplantation at limiting 
dilution of marker-defined clinical cancer subpopulations into an orthotopic site of 
immunocompromised mice (typically NOD/SCID), which although imperfect is 
considered the best experimental system to evaluate CSC activity (Clarke et al. 
2006). Using this approach, CSCs capable of sustained self-renewal and tumor 
propagation were first described in cancers of the hematopoietic lineage (Bonnet 
and Dick 1997). These initial studies demonstrated that it is possible to isolate from 
a single tumor sample two distinct cancer subpopulations that differ in their cell 
surface antigen profile and their tumor-seeding properties: (1) a CSC-enriched sub-
set, as defined by its exclusive ability to self-renew as well as differentiate into 
nontumorigenic cancer cell progeny and its competence to seed new tumors upon 
serial xenotransplantation, and (2) the bulk of tumor cells that lack the capacity to 
generate tumors in animal hosts (Bonnet and Dick 1997). Subsequent studies 
extended these findings to a variety of additional hematological malignancies and 
solid tumor entities (Al-Hajj et al. 2003; Castor et al. 2005; Chan et al. 2009; Cox 
et al. 2004, 2007; Dalerba et al. 2007; Hermann et al. 2007; Ishikawa et al. 2007; Li 
et al. 2007; O’Brien et al. 2007; Prince et al. 2007; Ricci-Vitiani et al. 2007; Singh 
et al. 2004; Suva et al. 2009; Yang et al. 2008; Zhang et al. 2008), including malig-
nant melanoma (Boiko et al. 2010; Schatton et al. 2008). Hierarchical tumor orga-
nization has been confirmed in syngeneic mouse models in which only fractions of 
murine tumor cells possessed the fundamental CSC features of extensive self- 
renewal, differentiation, and enhanced tumorigenic capacity (Cho et al. 2008; 
Deshpande et al. 2006; Held et al. 2010; Wu et al. 2008).

Despite these advances in our understanding of functional tumor heterogeneity, 
the CSC model has represented a topic of considerable controversy (Hill 2006; 
Jordan 2009). Some of this controversy appears to arise from uncertainty regarding 
the term “CSC.” For instance, the term CSC has been interpreted to mean that the 
cellular precursors of such tumorigenic subpopulations were originally physiologic 
stem cells, which accumulated genetic alterations resulting in cancerous transfor-
mation. While this may be the case in some malignancies (Barker et al. 2009; Zhu 
et al. 2009), CSCs in other cancers may originate from more differentiated cells that 
reacquired stem-like properties through a series of mutagenic events (Huntly et al. 
2004; Jamieson et al. 2004; Krivtsov et al. 2006). Additionally, differentiation in the 
context of CSC biology does not refer to multipotent differentiation plasticity as it 
occurs during organogenesis or physiologic tissue regeneration, but rather to the 
ability of CSCs to give rise to cancer cells that lack tumor-initiating capacity (Clarke 
et al. 2006). Furthermore, in contrast to physiologic stem cells, which represent 
only a small cellular fraction of a particular tissue, CSCs may represent larger rela-
tive proportions of a total cancer cell population, depending on tumor type, variance 
of genetic alterations, and stage of disease progression (Gupta et al. 2009). In sup-
port of this notion, the frequency of leukemic CSCs varied more than hundred-fold 
between distinct patient specimens (Bonnet and Dick 1997). CSC representation 
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may also vary within a single cancer specimen, in which undifferentiated regions 
may harbor larger numbers of CSCs compared to more differentiated tumor areas 
(Gupta et al. 2009). Importantly, the number of cells needed to initiate a tumor is not 
part of the CSC definition (Reya et al. 2001; Schatton et al. 2009). Hence, a larger 
relative proportion of tumorigenic cells does not contradict the CSC model of tumor 
initiation and growth. Given the potential confusion associated with the term “CSC,” 
many investigators in the field refer to them as tumor-initiating or tumor- propagating 
cells (Clarke et al. 2006).

The determination of relative CSC frequencies is influenced by the experimental 
model system used to assess cancer “stemness” (Boiko et al. 2010; Bonnet and Dick 
1997; Lapidot et al. 1994; O’Brien et al. 2007; Quintana et al. 2008, 2010; Ricci- 
Vitiani et al. 2007; Schatton et al. 2008; Shmelkov et al. 2008). In this regard, it has 
been established for some time that biological aspects of the tumor microenviron-
ment, including growth factor availability, extracellular matrix (ECM) composition, 
or the degree of vascularization, as well as host immunocompetence can control the 
tumorigenic potential of cancer subpopulations (Scadden 2006) (Fig. 12.1). Given 
this dependence of a defining CSC feature on microenvironmental factors and the 
immune status of the host, it is not surprising that animal models that offer a more 
hospitable microenvironment for tumor growth – that is, through the exogenous 
addition of ECM factors (e.g., Matrigel) (Quintana et al. 2008) and/or the use of 
more severely immunocompromised mice (Bonnet and Dick 1997; Quintana et al. 
2008) – can yield higher relative CSC counts compared to CSC frequencies assessed 
in the absence of cografted stromal factors in more immunocompetent mouse mod-
els (Lapidot et al. 1994; Quintana et al. 2008; Schatton et al. 2008). Based on these 
considerations, more permissive xenotransplantation conditions might be inade-
quate for the accurate assessment of CSC biology as it occurs in humans, as they 
could enable non-CSCs to initiate and maintain experimental tumor growth (Gupta 
et al. 2009; Murphy et al. 2014).

The tumor biospecimens used for the isolation and characterization of putative 
CSC populations also influence the assessment of CSC frequency (Gupta et al. 
2009). For instance, utilizing tumor cell isolates from tumor xenografts that have 
been passaged in vivo for extended periods of time Quintana et al. (2008, 2010) in 
lieu of fresh patient-derived tumor samples likely obscures the accurate assessment 
of CSC frequencies and biological functions (Boiko et al. 2010). Indeed, Boiko and 
colleagues demonstrated that both in vitro and in vivo passaging of melanoma cells 
can result in the emergence of tumorigenic subclones that drive experimental tumor 
growth independent of their immunophenotype (Boiko et al. 2010). Similarly, tumor 
cell lines may have lost the hierarchical structure of the primary tumor from which 
they originated (Zhou et al. 2009). Variations in tumor dissociation, isolation, and/
or inoculation techniques could also account for differences in calculated CSC fre-
quencies between different laboratories (Shackleton 2010). Moreover, the use of 
tumor specimens from patients with more advanced disease (Quintana et al. 2008), 
which have been demonstrated to contain elevated CSC numbers compared to pri-
mary tumors (Schatton et al. 2008), could yield higher estimated CSC frequencies 
(Boiko et al. 2010).
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Clearly, a considerable variability has been observed in the course of CSC iden-
tification efforts with regard to estimated frequencies of tumorigenic cells depend-
ing on the mouse model used. While the relative frequency of CSCs is not directly 
relevant for their identification as it is not a CSC-defining feature, it is nevertheless 
important to define the factors responsible for this variability because such studies 
could help identify additional CSC-specific functions (Schatton et al. 2009). For 
example, the tumor microenvironment, including that of an immunocompromised 
host, may govern not only the tumorigenic potential of cancer subpopulations but 
also additional CSC-defining traits, including differentiation and self-renewal 
(Postovit et al. 2006). It is thus possible that a very permissive milieu for tumor 
growth may not only enable non-CSCs to seed cancers but could also facilitate the 
“de-differentiation” of such nontumorigenic bulk populations into CSC phenotype- 
expressing cells (Hoek and Goding 2010). The conversion of non-CSCs into CSC- 
like cells may, however, not occur in more hostile cancer environments observed in 
patient tumors, which are typically characterized by low nutrient availability, 
marked levels of hypoxia, necrosis, and inflammation, and the presence of antitu-
mor immune responses. Only a minority of tumor cells, that is, CSCs, might pos-
sess the ability to survive and fuel the tumorigenic process under these selective 
pressures. In support of this hypothesis, hypoxia-inducible factors (HIFs) are pref-
erentially expressed in CSCs, and blockade of HIF2α on glioma CSCs attenuated 
their potential to initiate experimental tumors (Li et al. 2009b). Furthermore, via-
ble glioma CSCs preferentially localize to perivascular niches in both clinical and 
experimental cancer specimens (Calabrese et al. 2007). The bulk of tumor cells 
within cancerous lesions that have reached a significant size, on the other hand, is 
often necrotic or undergoes apoptosis (Cotter 2009), indicating that their conver-
sion into apoptosis-resistant stem-like cancer cells does not commonly occur under 
these conditions.

The complexity of CSC biology and its implications for the type of animal model 
utilized for their characterization is further highlighted by the identification of novel 
CSC functions (Frank et al. 2010), including their intrinsic property to evade or 
actively modulate antitumor immune responses (Chan et al. 2009; Di Tomaso et al. 
2010; Majeti et al. 2009; Schatton and Frank 2009; Schatton et al. 2010; Todaro et al. 
2009; Wei et al. 2010a, b). Such mechanisms, which may confer selective growth 
advantages to the CSC pool, need to be taken into consideration when designing bio-
logically relevant assays for their characterization. These findings highlight the impor-
tance of establishing translationally relevant assays for the study of CSCs, which 
accurately mimic the environmental factors found in clinical cancers (e.g., presence of 
human stromal cells, low-nutrient levels, necrosis, hypoxia, and relatively intact anti-
tumor immunity) rather than further deviating from the naturally occurring microen-
vironmental characteristics. Current xenotransplantation protocols and animal models 
for the study of tumorigenic subpopulations that do not accurately reflect the patho-
logical environment of spontaneously occurring human malignancies might favor 
niche-independent tumor growth (Quintana et al. 2008). Similarly, the so-called tumor 
sphere culture assay, which favors anchorage- independent in vitro passaging of can-
cer cells, and which has been proposed to serve as a surrogate tool for the 
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identification of tumor-initiating cells (Fang et al. 2005; Keshet et al. 2008; Perego 
et al. 2010), represents an inadequate stand-alone assay for the relevant study of CSC 
biology in the absence of an in vivo confirmation of CSC-defining traits of a marker-
defined tumor subset (Schatton and Frank 2010).

Although much work is still required to fully characterize CSCs and to reach 
consensus about clinically relevant model systems for their study, efforts directed 
toward identifying strategies that effectively target tumorigenic minority popula-
tions could significantly enhance current treatment modalities. In the following sec-
tions, we will discuss how the study of MMICs can yield new insights into 
melanomagenesis that could potentially lead to the development of improved mela-
noma treatment strategies.

12.3  Melanoma Stem Cells: Evidence for Their Clinical 
Relevance

The study of CSCs in human malignant melanoma has recently elicited consider-
able interest. Given its marked heterogeneity, pronounced resistance to conventional 
anticancer therapy, and highly aggressive behavior, it has been speculated for some 
time that melanoma, like numerous additional solid cancers, may follow the CSC 
model of tumor initiation and growth (Hendrix et al. 2003a; Schatton and Frank 
2008). Melanoma remains the most lethal form of skin cancer and melanoma inci-
dence is increasing faster than any other cancer worldwide (Jemal et al. 2010). 
Although the survival rate of patients diagnosed with melanoma has improved over 
the past decades (Linos et al. 2009), and greatly accelerated to improve in recent 
years with the advent of novel molecular targeted therapies and checkpoint block-
ade immunotherapies (Ugurel et al. 2016), there continues to exist a clear need for 
novel strategies to eradicate the melanoma subpopulation in which clinical viru-
lence and therapeutic resistance reside, which appear to coincide with MMICs.

Initial support for the potential existence of MMICs came from the demonstra-
tion that CSC phenotype-expressing cancer subpopulations are present in mela-
noma cell lines and clinical melanomas (Frank et al. 2005). Specifically, this study 
showed that a number of stem cell markers, including the prospective CSC determi-
nant, CD133 (Hermann et al. 2007; O’Brien et al. 2007; Ricci-Vitiani et al. 2007; 
Singh et al. 2004; Suva et al. 2009), were over-expressed by chemoresistant tumor 
subsets among heterogeneous malignant melanoma cultures and within clinical 
melanoma biospecimens (Frank et al. 2005). Subsequently, Monzani and colleagues 
showed that CD133+ melanoma fractions had the preferential ability to initiate pri-
mary tumor formation in NOD/SCID mice compared to CD133− melanoma bulk 
populations (Monzani et al. 2007), demonstrating the existence of tumorigenic mel-
anoma subpopulations. The authors of the study did not examine, however, whether 
CD133+ melanoma subsets were capable of self-renewal and differentiation in serial 
xenotransplantation experiments (Monzani et al. 2007). In the absence of stringent 
in vivo assays aimed at dissecting these key CSC-defining features, no definitive 
conclusions can be made about the potential relationship of CD133+ or other 
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melanoma minority populations to MMICs. This limitation also applies to a study 
characterizing melanoma subpopulations based on their ability to grow in spheroid 
bodies in vitro (Fang et al. 2005). Melanoma cells isolated from such “melano- 
spheres” preferentially expressed the marker of mature B cells, CD20, and were 
more tumorigenic when grafted to immunodeficient mice compared to melanoma 
cells grown as adherent in vitro cultures (Fang et al. 2005). While the results by 
Fang and colleagues (Fang et al. 2005) did not establish the existence of MMICs, 
they suggested, however, that melanomas might comprise functionally distinct sub-
populations with divergent tumorigenic capacities.

Unequivocal evidence for the existence of melanoma CSCs, capable of long- 
term self-renewal and differentiation, was first provided when the chemoresistance 
mediator (Cheung et al. 2011; Elliott and Al-Hajj 2009; Frank et al. 2005; Fukunaga- 
Kalabis et al. 2010; Huang et al. 2004; Yang et al. 2010) and cell surface molecule, 
ABCB5, was established as a prospective biomarker of MMICs (Schatton et al. 
2008). This study demonstrated that ABCB5+ melanoma fractions, but not ABCB5− 
melanoma bulk populations, isolated from patient biopsies were capable of initiat-
ing primary and secondary neoplasms upon serial xenotransplantation at limiting 
dilution into NOD/SCID mice (Schatton et al. 2008). In addition, ABCB5+ mela-
noma cells were capable of generating phenocopies of the original patient tumors, 
indicating their ability to both self-renew (i.e., to maintain the ABCB5+ cell pool by 
generating more copies of themselves) and differentiate (i.e., to give rise to more 
differentiated, ABCB5− tumor cell progeny, incapable of initiating experimental 
tumor growth) upon serial xenotransplantation (Schatton et al. 2008). These results 
thus established that ABCB5+ melanoma subpopulations represent MMICs 
(Zabierowski and Herlyn 2008) as per the CSC consensus definition (Clarke et al. 
2006) outlined above.

To further confirm the selective capacity of ABCB5+ MMICs for enhanced 
tumorigenic growth, self-renewal, and differentiation, genetic lineage tracking was 
performed in human melanoma to NOD/SCID mouse xenotransplantation experi-
ments employing genetically encoded DsRed (red fluorescent protein) and EYFP 
(enhanced yellow–green fluorescent protein) labeling of MMICs and melanoma 
bulk populations, respectively (Schatton et al. 2008). Xenotransplantation of 
ABCB5+DsRed+ melanoma cells and ABCB5−EYFP+ tumor bulk components, 
reconstituted at naturally occurring ratios, resulted in markedly increased relative 
frequencies of DsRed+ cells of ABCB5+ origin in melanoma xenografts (Schatton 
et al. 2008), confirming the enhanced tumorigenic capacity of ABCB5+ MMICs. In 
addition, these lineage-tracing experiments revealed a tumor hierarchy, in which 
ABCB5+ cells had the ability to generate both ABCB5+ and ABCB5- tumor progeny, 
whereas ABCB5− melanoma cells exclusively gave rise to more copies of them-
selves (Schatton et al. 2008). In more recent work, the increased tumorigenic capac-
ity of ABCB5+ vis-a-vis ABCB5- melanoma subpopulations has been independently 
confirmed not only in human to NOD scid gamma (NSG) mouse xenotransplanta-
tion experiments (Kupas et al. 2011), but also for murine melanomas in syngeneic 
tumor transplantation models (Zhang et al. 2016). Thus, two fundamentally differ-
ent cell types with divergent tumorigenic potentials exist within melanomas, only 
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one of which is capable of self-renewal and differentiation – that is, ABCB5+ 
MMICs. To further establish that the melanoma subpopulation marked by ABCB5 
is required for efficient tumor growth, as anticipated by the MMIC model, our labo-
ratory examined whether selective ablation of MMICs could inhibit tumor develop-
ment (Schatton et al. 2008). Indeed, administration of an anti-ABCB5 monoclonal 
antibody into nude mice xenografted with human melanomas impaired tumor initia-
tion and slowed tumorigenic growth via antibody-dependent cell-mediated cytotox-
icity (ADCC) directed at ABCB5+ MMICs (Schatton et al. 2008). These results 
provided proof-of-concept for the potential therapeutic utility of targeting MMICs 
and provided evidence that melanoma is a CSC-driven disease.

In the same study, using an established melanocytic tumor tissue microarray 
(Kim et al. 2006), a positive correlation between ABCB5+ melanoma cell frequency 
and clinical melanoma progression was established (Schatton et al. 2008). 
Specifically, there was higher ABCB5 expression in primary melanomas versus 
benign nevi, and in metastatic melanomas versus primary melanomas, showing that 
ABCB5 correlates with neoplastic progression (Schatton et al. 2008). A role for 
ABCB5 in clinical melanoma initiation/progression has recently also been estab-
lished by additional laboratories (Gazzaniga et al. 2010; Sharma et al. 2010), and 
these findings have been extended to acral melanomas (Vasquez-Moctezuma et al. 
2010) and in vivo human melanoma model systems (Fukunaga-Kalabis et al. 2010; 
Ma et al. 2010). ABCB5 expression also correlates with neoplastic progression in 
additional malignancies, including hepatocellular carcinoma, where it serves as a 
major independent clinical biomarker of poor survival (Cheung et al. 2011). The 
potential importance of ABCB5 as a biomarker of metastatic melanoma progression 
and disseminated disease was initially further supported by an additional study from 
our laboratory (Ma et al. 2010): ABCB5 mRNA could be detected in peripheral 
blood mononuclear cell preparations from human stage IV melanoma patients but 
not healthy controls (Ma et al. 2010). Similarly, human ABCB5 mRNA expression 
could also be detected among peripheral blood mononuclear cells isolated from 
NOD scid gamma (NSG) recipients of subcutaneous human melanoma xenografts 
(Ma et al. 2010), indicating that circulating melanoma-initiating cells might be pres-
ent in both murine models and stage IV melanoma patients. Indeed, viable circulat-
ing tumor cells (CTCs), isolated from the blood circulation of tumor-bearing hosts, 
were capable of primary melanoma and metastasis formation in serial xenotrans-
plantation experiments (Ma et al. 2010). Strikingly, CTCs capable of melanoma 
initiation demonstrated significantly increased ABCB5 expression levels compared 
to primary tumor xenografts and metastatic lesions (Ma et al. 2010). These results 
provided initial evidence that circulating melanoma cells are tumorigenic and capa-
ble of metastasis formation, and showed that CTCs are enriched for MMICs. Indeed, 
subsequent clinical studies showed that ABCB5 subpopulations are also more com-
mon among CTCs than in solid tumors in melanoma patients (Gray et al. 2015) and 
that ABCB5 mRNA levels in the peripheral circulation of melanoma patients had 
significant prognostic value in inferring disease recurrence (Reid et al. 2013). 
Together, these results highlighted that ABCB5 identifies clinically important 

T.F.I. Schatton and M.H. Frank



319

disseminated melanoma subpopulations that warrant future research investigations 
regarding their potential role as a novel diagnostic and therapeutic biomarker.

Additional support for the CSC properties of ABCB5+ melanoma fractions has 
also come from syngeneic melanoma mouse models (Ehira et al. 2010). Specifically, 
a tumorigenic B16 murine melanoma cell line variant demonstrated increased 
Abcb5 expression upon in vivo tumor formation (Ehira et al. 2010) alongside with 
other markers previously shown to enrich for murine MMIC-like cells with increased 
clonogenic and tumorigenic potentials (Dou et al. 2007). Taken together, these find-
ings indicate that murine Abcb5+ B16 melanoma subpopulations, like human 
ABCB5+ MMICs, represent CSC-like cells that amplify during the tumorigenic pro-
cess (Ehira et al. 2010). Similarly, the ABCB5 gene was also preferentially expressed 
by human melanomas with high in vivo tumorigenic capacity in human to murine 
xenotransplantation experiments Hoek et al. (2004, 2008). Consistent with these 
findings, human melanoma subpopulations with enhanced in vitro clonogenic and 
self-renewal capacities demonstrated increased ABCB5 expression levels (Keshet 
et al. 2008). In a separate study, induction of terminal differentiation of human 
melanoma cells resulted in a significant decrease in ABCB5 expression concomitant 
with reduced proliferation and enhanced susceptibility to chemotherapeutic agents 
(Botelho et al. 2010). Thus, both in vitro and in vivo substantiation of the CSC 
properties of ABCB5+ melanoma fractions was established in settings that are inde-
pendent of the foreign host milieu given in human to mouse xenotransplantation 
assays (Botelho et al. 2010; Ehira et al. 2010; Keshet et al. 2008).

Recently, additional evidence that melanoma follows the CSC model of tumor 
initiation and growth was provided in serial human melanoma to mouse xenotrans-
plantation experiments (Boiko et al. 2010; Boonyaratanakornkit et al. 2010; Civenni 
et al. 2011). Boiko et al. and Civenni et al. demonstrated that MMICs can be pro-
spectively isolated from melanoma patient specimens based on their expression of 
the nerve growth factor receptor (NGFR) CD271 (also known as p75) (Boiko et al. 
2010; Civenni et al. 2011). Serial xenotransplantation of CD271+ melanoma subsets 
into engrafted human skin or bone in severely immunocompromised, T-, B-, and 
natural-killer deficient Rag2−/−γ−/− mice resulted in experimental tumor growth in 
70 % of injected animals (Boiko et al. 2010). In contrast, only 7 % of mice inocu-
lated with CD271− melanoma cells developed tumors (Boiko et al. 2010). In addi-
tion, CD271+ melanoma subpopulations demonstrated both self-renewal and 
differentiation capacity through serial in vivo passaging (Boiko et al. 2010), consis-
tent with the existence of a functional melanoma hierarchy (Dirks 2010). Importantly, 
CD271+ melanoma cells were also capable of metastasis in vivo (Boiko et al. 2010), 
suggesting a critical role for MMICs not only in tumor initiation but also in neoplas-
tic progression. Remarkably, we found the MMIC markers ABCB5 (Schatton et al. 
2008) and CD271 (Boiko et al. 2010) preferentially coexpressed on the same tumor 
subpopulation in human melanoma specimens (Schatton et al. 2010). The preferen-
tial coexpression of both markers has also been similarly documented by others 
(Civenni et al. 2011), indicating significant overlap of these MMIC populations.

In a separate study, the detoxifying enzyme, aldehyde dehydogenase (ALDH), 
was used to select for tumorigenic melanoma cell fractions (Boonyaratanakornkit 
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et al. 2010). Of note, ALDH expression identifies CSCs in human breast cancer 
(Ginestier et al. 2007) and colon cancer (Carpentino et al. 2009; Huang et al. 2009). 
Similarly, high ALDH activity enriched for tumorigenic cells with sustained self- 
renewal capacity in human malignant melanoma was determined in both NOD/
SCID and NSG recipients mice (Boonyaratanakornkit et al. 2010), confirming that 
not all melanoma cells are equally adept at tumor initiation, including in NSG recip-
ients. Consistently, ALDH+ cells were found to give rise to ALDH− melanoma prog-
eny, while the conversion of ALDH− into ALDH+ melanoma cells was rarely 
observed in a separate study (Prasmickaite et al. 2010), suggesting a preferential 
self-renewal ability of the ALDHhigh cell pool. However, in this study ALDH activity 
did not enrich for melanoma subsets with enhanced tumorigenic potential 
(Prasmickaite et al. 2010), pointing to potential limitations of ALDH as a universal 
MMIC identifier. The relationship of ALDH expression to ABCB5 and/or CD271 is 
currently unknown and deserves further investigation, especially given the impor-
tance of the ALDH enzyme for conferring chemoresistance to alkylating agents 
(Vasiliou et al. 2004).

In summary, several recent studies independently demonstrated that not all mela-
noma cells possess equal capacities to initiate and maintain tumor growth in immu-
nodeficient hosts (Boiko et al. 2010; Boonyaratanakornkit et al. 2010; Schatton 
et al. 2008; Civenni et al. 2011). Rather, a distinct subpopulation of MMICs capable 
of self-renewal and differentiation exists (Boiko et al. 2010; Schatton et al. 2008). 
Both the ABCB5 (Schatton et al. 2008) and the CD271 (Boiko et al. 2010) surface 
molecules have been established as prospective biomarkers of MMICs, and impor-
tant links of these unique melanoma subpopulations to neoplastic progression 
(Fukunaga-Kalabis et al. 2010; Gazzaniga et al. 2010; Ma et al. 2010; Schatton 
et al. 2008; Sharma et al. 2010; Vasquez-Moctezuma et al. 2010) and melanoma 
chemotherapy (Elliott and Al-Hajj 2009; Frank et al. 2005; Fukunaga-Kalabis et al. 
2010; Huang et al. 2004) and immunotherapy resistance (Boiko et al. 2010; Schatton 
et al. 2010) have emerged. Taken together, these findings highlight the clinical rel-
evance of MMICs and emphasize the potential importance of research investiga-
tions directed at targeting these tumorigenic melanoma subpopulations to achieve 
better response rates in patients with advanced stage disease.

12.4  Melanoma Stem Cell Assays

Despite increasing knowledge regarding MMICs and their established relationship 
to melanocytic tumor progression and therapy resistance, a range of opinions exists 
with regard to the most relevant assay systems for CSC identification and frequency 
determination. MMIC frequencies in human melanoma to NOD/SCID mouse xeno-
transplantation experiments have been estimated to be approximately 1 in 106 cells 
among unfractionated melanoma populations when tumor formation was assessed 
8 weeks post melanoma cell inoculation (Quintana et al. 2008; Schatton et al. 2008). 
Determination of experimental tumorigenicity in NOD/SCID recipients at 32 weeks 
post melanoma cell inoculation yielded a higher estimated frequency of 
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tumorigenic melanoma cells of approximately 1 in 105 cells (Quintana et al. 2008). 
The use of more immunocompromised NSG hosts for assessment of tumor forma-
tion under otherwise equal experimental conditions yielded a further increase in 
estimated MMIC frequencies to approximately 1 in 5.5 × 103 cells among unsegre-
gated patient-derived melanoma populations (Quintana et al. 2008). An even greater 
enrichment of tumorigenic cells was observed when melanoma cells were co- 
injected into NSG mice with matrigel (Quintana et al. 2008). Under these modified 
conditions, an average of 1 in 9 melanoma cells formed tumors at 8 weeks post 
melanoma cell inoculation (Quintana et al. 2008). While this study did not directly 
address CSC-defining features, such as sustained self-renewal and differentiation 
capacity in serial xenotransplantation experiments, the results support the view that 
alterations of the tumor environment can govern MMIC behavior.

Specifically, host environments characterized by absence of immune selective 
forces could permit tumor bulk populations, which do not normally initiate tumors 
and may not possess CSC-specific self-renewal and differentiation capacity to also 
cause experimental tumor growth. MMICs, on the other hand, might possess the 
preferential capacity to evade host immunosurveillance and initiate tumor growth 
(Schatton and Frank 2009), which would explain findings of lower estimated MMIC 
frequencies in more immunocompetent hosts. Indeed, several mechanisms by which 
MMICs evade antitumor immunity have recently been identified (Boiko et al. 2010; 
Schatton et al. 2010). For example, MMICs were found to express low to absent 
levels of immunogenic tumor-associated antigens (TAAs) (Boiko et al. 2010; 
Schatton et al. 2010), suggesting evasion from antitumor immune responses directed 
at TAAs. Furthermore, ABCB5+ MMICs also preferentially blocked production of 
the proliferative cytokine IL-2 by cocultured lymphocytes (Schatton et al. 2010). 
Additional recently unraveled immunomodulatory functions of MMICs include the 
secretion of immunosuppressive factors and contact-dependent immunoregulatory 
mechanisms requiring engagement of immune-inhibitory surface molecules 
(Schatton et al. 2010), which will be discussed in more detail below. A relative 
immune privilege of CSCs was also demonstrated in alternative malignancies, 
including glioblastoma (Di Tomaso et al. 2010; Wei et al. 2010a, b), bladder cancer 
(Chan et al. 2009), colorectal carcinoma (Todaro et al. 2009), and leukemias (Majeti 
et al. 2009), indicating that immunomodulation might represent a common feature 
of CSCs (Schatton and Frank 2009). Clearly, the possibility of a CSC-driven tumor 
immune escape has profound implications not only for the development of improved 
cancer immunotherapeutic protocols but also for the design of biologically relevant 
assays for the study of CSC behavior. Specifically, assessment of tumor-initiating 
ability in the absence of antitumor immunity now appears to represent an inade-
quate assay system for the study of MMICs, because host immune environments 
incapable of immunologic tumor clearance might enable melanoma bulk popula-
tions to also initiate and sustain experimental tumor growth. Because preferential 
inhibition of IL-2 production is one mechanism by which MMICs evade antitumor 
immunity (Schatton et al. 2010), assessment of melanoma initiation in a murine 
model, that is, IL-2 receptor null (i.e., NSG mice) (Quintana et al. 2008) is not an 
appropriate environment for the accurate enumeration of MMIC frequency, because 
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host immunity is abnormally impaired. In light of these considerations, it is not 
surprising that tumorigenicity experiments performed using more immunocompro-
mised hosts with defective IL-2 receptors (i.e., NSG mice) (Quintana et al. 2008) 
yielded higher estimated MMIC frequencies compared to xenotransplantation 
assays utilizing more immunocompetent hosts (i.e., NOD/SCID mice) (Quintana 
et al. 2008; Schatton et al. 2008). In our view, tumor initiation in melanoma, one of 
the most immunogenic cancers, should be assessed in a setting that allows for host 
antitumor immune responses to occur. Ideally, model systems for the accurate 
assessment of MMIC biology might involve chimeric murine xenograft recipients 
that are orthotopically xenografted with human cancer cells into syngeneic human 
tissues of cancer origin in the presence of an adoptively transferred hematopoietic 
system originating from the same patient (Frank et al. 2010).

In addition to alterations of host antitumor immune response, co-injection of 
matrigel, a solution containing growth factors and ECM constituents (Kleinman and 
Martin 2005), accounted for a marked increase in tumorigenic capacity of unfrac-
tionated human melanoma cells and estimated MMIC frequencies in NSG mice 
(Quintana et al. 2008). In our view, these findings imply that the stage can be set for 
MMICs to appear more abundant by exposing them to microenvironmental stimu-
lants such as ECM and growth factors. It is conceivable that in the absence of such 
growth-promoting signals, only MMICs might possess the ability to survive and as 
a consequence maintain the tumorigenic process. This possibility is indeed sup-
ported by findings in other CSC-driven cancers (Calabrese et al. 2007; Li et al. 
2009b). The clinical cancer scenario is typically characterized by low nutrient and 
growth factor availability and deregulated ECM function (Hendrix et al. 2003b). It 
thus seems plausible that MMICs might preferentially produce both ECM and 
growth factors, thereby sustaining tumor maintenance. In support of this hypothesis, 
Duda and colleagues demonstrated that circulating cancer cells, which are coated 
with autologous stromal components, including ECM factors, have the preferential 
capacity to seed distant metastasis and promote initial tumor growth compared to 
those cancer cells that are not incorporated in stromal elements (Duda et al. 2010). 
Upon establishment of a growth-promoting environment through ECM-expressing 
tumor subsets at the early stage of metastatic foci, additional cancer populations can 
also home to secondary tumor sites and contribute to neoplastic growth and progres-
sion during later disease stages (Duda et al. 2010). Similarly, genetic lineage-tracing 
experiments revealed that melanoma bulk populations could furnish the growing 
tumor with cellular progeny in the presence of MMICs (Schatton et al. 2008). Thus, 
it is conceivable that the co-injection of growth-promoting factors to melanoma cell 
inocula may mask MMIC-specific functions and could allow most melanoma cells 
to initiate experimental tumor growth. Subpopulations of differentiated cancer cells 
that do not normally initiate tumors and do not display the ability for sustained self- 
renewal under clinical conditions may thus be able do so in the presence of the 
appropriate microenvironment. Similarly, melanoma cells can give rise to induced 
pluripotent stem cells (iPSCs) through exogenous reprogramming factors (Utikal 
et al. 2009). While these findings clearly establish the potential of melanoma cells 
to generate iPSCs, it seems, however, unlikely that such gains of cellular plasticity 
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occur naturally in human patients. In aggregate, these findings further highlight the 
importance of establishing translationally relevant assays for the study of MMICs, 
which accurately mimic the environmental factors found in clinical cancers (e.g., 
low-nutrient levels, necrosis, hypoxia, and relatively intact antitumor immunity) 
rather than further deviating from them. Assays that are very permissive to revealing 
the tumorigenic potential of melanoma cells might thus vastly overestimate MMIC 
frequencies. A major weakness of the hypothesis that the CSC model might not 
apply to melanoma Quintana et al. (2008, 2010) is that MMICs must be rare. The 
observation that tumorigenic melanoma cells may be more common when assay 
conditions are modified does not imply that MMICs might not exist. Indeed, rarity 
is clearly not a defining criterion of CSCs according to the consensus definition 
(Clarke et al. 2006).

