
Genomic Applications of the Neyman–Pearson
Classification Paradigm

Jingyi Jessica Li and Xin Tong

Abstract The Neyman–Pearson (NP) classification paradigm addresses an impor-
tant binary classification problem where users want to minimize type II error while
controlling type I error under some specified level ˛, usually a small number.
This problem is often faced in many genomic applications involving binary clas-
sification tasks. The terminology Neyman–Pearson classification paradigm arises
from its connection to the Neyman–Pearson paradigm in hypothesis testing. The
NP paradigm is applicable when one type of error (e.g., type I error) is far more
important than the other type (e.g., type II error), and users have a specific target
bound for the former. In this chapter, we review the NP classification literature,
with a focus on the genomic applications as well as our contribution to the NP
classification theory and algorithms. We also provide simulation examples and a
genomic case study to demonstrate how to use the NP classification algorithm in
practice.

Keywords Classification • Genomic applications • Neyman–Pearson • Statisti-
cal learning • Methodology

1 Introduction

As an important statistical and machine learning method, classification has been
widely used in genomic studies. Binary classification is the basis of all types
of classification problems, and there exist many approaches to ensemble binary
classifiers to solve multi-class classification problems or to reduce multi-class
to binary classification. Important genomic applications of binary classification
include labeling microarray data as tumor or non-tumor samples [18, 53], dividing

J.J. Li (�)
Department of Statistics, University of California, Los Angeles, Los Angeles, CA, USA
e-mail: jli@stat.ucla.edu

X. Tong
Department of Data Sciences and Operations, University of Southern California,
Los Angeles, CA, USA
e-mail: xint@marshall.usc.edu

© Springer International Publishing Switzerland 2016
K.-C. Wong (ed.), Big Data Analytics in Genomics,
DOI 10.1007/978-3-319-41279-5_4

145

mailto:jli@stat.ucla.edu
mailto:xint@marshall.usc.edu

146 J.J. Li and X. Tong

genes into housekeeping and single-tissue specific groups [54], classifying genomic
hairpin structures into precursor microRNAs and pseudo hairpins (i.e., genomic
inverted repeats that are not precursor microRNAs) [32], and predicting transcrip-
tion factor binding sites and other DNA regulatory elements based on genomic
features [7, 20].

The aim of binary classification is to accurately predict binary (i.e., 0 or 1) labels
for new observations on the basis of labeled training data. There are two types of
errors: type I error (the conditional probability that the predicted label for a new
observation is 1 given that the observation has a true label 0) and type II error (the
conditional probability that the predicted label for a new observation is 0 given
that the observation has a true label 1). For more than half a century, significant
advances have been made in the development of binary classification theory and
methods to construct good classifiers with various desirable properties [24]. Most
existing binary classification methods aim to optimize the risk, which is the expected
classification error (the probability that the predicted label is different from the
true label) and can be expressed as a weighted sum of the type I and II errors,
where the two weights are the marginal probabilities of the true label being 0 and
1, respectively. In real-world applications, however, users’ priorities for type I and
type II errors may differ from these weights, and then minimizing the risk may lead
to unsatisfactory classifiers. For example, in tumor diagnosis, suppose that we label
a tumor sample as 0 and a normal sample as 1, the risk minimization approach fails
if it leads to a classifier with type I error (i.e., the conditional probability that a
tumor sample is misclassified as a normal sample) equal to 0:3 but doctors prefer to
constrain the type I error under 0:05.

There are many scenarios where users need asymmetric error control, and they
often occur when the two types of classification errors lead to vastly different
consequences. Again in the example of tumor diagnosis, mispredicting a normal
sample as a tumor sample may increase a patient’s anxiety and impose additional
medical costs, but misclassifying a tumor sample as a normal sample may delay
a patient’s treatment and even cause a life loss. Hence, the latter type of error—
type I error—is more severe and should be controlled at a low level. In another
example of classifying genes into housekeeping ones (say class 0) and cell-specific
ones (say class 1), if the research aim is to identify novel cell-specific genes for
a cell type (e.g., human embryonic stem cells) and the identified genes will be
validated by experiments, researchers would generally prefer to control the type
I error (the conditional probability of misclassifying a housekeeping gene as a cell-
specific gene) at a low level to reduce experimental costs.

One common approach to addressing asymmetric classification errors is cost-
sensitive learning, which allows users to assign two different costs as weights
for type I and type II errors [14, 56]. Although this approach has many merits,
its effectiveness is largely limited when there lacks a consensus way to assign
costs. Cost-sensitive learning is also unable to serve the purpose when users
desire a specific high probabilistic bound ˛ on the type I or II error [e.g.,
P.type I error � ˛/ > 1 � ı, the probability that a chosen classifier has type
I error not exceeding ˛ is greater than 1 � ı for some small positive ˛ (e.g.,
0:05) and ı (e.g., 0.05)], even though users may vary the two costs to achieve a

Genomic Applications of NP Classification 147

small type I or type II error. There are several other classification approaches that
target on small type I errors. Examples include asymmetric support vector machines
(SVM) [52] and p-values for classification [13]. But like cost-sensitive learning,
these approaches also provide no probabilistic guarantee for the type I error bound
and could lead to non-negligible probability of large type I errors. In practice, there
has been a long-time intuitive and straightforward common practice, that is to tune
the observed type I error (also called empirical type I error) on the training data
to the desired type I error bound ˛, for example, by adjusting the costs of errors
or by changing the classification threshold. However, this approach cannot control
the type I error of the chosen classifier on a new data set to be under ˛ with high
probability; in fact, a classifier chosen in this way will have type I error greater than
˛ for approximately half the chance. Figure 1 illustrates this phenomenon with a
simple two-class Gaussian example.

Unlike the above approaches, the Neyman–Pearson (NP) classification, which
was motivated by the century-long Neyman–Pearson paradigm in hypothesis test-
ing, specifically aims to bound one type of error with high probability and
meanwhile minimize the other type error. The main advantage of the NP classifi-
cation is that it provides high probability guarantee on controlling one type of error
under a user desired level.

This chapter is organized as follows. Section 2 provides a review of the
Neyman–Pearson classification paradigm, including its theoretical and algorithmic
advances. Section 3 presents three simulation examples to demonstrate how to
implement the NP classification with popular classification algorithms (logistic
regression, SVM, and random forests) that are widely used in genomic applications.
Section 4 implements the NP classification on a genomic case study, where the
goal is to classify DNA regions containing transcription factor motifs into two
classes: transcription factor binding sites and non-binding sites, using two genomic
features (absolute DNase-seq tag counts and DNase-seq footprint scores). Section 5
describes future research directions and potential genomic applications of the NP
classification.

