
Chapter 12
More on Cogwheels

12.1 The Group SU(2), and the Harmonic Rotator

Let us return to the original cogwheel with N teeth, as introduced in Chap. 2,
Sect. 2.2. It may be very illuminating to define the constant � = (N − 1)/2, and
introduce the operators L1,L2 and L3 as follows (k = 0,1, . . . ,2� is the energy
quantum number; the time step is δt = 1):

L3 = N
2π

Hop − � = k − �,

L1 = 1
2 (L+ + L−), L2 = − 1

2 i(L+ − L−),

L+|k〉H = √
(k + 1)(2� − k)|k + 1〉H ,

L−|k〉H = √
k(2� + 1 − k)|k − 1〉H .

(12.1)

Using the quantum number m = k − � = L3, we get the more familiar expressions
for the angular momentum operators La,a = 1,2,3, obeying the commutation re-
lations

[La,Lb] = iεabcLc. (12.2)

The original ontological states |n〉ont can be obtained from the angular momentum
states by means of the transformation rules (2.21) and (2.22). It is only these that
evolve as ontological states. Other operators can be very useful, however. Take, for
instance,

x = 1√
�
L1, p = − 1√

�
L2, [x,p] = i

(
1 − 2�+1

2π�
Hop

)
, (12.3)

then, for states where the energy 〈Hop〉 � 1, we have the familiar commutation rules
for positions x and momenta p, while the relation L2

1 + L2
2 + L2

3 = L2 = �(� + 1)

implies that, when 〈Hop〉 � 1/
√

�,

H → 2π
N

1
2

(
p2 + x2 − 1

)
, (12.4)

which is the Hamiltonian for the harmonic oscillator (the zero point energy has been
subtracted, as the lowest energy eigen state was set at the value zero). Also, at low
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values for the energy quantum number k , we see that L± approach the creation and
annihilation operators of the harmonic oscillator (see Eqs. (12.1)):

L− → √
2� + 1a, L+ → √

2� + 1a†. (12.5)

Thus, we see that the lowest energy states of the cogwheel approach the lowest
energy states of the harmonic oscillator. This will be a very useful observation if
we wish to construct models for quantum field theories, starting from deterministic
cogwheels. The model described by Eqs. (12.1)–(12.3) will be referred to as the
harmonic rotator. The Zeeman atom of Sect. 2.2 is a simple example with � = 1.

Note, that the spectrum of the Hamiltonian of the harmonic rotator is exactly
that of the harmonic oscillator, except that there is an upper limit, Hop < 2π . By
construction, the period T = (2� + 1)δt of the harmonic rotator, as well as that of
the harmonic oscillator, is exactly that of the periodic cogwheel.

The Hamiltonian that we associate to the harmonic rotator is also that for a spin-
ning object that exhibits precession due to a torque force on its axis. Thus, phys-
ically, we see that an oscillator drawing circles in its (x,p) phase space is here
replaced by a precessing top. At the lowest energy levels, they obey the same equa-
tions.

We conclude from this section that a cogwheel with N states can be regarded as a
representation of the group SU(2) with total angular momentum �, and N = 2� + 1.
The importance of this approach is that the representation is a unitary one, and
that there is a natural ground state, the ground state of the harmonic oscillator. In
contrast to the harmonic oscillator, the harmonic rotator also has an upper bound
to its Hamiltonian. The usual annihilation and creation operators, a and a†, are
replaced by L− and L+, whose commutator is not longer constant but proportional
to L3, and therefore changing sign for states |k〉 with � < k ≤ 2�. This sign change
assures that the spectrum is bounded from below as well as above, as a consequence
of the modified algebra (12.2).

12.2 Infinite, Discrete Cogwheels

Discrete models with infinitely many states may have the new feature that some or-
bits may not be periodic. They then contain at least one non-periodic ‘rack’. There
exists a universal definition of a quantum Hamiltonian for this general case, though
it is not unique. Defining the time reversible evolution operator over the smallest
discrete time step to be an operator Uop(1), we now construct the simplest Hamil-
tonian Hop such that Uop(1) = e−iHop . For this, we use the evolution over n steps,
where n is positive or negative:

Uop(n) = Uop(1)n = e−inHop . (12.6)

Let us assume that the eigenvalues ω of this Hamiltonian lie between 0 and 2π . We
can then consider the Hamiltonian in the basis where both U(1) and H are diagonal.
Write

e−inω = cos(nω) − i sin(nω), (12.7)
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and then use Fourier transformations to derive that, if −π < x < π ,

x = 2
∞∑

n=1

(−1)n−1 sin(nx)

n
. (12.8)

Next, write Hop = ω = x + π , to find that Eq. (12.8) gives

ω = π − 2
∞∑

n=1

sin(nω)

n
. (12.9)

Consequently, as in Eq. (2.8),

ω = π −
∞∑

n−1

i

n

(
U(nδt) − U(−nδt)

)
and

Hop = π −
∞∑

n−1

i

n

(
Uop(nδt) − Uop(−nδt)

)
.