While the above outlined differences in microenvironmental cues (i.e., immune 
selective pressures and growth and ECM factor availability) could account for varia-
tions in estimated MMIC frequencies in NOD/SCID vis-à-vis NSG xenotransplan-
tation experiments (Quintana et al. 2008; Schatton et al. 2008), they cannot explain 
apparent discrepancies in tumor-initiating ability of unfractionated melanoma cells 
assayed in the presence of matrigel and using identical mouse models (Boiko et al. 
2010; Boonyaratanakornkit et al. 2010; Quintana et al. 2008). Specifically, the 
marked frequency of up to 1 in 4 unfractionated human melanoma cells with tumor- 
seeding ability in NSG hosts described by Quintana and colleagues (Quintana et al. 
2010; Quintana et al. 2008) has not been confirmed to date. Indeed, independent 
laboratories have found that a minimum of 100 unfractionated patient-derived mela-
noma cells were required to consistently initiate tumors in NSG mice under equiva-
lent experimental conditions (i.e., in the presence of matrigel) (Boiko et al. 2010; 
Boonyaratanakornkit et al. 2010), paralleling findings in additional CSC-driven 
malignancies, including pancreatic and head and neck cancers (Ishizawa et al. 
2010). These new studies (Boiko et al. 2010; Boonyaratanakornkit et al. 2010; 
Ishizawa et al. 2010) alert us to the fact that MMICs might generally not be as com-
mon as suggested by Quintana et al. (2008, 2010). Thus, even experimental models 
that are very permissive to experimental tumor growth support the view that only a 
minority of melanoma cells is capable of initiating and maintaining the disease.

How can the differences of the findings by Quintana and colleagues and other 
studies using apparently identical model systems (Boiko et al. 2010; 
Boonyaratanakornkit et al. 2010) be explained? For instance, variations in enzy-
matic tumor dissociation, isolation, and/or inoculation techniques between different 
laboratories could lead to different estimated MMIC frequencies (Shackleton 2010). 
Specifically, the aforementioned laboratory procedures could potentially account 
for differences in surface marker expression and/or viability among inoculated mel-
anoma cell suspensions (Murphy et al. 2014). Also, the use of distinct matrigel 
batches with varying growth and/or ECM factor compositions could result in altered 
melanoma growth. Alternatively, the use of tumor specimens from patients with 
more advanced disease (Quintana et al. 2008), which have been demonstrated to 
contain elevated CSC numbers compared to primary tumors (Schatton et al. 2008), 
might also account for higher relative proportions of melanoma cells capable of 
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initiating experimental tumor growth. In addition, the assessment of CSC frequency, 
utilizing tumor cell isolates from melanoma xenografts that have been passaged 
in vivo for extended periods of time in lieu of directly patient-derived tumor sam-
ples, could further obscure the accurate assessment of CSC frequencies and biologi-
cal functions (Boiko et al. 2010; Quintana et al. 2008). Indeed, Boiko and colleagues 
demonstrated that both in vitro and in vivo passaging of melanoma cells can result 
in the emergence of tumorigenic subclones independent of their immunophenotype 
(Boiko et al. 2010). Similarly, tumor cell lines may have lost the hierarchical struc-
ture of the primary tumor from which they originated (Zhou et al. 2009). A lesson 
to be learned from the apparently conflicting evidence regarding the frequency of 
tumorigenic melanoma cells in NSG mice (Boiko et al. 2010; Boonyaratanakornkit 
et al. 2010; Quintana et al. 2008) is that careful comparison of experimental meth-
odologies may serve to explain differing results. Clearly, these discordant studies 
demonstrate that both the tumor environment and experimental procedures can gov-
ern tumor growth and underline the importance of establishing standardized assays 
for the study of MMIC biology that could enable the consolidation of experimental 
findings from different laboratories.

In summary, differences in MMIC frequency and function suggested by results 
obtained in alternative host immune milieus in the presence or absence of co- injected 
ECM and/or growth factors (Boiko et al. 2010; Quintana et al. 2008, 2010; Schatton 
et al. 2008, Murphy et al. 2014) strongly suggest critical interactions of MMIC with 
the tumor host environment. Thus, bioassays and experimental model systems for the 
detection of clinically relevant MMICs require further approximation of, rather than 
further abstraction from, the naturally occurring tumor–host interactions in human 
patients (Frank et al. 2010; Schatton et al. 2009; Murphy et al. 2014).

12.5  Melanoma Stem Biology: Therapeutic Opportunities

The ability to prospectively identify CSCs has permitted researchers to begin 
characterizing specific molecular and cellular mechanisms preferentially associ-
ated with CSCs that may contribute to tumor initiation and growth, in addition to 
those associated with their defining features of unlimited self-renewal and prolif-
erative capacities (Frank et al. 2010). Among the recently uncovered CSC func-
tions likely to influence tumor development are mechanisms of tumor immune 
evasion (Schatton and Frank 2009). Findings of increased tumor incidence in 
immunocompromised patients suggest that immunosurveillance might serve to 
eliminate malignant cells at early stages of tumorigenesis (Mapara and Sykes 
2004). Relative immune privilege and/or selective immunomodulatory functions 
could thus enable CSCs to evade antitumor immune responses in favor of inexo-
rable tumor growth (Schatton and Frank 2009). This possibility is especially rel-
evant to melanoma development because melanoma is a particularly immunogenic 
cancer (Rosenberg et al. 2008). Indeed, several mechanisms by which MMICs 
evade antitumor immunity have recently been identified (Boiko et al. 2010; 
Schatton et al. 2010).
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For example, MMICs can downregulate their expression of TAAs, such as 
MART-1, tyrosinase, ML-IAP, and the cancer testis antigens NY-ESO-1, and 
MAGE-A (Boiko et al. 2010; Schatton et al. 2010). Importantly, T cells reactive 
against TAAs are commonly observed in melanoma patients where they elicit anti-
tumor immune responses directed at TAA-expressing melanoma cells (Lee et al. 
1999; Stockert et al. 1998). Decreased expression of TAAs would thus enable 
MMICs to evade antitumor immune responses (Boiko et al. 2010; Schatton et al. 
2010), providing for a potential explanation for the relative ineffectiveness of tumor- 
reactive T cells and autologous vaccination strategies in halting tumor growth 
(Schatton and Frank 2009). ABCB5+ MMICs were also found to express decreased 
levels of MHC class I molecules (Schatton et al. 2010), which represent an estab-
lished mechanism of tumor immune evasion and neoplastic progression (Aptsiauri 
et al. 2007; Khong et al. 2004), further suggesting preferential MMIC evasion from 
immunological clearance.

In addition to reduced expression of MHC class I molecules, ABCB5+ MMICs 
selectively expressed the B7.2 (CD86) costimulatory ligand and the negative 
costimulatory receptor, PD-1 (Schatton et al. 2010). Of note, interactions of B7.2 
with its receptor CTLA-4 and of PD-1 with its ligands PD-L1 and PD-L2 can down-
modulate immune responses by inducing T cell anergy and/or by activating Tregs 
(Greenwald et al. 2005; Li et al. 2009a), suggesting that MMICs might regulate 
antitumor immune responses in favor of inexorable tumor growth via the involve-
ment of negative costimulatory pathways. Indeed, selective blockade of MMIC- 
expressed B7.2 maintained CD4+CD25+FoxP3+ Treg frequencies among cocultured 
lymphocytes and regulated their secretion of the immunosuppressive cytokine IL-10 
(Schatton et al. 2010). Importantly, accumulating evidence in various cancers, 
including melanoma, suggests that Tregs might represent important mediators of 
clinical tumor immune evasion (Ahmadzadeh et al. 2008; Clark et al. 2008; Curiel 
et al. 2004), underlining the potential importance of MMIC-mediated Treg induc-
tion for melanoma progression.

In addition, MMICs were also found to inhibit human peripheral blood mono-
nuclear cell proliferation more efficiently than tumor bulk populations (Schatton 
et al. 2010). Consistently, ABCB5+ melanoma subpopulations preferentially inhib-
ited production of the proliferative cytokine, IL-2, by both cocultured mitogen- 
activated lymphocytes and patient-identical peripheral blood mononuclear cells in 
the absence of a mitogenic stimulus (Schatton et al. 2010). Importantly, decreased 
IL-2 levels correlate with increased melanoma growth in animal models and human 
patients (Eklund and Kuzel 2004). Given its immune-activating effects, IL-2 is used 
as adjuvant therapy for the treatment of advanced stage melanoma (Eklund and 
Kuzel 2004). Thus, preferential inhibition of IL-2 signaling might not only repre-
sent an important mechanism underlying MMIC-driven tumor growth but could 
also provide for a novel explanation for the commonly observed inability of thera-
peutic regimens involving IL-2 in producing durable patient responses (Eklund and 
Kuzel 2004). The preferential inhibition of IL-2 production by ABCB5+ MMICs 
might also explain observed differences in MMIC frequency in NSG (IL-2Rγ−/−) 
(Quintana et al. 2008) versus NOD/SCID (IL-2RWT) hosts (Quintana et al. 2008; 
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Schatton et al. 2008). Specifically, assessment of tumorigenicity outcomes in the 
absence of functional IL-2 signaling might overestimate MMIC frequency because 
a host environment characterized by abnormally impaired antitumor immunity 
might enable melanoma bulk populations to also contribute to tumor growth.

Additional immunomodulatory functions of MMICs include the secretion of 
immunosuppressive factors, such as immune-inhibitory TGF-β pathway members 
(Schatton et al. 2010). Importantly, these soluble mediators can be produced by 
tumors to dampen the anticancer immune response (Gorelik and Flavell 2001; Inge 
et al. 1992).

In sum, numerous MMIC-specific immunological mechanisms have been unrav-
eled that may enable them to evade and/or modulate the antitumor immune response 
to promote neoplastic growth and progression. Strikingly, a relative immune privi-
lege of CSCs was also demonstrated in alternative malignancies, including glioblas-
toma (Di Tomaso et al. 2010; Wei et al. 2010a, b), bladder cancer (Chan et al. 2009), 
colorectal carcinoma (Todaro et al. 2009), and leukemias (Majeti et al. 2009), indi-
cating that immunomodulation might represent a common feature of CSCs (Schatton 
and Frank 2009). Clearly, the possibility of CSC-driven tumor immune escape has 
profound implications for the design of biologically relevant assays for the study of 
CSC behavior.

Perhaps, most significant are the implications of an MMIC-driven tumor immune 
escape for the development of improved cancer immunotherapeutic protocols. In 
addition, MMIC biology could provide a highly relevant tool for the evaluation of 
patient responses to current immunotherapeutic regimens, including those aimed at 
modulating critical regulatory elements of patient immune cells to enhance their anti-
tumor reactivity. Importantly, a number of such novel immunotherapeutics have 
recently entered clinical practice or ongoing trials (Kirkwood et al. 2008; Ugurel 
et al. 2016). These include inhibitors of costimulatory molecules or paracrine immu-
nosuppressive cytokines, including monoclonal antibodies directed at CTLA- 4, 
PD-1, 4-1BB, and TGF-β (Fong and Small 2008; Kirkwood et al. 2008; Lahn et al. 
2005; Lynch, 2008). In contrast to current immunotherapeutic regimens, these novel 
agents exert inhibitory effects on both immune effector cells and Treg function 
(Kirkwood et al. 2008). They might thus prove more effective in inducing durable 
patient responses. Indeed, a phase III study demonstrated that treatment of stage III 
or IV melanoma patients with therapy-resistant disease with the anti-CTLA-4 anti-
body Ipilimumab resulted in improved overall survival compared to patients treated 
with a gp100 peptide vaccine (Hodi et al. 2010) and Ipilimumab was subsequently 
approved for clinical use. A potential additional explanation for this anti- melanoma 
effect of CTLA-4 inhibition arises from the fact that tumorigenic MMICs preferen-
tially expressed the CTLA-4 ligand, B7.2, and induced Tregs in a B7.2- dependent 
fashion (Schatton et al. 2010). Inhibition of MMIC-specific immune escape mecha-
nisms might thus contribute to the antitumor efficacy of Ipilimumab. Given the pref-
erential expression of PD-1, 4-1BBL, and TGF-β pathway members by MMICs, it is 
further conceivable that responses observed in melanoma patients treated with clini-
cally approved anti-PD-1 antibodies (Brahmer et al. 2010), or therapeutic agents 
directed at 4-1BB (Lynch 2008) or TGF-β (Kirkwood et al. 2008), might potentially 
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also relate to the ability of these immunotherapeutics to block MMIC-specific immu-
nomodulatory functions. The observed failure of immunotherapies directed at the 
bulk of tumor cells (e.g., vaccination strategies targeting differentiation antigens such 
as MART-1 or tyrosinase) or those that elicit nonspecific immune activation (e.g., 
neoadjuvant IL-2 therapy) in mediating sustained patient responses (Rosenberg et al. 
2004) might, on the other hand, relate to the inability of such regimens to effectively 
target the MMIC compartment (Schatton and Frank 2009), given its low expression 
levels of TAAs (Boiko et al. 2010; Schatton et al. 2010) and its preferential ability to 
inhibit IL-2 production (Schatton et al. 2010). Taken together, these findings high-
light the possibility that immunotherapeutic strategies aimed at enhancing the endog-
enous immune responses to melanoma might prove most efficient if MMIC-specific 
immune escape mechanisms are concurrently impaired. In light of this intriguing 
possibility, it might be relevant to analyze the clinical effectiveness of novel immu-
notherapeutic agents, including Ipilimumab or PD-1 antibodies, not only with regard 
to the pattern and duration of immune responses (Reuben et al. 2006) but also in the 
context of their impact on the MMIC subset and its immunomodulatory properties 
(Schatton and Frank 2009).

In addition to their preferential refractoriness to current immunotherapeutic pro-
tocols, MMICs also demonstrate enhanced resistance to several structurally unre-
lated chemotherapeutic agents with distinct mechanisms of action (Schatton et al. 
2009), a phenomenon also termed multidrug resistance (MDR) (Dean et al. 2005). 
MDR can result through several different means, including impairment of tumor 
apoptotic pathways, alterations in cell cycle checkpoints, and decreased drug accu-
mulation (Gottesman et al. 2002). The latter mechanism is of particular interest to 
MMICs because one mechanism resulting in reduced intracellular drug levels is the 
excretion of cytotoxic agents by energy-dependent efflux pumps, known as ATP- 
binding cassette (ABC) transporters (Gottesman et al. 2002). Specifically, the 
MMIC determinant, ABCB5 (Schatton et al. 2008), mediates resistance to multiple 
chemotherapeutic agents in malignant melanoma, hepatocellular carcinoma, breast 
cancer, and leukemias, including doxorubicin (Cheung et al. 2011; Elliott and 
Al-Hajj 2009; Frank et al. 2005; Fukunaga-Kalabis et al. 2010; Yang et al. 2010), 
camptothecin, mitoxantrone, and 5-fluorouracil (Huang et al. 2004; Lehne et al. 
2009). A broader role for the ABCB5 transporter in chemotherapeutic resistance to 
additional agents is suggested by the observation that ABCB5 mRNA expression 
levels across a panel of human cancer cell lines used by the National Cancer Institute 
for drug screening correlated significantly with chemoresistance to 45 out of 119 
anticancer agents (Frank et al. 2005). Evidence for a preferential resistance of CSCs 
to both chemotherapy and radiotherapy has also been generated in numerous addi-
tional CSC-driven malignancies, including leukemias, gliomas, breast carcinomas, 
and pancreatic cancer (reviewed in (Schatton et al. 2009)), underscoring the need to 
dissect further the molecular pathways responsible for CSC-specific therapy resis-
tance. For example, Chartrain et al. showed that ABCB5-expressing melanoma cells 
selectively survive not only when exposed to dacarbazine, a long-standing reference 
treatment of metastatic melanoma, but also to vemurafenib, a recently approved 
inhibitor of the mutated kinase V600E BRAF and other various chemotherapeutic 
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drugs. These results showed that anti-melanoma chemotherapy might participate in 
the chemoresistance acquisition by selecting tumor cell subpopulations expressing 
ABCB5. This is of particular importance in understanding the relapses observed 
after anti-melanoma treatments and reinforces the interest of ABCB5 and ABCB5- 
expressing cells as potential therapeutic targets in melanoma (Chartrain et al. 2012). 
The therapeutic promise of MMIC-directed treatment strategies, which could 
enhance current treatment modalities for patients with advanced stage melanoma, is 
further highlighted by recent findings of a relationship of MMICs to neoplastic 
melanoma progression (Fukunaga-Kalabis et al. 2010; Gazzaniga et al. 2010; Ma 
et al. 2010; Schatton et al. 2008; Sharma et al. 2010; Vasquez-Moctezuma et al. 
2010; Gray et al. 2015; Reid et al. 2013) and adverse clinical outcome (Sharma 
et al. 2010; Reid et al. 2013). In light of the CSC concept and findings of MMIC- 
specific immunoregulatory properties, a number of novel therapeutic approaches 
can be envisioned that could potentially increase the efficacy of current forms of 
therapy (reviewed in Frank et al. 2010), if MMICs are indeed the major culprits of 
melanoma initiation and clinical virulence. For instance, MMIC ablation through 
prospective markers might prove useful in enhancing current anti-melanoma thera-
pies. In support of this possibility, selective killing of MMICs via ADCC using an 
anti-ABCB5 monoclonal antibody halted experimental tumor growth (Schatton 
et al. 2008). Alternatively, targeting of MMICs via preferentially expressed surface 
molecules and/or MMIC-specific pathway interference might also yield improved 
melanoma patient responses. Such treatment strategies could include inhibition of 
costimulatory signaling events mediated by MMIC-expressed (Schatton et al. 2010) 
B7.2, PD-1, and/or 4-1BB. Disruption of surrogate MMIC-specific immune evasion 
pathways could also represent treatment modalities that might enhance responsive-
ness to current anti-melanoma regimens. Additionally, melanoma cell-intrinsic 
functions of PD-1 expressed on ABCB5+ MMIC could potentially be exploited for 
therapeutic benefit. Recently, we showed that melanoma cell-intrinsic PD-1 pro-
motes tumorigenesis, even in mice lacking adaptive immunity. PD-1 inhibition on 
melanoma cells by RNAi, blocking antibodies, or mutagenesis of melanoma-PD-1 
signaling motifs suppressed tumor growth in immunocompetent, immunocompro-
mised, and PD-1-deficient tumor graft recipient mice. Conversely, melanoma- 
specific PD-1 overexpression enhanced tumorigenicity, as did engagement of 
melanoma-PD-1 by its ligand, PD-L1, whereas melanoma-PD-L1 inhibition or 
knockout of host-PD-L1 attenuated growth of PD-1-positive melanomas. 
Mechanistically, the melanoma-PD-1 receptor modulated downstream effectors of 
mTOR signaling. These results identified melanoma cell-intrinsic functions of the 
PD-1:PD-L1 axis in tumor growth and suggested that blocking melanoma-PD-1 
might contribute to the striking clinical efficacy of anti-PD-1 therapy (Kleffel et al. 
2015). In addition, driving MMICs into differentiation could lead to improved ther-
apeutic outcomes. Consistent with this possibility, differentiation of glioblastoma 
CSCs via bone morphogenetic protein 4 (BMP4) exposure resulted in inhibition of 
experimental tumor growth concomitant with enhanced survival (Piccirillo et al. 
2006). Interestingly, the BMP4 receptor, BMPR1a, is preferentially expressed by 
ABCB5+ MMICs (Schatton et al. 2008), suggesting that a similar strategy could 
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also be promising in this malignancy. Additionally, the ABCB5 marker of MMIC 
itself has been shown to provide a target for melanoma differentiation therapy: In 
MMIC, we showed that ABCB5 controls IL1beta secretion, which serves to main-
tain slow cycling, chemoresistant cells through an IL1beta/IL8/CXCR1 cytokine 
signaling circuit. This CSC maintenance circuit involved reciprocal paracrine inter-
actions with ABCB5-negative cancer cell populations. ABCB5 blockade-induced 
cellular differentiation, reversed resistance to multiple chemotherapeutic agents, 
and impaired tumor growth in vivo. Together, these results defined a novel function 
for ABCB5 in CSC maintenance and tumor growth that could be therapeutically 
targeted (Wilson et al. 2014). An additional MMIC-directed targeting strategy could 
involve the use of antiangiogenic and/or antivasculogenic regimens. This possibility 
is indicated by findings of a preferential induction of neovascularization by CSCs in 
other cancers (Bao et al. 2006b). MMICs might likewise be involved in angiogene-
sis and/or vasculogenesis given their preferential expression of vasculogenic dif-
ferentiation markers VE-cadherin and TIE-1 (Schatton et al. 2008). For example, 
we showed that VEGFR-1 expressed by MMIC is required for tumor growth and 
that melanoma-specific shRNA-mediated knockdown of VEGFR-1 blocked the 
development of ABCB5+ vasculogenic mimicry (VM) morphology and inhibited 
ABCB5+ VM-associated production of the secreted melanoma mitogen laminin. 
Moreover, melanoma-specific VEGFR-1 knockdown markedly inhibited tumor 
growth, identifying VEGFR-1 as a novel MMIC therapeutic target (Frank et al. 
2011) Reversal of chemoresistance and/or radioresistance mechanisms operative in 
MMICs might also successfully increase anti-melanoma therapeutic efficacy (Elliott 
and Al-Hajj 2009; Frank et al. 2005; Fukunaga-Kalabis et al. 2010; Huang et al. 
2004). This is further suggested by findings in glioblastoma CSCs (Bao et al. 
2006a), among other cancers (Diehn et al. 2009; Vlashi et al. 2009). Lastly, given 
the importance of the tumor environment in governing CSC behavior (Scadden 
2006), the disruption of protumorigenic MMIC-niche interactions could also opti-
mize anticancer therapeutic protocols. It is important to recognize that therapeutic 
efficacy will often depend also on a significant reduction of melanoma bulk popula-
tions, which may cause excessive tumor burden. Therefore, combination therapies 
that involve both MMIC-directed agents as well as debulking regimens would be 
predicted to prove most effective in improving clinical treatment responses and 
patient outcomes.

In summary, several biological functions of MMICs have recently been identi-
fied, including their preferential ability to modulate and/or evade antitumor immune 
responses (Boiko et al. 2010; Schatton et al. 2010). In addition to their refractori-
ness to current immunotherapeutic protocols, MMICs also demonstrate increased 
resistance to a number of chemotherapy agents (Elliott and Al-Hajj 2009; Frank 
et al. 2005; Fukunaga-Kalabis et al. 2010; Huang et al. 2004; Chartrain et al. 2012). 
Taken together with the recently established relationship of MMICs to melanocytic 
tumor progression (Fukunaga-Kalabis et al. 2010; Gazzaniga et al. 2010; Ma et al. 
2010; Schatton et al. 2008; Sharma et al. 2010; Vasquez-Moctezuma et al. 2010; 
Gray et al. 2015; Reid et al. 2013), these findings underscore the potential clinical 
relevance of MMIC-directed targeting approaches. Importantly, proof-of-principle 
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for the potential therapeutic utility of targeting MMICs has been established, by 
demonstrating that selective eradication of ABCB5+ melanoma subpopulations can 
halt experimental tumorigenesis (Schatton et al. 2008). A number of additional tar-
geting approaches might likewise prove useful in blocking MMIC-driven tumor 
development and progression, including disruption of immune-inhibitory pathways, 
differentiation therapy, and chemoresistance reversal. While more work is required 
to translate these research developments into the clinic, they point to a critical rele-
vance of MMICs for successful melanoma therapy. Further molecular screens of 
purified MMIC populations employing microarrays, RNA-interference, or drug- 
screening libraries could allow identification of further targetable pathways leading 
to MMIC-tailored eradication strategies for melanoma therapy.

 Conclusions

A growing body of literature supports the existence of MMICs (Boiko et al. 
2010; Boonyaratanakornkit et al. 2010; Schatton et al. 2008; Civenni et al. 2011). 
Additionally, important links have been established between MMICs, neoplastic 
progression (Fukunaga-Kalabis et al. 2010; Gazzaniga et al. 2010; Ma et al. 
2010; Schatton et al. 2008; Sharma et al. 2010; Vasquez-Moctezuma et al. 2010; 
Gray et al. 2015; Reid et al. 2013), chemoresistance (Elliott and Al-Hajj 2009; 
Frank et al. 2005; Fukunaga-Kalabis et al. 2010; Huang et al. 2004; Chartrain 
et al. 2012), and refractoriness to immunotherapy (Boiko et al. 2010; Schatton 
et al. 2010). Moreover, novel biological features of MMICs are currently being 
intensively explored. For instance, the ability of MMICs to modulate the antitu-
mor immune response (Schatton and Frank 2009; Schatton et al. 2008) might be 
especially informative for the optimization and/or evaluation of targeted immu-
notherapies that were recently found to improve overall survival in patients with 
recurrent metastatic melanoma (Hodi et al. 2010; Ugurel et al. 2016). Together, 
these findings highlight the relevance and promise of novel MMIC-centered 
diagnostic and therapeutic approaches in human melanoma.
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13.1  Introduction

Embryonic development involves high levels of proliferation, migration, and dif-
ferentiation to form all the tissues and organs of an organism. Under normal circum-
stances, cell–cell signaling in an embryo is coordinated both temporally and 
spatially to allow development to occur without error. Embryogenesis is a once-in- 
a-lifetime event, and many developmental signaling pathways and processes are not 
physiologically active in adult tissues, with notable exceptions in the maintenance 
of certain stem cell populations (Goldstein and Horsley 2012). However, in disease 
states such as cancer, malignant cells adopt similar characteristics to those seen in 
embryonic cells – proliferation, migration, and lack of differentiation. Over recent 
decades, investigation into various stages of melanocyte development has given 
great insight into specific characteristics of melanoma, leading to a deeper under-
standing of melanomagenesis. In this chapter, we review key literature describing 
connections between embryonic development and melanoma, including aspects of 
embryonic patterning and melanocyte lineage specification that are co-opted to pro-
mote melanoma progression.
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13.2  Role of Embryonic Patterning Factors in Melanoma

During early embryonic development, a complex signaling program directs the 
fates of pluripotent cells and their descendants (Sadler and Langman 2010). This 
process of embryonic patterning involves a balance of signals. It directs apoptosis 
or proliferation, fate specification or maintenance of an undifferentiated state, and 
varying levels of migratory capacity. Each of these properties is important in the 
initiation and progression of many tumor types, including melanoma (Postovit et al. 
2008). Of the many signaling molecules and pathways active in early embryonic 
development, Nodal and Notch signaling have crucial roles in patterning and have 
been linked to melanoma progression.

13.2.1  Nodal

Nodal, a member of the TGF-β superfamily, is a secreted protein that binds its 
receptor and, acting through SMAD signaling, activates transcription of target genes 
to direct embryonic development (Conlon et al. 1994). While Nodal is known to 
have multiple roles during embryogenesis, those of most interest in the context of 
cancer are maintenance of pluripotency and regulation of migration during gastrula-
tion (James et al. 2005; Quail et al. 2013). Early embryonic development relies on 
maintaining cells in a self-renewing, pluripotent state before cell-fate specification 
and differentiation. Maintenance of pluripotency is critical in mesendoderm and 
neurectoderm, and in these tissues, Nodal signaling is essential. Loss of Nodal 
causes the loss of expression of stem cell factors and leads to expression of differ-
entiation markers of neuroectoderm (James et al. 2005; Vallier et al. 2009). During 
gastrulation, Nodal is required to maintain both the primitive node and the primitive 
streak (Conlon et al. 1994). Loss of Nodal causes disruption of the formation of the 
streak and node, which causes defects in the migration of mesoderm between the 
hypoblast and epiblast layers of the embryo. In addition, markers of mesodermal 
migration, such as Twist-1 and Mox-1, are absent when Nodal is lost. Interestingly, 
Twist affects epithelial-to-mesenchymal transition (EMT, discussed in detail below), 
which is implicated in metastasis of many tumor types. Nodal signaling is also cru-
cial in defining left–right asymmetry. Nodal secreted by the primitive node acts on 
the left side of the embryo and is prevented from acting on the right by active cilia. 
The cilia sweep Nodal to the left and allow distinct signaling on the right by Lefty1 
and Cerberus (Levin et al. 1995; Zhu et al. 1999). Nodal signaling in embryogenesis 
directs many processes crucial to normal development, but when ectopically acti-
vated, these processes contribute to the malignant phenotypes observed in cancer.

The role of Nodal in melanoma was initially proposed by Hendrix and colleagues 
after a screen to investigate interactions between melanoma cells and embryonic 
stem cells (Topczewska et al. 2006). They injected fluorescently labeled human 
melanoma cells, which were previously characterized for gene expression, 
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invasiveness, and metastatic potential, into embryonic zebrafish and monitored 
changes in development. Those melanoma cells categorized as more aggressive 
induced changes in the structure of endogenous tissue, while less aggressive cell 
lines did not. Morphologic abnormalities observed included additional outgrowths 
and secondary body axes, which led to the hypothesis that melanoma cells were able 
to stimulate the same patterning pathways as embryonic cells. Given the nature of 
the morphologic abnormalities, Nodal was investigated as a candidate morphogen 
secreted by melanoma cells. Through evaluation of patient samples, they showed 
that Nodal expression is almost exclusively limited to those melanomas with more 
aggressive pathologic characteristics, such as an early vertical growth phase, local 
tissue invasion, earlier and more metastases, and lack of differentiation. Additional 
studies have shown that melanomas expressing Nodal have pathologic and clinical 
characteristics associated with a poorer prognosis than do other melanomas 
(Topczewska et al. 2006).

The characteristics of Nodal-expressing melanomas bear a relationship to Nodal- 
regulated processes in embryogenesis. For example, Nodal has been shown to acti-
vate EMT factors in melanoma, such as Snail family proteins, which, like Twist, 
promote embryonic mesodermal migration (Fang et al. 2013). Additionally, when 
melanoma cells were treated with exogenous Nodal in vitro, they became less adhe-
sive and express increased matrix remodeling proteins. These characteristics are 
associated with EMT in both cancer and embryogenesis (Fang et al. 2013). Nodal 
has also been shown to drive dedifferentiation of melanoma cells toward a stem- 
cell- like state, resulting in expression of earlier melanocyte lineage markers as well 
as loss of pigmentation (Topczewska et al. 2006). Conversely, when Nodal is 
knocked down, the cells become more adherent and differentiated. Additionally, 
Nodal knockdown abrogates overall tumor growth in xenotransplant models (Hardy 
et al. 2010; Postovit et al. 2008).