2 Neyman–Pearson Paradigm

A few commonly used notations are set up to facilitate our discussion. Let .X; Y/

be random variables where X 2 X � Rd is a vector of features and Y 2 f0; 1g
is a class label. A classifier h.�/ is a mapping h W X ! f0; 1g that returns the
predicted class given X. An error occurs when h.X/ ¤ Y , and the binary loss is
I.h.X/ ¤ Y/, where I.�/ denotes the indicator function. The risk is the expected
loss with respect to the joint distribution of .X; Y/: R.h/ D E ŒI.h.X/ ¤ Y/� D
P .h.X/ ¤ Y/ ; which can be expressed as a weighted sum of type I and II errors:
R.h/ D P.Y D 0/R0.h/ C P.Y D 1/R1.h/; where R0.h/ D P .h.X/ ¤ YjY D 0/

denotes the type I error, and R1.h/ D P .h.X/ ¤ YjY D 1/ denotes the type II
error. While the classical binary classification aims to minimize the risk R.�/, the
NP classification aims to mimic the NP oracle classifier ��, which is defined as

148 J.J. Li and X. Tong

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

population

X

de
ns

ity
class 0
class 1

training data

x
−4 −2 0 2 4

class 0

class 1

test data 1000

x
−4 −2 0 2 4

test data 1

x
−4 −2 0 2 4

.

type I error on test data

fr
eq

ue
nc

y

0.02 0.03 0.04 0.05 0.06 0.07 0.08

0
50

10
0

20
0observed (empirical)

type I error = 0.05

Fig. 1 An example to illustrate that tuning the empirical type I error on training data to ˛ cannot
control the type I error on test data under ˛ with high probability. The population is a two-class
Gaussian distribution, where X follows N.�1; 1/ under class 0 and N.1; 1/ under class 1. The two
classes have equal probabilities. A training data set with size n D 1000 is generated from this
population, and a threshold t D 0:635 (the dark blue vertical line) is chosen so that the resulting
classifier I.X � t/ has the observed (empirical) type I error equal to ˛ D 0:05 on the training
data. This classifier is then applied to B D 1000 test data sets from the same population, and the
resulting empirical type I errors on each of these test data sets are summarized in the histogram,
which shows that approximately 50 % of the type I errors are greater than ˛ and 18:1 % of the
errors are even greater than 0:06

�� D arg min
�W R0.�/�˛

R1.�/ ;

Genomic Applications of NP Classification 149

where the user-specified level ˛ reflects a conservative attitude (priority) towards the
type I error. Figure 2 shows a toy example that demonstrates the difference between
a classical classifier that aims to minimize the risk and an NP classifier.

Earlier work on the NP classification came from the engineering community.
Earlier theoretical development for the NP classification includes traditional sta-
tistical learning results such as probably approximately correct bounds and oracle
type inequalities [8, 38, 40]. Then performance measures for the NP classification
were proposed [39]. More recently, a general solution to semi-supervised novelty
detection via reduction to NP classification was developed [3]. There are also other
related work [9, 19]. All these work follow an empirical risk minimization (ERM)
approach, and suffer a common limitation: a relaxed empirical type I error constraint
is used in the optimization program, and as a result, the type I error can only be
shown to satisfy some relaxed upper bound, which is bigger than ˛.

We have worked extensively on NP classification using ERM and plug-in
approaches [37, 46, 58]. We initiated a significant departure from the previous NP
classification literature in [37] by arguing that a good classifier O� under the NP
paradigm should respect the chosen significance level ˛, rather than some relaxation
of it. More concretely, the following two properties should both be satisfied with
high probability.

(1) The type I error constraint is respected, i.e., R0. O�/ � ˛.
(2) The excess type II error R1. O�/ � R1.��/ diminishes with an explicit rate

(w.r.t. sample size).

We say a classifier satisfies the NP oracle inequalities if it has properties (1)
and (2) with high probability. The NP oracle inequalities measure the theoretical
performance of classifiers under the NP paradigm, as well as define a new NP
counterpart of the well-established oracle inequalities under the classical paradigm
(see [23] and the references within). In contrast, for a classifier Oh, the classical oracle
inequality insists that with high probability,

theexcessriskR.Oh/ � R.h�/diminisheswithanexplicitrate;

where h�.x/ D I.�.x/ � 1=2/ is the Bayes classifier under the classical paradigm,
with �.x/ D EŒYjX D x� D P.Y D 1jX D x/ denoting the regression function of Y
on X.

Using a more stringent empirical type I error constraint (less than ˛), we
established NP oracle inequalities for their proposed classifiers under convex loss
functions (as opposed to the binary loss) [37]. We also proved a negative result
by constructing a counterexample: under the binary loss, ERM approaches cannot
guarantee diminishing excess type II error if one insists that type I error of the
classifier be bounded from above by ˛ with high probability. This negative result
motivated us to develop a plug-in approach to NP classification, described in [46].

150 J.J. Li and X. Tong

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

classical classification

X

de
ns

ity

II I

−4 −2 0 2 4

NP classification

X

II I

−2 0 2 4

−
2

0
2

4

X
2

X1

−2 0 2 4
X1

II II
I I

class 0
class 1
decision boundary

a

b

Fig. 2 Classical vs. NP classification in two binary classification examples. (a) A one-dimensional
toy example where X has a two-class Gaussian distribution. X follows N.�1; 1/ under class 0 and
N.1; 1/ under class 1. The two balanced classes have equal marginal probabilities. Suppose that a
user prefers a type I error � 0:05. The classical classifier I.X � 0/ that minimizes the risk would
result in a type I error D 0:16 > 0:05. On the other hand, the NP classifier I.X � 0:65/ that
minimizes the type II error under the type I error constraint (� 0:05) delivers the desirable type I
error. (b) A two-dimensional toy example where .X1; X2/ has a two-class uniform distribution over
circles. .X1; X2/ follows a uniform distribution on fX2

1 C X2
2 � 4g under class 0 and a uniform

distribution on f.X1 � 2/2 C .X2 � 2/2 � 4g under class 1. The two balanced classes have equal
marginal probabilities. Suppose that a user prefers a classifier that is linear in X1 and X2 and has
type I error � 0:05. The classical classifier I.X1 C X2 � 2/ that minimizes the risk would result
in a type I error D 0:29 > 0:05. On the other hand, the NP classifier I.X1 C X2 � 2:28/ that
minimizes the type II error under the type I error constraint (� 0:05) delivers the desirable type I
error

Genomic Applications of NP Classification 151

In classical binary classification, plug-in methods that target the Bayes classifier
I.�.x/ � 1=2/ have been studied. The earliest works cast doubt on the efficacy
of the plug-in approach to classification. For example, it was shown that plug-in
estimators cannot achieve excess risk with rates faster than O.1=

p
n/ under certain

assumptions [55], while direct methods can achieve fast rates up to O.1=n/ under
margin assumption [30, 45, 49, 50]. However, a more recent work combined a
smoothness condition on � with the margin assumption and showed that plug-in
classifiers I. O�n � 1=2/ based on local polynomial estimators can achieve rates faster
than O.1=n/ [1].

