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Abstract Cancer research is experiencing an evolution empowered by high-
throughput technologies that makes it possible to collect molecular information
for the entire genome at the DNA, RNA, protein, and epigenetic levels. Due to
the complex nature of cancer, several organizations have launched comprehensive
molecular profiling for thousands of cancer patients using multiple high-throughput
technologies to investigate cancer genomics, transcriptomics, proteomics, and
epigenomics. To speed up the bench-to-bedside translation, additional efforts
have been made to profile hundreds of preclinical cell line models coupled with
systematic screening of anticancer agents. This leads to an explosion of massive
genomic data that shifts the bottleneck from data generation to data analytics. In
this chapter, we will first introduce different types of genomic data as well as
resources from publicly accessible data repositories that can be utilized to search for
therapeutic targets for cancer treatment. We then introduce software tools frequently
used for genomic data mining. Finally, we summarize working algorithms for the
discovery of therapeutic biomarkers.

Keywords Genomics • Transcriptomics • Proteomics • Epigenomics •
Biomarker discovery • Cancer

1 Introduction

Cancer is a disease of genetics involving dynamic changes of the genome [1].
Multiple genetic alterations have been identified in cancer including somatic
mutations, DNA copy number change, epigenetic modifications, and dysregulated
gene expression. Systematic discovery of cancer-driven alterations not only helps
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us better understand tumorigenesis but also plays crucial roles in developing
biomarkers for cancer detection, diagnosis, and prognosis. Over the last decade,
there has been a dramatic advance in technologies allowing holistic interroga-
tions of various aspects of cellular process including mRNAs (transcriptome),
proteins (proteome), sequence and structural variations (genomics), metabolites
(metabolomics), and interactions (interactome). While data from individual assay
type is informative for certain aspects of biology, integrative analysis using multi-
assay data sets is more powerful and provides deeper insights into understanding
complex biological systems and diseases. As a result, there is an increasing trend
for both individual laboratories and large consortia to generate multi-assay genomic
profiling of cancer patients. For example, pioneering studies from the Sanger
Institute and the Johns Hopkins Hospital identified frequent mutations in melanoma
and colon cancer [2, 3]. Later studies in Boston and New York uncovered activating
mutations in lung cancer which predicted response to kinase inhibitors [4–6].
Soon thereafter, the Human Cancer Genome Project was proposed by US National
Cancer Institute which was later called The Cancer Genome Atlas (TCGA) [7].
In parallel, the International Cancer Genome Consortium (ICGC) was launched to
foster international collaborations for large-scale cancer genomics studies [8]. To
speed up the transition from bench to bedside, cell line models derived from cancer
patients have been under extensive investigation. Several studies have generated
comprehensive genomic characterizations of hundreds of cell line models coupled
with drug screening enabling us to generate predictors of drug sensitivity based on
genomic information [9–12].

While genomic data is now generated faster and cheaper than ever before, our
ability to manage, analyze, and interpret it has not paced with the data deluge.
Consequently, for the first time in history, the bottleneck in cancer research is
shifting from data collection to data mining [13]. The objective of this chapter is
to bridge the gap between advances in high-throughput genomics and our ability
to manage, integrate, and analyze genomic data with special focus on therapeutic
biomarker discovery. We begin with the definition of biomarker and an overview
of different types of genomic data. We then summarize resources from publicly
data repositories that can be utilized to search for therapeutic targets. We further
introduce software tools frequently used for genomic data mining. Finally, we
discuss working algorithms for the discovery of biomarkers.

2 Biomarkers in Cancer

According to National Cancer Institute, a biomarker is defined as a molecule found
in blood or other body fluids that is objectively measured and evaluated as an
indicator of disease status, pathogenic processes, or pharmacologic responses to
therapeutic agents [14]. Biomarkers have been utilized for various applications
including (1) measuring the natural history of disease, (2) correlating with clinical
outcomes, (3) determining the biological effect of a therapeutic intervention, and
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(4) serving as surrogate endpoints in clinical trials [15, 16]. Based on their
utility, several types of biomarkers exist. Diagnostic biomarkers are used for early
disease detection. Predictive biomarkers can infer the efficacy or toxicity of a
drug. Prognostic biomarkers are used to assess if a patient receiving treatment will
perform well or whether more aggressive treatment is needed to prevent recurrence.
Staging biomarkers are used to determine the stage of progression of a disease.

