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Preface

At the beginning of the 21st century, next-generation sequencing (NGS) and
third-generation sequencing (TGS) technologies have enabled high-throughput
sequencing data generation for genomics; international projects (e.g., the Ency-
clopedia of DNA Elements (ENCODE) Consortium, the 1000 Genomes Project,
The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) program,
and the Functional Annotation Of Mammalian genome (FANTOM) project) have
been successfully launched, leading to massive genomic data accumulation at an
unprecedentedly fast pace.

To reveal novel genomic insights from those big data within a reasonable
time frame, traditional data analysis methods may not be sufficient and scalable.
Therefore, big data analytics have to be developed for genomics.

As an attempt to summarize the current efforts in big data analytics for genomics,
an open book chapter call is made at the end of 2015, resulting in 40 book chapter
submissions which have gone through rigorous single-blind review process. After
the initial screening and hundreds of reviewer invitations, the authors of each
eligible book chapter submission have received at least 2 anonymous expert reviews
(at most, 6 reviews) for improvements, resulting in the current 13 book chapters.

Those book chapters are organized into three parts (“Statistical Analytics,”
“Computational Analytics,” and “Cancer Analytics”) in the spirit that statistics form
the basis for computation which leads to cancer genome analytics. In each part,
the book chapters have been arranged from general introduction to advanced top-
ics/specific applications/specific cancer sequentially, for the interests of readership.

In the first part on statistical analytics, four book chapters (Chaps. 1–4) have
been contributed. In Chap. 1, Yang et al. have compiled a statistical introduction for
the integrative analysis of genomic data. After that, we go deep into the statistical
methodology of expression quantitative trait loci (eQTL) mapping in Chap. 2
written by Cheng et al. Given the genomic variants mapped, Ribeiro et al. have
contributed a book chapter on how to integrate and organize those genomic variants
into genotype-phenotype networks using causal inference and structure learning in
Chap. 3. At the end of the first part, Li and Tong have given a refreshing statistical
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perspective on genomic applications of the Neyman-Pearson classification paradigm
in Chap. 4.

In the second part on computational analytics, four book chapters
(Chaps. 5–8) have been contributed. In Chap. 5, Gupta et al. have reviewed
and improved the existing computational pipelines for re-annotating eukaryotic
genomes. In Chap. 6, Rucci et al. have compiled a comprehensive survey on the
computational acceleration of Smith-Waterman protein sequence database search
which is still central to genome research. Based on those sequence database
search techniques, protein function prediction methods have been developed
and demonstrated promising. Therefore, the recent algorithmic developments,
remaining challenges, and prospects for future research in protein function
prediction are discussed in great details by Shehu et al. in Chap. 7. At the end
of the part, Nagarajan and Prabhu provided a review on the computational pipelines
for epigenetics in Chap. 8.

In the third part on cancer analytics, five chapters (Chaps. 9–13) have been
contributed. At the beginning, Prabahar and Swaminathan have written a reader-
friendly perspective on machine learning techniques in cancer analytics in Chap. 9.
To provide solid supports for the perspective, Tong and Li summarize the existing
resources, tools, and algorithms for therapeutic biomarker discovery for cancer
analytics in Chap.10. The NGS analysis of somatic mutations in cancer genomes
are then discussed by Prieto et al. in Chap. 11. To consolidate the cancer analytics
part further, two computational pipelines for cancer analytics are described in the
last two chapters, demonstrating concrete examples for reader interests. In Chap.
12, Leung et al. have proposed and described a novel pipeline for statistical analysis
of exonic variants in cancer genomes. In Chap. 13, Yotsukura et al. have proposed
and described a unique pipeline for understanding genotype-phenotype correlation
in breast cancer genomes.

Kowloon Tong, Hong Kong Ka-Chun Wong
April 2016
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Part I
Statistical Analytics



Introduction to Statistical Methods
for Integrative Data Analysis in Genome-Wide
Association Studies

Can Yang, Xiang Wan, Jin Liu, and Michael Ng

Abstract Scientists in the life science field have long been seeking genetic
variants associated with complex phenotypes to advance our understanding of
complex genetic disorders. In the past decade, genome-wide association studies
(GWASs) have been used to identify many thousands of genetic variants, each
associated with at least one complex phenotype. Despite these successes, there
is one major challenge towards fully characterizing the biological mechanism of
complex diseases. It has been long hypothesized that many complex diseases
are driven by the combined effect of many genetic variants, formally known as
“polygenicity,” each of which may only have a small effect. To identify these genetic
variants, large sample sizes are required but meeting such a requirement is usually
beyond the capacity of a single GWAS. As the era of big data is coming, many
genomic consortia are generating an enormous amount of data to characterize the
functional roles of genetic variants and these data are widely available to the public.
Integrating rich genomic data to deepen our understanding of genetic architecture
calls for statistically rigorous methods in the big-genomic-data analysis. In this book
chapter, we present a brief introduction to recent progresses on the development
of statistical methodology for integrating genomic data. Our introduction begins
with the discovery of polygenic genetic architecture, and aims at providing a
unified statistical framework of integrative analysis. In particular, we highlight the
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4 C. Yang et al.

importance of integrative analysis of multiple GWAS and functional information.
We believe that statistically rigorous integrative analysis can offer more biologically
interpretable inference and drive new scientific insights.

Keywords Statistics • SNP • Population genetics • Methodology • Genomic
data

1 Introduction

Genome-wide association studies (GWAS) aim at studying the role of genetic vari-
ations in complex human phenotypes (including quantitative traits and qualitative
diseases) by genotyping a dense set of single-nucleotide polymorphisms (SNPs)
across the whole genome. Compared with the candidate-gene approaches which
only consider some regions chosen based on researcher’s experience, GWAS are
intended to provide an unbiased examination of the genetic risk variants [46].
In 2005, the identification of the complement factor H for age-related macular
degeneration in a small sample set (96 cases v.s. 50 controls) was the first successful
example of searching for risk genes under the GWAS paradigm [31]. It was a
milestone moment in the genetics community, and this result convinced researchers
that GWAS paradigm would be powerful even with such a small sample size. Since
then, an increasing number of GWAS have been conducted each year and significant
risk variants have been routinely reported. As of December, 2015, more than 15,000
risk genetic variants have been associated with at least one complex phenotypes at
the genome-wide significance level (p-value< 5 � 10�8) [61].

Despite the accumulating discoveries from GWAS, researchers found out that
the significantly associated variants only explained a small proportion of the
genetic contribution to the phenotypes in 2009 [42]. This is the so-called missing
heritability. For example, it is widely agreed that 70–80 % of variations in human
height can be attributed to genetics based on pedigree study while the significant
hits from GWAS can only explain less than 5–10 % of the height variance [1, 42]. In
2010, the seminal work of Yang et al. [66] showed that 45 % of variance in human
height can be explained by 294,831 common SNPs using a linear mixed model
(LMM)-based approach. This result implies that there exist a large number of SNPs
jointly contributing a substantial heritability on human height but their individual
effects are too small to pass the genome-wide significance level due to the limited
sample size. They further provided evidence that the remaining heritability on
human height (the gap between 45 % estimated from GWAS and 70–80 % estimated
from pedigree studies) might be due to the incomplete linkage disequilibrium (LD)
between causal variants and SNPs genotyped in GWAS. Researchers have applied
this LMM approach to many other complex phenotypes, e.g., metabolic syndrome
traits [56] and psychiatric disorders [11, 34]. These results suggest that complex
phenotypes are often highly polygenic, i.e., they are affected by many genetic
variants with small effects rather than just a few variants with large effects [57].
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The polygenicity of complex phenotypes has many important implications on the
development of statistical methodology for genetic data analysis. First, the methods
relying on “extremely sparse and large effects” may not work well because the sum
of many small effects, which is non-negligible, has not been taken into account.
Second, it is often challenging to pinpoint those variants with small effects only
based on information from GWAS. Fortunately, an enormous amount of data from
different perspectives to characterize human genome is being generated and much
richer than ever. This motivates us to search for relevant information beyond GWAS
(indirect evidence) and combine it with GWAS signals (direct evidence) to make
more convincing inference [15]. However, it is not an easy task to integrate indirect
evidence with direct evidence. A major challenge in integrative analysis is that the
direct evidence and indirect evidence are often obtained from different data sources
(e.g., different sample cohorts, different experimental designs). A naive combination
may potentially lead to high false positive findings and misleading interpretation.
Yet, effective methods that combine indirect evidence with direct evidence are still
lacking [23]. In this book chapter, we offer an introduction to the statistical methods
for integrative analysis of genomic data, and highlight their importance in the big
genomic data era.

To provide a bird’s-eye view of integrative analysis of genomic data, we start
with the introduction of heritability estimation because heritability serves as a
fundamental concept which quantifies the genetic contribution to a phenotype [58].
A good understanding of heritability estimation offers valuable insights of the
polygenic architecture of complex phenotypes. From a statistical point of view, it
is the polygenicity that motivates integrative analysis of genomic data such that
more genetic variants with small effects can be identified robustly. Our discussion
of the statistical methods for integrative analysis will be divided into two sections:
integrative analysis of multiple GWAS and integrative analysis of GWAS with
genomic functional information. Then we demonstrate how to integrate multiple
GWAS and functional information simultaneously in the case study section. At the
end, we summarize this chapter with some discussions about the future directions
of this area.

2 Heritability Estimation

The theoretical foundation of heritability estimation can be traced back to R. A.
Fisher’s development [20], in which the phenotypic similarity between relatives
is related to the degrees of genetic resemblance. In quantitative genetics, the
phenotypic value (P) is modeled as the sum of genetic effects (G) and environmental
effects (E),

P D �C GC E; (1)
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where � is the population mean of the phenotype. To keep our introduction simple,
G and E are assumed to be independent, i.e., Cov.G;E/ D 0. The genetic effect can
be further decomposed into the additive effect (also known as the breeding value),
the dominance effect and the interaction effect, G D A C D C I. Accordingly, the
phenotype variance can be decomposed as

�2P D �2G C �2E D .�2A C �2D C �2I /C �2E; (2)

where �2G is the variance due to genetic variations, �2A; �
2
D; �

2
I , and �2E correspond to

the variance of additive effects, dominance effects, interaction effects (also known
as epistasis), and environmental effects, respectively. Based on these variance
components, two types of heritability are defined. The broad-sense heritability (H2)
is defined as the proportion of the phenotypic variance that can be attributed to the
genetic factors,

H2 D �2G

�2P
D �2A C �2D C �2I
�2A C �2D C �2I C �2E

: (3)

The narrow-sense heritability (h2), however, focuses only on the contribution of the
additive effects:

h2 D �2A

�2A C �2E
: (4)

Due to the law of inheritance, individuals can only transmit one allele of each
gene to their offsprings, most relatives (except full siblings and monozygotic twins)
share only one allele or no allele that is identical by descent (IBD). Therefore,
the dominance effects and interaction effects will not contribute to their genetic
resemblance as these effects are due to the sharing two IBD alleles. Accumulating
evidence suggests that non-additive genetic effects on complex phenotypes may be
negligible [28, 64, 69]. For example, Yang et al. [64] reported that the additive
effects of about 17 million imputed variants explained 56 % variance of human
height, leaving a very small space for the non-additive effects to contribute. Zhu
et al. [69] found the dominance effects on 79 quantitative traits explained little
phenotypic variance. Therefore, we will ignore non-additive effects and concentrate
our discussion on narrow-sense heritability in this book chapter.

2.1 The Basic Idea of Heritability Estimation
from Pedigree Data

In this section, we will introduce the key idea of heritability estimation from
pedigree data, which provides the basis of our discussion on integrative analysis.
Interested readers are referred to [18, 27, 40, 59] for the comprehensive discussion



Introduction to Statistical Methods for Integrative Data Analysis in Genome-. . . 7

of this issue. Assuming a number of conditions (e.g., random mating, no inbreeding,
Hardy–Weinberg equilibrium, and linkage equilibrium), a simple formula for the
genetic covariance between two relatives can be derived based on the additive
variance component:

Cov.G1;G2/ D K1;2�
2
A; (5)

where K1;2 is the expected proportion of their genomes sharing one chromosome
IBD. Let us take a parent–offspring pair as an example. Because the parent transmits
one copy of each gene to his/her offspring, i.e., K1;2 D 1

2
, thus their genetic

covariance is 1
2
�2A . Let P1 and P2 be the phenotypic values (e.g., height) of the parent

and the offspring. Based on (1), we have Cov.P1;P2/ D Cov.G1;G2/CCov.E1;E2/.
Assuming the independence of the environmental factor, Cov.E1;E2/ D 0, we
further have

Cov.P1;P2/ D 1

2
�2A: (6)

Noticing that Var.P1/ D Var.P2/ D �2P D �2A C �2E , the phenotypic correlation can
be related to the narrow-sense heritability h2:

Corr.P1;P2/ D Cov.P1;P2/p
Var.P1/Var.P2/

D 1

2

�2A

�2A C �2E
D 1

2
h2: (7)

Suppose we have collected the phenotypic values of n parent–offspring pairs.
A simple way to estimate h2 based on this data set is to use the linear regression:

Pi2 D Pi1ˇ C ˇ0 C �i; (8)

where i D 1; : : : ; n is the index of samples, ˇ is the regression coefficient, and �i is
the residual of the ith sample. The ordinary least square estimate of ˇ is

Ǒ D
P

i.Pi2 � NP2/.Pi1 � NP1/P
i.Pi2 � NP2/2

; Ǒ0 D NP1 � Ǒ1 NP2; (9)

where NP1 D 1
n

P
i Pi1 and NP2 D 1

n

P
i Pi2 are the sample means of parent phenotypic

values and offspring phenotypic values. Because Ǒ is the sample version of the
correlation given in (7), heritability estimated from parent–offspring pairs is given
by twice of the regression slope, i.e., Oh2 D 2 Ǒ.

Another example of heritability estimation is based on the phenotypic values of
two parents (P1 and P2) and one offspring (P3). Let PM D P1CP2

2
be the phenotypic

value of the mid-parent. Similarly, we have the genetic covariance Cov.PM;P3/ D
1
2
Cov.P1;P3/C 1

2
Cov.P2;P3/ D 1

2
�2A , and correlation between the mid-parent and

the offspring can be related to heritability h2 as

Corr.PM;P3/ D Cov.PM;P3/p
Var.PM/Var.P3/

D
1
2
�2Aq

1
2
.�2A C �2E/

D
r
1

2
h2: (10)
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Suppose we have n trio samples fPi1;Pi2;Pi3g, where .Pi1;Pi2;Pi3/ corresponds to
the phenotypic values of two parents and the offspring from the ith sample. Again,
a convenient way to estimate h2 is to still use linear regression:

Pi3 D Pi1 C Pi2

2
ˇ C ˇ0 C �i: (11)

Heritability estimated from the phenotypic values of mid-parents and offsprings can

be read from the coefficient fitted in (11) as Oh2 D Ǒ D3Var.PM/
�15Cov.PM;P3/.

It is worth pointing out that the above methods for heritability estimation only
make use of covariance information. In statistics, they are referred to as the methods
of moments because covariance is the second moment. In fact, we can impose
normality assumptions and reformulate heritability estimation using maximum
likelihood estimator. Considering the parent–offspring case, we can view all the
samples independently drawn from the following distribution:

�
Pi1

Pi2

�
� N

��
�

�

�
;

�
1 1
2

1
2
1

�
�2A C

�
1 0

0 1

�
�2E

�
; (12)

where Pi1 and Pi2 are the phenotypic values of the parent and offspring from the ith
family. Similarly, we can view a trio sample Pi1;Pi2;Pi3 independently drawn from
the following distribution:

0

@
Pi1

Pi2

Pi3

1

A � N

2

4

0

@
�

�

�

1

A ;

0

@
1 0 1

2

0 1 1
2

1
2
1
2
1

1

A �2A C
0

@
1 0 0

0 1 0

0 0 1

1

A �2E

3

5 : (13)

The restricted maximum likelihood (REML) approach can be used to efficiently
compute the estimates of model parameters f�; �2A; �2Eg in (12) and (13). Then the
heritability estimation can be obtained as

Oh2 D O�2A
O�2A C O�2E

: (14)

The matrices

�
1 1
2

1
2
1

�
and

0

@
1 0 1

2

0 1 1
2

1
2
1
2
1

1

A in (12) and (13) can be considered as expected

genetic similarity (i.e., expected genome sharing) in parent–offspring samples and
two-parent–offspring samples. As a result, heritability estimation based on pedigree
data relates the phenotypic similarity of relatives to their expected genome sharing.
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2.2 Heritability Estimation Based on GWAS

As we discussed above, the heritability estimation based on pedigree data relies
on the expected genome sharing between relatives. Nowadays, genome-wide dense
SNP data provides an unprecedented opportunity to accurately characterize genome
sharing. However, this advantage brings new challenges. First, three billion base
pairs of human genome sequences are identical at more than 99.9 % of the sites
due to the inheritance from the common ancestors. SNP-based data only records
genotypes at some specific genome positions with single-nucleotide mutations, and
thus SNP-based measures of genetic similarity are much lower than the 99.9 %
similarity based on the whole genome DNA sequence. Second, SNP-based measures
depend on the subset of SNPs genotyped in GWAS and their allele frequencies.
Third, SNP-based measure can be affected by the quality control procedures used in
GWAS.

Our discussion assumes that the SNPs used in heritability estimation are fixed.
There are many different ways to characterize genome similarity based on these
fixed SNPs, as discussed in [51]. Here, we choose the GCTA approach [66, 67] as it
is the most widely used one. Suppose we have collected the genotypes of n subjects
in matrix G D Œgim� 2 Rn�M and their phenotype in vector y 2 Rn�1, where M is the
number of SNP markers and gim 2 f0; 1; 2g is the numerical coding of the genotypes
at the mth SNP of the ith individual. Yang et al. [66, 67] proposed to standardize the
genotype matrix G as follows:

wim D .gim � fm/p
2fm.1 � fm/M

; (15)

where fm is the frequency of the reference allele. An underlying assumption in this
standardization is that lower frequency variants tend to have larger effects. Speed
et al. [52] examined this assumption and concluded that it would be robust in both
simulation studies and real data analysis. After standardization, an LMM is used to
model the relationship between the phenotypic value and the genotypes:

y D Xˇ CWuC e;

u � N .0; �2u I/;

e � N .0; �2e I/; (16)

where X 2 Rn�c is the fixed-effect design matrix collecting the intercept of the
regression model and all covariates, such as age, sex, and a few principal compo-
nents (PC) of the genotype data (PCs are used for adjustment of the population
structure [45]); ˇ is the vector of fixed effects; u collects all the individual SNP
effects which are considered as random, and e collects the random errors due to the
environmental factors. Since both u and e are Gaussian, they can be integrated out
analytically, which yields the marginal distribution of y:

y � N .Xˇ;WWT�2u C �2e I/; (17)
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Efficient algorithms, such as AI-REML[25] and expectation-maximization (EM)
algorithms [43], are available for estimating model parameters. Let f Ǒ; O�2u ; O�2e g be
the REML estimates. Then heritability can be estimated as

Oh2g D
O�2u

O�2u C O�2e
; (18)

where Oh2g is called chip heritability because it depends on the SNPs genotyped
from chip. Since the genotyped SNPs only form a subset of all SNPs in the
human genome, the chip heritability should be smaller than the narrow-sense
heritability, i.e., h2g � h2. One can compare (17) with (12) and (13) to get some
intuitive understandings. The matrix WWT can be regarded as the genetic similarity
measured by the SNP data, which is the so-called genetic relatedness matrix
(GRM). In this sense, heritability estimation based on GWAS data makes use of
the realized genome similarity rather than the expected genome sharing in pedigree
data analysis.

Although the idea of heritability estimation based on pedigree data and GWAS
data looks similar, there is an important difference. The chip heritability can be
largely inflated in presence of cryptical relatedness. Let us briefly discuss this issue
so that readers can gain more insights on chip heritability estimation. Notice that
chip heritability relies on GRM calculated using genotyped SNPs. However, this
does not mean that GRM only captures information from genotyped SNPs because
there exists linkage disequilibrium (LD, i.e., correlation) among genotyped SNPs
and un-genotyped SNPs. In this situation, GRM indeed “sees” the un-genotyped
SNPs partially due to the imperfect LD. Suppose a GWAS data set is comprised of
many unrelated samples and a few relatives, which is ready for the chip heritability
estimation. Consider an extreme case that there is a pair of identical twins whose
genomes will be the same ideally. Thus, their genotyped SNPs can capture more
information from their un-genotyped SNPs because their chromosomes are highly
correlated. For unrelated individuals, however, their chromosomes can be expected
to be nearly uncorrelated such that their genotyped SNPs capture less information
from the un-genotyped SNPs. As a result, the chip heritability estimation will be
inflated even though a few relatives are included. To avoid the inflation due to the
cryptical relatedness, Yang et al. [66, 67] advocated to use samples that are less
related than the second degree relative.

The GCTA approach has been widely used to explore the genetic architecture
of complex phenotypes besides human height. For example, SNPs at the genome-
wide significant level can explain little heritability of psychiatric disorders (e.g.,
schizophrenia and bipolar disorders (BPD)) but all genotyped SNPs can explain a
substantial proportion [11, 34], which implies the polygenicity of these psychiatric
disorders. Polygenic architectures have been reported for some other complex phe-
notypes [57], such as metabolic syndrome traits [56] and alcohol dependence [62].
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From the statistical point of view, a remaining issue is whether the statistical
estimate can be done efficiently using unrelated samples, where sample size n
is much smaller than the number of SNPs M. This is about whether variance
component estimation can be done in the high dimensional setting. The problem
is challenging because all the SNPs are included for heritability estimation but
most of them are believed to be irrelevant to the phenotype of interest. In other
words, the GCTA approach assumed the nonzero effects of all genotyped SNPs
in LMM, leading to misspecified LMM when most of the included SNPs have no
effects. Recently, a theoretical study [30] has showed that the REML estimator in
the misspecified LMM is still consistent under some regularity conditions, which
provides a justification of the GCTA approach. Heritability estimation is still a
hot research topic. For more detailed discussion, interested readers are referred to
[13, 26, 32, 68].

3 Integrative Analysis of Multiple GWAS

In this section, we will introduce the statistical methods for integrative analysis of
multiple GWAS of different phenotypes, which is motivated from both biological
and statistical perspectives. The biological basis to perform integrative analysis
is the fact that a single locus can affect multiple seemly unrelated phenotypes,
which is known as “pleiotropy” [53]. Recently, an increasing number of reports
have indicated abundant pleiotropy among complex phenotypes [49, 50]. Examples
include TERT-CLPTM1L associated with both bladder and lung cancers [21] and
PTPN22 associated with multiple auto-immune disorders [10]. On the other hand,
polygenicity imposes great statistical challenges in identification of weak genetic
effects. The existence of pleiotropy allows us to combine information from multiple
seemingly unrelated phenotypes. Indeed, recent discoveries along this line are
fruitful [63], e.g., the discovery of pleiotropic loci affecting multiple psychiatric
disorders [12] and the identification of pleiotropy between schizophrenia and
immune disorders [48, 60].

Before we proceed, we first introduce a concept closely related to pleiotropy—
genetic correlation (denoted as �; also known as co-heritability) [11]. Let us
consider GWAS of two distinct phenotypes without overlapped samples. Denote the
phenotypes and standardized genotype matrices as y.k/ 2 Rnk�1 and W.k/ 2 Rnk�M ,
respectively, where M is the total number of genotyped SNPs and nk is the sample
size of the kth GWAS, k D 1; 2. Bivariate LMM can be written as follows:

y.1/ D X.1/ˇ.1/ CW.1/u.1/ C e.1/; (19)

y.2/ D X.2/ˇ.2/ CW.2/u.2/ C e.2/; (20)

where X.k/ collects all the covariates of the kth GWAS and ˇ.k/ is the corresponding
fixed effects, u.k/ is the vector of random effects for genotyped SNPs in W.k/ and
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e.k/ is the independent noise due to environment. Denote the mth element of u.1/ and
u.2/ as u.1/m and u.2/m , respectively. In bivariate LMM, Œu.1/m ; u

.2/
m �

T (m D 1; : : : ;M) are
assumed to be independently drawn from the bivariate normal distribution:

"
u.1/m

u.2/m

#

� N .

�
0

0

�
;

�
�21 ��1�2
��1�2 �22

�
/;

where � is defined to be the co-heritability of the two phenotypes. In this regard, co-
heritability is a global measure of the genetic relationship between two phenotypes
while detection of loci with pleiotropy is a local characterization.

In the past decades, accumulating GWAS data allows us to investigate co-
heritability and pleiotropy in a comprehensive manner. First, European Genome-
phenome Archive (EGA) and The database of Genotypes and Phenotypes (dbGap)
have collected an enormous amount of genotype and phenotype data at the
individual level. Second, the summary statistics from many GWAS are directly
downloadable through public gateways, such as the websites of the GIANT
consortium and the Psychiatric Genomics Consortium (PGC). Third, databases
have been built up to collect the output of published GWAS. For example, the
Genome-Wide Repository of Associations between SNPs and Phenotypes (GRASP)
database has been developed for such a purpose [36]. Very recently, GRASP has
been updated [17] to provide latest summary of GWAS output—about 8.87 million
SNP-phenotype associations in 2082 studies with p-values� 0:05.

Various statistical methods have been developed to explore co-heritability and
pleiotropy. First, a straightforward extension of univariate LMM to multivariate
LMM can be used for co-heritability estimation [35]. Second, co-heritability can
be explored to improve risk prediction, as demonstrated in [37, 41]. The idea is that
the random vectors u.1/ and u.2/ of effect sizes can be predicted more accurately
when � ¤ 0, because more information can be combined in bivariate LMM by
introducing one more parameter, i.e., co-heritability �. An extreme case is � D 1,
which means the sample size in bivariate LMM is doubled compared with univariate
LMM. In the absence of co-heritability, i.e., � D 0, bivariate LMM will have
one redundant parameter compared to univariate LMM, resulting in a slightly less
efficiency. But the inefficiency caused by one redundant parameter can be neglected
as there are hundreds or thousands of samples in GWAS. In other words, compared
to univariate LMM, bivariate LMM has a flexible model structure to combine
relevant information and does not sacrifice too much efficiency in absence of such
information. Third, pleiotropy can be used for co-localization of risk variants in
multiple GWAS [8, 22, 24, 38]. We will use a real data example to illustrate the
impact of pleiotropy in our case study.



Introduction to Statistical Methods for Integrative Data Analysis in Genome-. . . 13

4 Integrative Analysis of GWAS with Functional Information

Besides integrating multiple GWAS, integrative analysis of GWAS with functional
information is also a very promising strategy to explore the genetic architectures
of complex phenotypes. Accumulating evidence suggests that this strategy can
effectively boost the statistical power of GWAS data analysis [5]. The reason for
such an improvement is that SNPs do not make equal contributions to a phenotype
and a group of functionally related SNPs can contribute much more than the average,
which is known as “functional enrichment” [19, 54]. For example, an SNP that
plays a role in the central nervous system (CNS) is more likely to be involved
in psychiatric disorders than a randomly selected SNP [11]. As a matter of fact,
not only can functional information help to improve the statistical power, but also
offer deeper understanding on biological mechanisms of complex phenotypes. For
instance, the integration of functional information into GWAS analysis suggests a
possible connection between the immune system and schizophrenia [48, 60]. How-
ever, the fine-grained characterization of the functional role of genetic variations
was not widely available until recent years.

In 2012, the Encyclopedia of DNA Elements (ENCODE) project [9] reported
a high-quality functional characterization of the human genome. This report high-
lighted the regulatory role of non-coding variants, which helped to explain the fact
that about 85 % of the GWAS hits are in the non-coding region of human genome
[29]. More specifically, the analysis results from the ENCODE project showed that
31 % of the GWAS hits overlap with transcription factor binding sites and 71 %
overlap with DNase I hypersensitive sites, indicating the functional roles of GWAS
hits. Afterwards, large genomic consortia started generating an enormous amount
of data to provide functional annotation of the human genome. The Roadmap
Epigenomics project [33] aims at providing the epigenome reference of more than
one hundred tissues and cell types to tackle human diseases. Besides the epigenome
reference, the Genotype-Tissue Expression project (GTEx) [39] has been initiated
to collect about 20,000 tissues from 900 donors, serving as a comprehensive atlas
of gene expression and regulation. Based on the data collected from 175 individuals
across 43 tissues, GTEx [2] has reported a pilot analysis result of the gene expression
patterns across tissues, including identification of thousands of shared and tissue-
specific eQTL. Clearly, the integration of GWAS and functional information is
calling effective methods that hardness such a rich data resources [47].

To introduce the key idea of integrative analysis of GWAS with functional
information, we briefly discuss a Bayesian method [6] to see the advantages of
statistically rigorous methods. Suppose we have collected n samples with their
phenotypic values y 2 Rn and genotypes in X 2 Rn�M . Following the typical
practice, we assume the linear relationship between y and X:

yi D ˇ0 C
MX

jD1
xijˇj C ei; (21)
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where ˇj; j D 1; : : : ;M are the coefficients and ei is the independent noise
ei � N .0; �2e /. Identification of risk variants can be viewed as determination of
the nonzero coefficients in ˇ D Œˇ1; : : : ; ˇM �

T . Next, we use a binary variable
� D Œ�1; : : : ; �M� to indicate whether the corresponding ˇj is zero or not: ˇj D 0 if
and only if �j D 0. The spike and slab prior [44] is assigned for ˇj:

ˇj � N .0; �2ˇ/; if �j D 1;
ˇj D 0; if �j D 0; (22)

where Pr.�j D 1/ D � and Pr.�j D 0/ D 1 � � . Following the standard procedure
in Bayesian inference, the remaining is to calculate the posterior Pr.� jy;X/ based
on Markov chain Monte Carlo (MCMC) method. Although the computational cost
of MCMC can be expensive, efficient variational approximation can be used [3, 7].

Suppose we have extracted functional information from the reference data of high
quality, such as Roadmap [33] and GTEx [39] and collected them in an M�D matrix,
denoted as A. Each row of A corresponds to an SNP and each column corresponds
to a functional category. For example, if the ith SNP is known to play a role in the
d-functional category from the reference data, then we put Ajd D 1 and Ajd D 0

otherwise. To keep our notation simple, we use Aj 2 R1�D to index the jth row
of A. Note that functional information in A may come from different studies. It is
inappropriate to conclude that SNPs being annotated in A are more useful because
the relevance of such functional information has not been examined yet.

To determine the relevance of functional information, statistical modeling plays
a critical role. Indeed, functional information Aj of the jth SNP can be naturally
related to its association status �j is using a logistic model [6]:

log
Pr.�j D 1jAj/

Pr.�j D 0jAj/
D Aj� C �0; (23)

where � 2 RD and 	0 2 R are the logistic regression coefficients to be estimated.
Clearly, when there are nonzero entries in � , the prior of the association status �j will
be modulated by its functional annotation aj, indicating the relevance of functional
annotation. More rigorously, a Bayes factor of � can be computed to determine the
relevance of function information. In summary, statistical methods allow a flexible
way to incorporate functional information into the model and adaptively determine
the relevance of such kind of information.

5 Case Study

So far, we have discussed the integrative analysis of multiple GWAS and the
integrative analysis of a single GWAS with functional information. Taking
one step forward, we can integrate multiple GWAS and functional information
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simultaneously. To be more specific, we consider our GPA (Genetic analysis
incorporating Pleiotropy and Annotation) approach [8] as a case study.

In contrast to the method discussed in the previous sections, GPA takes sum-
mary statistics and functional annotations as its input. Let us begin with the
simplest case where we have only p-values from one GWAS data set, denoted
as fp1; p2; : : : ; pj; : : : ; pMg, where M is the number of SNPs. Following the “two-
groups model” [16], we assume the observed p-values from a mixture of null and
non-null distributions, with probability �0 and �1 D 1 � �0, respectively. Here
we choose the null distribution to be the Uniform distribution on [0,1], denoted as
U Œ0; 1�, and the non-null distribution to be the Beta distribution with parameters
(˛; 1), denoted as B.˛; 1/, respectively. Again, we introduce a binary variable
Zj 2 f0; 1g to indicate the association status of the jth SNP: Zj D 0 means null
and Zj D 1 means non-null. Then the two-groups model can be written as

�0 D Pr.Zj D 0/ W pj � U Œ0; 1�; if Zj D 0;
�1 D Pr.Zj D 1/ W pj � B.˛; 1/; if Zj D 1; (24)

where �0C�1 D 1 and 0 < ˛ < 1. An efficient EM algorithm can be easily derived
if the independence among the SNP markers is assumed, as detailed in the GPA
paper. Let O‚ D f O�0; O�1; Ǫ g be the estimated model parameters, then the posterior is
given as

bPr.Zj D 0jpjI O‚/ D O�0
O�0 C O�1fB.pjI Ǫ / ; (25)

where fB.pI˛/ D ˛p˛�1 is the density function of B.˛; 1/. Indeed, this posterior is
known as the local false discovery rate [14], which is widely used in the type I error
control.

To explore pleiotropy between two GWAS, the above two-groups model can be
extended to a four-groups model. Suppose we have collected p-values from two
GWAS and denote the p-value of the jth SNP as fpj1; pj2g; j D 1; : : : ;M. Let Zj1 2
f0; 1g and Zj2 2 f0; 1g be the indicator of association status of the jth SNP in two
GWAS. Then the four-groups model can be written as

�00 D Pr.Zj1 D 0;Zj2 D 0/ W pj1 � U Œ0; 1�; pj2 � U Œ0; 1�; if Zj1 D 0;Zj2 D 0;
�10 D Pr.Zj1 D 1;Zj2 D 0/ W pj1 � B.˛1; 1/; pj2 � U Œ0; 1�; if Zj1 D 1;Zj2 D 0;
�01 D Pr.Zj1 D 0;Zj2 D 1/ W pj1 � U Œ0; 1�; pj2 � B.˛2; 1/; if Zj1 D 0;Zj2 D 1;
�11 D Pr.Zj1 D 1;Zj2 D 1/ W pj1 � B.˛1; 1/; pj2 � B.˛2; 1/; if Zj1 D 1;Zj2 D 1;

where 0 < ˛1 < 1, 0 < ˛2 < 1 and �00 C �10 C �01 C �11 D 1. The four-groups
model takes pleiotropy into account by allowing the correlation between Zj1 and Zj2.
It is easy to see that the correlation Corr.Zj1;Zj2/ ¤ 0 if �11 ¤ .�10 C �11/.�01 C
�11/. In this regard, a hypothesis test (H0 W �11 D .�10 C �11/ .�01 C �11/) can be
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designed to examine whether the overlapping of risk variants between two GWAS
is different from the overlapping just by chance. The testing result can be viewed as
an indicator of pleiotropy.

To incorporate functional annotations, GPA assumes that all the functional
annotations are independent after conditioning on the association status. Again, let
A 2 RM�D be the annotation matrix, where Ajd D 1 corresponds to the jth SNP
being annotated in the dth functional category, and Ajd D 0 otherwise. Therefore, in
the two-groups model (24), the conditional probability of the dth annotation can be
written as

q0d D Pr.Ajd D 1jZj D 0/; q1d D Pr.Ajd D 1jZj D 1/; (26)

where q0d and q1d are GPA model parameters which can be estimated by the
EM algorithm. Readers who are familiar with classification can easily recognize
that (26) is the Naive Bayes formulation with latent class label, while (23) is a
logistic regression with latent class label. Latent space plays a very important role
in integrative analysis, in which indirect information (annotation data) can be com-
bined with direct information (p-values). Under a coherent statistical framework,
we are able to employ statistically efficient methods for parameter estimation rather
than relying on ad-hoc rules. Let O‚ D f O�0; O�1; Ǫ ; .Oq1d; Oq0d/dD1;:::;Dg be the estimated
parameters. Then the posterior Pr.Zj D 0jpj;AjI O‚/ can be written as

Pr.Zj D 0jpj;AjI O‚/ D O�0 QD
dD1 Oq1�Ajd

0d OqAjd

1d

O�0 QD
dD1 Oq1�Ajd

0d OqAjd

1d C O�1
QD

dD1 Oq1�Ajd

0d OqAjd

1d fB.pjI Ǫ /
(27)

Compared with (25), when q0d ¤ q1d, posterior (27) will be updated according to
functional enrichment in the dth annotation. Hypothesis testing H0 W q0d D q1d

can be used to declare the significance of the enrichment. Similarly, functional
annotations can be incorporated into the four-groups model as follows:

q00d D Pr.Ajd D 1jZj1 D 0;Zj2 D 0/;
q10d D Pr.Ajd D 1jZj1 D 1;Zj2 D 0/;
q01d D Pr.Ajd D 1jZj1 D 0;Zj2 D 1/;
q11d D Pr.Ajd D 1jZj1 D 1;Zj2 D 1/: (28)

As a demonstration, we apply the GPA approach to the GWAS of schizophrenia
(SCZ) and BPD with the CNS genes as the functional annotation. The detailed
description of the dataset can be found in the GPA paper. To make our demonstration
easily reproducible, the R package of GPA and the demonstration dataset have
been made freely accessible at https://sites.google.com/site/eeyangc/software/gpa.
The analysis results are summarized in Tables 1 and 2 and Fig. 1. Here we give

https://sites.google.com/site/eeyangc/software/gpa
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some brief discussions. First, more significant GWAS hits with controlled false
discovery rates can be identified by integrative analysis of GWAS and functional
information, as shown in Tables 1 and 2. Second, we can see the pleiotropic effects
exist between SCZ and BPD (the estimated shared proportion O�11 � 0:15). Indeed,
such pleiotropy information boosts the statistical power a lot. Third, functional
information (the CNS annotation) further helps improve the statistical power,
although its contribution is less than pleiotropy in this real data analysis. This
suggests that pleiotropy and functional information are complementary to each other
and both of them are necessary.

Table 1 Single-GWAS analysis of SCZ and BPD (with or without the CNS annotation)

No. hits No. hits
O�1 Ǫ Oq0 Oq1 (fdr � 0:05) (fdr � 0:1)

SCZ (without
annotation)

0.195 0.596 – – 391 875

(0.004) (0.004)

BPD (without
annotation)

0.181 0.700 – – 13 23

(0.007) (0.007)

SCZ (with
annotation)

0.196 0.596 0.203 0.283 409 902

(0.004) (0.004) (0.001) (0.003)

BPD (with
annotation)

0.179 0.697 0.202 0.297 14 43

(0.004) (0.004) (0.001) (0.004)

The values in the brackets are standard errors of the corresponding estimates

Table 2 Integrative analysis of SCZ and BPD (with or without the CNS annotation)

O�00 O�10 O�01 O�11 Ǫ1 Ǫ2
Without
annotation

0.816 0.006 0.027 0.152 0.579 (0.004) 0.671 (0.007)

(0.004) (0.005) (0.006) (0.006)

With
annotation

0.815 0.007 0.029 0.149 0.577 (0.003) 0.670 (0.007)

(0.004) (0.005) (0.007) (0.006)

Oq00 Oq10 Oq01 Oq11 No. hits (fdr � 0:05) No. hits (fdr � 0:1)

Without
annotation

– – – – 801 (SCZ); 1442 (SCZ);

157 (BPD) 645 (BPD)

With
annotation

0.207 0.014 0.103 0.318 818 (SCZ); 1492 (SCZ);

(0.001) (0.243) (0.088) (0.006) 237 (BPD) 706 (BPD)

The values in the brackets are standard errors of the corresponding estimates. There are some very
minor differences between the values reported here and those in the original paper. This is because
all the results are reported with the maximum number of EM iterations at 2000 (the default setting
of the R package) while those reported in the original paper are based on the maximum number of
EM iterations at 10,000
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Fig. 1 Manhattan plots of GPA analysis result for SCZ and BPD. From top to bottom panels:
separate analysis of SCZ (left) and BPD (right) without annotation, separate analysis of SCZ
(left) and BPD (right) with the CNS annotation, joint analysis of SCZ (left) and BPD (right)
without annotation and joint analysis of SCZ (left) and BPD (right) with the CNS annotation.
The horizontal red and blue lines indicate local false discovery rate at 0.05 and 0.1, respectively.
The numbers of significant GWAS hits at fdr � 0:05 and fdr � 0:1 are given in Tables 1 and 2
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6 Future Directions and Conclusion

Although the analysis result from the GPA approach looks promising, there are
some limitations. First, the GPA approach assumed the independence among the
SNP markers, implying that the linkage disequilibrium (LD) among SNP markers
was not taken into account. Second, the GPA approach assumed the conditional
independence among functional annotations, which may not be true in presence
of multiple annotations. All these limitations should be addressed in the future.
Recently, a closely related approach, the LD-score method [4], has been proposed to
analyze GWAS data based on summary statistics, in which LD has been explicitly
taken into account. This method can be used for heritability (and co-heritability)
estimation, as well as the detection of functional enrichment [19]. However, some
empirical studies have shown that the standard error of the LD-score method is
nearly twice of that of the REML estimate [65], indicating that this method is far
less efficient than REML and thus the large sample size is required to ensure its
effectiveness. More statistically efficient methods are still in high demand to address
this issue.

In summary, we have provided a brief introduction to integrative analysis
of GWAS and functional information, including heritability estimation and risk
variant identification. Facing the challenges raised by the polygenicity, it is highly
demanded to perform integrative analysis from both biological and statistical per-
spectives. Novel approaches which take LD into account when integrating summary
statistics with functional information will be greatly needed in the future. There
are also many issues remaining in the study of functional enrichment. Recently,
more and more functional enrichments have been observed in a variety of studies
[19, 55]. However, most of the enrichment is often too general to provide phenotype-
specific information. For example, coding regions and transcription factor binding
sites are generally enriched in various types of phenotypes. We are drown-
ing in cross-phenotype functional enrichment but starving for phenotype-specific
knowledge—how does a functional unit of human genome affect a phenotype of
interest. Adjusting for the common enrichment (viewed as confounding factors
here), rigorous methods for detecting phenotype-specific patterns will be highly
appreciated.
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Robust Methods for Expression Quantitative
Trait Loci Mapping

Wei Cheng, Xiang Zhang, and Wei Wang

Abstract As a promising tool for dissecting the genetic basis of common diseases,
expression quantitative trait loci (eQTL) study has attracted increasing research
interest. The traditional eQTL methods focus on testing the associations between
individual single-nucleotide polymorphisms (SNPs) and gene expression traits.
A major drawback of this approach is that it cannot model the joint effect of a
set of SNPs on a set of genes, which may correspond to biological pathways. In
this chapter, we study the problem of identifying group-wise associations in eQTL
mapping. Based on the intuition of group-wise association, we examine how the
integration of heterogeneous prior knowledge on the correlation structures between
SNPs, and between genes can improve the robustness and the interpretability of
eQTL mapping.

Keywords Robust methods • eQTL • Gene expression • Parameter analysis •
Biostatistics

1 Introduction

The most abundant sources of genetic variations in modern organisms are single-
nucleotide polymorphisms (SNPs). An SNP is a DNA sequence variation occurring
when a single nucleotide (A, T, G, or C) in the genome differs between individuals
of a species. For inbred diploid organisms, such as inbred mice, an SNP usually
shows variation between only two of the four possible nucleotide types [26], which
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allows us to represent it by a binary variable. The binary representation of an SNP
is also referred to as the genotype of the SNP. The genotype of an organism is the
genetic code in its cells. This genetic constitution of an individual influences, but is
not solely responsible for, many of its traits. A phenotype is an observable trait or
characteristic of an individual. The phenotype is the visible, or expressed trait, such
as hair color. The phenotype depends upon the genotype but can also be influenced
by environmental factors. Phenotypes can be either quantitative or binary.

Driven by the advancement of cost-effective and high-throughput genotyping
technologies, genome-wide association studies (GWAS) have revolutionized the
field of genetics by providing new ways to identify genetic factors that influence
phenotypic traits. Typically, GWAS focus on associations between SNPs and
traits like major diseases. As an important subsequent analysis, quantitative trait
locus (QTL) analysis is aiming at to detect the associations between two types
of information—quantitative phenotypic data (trait measurements) and genotypic
data (usually SNPs)—in an attempt to explain the genetic basis of variation in
complex traits. QTL analysis allows researchers in fields as diverse as agriculture,
evolution, and medicine to link certain complex phenotypes to specific regions of
chromosomes.

Gene expression is the process by which information from a gene is used in the
synthesis of a functional gene product, such as proteins. It is the most fundamental
level at which the genotype gives rise to the phenotype. Gene expression profile is
the quantitative measurement of the activity of thousands of genes at once. The gene
expression levels can be represented by continuous variables. Figure 1 shows an
example dataset consisting of 1000 SNPs fx1; x2; � � � ; x1000g and a gene expression
level z1 for 12 individuals.

Fig. 1 An example dataset in
eQTL mapping
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2 eQTL Mapping

For a QTL analysis, if the phenotype to be analyzed is the gene expression level
data, then the analysis is referred to as the expression quantitative trait loci (eQTL)
mapping. It aims to identify SNPs that influence the expression level of genes.
It has been widely applied to dissect the genetic basis of gene expression and
molecular mechanisms underlying complex traits [5, 45, 58]. More formally, let
X D fxdj1 � d � Dg 2 R

K�D be the SNP matrix denoting genotypes of K SNPs
of D individuals and Z D fzdj1 � d � Dg 2 R

N�D be the gene expression matrix
denoting phenotypes of N gene expression levels of the same set of D individuals.
Each column of X and Z stands for one individual. The goal of eQTL mapping is to
find SNPs in X, that are highly associated with genes in Z.

Various statistics, such as the ANOVA (analysis of variance) test and the chi-
square test, can be applied to measure the association between SNPs and the gene
expression level of interest. Sparse feature selection methods, e.g., Lasso [63], are
also widely used for eQTL mapping problems. Here, we take Lasso as an example.
Lasso is a method for estimating the regression coefficients W using `1 penalty. The
objective function of Lasso is

min
W

1

2
jjZ�WXjj2F C 
jjWjj1 (1)

where jj � jjF denotes the Frobenius norm, jj � jj1 is the `1-norm. 
 is the empirical
parameter for the `1 penalty. W is the parameter (also called weight) matrix setting
the limits for the space of linear functions mapping from X to Z. Each element of
W is the effect size of corresponding SNP and expression level. Lasso uses the least
squares method with `1 penalty. `1-norm sets many non-significant elements of W
to be exactly zero, since many SNPs have no associations to a given gene. Lasso
works even when the number of SNPs is significantly larger than the sample size
(K � D) under the sparsity assumption.

Using the dataset shown in Fig. 1, Fig. 2a shows an example of strong association
between gene expression z1 and SNP x1. 0 and 1 on the y-axis represent the binary
SNP genotype and the x-axis represents the gene expression level. Each point in the
figure represents an individual. It is clear from the figure that the gene expression

Fig. 2 Examples of associations between a gene expression level and two different SNPs. (a)
Strong association. (b) No association
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Fig. 3 Association weights estimated by Lasso on the example data

level values are partitioned into two groups with distinct means, hence indicating
a strong association between the gene expression and the SNP. On the other hand,
if the genotype of an SNP partitions the gene expression level values into groups
as shown in Fig. 2b, the gene expression and the SNP are not associated with
each other. An illustration result of Lasso is shown in Fig. 3. Wij D 0 means no
association between jth SNP and ith gene expression. Wij ¤ 0 means there exists
an association between the jth SNP and the ith gene expression.

2.1 Group-Wise eQTL Mapping and Challenges

In a typical eQTL study, the association between each expression trait and each SNP
is assessed separately [11, 63, 72]. This approach does not consider the interactions
among SNPs and among genes. However, multiple SNPs may jointly influence the
phenotypes [33], and genes in the same biological pathway are often co-regulated
and may share a common genetic basis [48, 55].

To better elucidate the genetic basis of gene expression, it is highly desirable
to develop efficient methods that can automatically infer associations between
a group of SNPs and a group of genes. We refer to the process of identifying
such associations as group-wise eQTL mapping. In contrast, we refer to those
associations between individual SNPs and individual genes as individual eQTL
mapping. An example is shown in Fig. 4. Note that an ideal model should allow
overlaps between SNP sets and between gene sets; that is, an SNP or gene may
participate in multiple individual and group-wise associations. This is because genes
and the SNPs influencing them may play different roles in multiple biological
pathways [33].

Besides, advanced bio-techniques are generating a large volume of heteroge-
neous datasets, such as protein–protein interaction (PPI) networks [2] and genetic
interaction networks [13]. These datasets describe the partial relationships between
SNPs and relationships between genes. Because SNPs and genes are not indepen-
dent of each other, and there exist group-wise associations, the integration of these
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Fig. 4 An illustration of
individual and group-wise
associations

SNPs Genes

Group-wise
association

Individual
association

multi-domain heterogeneous data sets is able to improve the accuracy of eQTL
mapping since more domain knowledge can be integrated. In literature, several
methods based on Lasso have been proposed [4, 32, 35, 36] to leverage the network
prior knowledge [28, 32, 35, 36]. However, these methods suffer from poor quality
or incompleteness of this prior knowledge.

In summary, there are several issues that greatly limit the applicability of current
eQTL mapping approaches.

1. It is a crucial challenge to understand how multiple, modestly associated SNPs
interact to influence the phenotypes [33]. However, little prior work has studied
the group-wise eQTL mapping problem.

2. The prior knowledge about the relationships between SNPs and between genes
is often partial and usually includes noise.

3. Confounding factors such as expression heterogeneity may result in spurious
associations and mask real signals [20, 46, 60].

2.2 Overview of the Developed Algorithms

This book chapter proposes and studies the problem of group-wise eQTL mapping.
We can decouple the problem into the following sub-problems:

• How can we detect group-wise eQTL associations with eQTL data only, i.e., with
SNPs and gene expression profile data?

• How can we incorporate the prior interaction structures between SNPs and
between genes into eQTL mapping to improve the robustness of the model and
the interpretability of the results?

To address the first sub-problem, the book chapter proposes three approaches
based on sparse linear-Gaussian graphical models to infer novel associations
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between SNP sets and gene sets. In literature, many efforts have focused on single-
locus eQTL mapping. However, a multi-locus study dramatically increases the
computation burden. The existing algorithms cannot be applied on a genome-wide
scale. In order to accurately capture possible interactions between multiple genetic
factors and their joint contribution to a group of phenotypic variations, we propose
three algorithms. The first algorithm, SET-eQTL, makes use of a three-layer sparse
linear-Gaussian model. The upper layer nodes correspond to the set of SNPs in the
study. The middle layer consists of a set of hidden variables. The hidden variables
are used to model both the joint effect of a set of SNPs and the effect of confounding
factors. The lower layer nodes correspond to the genes in the study. The nodes in
different layers are connected via arcs. SET-eQTL can help unravel true functional
components in existing pathways. The results could provide new insights on how
genes act and coordinate with each other to achieve certain biological functions. We
further extend the approach to be able to consider confounding factors and decouple
individual associations and group-wise associations for eQTL mapping.

To address the second sub-problem, this chapter presents an algorithm, Graph-
regularized Dual Lasso (GDL), to simultaneously learn the association between
SNPs and genes and refine the prior networks. Traditional sparse regression
problems in data mining and machine learning consider both predictor variables
and response variables individually, such as sparse feature selection using Lasso.
In the eQTL mapping application, both predictor variables and response variables
are not independent of each other, and we may be interested in the joint effects of
multiple predictors to a group of response variables. In some cases, we may have
partial prior knowledge, such as the correlation structures between predictors, and
correlation structures between response variables. This chapter shows how prior
graph information would help improve eQTL mapping accuracy and how refinement
of prior knowledge would further improve the mapping accuracy. In addition, other
different types of prior knowledge, e.g., location information of SNPs and genes, as
well as pathway information, can also be integrated for the graph refinement.

2.3 Chapter Outline

The book chapter is organized as follows:

• The algorithms to detect group-wise eQTL associations with eQTL data only
(SET-eQTL, etc.) are presented in Sect. 3.

• The algorithm (GDL) to incorporate the prior interaction structures or grouping
information of SNPs or genes into eQTL mapping is presented in Sect. 4.

• Section 5 concludes the chapter work.
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3 Group-Wise eQTL Mapping

3.1 Introduction

To better elucidate the genetic basis of gene expression and understand the underly-
ing biology pathways, it is desirable to develop methods that can automatically infer
associations between a group of SNPs and a group of genes. We refer to the process
of identifying such associations as group-wise eQTL mapping. In contrast, we refer
to the process of identifying associations between individual SNPs and genes as
individual eQTL mapping. In this chapter, we propose several algorithms to detect
group-wise associations. The first algorithm, SET-eQTL, makes use of a three-layer
sparse linear-Gaussian model. It is able to identify novel associations between sets
of SNPs and sets of genes. The results could provide new insights on how genes act
and coordinate with each other to achieve certain biological functions. We further
propose a fast and robust approach that is able to consider confounding factors and
decouple individual associations and group-wise associations for eQTL mapping.
The model is a multi-layer linear-Gaussian model and uses two different types of
hidden variables: one capturing group-wise associations and the other capturing
confounding factors [8, 18, 19, 29, 38, 42]. We apply an `1-norm on the parameters
[37, 63], which yields a sparse network with a large number of association weights
being zero [50]. We develop an efficient optimization procedure that makes this
approach suitable for large scale studies.

3.2 Related Work

Recently, various analytic methods have been developed to address the limitations
of the traditional single-locus approach. Epistasis detection methods aim to find the
interaction between SNP-pairs [3, 21, 22, 47]. The computational burden of epistasis
detection is usually very high due to the large number of interactions that need to be
examined [49, 57]. Filtering-based approaches [17, 23, 69], which reduce the search
space by selecting a small subset of SNPs for interaction study, may miss important
interactions in the SNPs that have been filtered out.

Statistical graphical models and Lasso-based methods [63] have been applied
to eQTL study. A tree-guided group lasso has been proposed in [32]. This method
directly combines statistical strength across multiple related genes in gene expres-
sion data to identify SNPs with pleiotropic effects by leveraging the hierarchical
clustering tree over genes. Bayesian methods have also been developed [39, 61].
Confounding factors may greatly affect the results of the eQTL study. To model
confounders, a two-step approach can be applied [27, 61]. These methods first
learn the confounders that may exhibit broad effects to the gene expression traits.
The learned confounders are then used as covariates in the subsequent analysis.
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Statistical models that incorporate confounders have been proposed [51]. However,
none of these methods are specifically designed to find novel associations between
SNP sets and gene sets.

Pathway analysis methods have been developed to aggregate the association
signals by considering a set of SNPs together [7, 16, 54, 64]. A pathway consists
of a set of genes that coordinate to achieve a specific cell function. This approach
studies a set of known pathways to find the ones that are highly associated with
the phenotype [67]. Although appealing, this approach is limited to the a priori
knowledge on the predefined gene sets/pathways. On the other hand, the current
knowledgebase on the biological pathways is still far from being complete.

A method is proposed to identify eQTL association cliques that expose the
hidden structure of genotype and expression data [25]. By using the cliques
identified, this method can filter out SNP-gene pairs that are unlikely to have
significant associations. It models the SNP, progeny, and gene expression data as
an eQTL association graph, and thus depends on the availability of the progeny
strain data as a bridge for modeling the eQTL association graph.

3.3 The Problem

Important notations used in this section are listed in Table 1. Throughout the section,
we assume that, for each sample, the SNPs and genes are represented by column
vectors. Let x D Œx1; x2; : : : ; xK �

T represent the K SNPs in the study, where xi 2
f0; 1; 2g is a random variable corresponding to the ith SNP. For example, 0, 1, 2

Table 1 Summary of notations

Symbols Description

K Number of SNPs

N Number of genes

D Number of samples

M Number of group-wise associations

H Number of confounding factors

x Random variables of K SNPs

z Random variables of N genes

y Latent variables to model group-wise association

X 2 R
K�H SNP matrix data

Z 2 R
N�H Gene expression matrix data

A 2 R
M�K Group-wise association coefficient matrix between x and y

B 2 R
N�M Group-wise association coefficient matrix between y and z

C 2 R
N�K Individual association coefficient matrix between x and y

P 2 R
N�H Coefficient matrix of confounding factors

�; � Regularization parameters
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may encode the homozygous major allele, heterozygous allele, and homozygous
minor allele, respectively. Let z D Œz1; z2; : : : ; zN �

T represent the N genes in the
study, where zj is a continuous random variable corresponding to the jth gene.

The traditional linear regression model for association mapping between x and
z is

zDWxC�C �; (2)

where z is a linear function of x with coefficient matrix W. � is an N � 1 translation
factor vector. � is the additive noise of Gaussian distribution with zero-mean and
variance  I, where  is a scalar. That is, � � N.0;  I/.

The question now is how to define an appropriate objective function to decom-
pose W which (1) can effectively detect both individual and group-wise eQTL
associations, and (2) is efficient to compute so that it is suitable for large scale
studies. In the next, we will propose a group-wise eQTL detection method first, and
then improve it to capture both individual and group-wise associations. Finally, we
will discuss how to boost the computational efficiency.

3.4 Detecting Group-Wise Associations

3.4.1 SET-eQTL Model

To infer associations between SNP sets and gene sets, we propose a graphical model
as shown in Fig. 5, which is able to capture any potential confounding factors in a
natural way. This model is a two-layer linear-Gaussian model. The hidden variables
in the middle layer are used to capture the group-wise association between SNP sets
and gene sets. These latent variables are presented as y D Œy1; y2; : : : ; yM�

T, where M
is the total number of latent variables bridging SNP sets and gene sets. Each hidden
variable may represent a latent factor regulating a set of genes, and its associated
genes may correspond to a set of genes in the same pathway or participating in
certain biological function. Note that this model allows an SNP or gene to participate
in multiple (SNP set, gene set) pairs. This is reasonable because SNPs and genes
may play different roles in multiple biology pathways. Since the model bridges SNP
sets and gene sets, we refer this method as SET-eQTL.

