Chapter 14
Locality

Replacing harmonic oscillators by harmonic rotators may be the first step towards
obtaining a Hamiltonian that describes deterministic processes on the one hand, and
still obeys a lower bound on the other hand. Yet we did pay a price. We modified the
commutation rules between the coordinate operators called x and the momentum
operators p. If we would apply this to field theories, we would find it difficult to
decompose the fields into harmonic modes. These modes would no longer commute
with one another, and that would constitute a serious blow to the concept of locality.

We have also seen how a Hamiltonian can be constructed starting off from just
any deterministic system, including systems that are entirely local in the usual sense.
If time is continuous, that Hamiltonian tends to take the form of Eq. (12.18), which
has neither a lower nor an upper bound, but it does seem to be local. In contrast,
the Hamiltonians of the discrete-time models, such as Egs. (2.8), (2.26), (2.27), and
(12.10), have in common that they are bounded, but they are expressed in terms of
the evolution operators at fairly large times ¢t = nét. For cellular automaton mod-
els, discussed in Sect. 5.1 and Chap. 21, the evolution operator over n time steps,
involves interactions among neighbours that are n space-steps apart. If, instead, we
wish to restrict ourselves to local expressions, this means that a cut-off will have
to be introduced when defining H, but this is only allowed if the sums in ques-
tion converge sufficiently rapidly. It seems to be the combination of the positivity
requirement and the locality requirement that is often difficult to obey.

Can this conflict be avoided? Should we search for different models, or should we
search for different approximation methods in all models we are using? The author’s
present understanding is, that we will have to put constraints on the models to which
we can apply our theories. Different models will be discussed later (Sect. 9.2). Let
us here concentrate on the nature of the conflict.

In Part I, Sect. 2.1, we introduced the concept of the templates. Let us see what
happens when we impose a further constraint on the templates: Consider only those
template states that are slowly varying in time. We assume that the time dependence
in the templates is much slower than the fundamental time interval 8¢ in the onto-
logical evolution law. This means that we consider only those elements of Hilbert
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space where the eigenvalue E of H lies in an interval |E| < %A, or, when we add
our free constant to the energy levels, we impose

0<E<A. (14.1)

States composed as superpositions of these energy eigenvalues will show probabil-
ities |(ont|y (r))]*> whose time dependence only contains terms ¢'® with |w| < A.
Templates obeying Ineq. (14.1) will be referred to as slow templates.

It is advised, however, to be reserved in the use of slow templates; in classical
states, energies can easily reach values above the Planck energy (the kinetic en-
ergy of a small passenger airplane at cruise speed), and these would require faster
templates.

Figure 14.1a shows the approximation obtained for the Hamiltonian, in the case
we use the expansion (2.8), with a smooth cut-off. We introduced a suppression
factor e %/ for the kth term (in the figure, R = 30). What happens when we use
this approximation for the Hamiltonian?

First, it is not quite local anymore. In a cellular automaton, where we have only
nearest neighbour interactions, the Hamiltonian will feature ‘ghost interactions’ be-
tween neighbours at k units of distance apart, assuming that the kth term contains
the evolution operator U (£két). With the suppression factor, we expect the Hamil-
tonian to have non-local features over distance scales of the order of R&tc, where
¢ is the maximal velocity of information transfer in the automaton, since the expo-
nential suppression factor strongly suppresses effects ranging further out.

On the other hand, if we use the suppression factor, the lowest energy states in
the spectrum will be altered, see the arrow in Fig. 14.1a. Unfortunately, this is ex-
actly the physically most important region, near the vacuum state (the lowest energy
state). It is not difficult to estimate the extent of the deformation close to the origin.
The sum with cut-off can be evaluated exactly. For large values of the cut-off R, and
0 < w < 7, the approximation wapprox for the true eigenvalues w of the Hamiltonian
will be:
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where we replaced e!/R by 1+ 1/R since R is large and arbitrary.
Writing 1556 = tan %a , we see that the approximation becomes exact in the
limit R — oco. We are interested in the states close to the vacuum, having a small but
positive energy H = «. Then, at finite R, the cut-off at R replaces the eigenvalues

H of the Hamiltonian H,p by

2
H H+ —, 14.3
— H + R (14.3)

which has its minimum at Hy ~ 4/2/R, where the value of the minimum is H =~
2./2/R. This is only acceptable if

R > Mpi/{Hop)*. (14.4)
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Fig. 14.1 The spectrum of the Hamiltonian in various expansions. a The Fourier expansion (2.8)
with suppression factor, where we chose R = 30. The most important region, near the vacuum,
shown by the arrow, is maximally distorted by the suppression factor. b Using the expansion
(14.6) for arcsin(z) to get the most accurate expansion for H near the center of the spectrum. The
curves for R =9 and R = 31 are shown. ¢ Result after multiplying with cos w/| cos w|. The curves
shown go up to the powers 13 and 41. d Stretching the previous curve by a factor 2 then removes
the unwanted states (see text). Powers shown are 10, 30 and 120 (The difference between figures a
and d is that in d, the straight line at the center is approached much more precisely)

Here, Mpj is the “Planck mass”, or whatever the inverse is of the elementary time
scale in the model. This cut-off radius R must therefore be chosen to be very large,
so that, indeed, the exact quantum description of our local model generates non-
locality in the Hamiltonian.