Several methods can be used to identify candidate biomarkers. The classic
approach is to identify biomarkers based on tumor biology where pivotal molecules
in regulatory pathways are selected as candidates. However, such approach is time-
consuming giving the large number of molecules and metabolites to be searched
for. Recent development of high-throughput technologies has brought biomarker
discovery into the “omics” era enabling simultaneous measurement of thousands of
molecules. Genomics studies involving genotyping and next-generation sequencing
have identified a considerable amount of biomarkers (such as single-nucleotide
polymorphisms and structural variations) associated with drug efficacy and disease
progression [17, 18]. Similarly, transcriptome and proteome profiling have also
revealed biomarkers (such as dysregulated expression of RNA and proteins) that
are highly correlated with clinical outcomes [19, 20].

3 High-Throughput Genomics

Over the past decade, there has been a dramatic advance in technologies enabling
genome-scale data collection regarding various aspects of cellular process including
sequence and structural variation, transcriptome, epigenome, and proteome. These
technologies generate massive amounts of genomic data faster than ever before.
Below we summarize major types of genomics data in cancer research and related
technologies used to collect such data.

3.1 Transcriptomics

Transcriptomics is the study of the complete set of RNA transcripts produced by the
genome. Data collected for transcriptome starts with DNA microarrays using either
spotted oligonucleotides or in situ synthesized probes to quantitatively measure
mRNA levels of a large number of genes. The emergence of low-cost short read
sequencing, also known as next-generation sequencing (NGS) technology, escalates
transcriptomics studies to a new level by overcoming many drawbacks inherent in
microarray such as requirement of carefully designed probes, cross-hybridization,
high background noise, and low resolution [21]. In addition to provide fast and
accurate measurement of transcripts, NGS RNA sequencing also facilitates deeper
understanding of the transcriptome including alternative splicing, gene fusion, and
isoform expression. It is worth noting that transcriptomics studies are not limited
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to the investigation of messenger RNA. For example, whole genome profiling of
microRNAs and other noncoding RNAs is usually employed to decipher post-
transcriptional regulation of gene expression [22].

3.2 Proteomics

Proteomics is the large-scale study of proteins including protein abundance, modi-
fications, localizations and interactions. The growth of proteomics studies owes to
the advances in protein technologies such as capillary electrophoresis, high perfor-
mance liquid chromatography (HPLC), matrix-assisted laser desorption/ionization
(MALDI), and mass spectrometry [23]. The reverse-phase protein array (RPPA) first
introduced in the early 2000s is widely used in biomarker discovery, therapeutic
target evaluation, and cancer research. It now becomes a promising tool for clinical
trials [24].

3.3 Epigenomics

Epigenomics refers to the study of epigenetic modifications in the DNA sequence
as well chromatin including DNA methylation, covalent modifications of cytosine,
and post-translational modifications of histones such as methylation, acetylation,
and phosphorylation [25]. Functionally, epigenetic modifications are involved in
regulation of gene expression, gene dosage, chromosome inactivation, and genome
imprinting. It has been found that changes in epigenomics have been implicated
in multiple diseases including cancer [26]. Epigenomics can be studied using DNA
methylation array or next-generation sequencing with chemically treated DNA [27].

3.4 Sequence Variation

Genomic sequence variation includes single-nucleotide polymorphisms (SNP),
mutations, copy number variations, and structural variations. The ultimate goal
of human genetics is to identify all genomic sequence variation and deciphers
how they contribute to phenotype and diseases. Currently, SNP arrays are cost-
effective instruments to identify SNPs and copy number variations. In contrast, NGS
technologies can be applied to interrogate all the genomic variations and provide
higher resolution data for downstream functional studies [28].
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4 Resources for Genomic Data

There is a rich source of public genomic data which provides unprecedented
possibilities for hypothesis generation and data mining.