The exact role of these latent factors can be inferred from the network topology
of the resulting sparse graphical model learned from the data (by imposing `1-
norm on the likelihood function, which will be discussed later in this section).
Figure 6 shows an example of the resulting graphical model. There are two types of
hidden variables. One type consists of hidden variables with zero in-degree (i.e., no
connections with the SNPs). These hidden variables correspond to the confounding
factors. Other types of hidden variables serve as bridges connecting SNP sets and
gene sets. In Fig. 6, yk is a hidden variable modeling confounding effects. yi and yj

are bridge nodes connecting the SNPs and genes associated with them. Note that this
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Fig. 5 The proposed
graphical model with hidden
variables
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Fig. 6 An example of the
inferred sparse graphical
model

model allows overlaps between different (SNP set, gene set) pairs. It is reasonable
because SNPs and genes may play multiple roles in different biology pathways.

3.4.2 Objective Function

From the probability theory, we have that the joint probability of x and z is

p.x; z/ D
Z

y
p.x; y; z/dy: (3)

From the factorization properties of the joint distribution for a directed graphical
model, we have

p.x; y; z/ D p.yjx/p.zjy/p.x/: (4)

Thus, we have

p.zjx/ D p.x; z/
p.x/

D
Z

y
p.yjx/p.zjy/dy: (5)
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We assume that the two conditional probabilities follow normal distributions:

yjx � N .yjAxC �A; �
2
1IM/;

and

zjy � N .zjByC �B; �
2
2IN/;

where A 2 R
M�K is the coefficient matrix between x and y, B 2 R

N�M is the
coefficient matrix between y and z. �A 2 R

M�1 and �B 2 R
N�1 are the translation

factor vectors, of which �21 IM and �22 IN are their variances, respectively, (�1 and �2
are constant scalars and IM and IN are identity matrices).

To impose sparsity, we assume that entries of A and B follow Laplace distribu-
tions:

A � Laplace.0; 1=�/;

and

B � Laplace.0; 1=�/:

� and � are parameters of the `1-regularization penalty on the objective function.
This model is a two-layer linear model and p.yjx/ serves as the conjugate prior of
p.zjy/. Thus we have

ˇ �N .yj�y;˙ y/ D N .yjAxC �A; �
2
1IM/ �N .zjByC �B; �

2
2IN/ (6)

where ˇ is a scalar, �y and ˙ y are the mean and variance of a new normal
distribution, respectively.

From Eqs. (5) and (6), we have that

p.zjx/ D
Z

y
ˇ �N .yj�y;˙ y/dy D ˇ (7)

Thus, maximizing p.zjx/ is equivalent to maximizing ˇ. Next, we show the
derivation of ˇ. We first derive the value of �y and ˙�1y by comparing the
exponential terms on both sides of Eq. (6).

N .yjAxC �A; �
2
1IM/ �N .zjByC �B; �

2
2IN/

D 1

.2�/
MCN
2 �M

1 �
N
2

expf� 1
2
Œ 1
�21
.y � Ax ��A/

T.y � Ax ��A/

C 1

�22
.z � By � �B/

T.z � By ��B/�g
(8)
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The exponential term in Eq. (8) can be expanded as

� D � 1
2
Œ 1
�21
.y �Ax � �A/

T.y �Ax/

C�22 .z � By � �B/
T.z � By/�

D � 1
2
Œ 1
�21
.yTy � yTAx� yT�A � xTATyC xTATAx

CxTAT�A � �T
AyC �T

AAX C �T
A�A/C 1

�22
.zTz � zTBy

�zT�B � yTBTzC yTBTByC yTBT�B ��T
BzC �T

BBy

C�T
B�B/�

D � 1
2
ŒyT. 1

�21
IM C 1

�22
BTB/y� 2

�21
.xTATyC �T

Ay/

� 2

�22
.zTBy ��T

BBy/C 1

�21
.xTATAxC 2�T

AAxC �T
A�A/

C 1

�22
.zTz � 2�T

BzC�T
B�B/�

(9)

Thus, by comparing the exponential terms on both sides of Eq. (6), we get

˙�1y D
1

�21
IM C 1

�22
BTB; (10)

�T
y ˙�1y D

1

�21
.xTAT C �T

A/C
1

�22
.zTB ��T

BB/: (11)

Further, we have

�y D ˙ yŒ
1

�21
.AxC �A/C

1

�22
.BTz � BT�B/�: (12)

With ˙�1y and �y, we can derive the explicit form of ˇ easily by setting y D 0,
which leads to the equation below:

ˇ � 1

.2�/
M
2 j˙ yj 12

expf� 1
2
�T

y ˙�1y �yg
D 1

.2�/
MCN
2 �M

1 �
N
2

expf� yD0g; (13)

where � yD0 is the value of � when y D 0, and thereby

� yD0 D � 12 Œ 1�21 .x
TATAxC 2�T

AAxC �T
A�A/

C 1

�22
.zTz � 2�T

BzC �T
B�B/�

(14)

Thus, we get the explicit form of ˇ as

ˇ D j˙ yj 12
.2�/

N
2 �M

1 �
N
2

expf� yD0 C 1
2
.�T

y ˙�1y �y/g: (15)
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Here, ˇ D p.zjx;A;B;�A;�B; �1; �2/ is the likelihood function for one data
point x. Let X D fxdg and Z D fzdg be the sets of D observed data points (genotype
and the gene expression profiles for the samples in the study). To maximize ˇd, we
can minimize the negative log-likelihood of ˇd. Thus, our loss function is

J D � log
QD

dD1 p.zdjxd/

D �PD
dD1 log p.zdjxd/

D �PD
dD1 log ˇd

(16)

Substituting Eq. (15) into Eq. (16), the expanded form of the loss function is

J .A;B;�A;�B; �1; �2/

D D�N
2

ln.2�/C D �M ln.�1/C D � N ln.�2/C D
2

ln j˙�1y j
C 1
2

PD
dD1f 1�21 .x

T
d ATAxd C 2�T

AAxd C �T
A�A/

C 1

�22
.zT

d zd � 2�T
Bzd C�T

B�B/� Œ 1�21 .x
T
d AT C �T

A/

C 1

�22
.zT

d B ��T
BB/�˙ yŒ

1

�21
.Axd C �A/C 1

�22
.BTzd � BT�B/�g

(17)

Taking into account the prior distributions of A and B, we have that

p.z;A;Bjx;�A;�B; �1; �2/

D ˇ � Laplace.Aj0; 1=�/ � Laplace.Bj0; 1=�/ (18)

Thus, we can have the `1-regularized objective function

max
A;B;�A;�B;�1;�2

log
DY

dD1
p.zd;A;Bjxd;�A;�B; �1; �2/;

which is identical to

min
A;B;�A;�B;�1;�2

ŒJ C D � .�jjAjj1 C � jjBjj1/�; (19)

where jj � jj1 is the `1-norm. � and � are the precision of the prior Laplace
distributions of A and B, respectively, serving as the regularization parameters
which can be determined by cross or holdout validation.

The gradient of the loss function J with respect to A, B, �A, �B, �1, and �2 are

rAJ DPD
dD1. 1�21 AxdxT

d � 1

�41
˙ yAxdxT

d � 1

�21 �
2
2

˙ yBTzdxT
d

C 1

�21
�AxT

d � 1

�41
˙ y�AxT

d C 1

�21 �
2
2

˙ yBT�BxT
d /

(20)
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rBJ D D
�22

B˙ y C 1

�42
. 1
�22

B˙ yBT � IN/
PD

dD1Œ.zd � �B/

�.zd ��B/
T�B˙ y C 1

�21 �
4
2

PD
dD1fB˙ yŒ.Axd C �A/.zd � �B/

TB

CBT.zd ��B/.Axd C �A/
T�˙ y � �22 .zd � �B/.Axd C �A/

T˙ yg
C 1

�41 �
2
2

B˙ y
PD

dD1Œ.Axd C �A/.x
T
d AT C �T

A/�˙ y

(21)

r�A
J D 1

2

PD
dD1Œ 2�21 .Axd C�A/� 2

�41
˙ y.�A C Axd/ � 2

�21 �
2
2

˙ y.BTzd � BT�B/�

(22)

r�B
J D 1

2

PD
dD1Œ 2�21 .�zd C �B/C 2

�41
B˙ yBT.zd � �B/C 2

�21 �
2
2

B˙ y.Axd C �A/�

(23)

r�1J D D�M
�1
� D�tr.˙ y/

�31
CPD

dD1Œ� xT
d ATAxdC2�T

AAxdC�T
A�A

�31

C 2.xT
d ATC�T

A/˙ y.AxdC�A/

�51
� .xT

d ATC�T
A/˙

2
y.AxdC�A/

�71

C 2.xT
d ATC�T

A/˙ y.BTzd�BT�B/

�31 �
2
2

� 2.xT
d ATC�T

A/˙
2
y.B

Tzd�BT�B/

�51 �
2
2

� .zT
d B��T

BB/˙ 2
y.B

Tzd�BT�B/

�31 �
4
2

�

(24)

r�2J D D�N
�2
� D�tr.˙ yBTB/

�32
CPD

dD1Œ� zT
d zd�2�T

BzdC�T
B�B

�32

C 2.zT
d B��T

BB/˙ y.BTzd�BT�B/

�52
� .zT

d B��T
BB/˙ yBTB˙ y.BTzd�BT�B/

�72

C 2.zT
d B��T

BB/˙ y.AxdC�A/

�21 �
3
2

� 2.zT
d B��T

BB/˙ yBTB˙ y.AxdC�A/

�21 �
5
2

� .xT
d ATC�T

A/˙ yBTB˙ y.AxdC�A/

�41 �
3
2

�

(25)

3.5 Considering Confounding Factors

To infer associations between SNP sets and gene sets while taking into consid-
eration confounding factors, we further propose a graphical model as shown in
Fig. 7. Different from the previous model, a new type of hidden variable, s D
Œs1; s2; : : : ; sH �

T, is used to model confounding factors. For simplicity, we refer to
this model as Model 1. The objective function of this model can be derivated using
similar strategy as SET-eQTL.

3.6 Incorporating Individual Effect

In the graphical model shown in Fig. 7, we use a hidden variable y as a bridge
between an SNP set and a gene set to capture the group-wise effect. In addition,
individual effects may exist as well [42]. An example is shown in Fig. 4. Note that an
ideal model should allow overlaps between SNP sets and between gene sets; that is,
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Fig. 7 Graphical model with
two types of hidden variables
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Fig. 8 Refined graphical
model to capture both
individual and group-wise
associations

an SNP or gene may participate in multiple individual and group-wise associations.
To incorporate both individual and group-wise effects, we extend the model in Fig. 7
and add one edge between x and z to capture individual associations as shown in
Fig. 8. We will show that this refinement will significantly improve the accuracy of
model and enhance its computational efficiency. For simplicity, we refer to the new
model that considers both individual and group-wise associations as Model 2.

3.6.1 Objective Function

Next, we give the derivation of the objective function for the model in Fig. 8. We
assume that the two conditional probabilities follow normal distributions:

yjx � N.yjAxC �A; �
2
1IM/; (26)

and

zjy; x � N.zjByC CxC PsC �B; �
2
2IN/; (27)
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where A 2 R
M�K is the coefficient matrix between x and y, B 2 R

N�M is the
coefficient matrix between y and z, C 2 R

N�K is the coefficient matrix between x
and z to capture the individual associations, P 2 R

N�H is the coefficient matrix of
confounding factors. �A 2 R

M�1 and �B 2 R
N�1 are the translation factor vectors,

�21 IM and �22 IN are the variances of the two conditional probabilities, respectively
(�1 and �2 are constant scalars and IM and IN are identity matrices).

Since the expression level of a gene is usually affected by a small fraction of
SNPs, we impose sparsity on A, B, and C. We assume that the entries of these matri-
ces follow Laplace distributions: Ai;j � Laplace.0; 1=�/; Bi;j � Laplace.0; 1=�/;
and Ci;j � Laplace.0; 1=˛/: �, � , and ˛ will be used as parameters in the
objective function. The probability density function of Laplace(�; b) distribution
is f .xj�; b/ D 1

2b exp.� jx��jb /.
Thus, we have

y D AxC�A C �1; (28)

z D ByC CxC PsC �B C �2; (29)

where �1 � N.0; �21 IM/,�2 � N.0; �22 IN/. From Eq. (26) we have

Byjx � N.BAxC B�A; �
2
1BBT/; (30)

Assuming that the confounding factors follow normal distribution [42], s �
N.0; IH/, then we have

Ps � N.0;PPT/: (31)

We substitute Eqs. (30), (31) into Eq. (29), and get

zjx � N.BAxC B�A C CxC �B; �
2
1BBT C PPT C �22 IN/:

From the formula above, we observe that the summand B�A can also be
integrated in �B. Thus to simplify the model, we set �A D 0 and obtain

zjx � N.BAxC CxC�B; �
2
1BBT C PPT C �22 IN/:

To learn the parameters, we can use maximize likelihood estimation or maximum
a posteriori. Then, we get the likelihood function as p.zjx/ D QD

dD1 p.zdjxd/.
Maximizing the likelihood function is identical to minimizing the negative log-
likelihood. Here, the negative log-likelihood (loss function) is
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J D
DX

dD1

Jd

D� 1 � log
DY

dD1

p.zdjxd/

D
DX

dD1

.�1/ � log p.zdjxd/

DD � N
2

log.2�/C D

2
log j˙ j C 1

2

DX

dD1

Œ.zd � �d/
T˙ �1.zd � �d/�;

(32)

where

�d D BAxd C Cxd C �B;

˙ D �21BBT CWWT C �22 IN :

Moreover, taking into account the prior distributions of A, B, and C, we have

p.zd ;A;B;Cjxd ;P; �1; �2/ D
exp.�Jd/ � �2

Q
i;j exp.��jAi;jj/ � �2

Q
i;j exp.�� jBi;jj/ � ˛2

Q
i;j exp.�˛jCi;jj/: (33)

Thus, we have the `1-regularized objective function

max
A;B;C;P;�1;�2

log
DY

dD1
p.zd;A;B;Cjxd;P; �1; �2/;

which is identical to

min
A;B;C;P;�1;�2

ŒJ CD � .�jjAjj1 C � jjBjj1 C ˛jjCjj1/�; (34)

where jj � jj1 is the `1-norm. �, � , and ˛ are the precision of the prior Laplace dis-
tributions of A, B, and C, respectively. They serve as the regularization parameters
and can be determined by cross or holdout validation.

The explicit expression of �B can be derived as follows. When A, B, and C are
fixed, we have J D D�N

2
log.2�/ C D

2
log j˙ j C 1

2

PD
dD1Œ.zd � BAxd � Cxd �

�B/
T˙�1.zd � BAxd � Cxd � �B/�. When D D 1, this is a classic maximum

likelihood estimation problem, and we have �B D zd �BAxd �Cxd. When D > 1,
leveraging the fact that ˙�1 is symmetric, we convert the problem into a least square
problem, which leads to

�B D
1

D

DX

dD1
.zd � BAxd �Cxd/:
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Substituting it into Eq. (32), we have

J D D�N
2

log.2�/C D
2

log j˙ j C 1
2

PD
dD1fŒ.zd � Nz/

�.BAC C/.xd � Nx/�T˙�1Œ.zd � Nz/� .BAC C/.xd � Nx/�g;
(35)

where

Nx D 1

D

DX

dD1
xd; Nz D 1

D

DX

dD1
zd:

The gradient of the loss function, which (without detailed derivation) is given in
the below. For notational simplicity, we denote

td D .zd � Nz/ � .BAC C/.xd � Nx/;

� d D 1

2
.˙�1 �˙�1tdtd

T˙�1/:

1. Derivative with respect to �1

r�1O D 2�1
DX

dD1
ftrŒ� d�BBTg: (36)

2. Derivative with respect to �2

r�2O D 2�2
DX

dD1
ftrŒ� d�g: (37)

3. Derivative with respect to A

rAO D �
DX

dD1
ŒBT˙�1td.xd � Nx/T�: (38)

4. Derivative with respect to B

rBO D � 1 C� 2; (39)

where

� 1 D �
DX

dD1
Œ˙�1td.xd � Nx/TAT�; (40)

.� 2/ij D �21
DX

dD1
ftrŒ� d.EijBT C BEji/�g: (41)
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(trŒ�� stands for trace; Eij is the single-entry matrix: 1 at .i; j/ and 0 elsewhere.)
We speed up this calculation by exploiting sparsity of Eij and trŒ��. (The

following equation uses Einstein summation convention to better illustrate the
idea.)

.� 2/ij D �21
DX

dD1
ftrŒ� d.EijBT C BEji/�g

D �21
DX

dD1
ftrŒ� dEijBT C � dBEji�g

D �21
DX

dD1
f

NX

kD1
Œ.BT/j;k.� d/k;i�C

NX

lD1
Œ.� d/i;l.B/l;j�g:

(42)

Therefore,

� 2 D �21
DX

dD1
Œ.BT� d/

T C � dB�

D �21
DX

dD1
Œ� T

d BC � dB�

D 2�21
DX

dD1
� dB:

(43)

5. Derivative with respect to C

rCO D �
DX

dD1
Œ˙�1td.xd � Nx/T�: (44)

6. Derivative with respect to P

rPO D
DX

dD1
ftrŒ� d.EijPT C PEji/�g D 2

DX

dD1
� dP: (45)

3.6.2 Increasing Computational Speed

In this section, we discuss how to increase the speed of the optimization process for
the proposed model. In the previous section, we have shown that A, B, C, P, �1,
and �2 are the parameters to be solved. Here, we first derive an updating scheme for
�2 when other parameters are fixed by following a similar technique as discussed
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in [30]. For other parameters, we develop an efficient method for calculating the
inverse of the covariance matrix which is the main bottleneck of the optimization
process.

Updating ¢2 When all other parameters are fixed, using spectral decomposition on
.�21BBT CWWT/, we have

˙ D .�21BBT CWWT/C �22 IN

D ŒU;V� diag.�1 C �22 ; : : : ; �N�q C �22 ; 0; : : : ; 0/ŒU;V�T

D U diag.�1 C �22 ; : : : ; �N�q C �22 /UT;

(46)

where U is an N � .N � q/ eigenvector matrix corresponding to the nonzero
eigenvalues; V is an N�q eigenvector matrix corresponding to the zero eigenvalues.
A reasonable solution should have no zero eigenvalues in ˙ , otherwise the loss
function would be infinitely big. Therefore, q D 0.

Thus

˙�1 D U diag.
1

�1 C �22
; : : : ;

1

�N C �22
/UT:

Let UT.zd � BAxd � Cxd � �B/ DW Œ
d;1; 
d;2; : : : ; 
d;N �
T. Then solving �2 is

equivalent to minimizing

l.�22 / D
D � N
2

log.2�/C D

2

NX

sD1
log.�s C �22 /C

1

2

DX

dD1

NX

sD1


2d;s

�s C �22
; (47)

whose derivative is

l0.�22 / D
D

2

NX

sD1

1

�s C �22
� 1
2

DX

dD1

NX

sD1


2d;s

.�s C �22 /2
:

This is a 1-dimensional optimization problem that can be solved very efficiently.

Efficiently Inverting the Covariance Matrix From objective function Eq. (35)
and the gradient of the parameters, the time complexity of each iteration in the
optimization procedure is O.DN2MCDN2HCDN3CDNMK/. Since M 	 N and
H 	 N, the third term of the time complexity (O.DN3/) is the bottleneck of the
overall performance. This is for computing the inverse of the covariance matrix

˙ D �21BBT C PPT C �22 IN ;

which is much more time-consuming than other matrix multiplication operations.
We devise an acceleration strategy that calculates ˙�1 using formula (48)

in the following theorem. The complexity of computing the inverse reduces to
O.M3 C H3/.
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Theorem 1. Given B 2 R
N�M, P 2 R

N�H, and

˙ D �22 IN C �21BBT C PPT:

Then

˙�1 D T � TPS�1PTT; (48)

where

S D IH C PTTP; (49)

T D ��22 .IN � �21B.�22 IM C �21BTB/�1BT/: (50)

The proof of Theorem 1 is provided in the following.

Proof of Theorem 1. Before giving the formal proof for Theorem 1, we first intro-
duce Lemma 1, which follows from the definition of matrix inverse.

Lemma 1. For all U 2 R
N�M, if IM C UTU is invertible, then

.IN C UUT/�1 D IN � U.IM C UTU/�1UT:

Here we provide a more general proof, which can be modified to derive more
involved cases.

Proof of Theorem 1. We denote

Q D �22 IN C �21BBT; (51)

that is,

˙ D �22 IN C �21BBT C PPT D QC PPT: (52)

By Lemma 1, we have

Q�1 D T D ��22 .IN � �21B.�22 IM C �21BTB/�1BT/:

Q is symmetric positive definite, hence its inverse, T, is symmetric positive
definite. Since every symmetric positive definite matrix has exactly one symmetric
positive definite square root, we can write

T D RR;

where R is an N � N symmetric positive definite matrix.
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It is clear that Q D T�1 D .RR/�1 D R�1R�1, which leads to RQR D
RR�1R�1R D IN , and therefore

R˙ R D IN C RPPTR D IN C RPPTRT:

Note that the above and the following formulas follow the fact that R is symmetric.
Once again, by Lemma 1, we have

.R˙ R/�1 D IN � RPS�1PTRT;

where

S D IH C PTRTRP D IH C PTTP:

Therefore,

˙�1 D R.R˙ R/�1R D RR � RRPS�1PTRTR;

and thus

˙�1 D T � TPS�1PTT

3.7 Optimization

To optimize the objective function, there are many off-the-shelf `1-penalized opti-
mization tools. We use the Orthant-Wise Limited-memory Quasi-Newton (OWL-
QN) algorithm described in [1]. The OWL-QN algorithm minimizes functions of
the form

f .w/ D loss.w/C cjjwjj1;

where loss(�) is an arbitrary differentiable loss function, and jjwjj1 is the `1-norm
of the parameter vector. It is based on the L-BFGS Quasi-Newton algorithm, with
modifications to deal with the fact that the `1-norm is not differentiable [52]. The
algorithm is proven to converge to a local optimum of the parameter vector. The
algorithm is very fast, and capable of scaling efficiently to problems with millions
of parameters. Thus it is a good option for our problem where the parameter space
is large when dealing with large scale eQTL data.
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3.8 Experimental Results

We apply our methods (SET-eQTL, Model1, and Model2) to both simulation
datasets and yeast eQTL datasets [56] to evaluate its performance. For comparison,
we select several recent eQTL methods, including LORS [70], MTLasso2G [10],
FaST-LMM [42], and Lasso [63]. The tuning parameters in the selected methods
are learned using cross-validation. All experiments are performed on a PC with
2.20 GHz Intel i7 eight-core CPU and 8 GB memory.

3.8.1 Simulation Study

We first evaluate whether Model 2 can identify both individual and group-wise
associations. We adopt a similar setup for simulation study to that in [35, 70]
and generate synthetic datasets as follows. 100 SNPs are randomly selected from
the yeast eQTL dataset [56]. N gene expression profiles are generated by Zj� D
ˇj�XC�j�CEj� (1 � j � N), where Ej� � N .0; 
I/ (
 D 0:1) denotes Gaussian
noise. �j� is used to model non-genetic effects, which is drawn from N.0; �ƒ/,
where � D 0:1. ƒ is generated by FFT, where F 2 R

D�U and Fij � N .0; 1/.
U is the number of hidden factors and is set to 10 by default. The association
matrix ˇ is shown in the top-left plot in Fig. 9. The association strength is 1 for all
selected SNPs. There are four group-wise associations of different scales in total.
The associations on the diagonal are used to represent individual association signals
in cis-regulation.

The remaining three plots in Fig. 9 show associations estimated by Model2. From
the figure, we can see that Model2 well captures both individual and group-wise
signals. For comparison, Fig. 10 visualizes the association weights estimated by
Model1 and Model2 when varying the number of hidden variables (M). We observe
that for Model1, when M D 20, most of the individual association signals on the
diagonal are not captured. As M increases, more individual association signals are
detected by Model1. In contrast, Model2 recovers both individual and group-wise
linkage signals with small M.

Next, we generate 50 simulated datasets with different signal-to-noise ratios

(defined as SNR D
q

Var.ˇX/
Var.�CE/ ) in the eQTL datasets [70] to compare the

performance of the selected methods. Here, we fix H D 10; � D 0:1, and use
different 
’s to control SNR. For each setting, we report the average result from the
50 datasets. For the proposed methods, we use BAC C as the overall associations.
Since FaST-LMM needs extra information (e.g., the genetic similarities between
individuals) and uses PLINK format, we do not list it here and will compare it on
the real data set.

Figure 11 shows the ROC curves of TPR-FPR for performance comparison. The
corresponding areas under the TPR-FPR curve and the areas under the precision-
recall curve (AUCs) [10] are shown in Fig. 12. It can be seen that Model2
outperforms all alternative methods by a large margin. Model2 outperforms Model1
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Fig. 9 Ground truth of ˇ and linkage weights estimated by Model2 on simulated data

because it considers both group-wise and individual associations. Model1 outper-
forms SET-eQTL because it considers confounding factors that is not considered
by SET-eQTL. SET-eQTL considers all associations as group-wise, thus it may
miss some individual associations. MTLasso2G is comparable to LORS because
MTLasso2G considers the group-wise associations while neglecting confounding
factors. LORS considers the confounding factors, but does not distinguish individual
and group-wise associations. LORS outperforms Lasso since confounding factors
are not considered in Lasso.

Shrinkage of C and B � A

As discussed in the previous section, the group-wise associations are encoded in
B�A and individual associations are encoded in C. To enforce sparsity on A, B, and
C, we use Laplace prior on the elements of these matrices. Thus, it is interesting to
study the overall shrinkage of B�A and C. We randomly generate seven predictors
({x1; x2; : : : ; x7}) and one response (z) with sample size 100. xi � N .0; 0:6 � I/.i 2
Œ1; 7�/. The response vector was generated with the formula: z D 5 � .x1 C x2/� 3 �
.x3 C x4/ C 2 � x5 C Q� and Q� 2 N .0; I/. Thus, there are two groups of predictors
({x1; x2} and {x3; x4}) and one individual predictor x5. Figure 13 shows the Model
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Fig. 10 Association weights estimated by Model1 and Model2
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Fig. 11 The ROC curve of FPR-TPR on simulated data. (a) ROC curve (SNR D 1:16). (b) ROC
curve (SNR D 0:13). (c) ROC curve (SNR D 0:08)

2 shrinkage of coefficients for B � A and C, respectively. Each curve represents a
coefficient as a function of the scaled parameter s D jB�Aj

max jB�Aj or s D jCj
max jCj . We

can see that the two groups of predictors can be identified by B � A as the most
important variables, and the individual predictor can be identified by C.

Computational Efficiency Evaluation

Scalability is an important issue for eQTL study. To evaluate the techniques
for speeding up the computational efficiency, we compare the running time
with/without these techniques. Figure 14 shows the running time when varying
the number of hidden variables (M) and number of traits (N). The results are
consistent with the theoretical analysis in previous part that the time complexity



50 W. Cheng et al.

Lasso LORS MTLasso2GSET−eQTL Model 1 Model 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C
 o

f F
PR

−T
PR

 c
ur

ve

SNR=0.08 SNR=0.13 SNR=1.16

Lasso LORS MTLasso2GSET−eQTL Model 1 Model 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C
 o

f F
PR

−T
PR

 c
ur

ve

SNR=0.08 SNR=0.13 SNR=1.16
a b

Fig. 12 The areas under the precision-recall/FPR-TPR curve (AUCs). (a) AUC of FPR-TPR
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is reduced to O.M3 C H3/ from O.N3/ when using the improved method for
inverting the covariance matrix. We also observe that Model2 uses slightly more
time than Model1, since it has more parameters to optimize. However, to get similar
performance, Model1 needs a significantly larger number of hidden variables M. As
shown in Fig. 14b, a larger M results in a longer running time. In some cases, Model2
is actually faster than Model1. As an example, to obtain the same performance (i.e.,
AUC), Model1 needs 60 hidden variables (M), while Model2 only needs M D 20.
In this case, from Fig. 14a, we can observe that Model2 needs less time than Model1
to obtain the same results.

3.8.2 Yeast eQTL Study

We apply the proposed methods to a yeast (Saccharomyces cerevisiae) eQTL dataset
of 112 yeast segregants [56] generated from a cross of two inbred strains. The
dataset originally includes expression profiles of 6229 gene expression traits and
genotype profiles of 2956 SNP markers. After removing SNPs with more than 10 %
missing values and merging consecutive SNPS with high linkage disequilibrium, we
obtain 1017 SNPs with distinct genotypes [24]. In total, 4474 expression profiles are
selected after removing the ones with missing values. It takes about 5 h for Model1,
and 3 h for Model2 to run to completion. The regularization parameters are set by
grid search in {0.1, 1, 10, 50, 100, 500, 1000, 2000}. Specifically, grid search trains
the model with each combination of three regularization parameters in the grid and
evaluates their performance (by measuring out-of-sample loss function value) for a
two-fold cross validation. Finally, the grid search algorithm outputs the settings that
achieved the smallest loss in the validation procedure.

We use hold-out validation to find the optimal number of hidden variables M
and H for each model. Specifically, we partition the samples into two subsets of
equal size. We use one subset as training data and test the learned model using
the other subset of samples. By measuring out-of-sample predictions, we can find
optimal combination of M and H that avoids over-fitting. For each combination,
optimal values for regularization parameters were determined with two-fold cross
validation. The loss function values for different {M, H} combinations of Model2
are shown in Fig. 15. We find that M D 30 and H D 10 for Model2 deliver the best
overall performance. Similarly, we find that the optimal M and H values for Model1
are 150 and 10, respectively. The significant associations given by Model1, Model2,
LORS, MTLasso2G, and Lasso are shown in Fig. 16. For Model2, we can clearly
see that the estimated matrices C and B � A well capture the non-group-wise and
group-wise signals, respectively. C C B � A and C of Model2 have stronger cis-
regulatory signals and weaker trans-regulatory bands than that of Model1, LORS,
and Lasso. C of Model2 has the weakest trans-regulatory bands. LORS has weaker
trans-regulatory bands than Lasso since it considers confounding factors. With more
hidden variables (larger M), Model1 obtains stronger cis-regulatory signals.
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Fig. 15 Parameter tuning for
M and H (Model2)
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cis- and trans-Enrichment Analysis

In total, the proposed two methods detect about 6000 associations with non-zero
weight values (B � A for Model1 and C C B � A for Model2). We estimate their
FDR values by following the method proposed in [70]. With FDR � 0.01, both
models obtain about 4500 associations. The visualization of significant associations
detected by different methods is provided in Fig. 16.

We apply cis- and trans-enrichment analysis on the discovered associations.
In particular, we follow the standard cis-enrichment analysis [41, 44] to compare
the performance of two competing models. The intuition behind cis-enrichment
analysis is that more cis-acting SNPs are expected than trans-acting SNPs. A two-
step procedure is used in the cis-enrichment analysis [41]: (1) for each model, we
apply a one-tailed Mann-Whitney test on each SNP to test the null hypothesis that
the model ranks its cis hypotheses (we use<500 bp for yeast) no better than its trans
hypotheses, (2) for each pair of models compared, we perform a two-tailed paired
Wilcoxon sign-rank test on the p-values obtained from the previous step. The null
hypothesis is that the median difference of the p-values in the Mann-Whitney test
for each SNP is zero. The trans-enrichment is implemented using a similar strategy
as in [71], in which genes regulated by transcription factors are used as trans-acting
signals.

The results of pairwise comparison of selected models are shown in Table 2. A
p-value shows how significant a method on the left column outperforms a method
in the top row in terms of cis-enrichment or trans-enrichment. We observe that the
proposed Model2 has significantly better cis-enrichment scores than other methods.
For trans-enrichment, Model2 is the best, and FaST-LMM comes in second. This
is because both Model2 and FaST-LMM consider confounding factors (FaST-LMM
considers confounders from population structure) and joint effects of SNPs, but only
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Fig. 16 Significant associations discovered by different methods in yeast. (a) Model 2 CC B �
A(M D 30, top 4500). (b) Model 2 C(M D 30, top 3000). (c) Model 2 B � A(M D 30, top 1500).
(d) Model 1 B � A(M D 120). (e) Model 1 B � A(M D 150). (f) Model 1 B � A(M D 200). (g)
MTLasso2G. (h) LORS. (i) Lasso

Model2 considers grouping of genes. Model1 has poor performance because a larger
M may be needed for Model1 to capture those individual associations.

Reproducibility of trans Regulatory Hotspots Between Studies

We also evaluate the consistency of calling eQTL hotspots between two independent
glucose yeast datasets [59]. The glucose environment from Smith et al. [59] shares
a common set of segregants. It includes 5493 probes measured in 109 segregates.
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Fig. 17 Consistency of
detected eQTL hotspots
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Since our algorithm aims at finding group-wise associations, we focus on the
consistency of regulatory hotspots.

We examine the reproducibility of trans regulatory hotspots based on the follow-
ing criteria [18, 29, 70]. For each SNP, we count the number of associated genes
from the detected SNP-gene associations. We use this number as the regulatory
degree of each SNP. For Model2, LORS, and Lasso, all SNP-Gene pairs with non-
zero association weights are defined as associations. Note that Model2 uses BACC
as the overall associations. For FaST-LMM, SNP-Gene pairs with a q-value< 0.001
are defined as associations. Note that we also tried different cutoffs for FaST-LMM
(from 0.01 to 0.001), the results are similar. SNPs with large regulatory degrees
are often referred to as hotspots. We sort SNPs by the extent of trans regulation
(regulatory degrees) in a descending order. We denote the sorted SNPs lists as S1 and
S2 for the two yeast datasets. Let ST

1 and ST
2 be the top T SNPs in the sorted SNP lists.

The trans calling consistency of detected hotspots is defined as jS
T
1

T
ST
2 j

T . Figure 17
compares the reproducibility of trans regulatory hotspots given by different studies.
It can be seen that the proposed Model2 gives much higher consistency than any
other competitors do. In particular, the consistency of trans hotspots suggests the
superiority of Model2 in identifying hotspots that are likely to have a true genetic
underpinning.

Gene Ontology Enrichment Analysis

As discussed in previous section, hidden variables y in the middle layer may model
the joint effect of SNPs that have influence on a group of genes. To better understand
the learned model, we look for correlations between a set of genes associated
with a hidden variable and GO categories (Biological Process Ontology) [62]. In
particular, for each gene set G, we identify the GO category whose set of genes
is most correlated with G. We measure the correlation by a p-value determined
by the Fisher’s exact test. Since multiple gene sets G need to be examined, the
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raw p-values need to be calibrated because of the multiple testing problem [68]. To
compute the calibrated p-values for each gene set G, we perform a randomization
test, wherein we apply the same test to randomly created gene sets that have the
same number of genes as G. Specifically, the enrichment test is performed using
DAVID [24]. And gene sets with calibrated p-values less than 0.01 are considered
as significantly enriched. The results from Model2 are reported in Table 3. Each row
of Table 3 represents the gene set associated with a hidden variable. All of these
detected gene sets are significantly enriched in certain GO categories. In total, 77
out of 90 gene sets detected by SET-eQTL are significant. For SET-eQTL, Fig. 18
shows the number of genes and SNPs within each group-wise association and the
corresponding calibrated p-value (Fisher’s exact test) of each discovered gene set.
The hidden variable IDs are used as the cluster IDs. We can observe that for SET-
eQTL, the gene sets with large calibrated p-values tend to have a very small SNP
set associated with them. Those clusters are labeled in both figures. This is a strong
indicator that these hidden variables may correspond to confounding factors.

For comparison, we visualize the number of SNPs and genes in each group-wise
association in Fig. 19. We observe that 90 out of 150 gene sets reported by Model1
are significantly enriched, and all 30 gene sets reported by Model2 are significantly
enriched. This indicates that Model2 is able to detect group-wise linkages more
precisely than Model1. We also study the hotspots detected by LORS, which affect
> 10 gene traits [35]. Specifically, we delve into the top 15 hotspots detected by
LORS (ranking by number of associated genes for each SNP). We can see that only
9 out of 15 top ranked hotspots are significantly enriched.

3.9 Conclusion

A crucial challenge in eQTL study is to understand how multiple SNPs interact
with each other to jointly affect the expression level of genes. In this section, we
propose three sparse graphical model-based approaches to identify novel group-
wise eQTL associations. `1-regularization is applied to learn the sparse structure
of the graphical model. The three models incrementally take into consideration
more aspects, such as group-wise association, potential confounding factors, and the
existence of individual associations. We illustrate how each aspect would benefit the
eQTL mapping. We also introduce computational techniques to make this approach
suitable for large scale studies. Extensive experimental evaluations using both
simulated and real datasets demonstrate that the proposed methods can effectively
capture both individual and group-wise signals and significantly outperform the
state-of-the-art eQTL mapping methods.
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Table 3 Summary of all detected groups of genes from Model2 on yeast data

aGroup ID bSNPs set size cgene set size dGO category

1 63 294 Oxidation-reduction process�

2 78 153 Thiamine biosynthetic process�

3 94 871 rRNA processing���

4 64 204 Nucleosome assembly��

5 70 288 ATP synthesis coupled proton
transport���

6 43 151 Branched chain family amino acid
biosynthetic: : :��

7 76 479 Mitochondrial translation���

8 47 349 Transmembrane transport��

9 64 253 Cytoplasmic translation���

10 72 415 Response to stress��

11 64 225 Mitochondrial translation�

12 62 301 Oxidation-reduction process��

13 83 661 Oxidation-reduction process�

14 69 326 Cytoplasmic translation�

15 71 216 Oxidation-reduction process�

16 66 364 Methionine metabolic process�

17 74 243 Cellular amino acid biosynthetic
process���

18 63 224 Transmembrane transport��

19 23 50 De novo’ pyrimidine base biosynthetic
process�

20 66 205 Cellular amino acid biosynthetic
process���

21 81 372 Oxidation-reduction process��

22 33 126 Oxidation-reduction process���

23 81 288 Pheromone-dependent signal
transduction: : :��

24 53 190 Pheromone-dependent signal
transduction: : :��

25 91 572 Oxidation-reduction process���

26 66 46 Cellular cell wall organization�

27 111 1091 Translation���

28 89 362 Cellular amino acid biosynthetic
process��

29 62 217 Transmembrane transport��

30 71 151 Cellular aldehyde metabolic process��

a Group ID corresponding to Fig. 19
b Number of SNPs in the group
c Number of genes in the group
d The most significant GO category enriched in the associated gene set. The enrichment
test was performed using DAVID [29]. The gene function is defined by GO category.
Adjusted p-values are reported by using permutation test. Adjusted p-values are
indicated by �, where �10.�2/ � 10.�3/; ��10.�3/ � 10.�5/; ���10.�5/ � 10.�10/
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Fig. 18 Number of nodes and calibrated p-values in each group-wise association. (a) #nodes in
each set (SNP/gene). (b) Calibrated p-values of gene sets

4 Incorporating Prior Knowledge for Robust eQTL Mapping

4.1 Introduction

Several important issues need to be considered in eQTL mapping. First, the number
of SNPs is usually much larger than the number of samples [63]. Second, the
existence of confounding factors, such as expression heterogeneity, may result
in spurious associations [41]. Third, SNPs (and genes) usually work together to
cause variation in complex traits [45]. The interplay among SNPs and the interplay
among genes can be represented as networks and used as prior knowledge [48, 55].
However, such prior knowledge is far from being complete and may contain a lot
of noise. Developing effective models to address these issues in eQTL studies has
recently attracted increasing research interests [4, 32, 35, 36].

In eQTL studies, two types of networks can be utilized. One is the genetic
interaction network [9]. Modeling genetic interaction (e.g., epistatic effect between
SNPs) is essential to understanding the genetic basis of common diseases, since
many diseases are complex traits [33]. Another type of network is the network
among traits, such as the PPI network or the gene co-expression network. Interacting
proteins or genes in a PPI network are likely to be functionally related, i.e., part
of a protein complex or in the same biological pathway [65]. Effectively utilizing
such prior network information can significantly improve the performance of eQTL
mapping [35, 36].

Figure 20 shows an example of eQTL mapping with prior network knowledge.
The interactions among SNPs and genes are represented by matrices S and G,
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respectively. The goal of eQTL mapping is to infer associations between SNPs and
genes represented by the coefficient matrix W. Suppose that SNP 2
 is strongly
associated with gene C
. Using the network prior, the moderate association between
SNP 1
 and gene A
may be identified since 1
 and 2
, A
 and C
 have interactions.

To leverage the network prior knowledge, several methods based on Lasso have
been proposed [32, 35, 36]. The group-lasso penalty is applied to model the genetic
interaction network. Xing et al. consider groupings of genes and apply a multi-
task lasso penalty [32, 36]. They further extend the model to consider grouping
information of both SNPs and genes [35]. These methods apply a “hard” clustering
of SNPs (genes) so that an SNP (gene) cannot belong to multiple groups. However,
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an SNP may affect multiple genes and a gene may function in multiple pathways.
To address this limitation, Jenatton et al. develop a model allowing overlap between
different groups [28].

Despite their success, there are three common limitations of these group penalty-
based approaches. First, a clustering step is usually needed to obtain the grouping
information. To address this limitation, Xing et al. introduce a network-based fusion
penalty on the genes [31, 40]. However, this method does not consider the genetic
interaction network. A two-graph-guided multi-task Lasso approach is developed
by Chen et al. [10] to make use of gene co-expression network and SNP correlation
network. However, this method does not consider the network prior knowledge. The
second limitation of the existing methods is that they do not take into consideration
the incompleteness of the networks and the noise in them [65]. For example, PPI
networks may contain false interactions and miss true interactions [65]. Directly
using the grouping penalty inferred from the noisy and partial prior networks may
introduce new bias and thus impair the performance. Third, in addition to the
network information, other prior knowledge, such as location of genetic markers
and gene pathway information, is also available. The existing methods cannot
incorporate such information.

To address the limitations of the existing methods, this section proposes a novel
approach, GDL, which simultaneously learns the association between SNPs and
genes and refines the prior networks. To support “soft” clustering (allowing genes
and SNPs to be members of multiple clusters), we adopt the graph regularizer to
encode structured penalties from the prior networks. The penalties encourage the
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connected nodes (SNPs/genes) to have similar coefficients. This enables us to find
multiple-correlated genetic markers with pleiotropic effects that affect multiple-
correlated genes jointly. To tackle the problem of noisy and incomplete prior
networks, we exploit the duality between learning the associations and refining
the prior networks to achieve smoother regularization. That is, learning regression
coefficients can help to refine the prior networks, and vice versa. For example, in
Fig. 20, if SNPs 3
 and 4
 have strong associations with the same group of genes,
they are likely to have interaction, which is not captured in the prior network. An
ideal model should allow an update to the prior network according to the learned
regression coefficients. GDL can also incorporate other available prior knowledge
such as the physical location of SNPs and biology pathways to which the genes
belong. The resultant optimization problem is convex and can be efficiently solved
by using an alternating minimization procedure. We perform extensive empirical
evaluation of the proposed method using both simulated and real eQTL datasets. The
results demonstrate that GDL is robust to the incomplete and noisy prior knowledge
and can significantly improve the accuracy of eQTL mapping compared to the state-
of-the-art methods.

4.2 Background: Linear Regression with Graph Regularizer

Throughout the section, we assume that, for each sample, the SNPs and genes
are represented by column vectors. Important notations are listed in Table 4. Let
x D Œx1; x2; : : : ; xK �

T represent the K SNPs in the study, where xi 2 f0; 1; 2g is a
random variable corresponding to the ith SNP. For example, 0, 1, 2 may encode
the homozygous major allele, heterozygous allele, and homozygous minor allele,
respectively. Let z D Œz1; z2; : : : ; zN �

T represent expression levels of the N genes in
the study, where zj is a continuous random variable corresponding to the jth gene.
The traditional linear regression model for association mapping between x and z is

z DWxC �C �; (53)

where z is a linear function of x with coefficient matrix W. � is an N � 1 translation
factor vector. � is the additive noise of Gaussian distribution with zero-mean and
variance �I, where � is a scalar. That is, � � N .0; �I/.

The question now is how to define an appropriate objective function over W that
(1) can effectively incorporate the prior network knowledge, and (2) is robust to the
noise and incompleteness in the prior knowledge. Next, we first briefly review Lasso
and its variations and then introduce the proposed GD-Lasso method.
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Table 4 Summary of
notations

Symbols Description

K Number of SNPs

N Number of genes

D Number of samples

X 2 R
K�D The SNP matrix data

Z 2 R
N�D The gene matrix data

L 2 R
N�D A low-rank matrix

S0 2 R
K�K The input affinity matrices of the genetic

interaction network

G0 2 R
N�N The input affinity matrices of the network

of traits

S 2 R
K�K The refined affinity matrices of the genetic

interaction network

G 2 R
N�N The refined affinity matrices of the net-

work of traits

W 2 R
N�K The coefficient matrix to be inferred

R.S/ The graph regularizer from the genetic
interaction network

R.G/ The graph regularizer from the PPI net-
work

D.�; �/ A nonnegative distance measure

4.2.1 Lasso and LORS

Lasso [63] is a method for estimating the regression coefficients W using `1 penalty
for sparsity. It has been widely used for association mapping problems. Let X D
fxdj1 � d � Dg 2 R

K�D be the SNP matrix and Z D fzdj1 � d � Dg 2 R
N�D

be the gene expression matrix. Each column of X and Z stands for one sample. The
objective function of Lasso is

min
W

1

2
jjZ�WX � �1jj2F C 
jjWjj1 (54)

where jj � jjF denotes the Frobenius norm, jj � jj1 is the `1-norm. 1 is an 1�D vector
of all 1’s. 
 is the empirical parameter for the `1 penalty. W is the parameter (also
called weight) matrix parameterizing the space of linear functions mapping from
X to Z.

Confounding factors, such as unobserved covariates, experimental artifacts, and
unknown environmental perturbations, may mask real signals and lead to spurious
findings. LORS [70] uses a low-rank matrix L 2 R

N�D to account for the variations
caused by hidden factors. The objective function of LORS is
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min
W;�;L

1

2
jjZ�WX � �1 � Ljj2F C 
jjWjj1 C �jjLjj� (55)

where jj � jj� is the nuclear norm. 
 is the empirical parameter for the `1 penalty to
control the sparsity of W, and � is the regularization parameter to control the rank
of L. L is a low-rank matrix assuming that there are only a small number of hidden
factors influencing the gene expression levels.

4.2.2 Graph-Regularized Lasso

To incorporate the network prior knowledge, group sparse Lasso [4], multi-task
Lasso [53], and SIOL [35] have been proposed. Group sparse Lasso makes use of
grouping information of SNPs; multi-task Lasso makes use of grouping information
of genes, while SIOL uses information from both networks. A common drawback
of these methods is that the number of groups (SNP and gene clusters) has to
be predetermined. To overcome this drawback, we propose to use two graph
regularizers to encode the prior network information. Compared with the previous
group penalty-based methods, our method does not need to pre-cluster the networks
and thus may obtain smoother regularization. Moreover, these methods do not
consider confounding factors that may mask real signals and lead to spurious
findings. In this section, we further incorporate the idea in LORS [70] to tackle
the confounding factors simultaneously.

Let S0 2 R
K�K and G0 2 R

N�N be the affinity matrices of the genetic interaction
network (e.g., epistatic effect between SNPs) and network of traits (e.g., PPI
network or gene co-expression network), and DS0 and DG0 be their degree matrices.
Given the two networks, we can employ a pairwise comparison between w�i and
w�j (1 � i < j � K): if SNPs i and j are closely related, jjw�i � w�jjj22 is small.
The pairwise comparison can be naturally encoded in the weighted fusion penaltyP

ij jjw�i � w�jjj22.S0/i;j. This penalty will enforce jjw�i � w�jjj22 D 0 for closely
related SNP pairs (with large .S0/i;j value). Then, the graph regularizer from the
genetic interaction network takes the following form:

R.S/ D 1

2

X

ij

jjw�i � w�jjj22.S0/i;j

D tr.W.DS0 � S0/WT/

(56)

Similarly, the graph regularizer for the network of traits is

R.G/ D tr.WT.DG0 �G0/W/ (57)
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These two regularizers encourage the connected nodes in a graph to have similar
coefficients. A heavy penalty occurs if the learned regression coefficients for
neighboring SNPs (genes) are disparate. (DS0 � S0) and (DG0 � G0) are known
as the combinatorial graph Laplacian, which are positive semi-definite [12]. Graph-
regularized Lasso (G-Lasso) solves the following optimization problem:

min
W;�;L

1

2
jjZ�WX � �1 � Ljj2F
C 
jjWjj1 C �jjLjj� C ˛R.S/ C ˇR.G/

(58)

where ˛; ˇ > 0 are regularization parameters.

4.3 Graph-Regularized Dual Lasso

In eQTL studies, the prior knowledge is usually incomplete and contains noise. It
is desirable to refine the prior networks according to the learned regression coeffi-
cients. There is a duality between the prior networks and the regression coefficients:
learning coefficients can help to refine the prior networks, and vice versa. This leads
to mutual reinforcement when learning the two parts simultaneously.

Next, we introduce the GDL. We further relax the constraints from the prior
networks (two graph regularizers) introduced in Sect. 4.2.2, and integrate the graph-
regularized Lasso and the dual refinement of graphs into a unified objective function

min
W;�;L;S�0;G�0

1

2
jjZ �WX ��1 � Ljj2F C 
jjWjj1 C �jjLjj�

C ˛tr.W.DS � S/WT/C ˇtr.WT.DG �G/W/

C � jjS� S0jj2F C �jjG�G0jj2F

(59)

where �; � > 0 are positive parameters controlling the extent to which the refined
networks should be consistent with the original prior networks. DS and DG are
the degree matrices of S and G. Note that the objective function considers the
non-negativity of S and G. As an extension, the model can be extended easily to
incorporate prior knowledge from multiple sources. We only need to revise the last
two terms in Eq. (59) to �

Pf
iD1 jjS � Sijj2F C �

Pe
iD1 jjG � Gijj2F, where f and e

are the number of sources for genetic interaction networks and gene trait networks,
respectively.
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Algorithm 1: Graph-regularized Dual Lasso (GD-Lasso)

Input: X D fxdg 2 R
K�D, ZD fzdg 2 R

N�D, S0 2 R
K�K , G0 2 R

N�N , 
,˛,ˇ,� ,�
Output: W,�,S,G,L

4.3.1 Optimization: An Alternating Minimization Approach

In this section, we present an alternating scheme to optimize the objective function
in Eq. (59) based on block coordinate techniques. We divide the variables into three
sets: {L},{S,G}, and {W,�}. We iteratively update one set of variables while fixing
the other two sets. This procedure continues until convergence. Since the objective
function is convex, the algorithm will converge to a global optima. The optimization
process is as follows. The detailed algorithm is included in Algorithm 1.

1. While fixing fW;�g, fS;Gg, optimize fLg using singular value decomposition
(SVD).

Lemma 2. [43] Suppose that matrix A has rank r. The solution to the optimiza-
tion problem

min
B

1

2
jjA� Bjj2F C �jjBjj� (60)

is given by bB D H�.A/, where H�.A/ D UD�VT with D� D diagŒ.d1 � �/C; : : : ;
.dr � �/C�, UDVTis the Singular Value Decomposition (SVD) of A, D D
diagŒd1; : : : ; dr�, and .di � �/C D max..di � �/; 0/; .1 � i � r/.

Thus, for fixed W;�;S;G, the formula for updating L is

L H�.Z�WX� �1/ (61)

2. While fixing fW;�g, fLg, optimize fS;Gg using semi-nonnegative matrix
factorization (semi-NMF) multiplicative updating on S and G iteratively. For the
optimization with non-negative constraints, our updating rule is based on the
following two theorems. The proofs of the theorems are given in Sect. 4.3.2.

Theorem 1. For fixed L;�, W, and G, updating S according to Eq. (62) monoton-
ically decreases the value of the objective function in Eq. (59) until convergence.

S S ı ˛.WTW/C C 2�S0
2�SC ˛.WTW/� C ˛ diag.WTW/JK

(62)

where JK is a K �K matrix of all 1’s. ı, Œ��
Œ�� are element-wise operators. Since WTW

may take mixed signs, we denote WTW D .WTW/C � .WTW/�, where .WTW/
C

i;j D
.j.WTW/i;jj C .WTW/i;j/=2 and .WTW/�i;j D .j.WTW/i;jj � .WTW/i;j/=2.

Theorem 2. For fixed L;�, W, and S, updating G according to Eq. (63) monoton-
ically decreases the value of the objective function in Eq. (59) until convergence.
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G G ı ˇ.WWT/C C 2�G0

2�GC ˇ.WWT/� C ˇ diag.WWT/JN
(63)

where JN is an N � N matrix of all 1’s.

The above two theorems are derived from the KKT complementarity condition
[6]. We show the updating rule for S below. The analysis for G is similar and
omitted. We first formulate the Lagrange function of S for optimization

L.S/ D ˛tr.W.DS � S/WT/C � jjS� S0jj2F (64)

The partial derivative of the Lagrange function with respect to S is

rSL D �˛WTW� 2�S0 C 2�SC ˛ diag.WTW/JK (65)

Using the KKT complementarity condition for the non-negative constraint on S, we
have

rSL ı S D 0 (66)

The above formula leads to the updating rule for S in Eq. (62). It has been shown
that the multiplicative updating algorithm has first order convergence rate [15].

3. While fixing fLg, fS;Gg, optimize fW;�g using the coordinate descent algo-
rithm.

Because we use the `1 penalty on W, we can use the coordinate descent
algorithm for the optimization of W, which gives the following updating formula:

Wi;j D F.m.i; j/; 
/

.XXT/j;j C 2˛.DS � S/j;j C 2ˇ.DG �G/i;i
(67)

where F.m.i; j/; 
/ D sign.m.i; j//max.jm.i; j/j � 
; 0/, and

m.i; j/ D .ZXT/i;j �
KX

kD1
k¤j

Wi;k.XXT/k;j

� 2˛
KX

kD1
k¤j

Wi;k.DS � S/k;j � 2ˇ
NX

kD1
k¤i

.DG �G/i;kWk;j

(68)

The solution of updating � can be derived by setting O�L.�/ D 0, which gives

� D .Z �WX/1T

D
(69)
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4.3.2 Convergence Analysis

In the following, we investigate the convergence of the algorithm. First, we study
the convergence for the second step. We use the auxiliary function approach [34]
to analyze the convergence of the multiplicative updating formulas. Here we first
introduce the definition of auxiliary function.

Definition 1. Given a function L.h/ of any parameter h, a function Z.h; Qh/ is an
auxiliary function for L.h/ if the conditions

Z.h; Qh/ � L.h/ and Z.h; h/ D L.h/; (70)

are satisfied for any given h; Qh [34].

Lemma 2. If Z is an auxiliary function for function L.h/, then L.h/ is non-
increasing under the update [34].

h.tC1/ D arg min
h

Z.h; h.t// (71)

Theorem 3. Let L.S/ denote the Lagrange function of S for optimization. The
following function:

Z.S; QS/ D ˛
X

ijk

W2
i;j

S2j;k C QS2j;k
2QSj;k

C ˛X

ijk

.Wi;jWi;k/
�

S2j;k C QS2j;k
2QSj;k

� ˛X

ijk

.Wi;jWi;k/
CQSj;k.1C log

Sj;k

QSj;k

/C � X

jk

S2j;k

� 2� X

jk

.S0/j;k QSj;k.1C log
Sj;k

QSj;k

/C � X

jk

.S0/2j;k:

(72)

is an auxiliary function for L.S/. Furthermore, it is a convex function in S and its
global minimum is

S D QS ı ˛.WTW/C C 2�S0
2� QSC ˛.WT W/� C ˛ diag.WTW/JK

: (73)

Theorem 3 can be proved using a similar idea to that in [14] by validating three
Properties: (1) L.S/ � Z.S; QS/; (2) L.S/ D Z.S;S/; (3) Z.S; QS/ is convex with
respect to S. The formal proof is provided below.

Proof. We will prove the three properties, respectively. The Lagrange function of S
for optimization is

L.S/ D ˛tr.W.DS � S/WT /C � jjS� S0jj2F : (74)

To prove Properties 1 and 2, we first deduce the following identities:
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tr.WDSWT/ DX

ijk

W2
i;jSj;k: (75)

Similarly,
tr.WSWT/ DX

ijk

Wi;jWi;kSj;k: (76)

And,
jjS� S0jj2F Dtr.SST/� 2tr.S0ST/C tr.S0ST

0 /

DX

jk

S2j;k � 2
X

jk

.S0/j;kSj;k C
X

jk

.S0/2j;k:
(77)

Using identities (75), (76), and (77), and substituting QS with S in function (72),
we get the identity for Property 2.

Further, note that a � a2Cb2

2b and a � b.1C log a
b / for all positive a and b, and

we have

• for (75),

X

ijk

W2
i;jSj;k �

X

ijk

W2
i;j

S2j;k C QS2j;k
2QSj;k

I

• for (76), X

ijk

Wi;jWi;kSj;k

DX

ijk

.Wi;jWi;k/
CSj;k �

X

ijk

.Wi;jWi;k/
�Sj;k

�X

ijk

.Wi;jWi;k/
C QSj;k.1C log

Sj;k

QSj;k

/

�X

ijk

.Wi;jWi;k/
�

S2j;k C QS2j;k
2QSj;k

I

(78)

• for the second term in (77),

X

jk

.S0/j;kSj;k � 2
X

jk

.S0/j;k QSj;k.1C log
Sj;k

QSj;k

/

These inequalities together prove Property 1.
For Property 3, we instead prove the Hessian matrix rrSZ.S; QS/ 	 0

@Z.S; QS/
@Sm;n

D˛X

i

W2
i;m

Sm;n

QSm;n

C ˛X

i

.Wi;mWi;n/
�

Sm;n

QSm;n

� ˛X

i

.Wi;mWi;n/
C

QSm;n

Sm;n
C 2�Sm;n � 2�.S0/m;n

QSm;n

Sm;n
:

(79)
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Hence,
@2Z.S; QS/
@Ss;t@Sm;n

D˛X

i

ımsıntW2
i;m

1

QSm;n

C ˛X

i

ımsınt.Wi;mWi;n/
�

1

QSm;n

C ˛X

i

ımsınt.Wi;mWi;n/
C

QSm;n

S2m;n

C 2�ımsınt C 2�ımsınt.S0/m;n
QSm;n

S2m;n

�0:

(80)

Therefore, r2S Z.S; QS/ is diagonal with positive entries. Thus r2SZ.S; QS/ is positively defined,
namely Z.S; QS/ is convex, which concludes Property 3.

