
Chapter 13
The Continuum Limit of Cogwheels, Harmonic
Rotators and Oscillators

In the N → ∞ limit, a cogwheel will have an infinite number of states. The Hamil-
tonian will therefore also have infinitely many eigenstates. We have seen that there
are two ways to take a continuum limit. As N → ∞, we can keep the quantized time
step fixed, say it is 1. Then, in the Hamiltonian (2.24), we have to allow the quantum
number k to increase proportionally to N , keeping κ = k/N fixed. Since the time
step is one, the Hamiltonian eigenvalues, 2πκ , now lie on a circle, or, we can say
that the energy takes values in the continuous line segment [0,2π) (including the
point 0 but excluding the point 2π ). Again, one may add an arbitrary constant δE to
this continuum of eigenvalues. What we have then, is a model of an object moving
on a lattice in one direction. At the beat of a clock, a state moves one step at a time
to the right. This is the rack, introduced in Sect. 12.2. The second-quantized version
is handled in Sect. 17.1.

The other option for a continuum limit is to keep the period T of the cogwheel
constant, while the time quantum δt tends to zero. This is also a cogwheel, now with
infinitely many, microscopic teeth, but still circular. Since now Nδt = T is fixed, the
ontological1 states of the system can be described as an angle:

2πn/N → ϕ,
d

dt
ϕ(t) = 2π

T
. (13.1)

The energy eigenvalues become

Ek = 2πk/T + δE, k = 0,1, . . . ,∞. (13.2)

If δE is chosen to be π/T , we have the spectrum Ek = (2π/T )(k + 1
2 ). This is the

spectrum of a harmonic oscillator. In fact, any periodic system with period T , and
a continuous time variable can be characterized by defining an angle ϕ obeying the
evolution equation (13.1), and we can attempt to apply a mapping onto a harmonic
oscillator with the same period.

1The words ‘ontological’ and ‘deterministic’ will be frequently used to indicate the same thing: a
model without any non deterministic features, describing things that are really there.
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Mappings of one model onto another one will be frequently considered in this
book. It will be of importance to understand what we mean by this. If one does
not put any constraint on the nature of the mapping, one would be able to map
any model onto any other model; physically this might then be rather meaningless.
Generally, what we are looking for are mappings that can be prescribed in a time-
independent manner. This means that, once we know how to solve the evolution law
for one model, then after applying the mapping, we have also solved the evolution
equations of the other model. The physical data of one model will reveal to us how
the physical data of the other one evolve.

This requirement might not completely suffice in case a model is exactly inte-
grable. In that case, every integrable model can be mapped onto any other one, just
by considering the exact solutions. In practice, however, time independence of the
prescription can be easily verified, and if we now also require that the mapping of
the physical data of one model onto those of the other is one-to-one, we can be con-
fident that we have a relation of the kind we are looking for. If now a deterministic
model is mapped onto a quantum model, we may demand that the classical states
of the deterministic model map onto an orthonormal basis of the quantum model.
Superpositions, which look natural in the quantum system, might look somewhat
contrived and meaningless in the deterministic system, but they are certainly ac-
ceptable as describing probabilistic distributions in the latter. This book is about
these mappings.

We have already seen how a periodic deterministic system can produce a discrete
spectrum of energy eigenstates. The continuous system described in this section
generates energy eigenstates that are equally spaced, and range from a lowest state
to E → ∞. Mapping this onto the harmonic oscillator, seems to be straightforward;
all we have to do is map these energy eigenstates onto those of the oscillator, and
since these are also equally spaced, both systems will evolve in the same way. Of
course this is nothing to be surprized about: both systems are integrable and periodic
with the same period T .

For the rest of this section, we will put T = 2π . The Hamiltonian of this harmonic
oscillator can then be chosen to be2

Hop = 1
2

(
p2 + x2 − 1

); Hop|n〉H = n|n〉H , n = 0,1, . . . ,∞. (13.3)

The subscript H reminds us that we are looking at the eigenstates of the Hamiltonian
Hop. For later convenience, we subtracted the zero point energy.3

In previous versions of this book’s manuscript, we described a mapping that goes
directly from a deterministic (but continuous) periodic system onto a harmonic os-
cillator. Some difficulties were encountered with unitarity of the mapping. At first

2In these expressions, x,p, a, and a† are all operators, but we omitted the subscript ‘op’ to keep
the expressions readable.
3Interestingly, this zero point energy would have the effect of flipping the sign of the amplitudes
after exactly one period. Of course, this phase factor is not directly observable, but it may play
some role in future considerations. In what we do now, it is better to avoid these complications.
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sight, these difficulties seemed not to be very serious, although they made the ex-
position less than transparent. It turned out, however, that having a lower bound but
not an upper bound on the energy spectrum does lead to pathologies that we wish to
avoid.

It is much better to do the mapping in two steps: have as an intermediate model
the harmonic rotator, as was introduced in Chap. 12.1. The harmonic rotator differs
from the harmonic oscillator by having not only a ground state, but also a ceiling.
This makes it symmetric under sign switches of the Hamiltonian. The lower energy
domain of the rotator maps perfectly onto the harmonic oscillator, while the transi-
tion from the rotator to the continuous periodic system is a straightforward limiting
procedure.