The role of Nodal in aggressive melanomas has stimulated interest in it as a drug 
target. Nodal is expressed in few adult tissues (Hendrix et al. 2007), so an anti- 
Nodal therapy would be relatively tumor-specific, and off-target effects would be 
limited. Recently, anti-Nodal antibodies have been evaluated in vitro with dacarba-
zine for effects on melanoma cells (Hardy et al. 2015). Previous studies have shown 
Nodal-positive cell subpopulations in heterogeneous tumors are resistant to dacar-
bazine therapy. The combination treatment of anti-Nodal antibodies with dacarba-
zine decreased proliferation and increased apoptosis of melanoma cells when 
compared with treatments of each single agent alone. Follow-up evaluation of the 
combination therapy in xenografts showed a similar decrease in tumor growth rate. 
Anti-Nodal antibodies have been compared to BRAFV600E inhibitor therapy in vitro 
and in vivo (Strizzi et al. 2015). Notably, a greater decrease in tumor volume in 
xenografts treated with anti-Nodal antibodies was observed when compared to con-
trols treated with IgG antibodies or BRAFV600E inhibitor. While direct targeting of 
Nodal for melanoma therapy shows promise in these initial evaluations, it is not yet 
known whether anti-Nodal therapies can improve patient clinical outcomes.
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13.2.2  Notch

Notch is a highly conserved transmembrane protein that controls gene expression to 
regulate cell-fate determination, survival, development, and neurogenesis. There are 
four Notch receptors in humans, designated Notch 1–4. Five Notch ligands, desig-
nated Delta Like Ligand 1/3/4 and Jagged 1/2, activate Notch receptors. Notch 
ligand–receptor interactions stimulate juxtamembrane signaling, resulting in a series 
of proteolytic cleavage steps mediated by TNFa-converting enzyme and the 
γ-secretase protease complex. Following cleavage, the Notch intracellular domain 
(NICD) is released into the cytosol (Brou et al. 2000; Edbauer et al. 2003; Hartmann 
et al. 2002). NICD then translocates to the nucleus where it binds to mastermind, 
CBF1, and p300 and regulates transcription of genes, including the Hes and Hey gene 
families (Fryer et al. 2002; Nam et al. 2003; Wu et al. 2000). Notch signaling is an 
important part of normal embryogenesis, regulating asymmetric cell divisions that are 
crucial to neurogenesis, somite compartmentalization, and other developmental pro-
cesses (Feller et al. 2008; Matsuzaki 2000). By regulating cell-fate specification and 
cell function, Notch activity contributes to a broad spectrum of biological processes, 
including stem cell maintenance, hematopoietic fate decisions, and intestinal epithe-
lium renewal (Bedogni 2014; Montagne and Gonzalez- Gaitan 2014; Pinnix and 
Herlyn 2007). Notch targets CyclinD1, p21, and SKP2 suggesting a role in cell cycle 
regulation (Pinnix and Herlyn 2007). Taken together, these and many additional stud-
ies show Notch regulates cell function during embryogenesis and other contexts.

Notch signaling is required for the maintenance of melanoblasts and melanocyte 
stem cells (MSCs). Mice that are depleted of Notch activity in the melanocyte lin-
eage exhibit severe coat color dilution caused by inappropriate apoptosis of melano-
blasts during embryogenesis (Moriyama et al. 2006). Notch1 and Notch2 receptors 
are critical for melanoblast survival (Schouwey et al. 2007). Furthermore, Notch 
activity is required for MSC survival, as these cells are lost during successive hair 
cycles in Notch-depleted animals. Death within the melanocyte lineage may result 
from a failure to maintain melanoblasts and MSCs in a de-differentiated state. In 
support of this notion, gain-of-function studies by the Herlyn group found that 
expression of constitutively active NICD was sufficient to convert differentiated 
melanocytes into multipotent neural crest stem-like cells (Zabierowski et al. 2011). 
Notch signaling is indeed important for development of the neural crest, where it is 
involved in initial specification of neural crest cells and simultaneously prevents 
their premature differentiation (Cornell and Eisen 2002; Endo et al. 2002; Glavic 
et al. 2004). In cultured neural crest stem-like cells, Notch signaling is required for 
cell survival and is inhibited during ultraviolet-light-induced differentiation of these 
cells into melanocytes (Fukunaga-Kalabis et al. 2015). Overall, Notch signaling 
acts in cells of the melanocyte lineage, either neural crest, melanoblasts, or MSCs, 
to promote cell survival and prevent terminal differentiation.

Notch signaling is active in melanomas where it regulates key aspects of tumor 
progression (Hendrix et al. 2002). The microRNA miR-146a acts through Notch to 
promote melanoma cell survival and progression (Forloni et al. 2014). miR-146a is 
upregulated by oncogenic BRAF or NRAS signaling, and a key miR-146a target is 
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NUMB. Repression by miR-146a downregulates NUMB, relieving its inhibition of 
Notch signaling. Notch interacts with additional microRNAs to promote melanoma 
metastasis. Notch activation in melanoma cells through contact with neighboring 
keratinocytes leads to disruption of microphthalmia-associated transcription factor 
(MITF)/Recombination signal binding protein for immunoglobulin kappa J region 
(RBPJK)-mediated repression of miR-222/221 (Golan et al. 2015). This keratino-
cyte-induced Notch signaling results in miR-222/221 expression, which promotes 
melanoma invasion and metastasis. Lastly, Notch signaling is implicated in mela-
noma progression through an association with Nodal (Hardy et al. 2010). In aggres-
sive melanoma cell lines, Nodal expression is correlated with and depends on 
Notch4 expression and activity, respectively. Inhibition of Notch4 blunts aggressive 
features of these cells including anchorage-independent growth. These activities of 
Notch in melanoma cells are consistent with its role in the melanocyte lineage of 
promoting a less differentiated and more proliferative state.

13.3  Adopting Melanocyte Lineage Characteristics 
in Promoting Melanoma

There are specific aspects of neoplasia that hold true for nearly every type of  
cancer – an ability to bypass cell cycle checkpoints, to suppress growth arrest and 
apoptotic signaling being a few commonalities. But between cancers arising from 
various cell types, and even between subtypes of the same cancer, there is a wide 
range of behaviors that are observed. Some develop more indolent characteristics, 
such as a slow growth rate or minimal invasion from the primary site. Others are 
known to be much more malignant, spreading and growing quickly, sometimes 
before a primary tumor is clinically apparent. While there is much variability within 
cancers that arise from same cell type, some malignancies are prognostically inher-
ently worse or better than others. Some of these differences can be explained by the 
propensity for specific oncogenic mutations, unique environmental exposures to 
carcinogens, or particular viral infections. But there is also an underlying compo-
nent of development that predisposes cancers to behave in specific ways.

Melanoma is often more aggressive and prone to metastasis than other cancers 
(Gupta et al. 2005a). While this propensity for aggressive behavior is likely related 
to the function of mutations in specific oncogenes and tumor suppressors, the 
underlying biology of melanocytes plays a role in the phenotypes observed in mel-
anoma. In an experiment evaluating characteristics of different precursor cells with 
the same oncogenic mutation profile, multiple cell types were immortalized using 
simian virus-40-expressing LT and ST proteins and were then transformed with 
oncogenic Ras (Gupta et al. 2005a). The resulting transformed cells were evalu-
ated for various malignant characteristics, such as invasive and metastatic capacity. 
The majority of transformed cells showed the ability to form tumors but were 
unable to invade or metastasize. However, transformed melanocytes were very 
invasive under the same transformation conditions. These results suggest that there 
is an inherent predisposition of melanocytes to metastasize when compared with 
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other cell types. This predisposition is due, in part, to epigenetic differences 
between melanocytes and other cell types (Gupta et al. 2005a). In a more recent 
study, Kaufman et al. showed that in zebrafish, a marker expressed only in the 
neural crest during embryogenesis, crestin, is re-expressed during the formation of 
melanomas (Kaufman et al. 2016). This further supports the notion that the embry-
onic lineage from which a cell is derived plays a role during malignant transforma-
tion. One of the major embryonic programs operating in these precursor cells is the 
epithelial-to- mesenchymal transition (EMT).

As previously discussed, the first major EMT event is the migration of mesoderm 
during gastrulation (Conlon et al. 1994). The second major EMT event involves the 
migration of neural crest cells from the neural crest to multiple locations around the 
developing embryo (Sadler and Langman 2010). In most cases involving EMT, there 
are key steps that allow cells to make the transition and to begin to migrate. These 
steps are delineated by the expression of markers known to be associated with EMT, 
such as Snail1, Snail2 (previously Slug), Twist1, Zeb1, and Zeb2 (Cano et al. 2000; 
Comijn et al. 2001; Grooteclaes and Frisch 2000; Yang et al. 2004). The first key step 
is alteration of adherence molecules on the cell surface. In pre-migratory melano-
cytes, the major adherence molecule involved in maintaining cell–cell and cell–
matrix connections is E-cadherin (reviewed in Kerosuo and Bronner-Fraser 2012). 
During EMT, E-cadherin expression is replaced by expression of N-cadherin, driven 
by the neural crest transcription factor Snail2 (Cano et al. 2000). By downregulating 
E-cadherin, cells are able to free themselves from neighboring cells to begin migrat-
ing. Another key step is the upregulation of metalloproteinases and other matrix 
remodeling proteins. Key proteins such as ADAM10, ADAM13, and MMP-2 have 
increased expression that correlates with the timing of delamination of the neural 
crest cells from the neural tube (Kuriyama and Mayor 2008). By downregulating 
adhesion and upregulating remodeling proteins, neural crest cells are able to migrate 
to their final destinations. While promoting migratory characteristics of neural crest 
cells and melanocyte precursors, EMT also maintains a de- differentiated and mini-
mally proliferative state in cells during migration (Vega et al. 2004).

Many aspects of the epithelial-to-mesenchymal transition during migration of 
the neural crest are similar to those that are characteristic of melanoma. In support 
of this similarity, many factors involved in physiologic EMT during development 
are also active in melanoma. In particular, Twist1, Zeb1, Zeb2, and Snail family 
proteins have been implicated in melanoma metastasis. These EMT factors are acti-
vated through MAP kinase signaling and promote a de-differentiated and migratory 
state in melanoma (Caramel et al. 2013). Additionally, the proliferation rate of cells 
with active EMT markers is significantly decreased, making them more resistant to 
many cytotoxic therapies that target rapidly proliferating tumor cells.

In the context of melanoma, EMT is associated with aggressive, therapy- resistant 
tumor types. Thus, better understanding the role of EMT during embryogenesis and 
tumorigenesis offers potential clinical value. EMT factors are expressed almost 
exclusively during embryogenesis and are not expressed in normal adult tissues 
(Gupta et al. 2005b). This affords the possibility of diagnostic techniques focused 
on these factors as biomarkers for the presence of malignancy. For example, Snail2 
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levels are highest during early transformation of melanocytes (Gupta et al. 2005a; 
Shirley et al. 2012). This knowledge could provide a means to more accurately 
identify lesions at risk for malignant transformation for further observation or 
removal. Additionally, in embryogenesis, these factors work in the context of vari-
ous signaling pathways that keep them in check. Further exploration of how these 
EMT factors are regulated in embryonic development could inform potential means 
of controlling them in melanoma. For example, it has been shown that treatment 
which upregulates MITF, the master regulator of melanocyte differentiation, can 
drive differentiation of melanocytes expressing EMT markers, increasing suscepti-
bility to chemotherapy and decreasing migratory capacity (Caramel et al. 2013). In 
addition to melanoma, EMT is present in the progression of other tumor types, and 
any discovery that informs the prognosis or treatment of melanoma based on these 
factors has the potential to be applied more broadly to other malignancies.

13.4  WNT Signaling

Wnt signaling plays a role in many aspects of embryonic development (Sadler and 
Langman 2010). Wnt secreted glycoproteins canonically signal through a series of 
intracellular steps to stabilize β-catenin so that it can translocate to the nucleus, form 
a complex with TCF/LEF transcription factors, and activate expression of target genes 
(Moon 2005). Wnt signaling regulates the melanocyte lineage at various stages of 
development (Lewis et al. 2004). Wnt signaling is important in neural crest specifica-
tion, working in conjunction with BMP and FGF signals to prime pluripotent ectoder-
mal cells to receive appropriate signaling to induce neural crest formation (Garnett 
et al. 2012; Jin et al. 2001; Sato et al. 2005). After neural crest formation, Wnt signal-
ing plays a role in the expression of other neural crest markers and EMT factors 
(Garnett et al. 2012). Importantly, Wnt cooperates with Zic and Pax transcription fac-
tors to promote the expression of Snail family proteins in the neural crest, allowing 
appropriate neural crest migration (Sato et al. 2005). Additionally, Wnt signaling is 
involved in activation of Sox10, which is required for development of some nonmes-
enchymal neural crest derivatives, including melanocytes (Lewis et al. 2004). After 
neural crest migration, Wnt signaling is involved in the final specification, through 
multiple mechanisms, of melanocytes from precursors. Importantly, activated 
β-catenin itself promotes expression of MITF (Dorsky et al. 2000; Raible and Ragland 
2005). Additionally, Wnt-activated expression of Sox10 increases Sox10 binding to 
the MITF promoter and reinforces expression of MITF. Through these mechanisms, 
canonical Wnt signaling promotes both neural crest and melanocyte identity.

13.4.1  Canonical Wnt Signaling in Melanoma

Canonical Wnt signaling has been implicated in the proliferation, invasion, and 
metastatic potential of melanoma. Multiple studies have shown Wnt ligands, ones 
that specifically activate the canonical pathway, are commonly overexpressed in 
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both melanocytic nevi as well as in melanoma (Pham et al. 2003; You et al. 2004). 
Examination of primary human melanoma samples has shown increased nuclear 
localization of β-catenin (Rimm et al. 1999). Melanoma cell lines with high levels 
of Wnt activity also show increases in transcription of known Wnt targets, such as 
MITF (Widlund et al. 2002). Despite high levels of nuclear β-catenin, mutations in 
β-catenin, adenomatous polyposis coli (APC), and other Wnt pathway components 
are infrequent in melanoma, indicating alternative means of Wnt activation 
(Reifenberger et al. 2002; Rimm et al. 1999). Taken together, these results show that 
the Wnt pathway is indeed active at various stages of melanoma progression.

Canonical Wnt signaling has complex and context-dependent roles through vari-
ous stages of melanoma development. Experiments examining the role of Wnt on 
proliferation have shown that increased Wnt signaling decreases the proliferation of 
both human and mouse melanoma cell lines (Chien et al. 2009). Furthermore, cells 
overexpressing Wnt showed a decrease in tumor size in a xenotransplantation 
model. Similarly, overexpression of Wntless Wnt Ligand Secretion Mediator 
(WLS), a protein that supports Wnt secretion, causes a decrease in the proliferation 
of cells in vitro, while knockdown of WLS causes an increase in proliferation (Yang 
et al. 2012). These results suggest that signaling by canonical Wnt ligands acts to 
suppress proliferation of melanoma cells. In support of this idea, studies have shown 
that increased Wnt activity, as measured by nuclear staining for β-catenin, is associ-
ated with improved patient survival (Chien et al. 2009). These studies provide evi-
dence for Wnt signaling acting as an inhibitor of proliferation. However, other 
studies support a role for the Wnt/β- catenin pathway in promoting proliferation, 
suggesting that Wnt actions are dependent on biological context. Damsky et al. 
expressed a stabilized version of β-catenin in a BRAFV600E/PTENKO mouse model 
and showed that it increased the proliferative index and overall growth of melano-
mas (Damsky et al. 2011). Similarly, Delmas et al. showed expression of stabilized 
β-catenin, in the context of activated NRAS, was able to immortalize primary skin 
melanocytes and induce melanoma formation in mice (Delmas et al. 2007). These 
results suggest that the role of Wnt signaling is highly dependent on the context in 
which it is active and potentially on how the Wnt pathway itself is activated.

Similar to its effect on proliferation, regulation of invasion and metastasis by 
Wnt signaling is likely dependent on biological context. Experiments involving Wnt 
overexpressing cell lines show a decrease in metastasis in a mouse xenograft model 
(Chien et al. 2009). In addition, WLS knockdown cells show an increase in metas-
tasis when applied to a mouse xenograft model, suggesting that loss of Wnt signal-
ing increases metastasis (Yang et al. 2012). In other contexts, Wnt signaling adopts 
alternative roles. In BRAFV600E/PTENKO mice expressing stabilized β-catenin, 
increased metastasis was observed when compared with controls (Damsky et al. 
2011). Likewise, Gallagher et al. showed that, when combined with an activated 
NRAS oncogene, stabilized β-catenin was able to induce more metastases in mice 
(Gallagher et al. 2013). As with proliferation, the effects of Wnt signaling on inva-
sion and metastasis of melanoma depend on how Wnt activation is achieved and in 
which genetic background experiments are performed. These studies, as well as 
those on proliferation described above, suggest the mode of Wnt activation is 
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important in its effect on tumorigenesis. Specifically, a difference exists between 
stabilized β-catenin and Wnt ligand-mediated activation: Wnt ligand overexpression 
shows a generally tumor suppressive role, while ligand-independent activation and 
stabilization of β-catenin promotes tumor progression.

Differential effects of Wnt signaling are also manifest in melanoma therapy. 
Suggesting that Wnt signaling facilitates therapeutic targeting, a Wnt3a-dependent 
increase in apoptosis was observed when BRAFV600E-positive cell lines were sub-
jected to BRAF inhibition (Biechele et al. 2012). In a later study, patients were ret-
rospectively evaluated for response to BRAF inhibitors based on β-catenin staining 
prior to initiating therapy (Chien et al. 2014). Here, increased β-catenin staining 
prior to treatment correlated with a poorer response to BRAF inhibitors, arguing 
that Wnt signaling dampened the response to BRAF inhibitors. These results again 
suggest that the complexity of canonical Wnt signaling extends to melanoma 
therapy.

13.4.2  Noncanonical Wnt Signaling

Noncanonical Wnt signaling has two main sub-pathways: the planar cell polarity 
(PCP) pathway and the Wnt/calcium pathway (Liu et al. 2014; Veeman et al. 2003). 
Both pathways signal independently of β-catenin. The PCP pathway, activated by a 
subset of Wnt ligands binding to Wnt receptors, involves the activation of down-
stream factors that help rearrange cytoskeletal elements. The calcium pathway 
involves Wnt ligand and Frizzled receptor-induced activation of phospholipase C, 
leading to differential regulation of calcium within the cell. By regulating cell 
migration, cell polarity, and other fundamental processes, noncanonical Wnt signal-
ing plays a role in several phases of embryonic development (Prasad et al. 2015).

The role of noncanonical Wnt signaling in promoting melanoma was first 
hypothesized after a screen of melanoma cell lines revealed overexpression of 
Wnt5a, a Wnt ligand that predominantly activates noncanonical pathways (Bittner 
et al. 2000). Further examination of tumor samples showed Wnt5a expression 
increased with melanoma progression (Bittner et al. 2000), and its expression cor-
related with poor patient outcomes (Forno et al. 2008). Mechanistic studies in vitro 
showed that exogenous Wnt5a added to melanoma cells augmented changes in 
polarity and migration, suggesting a role in promoting invasion and metastasis 
(Dissanayake et al. 2007). Supporting this result, targeting endogenous Wnt5a with 
an inhibitor decreased migration of melanoma cells (Jenei et al. 2009). Additional 
in vitro studies showed overexpression of Wnt5a caused redistribution and decreased 
expression of adhesion molecules (Witze et al. 2008), whereas knockdown increased 
adhesion molecule expression, leading to a decrease in invasion (Jenei et al. 2009). 
Extending these studies in vivo, Dissanayake et al. showed administration of Wnt5a 
in a xenograft model promoted metastasis (Dissanayake et al. 2008). Interaction of 
noncanonical Wnt signaling has also been implicated in resistance mechanisms to 
therapy. Anastas et al. have shown that elevated Wnt5a expression is correlated with 
a decrease in patient response to BRAF inhibitors (Anastas et al. 2014). This 
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resistance is proposed to be mediated by an increase in AKT/PI3K signaling activa-
tion. In this study, knockdown of Wnt5a was able to rescue sensitivity to BRAF 
inhibition. Additionally, Webster et al. have shown Wnt5a induces a senescent, yet 
still invasive, phenotype in melanoma cells, allowing continued progression of 
tumors while avoiding conventional chemotherapy or targeted therapies (Webster 
et al. 2015). While Wnt5a has been shown to affect signaling independent of 
β-catenin, it has also been shown that there may be interactions between canonical 
and noncanonical Wnt signaling, especially in later-stage melanomas. In vitro 
experiments showed Wnt5a signaling disrupted interaction between β-catenin and 
N-cadherin, allowing a larger pool of available β-catenin to translocate to the 
nucleus and induce transcription (Grossmann et al. 2013). This interaction between 
canonical and noncanonical signaling pathway creates another layer of complexity 
in interpreting the effects of Wnt signaling.

13.5  MITF

Microphthalmia-associated transcription factor (MITF) is the master regulator of 
the melanocyte lineage. It activates the transcription of melanin biosynthesis genes 
such as the receptor MC1R, the melanosome transport protein RAB27A, the mela-
nin biosynthetic rate limiting enzyme Tyrosinase, and other genes such as PMEL17 
and MLANA (Vachtenheim and Borovanský 2010). MITF is regulated by a combi-
nation of PAX3, SOX10, and LEF1, the latter of which directly links Wnt signaling 
to MITF regulation (Liu et al. 2014; Vachtenheim and Borovanský 2010). Several 
studies in mice, zebrafish, and other systems have shown that MITF is required for 
melanocyte development and function (Dorsky et al. 2000; Opdecamp et al. 1997; 
Patton and Nairn 2010).

The role of MITF in regulating melanocyte and melanoma cell proliferation and 
differentiation has been extensively studied. Early studies showed a complex rela-
tionship between MITF signaling and melanoma progression. In 2005, Carreira 
et al. found that MITF, when expressed at low levels, acts as an anti-proliferative 
factor, inducing G1 cell cycle arrest via p21Cip1 and p16INK4a (Carreira et al. 2005). In 
a follow-up study, Carreira found short-term depletion of MITF leads to p27Kip1- 
dependent cell cycle arrest while simultaneously increasing the invasiveness of 
melanoma cells (Carreira et al. 2006). By contrast, Garraway et al. found copy num-
ber amplification of the MITF gene in melanomas and showed that its elevated 
expression promoted melanocyte transformation, suggesting MITF can act as an 
oncogene (Garraway et al. 2005). The results of these studies indicate that the 
effects of MITF in melanoma depend largely on its expression level and corre-
sponding transcriptional activity.

To account for the differential effects of MITF, Goding and colleagues proposed 
the “rheostat” model to describe the observed changes in cellular phenotype based 
on low, moderate, or high levels of MITF signaling (Carreira et al. 2006; Hoek and 
Goding 2010). Under this model, cells with low levels of MITF are expected to 
exhibit a stem-like state where they proliferate slowly and are more invasive. Cells 
expressing moderate levels MITF are expected to proliferate by expressing 
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MITF- target genes such as CDK2 and BCL2, regulating cell cycle progression and 
survival. Melanocytes expressing MITF at high levels are nonproliferative and non-
invasive, expressing genes such as MART1 and Tyrosinase that promote terminal 
differentiation. In sum, MITF is proposed to modulate cell activity through variable 
expression just as a rheostat alters resistance in a circuit.

In concordance with this new model, Cheli et al. showed that low MITF levels 
are associated with a greater degree of “stemness” and tumor initiation (Cheli et al. 
2011). Ablation of low MITF cells from a heterogeneous tumor cell population 
greatly reduced tumor initiation. Additionally, the subpopulation of cells with high 
MITF levels were poor at initiating tumors. However, inhibition of MITF in this 
subpopulation upregulated the stem cell markers Oct4 and Nanog and increased 
tumorigenic potential. MITF inhibition led to p27 upregulation, consistent with a 
model in which slow growing, MITF-low cells are more stem cell-like and have the 
greatest potential to initiate tumors.

As an extension of the rheostat model, manipulation of MITF levels or activity has 
been proposed as a means of melanoma therapy. The goal of altering MITF is to change 
cellular phenotype, causing a switch from a stem-like phenotype to a more prolifera-
tive or differentiated phenotype. To accomplish such “phenotype- switching,” metho-
trexate was used to increase MITF expression in melanoma cells, driving them toward 
a more proliferative and differentiated state (Sáez-Ayala et al. 2013). This higher rate 
of proliferation increased the susceptibility of the cells to treatment with the antime-
tabolite 3-O-(3,4,5-trimethoxybenzoyl)-(−)-epicatechin (TMECG), an inhibitor of 
folate metabolism. This result highlights the potential utility of using MITF-specific 
treatment as an adjuvant to standard of care in highly invasive and aggressive melano-
mas. MITF expression has also been investigated as a prognostic factor in melanoma. 
In 2014, Peeper and colleagues showed that a low MITF/AXL ratio was predictive of 
resistance to BRAF inhibitors (Müller et al. 2014). These are recent examples of how 
understanding MITF function in embryonic melanocyte development can further the 
development of clinically relevant tools and effective therapeutics.

 Conclusion

Embryonic development requires many temporally and spatially regulated steps 
to develop mature melanocytes. From early embryonic patterning to final fate 
specification, multiple signaling pathways and intrinsic factors are required to 
complete these steps, perfectly coordinated to correctly direct development. 
Because embryogenesis is a unique biological scenario, many of these pathways 
and factors that drive proliferation and migration are only active during develop-
ment, and not active in adult tissues. However, because these properties are cru-
cial in tumor initiation and progression, the embryonic programs are often 
reawakened during melanoma initiation and progression. In particular, the mela-
nocyte development program provides nascent melanomas with a toolset to pro-
mote proliferation, invasion, and metastasis. Many of the embryonic properties 
co-opted by melanomas are broadly shared across many forms of cancer. This 
common thread that connects different malignancies suggests that discoveries 
relating melanocyte development to melanoma could inform our understanding 
of biological processes underlying other cancers.
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Tumor Microenvironment  
for Melanoma Cells

Lawrence W. Wu, Meenhard Herlyn, and Gao Zhang

14.1  Introduction

Melanoma is the most deadly cancer in the skin with a 5-year survival rate of 
advanced, metastatic disease at 15 %. Fortunately, recent years have witnessed 
breakthroughs in melanoma therapies such as targeted therapy, vemurafenib, to 
block the MAPK signaling pathway by specifically targeting mutated oncogenic 
BRAF (Bollag et al. 2010; Flaherty et al. 2010). Additionally, combining a BRAF 
inhibitor (Dabrafenib) with an MEK inhibitor (Trametinib) increased efficacy of 
treatment by overcoming certain resistance mechanisms with BRAF inhibition 
alone (Johnson et al. 2014; Shi et al. 2014). This increased efficacy is also seen in 
the combination of vemurafenib and cobimetinib, another MEK inhibitor (Larkin 
et al. 2014). Immune checkpoint blockade therapies targeting immune inhibitory 
molecules have yielded tremendous clinical responses as well. Targeting cytotoxic 
T-lymphocyte-associated antigen 4 (CTLA-4) using Ipilimumab (anti-CTLA-4) 
paved the way for other immune checkpoint blockade therapies, such as nivolumab 
and pembrolizumab (anti-PD1), which target programmed cell death protein 1 
 (PD- 1) (Hodi et al. 2010). Nivolumab was found to have greater response and 
 efficacy than Ipilimumab as a single agent therapy (Robert et al. 2015). Additionally, 
the combination of nivolumab and Ipilimumab is more effective than single agent 
ipilumumab (Postow et al. 2015). Lastly, talimogene laherparepvec (T-VEC),  
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an oncolytic immunotherapy, was the first of its kind to demonstrate therapeutic 
benefit in a clinical trial (Andtbacka et al. 2015). The area of the immune microen-
vironment and mechanisms of immune-response to these checkpoint inhibitors is a 
very urgent topic among clinicians and scientists (see also Chaps. 16 and 17).

Melanoma cells activate, recruit, and continuously interact with other cells in the 
tumor microenvironment to facilitate their own growth, survival, migration, and 
invasion. As illustrated in Fig. 14.1, the tumor microenvironment of melanoma con-
sists of neoplastic cells, normal cells, soluble growth factors, and extracellular 
matrix components that together cooperate to drive tumorigenesis. Perhaps the most 
striking evidence to support this notion came from our observation that metastatic 

PDGF
bFGF
EGF
TGFb
IL-6

IGF1
VEGF
bFGF
IL-6
CCL21

Melanocyte

Keratinocyte

Fibroblast

Melanoma cell

Nevus cell
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Fig. 14.1 Schematic representation of cross-talk between melanoma cells and tumor microenvi-
ronment. Normal melanocytes are localized at the basement membrane that separates epidermis 
from dermis and they are tightly regulated by surrounding keratinocytes through direct cell–cell 
contact. Upon transformation, the tight regulation mediated by E-cadherin is lost and replaced by 
N-cadherin between melanoma cells and adjacent cells. During melanoma development and pro-
gression, melanoma cells secrete soluble factors to recruit distant fibroblasts or immune cells in 
tumor microenvironment to its peritumoral zone. Stromal cells, including fibroblasts, endothelial 
cells, and immune cells, are activated and participate through paracrine signaling pathways to 
facilitate degradation of the basement membrane, invasion into the dermis, and metastatic dissemi-
nation. The dynamic communication between melanoma cells and the tumor microenvironment is 
mediated by direct cell–cell contact or soluble growth factors including bFGF, PDGF, VEGF, 
TGFβ, cytokines, and inflammatory factors
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melanoma cells lose their tumorigenic properties if forced to attach to keratinocytes 
(Hsu et al. 2000). Similarly, melanoma cells can be reprogrammed by an embryonic 
microenvironment to a benign phenotype (Díez-Torre et al. 2009; Gerschenson 
et al. 1986; Topczewska et al. 2006), further underscoring the plasticity of malig-
nant cells and the existence of inhibitory cues in the microenvironment.

14.2  Melanocyte, Melanoma, and the Microenvironment

Human melanocytes are specialized melanin-producing cells of neural crest cell ori-
gin. They are embedded at the conjunction of epidermis and dermis. All pigmented 
melanocytes are derived from embryonic neural crest cells that are highly migratory 
(White and Zon 2008). Multipotent neural crest stem cells (NCSC) can give rise to at 
least six differentiated cell lineages including melanocytes, glia, sensory neurons, 
adrenal cells, craniofacial cartilage and bone, and smooth muscle (Bronner-Fraser 
and Fraser 1988; Yu et al. 2006; Li et al. 2010; Cichorek et al. 2013). Several factors 
play a role in establishing multipotent neural crest stem cell, restricting neural crest 
stem cells toward a melanoblast fate, and driving differentiation of pigmented mela-
nocytes (White and Zon 2008) (see also Chap. 13). Melanocytes make close contacts 
with keratinocytes, primarily through E-cadherin. On the basement membrane, the 
ratio between melanocytes and keratinocytes ranges from 1:5 to 1:8. Isolated mela-
nocytes grow relatively rapidly in culture, and display bi- or tri-polar dendrites. By 
contrast, melanocytes rarely grow in the physiological setting of skin and display 
multiple (~35) dendrites to communicate with surrounding keratinocytes. It is the 
cell–cell contact through E-cadherins that closely regulates growth and proliferation 
of melanocytes and prevents early transformation of melanocytes to nevi (see also 
Chap. 2). With few exceptions, melanoma cells lose contact with keratinocytes and 
communicate with themselves and fibroblasts, which is due to the switch from 
E-cadherin to N-cadherin (Hsu et al. 2000; Li et al. 2001). The restoration of 
E-cadherin in melanoma cells of low levels of E-cadherin led to adhesion to kerati-
nocytes and inhibited the invasion of melanoma cells into the dermis by downregula-
tion of invasion-related molecules (Hsu et al. 2000). Oncogenic BRAFV600E can 
induce repression of E-cadherin to promote melanoma cell invasion through T-Box3 
transcriptional repression (Boyd et al. 2013).

There are several mechanisms for malignant transformation. Hypoxia is one of 
the significant characteristics of the skin and tumor microenvironment and can 
accelerate transformation (Bedogni et al. 2005; Monsel et al. 2010). In particular, 
hypoxia contributes to heterogeneity in melanoma in a HIF1α-dependent manner 
(Widmer et al. 2013). These experiments have provided an important hint that the 
surrounding tissue contributes to transformation. The combination of bFGF and 
ultraviolet (UV) B could readily lead to pigmented lesions, some of which resemble 
low-grade melanoma (Berking et al. 2001). Interestingly, melanocytes display 
melanoma- like aggressive phenotypes when grown on melanoma cell-derived 
matrix (Seftor et al. 2005), suggesting that in addition to genetic approaches, the 
microenvironment can also reprogram normal melanocytes into melanoma-like 
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phenotypes. Conversely, malignant cells can be reprogrammed by human or chick 
embryonic stem cell matrix to a benign melanocyte-like phenotype (Kulesa et al. 
2006; Postovit et al. 2006) (see also Chap. 13). Sustained stress in the microenviron-
ment may lead to epigenetic reprogramming to a malignant transformation 
(Molognoni et al. 2011). Together, these examples demonstrate how the surround-
ing microenvironment can play a major role in modulating of both normal and 
malignant melanocytes.

14.3  Growth Regulation of Human Melanocytes 
by Epidermal Keratinocytes and Dermal Fibroblasts

Human epidermal melanocytes isolated from fetal or adult skin do not propagate in 
vitro unless cultured in a defined growth medium, including phorbol ester and chol-
era toxin (Eisinger and Marko 1982) or growth factors that replace their activities. 
Conditioned medium derived from melanoma or astrocytoma cells (those selected 
for low TGF-ß production) support the growth of melanocytes in the absence of 
growth factors suggesting that malignant cells produce their own growth factors for 
autocrine stimulation (Table 14.1 and Eisinger et al. 1985).