To solve for S, we set rSZ.S; QS/ D 0, and get the following formula for all m and n:

@

@Sm;n
Z.S; QS/

D ˛
X

i

W2
i;m

Sm;n

QSm;n

C ˛X

i

.Wi;mWi;n/
�

Sm;n

QSm;n

� ˛X

i

.Wi;mWi;n/
C

QSm;n

Sm;n
C 2�Sm;n � 2�.S0/m;n

QSm;n

Sm;n

D 0:

(81)

After sorting the equation, we have

Sm;n D QSm;n � ˛
P

i.Wi;mWi;n/
C C 2�.S0/m;n

2� QSm;n C ˛P
i.Wi;mWi;n/� C ˛P

i W2
i;m

: (82)

That is equivalent to the formula (73), which is consistent with the updating
formula derived from the KKT condition aforementioned. ut
Theorem 4. Updating S using Eq. (62) will monotonically decrease the value of
the objective in Eq. (59), the objective is invariant if and only if S is at a stationary
point.

Proof. By Lemma 2 and Theorem 3, for each subsequent iteration of updating S,

we have L..S/0/ D Z..S/0; .S/0/ � Z..S/1; .S/0/ � Z..S/1; .S/1/ D L..S/1/ � : : : �
L..S/Iter/. Thus L.S/ monotonically decreases. Since the objective function Eq. (59)
is obviously bounded below, the correctness of Theorem 1 is proved. Theorem 2
can be proved similarly. ut

In addition to Theorem 4, since the computation of L in the first step decreases
the value of the objective in Eq. (59), and the coordinate descent algorithm for
updating W in the third step also monotonically decreases the value of the objective,
the algorithm is guaranteed to converge.
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4.4 Generalized Graph-Regularized Dual Lasso

In this section, we extend our model to incorporate additional prior knowledge such
as SNP locations and biological pathways. If the physical locations of two SNPs are
close or two genes belong to the same pathway, they are likely to have interactions.
Such information can be integrated to help refine the prior networks.

Continue with our example in Fig. 20. If SNPs 3
 and 4
 affect the same set of
genes ( B
 and D
), and at the same time, they are close to each other, then it is likely
there exists interaction between 3
 and 4
.

Formally, we would like to solve the following optimization problem:

min
W;�;L;S�0;G�0

1

2
jjWX� Z� �1� Ljj2F C 
jjWjj1 C �jjLjj�

C ˛X

i;j

D.w�i ;w�j/Si;j C ˇ
X

i;j

D.wi�;wj�/Gi;j

(83)

Here D.�; �/ is a non-negative distance measure. Note that the Euclidean distance
is used in previous sections. S and G are initially given by inputs S0 and G0. We
refer to this generalized model as the Generalized Graph-regularized Dual Lasso
(GGD-Lasso). GGD-Lasso executes the following two steps iteratively until the
termination condition is met: (1) update W while fixing S and G; (2) update
S and G according to W, while guarantee that both

P
i;j D.w�i;w�j/Si;j andP

i;j D.wi�;wj�/Gi;j decrease.
These two steps are based on the aforementioned duality between learning W

and refining S and G. The detailed algorithm is provided in Algorithm 2. Next, we
illustrate the updating process assuming that S and G are unweighted graphs. It can
be easily extended to weighted graphs.

Step 1 can be done by using the coordinate descent algorithm. In Step 2, to
guarantee that both

P
i;j D.w�i;w�j/Si;j and

P
i;j D.wi�;wj�/Gi;j decrease, we can

maintain a fixed number of 1’s in S and G. Taking G as an example, once Gi;j

is selected to change from 0 to 1, another element Gi0;j0 with D.wi�;wj�/ <

D.wi0�;wj0�/ should be changed from 1 to 0.
The selection of .i; j/ and .i0; j0/ is based on the ranking of D.wi�;wj�/ (1 � i <

j � N). Specifically, we examine  pairs with the smallest distances. Among them,
we pick those having no edges in G. Let P0 be this set of pairs. Accordingly, we
examine  pairs with the largest distances. Among these pairs, we pick up only those
having an edge in G. Let P1 be this set of pairs. The elements of G corresponding
to pairs in P0 are candidates for updating from 0 to 1, since these pairs of genes

Algorithm 2: Generalized Graph-regularized Dual Lasso (GGD-Lasso)

Input: X D fxdg 2 R
K�D, ZD fzdg 2 R

N�D, S0 2 R
K�K , G0 2 R

N�N , Pathway
information, SNPs location information, 
,˛,ˇ,1,2

Output: W,�,S,G,L
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are associated with similar SNPs. Similarly, elements of G corresponding to pairs
in P1 are candidates for updating from 1 to 0.

In this process, the prior knowledge of gene pathways can be easily incorporated
to better refine G. For instance, we can further require that only the gene pairs in
P0 belonging to the same pathway are eligible for updating, and only the gene pairs
in P1 belonging to different pathways are eligible for updating. We denote the set
of gene pairs eligible for updating by P 00 and P 01, respectively. Then, we choose
min.jP 00j; jP 01j/ pairs in set P 00 with smallest D.wi�;wj�/ (.i; j/ 2P 00) and update
Gi;j from 0 to 1. Similarly, we choose min.jP 00j; jP 01j/ pairs in set P 01 with largest
D.wi0�;wj0�/ (.i0; j0/ 2P 01) and update Gi0;j0 from 1 to 0.

Obviously, all D.wi�;wj�/’s are smaller than D.wi0�;wj0�/ if  <
N.N�1/

4
.

Therefore,
P

i;j D.wi�;wj�/Gi;j is guaranteed to decrease. The updating process for
S is similar except that we compare columns rather than rows of W and use SNP
locations rather than pathway information for evaluating the eligibility for updating.
The updating process ends when no such pairs can be found so that switching their
values will result in a decrease of the objective function.

The convergence of GGD-Lasso can be observed as follows. The decrease of
the objective function value in the first step is straightforward since we minimize it
using coordinate descent. In the second step, the change of the objective function
value is given by

�˛D.w�iS ;w�jS/C ˛D.w�i0S
;w

�j0S
/� ˇD.wiG�;wjG�/C ˇD.wi0G�

;wj0G�
/ (84)

which is always negative. Thus, in each iteration, the objective function value
decreases. Since the objective function is non-negative, the process eventually
converges.

Theorem 5. GGD-Lasso converges to the global optimum if both
P

i;j D.wi�;wj�/
and

P
i;j D.w�i;w�j/ are convex to W.

Proof. The last two terms in Eq. (83) are linear with respect to S and G, and convex
to W according to the conditions listed. Thus the objective function is convex over
all variables. A convergent result to the global optimum can be guaranteed. ut

4.5 Experimental Results

In this section, we perform extensive experiments to evaluate the performance of
the proposed methods. We use both simulated datasets and real yeast eQTL dataset
[56]. For comparison, we select several state-of-the-art methods, including SIOL
[35], two graph guided multi-task lasso (mtlasso2G) [10], sparse group Lasso [4],
sparse multi-task Lasso [4], LORS [70], and Lasso [63]. For all the methods, the
tuning parameters were learned using cross validation.
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4.5.1 Simulation Study

We first evaluate the performance of the selected methods using simulation study.
Note that GGD-Lasso requires additional prior knowledge and will be evaluated
using real dataset.

We adopt the same setup for the simulation study as that in [35, 70] and generate
synthetic datasets as follows. 100 SNPs are randomly selected from the yeast eQTL
dataset [56] (112 samples). Ten gene expression profiles are generated by Zj� D
Wj�XC�j�CEj� (1 � j � 10), where Ej� � N .0; �2I/ (� D 1) denotes Gaussian
noise. �j� is used to model non-genetic effects, which are drawn from N .0; �˙/,
where � D 0:1. ˙ is generated by MMT, where M 2 R

D�C and Mij � N .0; 1/. C
is the number of hidden factors and is set to 10 by default. The association matrix W
is generated as follows. Three sets of randomly selected four SNPs are associated
with three gene clusters (1–3), (4–6), (7–10), respectively. In addition, one SNP is
associated with two gene clusters (1–3) and (4–6), and one SNP is associated with
all genes. The association strength is set to 1 for all selected SNPs. The clustering
structures among SNPs and genes serve as the ground truth of the prior network
knowledge. Only two of the three SNP (gene) clusters are used in W to simulate
incomplete prior knowledge.

Figure 21 shows the estimated W matrix by various methods. The x-axis
represents traits (1–10) and y-axis represents SNPs (1–100). From the figure,
we can see that GD-Lasso is more effective than G-Lasso. This is because the
dual refinement enables a more robust model. G-Lasso outperforms SIOL and
mtlasso2G, indicating that the graph regularizer provides a smoother regularization
than the hard clustering-based penalty. In addition, SIOL and mtlasso2G do not
consider confounding factors. SIOL and mtlasso2G outperform multi-task Lasso
and sparse group Lasso since it uses both SNP and gene grouping information, while
multi-task Lasso and sparse group Lasso only use one of them. We also observe that
all methods utilizing prior grouping knowledge outperform LORS and Lasso which
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Fig. 21 Ground truth of W and that estimated by different methods
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Fig. 22 The ground truth networks, prior partial networks, and the refined networks

cannot incorporate prior knowledge. LORS outperforms Lasso since it considers the
confounding factors.

The ground truth networks, prior networks, and GD-Lasso refined networks are
shown in Fig. 22. Note that only a portion of the ground truth networks are used
as prior networks. In particular, the information related to gene cluster (7–10) is
missing in the prior networks. We observe that the refined matrix G well captures
the missing grouping information of gene cluster (7–10). Similarly, many missing
pairwise relationships in S are recovered in the refined matrix (points in red ellipses).

Using 50 simulated datasets with different Gaussian noise (�2 D 1 and �2 D 5),
we compare the proposed methods with alternative state-of-the-art approaches. For
each setting, we use 30 samples for test and 82 samples for training. We report
the average result from 50 realizations. Figure 23 shows the ROC curves of TPR-
FPR for performance comparison, together with the areas under the precision-recall
curve (AUCs) [10]. The association strengths between SNPs and genes are set to
be 0.1, 1, and 3, respectively. It is clear that GD-Lasso outperforms all alternative
methods by effectively using and refining the prior network knowledge. We also
computed test errors. On average, GD-Lasso achieved the best test error rate of
0.9122, and the order of the other methods in terms of the test errors is: G-Lasso
(0.9276), SIOL (0.9485), Mtlasso2G (0.9521), Multi-task Lasso (0.9723), Sparse
group Lasso (0.9814), LORS (1.0429), and Lasso (1.2153).

To evaluate the effectiveness of dual refinement, we compare GD-Lasso and G-
Lasso since the only difference between these two methods is whether the prior
networks are refined during the optimization process. We add noises to the prior
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Fig. 23 The ROC curve and AUCs of different methods. (a) variance of errors (�2 D 1). (b) AUC
of precision-recall curve (�2 D 1). (c) variance of errors (�2 D 5). (d) AUC of precision-recall
curve (�2 D 5)
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Fig. 24 The AUCs of the TPR-FPR curve of different methods

networks by randomly shuffling the elements in them. Furthermore, we use the

signal-to-noise ratio defined as SNR D
q

Var.WX/
Var.�CE/ [70] to measure the noise ratio

in the eQTL datasets. Here, we fix C D 10; � D 0:1, and use different �’s to
control SNR.

Figure 24 shows the results for different SNRs. For a fixed SNR, we vary the
percentage of noises in the prior networks and compare the performance of selected
methods. From the results, we can see that G-Lasso is more sensitive to noises in
the prior networks than GD-Lasso is. Moreover, when the SNR is low, the advantage
of GD-Lasso is more prominent. These results indicate using dual refinement can
dramatically improve the accuracy of the identified associations.

4.5.2 Yeast eQTL Study

We apply the proposed methods to a yeast (Saccharomyces cerevisiae) eQTL
dataset of 112 yeast segregants [56] generated from a cross of two inbred strains.
The dataset originally includes expression profiles of 6229 gene expression traits
and genotype profiles of 2956 SNPs. After removing SNPs with more than 10 %
missing values and merging consecutive SNPs high linkage disequilibrium, we get
1017 SNPs with unique genotypes [24]. 4474 expression profiles are selected after
removing the ones with missing values. The genetic interaction network is generated
as in [35]. We use the PPI network downloaded from BioGRID (http://thebiogrid.
org/) to represent the prior network among genes. It takes around 1 day for GGD-
Lasso, and around 10 h for GD-Lasso to run into completion.

http://thebiogrid.org/
http://thebiogrid.org/
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4.5.3 cis and trans Enrichment Analysis

We follow the standard cis-enrichment analysis [41] to compare the performance of
two competing models. The intuition behind cis-enrichment analysis is that more
cis-acting SNPs are expected than trans-acting SNPs. A two-step procedure is used
in the cis-enrichment analysis [41]: (1) for each model, we apply a one-tailed Mann-
Whitney test on each SNP to test the null hypothesis that the model ranks its cis
hypotheses no better than its trans hypotheses, (2) for each pair of models compared,
we perform a two-tailed paired Wilcoxon sign-rank test on the p-values obtained
from the previous step. The null hypothesis is that the median difference of the
p-values in the Mann-Whitney test for each SNP is zero. The trans-enrichment is
implemented using a similar strategy [71], in which genes regulated by transcription
factors (obtained from http://www.yeastract.com/download.php) are used as trans-
acting signals.

In addition to the methods evaluated in the simulation study, GGD-Lasso is also
evaluated here (with  D 100; 000,
 D 5; � D 8; ˛ D 15; ˇ D 1). For GD-Lasso,

 D 5; � D 8; ˛ D 15; ˇ D 1; � D 15; � D 1. The Euclidean distance is used as
the distance metric. We rank pairs of SNPs and genes according to the learned W.
S is refined if the locations of the two SNPs are less than 500 bp. G is refined if the
two genes are in the same pathway. The pathway information is downloaded from
Saccharomyces Genome Database [SGD (http://www.yeastgenome.org/)].

The results of pairwise comparison of selected models are shown in Table 5. In
this table, a p-value shows how significant a method on the left column outperforms
a method in the top row in terms of cis and trans enrichments. We observe that
the proposed GGD-Lasso and GD-Lasso have significantly better enrichment scores
than the other models. By incorporating genomic location and pathway information,
GGD-Lasso performs better than GD-Lasso with p-value less than 0.0001. The
effectiveness of the dual refinement on prior graphs is demonstrated by GD-Lasso’s
better performance over G-Lasso. Note that the performance ranking of these
models is consistent with that in the simulation study.

The top-1000 significant associations given by GGD-Lasso, GD-Lasso, and G-
Lasso are shown in Fig. 25. We can see that GGD-Lasso and GD-Lasso have
stronger cis-regulatory signals than G-Lasso does. In total, these methods each
detected about 6000 associations according to non-zero W values. We estimate
FDR using 50 permutations as proposed in [70]. With FDR � 0.01, GGD-Lasso
obtains about 4500 significant associations. The plots of all identified significant
associations for different methods are given in Fig. 26.

4.5.4 Refinement of the Prior Networks

To investigate to what extent GGD-Lasso is able to refine the prior networks and
study the effect of different parameter settings on , we intentionally change 75 %
of the elements in the original prior PPI network and genetic interaction network
to random noises. We feed the new networks to GGD-Lasso and evaluate the

http://www.yeastract.com/download.php
http://www.yeastgenome.org/
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Fig. 25 The top-1000 significant associations identified by different methods. (a) GGD-Lasso. (b)
GD-Lasso. (c) G-Lasso

I II III IV VVI VIIVIIIIX X XI XII XIIIXIV XV XVI
I

II
III

IV

V
VI

VII

VIII
IX
X

XI

XII

XIII

XIV

XV

XVI

Genomic position(SNP)

G
en

om
ic

 p
os

iti
on

(g
en

e)

GGD-Lasso

I II III IV VVI VIIVIIIIX X XI XII XIIIXIV XV XVI
I

II
III

IV

V
VI

VII

VIII
IX
X

XI

XII

XIII

XIV

XV

XVI

Genomic position(SNP)

G
en

om
ic

 p
os

iti
on

(g
en

e)

GD-Lasso

I II III IV VVI VII VIIIIX X XI XII XIIIXIV XV XVI
I

II
III

IV

V
VI

VII

VIII
IX
X

XI

XII

XIII

XIV

XV

XVI

Genomic position(SNP)

G
en

om
ic

 p
os

iti
on

(g
en

e)

GLasso

I II III IV VVI VIIVIIIIX X XI XII XIIIXIV XV XVI
I

II
III

IV

V
VI

VII

VIII
IX
X

XI

XII

XIII

XIV

XV

XVI

Genomic position(SNP)

G
en

om
ic

 p
os

iti
on

(g
en

e)

SIOL

I II III IV VVI VIIVIIIIX X XI XII XIIIXIV XV XVI
I

II
III

IV

V
VI

VII

VIII
IX
X

XI

XII

XIII

XIV

XV

XVI

Genomic position(SNP)

G
en

om
ic

 p
os

iti
on

(g
en

e)

LORS

I II III IV VVI VII VIIIIX X XI XII XIIIXIV XV XVI
I

II
III

IV

V
VI

VII

VIII
IX
X

XI

XII

XIII

XIV

XV

XVI

Genomic position(SNP)

G
en

om
ic

 p
os

iti
on

(g
en

e)

Lasso

a

d e f

b c

Fig. 26 The plot of linkage peaks in the study by different methods. (a) GGD-Lasso. (b) GD-
Lasso. (c) GLasso. (d) SIOL. (e) LORS. (f) Lasso

refined networks. The results are shown in Fig. 27. We can see that for both PPI
and genetic interaction networks, many elements are recovered by GGD-Lasso.
This demonstrates the effectiveness of GGD-Lasso. Moreover, when the number of
SNP (gene) pairs () examined for updating reaches 100,000, both PPI and genetic
iteration networks are well refined.
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Fig. 27 Ratio of correct
interactions refined when
varying 
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Hotspots Analysis

In this subsection, we study whether GGD-Lasso can help detect more biologically
relevant associations than the alternatives. Specifically, we examine the hotspots
which affect more than ten gene traits [35]. The top 15 hotspots detected by GGD-
Lasso are listed in Table 6. The top 15 hotspots detected by other methods are
included in Tables 7, 8, and 9. From Table 6, we observe that for all hotspots,
the associated genes are enriched with at least one GO category. Note that GGD-
Lasso and GD-Lasso detect one hotspot (12), which cannot be detected by G-Lasso.
They also detect one hotspot (6), which cannot be detected by SIOL. The number of
hotspots that are significant enriched is listed in Table 10. From the table, we can see
that GGD-Lasso slightly outperforms GD-Lasso since it incorporates the location of
SNPs and gene pathway information.

4.6 Conclusion

As a promising tool for dissecting the genetic basis of common diseases, eQTL
study has attracted increasing research interest. The traditional eQTL methods focus
on testing the associations between individual SNPs and gene expression traits. A
major drawback of this approach is that it cannot model the joint effect of a set of
SNPs on a set of genes, which may correspond to biological pathways.

Recent advancement in high-throughput biology has made a variety of biological
interaction networks available. Effectively integrating such prior knowledge is
essential for accurate and robust eQTL mapping. However, the prior networks are
often noisy and incomplete. In this section, we propose novel graph regularized
regression models to take into account the prior networks of SNPs and genes
simultaneously. Exploiting the duality between the learned coefficients and incom-
plete prior networks enables more robust model. We also generalize our model to
integrate other types of information, such as SNP locations and gene pathways. The



80 W. Cheng et al.
T

ab
le

6
Su

m
m

ar
y

of
th

e
to

p
15

ho
ts

po
ts

de
te

ct
ed

by
G

G
D

-L
as

so

G
D

-L
as

so
G

D
-L

as
so

G
-L

as
so

G
-L

as
so

SI
O

L
SI

O
L

L
O

R
S

L
O

R
S

ID
si

ze
a

L
oc

ib
G

O
c

H
it

sd
(a

ll
)e

(h
it

s)
f

(a
ll

)g
(h

it
s)

h
(a

ll
)i

(h
it

s)
j

(a
ll

)k
(h

it
s)

l

1
31

X
II

:1
05

60
97

(1
)�

�
�

7
31

7
32

7
8

6
31

7

2
28

II
I:

81
83

2.
.9

23
91

(2
)�

�
5

29
5

28
5

58
5

22
4

3
2
8

X
I
I
:
1
0
5
6
1
0
3

(
1
)

�
�

�
7

2
9

6
2
8

6
1

1
2

0

4
27

II
I:

79
09

1
(2

)�
�

�
6

29
6

28
6

28
7

10
2

5
27

II
I:

17
57

99
..1

77
85

0
(3

)�
3

26
3

23
3

9
2

18
4

6
27

X
II

:1
05

99
25

..1
05

99
30

(1
)�

�
�

7
27

7
27

7
0

0
5

1

7
25

II
I:

10
50

42
(2

)�
�

�
6

23
6

25
6

5
3

19
4

8
23

II
I:

20
11

66
..2

01
16

7
(3

)�
�

�
3

23
3

22
3

13
2

23
3

9
22

X
II

:1
05

42
78

..1
05

43
02

(1
)�

�
�

7
26

7
24

7
24

5
12

4

10
21

II
I:

10
02

13
(2

)�
�

5
23

5
23

5
5

3
5

1

11
20

II
I:

20
99

32
(3

)�
3

21
3

19
3

16
4

15
4

12
20

X
II

:6
59

35
7.

.6
62

62
7

(4
)�

4
19

4
3

0
37

9
36

6
13

19
II

I:
21

07
48

..2
10

74
8

(5
)�

4
24

4
18

4
2

3
11

4

14
19

V
II

I:
11

16
79

..1
11

68
0

(6
)�

3
20

3
19

3
3

3
12

2

15
19

V
II

I:
11

16
82

..1
11

69
0

(7
)�

�
5

21
5

20
5

57
6

22
3

To
ta

lh
it

s
75

74
70

59
49

a
N

um
be

r
of

ge
ne

s
as

so
ci

at
ed

w
it

h
th

e
ho

ts
po

t
b

T
he

ch
ro

m
os

om
e

po
si

ti
on

of
th

e
ho

ts
po

t
c

T
he

m
os

ts
ig

ni
fic

an
tG

O
ca

te
go

ry
en

ri
ch

ed
w

it
h

th
e

as
so

ci
at

ed
ge

ne
se

t.
T

he
en

ri
ch

m
en

tt
es

tw
as

pe
rf

or
m

ed
us

in
g

D
A

V
ID

(H
ua

ng
et

al
.,

20
09

).
T

he
ge

ne
fu

nc
ti

on
is

de
fin

ed
by

G
O

ca
te

go
ry

.
T

he
in

vo
lv

ed
G

O
ca

te
go

ri
es

ar
e:

(1
)

te
lo

m
er

e
m

ai
nt

en
an

ce
vi

a
re

co
m

bi
na

ti
on

;
(2

)
br

an
ch

ed
ch

ai
n

fa
m

il
y

am
in

o
ac

id
bi

os
yn

th
et

ic
pr

oc
es

s;
(3

)
re

gu
la

ti
on

of
m

at
in

g-
ty

pe
sp

ec
ifi

c
tr

an
sc

ri
pt

io
n,

D
N

A
-d

ep
en

de
nt

;(
4)

st
er

ol
bi

os
yn

th
et

ic
pr

oc
es

s;
(5

)
ph

er
om

on
e-

de
pe

nd
en

t
si

gn
al

tr
an

sd
uc

ti
on

in
vo

lv
ed

in
co

nj
ug

at
io

n
w

it
h

ce
ll

ul
ar

fu
si

on
;(

6)
cy

to
ga

m
y;

(7
)

re
sp

on
se

to
ph

er
om

on
e

d
N

um
be

r
of

ge
ne

s
th

at
ha

ve
en

ri
ch

ed
G

O
ca

te
go

ri
es

e;
g;

I;
k

N
um

be
r

of
as

so
ci

at
ed

ge
ne

s
th

at
ca

n
al

so
be

id
en

ti
fie

d
us

in
g

G
D

L
,G

-L
as

so
,S

IO
L

an
d

L
O

R
S,

re
sp

ec
tiv

el
y.

f;
h;

j;
l
N

um
be

r
of

ge
ne

s
th

at
ha

ve
en

ri
ch

ed
G

O
ca

te
go

ri
es

an
d

ca
n

al
so

be
id

en
ti

fie
d

by
G

D
L

,G
-L

as
so

,S
IO

L
an

d
L

O
R

S,
re

sp
ec

tiv
el

y.
A

m
on

g
th

es
e

ho
ts

po
ts

,
ho

ts
po

t
(1

2)
in

bo
ld

ca
nn

ot
be

de
te

ct
ed

by
G

L
as

so
.H

ot
sp

ot
(6

)
in

it
al

ic
ca

nn
ot

be
de

te
ct

ed
by

SI
O

L
.H

ot
sp

ot
(3

)
in

te
le

ty
pe

ca
nn

ot
be

de
te

ct
ed

by
L

O
R

S.
A

dj
us

te
d

P-
va

lu
es

us
in

g
pe

rm
ut

at
io

n
te

st
s.

�
1
0
.�
2
/
�
1
0
.�
3
/
;

�
�
1
0
.�
3
/
�
1
0
.�
5
/
;

�
�

�
1
0
.�
5
/
�
1
0
.�
1
0
/

B
ol

d
gr

ou
ps

ar
e

no
ts

ig
ni

fic
an

tl
y

en
ri

ch
ed



Robust Methods for Expression Quantitative Trait Loci Mapping 81

Table 7 Summary of the top 15 detected hotspots by GD-Lasso

Chr Start End Size GO category Adjusted p-value

XII 1,056,097 1,056,097 31 Telomere maintenance via
recombination

4.72498E-9

III 79,091 79,091 29 Branched chain family
amino acid biosynthetic
process

1.59139E-8

III 81,832 92,391 29 Branched chain family
amino acid biosynthetic
process

2.62475E-05

XII 1,056,103 1,056,103 29 Telomere maintenance via
recombination

1.90447E-4

XII 1,059,925 1,059,930 27 Telomere maintenance via
recombination

2.6379E-8

III 175,799 177,850 26 Regulation of mating-type
specific transcription,
DNA-dependent

2.07885E-03

XII 1,054,278 1,054,302 26 Telomere maintenance via
recombination

2.30417E-9

III 210,748 210,748 24 Regulation of mating-type
specific transcription,
DNA-dependent

1.61983E-04

III 100,213 100,213 23 Branched chain family
amino acid biosynthetic
process

7.4936E-3

III 105,042 105,042 23 Branched chain family
amino acid biosynthetic
process

3.8412E-8

III 201,166 201,167 23 Regulation of mating-type
specific transcription,
DNA-dependent

0.001998002

III 209,932 209,932 21 Regulation of mating-type
specific transcription,
DNA-dependent

1.06592E-03

VIII 111,682 111,690 21 Response to pheromone 7.04262E-04

V 395,442 395,442 20 SRP-dependent
cotranslational protein
targeting to membrane: : :

0.100899101

VIII 111,679 111,680 20 Cytogamy 0.001998002

Bold groups are not significantly enriched

experimental results on both simulated and real eQTL datasets demonstrate that our
models outperform alternative methods. In particular, the proposed dual refinement
regularization can significantly improve the performance of eQTL mapping.
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Table 8 Summary of the top 15 detected hotspots by G-Lasso

Chr Start End Size GO category Adjusted p-value

XII 1,056,097 1,056,097 32 Telomere maintenance via
recombination

5.52E-08

III 79,091 79,091 28 Branched chain family
amino acid biosynthetic
process

1.28E-07

III 81,832 92,391 28 Branched chain family
amino acid biosynthetic
process

2.17E-05

XII 1,056,103 1,056,103 28 Telomere maintenance via
recombination

1.52E-06

XII 1,059,925 1,059,930 27 Telomere maintenance via
recombination

2.64E-08

III 105,042 105,042 25 Branched chain family
amino acid biosynthetic
process

6.35E-08

XII 1,054,278 1,054,302 24 Telomere maintenance via
recombination

1.78E-08

III 100,213 100,213 23 Branched chain family
amino acid biosynthetic
process

7.49E-06

III 175,799 177,850 23 Regulation of mating-type
specific transcription,
DNA-dependent

0.001998002

XII 674,651 674,651 23 Sterol biosynthetic process 3.56E-04

III 201,166 201,167 22 Regulation of mating-type
specific transcription,
DNA-dependent

1.23E-03

V 395,442 395,442 21 SRP-dependent
cotranslational protein
targeting to membrane: : :

0.086913087

I 51,324 52,943 20 Fatty acid metabolic
process

0.281718282

VIII 111,682 111,690 20 Response to pheromone 5.39E-04

III 209,932 209,932 19 Regulation of mating-type
specific transcription,
DNA-dependent

7.77E-03

Bold groups are not significantly enriched

5 Discussion

Driven by the advancement of cost-effective and high-throughput genotyping
technologies, eQTL mapping has revolutionized the field of genetics by providing
new ways to identify genetic factors that influence gene expression. Traditional
eQTL mapping approaches consider both SNPs and genes individually, such as
sparse feature selection using Lasso and single-locus statistical tests using t-test or
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Table 9 Summary of the top 15 detected hotspots by SIOL

Chr Start End Size GO category Adjust p-value

XIV 449,639 449,639 339 Mitochondrial translation 2.92E-07

V 109,310 117,705 240 Translation 2.39E-08

V 350,744 350,744 183 Translation 1.32E-07

XV 154,177 154,309 94 Replicative cell aging 0.264735265
XII 899,898 927,421 81 Translation 1.45E-06

XIV 486,861 486,861 81 Mitochondrial translation 1.49E-06

II 548,401 548,401 78 Endonucleolytic cleavage
in ITS1 to separate
SSU-rRNA from 5.8S: : :

0.030969031

III 75,021 75,021 78 Cellular amino acid
biosynthetic process

1.35E-06

XIV 502,316 502,496 76 Mitochondrial genome
maintenance

0.824175824

XII 674,651 674,651 73 Electron transport chain 8.52E-04

III 81,832 92,391 58 Branched chain family
amino acid biosynthetic
process

9.78E-05

VIII 111,682 111,690 57 Response to pheromone 5.15E-03

XV 202,370 210,839 49 Vesicle-mediated transport 0.592407592
XIII 27,644 28,334 45 Dephosphorylation 0.007992008

XV 170,945 180,961 44 (1->6)-beta-D-glucan
biosynthetic process

0.132867133

Bold groups are not significantly enriched

Table 10 Hotspots detected by different methods

GGD-Lasso GD-Lasso G-Lasso SIOL LORS

#hotspots significantly enriched
(top 15 hotposts)

15 14 13 10 9

#total reported hotspots (size > 10) 65 82 96 89 64

#hotspots significantly enriched 45 56 61 53 41

Ratio of significantly enriched hotspots 70 % 68 % 64 % 60 % 56 %

Bold groups are not significantly enriched

ANOVA test. However, it is commonly believed that many complex traits are caused
by the joint effect of multiple genetic factors, and genes in the same biological
pathway are often co-regulated and may share a common genetic basis. Thus,
it is a crucial challenge to understand how multiple, modestly-associated SNPs
interact to influence the phenotypes. However, little prior work has studied the
grow-wise eQTL mapping problem. Moreover, many prior correlation structures
in the form of either physical or inferred molecular networks in the genome and
phenome are available in many knowledge bases, such as PPI network and genetic
interaction network. Developing effective models to incorporate prior knowledge
on the relationships between SNPs and relationships between genes for more robust
eQTL mapping has recently attracted increasing research interests. However, the
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structures of prior networks are often highly noisy and far from complete. More
robust models that are less sensitive to noise and incompleteness of prior knowledge
are required to integrate these prior networks for eQTL mapping.

This book chapter presents a series of algorithms that take advantage of multiple
domain knowledge to help with the eQTL mapping and systematically study the
problem of group-wise eQTL mapping. In this section, we come to the conclusions
of this book chapter and discuss the future directions of inferring group-wise
associations for eQTL mapping.

5.1 Summary

In this book chapter, we presented our solutions for group-wise eQTL mapping. In
general, we made the following contributions:

• Algorithm to Detect Group-wise eQTL Associations with eQTL Data Only
Three algorithms (Sect. 3) are proposed to address this problem. The three

approaches incrementally take into consideration more aspects, such as group-
wise association, potential confounding factors, and the existence of individual
associations. Besides, we illustrate how each aspect could benefit the eQTL map-
ping. Specifically, in order to accurately capture possible interactions between
multiple genetic factors and their joint contribution to a group of phenotypic
variations, a sparse linear-Gaussian model (SET-eQTL) is proposed to infer
novel associations between multiple SNPs and genes. The proposed method can
help unravel true functional components in existing pathways. The results could
provide new insights on how genes act and coordinate with each other to achieve
certain biological functions. The book chapter further extends the approach to
consider the confounding factors and also be able to decouple individual associ-
ations and group-wise associations. The results show the superiority over those
eQTL mapping algorithms that do not consider the group-wise associations.

• Robust Algorithm to Incorporate Prior Interaction Structures into eQTL
Mapping

To incorporate the prior SNP-SNP interaction structure and grouping infor-
mation of genes into eQTL mapping, the proposed algorithm, GDL (Sect. 4),
significantly improves the robustness and the interpretability of eQTL mapping.
We study how prior graph information would help improve eQTL mapping
accuracy and how refinement of prior knowledge would further improve the
mapping accuracy. In addition, other different types of prior knowledge, e.g.,
location information of SNPs and genes, and pathway information, can also be
integrated for the graph refinement.
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5.2 Future Directions

We envision that the integration of multi-domain knowledge will be the center of
interests for eQTL mapping in the future. In the past decade, many efforts have been
devoted to developing methods for eQTL mapping. In this book chapter, we present
approaches that address the group-wise eQTL mapping problem. To further advance
the field, there are several important research issues that should be explored.

1. Large Scale Data Sets
Scalability is another important issue in eQTL mapping. Especially, for human

genetics, the whole genome eQTL mapping includes analysis of millions of
SNPs and tens of thousands of genes. Traditional eQTL mapping approaches
detect associated SNPs for each gene separately. Thus, mapping algorithm
can be deployed in parallel for each gene expression. For each run, many
approaches were proposed to speed up the mapping, such as screening method
[66]. However, these approaches do not work for the group-wise eQTL mapping
since the SNPs and genes need to be considered jointly. In our algorithm (Sect. 3),
we have developed an effective approach to speed up the computing. However,
it is still not able to tackle the whole genome eQTL mapping for human data
set. Thus, it is desirable to design new algorithms that are capable of scaling
genetic association studies across the whole-genome and support identification
of multi-way interactions.

2. Mining Biological and Medical Data Using Heterogeneous Models
Biological and medical research have been facing big data challenges for

a long time. With the burst of many new technologies, the data are becoming
larger and more complex. Our ability to identify and characterize the effects of
genetic factors that contribute to complex traits depends crucially on the devel-
opment of new computational approaches to integrate, analyze, and interpret
these data. It is desirable to develop integrative and scalable methods to study
how genetic factors interact with each other to cause common diseases. The
developed techniques will dissect the relationships among different components
and automatically discover most relevant patterns from the data.
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Abstract A major challenge in biomedical research is to identify causal relation-
ships among genotypes, phenotypes, and clinical outcomes from high-dimensional
measurements. Causal networks have been widely used in systems genetics for
modeling gene regulatory systems and for identifying causes and risk factors
of diseases. In this chapter, we describe fundamental concepts and algorithms
for constructing causal networks from observational data. In biological context,
causal inferences can be drawn from the natural experimental setting provided by
Mendelian randomization, a term that refers to the random assignment of genotypes
at meiosis. We show that genetic variants may serve as instrumental variables,
improving estimation accuracy of the causal effects. In addition, identifiability
issues that commonly arise when learning network structures may be overcome
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1 Introduction

The development of high-throughput technologies, such as DNA microarrays and
next- generation sequencing, has allowed the study of complex biological systems.
However, the vast quantities of data from such large scale studies have been
challenging researchers aiming to discover the complex network describing causal
associations among genotypes, phenotypes, and other clinical outcomes.

In general, the associations found in observational studies cannot be interpreted
as causal. However, genetic variants information has proven useful to determine
causal effects from observational data. In several recent studies, genomic data and
information on quantitative variation in phenotypes have been combined in order
to discover causal relationships among phenotypes. Some of the most promising
phenome projects, including the Consortium for Neuropsychiatric Phenomics at
UCLA (www.phenomics.ucla.edu) and the National BioResource Project—Rat
(http://www.anim.med.kyoto-u.ac.jp/NBR/), are listed in David Houle et al.’s paper
[53].

Causal discovery methods from observational data are of great interest to
researchers in many fields, such as functional genomics and proteomics, molecular
biology, and epidemiology [39, 49, 76, 106, 107, 134].

In observational epidemiological studies, genetic variants that mimic the influ-
ence of modifiable environmental exposures have a key role in causal inference. If
the link between a genetic variant and environmental exposure can indeed be shown,
associations between genotype and disease outcome or genotype and intermediate
phenotype may elucidate the importance of environmentally modifiable factors as
causes of disease [112, 113]. These findings are crucial for the understanding of
genetic mechanisms associated with diseases and for the development of therapeutic
strategies [11, 72].

Causal networks describing the regulatory interactions between different genes
are called gene regulatory networks (GRNs) and have been inferred from both
observational and interventional gene expression data [77]. Approaches for reverse
engineering GRNs from purely observational data (i.e., data collected without any
biological or experimental interference on the level of individual genes) need a large
sample size and capture only parts of biologically relevant networks [77]. However,
it has been shown that it is possible to greatly improve accuracy and performance in
network reconstruction by incorporating data from experimental interventions and
perturbations (e.g., from gene knockout or knockdown experiments) [91].

It is widely accepted that the most trustworthy method to infer causal rela-
tionships from data are experimental studies such as randomized controlled trials.
However, the number of variables in biological systems is usually very large, so that
it is unfeasible to carry out randomized experiments to discover all possible causal
relationships. Nonetheless, throughout this chapter, we show that it is possible
to discover the structure of causal networks and to infer causal effects based on
observational data alone if certain assumptions are met. In practical context, some of

www.phenomics.ucla.edu
http://www.anim.med.kyoto-u.ac.jp/NBR/
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these assumptions may be very restrictive and may not necessarily hold in biological
data. However, causal analysis may still be useful, since the conclusions might be
indicative of some causal connections in the data [37].

Causal inference from observational studies is a complicated task that encom-
passes two major challenges: (1) ensuring accuracy of discovered results and (2)
reducing computational complexity.

The absence or inadequacy of randomization, combined with the presence of
(measured and unmeasured) confounding factors, often leads to spurious conclu-
sions in observational studies. More reliable causal relations can be extracted from
data by relying on two imperative pillars: proper randomization and instrumental
variables. In systems genetics, Mendelian randomization plays an important role
in causal inference. The random segregation of alleles from parents to offspring
during meiosis closely resembles the random allocation of treatments (exposure
variables or interventions) in randomized controlled trials. In other words, the
genotype can be considered as an effect of a randomized intervention, allowing
tests of causal hypotheses. Thus, a robust association from a genetic variant to
a phenotype that is allegedly free of confounding factors (e.g., behavioral and
environmental factors) can be interpreted as a causal relationship. Moreover, when
certain assumptions are met, genetic variants can be used as instrumental variables,
allowing causal inferences about the effect of phenotypes on outcomes. Causal
inference can be greatly improved by exploiting instruments, since biases and
effects of confounding factors are minimized [102]. In Sect. 2, we discuss in detail
the Mendelian randomization approach, and particularly the conditions on which
genetic variants can be defined as instrumental variables.

The computational complexity challenge of causal structure learning problem
arises out of the need to develop efficient algorithms to handle large amounts of data.
There is no available algorithm for finding an entire causal model in polynomial
time. In other words, the causal structure learning problem is NP-hard. Since the
possible number of causal networks is exponential in the number of variables,
currently, some heuristics are used to limit the search space. The most commonly
used approaches for reducing computational complexity assume certain network
structure properties, such as sparsity and acyclicity. In Sect. 6, we review some
current approaches being used for causal structure learning.

Structural equation models (SEMs) and probabilistic graphical models (PGMs)
are widespread adopted methodologies for representing causal associations among
variables. While SEM provides a functional representation of the causal mech-
anisms by which a variable’s value is generated, PGM provides an equivalent
but graphical representation of these causal mechanisms by using graph theory
and probability theory. Thus, by combining elements from SEMs and PGMs, it
is possible to model causal relationships using a mathematically rigorous and
intuitive language. In Sect. 3, we present the direct correspondence between both
representations.

We will address two classes of models which differ in their ability to accommo-
date feedback loops: (1) the non-recursive SEMs, which are capable of modeling
cycles involving both just two variables (direct feedback loops or reciprocal
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associations) and three or more variables (indirect feedback loops); and (2) the
recursive SEMs, which assume all causal effects as unidirectional, so that no two
variables are causes of each other. The SEMs can be graphically represented by
directed graphs in such a way that there is a direct equivalence between the two
representations. More specifically, non-recursive SEMs can be graphically repre-
sented by directed cyclic graphs (DCGs), and recursive SEMs can be graphically
represented by directed acyclic graphs (DAGs).

Biological systems have been extensively modeled using DAGs because algo-
rithm development is facilitated by using results that are valid under the assumption
that the causal structure is acyclic. However, for modeling cyclic phenomena, which
are the most prevalent in biological systems, acyclic structures are very restrictive
[130]. DCGs can be used as a more appropriate alternative for modeling data
in the steady-state (equilibrium state of a time invariant dynamic system), since
feedback loops can capture the redundancy and stability of the underlying system.
Genetic regulatory networks have been modeled as DCGs, since they are capable of
reproducing the stable cyclic pattern of gene expressions [22, 133].

Algorithms for discovering causal structures are often based on a functional
representation (a recursive or non-recursive SEM) or on a graphical representation
(a directed acyclic or cyclic graph) of causal processes. SEM-based structure
learning approaches use optimization methods for estimating the model parameters
and techniques for improving efficiency and interpretability such as sparsity-
enforcing regularization. In this chapter, we focus mainly on the fundamental
concepts used by causal structure learning algorithms that are based on a graphical
model. In Sect. 4, we cover the main definitions and properties connecting graphical
structure and probability distributions, including the concept of d-separation which
allows to derive the conditional independencies entailed by a causal structure. This
theory was developed mainly by Judea Pearl [87], Peter Spirtes, Clark Glymour,
Richard Scheines [97, 118], and Thomas Richardson [96].

One of the main issues of the causal structure learning theory is the identifiability
problem. There are some models which encode precisely the same set of conditional
independence relations. Thus, they are considered statistically equivalent and
indistinguishable from observational data. In this case, it is not possible to uniquely
identify the true underlying causal model. By including information on genetic
variants causally associated with phenotypes [e.g., quantitative trait loci (QTL) or
quantitative trait nucleotide (QTN)], new conditional independence relations are
created, and statistically equivalent phenotype networks may become identifiable.
In Sect. 5, these concepts will be discussed in detail.

There are several algorithms available in the literature that were designed to solve
the specific problem of discovering the structure of a genotype–phenotype–outcome
network. Among these, in chronological order, are [5, 22, 24, 25, 32, 46, 71, 73, 74,
108, 126]. In Sect. 7, we describe in detail four of the most popular algorithms: QTL-
directed dependency graph (QDG) [24], QTL + Phenotype supervised orientation
(QPSO) [126], QTL-driven phenotype network (QTLnet) [25], and sparsity-aware
maximum likelihood (SML) [22]. These are recent algorithms with source code
freely available and easily accessible to the users.



Causal Inference and Structure Learning of Genotype–Phenotype Networks 93

2 Mendelian Randomization

2.1 Randomized Controlled Trial

A widely accepted approach for finding causal relationships is to perform inter-
vention experiments, also known as randomized controlled trials. Such experiments
are critically based on randomization and confounding factors control. Treatments
(or interventions) are randomly assigned to the subjects and statistical tests are
performed to verify whether differences between treatment and control groups
are significant. For instance, to verify whether a new medication is superior in
comparison with placebo, randomized controlled trials are usually conducted and
the randomization is imperative to verify whether the treatment has a causal effect
on the disease.

Experiments with randomization have three important implications, namely
elimination of selection bias between groups, assurance of allocation concealment,
and justification of randomization-based statistical tests. Under random assignment
of treatments, selection biases are removed since confounding factors are more
likely to be distributed evenly among groups, and statistical tests can be properly
performed.

Note that the determination of a causal effect critically depends on whether
all confounding factors are properly randomized. A proper randomization can
indeed increase the chances of evenly distribute known and unknown confounding
factors among groups. However, considering that there is a non-zero probability
that confounding factors are not fully balanced among groups, it is recommended
to perform some form of restricted randomization (e.g., randomization within
homogeneous blocks with respect to a specific known confounding factor) when
it is crucial that biases from a particular confounding factor are avoided [17].

2.2 Randomized Allocation of Allelic Variation in Genes

Unfortunately, in observational studies (where the data is collected without any
intervention) an association between a phenotype and a disease (or other outcome
of interest) may not be causal. The main reasons are [20, 36]:

• Confounding variables: suppose e are interested in the association between
a phenotype and an outcome. Measured or unmeasured factors that affect both
variables may create spurious associations when not considered in the model.
They are called confounding variables. For instance, let X be a phenotype and
Y be an outcome of interest. Consider a variable Z that directly affects both X
and Y. The causal relationships among these variables can be represented by the
scheme: X  Z ! Y. If a pairwise correlation analysis is performed, there may
be a significant association between the phenotype and the outcome, even when
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there is not a direct influence between them. This spurious association vanishes
only if the variable Z is considered in the analysis. In this case, we say that Z is a
confounder of the relationship between X and Y.

• Reverse causation: when two variables are causally related, but in the contrary
direction to a common presumption (outcome affecting the phenotype), we say
that there is a reverse causation. It is a type of misinterpretation in which the
effect is allowed to occur before its cause. For instance, given a strong association
between low circulating cholesterol levels and risk of cancer, one could suspect
that low cholesterol levels increases the risk of cancer. However, it is possible
that the causality goes in the opposite direction, i.e., early stages of cancer may,
many years before diagnosis, lead to a lowering in cholesterol levels [62].

• Various biases: unobserved or imprecisely measured factors can bias estimates
of the association between two variables even if the causal direction is correctly
specified. Studies with small sample size are more affected by such biases.

These issues show that causal inference can be hard to achieve, or even an
impossible task, if only observational associations are considered [112, 114].
However, it is possible to provide evidence for or against a causal relationship
and, usually, to quantify causal effect by making specific assumptions and by using
additional information.

The region of the genome affecting variation in a quantitative trait (phenotype)
is known as quantitative trait locus (QTL), and QTLs have essentially been detected
by using panels of microsatellites, mainly for population-based studies of plants
and animals, and for family-based studies of humans. Quantitative trait nucleotides
(QTNs) are often identified through genome-wide association studies by using
single nucleotide polyomrphism (SNP) markers. Genetic variants (QTLs or QTNs)
have been used to distinguish causation from association in biological studies.

Based on the Mendel’s second law, alleles are randomly assigned from parents
to offspring during gamete formation. This random allocation of alleles provides
a design analogous to an intervention experiment. Thus, Mendelian randomization
can be interpreted as a natural randomized controlled trial, in which different geno-
types, rather than treatments, are randomly allocated to individuals. Considering that
the variation in genotypes always precedes the differences in phenotype, this natural
randomization allows us to use statistical tests to determine whether there is a causal
relation from a genetic variant and a phenotype. Since the influence of genotype on
phenotype is, in general, independent of any confounding, reverse causation or other
biases, causal interpretation may be appropriate.

In the following, we summarize some concepts that provide a foundation for
causal inference based on Mendelian randomization.

• The law of segregation (Mendel’s first law): states that during the gamete
formation the members of the allelic pair of each hereditary factor (some gene
or genetic locus) segregate from each other independently so that each gamete
carries only one allele for each factor and offspring acquire one allele randomly
chosen from each parent. Since genetic variants segregation occurs randomly
and independently of environmental factors, causal studies are less susceptible to
confounding;
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• The law of independent assortment (Mendel’s second law): states that genetic
variants segregate independently of other traits. In other words, alleles related
to different traits are transmitted independently of one another from parents
to offspring. Note that the independent assortment law is violated when two
loci are linkage, i.e., when they are on the same chromosome and their genetic
distance is small. In this case, the recombination fraction is less than 50 % in a
single generation, that is, allele combinations in different loci are not inherited
independently of each other [68].

• Unambiguous causal direction: since the randomization of marker alleles
during meiosis precedes their effect on phenotypes, reverse causality is not
an issue. In other words, the direction of the causal effect is always from the
genotype to the phenotype.

• Life-long effects: genetic variants have life-long effects on exposures as
opposed to interventions in randomized controlled trials which only occur over
short periods of time.

The same advantages of a randomized controlled trial may be achieved from
natural experimental setting provided by Mendelian randomization when there is no
interaction with uncontrolled external confounders, such as maternal genotype and
environmental perturbation. In this regard, the canalization or developmental com-
pensation phenomenon need to be emphasized. When a genetic or environmental
factor is expressed during fetal development or post-natal growth, the expression
of other genetic variants may be influenced leading to changes that may alter
development in such a way that the effect of the factor is damped (or buffered).
This resistance of phenotypes to environmental or genetic perturbation can bias
causal inferences and makes it difficult to relate randomized controlled trials and
Mendelian randomization studies. In randomized controlled trials, the random-
ization of the intervention to subjects often occurs during their middle-age. On
the other hand, in Mendelian randomization approaches, the randomization occurs
before birth. Thus, we must be aware that some findings of studies using Mendelian
randomization approach may be unrepresentative of clinical interventions on the
exposure performed in a mature population.

Mendelian randomization has been particularly useful for investigating causal
effects of an exposure of interest (phenotype) on an outcome (e.g., disease or other
clinical outcome), when a genetic variant robustly associated with the exposure is
not associated with any confounding factor and it is not associated with the outcome
through any other path than through the exposure of interest [112]. In a statistical
point of view, causal inference is improved whenever a genetic variant meets the
requirements to be used as an instrumental variable [31, 68]. In this case, it is
possible to estimate the long-term causal effects of exposures on outcomes. Genetic
variants robustly associated with phenotypes have been used in several studies as
instrumental variables, improving causal inference in a non-experimental setting
[19, 20, 101, 114].

Instrumental variable analysis within the Mendelian randomization context
is particularly powerful for experimental crosses (e.g., F2, backcrosses, inter-
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crosses, etc.), which are conducted in controlled conditions and closely mimic
randomized experiments. For studies in humans and other natural populations,
a more careful analysis is needed, since the population structure and cryptic
relatedness might still act as confounders [4]. When a genetic variant is in linkage
disequilibrium with another genetic variant (i.e., alleles at the two loci are non-
randomly associated), both affecting the outcome or the same metabolic pathway,
the instrumental variable assumption that the genetic variant is associated with
the outcome only through the exposure of interest may be violated. In the human
genome, linkage disequilibrium can occur even between completely unlinked
loci (e.g., alleles on separate chromosomes) due to population structure, natural
selection, genetic drift, and mutation [111]. Thus, it can be quite a challenge to
identify violations of the instrumental variable assumptions.

The instrumental variable approach and its assumptions are described in detail in
the next section.

2.3 Genetic Variants as Instrumental Variables

Suppose a study for investigating a causal relationship between an exposure (e.g., a
phenotype) X and an outcome (e.g., a clinical trait or disease) Y, when it is known a
genetic variant M which is associated with X as illustrated in Fig. 1.

Considering linear relationships among the variables, the true causal equation for
the outcome Y is Y D ˛ C ˇ2X C ˇ3Z C ", where ˛ is the regression intercept, ˇ2
and ˇ3 are direct causal effects from, respectively, X and Z, and " is the error term.

Suppose that the simple regression model Y D ˛Cˇ2XCe, where e D ˇ3Z C ",
is used in order to estimate the causal effect of X on Y, possibly because Z is
an unobserved confounding factor. In this case, the ordinary least squares (OLS)
estimator

Ǒ
2 D Cov.Y;X/

Var.X/
D Cov.ˇ2X C ˇ3Z C ";X/

Var.X/
;

with expectation

M X

Z

Y

b1

b2

b3

Fig. 1 Usual scenario investigated in Mendelian randomization. The causal network illustrates the
assumed relationships among genetic variant M, exposure X, outcome Y and confounders Z
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E. Ǒ2/ D ˇ2 C ˇ3Cov.Z;X/

Var.X/
;

will have a bias of ˇ3
Cov.Z;X/

Var.X/ , if ˇ3 ¤ 0 and Cov.Z;X/ ¤ 0.
In other words, when X and Z are correlated, there is a violation of the assumption

that the error e is uncorrelated with the covariate X, i.e., cov.X; "/ D 0, and the OLS
estimator will be not asymptotically unbiased and consistent.

However, according to the instrumental variable technique introduced by the
geneticist Sewal Wright [129], it is possible to determine the causal effect of X
on Y, ˇ2, if there is a variable M (called instrumental variable) which is correlated
with X, but is uncorrelated with Z.

Under the instrumental variable assumptions, i.e., Cov.X;M/ ¤ 0 and
Cov.Z;M/ D 0, the covariance of Y and Z is

Cov.Y;M/ D Cov.ˇ2X C ˇ3Z C ";M/ D ˇ2Cov.X;M/:

Thus, we can obtain the instrumental variable (IV) estimator of ˇ2:

ǑIV
2 D

Cov.Y;M/

Cov.X;M/
:

The instrumental variable estimator is also known as two-stage least squares
(2SLS) estimator, since it can be obtained in two stages. In the first stage, X is
regressed on M, and, since M is alleged to be uncorrelated with Z, the OLS estimator
of the slope coefficient will be consistent and unbiased. In the second stage, Y is
regressed on OX, which is obtained in the first stage and represents the predict value
of X explained by M, but not by Z. Since the covariate OX is uncorrelated with the
error term, the OLS estimator is used for concluding the estimation of ˇ2 [12, 16].

In the Mendelian randomization scenario illustrated in Fig. 1, the genetic variant
M, which is affecting the outcome Y only through its effect on the exposure X and it
is not associated with confounding factors Z, is acting as an instrumental variable,
allowing inferences on the causal relation of X to Y. When an intervention is made
at the instrumental variable M and a significant change is detected in the outcome
Y, since M is not directly associated with the outcome, the only way of explaining
the indirect effect of M on Y is by a causal effect of the exposure X on the outcome
Y. By using a genetic variant as an instrumental variable, it is not possible to do
an intervention experiment, however, the randomization of genotypes to individuals
ensures the causal inference similarly.

In order to use a genetic variant as instrumental variable, a number of assump-
tions must be met:

1. The genetic variant M must be associated with the exposure X;
2. The genetic variant M must be independent of measured and unmeasured factors

(represented by Z) that confound the relationship between the exposure X and
the outcome Y.
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3. Exclusion restriction: the genetic variant M cannot affect the outcome Y by no
other way than by the exposure X.

We will provide details on each of these assumptions in the following sections.

2.3.1 Statistical Association with the Exposure

The first assumption states that the genetic variant M and the exposure X must be
statistically associated.

It is important that the association between M and X is strong, otherwise M is
considered a weak instrumental variable and can bias estimates of the causal effects
even if all other core instrumental variable assumptions are satisfied [119]. The
implicit idea is that the genetic variant must be the strongest factor which genetically
divides the sample into subgroups according to the exposure of interest, similar to
a randomized controlled trial. It is expected that the genetic variant effect is not
inhibited by the effect of any confounder.

The genetic variant is not required to be the true functional variant that produces
a subsequent effect on the exposure. However, it is necessary that the chosen
instrument is in linkage disequilibrium with the functional variant, i.e., they must
be statistically associated.

In order to verify the association magnitude between two variables, the Pearson
product moment correlation coefficient can be used if the relationship is linear. If
the data present non-linear or more complicated relationships, other measures, such
as the Spearman’s rank correlation coefficient and the mutual information, can be
better suited.

2.3.2 Independence with Exposure–Outcome Confounders

The assumption that the genetic variant M is independent of any confounder Z for
the exposure–outcome relationship is specially hard to verify considering that it
must hold even for unmeasured confounders.

However, it is highly recommended to examine whether any statistical associ-
ation between the genetic variant and the observed confounders of the exposure
exists. The absence of such statistical associations does not guarantee that the
assumption is fulfilled but, at least, increases the chances of it being true.

2.3.3 Exclusion Restriction

The third and the most troubling assumption for using genetic variants as instrumen-
tal variables is sometimes referred as exclusion restriction. It states that the genetic
variant only affects the outcome through the exposure. More precisely, the genetic
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variant must be independent of the outcome given the exposure and all confounders
(measured and unmeasured) of the exposure–outcome association.

The scheme of Fig. 1 would be an exclusion restriction violation if the genetic
variant M is not independent of the outcome Y conditional on exposure X and
confounders Z. For example, it would be a violation if M is affecting Y through
a direct edge and through the exposure X. In this case, estimates for the association
between X and Y would be biased.

Since it is always possible that the genetic variant affects the outcome via a
biological pathway other than the exposure of interest, it may be very difficult to
guarantee that this assumption holds. In addition, pleiotropy (i.e., phenomenon of
a genetic variant influencing multiple phenotypes) and linkage disequilibrium can
be violations of the exclusion restriction if such associations imply the existence of
another pathway by which the genetic variant is associated with the outcome [20].