(12.10)

Very often, we will not be content with this Hamiltonian, as it has no eigenvalues
beyond the range (0,2π). As soon as there are conserved quantities, one can add
functions of these at will to the Hamiltonian, to be compared with what is often
done with chemical potentials. Cellular automata in general will exhibit many such
conservation laws. See Fig. 2.3, where every closed orbit represents something that
is conserved: the label of the orbit.

In Sect. 13, we consider the other continuum limit, which is the limit δt → 0 for
the cogwheel model. First, we look at continuous theories more generally.

12.3 Automata that Are Continuous in Time

In the physical world, we have no direct indication that time is truly discrete. It is
therefore tempting to consider the limit δt → 0. At first sight, one might think that
this limit should be the same as having a continuous degree of freedom obeying
differential equations in time, but this is not quite so, as will be explained later in
this chapter. First, in this section, we consider the strictly continuous deterministic
systems. Then, we compare those with the continuum limit of discrete systems.

Consider an ontological theory described by having a continuous, multi-
dimensional space of degrees of freedom 	q(t), depending on one continuous time
variable t , and its time evolution following classical differential equations:

d

dt
qi(t) = fi(	q), (12.11)

where fi(	q) may be almost any function of the variables qj .
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An example is the description of massive objects obeying classical mechanics in
N dimensions. Let a = 1, . . . ,N, and i = 1, . . . ,2N :

{i} = {a} ⊕ {a + N}, qa(t) = xa(t), qa+N(t) = pa(t),

fa(	q) = ∂Hclass(	x, 	p)

∂pa

, fa+N(	q) = −∂Hclass(	x, 	p)

∂xa

,
(12.12)

where Hclass is the classical Hamiltonian.
An other example is the quantum wave function of a particle in one dimension:

{i} = {x}, qi(t) = ψ(x, t); fi(	q) = −iHSψ(x, t), (12.13)

where now HS is the Schrödinger Hamiltonian. Note, however, that, in this case, the
function ψ(x, t) would be treated as an ontological object, so that the Schrödinger
equation and the Hamiltonian eventually obtained will be quite different from the
Schrödinger equation we start off with; actually it will look more like the corre-
sponding second quantized system (see later).

We are now interested in turning Eq. (12.11) into a quantum system by changing
the notation, not the physics. The ontological basis is then the set of states |	q〉,
obeying the orthogonality property

〈	q∣∣	q ′〉 = δN
(	q − 	q ′), (12.14)

where δ is now the Dirac delta distribution, and N is the dimensionality of the
vectors 	q .

If we wrote
d

dt
ψ(	q)

?= − fi(	q)
∂

∂qi

ψ(	q)
?= − iHopψ(	q), (12.15)

where the index i is summed over, we would read off that

Hop
?= − ifi(	q)

∂

∂qi

= fi(	q)pi, pi = −i
∂

∂qi

. (12.16)

This, however, is not quite the right Hamiltonian because it may violate hermiticity:
Hop �= H

†
op. The correct Hamiltonian is obtained if we impose that probabilities

are preserved, so that, in case the Jacobian of 	f (	q) does not vanish, the integral∫
dN 	qψ†(	q)ψ(	q) is still conserved:

d

dt
ψ(	q) = −fi(	q)

∂

∂qi

ψ(	q) − 1
2

(
∂fi(	q)

∂qi

)
ψ(	q) = −iHopψ(	q), (12.17)

Hop = −ifi(	q)
∂

∂qi

− 1
2 i

(
∂fi(	q)

∂qi

)

= 1
2

(
fi(	q)pi + pifi(	q)

) ≡ 1
2

{
fi(	q),pi

}
. (12.18)

The 1/2 in Eq. (12.17) ensures that the product ψ†ψ evolves with the right Jacobian.
Note that this Hamiltonian is Hermitian, and the evolution equation (12.11) follows
immediately from the commutation rules

[qi,pj ] = iδij ; d

dt
Oop(t) = −i[Oop,Hop]. (12.19)
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Now, however, we encounter a very important difficulty: this Hamiltonian has no
lower bound. It therefore cannot be used to stabilize the wave functions. Without
lower bound, one cannot do thermodynamics. This feature would turn our model
into something very unlike quantum mechanics as we know it.