4.1 Gene Expression Omnibus (GEO)

GEO (http://www.ncbi.nlm.nih.gov/geo) is the largest public repository for high-
throughput gene expression data [29]. GEO archives and freely distributes microar-
ray, next-generation sequencing, and other forms of high-throughput functional
genomic data generated by the scientific community. There are three main entities
in GEO database: Platform, Sample, and Series [30]. A Platform record includes a
summary description of the array or sequencer and an additional table providing
probe annotation or sequence information. Each Platform record is assigned a
unique GEO accession number with prefix GPL. A Sample record provides all
information related to a sample including phenotype information, experimental
protocol, and abundance measurements for each feature recorded in the Platform.
Sample accession numbers have a GSM prefix. A Series record defines a set of
Samples related to a particular study and provides a description of overall study
design. Series records have a prefix GSE. As of 2013, the GEO database hosts
>32,000 records of Series submitted by around 13,000 laboratories, corresponding
to 800,000 samples derived from over 1600 organisms [31]. Genomic data is
worthless without contextual biological details and analysis methodologies for
preprocessing. To ensure important information is preserved, scientific reporting
standards have been proposed such as MIAME (Minimum Information About a
Microarray Experiment) for data annotation and MINiML (MIAME Notation in
Markup Language) for XML based data exchange [31]. The GEO database is in
compliance with both MIAME and MINiML standards which greatly facilitates data
retrieval. In addition to provide a searchable database for data retrieval, GEO now
includes basic data mining and visualization functionalities. Users can compare two
sets of samples with specified statistical parameters, construct clustered heatmaps,
retrieve profiles with similar patterns of expression, and identify profiles belonging
to the same homologs [32]. A major update recently was the release of GEO2R web
application which allows users to perform sophisticated analysis using R [31]. Once
a user specifies a Series number to be analyzed, GEO will retrieve the data using
GEOquery [33] in the backend. The retrieved data is then subjected to analysis
specified by user or from default settings. Results computed from the server are
transferred to user using JSON and rendered as HTML page. Since R script is
provided, users can always reproduce the analysis and fine-tune it offline.

http://www.ncbi.nlm.nih.gov/geo
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4.2 ArrayExpress

ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) is the European counterpart of
GEO. ArrayExpress complies with the MIAME and MAGE-ML (Microarray Gene
Expression Markup Language) standards to ensure data consistency. Currently,
ArrayExpress contains more than 1.8 million samples with high-throughput assays
across over 62,000 studies with a total file size of 40 TB. Programmatic access
of the ArrayExpress data is available through the ArrayExpress Bioconductor
package [34].

4.3 The Cancer Genome Atlas (TCGA)

The first public repository dedicated to cancer is TCGA (https://tcga-data.nci.
nih.gov/tcga/). The overall goal of TCGA is to generate comprehensive, multi-
dimensional profiling of genomic alterations in major cancer types. TCGA is
organized by different centers responsible for sample collection, processing, and
analysis. First, Tissue Source Sites (TSSs) collect biospecimens from eligible
cancer patients and deliver them to Biospecimen Core Resources (BCRs). BCRs
then catalogue, process, and verify the received samples before submitting to
Data Coordinating Centers (DCC). DCCs provide molecular analytes for the
Genome Characterization Centers (GCCs) and Genome Sequencing Centers (GSCs)
for genomic characterization. The generated genomic data is passed to Genome
Data Analysis Centers (GDACs) for information processing, analysis, and tool
development. All data generated is made publicly available through TCGA Data
Portal (https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp) and CGHub (https://
cghub.ucsc.edu/). TCGA employs several high-throughput technologies including
microarrays, next-generation sequencing, and reverse-phase protein array (RPPA) to
interrogate global alterations at DNA, RNA, and protein levels. In particular, RNA
sequencing provides transcriptomic monitoring of gene expression, isoforms, gene
fusions, and noncoding RNAs. DNA sequencing determines genetic alterations such
as insertions, deletions, polymorphisms, and copy number variations. SNP-based
platforms assess single-nucleotide polymorphisms (SNPs), copy number variations,
and loss of heterozygosity (LOH). Array-based methylation provides epigenetic
information at CpG sites. Bisulfite sequencing characterizes DNA methylation at
single nucleotide resolution. RPPA provides quantitative measurements of protein
expression with high sensitivity. Since its inaugural in 2006, TCGA has comprehen-
sively profiled more than 10,000 samples across 33 cancer types.

https://www.ebi.ac.uk/arrayexpress/
https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp
https://cghub.ucsc.edu/
https://cghub.ucsc.edu/
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4.4 International Cancer Genome Consortium (ICGC)

While TCGA provides comprehensive genomic characterization for cancer patients
in the USA, the ICGC project (https://icgc.org/) aims to generate an extensive
catalogue of genomic abnormalities for cancer patients throughout the world con-
tributed by different participating countries. Currently, the ICGC data portal records
78 projects covering 50 different cancer types. The ICGC data portal periodically
updates with newly generated data and provides tools for data downloading,
visualizing, and querying. Due to the large size of data which may take months
to download, ICGC partners with Amazon Web Services to facilitate data access
through the cloud. ICGC also releases analytic workflows so that users can analyze
their data using the same workflows after initiating an Amazon machine.

