Chapter 13
Functional Genomics of Selenoproteins
and Se-responsive Pathways

Catherine Méplan and John Hesketh

Abstract Nutrigenomics approaches have contributed to our understanding of how
selenium impacts metabolic pathways, homeostatic control and disease risk. In this
chapter, we discuss the known genetic polymorphisms in genes encoding seleno-
proteins and components of the selenoprotein synthesis machinery. Furthermore,
the consequences of these genetic variants on the synthesis and activity of individ-
ual selenoproteins within the context of the metabolic pathway in which they are
involved, including the impact of these variants on the overall selenoproteome, as a
result of the shared synthesis machinery between selenoproteins are discussed. The
evidence for the association of these genetic variants with several chronic diseases
is presented, with a specific emphasis on functional variants.

Keywords Association study ¢ Cancer ¢ Nutrigenomics ¢ Selenoprotein ¢
Selenoprotein hierarchy ¢ Single nucleotide polymorphisms

13.1 Introduction

Selenoproteins play pivotal roles in many biochemical pathways and in particular in the
response to oxidative stress and endoplasmic reticulum (ER) stress. In a nutritional con-
text, it is important to consider the effect of selenium (Se) intake on the overall balance
of selenoproteins and related pathways; similarly, from a genetic perspective, the effects
of inter-individual variations need to be assessed in the overall Se pathway. Here, we
discuss how genetic studies are providing novel perspectives about the mechanisms by
which Se intake and metabolism are related to disease risk.

Single Nucleotide Polymorphisms (SNPs) represent 90 % of the genetic varia-
tions among individuals, and some genetic variants alter gene or protein regulation
or protein activity and are thus functionally relevant. During evolution, the ability of
our ancestors to survive relied on their capacity to combat metabolic stresses and
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infections and ensure their reproduction; these functions are strongly supported by
various selenoproteins and therefore highly dependent on Se intake. It is possible that
genetic variants which modulate selenoprotein synthesis or activity in different con-
ditions of Se supply could have been selected as a result of the disparate geological
distribution of Se and exposure to various pathogens and stresses. Thus, the pressure
of selection imposed by environmental forces may partially explain the variations in
allelic frequencies currently observed among different populations. Supporting this
hypothesis, several studies have identified SNPs in selenoprotein genes correspond-
ing to signatures of recent genetic adaptation, suggesting a local adaptation to low Se
content in the soil. In Asian populations living in Se-deficient regions, it was reported
that a selective sweep occurred recently at the GPXI locus [1]. Similarly, allele fre-
quency shifts for SNPs in selenoprotein genes were observed in populations living in
the severe Se-deficient regions of China [2]. Moreover, a recent study identified a
strong positive natural selection in individuals of European decent, for known func-
tional variants in GPXI, SELENBP1, GPX3, GPX2 and SELO genes suggesting local
adaptation to low soil Se [3].

With the increase in human lifespan, genetic variations in Se metabolism have
been proposed to be associated with risks for several age-related diseases, including
cancer, diabetes, immunological or neurological disorders and cardiovascular dis-
eases. Many of these disorders share a common basis for their development such as
impaired cellular maintenance mechanisms and responses to stress. These metabolic
pathways involve many selenoproteins. Thus, genetic factors affecting selenopro-
tein activity or synthesis, have the potential to modify individual risk to chronic
disease (Fig. 13.1).

Three types of studies have shown links between genetic variants in selenoprotein
genes and disease susceptibility (Tables 13.1, 13.2, 13.3, and 13.4): (1) the study of a
small number of candidate SNPs of known functional relevance in which it is assumed
that the functional consequences of the SNP on the gene/protein regulations could con-
tribute to the disease risk; (2) the broader study of SNPs in several selenoprotein genes
or screening of genes across the Se metabolic pathways, usually using a combination of
tagSNPs and functional variants; and (3) large scale genome-wide association studies
(GWAS) in which selenoprotein genes were associated with a disease trait. Focussed
studies of well-characterized SNPs provide mechanistic backing to epidemiological
studies and also often allow measurements of biomarkers of Se status and stress, particu-
larly important in the case of Se since intake varies across different populations [4].
Screening studies involving a wider range of SNPs regardless of known functionality
and large-scale GWAS have the advantage of wide genetic coverage but are less likely
to have environmental and dietary data available.