Melanocytes are closely surrounded in skin by keratinocytes and survive and pro-
liferate when co-cultured with keratinocytes or in the presence of keratinocyte- 
conditioned medium, suggesting that most melanocyte growth-stimulating factors 
are derived from keratinocytes (see also Chap. 2). Basic fibroblast growth factor 
(bFGF) is produced by keratinocytes to enhance melanocyte proliferation (Halaban 
et al. 1988). Not only does bFGF have an impact on melanocyte survival, growth, and 
proliferation, bFGF can also promote melanocyte migration via phosphorylation of 
focal adhesion kinase (p125FAK) (Wu et al. 2006). bFGF can also be produced by 
dermal fibroblasts. α-MSH stimulates melanocyte growth by binding to its high 
affinity receptor and its activity requires bFGF and/or activation of protein kinase C 
(De Luca et al. 1993). Upon exposure of human keratinocytes to UVB, secreted 
interleukin 1-α and interleukin 1-β (IL1-α and IL1-β) from keratinocytes stimulate 
the secretion of endothelin (ET-1), which plays an important role in melanocyte pro-
liferation (Imokawa et al. 1992; Jamal and Schneider 2002). Similarly, UVA/B- -
irradiated keratinocytes secrete granulocyte/macrophage colony-stimulating factor 
(GM-CSF), which also stimulates DNA synthesis and differentiation of melanocytes 

Table 14.1 Growth factors 
or inhibitors for melanocytes 
derived from human 
epidermal keratinocytes and 
dermal fibroblats

Melanocyte growth 
regulator Keratinocytes Fibroblasts

α-MSH +++ NA

bFGF +++ ++

ET-1 +++ NA

ET-3 NA +++

HGF NA +++

GM-CSF +++ ++

SCF +++ +

DKK1 NA +++
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in a dose-dependent manner (Hirobe et al. 2004; Imokawa et al. 1996). Interestingly, 
direct reprogramming of mouse and human fibroblasts into melanocytes can be 
achieved through expression of MITF, SOX10, and PAX3 (Yang et al. 2014).

There is no apparent direct contact between epidermal melanocytes and fibroblasts in 
the dermis of the skin. However, fibroblasts can produce growth factors that are impor-
tant for melanocytes including bFGF and hepatocyte growth factor (HGF). IL1-α from 
UVB-irradiated keratinocytes can stimulate the production of HGF in fibroblasts 
(Mildner et al. 2007). Interestingly, HGF also plays a role in promoting melanocyte 
motility depending on CD44v6 expression (Damm et al. 2010), protecting melanocytes 
from apoptosis in an MITF-dependent manner (Beuret et al. 2007), and conferring resis-
tance to RAF inhibitors (Straussman et al. 2012). Another paracrine factor, neuregu-
lin-1, is derived from dermal fibroblasts. It can effectively increase pigmentation of 
melanocytes in monolayer and the reconstructed skin model (Choi et al. 2010) and also 
promotes melanocyte proliferation while inhibiting differentiation (Buac et al. 2009). 
On the other hand, dermal fibroblasts can have an inhibitory effect on density, prolifera-
tion, and differentiation of melanocytes via secreted DKK1 (Yamaguchi et al. 2007). 
DKK1 is highly expressed by fibroblasts and can suppress β-catenin and MITF in mela-
nocytes, which are essential for melanocyte growth and proliferation. Interestingly, 
DKK1 expression can inhibit invasiveness of melanoma cells (Chen et al. 2012). 
Treatment of keratinocytes with DKK1 can increase their proliferation and decrease 
their uptake of melanin (Yamaguchi et al. 2008).

14.4  Inflammatory Mediators on Human Melanocyte 
Function

The epidermal and dermal microenvironment harbors inflammatory mediators, 
cytokines, hormones, and growth factors that can alter human melanocyte function 
in a profound way. Many of these factors are released into the microenvironment 
after UV exposure and subsequently affect melanocyte pigmentation, proliferation, 
differentiation, cytokine production, and motility.

Tumor necrosis factor-α (TNF-α) is among many cytokines responsible for an 
inflammatory response in skin. Upon UVB irradiation, keratinocytes release TNF- 
α, which is likely stimulated by IL-1α. IL-1α is the primary mediator that responds 
to inflammation and injury in skin. Secretion of IL-1α increases as keratinocytes 
and fibroblasts age (Okazaki et al. 2005). It has been reported that increased secre-
tion of IL-1α can stimulate the production of HGF by dermal fibroblasts in a para-
crine manner and the production of ET-1 by keratinocytes for autocrine stimulation, 
which together stimulate proliferation of melanocytes and induce their tyrosinase 
activity. Nuclear receptor retinoid X receptor-α (RXR-α) expressed in keratinocytes 
is one of the upstream regulators of these cytokines and can protect keratinocytes 
and melanocytes from UV-induced DNA damage and enhance proliferation via 
modulation of secretion of heparin-binding EGF-like growth factor, GM-CSF, 
IL-1α, and cyclooxygenase-2 and activation of mitogen-activated protein kinase 
pathways (Wang et al. 2011). The depletion of RXR-α in epidermal keratinocytes 
leads to alterations in expression of keratinocyte-derived secreted factors such as 
ET-1, SCF, HGF, FGF2, and α-MSH, which modulate proliferation and activation 

14 Tumor Microenvironment for Melanoma Cells



362

of melanocytes after UV irradiation (Wang et al. 2011). Matrix metalloproteinases 
(MMP-2 and MMP-9) can also be co-up-regulated with inflammatory cytokines, 
serving as another important regulator in the epidermis (Decean et al. 2013).

Melanocytes express IL-8 mRNA when stimulated with TNF-α or IL-1α, and the 
supernatants from stimulated melanocyte cultures become positive for neutrophil and 
monocyte chemotactic activity, suggesting a possible role of melanocytes in participat-
ing in the initiation of an inflammatory response (Zachariae et al. 1991). The treatment 
of melanocytes with TNF-α, IL-1α, or IL-6 leads to the inhibition of tyrosinase activity 
and DNA synthesis (Swope et al. 1991), which suggests that they function as paracrine 
factors. Since melanocytes synthesize and transfer melanin to keratinocytes upon UV 
irradiation, it may implicate a negative feedback loop consisting of these factors to 
modulate melanocyte function. α-MSH can serve as a primary anti-inflammatory fac-
tor by opposing TNF-α-induced NF-kB activity in human melanocytes (Haycock et al. 
1999). It is mainly produced by epidermal keratinocytes suggesting intricate interac-
tions between keratinocytes, melanocytes, and inflammatory mediators.

14.5  Interplay Between Inflammation and Tumor Initiation, 
Promotion, and Progression

Ample evidence has pointed to a role of chronic inflammation in underlying tumor 
initiation and development (Grivennikov et al. 2010; Luo et al. 2004). IL-6/STAT3 
and IKKβ-dependent NF-kB signaling pathways are key players linking inflamma-
tion and cancer by regulating an array of cytokines (He and Karin 2010; Yu et al. 
2009). Inflammation contributes to the onset of malignancies by several potential 
mechanisms, including (1) stimulated cell proliferation, which can increase the like-
lihood of acquiring the transforming mutation, (2) production of metabolites such 
as reactive oxygen species (ROS) or endothelial nitric oxide synthase (eNOS), 
which can cause DNA damage, (3) suppression of cell-mediated immune response, 
which can create an environment that enhances tumor growth, and (4) inhibition of 
apoptosis (Kitasato et al. 2007; Rubin et al. 2004). An immunohistochemistry study 
demonstrated that chronic inflammation could contribute to malignant transforma-
tion in the human upper airways by the production of eNOS (Pacova et al. 2009).

UVB is regarded as an environmental carcinogen that is critical for melanoma 
development. UVB but not UVA can initiate melanoma using the HGF mouse 
genetic model (De Fabo et al. 2004). Exposure of keratinocytes to UV increases 
ROS production (Yoshihisa et al. 2010). In murine fibroblasts, UV irradiation 
enhanced ROS production via PKCdelta signaling (Bossi et al. 2008). Human epi-
dermal keratinocytes have higher basal hydrogen peroxide (H2O2) levels than mela-
nocytes and can transfer hydrogen peroxide to melanocytes (Pelle et al. 2005). UVB 
and UVC can differentially activate STAT3 in human keratinocytes and fibroblasts 
via ROS and DNA damage (Bito et al. 2010). Interestingly, IFN-γ promotes mela-
nocytic cell survival and immune-evasion in UVB-induced melanocyte activation 
(Zaidi et al. 2011). Fibronectin-containing extracellular vesicles also protect against 
UVB radiation and associated cytotoxicity (Bin et al. 2016).
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Together, these results suggest that human epidermal keratinocytes and/or dermal 
fibroblasts represent major sources of ROS for epidermal melanocytes following UV 
irradiation and initiate inflammatory response via the STAT3 signaling pathway. The 
UVB radiation of primary cutaneous melanoma can promote metastatic progression 
(Bald et al. 2014). The release of high mobility group box 1 (HMGB1) from epider-
mal keratinocytes damaged by UVB and Toll-like receptor 4 (TLR4) recruit and 
activate neutrophils (Bald et al. 2014). This inflammatory response stimulates angio-
genesis and melanoma migration toward endothelial cells. UVR targets TP53 to 
cooperate with oncogenic BRAFV600E to induce melanomagenesis (Viros et al. 
2014). It has been noted that UVB, along with growth factor such as bFGF, can trans-
form normal melanocytes (Berking et al. 2001, 2004). However, the underlying 
molecular basis of malignant transformation remains unclear. Given the evidence 
that ROS and DNA damage are implicated in UV irradiation- induced inflammatory 
response in skin keratinocytes and fibroblasts, an intriguing possibility is that 
UV-mediated inflammatory responses in the skin environment, including generation 
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Fig. 14.2 Human skin reconstruct using the 3-D organotypic culture system. (a) A schematic 
representation of human skin reconstruct at which human melanocytes or melanoma cells are 
grown as 3-D with keratinocytes, fibroblasts, and collagen that mimic the microenvironment.  
(b) VGP human melanoma cells WM3248 are grown in 3-D skin reconstruct comprising of 
 keratinocytes, fibroblasts, and collagen. Typical invasion into dermis of WM3248 cells is a charac-
teristic of RGP melanoma line (Images are captured at 20× and 40× (Courtesy of Dr. Ling Li, the 
Wistar Institute))
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of ROS and release of secreted cytokines, could further cause DNA damage in epi-
dermal melanocytes, and contribute to genetic alterations (Fig. 14.2).

 Conclusion
Transformation of normal melanocytes can be partially attributed to dysregu-
lated tissue homeostasis executed by keratinocytes. Furthermore, transformed 
melanocytic cells send signals throughout the microenvironment to recruit 
other cells types. Those cells become activated, communicate with the neo-
plastic cells, and elicit soluble pro-survival and anti-apoptosis signals through 
autocrine or paracrine signaling patterns or direct cell–cell contacts in order to 
create a suitable tissue microenvironment that supports melanoma progression. 
Over the decades, experimental studies have identified key intrinsic signaling 
pathways that mediate transformation of melanocytes into melanoma cells. In 
the skin, melanocytes are mainly surrounded by epidermal keratinocytes and 
they also communicate with dermal fibroblasts. How the microenvironment of 
melanocytes plays a role in transformation remains to be clarified. We propose 
to use human melanocytes as a paradigm to study and understand cell–cell 
communication and growth regulation between melanoma and the microenvi-
ronment. An understudied area is the role of inflammation in melanoma devel-
opment and progression. The immune microenvironment is another area where 
we plan to explore in melanoma. We are isolating skin fibroblasts (or periph-
eral blood mononuclear cells) from melanoma patients or healthy individuals 
who are predisposed or susceptible to melanoma, reprogram them into iPS 
cells and then differentiate them into melanocytes. These melanocytes are 
being used to model how the tumor microenvironment and UV radiation trig-
ger oncogenic transformation. These results can provide the foundation for 
future studies in prevention and development of new targets for therapy.
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Melanoma Model Systems

Birgit Schittek, Miriam de Jel, and Thomas Tüting

15.1  Complex In Vitro Cell Culture Model Systems

15.1.1  Introduction

Although there is experimental evidence that human tumor cell lines grown in cul-
ture can be representative of the original tumor lesion (Masters 2000; Smalley et al. 
2006b; Meier et al. 2000), it is obvious that tumor cells in vivo grow in an environ-
ment consisting of extracellular matrix components, stromal cells, inflammatory 
cells, and endothelial cells (Bissell and Radisky 2001). The contribution of the tumor 
microenvironment to tumor progression has already been recognized in 1889 by the 
“seed and soil” theory of Paget (Paget 1889) and later extended and confirmed by 
Meenhard Herlyns group (Li et al. 2003). This theory claims that not only genetic 
changes in the tumor cells determine an aggressive phenotype, but that microenvi-
ronmental factors have an impact on tumor cell behavior. Factors secreted by stromal 
cells as fibroblasts or direct cell–cell contacts between the tumor cells and the sur-
rounding stromal cells may either inhibit malignant transformation or promote tumor 
progression (Li et al. 2003). Cells grown in monolayer can differ considerably in 
their morphology, cell–cell and cell–matrix interactions, and differentiation from 
those growing in more physiological three-dimensional (3-D) environments (Yamada 
and Cukierman 2007). Furthermore, 3-D culture gene expression profiles have been 
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shown to more accurately reflect clinical expression profiles than those observed in 
2-D cultures. Finally, preclinical drug screening in 3-D culture models more reliably 
predict clinical efficacies, and monolayer culture of tumor cells has remained a poor 
predictor of a patient’s response toward therapeutic agents (Johnson et al. 2001; 
Voskoglou-Nomikos et al. 2003; Burdett et al. 2010) (Table 15.1).

Animal models are not suitable for high throughput screening but often provide 
definitive tests of the importance of specific molecules or drug targets. However, 
one has to keep in mind that animal models may not adequately reproduce features 
of human tumors or therapeutic responses (Kung 2007; Teicher 2006; Burdett et al. 
2010). On the other hand, most 3-D in vitro models lack the complex vascular sys-
tems that perfuse tissues in vivo. Since “Life isn’t flat” (Smalley et al. 2006b), 
in vitro 3-D tissue models provide an approach to bridge the gap between traditional 
cell culture and animal models (Griffith and Swartz 2006; Rangarajan et al. 2004; 
Yamada and Cukierman 2007).

15.1.2  Culture of Melanoma Cells in Extracellular Matrix 
Scaffolds

The specific extracellular matrix microenvironment provided to cells can substan-
tially influence experimental outcome. Both the composition and stiffness of the 
extracellular matrix surrounding the cells have major effects on signaling and behav-
ior (Yamada and Cukierman 2007). Therefore, a widely used strategy is to propagate 
cells in tissue culture and then implant them in a 3-D extracellular matrix scaffold as 
either single cells or as tissue-like aggregates. Three-dimensional scaffolds have 
been generated from purified molecules such as collagen I, Matrigel, or from native 
extracellular matrices secreted and isolated from fibroblasts or keratinocytes.

Because of its ubiquitous nature and relative ease of isolation, collagen was one 
of the earliest biomaterials to be widely used for 3-D cell culture. Collagen gel 
embedding involved the encapsulation of small tumor explants (1–2 mm) or of dis-
sociated tumor cells within a collagen matrix that allowed the explants to maintain 
their viability and cellular architecture ex vivo (Burdett et al. 2010). Cells suspended 
in extracellular matrix components are easily visualized by phase contrast or immu-
nofluorescence microscopy. In addition, the biological response of cells suspended 
in this 3-D system can be compared to that of cells grown in monolayer. Viable cells 
may also be removed from the 3-D cell culture system for further experimentation, 
including biological analysis and flow cytometry. Collagen gels can mimic loose or 
dense connective tissue depending on the concentration of collagen; such gels have 
been used widely in studies of fibroblast and tumor cell migration and signaling 
(Grinnell 2003). Since each tissue in vivo has a characteristic matrix microenviron-
ment, for a given study, it is crucial to select an appropriately matched 3-D in vitro 
matrix (Yamada and Cukierman 2007). Besides collagen, the basal membrane com-
ponents fibronectin, laminin, and collagen IV as well as Matrigel (BD Bioscience, 
San Jose, CA) have been used for melanoma cell culture. Matrigel is a basement 
membrane extract derived from the Engelbreth–Holm–Swarm mouse sarcoma that 
contains a diverse array of components, including collagen type IV, laminin, and 
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Table 15.1 Complex in vitro cell culture model systems

Melanoma model 
system Application Advantages Disadvantages

Culture in 
extracellular 
matrix scaffolds

Influence of 
extracellular matrix 
components on 
melanoma cell growth, 
invasion, and drug 
sensitivity

Easy to perform; 
different matrix 
components can be 
tested

Extracellular matrix 
components absorb 
drugs or growth factors; 
mostly higher drug 
concentrations have to be 
used

Microcarrier 
bead culture

High cell density 
culturing in matrix 
components possible

Several carrier 
materials can be used; 
ideal for large-scale 
culturing in matrix 
components

Expensive and more 
complicated

Transwell 
chambers

Analysis of 
chemotaxis, migration, 
and invasion

Easy to perform when 
precoated transwells 
are used, fast assay

Expensive, high 
variations possible if 
individual coating of the 
inserts is performed

Organotypic 
explant culture

Invasion, migration, 
and drug response

Culturing of 
melanoma cells in a 
physiological 
environment

Limited culture time; 
patient material 
necessary

De-epidermized 
dermis (DED)

Influence of 
extracellular matrix 
components and basal 
membrane on 
melanoma cell 
invasion

Native extracellular 
matrix and basal 
membrane present

Limited culture time; 
patient material 
necessary

2-D coculture 
systems

Influence of growth 
factors or cell–cell 
contact on melanoma 
cell growth, survival, 
invasion, gene 
expression

Easy to perform, 
secreted factors as 
well as cell contact 
can be analyzed 
separately

Patient material 
necessary for primary 
cells; sometimes 
separation of the cells 
necessary before analysis

Mono- or 
multi-cellular 
spheroids

Influence of melanoma 
cells grown in 
aggregates on drug 
sensitivity, secreted 
factors or cell–cell 
contact with melanoma 
cells itself or other cell 
types

Easy to perform, fast 
assay, high 
throughput screening 
possible, variable 
platforms and 
conditions possible

Suboptimal 
physiological conditions; 
limited informative value 
about melanoma 
invasiveness, not all 
melanoma cells can be 
used

Organotypic 
skin equivalent 
culture

Growth, survival, 
migration, and 
invasion of melanoma 
cells in a physiological 
environment

Most sophisticated 
melanoma model 
system, physiological 
environment, dermal 
and epidermal culture 
systems available

Laborious, expertise 
needed, not all 
melanoma cells can be 
used
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other ECM molecules, as well as various soluble factors, such as cytokines and 
growth factors (Burdett et al. 2010). However, because Matrigel is a largely unde-
fined and variable mixture of proteins, Matrigel culture has not been widely used for 
drug screening purposes.

More sophisticated models use other biomaterial scaffolds for culturing mela-
noma cells on other natural substrates (Fischbach et al. 2007; Zhang et al. 2010). 
Prototypical scaffolds were developed, in which freeze-dried and then cross-
linked solutions of collagen and glycosaminoglycans create biodegradable, 
sponge-like structures (Griffith and Swartz 2006). Hyaluronic acid can also be 
used as a scaffold for bioengineered skin (Scuderi et al. 2008). Furthermore, 
native extracellular matrix components secreted by fibroblasts can be isolated by 
a protocol described by Beacham et al. (2007). The advantage of using native 
extracellular matrix components is that the natural composition and 3-D structure 
of the matrix molecules remain intact. Extracellular matrix components can serve 
as a reservoir for growth factors secreted by neighboring cells or melanoma cells 
and by this can influence morphology and growth of neighboring cells. Together 
with fibroblasts, immune cells, and blood vessels, the extracellular matrix builds 
the tumor stroma and influences tumor progression, invasion, and metastasis 
(Mueller and Fusenig 2004).

15.1.3  Microcarrier Bead Culture

Microcarrier beads are also widely used (Smit et al. 1995). A microcarrier is a sup-
port matrix allowing for the growth of adherent cells in bioreactors. Carrier materi-
als for cells may be composed by gelatin, porous glass, collagen, or cellulose, with 
dimensions of 170–6,000 μm. In microcarrier culture, cells grow as monolayers on 
the surface of small spheres or as multilayers in the pores of macroporous struc-
tures that are usually suspended in culture medium by gentle stirring. By using 
microcarriers in simple suspension culture, fluidized or packed bed systems, yields 
of up to 200 million cells per milliliter are possible. Therefore, microcarriers pro-
vide convenient surfaces for growing animal cells or increasing the yield of cells 
from standard monolayer culture vessels and perfusion chambers. The high cell 
density confers more stability and improves the longevity of the culture, making 
macroporous microcarriers suitable for long-term culture. It has been described 
that normal human melanocytes or melanoma cells can be coated on microcarrier 
beads and polymerized within fibrin or fibrin–collagen hydrogels. A layer of der-
mal fibroblasts was added to more accurately simulate the microenvironment. 
Invasion can be monitored over a time period of 7 days. This model shows that the 
melanoma cell lines recapitulate their in situ growth patterns in this environment 
(Ghajar et al. 2007).

Microcarrier beads can also be rolled on a lymph node endothelial surface, which 
was created by growing endothelial cells on a differentiating extract of lymph node 
biomatrix, and testing the ability of tumor cells to invade across Matrigel-coated 
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filters. Interestingly, compared to the contact with plastic, Lewis lung carcinoma 
and B16 melanoma cell invasiveness were increased after exposure to “lung endo-
thelial surface.” This indicates that a lymph node environment may modulate the 
metastatic potential of tumor cells (Whalen et al. 1994).

15.1.4  Transwell Chambers

Transwell chambers are often used to study migration or invasion of tumor cells. 
This system is also called Boyden chamber assay, originally introduced by Boyden 
for the analysis of leukocyte chemotaxis (Boyden 1962). It is based on a cylindrical 
cell culture insert nested inside the well of a cell culture plate. It consists of cham-
bers of two medium-filled compartments separated by a microporous membrane. 
The insert contains a polycarbonate membrane at the bottom with a defined pore 
size. Depending on the composition of the porous membrane, either migration or 
invasion of tumor cells can be studied. Usually, cells are seeded in the upper com-
partment in serum-free media, while serum or similar chemoattractants are placed 
in the well below. Migratory cells move through the pores toward the chemoattrac-
tant below. The number of cells that have migrated to the lower side of the mem-
brane is determined after staining the membrane and quantified in a plate reader. 
Therefore, the Boyden chamber-based cell migration assay has also been called 
filter membrane migration assay, transwell migration assay, or chemotaxis assay. A 
number of different Boyden chamber devices are commercially available (Chen 
2005). Such a system can be used to obtain an objective numerical readout to assess 
the effects of drugs or the modulation of target gene expression on cell migration. 
Furthermore, by the addition of a Matrigel layer on top of the membrane, this assay 
can be modified to measure invasion, such that cells have to invade through the 
matrix to reach the underside of the filter.

15.1.5  Organotypic Explant Culture: Ex Vivo Cultures

Organ explant slices can be cultured on a semiporous membrane or are embed-
ded in a 3-D collagen gel (Pampaloni et al. 2007). Tumor tissue slices can be 
cultivated for up to 7 days and have been mainly used to determine drug responses 
and to predict tumor responses (Hickman et al. 2014; Gerlach et al. 2014). 
Organotypic slice cultures preserve the cytoarchitecture and cellular differentia-
tion of the original tissue. Although this approach benefits, in that epithelial/
endothelial cells are cultured in a relatively physiologically normal microenvi-
ronment, the culture period during which the organ remains viable is limited. A 
problem is also how to obtain the starting material, especially if it is of human 
origin (Hegerfeldt et al. 2002; Berry et al. 1975; Friedl et al. 2004). With this 
method one can also perform 3-D invasion assays, which support the invasion of 
tumor cell clusters from cancer explants.
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15.1.6  De-epidermized Dermis (DED)

The skin model based on de-epidermized human dermis populated with keratino-
cytes and fibroblasts was originally developed for resurfacing burned patients (Ghosh 
et al. 1997; Chakrabarty et al. 1999; Sahota et al. 2003; Harrison et al. 2006).  
On de-epidermized dermis (DED) stromal cells, keratinocytes, or melanoma cells 
can be seeded and cultured for several days and the invasive capacity of melanoma 
cells in this environment can be analyzed (Dekker et al. 2000). Using this model one 
can evaluate the contribution of the extracellular matrix, the basal membrane or nor-
mal skin cells on melanoma cell invasion. The advantage of this system is that the 
de-epidermized dermis retains a native extracellular matrix and basal membrane and 
the contribution of the basal membrane in the invasive properties of melanoma cells 
can be analyzed easily. This in vitro system showed reliable invasion of highly inva-
sive cells and was used to investigate the proteolytic mechanisms involved in mela-
noma cell invasion into dermal connective tissue (Dennhofer et al. 2003). By 
culturing melanoma cells either on the dermal side of the DED or on the basal mem-
brane side, one can study the influence of the basement membrane on the invasive 
behavior of melanoma cells (Van Kilsdonk et al. 2010). It is also possible to study the 
role of matrix metalloproteases in this model on melanoma cell invasion (Dennhofer 
et al. 2003). The basement membrane components can also be removed by treatment 
of the DED by incubation with dispase (Harrison et al. 2006). Using this model, it 
has been shown that the dermoepidermal basement membrane can prevent invasion 
of metastatic melanoma cell lines in the absence of a stratified epidermis (Van 
Kilsdonk et al. 2010).

15.1.7  2-D Coculture Systems

The 2-D coculture system is ideally suited to analyze the effect of defined factors or 
genes especially on melanocyte transformation in an environment in which at least a 
quasi in vivo like cellular communication can take place. It is known that melano-
cytes cultured in vitro display different phenotypic characteristics than melanocytes 
in vivo. This suggests a role of microenvironmental signals in controlling the mela-
nocytic phenotype. Indeed, it was shown that upon coculture with undifferentiated 
keratinocytes, melanocytes regain their normal phenotype resembling those in situ, 
indicating that keratinocytes regulate cell growth, dendricity, and antigen expression 
of melanocytes in vitro (Hsu et al. 2002; Shih et al. 1994). Following malignant 
transformation, the dominance of keratinocytes over the melanocytic phenotype is 
lost and melanoma cells become more and more autonomous (Valyi-Nagy et al. 
1993; Shih et al. 1994; Hsu et al. 2000, 2002). To analyze independently the effects 
of soluble factors, the coculture can be performed in Transwell systems where mela-
nocytes and keratinocytes are seeded in two compartments of a tissue culture well, 
which is separated by a semiporous membrane. By this, it was shown that E-cadherin- 
mediated cell adhesion is required for keratinocyte-mediated control of melanocytic 
cells (Li et al. 2004).
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The cultivation of melanoma cells with normal dermal fibroblasts indicates 
that melanoma cells can direct gene expression in fibroblasts (Gallagher et al. 
2005; Loffek et al. 2005; Ntayi et al. 2003). Interestingly, highly aggressive 
melanoma cells cannot only direct the activation and functional differentiation 
of stromal fibroblasts and endothelial cells but also can transdifferentiate by 
masquerading as endothelial cells to take over all or part of stromal functions, a 
phenomenon termed as vasculogenic mimicry (Maniotis et al. 1999; Hendrix 
et al. 2003, 2007).

15.1.8  Mono- or Multicellular Spheroids

Spheroids, or tumor cell aggregates, have been used since the 1970s, mostly for 
investigations into the mechanisms of action of radiotherapy and chemotherapeutic 
drugs as well as drug resistance (Hirschhaeuser et al. 2010; Mueller-Klieser 1997; 
Smalley et al. 2006b). The principle is that melanoma cells are grown under non- 
adherent conditions, which permits the formation of 3-D aggregations or spheroids. 
Once formed, the spheroids are implanted into a matrix of collagen I, which mimics 
the microenvironment of human skin.

Cellular spheroids take advantage of many cell types to aggregate. The cellu-
lar aggregates can range in size from 20 to 1 μm in diameter, depending on the 
cell type and growth conditions. However, fewer than 100 human tumor cell lines 
have been shown to have the capacity to grow in spheroid cultures (Friedrich 
et al. 2007, 2009). Melanoma cells are more suitable for spheroid formation 
since it was shown that 18 of the 26 analyzed melanoma cell lines can form 
spheroids (Smalley et al. 2006a, b). Spheroids more closely resemble the in vivo 
situation than monolayer conditions due to the architecture and the extensive 
cell–cell contacts provided by the spheroids. Spheroids exhibit many of the bio-
logical properties of solid tumors, including cell morphology, growth kinetics, 
gene expression, and drug response (Friedrich et al. 2007, 2009; Hirschhaeuser 
et al. 2010; Kunz-Schughart et al. 2004; Mueller-Klieser 1997). Human tumor 
spheroids are widely used for drug screening since cancer cells grown in these 
spheroids show greater resistance toward several anticancer drugs compared to 
cells grown in monolayer (Smalley et al. 2006b). This may be explained in part 
by increased cell–cell contact, 3-D cellular architecture, enhanced deposition of 
tumor-derived ECM within the spheroid, a lower overall cell proliferation rate, 
or a combination of these factors (Bates et al. 2000; Hamilton 1998; Burdett 
et al. 2010). Interestingly, similar to the situation in a tumor, a diffusion gradient 
exists within spheroids for oxygen and nutrients limiting the availability of these 
compounds to the innermost cells (Lin and Chang 2008).

In spheroids, melanoma cells form concentric, spherical structures that contain 
large proliferating cells in the periphery and smaller quiescent cells on the interior 
of the sphere (Fig. 15.1a, b). These spheroids can be implanted into a collagen- 
based matrix where they exhibit an invasive phenotype that is indicative of the pro-
gression stage of melanoma (Smalley et al. 2006b). This system can be further 
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Fig. 15.1 Spheroid and organotypic skin equivalent models. (a) Phase contrast pictures of spher-
oids of SKMel28 melanoma cells or primary dermal fibroblasts (FFs) 48 h after aggregation. Lower 
left picture: Spheroids of SKMel28 melanoma cells were formed for 24 h and afterward cocultivated 
for 24 h with dissociated fibroblasts for further 24 h. Lower right picture: Spheroids of primary 
fibroblasts were formed for 24 h and afterward cocultivated for 24 h with SKMel28 melanoma cells 
for further 24 h. (b) Melanoma spheroids either untreated (control) or treated with a beta-catenin 
inhibitor (Sinnberg et al. 2010). Spheroids were stained with the vitality stains calcein- AM and 
ethidium bromide to visualize live and dead cells, respectively. As a measure of cell death induction 
ethidium bromide fluorescence indicates dead cells. (c) Organotypic epidermal skin equivalents 
(SE). Shown are hematoxylin/eosin stainings of organotypic epidermal skin reconstructs with either 
integrated primary melanocytes (marked with an arrow), a radial growth phase (RGP), vertical 
growth phase (VGP), or metastatic melanoma cell line. We have observed that skin reconstructs 
consisting of human fibroblasts and keratinocytes simulate human skin in vivo and that human 
melanocytes or melanoma cells from different stages of melanoma development and progression 
recapitulate in skin reconstructs the biological behavior in vivo. In the skin reconstructs, only an 
irregular basement membrane is formed as seen by the collagen IV staining (pictures taken with 
permission from (Meier et al. 2000)

explored by interspersing fibroblasts into the collagen before imbedding into a 
spheroid. These fibroblasts infiltrate the spheroid and produce ECM proteins 
(Smalley et al. 2005) (Fig. 15.1a, b). Spheroids can be established from a single cell 
type or can be multicellular mixtures of tumor, stromal, and immune cells 
(Hirschhaeuser et al. 2010). Several cell types such as fibroblasts and immune cells 
have been described, which can be successfully mixed with tumor spheroids under 

B. Schittek et al.



377

coculture conditions (Smalley et al. 2006b). Using this model system it was also 
shown that zebrafish embryo extracts promote sphere-forming ability of human 
melanoma cell lines (Na et al. 2009). Preformed multicellular tumor spheroids can 
be incubated with immune cells that migrate into the spheroid. As a result, tumor- 
associated migration and differentiation processes as well as cytotoxic and cyto-
static activity of migrated immune cell populations can be examined (Konur et al. 
1996; Gottfried et al. 2006; Pampaloni et al. 2007).