Therefore, let us first identify the operators x and p of the harmonic rotator, with
operators in the space of the ontological states |ϕ〉ont of our periodic system. This
is straightforward, see Eqs. (12.3). In the energy basis of the rotator, we have the
lowering operator L− and the raising operator L+ which give to the operators x and
p the following matrix elements between eigenstates |m〉,−� ≤ m ≤ �, of Hop:

〈m − 1|x|m〉 = 1
2

√
(m + �)(� + 1 − m)

�
= 〈m|x|m − 1〉,

〈m − 1|p|m〉 = − 1
2 i

√
(m + �)(� + 1 − m)

�
= −〈m|p|m − 1〉,

(13.4)

while all other matrix elements vanish.

13.1 The Operator ϕop in the Harmonic Rotator

As long as the harmonic rotator has finite �, the operator ϕop is to be replaced by a
discrete one:

ϕop = 2π

2� + 1
σ, σ = −�,−� + 1, . . . ,+�. (13.5)

By discrete Fourier transformations, one derives that the discrete function ϕ(σ)

obeys the finite Fourier expansion,

σ = i

2�∑

k=1

(−1)k

2 sin ( πk
2�+1 )

e
2πikσ
2�+1 . (13.6)

By modifying some phase factors, we replace the relations (2.21) and (2.22) by

|m〉H ≡ 1√
2� + 1

�∑

σ=−�

e
2πimσ
2�+1 |σ 〉ont, (13.7)

|σ 〉ont = 1√
2� + 1

�∑

m=−�

e
−2πimσ

2�+1 |m〉H (13.8)

(which symmetrizes the Hamiltonian eigenvalues m, now ranging from −� to �).



138 13 The Continuum Limit of Cogwheels, Harmonic Rotators and Oscillators

One now sees that the operator e
2πi

2�+1σ increases the value m by one unit, with
the exception of the state |m = �〉, which goes to |m = −�〉. Therefore,

e
2πiσ
2�+1 = (� + 1 − H)−1/2L+(� + 1 + H)−1/2 + | − � 〉〈� | ;

e
−2πiσ
2�+1 = (� + 1 + H)−1/2L−(� + 1 − H)−1/2 + |� 〉〈−� | ,

(13.9)

and Eq. (13.6) can now be written as

〈m + k|σ |m〉 = i(−1)k

2 sin( πk
2�+1 )

, k 	= 0,

〈m|σ |m〉 = 0.

(13.10)

Equations (13.9) can easily be seen to be unitary expressions, for all � in the har-
monic rotator. Care was taken to represent the square roots in the definitions of L±
correctly: since now |H | ≤ �, one never encounters division by 0. The quantity m+k

characterizing the state in Eq. (13.10) must be read Modulo 2�+ 1, while observing
the fact that for half-odd-integer values of � the relations (13.7) and (13.8) are both
anti periodic with period 2� + 1.

The operator σ in Eqs. (13.9) and (13.10) can now be seen to evolve determinis-
tically:

σ(t) = σ(0) + (2� + 1)t/T . (13.11)

The eigenstates |ϕ〉 of the operator ϕop are closely related to Glauber’s coher-
ent states in the harmonic oscillator [42], but our operator ϕop is Hermitian and its
eigenstates are orthonormal; Glauber’s states are eigenstates of the creation or anni-
hilation operators, which were introduced by him following a different philosophy.
Orthonormality is a prerequisite for the ontological states that are used in this work.

13.2 The Harmonic Rotator in the x Frame

In harmonic oscillators, it is quite illuminating to see how the equations look in the
coordinate frame. The energy eigen states are the Hermite functions. It is an inter-
esting exercise in mathematical physics to investigate how the ontological operator
(beable) ϕop can be constructed as a matrix in x-space. As was explained at the
beginning of this chapter however, we refrain from exhibiting this calculation as it
might lead to confusion.

The operator ϕop is represented by the integer σ in Eq. (13.5). This operator is
transformed to the energy basis by Eqs. (13.7) and (13.8), taking the form (13.9). In
order to transform these into x space, we first need the eigen states of Lx in the en-
ergy basis. This is a unitary transformation requiring the matrix elements 〈m3|m1〉,
where m3 are the eigen values of L3 and m1 those of Lx . Using the ladder operators
L±, one finds the useful recursion relation

2m1〈m1|m3〉 = √
(� + m3 + 1)(� − m3)〈m1|m3 + 1〉

+ √
(� + m3)(� + 1 − m3)〈m1|m3 − 1〉, (13.12)
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Fig. 13.1 a Plot of the inner products 〈m3|m1〉; b Plot of the transformation matrix 〈m1|σ 〉ont (real
part). Horiz.: m1, vert.: σ

First remove the square roots by defining new states ‖m3〉 and ‖m1〉:
‖m3〉 ≡ √

(� + m3)!(� − m3)!|m3〉,
‖m1〉 ≡ √

(� + m1)!(� − m1)!|m1〉.
(13.13)

For them, we have

L±‖m3〉 = (� ∓ m3)‖m3〉, (13.14)

so that the inner products of these new states obey

2m1〈m1‖|m3〉 = (� − m3)〈m1‖|m3 + 1〉 + (� + m3)〈m1‖|m3〉;
〈m1‖|m3〉 = 〈m3‖|m1〉.

(13.15)

These equations can easily be inserted in a numerical procedure to determine the
matrix elements of the transformation to the ‘coordinate frame’ Lx . With Eqs. (13.7)
and (13.8), we now find the elements 〈m1|σ 〉 of the matrix relating the beable eigen
states |σ 〉ont to the x eigen states of Lx . A graphic expression of the result (for
� = 40), is displayed in Fig. 13.1. We see in Fig. 13.1b that the ontological variable is
loosely following the template degree of freedom x = m1/

√
�, just as it will follow

the momentum p = −m2/
√

�, with a 90◦ phase shift.
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