A recommendation is to use only strong instruments, i.e., genetic variants whose
functionality and relationship to the exposure are well biologically understood [36].
For instance, if the exposure is a protein, then the best strategy is generally to use a
marker in the gene which is responsible for encoding the protein itself.

3 Causal Model

There are many definitions of causality in the philosophical and statistical literature
[44, 50, 51, 55, 70, 87, 98, 104, 105]. Throughout this chapter we adopt the Pearl’s
definition of causality. It is a notion of causality which relies mainly on conditional
probability and interventions. In order to mathematically represent interventions and
distinguish them from observations, Pearl introduced the do-operator. Denoting by
do.X D x/ the hypothetical intervention in which the variable X is manipulated to
be set to the value x, and denoting by P.yjdo.x// the probability of the response
event Y D y under the hypothetical intervention X D x, we say that X is a cause of
Y if [38, 87]:

P.Y D yjdo.X D x// ¤ P.Y D yjdo.X D x0//;

when all background variables remain constant. Thus, Pearl’s representation of
causality has close resemblance to a randomized controlled experiment, in which
any change in the outcome variable must be due to the intervention, if all factors
influencing their association are either constant, or vary at random.

The Pearl’s comprehensive theory of causation resulted from the unification
of several approaches to causation, such as the graphical, potential outcome, and
SEMs.

As proved by Pearl [87], SEMs provide a language for causality which is
mathematically equivalent to the potential-outcome framework, developed by Jerzy
Neyman [84] and Donald B. Rubin [105]. Significant contributions to the general-
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ization of the potential-outcome framework as a general mathematical language for
causal inference were also given by James Robins [98, 99].

The potential-outcome model is based on randomized experiments and coun-
terfactual variables. By conducting randomized controlled experiments, in general,
only one potential outcome is observed for each individual, which is the one
corresponding to the exposure value that actually occurred for the individual. An
outcome that would have occurred if, contrary to the fact, the exposure had been
assigned another value is considered a counterfactual quantity according to Rubin’s
notation. Within the potential-outcome framework, causal inferences are made by
deriving probabilistic properties of these counterfactual quantities as in a missing
data problem. The equivalence between SEMs and potential-outcome models could
be demonstrated by Pearl by treating counterfactual quantities as random variables.
He showed that the consistency rule [98]—which states that an individual’s potential
outcome under a hypothetical intervention that happened to materialize is precisely
the outcome experienced by that individual—is automatically satisfied in the
structural model. Thus, expressions involving probabilities of counterfactuals can be
converted to expressions involving conditional probabilities of measured variables
[88].

The connection between SEMs and graphical models will be described in detail
in the following sections. While SEMs provide a functional representation of the
causal processes relating the variables, graphical models provide a visual and, thus,
more intuitive representation of these relationships.

3.1 Functional Causal Representation

In a general context, a causal model is an SEM representing the causal relationships
between random variables [87].

Consider random variables Vi; i D 1; : : : ; n. Let pa.Vi/ denote the set of the
parents of Vi, that is, the set of random variables that directly determine the value
of Vi. Also, let "i; i D 1; : : : ; n be random variables representing errors due to
unknown causes.

The mechanism by which the value of each variable Vi is selected can be defined
according to some function fi (usually, but not necessarily, linear) of the parent
variables and of the error variable:

Vi D fi.pa.Vi/; "i/; i D 1; : : : ; n: (1)

In the context of genotype–phenotype causal networks and Mendelian ran-
domization, the random variables are quantitative phenotypes and variant genetics
associated with these phenotypes (QTLs or QTNs). In addition, it is commonly
assumed that the functional relationships of the SEM shown in Eq. (1) are linear,
and that the effects of genetic variants are fixed.



Causal Inference and Structure Learning of Genotype–Phenotype Networks 101

Before introducing the model, let us first discuss the involved notation and
objects. Let:

• Y be a p � n matrix where each element yij represents the observed value of the
ith quantitative phenotype for the jth individual;

• M D 10 ˝ � be a p � n matrix resulting from the Kronecker product between
the transposed n-dimensional unity vector, and � be the vector with the expected
values of each quantitative phenotype;

• Q be a p � q matrix of effects of genetic variants on the phenotypes. The element
qij represents the effect of the jth genetic variant on the ith phenotype;

• X be a q � n matrix where each element xij represents the predicted genotype of
the ith genetic variant in the jth individual. For SNPs the observed genotype state
is used instead of the predicted values;

• P be a p � p matrix containing the direct causal effects of the phenotypes on
each other. The element pij corresponds to the effect of the jth phenotype on the
ith phenotype;

• E be a p � n matrix where each eij represents the measurement error of the ith
phenotype for the jth individual.

The causal linear SEM representing the expected pattern of associations among
p observed phenotypes and q genetic variants for n individuals is

Y DMC PYCQXC E: (2)

Note that the assumption that variations in QTL or QTN genotypes precede
variation in the phenotypes is expressed by the fact that the Q matrices is always
in the right side in Eq. (2), along with the parent phenotype effects, represented in P
matrix.

In the case of biallelic genetic variants, the total genetic effect (represented
in Q and X matrices) can be partitioned in order to explicit particular effects,
such as additive and dominance effects of each genetic locus and the possible
interaction effects among them (epistatic effects). Typically biallelic genetic variants
have three genotype states, denoted usually as AA (homozygous dominant), Aa
(heterozygous), and aa (homozygous recessive). These genotypes must be encoded
according to the type of effect by using two degrees of freedom.

We will illustrate this extension in order to take into account additive and
dominance effects. For simplicity, we will not consider interactions between genetic
variants (epistasis).

Let us precisely define the components of dominance and additive effects using
biallelic genetic variants. Let:

• Qa be a p � q matrix of the additive effects. The element qa
ij represents the

additive effect of the jth genetic variant on the ith phenotype;
• Xa be a q � n matrix where each element xa

ij represents the predicted genotype
of the ith genetic variant for the jth individual, properly encoded to represent
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additive effects. For instance, we can encode the genotypes aa, Aa, and AA as
�1, 0, and 1, respectively.

• Qd be a p � q matrix of the dominance effects. The element qd
ij represents the

dominance effect of jth genetic variant on the ith phenotype;
• Xd be a q � n matrix where each element xa

ij represents the predicted genotype
of the ith genetic variant for the jth individual, properly encoded to represent
dominance effects. Since the dominance effects are due the interaction between
the alleles, a possible encoding for the genotypes is 1 for a heterozygous
individual, and 0 otherwise.

In this specific case, the causal model for the genotype–phenotype network is

Y DMC PYCQaXa CQdXd C E: (3)

The interaction effects between genetic variants (describing epistasis) were not
illustrated in Model 3. However, we could easily incorporate in the model matrices
Qaa, Qdd, and Qad representing epistatic interaction effects [27].

Since dominance effects (interaction between alleles) and epistasis (interaction
between loci) are higher order effects, it is possible that they have little impact
on the inferences about the response variable. Supporting this idea, Burgess et al.
(2011) [21] suggest to include only the most important instrumental variables
(genetic variants), based on biological knowledge, for a parsimonious modeling of
the genetic association (i.e., per allele additive genetic model, rather than using the
total degrees of freedom in terms of effects).

However, the literature has shown that many genetic variants are not precisely
identified because of the simplicity of the adopted models [75, 120, 132]. So,
while lower order effects (additive effects) may be sufficient for genetic mapping,
interaction effects may be decisive to analyze complex diseases (as opposed to the
Mendelian diseases).

In order to draw causal inferences from observational studies, it has been
suggested to select the most relevant instrumental variables (genetic determinants
of the exposure) attempting to be as parsimonious as possible. However, when only
a small proportion of the variability in the exposure is explained by the genetic
variant, it is possible to improve the precision of estimates by using multiple genetic
variants [85, 90].

3.2 Graphical Causal Representation

The causal model in Eq. (1) can be graphically represented by a directed graph.

Definition 1. Let V D fV1; : : : ;Vng be a finite set and E � f.Vi;Vj/ W Vi;Vj 2 Vg a
set of ordered pairs of vertices. Each element of the set V is called vertex and each
element of the set E is called directed edge. The edge .Vi;Vj/ represents a direct
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connection from Vi to Vj. The ordered pair G D .V;E/ is called directed graph or
digraph.

We can always build a graphical representation of an SEM by using a directed
graph.

In this representation, each vertex of a directed graph corresponds to a distinct
random variable. In addition, each edge .Vi;Vj/, if it exists, represents a direct
functional relationship from the variable Vi to the variable Vj. In this case, Vi is
called parent of Vj and Vj is a child of the vertex Vi. The absence of an edge indicates
both variables are not directly associated. Thus, if we draw, for each variable Vi, an
edge pointing to it from each of its parents, we can build the directed graph which
represents their causal mechanisms.

The error terms are not represented in the graph. However, when error terms are
correlated, the corresponding pairs of variables must be connected by a bidirected
(double-headed) edge.

When the relationships imply causality, the graphical representation of a causal
model is referred as causal graph or causal diagram of the system. The goal of the
causal structure learning methods is to discover the causal graph of a system often
from observational data.

In the graphical representation of the functional model shown in Eq. (2), the
vertices can represent phenotypes or genetic variants and the edges represent the
causal relationships among them.

The next definitions introduce concepts that distinguish two classes of graphs
according to whether or not the graph structure has cyclic patterns. This distinction
is important because many results and procedures for inferring causal relationships
using observational data are dependent on the type of graph structure.

Definition 2. A directed path between two vertices is a sequence of directed edges
that begins at one vertex and ends at another vertex, with the restriction that all the
edges are oriented in the same direction. Whenever there is a path that begins and
ends at the same vertex we have a cycle. Cycles of length one are called self-loops
and cycles of length two corresponds to a bidirectional influence or reciprocal
association.

Definition 3. An SEM with uncorrelated error terms and which does not contain
cyclic relationships is called recursive SEM and its graphical representation is
called directed acyclic graph (DAG).

Real biological systems such as GRNs often have natural cyclic behavior [28].
Thus, DAGs can be very restrictive to model such biological data. Directed
graphs that can accommodate cycles and reciprocal associations have been used to
model feedback processes that have reached equilibrium. For instance, equilibrium
expression patterns can be modeled in reverse engineering GRNs from multiple
gene expression measurements [26].

An alternative interpretation for cycles is that each feedback relation represents
an infinite sequence of variables indexed by time. Thus, a cyclic graph can be viewed
as a compact representation of an infinite acyclic graph [96, 117].
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Definition 4. An SEM which contains at least one cycle is called non-recursive
SEM and its graphical representation is called directed cyclic graph (DCG). Note
that systems with correlated error are also non-recursive, since the corresponding
pair of variables are connected by a bidirected edge.

DCGs have been used to represent GRNs. In this representation, vertices are gene
expression levels of genes and directed edges indicate regulation processes. The
expression of a gene can be controlled by the presence of proteins called activators
and repressors (or inhibitors). Thus, the gene in the tail of the edge produces a
protein that regulates the gene in the head of the edge. In this case, the genome itself
consists in a complex network [26, 83].

From an algebraic point of view, the edges connecting phenotypes correspond
to the non-zero elements in P and the edges pointing from a QTL or QTN to a
phenotype exist if the corresponding entries in Qa or in Qd are non-zero. If the
P matrix can be rearranged as a lower triangular matrix, then we have a recursive
model and, consequently, it can be represented as a DAG. Otherwise, the system
contains cycles and a non-recursive SEM and a DCG are used to represent it.

Any SEM can be represented by directed graphs, even when the system involves
cycles, self-loops, dependent errors, and nonlinearities. In biological context, causal
models often represent linear relationships among phenotypes and genetic variants.
It is commonly assumed that the system does not contain self-loops and the error
terms are uncorrelated.

4 Properties Relating Functional and Graphical Models

To provide a statistical connection between the functional and the graphical repre-
sentation of a causal model, some concepts are fundamental, namely conditional
independence, d-separability, directed Markov property, and causal faithfulness.

The graphical model (a directed acyclic or cyclic graph) that precisely encodes
the conditional independence relations among the variables of the system is called
PGM. When that precise connection between graphical and functional representa-
tions can be established, some theoretical results can be used for causal inference
and network structure learning. These concepts are presented in the following
sections.

4.1 d-Separability

The concept called d-separation is a fundamental criterion used in network structure
discovery algorithms. In fact, it can determine whether or not a directed edge exists
between two variables. Under d-separation criterion, it is even possible to determine
the direction of some edges.
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Before giving a precise definition of d-separation, it will be introduced some
related concepts: conditional and unconditional independence and undirected path.
These concepts can be defined on random variables or on sets of random variables
as follows:

Definition 5. Let V D fV1;V2; : : : Vng be a set of random variables. Consider X,
Y, and Z three subsets of V and P the joint probability distribution function over the
variables in V. We say that the sets X and Y are conditionally independent given
Z if, for any configuration x of the variables in the set X and for any configurations
y and z of the variables in the sets Y and Z satisfying P.Y D y;Z D z/ > 0, we
have

P.X D xjY D y;Z D z/ D P.X D xjZ D z/:

This relationship is denoted by .X ?? YjZ/P or simply X ?? YjZ.

Definition 6. Using the same notations of the Definition 5, X and Y are uncondi-
tionally independent or marginally independent if

P.X D xjY D y/ D P.X D x/

for any configurations x and y of the variables in the sets X and Y satisfying
P.Y D y/ > 0.

This relationship is denoted by X ?? Yj; or simply X ?? Y.

The conditional and unconditional independencies encoded by a given directed
cyclic or acyclic graph can be determined by a graphical criterion based on the
definitions of undirected path and collider:

Definition 7. Let G D .V;E/ be a directed graph. A sequence of distinct edges
fE1; : : : ;Ekg in G is an undirected path if there exists a sequence of vertices
fVi; : : : ;VkC1g such that for 1 � i � k either .Vi;ViC1/ D Ei or .ViC1;Vi/ D Ei, and
Ei ¤ EiC1. An acyclic undirected path is an undirected path in which every vertex
in the path occurs no more than once.

In words, an undirected path is a sequence of connected edges ignoring their
directions. It is also common to define undirected path as an ordered sequence
of vertices that must be transversed, ignoring the direction of the edges. However,
this definition is only valid for acyclic graphs, since a pair of vertices can uniquely
identify an edge. A proper definition of undirected path which is valid for structures
with reciprocal associations uses a sequence of edges rather than a sequence of
vertices [117].

Definition 8. Let X, Y, and Z be vertices of a graph and U be an undirected path
containing X, Y, and Z in this order.

Y is a collider in U if there are edges pointing into it from both X and Z (i.e., Y
is common effect of X and Z), preventing transmission of causal effects along such
a path.
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When Y is a collider and, additionally, X and Z are not connected by an edge,
Y is called unshielded collider [118]. In addition, the formation X ! Y  Z is
called v-structure (using Pearl’s notation [87]) or immorality (using Koller and
Friedman’s notation [64]).

Having introduced such fundamental concepts, d-separation can be defined as
follows [87]:

Definition 9. Let G D .V;E/ be a causal graph and X, Y, and Z be disjoint sets of
vertices of V. X and Y are d-separated given Z in G, if for any undirected acyclic
path U between a vertex in X and a vertex in Y:

• U contains an unshielded collider such that neither the middle vertex (the
collider) nor any of its descendants is in Z; or

• U contains a vertex which is not a collider and it is in Z.

When X and Y are d-separated by Z in the graph G we write .X ?? YjZ/G.

Using d-separation criterion, the premise of conditional independence can be
observed under two assumptions: global directed Markov and causal faithfulness.
We will precisely define them in the following sections, but they assure us that two
vertices are conditionally independent given a set of variables Z if and only if Z d-
separates both variables. Thus, the graphical property of d-separation enables us to
determine what conditional independence relations are entailed by a given graphical
causal model. For each pair of variables, we can test whether they are independent
given all sorts of conditioning variables sets.

Sometimes it is possible to prune away edges that represent spurious associations
or even to orient edges using observational data alone. Whenever both variables
become independent by conditioning on other variables, we can rule out the edge
between them. In addition, unshielded collider formations can be identified testing
if two variables become dependent by conditioning on the collider. As the edges
going into colliders are oriented, orientations of other edges can be induced.

For instance, consider the following d-separation statements present in the graph
of Fig. 2:

B ?? C j AI A ?? D j fB;CgI B ?? E j DI C ?? E j DI A ?? E j D:

These pairs of vertices are d-separated because every path between them is
blocked, that is: (1) in every path containing a collider, the collider and its
descendants are not in the conditioning set; and (2) in every path containing only
non-colliders and non-descendant of colliders, at least one vertex of the path is in the
conditioning set. Therefore, we can conclude that there is not an edge connecting
them.

We can orient some of the edges if more tests are made. For instance, we can
identify the unshielded collider C ! D  B, knowing that B 6?? C j fA;Dg. After
orienting these edges, we can also identify the true direction between D and E. By
conditioning to D, neither the path between B and E (B ?? E j D) nor the path
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Fig. 2 A DAG representing
causal relationships among
five variables. By using
d-separation criterion, only
the direction of the edges
A! C and A! B cannot be
recovered

A

B

C

D E

between C and E (C ?? E j D) can be blocked, implying that D is not a collider.
Thus, the edge D! E can be recovered.

Since conditional independence is a symmetric relationship, we cannot orient the
two remaining edges. Even knowing that A, B, and C are not colliders, we cannot
discard any of the three following orientations because for all of them we have the
d-separation statement B ?? C j A:

• A chain: B! A! C;
• Another chain: B A C;
• A fork: B A! C.

Graphs with the same set of d-separation statements usually correspond to
observationally equivalent models and their structures cannot be fully recovered
using observational data alone. In Sect. 5, we will discuss the equivalence problem
in more detail.

4.2 Global Directed Markov Property

In order to provide a probabilistic interpretation of the graphs, it is necessary to
introduce a property to ensures that the graph with a set of vertices V can also
represent a set of probability distributions over V .

If the graph accurately describes the structure entailed by a causal model, then the
separation properties of the graph can be associated with conditional independencies
and causality relations among variables. In other words, we can use d-separation
criterion as a graphical tool to recover the underlying causal mechanisms relating
the variables.

Definition 10. Let G be a directed acyclic or cyclic graph with a probability
distribution P. We say that P satisfies the global directed Markov property for
G if for all disjoints sets of variables X, Y, and Z the following statement is true: if
X is d-separated from Y given Z in G, then X is conditionally independent from Y
given Z in P.

In other words, we say that P satisfies the global directed Markov property for G
when:
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.X ?? YjZ/G ) .X ?? YjZ/P; foralldisjointsetsX;YandZ:

Assuming the global directed Markov property holds, the conditional indepen-
dencies found by d-separation in a given graph G hold for every causal model that
can be represented graphically by G.

A wide range of statistical models, including recursive linear SEMs with
independent errors, regression models, and factor analytic models, satisfy the global
directed Markov condition for its associated DAG.

Considering recursive and non-recursive SEMs with independent errors, if the
relationships are linear, then the following result guarantees that the probability
distribution P of the SEM satisfies the global directed Markov property [65, 117]:

Theorem 1. Let L be a linear recursive (or non-recursive SEM) with jointly inde-
pendent error variables and G be the directed acyclic (or cyclic) graph naturally
associated with L. Consider the probability distribution P over the variables of L.

Under these conditions, P satisfies the global directed Markov property for G.

Thus, the Theorem 1 allows us to use d-separation criterion in a graph to read
off the conditional independence relations entailed by the associated linear SEM.
In addition, all conditional independence relations which hold in a linear SEM are
precisely encoded by its natural graphical representation.

The natural graphical representation of a non-recursive SEM is a DCG. It has
been shown that there is no DAG that is capable of encoding the conditional
independence relations entailed by a non-recursive SEM [94].

4.2.1 Local Directed Markov Property in DAGs

By construction, in DAGs, every variable is d-separated from its non-descendants
given its parents. Thus, for DAGs, there is a local property equivalent to the global
directed Markov property [67]:

Definition 11. Consider a directed acyclic graph G with a probability distribution
P, both defined over a set of random variables V D fV1; : : : ;Vng.

We say that P satisfies the local directed Markov property with respect to G
if for every variable Vi 2 V, in the probability distribution P, Vi is independent
of all other non-descendants variable (all other vertices except its parents and
descendants), given its parents in G.

In Pearl’s terminology [86] we say that G is an independency map (or I-map)
of P when all the Markov assumptions implied by G are satisfied by P.

Thus, the local directed Markov property is sufficient to relate an acyclic
graphical representation G to a probability distribution P. The equivalence of
the global and local directed Markov properties in DAGs holds even when the
probability distributions represented by the graph have no density function [67].
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Fig. 3 Example of an unfaithful distribution to the graph. The direct effect of Z on Y is exactly
the additive inverse of the indirect effect through X, leaving no total effect

According to Theorem 1, the probability distribution P of a linear recursive
SEM L with jointly independent error variables satisfies the global Markov property
for the DAG G that provides the natural graphical representation of L. Moreover,
given the equivalence of the global and local directed Markov properties, P also
satisfies the local directed Markov property for G.

We point out, however, that the local and global Markov properties are not
equivalent for directed cyclic graphs (DCGs) [117].

4.3 Causal Faithfulness

Assuming that a probability distribution P satisfies the global directed Markov
property for a graph, all d-separation statements obtained graphically hold as
conditional independence statements in P. However, this assumption does not
ensure that all conditional independence statements implied by P are represented
in the graph.

Consider, for instance, the system in Fig. 3 represented by an DAG with three
vertices, X, Y, and Z, such that Z directly affects Y, but it also affects Y indirectly,
mediated by X.

Assuming that the relations are linear, the total effect of one variable on another
is the sum of its direct effect and indirect effects [15]. Moreover, the indirect effect
can be calculated by using Sewall Wright’s multiplication rule [34, 128], i.e., by
multiplying the structural coefficients on the corresponding path.

In Fig. 3, the direct effect is given by ˇ3, and the indirect effect is given by the
product of the coefficients on path through X, that is, ˇ1ˇ2. By summing the direct
and indirect effects, we have the total effect of Z on Y is equal to ˇ3 C ˇ1ˇ2. Since
in this specific case ˇ3 is defined as �ˇ1ˇ2, the total effect is equal to zero.

In order to clarify a bit more the calculation of the total effect under linearity
condition, consider the corresponding recursive linear SEM with independent errors
that can be derived by describing each variable as a linear function of its parents and
of an error variable:

Y D ˇ3Z C ˇ2X C "Y

X D ˇ1Z C "X:
(4)
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By substituting the expression for X into the expression for Y, we can express Y as
a function of Z and error variables:

Y D ˇ3Z C ˇ2.ˇ1Z C "X/C "Y

D .ˇ3 C ˇ2ˇ1/Z C ˇ2"X C "Y :
(5)

Thus, the total effect of Z on Y is given by ˇ3 C ˇ1ˇ2 and it vanishes when the
parameter ˇ3 is set to exactly �ˇ1ˇ2.

Although there are no conditional independencies entailed for all values of
free parameters, with that specific choice of the ˇ3 parameter, the direct effect is
cancelled out by the indirect effect and Z and Y will be apparently not associated.
In such a case, we say that the population is unfaithful to the graph of the causal
structure that generated it.

Under the assumption that a probability distribution P is faithful to a graph, we
have the guarantee that the conditional independencies entailed by P can be read off
from the graph by applying d-separation criterion.

Definition 12. Let G be a directed acyclic or cyclic graph G with a probability
distribution P. We say that P satisfies the causal faithfulness condition for G if for
all disjoints sets of variables X, Y, and Z, the following statement is true: if X is
conditionally independent from Y given Z in P, then X is d-separated from Y given
Z in G.

In other words, we say that P satisfies the causal faithfulness condition for G
when:

.X ?? YjZ/P ) .X ?? YjZ/G; for all disjoint sets X;Y and Z:

The following theorem allow us to test if a probability distribution is faithful to
a directed acyclic graph [118]:

Theorem 2. Let G be a DAG with a probability distribution P. If P is faithful to
some DAG, then P is faithful to G if and only if

1. for any vertices X and Y of G, X, and Y are adjacent if and only if X and Y are
dependent conditional on every set of vertices of G that does not include X or Y;
and

2. for any vertices X, Y, and Z, such that X is adjacent to Y, Y is adjacent to Z, and
X is not adjacent to Z, X ! Y  Z is a subgraph of G if and only if X and Z are
dependent conditional on every set containing Y but not X or Z.
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4.4 Factorization of Joint Probability Distribution Functions

Consider an arbitrary probability distribution function P, defined on n random
variables V1; : : :Vn. By successive application of the chain rule of probability, P
can be factorized as a product of n conditional probability distribution functions:

P.V1;V2; : : : ;Vn/ D
Y

j

P.VjjV1; : : : ;Vj�1/:

The probability distribution function P can be either specified by a probability
mass function (for qualitative random variables) or by a probability density function
(for quantitative random variables).

We will present a definition for the factorization of a joint probability density
function according to a directed graph which may be either acyclic or cyclic. It was
first proposed by Lauritzen et al. [67] for DAGs and its generalization was due to
Thomas Richardson and Peter Spirtes [97, 117].

To precisely define that factorization property, let us first introduce the concept
of ancestor of a vertex:

Definition 13. Let G D .V;E/ be a directed graph. A vertex Vi 2 V is an ancestor
of a vertex Vj 2 V, if there is an acyclic directed path from Vi to Vj or Vi D Vj.

With the concept of ancestor, we can now define the factorization property of
joint densities according to directed cyclic or acyclic graph.

Definition 14. Let G D .V;E/ be a directed graph and X be a subset of V. Consider
the probability density function f .V/ for a probability distribution P with respect to
a product measure � over V (i.e., P D f � �). Denote by f .Y/ the marginal of f .V/
for a subset Y of V. Also, denote the set of ancestors of members of X by An.X;G/
and the set of parents of a vertex Xi in G by pa.Xi;G/.

For a non-negative function g, we say that P factors according to the directed
graph G if for every subset X of V,

f .An.X;G// D
Y

Xi2An.X;G/

g.Xi; pa.Xi;G//:

Directed acyclic graphs are built in such a way that each variable is d-separated
from its non-descendants given its parents. For this reason, it is possible to use
a simpler form of Definition 14. Moreover, the factorization property according
to a DAG is defined for any probability distribution function (defined either over
quantitative or qualitative random variables):

Definition 15. Let G be a directed acyclic graph and P be a probability distribution
function, both defined over a set of random variables V D fV1; : : : ;Vng. Denote by
pa.Vj;G/ the set of parents of a vertex Vj in G.
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We say that P factors according to the directed acyclic graph G if P can be
written as the product of the individual distribution functions, conditional on their
parent variables:

P.V1; : : : ;Vn/ D
Y

j

P.Vjj pa.Vj;G//:

4.4.1 Factorization and Global Markov Property

The following results relate factorization of probability density functions and global
directed Markov property. Their proofs are due to Thomas Richardson and Peter
Spirtes [97] and are based on the proofs by Lauritzen et al. [67] for DAGs.

Theorem 3. Let P be a probability distribution that is absolutely continuous with
respect to a product measure � (and, thus, it has a non-negative probability density
function).

If P factors according to a directed graph G, then P satisfies the global directed
Markov property for G.

The Theorem 3 states that if a probability distribution complies with the
Definition 14, then it also satisfies the global directed Markov property for the
corresponding directed (acyclic or cyclic) graph.

The reverse direction holds for acyclic graphs under the same hypotheses.
However, to extend this result for cyclic graphs, a further constraint on the
probability distribution P is necessary: it must has a strictly positive probability
density function f [97, 117].

Theorem 4. Let P be a probability distribution, defined over a set of random
variables V D fV1; : : : ;Vng, that is absolutely continuous with respect to a product
measure �, and has a positive probability density function f .V/.

If P satisfies the global directed Markov property for a directed (cyclic or acyclic)
graph G, then f .V/ factors according to G.

The proof of Theorem 4 by Thomas Richardson and Peter Spirtes uses some
ideas of Lauritzen et al. [67], which are mainly based on the moralized version
of a graph (i.e., the undirected version of the graph obtained after connecting or
marrying the parents of each immorality). The positivity assumption is needed to
use the Hammersley–Clifford theorem. It gives necessary and sufficient conditions
under which a positive probability distribution factorizes according to an undirected
graph. A discussion on the problems involved is given by Terry Speed [115].

To conclude this section, we want to emphasize three statements that are
equivalent for a probability distribution function P associated with the directed
acyclic graph G [67]:

• P satisfies the global directed Markov property with respect to the DAG G;
• P satisfies the local directed Markov property with respect to the DAG G;
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• P factors according to the DAG G, i.e., the joint probability distribution can be
expressed by a product of conditional distributions for each variable given its
parents. For instance, considering the system shown in Fig. 2,

P.A;B;C;D;E/ D P.EjD/ P.DjC;B/ P.CjA/ P.BjA/ P.A/:

4.5 Linear Entailment and Partial Correlations

In practice, algorithms for causal structure learning assume a d-separation oracle
which precisely tell us whether two variables are d-separated in a directed graph
given a set of other variables. Thus, we can ask the oracle whether two variables
are d-separated given every possible conditioning set. If it is possible to find a
conditioning set that makes two variables d-separated, then we can conclude that
does not exist an edge connecting these two variables. That is a fundamental idea for
reconstructing association networks (an undirected graph representing only direct
associations among variables). For instance, this idea is used in the first step of the
classical PC-algorithm, called PC-skeleton algorithm [118]. The direction of each
edge connecting two variables that could not be d-separated by any conditioning set
is determined in subsequent steps of structure learning algorithms.

Under the assumption that all involved variables have a joint multivariate
normal distribution, a zero partial correlation ties with conditional independence.
In addition, as shown in Definition 12, the faithfulness assumption ensures that con-
ditional independence implies d-separability. Thus, under faithfulness and normality
assumptions, it is possible to apply d-separation criterion by using a statistical test
for zero partial correlations. The level of statistical significance of the test is decisive
for the determination of direct associations between variables. The choice of the
significance level depends on the maximum acceptable probability of making a type
I error, but the most commonly used significance levels are 1 % and 5 %. In the
PC-skeleton algorithm of the R package pcalg [60] (which is used in the first step
of the QDG [24] and QPSO [126] genotype–phenotype discovery algorithms), the
default significance level for individual partial correlation tests is 1 %. However, in
the R package QTLnet [82], which implements the QDG algorithms, the suggested
significance level is very small (equals to 0:05%), probably to compensate for
multiple comparisons.

The partial correlation measures the strength of the linear association between
two continuous variables when the effect of a set of other random variables is
controlled. We define the partial correlation coefficient in the following [59]:

Definition 16. Let X and Y be two random variables and Z D .Z1; : : : ;Zp/ a set of
p other random variables. Let �X and �Y be the means of X and Y, respectively, and
�Z the mean vector of Z. Also, let † be the covariance matrix of .X;Y;Z1; : : : ;Zp/

with the following partition notations:
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† D

0

B
B
B
B
BB
@

�XX �XY �XZ1 � � � �XZp

�YX �YY �YZ1 � � � �YZp

�XZ1 �YZ1 �Z1Z1 � � � �ZpZ1
:::

:::
:::

: : :
:::

�XZp �YZp �Z1Zp � � � �ZpZp

1

C
C
C
C
CC
A

D
0

@
�XX �XY †XZ

�YX �YY †YZ

†0XZ †0YZ †ZZ

1

A :

The prediction errors of X and Y given Z when using the best linear predictors
(which minimize the mean square error) are, respectively,

X � �X �†XZ†�1ZZ.Z ��Z/

Y � �Y �†YZ†�1ZZ.Z � �Z/;

with error covariance matrix that can be calculated as

†XY�Z
:D

�
�XX�Z �XY�Z
�YX�Z �YY�Z

�
D

�
�XX �XY

�YX �YY

�
�

�
†XZ

†YZ

�
†�1ZZ

�
†0XZ †0YZ

�
:

The partial correlation coefficient between X and Y eliminating the effect of Z
is defined by the correlation between the prediction errors of X and Y given Z,
determined from †XY�Z:

�XY�Z D �XY�Zp
�XX�Z

p
�YY�Z

:

The partial correlation coefficient shown in Definition 16 can be estimated
using the sample covariance matrices. In the case of the variables having a joint
multivariate normal distributed, that sample partial correlation coefficient is the
maximum-likelihood estimator.

It has also been shown that zero partial correlation and conditional independence
are equivalent only in Gaussian distribution [6]. However, the d-separation oracle
does not necessarily need to be a statistical test for conditional independence. It can
be any statistical constraint that provides the d-separability relations in a graph.

In the following, we will show some conditions linking zero partial correlation
with d-separation, without any normality assumption. The main assumption is
linearity of the relations among the variables.

It is noteworthy that randomization can provide the basis for making infer-
ences without assuming a particular distribution [81]. Thus, randomization-based
hypothesis tests can be used within Mendelian randomization approach when the
assumption of normality is not met.

To state precisely the conditions that must be satisfied, let us first introduce some
notation. Consider L a linear SEM with jointly independent error terms and G the
directed graph corresponding to L. Note that L can be a recursive or non-recursive
SEM. Thus, it can be associated with a directed acyclic or cyclic graph G. Consider
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also the notation .X ?? YjZ/L to say that X is independent of Y given Z in L, the
notation .X ?? YjZ/G to say that X is d-separated of Y in G, and the notation �XY�Z
for the partial correlation of X and Y given Z.

Definition 17. Let X, Y, and Z be disjoint sets of random variables.
We say that L linearly entails the conditional independence relation between X

and Y given Z (i.e., .X ?? YjZ/L) when .X ?? YjZ/L for all values of the non-zero
linear coefficients and all distributions of the exogenous variables in which they are
jointly independent and have positive variances.

Theorem 5. Using the same notation of the definition 17, .X ?? YjZ/G if and only
if L linearly entails that .X ?? YjZ/L.

Even if the relations between the variables are non-linear, d-separation is a
necessary condition for a conditional independence claim to be entailed by a
recursive or non-recursive SEM. Thus, whenever two variables are conditionally
independent according to an SEM, they can be d-separated in the associated directed
graph. However, d-separation is a sufficient condition for conditional independence
only in recursive SEMs and linear non-recursive SEMs. There are non-linear non-
recursive SEMs in which a d-separation relation exists in the naturally associated
graph, but their conditional independence is not entailed by the model. Peter Spirtes
showed that in a modified graphical representation of the SEM, called collapsed
graph, d-separation statements imply conditional independence relations [117].

In the following, we show some concepts linking d-separation and partial
correlation in a linear SEM.

Definition 18. Let Z be a set of random variables and X and Y be random variables
such that X ¤ Y and X and Y are not in Z.

We say that L linearly entails the zero partial correlation between X and Y given
Z (i.e., �XY�Z D 0) when �XY�Z D 0 for all values of the non-zero linear coefficients
and all distribution of the exogenous variables in which each pair of exogenous
variables has zero correlation, each exogenous variable has positive variance, and in
which �XY�Z is defined.

Theorem 6. Using the same notation of the Definition 18, .X ?? YjZ/G if and only
if L linearly entails that �XY:Z D 0.

By the Theorem 6, when the model is linear with jointly independent errors,
partial correlation marks d-separability. In other words, the partial correlations iden-
tified by applying d-separation criterion in acyclic or cyclic graphs are guaranteed
to vanish [116–118]. Thus, in this case, we can use a statistical test for zero partial
correlation as d-separation oracle. Actually, under these assumptions, tests for any
statistic that vanishes when partial correlations vanish would suffice [118].

In DAGs, it is possible to test a small number of partial correlations that constitute
a basis for the entire set. A possible basis is the one which reflects the local
directed Markov property of DAGs, i.e., the set of zero partial correlations between
each variable and its predecessors (non-parental non-descendant variables) given its
parents [87]. The cardinality of the basis is equal to the number of missing edges
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in the graph. Thus, the sparser the graph, more tests are required to reconstruct
the structure. The PC-algorithm [118] is a fundamental algorithm to recover DAG
structures. It runs in the worst case in exponential time with respect to the number
of vertices, but if the true underlying DAG is sparse this reduces to a polynomial
runtime.

In linear cyclic models, it is also possible to discover features of the graph
performing statistical tests of zero partial correlation in a subset of the set of all
d-separation relations. The CCD algorithm [97] is a discovery algorithm for linear
cyclic models that contain no latent variables. It can infer features of sparse directed
graphs from a probability distribution in polynomial time.

5 Equivalent Models

It may happen that two or more causal models or structures share the same
conditional independence relations. For instance, a chain (A ! B ! C), a reverse
chain (A B C), and a fork (A B! C) share the following set of conditional
and unconditional independence relations:

I D fA ?? C j BI A 6?? BI B 6?? CI A 6?? Cg:

In this case, the same probability distribution satisfies the global directed Markov
and the causal faithfulness conditions for all these graphs. We say that these three
models are members of the same equivalence class. In this case, it is not possible to
distinguish one from another without any other information or assumption. In other
words, they are indistinguishable by observational data alone.

These concepts are formalized in Definitions 19, 20, and 21:

Definition 19. Let S1 and S2 be two different SEMs.
We say that S1 and S2 are observationally equivalent if every probability

distribution that is generated by one of the models can also be generated by the
other.

Definition 20. Let G1 and G2 be two directed cyclic or acyclic graphs.
We say that G1 and G2 are Markov equivalent or faithful indistinguishable if

any probability distribution P which satisfies the global directed Markov and faithful
conditions with respect to G1 also satisfies these conditions with respect to G2, and
vice-versa.

Since the global directed Markov and causal faithfulness conditions only places
conditional independence constraints on distributions, the following equivalent
definition can be established:

Definition 21. Let G1 and G2 be two directed cyclic or acyclic graphs.
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We say that G1 and G2 are Markov equivalent or faithful indistinguishable if
the same d-separation relations hold in both graphs, or, equivalently, if they both
linearly entail the same set of conditional independencies.

The Theorem 7 is an important result that holds only for DAGs:

Theorem 7. Let G1 and G2 be two DAGs.
The two DAGs are Markov equivalent if and only if they have the same skeleton

(the undirected version of the graph) and the same unshielded colliders.

We can verify that the two first graphs in Fig. 4 are equivalent using the
Theorem 7. Both graphs have acyclic structures, the same skeleton and the same
set of unshielded colliders (empty set in this case). Note that A and B are connected
in both graphs. Thus, neither the collider C of the first graph nor the collider B of
the second graph is an unshielded collider. The third graph in Fig. 4 shows that the
acyclicity hypothesis is important for the Theorem 7. Even though the third graph
does not have the same skeleton and the same set of unshielded colliders than the
first two graphs (B is an unshielded collider in the third graph), these three graphs
are Markov equivalent because they hold no d-separation relations [95].

A more complex theory has been developed by Thomas Richardson and Peter
Spirtes [95–97, 117] to completely characterize cyclic Markov equivalence classes.
We will not discuss these results in this chapter. The more interested reader may
refer to [96, 97].

Logsdon et al. [74] demonstrate some results that characterize the set of
perturbations (e.g., driving QTLs or QTNs) that minimizes the equivalence classes.
Moreover, the authors demonstrate an important theorem, namely “Recovery
Theorem,” describing how the set of equivalent DCGs can be recovered from the
corresponding moralized graph. As mentioned by Logsdon et al. [74], their results
can also be proven by using Thomas Richardson’s work [94].

As a result of the Recovery Theorem, it is possible to guarantee identifiability of
both cyclic and acyclic models when each vertex (e.g., phenotype) has at least one
unique perturbation associated (e.g., a QTL or QTN) and the genetic architecture
is known. That result generalizes the assumption made by Chaibub Neto et al. in
the QDG algorithm [24]. By providing a genetic mapping where every phenotype is
associated with an unique genetic variant, a directed acyclic or cyclic network can
be uniquely recovered [22, 74].

In studies of genetic associations, Mendelian randomization can reduce the size
of equivalence classes of phenotypes by using driving genetic variants. This is

B

A

C B

A

C B

A

C

Fig. 4 Two DAGs and one DCG which are Markov equivalent. Every pair of vertices in these
graphs cannot be d-separated
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because the additional information of the genetic variants causing phenotypes can
create new conditional independence relationships among the vertices, getting rid
of some Markov-equivalence. Background knowledge can also be used to rule out
some equivalent graphs. However, these approaches may not always narrow the set
of possibilities to a single graph.

6 Causal Structure Learning

Inferring the causal effects may be a problem of estimation of a SEM if the causal
structure is known. For a genotype–phenotype network, the structure is specified
indicating the non-zero entries of the matrices P and Q of the model shown in
Eq. (2). The values of these entries can be estimated using an appropriate method of
SEM estimation.

When the causal structure is not known a priori, we can use an algorithm to
recover or discover it. This problem is known as causal structure learning or causal
structure discovery.

In Sect. 5, we showed that causal structures can be statistically indistinguishable
from each other. This means we cannot distinguish equivalent models based on
observational data. The use of QTL or QTN genotype information can break
statistical equivalence. However, it is still possible that the true causal structure
cannot be uniquely recovered. When the exact identifiability is not possible,
the algorithms often report suitable summary statistics of all graphs within the
equivalence class.

There are two main approaches to infer the network structure that is more
compatible with the joint distribution of the data: (1) an SEM-based approach, in
which the structure is determined by fitting an SEM with regularization and variable
selection techniques for identifying relevant associations; and (2) an approach based
on the graphical representation of the causal processes, in which d-separation crite-
rion and greedy strategies are often used to determine an adequate structure network.

6.1 Learning Structural Equation Models

In SEM-based approaches, the network structure learning problem is reduced to the
estimation of the model parameters, often using a regularizer that controls the model
complexity. The regularizers have a key role in the learning of the network structure
because of the variable selection effect. Additional constraints, such as sparsity and
smoothness, are incorporated in the likelihood function of an SEM model. Structure
learning algorithms based on SEM infer both the causal structure and the parameters
of the model.

Most methods for learning genotype–phenotype networks adopt the model
shown in Eq. (2) (or a slightly modified version) in which genetic variants are
incorporated. The network structure is specified by the non-zero entries of the
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matrices P (causal relations among phenotypes) and Q (causal relations from
genotypes to phenotypes). Thus, the causal structure learning problem is equivalent
to estimate which entries of these matrices are non-zero. Some methodologies
require more assumptions than others for estimating these parameters. The most
common assumptions are listed in the following:

• The response variables (phenotypes) are assumed to follow a multivariate normal
distribution;

• There are no self-loops, so that all diagonal entries of P are zero; Self-loops are
often used in modeling of time series, implying that a variable depends on its
own path. In this case, the model is static, and the state of a phenotype at any
instant of time t is assumed to be not dependent on its state at the past time step
t � 1;

• The error term corresponding to the jth individual (column j of the matrix E) is
modeled as a zero-mean Gaussian vector with covariance �2I, where I denotes
the p � p identity matrix. Thus, the error terms are assumed to be uncorrelated;

• No dominance or epistatic effects are considered in the model. It is assumed that
all effects of genetic variants are due to the additive effects of alleles;

• The q QTLs have been predetermined by an existing method, but the magnitude
of their effects is unknown.

The most popular regularization methods are those that lead to sparse variable
selection. A main reason is that the reduction in the effective number of parameters
to be estimated (in sparse models, many parameters are expected to be zero) reduces
computational cost, and contributes to the selection of relevant features. Sparsity
is often achieved by imposing the L1-norm (i.e., the sum of absolute values) on
the parameters as a regularization. Examples of sparse regularizers include least
absolute shrinkage and selection operator (LASSO) [122] and its extensions, such
as adaptive LASSO [136] and Dantzig selector [23]. A limitation of the LASSO is
that it tends to select only one variable from a group of highly correlated variables.
To overcome this limitation, some regularizers, such as elastic net [137] and its
adaptive version [138], combine L1-norm with the L2-norm (i.e., the sum of squared
absolute values) regularization.

In the field of genotype–phenotype network learning, the use of the sparsity
constraint is particularly attractive for inferring the structure of GRN. Several
studies indicate that biological gene networks, including protein–protein interaction,
metabolic, signalling, and transcription-regulatory networks, contain few highly
connected vertices (also know as hubs) [1, 10, 58, 69, 93, 124]. Thus, by exploiting
the sparsity prior information, it may be possible to both improve computational
efficiency and achieve a biologically realistic representation. The Adaptive LASSO
(AL)-based algorithm [74], for instance, was designed for determining regulatory
relationships underlying observed gene expressions by using the adaptive LASSO
procedure for feature selection. Another algorithm intended to infer the structure
of GRNs is the SML algorithm, proposed by Cai et al. [22]. The SML algorithm
infers sparse SEMs in which an L1-norm penalty is incorporated on the entries
of the matrix P of Eq. (2), inducing a sparsity constraint. Later, Anhui Huang
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[54] extended the SML algorithm by incorporating the adaptive elastic net penalty
into the SEM likelihood. Other SEM-based structure learning algorithms deserving
attention are [32, 71, 73].

6.2 Learning Causal Graphical Models

Causal structure learning algorithms which are based on the graphical representation
of the causal processes often use the d-separability concept. Thus, they often assume
the global Markov and causal faithfulness conditions. These algorithms search
for the structure more compatible with the joint distribution of the data. One of
the approaches used to reduce complexity of the algorithm is to constrain the
search space by imposing specific properties to the structure of the graphs, such
as acyclicity and sparsity.

The most common assumptions often made by structure learning algorithms
based on graphical representation are

• Causal sufficiency: there are no hidden confounders, that is, all common causes
of the underlying causal system have been observed and the error variables are
jointly independent. That is a problematic assumption, since it is difficult to be
confirmed and, in general, depends on factual knowledge. Within Mendelian
randomization framework, the improvement of causal inference by using genetic
variants as instrumental variables may compensate for biases introduced by
small departures from causal sufficiency. Thus, identification of the true network
structure may still be achieved even when causal sufficiency condition is not
perfectly fulfilled [40].

• Causal Markov condition: the distribution generated by a causal structure
(represented by a directed graph) satisfies the global directed Markov condition.
It permits inference from probabilistic dependence to causal connection. Note
that, for linear SEMs, this assumption holds if the error terms are independent.

• Causal faithfulness: all conditional independence relations present in a directed
graph G are consequences of the global directed Markov condition applied to the
true causal structure G. This is an assumption that any conditional independence
relation holding in G is due to the causal structure rather than a particular
parameterization of the model. Thus, it permits inference from probabilistic
independence to causal separation.

In order to learn causal graphical models, three approaches are often used:
constraint-based approaches, score-based approaches, and hybrid approaches,
where techniques from constraint-based and score-based approaches are combined.
In the following, we will discuss the main ideas used in constraint-based and
score-based approaches.
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6.2.1 Constraint-Based Approaches

The algorithms in this category are based on significance tests for the null hypothesis
that a certain conditional independence statement is true. These individual con-
straints are used both to decide if a given pair of variables is adjacent or not as well
as to orient some edges. In order to read off the implied conditional independencies,
d-separation criterion is often used. Thus, the causal sufficiency, causal Markov,
and causal faithfulness assumptions must be made in order to safely apply these
conditional independence tests.

The most basic causal discovery method is the SGS (Spirtes-Glymour-Scheines)
algorithm. The correctness of the SGS algorithm follows from the Theorem 2, which
is stated only for DAGs. Thus, acyclicity is assumed.

The SGS algorithm works similarly to the exercise shown in Sect. 4.1, in which
the graph of Fig. 2 is reconstructed by using d-separation criterion. The algorithm
starts with a complete undirected graph. Then, the skeleton of the graph is inferred:
for each pair of variables, it tests whether they are conditionally independent on any
set of variables. If so, then the edge connecting the pair can be removed. The reason
is that, if the dependence between two vertices can be explained away, then there
cannot be a direct causal connection between them. In the next step, the algorithm
finds and then orients the edges of the unshielded colliders. The unshielded collider
is the only configuration for three vertices and one missing edge that can be uniquely
oriented. The orientation of other edges are determined by consistency. That is
recursively made until no more edges can be oriented. In this last step, the algorithm
checks if any loop is created.

The SGS algorithm is statistically consistent, but it is computationally inefficient.
In the edge-removal step, each pair of variables should be conditioned on all
possible subsets of the remaining variables. Thus, the number of tests it does grows
exponentially in the number of variables.

The PC (Peter and Clark) algorithm is very similar to the SGS algorithm, but it
is more efficient, specially for sparse graphs. In the edge-removal step, it tries to
condition on as few variables as possible. It only conditions on adjacent variables
and the sets are sorted in order of increasing size. The PC algorithm has the same
assumptions as the SGS algorithm, and the same consistency properties.

The first step of the PC-algorithm, where an association (undirected) graph is
inferred, is called PC-skeleton.

The PC-skeleton is used in the first step of two popular genotype–phenotype
structure learning algorithms: the QDG, proposed by Chaibub Neto et al. [24], and
the QPSO algorithms, by Huange Wang and Fred van Eeuwijk [126]. Technically,
these two algorithms are not constraint-based approaches because they use a score-
based approach to orient the edges. Thus, they are considered hybrid approaches.
Score-based approaches are described in the following section.
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6.2.2 Score-Based Approaches

Given a score that indicates how well the network fits the data, score-based
algorithms search the space of all possible structures for the network with the highest
score.

The search for the global optimal network is an NP-hard problem. Thus, the
time required to solve the problem increases very quickly as the number of vertices
grows. By the solution of the enumeration problem of labeled directed graphs (i.e.,
graphs in which each vertex has been assigned a different label, so that all vertices
are considered distinct), it is known that there are 2n.n�1/ different causal structures
(directed graphs) with n vertices [103]. In asymptotic notation, there are 2O.n2/

structures. Just to give an idea of how this number increases, the number of directed
graphs with n labeled vertices, for n varying from 1 to 6, is 1, 4, 64, 4096, 1 048 576
and 1 073 741 824.

Thus, heuristics such as greedy search are used to find a sub-optimal structure.
However, local optimal solutions can be far away from the global optimal solutions.
This becomes even more critical when the number of sampled configurations is
small compared to the number of vertices.

The simplest search algorithm over the structure space is the greedy hill-climbing
search. A series of modifications of the local structures are made by adding,
removing, or reversing an edge, and the score of the new structure is computed
after each modification. The search ends when there are no more modifications that
increase the score.

The scores offer model selection criteria for the network structure. There is no
consensus on what is the best criterion, since that depends on the objective that one
wants to achieve [56]. One of the most used measure is the Bayesian information
criterion (BIC) [109], which penalizes complex models and the penalty increases
with the sample size. It is an approximation for the posterior predictive distribution
with respect to the model parameters. The posterior probability of a structural
feature (e.g., the presence of an edge) is the total posterior probability of all models
that contain it. By estimating the posterior probability of a feature, we are estimating
the strength with which the data indicates the presence of it.

Score-based approaches often assume acyclicity, because every DAG has a
topological ordering, that is, an ordering of the vertices as V1; : : : ;Vn so that for
every edge .Vi;Vj/ we have i < j. In this case, each vertex Vi can have parents
only from the set fV1; : : : ;Vi�1g. That significantly reduces the search space and
has implications that can reduce the computational cost of the whole process [121].

Robert W. Robinson derived a recurrence relation to count how many labeled
DAGs have n vertices [100]. By applying the recurrence relation for n varying from
1 to 6, we notice that corresponding number of labeled DAGs is 1, 3, 25, 543, 29 281,
and 3 781 503. Using asymptotic notation there are 2O.n log n/ orderings, as opposed
to the 2O.n2/ structures. Thus, the space of orders is smaller and more regular than
the space of structures.

In Bayesian approaches, it is also assumed acyclicity for estimating the proba-
bility of a structural feature over the set of all orderings. That is often performed by
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using a Markov chain Monte Carlo (MCMC) algorithm. It was noted by empirical
studies [110] that different runs of MCMC over the structure space typically lead to
very different estimates in the posterior probabilities. That poor convergence to the
stationary distribution has not been found running MCMC over ordering space.

Two recent methodologies using MCMC to jointly infer the causal structure of a
genotype–phenotype network are the QTLnet algorithm, proposed by Chaibub Neto
et al. [25], and the Bayesian framework for inference of the genotype–phenotype
map for segregating populations, proposed by Hageman et al. [46].

7 Algorithms for Causal Discovery in Genetic Systems

In this section, we will describe some of the most popular algorithms to infer
the structure of a genotype–phenotype network, namely QDG [24], QPSO [126],
QTLnet [25], and SML [22].

We have tested all proposed features by these algorithms in a simulation study.
Some simulated networks are shown in Fig. 5. The letters A, B, C, and D were
used to identify phenotypes. In all other networks, there is a distinct genetic
variant associated with each phenotype. These genetic variants are identified by
the letter M followed by the associated phenotype letter in subscript. We simulated
genotype and phenotype data for 500 individuals, independently. QTL genotypes
were generated from an F2 intercross using the R/QTL package [18], so that QTLs
of each simulated network are unlinked and in linkage equilibrium. The phenotypes
were generated according to Eq. (2), with error terms following a normal distribution
with zero mean and variance 0:01.

It is worth mentioning that the source codes of the four algorithms are freely
available. Details about how to obtain the source code of each algorithms are
provided in the following sections.

We want to emphasize that the purpose of our simulation studies is only to
check the capabilities of the algorithms. Although it would be very interesting to
do a comparison study of the algorithms, it is out of the scope of this chapter.
By running simulations under different configurations of phenotype networks, we
investigated the advantages and limitations of the algorithms, and we noted that they
differ mainly in their ability to discover networks with the following properties:
genetic variants with pleiotropic effects, phenotypes associated with multiple
genetic variants, acyclic structure, feedback loops, and reciprocal associations. In
Sects. 7.1–7.4, we show how these issues are addressed. We conclude this section
providing a summary of the main features implemented by each of the algorithms
in Table 1.

The QDG and QPSO algorithms are closely related. Both are designed to orient
edges into a phenotype association network. In other words, the QDG and QPSO
algorithms focus on discovering the causal direction among variables which are
known to be statistically associated. However, they can only achieve this goal if
genetic variants robustly associated with the phenotypes are previously selected.
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Fig. 5 Causal networks, in which A, B, C, and D are phenotypic vertices. Each is associated
with a distinct genetic variant, Ma, Mb, Mc, and Md , respectively. (a) Independent relationship.
(b) Causative relationship and multiple genetic variants. (c) Acyclic triangle. (d) Cyclic triangle.
(e) Acyclic structure with no edge between D and C. (f) Acyclic structure with D causing C. (g)
Reciprocal association. (h) Cyclic structure with no edge between D and C. (i) Cyclic structure
with C causing D

Thus, besides the phenotype association network, it is also necessary to provide a
genetic map as input to these algorithms.

The association network required by both QDG and QPSO algorithms is an
undirected graph among phenotypes constructed in such a way that an edge does
not exist between two phenotypes if they are d-separated. The main method to infer
an association network is the PC-skeleton algorithm [118], discussed in Sect. 6.2.1.
Another recommended method to infer association networks is the undirected
dependency graph (UDG) [24, 29].

There are several genetic mapping approaches in the literature, most of them
using microsatellite or SNP markers.
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Linkage mapping is the conventional genetic mapping technique, mostly used
for QTLs mapping using microsatellite markers in inbred populations of plants and
animals (e.g., F2, backcross, and recombinant inbred lines), and for family based
QTL mapping in humans and natural populations [2]. In the simple interval mapping
approach [66], the QTL position is assumed to be in a region flanked by two
linked observed markers. The Haley–Knott [47] approach gives a remarkably good
approximation of the interval mapping, and it is computationally more efficient.
These methods model a single QTL at a time and assume that the phenotypes follow
a normal distribution or a mixture of normal distributions [135]. When it is necessary
to model multiple QTLs at once, composite interval mapping (CIM) [57, 131]
and multiple interval mapping (MIM) [61] can be used. In order to estimate the
specific position of a QTN (sometimes within a QTL), fine mapping techniques are
performed. Linkage disequilibrium and/or SNP information, as well as imputation
in sparse marker panels, are currently used for improving fine mapping [43, 52, 125].

The identification of QTNs that are robustly associated with a particular pheno-
type is mainly done by genome-wide association (GWA) in the case of complex
traits and diseases [3] and increasingly by next-generation sequencing in the case of
Mendelian traits [30]. In particular, exome sequencing has been a powerful approach
for identifying rare variants that underlie Mendelian disorders in circumstances in
which conventional approaches have failed [7]. These studies provide much higher
resolution than linkage mapping and often involve studying human population.

The QDG algorithm can discover acyclic and cyclic structures, while the QPSO
algorithm can only discover acyclic structures. Reciprocal associations cannot be
detected by any of these two algorithms.

Unlike the QDG and QPSO, the QTLnet algorithm [25] jointly infers the
phenotype network and the associated genetic architecture. Thus, it is not necessary
to provide as input to this algorithm a phenotype association network and a genetic
map. It assumes that the structure is acyclic and that the phenotypes are normally
distributed.

These three aforementioned methods are intended to infer network structures
based on concepts of graphical models. The size of the causal effects is not
estimated. If it is also necessary to estimate the magnitude of the causal effects,
once the model structure is inferred, it may be done by estimating the parameters of
the corresponding SEM.

Some SEM-based structure learning algorithms can infer both the phenotype
network structure and the magnitude of the causal effects. An example is the SML
[22] algorithm which will also be discussed in this section.

As the QDG and QPSO algorithms, the SML algorithm assumes that the
genetic variants (e.g., QTLs or QTNs) directly associated with the phenotypes (and
preferably not violating the instrumental variable assumptions), must be known a
priori and provided as input to the algorithm. It can discover acyclic and cyclic
structures, even when reciprocal associations are present.

The output of these algorithms is the most likely structure network according
to the data. Except for the SML method, these network reconstruction algorithms
also report a goodness-of-fit statistic indicating how well the model fits the data. In
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particular, this statistic used is the BIC score. The causal model with the lowest BIC
score is determined as the best solution.

The QDG and QTLnet algorithms report the BIC score of each fitted model and
the score comparing the possible directions of each edge. Thus, the output contains
information not only on the best solution, but also on all fitted models. By comparing
information on different solutions, one can decide whether there are Markov
equivalent networks (possibly models with similar BIC scores) and spurious edges.