Spheroid formation can be induced by a variety of different techniques. In the 
spinner flask culture, fluid turbulence prevents attachment and promotes cellular 

Fig. 15.1 (continued)
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aggregation (Sutherland et al. 1971). In the rotary wall vessel, reactor cells are 
placed between rotating cylindrical walls to mimic microgravity (Lin and Chang 
2008; Friedrich et al. 2007). A simpler method, which does not need specialized 
equipment or additional processing, is the liquid overlay method. This involves the 
liquid overlay of a cell suspension over a non-adherent surface, such as agar-coated 
plates (Yuhas et al. 1977; Burdett et al. 2010). The absence of fluid flow using this 
method results in a more pronounced diffusional gradient within the spheroids. 
Additionally, the spheroids formed through liquid overlay are more varied in size 
and number. To optimize this and to get more consistent spheroid size and composi-
tion, recent adaptations involve spheroid formation within hanging drops (Kelm 
et al. 2003; Timmins and Nielsen 2007) and microfluidic chips (Wu et al. 2008; 
Burdett et al. 2010). However, these methods need again specialized equipment and 
additional handling steps.

By contrast, the collagen-implanted spheroid model is easier and faster to per-
form and is suited to high throughput drug screening studies. This assay takes 
account of both cell–cell contact between adjacent tumor cells and the need for 3-D 
supporting matrix. It is based on the liquid overlay method in which a uniform cell 
suspension is plated on top of hard (1.5 %) agar, which prevents the tumor cells 
from adhering to the underlying tissue culture plastic. After 48–72 h, the tumor cells 
form small aggregates, or spheroids. These spheroids can be used directly for drug 
toxicity studies. The protocol developed by Smalley et al. (2006a) differs in that the 
spheroids are harvested and mixed with a suspension of bovine collagen type 
I. These are then plated on a 24-well plate, which is already layered with collagen 
to prevent the spheroids from settling onto the underlying plastic. These collagen- 
implanted spheroids can be used for the analysis of the invasive capability of mela-
noma cells. It was shown that the extent of collagen invasion correlated with the 
tumor stage and the cells from the early stages were poorly invasive, whereas the 
cells from the metastasis colonized the entire collagen gel (Smalley et al. 2006a, b). 
The spheroids are scored for cell survival by removing the cell culture media, wash-
ing in PBS, and then staining using calcein-AM and ethidium bromide (Fig. 15.1b).

15.1.9  Organotypic Skin Equivalent Culture Model

The organotypic skin equivalent culture model is the most advanced and complex 
model currently available. The Fusenig lab was the first to use the organotypic skin 
model to study invasion of squamous cell carcinoma cells (Borchers et al. 1997). In 
simplest term, an organotypic culture of skin can be engineered using its four major 
components, collagen, dermal fibroblasts, melanocytes, and epidermal keratinocytes 
(Parenteau et al. 1992). This model is ideally suited to study the effect of inhibitors 
or gene expression or UV on toxic effects or on invasive capability of tumor cells or 
melanocytes. These organotypic cultures have been extended to different tumor 
types, including breast, prostate, and ovarian cancer (Chioni and Grose 2008).
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The experimental protocols for creating human skin reconstructs have been 
described elsewhere (Meier et al. 2000, 2003; Berking et al. 2001). In brief, for the 
creation of an epidermal skin reconstruct, a mixture of collagen and human skin 
fibroblasts are seeded out into 6- or 24-well plates. After the fibroblasts have con-
stricted the collagen, a mixture of keratinocytes and melanocytes are overlaid on top 
of the stromal layer. After the culture is established, the tray is lifted and the top 
exposed to the air, which induces keratinocyte differentiation. At maturity, the human 
skin reconstruct has near identical histology to normal human skin and a basal mem-
brane like structure is built (Meier et al. 2000, 2003) (Fig. 15.1c). For the generation 
of a dermal skin reconstruct, one processes only until the fibroblasts have been 
seeded on the collagen layer (Sinnberg et al. 2010). When melanoma cells from the 
different defined tumor stages are introduced into the epidermal reconstruct, they 
exhibit progression-specific behavior. Cells derived from the radial growth phase 
melanoma stay within the epidermal keratinocyte layer and do not breach the base-
ment membrane (Meier et al. 2000, 2003). Cells from the vertical growth phase of 
melanoma invade through the basement membrane into the dermal fibroblast layer, 
and cells from metastatic lesions invade rapidly throughout the dermis (Fig. 15.1c). 
It is possible to include melanocytes or melanoma cells in which gene expression 
was modulated, and it was shown that this can have dramatic effects on aggressive-
ness or invasive capability (Meier et al. 2003; Berking et al. 2001). The human recon-
struct is a very useful model for modeling not only the growth of melanoma cells in 
a 3-D microenvironment but also the interaction of melanoma cells with the sur-
rounding keratinocytes and fibroblasts. This approach can also be applied to other 
tissues as human breast, colon, and esophagus (Smalley et al. 2006b). Thus, the com-
posite culture model enables functional studies of individual genes and interactions 
between specific gene products in various skin cell types in a biologically relevant 
milieu (Hsu et al. 2002; Meier et al. 2000; Sinnberg et al. 2010).

Skin reconstructs have a maximal life span of approximately 1 month in vitro, 
which can be extended to several months once grafted to living hosts (Javaherian 
et al. 1998; Satyamoorthy et al. 1999; Berking et al. 2001; Hsu et al. 2002). In these 
models, melanocytes regain their physiological localization at the level of the basal 
layer in the epidermis (Fig. 15.1c). They preserve all their functionality since in 
response to UV rays they proliferate, synthesize, and secrete melanin (Auxenfans 
et al. 2009). Further advancements are the endothelialized skin equivalents in which 
human endothelial cells from umbilical vessels are seeded together with fibroblasts, 
which organize themselves into tubular structures with a well-defined lumen result-
ing in an endothelialized skin equivalent (Hudon et al. 2003; Auxenfans et al. 2009). 
Seeding of keratinocytes on this endothelialized dermis results in the formation of 
capillary structures (Velazquez et al. 2002; Smalley et al. 2006b). Finally, the immu-
nocompetent skin equivalent model is available. The reconstruct is a novel 3-D 
culture system in which the migration of leukocytes toward tumor cells and the fac-
tors that influence leukocyte migration can be studied under in vivo-like conditions 
(Berencsi et al. 2007; Zhang et al. 2006).
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15.2  Experimental Animal Models

15.2.1  Introduction

In melanoma research, a great variety of experimental animal models is available. 
Each model has distinct advantages for the investigation of particular scientific 
questions regarding melanoma formation, genetics, and therapy as reviewed recently 
(van der Weyden et al. 2016). Melanomas naturally occur in horses, dogs, minipigs, 
and fish. Already at the end of the 1920s melanoma development was documented 
in interspecies hybrids of the fish genus Xiphophorus (Gordon 1927; Häussler 1928; 
Kosswig 1928). Since then the genetics of melanoma susceptibility was intensively 
studied in this model with successful identification of relevant oncogenes like Xmrk. 
Zebrafish and medaka are other well-studied melanoma fish models which have 
helped to unravel the underlying mechanisms of spontaneous as well as carcinogen 
and ultraviolet (UV) induced melanoma formation. Mouse models are also widely 
used in melanoma research, as mice exhibit short breeding cycles with a relatively 
large number of offspring, are easily manipulated genetically, and can be treated 
with UV and chemical carcinogens. A major benefit of modeling melanoma in mice 
is its ability to investigate the role of different genetic abnormalities observed in 
patients on disease progression due to the high degree of homology with the human 
genome. Mice have been generated that develop melanoma in the skin which metas-
tasize early and are highly resistant to chemo- and radiotherapy, a fundamental 
characteristic of malignant melanoma. Experimental models in the laboratory 
mouse have been of critical importance to understand the biologic mechanisms how 
melanoma cells migrate in and out of blood and lymph vessels, evade immune 
defense, and colonize distant organs. In addition to the study of gene function on an 
organismal level, mouse models have also been widely used to evaluate the efficacy 
of novel treatment strategies in controlling metastatic disease progression. 
Experimental mouse models for cancer research can principally be subdivided into 
three different categories:

• Transplantation of human tumor cells into immunodeficient mice
• Transplantation of mouse tumor cells into syngeneic immunocompetent mice
• Primary autochthonous (“genetically engineered”) mouse models of cancer

We will briefly sketch the historical development of each category and provide a 
few selected examples how technical advances have enabled new insights in differ-
ent areas of melanoma research over the years. We do not intend to provide a com-
prehensive catalog of all possible model systems but hope to give the reader a broad 
and stimulating overview (Table 15.2).
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15.2.2  Transplantation of Human Melanoma Cells 
into Immunodeficient Mice

The successful engraftment of human tumors onto immunodeficient mice was first 
reported in 1969 using the athymic nude mouse (Rygaard and Povlsen 1969). This 
approach was widely used in subsequent years to study the morphological and bio-
chemical characteristics of different tumor cells in vivo and the response of such 
xenografts to antineoplastic agents (Giovanella et al. 1973; Seaman et al. 1975). 
Several groups investigated the ability of human melanoma cells to grow metastasti-
cally in nude mice either following intravenous injection (“experimental pulmonary 
metastasis assay” or “lung colonization assay”) or following subcutaneous injection 
(“spontaneous metastasis assay”). In each case, the development of lung metastases 

Table 15.2 Experimental mouse models

Melanoma model 
systems Application Advantages Disadvantages

Transplantation of 
human melanoma cells 
into immunodeficient 
mice

Analysis of 
gene functions 
in human 
melanoma cells 
for invasive 
and metastatic 
tumor growth 
in vivo; 
preclinical 
evaluation of 
new drug 
candidates

Fast, reliable assay that 
portrays important 
aspects of human 
melanoma biology

Excludes the role of 
immune cells in the 
tumor 
microenvironment, does 
not portray the early 
steps of malignant 
transformation

Transplantation of 
mouse melanoma cells 
into syngeneic 
immunocompetent 
mice

Analysis of 
gene functions 
in mouse 
melanoma cells 
for invasive 
and metastatic 
tumor growth 
in vivo; 
preclinical 
evaluation of 
drug efficacy

Fast, reliable assay that 
includes the role of 
immune cells in the 
tumor 
microenvironment

Does not portray the 
early steps of malignant 
transformation, may not 
adequately portray all 
aspects of human 
melanoma biology

Primary autochthonous 
(genetically 
engineered) mouse 
melanoma models

Analysis of 
gene functions 
in the 
pathogenesis of 
melanoma on 
an organismal 
level; 
preclinical 
confirmation of 
drug efficacy

Allows for the 
investigation of early 
steps in malignant 
transformation in a 
fully 
immunocompetent 
tumor 
microenvironment

Time consuming and 
costly experimental 
setting, may not 
adequately portray all 
aspects of human 
melanoma biology
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was assessed over time. It was noted that melanomas, like most malignant neoplasms, 
were composed of heterogeneous tumor cell populations with different capacities for 
invasion and metastasis. Intrinsic features of a given tumor line appeared to be major 
determinants in regulating metastatic spread (Kozlowski et al. 1984). These features 
could be selected for by serial in vivo passaging. In addition, it was noted that growth 
of melanoma metastases was limited by residual immune reactivity of nude mice 
against xenogeneic human tumor cells, which was mediated particularly by NK cells.

Over the years, a number of melanoma cell lines were established (e.g., A375, 
MeWo, SKMel28, 1205Lu, and many others), which could be transplanted in nude 
mice as well as in mice with severe combined immunodeficiency (SCID), which 
were described a few years later. With the emerging ability to genetically modify 
tumor cells in vitro, these model systems have been successfully used to function-
ally assess the role of individual gene products on invasive growth and metastatic 
spread of melanoma cells in vivo until today. As an example, Clark et al. serially 
transplanted A375-M cells in nude mice and used cDNA microarray analyses to 
identify RhoC as a protein associated with melanoma metastases. Retroviral over-
expression confirmed that RhoC indeed promotes the ability of melanoma cells to 
metastasize in mice in vivo (Clark et al. 2000). The ability to stably knock down the 
expression of a target gene using RNA interference has provided an additional valu-
able tool to study gene function not only on the cellular but also on the organismal 
level in mice. This technology was used to show that the CYLD protein regulates 
the ability of a human melanoma cell line to grow invasively and metastasize in vivo 
(Massoumi et al. 2009).

Several technical advances have expanded the range of experimental possibilities 
for the study of human tumor cells in immunodeficient mice. To more adequately 
model the tumor microenvironment, the group of Meenhard Herlyn transplanted 
human skin onto SCID mice and injected melanoma cells into the xenografts. This 
“orthotopic” tumor transplantation model circumvented the significant anatomic 
and physiologic differences between mouse and human skin and recapitulated the 
close interaction between melanocytes and keratinocytes (Juhasz Albelda et al. 
1993). Crossing SCID mice onto the nonobese diabetic (NOD) genetic background 
improved tumor engraftment rates because NOD/SCID mice show reduced macro-
phage and NK function, as well as an absence of complement-dependent hemolytic 
activity. These mice were used by the group of Weinberg to study the in vivo growth 
properties of human melanocytes, which were transformed by defined genetic mod-
ifications in vitro (Gupta et al. 2005). Using this experimental approach, they pro-
vided evidence that the developmental origins of melanocytes in the neural crest 
might be relevant to their metastatic propensity. By combining both approaches it 
has today become possible to transplant complex skin reconstructs generated 
in vitro onto immunodeficient mice to study their behavior in vivo as mentioned in 
Sect. 15.1 above.

Another technical improvement for studying human tumor cells in immunode-
ficient mice has been developed by hematologists investigating the development 
and function of hematopoietic stem cells in immunodeficient mice. To further 
facilitate the permanent engraftment of bone marrow precursors, they tested 
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various mice with additional genetic changes affecting the immune system. It was 
found that NOD/SCID mice, which lack the IL2 receptor common γ chain (NOD/
SCID/γc mice), show extremely high engraftment rates using human hematopoi-
etic cells (Ito et al. 2002). The reason for the high engraftment rates was attributed 
to multiple immunological functional defects that affect dendritic cells in addition 
to the absence of T, B, and NK cells. Using these highly immunocompromised 
NOD/SCID/γc mice, Carreno et al. demonstrated that the residual immunity in 
NOD as well as NOD/SCID mice affected the metastatic growth of A375 mela-
noma cells (Carreno et al. 2009). They used tumor cells stably expressing a lucif-
erase gene and monitored tumor growth in the lungs in real time by measuring 
in vivo bioluminescence with a highly sensitive CCD camera. In addition, they 
demonstrated human melanoma recognition by residual NOD/SCID NK cells, 
which correlates with MICA/B expression and could be blocked by anti-mouse 
NKG2D antibodies.

The importance of using different immunodeficient mouse strains became 
prominently evident when analyzing the ability of different subpopulations of 
malignant cells derived from primary melanomas to generate tumor xenografts. 
The group of Markus Frank showed that only very few human melanoma cells can 
form tumors when transplanted into NOD/SCID mice, and that melanoma cells 
expressing the chemoresistance mediator ABCB5 were highly enriched for such 
“melanoma- initiating cells.” Importantly, they demonstrated that this minor tumor-
igenic cell population could be therapeutically targeted and destroyed in vivo with 
a specific monoclonal antibody (Schatton et al. 2008). Sean Morrison’s group 
showed that a slight modification of the xenotransplantation assay conditions and 
the use of more highly immunocompromised NOD/SCID/γc mice greatly increased 
the detection of tumorigenic melanoma cells (Quintana et al. 2008). The mecha-
nisms underlying melanoma cell heterogeneity (which had already been observed 
in the early days of melanoma xenografting) can now be studied using genetically 
modified transplantable melanoma cell lines in NOD/SCID/γc mice. The group of 
Meenhard Herlyn reported that a dynamically regulated JARID1B-expressing sub-
population of melanoma cells is essential for continuous tumor growth (Roesch 
et al. 2010). These results suggest a new understanding of melanoma heterogeneity 
with tumor maintenance as a dynamic process mediated by spatially and temporar-
ily distinct subpopulations. Highly sophisticated imaging techniques are currently 
being employed to monitor in vivo in real time the proliferation and migration of 
transplanted melanoma cells expressing various fluorescent and bioluminescent 
reporter genes placed under the control of constitutive or dynamically regulated 
promoters.

Recent trials aim at facilitating a personalized cancer therapy generating 
individualized tumor models by means of melanoma patient-derived xenografts 
(PDX). These PDXs serve as preclinical models to test drug response, unravel 
resistance mechanisms, and offer the possibility for new drug and biomarker 
discovery. Especially therapeutic strategies for patients with mutations of the 
BRAF and NRAS oncogene and accompanying resistance to targeted therapies by 
inhibitors like vemurafenib are frequently investigated (Das Thakur et al. 2013; 
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Guerreschi et al. 2013). In addition, as some melanomas are not easily accessible 
or difficult to biopsy an alternative method was established by using circulating 
tumor cell- derived xenografts (CDX), which is suitable for studying late-stage 
melanoma (Girotti et al. 2016). The high similarity between PDXs and the cor-
responding biopsies of the patient with regard to mutation and expression patterns 
as well as histopathologic and immunohistochemical properties was proven in 
many studies. Moreover, PDXs show similar resistance mechanisms as the donor 
tumor (Kemper et al. 2015) allowing for detailed analysis of the underlying pro-
cesses. However, one has to keep in mind that PDXs may not display the whole 
genetic heterogeneity of the patient’s tumor (Kemper et al. 2015) and therefore 
provide only a partial prediction of the patient’s disease progression and treatment 
response. Although the clinical feasibility and translatability of PDXs could be 
demonstrated (Einarsdottir et al. 2014; Gao et al. 2015), their use is technically 
challenging with some cases of engraftment failure and a quite time-consuming 
and costly procedure.

Taken together, the transplantation of human melanoma cells into immunodefi-
cient mice can be generally considered as a rather rapid, reliable, and reproducible 
experimental approach to functionally study the role of genes in the process of 
malignant progression to metastatic disease. Importantly, this experimental system 
most closely reflects the intrinsic biology of human melanomas and partly recapitu-
lates the tumor microenvironment in vivo. Furthermore, it is of critical importance 
for preclinical testing of novel therapeutics to develop personalized treatment strate-
gies and understand drug resistance. However, work with human tumors in immu-
nodeficient mice has two major inherent drawbacks. Firstly, it excludes the 
interaction of tumor cells with the immune system, which is of critical importance 
in shaping the tumor microenvironment and the process of tumor progression. 
Secondly, transplanted tumors grow rapidly and do not portray the early events dur-
ing tumor initiation.

15.2.3  Transplantation of Mouse Melanoma Cells into Syngeneic 
Immunocompetent Mice

To experimentally include the role of the immune system in tumor progression 
requires the use of immunocompetent animals. However, in mice, melanoma 
develops only very rarely. One of these rare events occurred at the base of the ear 
in a C57BL/6 mouse at the Jackson Laboratories in 1954. This tumor was serially 
transplanted and subsequently established in vitro as the B16 melanoma cell line 
by Isaiah Fidler in the early 1970s. B16 melanoma cells readily form solid tumors 
when injected s.c. or i.v. into syngeneic C57BL/6 mice and were widely used from 
the early 1970s on as a model for metastases research to investigate the steps 
involved in tumor dissemination. Following the concept of “seed and soil,” origi-
nally proposed by Stephen Paget in the late nineteenth century (Paget 1889), Fidler 
and colleagues showed that both host factors and properties of the tumor cells 
contribute to the success or failure of the metastatic process. Already in 1977, it 
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was reported that different B16 melanoma cell subclones derived in vitro varied 
greatly in their ability to form lung metastases upon intravenous inoculation into 
syngeneic mice. This observation suggested that B16 melanoma cells were hetero-
geneous and that highly metastatic tumor cell variants preexisted in the parental 
population (Fidler and Kripke 1977). The origins of tumor cell heterogeneity were 
also analyzed using K1735 melanoma cells, which were established from a 
UV-irradiated C3H mouse (Fidler and Hart 1982). These transplantable mouse 
melanoma cell lines are still used today to understand the cellular and molecular 
mechanisms underlying the process of metastatic progression utilizing modern 
tools of molecular genetics to overexpress or silence individual genes and of 
in vivo imaging to follow fluorescent and bioluminescent reporter genes as 
described in the previous section.

The most important application of tumor transplantation models in immunocom-
petent mice, however, was to understand the role of innate and adaptive immune 
responses in tumor progression. Because B16 melanoma cells are poorly immuno-
genic and do not efficiently stimulate antigen-specific tumor immunity, they were 
widely used as a model to study tumor vaccine adjuvants, including various micro-
bial extracts. Molecular insights into the mechanisms how immune responses 
against tumor cells develop was gained from studies with B16 melanoma cells 
genetically modified to secrete immunostimulatory cytokines. Unexpected at the 
time, the expression of GM-CSF effectively promoted the induction of tumor immu-
nity (Dranoff et al. 1993). It later became clear that this cytokine acted as a potent 
growth factor for antigen-presenting dendritic cells, which are critically required to 
initiate adaptive immunity. The experimental strategy to overexpress (or knock 
down) immune-related genes in B16 melanoma cells continues to reveal important 
insights into the interaction between tumor and immune cells until today. This is 
best illustrated by a recent report showing that the expression of the chemokine 
CCL21 by B16 melanoma cells induces a lymphoid-like reticular stromal network 
and recruits regulatory leukocyte populations to promote an immunotolerant micro-
environment in mice (Shields et al. 2010).

The transplantable B16 melanoma model has also been used to study antigen- 
specific vaccination strategies, including the use of synthetic peptides as well as 
recombinant proteins and genes. Initially, investigators targeted model foreign anti-
gens such as chicken ovalbumin, which were stably transfected into B16 cells 
(Mayordomo et al. 1995). In our own work, we found that efficient induction of 
cellular immune responses against clinically relevant melanocytic self-antigens 
such as TRP2 or gp100, which are naturally expressed by B16 melanoma cells, 
required strong activation of dendritic antigen-presenting cells either by culture 
from bone marrow precursors in vitro or by recombinant viral vaccines in vivo 
(Tüting et al. 1999; Steitz et al. 2000). Importantly, by combining antigen-specific 
vaccination with genetic modification of B16 melanoma cells, we could show that 
the expression of type I IFNs promoted T cell effector functions in the tumor micro-
environment (Steitz et al. 2001). Type I IFNs could also be efficiently stimulated in 
tumor tissue by adjuvant peritumoral injections of immunostimulatory nucleic acids 
such as polyI:C and CpG-rich DNA, which imitate viral RNA and DNA and activate 
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the innate immune system through the Toll-like receptors (TLR) 3 and 9 (Tormo 
et al. 2006a; Bald et al. 2014a).

The B16 model is also very suitable to study biological processes and thera-
peutic agents, which simultaneously affect both tumor and host cells, particularly 
immune cells. In addition to using genetically modified tumor cells, researchers 
have also employed genetically engineered hosts and injected specific monoclo-
nal antibodies to dissect the underlying molecular and cellular mechanisms. Our 
own work with therapeutic oligonucleotides exemplifies this strategy. We explored 
the use of small immunostimulatory siRNA molecules, which simultaneously can 
silence a target gene in tumor cells, in our case the antiapoptotic gene Bcl2, and 
activate retinoic acid-inducible gene-I (RIG-I), a cytosolic sensor of viral RNA, in 
immune cells (Poeck et al. 2008). Silencing Bcl2 promoted tumor cell apoptosis 
and activation of RIG-I stimulated cytotoxic immune cells to destroy tumor cells. 
Surprisingly, we found that activation of RIG-I also contributed to apoptosis 
induction directly in tumor cells. Experiments in mice, genetically lacking the 
interferon alpha receptor 1 chain, demonstrated that this response was critically 
dependent on a functional type I IFN system. The injection of cytotoxic antibod-
ies against NK cells showed that this cell type largely mediated the antitumor 
response.

The interaction between melanoma cells and T cells in the tumor microenviron-
ment in vivo can be studied in greater detail using adoptive lymphocyte transfer 
approaches. This experimental strategy has been facilitated by the development of 
T cell receptor transgenic mice, which carry large numbers of genetically marked T 
cells that specifically recognize melanocytic antigens (Overwijk et al. 2003; Xie 
et al. 2010). The adoptive transfer and in vivo activation of T cells in mice bearing 
macroscopically detectable B16 melanomas enables investigations of the mecha-
nisms that determine the balance between tumor regression and progressive disease, 
including the various possibilities of tumor immune escape. To more closely imitate 
the clinical situation, mice have been genetically engineered to express the human 
HLA-A2 molecule and T cells have been genetically engineered to express human 
T cell receptors (Frankel et al. 2010). These highly sophisticated experimental mod-
els have been of considerable help to translate this therapeutic approach into clinical 
reality for melanoma patients.

In summary, the transplantation of mouse melanoma cells into syngeneic immu-
nocompetent mice also represents a rapid, reliable, and reproducible experimental 
approach to functionally study the role of genes in the process of malignant progres-
sion to metastatic disease. This experimental system may not fully reflect the biol-
ogy of human melanomas, but it much more adequately portrays the role of the 
immune system in shaping the tumor microenvironment in vivo. It has been of criti-
cal importance for preclinical development and testing of novel therapeutics, includ-
ing melanoma vaccines with dendritic cells and immunomodulatory agents such as 
the anti-CTLA4 mAb, which is currently evaluated in clinical phase III studies. 
However, transplanted mouse melanomas also progress very rapidly following 
tumor inoculation and do not recapitulate the gradual series of cellular changes 
from premalignant to malignant pathologies.
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15.2.4  Primary Autochthonous (Genetically Engineered) Mouse 
Melanoma Models

Advances in molecular genetics and stem cell biology have made it possible to 
study the functional role of oncogenes and tumor suppressor genes in the pathogen-
esis of melanoma on an organismal level. Work over the last decade has shown that 
genetic alterations observed in human melanomas also promote the malignant trans-
formation of melanocytes in mice. This most likely reflects the fact that the genetic 
control of melanocyte proliferation, migration, and differentiation in embryonic 
development is highly conserved during the evolution of vertebrates. Genetically 
engineered mouse tumor models initially involved the transgenic expression of viral 
or cellular oncogenes under the control of tissue-specific promoters. The transgenic 
expression of certain growth factors or growth factor receptors also promoted tumor 
development. Subsequently, it became possible to delete tumor suppressor genes by 
gene targeting. More recently, the conditional deletion of tumor suppressor genes or 
activation of oncogenes has been achieved via Cre-lox technology. Because geneti-
cally engineered mouse models for melanoma have been extensively reviewed 
(Chin et al. 2006; Larue and Beerman 2008; Zaidi et al. 2008), we will only briefly 
sketch their historical development and highlight some of the more important recent 
advances in the field.

The transformation of melanocytes in mice was first achieved by Beatrice Mintz’s 
group who placed the oncogenic SV40 large T antigen under the control of a tyrosi-
nase promoter construct specifically in melanocytes. Founder lines expressing high 
transgene levels developed eye melanomas very early while lines expressing low 
transgene levels developed eye melanomas much later. Grafting experiments of skin 
derived from mice with high melanoma susceptibility onto mice with low mela-
noma susceptibility revealed proliferating pigment cells close to areas of greatest 
wound healing, which subsequently evolved into invasively growing melanomas 
(Mintz and Silvers 1993). These observations strongly suggested that pro- 
inflammatory growth factors and cytokines known to be produced in wound repair 
can promote growth and malignant conversion of genetically susceptible melano-
cytes in vivo.

Lynda Chin and colleagues generated mice that expressed the activated HrasG12V 
oncogene under a tyrosinase promoter in mice, which carried a deletion of the 
p16INK4a/p19ARF tumor suppressor gene locus (Chin et al. 1997). These mice sponta-
neously developed cutaneous melanomas after a short latency and with high pene-
trance. Her results indicated that activation of Ras and loss of p16INK4a/p19ARF can 
cooperate to accelerate the development of melanoma and provided the first in vivo 
experimental evidence for a role of p16INK4a/p19ARF deficiency in the pathogenesis of 
melanoma. In our own work, we could demonstrate the critical role of the p16Ink4a–
Cdk4 interaction in suppressing the transformation of melanocytes following onco-
gene activation (Tormo et al. 2006b). The transgenic overexpression of the 
hepatocyte growth factor (Hgf), which drives Ras signaling via its receptor tyrosine 
kinase c-Met, cooperates with a mutated oncogenic cyclin-dependant kinase 4 
(Cdk4R24C) knocked into the germline, which abrogates p16 binding. Hgf-Cdk4R24C 
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mice spontaneously develop multiple small (benign) nevi and subsequently single 
progressively growing (malignant) melanomas, indicating that impairment of the 
p16Ink4a-Cdk4 axis affects the complete spectrum of stepwise malignant transforma-
tion of melanocytes (Landsberg et al. 2010).

With the recent development of techniques allowing for tamoxifen-inducible 
conditional activation of oncogenes specifically in melanocytes, it became possible 
to show that the mutated oncogenic BrafV600E, which is frequently found in human 
melanomas, also strongly drives melanocyte proliferation in the skin of mice lead-
ing to the development of multiple melanocytic nevi (Dhomen et al. 2009; Dankort 
et al. 2009). The simultaneous deletion of the tumor suppressor genes PTEN or 
p16INK4a led to a decreased latency and increased penetrance of melanoma. These 
novel models will undoubtedly help to dissect the molecular mechanisms regulating 
melanocyte proliferation, oncogene-induced senescence and tumor progression in 
the microenvironment of nevi and melanoma in vivo. The introduction of fluores-
cent or bioluminescent marker genes that are specifically expressed by melanocytes 
will enable the in vivo imaging of early proliferative events during melanocyte 
transformation, particularly following neonatal UV irradiation which has been 
shown to significantly promote melanomagenesis in several models, including Hgf- 
transgenic mice (Noonan et al. 2001).

Another transgenic mouse model showing spontaneous melanoma development 
was generated by the insertion of a Dct promoter-Grm1 construct leading to an 
aberrant expression of the metabotropic glutamate receptor 1 (Grm1) in melano-
cytes (Pollock et al. 2003). With complete penetrance Tg(Grm1) mice develop pig-
mented lesions at hairless skin regions, including ear, tail, and anus within 4–6 
months. Furthermore, not only local metastasis but also metastatic spread in distant 
organs like lung, liver, lymph node, and spleen occurs (Schiffner et al. 2012). 
Interestingly, the majority of these disseminated cells display phenotypic changes 
during metastasis in form of de-pigmentation as is also found frequently in human 
melanoma. During the last years, a variety of human melanoma cell lines and tissue 
samples were screened with respect to their Grm1 expression showing overall high 
levels in contrast to normal melanocytes or benign nevi emphasizing the importance 
of ectopic Grm1 expression in melanoma development. Indeed, the malignant trans-
formation of murine melanocytes could be induced by solely stable Grm1 expres-
sion (Shin et al. 2008). The activation of the Grm1 receptor results in a constitutive 
activation of the MAPK and PI3K/AKT signaling pathway. Both can be suppressed 
by treatment with the glutamate release inhibitor riluzole with the effect of a reduced 
colony formation, migration and invasion ability of human melanoma cell lines (Le 
et al. 2010). Hence, GRM1 seems to be a promising therapeutic target for future 
clinical trials. In addition, GRM1 expression was detected recently in human uveal 
melanoma samples and in accordance Tg(Grm1) mice were shown to develop mela-
nocytic hyperproliferation within the uveal tract resulting in some cases of choroi-
deal melanoma (Schiffner et al. 2014). Therefore, Tg(Grm1) mice open up the new 
opportunity to analyze spontaneous uveal melanoma development and metastasis in 
a murine model system.
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Genetically engineered mouse melanoma models also provide novel opportuni-
ties to experimentally investigate the regulation of immune cell functions in the 
tumor microenvironment and understand the role of “cancer immunosurveillance” 
and “cancer-associated inflammation” in the pathogenesis of primary and metastatic 
melanoma. This is nicely illustrated by a recent report that primary melanomas 
developing in mice expressing the Ret oncogene as a transgene disseminate early 
but remain dormant for varying periods of time (Eyles et al. 2010). The control of 
tumor growth is mediated at least in part by cytotoxic T cells, since antibody- 
mediated depletion of these cells resulted in faster outgrowth of visceral metastases. 
These findings suggest that immune responses can be essential for prolonging the 
survival of early stage melanomas and that therapeutic strategies designed to 
 reinforce such immune responses may produce marked survival benefits.