The oracle classifier under the NP paradigm arises from its close connection to
the Neyman–Pearson Lemma in statistical hypothesis testing. Hypothesis testing
bears a strong resemblance to binary classification if we assume the following
model. Let P1 and P0 be two known probability distributions on X � Rd. Let
� 2 .0; 1/ and assume that Y � Bernouli.�/. Assume further that the conditional
distribution of X given Y is denoted by PY . Given such a model, the goal of statistical
hypothesis testing is to determine whether X was generated from P1 or from P0. To
this end, we construct a randomized test � W X ! Œ0; 1� and the conclusion of the
test based on � is that X is generated from P1 with probability �.X/ and from P0

with probability 1 � �.X/. Two types of errors arise: type I error occurs when P0

is rejected given X � P0, and type II error occurs when P0 is not rejected given
X � P1. The Neyman–Pearson paradigm in hypothesis testing amounts to choosing
� that

maximizesEŒ�.X/jY D 1� ; subjecttoEŒ�.X/jY D 0� � ˛ ;

where ˛ 2 .0; 1/ is the significance level of the test. A solution to this constrained
optimization problem is called a most powerful test of level ˛. The Neyman–Pearson
Lemma gives mild sufficient conditions for the existence of such a test.

Theorem 1 (Neyman–Pearson Lemma). Let P0 and P1 be probability dis-
tributions possessing densities q and p, respectively, with respect to some
measure �. Let r.x/ D p.x/=q.x/ and C˛ be such that P0.r.X/ > C˛/ � ˛

and P0.r.X/ � C˛/ � ˛. Then for a given level ˛, the most powerful test of
level ˛ is defined by

��.X/ D

8

<̂

:̂

1 if r.X/ > C˛

0 if r.X/ < C˛
˛�P0.r.X/>C˛/

P0.r.X/DC˛/
if r.X/ D C˛

:

Therefore, our plug-in target under the NP paradigm is the oracle classifier

��.x/ D I.r.x/ � C˛/ D I.�.x/ � D˛/; whereD˛ D P.Y D 1/C˛

P.Y D 1/C˛ C P.Y D 0/
:

152 J.J. Li and X. Tong

Note that under the classical paradigm, the oracle classifier I.�.x/ � 1=2/ puts
a threshold on the regression function � at precisely 1=2, so plug-in methods do
not involve estimating the threshold level. In contrast, the NP paradigm poses more
challenges because the threshold level C˛ or D˛ needs to be estimated in addition to
r.x/ or �.x/.

Also note that in practice, the threshold on O�.x/ is often not set to 1=2 but is
chosen by data-driven approaches such as cross validation and bootstrap. In contrast
to the NP classification, these data-driven approaches aim to minimize an estimated
classification risk, not the type II error with a type I error constraint.

2.1 An Estimate of C˛

Pinning down a good estimate of C˛ is of central importance for classifiers under
the NP paradigm. Contrary to common intuition, naïvely tuning the empirical type
I error to ˛ does not deliver a desirable classifier, as we have shown in Fig. 1. To
facilitate our discussion, we assume that our sample contains n i.i.d. observations
S 1 D fU1; � � � ; Ung from class 1 with density p; and m i.i.d. observations S 0 D
fV1; � � � ; Vmg from class 0 with density q. The sample S 0 is decomposed as follows:
S 0 D S 0

1 [S 0
2 , where jS 0

1 j D m1 and jS 0
2 j D m2. Below is a generic procedure

introduced in our recent paper [58].

General Neyman–Pearson Plug-In Procedure

Step 1: Use S 1 and S 0
1 to construct a density ratio estimate Or.

Step 2: Given Or; choose a threshold estimate bC˛ from the set Or.S 0
2 / D

fOr.ViCm1 /gm2

iD1: Denote by Or.k/.S
0
2 / the kth order statistic of Or.S 0

2 /,
k 2 f1; � � � ; m2g: The corresponding plug-in classifier by setting bC˛ D
Or.k/.S

0
2 / is

O�k.x/ D IfOr.x/ � Or.k/.S
0
2 /g : (1)

The general strategy is that for any given estimate Or, we want to find a proper
order statistic Or.k/.S

0
2 / to estimate the threshold C˛ , so that type I error of the

classifier defined in (1) will be controlled from above by ˛ with high probability
1 � ı. To achieve this, it is necessary to study the distribution of order statistics,
which we find to be beta-distributed. Based on a concentration inequality for beta
distributed variables, we have derived the following high probability bound for
R0. O�k/:

Genomic Applications of NP Classification 153

Proposition 1. Suppose Or is such that F0;Or.t/ D P0.Or.X/ � t/ is continuous
almost surely. For any ı 2 .0; 1/ and k 2 f1; � � � ; m2g, it holds that

P
�

R0. O�k/ > g.ı; m2; k/
�

� ı ;

where

g.ı; m2; k/ D m2 C 1 � k

m2 C 1
C

s
k.m2 C 1 � k/

ı.m2 C 2/.m2 C 1/2
:

Let K D K .˛; ı; m2/ D fk 2 f1; � � � ; m2g W g.ı; m2; k/ � ˛g : Proposition 1
implies that k 2 K .˛; ı; m2/ is a sufficient condition for the classifier O�k to satisfy
the NP oracle inequality (1). The next step is to characterize K . The smallest k 2
K accommodates small excess type II error for O�k; for details, please see [58].

Proposition 2. The minimum k that satisfies g.ı; m2; k/ � ˛ is kmin WD
dA˛;ı.m2/ � .m2 C 1/e ; where dze denotes the smallest integer larger than or
equal to z and

A˛;ı.m2/ D 1 C 2ı.m2 C 2/.1 � ˛/ C p
1 C 4ı.1 � ˛/˛.m2 C 2/

2 Œı.m2 C 2/ C 1�
:

The choice kmin coupled with a good estimate of r or � delivers a plug-in NP
classifier that satisfies the NP oracle inequalities. We have worked out estimates
based on parametric and nonparametric naïve Bayes models [58], but estimates for
more complex model assumptions are not yet developed. While these directions are
interesting to explore, we would like to note a limitation in the use of theoretical
estimates for the threshold C˛ . That is, the theoretical results require concentration
inequalities, which are not specific to certain types of data distributions and
sometimes give threshold estimates that are too conservative in practice. Therefore,
we have developed an alternative route to implement the NP paradigm. This route
makes the NP classification more adaptable to popular classification algorithms and
thus more useful in practice.

2.2 The NP Umbrella Algorithm

Here we present the alternative route, the NP umbrella algorithm we developed
in [47], as pseudocodes in Algorithm 1. The essential idea is to use bootstrap to

154 J.J. Li and X. Tong

approximate the distribution of type I errors and determine a threshold such that the
corresponding classifier has type I errors bounded by a predefined level with high
probability. This algorithm is widely applicable to the scoring type of classification
methods, which include a wide range of popular methods, such as logistic regression
[11], SVM [10], random forests [6], naïve Bayes [26], and neural networks [43].
Methods of the scoring type output a numeric value, i.e., a classification score, to
represent the degree to which a test data point belongs to class 1. The classification
scores can be strict probabilities or uncalibrated numeric values, as long as a
higher score indicates a higher probability of an observation belonging to class 1.
Many other classification methods that only output class labels can be converted
to the scoring type via bagging to generate an ensemble of classifiers, each of
which predicts a class label for a test data point, and the proportion of predicted
labels being 1 serves as a classification score. Since almost all the state-of-the-art
classification methods belong to or can be converted to the scoring type, this NP
umbrella algorithm is easily adaptable in practice, though its theoretical properties
are difficult to establish.