In the next sections, each of these four algorithms will be described in more
detail.

7.1 QTL-Directed Dependency Graph Algorithm

The QDG algorithm was proposed by Chaibub Neto et al. [24]. The goal of this
algorithm is to infer causal directions into a phenotype association network. That is
achieved by using information of genetic variants (e.g., QTLs) associated with each
phenotype. The algorithm is designed to discover causal structures that can contain
cycles but not reciprocal associations.

Both a phenotype association network and a genetic map must be provided as
input to the algorithm.

The phenotype association network can be an UDG [29] or the graph skeleton
built in the first step of the PC (Peter-Clark) [118] algorithm. Both options are
implemented in the QDG algorithm.

In the genetic mapping (e.g., QTL mapping), each phenotype must be associated
with at least one unique genetic variant. However, the algorithm can deal with both
multiple and pleiotropic genetic variants.

Since the genetic mapping and the determination of the phenotype association
network are independently performed, spurious edges and indirectly associated
genetic variants can be removed when both are put together. In a pre-processing step
of the QDG algorithm, tests are conducted to remove associations identified due to
only a pleiotropic effect. In this case, the algorithm verifies whether an association
between two phenotypes vanishes by conditioning to the common genetic variant.
If so, the edge connecting them is removed.

The orientation edge step is a score-based procedure, similar to those described
in Sect. 6.2.2. We will define the logarithm of odds (LOD) score that is used to
compare the two possible orientations of each edge.

Consider A and B a pair of connected phenotypes, each with a non-empty set of
associated genetic variants, Ma and Mb, respectively. Let pa.A/ and pa.B/ represent
the set of phenotypes that are parents of A and B, respectively. Also, let f be the
predictive density, that is, the sampling model with parameters replaced by the
corresponding maximum-likelihood estimates. We use a subscript i to represent the
phenotype or genotype values of each individual.
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The LOD score corresponding to the direction A! B is given by:

LODA!B D LODA C LODBjA (6)

D log10

(
nY

iD1

f .AijMai ; pai.A//

f .Ai/

)

C log10

(
nY

iD1

f .BijAi;Mbi ; pai.B//

f .Bi/

)

:

The LOD score corresponding to the direction B! A is given by the formula (6)
changing the roles of A and B.

The LOD score is defined as LOD D LODA!B � LODB!A. If it is positive,
then the edge is oriented in favor of the direction A ! B. Otherwise, it is oriented
in the opposite direction. The genetic variants associated with the phenotypes play
an important role in this step. As discussed in Sect. 5, they can break likelihood
equivalences by creating new conditional independence relationships.

The edges are oriented in a greedy strategy. For each edge, it is computed the
LOD score, and the chosen direction is the one with the higher likelihood. This
process follows a randomly chosen ordering of the edges. Whenever the orientation
of an edge changes, the graph is updated before moving to the next edge.

Different solutions can be obtained by running the algorithm from a different
edge ordering. Thus, it is recommended to rerun the algorithm using different edge
orderings to get all possible solutions. If more than one solution is obtained in this
process, the graph with the lowest BIC score is selected as the best solution.

The output of the algorithm is a detailed report of all possible solutions. It
contains the BIC score of each model and the LOD score of each edge. That
information can be useful when deciding between equivalent models and whether a
certain edge is spurious. For instance, an LOD score very close to zero means that
there is not a strong evidence for any direction. In other words, that edge may be
spurious.

In Fig. 5a, phenotypes A and B are correlated only due to pleiotropic effect of the
common causal genetic variant M. The QDG algorithm could not remove the edge
connecting A and B in our simulations for this network, but its LOD score was very
close to zero (�0:04).

In the simulation studies reported by the Chaibub Neto et al. [24], the QDG algo-
rithm could infer correctly feedback loops, but not reciprocal associations. When
there is a reciprocal association, Chaibub Neto et al. noted that the direction detected
corresponds to the one with highest regression coefficient. These observations are
consistent with the results obtained in our simulations, since the QDG algorithm
failed in recovering the network shown in Fig. 5g.

In our simulations, the QDG algorithm was able to precisely infer simple acyclic
and cyclic networks, including those shown in Fig. 5b, c, d, e, h.

However, the QDG algorithm only performs well if the association network
is inferred correctly. For instance, the PC-skeleton algorithm was successful in
inferring the skeleton of the graphs in Fig. 5e, h, but it failed in recovering a bit more
complex version of these networks, such as those shown in Fig. 5f, i. Consequently,
the QDG also failed to recover these structures.
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The QDG algorithm is implemented in the R/QTLnet package [82], available at
https://cran.r-project.org/web/packages/qtlnet/. For reference, the QTLnet package
version we used was 1.3.6, published in March, 2014. We run the tests using R
environment, version 3.2.3 [92].

7.2 QTL+Phenotype Supervised Orientation Algorithm

The QPSO algorithm was proposed by Wang and van Eeuwijk [126]. It was
designed to infer causal connections between pairs of phenotypes from an asso-
ciation network.

Likewise the QDG algorithm described in Sect. 7.1, a phenotype association
network and a genetic map must be determined a priori. The genetic map can contain
both multiple and pleiotropic genetic variants causally associated with phenotypes.
However, the QDG and the QPSO algorithms differ in the sense that the QPSO
algorithm does not assume that every phenotype has at least a unique causal genetic
variant.

In order to orient the edges between pairs of phenotypes, two important
assumptions are made: phenotypes follow a Gaussian distribution and the structure
is locally acyclic. Because of the acyclicity assumption for local networks, the
algorithm may not perform well in detecting cyclic structures. Moreover, it cannot
detect reciprocal associations.

The edge orientation step is a score-based procedure, similar to those shown
in Sect. 6.2.2. In each step of a heuristic search, the algorithm chooses a pair
of connected phenotypes and extracts its local network. This local network is
denoted by local generalized phenotype network (LGPN) and consists of the two
connected phenotypes, their parents (both genetic variants and phenotypes) and
other phenotypes connected by undirected edges. It is assumed that the LGPN is
a conditional linear Gaussian model, in which discrete variables (QTLs or QTNs)
are not allowed to have continuous parents (phenotypes).

This local network is thoroughly investigated by using the log-likelihood score
which will be defined in the following.

Let A and B be two connected phenotypes. Denote by pa.A/ and pa.B/ the set
of parent vertices of A and B, respectively, including genetic variants and other
phenotypes. Let f be the probability density function with parameters replaced by
the corresponding maximum-likelihood estimates. A subscript i is used to indicate
values for the ith individual.

The log-likelihood score of the local structure is given by:

nX

iD1
log10.f .Aijpai.A// f .Bijpai.B///:

https://cran.r-project.org/web/packages/qtlnet/
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Using this score, both genetic variants and phenotypes identified as parent
vertices can break Markov equivalence among phenotype networks.

Under the assumption that the local structure is acyclic, Wang and van Eeuwijk
[126] showed a result that allows all undirected edges of the LGPN be oriented
simultaneously.

According to Theorem 7, if two DAGs have different sets of unshielded colliders,
then they are not Markov equivalent. Wang and van Eeuwijk [126] showed that all
candidate DAGs derived from an LGPN have a distinct set of unshielded colliders if
two conditions are satisfied: (1) the pair of connected phenotypes must have at least
one parent vertex, and (2) each phenotype connected to the pair by an undirected
edge must be nonadjacent to at least one of the parents of the pair’s phenotype to
which it is connected. Thus, the problem is identifiable under acyclicity assumption
and the two aforementioned conditions.

The phenotype network is inferred in a greedy strategy. For each pair of
phenotypes satisfying the two identifiability conditions, it is obtained the log-
likelihood score of each possible configuration of the respective local network. If
there are k undirected edges in the LGPN, then there are 2k directed graphs to be
tested. The configuration with the highest log-likelihood score is considered as the
locally optimal directed graph (LODG). This process can be computationally very
expensive, since the number of candidate directed graphs increases exponentially.

To prevent the algorithm from converging to a network that is a locally optimal
solution, it is recommended that the edge orientation procedure is repeated several
times from different starting points. The BIC score is used as a global evaluation
metric to determine the most likely solution among those obtained in multiple runs.

Despite the acyclicity assumption in determining the LODG, it is possible that
the algorithm builds a cyclic structure when combining the LODGs. However, since
the algorithm was not designed with the purpose of discovering cyclic networks, the
correct structure can be recovered only by chance.

The accuracy of the QPSO algorithm depends on the association network
provided as input to it in a similar way to the QDG. If the association network
is not the true skeleton of the network, then the algorithm will fail in recovering the
true causal structure.

In our simulation studies, the QPSO algorithm could not recover the true
structure of most networks we simulated. Out of the networks shown in Fig. 5, it
correctly recover only the networks shown in Fig. 5b, c.

In addition, since the QPSO algorithm only provides information on the network
that is solution of the problem, it is difficult to do further analysis in order to identify
equivalent networks and spurious edges.

The QPSO algorithm is implemented in Matlab, and it is available upon request
to the authors. All simulations were performed using Matlab 8.1.0.604 (R2013a).
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7.3 QTL-Driven Phenotype Network Algorithm

The QTLnet algorithm was proposed by [25] to jointly infer causal relationships
between genotypes and phenotypes. Thus, unlike the QDG and QPSO algorithms,
it is not necessary to provide a phenotype association network and a genetic map as
input to the QTLnet algorithm.

The algorithm infers a genotype–phenotype network by a Bayesian procedure
under the assumptions that the phenotype network structure is acyclic and the
phenotypes follow a normal distribution.

The phenotypes are modeled by a set of structural equations similar to the model
shown in Eq. (2).

Let Yi D .Yti/
T
tD1, for each i D 1; : : : ; n, be a vector with the measurements of

T phenotypes for the ith individual, and "ti represent the corresponding independent
normal error terms. Denote by �t the overall mean for the phenotype t. Consider
a row vector Xti with the QTL genotypes and observed values of other covariates
associated with the phenotype t for the individual i, and a column vector � t with their
linear (additive) effects. Thus, the genetic architecture is defined by the elements
of � t. The effect of the phenotype k on the phenotype t is represented by the
coefficient ˇtk. The notation pa.Yt/ represents the set of phenotypic parent vertices
of Yt.

Each phenotype t of the ith individual is modeled by the following SEM denoted
as homogeneous conditional Gaussian regression (HCGR) model:

Yti D �t CXti� t C
X

Yk2pa.Yt/

ˇtkYki C "ti; "ti � N .0; �2t /: (7)

Though the parametric family HCGR can accommodate cyclic and acyclic
networks, only DAGs can be recovered by using the QTLnet algorithm.

Let M represent a specified network structure and � represent all parameters
of the model. Also, let qi D fq1i; : : : ;qTig be the QTL map of the ith individual,
in which qti, for t D 1; : : : ;T, represents the set of QTLs associated with the
phenotype t. The likelihood of the HCGR model is equal to the probability of
the observed phenotypes conditional to the QTL genotypes, with respect to the
parameters M and � . Under the acyclicity assumption, the factorization property
shown in Definition 15 holds. Thus, considering the individual likelihood functions

p.Ytijqti; pa.Yt// � N .�t C Xti� t C
X

Yk2pa.Yt/

ˇtkYki; �
2
t /;

we can write the likelihood of the HCGR model as a product of the all individual
likelihood functions:

p.YijqiI�;M / D
Y

t

p.Ytijqti; pa.Yt//: (8)
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Thus, by using the DAG factorization property, the likelihood function can be
written as a product of normal distributions, one for each value of the data. It means
we can use the maximum-likelihood estimation (MLE) technique to estimate the
parameters of the HCGR model, in the same way as the classical linear regression
model.

By taking the product of the likelihood function and a prior density, up to a
normalizing constant, we have the posterior probability distribution. The QTLnet
algorithm estimates this posterior probability by using an MCMC algorithm. Thus,
the QTLnet algorithm is similar to the Bayesian score-based approaches presented
in Sect. 6.2.2.

Specifically, a modified Metropolis–Hastings algorithm was proposed to inte-
grate the sampling of network structures and QTL mapping. It searches across the
model space sampling from the derived posterior distribution. In each step of the
search, it is proposed a single modification, such as an edge deletion, addition, or
reversion, so that the resulting network does not contain cycles. In addition to this
simple approach (described in the paper and initially implemented in the software),
the R/QTLnet package now supports a more effective M-H sampler [45], which
improves a lot the mixing of the Markov chain.

The algorithm does not consider the network with the highest posterior prob-
ability as solution of the problem. Instead, the solution is an average network
constructed by putting together all causal relationships such that the posterior
probability is maximum or above a predetermined threshold.

An advantage of the Bayesian approach is its ability to incorporate prior
information in the analysis. In an extension of the QTLnet algorithm [78], it is
possible to specify a prior density using, for instance, biological knowledge or
sparsity to produce a more predictive network.

Since genotype and phenotype information are jointly analyzed by the QTLnet
algorithm, common genetic variants are no longer hidden confounders, reducing
the possibility of inferring networks with spurious edges. For instance, the QTLnet
could test for the independence between the vertices A and B, conditioned to the
common QTL M, correctly inferring the structure of the network shown in Fig. 5a.
Additionally, it precisely inferred all acyclic networks we simulated, including those
shown in Fig. 5b, c, e, f. On the other hand, since QTLnet assumes acyclicity, it could
not discover any cyclic structure.

The output of the algorithm contains the set of the posterior probabilities for each
possible network structure and the averaged probabilities for each edge direction.
Thoroughly analyzing this information, it is possible to identify equivalent net-
works. In addition, averaged probabilities close to 0:5 indicate suspicious directions
and should be further investigated.

The QTLnet algorithm uses the R/QTL package [18] for performing a single-
QTL genome scan, by using methods such as the Haley–Knott regression. This
process may involve prediction or imputation of genotypes, requiring information
on the experimental cross design. For this reason, the current implementation of the
QTLnet is intended for studies in segregating populations. Thus, the source code
must be adapted for studies in natural populations.
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As the QDG algorithm, it is possible to use the QTLnet algorithm from the
R/QTLnet package [82]. We run our simulations using the last version available of
QTLnet package (version 1.3.6, published in March, 2014), and the R environment,
version 3.2.3 [92].

7.4 Sparsity-Aware Maximum Likelihood Algorithm

The SML algorithm was proposed by Cai et al. [22]. It is an SEM-based approach
to infer sparse SEMs integrating genotypic and phenotypic information.

The network is postulated to obey the SEM shown in Eq. (2). The only assump-
tion placed on the phenotype structure network is that there is no self-loops. Thus,
the algorithm can infer both acyclic and cyclic networks.

It is assumed that every phenotype is associated with at least one genetic variant.
According to the Recovery Theorem [74] discussed in Sect. 5, that restriction
guarantees that the network structure can be uniquely identified for both cyclic and
acyclic models.

In the paper describing the SML algorithm [22], Cai et al. comment that genetic
maps with both multiple and pleiotropic genetic variants affecting phenotypes are
supported. However, we could not verify that feature by our simulation studies. That
is not yet implemented in the current version of the algorithm (obtained in January
2016 from the supporting information in the online version of the article—doi:
10.1371/journal.pcbi.1003068.s008). In this version, it is only possible to provide
genetic variants affecting one phenotype and every phenotype must be associated
with only one distinct genetic variant. Considering the Eq. (2), the one-to-one
correspondence is forced by placing constraints on the elements of the matrix Q. It is
required that all elements on the main diagonal are non-zero and all other elements
are equal to zero.

Because of that limitation, the algorithm failed to discover the true structure
of the network shown in Fig. 5a. It inferred a reciprocal association between the
phenotypes A and B, with a causal effect, in both direction, of 0:168. For the graph
in Fig. 5b, the algorithm estimated a causal effect of 0:23 from B to A and a causal
effect of 1:12 from A to B. The effects of these spurious connections are relatively
low. However, we cannot decide whether they are significantly non-zero because we
were not provided a significance test for these coefficients.

All the common assumptions listed in Sect. 6.1 are required to carry out the
SML algorithm. That is, the model assumes that the phenotypic variance is due to
the additive effects, but not due to dominance or epistatic effects of genetic variants.
In addition, it is assumed that phenotypes are normally distributed with independent
and normally distributed error terms.

The network structure inference is achieved by estimating all the off-diagonal
entries of the P matrix (the diagonal has only null entries, since it is assumed that no
self-loop are present). The matrix P may or may not be a triangular matrix, implying
that the phenotype network structure is acyclic or cyclic, respectively.

doi: 10.1371/journal.pcbi.1003068.s008
doi: 10.1371/journal.pcbi.1003068.s008
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The genetic architecture is specified in the matrix Q, but the additive effects need
to be estimated. Since the Q matrix has only one genetic variant associated with
each phenotype, only the diagonal entries of the Q matrix need to be estimated by
the SML algorithm.

In order to efficiently estimate the parameters, it is assumed that the P matrix is
sparse, that is, most of its entries are equal to zero. The l1-norm is used to control
the number of zeros in the network structure matrix P.

Under the normality assumption, the l1-regularized log-likelihood maximization
problem is solved by using a non-convex optimization algorithm called block-
coordinate ascent [13].

Although the Recovery Theorem guarantees the identifiability of the network,
the algorithm can converge to a local maximum. Thus, it is recommended to run the
algorithm several times from different initial values.

In our simulation studies, it was necessary to use an empirically determined
threshold of 0:15 in an attempt to eliminate weak causal effects representing
spurious associations. Apart from that, the SML algorithm performed very well
under the assumption that there is one, and only one, genetic variant associated with
each phenotype. The algorithm precisely recovered all acyclic and cyclic causal
structures (with both reciprocal associations and feedback loops), including those
illustrated in Fig. 5c–i. We noted, however, that the more reciprocal association, the
greater the error of the estimated causal effects.

The output of the algorithm contains the estimated P and Q matrices and the
algorithm does not provide a goodness-of-fit measure.

The Matlab package implementing the SML algorithm is available as supporting
information in the online version of the article [22]. We run the simulations using
Matlab 8.1.0.604 (R2013a).

7.5 Summary

In Sects. 7.1–7.4, we described the algorithms QDG [24], QPSO [126], QTLnet
[25], and SML [22].

These algorithms were designed under different assumptions. Thus, one can
be more suitable for particular tasks than others. By running simulations, we
investigated whether the algorithms are capable to discover the structure of a
genotype–phenotype network which was generated according to the expected
assumptions. The characterization of the algorithms was based on their ability
to discover networks in the following situations: genetic variants with pleiotropic
effects, phenotypes associated with multiple genetic variants, acyclic structure,
feedback loops, and reciprocal associations. In addition, we investigated their
behaviors taking into account the input parameters and the output information.

In Table 1, we summarize the input, output, assumptions, and features of these
four algorithms.
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Table 1 Input, output, assumptions, and features of the algorithms QDG, QPSO, QTLnet,
and SML

QDG QPSO QTLnet SML

Input

A phenotype association network X X
A genetic map in which each phenotype

must be associated with a distinct genetic variant X X
can be associated with multiple genetic variants X X X*

can share a genetic variant with other phenotypes X X X*

Assumptions

Phenotypes are normally distributed X X X
The phenotype network is acyclic X X

Features

Discovers acyclic structures X X X X
Discovers cyclic structures X X
Discovers reciprocal associations X
Performs multiple genetic (QTL) mapping X
Estimates causal effects X

Output

The most likely structure network X X X X
A list of the most likely solutions X X
A goodness-of-fit measure of the solution X X X

The check mark indicates that the corresponding algorithm has the property. (*) indicates
that the feature could not be verified by our simulation studies

8 Conclusions

The best approach for inferring causality is to conduct randomized controlled trials.
However, very often not all interventions can be tested because of the large number
of variables and resource constraints.

Throughout this chapter, we showed some concepts and algorithms that allow
us to discover causal associations among variables based on observational data.
However, we need to be aware that many assumptions are made in this process. It is
important to check the validity of these assumptions since they may be unrealistic
from a biological point of view.

In this chapter, we explained in detail the reasons for those assumptions. The
causal sufficiency is probably the most difficult assumption to retain, since it
is difficult to design an experiment in which all causes involved are properly
measured. However, in systems genetics, causal inference is aided by Mendelian
randomization. The random assignment of genotypes to individuals (from parents
to offspring during meiosis) mimics a randomized controlled trial on genetic level,
assuring the causal association from genotypes to phenotypes. Moreover, it is
possible to improve inferences on the causal effects by using genetic variants
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as instrumental variables when they are not associated with confounders of the
exposure–outcome association of interest or with the outcome through a path other
than through the exposure. Considering this scenario, it is even possible to draw
appropriate causal inferences on the network structure when the causal sufficiency
assumption is being slightly violated. What we mean is that the causal assumption is
deterministic, but the causal modeling contains error terms and involves estimation
of the residuals of the model as well as robust goodness-of-fit statistics. Thus, causal
associations may still be identified if departures from causal sufficiency do not
overly inflate the estimate of the error term variance.

We also discussed that Mendelian randomization is a powerful tool for causal
structure learning from genomic data. By adding information on causal relationships
from genotypes to phenotypes, some conditional independence relations among the
variables are created. Thereby, QTL or QTN information has been used for reducing
Markov equivalence classes.

Some concepts and definitions in Pearl’s causality theory [87] were first devel-
oped for acyclic graphical models. Therefore, there are many results in causal
inference under the acyclicity hypothesis. Throughout this chapter, we prioritized
the exposition of the generalized theory which is applicable to both cyclic and
acyclic cases and has been developed mainly by Thomas Richardson and Peter
Spirtes [95–97, 117]. However, some results that facilitate the development of
algorithms, such as the factorization property of the joint probability distribution
as shown in Definition 15 and the Markov equivalence theorem for DAGs as shown
in Theorem 7, are only stated for the acyclic case. Thus, more efforts are still needed
to make the generalized theory more accessible for practical applications.

Algorithms for discovering causal phenotype networks are of great interest in
genomic studies. The output of these algorithms is a directed graph in which the
direction of the edges indicates the flow of information in the causal processes.
The investigation of the inferred network structure allows a better understanding
of the mechanisms of the underlying biological system (e.g., a gene regulation
network) and identification of causes of interest (e.g., genetic determinants and risk
factors in diseases).

We described in detail four algorithms for genotype–phenotypenetwork learning,
namely (1) QDG, (2) QPSO, (3) QTLnet, and (4) SML. These algorithms are similar
in the sense that they leverage genetic variant information to help in determining
causal directions among phenotypes. However, they were designed under different
assumptions, and therefore some may be more suitable than others for a particular
biological application.

The most common assumptions include acyclicity of the network structure and
normality of the phenotype distribution. The acyclic structure assumption may be
quite restrictive for some applications. In GRNs, for instance, modeling cyclic
phenomena is particularly important. Therefore, algorithms that are capable to
recover networks containing feedback loops and reciprocal associations are possibly
more attractive for modeling biological networks.

Some algorithms require that every phenotype is associated with a distinct
genetic variant. Under these conditions, the Recovery Theorem assures that the
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network structure is uniquely identifiable. One must be particularly careful when
selecting genetic variants associated with phenotypes of interest. Pleiotropy and
linkage disequilibrium may violate some instrumental variables assumptions within
Mendelian randomization framework, and thus misleading conclusions may be
more likely to be drawn.

In order to achieve efficiency in high-dimensional data analysis, sparsity has
been exploited in some causal structure discovery algorithms. As shown in Sect. 4.5,
the PC-algorithm, for instance, may run in polynomial runtime if the true network
is acyclic and sparse. There are results in the literature supporting the claim that
biological networks, such as transcriptional regulatory networks, are sparse and with
few highly connected vertices [48]. However, that is not always the case and the
sparsity assumption must be verified in the research field of interest.

We investigated some properties of the QDG, QPSO, QTLnet, and SML
algorithms by running some simulations. This study had no intentions of comparing
the algorithms, but a comparative study would be very valuable for the field. Both
the accuracy of the inferred causal structure and the computational performance of
the algorithms (in terms of computational time and memory requirements) should
be evaluated. The accuracy and complexity of the algorithms are mainly dependent
on the number of data samples used, on the number of vertices (dimension of the
data), on the number of edges (degree of sparsity of the network), and also on the
degree distribution of the vertices (that is, number of edges per vertex). In regard
to the latter, it would be interesting a comparison between Erdös–Renyi [35] and
Barabási–Albert [9] random graphs, since it must be harder to orient edges incident
on (rather than emanating from) highly connected vertices. Another issues that
should be taken into account in a comparative study of algorithms are programming
language and high performance computing techniques to save computational time,
such as parallel and distributed processing.

In this chapter, we discussed linear SEMs representing genotype–phenotype
networks in which the genetic effects are considered fixed effects. Gianola et al.
[42] presented an alternative modeling of the causal network among phenotypes.
The authors proposed a linear recursive SEM in which the additive genetic effects
are random effects following a multivariate normal distribution. Valente et al. [123]
proposed an algorithm based on d-separation tests for recovering a DAG (or a class
of observationally equivalent acyclic causal structures) which represents a recursive
SEM in the context of mixed models applied to quantitative genetics.

We also want to emphasize that the methodologies presented in this chapter
are intended to model time invariant systems. However, a better understanding
of dynamic biological processes, such as signaling, metabolic, and regulatory
activities, can be provided by using a model that takes into account the temporal
patterns in the data. Using dynamic networks it is possible to infer causal networks
exploiting the temporal aspect of time series data. In this case, cyclic associations
are inferred using time delay information [41, 80]. Dynamic Bayesian networks
(DBNs) have been widely used for inferring GRNs from time series gene expression
data [8, 63, 79, 89].
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We conclude with a recommendation for future research in genotype–phenotype
network structure inference. Most of the reconstruction network structure algo-
rithms discussed in this chapter assume that phenotypes are normally distributed.
There are special correlations, such as tetrachoric, polychoric, biserial, and polyse-
rial correlations, which measure the strength of association between continuous and
categorical variables and are particularly robust to deviations from symmetry and
kurtosis [33, 127]. Additionally, it was observed that SEMs with ordinal categorical
indicators are best estimated using special correlation matrix instead of using
Pearson’s correlation matrix [14, 127]. Thus, an interesting direction for future work
is to investigate SEM-based approaches for reconstructing phenotypes networks
using these more robust association measures.
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Genomic Applications of the Neyman–Pearson
Classification Paradigm

Jingyi Jessica Li and Xin Tong

Abstract The Neyman–Pearson (NP) classification paradigm addresses an impor-
tant binary classification problem where users want to minimize type II error while
controlling type I error under some specified level ˛, usually a small number.
This problem is often faced in many genomic applications involving binary clas-
sification tasks. The terminology Neyman–Pearson classification paradigm arises
from its connection to the Neyman–Pearson paradigm in hypothesis testing. The
NP paradigm is applicable when one type of error (e.g., type I error) is far more
important than the other type (e.g., type II error), and users have a specific target
bound for the former. In this chapter, we review the NP classification literature,
with a focus on the genomic applications as well as our contribution to the NP
classification theory and algorithms. We also provide simulation examples and a
genomic case study to demonstrate how to use the NP classification algorithm in
practice.

Keywords Classification • Genomic applications • Neyman–Pearson • Statisti-
cal learning • Methodology

1 Introduction

As an important statistical and machine learning method, classification has been
widely used in genomic studies. Binary classification is the basis of all types
of classification problems, and there exist many approaches to ensemble binary
classifiers to solve multi-class classification problems or to reduce multi-class
to binary classification. Important genomic applications of binary classification
include labeling microarray data as tumor or non-tumor samples [18, 53], dividing
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genes into housekeeping and single-tissue specific groups [54], classifying genomic
hairpin structures into precursor microRNAs and pseudo hairpins (i.e., genomic
inverted repeats that are not precursor microRNAs) [32], and predicting transcrip-
tion factor binding sites and other DNA regulatory elements based on genomic
features [7, 20].

The aim of binary classification is to accurately predict binary (i.e., 0 or 1) labels
for new observations on the basis of labeled training data. There are two types of
errors: type I error (the conditional probability that the predicted label for a new
observation is 1 given that the observation has a true label 0) and type II error (the
conditional probability that the predicted label for a new observation is 0 given
that the observation has a true label 1). For more than half a century, significant
advances have been made in the development of binary classification theory and
methods to construct good classifiers with various desirable properties [24]. Most
existing binary classification methods aim to optimize the risk, which is the expected
classification error (the probability that the predicted label is different from the
true label) and can be expressed as a weighted sum of the type I and II errors,
where the two weights are the marginal probabilities of the true label being 0 and
1, respectively. In real-world applications, however, users’ priorities for type I and
type II errors may differ from these weights, and then minimizing the risk may lead
to unsatisfactory classifiers. For example, in tumor diagnosis, suppose that we label
a tumor sample as 0 and a normal sample as 1, the risk minimization approach fails
if it leads to a classifier with type I error (i.e., the conditional probability that a
tumor sample is misclassified as a normal sample) equal to 0:3 but doctors prefer to
constrain the type I error under 0:05.

There are many scenarios where users need asymmetric error control, and they
often occur when the two types of classification errors lead to vastly different
consequences. Again in the example of tumor diagnosis, mispredicting a normal
sample as a tumor sample may increase a patient’s anxiety and impose additional
medical costs, but misclassifying a tumor sample as a normal sample may delay
a patient’s treatment and even cause a life loss. Hence, the latter type of error—
type I error—is more severe and should be controlled at a low level. In another
example of classifying genes into housekeeping ones (say class 0) and cell-specific
ones (say class 1), if the research aim is to identify novel cell-specific genes for
a cell type (e.g., human embryonic stem cells) and the identified genes will be
validated by experiments, researchers would generally prefer to control the type
I error (the conditional probability of misclassifying a housekeeping gene as a cell-
specific gene) at a low level to reduce experimental costs.

One common approach to addressing asymmetric classification errors is cost-
sensitive learning, which allows users to assign two different costs as weights
for type I and type II errors [14, 56]. Although this approach has many merits,
its effectiveness is largely limited when there lacks a consensus way to assign
costs. Cost-sensitive learning is also unable to serve the purpose when users
desire a specific high probabilistic bound ˛ on the type I or II error [e.g.,
P.type I error � ˛/ > 1 � ı, the probability that a chosen classifier has type
I error not exceeding ˛ is greater than 1 � ı for some small positive ˛ (e.g.,
0:05) and ı (e.g., 0.05)], even though users may vary the two costs to achieve a
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small type I or type II error. There are several other classification approaches that
target on small type I errors. Examples include asymmetric support vector machines
(SVM) [52] and p-values for classification [13]. But like cost-sensitive learning,
these approaches also provide no probabilistic guarantee for the type I error bound
and could lead to non-negligible probability of large type I errors. In practice, there
has been a long-time intuitive and straightforward common practice, that is to tune
the observed type I error (also called empirical type I error) on the training data
to the desired type I error bound ˛, for example, by adjusting the costs of errors
or by changing the classification threshold. However, this approach cannot control
the type I error of the chosen classifier on a new data set to be under ˛ with high
probability; in fact, a classifier chosen in this way will have type I error greater than
˛ for approximately half the chance. Figure 1 illustrates this phenomenon with a
simple two-class Gaussian example.

Unlike the above approaches, the Neyman–Pearson (NP) classification, which
was motivated by the century-long Neyman–Pearson paradigm in hypothesis test-
ing, specifically aims to bound one type of error with high probability and
meanwhile minimize the other type error. The main advantage of the NP classifi-
cation is that it provides high probability guarantee on controlling one type of error
under a user desired level.

This chapter is organized as follows. Section 2 provides a review of the
Neyman–Pearson classification paradigm, including its theoretical and algorithmic
advances. Section 3 presents three simulation examples to demonstrate how to
implement the NP classification with popular classification algorithms (logistic
regression, SVM, and random forests) that are widely used in genomic applications.
Section 4 implements the NP classification on a genomic case study, where the
goal is to classify DNA regions containing transcription factor motifs into two
classes: transcription factor binding sites and non-binding sites, using two genomic
features (absolute DNase-seq tag counts and DNase-seq footprint scores). Section 5
describes future research directions and potential genomic applications of the NP
classification.

2 Neyman–Pearson Paradigm

A few commonly used notations are set up to facilitate our discussion. Let .X;Y/
be random variables where X 2 X  Rd is a vector of features and Y 2 f0; 1g
is a class label. A classifier h.�/ is a mapping h W X ! f0; 1g that returns the
predicted class given X. An error occurs when h.X/ ¤ Y, and the binary loss is
I.h.X/ ¤ Y/, where I.�/ denotes the indicator function. The risk is the expected
loss with respect to the joint distribution of .X;Y/: R.h/ D E ŒI.h.X/ ¤ Y/� D
P .h.X/ ¤ Y/ ; which can be expressed as a weighted sum of type I and II errors:
R.h/ D P.Y D 0/R0.h/ C P.Y D 1/R1.h/; where R0.h/ D P .h.X/ ¤ YjY D 0/
denotes the type I error, and R1.h/ D P .h.X/ ¤ YjY D 1/ denotes the type II
error. While the classical binary classification aims to minimize the risk R.�/, the
NP classification aims to mimic the NP oracle classifier ��, which is defined as
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Fig. 1 An example to illustrate that tuning the empirical type I error on training data to ˛ cannot
control the type I error on test data under ˛ with high probability. The population is a two-class
Gaussian distribution, where X follows N.�1; 1/ under class 0 and N.1; 1/ under class 1. The two
classes have equal probabilities. A training data set with size n D 1000 is generated from this
population, and a threshold t D 0:635 (the dark blue vertical line) is chosen so that the resulting
classifier I.X � t/ has the observed (empirical) type I error equal to ˛ D 0:05 on the training
data. This classifier is then applied to B D 1000 test data sets from the same population, and the
resulting empirical type I errors on each of these test data sets are summarized in the histogram,
which shows that approximately 50% of the type I errors are greater than ˛ and 18:1% of the
errors are even greater than 0:06

�� D arg min
�W R0.�/�˛

R1.�/ ;
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where the user-specified level ˛ reflects a conservative attitude (priority) towards the
type I error. Figure 2 shows a toy example that demonstrates the difference between
a classical classifier that aims to minimize the risk and an NP classifier.

Earlier work on the NP classification came from the engineering community.
Earlier theoretical development for the NP classification includes traditional sta-
tistical learning results such as probably approximately correct bounds and oracle
type inequalities [8, 38, 40]. Then performance measures for the NP classification
were proposed [39]. More recently, a general solution to semi-supervised novelty
detection via reduction to NP classification was developed [3]. There are also other
related work [9, 19]. All these work follow an empirical risk minimization (ERM)
approach, and suffer a common limitation: a relaxed empirical type I error constraint
is used in the optimization program, and as a result, the type I error can only be
shown to satisfy some relaxed upper bound, which is bigger than ˛.

We have worked extensively on NP classification using ERM and plug-in
approaches [37, 46, 58]. We initiated a significant departure from the previous NP
classification literature in [37] by arguing that a good classifier O� under the NP
paradigm should respect the chosen significance level ˛, rather than some relaxation
of it. More concretely, the following two properties should both be satisfied with
high probability.

(1) The type I error constraint is respected, i.e., R0. O�/ � ˛.
(2) The excess type II error R1. O�/ � R1.��/ diminishes with an explicit rate

(w.r.t. sample size).

We say a classifier satisfies the NP oracle inequalities if it has properties (1)
and (2) with high probability. The NP oracle inequalities measure the theoretical
performance of classifiers under the NP paradigm, as well as define a new NP
counterpart of the well-established oracle inequalities under the classical paradigm
(see [23] and the references within). In contrast, for a classifier Oh, the classical oracle
inequality insists that with high probability,

theexcessriskR.Oh/� R.h�/diminisheswithanexplicitrate;

where h�.x/ D I.
.x/ � 1=2/ is the Bayes classifier under the classical paradigm,
with 
.x/ D EŒYjX D x� D P.Y D 1jX D x/ denoting the regression function of Y
on X.

Using a more stringent empirical type I error constraint (less than ˛), we
established NP oracle inequalities for their proposed classifiers under convex loss
functions (as opposed to the binary loss) [37]. We also proved a negative result
by constructing a counterexample: under the binary loss, ERM approaches cannot
guarantee diminishing excess type II error if one insists that type I error of the
classifier be bounded from above by ˛ with high probability. This negative result
motivated us to develop a plug-in approach to NP classification, described in [46].
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Fig. 2 Classical vs. NP classification in two binary classification examples. (a) A one-dimensional
toy example where X has a two-class Gaussian distribution. X follows N.�1; 1/ under class 0 and
N.1; 1/ under class 1. The two balanced classes have equal marginal probabilities. Suppose that a
user prefers a type I error � 0:05. The classical classifier I.X � 0/ that minimizes the risk would
result in a type I error D 0:16 > 0:05. On the other hand, the NP classifier I.X � 0:65/ that
minimizes the type II error under the type I error constraint (� 0:05) delivers the desirable type I
error. (b) A two-dimensional toy example where .X1;X2/ has a two-class uniform distribution over
circles. .X1;X2/ follows a uniform distribution on fX21 C X22 � 4g under class 0 and a uniform
distribution on f.X1 � 2/2 C .X2 � 2/2 � 4g under class 1. The two balanced classes have equal
marginal probabilities. Suppose that a user prefers a classifier that is linear in X1 and X2 and has
type I error � 0:05. The classical classifier I.X1 C X2 � 2/ that minimizes the risk would result
in a type I error D 0:29 > 0:05. On the other hand, the NP classifier I.X1 C X2 � 2:28/ that
minimizes the type II error under the type I error constraint (� 0:05) delivers the desirable type I
error
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In classical binary classification, plug-in methods that target the Bayes classifier
I.
.x/ � 1=2/ have been studied. The earliest works cast doubt on the efficacy
of the plug-in approach to classification. For example, it was shown that plug-in
estimators cannot achieve excess risk with rates faster than O.1=

p
n/ under certain

assumptions [55], while direct methods can achieve fast rates up to O.1=n/ under
margin assumption [30, 45, 49, 50]. However, a more recent work combined a
smoothness condition on 
 with the margin assumption and showed that plug-in
classifiers I. O
n � 1=2/ based on local polynomial estimators can achieve rates faster
than O.1=n/ [1].

The oracle classifier under the NP paradigm arises from its close connection to
the Neyman–Pearson Lemma in statistical hypothesis testing. Hypothesis testing
bears a strong resemblance to binary classification if we assume the following
model. Let P1 and P0 be two known probability distributions on X  Rd. Let
� 2 .0; 1/ and assume that Y � Bernouli.�/. Assume further that the conditional
distribution of X given Y is denoted by PY . Given such a model, the goal of statistical
hypothesis testing is to determine whether X was generated from P1 or from P0. To
this end, we construct a randomized test � W X ! Œ0; 1� and the conclusion of the
test based on � is that X is generated from P1 with probability �.X/ and from P0
with probability 1 � �.X/. Two types of errors arise: type I error occurs when P0
is rejected given X � P0, and type II error occurs when P0 is not rejected given
X � P1. The Neyman–Pearson paradigm in hypothesis testing amounts to choosing
� that

maximizesEŒ�.X/jY D 1� ; subjecttoEŒ�.X/jY D 0� � ˛ ;

where ˛ 2 .0; 1/ is the significance level of the test. A solution to this constrained
optimization problem is called a most powerful test of level ˛. The Neyman–Pearson
Lemma gives mild sufficient conditions for the existence of such a test.

Theorem 1 (Neyman–Pearson Lemma). Let P0 and P1 be probability dis-
tributions possessing densities q and p, respectively, with respect to some
measure �. Let r.x/ D p.x/=q.x/ and C˛ be such that P0.r.X/ > C˛/ � ˛

and P0.r.X/ � C˛/ � ˛. Then for a given level ˛, the most powerful test of
level ˛ is defined by

��.X/ D

8
<̂

:̂

1 if r.X/ > C˛
0 if r.X/ < C˛
˛�P0.r.X/>C˛/

P0.r.X/DC˛/
if r.X/ D C˛

:

Therefore, our plug-in target under the NP paradigm is the oracle classifier

��.x/ D I.r.x/ � C˛/ D I.
.x/ � D˛/;whereD˛ D P.Y D 1/C˛
P.Y D 1/C˛ C P.Y D 0/ :
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Note that under the classical paradigm, the oracle classifier I.
.x/ � 1=2/ puts
a threshold on the regression function 
 at precisely 1=2, so plug-in methods do
not involve estimating the threshold level. In contrast, the NP paradigm poses more
challenges because the threshold level C˛ or D˛ needs to be estimated in addition to
r.x/ or 
.x/.

Also note that in practice, the threshold on O
.x/ is often not set to 1=2 but is
chosen by data-driven approaches such as cross validation and bootstrap. In contrast
to the NP classification, these data-driven approaches aim to minimize an estimated
classification risk, not the type II error with a type I error constraint.

2.1 An Estimate of C˛

Pinning down a good estimate of C˛ is of central importance for classifiers under
the NP paradigm. Contrary to common intuition, naïvely tuning the empirical type
I error to ˛ does not deliver a desirable classifier, as we have shown in Fig. 1. To
facilitate our discussion, we assume that our sample contains n i.i.d. observations
S 1 D fU1; � � � ;Ung from class 1 with density p; and m i.i.d. observations S 0 D
fV1; � � � ;Vmg from class 0with density q. The sample S 0 is decomposed as follows:
S 0 D S 0

1 [S 0
2 , where jS 0

1 j D m1 and jS 0
2 j D m2. Below is a generic procedure

introduced in our recent paper [58].

General Neyman–Pearson Plug-In Procedure

Step 1: Use S 1 and S 0
1 to construct a density ratio estimate Or.

Step 2: Given Or; choose a threshold estimate bC˛ from the set Or.S 0
2 / D

fOr.ViCm1/gm2iD1: Denote by Or.k/.S 0
2 / the kth order statistic of Or.S 0

2 /,
k 2 f1; � � � ;m2g: The corresponding plug-in classifier by setting bC˛ D
Or.k/.S 0

2 / is

O�k.x/ D IfOr.x/ � Or.k/.S 0
2 /g : (1)

The general strategy is that for any given estimate Or, we want to find a proper
order statistic Or.k/.S 0

2 / to estimate the threshold C˛ , so that type I error of the
classifier defined in (1) will be controlled from above by ˛ with high probability
1 � ı. To achieve this, it is necessary to study the distribution of order statistics,
which we find to be beta-distributed. Based on a concentration inequality for beta
distributed variables, we have derived the following high probability bound for
R0. O�k/:
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Proposition 1. Suppose Or is such that F0;Or.t/ D P0.Or.X/ � t/ is continuous
almost surely. For any ı 2 .0; 1/ and k 2 f1; � � � ;m2g, it holds that

P
�

R0. O�k/ > g.ı;m2; k/
	
� ı ;

where

g.ı;m2; k/ D m2 C 1 � k

m2 C 1 C
s

k.m2 C 1 � k/

ı.m2 C 2/.m2 C 1/2 :

Let K D K .˛; ı;m2/ D fk 2 f1; � � � ;m2g W g.ı;m2; k/ � ˛g : Proposition 1
implies that k 2 K .˛; ı;m2/ is a sufficient condition for the classifier O�k to satisfy
the NP oracle inequality (1). The next step is to characterize K . The smallest k 2
K accommodates small excess type II error for O�k; for details, please see [58].

Proposition 2. The minimum k that satisfies g.ı;m2; k/ � ˛ is kmin WD
dA˛;ı.m2/ � .m2 C 1/e ; where dze denotes the smallest integer larger than or
equal to z and

A˛;ı.m2/ D 1C 2ı.m2 C 2/.1� ˛/C
p
1C 4ı.1� ˛/˛.m2 C 2/

2 Œı.m2 C 2/C 1� :

The choice kmin coupled with a good estimate of r or 
 delivers a plug-in NP
classifier that satisfies the NP oracle inequalities. We have worked out estimates
based on parametric and nonparametric naïve Bayes models [58], but estimates for
more complex model assumptions are not yet developed. While these directions are
interesting to explore, we would like to note a limitation in the use of theoretical
estimates for the threshold C˛ . That is, the theoretical results require concentration
inequalities, which are not specific to certain types of data distributions and
sometimes give threshold estimates that are too conservative in practice. Therefore,
we have developed an alternative route to implement the NP paradigm. This route
makes the NP classification more adaptable to popular classification algorithms and
thus more useful in practice.

2.2 The NP Umbrella Algorithm

Here we present the alternative route, the NP umbrella algorithm we developed
in [47], as pseudocodes in Algorithm 1. The essential idea is to use bootstrap to
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approximate the distribution of type I errors and determine a threshold such that the
corresponding classifier has type I errors bounded by a predefined level with high
probability. This algorithm is widely applicable to the scoring type of classification
methods, which include a wide range of popular methods, such as logistic regression
[11], SVM [10], random forests [6], naïve Bayes [26], and neural networks [43].
Methods of the scoring type output a numeric value, i.e., a classification score, to
represent the degree to which a test data point belongs to class 1. The classification
scores can be strict probabilities or uncalibrated numeric values, as long as a
higher score indicates a higher probability of an observation belonging to class 1.
Many other classification methods that only output class labels can be converted
to the scoring type via bagging to generate an ensemble of classifiers, each of
which predicts a class label for a test data point, and the proportion of predicted
labels being 1 serves as a classification score. Since almost all the state-of-the-art
classification methods belong to or can be converted to the scoring type, this NP
umbrella algorithm is easily adaptable in practice, though its theoretical properties
are difficult to establish.

Algorithm 1: The NP umbrella classification algorithm
1: input:

training data with two parts: a mixed i.i.d. sample S and a class 0 sample
S 0 D fX1; : : : ;Xmg

type I error upper bound ˛ 2 Œ0; 1�
small tolerance level ı 2 .0; 1/
number of bootstrap samples B

2: procedure NPTHRESHOLD(S ;S 0; ˛; ı;B)
3: f  classificationalgorithm.S /

F train a classification scoring function f by inputting S into the classification algorithm;
let f have a larger expected value for class 1 data

4: T0 D �
T0;1; : : : ; T0;m

�T  .f .X1/; : : : ; f .Xm//
T

F apply the scoring function f to S 0 to obtain a set of threshold candidates
5: for b in f1; : : : ;Bg do F bootstrap T0 for B times

6: T.b/0 D
�

T.b/0;1 ; : : : ; T
.b/
0;m

	T  sample.T0;size D m;replace D TRUE/ F sample m

points with replacement from T0
7: for t in T0 do F for each threshold candidate t

8: for b in f1; : : : ;Bg do F for each bootstrap sample b

9: e.b/.t/ 1
m

Pm
iD1 I

�
T.b/0;i > t

	
F calculate the type I error of threshold t in bootstrap sample

b
10: v.t/ 1

B

PB
bD1 I

�
e.b/.t/ > ˛

� F calculate the violation rate of threshold t
11: t� minft W v.t/ � ıg F pick the minimal threshold whose violation rate is under ı

12: output:
an NP classifier �.X/D I .f .X/ > t�/
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3 Simulation

In this section, we demonstrate the use of NP classification with three popular
classification algorithms: logistic regression [11], SVM [10], and random forests
[6]. The three simulation examples, each employing one algorithm, are implemented
by calling the R package nproc [15] we developed in recent work [47].

The nproc package can be installed by calling

> install.packages("nproc")

and loaded into the R environment using the next command. All the following
numerical results were generated by the nproc package version 0.1.

> library(nproc)

We first simulate a training data set from a logistic regression model. The training
data have 1000 observations with binary responses and two-dimensional features.

> # training data
> set.seed(1)
> x1 <- rnorm(1000) # feature 1
> x2 <- rnorm(1000) # feature 2
> x <- cbind(x1, x2) # matrix of features
> z <- 1 + 2*x1 + 3*x2 # linear combination of the

two features
> pr <- 1/(1+exp(-z)) # logisitic function to

generate probability
> y <- rbinom(1000,1,pr) # response as Bernoulli

variable
> df <- data.frame(x1=x1, x2=x2, y=y)

Figure 3 shows a scatterplot of the training data. We also simulate 1000 test data
sets with 1000 observations from the same model, to evaluate the performance of
classifiers.

> # test data
> test_data <- lapply(1:1000, FUN=function(i) {
+ set.seed(i+1)
+ x1 <- rnorm(1000)
+ x2 <- rnorm(1000)
+ x <- cbind(x1, x2)
+ z <- 1 + 2*x1 + 3*x2
+ pr <- 1/(1+exp(-z))
+ y <- rbinom(1000, 1, pr)
+ df <- data.frame(x1=x1, x2=x2, y=y)
+ return(list(x=x, y=y, df=df))
+ })
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Fig. 3 Scatterplot of the
training data with 1000
observations and
two-dimensional features.
Black circles and red crosses
represent class 0 and class 1,
respectively
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3.1 Logistic Regression

Logistic regression is a type of generalized linear model. For binary classification
purposes, logistic regression can serve as a classification method. One way to
interpret logistic regression is that it models

p WD P.Y D 1/ D 1

1C e�.ˇ0CˇT X/

for a binary response Y with d features X 2 Rd. Given training data f.xi; yi/gniD1,
logistic regression estimates ˇ0 and ˇ as maximum likelihood estimates Ǒ0 and Ǒ,
and then estimates p as Op D

�
1C e�. Ǒ0C ǑT X/

	�1
. This estimated probability can

be interpreted as a classification score, as logistic regression predicts Y by a linear

decision rule, i.e., OY D I. ǑTX � c/ D I

�
Op �

�
1C e� Ǒ0�c

	�1�
for some threshold

c 2 R. Under the classical classification paradigm, c D � Ǒ0, which corresponds to
Op � 1=2. Under the NP paradigm, we potentially have different choices for c. By
regarding Op as a classification scoring function of X, we use the umbrella algorithm
to find a threshold on Op so that the resulting classifier will have type I error below
the desired level ˛ with high probability close to 1 � ı.

We use the simulated data to demonstrate the use of NP classification with
logistic regression and compare it with the classical paradigm. We first train a
logistic regression model on the training data under the classical paradigm.

> lr_model1 <- glm(y~x1+x2, data=df, family="binomial")



Genomic Applications of NP Classification 157

Then we apply the trained model lr_model1 to the 1000 test data sets to
evaluate the distribution of its empirical type I errors on test data.

> lr_model1_err <- sapply(test_data, FUN=function(tdat)
{ + pred <- predict(lr_model1, tdat$df,
type="response") > 0.5 + ind0 <- which(tdat$y==0)
+ typeI <- mean(pred[ind0]!=tdat$y[ind0])
+ })
> summary(lr_model1_err)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1290 0.1723 0.1846 0.1849 0.1980 0.2368

We next train a logistic regression model on the training data under the NP
paradigm with type I error bound ˛ D 0:05, using the npc function.

> set.seed(1001)
# for reproducible purposes, because npc()
involves bootstrap,

# whose results will be reproducible with a fixed seed
> lr_model2 <- npc(x=x, y=y, method='logistic',
alpha=0.05)

Then we also applied the trained model lr_model2 to the test data.

> lr_model2_err <- sapply(test_data, FUN=function(tdat){
+ pred <- predict(lr_model2, tdat$x)
+ ind0 <- which(tdat$y==0)
+ typeI <- mean(pred$pred.label[ind0]!=tdat$y[ind0])
+ })
> summary(lr_model2_err)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.009732 0.027230 0.033530 0.033950 0.040400 0.062330

> sum(lr_model2_err <= 0.05) / 1000

[1] 0.948

Comparing the empirical type I errors of the two logistic regression classifiers
found under the classical and the NP paradigm, respectively, we can see that the NP
classifier gives much smaller type I errors, 94:8% of which are under ˛ D 0:05.

3.2 Support Vector Machines

Similar to logistic regression, SVM is also a scoring type of classification method,
for which approximate posterior probabilities of class labels proposed by Platt [35]
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can be used as classification scores. We demonstrate the use of NP classification
with SVM on the simulated data as follows.

We first train an SVM model on the training data under the NP paradigm.

> set.seed(1001)
> svm_model <- npc(x=x, y=y, method='svm', alpha=0.05)

Then we apply the trained model svm_model to the 1000 test data sets to
evaluate the distribution of its empirical type I errors on test data.

> svm_model_err <- sapply(test_data, FUN=function(tdat)
{
+ pred <- predict(svm_model, tdat$x)
+ ind0 <- which(tdat$y==0)
+ typeI <- mean(pred$pred.label[ind0]!=tdat$y[ind0])
+ })
> summary(svm_model_err)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.007772 0.023530 0.029560 0.029900 0.035350 0.062330

> sum(svm_model_err <= 0.05) / 1000

[1] 0.987

We see that the SVM classifier found by the NP algorithm has empirical type I errors
under ˛ D 0:05 with high probability.

3.3 Random Forests

Random forests is another popular and powerful classification method. It is an
ensemble method of tree-based classifiers. We can also interpret it as a scoring
type of method, if we consider the proportion of output votes for class 1 (i.e., the
proportion of trees that predict an observation as class 1) as classification scores.
We demonstrate the use of NP classification with random forests on the toy data as
follows.

We first train a random forest model on the training data under the NP paradigm.

> set.seed(1001)
> rf_model <- npc(x=x, y=y, method='randomforest',
alpha=0.05)

Then we apply the trained model rf_model to the 1000 test data sets to evaluate
the distribution of its empirical type I errors on test data.



Genomic Applications of NP Classification 159

> rf_model_err <- sapply(test_data, FUN=function(tdat) {
+ pred <- predict(rf_model, tdat$x)
+ ind0 <- which(tdat$y==0)
+ typeI <- mean(pred$pred.label[ind0]!=tdat$y[ind0])
+ })
> summary(rf_model_err)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.002451 0.021000 0.026280 0.026810 0.032260 0.054460

> sum(rf_model_err <= 0.05) / 1000

[1] 0.996

We see that the random forest classifier found by the NP algorithm has empirical
type I errors under ˛ D 0:05 with high probability.

4 Case Study

We demonstrate the use of NP classification in a genomic case study on the
prediction of transcription factor binding sites. A recent study [20] found that
DNase-seq signals can well predict whether genomic regions containing transcrip-
tion factor sequence motifs are transcription factor binding sites. DNase-seq is a
recent high-throughput technology that combines traditional DNaseI footprinting
[17] and next-generation DNA sequencing to identify genomic regions where
regulatory factors interact with DNA to modify chromatin structure [5, 12, 31, 42].
An important question investigated in this study is which DNase-seq features can
well predict binding sites of CTCF, a transcription factor that acts as an insulator to
regulate the 3D structure of chromatin [34].

The study [20] formulated this question as a binary classification problem, where
the goal is to classify genomic regions that contain CTCF sequence motifs into
CTCF binding sites (i.e., class 1) and non-binding sites (i.e., class 0). For this
task, two one-dimensional genomic features extracted from DNase-seq data are
compared: (1) the number of DNase-seq tags in a 200 base pair window centered
in each CTCF motif site and (2) the DNaseI footprint score calculated using the
formula f D � Œ.nC C 1/=.nRC 1/C .nC C 1/=.nLC 1/�, where nC, nR, and nL

represent, respectively, the tag count in the motif region and the flanking regions to
the right and left of the motif (the lengths of the flanks are both the same as that of
the motif). In the data, there are n D 216; 929 genomic regions, each with one tag
count and one footprint score. Among these regions, 27; 220 regions were found as
CTCF binding sites (class 0), and the rest 189; 709 regions were considered as non-
binding sites (class 1). By varying the threshold on each feature, the study showed
that the footprint score outperforms the tag count at low FPR and underperforms at
higher FPR. In other words, if users desire a small type I error, for example, if they
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prefer to predict fewer but more confident CTCF binding sites, the footprint score is
a better genomic feature; otherwise if users prefer a small type II error, for example,
if they prefer to predict more potential CTCF binding sites, the tag count is a better
feature.

However, this study only reported the observed (empirical) type I and II errors on
one data set, without assessing the randomness of these empirical errors. If a user
is interested in knowing which feature is better when the type I error (or FDR) is
constrained under ˛ (e.g., 5 %) with high probability, this analysis cannot provide
a good answer. Here we address this question using the NP classification algorithm
described in Sect. 2.2. We also compare the performance of the NP classification
with the common practice, which is to tune the empirical type I error on the training
data to ˛. At three different type I error bounds ˛ D 0:01, 0:05, and 0:1, we find
their corresponding thresholds on the number of DNase-seq tags or the footprint
scores via the common practice or the NP approach. Specifically, in the common
practice we find the thresholds as the 99th, 95th, and 90th percentiles of the number
of DNase-seq tags or the footprint scores of the 189; 709 non-binding sites; in the
NP approach we use the NP algorithm with the number of bootstrap runs B D 1000
and the violation tolerance level ı D 0:05 to find the thresholds on the number
of DNase-seq tags or the footprint scores of the 189; 709 non-binding sites. Since
values of each feature serve as natural classification scores in this case, we do not
need to train a classification scoring function, and all the class 0 data points can be
used to find the NP thresholds. That is, in the algorithm, S 0 contains all the class 0
data points, and the f function in Step 3 is just the identity map.