However, the immune system can be a double-edged sword because an 
 inflammatory response can also promote tumor growth as has been first observed by 
Beatrice Mintz almost 20 years ago. Pro-inflammatory mediators capable of activat-
ing NF-kB signaling may not only support tumor cell survival, regenerative prolif-
eration, and migration but can also enhance neoangiogenesis. An important role for 
NF-kB signaling in melanomagenesis has indeed been obtained by the group of Ann 
Richmond (Yang et al. 2010a). They generated mice, which allowed the inducible 
genetic ablation of Ikkβ (a kinase which phosphorylates IkB leading to NF-kB 
nuclear translocation and activation), specifically in melanocytes expressing the 
oncogenic HRasG12V mutation on the p16INK4a/p19ARF-deficient background. The 
deletion of Ikkβ significantly inhibited the development of melanomas in these mice 
in vivo and promoted p53-dependent apoptosis and cell cycle arrest in cultured 
melanocytes in vitro. These results support a role for tumor cell-intrinsic activation 
of NF-kB signaling in the pathogenesis of melanoma in agreement with reports in 
genetically engineered mouse models for other tumor types (Grivennikov et al. 
2010). NF-kB-driven inflammatory responses may also participate in the develop-
ment of melanoma following burning doses of UV irradiation. This interesting 
question can now be experimentally addressed using UV-sensitive mouse models.

The impact of tumor-associated inflammatory responses on T cell-mediated 
immunosurveillance has been addressed by Anne-Marie Schmitt-Verhulst’s group 
in mice where activation of oncogenic HRasG12V and deletion of p16INK4a/p19ARF can 
be induced simultaneously by tamoxifen treatment (Soudja et al. 2010). These 
“TiRP” mice develop two different types of melanoma: slowly growing, pigmented 
melanomas and more rapidly growing, nonpigmented melanomas that are infiltrated 
by Gr1+/CD11b+ inflammatory immune cells. TiRP mouse melanomas also express 
the T cell-defined tumor antigen P1A in melanocytes, which allows investigations 
with adoptively transferred T cells specifically recognizing the P1A antigen on mel-
anoma cells. Using this experimental system, it could be shown that an initially 
protective adaptive immune response is subsequently suppressed by chronic tumor- 
associated inflammation associated with infiltrating bone marrow-derived immature 
myeloid cells and a systemic Th2/Th17-oriented cytokine production profile.

In our own work, we found that primary Hgf-Cdk4R24C melanomas can effec-
tively escape recognition and destruction by cytotoxic effector T cells. To 

15 Melanoma Model Systems



390

experimentally introduce T cell-mediated immunosurveillance, we adoptively 
transferred melanoma-specific TCR-transgenic cytotoxic T lymphocytes in the 
context of a combination treatment protocol consisting of host preconditioning, 
viral vaccination, and adjuvant peritumoral injections with immunostimulatory 
nucleic acids, which trigger innate immune responses in the tumor microenviron-
ment (Kohlmeyer et al. 2009). This frequently resulted in complete and long-term 
regression of primary cutaneous melanomas. However, primary tumors eventually 
recurred indicating that some melanoma cells survived. Importantly, we observed 
large areas of poorly melanotic, proliferating melanoma cells in recurring mela-
nomas suggesting that cytotoxic inflammation caused a phenotypic switch in sub-
populations of tumor cells reminiscent of inflammatory melanomas in the TiRP 
mice (Landsberg et al. 2010). This phenomenon might represent a conversion of 
tumor cells toward a mesenchymal, invasive phenotype, which has been shown to 
result in the suppression of adaptive immune responses (Kudo-Saito et al. 2009). 
Similar phenomena were observed in response to adoptive T cell therapy, which 
allowed tumor cells to escape immune destruction through reversible inflamma-
tion-induced dedifferentiation (Landsberg et al. 2012). Moreover, an inflamma-
tory environment following UV irradiation of the skin promoted melanoma cell 
invasion and metastasis (Bald et al. 2014b).

Taken together, genetically engineered mouse melanoma models imitate the 
multistep pathogenesis of melanoma in man where primary tumor cells establish in 
a unique microenvironment, and naturally progress toward metastatic disease. 
These models are ideally suited to adequately address many of the key issues in 
melanoma biology, including the regulation of proliferation, differentiation, and 
senescence of melanocytes following oncogene activation; the origin of tumor cell 
heterogeneity and the mechanisms of phenotype switching; the relationship of mel-
anoma cells with neural crest-derived precursor cells; the initiation of innate and 
adaptive immunity leading to immunosurveillance and inflammation; the role of 
pro-inflammatory mediators for tumor cell survival, proliferation, and migration as 
well as neoangiogenesis; and the dynamics of tumor cell migration, dormancy, and 
metastatic colonization.

15.2.5  Experimental Mouse Models: Conclusions

A number of observations in the clinic suggest a close relationship between the 
activation of oncogenic signaling pathways driving the malignant transformation 
of melanocytes and the activation of immune responses in the tumor microenvi-
ronment. Future work in different experimental mouse models will help to dissect 
the role of innate immune signaling pathways in tumor and immune cells, which 
determine the balance between tumor regression and tumor progression. Even more 
importantly, work in these model systems will inform us how targeted inhibition 
of signaling pathways will affect the survival of tumor cells in vivo in the tumor 
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microenvironment, including the response of immune cells. While genetically engi-
neered mouse models adequately recapitulate many aspects of the early genetic 
events of melanocyte transformation, including the important role of the immune 
system in melanomagenesis, it must be kept in mind that they only partly reflect 
the features of human melanoma. Some of the more obvious shortcomings such as 
the low number of melanocytes in the interfollicular melanocytes may be overcome 
experimentally. Nevertheless, considerable differences will always remain in the 
molecular hardwiring of mouse tumor and immune cells that will have to be appre-
ciated in each experimental setting. Furthermore, work with these model systems 
requires a long-term commitment since they are extremely time consuming, labor 
intensive, and costly. This may be alleviated in part by the generation of transplant-
able cell lines from primary melanomas with defined genetic alterations.

 Conclusion

In this chapter, we have presented many of the commonly used complex in vitro 
cell culture model systems and the in vivo experimental mouse models that are 
employed by research groups today to study the various aspects of melanoma 
biology and to evaluate novel therapeutic strategies. The relative importance of 
each experimental approach depends largely on two important aspects: Firstly, 
how well does the model recapitulate the process it attempts to emulate? 
Secondly, how well does the model itself offer the flexibility to expand our 
knowledge relating to the pathologic process being evaluated? Today, research-
ers are more and more combining the strengths of new in vitro cell culture mod-
els, new “humanized” mouse strains for the transplantation of human melanomas, 
and new “genetically engineered” mouse models for primary melanoma to com-
prehensively analyze their particular aspect of melanoma biology.
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New Approaches to Signaling

Ryan J. Sullivan and Keith T. Flaherty

16.1  New Therapeutic Approaches in Signaling

16.1.1  Introduction

The emergence of selective BRAF inhibitors for the treatment of metastatic 
 melanoma changed the therapeutic landscape of this disease. For decades, the 
melanoma field lagged others in achieving significant alteration in the natural 
 history of metastatic disease with conventional cytotoxic chemotherapy. However, 
with the emergence of immune checkpoint inhibitor therapy, in particular anti-
programmed death 1 (PD1) and anti-PD ligand 1 (PD-L1), monoclonal antibodies 
alone or in combination with the anti-cytotoxic T-lymphocyte antigen 4 (CTLA4), 
and the development of combined BRAF/MEK inhibitor therapy, the treatment 
landscape has dramatically changed. Still, the majority of patients will still die 
from this disease, and optimizing treatment of metastatic melanoma remains a 
critical need. It is hoped that the discovery of somatic genetic alterations in signal 
transduction pathways that regulate proliferation, cell cycle, differentiation, and 
survival will provide further opportunities for expanding the reach of targeted 
therapy (Table 16.1).
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16.2  Oncogenes Amenable to Direct Targeting

16.2.1  TCGA and the MAP Kinase Pathway

The Cancer Genome Atlas (TCGA) in melanoma recently reported its first compre-
hensive profiling using whole exome sequencing (WES), RNA sequencing (RNA 
Seq), and proteomics from 331 patients with cutaneous melanoma (Cancer Genome 
Atlas 2015). The most important conclusions from this work were that four subsets of 
melanoma patients were defined based on the driving mutation (BRAF, NRAS, NF1, 
and triple wild-type) and that the great majority of tumors activate the mitogen- 
activated protein kinase (MAPK) pathway through oncogene (BRAF, NRAS, 
MEK1/2) or tumor suppressor gene mutation (NF1) mutations and/or at the gene 
expression level. These findings confirm that the most important targets of small mol-
ecule inhibitor therapy in melanoma are the mediators of the MAPK pathway. 
However, a deeper look at the data suggests that other key regulators of cancer biology 
are also potential targets, including the phosphoinositol-3-kinase (PI3K) pathway, the 
cell cycle regulation mediators cyclin D (CCND1) and cyclin-dependent kinase 4 
(CDK4), regulators of apoptosis such as mouse double minute 2 homolog (MDM2) 
and B-cell lymphoma 2 (BCL2) family members, and even epigenetic regulators.

Table 16.1 Oncogenes and tumor suppressor genes in melanoma and therapeutic strategies

Oncogene Pathway Drug targeting strategy

BRAF MAP kinase Direct, ATP competitive kinase inhibitors
Downstream, allosteric MEK inhibitors

NRAS RAS Combinations targeting RAS effecter pathways

C-KIT RAS Direct, ATP competitive kinase inhibitors

AKT3 PI3 kinase Direct, allosteric AKT inhibitors

Cyclin D P16/Rb Indirect, ATP competitive CDK4 inhibitors

CDK4 P16/Rb Direct, ATP competitive kinase inhibitors

GNAQ/GNA11 G-protein coupled 
receptors

Indirect, PKC, MAP kinase, PI3 kinase 
pathway inhibitors

Tumor suppressor 
gene Pathway Drug targeting strategy

NF1 RAS Combinations targeting RAS effecter 
pathways

PTEN PI3 kinase PI3K, AKT, mTOR inhibitors

P16 P16/Rb Indirect, ATP competitive CDK4 
inhibitors

BAP1 Polycomb repressive 
complex 1

Indirect, histone deacetylase inhibitors
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16.2.2  The Development of BRAF Inhibitors in Melanoma

The identification of activating mutations in the searing threonine kinase, BRAF, in 
50–60 % of melanomas in 2002 was the watershed event that opened the door for 
investigations of molecularly targeted therapy in melanoma (Davies et al. 2002). 
BRAF is a constituent of the long-studied MAP kinase pathway, a known mediator 
of growth factor signals in cancer (also refer to Chap. 7 (Fisher)). However, prior to 
the identification of BRAF mutations, only RAS mutations were known to constric-
tively activate the pathway in a subset of cancers, including melanoma (Albino et al. 
1984). Therefore, when BRAF mutations were screened for in a large series of 
diverse tumor types, and found, it was immediately apparent that these mutations 
might underlie the biologic importance of this pathway in 7–8 % of all cancers 
(Davies et al. 2002). The fundamental challenges that confronted the field were (1) 
understanding the potential vulnerability of BRAF inhibition despite the presence 
of numerous additional genetic alterations in the same tumors and (2) the develop-
ment of potent and selective inhibitors.

In the immediate years following the identification of BRAF mutations, 
sorafenib was the only targeted therapy in clinical development known to have 
some capacity for inhibiting RAF kinases including BRAF (Wilhelm et al. 2006). 
Laboratory evidence suggested that sorafenib was able to have a cytotoxic effect 
on melanoma cell lines; however, this effect did not seem to depend on the pres-
ence or absence of BRAF mutations (Whittaker et al. 2010). This lack of cellular 
selectivity suggested the possibility that BRAF might be the important point of 
intervention even in tumors that lacked a RAF mutation. However, it was also 
known that non- pharmacologic methods for limiting the production of BRAF pro-
tein only impacted the growth and survival of melanoma cell lines with a BRAF 
mutation (Hingorani et al. 2003; Wellbrock et al. 2004). Clinical trials were rapidly 
designed and executed even before significant preclinical testing had occurred. 
Early in clinical testing, it was revealed that sorafenib was not associated with 
tumor regression when administered as a single-agent and only modestly inhibited 
the MAP kinase pathway in tumors analyzed during the first few weeks of therapy 
(Flaherty et al. 2005). Still, two large Phase III trials were opened evaluating the 
combination of chemotherapy (carboplatin and paclitaxel) with or without 
sorafenib, both in the front-line and second-line setting. These trials both showed 
no benefit of adding sorafenib to chemotherapy and successfully ended the era of 
non-specific inhibitors of RAF in patients with metastatic melanoma (Hauschild 
et al. 2009; Flaherty et al. 2013). This did, however, leave open the possibility that 
more potent and selective BRAF inhibitors might yield superior molecular effects 
as well as evidence of clinical efficacy.

Several BRAF inhibitors subsequently entered clinical trials that were developed 
and optimized in preclinical tumor models that harbor BRAF mutations. The most 
successful of these were agents are highly selective for BRAF. In fact, three selective 
BRAF inhibitors (vemurafenib, dabrafenib, and encorafenib) have emerged from 

16 New Approaches to Signaling

http://dx.doi.org/10.1007/978-3-319-41319-8_7


402

Phase I clinical trials and demonstrated clear antitumor activity (Flaherty et al. 2010; 
Kefford et al. 2010; Dummer et al. 2013). Further, both vemurafenib and dabrafenib 
have been shown, in randomized Phase III trials, to be superior to chemotherapy in 
patients with advanced (unresectable Stage III or Stage IV) melanoma harboring 
BRAFV600E or BRAFV600K mutations. Specifically, in the BRIM3 study, 675 patients 
with BRAFV600E/K mutations were randomized 1:1 to receive vemurafenib or dacarba-
zine (DTIC) (Chapman et al. 2011). The initial primary endpoint was overall sur-
vival; however, at the first interim analysis, the trial design was changed to use a 
composite endpoint of OS and progression-free survival (PFS) and allow for cross-
over from DTIC to vemurafenib at the time of progression. The initial analysis dem-
onstrated the superiority of vemurafenib versus DTIC with respect to response rate 
(48 % vs 5 %), PFS (hazard ratio [HR] 0.26; 95 % confidence interval [CI] 0.20–0.33, 
p value < 0.001), and OS (HR 0.37, 95 % CI 0.26–0.55, p < 0.001). Similarly, in the 
BREAK3 study, 250 patients with advanced BRAFV600E/K mutant melanoma were 
randomized to receive either dabrafenib or DTIC; though as opposed to the BRIM3 
study, patients were randomized at 3:1 to receive dabrafenib, patients were allowed 
to cross over from DTIC to dabrafenib from the beginning, and the primary endpoint 
was PFS (Hauschild et al. 2012). Not surprisingly, patients randomized to dabrafenib 
had superior outcomes to those randomized to DTIC and specifically had improved 
PFS (HR 0.30, 95 % CI 0.18–0.51, p < 0.0001) and RR (50 % vs 4 %). Based on the 
data from BRIM3 and BREAK3, the United States Food and Drug Administration 
(FDA) approved vemurafenib in 2011 and dabrafenib in 2013.

The efficacy of the BRAF inhibitors vemurafenib and dabrafenib were unprece-
dented and balanced by a favorable toxicity profile (Chapman et al. 2011; Flaherty 
et al. 2010; Hauschild et al. 2012; Sosman et al. 2012; Falchook et al. 2012). With 
that said, a number of toxicities are seen with therapy including those commonly 
seen with small molecule inhibitors such as nausea, diarrhea, and fatigue to those 
quite specific for BRAF inhibitors including hyperkeratosis, palmar–plantar ery-
thema, arthralgia, and squamous cell carcinomas of the skin (cuSCC). These latter 
adverse effects have since been determined to be related to paradoxical upregulation 
of the pathway in tissues that are dependent on MAPK pathway signaling 
(Oberholzer et al. 2012; Su et al. 2012; Heidorn et al. 2010; Poulikakos et al. 2010). 
This occurs through the interaction of the BRAF inhibitor with wild-type BRAF in 
these cells that triggers a conformational change in BRAF that leads to robust 
homo- and hetero-dimerization with RAF isoforms and subsequent pathway activa-
tion (Poulikakos et al. 2010; Heidorn et al. 2010). This is best understood in the 
setting of cuSCC, where an upstream mutation in HRAS has been seen in the major-
ity of these cases (Oberholzer et al. 2012; Su et al. 2012).

16.2.3  Building upon BRAF Inhibition and the Development 
of MEK Inhibitor Therapy in BRAF Mutant Melanoma

In tumor biopsy samples initially collected from patients treated with vemurafenib 
and dabrafenib, some degree of residual MAP kinase pathway activity persists even 

R.J. Sullivan and K.T. Flaherty



403

when patients are administered maximum tolerated doses. Similarly, residual ERK 
activity can be detected in vitro when BRAF mutant cell lines are treated with high 
concentrations of the tool compound, PLX4720 (Paraiso et al. 2010). So, even 
before turning to combination regimens, it was felt that that there may be value in 
finding agents that inhibit the MAPK pathway at distinct points. MEK inhibitors 
were developed in BRAF mutant melanoma for this express purpose. The first such 
inhibitor to be evaluated was trametinib, which quickly was developed from Phase 
I trials to a randomized Phase III trial in patients with advanced BRAFV600E/K mutant 
melanoma. In the METRIC study, 322 patients were randomized on a 2:1 ratio to 
receive either trametinib or chemotherapy (single agent DTIC or paclitaxel) 
(Flaherty et al. 2012b). The trial met its primary endpoint of improved overall sur-
vival (HR 0.54, 95 % CI 0.32–0.92, p = 0.01), as well as secondary endpoints of 
improved PFS (HR 0.45, 95 % CI 0.33–0.63, p < 0.001) and RR (22 % compared to 
9 %). Additionally, trametinib was well tolerated with most common toxicities, 
which were related to inhibition of the MAPK pathway in normal tissues, such as 
acneiform rash, diarrhea, fatigue, peripheral edema, nausea, and hypertension with 
rare toxicities including reduced ejection fraction and ophthalmologic effects such 
as central serous retinopathy and, less commonly, retinal vein thrombosis. Based on 
these data, the FDA approved trametinib for the treatment of advanced BRAFV600E/K 
melanoma in 2013.

With the FDA approval of BRAF inhibitors (vemurafenib and dabrafenib) and a 
MEK inhibitor (trametinib), an important issue that arose was how to use these 
types of drugs in relation to the other. For example, would sequencing or combina-
tion of BRAF and MEK inhibitors be more effective and if combination were effec-
tive, would it be tolerable. To address this issue, it is important to understand the 
status of the MAPK pathway at the time of resistance to BRAF inhibitors. For 
example, if the MAPK pathway were active at the time of BRAF inhibitor resis-
tance, than perhaps targeting the pathway downstream might be a useful endeavor, 
whereas if the pathway were not reactivated, targeting alternative pathways rather 
than the MAPK pathway would likely be more fruitful. Over the years, following 
the availability of BRAF inhibitors on clinical trials and commercially, a number of 
mechanisms of resistance have been identified including adaptive changes in recep-
tor tyrosine kinase activity (AXL, IGFR1, PDGFR, etc.) and genetic aberrations 
that lead to MAPK pathway reactivation and/or upregulation of other pro-survival 
signaling pathways including the phosphoinositide-3-kinase (PI3K) pathway 
(Montagut et al. 2008; Smalley et al. 2008; Emery et al. 2009; Johannessen et al. 
2010; Nazarian et al. 2010; Paraiso et al. 2010, 2011; Villanueva et al. 2010; 
Poulikakos et al. 2011; Shi et al. 2012; Wilson et al. 2012). Importantly, reactivation 
of the MAPK pathway, through a multitude of mechanisms (including upstream 
RAS mutation, BRAF amplification, alternative splicing of BRAF, and downstream 
MEK1/2 mutations), occurs in up to 70 % of cases, though nearly 20 % of the time 
both MAPK and PI3K activation is seen (Shi et al. 2014; Van Allen et al. 2014). 
These data predict that effective, downstream inhibition of the MAPK pathway after 
BRAF inhibitor therapy would be an effective therapy in most patients with BRAF 
inhibitor-resistant, BRAF mutant melanoma.
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To test the hypothesis that downstream MAPK pathway inhibition would be 
effective in the setting of BRAF inhibitor resistance, a Phase II trial of trametinib 
following BRAF inhibitor therapy was performed in patients with BRAF mutant 
melanoma who had either received prior BRAF inhibitor therapy (Cohort A) or had 
not received prior BRAF inhibitor therapy but had been treated with chemotherapy 
or immune therapy (Cohort B) (Kim et al. 2013). In Cohort A, no responses were 
seen in any of the 40 patients treated, and the median PFS was 1.8 months. In 
Cohort B, responses were seen in 25 % of the 57 patients enrolled and the median 
PFS was 4 months, which was similar to the data for patients treated in the METRIC 
study. The conclusion from this trial is that MEK inhibitor therapy, in this case tra-
metinib, is not effective in patients with BRAF mutant melanoma who have previ-
ously received BRAF inhibitor therapy.

The next issue to be addressed was whether combined BRAF and MEK inhibitor 
therapy would be tolerable and effective. It was hoped that such a combination 
would suppress MAPK signaling to even greater degrees than are achievable with 
either agent alone. Additionally, it was hypothesized that the co-administration of a 
MEK inhibitor with a selective BRAF inhibitor would counter the paradoxical 
upregulation of the MAPK pathway that occurs in normal tissues following selec-
tive BRAF inhibitor therapy. Thus, it was thought that the consequence of dual 
BRAF and MEK blockade may be less toxicity, whereas the prediction is for most 
combination regimens to engender greater toxicity. The first such trial was the com-
bination of dabrafenib and trametinib, which in a Phase I/II trial, was shown to be 
tolerable at the maximum tolerable dose (MTD) levels of each individual drug and 
was associated with high response rates (~70 %) and median PFS in excess of 9 
months (Flaherty et al. 2012a). Two additional BRAF/MEK combinations have 
shown to be tolerable and effective, vemurafenib and combimetinib (MEK inhibi-
tor), and encorafenib and binimetinib (MEK inhibitor) (Ribas et al. 2014; Sullivan 
et al. 2015b). In all three combinations, the rate of symptoms thought to be related 
to paradoxical activation of MAPK pathway in non-BRAF mutant cells by the 
BRAF inhibitors were abrogated by the MEK inhibitor. Specifically, the rate of 
hyperkeratosis, palmar–plantar erythema, and cuSCC are greatly reduced in the 
combination compared to single-agent BRAF inhibitors.

More recently, three Phase III trials have been completed showing the superiority 
of the combination of BRAF/MEK inhibitor therapy to single-agent BRAF inhibi-
tors. In COMBI-d, 423 patients with previously untreated and advanced BRAFV600E/K 
mutant melanoma were randomized to the combination of dabrafenib and trametinib 
versus dabrafenib and placebo (Long et al. 2015). Patients treated with the combina-
tion had improved RR (69 % vs 53 %), PFS (median 11 months vs. 8.8 months; HR 
0.67, 95 % CI 0.53–0.84, p = 0.0004), and OS (median 25.1 months vs. 18.7 months; 
HR 0.71, 95 % CI 0.55–0.92, p = 0.0107). In COMBI-v, 704 patients were random-
ized to either dabrafenib plus trametinib versus vemurafenib and placebo (Robert 
et al. 2015). Similar to COMBI-d, patients treated with the combination had supe-
rior RR (64 % vs. 51 %), PFS (median 11.4 months vs. 7.3 months; HR 0.56, 95 % 
CI 0.46–0.69, p < 0.001), and OS (1 year rate 72 % vs. 65 %; HR 0.69, 95 % CI 
0.53–0.89, p = 0.005) compared to those treated with vemurafenib and placebo. The 
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third such trial, coBRIM, compared the combination of vemurafenib plus cobi-
metinib versus vemurafenib plus placebo and, like the COMBI-d and COMBI-v 
trials, demonstrated superiority compared to vemurafenib plus placebo in RR (65 % 
vs. 59 %), PFS (median 12.5 months vs. 6.2 months; HR 0.58, 95 % CI 0.46–0.72), 
and OS (median 22.3 months vs. 17.4 months; HR 0.70, 95 % CI 0.55–0.90) (Larkin 
et al. 2014). A fourth trial, COLUMBUS, is ongoing and randomizing patients to 
encorafenib plus binimetinib, encorafenib plus placebo, and vemurafenib plus pla-
cebo (NCT01909453).

16.2.4  Adding to the BRAF/MEK Inhibitor Backbone in BRAF 
Mutant Melanoma

Given the myriad mechanisms of resistance to BRAF-targeted therapy in melanoma, 
which are often seen in the same tumor or in multiple tumors in a patient, it is hard 
to imagine that targeting one specific signaling pathway mediator (ERK, PI3K, AKT, 
etc.) will be associated with dramatic clinical benefit. Notwithstanding, targeting 
ERK with the ERK1/2 inhibitor BVD523 has been associated with transient 
responses in some patients with BRAF mutant melanoma who were previously 
treated with BRAF/MEK inhibitor therapy (Infante et al. 2005). While this is predict-
able given that the majority of patients will have reactivation of the MAPK pathway, 
it is also not surprising that the benefit was transient, given that multiple mechanisms 
are often involved. It is this pervasive heterogeneity in the mechanism of resistance 
to BRAF-targeted therapy that forces researchers and clinical investigators to think 
about alternative targets (immune system, apoptosis, oncogene chaperones, early 
adaptive changes to therapy) as opposed to the traditional targets, namely mediators 
of signal transduction pathways (e.g., PI3K pathway or MAPK pathway).

16.2.4.1  Dual BRAF and Immune Targeting
Combination of BRAF-targeted therapy with immunotherapies is an attractive 
approach for several reasons. First, BRAF does not appear to be an important constitu-
ent of the MAP kinase pathway in mature immune cells, including T cells (Tsukamoto 
et al. 2008). Second, emerging evidence suggests that inhibition of the MAPK pathway 
in patients with melanoma, through inhibition of BRAF and/or MEK, leads to increased 
melanoma antigen expression, decreased immunosuppressive cytokines, increased 
trafficking of CD8+ T-lymphocytes, and increased expression of programmed death 1 
(PD1) and its ligand (PDL1) (Donia et al. 2012; Cooper et al. 2013; Frederick et al. 
2013; Wilmott et al. 2012). Also, it has recently been shown that patients with a higher 
proportion of preexisting tumor-infiltrating lymphocyte clones, determined by T-cell 
receptor (TCR) rearrangement sequencing (so-called ImmunoSeq), have better out-
comes with BRAF/MEKi therapy, although nearly all patients have an increase in TCR 
clonality in the setting of BRAF/MEKi therapy (Cooper et al. 2013). The major con-
clusion from these data is that MAPK pathway targeting enhances antitumor immunity 
within the tumor microenvironment, providing a strong rationale for combination of 
MAPK-targeted therapy with immunotherapy.
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The first wave of combined BRAF-targeted therapy plus ipilimumab studies 
have been performed and limited by tolerability. Specifically, the vemurafenib plus 
ipilimumab study was closed in dose escalation when it was observed that six of the 
ten evaluable patients had developed grade 3 or 4 elevation of transaminases (Ribas 
et al. 2013). Interestingly, when dabrafenib was combined with ipilimumab, there 
was less hepatic toxicity, though when the triple combination of dabrafenib, tra-
metinib, and ipilimumab was tested, two of nine patients developed bowel perfora-
tion (Puzanov et al. 2014). Based on the results of these trials, the development of 
ipilimumab-based targeted therapy–immunotherapy trials has been halted.

The next wave of combined targeted-immunotherapy trials has been evaluating 
various combinations of BRAF plus or minus MEK inhibitors with anti-PDL1 anti-
bodies. The first such trial explored the safety and efficacy of vemurafenib plus the 
anti-PDL1 antibody atezolizumab. In the initial cohort, concomitant initiation of 
therapy was associated with excess toxicity (elevated liver enzymes, fatigue, rash); 
however, with employing a lead-in of 28 days to perform the combination phase of 
the trial, the combination has been shown to be well tolerated and associated with 
responses in the majority (76 %) of the 17 patients evaluable for response, including 
three complete responders (Hamid et al. 2015). This trial is now evaluating the triple 
combination of vemurafenib, cobimetinib, and atezolizumab (NCT01656642). The 
second trial to explore the utility of anti-PDL1 antibodies with targeted therapy is 
the Phase I/II trial of durvalumab with either trametinib (in BRAF wild-type 
patients) or dabrafenib/trametinib (in BRAF mutant patients). In the cohort of 
BRAF mutant patients, the response rate was 69 % (18/26 patients), with all patients 
having control of disease (response or stable disease) at first imaging (Ribas et al. 
2015). Whether these combinations are associated with a more durable benefit rate 
than BRAF/MEK inhibitor therapy is unknown, but the initial results are promising 
that combined BRAF/MEK plus anti-PDL1 therapy is tolerable and associated with 
response in the great majority of patients. As durability of response will be the next 
clinical endpoint by which these combinations will be judged, substantially greater 
sample sizes and follow-up will be needed to glean the impact of these regimens.

16.2.4.2  Targeting Apoptosis
Constitutive activation of the MAPK pathway in the context of a BRAFV600 muta-
tion is associated with a number of pro-survival consequences including inhibition of 
proapoptotic BCL-2 family members, inactivation of BAD, and downregulation of 
BIM to enhance cell survival (Boisvert-Adamo and Aplin 2008; Cartlidge et al. 
2008). Preclinically, inhibition of BRAF or MEK leads to apoptosis, at least in part, 
through the upregulation of BIM and its inhibition of the antiapoptotic proteins 
BCL-2 and MCL-1 (VanBrocklin et al. 2009; Haq et al. 2013; Wroblewski et al. 
2013; Frederick et al. 2014). Further, gene expression analyses of patient tumor biop-
sies demonstrate that treatment with either vemurafenib or dabrafenib and trametinib 
reduces MCL-1 mRNA levels and increases BIM mRNA and protein levels in most 
patients (Frederick et al. 2014). Nonetheless, the degree of apoptosis in the setting of 
BRAF inhibitor therapy is variable and likely attenuated by the antiapoptotic BCL-2 
family members, BCL-xL and BCL-w, both of which also increase with BRAF-
directed therapy (Trunzer et al. 2013; Long et al. 2013; Frederick et al. 2014). These 

R.J. Sullivan and K.T. Flaherty



407

findings support the addition of an agent that can augment BRAF and MEK inhibi-
tor-induced apoptosis and serves as the preliminary evidence for a Phase I/II trial of 
dabrafenib, trametinib, and navitoclax, a small molecule inhibitor of BCL-2, BCL-
xL, and BCL-w (NCT01989585).

Another important mechanism of promoting cell survival in melanoma is the 
inactivation of the tumor suppressor gene/protein, p53. While p53 is mutated in a 
minority of patients (~15 %), it is functionally inactivated by MDM2 or MDM4 in 
approximately half of patients with melanoma (Cancer Genome Atlas 2015; 
Gembarska et al. 2012; Ji et al. 2012; Muthusamy et al. 2006; Polsky et al. 2001). 
Thus, small molecule targeting of MDM2 in combination with BRAF and/or MEK 
inhibitors is rational and supported by preclinical evidence showing synergy of the 
combination in both in vitro and in vivo studies (Ji et al. 2012; Saiki et al. 2014). 
Based on the rationale and preclinical data, clinical trials are being developed to 
evaluate this combination, and one such trial is actively enrolling patients with 
either trametinib plus or minus dabrafenib in combination with tMDM2 inhibitor 
AMG232 (NCT02110355).

16.2.4.3  Targeting an Oncogenic Chaperone (Heat Shock Protein 90)
Heat shock proteins act as cellular chaperones for client proteins and facilitate cel-
lular signaling. Heat shock protein 90 (HSP90) serves as a molecular chaperone to 
a number of mediators of growth factor pathways and is a potential therapeutic tar-
get in the setting of BRAF inhibitor resistance. Included among its client proteins 
are insulin-like growth factor 1 receptor (IGF1R), BRAF, CRAF, AKT, cyclin D, 
and cyclin-dependent kinase 4 (CDK4), all of which have been implicated in BRAF 
inhibitor resistance. Supporting this is data showing that the HSP inhibitor XL888 
blocks growth and survival, in vitro and in vivo, in BRAF-mutant melanoma cell 
lines that harbor acquired resistance mechanisms to BRAF inhibitor including COT 
overexpression, platelet-derived growth factor receptor beta (PDGFR-b) overex-
pression, concomitant BRAF and NRAS mutations, and cyclin D amplifications. 
Additionally, a reduction in levels of a number of both client proteins and growth 
pathway mediators was seen, as was a favorable change in the pro- and antiapop-
totic molecules, respectively, BIM and MCL1. Similar data also have been gener-
ated with the HSP90 inhibitor AT13387, showing activity in cell lines with BRAF 
inhibitor acquired-resistance mechanisms and suppression of acquired resistance in 
BRAF mutant melanoma cell lines in xenograft models when mice are treated with 
both a BRAF inhibitor and AT13387 (Smyth et al. 2014). Based on these data, clini-
cal trials have been launched evaluating single-agent BRAF inhibition (vemu-
rafenib) with XL888 (NCT01657591), as well as the combination of dabrafenib, 
trametinib, and AT13387 (NCT02097225).