Algorithm 1: The NP umbrella classification algorithm
1: input:

training data with two parts: a mixed i.i.d. sample S and a class 0 sample
S 0 D fX1; : : : ; Xmg

type I error upper bound ˛ 2 Œ0; 1�

small tolerance level ı 2 .0; 1/

number of bootstrap samples B
2: procedure NPTHRESHOLD(S ;S 0; ˛; ı; B)
3: f classificationalgorithm.S /

F train a classification scoring function f by inputting S into the classification algorithm;
let f have a larger expected value for class 1 data

4: T0 D �
T0;1; : : : ; T0;m

�T .f .X1/; : : : ; f .Xm//
T

F apply the scoring function f to S 0 to obtain a set of threshold candidates
5: for b in f1; : : : ; Bg do F bootstrap T0 for B times

6: T.b/
0 D

�

T.b/
0;1 ; : : : ; T.b/

0;m

�T sample.T0;size D m;replace D TRUE/ F sample m

points with replacement from T0

7: for t in T0 do F for each threshold candidate t

8: for b in f1; : : : ; Bg do F for each bootstrap sample b

9: e.b/.t/ 1
m

Pm
iD1 I

�

T.b/
0;i > t

�

F calculate the type I error of threshold t in bootstrap sample

b
10: v.t/ 1

B

PB
bD1 I

�
e.b/.t/ > ˛

� F calculate the violation rate of threshold t
11: t� minft W v.t/ � ıg F pick the minimal threshold whose violation rate is under ı

12: output:
an NP classifier �.X/ D I .f .X/ > t�/

Genomic Applications of NP Classification 155

3 Simulation

In this section, we demonstrate the use of NP classification with three popular
classification algorithms: logistic regression [11], SVM [10], and random forests
[6]. The three simulation examples, each employing one algorithm, are implemented
by calling the R package nproc [15] we developed in recent work [47].

The nproc package can be installed by calling

> install.packages("nproc")

and loaded into the R environment using the next command. All the following
numerical results were generated by the nproc package version 0.1.

> library(nproc)

We first simulate a training data set from a logistic regression model. The training
data have 1000 observations with binary responses and two-dimensional features.

> # training data
> set.seed(1)
> x1 <- rnorm(1000) # feature 1
> x2 <- rnorm(1000) # feature 2
> x <- cbind(x1, x2) # matrix of features
> z <- 1 + 2*x1 + 3*x2 # linear combination of the

two features
> pr <- 1/(1+exp(-z)) # logisitic function to

generate probability
> y <- rbinom(1000,1,pr) # response as Bernoulli

variable
> df <- data.frame(x1=x1, x2=x2, y=y)

Figure 3 shows a scatterplot of the training data. We also simulate 1000 test data
sets with 1000 observations from the same model, to evaluate the performance of
classifiers.

> # test data
> test_data <- lapply(1:1000, FUN=function(i) {
+ set.seed(i+1)
+ x1 <- rnorm(1000)
+ x2 <- rnorm(1000)
+ x <- cbind(x1, x2)
+ z <- 1 + 2*x1 + 3*x2
+ pr <- 1/(1+exp(-z))
+ y <- rbinom(1000, 1, pr)
+ df <- data.frame(x1=x1, x2=x2, y=y)
+ return(list(x=x, y=y, df=df))
+ })

156 J.J. Li and X. Tong

Fig. 3 Scatterplot of the
training data with 1000

observations and
two-dimensional features.
Black circles and red crosses
represent class 0 and class 1,
respectively

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2
3

training data

x1

x2

y = 0
y = 1

3.1 Logistic Regression

Logistic regression is a type of generalized linear model. For binary classification
purposes, logistic regression can serve as a classification method. One way to
interpret logistic regression is that it models

p WD P.Y D 1/ D 1

1 C e�.ˇ0CˇT X/

for a binary response Y with d features X 2 Rd. Given training data f.xi; yi/gn
iD1,

logistic regression estimates ˇ0 and ˇ as maximum likelihood estimates Ǒ
0 and Ǒ,

and then estimates p as Op D
�
1 C e�. Ǒ0C ǑT X/

��1

. This estimated probability can

be interpreted as a classification score, as logistic regression predicts Y by a linear

decision rule, i.e., OY D I. ǑTX � c/ D I

�

Op �
�
1 C e� Ǒ0�c

��1
�

for some threshold

c 2 R. Under the classical classification paradigm, c D � Ǒ
0, which corresponds to

Op � 1=2. Under the NP paradigm, we potentially have different choices for c. By
regarding Op as a classification scoring function of X, we use the umbrella algorithm
to find a threshold on Op so that the resulting classifier will have type I error below
the desired level ˛ with high probability close to 1 � ı.

We use the simulated data to demonstrate the use of NP classification with
logistic regression and compare it with the classical paradigm. We first train a
logistic regression model on the training data under the classical paradigm.

> lr_model1 <- glm(y~x1+x2, data=df, family="binomial")

Genomic Applications of NP Classification 157

Then we apply the trained model lr_model1 to the 1000 test data sets to
evaluate the distribution of its empirical type I errors on test data.

> lr_model1_err <- sapply(test_data, FUN=function(tdat)
{ + pred <- predict(lr_model1, tdat$df,
type="response") > 0.5 + ind0 <- which(tdat$y==0)
+ typeI <- mean(pred[ind0]!=tdat$y[ind0])
+ })
> summary(lr_model1_err)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1290 0.1723 0.1846 0.1849 0.1980 0.2368

We next train a logistic regression model on the training data under the NP
paradigm with type I error bound ˛ D 0:05, using the npc function.

> set.seed(1001)
for reproducible purposes, because npc()

involves bootstrap,
whose results will be reproducible with a fixed seed
> lr_model2 <- npc(x=x, y=y, method='logistic',

alpha=0.05)

Then we also applied the trained model lr_model2 to the test data.

> lr_model2_err <- sapply(test_data, FUN=function(tdat){
+ pred <- predict(lr_model2, tdat$x)
+ ind0 <- which(tdat$y==0)
+ typeI <- mean(pred$pred.label[ind0]!=tdat$y[ind0])
+ })
> summary(lr_model2_err)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.009732 0.027230 0.033530 0.033950 0.040400 0.062330

> sum(lr_model2_err <= 0.05) / 1000

[1] 0.948

Comparing the empirical type I errors of the two logistic regression classifiers
found under the classical and the NP paradigm, respectively, we can see that the NP
classifier gives much smaller type I errors, 94:8 % of which are under ˛ D 0:05.

3.2 Support Vector Machines

Similar to logistic regression, SVM is also a scoring type of classification method,
for which approximate posterior probabilities of class labels proposed by Platt [35]

158 J.J. Li and X. Tong

can be used as classification scores. We demonstrate the use of NP classification
with SVM on the simulated data as follows.