4.5 The NCI-60 Cell Line Panel

Immortalized cell lines derived from human cancer have made significant contri-
butions to cancer biology and formed the basis of current understanding of drug
sensitivity and resistance. Therefore, systematic genomic characterization of cell
line models coupled with pharmacological interrogation would greatly facilitate
biomarker identification and drug development. One of the early endeavors is the
NCI-60 project which has released a panel of 60 cell lines with high-throughput
gene genomic profiling including DNA copy number, gene expression, protein
expression, and mutation and additional anticancer drug screening [11]. The NCI-
60 panel quickly becomes a rich source of information to investigate mechanisms of
drug resistance. A major discovery using the NCI-60 data set has been the linkage
between P-glycoprotein expression and multi-drug resistance [35].

4.6 Cancer Cell Line Encyclopedia (CCLE)

Following the success of NCI60, the CCLE project (http://www.broadinstitute.
org/ccle/home) [9] has extended genomic characterization to around 1000 cell
lines using gene expression, chromosomal copy number, and massively parallel
sequencing technology. CCLE has also screened 24 anticancer drugs from 479 cell
lines using an automated compound-screening platform [9]. An integrative analysis
of the CCLE data identified genetic, lineage and gene expression based predictors
of pharmacological vulnerabilities which had important clinical implications for
personalizing cancer therapy [9].

https://icgc.org/
http://www.broadinstitute.org/ccle/home
http://www.broadinstitute.org/ccle/home
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4.7 Genomics of Drug Sensitivity in Cancer (GDSC)

Similar to CCLE, the GDSC (http://www.cancerrxgene.org/) database has profiled
138 anticancer drugs encompassing both targeted agents and cytotoxic therapeutics
across 700 cancer cell lines [12]. Initial analysis using GDSC data found that
mutated cancer genes were markers of sensitivity or resistance to a broad range
of anticancer drugs. Further, the mutated cancer genes mostly associated with
sensitivity were found to be oncogenes that were direct targets of the drug [12]. On
the other hand, inactivating mutations in tumor suppressors were associated with
drug resistance [12]. For example, mutations in BRAF, an oncogene responsible
for protein kinase signaling, were associated with sensitivity of BRAF inhibitors
MEK1 and MEK2. In contrast, mutations in TP53, an important tumor suppressor
responsible for apoptosis, conferred resistance to nutlin-3a, which was an inhibitor
of MDM2 that negatively regulated p53 protein [36].

4.8 Cancer Therapeutics Response Portal (CTRP)

In addition to identify biomarkers of drug sensitivity, genomic characterization
coupled with drug screening can also shed light on mechanisms of action (MoA).
Recently, the CTRP (http://www.broadinstitute.org/ctrp/) database published high
quality screening data of 481 compounds across 860 cancer cell lines spanning
23 lineages [10]. By comparing the sensitivity pattern of compounds targeting
the same gene, targeting genes in the same pathway and targeting genes that
metabolically process the compounds, the authors observed that sensitivity may
depend on metabolic activation, import of the compound, the presence of target-drug
complex, and the presence of target expression. On the other hand, drug resistance
was linked to drug inactivation or an efflux mechanism that depleted drug from the
cell [10].

4.9 Project Achilles

In an effort to identify genes essential for cell proliferation and viability in
cancer cell lines, Project Achilles (https://www.broadinstitute.org/achilles) employs
genome-wide genetic perturbation experiments using pooled shRNA technology.
The screening pipeline uses around 54,000 shRNA plasmids targeting 11,000 genes
with a minimum representation of 200 cells per shRNA [37]. The pooled shRNA
screens are able to silence or knock-out genes and thus identify genes essential for
growth and survival. After incubation for a certain period of time, the cell lines are
harvested to determine relative levels of shRNA plasmids using Illumina sequencing
technology. When linked with genetic characteristics of the cell lines, Project
Achilles provides valuable information for prioritizing targets for therapeutic drug
development.

http://www.cancerrxgene.org/
http://www.broadinstitute.org/ctrp/
https://www.broadinstitute.org/achilles
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While individual data resource introduced here can be helpful in addressing
different questions, it is usually more valuable to integrate across different resources
since they largely provide complementary information. For example, candidate
biomarkers overexpressed in cancers can be identified using the TCGA data.
The therapeutic relevance of such biomarkers in terms of in vitro drug sensi-
tivity can then be evaluated using the NCI-60 panel, the CCLE, and the GDSC
database. Finally, essentiality of these biomarkers from knock-out experiments can
be extracted from the Project Achilles data. Such an integrated analysis not only
provides a full picture of the utility associated with identified biomarkers, but
greatly narrows down the number of candidates and thus can greatly reduce costs in
validating the biomarkers.