If we take 	q space either one-dimensional, or in some cases two-dimensional, we
can make our system periodic. Then let T be the smallest positive number such that

	q(T ) = 	q(0). (12.20)

We have consequently

e−iHT |	q(0)〉 = |	q(0)〉, (12.21)

and therefore, on these states,

Hop|	q〉 =
∞∑

n=−∞

2πn

T
|n〉H H 〈n|	q〉. (12.22)

Thus, the spectrum of eigenvalues of the energy eigenstates |n〉H runs over all inte-
gers from −∞ to ∞.

In the discrete case, the Hamiltonian has a finite number of eigenstates, with
eigenvalues 2πk/(Nδt)+ δE where k = 0, . . . ,N − 1, which means that they lie in
an interval [δE,2π/T + δE], where T is the period, and δE can be freely chosen.
So here, we always have a lower bound, and the state with that energy can be called
‘ground state’ or ‘vacuum’.

Depending on how the continuum limit is taken, we may or may not preserve
this lower bound. The lower bound on the energy seems to be artificial, because
all energy eigenstates look exactly alike. It is here that the SU(2) formulation for
harmonic rotators, handled in Sect. 12.1, may be more useful.

An other remedy against this problem could be that we demand analyticity when
time is chosen to be complex, and boundedness of the wave functions in the lower
half of the complex time frame. This would exclude the negative energy states, and
still allow us to represent all probability distributions with wave functions. Equiv-
alently, one could consider complex values for the variable(s) 	q and demand the
absence of singularities in the complex plane below the real axis. Such analytic-
ity constraints however seem to be rather arbitrary; they are difficult to maintain as
soon as interactions are introduced, so they would certainly have to be handled with
caution.

One very promising approach to solve the ground state problem is Dirac’s great
idea of second quantization: take an indefinite number of objects 	q , that is, a Hilbert
space spanned by all states |	q(1), 	q(2), . . . 	q(n)〉, for all particle numbers n, and regard
the negative energy configurations as ‘holes’ of antiparticles. This we propose to do
in our ‘neutrino model’, Sect. 15.2, and in later chapters.

Alternatively, we might consider the continuum limit of a discrete theory more
carefully. This we try first in the next chapter. Let us emphasize again: in general, ex-
cising the negative energy states just like that is not always a good idea, because any
perturbation of the system might cause transitions to these negative energy states,
and leaving these transitions out may violate unitarity.
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The importance of the ground state of the Hamiltonian was discussed in Chap. 9
of Part I. The Hamiltonian (12.18) is an important expression for fundamental dis-
cussions on quantum mechanics.

As in the discrete case, also in the case of deterministic models with a continuous
evolution law, one finds discrete and continuous eigenvalues, depending on whether
or not a system is periodic. In the limit δt → 0 of the discrete periodic ontological
model, the eigenvalues are integer multiples of 2π/T , and this is also the spectrum
of the harmonic oscillator with period T , as explained in Chap. 13. The harmonic
oscillator may be regarded as a deterministic system in disguise.

The more general continuous model is then the system obtained first by having
a (finite or infinite) number of harmonic oscillators, which means that our system
consists of many periodic substructures, and secondly by admitting a (finite or infi-
nite) number of conserved quantities on which the periods of the oscillators depend.
An example is the field of non-interacting particles; quantum field theory then corre-
sponds to having an infinite number of oscillating modes of this field. The particles
may be fermionic or bosonic; the fermionic case is also a set of oscillators if the
fermions are put in a box with periodic boundary conditions. Interacting quantum
particles will be encountered later (Chap. 19 and onwards).

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, dupli-
cation, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, a link is provided to the Creative Com-
mons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.


	Chapter 12: More on Cogwheels
	12.1 The Group SU(2), and the Harmonic Rotator
	12.2 Inﬁnite, Discrete Cogwheels
	12.3 Automata that Are Continuous in Time