13.2 Selenium Metabolism and Transport

Selenoprotein synthesis depends upon Se intake, Se transport from the liver to other
organs, Se conversion to selenocysteine (Sec) and its incorporation into selenoproteins
(Chaps. 2 and 4). Genetic variants in two genes involved in Sec synthesis (Table 13.4),
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Fig. 13.1 Schematic diagram illustrating interactions of selenoprotein SNPs and Se supply on
selenoprotein function and disease risk. The diagram illustrates how SNP-Se interactions could
affect selenoprotein synthesis and activity and consequently downstream biochemical pathways
known to be crucial in the response to oxidative and ER (endoplasmic reticulum) stress and in the
maintenance of mitochondrial redox status. As disruption of these biochemical pathways is com-
monly observed in many chronic disorders, the existence of genetic associations linking these SNP
with diseases indicate the importance of selenoproteins’ function in these pathways. Genes (dark
grey, italic) in which functional SNPs have been associated with disease risk are indicated at sub-
cellular location in which the corresponding selenoproteins function is required

Sec tRNA synthase (SEPSECS) and selenophosphate synthetase 1 (SEPHSI), have
been linked to Crohn’s Disease in a Caucasian population from New Zealand with sub-
optimal Se intake [5, 6]. Moreover, SNPs in SEPP1, the gene coding for selenoprotein
P (SePP, SEPP1), which transports hepatic Se to other tissues, have been shown to
affect Se delivery, Sec incorporation throughout the body and disease risk [7]. In par-
ticular, two genetic variants, rs3877899 and rs7579 (SEPP1), affect the plasma SePP
isoform pattern, response to Se supplementation in healthy individuals with sub-opti-
mal Se intake and selenoprotein synthesis [8, 9]. In support of this, expression of SePP
and GPx1 was affected by both variants in patients with mild cognitive impairment
supplemented with Se [10]. Moreover, rs3877899 and rs7579 were associated with risk
for several cancers (Table 13.3) in different European populations [7, 11-13] and vari-
ous SEPP] variants were linked to colorectal (CRC) [14] or breast (BC) cancer in
Native Americans [15]. In Europeans, risk of prostate cancer (PCA) or advanced PCA
was linked to rs7579 (SEPPI) [12, 13] and modulated by an interaction between
rs3877899 (SEPPI) and rs4880, a known functional SNP in SOD2 (manganese super-
oxide dismutase) [16]. In a US population, rs13168440 (SEPP1) was also shown to
affect PCA risk [17], but other studies have failed to link SNPs in SEPPI to PCA [13,
18, 19] or disease recurrence [20]. In addition, both rs3877899 and rs7579 (SEPPI)
were also shown to influence body mass index, blood pressure, peripheral arterial
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disease occurrence and abdominal aortic aneurysm development in overweight and
obese subjects [21].

Moreover, considerable mechanistic evidence suggest a role for SePP in glucose
and insulin metabolism [22—24]. In support of this, four SNPs in SEPP1 (rs28919926,
1146125471, 15168727790 and rs7579) were shown to be associated with an altered
fasting or acute insulin responses in two different Hispanic cohorts [25].

It is interesting to note that the effects of genetic variants in factors involved in
Sec conversion and transport on disease risk are often influenced by Se status and/
or ethnicity (hence genetic background), consistent with evolutionary adaptation of
populations to geographical differences in Se distribution.

13.3 The Effects of SNPs on the Sec Incorporation
Machinery

Sec incorporation requires the recoding of a UGA codon for Sec and the binding of
factors from the selenoprotein synthesis machinery to the Sec insertion sequence
(SECIS) stem-loop structure within the 3'untranslated region (3"UTR) of selenopro-
tein mRNAs (reviewed in Chap. 2). In addition, SECIS-binding protein 2 (SBP2)
plays a major role in this process.

The 3'UTR regions of selenoprotein mRNAs play a key regulatory role in the
so-called selenoprotein hierarchy [26], a mechanism by which the synthesis of the
various selenoproteins is affected differently by limiting conditions of Se supply
[27, 28]. The hierarchy reflects the fact that all selenoproteins share the same incor-
poration machinery and the same tRNA carrying Sec for their synthesis and there-
fore there is in essence a competition between the 25 selenoprotein mRNAs for the
available synthesis machinery and Sec. As a result, a genetic variant in the 3'UTR
of one selenoprotein has the potential to affect synthesis, not only of the selenopro-
tein coded by that mRNA, but also synthesis of other selenoproteins. Similarly, a
SNP in a gene coding for factors involved in the selenoprotein biosynthesis machin-
ery have the potential to affect the synthesis of all selenoproteins.