We evaluate the thresholds and their corresponding classifiers found by the NP
approach or the common practice via bootstrap. We generate B0 D 1000 sets of
n D 216; 929 bootstrap regions with corresponding tag counts and footprint scores
from the original data via random sampling with replacement. Then we evaluate
the empirical type I and type II errors of each threshold on each bootstrap data
set, and summarize the distribution of the empirical type I and type II errors of all
bootstrap data sets. The results in Table 1 show that the classifiers found by the NP
approach have empirical type I errors bounded by ˛ with high probability, while
the classifiers found by the common practice have large portions of empirical type I
errors above ˛. Comparing the means of the empirical classification errors, we can
see that the classifiers found by the NP approach have slightly smaller mean type
I errors and slightly larger mean type II errors, a reasonable result given its high
probability bound on the type I errors. The standard deviations are similar for the
two approaches. Back to the question about which feature is better when the type I
error is under ˛ with high probability, the NP classification results suggest that at
˛ D 0:01 and 0:05, the footprint score is a better feature, while the tag count is a
better feature at ˛ D 0:1.
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Table 1 Comparison of classifiers established by the common practice vs. the NP approach

Type I errors Type II errors

Features ˛ Approaches Meana sdb % > ˛c Mean sd

Tag counts 0:01 Common 0:010 2:32e�4 46:5 0:976 9:34e�4

NP 0:009 2:25e�4 0:00 0:979 8:84e�4

0:05 Common 0:050 4:83e�4 48:4 0:707 2:78e�3

NP 0:049 4:78e�4 1:10 0:716 2:78e�3

0:10 Common 0:100 6:89e�4 39:8 0:335 2:86e�3

NP 0:099 6:83e�4 3:90 0:340 2:87e�3

Footprint scores 0:01 Common 0:010 2:25e�4 48:6 0:766 2:59e�3

NP 0:009 2:07e�4 0:00 0:775 2:59e�3

0:05 Common 0:050 4:96e�4 33:5 0:596 2:97e�3

NP 0:049 4:90e�4 1:90 0:598 2:96e�3

0:10 Common 0:100 6:58e�4 49:5 0:493 3:07e�3

NP 0:099 6:54e�4 1:40 0:494 3:06e�3

a Mean of the empirical classification errors over the B0 D 1000 bootstrap runs
b Standard deviation of the empirical classification errors over the B0 D 1000 bootstrap runs
c Percentage of the empirical type I errors that are greater than ˛ in the B0 D 1000 bootstrap
runs

5 Future Research and Genomic Applications
of the Neyman–Pearson Classification

Neyman–Pearson classification paradigm handles binary class classification prob-
lem, but it can be extended to address multi-class problems where errors are asym-
metric in nature. Neyman–Pearson classification has wide application potentials
in genomics. In Sects. 5.2–5.4 we describe three potential applications as future
research directions: sample size determination, automatic disease diagnosis, and
disease marker detection. The latter two applications were also discussed in our
recent review paper [48].

5.1 Extension to Multi-class

Originating from binary trade-offs, the NP classification methods can also be
applied to multi-class (Y 2 f1; � � � ;Kg, K � 3) problems using the following two
strategies:

– [Strategy 1] Missing class 1 has more severe consequences than
missing other classes. A two-step procedure can be implemented:
Apply an NP method to classify a subject into class 1 versus the other
classes. Stop if the subject is assigned to class 1. Otherwise, continue
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and apply a (multi-class) classification algorithm to assign this subject
to one of the other classes f2; � � � ;Kg.

– [Strategy 2] There is a hierarchical order (class 1 > � � � > class K)
of class priorities (i.e., severity of missing each class). A possible
procedure is to first apply an NP method to classify a subject into class
1 versus other classes f2; � � � ;Kg. Stop if this subject is assigned to
class 1. Otherwise, apply again the NP method to classify it into class
2 versus classes f3; � � � ;Kg. Continue along this line until this subject
is assigned to a class.

5.2 Sample Size Determination

In clinical trials and other experimental designs, sample acquisition can be quite
expensive. Therefore, how to determine the minimal sufficient sample size is an
important question. Admittedly, different criteria would lead to different sample
size selection procedures; so there is no hope of finding a universally golden rule.
The Neyman–Pearson paradigm inspires one procedure to choose the sample size
based on the theoretical upper bound of the excess type II error in the NP oracle
inequalities.

We describe a contrived version of this procedure in the following. Suppose a
classifier O' satisfies the NP oracle inequalities, and the excess type II error of O' is
bounded from above by f .m; n/, where m is the sample size of class 0, and n is the
sample size of class 1, and f .m; n/ ! 0 as m and n go to infinity. If the user has a
target to control the excess type II error at some � > 0. Then m and n can be selected
such that f .m; n/ � � . As this procedure is based on concentration inequalities, it is
conservative and might overestimate the sample size. Yet this procedure provides a
valid upper bound of the needed sample size. Future statistical research is need for
more accurate sample size determination.

5.3 Automatic Disease Diagnosis

Another application is a long-time challenge in clinical research: automatic disease
diagnosis from patient genomic data. This challenge involves a classification
problem, where diseases correspond to different classes, and the goal is to predict
the diseases that are most likely associated with a patient’s genomic sample. Thanks
to the development of high-throughput genomic technologies [e.g., microarray and
next-generation sequencing (NGS)], a large amount of disease related genomic data
can serve as training data in this classification problem. Taking gene expression data
as an example, the National Center for Biotechnology Information (NCBI) Gene
Expression Omnibus (GEO) contains more than 690,000 human gene expression
samples that are related to hundreds of diseases, such as heart diseases, mental
illnesses, infectious diseases, and various cancers.
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Fig. 4 Automatic disease diagnosis via NP classification and network-assisted correction

We can study automatic disease diagnosis by NP classification and network-
assisted correction using a two-step approach (Fig. 4). Step 1: using public microar-
ray and NGS gene expression data sets with disease labels (e.g., > 100 Unified
Medical Language System standardized disease concepts), we can (a) use NP
classification to build a binary classifier for each disease class, and (b) classify
a patient’s microarray gene expression sample into these disease classes. Step 2:
(c) correct the predicted diseases based on the disease taxonomy (network). In
Step 1, since the disease classes are non-exclusive (one data set may have multiple
disease class labels), this multi-label classification problem is inherently composed
of multiple binary classification problems, where every disease class needs a binary
decision. In previous works [21, 27], binary classifiers such as SVM and naïve
Bayes classifiers were used, and all disease classes were treated as interchangeable.
This raises an important issue, though: some diseases are more life-threatening than
others, e.g., lung cancer vs. arthritis. Therefore, it is important to allow doctors to
have different levels of conservativeness, i.e., different thresholds ˛ on the type I
error (the chance of missing a disease when a patient in fact has it), for different
diseases. Although previous researchers have attempted to address this trade-off
between false positives and false negatives in disease diagnosis [16], they failed to
control false negative rates under a desired threshold with high probability. Given
the pressing need for precise disease diagnosis, the developed NP classification
algorithms are in high demand to address this issue.

5.4 Disease Marker Detection

The multi-class extension of NP classification has application potentials in detecting
and screening for key markers (i.e., genes and genomic features) to aid disease
diagnosis as well as to understand molecular mechanisms of diseases. In early
cancer diagnosis studies that aimed to determine which genes should be included



164 J.J. Li and X. Tong

disease 1

disease 2

disease K

...
...

NP strategy 1 
multi-class

1 vs. all

2 vs. all

K vs. all

 disease 1 markers

 disease 2 markers

 disease K markers

...
...

...
...

pooling markers
for

disease diagnosis

Fig. 5 Marker detection via multi-class NP strategy 1

as features (markers) [16, 36, 41], classification error of each disease class versus
others was used as a criterion. In other words, “the smallest set” of genes that results
in low classification error for a disease class was retained as markers for that disease.
However, this criterion lacks consideration of asymmetric classification errors, and
as a result, the selected markers for a disease could lead to high false negative rates in
the diagnosis—a dangerous situation for severe diseases such as cancers. Therefore,
in the diagnosis of severe diseases, a more reasonable criterion would be to minimize
the FPR given a pre-specified false negative rate control. The multi-class NP
classification (Strategy 1) serves the purpose: key markers are selected so that low
FPR are attained while the false negative rates are constrained below a threshold
(see Fig. 5). Markers selected by this new detection strategy can be pooled to make
disease prediction, in the hope of increasing the sensitivity of disease diagnosis.
To implement and evaluate this strategy, we need to compare it with the more
recent state-of-the-art disease prediction methods, which are for example based on
multi-task learning [2, 28, 57, 59], group lasso [29], multicategory support vector
machines [25], partial least squares regression [4, 33], neural networks [22, 51],
and others [44].
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Abstract In the age of post-genomics, the task of improving existing annotation
is one of the major challenge. The sequenced transcriptome allows to revisit
the annotated sequenced genome of the corresponding organism and improve the
existing gene models. In addition, misleading annotations propagate in multiple
databases by comparative approaches of annotation, automatic annotation, and lack
of curating power in the face of large data volume. In this pursuit, re-annotated
improved gene models can prevent misleading structural and functional annotation
of genes and proteins. In this chapter, we will highlight annotation and re-annotation
procedures and will explain how annotations can be improved using computational
methods. Our integrative workflow can be used to re-annotate genomes of any
sequenced eukaryotic organism. We describe the annotation of splice sites, open
reading frames, encoded proteins and peptides, hints for functional annotation
including phylogenetic and domain analysis as well as critical evaluation of data
transfer procedures, and the genome annotation process.
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1 Background

In 1975, the new era of the biological research started with the development of
DNA sequencing. Only 15 years later the discovery of DNA double helix, Sanger
sequencing method, had predestinated further direction of the nature sciences. Since
the first sequenced genome—phage ˆX174 [1], till date, more than 4000 genomes
have been sequenced (1081 eukaryotic genomes, KEGG Genome database, Decem-
ber 2015) including the genomes of several bacteria, followed by yeasts, archaeans,
virus, plants, animals and, of course, the human genome with its over 3 billion
bases [2]. The development of new techniques, improvement of the methods, and, at
least, the hunger for new knowledge significantly changed our view on the structure
and function of genes. As more and more genomes are sequenced, there is an
increasing need for the fast, precise, and accurate sequencing and data analysis.
The simple Sanger sequencing is currently not fast enough and the novel and
enhanced sequencing platforms becoming the daily routine in the research—the
development of pyrosequencing in the 1990s, followed by 454 pyrosequencing,
semiconductor and epigenetic sequencing, the RNA and transcriptome sequencing,
or new generation sequencing (NGS) entering the modern phase of the biological
research. The new technologies allow to analyze not only the isolated in vitro
cultures, but also the ecological and environmental samples.

One of the most popular sequencing platform, NGS, generates thousands
and thousands of sequencing reads in parallel. Presently, there are several NGS
platforms families; e.g., 454, Illumina, SOLiD, PacBio, Ion Torrent, and many
more, which differ in the type of clonal amplification, used chemistry, and read
length. For example, Ion Torrent produces output with up to 50 million reads
per run with the reads length of approximately 200 bases, while SOLiD is able
to generate approximately three billion reads per run with 75-bases long reads.
The longest length of read, up to 1000 bases with one million reads per run, is
able to obtain by 454 NGS sequencing platform that is based on pyrosequencing
method [3]. Typically, the reads can be acquired from a pool of PCR-amplicons,
cDNA libraries, or fragmented libraries. However, there are several crucial factors
influencing the accuracy of the sequencing results: the read length and precision

P. Pahlavan
Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland,
97074 Wuerzburg, Germany

Leibniz-Institute, German Collection of Microorganisms and Cell Cultures Gmbh,
Braunschweig, Germany
e-mail: pirasteh.pahlavan@uni-wuerzburg.de

T. Dandekar (�)
Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland,
97074 Wuerzburg, Germany

EMBL Heidelberg, BioComputing Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
e-mail: dandekar@biozentrum.uni-wuerzburg.de

mailto:pirasteh.pahlavan@uni-wuerzburg.de
mailto:dandekar@biozentrum.uni-wuerzburg.de


Improving Re-annotation of Annotated Eukaryotic Genomes 173

of the sequencing, cost of the experiments and the formation of the PCR bias,
chimeric sequences, and secondary structure-related matters [4]. Nevertheless NGS
is a powerful and valuable tool with significant benefaction for the medical,
pharmacological, environmental and ecological, and forensics studies.

The obtaining of the DNA sequences of the genome is just one side of the
coin. Reads represent the huge dataset containing the fragments of genes, which
must be annotated in order to obtain the overall view of the genomes. Gene
annotation, in a broad sense, is the description and localization of the genes in the
genome by computational approach. This comprehends structural and functional
characterization of protein-coding and non-coding genes, as well as other genomic
features. However, it seems as an unpretentious topic, the genome contains a various
repetitive sequences—transposable elements, simple sequence repeats, as well as
single nucleotide polymorphisms, that can vary in the gene expression. Those
factors, together with the infrequent phenotype of individuals, presence of non-
coding regions and short reads of highly duplicated sequences, make the genome
annotation and analysis one of the most challenging tasks in biology. As the raw
data contain several thousands of the sequences, the choice of the annotation process
is crucial. The manual annotation, based on information originated from sequence
homology searches, is enormously time-consuming and labor-intense. Even the
annotation by experts, albeit presumably most accurate, is not always affordable,
and highly automated computational methods are called upon to fill the gap [5, 6].
The second option, automated annotation, provides the practical and faster way
to obtain precise information; however, the part of the genome annotation is still
based on the researcher. Despite very perspective results from manual or automated
approach, it is very hard to annotate all the genes. Currently, well-studied genomes
contain hundreds of the genes coding “hypothetical” proteins, without predicted
function or structure. Those parts of the genomes remain still unannotated or the
level of the annotation is very low, even compared to evolutionary close species.

As the amount of the obtained data is increasing every day, the need for the
useful databases and bioinformatics tools is enormous. The first program for the
DNA sequence analysis was written in COBOL by McCallum and Smith [7], and
rapidly new programs to interpret and annotate sequence data became more and
more available.

A short time after, development of searching program BLAST in 1990 brings the
new view to identification genes and comparison to other sequences [8]. The first
swallow for the storage of the obtained data was the creation of the nucleotide and
protein sequence database, which was established in 1981 [9]. Only 5 years after,
the National Institute of Health created the most used and most influential database
GenBank, which is collection of all available nucleotide sequences and its protein
translations [10].

The aim of this chapter is to describe major modern tools for genome annotations,
discusses some of the basic errors, and how to avoid them. Also, we would like to
offer the reader deep understanding to the processes, which precluding the whole
process of genome annotation.
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2 Genome Annotation

The tremendous amount of data generated by advances in NGS projects has moti-
vated more reliable annotation of the genome. In general, the process of interpreting
raw sequence data into biological information is the process of annotation [11].
We earlier stressed the need for continuously improving genome annotation, for
instance, by reanalyzing the annotation of a genome again after 5 years. The growth
of databases, improvement of software, and meticulous re-annotation then led in the
cases examined to improved annotation for the major part of the genome annotations
reanalyzed, including both RNA and protein genes [12, 13].

The primary step of genome annotation is to find the sequence that codes
the gene. Recent sophisticated software is using the various algorithms (e.g.,
sensor algorithm, WeederH algorithm) to identify the key structural features, e.g.,
transcriptional start sites, and the sequence of the potential gene is then discovered
by scanning the reads in all existing open reading frames (ORFs). On sequence-
labeling effort in genome annotation, discriminative strategies have been shown to
outperform generative hidden Markov models (HMMs) [14, 15]. Once the genome
sequence is completed, gene is identified according to sequence similarities and
ab initio methods, and then further annotated functionally by searching the protein
families and motifs, their corresponding binding sites on the DNA, or by application
of the phylogenetic footprinting. Moreover, two levels of computational genome
annotation can be applied: “single species: many genes” or “single gene: many
species” aspects, which is utilized mainly for the identification of the conserved
motifs [16, 17].

The annotation is a complex process. It includes various methods to gain the
accurate localization and function of genes: from the gapped BLAST (structural
approach of annotation) through motif analysis to the detection of homologs
(functional approach of annotation). The structural annotation relies mostly on the
identification of ORFs and gene candidates in DNA sequence using a computational
algorithm, and usually is less precise. The functional annotation, which uses
sequence similarities searches against the genes of know functions (templates), is
more precise; however, it is not suitable for the genomes, such as phylogenetically
distant genome. The typical genome annotation has been made with functional
annotation, usually from 54 to 79 % of protein-coding genes.

Briefly, the annotation denotes and demarcates the genomic elements in the
genome and subsequently link these genomic elements to biological function.
Therefore, the annotation process can be referred to as the combination of two
different process, i.e., gene structure prediction and functional annotation. The main
difference between structural and functional annotation will be described later in this
chapter.
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2.1 Genome Re-annotation

The annotation projects of large eukaryotic genomes often provide a broad but
shallow view of structure and function of genes as their central perspective is to
offer overview of entire genome rather than defining individual genes [11]. The
re-annotation can be defined as the improved structural and functional annotation
of previously annotated genome by integrating the advanced computational anal-
ysis, auxiliary biological data, and biological expertise to improve the existing
annotation. The key issue of genome annotation is its accuracy. Generally, a first
genome annotation still contains large numbers of errors, which may cause wrong
conclusions during further analysis. Critical is detection of sequence conservation,
as otherwise functional sites are overlooked, as well as sufficient repetitions in the
raw data. An erroneous annotation can arise from numerous sources; for instance,
errors in the gene model caused by incorrect predictions of splicing junctions, erro-
neous, and inconsistent gene naming owing to transferred annotation from the gene
based on sequence similarity where the original gene name is itself incorrect. The
flawed functional annotation is inevitably propagated by BLAST based annotations
if not followed by the extensive and careful manual curations. In this scenario, the
re-annotation procedure improves the improper original annotations; for instance,
the recent update of Apis mellifera genome resulted in annotation of �5000 more
protein-coding genes that were not previously reported [18].

Extending own previous earlier efforts in prokaryotes [12, 13], we will focus on
how the re-annotation process in eukaryotes can improve the original annotation
and some tools which can be used for this process. Several re-annotation procedures
have been conducted for eukaryotic organisms in last 6 years (Table 1), which in
general, are quite less in compare to re-annotation efforts for prokaryotes. These
studies have shown increase in the number of protein-coding genes, missing gene
identification, increase in the overall total coding length, more number of coding
regions, increase in untranslated region (UTR) coverage, splice site corrections in
the gene models and detection of alternative splicing events that further allows
more accurate gene models, and predicted protein sequence and annotations. The
reader is referred to the literature pointed in Table 1 for the details of improvements
as per individual re-annotation efforts. For a gene, good re-annotation procedure
can improve both the gene structure and its functional annotation together. For
instance, in a recent study, Gupta and coworkers found the presence of pattern
recognition receptor PGRP-LC in ant Camponotus floridanus genome [19], which
was wrongly annotated as PGRP-LE in the official version of the ant genome
cflo3.3 [20]. It was found that PGRP-LE consists of a long N-terminal domain
and a transmembrane domain. Before the re-annotation it was named as PGRP-
LE. The gene structure of PGRP-LE was improved during re-annotation and
corrected by addition of the missing N-terminal (Fig. 1) further, the correct name
of the protein was adapted from high similarity with A. mellifera PGRP-LE during
function annotation. This wrong annotation occurred probably because of the high
similarity between PGRP-LC and PGRP-LE. In fly these two proteins even have
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Table 1 List of re-annotated eukaryotes

Organism Common name References

Anolis carolinensis Lizard (green anole) [36]
Apis mellifera Honey bee [18]
Arabidopsis lyrata (Plant) [80]
Camponotus floridanus Carpenter ant [19]
Cryptosporidium parvum, C. hominis (Protozoa) [81]
Drosophila melanogaster Fruit fly [82]
Entamoeba histolytica Intestinal parasitic protozoan [37]
Fragaria vesca Wild strawberry [39]
Gallus gallus domesticus Chicken [83]
Rattus norvegicus Rat [84]
Trichoderma reesei (Fungus) [85]

Fig. 1 Re-annotation of carpenter ant PGRP-LC gene. (a) Original annotation PGRP-LC
(wrongly annotated as PGRP-LE; accession number EFN63542.1/Cflo_03358) in cflo_OGSv3.3
and (b) Re-annotated version of carpenter ant PGRP-LC (accession number Cflo_N_g10272t1)

high similarity at the structural level with root mean square deviation of�0.75 A. In
such cases, conclusions based on similarity and whether the annotation is correct or
incorrect are cumbersome, therefore computationally the strategies like orthologous
clustering, domain analysis, and gene bases phylogeny could be implemented for
improvement in function annotation. Expertise in biology also serves with a great
potential for re-annotation such as here the absence of extracellularly located pattern
recognition receptor encoded by C. floridanus was quite surprising which directed
the re-annotator to verify the annotation.

One functional annotation error often occurs in the annotation of nitric
oxide synthase (NOS) enzymes due to their significant similarity with NADPH-
cytochrome P450 reductase. Both may have the similar flavodoxin/NOS and
NADPH-cytochrome p450 reductase and FAD-binding alpha-helical domains,
hence, the BLAST based annotation may carry artifact. This could be corrected by
observing the presence of N-terminal NOS domain in the sequences as cytochrome
p450 lacks this domain.
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Fig. 2 Graphical depiction of the structure of eukaryotic gene and splicing process

2.2 Structural Annotation

Compared to prokaryotes the structure of a eukaryotic gene is more complex as
the exons are separated by the scattered introns which are removed during splicing
and multiple exons can join together in different arrangements to code the single or
alternative form of proteins. Figure 2 graphically depicts the typical structure of a
eukaryotic gene and its splicing process.

The correct determination of splicing sites is critical for improved gene predic-
tion in eukaryotic genomes. The accuracy of gene prediction can be well defined in
terms of sensitivity and specificity.

For a feature (coding base, exon, transcript, and gene) the sensitivity is defined
as the number of correctly predicted features divided by the number of annotated
features. Specificity is the number of correctly predicted features divided by the
number of predicted features [21].

Accuracy D SensitivityC Specificity

2
(1)

Genome annotation ASsessment Project (GASP) provides the overview of the
accuracy of the gene predictions tools. The two independent gene prediction
tools assessments occurred in the year 2006 and 2008 which indicated Augustus,
FgeneshCC, and mGene as robust gene predictors with comparatively high accu-
racy than alternative tools in the assessment. EGASP on human ENCODE regions
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proposed Augustus as best ab initio predictor with overall prediction accuracy
�51 % [22]. The nGASP on Caenorhabditis elegans proposed mGene and Augustus
as best ab initio predictors both with overall prediction accuracy �65 % and in the
category of hybrid predictors proposed FgeneshCC and Augustus as best hybrid
predictors both with overall prediction accuracy�76 % [23].

2.2.1 Tools for Structural Annotation

Multiple methods can be used for gene prediction such as ab initio methods,
evidence based methods (e.g., EST alignment and protein alignment), comparative
genomics methods, and the hybrid approaches which combine ab initio methods
and evidence based methods. The hybrid methods predict and perform better than
individual predictors. All the individual gene prediction methods have their own
advantages and limitations [24]. In the probabilistic approaches, the prediction
accuracy is limited by the quality of training sets while the homology based and
comparative methods are constrained by the similarity and annotation of closely
related species. Notably, mapping of transcriptome data (such as RNA-seq reads
or ESTs) over genome promises major advances for gene finding. The hybrid
method takes advantages of different methods to allow a more accurate and gene
prediction over complete genome, however, hybrid approaches are also limited, for
instance, by incomplete evidence or insufficient training data but overall their pre-
diction performance in terms of accuracy is much better than individual predictors
[25, 26]. The predictors are trained to recognize the pattern of splice sites which
helps the predictor of ab initio gene finding. Furthermore, the ORFs are identified by
the presence of start and stop codons. Table 2 lists the tools and software available
for gene prediction and the methods associated with them. Below, we introduce
some of the good software according to GASP that can be used for better structural
annotations.

Table 2 Tools for gene prediction with associated methods

Software Method

GRAIL, GeneID, GeneParser, Fgeneh, GeneFinder,
GENSCAN, HMMGene, GeneMark.hmm, Gene-Zilla,
GlimmerHMM, Augustus, SNAP, Conrad, Contrast

ab initio

PROCRUSTES, GeneWise, Ensembl Evidence based
Genie, FgenesCC, AugustusC, mGene, BRAKER1,
CodingQuarry

Hybrid

GenomeScan, TWINSCAN, GAZE, N-SCAN, Plaza,
GSA-MPSA

Comparative genomics

TWINSCANEST, N-SCANEST Comparative genomicsC evidence
based
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Augustus

Augustus is a generalized hidden Markov model (GHMM) based predictor which
is flexible for incorporating extrinsic information such as EST alignment, protein
alignment, and RNA-seq data to define the accurate gene models [27]. Like most
of the machine learning method based ab initio gene predictor, in the first step
the algorithm has to be trained with accurate and refined set of genes consisting
of curated annotations. The trained algorithm can be exploited to predict the gene
structure over complete genome. Augustus package comes with optimization script
that is used to retrain the algorithm with tenfold cross validation for improvement
in the prediction parameters. If the user decides not to do training it is possible
to use the prediction parameters of phylogenetically closer organisms if available
with Augustus package. Currently, the program package comes with gene prediction
parameters of >50 organisms. However, we do not recommend to use the closer
organism parameters if the user objective is to perform re-annotation as the sequence
features such as codon bias and splicing signals vary from organism to organism
and even the nearest phylogenetic neighbor does not necessarily possess compatible
parameters. The flexibility of incorporating different data with Augustus provides
the many opportunities to improve the annotations. These data can be used to
generate evidence of hints of introns, exons, and exon parts. The evidences are
further used during the run of Augustus over repeat-masked genome with species-
specific parameters for final structural re-annotation. Nowadays, the bloom in
NGS generates transcriptome data which is also highly valuable for re-annotation.
The mapping of transcriptome sequence reads on corresponding genome provides
the clue of exact exon–intron boundaries which is attributed for improving gene
models in re-annotation procedure. For purely biological researchers Augustus also
provides a web version for training and gene predictions. The different combination
of datasets can be used for training, for example, genome and cDNA/ESTs, genome
and RNA-seq transcripts, genome and protein file, genome and gene structure file,
genome, cDNA file, protein file or genome, cDNA file, and gene structure file.
Augustus can perform the prediction of alternative transcripts, 50UTR and 30UTR
including introns. A recent study has shown the successful re-annotation of ant
Camponotus floridanus genome with Augustus [19].

FgeneshCC

FgeneshCC [28] is the automatic eukaryotic genome annotation pipeline that
includes several programs come with the FgeneshCC suite; for instance, it uses the
HMM based gene prediction program FgeneshCC that uses the information of the
gene structure of existing homologous proteins for more accurate gene assembly
from predicted exons. Currently, the web version of FgeneshCC consists of
genome-specific parameters for gene predictions for more than 250 different organ-
isms FgeneshCC yielded the most accurate gene predictor for predicting maize
genes among the five gene predictors [29]. Similar to Augustus, FgeneshCC can
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incorporate the supporting data such as mRNA or homologous protein sequences
for improved gene predictions. In an evaluation of three gene prediction pipelines
for ability to reproduce the results of gene predictions for 44 selected ENCODE
sequences, FgeneshCC pipeline performs best and could identify 91 % of coding
nucleotides with a specificity of 90 % [30]. Briefly, the pipeline initiates with the
mapping of known mRNAs/cDNAs to genome then the genes are predicted based
on homology to known proteins and finally ab initio predictions are made on the
genomic regions having neither mapped mRNAs nor genes predicted based on
protein homology.

mGene

mGene is a computational tool for the genome-wide prediction of protein-coding
genes. For the recognition of genes training techniques are used that use eukaryotic
sequences as a testing set. A combination of HMM and support vector machines
(SVM) is utilized to differ coding regions from non-coding regions [5, 6]. Thus,
the machine learning algorithm of mGene is called hidden semi-Markov support
vector machine (HSMSVM). During the training process the state-of-the-art kernel
machines refine their parameters for the recognition of signals from, e.g., donor and
acceptor splice sites, transcription start site. These iterative processes improve the
determination of distinct DNA motifs, such as exons and introns The signals of the
input DNA sequences are analyzed by a string kernel or weighted degree kernel in
order to establish a weighted degree subgraph. In the second step the different signal
outputs are assembled to detect whole gene structures.

The weighted output of the HMSVM is contributing to a global score. While
testing the algorithm the difference between the score and the true segmentation
and wrong segmentation is maximized. In the order to compare the performance of
mGene with other gene detection tools, specificity and sensitivity of gene detection
are specified (Table 3; [5, 6]). The program has shown excellent performance for
predicting genes of the nematode model system C. elegans [23]. The Galaxy based
webserver for gene prediction with mGene is also available.

Table 3 Performance of different gene finder software regarding mGene [5, 6]

Nucleotide Exon Transcript
Method Sn Sp SnCSp

2
Sn Sp SnCSp

2
Sn Sp SnCSp

2

mGene.init 96.8 90.9 93.8 85.1 80.2 82.6 49.6 42.3 45.9
mGene.init (dev) 96.9 91.6 94.2 84.2 78.6 81.4 44.3 38.7 41.5
Craig 95.5 90.9 93.2 80.3 78.2 79.2 35.7 35.4 35.6
Fgenesh 98.2 87.1 92.7 86.4 73.6 80.0 47.1 34.1 40.6
Augustus 97.0 89.0 93.0 86.1 72.6 79.3 52.9 28.6 40.8

Sn sensitivity, Sp specificity, SnCSp
2

—accuracy
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Table 4 Results of different
gene finders applied to
EuGene and FGenesH

Gene finder Sne Spe Sng Spg

GenScan (A. thaliana) 69.6 78 25.8 29
GeneMark.HMM (A. thaliana) 73.1 76.6 32.4 31.6
FGenesH (A. thaliana) 85.3 81.4 47 46.5
FGenesH (M. truncatula) 85.1 80.7 52.8 47.8
EuGène (ab initio, M truncatula) 84.7 85.4 55.5 50.5
C FGenesH 90 86.9 63.2 56.4
C Protein similarity 92.4 88 69.2 61.8
CTranscript similarity 94.4 94.6 80.2 79.4

Sne sensitivity for exone, Spe specificity for exon, Sng gene level
sensitivity, Spg gene level specificity [31]

EuGene

EuGene is an integrative gene finder for eukaryotic and prokaryotic genomes. The
underlying algorithm is a HMM that is adjusting state transition probabilities to
a sample set of sequences. In addition EuGene utilizes information of homology
prediction, RNA-seq analysis, structural proteins similarities, and other statistical
source. The results of existing gene finders tool contribute to the global score of
predicted genes. Additionally, EuGene offers the possibility to use plugins, such as
software for detecting frameshift, EST similarity, translation start, and anti-sense
genes. The plugins are either ready to use software, or can be coded in CCC,
for more experienced users. EuGene is a command line tool. The results of the
integrative analysis intend to obtain a maximum score with maximal consistent
information provided (Table 4). For comparability with other gene finders software
results of a test set of eukaryotic genes are stated with sensitivity and specificity
values [31].

GeneScan

GenScan determines coding gene regions by the application of the mathematical
model of GHMM. The software establishes a probabilistic model of the gene
structure of human genomic sequences. It incorporates description of the basic
transcriptional and splicing signals, as well as length distributions and composi-
tional features of exons, introns, and intergenic regions of the human. Hence, a
probabilistic model of the gene structure of human genomic sequences is provided.
In contrast to mGene the tool identifies distinct pattern in CCG content of DNA
region and also focuses on strand information of genes. The output of the software
identifies complete exon/intron structures of genes in genomic DNA. Around 75–
80 % of exons are identified with GenScan [32]. Sample output of GenScan tool is
illustrated in Fig. 3.
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Fig. 3 The graphical output of GeneScan shows an example of a predicted gene HS307871

Table 5 Performance on an A. thaliana cDNAs (a.t.) and Aspergillus fumigatus CDSs (a.f.) by
GeneZilla [34]

% Nucl. accuracy % Exon sensitivity % Exon specificity % Exact genes
a.t. a.f. a.t. a.f a.t. a.f. a.t. a.f.

TigrScan 96 90 77 37 81 47 43 19
GlimmerHMM 96 91 71 36 79 49 33 21
GenScanC 95 87 75 23 82 4 35 11

GeneZilla

GeneZilla, former known as TigrScan, is a eukaryotic gene finder that is utilizing
a GHMM. The software can be trained by the user with an own set of annotated
genes. GeneZilla is highly reconfigurable and is programmed in CCC and is able
to optimize the parameters by retraining. Owing to specific decoding algorithm
the run time and memory requirements are linear in the sequence length, and are
in general better than those of competing gene predictors [33]. Skilled user can
adopt the open source code for their own purposes. Furthermore, the algorithm is
retrained by the end user. The runtime of GeneZilla is linear in length. The graph-
theoretic representation of the high scoring ORF is provided. In this perspective,
the information of states for signal peptides, branch point, TATA boxes, CAP
sites, and CpG islands is integrated. Likewise, GeneZilla is capable of recognizing
various types of exons (e.g., initial/internal/single) by the hand of distinctly adapted
sensors. Interpolated Markov models and maximal dependence decomposition are
two of several underlying submodels for calculating the output. The specificity
and sensitivity are calculated for Aspergillus fumigatus, A. thaliana (Table 5), and
Toxoplasma gondii genomes [34].
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EVidenceModeler

EVidenceModeler (EVM) is a tool for the automated eukaryotic gene annotation,
including the ab initio gene prediction, prediction of spliced protein, and gene tran-
scription alignments using different weights. The EVM algorithm considers initial
exon, internal exon, terminal exon, and single exon corresponding to intronless gene
to assess the gene structure. The coordinates, position and length of each exon are
stored and further validated. Introns with the minimal length of 20 bp are also
stored as discrete features and together with exons are contributed to assessment
of the protein and transcript spliced alignment data. All candidates are evaluated by
unique scoring mechanism and predictions with low suppers for each locus are filter
out. To set the accuracy and sensitivity of the prediction, several evaluation tools
to estimate optimal evidence weights are applied. Except the automated processes,
expected evidence error rates can also be set manually by user, or can be trained from
a training set separately [35]. EVM belongs to poplar software for the genome re-
annotation and was used, e.g., in Anolis carolinensis [36] and Entamoeba histolytica
[37] re-annotation projects.

MAKER

MAKER [38] is a popular configurable genome annotation pipeline written in
the PerlC. It operates from the preassembled RNA-seq data or Cufflinks outputs.
Despite originally was this tool developed for de novo annotation of emerging
model organism, MARKER was used in more than 200 eukaryotic and prokaryotic
genome studies and re-annotation projects, such as woodland strawberry [39]
and Pogonomyrmex barbatus [40]. This tool provides several features, such as
identification of the repeats, alignments of ESTs and protein to a genome, or ab
initio prediction of the genes, as well as re-evaluation of legacy annotation sets.
The quality control is assessed by annotation edit distance [41] and the outputs
are automatically synthetized into gene annotations. Nevertheless the complete
annotation pipeline can take several weeks, the simply usage and reproducible
data make MAKER one of the most using annotation tool and several extensions
are already available, for example, MAKER-P—for the plant genome projects and
MAKER2, toolkit with extended features.

2.3 Free Cloud Infrastructures

In the last decade, the popularity of the cloud infrastructure (CI) grows rapidly. As
processing of the genome data requires expensive computer equipment, CI provides
all necessary assumes for each register users. The CI platform utilizes the clouds
to handle with the data storage, analysis, and access to the databases. It provides
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Table 6 Selected iPlant application

Application Description

Atmosphere module Virtual hosting of web applications, sites, and databases
Discovery
environment

Computing, storage, and analysis application for clustering and
network analysis, mapping of QTL and GWAS, sequence alignments,
phylogenetic analysis, and many more applications

MyPlant tool Allows social networking and group formation
DNA subway Tool for prediction and annotation of genes, analysis of RNA-seq data

and DNA barcoding, phylogenetic analysis
PhytoBisque Analysis of plant-related images
Taxonomic name
resolution service

Computer-assisted standardization of plant scientific names

TreeViewer Phylogenetic analysis

a complex suite of high-performance and high-throughput computing, access to
the computational data management, networking tools, as well as overall cloud
computing approach.

CI is becoming increasingly popular among the users and various platforms
are used as a daily routine in many laboratories. One of the most used CI for
the analysis of the plant and animal genome is iPlant Collaborative (http://www.
iplantcollaborative.org/; [42]). The Data Store is placed on the network of iRODS
servers (University of Arizona, USA) and replicated at the TACC using the iPlant
fAPI job services. The platform allows the work with several applications, which
are highlighted in Table 6. iPlant provides huge number of analytic tools, such as
BEDTools, SAMTools or EMBOSS for bioinformatic analysis, QTL Cartographer
and TASSEL for genetyping and Trinity, and Newblemet or SOAPdenovo for the
de novo assembly. Despite the name of this CI, it was also successfully used in
the animal science [43]. Data storage can be accessed with several web interfaces
and desktop applications, e.g., iPlantDE, FUSE interface, Davis web application or
iDROP, and each user with get universal unique identifier for each file. Initially,
the user gets 100 GB space in the iPlant Data Store, but the data can be increased
upon a request. Furthermore, iPlant also provides work with web service platform
BioExtract, Gates Integrated Breeding Platform, and CiPRES computation tool, as
well as many other underlying infrastructure.

Apart from iPlant, many other CI platforms provide high-performance com-
puting, data analysis, virtual organization, learning, and workforce. The Mercury
platform represents an automated approach for the all-step analysis of NGS data
using Amazon Web services on the DNAnexus platform [44]. The Cloud BioLinux
serves as a platform for variety of bioinformatics analysis, for instance, the
processing of NGS data (provided by toolsets Fastx utilities SAM, BAM), databases
tools for similarity searches (HMMER, BLAST) as well as genome assembly
by SSAKE, NEWBLER, or the Velvet application [45]. Among the popular CI
platforms, GALAXY portal (http://galaxyproject.org/) and Google cloud platform
(https://cloud.google.com/genomics/) are also a good choice for the re-annotation
projects.

http://www.iplantcollaborative.org/
http://www.iplantcollaborative.org/
http://galaxyproject.org/
https://cloud.google.com/genomics/
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2.4 Functional Annotation

Most of the gene prediction suites provide their own identifier for the predicted
genes or proteins. In such a case, it is not possible to recognize the actual gene
name or the gene function. Here the functional annotation comes in act and
provide the name and function of all the annotated proteins. Generally, the name
for a particular protein is derived based on the similarity with its well-annotated
homolog sequence. The similarity search for annotation transfer is performed by
using powerful search algorithms such as BLAST. Nevertheless, the fuzzy criteria
of BLAST thresholds for functional annotation may cause the misannotations
which further may propagate the annotation errors by homology based annotation
transfers. Indeed, 10–30 % of all the functional annotations may be wrong [46,
47]. Generally, above levels of 50 % pairwise sequence identity enzyme functions
are strongly conserved and less than 30 % of the pair fragments above 50 %
sequence identity have entirely identical Enzyme Commission (EC) numbers [48].
However, such criteria are not always true, for example, on considering the full
length sequence the human and C. elegans p53 transcription factor does not show
significant similarity for annotation transfer, but due to the presence of similar
domains both are annotated as p53. In many cases, annotation can be erroneously
transferred in proteins families that belong to same superfamily [48].

Such misannotation occurs because BLAST is not very discriminative with fuzzy
thresholds. Misclassifications are also originated from similarities in relatively short
regions and/or from transferring annotations for different domains in multidomain
proteins. To avoid the errors the extensive manual curations are required although
using robust algorithm. Moreover, the selecting sensitive parameters for functional
annotation can be applied to reduce the annotation errors.

The encoded short peptides by gene prediction efforts can also be annotated.
However, for short peptide the HMM based or comparative analysis based anno-
tations are more suitable. In case of missing proper annotation for proteins by
homology based annotation transfer, annotation of functional domains can be per-
formed with Pfam [49], Smart [50], and InterPro ([51, 52]) like tools. Occasionally
phylogenic analysis can be used to dissociate the members of gene family that
belongs to same superfamily into appropriate groups, for instance, the classification
of Glutathione S-transferases (GSTs) into multiple groups after the re-annotation
[19].

2.4.1 Tools for Functional Annotation

Most of the functional annotation pipelines are based on homology based annotation
transfer were user can tune the parameters to minimize the annotation error.
Here we have summarized some good and state-of-the-art programs for functional
annotation.



186 S.K. Gupta et al.

AutoFact

AutoFact [53] is one of the good classical tools for functional annotation. AutoFact
is written in Perl and is a BLAST based annotation tool which considers a nice
hierarchical system for annotation. Users can give their preference number to the
databases for the annotation. Initially, the hits for annotation transfer are verified
in first rank database such as Uniprot90 or Uniprot100 and so on. If the hits are
not satisfactory with the sequence databases, then the hits against Pfam database
are analyzed and in case of significant similarity protein is annotated as “x-domain
containing protein” where x is the name of the functional domain in target sequence
homolog in Pfam. This process is quite useful to minimize the number of proteins
annotated as hypothetical proteins.

BLAST2GO

BLAST2GO (B2G) represents one of the most frequently used tools for functional
annotation, in either basic or pro frameworks, available free or commercial,
respectively. Besides the user-friendly interface for gene ontology (GO) annotations,
B2G interface also provides the facility to KEGG metabolic pathway enrichment,
prediction of InterPro motifs, and enzyme code (EC), which allow the users
to get to graphical function of data mining on annotation procedure, without
the need for computational knowledge. The user can set up their own BLAST
database downloaded from NCBI portal for the faster calculations. B2G transfers
the annotations based on the similarity with top hits. The analysis process starts
with BLAST (either BLASTN, BLASTP, BLASTX, or TBLASTX) through either
public database (such as NCBI nr and EST using QBLAST) or a local database
(such as single species DB and GO annotated sequence set). Retrieving significant
hits is performed based on provided E-values and hit number thresholds, as well
as additional filters such as minimal alignment length (hsp-length). The resulted hit
gene identifiers (gi) and gene accessions are used in order to get GO annotation and
evidence code, which is evaluated based on annotation rule (AR) including highest
hit similarity and parent node annotation. The statistical assessment of functionality
of GO terms is performed by comparing with a reference group by Gossip and
calculating false discovery rate (with Fisher Exact test) and ranking by one-test
p-values or corrected ones. These procedures will be visualized step-by-step through
graphs and charts with informative statistics data, besides of GoPAG possibility,
which highlights the most relevant biological meaning of a set of sequence [54, 55].
With all these good features B2GO ensures the improving possibilities in functional
annotation.
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Plaza

Plaza is an online platform for plant comparative genomics, it includes functional
as well as structural annotations of available plant genomes, from a wide range of
species of green plant lineage. It provides various interactive tools for extracting
biological information about gene function, as well as gene and genome evolution.
Protein-coding genes are assigned to homologous gene families based on sequence
similarity and their paralogs and orthologs are shown in phylogenetic trees. A web
interface toolkit allows access to various tools. These include local synteny plots,
which describe positional orthologs, Skyline plots, which calculate gene based
collinearity between all chromosomes belong to different species, and WGDotplot,
which facilitates the study of large-scale duplicates within a genome. Currently,
Plaza hosts different organisms from eudicots, monocots, lycopods, moss, and algae.
Plaza is a useful application for browsing gene families, functional gene clustering,
studying multispecies collinearity, as well as for the prediction and evaluation of
complex gene orthology [56, 57].

Trapid

Trapid is a web based tool, providing transcriptome analysis derived from de novo
assembly of RNA-seq or EST sequencing. The process starts with a sequence
similarity search using PAPSearc [58] with a user-selectable E-value cutoff, fol-
lowed by detection of ORFs in order to identify coding sequences and gene family
assignment. This is achieved by building a graph with genes for nodes and BLAST
bitscores for edges, performing transcript quality control and annotating homology
based functional. The analysis process is followed by detailed sequence analysis
of the transcriptome. This includes multiple sequence alignment using MUSCLE,
detection of homologs from related species using JalView [59] and construction
of a phylogenetic tree using FastTree2 [60] in order to define relationships between
genes (orthologs and paralogs) and the allelic transcript variant from Plaza V2.5 [57]
or OrthoMCL-DB V5 [61]. Although TRAPID utilizes �175 reference proteomes,
it does not process data from large-scale metagenomics studies. Output overview
of the rapid analysis will be shown in a Toolbox, including general statistical
information on input quality, meta annotation, similarity search annotation, gene
family, and GO functional annotation [62].

BLASTKOALA and GhostKOALA

These KOALA (KEGG Orthology and Links Annotation) tools are automatic
annotation servers that perform BLASTP and GhostX searches against nonre-
dundant KEGG DGENES or KEGG MGENES, respectively. This is achieved by
computing CD-Hit clusters, with 50 % cutoff identity of species/genus/family group.
The K number assignment to the query sequence is made by KOALA algorithm,
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through weighted sum of SW (Smith-Waterman) score calculation. BLASTKOALA
performs best to annotate fully sequenced genomes, whereas GhostKOALA is more
suitable for large amount of metagenome sequences annotation. Implementation of
KEGG Map-per tool will be done in order to reconstructing of KEGG pathway
maps, BRITE functional hierarchical, KEGG modules, as well as KEGG taxonomy
or NCBI taxonomy. The general overview of annotation data will be shown in the
result page as pie charts [63].

MapMan

MapMan is a software tool to compare biological responses of different gene
categories. It is applicable for a very wide range of crops and wild species, which is
useful for the identification of potential orthologs between different plants. This is
achieved by using reciprocal BLAST and a range of E-value cutoffs. MapMan struc-
ture is based on a set of modules. The first module is Scavenger, which generates
the functional categories of genes, enzymes, proteins, and metabolites. The resulting
ontologies (mapping files) will be imported into the ImageAnnotator module to
visualize the biological pathways or processes, by using a Wilcoxon test. In case
of multiple experiments, the mapping files will be visualized by PageMan through
compressing of all the pathways. This tool facilitates the process of investigating
analogous responses in any plant species with existing gene models or Unigenes
[64]. This procedure is also available via an automated sequence annotation pipeline
(Mercator), a web application of MapMan, in order to make functional annotation
based on BLAST and protein domain search for NGS sequences [65].

3 Steps for Re-annotation

3.1 Genome Assembly

Genome assembly process stitches together a genome sequence from the short
sequenced pieces of DNA. Although the advancement in NGS technology, gen-
erating the large, continuous regions of DNA sequences by high quality assembly
of reads is still challenging mainly because of the presence of repetitive elements.
Repeats not only cause gaps in assembly procedure but can also erroneously
collapsed on top of one another and subsequently can cause complex, misassembled
rearrangements [66, 67]. The misassembled genome further attributes to wrong
interpretation of absence or presence of genes. Korf et al. showed that an assembly
of the chicken genome lacks 36 genes that are conserved across plants, yeast, and
other organisms. However, these genes were only missed from the assembly rather
than the organism as the focused re-analysis of the raw data showed the presence of
most of these genes in sequences that had not been included in the assembly [68].
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It is possible that number of genes in the different assembly may not be similar for
the same organism. Therefore, the features missing from the assembly should not be
assumed missed from the organism without the follow-up studies and validations.
Although, re-assembly and re-annotation both are independent procedures, but for
the sake of completeness we have briefly summarize the genome assembly in
reference to missing genes.

3.2 Repeat-Masking

The first requirement for re-annotation is genome itself. The annotation programs
are generally run on the repeat-masked version of the genome. Therefore, first the
genome should be repeat-masked. The program RepeatMasker [69] and Repeat-
Modeler [70] can be used for the repeat identification. RepeatMasker uses the
library containing those repetitive elements for masking the homologous regions
and RepeatModeler performs the ab initio modeling of the genome. Finally, the
combined library should be used for the repeat-masking. When preparing repeat-
masked sequences, we recommend not masking low complexity regions and simple
repetitive motifs, as they may also be the parts of coding sequences.

3.3 Training-Set Creation

The training set for gene predictors should be made with caution as the quality
of the training set greatly affects the final gene predictions. Tools such as Pasa [71],
BLAT [72], and Scipio [73] can be used for the creation of good quality training sets
structure using a combination of GeneWise [74], HMMER [75], and GeneID [76]
program. Pasa performs the alignment of assembled transcripts on the test genome
using GMAP (Wu et al. 2005) aligner for modeling the gene structure. Scipio can
be used to derive gene models from the well-annotated proteins of test genome or
close species by aligning them to the test genome using spliced alignment tool Blat,
followed by determination of the correct exon–intron junctions by hit refinements
and filtering with Scipio. In case of the availability of multiple well-annotated
proteins, we recommend the use of protein belongs to different GO categories for
creating training set with Scipio. The consensus or non-overlapping set of gene
models for training procedure can be obtained from combination of Cegma [77],
Pasa, and Scipio based training sets.
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3.4 Training and Optimization

The gene prediction parameter for the test species should be optimized to get the
best sensitivity and specificity. Here, we recommend the cross-fold validation during
the training to achieve the best optimized parameters. It should be noted that the
prediction parameters can significantly influence the number of exons and/or genes
predicted by the gene finder. These parameters often include the probabilities of
transition between the given states of the GHMM.

3.5 Integration of Extrinsic Data

After the training-set creation step, the next step is to collect the additional
supporting data, for example, the EST/cDNA, RNA-seq data to improve the ab initio
gene predictions. The intron, exon, or exon part hints for evidence supported gene
structure could be derived from EST, cDNA, and raw reads as well as assembled
transcripts. Different gene predictors provide their own tutorials for integrating the
RNA-seq data. Generally, the raw or assembled reads are mapped to the reference
genome using aligners such as Tophat2/Bowtie2 [78, 79] to generate the evidences
of splice sites, introns, and exons. For example, in Augustus evidences of introns
can be generated by a two-step process, first the raw reads are mapped over repeat-
masked genome of the annotating species using Tophat2/Bowtie2 to create the
preliminary intron hints then Augustus performs the gene predictions with the
created preliminary intron hints to generate intermediate gene models and exon–
exon junction database. Finally, the reads are again mapped now on exon–exon
junction database using Bowtie2 to generate the final intron evidences. Moreover,
to generate the evidences of exons, part of exon and introns, the assembled reads
or EST data can also be used which can be mapped over the repeat-masked or
unmasked annotating genome using the splice aligner such as BLAT [72]. The
generated evidences serve as hints for hybrid predictors and it could be accessed
that how much percentage of the genes are supported by transcriptome data. More
coverage of genome by the extrinsic data increases the reliability of the annotation.

3.6 Structural and Functional Annotation

Finally, to predict the gene structures and estimate the alternative transcripts, gene
predictions with extrinsic events should be performed on the repeat-masked test
genome using the tuned optimized parameters of the test species. Our recommenda-
tion is to use the robust tool Augustus [27] as the gene prediction platform and later
using AutoFact [53] for annotating the function of the re-annotated genes.
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4 Conclusion

If our chapter at least alerted you to the problem of constantly improving annotation
of eukaryotic genomes, we are already rewarded. Clearly, in our Big Data era, a good
eukaryotic genome annotation is one of the first victims of data growth as data grow
so rapidly. Transferring annotation mistakes from one genome to the new one often
happen and manual annotation requires anyway a lot of biological insights. We also
focused in this chapter on protein gene annotation, the most important and direct
task. Bear in mind that the area of annotating repetitive DNA and intergenic regions
or annotation of encoded RNA would be full grown chapters of their own. However,
our second intent was to give you automatic tools in hand which certainly cannot
take all the burden from you of carefully reanalyze what you achieved regarding
annotation, but they should give you the momentum and confidence to really do it
with your favorite genome.
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1 Introduction

Searching biological sequence database is a common and repeated task in bioinfor-
matics and molecular biology. In a typical search operation, biological sequences
with unknown functionalities (usually referred as query sequences) are aligned
to a database of known sequences to find similarities. The alignment process
computes a score that represents the degree of similarity between each pair of
query and database sequences. Sequence alignment methods are classified as
either global or local. Global alignments try to maximise the number of matches
between the two sequences along their entire lengths and are useful when the
sequences are similar. On the other hand, local alignments try to maximise the
number of matches between small portions of the two sequences. This kind of
alignment exposes much better similarity between unrelated sequences and, at the
same time, leads to more biologically relevant results [18]. The Smith–Waterman
(SW) algorithm is the most accurate method for local sequence alignment. This
algorithm is based on dynamic programming approach and its high sensitivity comes
from exploring all the possible alignments between two sequences. Unfortunately,
this method is computationally demanding and the situation gets worse due to
the exponential growth of biological data in the last years. One frequently used
approach to speed up this time demanding operation is to introduce heuristics in
order to reduce the search space. Heuristics usually produce considerably good
results. However, they are deficient in searching the best match subsequences and,
in consequence, are not guaranteed to discover the optimal alignment. For that
reason, the scientific community has made great efforts to accelerate SW protein
database searches through high-performance computing (HPC) in a wide variety of
hardware platforms. This chapter gives a survey of the state-of-the-art in SW protein
database search, focusing on four hardware architectures: central processing units
(CPU), graphics processing units (GPU), field programmable gate arrays (FPGA)
and Xeon Phi coprocessors. After briefly describing each hardware platform, we
analyse temporal evolution, contributions, limitations and experimental work and
the results of each implementation. Additionally, as energy efficiency is becoming
more important every day, we also survey performance/power consumption works.
Finally, we give our view on the future of SW protein searches considering next
generations of hardware architectures and its upcoming technologies.

The rest of the chapter is organised as follows: Sect. 2 briefly describes the
considered hardware platforms. Section 3 introduces the basic concepts of the SW
algorithm. Section 4 reviews hardware acceleration of SW protein database search.
Section 5 overviews performance-power consumption evaluations on SW context.
Section 6 gives our view on the future of SW protein searches considering next
generations of hardware architectures. Finally, Sect. 7 presents the conclusions of
this chapter.
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2 Hardware Platforms

Scientific community has made great efforts to accelerate Smith–Waterman biolog-
ical database searches in a wide variety of hardware architectures. Next there is a
brief description for each hardware platform considered in this work.

2.1 Central Processing Units

Traditional chip design was guided by increasing transistor count and clock speed,
which enabled designers to implement many advanced techniques that permitted to
increment instruction level parallelism (ILP) and, in consequence, led to improved
application performance. However, at the beginning of this century, this design
process got stuck due to two reasons:

• extracting more ILP from programmes became a hard task and
• increasing clock frequency reached unsustainable power consumption and heat

generation levels.

Multi-core processors arose as a solution to this problem. Hardware vendors
decided to integrate two or more computational cores within the same chip.
Even though these cores are simpler and slower, when combined, they permit
enhancing the global performance of the processor while making an efficient use
of energy [28]. Its introduction also affected application programmers because
explicit parallelism should be exploited to take advantage of multi-core hardware; in
particular, both data and task parallelism. The first multi-core CPUs were simply two
processors on the same die but later generations incorporated more cores, additional
cache levels and better interconnection networks, among other features.

Currently, the main CPU vendor is Intel followed by AMD. In 2015, Intel
presented the Skylake micro-architecture introducing the first processors of this
family and more models were announced to the next 2 years. In particular, the
high-performance Xeon line will incorporate several improvements, such as support
for more sockets, channels of DDR4 memory and PCIe slots. Additionally, these
processors will include AVX-512 vectorial instruction set1 (a 512-bit extension of
the current Advanced Vector Extensions with 256-bit width) and will give support
to integrated FPGAs [36]. According to Intel, the next two micro-architectures
will be available in 2016 (Kaby Lake) and 2017 (Cannonlake). Kaby Lake will
be an upgraded version of Skylake while Cannonlake will shrink the fabrication
technology to 10 nm [14].

AMD introduced three different micro-architectural families in 2011. The Fusion
family corresponds to the Accelerated Processing Units that integrate CPUs and
GPUs on the same chip. On the other hand, the Bobcat family was designed for
low-power and low-cost devices while the Bulldozer family is oriented to desktop

1AVX-512 Extensions: https://software.intel.com/en-us/blogs/additional-avx-512-instructions.

https://software.intel.com/en-us/blogs/additional-avx-512-instructions
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computers and servers. Finally, the next AMD micro-architecture is named Zen and
will be available by the end of 2016. Zen’s main purpose consists in improving
performance per core more than increasing number of cores or hardware threads.
In particular, some preliminary reports state up to 40 % more instructions per clock
cycle [30]. Unlike previous micro-architectural families, Zen will adopt simulta-
neous multi-threading capabilities and will be developed using 14 nm fabrication
technology.

2.2 GPU

GPUs were originally developed for computer games and its designs were orientated
for that purpose. The first non-graphic applications were programmed adapting
primitives from graphic languages like OpenGL or DirectX. In the last decade, GPU
architectures were modified and several programming libraries were introduced that
permitted avoiding graphic primitives. These changes increased GPU usage in sig-
nificant manner. Nowadays, they have consolidated as general purpose accelerators
in HPC community due to the increasing compute power and energy efficiency.

Currently, most popular programming languages for GPUs are CUDA [33],
OpenCL [45] and, in lesser extent, OpenACC [35]. While these languages reduce
programming cost compared to initial graphic languages, they still represent a hard
task because they significantly differ from traditional CPU’s programming model.
Therefore, programmers must learn specific GPU knowledge to achieve high-
performance applications. For example, common optimisation techniques comprise
increasing hardware occupancy, exploiting memory hierarchy, organising memory
accesses, avoiding divergent branches, among others.

The two main GPU vendors are NVIDIA and AMD. In 2011, AMD introduced
Graphics Core Next (GCN) architecture, which is the basis for its individual and
integrated GPUs. GCN was designed to achieve high performance not only in
graphic applications but also in general purpose tasks [42]. One of the main AMD
innovations in the last years is high-bandwidth memory (HBM) technology, a new
type of 3D memory that can be used in CPUs and GPUs. This kind of memory has
several advantages: significant space savings and increased bandwidth and energetic
efficiency [3]. HBM has been incorporated in AMD GPUs codenamed Fiji from
GCN architecture, introduced in 2015, and more AMD cards with this technology
will be available in 2016.

Current NVIDIA GPUs are based on Maxwell architecture, which was presented
in 2014. Maxwell family redesigned Streaming Multiprocessor architecture, the
heart of each NVIDIA GPU, and also the memory hierarchy [12]. These changes
allowed Maxwell to improve performance and power efficiency in relation to its
predecessor Kepler. NVIDIA has announced its next architecture codenamed Pascal
for 2016, which will include HBM adoption and 16 nm manufacturing process.
According to NVIDIA, Pascal will improve performance, performance per watt,
memory capacity and bandwidth of Maxwell [31].
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2.3 FPGA

FPGAs are reconfigurable integrated circuits comprising programmable intercon-
nections that join programmable logic blocks, embedded memory blocks and digital
signal processor blocks. Communication to the outside is performed through I/O
blocks, which are arranged in a ring form around the circumference of these
devices. As opposed to CPUs and GPUs, FPGA resources may be configured
and linked together to create custom instruction pipelines through which data
is processed. Also, they work at lower clock frequencies and have lower peak
performances. However, since FPGAs can configure its hardware for each specific
application, they usually reach better performance efficiencies. Additionally, they
are normally more efficient from energetic point of view as there is no silicon
waste [41, 48].