We first train an SVM model on the training data under the NP paradigm.

> set.seed(1001)
> svm_model <- npc(x=x, y=y, method='svm', alpha=0.05)

Then we apply the trained model svm_model to the 1000 test data sets to
evaluate the distribution of its empirical type I errors on test data.

> svm_model_err <- sapply(test_data, FUN=function(tdat)
{
+ pred <- predict(svm_model, tdat$x)
+ ind0 <- which(tdat$y==0)
+ typeI <- mean(pred$pred.label[ind0]!=tdat$y[ind0])
+ })
> summary(svm_model_err)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.007772 0.023530 0.029560 0.029900 0.035350 0.062330

> sum(svm_model_err <= 0.05) / 1000

[1] 0.987

We see that the SVM classifier found by the NP algorithm has empirical type I errors
under ˛ D 0:05 with high probability.

3.3 Random Forests

Random forests is another popular and powerful classification method. It is an
ensemble method of tree-based classifiers. We can also interpret it as a scoring
type of method, if we consider the proportion of output votes for class 1 (i.e., the
proportion of trees that predict an observation as class 1) as classification scores.
We demonstrate the use of NP classification with random forests on the toy data as
follows.

We first train a random forest model on the training data under the NP paradigm.

> set.seed(1001)
> rf_model <- npc(x=x, y=y, method='randomforest',

alpha=0.05)

Then we apply the trained model rf_model to the 1000 test data sets to evaluate
the distribution of its empirical type I errors on test data.

Genomic Applications of NP Classification 159

> rf_model_err <- sapply(test_data, FUN=function(tdat) {
+ pred <- predict(rf_model, tdat$x)
+ ind0 <- which(tdat$y==0)
+ typeI <- mean(pred$pred.label[ind0]!=tdat$y[ind0])
+ })
> summary(rf_model_err)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.002451 0.021000 0.026280 0.026810 0.032260 0.054460

> sum(rf_model_err <= 0.05) / 1000

[1] 0.996

We see that the random forest classifier found by the NP algorithm has empirical
type I errors under ˛ D 0:05 with high probability.

4 Case Study

We demonstrate the use of NP classification in a genomic case study on the
prediction of transcription factor binding sites. A recent study [20] found that
DNase-seq signals can well predict whether genomic regions containing transcrip-
tion factor sequence motifs are transcription factor binding sites. DNase-seq is a
recent high-throughput technology that combines traditional DNaseI footprinting
[17] and next-generation DNA sequencing to identify genomic regions where
regulatory factors interact with DNA to modify chromatin structure [5, 12, 31, 42].
An important question investigated in this study is which DNase-seq features can
well predict binding sites of CTCF, a transcription factor that acts as an insulator to
regulate the 3D structure of chromatin [34].

The study [20] formulated this question as a binary classification problem, where
the goal is to classify genomic regions that contain CTCF sequence motifs into
CTCF binding sites (i.e., class 1) and non-binding sites (i.e., class 0). For this
task, two one-dimensional genomic features extracted from DNase-seq data are
compared: (1) the number of DNase-seq tags in a 200 base pair window centered
in each CTCF motif site and (2) the DNaseI footprint score calculated using the
formula f D � Œ.nC C 1/=.nR C 1/ C .nC C 1/=.nL C 1/�, where nC, nR, and nL

represent, respectively, the tag count in the motif region and the flanking regions to
the right and left of the motif (the lengths of the flanks are both the same as that of
the motif). In the data, there are n D 216; 929 genomic regions, each with one tag
count and one footprint score. Among these regions, 27; 220 regions were found as
CTCF binding sites (class 0), and the rest 189; 709 regions were considered as non-
binding sites (class 1). By varying the threshold on each feature, the study showed
that the footprint score outperforms the tag count at low FPR and underperforms at
higher FPR. In other words, if users desire a small type I error, for example, if they

160 J.J. Li and X. Tong

prefer to predict fewer but more confident CTCF binding sites, the footprint score is
a better genomic feature; otherwise if users prefer a small type II error, for example,
if they prefer to predict more potential CTCF binding sites, the tag count is a better
feature.

However, this study only reported the observed (empirical) type I and II errors on
one data set, without assessing the randomness of these empirical errors. If a user
is interested in knowing which feature is better when the type I error (or FDR) is
constrained under ˛ (e.g., 5 %) with high probability, this analysis cannot provide
a good answer. Here we address this question using the NP classification algorithm
described in Sect. 2.2. We also compare the performance of the NP classification
with the common practice, which is to tune the empirical type I error on the training
data to ˛. At three different type I error bounds ˛ D 0:01, 0:05, and 0:1, we find
their corresponding thresholds on the number of DNase-seq tags or the footprint
scores via the common practice or the NP approach. Specifically, in the common
practice we find the thresholds as the 99th, 95th, and 90th percentiles of the number
of DNase-seq tags or the footprint scores of the 189; 709 non-binding sites; in the
NP approach we use the NP algorithm with the number of bootstrap runs B D 1000

and the violation tolerance level ı D 0:05 to find the thresholds on the number
of DNase-seq tags or the footprint scores of the 189; 709 non-binding sites. Since
values of each feature serve as natural classification scores in this case, we do not
need to train a classification scoring function, and all the class 0 data points can be
used to find the NP thresholds. That is, in the algorithm, S 0 contains all the class 0

data points, and the f function in Step 3 is just the identity map.
We evaluate the thresholds and their corresponding classifiers found by the NP

approach or the common practice via bootstrap. We generate B0 D 1000 sets of
n D 216; 929 bootstrap regions with corresponding tag counts and footprint scores
from the original data via random sampling with replacement. Then we evaluate
the empirical type I and type II errors of each threshold on each bootstrap data
set, and summarize the distribution of the empirical type I and type II errors of all
bootstrap data sets. The results in Table 1 show that the classifiers found by the NP
approach have empirical type I errors bounded by ˛ with high probability, while
the classifiers found by the common practice have large portions of empirical type I
errors above ˛. Comparing the means of the empirical classification errors, we can
see that the classifiers found by the NP approach have slightly smaller mean type
I errors and slightly larger mean type II errors, a reasonable result given its high
probability bound on the type I errors. The standard deviations are similar for the
two approaches. Back to the question about which feature is better when the type I
error is under ˛ with high probability, the NP classification results suggest that at
˛ D 0:01 and 0:05, the footprint score is a better feature, while the tag count is a
better feature at ˛ D 0:1.