5 Tools for Mining Genomic Data

Choosing the right set of tools is vital for genomic data mining. One of the
most popular tools is the R programming language, an open source environment
for statistical computing. R has strong support for statistical analysis including
linear and nonlinear modeling, hypothesis testing, time series analysis, spatial
analysis, clustering, and classification. R also provides various facilities for data
manipulation, calculation, and visualization [38]. Further, R is highly extensible
with lots of packages contributed by users in the R community. Among the
various packages dedicated to high-throughput genomics, Bioconductor is one
of the most comprehensive and versatile tools [39]. It greatly facilitates rapid
creation of pipelines by combining multiple procedures. Bioconductor includes
tools for all stages of analysis ranging from data generation to final presentation.
Bioconductor also has high quality documentation through three levels: vignettes
that provide example usages of a particular package; manual pages that precisely
describe inputs, outputs and examples of a function; and workflows that showcase
complete analysis spanning multiple tools and packages. Recently, Bioconductor
has enhanced its functionality by enabling analysis of next-generation sequencing
data. Core infrastructure includes Biostrings for DNA and amino acid sequence
manipulation, ShortRead for FASTQ files, IRanges and GenomicRanges for genome
coordinate calculation, GenomicAlignments and Rsamtools for aligned sequencing
data, BSgenome for curated whole-genome sequence, and rtracklayer for integration
of genome browsers with experimental data. Currently, Bioconductor has 1104
packages, 895 annotation databases, and 257 packaged experimental data and the
functionality is still expanding.

Genomic data will be useless if no metadata is given regarding the entities
measured such as gene symbols, probe ID, genomic coordinates, and genome
versions. Public service providers and instrument vendors have websites from which
users can download relevant information for offline data wrangling. However, this
process is time-consuming, error-prone, and irreproducible. The biomaRt package
hosted on the Bioconductor repository provides a unified interface for accessing a
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large collection of databases including NCBI (National Center for Biotechnology
Information), Ensembl, UCSC (University of California, Santa Cruz), COSMIC
(Catalogue of Somatic Mutations in Cancer), Uniprot (Universal Protein Resource),
HGNC (HUGO Gene Nomenclature Committee providing official gene names), and
Reactome (curated biological pathways) [40]. BiomaRt allows seamless integration
of identifier mapping and annotation into data analysis, creating a powerful platform
for biological data mining [41].

Although R combined with Bioconductor proves to be a powerful computing
engine for genomic analysis, users are required to have reasonable programming
skills to fully unleash its power. Alternately, there are web-based tools suited
for both experimentalists and computational colleagues where analysis can be
performed with mouse click. Galaxy is one of such tools with a web-based graphical
user interface for accessible, reproducible, and transparent genomic data mining
[42]. By encapsulating high-end computation tools while hiding the technical details
of computation and storage, the Galaxy software becomes highly accessible to
users without programming skills. By automatically tracking metadata regarding
input data sets, analysis parameters, analytic components and output data, and by
supporting user specified annotations and tags, Galaxy makes it easy to assemble
and reproduce any given analysis [43]. Galaxy also makes analysis transparent by
allowing users to share their analysis using Galaxy’s sharing model. This includes
a web-based framework for displaying results, customizable web pages that users

Fig. 1 An example Galaxy workflow for RNAseq differential expression analysis. Each box
represents a tool with input and output files. Users can connect the output files of one component
to the input of another component to form a complete analysis. A compatible link between
components will become green to aid users. Here input FASTQ files are fed into Tophat for
alignment. The resulting bam file is then sorted and indexed for Cuffdiff differential gene
expression analysis
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can freely modify, and a public repository hosting published items such as datasets,
histories, and workflows [42].

The Galaxy workflow greatly enhances usability by providing a drag-and-drop
interface for building analytic pipelines. Figure 1 demonstrates a workflow for
RNAseq differential expression analysis. Users insert different analytic components
into the workflow canvas and connect them to form a complete analysis. The
workflow editor verifies each link between the tools for compatibility. Compatible
links will turn green transiently to visually aid workflow construction. To further
simplify the creation of workflows, Galaxy allows users to create workflows from
analysis history. This feature greatly simplifies workflow usage since users do not
need to plan analysis upfront. In addition, Galaxy is highly extensible. Any piece of
software written in any language can be integrated into the Galaxy workflow. To add
a new tool to Galaxy, users only need to specify a configuration file dictating how to
run the tool. Additionally, users need to describe input and output parameters so that
the Galaxy framework knows how to work with the tool abstractly and automatically
generates a web interface for it.