Since its development, FPGAs have significantly evolved continuously incre-
menting its available resources and incorporating features like standards for inter-
connection networks and high-speed I/O. At the beginning, FPGAs were used
for digital signal processing. However, in the last few years, there are two clear
trends to enlarge FPGA usage in other application domains. The first comprises
the increasing integration of FPGAs with CPUs due to accelerators consolidation
in HPC community as a way of improving performance while keeping power
efficiency. In particular, the two main FPGA makers Xilinx and Altera have
established different agreements with important CPU vendors to develop hybrid
CPU-FPGA architectures. IBM has announced a strategic partnership with Xilinx
to enable higher performance and energy-efficient applications through FPGA-
enabled workload acceleration on IBM POWER-based systems [15]. On its behalf,
Altera has been recently acquired by Intel and they plan to combine Altera’s FPGA
products with Intel Xeon processors as highly customised, integrated products [16].
The second trend consists in reducing FPGA programming cost. Generally, digital
design verification and creation have involved the use of hardware description
languages (HDLs), like Verilog and VHDL. However, HDLs are tedious, error prone
and affected by an extra abstraction layer as they contain the additional concept of
time. Currently, both Altera and Xilinx are working on high-level tools that seek
to reduce the programming cost of these devices; in particular, through OpenCL
standard [2, 52].

2.4 Xeon Phi

The Xeon Phi is a recent many-core coprocessor developed by Intel for HPC
applications. In its current generation, the Xeon Phi features up to 61 x86 pentium
cores with extended vector processing units (512-bit) named Knight Corner (KNC)
and simultaneous multi-threading capabilities (four hardware threads per core).
Each core integrates an L1 cache and has an associated fully coherent L2 cache.
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Additionally, a high-speed ring interconnection allows data transfer among all the
L2 caches and the memory subsystem.

The Xeon Phi offers two execution modes: offload and native. In the offload
mode, the Xeon Phi acts as a coprocessor. It takes on computationally demanding
parts of programmes delegated by the CPU. In the native mode, the Xeon Phi runs
as a completely standalone computing system. In this mode, applications can use
solely the resources of the coprocessor.

From a programming point of view, one of the main advantages of this platform
is the support of existing parallel programming models traditionally used on
HPC systems such as the OpenMP or MPI paradigms, which simplifies code
development and improves portability over other alternatives based on accelerator-
specific programming languages such as CUDA or OpenCL.

With regard to the future of Intel many-core coprocessors, Intel has announced
the next generation, called Knights Landing, which is planned to run HPC systems
in 2016. Among the main differences posted, the chip will be built with 14 nm tech-
nology and be able to operate as a standalone CPU rather than as a coprocessor. It
will also incorporate Intel Silvermont processors with AVX-512 vector capabilities,
unifying in this way vector extensions with general purpose Intel Xeon Skylake
processors. Lastly, main memory will have a stacked organisation, similar to HBM
proposal [36].

3 Smith–Waterman Algorithm

In 1970, Saul Needleman and Christian Wunsch introduced an algorithm to
compute optimal global alignment between two biological sequences, known as
the Needleman–Wunsch algorithm [32]. Later, in 1981, Temple Smith and Michael
Waterman proposed a variant of the Needleman–Wunsch algorithm to find the
optimal local alignment of two sequences [43]. The SW method has been used as
the basis for many subsequent algorithms and is often employed as a benchmark
when comparing different alignment techniques [13]. Its strength comes from
the guarantee of discovering optimal alignment because it explores all possible
alignments between the pair of sequences.

The SW algorithm computes the optimal local alignment between two sequences
following a dynamic programming approach and can be divided into two stages: (1)
similarity matrix (also called alignment matrix) filling, to obtain optimal alignment
score; and (2) traceback, to obtain optimal alignment.

1. Similarity matrix filling: given two sequences q D q1q2q3 : : : qm and d D
d1d2d3 : : : dn, SW fills a matrix H which keeps track of the degree of similarity
between them. The recurrence relations for the SW algorithm with the modifica-
tions of Gotoh [11] for handling multiple sized gap penalties are shown below:

Hi;j D max
n
0; Hi�1;j�1 C SM.qi; dj/; Ei;j; Fi;j

o
(1)



State-of-the-Art in Smith–Waterman Protein Database Search on HPC Platforms 203

Ei;j D max
n
Hi;j�1 �Goe; Ei;j�1 � Ge

o
(2)

Fi;j D max
n
Hi�1;j �Goe; Fi�1;j � Ge

o
(3)

The residues of sequence q, usually called query sequence, label the rows.
In similar way, the residues of sequence d, usually called database sequence,
label the columns. Hi;j represents the score for aligning the prefixes of q and d
ending at position i and j, respectively. Ei;j and Fi;j are the scores ending with a
gap involving the first i residues of q and the first j residues of d, respectively.
SM is the substitution matrix which defines the substitution scores for all residue
pairs. Generally SM rewards with a positive value when qi and dj are identical
or relatives, and punishes with a negative value otherwise. Common substitution
matrices for protein alignment are BLOSUM or PAM families. Goe is the sum of
gap open and gap extension penalties while Ge is the gap extension penalty. The
recurrences should be calculated with 1 � i � m and 1 � j � n, after initialising
H, E and F with 0 when i = 0 or j = 0. The maximal alignment score in the matrix
H is the optimal local alignment score S.

2. Traceback: Based on the position in matrix H where the value S was found, a
traceback procedure is performed to obtain the pair of segments with maximum
similarity, until a position whose value is zero is reached (this being the starting
alignment point of the segments). These two segments represent the best local
alignment.

The SW algorithm has quadratic time complexity. To compute optimal align-
ments, this method has quadratic spatial complexity. However, computing optimal
alignment scores do not require storing full similarity matrix and can be computed
in linear space complexity.

Figure 1 shows the calculation of four cells (H1;1, H1;2, H2;1 and H2;2) in the
similarity matrix corresponding to the SW alignment between protein sequences
CAWHEAET (q) and CITAGWHEE (d). BLOSUM62 was selected as the scoring
matrix, and gap insertion and extension penalties were set to 6 and 2, respectively.
After initialising H, E and F with zero when i D 0 or j D 0, the other cells in the
similarity matrix are computed according to Eq. (1). For example, the cell H1;1 in
Fig. 1 is 9 because that is the maximum of 0, 9 (the upper-left neighbour plus the
similarity score from BLOSUM62 substitution matrix, 0 + 9 = 9),�2 (the alignment
score ending with a gap in the query sequence, maxf0�8; 0�2g D �2) and�2 (the
alignment score ending with a gap in the database sequence, maxf0�8; 0�2gD�2).

It is important to note that no cell value can be less than zero. Additionally, there
is a strict order of computation in matrix H due to the data dependences inherent
to this problem. Any cell in matrix H has a dependence on three cells: the one to
the left, the one above and the one from the upper-left diagonal. This dependence is
illustrated in Fig. 1 through arrows.

Once all values in matrix H were computed, a traceback procedure is performed
to obtain the best local alignment. Figure 2 illustrates the complete similarity matrix
corresponding to the SW alignment shown in Fig. 1. The traceback starts in S
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Fig. 1 Calculation of four cells in the similarity matrix corresponding to the SW alignment
between protein sequences CAWHEAET and CITAGWHEE

position and then works backwards (upwards and to the left). Moving upwards
inserts a gap in the database sequence while moving to the left inserts a gap in the
query sequence. The traceback procedure terminates when a position whose value is
zero is reached (this being the starting alignment point of the segments). These two
segments represent the best local alignment. In this example, the optimal alignment
score is 20 while the best local alignment is shown under the similarity matrix.

4 Acceleration of SW Protein Database Search

As explained in Sect. 1, dynamic programming algorithms can be too computa-
tionally expensive to be used in biological database searches. In fact, due to the
exponential growth in biological data, heuristic approaches are not enough in some
occasions [18]. This is where parallelism exploitation becomes fundamental to
accelerate this kind of searches. This section focuses on the state-of-the-art of
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Fig. 2 Illustration of
Smith–Waterman alignment
between protein sequences
CAWHEAET and
CITAGWHEE

SW algorithm acceleration. First of all, we study the data dependences of SW
algorithm and the possible ways of parallelise it. Next, we describe the available
implementations for four different hardware platforms: CPU, GPU, FPGA and
Xeon Phi.

4.1 Data Dependences and Parallelism

The most computational expensive part of SW algorithm is the similarity matrix
filling. Even though the data dependences described in Sect. 3 restrict the ways in
that the similarity matrix can be computed, the SW computation has some inherent
parallelism that can be exploited to reduce its computational cost. In general,
accelerated implementations adopt one of the following two approaches:

• In the intra-task parallelism approach, the parallelism within a single pair of
sequences is exploited. The implementations following this approach compute
several anti-diagonal cells in parallel, since these computations are independent
among them. It is also possible to compute several cells in a row or a column
at the same time; however, a subsequent adjustment mechanism is required to
maintain algorithm coherency due to data dependence ignorance.

• Inter-task parallelism is based on performing several pairwise alignments con-
currently. Its backbone is based on null data dependence between alignments,
which turns the problem into an embarrassingly parallel one.

Both approaches have been extensively explored by scientific community in a
wide variety of hardware platforms. In the following subsection, we describe the
works based on CPU, GPU, FPGA and Xeon Phi.
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4.2 Available Implementations

Cell updates per second (CUPS) is a commonly used performance measure in the
Smith–Waterman context, because it allows removal of the dependence on the query
sequences and the databases utilised for the different tests as well as the hardware
device. A CUPS represents the time for a complete computation of one cell in
matrix H, including all memory operations and the corresponding computation of
the values in the E and F arrays. Given a query sequence Q and a database D, the
GCUPS (billion cell updates per second) value is calculated by:

jQj � jDj
t � 109 (4)

where jQj is the total number of residues in the query sequence, jDj is the total
number of residues in the database and t is the runtime in seconds [23].

Next, we describe the most notable implementations according to the hardware
architecture employed.

4.2.1 CPU Implementations

The first efforts to accelerate SW algorithm date back to the 1990s. Alpern
et al. [1] proposed several techniques including a parallel implementation that used
microparallelism by dividing the 64-bit Z-buffer registers of the Intel Paragon i860
processor into four parts. This approach allowed comparing the query sequence and
four database sequences at the same time. As a result, they reached a 5� speed-up
compared to a conventional implementation.

The intra-register parallelism of the previous approach would be simpler and
easier with the future introduction of small vectorial capabilities from processor
vendors. With the rise of multimedia applications, general purpose processors
incorporated SIMD technology, like the MMX, SSE, AVX or AltiVec extensions
[37]. In general, four different approaches can be identified to vectorisation in
similarity matrix computations. Figure 3 illustrates these approaches.

Most efforts focused on intra-task parallelism. In 1997, Wozniak [51] presented
a parallel implementation for a Sun Ultra Sparc processor that exploited the SIMD
video instructions to compute several anti-diagonal cells in parallel, since they have
no dependences among them. Unfortunately, getting substitution scores for anti-
diagonal cells resulted complex and hard to resolve efficiently, because each amino
acid pair requires different indexation in substitution matrix. Even so, Wozniak
achieved a 2� acceleration over the fastest serial implementation of the time.

Three years later, in 2000, Rognes and Seeberg [38] introduced a SIMD
version using the MMX/SSE extensions, becoming the first to take advantage of
these instruction sets. They found that vectorising along the query sequence was
faster than vectorising along the anti-diagonals, in spite of having to make more
calculations due to ignoring some of the data dependences mentioned in Sect. 4.1.
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Fig. 3 Approaches to vectorisation in similarity matrix computations (adapted from [37]): (a)
Vectorisation along the anti-diagonals, proposed by Wozniak [51]; (b) Vectorisation along the
query sequence, proposed by Rognes and Seeberg [38]; (c) Vectorisation along the query sequence
(striped approach), proposed by Farrar [9]; (d) Vectorisation along multiple database sequences,
proposed by Alpern et al. [1]

Another difference with previous solutions lies on Rognes and Seeberg used 8-bit
integer data. This fact allowed them to compute a higher number of alignments in
parallel at the cost of reducing score representation range to 0–255. This scheme
results beneficial because overflow only occurs when sequences are long and/or
very similar between them. When overflow occurs, a 16-bit integer version of the
algorithm is employed to guarantee correct results. In addition, they introduced
the Query Profile (QP) technique, which consists in building an auxiliary two-
dimensional array of size jqj � jP j, where q is the query sequence and

P
is the

alphabet. Each row of this array contains the scores of the corresponding query
residue against each possible residue in the alphabet. QP technique improves data
locality by replacing a random access to the substitution matrix with a linear access
to the QP matrix in the algorithm innermost loop. The SIMD instructions usage
together with QP technique allowed Rognes and Seeberg to reach a 6� speed-up
over an optimised serial implementation.

Later, in 2007, Farrar [9, 10] used SSE2 extensions to develop an improved
version of the Rognes and Seeberg implementation. Just as the previous approach,
Farrar vectorised along the query sequence. However, the alignment matrix com-
putations were re-organised to do them in a striped manner. This access pattern
minimises data dependences impact and reduces misaligned vector accesses. Addi-
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tionally, Farrar proposed the lazy F technique, which helps to minimise the
number of conditional jumps inside the innermost loop. As a consequence of these
improvements, Farrar reported more than 11 and 20 GCUPS when using four and
eight cores, respectively.

A year later, Szalkowski et al. [44] proposed some improvements to Farrar
approach. They presented a multi-threaded version for both x86 architectures with
SSE2 compatibility and Cell/Broadband Engine from IBM. This implementation
is known as SWPS3 and reached a peak of 15.7 GCUPS when using a quad-core
processor.

Afterwards, in 2011, Rognes [37] presented SWIPE, an implementation for Intel
processors with SSSE3 instruction set adopting the inter-task scheme proposed
previously by Alpern et al. [1]. Rognes also introduced the Score Profile technique
(SP) to accelerate the substitution scores extraction. The SP technique is based on
constructing an auxiliary n � l � jP j two-dimensional score array, where n is
the length of the database sequence, l is the number of vector lanes and

P
is the

alphabet. Since each row of the auxiliary matrix forms an l-lane score vector, its
values can be loaded at the same time through a single load vectorial instruction.
The main SP disadvantage is that score array must be constructed for each database
sequence. Using two six-core processors, SWIPE achieved a peak of 106.2 GCUPS,
being up to six times faster than SWPS3 and Farrar approach.

In 2013, Zhao et al. [54] presented SSW, a library developed in C/C C C
to facilitate SW integration to other genomic applications. SSW adopts Farrar
approach to compute optimal alignment as well as optimal score. As SSW is
also available as an autonomous tool, the authors measured its performance while
searching Swiss-Prot database; SSW reported up to 2.53 GCUPS using an AMD
x86 64 2.0Ghz processor.

Two years later, in 2015, Rucci et al. [39] introduced SWIMM, an implemen-
tation for Intel heterogeneous systems combining Xeon and Xeon Phi processors.
SWIMM adopts the inter-task scheme and offers three execution mode: (1) Xeon,
(2) Xeon Phi and (3) concurrent Xeon and Xeon Phi. Unlike previous implementa-
tions, SWIMM is able to take advantage of AVX2 as well as SSE extensions. The
AVX2 exploitation allows SWIMM to compute up to 32 alignments in parallel in
place of 16 (SSE case). In their work, the authors showed that SWIMM can be
comparable with SWIPE when using SSE instruction set. However, when taking
advantage of AVX2 extensions, SWIMM demonstrated to be superior to SWIPE. In
the Xeon mode with AVX2 exploitation, SWIMM reached up to 360 GCUPS using
two Intel Xeon E5-2695 v3 2.3 GHz processors when searching Environmental NR
database.

Finally, in 2016, Daily [7] presented Parasail, a C-based library containing imple-
mentations of different pairwise sequence alignment algorithms. The intent of this
library is to be integrated into other software packages, not necessarily to replace
already highly performing database search tools. In that sense, Parasail implements
most known algorithms for vectorised SW sequence alignment that follows intra-
task parallelism scheme (including Wozniak [51], Rognes and Seeberg [38] and
Farrar [9, 10] approaches described above). Additionally, the Parasail library imple-
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Table 1 Performance summary of CPU implementations

Year Implementation Hardware used No. of threads GCUPS

1997 Wozniak [51] Sun Ultra Sparc Enterprise
6000 167 MHz

12 0:2

2000 Rognes and Seeberg [38] Intel Pentium III 500 MHz 1 0:15

2007 Farrar [9] Intel Xeon Core 2 Duo
2.0 GHz

1 2:9

2008 SWPS3, Szalkowski et al. [44] Intel Core 2 Quad Q6600
2.4 GHz

4 15:07

2011 SWIPE, Rognes [37] 2�Intel Xeon X5650
2.67 GHz

24 106:2

2013 SSW, Zhao et al. [54] AMD x86 64 2.0Ghz 1 2:53

2015 SWIMM, Rucci et al. [39] 2�Intel Xeon E5-2695 v3
2.3 GHz

28 309:3

56 360

2016 Parasail, Jeff Daily [7] 2�Intel Xeon E5-2670
2.3 GHz

24 291:5

ments each of these methods for different instructions sets: SSE2, SSE4.1, AVX2
and KNC. In his work, the author showed that Parasail’s AVX2 implementation
is able to outperform SWIPE for query sequences longer than approximately 500
amino acids. Parasail reported up to 291.5 GCUPS using two Intel Xeon E5-2670
2.3 GHz processors when searching UniProt Knowledgebase database.

Table 1 summarises the performance of CPU implementations.

4.2.2 GPU Implementations

The first GPU implementations date back to 2006 and they were proposed by
Weiguo Liu et al. [21] and Yang Liu et al. [22]. Both proposals are very similar: they
are based on the OpenGL library, compute alignment matrices by anti-diagonals and
store sequences as well as auxiliary buffers in texture memory. Weiguo Liu et al.
implementation only processes protein sequences of length shorter than 4096 amino
acids due to limitations imposed by the texture memory of that time, and for that
reason, the experimental work was carried out with a reduced version of Swiss-Prot
database (99.8 % of original sequences). This implementation reached 0.65 GCUPS
using a NVIDIA GeForce 6800 GT, which represented a speed-up of 16� over a
serial CPU implementation. On its behalf, the Yang Liu et al. implementation does
not impose restrictions on the sequence length and it offers two execution modes:
(1) optimal alignment and (2) optimal alignment score. Using a NVIDIA GeForce
7800 GTX, this implementation achieved 0.18 and 0.24 GCUPS in (1) and (2)
execution modes, respectively.

In 2008, Manavski and Valle [27] presented the first CUDA implementation
for SW protein database search, which was named SW-CUDA. As opposed to
previous proposals, SW-CUDA adopts inter-task parallelism scheme because each
CUDA thread computes a complete alignment between the query sequence and a
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particular database sequence. Another distinctive characteristic of SW-CUDA is the
QP technique usage to obtain scores from substitution matrix. SW-CUDA reported
1.85 GCUPS using a NVIDIA GeForce 8800 GTX card when searching Swiss-Prot
database. Additionally, it showed good scalability with the amount of GPUs owing
to a dynamic workload balance technique that considers the compute power of each
particular device.

In 2009, Yongchao Liu et al. [23] introduced CUDASWCC, an implementation
for CUDA-enabled GPUs that combines both intra-task and inter-task parallelism
approaches. The inter-task scheme usually reports better performance than intra-task
scheme; however, it requires more memory resources. Therefore, CUDASWCC
sets a configurable length threshold to compute the alignments. Database sequences
of length less than or equal to the threshold are computed according to the inter-task
scheme. The alignments of database sequences of length greater than the threshold
are carried out following the intra-task scheme. CUDASWCC also carefully
arranges memory accesses to get coalesced access. Besides, it exploits memory
hierarchy by storing query sequence and substitution matrix in constant and shared
memories, respectively. This set of optimisations allowed CUDASWCC to reach
9.63 and 16.09 when searching Swiss-Prot database using a single-GPU NVIDIA
GeForce GTX 280 and a dual-GPU NVIDIA GeForce GTX 295, respectively.

A year later, the same authors of CUDASWCC presented an improved version
of this tool, known as CUDASWCC 2.0 [25]. This version offers two execution
modes: the first one adopts the original mode but includes QP technique and
replaces scalar data with packed data; the second one follows the Farrar approach [9]
through SIMD instruction virtualisation on graphic cards. Searching Swiss-Prot
database, CUDASWCC 2.0 reported similar behaviour between both execution
modes, reaching 16.9 and 29.6 GCUPS on a single-GPU NVIDIA GeForce GTX
280 and on a dual-GPU NVIDIA GeForce GTX 295, respectively.

GASW is another tool for CUDA-compatible GPUs [18]. This software was
introduced in 2010 and among its optimisation we can mention elimination of
memory bottlenecks and the conversion of the database to a format convenient for
GPU usage. GASW achieved up to 21.36 GCUPS on a NVIDIA GeForce GTX 275
when searching Swiss-Prot database.

In 2011, Zou et al. [55] presented a CUDA-based implementation that combines
different optimisations: global memory accesses in coalescent manner, hierar-
chy memory exploitation and loop unrolling. This implementation reached 28.35
GCUPS on a NVIDIA GeForce GTX 470 when searching a synthetic database of
107520 sequences (each sequence contains 1024 random residues).

There are few known implementations based on OpenCL for GPUs. Khalafallah
et al. [19] follow inter-task approach and reuse several optimisations from previous
implementations like global memory accesses arrangement to obtain coalescent
access and texture memory usage to store QP matrix. This implementation achieved
12.29 and 65.99 GCUPS when searching a reduced version of Swiss-Prot database
on a NVIDIA GeForce 9800 GT and an ATI HD 5850, respectively. On its behalf,
Borovska and Lazarova proposal [6] also adopts inter-task scheme, although it does
not provide enough implementation details. With Swiss-Prot database, this software
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reported 1.6 and 7.8 GCUPS on a NVIDIA Quadro FX3600M and on a NVIDIA
GeForce GTX 295 (dual-GPU), respectively.

Finally, in 2013, Yongchao Liu et al. [26] presented a third version of
CUDASWCC, which was named CUDASWCC 3.0. This implementation
targets NVIDIA GPUs based on the Kepler architecture and combines concurrent
CPU and GPU computations adopting the inter-task approach on both cases.
The workload is distributed dynamically using an heuristic based on hardware
characteristics and constants derived from empirical evaluations. For the GPU
computation, CUDASWCC 3.0 employs CUDA PTX video instructions. For the
CPU computation, this algorithm uses SSE extensions; specially the host code
is based on SWIPE code. Alignments are computed using 8-bit integers on both
CPU and GPU devices. Once all alignments are processed, CPU detects overflow
cases and recomputes them using 16-bit integer. It is important to mention that,
because GPU adopts inter-task scheme, it only processes those database sequences
of length less than, or equal to, the threshold. Longer sequences are obligatory
computed in CPU. With Swiss-Prot as benchmark database, CUDASWCC 3.0
reached 119 GCUPS using a personal computer based on a quad-core Intel i7 2700k
3.5Ghz processor and a NVIDIA GeForce GTX 680. Because NVIDIA decided to
cut down the capability of the PTX video instructions in Maxwell architecture,
CUDASWCC 3.0 could not run at full speed on these GPUs. Beyond the previous
limitation, CUDASWCC 3.0 is considered the fastest SW implementation for
CUDA-compatible systems as of today.

Table 2 summarises the performance of GPU implementations.

4.2.3 FPGA Implementations

Acceleration of sequence alignment using FPGAs is a widely studied topic in HPC
community. However, most of these implementations focus on DNA alignment
because it is simpler than protein alignment from an algorithmic perspective (DNA
alignment has a reduced alphabet and adopts a simpler scoring scheme).

Beyond sequence type, FPGA implementations are usually based on creating
basic building blocks that can compute a matrix cell in a clock cycle. Next, multiple
instances of these blocks are combined at the same time to create systolic arrays
capable of processing large amounts of data in parallel. A systolic array is an
arrangement of processing units in array form, where data flows synchronously
among the units, usually in a specific direction. This kind of array works like
vectorial units in modern CPUs (e.g. SSE units) but, instead of having a fixed length,
systolic arrays can configure its length [47].

Unfortunately, analytic comparison among these implementations is quite diffi-
cult due to different causes [8, 13]:

• There is a wide variety of FPGAs and each of them implements its circuitry in a
different way, which complicates direct comparison.
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• There are very few fully functional tools. The implementations that report the
best performance only contemplate synthetic tests with the aim to show the
potential of this kind of accelerator although its usage in real world is very
limited. Some implementations effectively employ real data but also present
some limitations: query sequence is embedded in the design, sequences have
a fixed or limited length, search parameters (gap penalisations or substitution
matrix) are fixed or they require hardware reconfiguration to change them, among
others.

• Lack of documentation on implementation details. For example, the imple-
mentation performance depends strongly on the data width used. Normally,
performance improves as data width reduces, although a very small size could
be insufficient to compute all alignments. Researchers tend to omit this kind of
detail.

Among the fully functional implementations, we can found Isa et al. [17], Ben-
krid et al. [4] and Rucci et al. [40]. In 2011, Isa et al. [17] proposed a linear systolic
array implementation for a Xilinx Virtex-5 XC5VLX110 FPGA although program-
ming language was not specified. This implementation consists of a pipeline of basic
processing elements, each holding one query residue whereas the subject sequence
is shifted systolically through it. The alignments are computed using 11-bit integers.
When searching Swiss-Prot database, this implementation reached up to 28 GCUPS.

A year later, Benkrid et al. [4] introduced an implementation similar to Isa et al.
proposal [17]. This implementation is also based on a linear systolic array. However,
alignments are computed using 16-bit integers and the corresponding FPGA design
was captured in a C-based high-level hardware language, called Handel-C [29].
Using a Xilinx Virtex-4 LX160-11 FPGA, the authors reported up to 19.4 GCUPS
when searching Swiss-Prot database.

In 2016, Rucci et al. [40] presented OSWALD, a tool developed with Altera
OpenCL SDK for Altera FPGA-based systems. Unlike the rest of the implemen-
tations, this tool does not follow a linear systolic array fashion, on the contrary, it
adopts the inter-task scheme. OSWALD computes alignments in FPGA using 8-bit
integers and the host recomputes overflowed alignments using wider integer data.
Also, it is able to combine concurrent CPU computations through multi-threading
and SIMD exploitation. On a heterogeneous platform based on two Xeon E5-2670
and a single Altera Stratix V GSD5 FPGA, OSWALD reached up to 58.4 GCUPS
on FPGA mode and 178.9 GCUPS on hybrid mode (host+FPGA), while searching
Environmental NR database.

Table 3 summarises the performance of known FPGA implementations.

4.2.4 Xeon Phi Implementations

Xeon Phi coprocessors can also be employed to accelerate SW alignments. In
2014, Liu and Schmidt [24] introduced SWAPHI, a tool for similarity searches
based on OpenMP. This implementation adopts the offload model and is capable
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of taking advantage of several coprocessors at the same time. In this work,
the authors explored the benefits of intra-task and inter-task approaches as well
as QP and SP techniques. In particular, SWAPHI is able to compute 16 cells
in parallel due to KNC instruction set. Using a Xeon Phi 5110P, SWAPHI
achieved up to 45.6 and 58.8 when searching TrEMBL database with intra-task
and inter-task schemes, respectively. When using four coprocessors, performance
increased to 164.9 (intra-task) and 228.4 GCUPS (inter-task) for the same database
searches.

XSW is another similarity search tool based on Xeon Phi coprocessors [49]. Like
SWAPHI, XSW employs inter-task scheme, SP technique and the KNC instruction
set. Unlike SWAPHI, XSW works in native mode. XSW reported up to 70 GCUPS
when searching Environmental NR database using a Xeon Phi 7110P.

An extended version of XSW, known as XSW 2.0, was developed subsequently
by the same authors [50]. This implementation follows the offload model and com-
bines concurrent CPU computations through multi-threading and SSE extensions.
Using a Intel Xeon E5-2620 processor and a Xeon Phi 7110P coprocessor, XSW
2.0 reached up to 100 GCUPS when searching Environmental NR database.

In 2015, Rucci et al. [39] presented the previously described SWIMM tool. In
their work, the authors state that, despite having more cores and wider vectorial
processing units, the poor performance (in terms of GCUPS) of the Xeon Phi
compared to Xeon is due mainly to the absence of low-range vector capabilities
on the Xeon Phi. Beyond that, SWIMM showed to be comparable with SWAPHI
in the Xeon Phi mode and significantly superior to XSW 2.0 in the hybrid mode.
When searching Environmental NR database, SWIMM reported 160 GCUPS using
two Intel Xeon E5-2670 2.60Ghz processors and an Intel Xeon Phi 3120P.

Finally, XSW 2.0 was replaced by another tool named LSBDS [20]. The main
difference between XSW 2.0 and LSBDS is that the latter adopted a multi-pass
method to compute the alignment matrices that solved the performance drop
problem for long query sequences of the former. LSBDS reported up to 220 GCUPS
when searching a merged database (Environmental NR + TrEMBL) using two Intel
Xeon E5-2620 v2 2.0Ghz processors and two Intel Xeon Phi 7110P.

Table 4 summarises the performance of Xeon Phi implementations.

5 Performance/Power Consumption Evaluations

Energy efficiency is becoming more important every day in the HPC community.
There is a wide availability of works exploring performance and power consumption
of different hardware devices. However, only three do it in the SW context. All
of these works have similar coarse-grain results but differ in the improvement
coefficients due to different methodological aspects.

In 2011, Zhou et al. [55] evaluated performance and power consumption of
several implementations for CPU, GPU and FPGA. Considering energy efficiency
as GCUPS/Watt, they found that FPGA outperforms CPU and GPU by factors of
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50� and 26�, respectively. These significant differences can be explained according
to three reasons. In the first place, host consumption was not considered in GPU and
FPGA implementations to the detriment of CPU implementations. In the second
place, CPU and GPU implementations are sub-optimal. These implementations
reported less GCUPS than others previously presented in literature. In the third
place, they employed synthetic data benefiting FPGA implementations, besides
being non-representative of real world biological searches.

Benkrid et al. [4] is another performance/power consumption evaluation in the
SW context. In this work, the authors presented some implementations for different
hardware devices: CPU, GPU and FPGA. They found that FPGA is the most
energy-efficient platform being up to 500� and 23� better than CPU and GPU,
respectively. These impressive results are explained due to several reasons. Firstly,
host consumption was not considered in FPGA and GPU cases as in the previous
work. Secondly, the authors state that they chose specific hardware platforms based
on the same fabrication technology (90 nm) to enable a fair comparison between
devices. This fact clearly benefits FPGA and GPU implementations since CPUs are
more advanced in this aspect. Lastly, they employed sub-optimal implementations
for all devices. As the work also evaluates programming cost of each implemen-
tation, they chose not to use the results of the fastest implementations reported
in the literature, but instead to perform their own experiments using solutions
developed by a set of Ph.D. students with relatively equal experience on each
platform.

Rucci et al. [40] is probably the most realistic SW performance/power con-
sumption evaluation, since the authors considered host consumption in accelerator
versions and employed powerful hardware platforms, the best implementations
available in literature so far for each device and real biological data. Taking
CPU-based systems as baseline, these authors compared performance and energy
efficiency of hybrid systems using all its available computational resources (host and
accelerators). They found that CPUs offer a good balance between performance and
power consumption, especially those with AVX2 instruction set. Xeon Phi-based
systems are not a good choice for this problem from energy efficiency perspective
principally due to the absence of low-range vector capabilities on this coprocessor.
The performance gain is smaller than the increase in power consumption, which
translates into less GCUPS/Watt. Both CPU-FPGA and CPU-GPU systems are
able to improve energy efficiency, being the first step forward to the second. GPU
accelerated systems offer higher performance rates but at the expense of higher
power consumption rates too. CPU-FPGA systems offer less GCUPS than GPU-
based platforms. However, because its power consumptions are lower, the energy
efficiency rates are higher. In particular, GPU incorporation performed up to 1.6�
and 1.22� in performance and energy efficiency points of view, respectively. In the
FPGA case, its addition produced improvements of up to 1.4� in performance and
1.28� in energy efficiency.
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6 Future View

Biological data continue increasing its size and accelerating SW database searches
still remains as a challenging task. Fortunately, several new hardware and software
technologies will be upcoming in the near future that will help to mitigate
this issue:

• Multi-core processors offer a good balance between performance and energy
efficiency for SW database searches, in particular those with AVX2 instruction
set. Future processors of this kind will have more cores, extended vector units
and more complex and larger memory hierarchies. As explained in Sect. 4.2.1,
CPU-based implementations can be benefited directly from these features.

• GPUs have demonstrated to be powerful platforms to accelerate SW algorithm.
Next generation GPUs will have more computational power and better memory
performance. These characteristics can lead to faster implementations.

• FPGAs have also proved to be a good option for accelerating SW protein
searches, specially from energy efficiency perspective. In this way, new hybrid
CPU-FPGA architectures appear as a promising opportunity.

• Current generation of Xeon Phi is not a good alternative for accelerating SW
protein searches due mainly to the absence of low-range vector capabilities on
this coprocessor. Fortunately, next generation of Xeon Phi (Knights Landing)
will solve this issue incorporating the AVX-512 instruction set. Therefore, better
Xeon Phi performances are expected considering the number of cores and the
vector capabilities.

Some of these technologies will deliver improvements in a transparent manner to
programmers. For example, all hardware vendors plan to reduce the manufacturing
process technology of their devices, which can turn into faster communications
and more available computational resources. Or also stacked memory adoption that
will increase bandwidth and energetic efficiency. However, other technologies will
require programmer’s intervention to take advantage of them, like new hybrid CPU-
FPGA architectures or also the AVX-512 instruction set that will be available in
Xeon Skylake processors and next generation Xeon Phi coprocessors. Therefore,
programming efforts will be necessary to develop new computational tools capable
of taking advantage of these upcoming technologies.

7 Conclusions

In this chapter we gave a survey of the state-of-the-art in SW database protein
search, focusing on four widespread hardware architectures: CPU, GPU, FPGA
and Xeon Phi. First, we presented a brief description of each platform. Next, we
explained the SW algorithm followed by the study of its data dependences and
the possible parallelism schemes. We reviewed the existing implementations for
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the hardware platforms under study including temporal evolution, contributions,
limitations and experimental work and results of each of them. Additionally,
as energy efficiency is becoming more important every day, we also surveyed
performance/power consumption works in SW context. Finally, we gave our view
on the future of SW protein searches considering next generations of hardware
architectures and its upcoming technologies.

Biological data continue increasing its size and, as a consequence, increasing
SW search time. Upcoming technologies will help to mitigate this issue but will
also present new challenges to programmers in order to take advantage of them. We
expect that this chapter can serve as a good starting point to future acceleration of
SW protein database searches.
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Abstract Rapid advances in high-throughout genome sequencing technologies
have resulted in millions of protein-encoding gene sequences with no functional
characterization. Automated protein function annotation or prediction is a prime
problem for computational methods to tackle in the post-genomic era of big
molecular data. While recent community-driven experiments demonstrate that the
accuracy of function prediction methods has significantly improved, challenges
remain. The latter are related to the different sources of data exploited to predict
function, as well as different choices in representing and integrating heterogeneous
data. Current methods predict function from a protein’s sequence, often in the
context of evolutionary relationships, from a protein’s three-dimensional structure
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1 Introduction

Molecular biology now finds itself in the era of big data. The focus of the field
on high-throughout, automated wet-laboratory protocols has resulted in a vast
amount of gene sequence, expression, interactions, and protein structure data [212].
In particular, due to the increasingly fast pace with which whole genomes can
be sequenced, we are now faced with millions of protein products for which no
functional information is readily available [39, 198]. The December 2015 release
of the Universal Protein (UniProt) database [68] contains a little over 55:2 million
sequences, less than 1% of which have reliable and detailed annotations.

The gap between unannotated and annotated gene/protein sequences has
exceeded two orders of magnitude. Fundamental information is currently
missing for 40% of the protein sequences deposited in the National Center for
Biotechnology Information (NCBI) database; around 32% of the protein sequences
in the comprehensive UniProtKB database are currently labeled “unknown.” The
missing information includes coarse-grained, low-resolution information such as
where protein products are expressed, meta-resolution information, such as what
chemical pathways proteins participate in the living cell, and high-resolution
information, such as what molecular partners a protein recognizes and binds to
directly in the cell.

Getting at what proteins do in the living cell is central to our efforts to understand
biology, as proteins are ubiquitous macromolecules [4] involved in virtually every
cellular process, from cell growth, maintenance, proliferation, to apoptosis [5].
Understanding what a protein does in the cell is also central to our ability to
understand and treat disease [351]. Moreover, computer-aided drug design (CADD)
often begins with identifying a protein target whose activity in the diseased cell
needs to be altered or regulated via binding compounds to cure or treat disease [322].

Given the exponential increase in the number of protein sequences with no
functional characterization and the central role of proteins to human biology and
health, predicting where a protein acts in the cell and exactly what it does is a
central question to address in molecular biology. Originally, this question was only
investigated in the wet laboratory and on a small set of target genes or proteins. Wet-
laboratory approaches that elucidate the role of a protein in the cell include gene
knockout, targeted mutations, inhibition of gene expressions, mass spectrometry,
and RNAi [5].

Gene knockout, targeted mutations, and inhibition of gene expression methods
demand considerable effort and time and can only handle one protein product or
gene at a time [306]; in other words, these are low-throughput methods. Higher-
throughput wet-laboratory annotation initiatives, such as the European Functional
Analysis Network [264] have also proven unable to keep up with the pace of
whole genome sequencing. In particular, wet-laboratory experiments that use mass
spectrometry or RNAi are found to yield biased and less specific information about
protein function than the low-throughput methods [309].

Human experts known as biocurators also often peruse published wet-laboratory
studies to provide functional information on a protein [38, 308, 309]. For instance,
the popular UniProtKB database, which is the central hub for the collection of
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functional information on protein sequences, consists of two sections: SWISS-
PROT, which contains manual and reviewed annotations (less than 1% of protein
sequences in UniProt are annotated in SWISS-PROT), and TrEMBL, which contains
computational annotations yet to be validated by experts [34]. About 30–40 % of
computational and manual annotations contain errors [308]. The rapid rise of the
CRISPR/Cas technology [67, 140], which can edit specific genes and do so rather
efficiently [303], proves promising to observe the phenotypic effect of deliberately
introduced gene variants [134, 210, 286], but applications for large-scale function
prediction are under-pursued at the moment.

In light of the increasing gap between the amount of protein sequence data
and the amount of functionally annotated proteins, computational approaches seem
poised to tackle protein function prediction and narrow this gap. Before venturing
into a comprehensive description of such methods, which is the subject of this
review, it is important to formulate exactly what one means by protein function.
One can find different definitions in literature, because the function of a protein can
be described at different degrees of detail. Information on the cellular localization
of a protein can provide important clues towards the processes in which a protein
is involved but is not sufficient in itself. Describing function from a physiological
aspect entails knowing the biological processes in which a protein participates.
From a phenotypical aspect, one is more concerned about the disease or disorders
induced by a misbehaving protein. To capture all these different aspects and aid
computational approaches, various classification schemes have been proposed. By
now, the most broadly accepted and utilized scheme is the Gene Ontology (GO)
scheme originally proposed in [12]. GO is a hierarchical description of protein
function that describes three different aspects, each one increasing the level of detail.

• Cellular component describes the component or anatomical structure
in a cell where a gene product operates. Examples include the rough
endoplasmic reticulumn, nucleus, ribosome, proteasome, and more.

• Biological process captures the physiological description of protein
function and allows specifying the processes in which a gene product
participates in the cell. A process is defined as a series of events or
molecular functions, and examples include membrane fusion, cellular
component organization, macromolecular complex assembly, and various
distribution processes.

• Molecular function is different from the biological processes in which a
gene product is involved and instead captures at a finer level of resolution
what a protein does in the cell, such as transporting molecules around,
binding to molecules, holding molecular systems together, changing sys-
tems from one state to another. Examples include ligand binding, catalysis,
conformational switching, and more.
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Computational methods for protein function prediction are diverse, particularly
when one considers methods that limit themselves to prediction of specific aspects
of protein function. The focus of this review is on methods that aim to provide
GO annotations of protein products. These methods can be organized in distinct
categories based on the type of data they employ to predict the GO annotation of an
uncharacterized protein.

The first category of computational methods is comprised of methods that make
predictions based on observations that sequence similarity is a good indicator
of functional similarity. Such methods were among the first to be employed for
automatic annotations, and they are often the first tools employed in this regard.
They are summarized in Sect. 2. Recent advancements in sequence-based methods
concern expanding their applicability beyond proteins of very high sequence
similarity, known as close homologs, to remote homologs. These methods consider
additional information such as genomic context and evolutionary relationships and
are described in Sects. 3 and 4.

Another category is comprised of methods that use more than sequence informa-
tion and employ information on the three-dimensional, biologically active structure
of a protein. This information is often difficult to obtain in the wet laboratory and not
available on many proteins. However, advances in structure resolving techniques,
both in the wet and dry laboratories, are allowing the application of such methods
for protein function prediction. Structure-based methods are mainly distinguished
by the representations they choose of protein structure and the amount of protein
structure they exploit. These methods are described in Sect. 5.

Yet another category is comprised of methods that employ information on known
interactions of a protein product as encapsulated in protein–protein interaction
networks. This category is rich in machine learning methods and is the subject of
Sect. 6. Methods that exploit gene expression data are summarized in Sect. 7.

Currently, the best-performing methods are those that are enriched with addi-
tional information on sequence, structure, and gene expression data, resulting in
a category of methods known as hybrid methods, which we describe in Sect. 8.
Another category of methods, described in Sect. 9, exclusively mine biomedical
literature to annotate query proteins.

Methods for automated function prediction are now evaluated and tested in
community-driven experiments and global initiatives, such as the Enzyme Func-
tion Initiative (EFI), the COMputational BRidges to EXperiments (COMBREX)
initiative, and the Critical Assessment of Function Annotation (CAFA) community-
driven experiment. In particular, CAFA is becoming the main venue to objectively
compare function prediction methods to one another and highlight the state of
the art in automated function prediction [287]. Evaluation is done in two rounds.
In CAFA1, several thousands of unannotated query sequences are provided to
participants. About 48;298 targets from 18 species were provided in 2014. Partic-
ipants submit predicted GO terms, and predictions are then evaluated according
to community-agreed metrics, such as the top-20, threshold measure, and the
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maximum F1 score over all recall-precision pairs obtained with the threshold
measure, also known as the Fmax score [124] and others.

In the second round of CAFA, CAFA2, twice as many queries are released. For
instance, 100;816 target protein sequences from 27 species were provided to partic-
ipants in 2014. Evaluation of predicted GO terms from different labs is then held
as a special interest group meeting at the Intelligent Systems in Molecular Biology
(ISMB) conference. Annual reviews are released tracking progress, challenges, and
the state of the art in automated function prediction. We summarize the latest review
of function prediction methods in the context of their performance in CAFA to
conclude our survey of these methods. In particular, the survey concludes with a
critical summary of the state of protein function prediction, remaining challenges,
and prospects for future research.

2 Sequence-Based Methods for Function Prediction

Sequence-based methods transfer onto an uncharacterized target protein sequence
the functional annotation of a characterized protein sequence with high sequence
similarity to the target. Some of the earliest efforts in bioinformatics focused on
understanding the relationship between sequence, structure, and function similarity.
This was made possible by the advent of standardized sequence formats and
sequence comparison tools, such as FASTA [278], and fast sequence alignment and
comparison algorithms based on dynamic programming, such as BLAST and PSI-
BLAST [8]. In addition to BLAST, other well-known sequence alignment tools now
include PROSITE [18, 143] and PFAM [327, 328].

The comparison of two sequences aims to determine an evolutionary relationship
and infer whether the sequences under comparison share a common ancestor;
that is, if they are homologs. One cannot infer shared ancestry, thus homology,
based on sequence similarity alone. For instance, high sequence similarity might
occur because of convergent evolution; when considering shorter sequences, high
similarity may occur because of chance. Two sequences can be similar but not
homologous. Therefore, function cannot be realizably transferred even if sequence
similarity is high.

While early bioinformatics efforts (some of which are summarized below)
indeed transferred function between highly similar sequences, later efforts, aware of
convergent evolution, focused on integrating additional data beyond sequence. It is
worth noting that early efforts focused on understanding when sequence similarity is
high enough, in the absence of convergent evolution, to infer function similarity. By
now it has been observed that prediction accuracy suffers when the threshold is set to
anything less than 30% sequence similarity [159]; however, a more comprehensive
understanding has emerged that shows that, as long as homology is established, even
10% sequence identity can allow extracting information on function (for instance,
remote homologs can have very low sequence identities due to early branching
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points in evolution). On the other hand, even 30% sequence identity between two
non-homologous sequences can be misleading [184].

Sequence-based methods have been shown to have limited applicability for some
of the reasons listed above. In response, more sophisticated sequence-based methods
have been developed. These methods either enhance the basic framework, where the
functional unit is still the comparison of two protein sequences in their entirety,
or pursue complementary frameworks of comparing subsequences or physico-
chemical properties extracted from two given protein sequences. Based on this
distinction, sequence-based methods can be organized in three categories:

• Sequence-based methods: methods in this category rely on the compari-
son of a query protein sequence to functionally annotated sequences in a
database. More sophisticated methods pursue a probabilistic setting, incor-
porate data from various sources, and even pursue unsupervised learning
frameworks to improve the accuracy and confidence of annotations.

• Subsequence-based methods: methods in this category realize that only
a subset of the amino acids in a protein comprise the site onto which
molecular partners bind. Methods in this category mainly differ in what
subsequences are considered, domains or shorter subsequences known as
motifs.

• Feature-based methods: these methods aim to extract more information
from a given protein sequence than what is directly available in the identity
of amino acids. By additionally encoding physico-chemical properties of
amino acids, these methods construct features for all or a subset of a
sequence and pursue functional annotation in a machine learning setting.

• Ensemble-based methods: these methods combine the above three
approaches via the concept of ensemble classifiers in machine learning.

2.1 Sequence-Based Methods for Functional Annotation

Several directions have been investigated to improve the performance and/or extend
the applicability of sequence-based methods. We review representative methods
below.

2.1.1 Sequence Alignment-Based Methods

The accuracy of transferring functional annotations was investigated in [133],
where it was shown on annotation transfer among enzymes that transfer was
only reliable when sequence similarity was high. Many subsequent studies trying
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to determine the sequence identity threshold below which functional annotation
transfer was not reliable resulted in the recognition of a twilight zone 25–30 %
sequence identity [299]. While basic sequence-based methods are not reliable when
sequence identities are 25% or less, sophisticated methods can handle the twilight
zone. The ConFunc method proposed in [368] operates in this range. PSI-BLAST
is used to align a query sequence with annotated sequences. The sequences returned
by PSI-BLAST are then split into sub-alignments according to the sequences’
GO annotations. Conserved residues are then identified within each GO-term sub-
alignment, and a position-specific scoring matrices (PSSM) profile is constructed
for each sub-alignment. The query sequence is scored against the PSSMs of all sub-
alignments, and these scores are then used to calculate expectation values for the
GO annotations corresponding to each sub-alignment. Prediction is made based on
careful filtering of the different GO annotations based on their expectation values.
ConFunc is shown to outperform both BLAST and PSI-BLAST. On a large testing
set of query sequences with known homologs with sequence identities in the twilight
zone, ConFunc’s recall is six times greater than BLAST.

A related method, GoFDR, is proposed in [116], which processes the PSI-
BLAST query-sequence based on multiple sequence alignment (MSA). For each
GO term of the homologs in the MSA, GFDR identifies functionally discriminating
residues (FDR) specific to the GO term. The query sequence is then scored using
a position-specific scoring matrix constructed for the FDRs alone. The raw score is
converted into a probability based on a score-probability table prepared over training
sequences. GoFDR outperforms three sequence-based methods for predicting GO
terms, PFP [129], GOtcha [236], and ConFunc [368], and is ranked as the top
method in the preliminary evaluation report in CAFA2.

2.1.2 Probabilistic Whole-Sequence Annotation Transfer

One direction pursues sequence-based functional annotation in a probabilistic
setting. The approach proposed in [207] assumes that a protein can only belong
to a functional class if its BLAST score distribution with members of the class is
the same as that of these members with one another. A univariate and multivariate
probabilistic scheme are investigated. The univariate scheme makes predictions
based on the total score of the query protein, by assigning to it a probability of
belonging to each functional class. This can lead to ambiguous results, as the
query can have similar scores with different functional classes. For this reason,
the univariate scheme is extended to a multivariate one by constructing a vector
of BLAST scores of the query with all classes. The vector is compared to the
distribution of each class. Evaluation shows that the approach reaches an accuracy
above 90% [207]. However, the evaluation is performed on enzymes, where
sequences are more strongly correlated with function than on other proteins. In
addition, this probabilistic approach performs well on the most specific GO level due
to the ambiguity with comparisons to the less specific GO levels (such as cellular
location).
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2.1.3 Integration of Data Sources in Whole-Sequence
Annotation Transfer

Another way to improve whole-sequence methods is to integrate additional data
sources. The GOtcha method in [236], for instance, organizes the annotations of
sequences similar to a query into a set of GO-like directed acyclic graphs. A P-
score is calculated based on the frequency of occurrence of respective annotations
and BLAST E-values of the corresponding matches. The P-score estimates the
confidence attached to the annotation of the query sequence with that term, and
a threshold value for the P-score allows extracting a final set of annotations.
Evaluation of this approach on the Drosophila melanogaster genome showed that
the results were more sensitive and specific than those obtained with the baseline
approach.

2.1.4 Unsupervised Learning in Whole-Sequence Annotation Transfer

Work in [1, 380] pursues an unsupervised learning approach. Sequences similar to a
query sequence are identified via BLAST. All pairwise sequence similarities in the
set, including the query, are stored in a similarity matrix. The latter is employed for
clustering the set of sequences. The annotation of the query sequence is then based
not on individual high-similarity sequences but on the cluster of sequences to which
the query sequence belongs. In [380], progressive single-linkage clustering and
text information analysis are employed to assign GO terms to the query sequence.
In [1], the sequence similarity space is encoded in a graph, and the normalized cut
clustering algorithm is used to identify groups of sequences that are closely related
to the query sequence. In [289], the space of annotated sequences is first organized
via hierarchical clustering according to functional and evolutionary relationships.
The function of the query sequence is then predicted based on the position of the
query in the tree. The approach employed in these methods uses whole-sequence
comparisons only as an intermediate step and maps a query protein to a cluster or a
level of a hierarchy. This approach is shown to perform well and be more robust to
errors in individual entries [1, 289, 380].

A specific subgroup of methods that fall in the same category do not directly
address function prediction but rather construct an informative organization of
protein sequences into functional groups. The objective is to extract from the groups
rules and features that can then be utilized by other methods in a machine learning
setting. Specifically, protein sequences are clustered into functional groups based
on their evolutionary relationships, structural properties (these can be structural
classes based on secondary structure content, folds, or even structural motifs),
or subsequences. Manual curators can be employed to provide such clustering,
but our focus here is on computational methods. Iterative clustering is proposed
in [314, 382]. The method in [94] encodes proteins into a graph with edges encoding
pairwise similarity, and then applies Markov Clustering to group known homologs
from different species (orthologs) [211]. In [385], clusters of related proteins are
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identified by analyzing strongly connected sets of vertices in the graph. In [242],
pairwise sequence comparisons are used to organize proteins into pre-families,
which are then further divided into homogeneous clusters based on the topology
of the similarity graph. Spectral clustering is employed in [257] to infer protein
families. A heuristic approach is proposed in [10] to improve the performance
of these graph-based clustering methods related to the choice of the similarity
threshold determining whether two proteins should be connected by an edge or not.
Others use hierarchical clustering [56, 226, 305, 342, 350]. Partitioning clustering
algorithms have been shown recently to outperform all these other clustering
methods [99].

2.1.5 Supervised Learning and Generative Models in Whole-Sequence
Annotation Transfer

The most successful methods for function prediction rely on supervised learning or
generative models. Methods proposed in [66, 83, 150, 213] address the detection of
remote homologs by employing sequence alignment profiles to train hidden Markov
models (HMMs) or pairwise sequence similarities to train support vector machines
(SVMs) or neural networks (NNs). Specifically, the FANN-GO method proposed
in [66] aligns a query sequence to a database of annotated sequences to calculate
the i-score proposed by the GOtcha method [236] that the query is associated with
a specific functional term. The scores are then fed to an ensemble of multi-output
neural networks trained to predict the probability of a sequence associated with
each function term. The FANN-GO method is shown able to model dependencies
between functional terms and outperforms the GOtcha method [236].

2.2 Subsequence-Based Methods for Functional Annotation

Subsequence-based methods are motivated by a deeper understanding of the role of
protein sequence in recognition events. In particular, only a subset of the amino acids
that comprise a protein chain assist in the sticky interactions with other molecules.
This subset is typically comprised of few amino acids. In addition, contiguous, long
segments of a protein chain may fold independently to form a domain. Multi-domain
proteins employ different domains to interact with different molecules and thus
enrich their molecular functions [314]. Subsequence-based methods are organized
into two categories:

• Domain-based methods: It has long been recognized that a multi-domain
protein’s array of functions is due to different molecular functions of its

(continued)
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domains [314]. Domain-based methods seek to identify all the domains in
a protein in order to compile its array of molecular functions.

• Motif-based methods: Functional sites in a protein that are employed
to recognize and bind ligands, DNA, RNA, and other proteins are
comprised of only a subset of the amino acids comprising a protein’s
polypeptide chain. Since functional sites are under higher evolutionary
pressure to be conserved, a way of identifying functional sites on proteins
is through detection of evolutionary-conserved (sequence) subsequences.
Subsequences that are conserved among protein sequences belonging to
a family are referred to as motifs [35]. These methods detect motifs in a
protein sequence and use these motifs as signatures of specific functional
classes [141].

Motif-based methods are rich in machine learning techniques. In contrast,
domain detection methods focus more on integrating biological insight. We
review domain-based methods first, and then devote the rest of the description
of subsequence-based methods to the machine learning strategies employed to
detect motifs for functional annotation.

2.2.1 Domain-Based Methods

A protein domain is an independent evolutionary and functional unit of a protein that
folds independently of the rest of the protein where it is contained. A transcribed
exon is referred to as a module, and a domain may be comprised of several
modules [346]. More than 80% of known domains are about 50–150 amino acids
long, but exceptionally long domains of more than 800 can be found, as well. Several
small domains of 30 amino acids or less are also reported. At least two-thirds of
mammalian proteins have more than one domain. Only multi-cellular eukaryotic
organisms have a significant proportion of proteins with repeating domains [344].

A domain is an independently folding unit of a protein. So, a domain is a
structural unit that can be found in multiple protein contexts. Biologists usually
break up large proteins into domains based on a process that involves analysis
of sequence, structure, and domain-specific expertise. Protein domains can be
found in several databases, such as ProDom [314] and the Conserved Domain
database (CDD) [230]. These two databases describe domains at the sequence
level. A query protein sequence is aligned to the deposited domains, and BLAST
E-values are employed to determine the domains present in the query. In particular,
CDD is the protein classification component of NCBI’s Entrez query and retrieval
system by which one can identify conserved domains in query protein sequences.
An illustration of the results returned by the CD-Search tool (which stands for
conserved domain search) in CDD is shown in Fig. 1.
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Fig. 1 Output obtained by the CD-Search tool on the human methionine aminopeptidase 2 protein.
Domain hits are provided visually and ranked from non-specific (high E-values) to specific (low
E-values). Details on each of the domain hits are listed in the bottom panel

Other databases also store domains and provide more than sequence and
functional information. The CATH [266, 277] and SCOP [251] databases contain
structural information, as well. These databases provide hierarchical classifications
of protein structures. For instance, CATH breaks down a query protein structure into
Class (C), then Architecture (A), followed by Topology (T), and then Homology(H).
SCOP breaks down a query protein structure into fold, then superfamily, then family.
Both CATH and SCOP are discussed in greater detail in Sect. 5, which discusses
structure-based methods for functional annotation. It is worth noting, however, that
due to different working definitions of domains and different techniques used to
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determine what makes a domain, these two databases contain a different number
of domains. CATH contains at the moment about 65;000 domains, whereas SCOP
contains about 110;800 domains. SCOP defines a domain as an evolutionary unit.

Manual curation of domains provides at the very least sequence and functional
information that has been exploited early on to functionally annotate new proteins.
In [311], a query protein sequence is aligned to sequences of domains extracted
from ProDom and CDD, and rules for function assignment are based on BLAST
E-values. Application to a set of 4357 manually curated human proteins results in a
recall of 81% and a precision of 74%; on data sets from other organisms, precision
and recall are decidedly lower, at about 50%.

A machine learning approach is proposed in [48], where domains extracted from
the SBASE library of protein domains [359] are employed as attributes. Sequence
alignment is used to determine whether a domain is present or not in a given protein
sequence, allowing a protein sequence to be represented as a binary vector recording
domain membership. k-nearest neighbor (kNN) and SVM were then trained on
functionally annotated protein sequences. kNN is reported to outperform SVM on
13 functional classes obtained from the MIPS database [48].

Work in [281] follows a slightly different approach. Instead of using domains
for function annotation, constant-length statistically significant sequence patterns
known as promotifs [343] are used instead. Correlations found between SWISS-
PROT keywords assigned to the sequences and positions of promotifs are then used
to establish rules for function annotation. Precision on a set of PROSITE [144]
protein sequences is reported similar to that obtained from work in [311]. A low
sensitivity of 50% is reported. A similarly-low sensitivity is obtained by application
of decision trees classifiers to recognize PFAM domains [329] in [131]

Work on domain detection is very rich in computational biology, and methods
often include more than sequence information to reliably identify domains in a
given protein. One reason for domain-based functional prediction is that relying
upon sequence to detect domains falls short. Sequence information is found to be
insufficient for identifying structural domains in a protein, because the same struc-
ture can be assumed from highly divergent sequences of less than 30% sequence
identity. Structural-based domain detection is more reliable to identify the domains
in a protein, but this requires knowledge of a protein’s folded structure, which is not
readily available for many unannotated protein sequences. A comprehensive review
of structural-based domain detection methods can be found in [356].