Thus, if we want a Hamiltonian that represents the behaviour near the vacuum
correctly, so that time scales of the order T are described correctly, the Hamiltonian
generated by the model will be non-local over much larger distances, of the order
of T? Mpy. Apparently, a deterministic automaton does generate quantum behaviour,
but the quantum Hamiltonian features spurious non-local interactions.

It is not difficult to observe that the conflict between locality and positivity that
we came across is caused by the fact that the spectrum of the energy had to be
chosen such that a 6 jump occurs at w = 0, exactly where we have the vacuum
state (see Fig. 14.1a). The Fourier coefficients of a function with a 6 function jump
will always converge only very slowly, and the sharper we want this discontinuity
to be reproduced by our Hamiltonian, the more Fourier coefficients are needed.
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Indeed, the induced non-locality will be much greater than the size of the system
we might want to study. Now, we stress that this non-locality is only apparent; the
physics of the automaton itself is quite local, since only directly neighbouring cells
influence one another. Yet the quantum mechanics obtained does not resemble what
we see in the physical world, where the Hamiltonian can be seen as an integral over
a Hamilton density H(X), where [H.(X), H(X')] =0assoonas |X —x'| > & > 0.In
standard quantum field theories, this € tends to zero. If it stretches over millions of
CA cells this would still be acceptable if that distance is not yet detectable in modern
experiments, but what we just saw was unacceptable. Clearly, a better strategy has
to be found.

Our best guess at present for resolving this difficulty is second quantization,
which was introduced in Sect. 9.2, and we return to it in Sects. 20.3 and 22.1. Here,
we just mention that second quantization will allow us to have the most important
physics take place in the central region of this spectrum, rather than at the edges,
see the arrow in Fig. 14.1b. In this region, our effective Hamiltonians can be made
to be very accurate, while still local. Suppose we expand the Hamiltonian in terms
of Fourier coefficients that behave as

(sinw)" = (i /2)" (U (8t) — U(=51))", (14.5)

with a limit on the power n. For small w, the most accurate approximation may seem
to be

(R=1)/2
o= Y ap(sinw)*! (14.6)
n=0
where a, =1, %, %, 1%, ... are the coefficients of the expansion of arcsin(z) in

powers of z. If we continue that to the power R, we get a very rapidly converging
expression for the energy near the center of the spectrum, where w is small. If we
use that part of the spectrum, the error in the Hamiltonian will be of order (w8f)%+2,
so that only a few neighbours suffice to give a sufficiently accurate Hamiltonian.

However, Fig. 14.1b is still not quite what we want. For all states that have w near
=+, the energies are also low, while these are not the states that should be included,
in particular when perturbations are added for generating interactions. To remove
those states, we desire Fourier expansions that generate the curves of Fig. 14.1d.
Here, the states with w & 7 still contribute, which is inevitable because, indeed, we
cannot avoid a 6 jump there, but since the lines are now much steeper at that spot,
the states at w = =7 may safely be neglected; the best expression we can generate
will have a density of the spurious states that drops as 1/+/R times the density of
the allowed states. How does one generate these Fourier expansions?

To show how that is done, we return the Fig. 14.1b, and notice that differentiating
it with respect to w gives us the Fourier expansion of a 6 function. Multiplying that
with the original should give us the functions of Fig. 14.1c. The easiest way to see
what happens is to observe that we multiply the limit curve (the zigzag line in 14.1b)
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with cosw/| cosw|, where the denominator is expanded in powers of sinw. Then,
we are given the functions

(R-1)/2
H(w) = cosw Z br(sinw)* 1, (14.7)
k=0
where Zk kaZk‘H, with by =1, % %, %, %, ..., 1s the power expansion of

(arcsinz) /1 — 72, (14.8)

in powers of z.
Finally, because Fig. 14.1c is periodic with period &, we can stretch it by multi-
plying w by 2. This gives Fig. 14.1d, where the limit curve is approximated by

R—1
H(w)=sinw Y _ b ((1—cos ®)/2)", (14.9)
k=0

with the same coefficients by. Thus, it is now this equation that we use to determine
the operator H from the one-time-step evolution operator U = U (6t). Using U to
denote the inverse, U = U (—8t) = U ™!, we substitute in Eq. (14.9):

sino= 45U -T), (I-cosw)/2=12-U-T1). (14.10)

The trick we can then apply is to consider the negative energy states as repre-
senting antiparticles, after we apply second quantization. This very important step,
which we shall primarily apply to fermions, is introduced in the next section, while
interactions are postponed to Sect. 22.1.
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