An alternative tool to Galaxy is the GenePattern software (www.genepattern.org/)
which also does not require programming skills. GenePattern is claimed as a
pipeline builder providing form-based methods for data preprocessing, analysis,
and visualization [44]. GenePattern hosts different modules through a centralized
repository so that users can download or upgrade when needed. In addition to
the graphical user interface, GenePattern also allows command line access which
makes automatic batch processing possible. Currently, users can access GenePattern
through R, Matlab, and Java by invoking a local GenePattern instance. The
combination of a graphical user interface with a programmatic console becomes a
unique feature of GenePattern. Since its first release in 2004, GenePattern has over
23,000 registered users from over 2900 commercial and non-profit organizations
worldwide.

There are also tools built on well-curated cancer genomic data. Here we
illustrate two examples: cBioPortal (http://www.cbioportal.org/) and Oncomine
(http://www.oncomine.org). cBioPortal provides a web interface for exploring, visu-
alizing, analyzing, and downloading multi-platform cancer genomic data [45]. By
hosting a large set of well-curated cancer genomic data including somatic mutation,
mRNA and microRNA expression, protein expression, DNA copy number, and
DNA methylation, cBioPortal greatly facilitates integrative genomic analysis by
allowing users to query multiple data types and their associations at individual gene
level. Further, cBioPortal also supports mutual exclusivity analysis for genomic
alterations, survival analysis, co-expression analysis, enrichment analysis, and
network analysis. While cBioPortal focuses on multi-platform cancer genomic data,
Oncomine specializes in microarray gene expression data. Currently, Oncomine
hosts 715 datasets consisting of 86,733 samples. Oncomine also provides a web
interface for users to perform differential gene expression, co-expression, inter-
action network, cancer outlier profile analysis (COPA), and molecular concept
analysis [46].

http://www.genepattern.org/
http://www.cbioportal.org/
http://www.oncomine.org/
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6 Algorithms for Cancer Biomarker Discovery

To identify biomarkers of various utilities, both supervised and unsupervised
methods can be used. For supervised biomarker discovery, an outcome variable
associated with each sample is required so that candidate markers predictive to the
outcome variable can be identified. In comparison, unsupervised methods rely on
the genomic assays only and search candidate biomarkers by modeling the signals
from genomic measurements. Below we introduce several popular algorithms for
both supervised and unsupervised biomarker discovery.

6.1 Supervised Methods

A common task of genomic biomarker discovery is to compare the gene expression
levels (e.g., transcriptomic expression, proteomic expression, or microRNA expres-
sion) of samples under different treatment conditions or at different time points.
This task is usually called a differential gene expression (DEG) analysis. Numerous
methods have been published for DEG analysis using high-throughput genomics
data. A straightforward approach is to use a two-sample t-test (in the case of binary
outcome) or a linear regression framework (in the case of categorical or continuous
outcome). However, genomic data may contain outlier measurements that violate
the underlying statistical assumptions. Therefore, various variants of these methods
have been developed by considering statistical robustness. One of the most popular
methods used in gene expression analysis is the significance analysis of microarray
(SAM) software developed by Tusher et al. [47]. For a two-sample comparison,
SAM computes a “relative difference” metric d(i) for each gene i:

d.i/ D x1.i/ � x2.i/

s.i/ C s0

Here x1.i/ and x2.i/ are the average expression in the two groups, s(i) is the gene
specific standard deviation of the repeated measurements, and s0 is a stabilizing
constant chosen to penalize uninteresting genes with poor signal to noise ratio. Since
a theoretical null distribution of d(i) is difficult to obtain, SAM instead resorts to a
permutation based approach to assess statistical significance.

The original SAM software only dealt with binary outcome. Later versions of
SAM allowed the analysis of data with multiclass outcome, continuous outcome,
and censored survival time. To do this, the authors extended the definition of d(i) as
following:

d.i/ D ri

s.i/ C s0
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Here ri is a score defined differently for different types of outcome. More details
about this extension can be found on the SAM manual (http://statweb.stanford.edu/~
tibs/SAM/).