In particular, mutations in the selenoprotein N gene (SELN) within the gene region
corresponding to the SECIS region of the 3'UTR were associated with reduced bind-
ing affinity of SBP2 for SECIS, lower expression of SeIN and congenital muscular
dystrophy [29]. Moreover, missense mutations in SBP2 led to poor Sec incorpora-
tion, poor thyroid function or muscular dystrophy, low expression of all selenopro-
teins and increased sensitivity to oxidative stress [30, 31]. However, mutations in
selenoprotein genes that directly cause genetic disease are rare. On the contrary,
common SNPs may have more subtle effects on selenoprotein metabolism, but in
conjunction with other factors, such as dietary Se intake, can lead to altered risk for
many diseases. Three functional genetic variants, one in GPX4 (rs713041) [32] and
two in SEP15 (rs5859 and rs5845) [33], which induce base changes in a region
nearby or within the SECIS element in corresponding transcripts, have been shown
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to reduce the efficiency of Sec incorporation in the corresponding protein and to
affect the selenoprotein hierarchy and disease risk [27, 33-35].

Originally identified as a C/T variant in the gene region corresponding to the
3'UTR region of GPX4 mRNA [32], rs713041 illustrates how SNPs in selenoprotein
genes can be studied from a functional perspective and how a SNP affecting the
3'UTR region impacts selenoprotein hierarchy. The C variant was shown to induce
reporter gene expression to a greater extent than the T counterpart [36], to have a
stronger binding affinity for the selenoprotein synthesis machinery in RNA-protein
binding assays [35] and to alter the pattern of selenoprotein synthesis, especially dur-
ing Se-depletion [36, 37]. Moreover, in healthy individuals, rs713041 was shown to
affect expression of blood selenoproteins in response to Se supplementation, consis-
tent with an effect on the selenoprotein hierarchy in vivo [35]. Finally, human umbil-
ical vein endothelial cells from individual donors and monocytes [38] expressing the
T-variant showed an increased expression of vascular cell adhesion protein 1 and
adhesion to monocytes compared with cells from the CC individuals.

13.4 Genetic Variants Affecting Redox-Active Selenoproteins

Many selenoproteins are involved in the control of cellular redox balance and anti-
oxidant defense and can be divided into two main classes of redox-active selenoen-
zymes, the GPX and thioredoxin reductases (TXNRD). Functional SNPs in GPX1-4
and TXNRDI-2 have been shown to affect anti-oxidant defense and disease risk
(Tables 13.1, 13.2, 13.3, and 13.4).

13.4.1 Genetic Variants in GPX4

As mentioned above, 15713041 (GPX4) was shown to affect the selenoprotein hier-
archy [35], as well as the sensitivity to oxidative challenge [37, 38]. Interestingly, in
a Se-deficient Chinese population (Table 13.2), rs713041 together with rs4807542,
another GPX4 SNP in high linkage disequilibrium with rs713041, were found to
affect Kashin-Beck disease (KBD) risk, with GPX4 mRNA levels being reduced in
KBD patients compared with controls [39]. Moreover, rs713041 has been linked to
risk of CRC in Czech and Scottish populations [7, 36], to lung and laryngeal cancers
in a Polish population [40] and risk of BC mortality in a British population [41]. In
the Czech population, CRC risk was affected by polymorphisms in both SEPPI
(rs7579) and GPX4 (rs713041) [7] and was further modulated by significant genetic
interactions between SNPs in SEPPI (rs7579 and rs3877899), known to affect Se
bioavailability, and variants in SEPI15 (rs5859) or GPX4 (rs713041), known to
affect Sec incorporation [7]. These interactions suggest that in carriers of the
combined genotypes, the altered pattern of synthesis of selenoproteins affects the
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individual’s ability to respond to stress. Similarly, genetic interactions between
rs713041 in GPX4, rs960531 in TXNRD?2 and rs4880 in SOD2 mirror the interac-
tions of these enzymes in mitochondrial redox function and suggest that the genetic
interactions could affect an individual’s ability to counteract oxidative stress in the
mitochondria [7]. Additionally, two independent GWAS linked the GPX4 locus to
Crohn’s disease [42, 43], consistent with involvement of GPx4 in inflammatory
responses and NF-kB regulation [44, 45].