16.2.5  PI3 Kinase Pathway

The PI3 kinase pathway is another RAS effecter pathway that has been implicated 
in the pathophysiology of numerous cancers, including melanoma. Melanomas 
commonly feature loss of PTEN function, a negative regulator of AKT activation by 
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PI3 kinase (Guldberg et al. 1997). Hemizygous and homozygous deletion appear to 
be the most common type of genetic alteration in PTEN in melanoma. Additionally, 
numerous point mutations, thought to inactivate PTEN, and thereby permitting 
higher PI3 kinase pathway activity, have also been described in some melanomas 
(Celebi et al. 2000). A point of continued controversy is whether silencing of PTEN 
expression by promoter hypermethylation might also be a mechanism of gene 
silencing in melanoma (Mirmohammadsadegh et al. 2006; Furuta et al. 2004). In 
any case, it is clear that a substantial subset of melanomas have genetic alterations 
in PTEN, and the preponderance of evidence suggests that it is the consequence of 
overactivity in the PI3 kinase pathway that is of pathophysiologic significance. It 
should be noted that numerous other cytoplasmic and nuclear sites of PTEN activity 
have been described, but it is unclear if any of those are important to melanoma 
biology (Zhang and Yu 2010). Some evidence has been produced from array com-
parative genome hybridization experiments to support the presence of AKT3 ampli-
fication in a distinct subset of melanomas from those that have PTEN loss, and rare 
activating mutations in AKT3 have been reported (Stahl et al. 2004; Davies et al. 
2008). This is further genetic evidence that the PI3 kinase pathway plays a critical 
role in a subset of melanomas. Notably, it appears that PTEN loss is frequently seen 
concomitant with BRAF mutation (Tsao et al. 2004). This suggests that both of 
these RAS effecter pathways are needed to contribute to melanoma formation.

Experimental evidence supports a role for the PI3 kinase pathway in melanoma 
invasion into the dermis, and potentially in metastatic spread. In particular, the intro-
duction of activated AKT results in the conversion from a radial growth to vertical 
growth phase phenotype in primary melanoma in animal models (Govindarajan et al. 
2007). Conversely, restoration of PTEN expression or blockade of PI3K/AKT sig-
naling in melanoma cells blocks invasion and induces apoptosis (Stewart et al. 2002; 
Ruth et al. 2006). Introduction of AKT3 into melanoma cell lines promotes prolifera-
tion and survival, whereas knockdown of AKT3 mRNA, but not AKT1 or AKT2, 
inhibits both phenotypes (Stahl et al. 2004). Introduction of myristylated AKT pre-
vented the expression of proapoptotic mediators such as Bim and Bmf and knock-
down of AKT3 with siRNA greatly enhances the degree of apoptosis seen in BRAF 
mutant cell lines treated with a selective BRAF inhibitor (Shao and Aplin 2010).

The development of therapeutic agents targeting the PI3 kinase pathway, and 
particularly the components within it that are critical to melanoma pathophysiology, 
is at a very early stage. Due to the overall prevalence of PTEN loss, activating muta-
tions in PI3 kinase itself, and activating mutations or amplification in AKT, signifi-
cant efforts have been made in the pharmaceutical industry to develop antagonists 
of this pathway. Three classes of PI3 kinase inhibitors have emerged in clinical 
development: (1) inhibitors of specific PI3 kinase isoforms, (2) agents that inhibit 
with near equal potency all PI3 kinase isoforms, and (3) dual inhibitors of PI3 
kinase and mTOR. When considering which of these agents might be most relevant 
in melanoma, the deficiency in our knowledge regarding which isoform or isoforms 
of PI3 kinase to target becomes apparent. In lymphocytes, it appears that the cata-
lytic subunit p110delta (the delta isoform) is the one whose activity is most mark-
edly upregulated in the setting of PTEN deletion (Janas et al. 2008). However, in 
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breast cancer models, it appears that PI3 beta is the most relevant isoform in mediat-
ing cell invasion in response to RAS activation (De Laurentiis et al. 2011). These 
observations remain to be confirmed, specifically in melanomas.

The therapeutic strategy at the level of AKT may be somewhat more straightfor-
ward based on available genetic and experimental evidence. Given that the most 
common activating mutations in AKT across cancers are in AKT1, the focus of phar-
maceutical development has been on agents with preferential inhibitory effects on 
this isoform (Carpten et al. 2007). AKT2 appears to be the most critical isoform in 
glucose homeostasis, and therefore would be the one isoform to avoid targeting 
(Altomare et al. 1998). The first generation of AKT inhibitors in clinical develop-
ment have fairly uniform potency against the three AKT isoforms. This may be prob-
lematic, as dose-limiting toxicity may be rendered by AKT2 inhibition, or possibly 
co-inhibition of all isoforms. The ideal AKT inhibitor for melanoma might be one 
that is relatively AKT3-specific, and such an agent has not yet been developed. In 
fact, the AKT inhibitor that is furthest into clinical development, MK-2206, is equally 
potent against AKT1 and AKT2, but fivefold less potent against AKT3 (Yap 2009). 
Thus, the melanoma field awaits the development of additional AKT inhibitors with 
more optimal properties relevant to the biology of AKT signaling in this disease.

16.2.6  Beyond BRAF: Targeting Other Molecular Subsets

16.2.6.1  NRAS Mutant Melanoma
Activating mutations in NRAS continue to be an elusive target in melanoma, more 
than 30 years after their initial identification (Albino et al. 1984). Approximately 
25 % of all advanced melanoma cases harbor an activating mutation in and RAS, 
with Q61R mutation being the most common and mutations at position 12 in the 
amino acid sequence being the next most commonly affected (Curtin et al. 2006; 
Cancer Genome Atlas 2015). NRAS is not amenable to targeting with drugs of the 
sort that can compete with ATP binding as RAS does not consume ATP as an energy 
source. Rather, RAS is a GTPase, and the common mutation found in cancer impairs 
GTPase activity. Thus, an effective pharmacologic inhibitor of mutated ras would 
need to restore the lost GTPase activity, and such compounds have not been readily 
discovered to date. Experimental evidence demonstrating the biologic significance of 
RAS in melanoma stems from at siRNA knockdown experiments as well as geneti-
cally engineered models demonstrating its contribution to melanoma pathophysiol-
ogy (Eskandarpour et al. 2009; Nogueira et al. 2010). More indirect evidence 
supporting the therapeutic potential of antagonizing RAS comes from experiments 
using farnesyltransferase inhibitors, which block one of the key post- translational 
modifications required for RAS to localize to the plasma membrane (Smalley and 
Eisen 2003). The introduction of mutated NRAS into melanocytes induces senes-
cence, or transformation in the appropriate genetic background (Whitwam et al. 
2007). In transgenic models, introduction of activating NRAS mutations combined 
with either p53 or p16 loss of function through genetic inactivation results in prolif-
erative and invasive melanocytic lesions (Nogueira et al. 2010). In cell lines, 
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knockdown of NRAS mRNA results in growth arrest and apoptosis selectively in 
melanoma cell lines that harbor activating NRAS mutations (Eskandarpour et al. 
2009). At exposures that inhibit the farnesylation of many signaling molecules, 
farnesyltransferase inhibitors will arrest the cell cycle and induce cell death in mela-
noma cells that harbor NRAS mutations. Additionally, this intervention sensitizes 
such cells to the cytotoxic effects of chemotherapy. Unfortunately, chemical trials 
with farnesyltransferase inhibitors have been largely disappointing, owing to the lack 
of evidence of single-agent efficacy in patients with RAS-mutated cancers when 
these agents are administered at maximum tolerated doses (Gajewski et al. 2006). 
While there is some evidence that partial inhibition of RAS signaling can be achieved 
with these agents, it appears that the degree of innovation is insufficient to signifi-
cantly perturb these tumors (Sebti and Hamilton 2000). Thus, agents with more 
selectivity for RAS are anxiously awaited but for the reasons noted above continue to 
be a major technical challenge.

An alternative strategy would be to block the downstream signal transduction 
pathways that are activated in the setting of RAS mutation. There are numerous 
RAS effecter pathways, the MAP kinase and PI3K pathways being the best 
described, but the relative importance of each has not been elucidated. As drug tar-
geting of RAS effecter pathways has been a major priority in pharmaceutical devel-
opment, there are numerous agents emerging targeting the MAP kinase and PI3K 
pathways, which might be useful for NRAS mutant melanoma. In particular, potent 
and selective MEK inhibitors have demonstrated single agent activity in NRAS 
mutant melanoma. Specifically, binimetinib was associated with responses in over 
20 % of patients with metastatic, NRAS mutant melanoma, and with a median PFS 
of 3.7 months (Ascierto et al. 2013). While these data are not dramatic, this was a 
notable benefit in a previously hard-to-treat subgroup of patients and provided the 
justification for a randomized, Phase III trial of binimetinib versus DTIC (so-called 
NEMO trial). The initial findings of this trial were recently publicized as part of a 
press release stating that treatment with binimetinib was associated with improved 
PFS (median 2.8 months vs. 1.5 months; HR 0.62, 95 % CI 0.47–0.80, p < 0.0001) 
compared to DTIC treatment.

The data with single-agent binimetinib is an encouraging first step, but better 
regimens are still needed for this patient population. One such regimen is the com-
bination of MEK inhibitors with CDK4 inhibitors. There is ample preclinical data 
suggesting that cell cycle progression is a key mechanism of resistance to single- 
agent MEK inhibition in NRAS mutant melanoma. In patients, two trials of MEK 
and CDK4 inhibitors have been performed to date. The first is the combination of 
binimetinib with the CDK4/6 inhibitor ribociclib. In this Phase I/II trial exclusively 
enrolling patients with advanced NRAS mutant melanoma, the majority of patients 
across all dose cohorts experienced tumor regression, and responses were seen in 7 
of the 22 patients enrolled, with another 11 experiencing stable disease (Van Herpen 
et al. 2015). The second trial evaluated the combination of trametinib plus the 
CDK4/6 inhibitor palbociclib. The difference with this study was that it allowed the 
enrollment of patients with any advanced solid tumor. In this dose escalation study, 
only two responses were seen (one in an NRAS mutant colon cancer patient and the 
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other in a NRAS/BRAF/NF1 wild-type melanoma patient) among the 26 patients 
treated (Sullivan et al. 2015a). In eight NRAS mutant patients, one responded (the 
aforementioned colon cancer patient), four had stable disease, and three had pro-
gression of disease as a best response.

16.2.6.2  CDK/Cyclin/p16
Germline mutation in CDKN2A, the gene that encodes both p16 and p14, have long 
been known to confer susceptibility to melanoma and is the highest penetrance 
allele yet discovered in familial melanoma (Hussussian et al. 1994). Mutations in 
CDKN2A, as well as hemizygous and homozygous deletions, are also observed in 
sporadic cases of melanoma (Wagner et al. 1998; Fujimoto et al. 1999). The best 
characterized point mutations identified in familial melanoma result in a disruption 
of the p16/CDK4 inhibitory interaction, suggesting that this may be the critical 
interaction related to melanoma formation (Haferkamp et al. 2008). The net conse-
quence of p16 loss or mutation is that CDK4 is dysinhibited and pushes cells 
through the cell cycle without the usual checkpoint regulation. In cases where 
CDKN2A is wild-type, a distinct subset of melanomas harbor cyclin D amplifica-
tion (Curtin et al. 2005). Cyclin D is another binding partner for CDK4 and is a criti-
cal co-activator of CDK4 activity. Thus, cyclin D application results in overactivity 
of CDK4, analogous to loss of p16 function. Lastly, CDK4 itself has been found to 
be amplified in some cases of sporadic melanoma and to contain activating muta-
tions in the kinase domain in another subset (Muthusamy et al. 2006). This genetic 
evidence would support that the CDK4 cell cycle checkpoint is a critical suppressor 
of melanoma formation and, conversely, its overactivity appears to contribute to 
melanoma pathophysiology. In vitro as well as mouse transgenic models support 
cooperative the between activating BRAF mutations and genetic aberrations in p16/
cyclin D/CDK4 (Dhomen et al. 2009; Robinson et al. 2010). What remains to be 
determined is whether dual targeting of this axis combined with an inhibitor of the 
MAP kinase pathway, such as BRAF, will have greater therapeutic value then inhib-
iting either target alone.

Restoring p16 function in the setting of mutation or deletion is beyond the scope 
of what current pharmacologic development can achieve. Additionally, cyclin D 
lacks an enzymatic function against which drugs could be readily generated. That 
leaves CDK4, with its kinase activity, as a potentially relevant point of intervention 
in tumors with p16/cyclin D/CDK4 aberrations. Potent and selective CDK4 inhibi-
tors have been developed and completed or are in the process of completing Phase 
I clinical trials. An example of this class of drugs is PD032991, which is an orally 
available CDK4/6 inhibitor (Fry et al. 2004). As one might project for a cell cycle 
targeted therapy, this agent produced mild to moderate–mild suppression that was 
reversible during planned treatment interruptions in Phase I (Schwartz et al. 2007). 
This agent and other CDK4 inhibitors are actively being tested clinically in patients 
with melanoma. It is of particular interest to evaluate the efficacy of single-agent 
CDK4 inhibitor therapy in patients with p16/cyclin D/CDK4 alterations, though 
there are no such data that have been presented or published to date. As noted above 
for NRAS mutant melanoma, the genetic evidence supporting CDK4 dysregulation 
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as being critical to melanoma formation supports further clinical investigation in 
combination with other approaches. Now that BRAF and MEK inhibitors have 
established their own evidence of efficacy as single agents and in combination in 
BRAF mutant and NRAS mutant subtypes, the most feasible approach would be to 
test a combination of a selective CDK4 inhibitor with a BRAF with or without a 
MEK inhibitor in BRAF mutant patients (or with MEK inhibitor in NRAS mutant 
patients as described above). This is occurring as part of an additional dose escala-
tion and expansion cohort in the Phase I/II trial of encorafenib plus binimetinib that 
was described above as well as in other trials as well (Sullivan et al. 2015b).

16.2.6.3  KIT
By the time CKIT mutations were reported in melanoma in 2006, KIT had already 
been validated as a therapeutic target in gastrointestinal stromal tumor (GIST) 
(Demetri et al. 2002). And subsequently, several second-generation KIT inhibitors 
established therapeutic benefit in this population as well (Fig. 16.1) (Demetri et al. 
2006). However, it was not known whether the somatic genetic changes that might 
accompany KIT mutation in melanoma, perhaps differently than GIST, might ren-
der melanoma more or less susceptible to single-agent KIT-targeted therapy.

Imatinib was the first KIT inhibitor to demonstrate single-agent activity in GIST, 
and was the first agent to be evaluated clinically in melanoma (Hodi et al. 2008). In 
the years prior to the discovery of KIT and mutations in melanoma, three Phase II 
clinical trials were conducted with imatinib as a single agent in metastatic 
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melanoma (Ugurel et al. 2005; Wyman et al. 2006; Kim et al. 2008). However, 
nearly all of the patients enrolled on trials did not have melanoma that arose from 
the clinical subtypes in which KIT mutations can be found, mucosal, acral/lentigi-
nous, and those associated with chronic sun damage. So, although KIT mutation 
analysis was not performed in the context of these trials, one would estimate that 
very few, if any, of these patients had KIT mutations. Only one patient experienced 
an objective response in those trials and this patient had a prior history of a mucosal 
melanoma primary. In addition to activating mutations in KIT, amplification has 
also been described, and can occur in the presence or absence of mutation. So, the 
hypotheses addressed in clinical trials with KIT inhibitors in melanoma are whether 
mutation and/or amplification might serve as predictive markers for response to 
these therapies. It should be noted that many of the mutations in KIT described in 
melanoma overlap with those previously seen in GIST. Some of these mutations 
have been described as imatinib-sensitive in the context of GIST, while others have 
not. And novel mutations in KIT have been described in some cases of melanoma as 
well. Thus, new questions remain to be answered in the context of KIT inhibitor 
trials in melanoma to understand not only whether mutations previously described 
as sensitive to existing drugs would be so in melanoma but also to determine if 
amplification or novel mutations are similarly predictive of response to therapy.

A single patient with mucosal melanoma whose tumor was found to harbor an 
internal tandem duplication in the juxtamembrane domain of KIT was treated with 
imatinib and an objective response lasting for at least several months was observed 
(Hodi et al. 2008). This first report established that KIT targeted therapy could be 
effective in melanoma.

There are now three Phase II trials with imatinib in KIT mutant or amplified mela-
noma that have been completed. In one of those trials, Carvajal and colleagues 
screened 295 patients with metastatic melanoma whose primary tumors were muco-
sal, acral/lentiginous, or arose from chronic sun-damaged skin (Carvajal et al. 2011). 
Archival tumor specimens were screened for the presence of amplification in KIT or 
mutations in exons 9, 11, 13, 17, and 18. A total of 51 of 295 (17 %) of these patients 
were found to have aberrations in KIT and 28 were treated with imatinib. Two 
patients experienced complete responses and two had partial responses (16 % 
response rate) among the 25 evaluable patients. The median time to progression was 
12 weeks and median overall survival was 46.3 weeks. All of the responders had 
either an exon 11 or 13 mutation. In another Phase II trial, Guo and colleagues 
enrolled 43 patients with KIT mutation in exons 9, 11, 13, 17, and 18 or amplification 
only (Guo et al. 2011). The starting dose of imatinib was 400 mg daily, with escala-
tion of the dose to 600–800 mg daily upon disease progression. Forty-three patients 
were enrolled, all of whom had a response evaluation by the time of publication. Ten 
patients (23 %) had an objective response, and nine had either an exon 11 or 13 muta-
tion. In patients with exon 11 or 13 mutations, the response rate was 35 % (6 of 17) 
and 33 % (3 of 9), respectively. A third Phase II trial of imatinib in patients with 
CKIT aberrations treated patients with 400 mg daily to be escalated to 400 mg twice 
daily in the setting of no initial response (Hodi et al. 2013). Twenty- five patients 
were enrolled, and all but one was evaluable for response. Seven patients had disease 
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response; all but one had either an exon 11 or 13 mutation (there was one responder 
with an exon 17 point mutation).

Based on these two trials, several preliminary conclusions can be made: (1) the 
previously described imatinib-sensitive mutations in GIST also predict responsive-
ness to imatinib in melanoma, (2) several patients with predicted imatinib sensitiv-
ity did not respond, and (3) on the basis of response rates in the 20–25 % range, 
patients with CKIT exon 11 and 13 mutations are a subgroup worthy of further 
investigation.

Additionally, Phase II trials of nilotinib in patients with CKIT mutant melanoma 
who have progressed or who are intolerant of first-line KIT inhibitor therapy has 
been completed (Carvajal et al. 2015). In this trial, 20 patients were enrolled to one 
of two cohorts, Cohort A prior KIT inhibitor therapy or Cohort B patient with brain 
metastases. The primary endpoint was 4 months of disease control, and three of 
eleven patients treated in cohort A and one of eight in Cohort B met this endpoint. 
The conclusion of this trial was that nilotinib may be associated with clinical benefit 
in patients with CKIT mutant melanoma but is associated with limited benefit in 
patients with brain metastases.

Clearly, the proof of concept has been established that KIT mutant melanoma 
can be responsive to imatinib. However, much work remains to be done to under-
stand the response rate for particular mutations or in particular exons. KIT amplifi-
cation alone remains of uncertain significance with regard to connoting 
responsiveness to therapy. And the durability of response or disease stabilization 
and its impact on overall survival remains to be determined. The pace with which 
these questions can be answered is limited by the rarity of genetic alterations in KIT 
in the overall melanoma population, and their presence in a minority of patients 
with the relevant clinical subtypes in which they can be found.

16.2.7  Oncogenes Not Readily Amenable to Direct Targeting

16.2.7.1  MITF
The microopthalmia transcription factor, MITF, is the master regulator of melano-
cyte differentiation and expression of melanocyte-specific antigens (see also Chap. 9 
(Abdel-Malek)). Its potential role as an oncogene in melanoma has recently been 
suggested based on the discovery of high-level amplification of the MITF locus in 
approximately 15 % of melanomas (Garraway et al. 2005). In such tumors, and some 
others without amplification, knockdown of MITF with siRNA impairs proliferation. 
Being a member of the transcription factor superfamily that includes MYC, a contri-
bution to cancer pathophysiology would not be unprecedented. However, targeting 
MITF with pharmacologic inhibitors is not currently possible. This molecule lacks 
an enzymatic domain against which small molecules could readily be developed. 
Rather, agents that block the association of MITF with cofactors, or key promoter 
regions in MITF target genes, would be needed. In order to avoid pleiotropic effects 
on the expression of a vast array of genes, likely resulting in unacceptable toxicity, a 
deeper understanding of which MITF target genes contribute most significantly to 
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melanoma biology is required. Such a detailed understanding would potentially 
 generate alternative targets that are amenable to pharmacologic therapy. In the mean-
time, there is evidence that epigenetic regulation of MITF may be apparent in the 
cancer setting and could be ameliorated to some degree with the use of the histone 
deacetylase inhibitor (Yokoyama et al. 2008). A clinical trial is currently ongoing in 
metastatic melanoma patients using a class to specific histone deacetylase inhibitor 
(LBH589).

16.2.7.2  GNAQ/GNA11
In 2008, activating mutations in the G protein-coupled receptor signaling molecule, 
GNAQ, were first described in a large subset of uveal melanomas (Van Raamsdonk 
et al. 2009). The same mutations are not found in other melanoma subtypes. The 
following year, analogous mutations in the highly homologous GNA11 were 
described in initial in an additional portion of uveal melanoma cases. In total, either 
of these mutations appears to be present in approximately 80 % of uveal melano-
mas. It had previously been shown that BRAF and NRAS mutations are not found 
in uveal melanoma, so the discovery of these activating mutations filled a significant 
void in the understanding of oncogenic drivers in this clinical subtype of melanoma. 
Like RAS, these proteins are GTPases, in which the GTPase activity is disabled by 
the mutation that had been described. Therefore, pharmacologic agents would need 
to restore the GTPase activity in order to antagonize the signaling capacity of these 
molecules. As has been noted, such an approach appears to be extremely technically 
challenging, and such candidate therapies do not currently exist.

Outside of the context of cancer, these G protein alpha subunits (GNAQ and 
GNA11) are known to activate several downstream signal transduction pathways, 
including the MAP kinase and PI3 kinase pathways (Van Raamsdonk et al. 2004). 
Early experimental evidence in melanoma cell lines harboring a GNAQ mutation sug-
gested that the MAP kinase pathway may be a point of vulnerability for therapeutic 
purposes (Van Raamsdonk et al. 2009). Given the availability of potent and selective 
MEK inhibitors, clinical trials employing single agent MEK inhibitor therapy were 
performed. The first of these studies randomized 101 patients with metastatic uveal 
melanoma to either the MEK1/2/inhibitor selumetinib or chemotherapy (both temo-
zolomide and DTIC were allowable) (Carvajal et al. 2014). The primary endpoint, 
PFS was superior in the selumetinib arm (HR 0.46, 95 % CI 0.30–0.91; p < 0.001) 
compared to the chemotherapy arm, though the OS was not statistically significantly 
different (HR 0.66; 95 % CI 0.41–1.06; p = 0.09). The follow-up trial randomized 
patients to chemotherapy or chemotherapy plus selumetinib and failed to meet its 
primary endpoint of improved PFS. Obviously, further preclinical work is needed to 
understand more about the hierarchy of signal transduction pathways downstream of 
these G proteins so that rational combination drug strategies can be formulated.

16.2.7.3  BAP1
The most recent genetic discovery in melanoma also comes in the uveal melanoma 
subpopulation. It has long been known that the short arm of chromosome 3 is fre-
quently deleted in uveal melanomas, and particularly those that metastasize and 
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result in fatality (van Gils et al. 2008). However, a potential candidate tumor sup-
pressor gene on this chromosome had not been described. Recently, massively par-
allel exome sequencing has uncovered mutations in BRCA1-associated protein 1 
(BAP1) in more than 80 % of metastatic uveal melanomas (Harbour et al. 2010). 
The distribution of these mutations in regions of the gene/protein that interacts with 
two distinct deubiquitinases, UCH and ULD, suggests that that BAP1 is indeed a 
tumor suppressor gene. As with any other tumor suppressor gene in cancer, we cur-
rently lack the ability to restore the function that is lost through inactivating muta-
tions or deletion. However, a greater mechanistic understanding of the activities of 
BAP1 binding partners may provide opportunities for therapeutic intervention. The 
two deubiquitinases that the genetic evidence suggests to be important in BAP1 
function are likely not ideal therapeutic targets as ubiquination and deubiquination 
are fundamental levels of regulating protein stability that pharmacologic inhibitors 
of such molecules may have far-reaching and toxic effects. One observation made 
in previous mechanistic studies regarding BAP1 function suggests that BAP1 regu-
lates the activity of the polycomb repressive complex 1 (PRC1), which regulates 
histone acetylation and acetylation (Scheuermann et al. 2010). Experimental evi-
dence suggests that in BAP1-mutated uveal melanoma cell lines, histone deacety-
lase inhibitors have a growth-inhibitory effect (Harbour et al. 2010). This approach 
is certainly possible to investigate in clinical trials, as numerous histone deacetylase 
inhibitors have been developed.

 Conclusion
The discovery of somatic genetic changes in oncogenes and tumor suppressor 
genes, and the subsequent biological validation of their significance, has opened 
the door for the development of molecularly targeted therapies aiming to antago-
nize the very genetic underpinnings of melanoma. The proof of principle has 
been established with BRAF-targeted therapy, that melanoma can be vulnerable 
to such an approach, despite the vast array of genetic alterations present within 
any one tumor. However, it is equally clear that no single point of intervention 
will eradicate metastatic melanoma, and that understanding the hierarchy of 
oncogenes and signal transduction pathways becomes critical to develop rational 
combination therapies, which might make an even more significant impact. 
Numerous challenges and hurdles remain, and the development of more effective 
molecularly targeted therapies for each of the recently described molecular sub-
sets of melanoma remains a major focus of investigation. Clearly, combination 
targeted therapy strategies will require that each component within the combina-
tion be highly selective for its intended target, or that the target is uniquely rele-
vant to melanoma biology and not normal physiology. Given our increasingly 
detailed understanding of the network of genetic changes and aberrant signal 
transduction and the downstream phenotypic consequences on various cellular 
processes, there is no shortage of essential points of intervention or types of 
combinations. It will be critical for the melanoma field to remain mindful of the 
ultimate goal, which is to tailor the therapeutic approach to the individual patient 
based on the unique constellation of alterations within their tumor.
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Immune Checkpoint Inhibitors 
in Melanoma Define a New Era 
in Immunotherapy Aiming for Cure
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17.1  The New Paradigm: Breaking Tolerance  
Is the Prerequisite

Advances in melanoma therapies are at present mainly in the field of immunother-
apy and mutation-driven drug development (Eggermont et al. 2014). Breaking toler-
ance represents a major paradigm shift and the impact of the first checkpoint 
inhibitors, i.e. anti-CTLA-4 (cytotoxic T lymphocyte antigen-4) and anti-PD1/anti- 
PDL1 (programmed death-1 receptor and its ligand PD-L1) is unprecedented 
(Pardoll 2012). In only 5 years, advanced melanoma has been transformed from an 
incurable disease into a curable disease (Eggermont et al. 2013; Robert et al. 2013). 
Breaking tolerance has a transversal impact throughout solid tumor oncology.

17.2  Anti-CTLA4

17.2.1  Ipilimumab in the Therapeutic Setting of Advanced 
Melanoma

Monoclonal antibody blocking of cytotoxic T lymphocyte antigen 4 (CTLA-4) 
leads to breaking immune tolerance and can induce tumor regressions. In 2011, the 
fully humanized monoclonal anti-CTLA4 antibody ipilimumab was approved in the 
USA in first- and second- line for patients with advanced melanoma and in second 
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line in Europe at a dose of 3 mg/kg. The approval was based on randomized con-
trolled trial (RCT) results that showed that ipilimumab alone or combined with a 
peptide vaccination provided a significant survival benefit of about 33 % compared 
to vaccination alone (Hodi et al. 2010). In another RCT, but in first-line, ipilimumab 
at 10 mg/kg combined with dacarbazine provided only a small, albeit statistically 
significant, benefit over treatment with dacarbazine alone, but there seems no reason 
to advocate the use of this combination (Robert et al. 2011). Mature data in thou-
sands of patients indicate that about 20 % of patients treated with ipilimumab have 
the potential to survive for at least 3 years and up to 10 years from treatment initia-
tion (Schadendorf et al. 2015). Also the efficacy in patients with brain metastases 
has been established and reported (Margolin et al. 2012). Ipilimumab responses can 
occur after the initial tumor progression or the appearance of new lesions. For this 
reason, immune-related response criteria (irRC) have been developed to avoid pre-
mature treatment cessation (Wolchok et al. 2009; Hoos et al. 2010).

Adverse events (AE) occur in about 40 % of patients and are mostly immune- 
related (irAE), such as skin rashes, colitis, hepatitis, and hypophysitis. Grades 3–4 
adverse events occur in about 20 % of patients and can, in rare cases, be fatal. 
Usually, they resolve spontaneously or after steroid therapy. Endocrinopathies 
behave differently and pituitary–adrenal axis failure usually requires permanent 
hormonal substitution. High-dose steroids are indicated for severe irAEs, but other 
immunosuppressive agents, like anti-TNF-alpha antibodies may also be needed, 
especially in the context of severe colitis (Weber et al. 2012).

Good biomarkers for response to ipilimumab therapy still remain to be estab-
lished. Immune-related adverse events, an increase in lymphocyte counts, an 
increase in eosinophil counts, the presence of NY-ESO-1 antigen, and the resistance 
in vitro to T-regulatory cell functions seem to be associated with higher response 
rates (Attia et al. 2005; Ku et al. 2010; Delyon et al. 2013; Ménard et al. 2008). 
Recently, the high levels of soluble CD25 in the serum, especially in combination 
with high levels of LDH, were demonstrated to be a very strong prognostic factor 
for poor outcome (Hannani et al. 2015).

Even the optimal dose and schedule for ipilimumab remain to be established. A 
randomized phase II trial comparing 0.3 mg/kg, 3 mg/kg, and 10 mg/kg suggested 
10 mg/kg to be the more effective dose, but associated it with more toxicity (Wolchok 
et al. 2010). The results of the RCT comparing 3 mg/kg versus 10 mg/kg are not yet 
mature. The value of four thrice-weekly administrations (induction) compared to 
induction followed by further administrations (maintenance) has not been established.

17.2.2  Ipilimumab in the Adjuvant Setting of Resected  
Stage III Melanoma

The results of a double-blind placebo-controlled adjuvant trial EORTC18071 in 
stage III patients at high risk for relapse were recently published (Eggermont  
et al. 2015). In 951 patients with high-risk stage III disease (palpable nodal disease 
or sentinel node positive disease with metastases >1 mm in diameter according to the 

A.M.M. Eggermont et al.



429

Rotterdam Criteria (van Akkooi et al. 2008; van der Ploeg et al. 2011, 2014)), ipili-
mumab was dosed at 10 mg/kg and administered every 3 weeks over the first 12 
weeks (induction) and thereafter every 12 weeks for up to 3 years or relapse. A sig-
nificant impact on RFS (HR 0.75, p = 0.0013) for the ITT population was reported. 
Most patients came off treatment after four to five administrations of ipilimumab. 
The potential value of maintenance therapy will therefore remain unanswered. irAEs 
were consistent with what has been observed in advanced melanoma trials, but at a 
higher frequency, especially regarding endocrinopathies. Post hoc analyses demon-
strated a significant impact both in patients with sentinel node- positive disease and 
palpable node-positive disease. Similar to EORTC adjuvant trials 18952 and 18991 
with IFN and pegylated-IFN, patients with sentinel-positive disease derived a greater 
benefit (Eggermont et al. 2005, 2008, 2012a). Patients with an ulcerated primary 
derived the greatest benefit like in the meta-analysis of the IFN trials 18952 and 
18991, indicating that ulcerated melanoma is a separate biologic entity (Eggermont 
et al. 2012b, c). In contrast, however, to the experience in the adjuvant IFN trials 
EORTC 18952 and 18991, patients with non-ulcerated melanomas also derived a 
benefit in the adjuvant ipilimumab setting (van Akkooi et al. 2008). This is in con-
trast to the total lack of benefit in IFN trials, which has also recently been confirmed 
in the individual patient data (IPD) meta-analysis of all adjuvant IFN versus observa-
tion trials (Suciu et al. 2014).