An important concept for biomarker discovery is that statistical significance does
not ensure biological significance. Clinically useful biomarkers need to have strong
dynamic range and a manageable gene size so that they can be easily assayed in
a single panel. The SAM method computes a score for each gene and additional
filtering step is needed to narrow down the gene list. The Top Scoring Pair (TSP)
method uses a different strategy by comparing the relative expression of every
possible gene pairs [48]. It effectively reduces the number of biomarkers to two
and limits the selected genes to have a strong contrast easy to quantify [48]. Let the
expression of a particular gene in sample i be xi and let the class label associated
with each sample be c which can be any value in f1, 2, : : : , Cg. TSP computes the

frequency of observing xi < xj for each class c as pij .c/ D P
�

xi < xj

ˇ̌
ˇc

�
. In the

case of C D 2, the TSP score �ij is defined as following although this metric can be
extended to higher number of classes:

�ij D ˇ̌
pij.1/ � pij.2/

ˇ̌

The TSP method selects genes based on their relative expression, which is different
from other approaches used in DEG analysis. Further, a TSP pair provides a simple
rule to classify samples into different classes. For example, if gene i has higher
expression than gene j in a TSP pair, the sample will be classified as class 1 or
class 2 otherwise depending on the relative conditional probabilities. Notice that this
classification rule only requires relative expression between the two genes, which
will make such biomarkers more robust and easy to interpret. Various studies have
reported the success of TSP as a two-gene classifier [49–51]. However, for data
sets with a complex phenotype, a single TSP pair may not be sufficient. The so-
called k-TSP method has been proposed to make use of top k scoring pairs [52,
53]. Although a majority vote can be used to obtain a final classification, other
supervised machine learning methods have been used and benchmarked including
support vector machine, decision trees, naive Bayes classifier, k-nearest neighbor
(k-NN), and prediction analysis of microarray (PAM) [52, 53].

A major approach to narrow down selected biomarkers is through variable
selection in the framework of linear regression. The traditional stepwise variable
selection approach only works for data with a small set of features and becomes
computationally infeasible for big data such as microarray or RNAseq. Shrinkage
estimators such as lasso (least absolute shrinkage and selection operator) have been
developed to efficiently deal with such high-dimensional genomic data. Later efforts
have extended the original lasso method including the grouped lasso by Yuan et al.
where variables are selected or excluded in groups [54], the elastic net by Zou et al.
which deals with correlated variables through a hybrid penalty [55], the graphical
lasso by Friedman et al. for space covariance estimation [56], and the regularization
paths for support vector machine [57].

http://statweb.stanford.edu/~tibs/SAM/
http://statweb.stanford.edu/~tibs/SAM/
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Here we summarize the algorithms for lasso and closely related methods
including elastic net and ridge regression. Given the response variable Y 2 R and
a predictor vector X 2 Rp in a p dimensional space, we can approximate a linear

function through E
�

Y
ˇ̌
ˇX D x

�
D “0 C xTˇ after observing N observation pairs

(xi, yi) for i D 1; 2; : : : ; N by solving the following optimization problem [58]:

min
.“0;“/2RpC1

R� .“0; “/ D min
.“0;“/2RpC1

"
1

2N

NX
iD1

�
yi � “0 C xi

Tˇ
�2 C �P˛ .“/

#

where P˛(“) is the elastic net penalty term [55] defined as

P˛ .“/ D .1 � ˛/ 1
2
jjˇjj2�2 C ˛jjˇjj1�1 .

Here � is a tuning parameter that users can specify or can be automatically
calculated using cross validation based on prediction error.

Both the lasso algorithm (when ˛ D 1) and ridge regression (when ˛ D 0)
are special cases of the elastic net method. Lasso provides coefficient estimates as
either zero (for excluded variables) or nonzero (for selected variables) which is quite
appealing for big genomic data. Ridge regression, on the other hand, only shrinks
the coefficients and provides nonzero estimates only. For correlated variables, lasso
tends to just pick one while ignore others. On the other hand, ridge regression allows
borrowing information across all variables but retains all variables in the model. The
elastic net with 0 < ˛ < 1 enjoys the nice properties of both and usually performs
better in genomic data. Elastic net has been efficiently implemented using cyclical
coordinate descent and is publicly available in the R package glmnet.