13.4.2 Genetic Variants in GPX1

Cellular GPx1 is an important antioxidant enzyme in mammals. In humans, the
enzyme activity is affected by rs1050450, a coding C/T SNP in the GPX! gene,
inducing a Pro (CC) to Leu (TT) amino acid change at position 198 of the amino
acid sequence. The Leu variant exhibits lower activity compared with the Pro coun-
terpart [46, 47] and, during Se-supplementation, GPx1 activity is stimulated less in
TT carriers compared with CC carriers [48, 49]. Moreover, significantly higher lev-
els of DNA oxidation were observed in Leu carriers, probably as a result of reduced
GPx1 activity [48, 49]. Surprisingly, however, an increased susceptibility to DNA
strand breaks was observed in CC subjects, but not TT, during Se withdrawal [48].

Many studies have linked rs1050450 to risk for several disorders (Table 13.1),
including various cancers [12, 13, 40, 46, 50-56], Alzheimer’s disease [57], meta-
bolic syndrome and obesity [58, 59], and KBD [60]. In particular, rs1050450 was
linked to BC risk in some [46], but not other US populations [61-63], although a
meta-analysis found an increased BC risk among women of African descent [64].
However, the association was replicated in several European populations [11, 47,
65]. The consistent differences observed between studies of European and North
American populations suggest that the effect of rs1050450 on BC risk may be par-
tially influenced by Se status. In a Danish population, the Leu variant was associ-
ated with reduced GPx1 activity, increased risk of BC and a higher grade of ductal
tumors [11, 47]. Additionally, pre-diagnostic erythrocyte GPx1 activity was lower
in Leu females, following hormone replacement therapy and who develop BC later
in life, compared with controls [11]. Furthermore, a GCG repeat polymorphism in
GPX1, resulting in variant protein sequences containing between 5 and 7 alanines,
was linked to BC risk [63], supporting a role for GPx1 activity in protecting breast
tissue from carcinogenesis.

Variants in the GPXI gene have also been linked to PCA, another cancer influ-
enced by sex-hormones [13]. Moreover, rs1050450 together with rs18006688 (a
GPX1 SNP in high linkage disequilibrium) modified the association between lead
exposure and glioblastoma [66], suggesting that the reduced GPx1 activity of the
Leu variant could impair the protection against oxidative damage generated by
lead [66]. Like GPX4, GWAs have linked the GPXI locus to inflammatory condi-
tions such as Crohn’s disease [42], inflammatory bowel disease [43] and ulcerative
colitis [67].
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13.4.3 Genetic Variants in TXNRDs

Mammalian cells have three isozymes of thioredoxin reductases, including cyto-
plasmic and nuclear TXNRD1 and mitochondrial TXNRD2. The relationship
between diseases and genetic variants in TXNRD1 and TXNRD?2 has been investi-
gated in studies using tagSNPs including a GWAs [68, 69], in a study investigating
association of SNPs in several selenoprotein genes on PCA risk, grade and recur-
rence [20], and in a study investigating the association of polymorphic variants in
Se metabolism with PCA risk [19]. In the latter study, carried out in a German popu-
lation with low Se intake, tagSNPs in SELK, TXNRD1 and TXNRD?2 were found to
interact with plasma Se or SePP status to modulate risk of advanced disease [19]
(Table 13.4).

In addition, SNPs in other selenoproteins involved in the protection against oxi-
dative damage were linked to disease. In a US population, three SNPs in GPX3 and
one in GPX2 were significantly associated with risk of rectal cancer, but not with
either colon cancer or adenoma [70] (Tables 13.3, and 13.4). In the MSRA gene,
coding for methionine sulfoxide reductase A, rs10903323, was associated with cor-
onary artery disease risk in a Chinese population [71].

13.5 Genetics of Endoplasmic Reticulum Selenoproteins

In eukaryotic cells, the ER is not only responsible for the synthesis, post-translational
modification and correct folding of membrane and secreted proteins, but also for
intracellular Ca** homeostasis and lipid biosynthesis [72]. Alteration of protein fold-
ing caused by changes in intracellular Ca* levels, redox state, nutrient status, protein
synthesis rate or inflammatory stimuli, can result in ER stress and activation of the
unfolded protein response to remove misfolded proteins [72]. ER dysfunction and
prolonged ER stress have been implicated in diseases such as cancer, diabetes and
Alzheimer’s disease [72]. Seven human selenoproteins have been shown to be associ-
ated with the ER, which are the 15-kDa selenoprotein (Sep15), type 2 iodothyronine
deiodinase and selenoproteins K, M, N, S, and T [73]. Selenoprotein S is a component
of the ER-associated protein degradation pathway and is involved in the removal of
misfolded proteins from the ER lumen [73]. Sep15 has been implicated in the forma-
tion of disulfide bonds and the quality control of protein folding [34], while SelK
plays a key role in calcium signalling in immune cells [74].