Genomic Applications of NP Classification 161

Table 1 Comparison of classifiers established by the common practice vs. the NP approach

Type I errors Type II errors

Features ˛ Approaches Meana sdb % > ˛c Mean sd
Tag counts 0:01 Common 0:010 2:32e�4 46:5 0:976 9:34e�4

NP 0:009 2:25e�4 0:00 0:979 8:84e�4

0:05 Common 0:050 4:83e�4 48:4 0:707 2:78e�3

NP 0:049 4:78e�4 1:10 0:716 2:78e�3

0:10 Common 0:100 6:89e�4 39:8 0:335 2:86e�3

NP 0:099 6:83e�4 3:90 0:340 2:87e�3

Footprint scores 0:01 Common 0:010 2:25e�4 48:6 0:766 2:59e�3

NP 0:009 2:07e�4 0:00 0:775 2:59e�3

0:05 Common 0:050 4:96e�4 33:5 0:596 2:97e�3

NP 0:049 4:90e�4 1:90 0:598 2:96e�3

0:10 Common 0:100 6:58e�4 49:5 0:493 3:07e�3

NP 0:099 6:54e�4 1:40 0:494 3:06e�3

a Mean of the empirical classification errors over the B0 D 1000 bootstrap runs
b Standard deviation of the empirical classification errors over the B0 D 1000 bootstrap runs
c Percentage of the empirical type I errors that are greater than ˛ in the B0 D 1000 bootstrap
runs

5 Future Research and Genomic Applications
of the Neyman–Pearson Classification

Neyman–Pearson classification paradigm handles binary class classification prob-
lem, but it can be extended to address multi-class problems where errors are asym-
metric in nature. Neyman–Pearson classification has wide application potentials
in genomics. In Sects. 5.2–5.4 we describe three potential applications as future
research directions: sample size determination, automatic disease diagnosis, and
disease marker detection. The latter two applications were also discussed in our
recent review paper [48].

5.1 Extension to Multi-class

Originating from binary trade-offs, the NP classification methods can also be
applied to multi-class (Y 2 f1; � � � ; Kg, K � 3) problems using the following two
strategies:

– [Strategy 1] Missing class 1 has more severe consequences than
missing other classes. A two-step procedure can be implemented:
Apply an NP method to classify a subject into class 1 versus the other
classes. Stop if the subject is assigned to class 1. Otherwise, continue

162 J.J. Li and X. Tong

and apply a (multi-class) classification algorithm to assign this subject
to one of the other classes f2; � � � ; Kg.

– [Strategy 2] There is a hierarchical order (class 1 > � � � > class K)
of class priorities (i.e., severity of missing each class). A possible
procedure is to first apply an NP method to classify a subject into class
1 versus other classes f2; � � � ; Kg. Stop if this subject is assigned to
class 1. Otherwise, apply again the NP method to classify it into class
2 versus classes f3; � � � ; Kg. Continue along this line until this subject
is assigned to a class.

5.2 Sample Size Determination

In clinical trials and other experimental designs, sample acquisition can be quite
expensive. Therefore, how to determine the minimal sufficient sample size is an
important question. Admittedly, different criteria would lead to different sample
size selection procedures; so there is no hope of finding a universally golden rule.
The Neyman–Pearson paradigm inspires one procedure to choose the sample size
based on the theoretical upper bound of the excess type II error in the NP oracle
inequalities.

We describe a contrived version of this procedure in the following. Suppose a
classifier O' satisfies the NP oracle inequalities, and the excess type II error of O' is
bounded from above by f .m; n/, where m is the sample size of class 0, and n is the
sample size of class 1, and f .m; n/ ! 0 as m and n go to infinity. If the user has a
target to control the excess type II error at some � > 0. Then m and n can be selected
such that f .m; n/ � � . As this procedure is based on concentration inequalities, it is
conservative and might overestimate the sample size. Yet this procedure provides a
valid upper bound of the needed sample size. Future statistical research is need for
more accurate sample size determination.

5.3 Automatic Disease Diagnosis

Another application is a long-time challenge in clinical research: automatic disease
diagnosis from patient genomic data. This challenge involves a classification
problem, where diseases correspond to different classes, and the goal is to predict
the diseases that are most likely associated with a patient’s genomic sample. Thanks
to the development of high-throughput genomic technologies [e.g., microarray and
next-generation sequencing (NGS)], a large amount of disease related genomic data
can serve as training data in this classification problem. Taking gene expression data
as an example, the National Center for Biotechnology Information (NCBI) Gene
Expression Omnibus (GEO) contains more than 690,000 human gene expression
samples that are related to hundreds of diseases, such as heart diseases, mental
illnesses, infectious diseases, and various cancers.

Genomic Applications of NP Classification 163

gene expression

data sets

d

n data sets

disease concept

taxonomy (network)

X =

Y =
l

. . .

. . .

. . .

. . .
1

2 3

4 5 6 7 8 9 10

11 12 13 14

genes

disease
concepts

Step 1

Step 2

a) train l binary classifers on the n samples

^
1

^
2

^. (X)(X) (X)

b) given a new gene expression data set X*,
predict its disease concepts:

^
1

^
2

^. (X*)(X*) (X*)

 =П

c) correct the predicted disease concepts

Step 2

based on taxonomy П :

l

l

|
1

. f~
2 l (X* |) П(X*) П (X* |) Пf~ f~

f f f

f f f

Fig. 4 Automatic disease diagnosis via NP classification and network-assisted correction

We can study automatic disease diagnosis by NP classification and network-
assisted correction using a two-step approach (Fig. 4). Step 1: using public microar-
ray and NGS gene expression data sets with disease labels (e.g., > 100 Unified
Medical Language System standardized disease concepts), we can (a) use NP
classification to build a binary classifier for each disease class, and (b) classify
a patient’s microarray gene expression sample into these disease classes. Step 2:
(c) correct the predicted diseases based on the disease taxonomy (network). In
Step 1, since the disease classes are non-exclusive (one data set may have multiple
disease class labels), this multi-label classification problem is inherently composed
of multiple binary classification problems, where every disease class needs a binary
decision. In previous works [21, 27], binary classifiers such as SVM and naïve
Bayes classifiers were used, and all disease classes were treated as interchangeable.
This raises an important issue, though: some diseases are more life-threatening than
others, e.g., lung cancer vs. arthritis. Therefore, it is important to allow doctors to
have different levels of conservativeness, i.e., different thresholds ˛ on the type I
error (the chance of missing a disease when a patient in fact has it), for different
diseases. Although previous researchers have attempted to address this trade-off
between false positives and false negatives in disease diagnosis [16], they failed to
control false negative rates under a desired threshold with high probability. Given
the pressing need for precise disease diagnosis, the developed NP classification
algorithms are in high demand to address this issue.

5.4 Disease Marker Detection

The multi-class extension of NP classification has application potentials in detecting
and screening for key markers (i.e., genes and genomic features) to aid disease
diagnosis as well as to understand molecular mechanisms of diseases. In early
cancer diagnosis studies that aimed to determine which genes should be included

164 J.J. Li and X. Tong

disease 1

disease 2

disease K

...
...

NP strategy 1
multi-class

1 vs. all

2 vs. all

K vs. all

 disease 1 markers

 disease 2 markers

 disease K markers

...
...