Traditional strategies for biomarker discovery have focused on individual genes.
However, tumorigenesis is a multi-step process involving sequential acquisitions
of multiple genomic alterations regulated by different pathways and regulatory
networks [62]. It is therefore appealing to identify biomarkers as sets of genes.
According to Huang et al., three types of gene set analysis tools are available
[63]. The first type is called singular enrichment analysis (SEA) which takes a
preselected gene list as input and iteratively computes statistical enrichment of
annotated gene sets by comparing them to random gene sets. The second type is
called modular enrichment analysis (MEA) which considers inter-relationships as
well as redundancies among annotated gene sets. MEA extends enrichment analysis
from gene-centric or term-centric analysis to module-centric analysis which is more
biologically plausible. The third type is called gene set enrichment analysis (GSEA).
Different from SEA or MEA which requires a filtered gene list as input, GSEA
takes into account all genes available and thus avoids the need of arbitrary cutoff for
gene filtering. Different tools have different advantages and limitations. Users need
to choose a tool that best fits their needs by considering the underlying statistical
model, gene set annotation source, programming requirement, and output format.

Algorithms to identify cancer biomarkers are not limited to deal with a single
data type. Several methods have been developed to integrate information across
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data types. For example, integIRTy (integration using item response theory) is
able to identify altered genes from multiple assay types accounting for multiple
mechanisms of alteration [64]. integIRTy applies a latent variable approach to
adjust for heterogeneity among different assay types for accurate inference. RABIT
(regression analysis with background integration) is able to integrate public tran-
scription factor (TF) binding profiles with tumor-profiling datasets [65]. RABIT
controls confounding effects from copy number alteration, DNA methylation,
and TF somatic mutation to identify cancer-associated TFs using a regression
framework. Another interesting method is PARADIGM (PAthway Recognition
Algorithm using Data Integration on Genomic Models) that integrates different
genomic information based on pathway activity [66]. PARADIGM uses a factor
graph to represent NCI pathway information which makes it effective to model
different types of genomic data and various regulatory relationships.

6.2 Unsupervised Methods

The aforementioned methods are supervised since they require an outcome variable.
There are also unsupervised methods for cancer biomarker discovery. Motivations
for these methods originate from the fact that certain perturbations in the genome
such as focal copy number change, gene fusions and mutations may lead to
marked over-expression of oncogenes in a subset of samples. Since these oncogene
activation events do not necessarily occur across all samples, traditional analytical
approaches based on mean expression will fail [59]. Therefore, several methods
have been proposed for this situation. For example, cancer outlier profile analysis
(COPA) was developed to discover oncogenic chromosomal aberrations from outlier
profiles based on median and median absolute deviation of gene expression. COPA
identified the fusion of ERG and ETV1 which led to marked over-expression in
57 % of prostate cancer patients [59]. Later, a method called PACK (profile analysis
using clustering and kurtosis) showed improved result by using Bayesian informa-
tion criterion (BIC) and kurtosis [60]. Tong et al. developed SIBER (systematic
identification of bimodally expressed genes using RNAseq data) using mixture
model [61]. SIBER compares favorably to other methods and enjoys nice properties
such as robustness, increased statistical power, and invariance to transformation
[61]. We briefly summarize the SIBER algorithm here. Suppose the expression of
a gene in sample s is es, SIBER models the distribution of gene expression Pr(es)
using a two-component mixture model each with mean expression �1, �2 and a
shared dispersion parameter � as following:

Pr .es/ D � f .esI �1; �/ C .1 � �/ f .esI �2; �/

where � is the proportion of samples coming from the first component with density
function f (es; �1, �). The density function frequently used to model RNAseq data
can be negative Binomial, generalized Poisson or log-normal distribution. After
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estimating the parameters (� , �1, �2, �), SIBER computes a generalized bimodality
index BI as following:

BI D
p

� .1 � �/

ˇ̌
ˇ�1 � �2

ˇ̌
ˇ

q
.1 � �/ �2

1 C ��2
2

where �2
1, �2

2 were the variance of the two components. Through extensive simula-
tion and real data analysis, Tong et al. showed that SIBER was a robust and powerful
method to identify biomarkers with switch-like expression pattern [61].

7 Concluding Remarks

With recent advances in genomic technologies, the accumulation of genomic data
is far exceeding Moore’s law leading to the genomic data deluge. This represents a
clear opportunity as well as pressing challenge for computational scientists to wade
through the huge amount of data for biological insights. To identify biomarkers
for cancer therapeutics, we should be familiar with relevant data resources and
equip ourselves with effective computational tools. Given the extreme challenges for
genomic data, the future success of cancer genomic research requires a continuous
refinement and expansion of software tools and algorithms for the management,
analysis, integration, and interpretation of high-throughput data.
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