Genetic polymorphisms in SELS, SELK and SEPI5 have now been linked to
various cancers and inflammatory conditions, consistent with these SNPs affecting
correct ER function (Table 13.4). In SELS gene, rs34713741 affects levels of pro-
inflammatory cytokines, IL-6, IL-1p and TNF-a [75], and risk of CRC in Korean
[76] and Czech [7] populations. In the Czech population, rs34713741 was associ-
ated with greater CRC risk, and in the Korean population a second variant in close
proximity led to increased risk (in females only). The replication of the association



170 C. Méplan and J. Hesketh

in these two diverse populations strongly indicates that, independently of lifestyle
and dietary factors, SNPs in SELS influence CRC risk. Moreover, supporting a role
of SelS in gastrointestinal function, rs34713741, was also linked to gastric cancer
risk [77, 78]. No association was identified between six genetic variants in SELS
and type 1 diabetes [79]. In contrast, rs225014 in (type 2 deiodinase gene), results
in a Thr to Ala amino-acid change at position 92 in the protein sequence, with the
Ala variant being less active and associated with type 2 diabetes [80—82].

In the SEPI5 gene, rs5859 and rs5845, known to reduce Sec incorporation effi-
ciency and Sepl5 synthesis, affect BC risk in a Se-dependent manner in African
American women, but not in Caucasians [33]. In breast tumors, a loss of heterozy-
gosity at the SEP15 locus was observed [33, 83], indicating a potential tumor sup-
pressor role of Sep15 in breast tissue. In addition, rs5859 and rs5845 were associated
with increased risk of PCA in German [12] and New Zealand [51] males with low Se
intake, and other SNPs in SEP15 were also linked to PCA mortality (Table 13.4) [20,
84]. CRC risk was also affected by rs5859 in a South Korean population [76] and by
genetic interactions between SNPs in SEPP/ and rs5859 in SEP15 [7]. Moreover,
rs5859 was linked to lung cancer in Polish individuals with low Se status [85]. The
influence of these SNPs on disease risk and progression provides insight into the
potential role of ER stress and protein folding control in disease etiology as well as
on the importance of key selenoproteins in maintaining a healthy tissue.

13.6 Perspectives

Two main lessons can be learned from the studies described above. First, there is
now considerable evidence for a number of genetic variants affecting selenoprotein
synthesis and, in a limited number of cases, this has been linked to effects on response
to dietary Se intake. Genetic epidemiology studies suggest that a number of these
variants, notably those in SEPPI, SELS, GPX1, GPX4 and SEP15, modulate risk of
various chronic diseases. In particular, these results suggest that variants in SEPPI,
SEP15 and GPX] affect PCA risk and progression, SNPs in SELS influence CRC
risk and variants in GPX1 BC risk. However, the evidence linking these variants with
disease risk comes largely from relatively small studies that often lack accompanying
measures of Se status and often require replication. In addition, observed effects are
often inconsistent between study populations, a phenomenon that likely reflects dif-
ferences in the characteristics of the study populations, notably Se status. Further
work is necessary to be confident of the clinical relevance of selenoprotein SNPs in
different populations, both in terms of Se intake and ethnicity. Larger studies, com-
bining genetics and biomarkers of Se status should provide a clearer picture of the
links between Se, selenoprotein genetics and disease risk.

Second, identifying that SNPs in selenoprotein genes affect risk for several
chronic diseases is compatible with the observation that most of these multifactorial
diseases share a common basis, with the disruption of biochemical pathways involved
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in the response to oxidative and ER stress. As a result, these genetic associations help
elucidate potential pathways affected in the etiology of disease for an individual.
Selenoprotein synthesis depends on the distribution of Se between selenoproteins
and the use of common synthesis machinery. Thus, the observation of genetic asso-
ciations of a SNP with a disease may reflect an effect of this particular SNP on the
whole selenoproteome, inviting us to combine genetic association studies with
expression of selenoproteins in a tissue.
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