...
...

pooling markers
for

disease diagnosis

Fig. 5 Marker detection via multi-class NP strategy 1

as features (markers) [16, 36, 41], classification error of each disease class versus
others was used as a criterion. In other words, “the smallest set” of genes that results
in low classification error for a disease class was retained as markers for that disease.
However, this criterion lacks consideration of asymmetric classification errors, and
as a result, the selected markers for a disease could lead to high false negative rates in
the diagnosis—a dangerous situation for severe diseases such as cancers. Therefore,
in the diagnosis of severe diseases, a more reasonable criterion would be to minimize
the FPR given a pre-specified false negative rate control. The multi-class NP
classification (Strategy 1) serves the purpose: key markers are selected so that low
FPR are attained while the false negative rates are constrained below a threshold
(see Fig. 5). Markers selected by this new detection strategy can be pooled to make
disease prediction, in the hope of increasing the sensitivity of disease diagnosis.
To implement and evaluate this strategy, we need to compare it with the more
recent state-of-the-art disease prediction methods, which are for example based on
multi-task learning [2, 28, 57, 59], group lasso [29], multicategory support vector
machines [25], partial least squares regression [4, 33], neural networks [22, 51],
and others [44].

Acknowledgements Dr. Jingyi Jessica Li’s work was supported by the start-up fund of the
UCLA Department of Statistics and the Hellman Fellowship. Dr. Xin Tong’s work was supported
by Zumberge Individual Award from University of Southern California and summer research
support from Marshall School of Business. We thank Dr. Yang Feng in Department of Statistics
at Columbia University and Ms. Anqi Zhao in Department of Statistics at Harvard University for
their help in developing the Neyman–Pearson classification algorithms. We also thank Dr. Wei
Li and Mr. Sheng’en Shawn Hu in Dr. X. Shirley Liu’s group in Department of Biostatistics and
Computational Biology at Dana-Farber Cancer Institute and Harvard School of Public Health for
kindly sharing the data for our genomic case study in Sect. 4.

References

1. Audibert, J., Tsybakov, A.: Fast learning rates for plug-in classifiers under the margin
condition. Annals of Statistics 35, 608–633 (2007)

2. Bi, J., Xiong, T., Yu, S., Dundar, M., Rao, R.B.: An improved multi-task learning approach
with applications in medical diagnosis. In: Machine Learning and Knowledge Discovery in
Databases, pp. 117–132. Springer (2008)

Genomic Applications of NP Classification 165

3. Blanchard, G., Lee, G., Scott, C.: Semi-supervised novelty detection. Journal of Machine
Learning Research 11, 2973–3009 (2010)

4. Booij, B.B., Lindahl, T., Wetterberg, P., Skaane, N.V., Sæbø, S., Feten, G., Rye, P.D.,
Kristiansen, L.I., Hagen, N., Jensen, M., et al.: A gene expression pattern in blood for the
early detection of Alzheimer’s disease. Journal of Alzheimer’s Disease 23(1), 109–119 (2011)

5. Boyle, A.P., Song, L., Lee, B.K., London, D., Keefe, D., Birney, E., Iyer, V.R., Crawford, G.E.,
Furey, T.S.: High-resolution genome-wide in vivo footprinting of diverse transcription factors
in human cells. Genome research 21(3), 456–464 (2011)

6. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)
7. Bulyk, M.L., et al.: Computational prediction of transcription-factor binding site locations.

Genome biology 5(1), 201–201 (2004)
8. Cannon, A., Howse, J., Hush, D., Scovel, C.: Learning with the Neyman-Pearson and min-max

criteria. Technical Report LA-UR-02-2951 (2002)
9. Casasent, D., Chen, X.: Radial basis function neural networks for nonlinear fisher discrimina-

tion and Neyman-Pearson classification. Neural Networks 16(5–6), 529–535 (2003)
10. Cortes, C., Vapnik, V.: Support-vector networks. Machine learning 20(3), 273–297 (1995)
11. Cox, D.R.: The regression analysis of binary sequences. Journal of the Royal Statistical

Society. Series B (Methodological) pp. 215–242 (1958)
12. Degner, J.F., Pai, A.A., Pique-Regi, R., Veyrieras, J.B., Gaffney, D.J., Pickrell, J.K., De Leon,

S., Michelini, K., Lewellen, N., Crawford, G.E., et al.: DNase I sensitivity QTLs are a major
determinant of human expression variation. Nature 482(7385), 390–394 (2012)

13. Dümbgen, L., Igl, B., Munk, A.: P-values for classification. Electronic Journal of Statistics 2,
468–493 (2008)

14. Elkan, C.: The foundations of cost-sensitive learning. In Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence pp. 973–978 (2001)

15. Feng, Y., Li, J., Tong, X.: nproc: Neyman-Pearson Receiver Operator Curve (2016).
URL http://CRAN.R-project.org/package=nproc. R package version 0.1

16. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support
vector machine classification and validation of cancer tissue samples using microarray
expression data. Bioinformatics 16(10), 906–914 (2000)

17. Galas, D.J., Schmitz, A.: DNase footprinting a simple method for the detection of protein-DNA
binding specificity. Nucleic acids research 5(9), 3157–3170 (1978)

18. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H.,
Loh, M.L., Downing, J.R., Caligiuri, M.A., et al.: Molecular classification of cancer: class
discovery and class prediction by gene expression monitoring. science 286(5439), 531–537
(1999)

19. Han, M., Chen, D., Sun, Z.: Analysis to Neyman-Pearson classification with convex loss
function. Anal. Theory Appl. 24(1), 18–28 (2008). DOI 10.1007/s10496-008-0018-3

20. He, H.H., Meyer, C.A., Chen, M.W., Zang, C., Liu, Y., Rao, P.K., Fei, T., Xu, H., Long, H., Liu,
X.S., et al.: Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription
factor footprint identification. Nature methods 11(1), 73–78 (2014)

21. Huang, H., Liu, C.C., Zhou, X.J.: Bayesian approach to transforming public gene expression
repositories into disease diagnosis databases. Proceedings of the National Academy of
Sciences 107(15), 6823–6828 (2010)

22. Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab,
M., Antonescu, C.R., Peterson, C., et al.: Classification and diagnostic prediction of cancers
using gene expression profiling and artificial neural networks. Nature medicine 7(6), 673–679
(2001)

23. Koltchinskii, V.: Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery
Problems (2008)

24. Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: A review of classifi-
cation techniques. Informatica 31, 249–268 (2007)

25. Lee, Y., Lee, C.K.: Classification of multiple cancer types by multicategory support vector
machines using gene expression data. Bioinformatics 19(9), 1132–1139 (2003)

http://CRAN.R-project.org/package=nproc

166 J.J. Li and X. Tong

26. Lewis, D.D.: Naive (Bayes) at forty: The independence assumption in information retrieval.
In: Machine learning: ECML-98, pp. 4–15. Springer (1998)

27. Liu, C.C., Hu, J., Kalakrishnan, M., Huang, H., Zhou, X.J.: Integrative disease classification
based on cross-platform microarray data. BMC Bioinformatics 10(Suppl 1), S25 (2009)

28. Liu, F., Wee, C.Y., Chen, H., Shen, D.: Inter-modality relationship constrained multi-modality
multi-task feature selection for Alzheimer’s disease and mild cognitive impairment identifica-
tion. NeuroImage 84, 466–475 (2014)