17.2.3  Combination Therapies with Ipilimumab

Various combinations of ipilimumab with other immune-modulating, anti- 
angiogenic or chemotherapeutic, or targeted agents have been reported or are ongo-
ing. Guiding principles for combination treatment designs could be to use drugs that 
lead to immunogenic cell death (Kroemer et al. 2013; Vacchelli et al. 2014a; 
Galluzzi et al. 2012; Zitvogel et al. 2013). Since radiotherapy can also induce immu-
nogenic cell death, the reported observation of abscopal antitumor effects after 
radiotherapy and ipilimumab has led to a number of clinical studies to further inves-
tigate this phenomenon (Postow et al. 2012).

17.2.3.1  Chemotherapy
Three studies regarding the combination of chemotherapy with ipilimumab in mela-
noma patients have been published thus far.

 1. Dacarbazine: A phase III trial comparing DTIC versus DTIC plus ipilimumab at 
10 mg/kg in first-line in patients with advanced melanoma showed a survival 
benefit for patients treated with the combination (Robert et al. 2011). The median 
benefit of only 2.1 months was, however, disappointing and the combination is 
not believed to bring a benefit over ipilimumab alone.

 2. Fotemustine: In an open-label, single-arm phase II trial, 86 patients with advanced 
melanoma, 20 of them with asymptomatic brain metastases, received induction 
treatment of 10 mg/kg intravenous ipilimumab every 3 weeks for a total of four 
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doses, and 100 mg/m2 intravenous fotemustine weekly for 3 weeks and then 
every 3 weeks from week 9 to week 24 (Di Giacomo et al. 2012). Patients with 
a confirmed clinical response were eligible for maintenance treatment from 
week 24, with ipilimumab every 12 weeks and fotemustine every 3 weeks. Forty 
patients (46.5 %) in the study population achieved disease control, as did 10 
patients with brain metastases (50 %). Toxicity was considerable with 47 patients 
(55 %) having grade 3 or 4 treatment-related adverse events.

 3. Carboplatin/taxol: Very preliminary results of a randomized phase II trial com-
paring concurrent carboplatin plus paclitaxel and ipilimumab (four doses at 
3 mg/kg) with sequential treatment of these agents were reported recently (Jamal 
et al. 2014). In 31 patients, response rates (RR) and disease control rates (DCR) 
for 14 evaluable patients at 24 weeks were 21.4 % and 42.9 % by mWHO, and 
35.7 % and 64.3 % by irRC, respectively. Grades 3 to 4 AEs were observed in 
63 % of patients.

17.2.3.2  Antiangiogenic Agents
Bevacizumab Four dosing cohorts of ipilimumab (3 or 10 mg/kg) with four doses 
at 3-week intervals and then every 12 weeks, and bevacizumab (7.5 or 15 mg/kg) 
every 3 weeks, were studied in 46 patients with metastatic melanoma (Hodi et al. 
2014a). There were 8 PRs and 22 SDs, and a disease control rate of 67.4 %. Median 
survival was 25.1 months. Extensive CD8(+) and macrophage cell infiltration were 
observed in on-treatment tumor biopsies. From this initial experience, it appears 
that the combination of bevacizumab and ipilimumab can be safely administered. 
VEGF-A blockade influences inflammation, lymphocyte trafficking, and immune 
regulation that should be studied further.

17.2.3.3  Cytokines
 1. Interleukin-2 (IL-2): The most mature data on the combination of IL-2 and ipili-

mumab regard 36 patients treated at the NCI Surgery Branch (Prieto et al. 2012). 
There were six complete responders (17 %), which was higher than the 6 % CR 
rate in 56 patients treated with ipilimumab alone and the 7 % CR rate among 85 
patients who received ipilimumab with gp100 peptide vaccination. All CRs 
except one were ongoing at 54+ to 99+ months at the time of the report. The 
combination with IL-2 did not seem to increase toxicity. The combination with 
IL-2 should be explored further.

 2. Interferon-alpha (IFN): The first phase II trial report on the combination of IFN 
was a study with the anti-CTLA4 drug tremelimumab (Tarhini et al. 2012). In 
this study, 37 stage IV melanoma patients received tremelimumab 15 mg/kg/
course (three cycles [one cycle = 4 weeks]) intravenously every 12 weeks. High- 
dose interferon alfa-2b (HDI) was administered concurrently, at 20 MU/m2/day 
i.v. for 5 days/week for 4 weeks followed by 10 MU/m2/day s.c. three times a 
week for 8 weeks per course. In 35 evaluable patients, overall response rate was 
24 % (four CRs and five PRs), 38 % SD, with a median progression-free survival 
of 6.4 months and a median overall survival of 21 months. These results seemed 
to indicate additive antitumor activity.
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 3. Pegylated-IFN: In 31 patients, ipilimumab (3 mg/kg for four doses) was adminis-
tered in combination with peg-interferon alfa-2b at 3 mcg/kg weekly for up to 156 
weeks (Kudchadkar et al. 2014). Among 26 evaluable patients, there were two 
CRs, nine PRs, three SDs, and twelve PDs. Peg-interferon alfa-2b added to ipili-
mumab resulted in a response rate of 42.3 % and was well tolerated except for a 
high grade 3 rash rate of 20 %. The combination warrants further exploration.

 4. GM-CSF: In a randomized phase II trial, conducted by ECOG in 245 patients 
with unresectable stage III/IV melanoma, ipilimumab plus GM-CSF (sargramos-
tim) treatment was compared with ipilimumab alone (Hodi et al. 2014b). Patients 
received ipilimumab at 10 mg/kg, intravenously on day 1 plus sargramostim, 
250 μg subcutaneously, on days 1–14 of a 21-day cycle versus ipilimumab alone. 
Ipilimumab treatment included induction for four cycles followed by mainte-
nance every fourth cycle. At a rather short median follow-up of 13.3 months, 
overall survival was superior for the combination treatment (17.5 months versus 
12.7 months), the 1-year survival rates were 68.9 % versus 52.9 %. Surprisingly, 
no differences for PFS were observed (median PFS of 3.1 months for both treat-
ment arms). The combination treatment was associated with less toxicity. Further 
studies are needed to elucidate these observations, which is true for all combina-
tions with cytokines (Vacchelli et al. 2014b).

17.2.3.4  Vaccines
 1. gp100 vaccines: Theoretically, a combination of a vaccine with anti-CTLA4 is 

very attractive. Yet the results from the RCT comparing ipilimumab versus ipili-
mumab plus gp100 vaccine versus gp100 vaccination alone did not show a ben-
efit for the combination of ipilimumab plus the vaccine compared to ipilimumab 
alone (Hodi et al. 2010) and similar observations were made with the mature 
results of the NCI Surgery Branch experience (Prieto et al. 2012).

 2. Laherparepvec (T-VEC): The first combination study of ipilimumab with the 
vaccine laherparepvec (T-VEC) was reported at the 2014 ASCO annual meeting 
(Puzanov et al. 2014a). In 17 patients, the response rate was 41 % (24 % CR, 
18 % PR); and 35 % had SD. Median time to response was 2.9 months. No DLTs 
were reported. Grade 3/4 AEs occurred in 32 %, with only two patients having 
irAEs at grades 3/4. These very preliminary results seem promising, but more 
mature data are awaited.

17.2.4  BRAF and MEK Inhibitors

Combinations of BRAF inhibitors and MEK inhibitors with immune checkpoint 
inhibitors such as anti-CTLA are theoretically attractive, but have, in practice, 
proven to be not so simple to develop.

 1. Vemurafenib: A phase I trial combining vemurafenib and ipilimumab was 
stopped early, after only 11 patients, because of several cases of grades 3–4 hep-
atitis (Ribas et al. 2013).
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 2. Dabrafenib + Trametenib: A phase I trial with dabrafenib + ipilimumab did not 
evoke a high rate of hepatitis, and an expansion cohort is ongoing (Puzanov et al. 
2014b). However, the combination of dabrafenib + trametenib + ipilimumab 
phase I study was stopped because of life-threatening colitis in three of the first 
seven patients (Puzanov et al. 2014b).

17.2.5  Anti-PD1 and Anti-PDL1

PD1 protein is another immune checkpoint expressed in many tumor-infiltrating lym-
phocytes in response to inflammation. It has two ligands, PD-L1 (B7-H1) and PD-L2 
(B7-DC). The engagement of PD1 on the lymphocyte surface by PD-L1 on melanoma 
cells delivers inhibitory signals down-regulating T-cell function (Topalian et al. 
2012a). Remarkable results of phase I trials evaluating two anti-PD1 antibodies 
(nivolumab and pembrolizumab) reported response rates of 30 % (Topalian et al. 
2012b; Robert et al. 2014). Anti-PD-L1 antibody also gave an encouraging long- term 
response rate of 17.3 % in melanoma patients in a phase I study (Brahmer et al. 2012). 
Importantly, the safety profile is very favorable compared to ipilimumab, with much 
lower rates of irAEs, in particular the troublesome colitis and hypophysitis. Both pem-
brolizumab and nivolumab have been reported to induce response rates around 30 % 
in advanced melanoma patients, even in patients that previously failed ipilimumab 
(Hamid et al. 2013; Topalian and Sznol 2014). Responses tend to be very durable, up 
to 2 years. Moreover, PDL-1 expression in the tumor is a good biomarker for response 
for monotherapy with either agent. Nivolumab proved to be vastly superior dacarba-
zine in first-line in a RCT in 418 patients with advanced non- BRAF- mutant mela-
noma (Robert et al. 2015a). Pembrolizumab proved to be superior to therapy of choice 
in ipilimumab failures (Ribas et al. 2015). Moreover, in a cohort of 655 patients 
treated with pemborlizumab it was demonstrated that response rates in BRAF wild-
type patients and in BRAF-mutant patients are similar (45 % and 50 %, respectively) 
(Daud et al. 2015). Moreover, pembrolizumab has been shown to be superior to ipili-
mumab in a phase III trial (Robert et al. 2015b). Overall, it leads to the conclusion that 
anti-PD1 can be considered to be proposed to all patients with advanced melanoma in 
first-line, irrespective of mutational status, perhaps with the only exception of patients 
with bulky rapidly progressive BRAF- mutant melanoma. However, the incredible 
impact of anti-PD1 and anti-PDL1 monoclonal antibodies lies in its broad transversal 
impact in oncology, now with activity demonstrated against a wide panel of neo-
plasms other than melanoma, including lung cancer, renal cell cancer, bladder cancer, 
stomach cancer, head and neck cancer, ovarian cancer, and colorectal cancer with 
microsatellite instability and Hodgkin lymphoma (Lorenzo Galluzzi et al. 2014).

17.2.6  Anti-PD1 Plus Anti-CTLA4

Very impressive data have been reported on the efficacy of the combination of ipili-
mumab and nivolumab in the last 2 years (Wolchok et al. 2013; Sznol et al. 2014). 
The rationale to combine these two checkpoint inhibitors is that they have different 
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mechanisms of action, with anti-CTLA4 mainly acting at the central level in the 
lymph node compartment, perpetuating and/or restoring the induction and prolifera-
tion of activated T-cells, and with anti-PD1 mainly acting at the peripheral level at 
the tumor site, preventing the neutralization of cytotoxic T cells by PDL1 express-
ing tumor cells and PDL2 expressing plasmoid dendritic cells in the tumor infiltrate. 
Very deep and long-lasting responses are observed, and in the update on the current 
experience presented by Sznol et al. at the 2014 ASCO annual meeting, with impres-
sive survival rates of >90 % at 1 year and >80 % at 2 years in advanced melanoma 
patients (Sznol et al. 2014). In 2015, the RCT comparing nivolumab + ipilimumab 
versus nivolumab versus ipilimumab in advanced melanoma patients was published 
and demonstrated that the combination is superior to either monotherapy and that 
nivolumab alone is superior to ipilimumab regarding PFS (Larkin et al. 2015). The 
trial is not mature regarding OS data. Importantly, patients with PDL1-positive 
tumors seemed to benefit equally from nivolimumab monotherapy compared with 
combination therapy. PDL-1-negative patients had the best results with the combi-
nation therapy. It will be very interesting to have the mature results of this trial in 
1–1.5 years’ time. Clearly, all these results are unprecedented in the melanoma 
world and demonstrate the power of the current concepts of breaking tolerance.

Immunotherapy combinations in general are expected to be perhaps the most dynamic 
drug development field for years to come. Once breaking tolerance is achieved, or even 
further improved with candidate molecules such as anti-LAG3 and others, the door is open 
to combine with agonists such as OX40, CD137, and others. Deepening breaking toler-
ance and combining with various agonistic approaches is a complex scenario to work out, 
but obviously, smart immune combos are the future (Eggermont and Robert 2014).

References

Attia P, Phan GQ, Maker AV et al (2005) Autoimmunity correlates with tumor regression in 
patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J Clin 
Oncol 23:6043–6053

Brahmer JR, Tykodi SS, Chow LQM et al (2012) Safety and activity of anti-PD-L1 antibody in 
patients with advanced cancer. N Engl J Med 366:2455–2465

Daud A, Ribas A, Robert C, et al (2015) Long-term efficacy of pembrolizumab (pembro; MK-3475) 
in a pooled analysis of 655 patients (pts) with advanced melanoma (MEL) enrolled in 
KEYNOTE-001. J Clin Oncol 33, (suppl; abstr 9005)

Delyon J, Mateus C, Lefevres D et al (2013) Experience in daily practice with ipilimumab for the 
treatment of patients with metastatic melanoma: an early increase in lymphocytes and eosino-
phils is associated with improved survival. Ann Oncol 24:1697–1703

Di Giacomo AM, Ascierto PA, Pilla L et al (2012) Ipilimumab and fotemustine in patients with advanced 
melanoma (NIBIT-M1): an open-label, single-arm phase 2 trial. Lancet Oncol 13(9):879–886

Eggermont AM, Robert C (2014) Melanoma: smart therapeutic strategies in immuno-oncology. 
Nat Rev Clin Oncol 11:181–182

Eggermont AMM, Suciu S, MacKie R et al (2005) Post-surgery adjuvant therapy with intermedi-
ate doses of interferon alfa 2b versus observation in patients with stage IIb/III melanoma 
(EORTC 18952): randomised controlled trial. Lancet 366:1189–1196

Eggermont AMM, Suciu S, Santinami M et al (2008) Adjuvant therapy with pegylated interferon 
alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, 
a randomised phase III trial. Lancet 372:117–126

17 Immune Checkpoint Inhibitors in Melanoma Define a New Era in Immunotherapy



434

Eggermont AM, Suciu S, Testori A et al (2012a) Long term results of the randomized phase III trial 
EORTC 18991 of adjuvant therapy with pegylated interferon alfa-2b versus observation in 
resected stage III melanoma. J Clin Oncol 30:3810–3818

Eggermont AMM, Suciu S, Testori A et al (2012b) Ulceration and stage are predictive of interferon 
efficacy in melanoma: Results of the phase III adjuvant trials EORTC 18952 and EORTC 
18991. Eur J Cancer 48:218–225

Eggermont AM, Spatz A, Lazar V, Robert C (2012c) Is ulceration in cutaneous melanoma just a 
prognostic and predictive factor or is ulcerated melanoma a distinct biologic entity? Curr Opin 
Oncol 24:137–140

Eggermont AM, Kroemer G, Zitvogel L (2013) Immunotherapy and the concept of a clinical cure. 
Eur J Cancer 49(14):2965–2967

Eggermont AM, Spatz A, Robert C (2014) Cutaneous melanoma. Lancet 383(9919):816–827. 
doi:10.1016/S0140-6736(13)60802-8

Eggermont AM, Chiarion-Sileni V, Grob JJ et al (2015) Adjuvant ipilimumab versus placebo after 
complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double- 
blind, phase 3 trial. Lancet Oncol 16(5):522–530

Galluzzi L, Senovilla L, Zitvogel L, Kroemer G (2012) The secret ally: immunostimulation by 
anticancer drugs. Nat Rev Drug Discov 11:215–233

Hamid O, Robert C, Daud A et al (2013) Safety and tumor responses with lambrolizumab (anti- 
PD- 1) in melanoma. N Engl J Med 369(2):134–144

Hannani D, Vétizou M, Enot D et al (2015) Anticancer immunotherapy by CTLA-4 blockade: 
obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell 
Res 25(2):208–224. doi:10.1038/cr.2015.3, Epub 2015 Jan 13. Erratum in: Cell Res. 2015 
Mar;25(3):399–400. Zörnig, Inka [added]; Hassel, Jessica [added]

Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients 
with metastatic melanoma. N Engl J Med 363:711–723

Hodi FS, Lawrence D, Lezcano C et al (2014a) Bevacizumab plus ipilimumab in patients with 
metastatic melanoma. Cancer Immunol Res 2:632–642

Hodi FS, Lee S, McDermott DF et al (2014b) Ipilimumab plus sargramostim vs ipilimumab alone 
for treatment of metastatic melanoma: a randomized clinical trial. JAMA 312:1744–1753

Hoos A, Eggermont AMM, Janetzki S et al (2010) Improved endpoints for cancer immunotherapy 
trials. J Natl Cancer Inst 102:1388–1397

Jamal R, Belanger K, Friedmann JE et al (2014) A randomized phase II study of ipilimumab (IPI) 
with carboplatin and paclitaxel (CP) in patients with unresectable stage III or IV metastatic 
melanoma (MM). J Clin Oncol 32(5s): abstract 9066

Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Ann 
Rev Immunol 31:51–72

Ku GY, Yuan J, Page DB et al (2010) Single-institution experience with ipilimumab in advanced 
melanoma patients in the compassionate use setting: lymphocyte count after 2 doses correlates 
with survival. Cancer 116:1767–1775

Kudchadkar RR, Gibney GT, Dorman D, et al (2014) A phase IB study of ipilimumab with pegin-
terferon alfa-2b for patients with unresectable stages IIIB/C/IV melanoma. J Clin Oncol 32(5s): 
abstract 9098

Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined Nivolumab and Ipilimumab or 
Monotherapy in Untreated Melanoma. N Engl J Med 373(1):23–34

Lorenzo Galluzzi L, Kroemer G, Eggermont A (2014) Novel immune checkpoint blocker approved 
for the treatment of advanced melanoma. Oncoimmunology 3:e29030

Margolin K, Ernstoff MS, Hamid O et al (2012) Ipilimumab in patients with melanoma and brain 
metastases: an open-label, phase 2 trial. Lancet Oncol 13:459–465

Ménard C, Ghiringhelli F, Roux S et al (2008) Ctla-4 blockade confers lymphocyte resistance to 
regulatory T-cells in advanced melanoma: surrogate marker of efficacy of tremelimumab? Clin 
Cancer Res 14:5242–5249

Pardoll D (2012) The blockade of immune checkpoints in immunotherapy. Nat Rev Cancer 
12(4):252–264

A.M.M. Eggermont et al.

http://dx.doi.org/10.1016/S0140-6736(13)60802-8
http://dx.doi.org/10.1038/cr.2015.3


435

Postow MA, Callahan MK, Barker CA et al (2012) Immunologic correlates of the abscopal effect 
in a patient with melanoma. N Engl J Med 366:925–931

Prieto PA, Yang JC, Sherry RM et al (2012) CTLA-4 blockade with ipilimumab: long-term follow-
 up of 177 patients with metastatic melanoma. Clin Cancer Res 18:2039–2047

Puzanov I, Milhem MM, Andtbacka RH, et al (2014) Primary analysis of a phase 1b multicenter trial 
to evaluate safety and efficacy of talimogene laherparepvec (T-VEC) and ipilimumab (ipi) in 
previously untreated, unresected stage IIIB-IV melanoma. J Clin Oncol 32 suppl: Abstract 9092

Puzanov I, Callahan ML, Linette GP, et al (2014) Phase 1 study of the BRAF inhibitor dabrafenib 
(D) with or without the MEK inhibitor trametinib (T) in combination with ipilimumab (Ipi) for 
V600E/K mutation–positive unresectable or metastatic melanoma (MM). J Clin Oncol;32 
suppl: abstract 2511

Ribas A, Hodi FS, Callahan M et al (2013) Hepatotoxicity with combination of vemurafenib and 
ipilimumab. N Engl J Med 368:1365–1366

Ribas A, Puzanov I, Dummer R et al (2015) Pembrolizumab versus investigator-choice chemo-
therapy for Ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, 
phase 2 trial. Lancet Oncol 16:908–918

Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously 
untreated metastatic melanoma. N Engl J Med 364:2517–2526

Robert C, Soria JC, Eggermont AM (2013) Drug of the year: programmed death-1 receptor/pro-
grammed death-1 ligand-1 receptor monoclonal antibodies. Eur J Cancer 49(14):2968–2971

Robert C, Ribas A, Wolchok JD et al (2014) Anti-programmed-death-receptor-1 treatment with 
pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison 
cohort of a phase 1 trial. Lancet 384:1109–1117

Robert C, Long GV, Brady B et al (2015a) Nivolumab in previously untreated melanoma without 
BRAF mutation. N Engl J Med 372(4):320–330

Robert C, Schachter J, Long GV et al (2015b) KEYNOTE-006 investigators. Pembrolizumab ver-
sus Ipilimumab in Advanced Melanoma. N Engl J Med 372(26):2521–2532

Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, Patt D, Chen TT, Berman 
DM, Wolchok JD (2015) Pooled Analysis of Long-Term Survival Data From Phase II and 
Phase III Trials of ipilimumab in Unresectable or Metastatic Melanoma. J Clin Oncol 33(17): 
1889–1894

Suciu S, Ives N, Eggermont AM, et al (2014) Predictive importance of ulceration on the efficacy 
of adjuvant interferon-a (IFN): An individual patient data (IPD) meta-analysis of 15 random-
ized trials in more than 7,500 melanoma patients (pts). J Clin Oncol 32(5s): abstract 9067

Sznol M, Kluger HM, Callahan MK et al (2014) Survival, response duration, and activity by BRAF 
mutation (MT) status of nivolumab (NIVO, anti-PD-1, BMS-936558, ONO-4538) and ipilimumab 
(IPI) concurrent therapy in advanced melanoma (MEL). J Clin Oncol 32(18_suppl):LAB9003

Tarhini AA, Cherian J, Moschos SJ et al (2012) Safety and efficacy of combination immunother-
apy with interferon alfa-2b and tremelimumab in patients with stage IV melanoma. J Clin 
Oncol 30(3):322–328

Topalian SL, Sznol M (2014) McDermott DF, et al Survival, durable tumor remission, and long- 
term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 
32:1020–1030

Topalian SL, Drake CG, Pardoll DM (2012a) Targeting the PD-1/B7-H1(PD-L1) pathway to acti-
vate anti-tumor immunity. Curr Opin Immunol 24:207–212

Topalian SL, Hodi FS, Brahmer JR et al (2012b) Safety, activity, and immune correlates of anti- 
PD- 1 antibody in cancer. N Engl J Med 366:2443–2454

Vacchelli E, Aranda F, Eggermont A, Galon J, Sautes-Fridman C, Cremer I et al (2014a) Trial 
Watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 3:e27878

Vacchelli E, Aranda F, Obrist F et al (2014b) Trial watch: Immunostimulatory cytokines in cancer 
therapy. Oncoimmunology 3:e29030

van Akkooi AC, Nowecki ZI, Voit C et al (2008) Sentinel node tumor burden according to the 
Rotterdam criteria is the most important prognostic factor for survival in melanoma patients: a 
multicenter study in 388 patients with positive sentinel nodes. Ann Surg 248(6):949–955

17 Immune Checkpoint Inhibitors in Melanoma Define a New Era in Immunotherapy



436

van der Ploeg AP, van Akkooi AC, Rutkowski P et al (2011) Prognosis in patients with sentinel 
node-positive melanoma is accurately defined by the combined Rotterdam tumor load and 
Dewar topography criteria. J Clin Oncol 29(16):2206–2214

van der Ploeg AP, van Akkooi AC et al (2014) The prognostic significance of sentinel node tumour 
burden in melanoma patients: an international, multicenter study of 1539 sentinel node- positive 
melanoma patients. Eur J Cancer 50(1):111–120

Weber JS, Kaehler KC, Hauschild A (2012) Management of immune-related adverse events and 
kinetics of response with ipilimumab. J Clin Oncol 30:2691–2697

Wolchok JD, Hoos A, O’Day S et al (2009) Guidelines for the evaluation of immune therapy activ-
ity in solid tumors: immune-related response criteria. Clin Cancer Res 15:7412–7420

Wolchok JD, Neyns B, Linette G et al (2010) Ipilimumab monotherapy in patients with pretreated 
advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. 
Lancet Oncol 11:155–164

Wolchok JD, Kluger H, Callahan MK et al (2013) Nivolumab plus ipilimumab in advanced mela-
noma. N Engl J Med 369:122–133

Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G (2013) Mechanism of action of conventional and 
targeted anticancer therapies: reinstating immunosurveillance. Immunity 39:74–88

A.M.M. Eggermont et al.



437© Springer International Publishing AG 2017
A. Bosserhoff (ed.), Melanoma Development,  
DOI 10.1007/978-3-319-41319-8

A
ABT-737, 281
Activated leukocyte cell adhesion molecule 

(ALCAM), 243
Activator protein 1 (AP-1) transcription factor, 

101–102
Activator transcription factor 2 (ATF2),  

22, 24, 101–102
Adam-10, 232
ADAMTS-4, 216, 217
ADAMTS-5, 217
ADAMTS-18, 217
A disintegrin and metalloproteinases 

(ADAMs)
ADAM-8, 215
ADAM-9, 214, 216
ADAM-10, 214–215
ADAM-15, 215
ADAM-17, 215

A disintegrin and metalloproteinase with 
thrombospondin motifs 
(ADAMTS), 216–217

Agouti signaling protein, 13
Akt, 19, 25, 65, 69, 76, 104, 187, 189–191, 

280, 408, 409
Aldehyde dehydogenase (ALDH), 319–320
Altered signal transduction pathways

cell cycle regulation
CDK2NA gene, 192–193
G1/S checkpoint function, 191
miR-34a, 193–194
9p21 locus, 192

extracellular receptors, 177
AXL, 181
c-Kit, 182
c-Met, 182–183
EGFR, 181–182
IGF1R, 183
melanocortin 1 receptor, 178
receptor tyrosine kinases, 178–181

MAPK signaling
BRAF mutation, 188–189
constitutive activation, 187
ERK, 186–187
NRAS/BRAF gene mutations, 186
RAS proteins, 186

PTEN-PI3K-AKT pathways, 189–191
WNT-β-catenin signaling pathway, 

183–185
Antiangiogenic agents, 430
Anti-cytotoxic T lymphocyte antigen-4, 433

anti-PD1 and anti-PDL1, 432
ipilimumab, 427

adverse events, 428
antiangiogenic agents, 430
with chemotherapy, 429–430
cytokines, 430–431
and dabrafenib + trametenib, 432
effective dose, 428
GM-CSF, 431
gp100 vaccines, 431
interferon-alpha, 430
interleukin-2, 430
laherparepvec, 431
pegylated-IFN, 431
randomized controlled trial, 428
resected stage III melanoma, 428–429
vaccines, 431
and vemurafenib, 431

pembrolizumab, 432
Anti-miRs, 156
Anti-nodal antibodies, 341
Anti-senescence function, of c-MYC, 300
AP-2 family, of transcription factors, 102
Apoptosis

Bcl-2 proteins, 274–275, 277–278
BH3 mimetics, 281
deficiency, 271–273
extrinsic pathways, 275–276
inhibitor of, 277

Index



438

Apoptosis (cont.)
intrinsic pathways, 274–275
regulation, signaling pathways for,  

272, 273
Apoptosis resistance

Bcl-2 proteins, 277–278
MAP kinase pathways, 279–280

Argonaute proteins, 121, 122
Arsenic levels, 55
Astrocytes, 249, 251
ATF2. See Activator transcription factor 2 

(ATF2)
AXL, 181

B
B7.2, 325, 326
Basic fibroblast growth factor (bFGF), 14, 15, 

20, 21, 28, 29, 143, 359–361
Bax and Bak proteins, 274–275
β-catenin, 73, 77, 102, 103, 185, 237, 345–347
Bcl-2 antisense strategies, 281
Bcl-2 proteins, 274–275, 277–278, 281
bFGF. See Basic fibroblast growth factor 

(bFGF)
BH3 mimetics, 281
Bmi-1, 297
Bone morphogenetic protein-4, 14
Boyden chamber assay, 373
BRAF

acquired inhibitor resistance, 68
dabrafenib, 67
description, 64
mutant melanoma

combined targeted-immunotherapy 
trials, 405–406

degree of apoptosis, 406–407
heat shock protein 90, 407
MEK inhibitor therapy, 402–405
p53 inactivation, 407

PI3K pathway, 69
therapeutic targeting, 66

BRN2, 100–101

C
Cadherin-11, 143
Cadherins

cadherin-like molecules, 229
classical adhesive cadherins of type 1 and 

type 2, 229
desmosomes/hemidesmosomes, 238
E-cadherin

in human epidermis, 230
regulators of, 230, 232

H-cadherin, 229
N-cadherin, 233–234
nonclassical desmosomal cadherins, 229
P-cadherin, 233
protocadherins, 229
signaling of, 235–237
in skin and melanoma, 228, 229
T-cadherin, 233
VE-cadherin, 234

Calponin-1, 143
cAMP-responsive element-binding protein/

activating transcription factor-1 
(CREB/ATF-1), 96

CAMs. See Cell adhesion molecules (CAMs)
Cancer stem cells (CSCs), 311

antitumor immune responses, 324
cardinal features, 312
definition, 312–313
frequency assessment, 314
hypoxia-inducible factors, 315
immunomodulation, 321
serial xenotransplantation, 313

Canonical Wnt signaling, 102–103,  
345–347

Carcinoembryonic antigen-related cell 
adhesion molecule 1 (CEACAM-1), 
244–245

Caspase-9, 275
Caspase downregulation, role of, 277
Catenins, 229
Cathepsin B, 217–218
Cathepsin D, 217
Cathepsin H, 217
Cathepsin K, 218
Cathepsin L, 217–218
Caveolin-1 (CAV1), 241
CD20, 317
CD54. See Intercellular adhesion molecule-1 

(ICAM-1)
CD146. See Melanoma cell adhesion molecule 

(MCAM)
CD166. See Activated leukocyte cell adhesion 

molecule (ALCAM)
CD171. See L1-cell adhesion molecule 

(L1-CAM)
CD66a. See Carcinoembryonic antigen-related 

cell adhesion molecule 1 
(CEACAM-1)

CDKN2A mutations, 69–70
CD95L, 278, 282
Cell adhesion molecules (CAMs)

Index



439

activated leukocyte cell adhesion  
molecule, 243

carcinoembryonic antigen-related cell 
adhesion molecule 1, 244–245

intercellular adhesion molecule-1, 243–244
L1-cell adhesion molecule, 242–243
melanoma cell adhesion molecule, 242

Cell–cell adhesions, 229
Cell–cell receptor shedding, 213
Cell–matrix adhesions, 229
Cellular senescence

and aging, 292–294
and cancer, 291–292
description, 289
p16INK4a/pRb pathway, 295–297
p53 pathway, 294–295
senescence-associated secretory 

phenotype, 297–299
senescence-messaging secretome, 297

Cellular stress situations, 272, 274, 280
Chemoresistance, 3, 278, 280, 317, 320, 

327–330, 383
Chemotherapy, 3, 67, 146, 181, 186, 410, 415

Bcl-2 antisense strategies, 281
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miR-182, 137
miR-188, 139
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Oncogene-induced senescence, 188, 289,  

291, 292, 295, 296, 299–300, 388
Oncogenes

BRAF inhibitors, development of, 
401–402
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Paracrine/autocrine factors, 10, 11, 13–16
Paracrine/autocrine network, in human skin, 

10–12
bone morphogenetic protein-4 and  

noggin, 14
eicosanoids, 15–16
melanocortin 1 receptor physiological 

agonists and antagonists, 12–13
Patient-derived xenografts (PDX), 383, 384
PAX3. See Paired Box 3 (PAX3)
P-cadherin, 233
PDK1, 187, 191
Pegylated-IFN, 431
Pesticides, 54
Pheomelanin, 7–10, 12–13, 20
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therapeutic opportunities, 324–330

Suberythemic exposure, 51
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