29. Ma, S., Song, X., Huang, J.: Supervised group lasso with applications to microarray data
analysis. BMC bioinformatics 8(1), 1 (2007)

30. Mammen, E., Tsybakov, A.: Smooth discrimination analysis. Annals of Statistics 27,
1808–1829 (1999)

31. Neph, S., Vierstra, J., Stergachis, A.B., Reynolds, A.P., Haugen, E., Vernot, B., Thurman, R.E.,
John, S., Sandstrom, R., Johnson, A.K., et al.: An expansive human regulatory lexicon encoded
in transcription factor footprints. Nature 489(7414), 83–90 (2012)

32. Ng, K.L.S., Mishra, S.K.: De novo svm classification of precursor microRNAs from genomic
pseudo hairpins using global and intrinsic folding measures. Bioinformatics 23(11),
1321–1330 (2007)

33. Park, P.J., Tian, L., Kohane, I.S.: Linking gene expression data with patient survival times using
partial least squares. Bioinformatics 18(suppl 1), S120–S127 (2002)

34. Phillips, J.E., Corces, V.G.: Ctcf: master weaver of the genome. Cell 137(7), 1194–1211 (2009)
35. Platt, J., et al.: Probabilistic outputs for support vector machines and comparisons to regularized

likelihood methods. Advances in large margin classifiers 10(3), 61–74 (1999)
36. Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C.H., Angelo, M., Ladd, C.,

Reich, M., Latulippe, E., Mesirov, J.P., Poggio, T., Gerald, W., Loda, M., Lander, E.S., Golub,
T.R.: Multiclass cancer diagnosis using tumor gene expression signatures. Proceedings of the
National Academy of Sciences 98(26), 15,149–15,154 (2001)

37. Rigollet, P., Tong, X.: Neyman-Pearson classification, convexity and stochastic constraints.
Journal of Machine Learning Research 12, 2831–2855 (2011)

38. Scott, C.: Comparison and design of Neyman-Pearson classifiers. Unpublished (2005)
39. Scott, C.: Performance measures for Neyman-Pearson classification. IEEE Transactions on

Information Theory 53(8), 2852–2863 (2007)
40. Scott, C., Nowak, R.: A Neyman-Pearson approach to statistical learning. IEEE Transactions

on Information Theory 51(11), 3806–3819 (2005)
41. Segal, N.H., Pavlidis, P., Antonescu, C.R., Maki, R.G., Noble, W.S., DeSantis, D., Woodruff,

J.M., Lewis, J.J., Brennan, M.F., Houghton, A.N., Cordon-Cardo, C.: Classification and
subtype prediction of adult soft tissue sarcoma by functional genomics. The American Journal
of Pathology 163(2), 691–700 (2003)

42. Song, L., Zhang, Z., Grasfeder, L.L., Boyle, A.P., Giresi, P.G., Lee, B.K., Sheffield, N.C.,
Gräf, S., Huss, M., Keefe, D., et al.: Open chromatin defined by DNaseI and faire identifies
regulatory elements that shape cell-type identity. Genome research 21(10), 1757–1767 (2011)

43. Specht, D.F.: Probabilistic neural networks. Neural networks 3(1), 109–118 (1990)
44. Statnikov, A., Aliferis, C.F., Tsamardinos, I., Hardin, D., Levy, S.: A comprehensive evaluation

of multicategory classification methods for microarray gene expression cancer diagnosis.
Bioinformatics 21(5), 631–643 (2005)

45. Tarigan, B., van de Geer, S.: Classifiers of support vector machine type with l1 complexity
regularization. Bernoulli 12, 1045–1076 (2006)

46. Tong, X.: A plug-in approach to Neyman-Pearson classification. Journal of Machine Learning
Research 14, 3011–3040 (2013)

47. Tong, X., Feng, Y., Li, J.J.: Neyman-pearson (np) classification algorithms and np receiver
operating characteristic (np-roc) curves Manuscript

48. Tong, X., Feng, Y., Zhao, A.: A survey on Neyman-Pearson classification and suggestions for
future research. Wiley Interdisciplinary Reviews: Computational Statistics 8, 64–81 (2016)

49. Tsybakov, A.: Optimal aggregation of classifiers in statistical learning. Annals of Statistics 32,
135–166 (2004)

Genomic Applications of NP Classification 167

50. Tsybakov, A., van de Geer, S.: Square root penalty: Adaptation to the margin in classification
and in edge estimation. Annals of Statistics 33, 1203–1224 (2005)

51. Wei, J.S., Greer, B.T., Westermann, F., Steinberg, S.M., Son, C.G., Chen, Q.R., Whiteford,
C.C., Bilke, S., Krasnoselsky, A.L., Cenacchi, N., et al.: Prediction of clinical outcome using
gene expression profiling and artificial neural networks for patients with neuroblastoma.
Cancer research 64(19), 6883–6891 (2004)

52. Wu, S., Lin, K., Chen, C., M., C.: Asymmetric support vector machines: low false-positive
learning under the user tolerance (2008)

53. Xing, E.P., Jordan, M.I., Karp, R.M., et al.: Feature selection for high-dimensional genomic
microarray data. In: ICML, vol. 1, pp. 601–608. Citeseer (2001)

54. Yanai, I., Benjamin, H., Shmoish, M., Chalifa-Caspi, V., Shklar, M., Ophir, R., Bar-Even, A.,
Horn-Saban, S., Safran, M., Domany, E., et al.: Genome-wide midrange transcription profiles
reveal expression level relationships in human tissue specification. Bioinformatics 21(5), 650–
659 (2005)

55. Yang, Y.: Minimax nonparametric classification-part i: rates of convergence. IEEE Transaction
Information Theory 45, 2271–2284 (1999)

56. Zadrozny, B., Langford, J., Abe, N.: Cost-sensitive learning by cost-proportionate example
weighting. IEEE International Conference on Data Mining p. 435 (2003)

57. Zhang, D., Shen, D., Initiative, A.D.N., et al.: Multi-modal multi-task learning for joint pre-
diction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage
59(2), 895–907 (2012)

58. Zhao, A., Feng, Y., Wang, L., Tong, X.: Neyman-Pearson classification under high dimensional
settings (2015). URL http://arxiv.org/abs/1508.03106

59. Zhou, J., Yuan, L., Liu, J., Ye, J.: A multi-task learning formulation for predicting disease
progression. In: Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 814–822. ACM (2011)

http://arxiv.org/abs/1508.03106

	Genomic Applications of the Neyman–Pearson Classification Paradigm
	1 Introduction
	2 Neyman–Pearson Paradigm
	2.1 An Estimate of Cα
	2.2 The NP Umbrella Algorithm

	3 Simulation
	3.1 Logistic Regression
	3.2 Support Vector Machines
	3.3 Random Forests

	4 Case Study
	5 Future Research and Genomic Applications of the Neyman–Pearson Classification
	5.1 Extension to Multi-class
	5.2 Sample Size Determination
	5.3 Automatic Disease Diagnosis
	5.4 Disease Marker Detection

	References