Independent of the technique used to identify domains present in a given protein,
the problem of how to use this information to assign function(s) to an unannotated
protein remains open. This is due to the fact that a unit designated to be a domain
may not meet the definition of a domain as an independent evolutionary and
functional unit of a protein that folds independently of the rest of the protein. Hence,
when the criteria for what makes a unit a domain are indeed relaxed, the relationship
between a so-called domain and its function is not clear. In addition, domain domain
interactions need to be detected, as they may give rise to more complex molecular
functions. A review of the current understanding of the domain function relationship
can be found in [346, 361]. As such understanding improves, sophisticated machine
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learning methods that take into account context rather than membership and domain-
domain interactions are expected to improve the state of domain-based functional
annotation.

2.2.2 Motif-Based Methods

The Motif Alignment and Search Tool (MAST) [17] was one of the first to be used
for motif-based function annotation. MAST employs the MEME algorithm [16] to
construct groups of probabilistic motifs. MAST combines these motifs to construct
protein profiles for protein families of interest. MAST successively estimates the
significance of the match of a query protein sequence to a particular family model
as the product of the p-values of each motif match score. This measure is then used
to select the family of the query sequence. MAST’s average classification accuracy
(ROC50) over 72 distinct queries is shown to be above 0:95.

While MAST is a statistical approach, other methods based on unsupervised
and supervised learning approaches have been proposed for motif-based functional
annotation, as well. The algorithm in [217] implements unsupervised learning, but
relies on SPLASH rather than MEME to detect motifs. Other algorithms, some of
which implement supervised learning, employ motifs extracted from motif libraries
and databases.

The SPLASH algorithm proposed in [49] is the first to define motifs as
sparse amino acid patterns that match repeatedly in a set of protein sequences.
This definition is amenable to computational approaches for motif detection. The
SPLASH algorithm is a deterministic pattern discovery algorithm that is extremely
efficient and can be used in a parallel setting to systematically and exhaustively
identify conserved subsequences in protein family sets. The algorithm is employed
in the first motif-based method for function annotation [217] to extract motifs.
The resulting set of motifs are enriched via a HMM. Proteins are then clustered
based on motif membership in a top-down clustering algorithm reminiscent of the
construction of a decision tree. The levels of the tree correspond to the motifs,
ranked from most to least significant, and proteins are divided at each level/node
of the tree based on whether they contain the corresponding motif or not. In this
manner, the leaves contain sets of proteins that contain all motifs that together define
the signature of a particular functional family. The method performs well, achieving
a classification rate between 57% and 72% on the exceptionally challenging and
sequence-diverse G Protein-Coupled Receptor (GPCR) superfamily.

Instead of the unsupervised method in [217], work in [365] pursues a supervised
learning setting to classify proteins based on motif membership. The latter is used
to represent each protein sequence as a binary vector, with each entry indicating the
presence or absence of a particular motif; motifs are extracted from the PROSITE
database [144]. A decision tree is then learned on manually curated protein families
extracted from the MEROPS database [290]. Classification accuracy is reported to
be significantly better than the clustering approach in [49].



238 A. Shehu et al.

An NN-based method is proposed in [33], using two different types of motifs,
class-independent and class-dependent motifs. The former refer to motifs extracted
from the training dataset, and the latter refer to motifs extracted for each known
functional class. About 30 motifs from each class are extracted with the MEME
algorithm [16]. Class-dependent motifs are found to confer the best classification
performance to the NN. Application of the NN on the GPCR superfamily yields
better classification performance than MAST [17]. However, on this challenging
superfamily, a naive Bayes classifier with a �2 feature selection algorithm is shown
to obtain the best performance [60]. It is worth noting that the special focus on
GPCRs is due to their central role in drug design; about 60% of the approved drugs
target some member of the GPCR family [107].

Work in [27] conducts a comprehensive machine learning study for motif-based
function annotation. A motif kernel uses the occurrence count of each motif in
a protein sequence as a similarity measure between the motif and the sequence.
Classification is carried out via an SVM. Issues such as feature selection and multi-
class classification are also investigated. An evaluation of different strategies for
feature selection and classification schemes is conducted on a set of enzymes.
The best performance is obtained when using the RFE method [123] for feature
selection, many one-against-the rest classifiers [295], and counting the multiple
classes of a protein as a single class. In addition, SVM is found to perform better
than kNN. This result is further confirmed in [191], where motif-based SVMs
perform best on the classification of enzymes.

2.3 Feature-Based Methods for Functional Annotation

Many of the methods already described can be viewed as feature-based meth-
ods, since they employ term identify or term frequency representations of pro-
tein sequences in unsupervised or supervised learning settings, with terms being
domains, motifs, modules, promotifs, or even genomes. However, here we describe
a category of sequence-based methods that expand their treatment of a protein
sequence beyond the identity of amino acids to physico-chemical properties of
amino acids. At their core, these methods expand a protein sequence into a vector of
physico-chemical properties or attributes of amino acids in the sequence, otherwise
referred to as a feature vector. Once such a transformation is made, standard
classification techniques can be used. The most popular ones for feature-based
functional annotations of protein sequences are the SVM, NN, kNN, and naive
Bayes classifiers.

Supervised learning has also been employed to improve and extend the applica-
bility of whole-sequence annotation transfer in the twilight zone of low sequence
similarity. The main approach is to organize BLAST or PSI-BLAST results into a
positive set, which contains sequences with high similarity to the query sequence,
and the negative set, which contains all other sequences. The sets are then used to
train a classifier to discriminate sequences in the twilight zone.
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One of the earliest methods, PROCANS [376], employs a three-layered NN and
represented protein sequences as binary vectors. The attribute for each amino acid
in a sequence records the conservation of the amino acid at that position in an
MSA and valued 1 when at a position with 50–100 % identity and 0 otherwise.
Later improvements to this algorithm employ n-grams as features. In [374], n-gram
counts are used to construct feature vectors. In [373, 375], the order of n-grams in a
sequence is found to be important, and positions of n-grams in a sequence are added
to the feature vector. This collection of works, however, is limited to enzymes, where
there are stronger correlations between sequence and function.

The PRED-CLASS method in [274] also employs an NN but restricts its
focus to three specific protein classes. The NN contains three levels, classifying
transmembrane proteins at the first level, fibrous proteins at the second level, and
globular proteins at the third level. Different features are employed at different
levels. Compositional features are employed at the first level, as transmembrane
proteins have specific subsequence signature; 30 features record the composition
of a sequence in all 20 amino acids and 10 different groupings of residues with
common structural and physico-chemical properties. 30 features are employed at
the second and third level, but these features correspond to the 30 highest intensity
for periodicities detected for each residue or each of the 10 considered groups of
residues. PRED-CLASS is reported to correctly classify 96% of 387 proteins.

Work in [172] expands the applicability of feature-based methods. Propositional
data mining and inductive logic programming are employed in [172] on binary
feature vectors constructed from protein sequences. The features correspond to sets
of characteristics found in a significant fraction of the protein sequences. A C4.5
decision tree classifier is trained to predict rules from these features. An encouraging
prediction accuracy of 65% is obtained on ORFs of Mycobacterium tuberculosis
and Escherichia coli.

An extension of the above method is described in [173], where a comparative
study is conducted to determine representations of protein sequences that improve
function prediction. Three types of representations are investigated, sequence-based
attributes, phylogeny-based attributes, and structure-based attributes. Sequence-
based attributes (SEQ) are based on a sequence’s composition of single and pairs
of amino acids. Phylogeny-based attributes (SIM) are computed from the sequences
returned from a PSI-BLAST search of a given ORF sequence. The attributes capture,
via a first-order language such as Datalog, the distribution of sequences, their evo-
lutionary distance from the ORF, the phylogenetic relationship, as well as keywords
describing the sequences; the latter could be easily computed from a sequence, such
as the presence of a membrane/trans-membrane binding sequence. Structure-based
attributes (STR) are computed from secondary structure segments predicted for a
sequence from the Prof program [270]. Pair combinations of these representations,
as well as a combination of all of them, are also investigated. Evaluation on ORFs
in E. coli demonstrates that SIMs confer the highest performance. This important
result was one of the first indications that evolutionary information is powerful and
perhaps more informative than sequence. Section 4 describes methods that exploit
evolutionary history for function prediction.
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Work in [153] proposes the now popular ProtFun method, which trains a
set of NNs on carefully constructed attribute-value pairs from a training data
set. The attributes are compiled via different tools that provide information on
post-translational modifications, such as N- and O-glycosylation, phosphorylation,
cleavage of N-terminal signal peptides, and other modifications and sorting events
that a protein is subjected to before performing its function. An extensive evaluation
of ProtFun on 5500 human proteins from the TrEMBL database, with annotations
assigned based on SWISS-PROT keywords via the EUCLID system, demonstrates
that ProtFun has a high sensitivity of 90% and a low false positive rate of 10% on
some functional categories. Similar high performance is reported in [154], where
ProtFun is applied to predict GO categories for human proteins.

SVMs and kNNs have recently shown to be superior for feature-based function
classification. The SVM-Prot method proposed in [47] employs physico-chemical
properties of amino acids to represent a protein sequence as a 5-entry feature
vector. Five attributes are considered for each amino acid, normalized van der
Waals volume, polarity, charge, and surface tension. The attributes are averaged
over all amino acids in a sequence, resulting in a five-dimensional feature vector.
Binary classification is carried out for each protein family, with proteins in the
family comprising the positive data set and all other proteins the negative data set.
Evaluation is carried out on annotated proteins extracted from several databases, and
reported classification accuracies are in 69.1–99.6 % range. In [125], SVM-Prot is
reported to obtain an accuracy of 71:4% on a testing data set of 49 plant proteins.

Work in [86] attempts to address some of the issues with predicting GO
categories for protein sequences. The Classification in a Hierarchy Under Gene
Ontology (CHUGO) system is proposed, which recognizes that assignment of a
protein to a particular GO node, immediately assigns the protein to all ancestors
of the node in the GO hierarchy. Therefore, labels in CHUGO are not specific GO
categories, but GO subgraphs in the GO hierarchy. Since CHUGO trains a separate
binary classifier for each GO node, effectively an ensemble of classifiers are used
for a protein, as a protein can belong to multiple classes at a particular level in the
GO hierarchy. While these ideas are merit-worthy, the performance of CHUGO is
not higher than sequence-based methods for function prediction.

Work in [240] uses the HMM proposed in [164] to construct profiles for protein
families and classify novel proteins via profile comparisons. Families are identified
via a single-link hierarchical clustering algorithm of 256;413 manually annotated
proteins. The families are available via the PANTHER/Lib library provided as
part of this work, and families are carefully indexed according to their GO-based
ontology terms documented in the PANTHER/X to permit fast GO annotation
transfer on a query sequence. PANTHER v.8.0 now has 82 complete genomes
organized into gene families and subfamilies and has evolved to providing not
only gene function, ontology, but also pathways and statistical analysis tools. The
PANTHER system has emerged as a highly popular tool that enables browsing and
query of gene functions, and a large-scale gene functional analysis has recently been
reported via the PANTHER classification system [239].
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Work on effective feature representations that encode the low-level constraints
that function places on sequence is expected to continue. In fact, feature engi-
neering is considered the most promising direction in sequence-based methods for
function prediction. Recent work in [262] focuses on this direction and provides
the community with hundreds of features of high biological interpretability and
are shown promising in predicting subcellular localization, structural classes, and
unique functional properties (such as thermophilic and nucleic acid binding).

2.4 Ensemble-Based Methods

State-of-the-art sequence-based approaches typically employ ensemble techniques
that combine the three categories of sequence-based methods described above. For
instance, work in [170] proposes two ensemble methods, the consensus (CONS)
method and the frequent pattern mining (FPM) method. Each method combines
GO predictions from PFP [129, 130], ESG [63], PSI-BLAST [8], PFAM [329],
FFPred [225], and HHblits [293]. Each of the ensemble methods in [170] improved
performance over the individual methods in the CAFA1 and CAFA2 categories of
the CAFA competition.

The GOPred method proposed in [304] combines heterogeneous classifiers that
cover the three main sequence-, subsequence-, and feature-based approaches to
improve GO annotations. Positive and negative training data sets prepared for each
of the 300 GO molecular function terms are subjected to three classification meth-
ods, each representative of the three main approaches: BLAST k-nearest neighbor
(BLAST kNN), the subsequence profile map (SPMap), and the peptide statistics
with SVMs (Pepstats-SVM) method. Four classifier combination techniques are
investigated: majority voting, mean, weighted mean, and addition. Evaluation
in [304] demonstrates that the weighted mean classifier combination technique,
which assigns different weights to the classifiers depending on their discriminative
power for a specific functional term, achieves the best performance in 279 of 300
classifiers.

2.5 State of Sequence-Based Function Prediction

An interesting observation based on evaluation of different methods for function
prediction at CAFA has been that sequence-based methods set the bar high for
function prediction [124]. While any current function prediction method ought
to outperform sequence-based methods, in practice, improvements are small, as
sequence-based methods, when implemented correctly, do very well at CAFA. Such
are the conclusions of a survey of such methods in 2013 [124]. In particular, it is
observed that sequence-based methods can perform at the top-20 provided precise
details of the implementation are followed. For instance, score normalization across
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targets and poor choices for values of free parameters can lead to lower performance.
Careful implementations of sequence-based methods can lead to high performance
on the CAFA top-20 and threshold measures.

Many challenges remain regarding sequence-based function prediction. One par-
ticular challenge regards the detection of remote homologs, which are homologous
sequences with less than 25% sequence identity thought to make up about 25% of
all sequenced proteins. It is worth noting that a particular group of machine learning
methods address the problem of remote homology detection. These methods are
both sequence-, subsequence-based, and profile-based and predominantly employ
SVMs [26, 189, 288] or HMMs [151, 164, 218–220, 249, 323]. A comparative
review of some of these methods can be found in [104]. These methods are typically
evaluated not directly on function prediction but instead on reproducing the SCOP
superfamily classification [9], which is considered the gold standard due to its
manual curation [296] (though recently a different picture is emerging of errors
in SCOP and increasing reliability of CATH classification due to improvements of
machine learning methods for automated structural classification). It remains to be
seen whether these methods, by improving the detection of remote homologs can
further improve automated functional annotation of proteins.

3 Genomic Context Methods for Function Prediction

Genomic context-based methods can be the only viable approach in cases of query
proteins with novel sequences, and for which interacting molecular partners have
yet to be discovered. These methods are predicated on the knowledge that location
of the gene encoding a query protein is important information that can be exploited
for function prediction. These methods fall into two main categories:

• Gene neighborhood- or gene-order based methods: these methods
operate under the hypothesis that two proteins with corresponding genes
located in proximity of each other in multiple genomes are expected to
interact functionally.

• Gene fusion-based methods: these methods operate under the hypothesis
that pairs or sets of genes identified in a genome that are merged into a
single gene in another genome are functionally related.
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3.1 Gene Neighborhood- and Gene Order-Based Methods

The hypothesis that gene proximity in a genome implies functional interactions
between the proteins they encode is supported by the concept of an operon, which
contains one or more genes that are transcribed as a unit in mRNA. The concept
of the neighborhood was originally exploited in [71], which found that 75% of
neighboring genes were known to interact physically, with the rest representing
potentially novel interactions. Work in [271, 272] inferred functional coupling
between genes in 24 genomes, which additionally employed the concept of a pair
of close bidirectional best hits (PCBBH); neighboring genes in a genome G1 with
neighboring orthologs in a genome G2. PCBBH entries were scored based on the
evolutionary distance between two genomes, and the scores were employed to report
as predictions those PCBBH entries with scores above a pre-defined threshold.
Work in [185] improves upon the idea of PCBBHs by addressing the issue that
gene proximity is not sufficient in itself to infer functional coupling. Additional
constraints beyond neighboring orthologs, such as proximity of transcription start
sites and opposite direction of transcription are enforced in [185] to infer functional
coupling.

The SNAPper method in [179, 180] relies on the construction of a similarity-
neighborhood graph (SN-graph). Vertices in the graph are the genes in a given set of
genomes. Edges connect vertices corresponding to orthologs or neighboring genes.
The notion of an SN-cycle is employed, which is hypothesized to preferentially
join functionally related gene products that participate in the same biochemical
or regulatory process. Evaluation demonstrates that SNAPper is more effective at
reconstructing metabolic pathways than directly predicting functional annotations.

3.2 Gene Fusion Methods

Gene fusion was first proposed in [233], which hypothesized that if two genes
are separate in one genome but are merged or fused into a single gene in another
genome, then these genes are expected to be functionally related. There is strong
biological reasoning to support this hypothesis. Gene fusion reduces entropy of
disassociation, indicating that genes that encode for two domains of one protein
in an earlier organism evolve into independent genes in a descendant organism [95].
The hypothesis is also supported at a structural level, since it has been observed
that protein–protein interfaces are highly similar to domain–domain interfaces in a
multi-domain protein [349].

The effectiveness of the basic idea of gene fusion was demonstrated in [233] by
analyzing 6809 pairs of non-homologous genes in the E. coli genome. A significant
fraction of these pairs were found to have been reported physically or functionally.
The basic premise of gene fusion was validated at a large scale in [383], which
applies the method to 30 microbial genomes and reports an average sensitivity of
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72% and an average specificity of 90% on predicted functional links. Another
study on 24 genomes reports similarly high performance [93]. The method in [232]
expands upon the basic gene fusion approach by replacing orthology for the broader
concept of homology. An association scoring function based on the hypergeometric
distribution measures the probability of the chance occurrence of a given number of
fusion events between a pair of genes. The log of this association score is found to
have a linear correlation with functional similarity.

Gene neighborhood- and gene fusion-based methods have been shown in various
large-scale studies [147] to yield interactions that are functionally meaningful, such
as direct physical interactions, co-membership in a protein complex, co-presence
in metabolic or non-metabolic pathways, or other biological processes. Many
databases, such as Phydbac [91] and Phybac [89], now store functional associations
detected by gene neighborhood- and gene fusion-based methods, as well as
phylogenetic profiles. In general, however, methods based on the notion of gene
neighborhoods are more accurate at finding functional links than methods based on
gene fusion and phylogenetic profiles (described in Sect. 4).

Several systematic studies of genome context methods are now available. For
instance, work in [101] carries out a thorough comparison of many different
methods on data from several organisms. Several conclusions are drawn. For
instance, the study finds gene fusion methods to generally perform the worst, and
gene neighbor methods to outperform phylogenetic profile methods by as much as
40% in sensitivity on most organisms.

4 Phylogenomics-Based Methods for Function Prediction

Phylogenomics-based methods expand genomic context and exploit evolutionary
relationships between organisms to detect functional similarities between genes.
These methods fall into three categories:

• Phylogenetic profile-based methods: these methods encode the presence
or absence of a gene across genomes in a binary vector referred to as
the phylogenetic profile. The underlying hypothesis is that two genes with
similar phylogeny profiles will also be functionally similar.

• Phylogenetic tree-based methods: these methods exploit the concept of
a phylogeny tree, which encodes evolutionary relationships and distances
between organisms in a tree. The pattern of evolution of a set of proteins, as
present in phylogeny trees, can be exploited in a machine learning setting
to detect functional similarity.

(continued)
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• Phylogeny hybrid methods: Recent machine learning methods combine
the information present in phylogenetic profiles and trees.

4.1 Phylogenetic Profile-Based Methods

The operating hypothesis for phylogenetic profile-based methods for function
prediction is that proteins that participate in the same pathway or molecular complex
in the cell are under pressure to evolve together to preserve their role in the cell.
Hence, the comparison of phylogenetic profiles, which store in a binary vector the
presence or absence of a particular gene in a genome is expected to be valuable for
function comparison.

This hypothesis is tested in [279]. Phylogenetic profiles are constructed from
16 genomes of different organisms. Three E. coli proteins are used as the test data
set to verify that indeed proteins with profiles different at most one position are
functionally related. SWISS-PROT annotations are employed for the verification.
Similar results are derived from the EcoCyc database of metabolic pathways [168].
In addition, a comparative study in [214] demonstrates that comparison of phylo-
genetic profiles is more accurate in predicting function than comparison of whole
protein sequences. The study additionally shows that function prediction accuracy
improves if more genomes are included to construct phylogenetic profiles.

An important extension of phylogenetic profile-based methods is also proposed
in [214] regarding the scenario of redundant genes in an organism that are eventually
lost. Such genes can be detected by allowing for complementary phylogenetic
profiles, as shown in [214] for DNA-directed DNA polymerases, DNA repair
proteins, and isomerases. The PhylProM database computes these results and other
phylogenetic data [345].

Work on phylogenetic profile-based methods has mainly proceeded in three
directions.

The first direction concerns investigating distance functions for comparing
two phylogenetic profiles. In [377], Hamming Distance, Pearson’s correlation
coefficient, and Mutual Information (MI) are compared on the ability to determine
co-membership in a metabolic pathways in KEGG [162], and MI is found to confer
the best performance.

The second direction concerns investigating different representations of phy-
logenetic profiles beyond the binary vector. Work in [88] proposes real-valued
profiles, where entries record not just membership in a genome but instead record
the normalized BLAST score denoting the best match for a protein in a genome.
This is effectively a relaxation of the phylogenetic profile to cases where an exact
match for a gene cannot be found in a genome. Cosine similarity is used to
identify the neighborhood of a profile, and annotation is carried out by finding the
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statistically dominant class of the MultiFun database [313]. Comparison with the
original profile-based method in [279] shows that the relaxation idea provides better
performance. It is worth noting that the Phydbac database [89] includes profile-
based annotations obtained from real-valued profiles. The Phydbac2 database [90]
by the same team of researchers strengthens the annotation procedure by combining
predictions based on the genomic context methods described in Sect. 3.

Work in [29] pursues both above directions of what information to encode
in profiles and how to compare phylogenetic profiles. Two modifications are
proposed. Based on prior studies showing that including more genomes improves
accuracy, partially complete genomes are proposed to be included in constructing
the phylogenetic profile of a gene. Second, the distance function is proposed to
take into consideration both the number of genomes and the evolutionary history of
the unannotated gene. Comparing two profiles constructed from a large number of
genomes is assigned greater significance than when comparing profiles constructed
from fewer genomes. The farther a genome where the query gene is found is in
evolutionary history from the genome containing a gene, the higher the weight of the
corresponding entry in distance calculations. Evaluation of these ideas on detecting
co-occurrence in the KEGG database for two distinct test sets does not show
significant performance improvements over earlier work; however, performance is
impacted more by the number of genomes than differently weighting profile entries
in the distance function [29].

The third direction of research on phylogenetic profile-based methods pursues
the combination of information extracted from phylogenetic profiles with that
extracted from gene neighborhoods and gene fusion from genomic context-based
methods. For instance, the PLEX method in [73] proceeds in iterations. In the first,
genes with similar phylogenetic profiles to a query gene are first identified. These
genes are then used as queries to identify possibly more genes with similar profiles
in another iteration, and this process continues until no new genes are identified. The
predicted functional links are then combined with those obtained from gene neigh-
bor and gene fusion links. This approach has been shown capable of reconstructing
the important urease enzyme complex and the isoprenoid biosynthesis pathway
in M. tuberculosis. Another method employs similar ideas [392] but constructs a
single, tandem phylogenetic profile for pairs of neighboring genes in a genome. The
profile records whether a pair of neighboring genes in a genome are also neighboring
in other genomes. This is in itself an interesting genomic context-based extension of
the concept of phylogenetic profiles. Pairs with similar profiles are collected, and the
functional coherence is tested with respect to functional categories in the Clusters
of Orthologuous Groups (COG) proteins database [340]. Comparison of purity and
the Jaccard coefficient show that pair profiles confer better performance than single
profiles. Comparison of different distance functions shows that MI is more powerful.

Due to the incredibly intuitive relationship between phylogenetic profiles and
functional annotations, methods exploiting phylogenetic profiles have not had to
investigate sophisticated techniques from machine learning beyond a comparison of
distance functions. However, several directions can be investigated. For instance,
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other similarity measures are known to be more powerful than MI in machine
learning, such as odd ratio, Yule’s Q and Yule’s Y, as well as Piatetsky-Shapiro
and collective strength [335]. Association rule mining based on market basket
analysis [2] has also not been investigated, though it may identify meaningful
frequent patterns from a matrix of phylogenetic profiles. These lines of investigation
may further improve the performance of phylogenetic profile-based methods for
function prediction.

4.2 Phylogenetic Tree-Based Methods

Phylogenetic tree-based methods are also prime for investigating different ideas
and techniques from machine learning; however, current research on phylogenetic
tree-based functional annotation is scarce, primarily for two reasons. First, it is
decidedly more difficult and intricate to compare trees. Second, phylogenetic trees
are constructed via algorithms themselves and so are approximations of the actual,
unknown evolutionary tree for the organisms under consideration.

Work in [85] demonstrated in 1998 how phylogenetic trees could be used
for predicting function. Specifically, the homologs of a query protein can be
identified via homology-based methods. The query protein and its homologs can
then be embedded in a phylogenetic tree via tree reconstruction algorithms, such as
PHYLIP [100]. Gene duplication and speciation events can then be identified in the
tree and be used to assign function to the query protein. Work in [85] shows that
this approach can be more reliable than homology-based methods when there are
variations to the rate of functional change and gene duplication events and changes
to the function of homologs during evolution. The promise of phylogenetic trees
to improve function prediction over homology-based methods is also demonstrated
in [80].

Based on this foundational work, later methods have focused on exploiting
phylogenetic trees for identifying domain–domain and protein–protein interac-
tions [276], and for training generative and discriminative models of molecular
function [92, 285, 321]. In [276], the similarity between two phylogenetic trees
is interpreted as an indication of coordinated evolution and similar evolutionary
pressure to members of a given molecular complex. Rather than comparing
phylogenetic trees, the method in [276] compares the distance matrices that are
used to build phylogenetic trees. Earlier work in [112] introduces such a similarity
measure by measuring the linear correlation coefficient between all sets of pairwise
distances in the tree.

In [285], a HMM is constructed at each parent node of the phylogenetic tree by
using the multiple sequence alignment of the reconstructed sequences of the child
nodes. A score is associated with each node, and the query protein is assigned the
class whose tree scores the highest. A very high accuracy of 99% is achieved for a
set of 1749GPCRs. In [321], a multi-step strategy is proposed and disseminated via



248 A. Shehu et al.

the GTREE software. The strategy begins with identifying homologs of the query,
constructing a multiple sequence alignment of the query and its homologs, using the
alignment to eventually construct a phylogenetic tree, identifying the high support
subtrees, integrating additional experimental data, differentiation of orthologs and
paralogs to infer molecular function.

Work in [92] proposes the SIFTER method, which is based on probabilistic
graphical models. The seminal idea is that a reconciled phylogenetic tree can be
considered a probabilistic graphical model if transition probabilities are associated
with its edges. So, a transition probability function is assigned for the transfer of
molecular function from a parent to a node. Then, standard propagation algorithms
are used to compute the posterior probability of a node being assigned a certain
molecular function. An extensive comparative evaluation shows that the method
is superior to sequence-based methods and other phylogenetic tree-based methods.
A very high precision is reported with complete coverage on 100 Pfam families
supplemented with GO annotations. In 2005, SIFTER beat other methods, such as
BLAST, GeneQuiz, GOtcha, GOtcha-exp, and Orthostrapper. Specifically, SIFTER
achieves 96 % prediction accuracy against a gold standard dataset of 28 manually
annotated proteins in the AMP/denosine deaminase Pfam family. SIFTER performs
better than BLAST, GeneQuiz, GOtcha, GOtcha-exp (GOtcha transferring only
experimental GO annotations), and Orthostrapper, which achieve 75 %, 64 %, 89 %,
79 %, and 11 % prediction accuracy, respectively.

4.3 Hybrid Phylogenetic Profile and Tree Methods

Since the phylogenetic profile of a protein sequence and phylogenetic trees encode
different evolutionary knowledge, they can be combined. The method in [358]
uses SVMs to learn protein function from phylogenetic profiles. The phylogenetic
tree is used to define a tree kernel that calculates profile similarity. Performance
comparison between the SVM with the tree kernel vs. the SVM with a linear kernel
on the genes of Saccharomyces cerevisiae shows that the tree kernel confers better
classification performance. The method in [358] is adapted in [256] to use real-
valued rather than binary phylogenetic profiles. The elements of a phylogenetic
profile are obtained by a post-order traversal of the phylogenetic tree; the internal
nodes of the tree are assigned scores that are averages of the children scores. An
SVM with a polynomial kernel is trained on the resulting real-valued profiles and
shown to outperform the original method in [358].
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5 Structure-Based Methods for Function Prediction

Despite increasingly sophisticated sequence-based methods for function prediction,
research has shown that sequence is not under a strong selective pressure to
preserve function. A prime example of this is the presence of remote homologs,
which were identified as early as the 1960s, when Perutz and colleagues showed
through structural alignment that myoglobin and hemoglobin had similar structures
but indeed different sequences [282]. By now many studies have shown that the
correlation between sequence and structure is stronger than that between sequence
and function [79, 138, 369]. In particular, structure is under more evolutionary
pressure than sequence, and structure-based methods effectively cast a wider net at
detecting functional similarity based on structural similarity. Some studies suggest
that utilizing both sequence-to-structure and structure-to-function relationships may
allow for more accurate function prediction [102].

The goal in structure-based methods for function prediction is to detect a
level of similarity between two given protein structures, which in terms allows
for the transfer of functional annotations from one protein to another. Similarity
can be detected by comparing the two structures in their entirety or only in
part. This distinction allows organizing structure-based methods into the following
categories:

• Whole Structure-based methods: these methods identify similar protein
structure utilizing a distance metric to transfer functional annotations from
a query structure. Most methods rely on a structural alignment which is
prohibitive at a large scale, when comparing a query structure to structures
in a database. The high computational cost can be addressed by filter-based
methods, which attempt to reduce the number of structures of relevance for
comparison to the query.

• Substructure-based methods: Similar to the subsequence-based methods
discussed earlier, substructure-based methods consider that only a portion
of the structure may contain the binding sites critical for binding with
molecular partners. A query protein is effectively searched for substruc-
tures known to exist between functionally related proteins.

5.1 Whole Structure-Based Methods

The growth in the size of structural databases such as the Protein Data Bank
(PDB) [28] is enabling the transfer of functional annotations between structurally
similar proteins. Similar to sequence comparisons, structural alignments are used
to enable the comparison of proteins of unequal size. Alignment methods strive
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to maximize the number of residues in the alignment while minimizing some
distance or similarity measure. While many structural alignments methods have
been proposed, it remains unclear which method provides the most biologically
significant alignment [320, 331]. For a given alignment, an optimal superimposition
of two proteins is commonly performed using the Kabsch method [160], which
finds the rotations require to minimize the root-mean-squared-deviation (RMSD),
between the atoms identified in the alignment. RMSD is a popular distance measure
for protein structures. Another popular distance measure is GDT_TS [387], which
measures the maximum percentage of C˛ atoms that can be aligned within a set of
difference tolerances (typically 1Å, 2Å, 4Å, and 8Å).

Below, we discuss two main subclasses of whole sequence-based methods.
The first uses superimposition and alignments. While these methods are accurate,
they are also computationally demanding. The second subclass of methods lower
computational demands by reducing or eliminating the need for alignments and
superimpositions.

5.1.1 Alignment-Based Whole Structure-Based Methods

Some of the most popular alignment-based structure comparison methods
are SALIGN [36], SSM [175], MAMMOTH [268], CE [319], STRUC-
TAL/LSQMAN [176, 206, 332] SSAP [267], VAST [108], SARF2 [6], and
DALI [136]. These methods have to address three main issues: how to represent a
protein structure so as to facilitate comparison, how to efficiently explore the space
of possible alignments in search of the optimal alignment or near-optimal ones, and
how to score a given alignment and determine its statistical significance.

Structural alignment is typically cast as a multi-objective optimization problem,
where the best alignment is obtained from maximizing the number of amino acids
included in the alignment and in tandem improving a structural alignment score
measuring structural similarity. The choice of the alignment technique and the
particular score employed are independent of each other, but many methods couple
them together.

Computing the alignment is computationally demanding. Some methods com-
pute alignments that are optimal with respect to a similarity score, while others
compute approximate alignments in return for computational expediency. The
secondary-structure mapping (SSM) method presented in [175] aligns two given
proteins using their secondary structure units and employs a scoring function similar
to VAST [108]. VAST normalizes aligned structures by incorporating the chances
of randomly finding these structures in the PDB (much like term frequency inverse
document frequency (TF-IDF) in text mining). VAST is now part of the NCBI’s
structure computational services.

DALI [136] utilizes internal distance matrix representations of protein structures
and a sequence score between matched residues to perform the alignment. An
initial alignment is generated and a Monte Carlo scheme is used to find better
alignments. An integer linear programming approach utilizing the DALI scoring



A Survey of Computational Methods for Protein Function Prediction 251

function is proposed in [370] to compute the optimal alignment. The contact map
overlap (CMO) scoring method is proposed by Godzik and Skolnick in [111], which
also uses internal distances to maximize the number of contacts in the alignment.
The TM-Align method and the TM-Score are proposed in [390], where coordinate
superimposition and dynamic programming are coupled with an optimized scoring
matrix.

Many of the alignment-based methods are available to the community via web
servers. Web servers that allow users to employ and compare many of these methods
are also available. For instance, the CSA web server for comprehensive structural
alignments [372] provides the community with access to both exact and heuristic
alignment methods, as well as many different scoring functions.

Alignment-based methods have been the focus of periodic reviews [177, 182,
234]. In particular, in [177, 182], many of these alignment-based methods are tested
on a benchmark set of almost 3000 structures and found to perform well but to carry
a large computational cost that becomes prohibitive when the goal is to find the
structural neighbor of a protein in a database of 50;000 or more structures.

Recently, alternative approaches have been proposed that do not rely on align-
ment. For instance, work in [371] utilizes a metric based on contact map overlaps.
Another set of methods avoid the alignment and superimposition requirement alto-
gether by employing a filtering approach and exploiting lightweight representations
of protein structures. We review these methods next.

5.1.2 Filtering-Based Whole Structure-Based Methods

The goal of filtering methods is to rapidly eliminate structures that are not likely
to share structural features with a query structure, thus making it practical to
employ alignment-based methods on remaining structures. How to represent a
protein structure is key to the performance of filtering-based methods, as the choice
of representation directly dictates what distance metrics can then be employed to
accurately and efficiently score the similarity between two structures [13, 45, 51,
52, 138, 174, 216, 235, 245, 391].

For instance, work in [298], inspired by Vassiliev knot invariants, describes the
topology of a protein structure via 30 real-valued features. The scaled Guass metric
(SGM) is then employed to compare two such 30-element vectors corresponding to
two protein structures. A simple classification procedure employing this metric is
shown to correctly identify the fold for 95 % of the structures in CATH2.4 [298].
Another method, PRIDE, compares protein structures via a fast algorithm based
on the distribution of inter-atomic distances [53]. PRIDE has been shown to
accurately assign query proteins to their CATH superfamily 98.8 % of the time.
PRIDE and other structure analysis methods are available for the community via
a web server [360]. Recently, a group of methods have exploited the fragbag
representation, which is a bag-of-word (BOW) representation of a protein structure.

Utilizing techniques from machine learning and data mining, fragment libraries
have been utilized to form a dictionary of “words.” Utilizing libraries created
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Fig. 2 Fragbag creation process. A fragment library is shown top the right (containing F
fragments). The protein structure on the left (rendered with VMD [145]) is scanned one fragment
at a time (first fragment highlighted in red) using a sliding window the same size as the fragments
in the library. The library fragment that approximates the current fragment in the protein is located
and a term frequency vector is constructed, with each position representing the number of times
that library fragment was used in describing the protein. Fragbags are described in [45] and this
figure is taken from [245]

in [181], a protein is represented as a term frequency count of the number of
times each fragment is used to approximate a segment of the protein’s backbone.
Figure 2 from work in [245] illustrates the fragbag creation process. Fragbags when
combined with a cosine similarity metric were shown to allow the fast detection of
remote homologs in [45] and to provide some insight into the relationship between
sequence, structure, and function [165, 269].

Work in [245] uses fragbags to construct low-dimensional categorization of the
protein structure space and utilize these representations to automatically assign pro-
tein function by identifying the SCOP superfamily to which a query protein resides.
This categorization is constructed using the Latent Dirichlet Allocation (LDA)
model [32] made popular in topic modeling, which is an unsupervised learning
approach allows further reducing the fragbag representation to a representation of 10
topics. The topic-based representation introduced in [245] is employed to identify
remote homologs of a query protein structure as well as map the query to its SCOP
superfamily. The latter is done via SVM, which allows reaching a classification
accuracy of over 80%.
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Fig. 3 Methods to detect common local substructures as shown in [254]. Template-based methods
first (a) extract known functional motifs from an experimental structure and then (b) use this
information to search for other structures containing these motifs. (c) Illustrates that expert-
generated templates can also be used for search queries. The processes for pairwise methods are
shown in (d)–(i). (d) Represents a database of protein structures which are processed to reveal
local structures shown in (e). These structures are then clustered in (f) to reveal highly populated
clusters extracted in (g) and undergo statistical analysis (h). The identified motifs can then be fed
to (i) template-based methods

5.2 Substructure-Based Methods

Similar to sequence motifs, structural motifs are used to identify common structural
components amongst sets of functionally related proteins. The main premise of these
methods is to tabulate motifs that act as structure-function signatures and then search
a given protein structure for the presence of function-known motifs.

Substructure-based methods can be categorized into two types: template-based
methods and pairwise methods. The main difference between these methods is
that the motifs may be pre-compiled from experimental structures or identified
as shared substructures of two structures under comparison. These two groups of
methods are summarized in Fig. 3. Work in [254] summarizes substructure-based
methods. Many databases are now available that store structural motifs, including
the Database of Structural Motifs in Proteins (DSMP) [121] and the Structural
Motifs of Superfamilies (SMoS) [54].
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5.3 Structure Feature-Based Supervised Learning Methods

While some of the methods already discussed use supervised learning methods,
such as kNN to transfer functional annotations from neighbors to the query,
others use SVMs, decision trees, and NNs. For instance, work in [139] introduces
SVM-I, a method that uses structural features in lieu of sequence features to
detect remote homologs, obtaining an almost four-fold improvement in runtime
and improved accuracy over other SVM-based methods that utilize only protein
sequence. Machine learning methods have also been applied to predict functionally
important sites within a protein. In [381], Yahalom et al. train an SVM using
structural features to identify catalytic residues. They utilize that these residues
have specific spatial proximities and are deeply embedded in the structure. In this
work they investigate other classification methods, but find that SVMs provide the
best performance. Many feature-based methods that employ structural features also
integrate other sources of data and are the subject of our review in Sect. 8.

5.4 State of Structure-Based Function Prediction

As the number of structures and number of functional annotations increase in
structural databases, function prediction methods that utilize structure will gain even
more discriminative power over methods that employ only sequence. Work in [102]
provides some early evidence to this effect, by showing that structure prediction,
coupled with biochemically relevant structural motifs, can outperform sequence-
based methods and provide more detailed, robust function annotation of genome
sequences. Computational efficiency concerns will remain a challenge. However,
techniques that have originated in the data mining community are showing good
potential at addressing both computational efficiency and accuracy concerns via
smart representations and representation-aware distance metrics.

6 Interactions-Based Methods for Function Prediction

Direct binding can be tested at a high throughput scale in the wet laboratory via the
yeast two-hybrid (screening) system (Y2H) or affinity purification coupled to mass
spectrometry. These two technologies have allowed researchers to amass hundreds
of thousands of protein–protein interaction (PPI) data [202]. This data can be found
in databases, such as the the Database of Interacting Proteins (DIP) [379], the
Biomolecular Interaction Network Database (BIND) [15], the Biological General
Repository for Interaction Datasets (BioGRID) [55], the Human Protein Reference
Database (HPRD) [169], the IntAct Molecular Interaction Database and the Molec-
ular Interactions Database (MINT) [265], the MIPS Protein Interaction Resource on
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Yeast (MIPS-MPact) [119], and the MIPS Mammalian Protein-Protein Interaction
Database (MIPS-MPPI) [273]. These databases can be integrated, as in the Agile
Protein Interaction DataAnalyzer (APID) [284], the Microbial Protein Interaction
Database (MPIDB) [114], and the Protein Interaction Network Analysis (PINA)
platform [69].

Other databases combine PPI data obtained via Y2H and/or affinity purification
with data predicted in silico. Examples include the Michigan Molecular Interactions
(MiMI) [339], Human Protein-Protein Interaction Prediction Database (PIPs) [238],
Online Predicted Human Interaction Database (OPHID) [40], the online database of
comprehensive Human Annotated and Predicted Protein Interactions (HAPPI) [59],
Known and Predicted Protein-Protein Interactions (STRING) [334], and the Unified
Human Interactome (UniHI) [161].

PPI data presents a unique opportunity for function prediction methods, par-
ticularly when the data is encoded in protein–protein interaction (PPI) networks,
where vertices represent proteins and edges represent direct binding. Interactions
can be used to infer functional relationships. This principle is known as “guilt
by association” (GBA) [263]. Graph-theoretic concepts and algorithms can be
employed on PPI networks to predict the function of a query protein. Methods that
do so can be organized in four main categories:

• Neighborhood-based methods: these methods exploit the most dominant
annotations among neighbors of a query protein in a PPI network.

• Module-assisted methods: these methods exploit the local topological
structure of a PPI network to identify functional modules from which to
infer functional annotations of unannotated proteins. Two subgroups of
methods can be found in this category, clustering-based methods, which
seek dense subgraphs in a PPI network, and non-clustering methods, which
seek dense subgraphs via graph-theoretic concepts.

• Global optimization-based methods: these methods go beyond neigh-
borhood information and consider the structure of the entire network.
Optimization of an objective function allows exploiting annotations of
other proteins indirectly connected to the query.

• Association-based methods: these methods take a complementary
approach to detection of dense subgraphs, employing association rule
mining to detect frequently-occurring sets of interactions.

Methods that are not module-assisted are also referred to as direct methods, as
they essentially propagate functional information through the network. A detailed
review of these methods for function prediction is provided in [315]. In the
following, provide an up-to-date summary of these methods.
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6.1 Neighborhood-Based Methods

Neighborhood-based methods transfer to a query protein the most dominant annota-
tions among neighbors of the query in a PPI [65, 109, 137, 208, 247, 283, 312, 363].
Work in [312] was one of the earliest to demonstrate that 63% of the interacting
proteins in a yeast PPI of 2709 interactions had a common functional assignment,
and 76% were found in the same subcellular compartment. These simple statistics
laid the foundation for exploiting the connectivity information in a PPI network
to infer function. Functional assignment based on the majority (voting) annotation
shared by direct neighbors was shown to be a viable approach [312]. This approach,
deemed Majority Voting in [312], later came to be known as the nearest-neighbor
voting, or basic GBA (BGBA), and is persistently shown to perform well [283]
in the Critical Assessment of Function Annotation (CAFA) challenge. An earlier
precursor of nearest-neighbor voting or neighbor counting methods is the chi-square
method [135], which considers neighbors indirectly and assigns to a protein k
functions with the k largest chi-square scores; the chi-square score for a function

j and a protein Pi is defined as Si.j/ D jni.j/�ei.j/j2
ei.j/

, where ni.j/ is the number of
direct neighbors of protein Pi that have function j and ei.j/ D ni.j/xpj is the expected
number of neighbors with function j, with pj denoting the fraction of proteins having
function j among all proteins in the PPI network. Work in [75] shows that BGBA-
based methods perform comparably to the chi-square method.

Work in [65] extends BGBA by including indirect, level-2 neighbors. The
FSWeighted algorithm is proposed. The local topology of the query is compared
with that of its direct and indirect neighbors to estimate functional similarity
between a query and its neighbors. The experimental reliability of interactions is
combined with the functional similarity to associate a weight with each neighbors.
The query is then assigned the various GO terms of its neighbors, scoring each term
by its weighted frequency among the neighbors. Leave-one-out cross validation
shows that the performance of this method is comparable with other neighbor- and
similarity-based methods, as well as Markov random field-based global optimiza-
tion methods summarized below.

There are several issues with neighbor-based methods that are addressed at
various levels in existing literature. For instance, the query needs to have a sufficient
number of annotated neighbors in the network for a reliable prediction to be
made. While early methods did not consider distances between the query and its
neighbors, later methods do so, as summarized above. While GBA focuses on
annotated neighbors, there is information to be exploited in interacting unannotated
neighbors. Recent methods, such as those proposed in [247, 363], have begun to
exploit unannotated interacting pairs in PPI networks.

Another issue concerns which neighbors to consider, and whether to restrict the
GBA approach to direct neighbors, neighbors within a radius, or extend it to indirect
neighbors. Work in [109] shows that indirect connections improve gene function
prediction and proposes a new method based on the concept of extended GBA,
where networks are extended by self-multiplication. The multiplication allows
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estimating the number of paths of a certain length connecting a given pair of
nodes in the network, and the method in [109] weights the paths in an extended
network before conducting GBA as on the original network. This network extension
approach sits at the boundary of neighbor-based and global optimization methods.
The approach is applied not only to PPI networks but to co-expression networks, as
well, showcasing its generality for processing biological data encoded in graphs.

Yet another issue concerns the existence of mutual dependencies among neigh-
bors of the query. If two or more neighbors have similar function, their contribution
is likely to accumulate in existing neighbor-based methods. This should not be
the case. Instead, dissimilar neighbors should be more important for annotation
of a query. Work [137] proposes a way to take into account correlations among
neighbors. In particular, the Choquet-Integral for fuzzy theory is employed to
aggregate functional correlations among neighbors. The functional aggregation
measures the impact of each relevant function on the final prediction and reduces
the impact of repeated functional information on the prediction. The functional
aggregation is employed in a new protein similarity and a new iterative prediction
algorithm proposed in [137]. Evaluation of this approach shows that removing
neighbor correlations results in improved performance over neighboring methods
based on majority voting and sophisticated distance metrics such as the functional
similarity metric proposed in [65].

Finally, the majority of neighbor-based methods ignore the scale-free property
found in many biological networks, including PPI networks [3, 21]. In [209],
neighbor sharing is assumed to be constrained by preferential attachment, and the
Preferential Attachment based common Neighbor Distribution (PAND) method is
proposed to calculate the probability of a neighbor-sharing event between any two
nodes in a network. This probability distribution was shown to match very well
the observed probability in simulations of scale-free networks. PAND was applied
to a PPI network in [209] and shown to reveal smaller probabilities correlating
with closer functional linkages between proteins. PAND-derived linkages were used
to construct new networks with more functionally reliable links than links in PPI
networks. Simple annotation schemes on the new networks were found to be more
accurate [209].

6.2 Module-Assisted Methods

The local topological structures and properties of PPI networks are subject to
theoretical investigation and empirical exploration via ideas from network science.
Module-assisted methods seek to identify local topological structures that can
represent functional modules in a PPI network. Clustering-based methods rely on
clustering to identify dense regions with a large number of connections in PPI
networks, whereas non-clustering methods employ graph-theoretic concepts and
algorithms to identify local topological structures. We review each next.
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6.2.1 Clustering-Based Methods

Clustering methods focus on finding dense regions with a large number of con-
nections as a way of identifying functional modules representing protein–protein
complexes/assemblies [23, 330]. MCODE [23] uses a vertex weighting scheme
based on the clustering coefficient to measure the cliquishness of the neighbor-
hood of a node. Work in [330] proposes two clustering algorithms. The super
paramagnetic clustering algorithm [30] is a physics-inspired hierarchical clustering
algorithm. The Monte Carlo algorithm instead maximizes the density of predicted
clusters. The Markov clustering (MCL) algorithm is proposed in [94, 280], whereas
the highly connected subgraph (HCS) algorithm is proposed in [128]. HCS is
a graph-theoretic algorithm that separates a graph into several subgraphs using
minimum cuts. A cost-based local search based on tabu search metaheuristic is
proposed in [171].

Other methods employ classic clustering algorithms after defining a similarity
measure that takes into account the interactions of a protein in the network [11,
42, 113, 228, 302]. The SL method in [302] employs the number of common
neighbors to define the similarity between two proteins and then uses k-means to
partition the nodes in a PPI network into different groups/assemblies. Following
work in [228] modifies the similarity measure via a weighted form of the mutual
clustering coefficient approach [113]. Work in [11, 42] uses hierarchical clustering.
In [11], the shortest path distance between two proteins is used to estimate their
similarity, while work in [42] uses the Czekanovski-Dice (CD) metric.

The CD distance between two proteins u and v is based on the number of
neighbors they share and is measured as: jNuıNv j

jNu[Nv jCjNu\Nvj , where N� refers to the
direct neighbors of a vertex, and ı refers to the symmetric difference between two
sets. Work in [42] proposes the PRODISTIN method, which employs the BIONJ
algorithm (an improved version of the popular neighbor-joining algorithm) [106] to
cluster proteins in a PPI based on their CD distance. The BIONJ algorithm produces
a hierarchical classification tree. A PRODISTIN functional component is the largest
subtree that contains at least three proteins with the same function and has at least
50% of its annotated members sharing that function. This function is transferred
to the unannotated proteins in the functional component. It is worth noting that the
neighbor-based method in [65] proposes a new CD-based functional similarity that
penalizes the similarity weights between protein pairs when any of them have few
direct neighbors.

Work in [364] shows that clustering-based methods can produce many false
positives. To remedy this issue, the EVDENSE method is proposed in [364] to
efficiently mine frequent dense subgraphs in a PPI network. EVDENSE produces
frequent dense patterns by extending vertices and by using relative support.
Improved performance is reported over other clustering-based methods.

A detailed analysis of clustering-based methods is conducted in [325] to evaluate
the hypothesis that dense clusters correspond to functional modules. Six different
clustering algorithms are applied to a yeast PPI network, and evaluation shows that
the performance of these algorithms is dependent on the topological characteristics
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of the network. For the specific task of function prediction, a non-clustering, BGBA
approach outperforms the clustering algorithms. Guidelines are provided in [325] to
evaluate and justify novel clustering methods for biological networks.

One issue of clustering-based methods regarding the dynamic process in clus-
tering is addressed in the PClustering method proposed in [301]. Saini and Hou
track function appearance across all relevant clusters rather than just the cluster to
where the query is mapped by a specific clustering algorithm. A recursive clustering
algorithm reclusters until a cluster is obtained where the query gets separated
from the rest of the other proteins. The recursion tree tracks how the clusters
are split down to the leaf where the query is separated from all other proteins.
The particular path from the root to this leaf is then inspected to accumulate all
functions of all proteins in the path. This set is the list of relevant functions that
can be assigned to the query. The prediction for the query is then made based on
how the proteins in the path, with relevant functions, are split during the recursive
clustering process. A score is proposed to select functions that are stable in terms
of their frequency across the clusters in the path. PClustering is compared to
PRODISTIN [42], MCL [94], SL [302], Chi-square [135], Majority Voting [312],
and the FSWeighted method [65] on the yeast PPI dataset and shown to outperform
many of these methods, particularly on being able to accurately predict functions of
more unannotated proteins.

6.2.2 Non-clustering, Graph-Theoretic Methods

Clustering-based methods essentially aim to uncover communities in a network.
A different group of module assisted methods circumvent clustering and instead
employ concepts and algorithms from network science for community detection.
A community is a more general concept than a cluster, and various methods exist
on community detection in networks, a review of which is beyond the scope of
this paper. Here we summarize recent methods that uncover functional modules by
exploiting the concept of communities and then employ such modules for function
annotation.

Work in [222] introduces the concept of k-partite “protein” cliques as function-
ally coherent but not necessarily dense subgraphs. This concept is more suitable for
PPI networks, which are known to be non-uniform in subgraph density for reasons
that are often artifacts of wet-laboratory studies. Briefly, a k-partite protein clique
is a maximal k-partite clique comprising two or more non-overlapping subsets
between any two of which full interactions are exhibited. In [222], a PPI network
is transformed into induced k-partite graphs, where edges exist only between the
partites. A maximal k-partite clique mining (MaCMik) algorithm is proposed to
enumerate maximal k -partite cliques on these k-partite graphs. MaCMik is applied
to a yeast PPI network, and unusually high functional coherence is observed in the
k-partite cliques. This direction of work suggests that graph-theoretic concepts can
be more powerful at capturing the concept of functional modules and in turn assist
with function prediction.



260 A. Shehu et al.

While work in [222] restricts itself to the proposal of a new concept for a
functional module, work in [199] shows that the concept of a community can be
exploited for function prediction. In general, a cost function is designed to measure
the extent to which a subgraph constitutes a community, and then optimization
algorithms partition the graph into subgraphs that optimize the cost function. The
modularity (Q) measure is one example of a popular cost function that measures the
relative density of intra-community connectivity compared to a randomly re-wired
counterpart with the same degree of nodes. The conformational space annealing
(CSA) algorithm [200, 201] is employed in [222] to detect maximum-Q subgraphs
in the yeast PPI network. Figure 4 showcases the ability of the CSA algorithm to
detect more subgraphs than a baseline, popular simulated annealing approach.

After the high-modularity subgraphs are detected, Random Forest (RF) is then
employed, representing each protein as a vector of features generated only from
the network community (including which communities the neighbors belong to
and their functions). The resulting RF-comm-CSA method is compared to MRF-
based methods in [77, 163], neighborhood enrichment methods [315, 325], and
the Majority Voting method [312]. RF-comm-CSA is reported to achieve the best
performance, followed by the MRF-based method in [163].

6.3 Global Optimization-Based Methods

To overcome these setbacks, global optimization methods consider the full topology
of the network and employ techniques, such as Markov random fields, simulated
annealing, and network flow [57, 77, 204, 252, 355]. The Markov random field
(MRF) method proposed in [77] computes the probability that a protein has a
function given the functions of all other proteins in the interaction dataset. MRFs are
particularly suitable for modeling the probability that a query has a certain function
by capturing the local dependency of the query on its neighbors in a PPI network.
The latter is in essence the GBA principle. The Markov property is valid here, as the
function of the query is assumed to be independent of all the other proteins given
its neighbors in the PPI network. The MRF method in [77] is shown to be more
sensitive at a given specificity than neighbor-based and chi-square methods.

Work in [355] proposes a simulated annealing method, which was later shown
in [76] to be a special case of the MRF method [77]. The approach proposed in [204]
is identical to the MRF method in [77]. More recent work in [57] proposes a bagging
MRF-based method (BMRF). The method follows a maximum a posteriori principle
to form a novel network score that considers interactions in a PPI. The score is
used by the method to search for subnetworks with maximal scores. A bagging
scheme based on bootstrapping samples is also employed to statistically select high-
confidence subnetworks. While work in [57] applies BMRF to identify subnetworks
associated with breast cancer progression, later work in [317] shares the BMRF-Net
software with the community to identify subnetworks of interest in a PPI by the
BMRF method.
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Fig. 4 In [199], nodes of one community obtained by simulated annealing are split into three
communities by the CSA algorithm. Two of these are in red and blue shaded areas, and the third
is drawn with large squares. Within each of these communities, meaningful functional clusters of
KEGG pathway annotations with P-value less than 10�4 are listed

While the MRF-based method in [77] does not consider unannotated proteins
when training the regression model for parameter estimation, work in [187] uses the
same MRF model but then applies adaptive Markov chain MC (MCMC) to draw
samples from the joint posterior. This approach gives an AUC value of 0:8915 on
90 GO terms compared to the 0:7578 reported in [77] and 0:7867 reported in [204].
Work in [76] extends the MRF model by integrating various data sources, such as
PPI data, expression profiles, protein complex data, and domain information.
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Graphical models such as MRFs continue to solicit interest for predicting protein
function from biological networks such as PPI networks. A recent review in [338]
focuses on MRFs and conditional random fields (CRFs) and their applications for
predicting protein function and protein structure. Interestingly, the review finds that,
while CRFs have become popular in protein structure prediction and protein design,
they have yet to solicit interest in the function prediction community.

Work in [163, 252] represents a complementary approach based on the concept of
flow. Karaoz and co-workers visualize propagation diagrams to illustrate the flow of
functional evidence from annotated to unannotated proteins in a PPI network [163].
However, it is Nabieva and co-workers that operationalize on the concept of flow in
the Functional Flow method [252]. The method simulates functional flow between
proteins. A protein annotated with a specific function is assigned an infinite potential
for that function, whereas an unannotated protein is assigned a 0 potential. Functions
then flow from proteins with higher potentials to their direct neighbors with lower
potential. The amount of flow depends on the reliability of the interactions.

6.4 Association-Based and Other Mining Methods

Association-based methods employ association rule mining to detect frequently
occurring sets of interactions. The local topology of a query in a PPI, whether
restricted to direct and/or indirect neighbors, or extended to the more general con-
cept of a community, can be encoded via features in a feature-based representation
of the query and other proteins in the PPI network. Such representations open the
way for application of popular supervised learning algorithms for function predic-
tion. For instance, work in [260] employs logistic regression on representations that
use only functional annotations of the direct neighbors of a protein. Work in [64]
mines a PPI for frequent functional association patterns. The set of functions that
an annotated protein performs is assigned to the protein as a label, and a functional
association pattern is represented as a labeled subgraph. A frequent labeled subgraph
mining algorithm efficiently searches for functional association patterns in a PPI
network. The algorithm increases the size of frequent patterns one node at a time by
selective joining, while simplifying the network by a priori pruning. The algorithm
is reported to identify more than 1400 frequent functional association patterns in the
yeast PPI network. Function prediction is carried out by matching the subgraph that
contains the query with the frequent patterns analogous to it. Leave-one-out cross
validation shows that this function prediction approach outperforms neighbor-based
methods [64].

In general, however, these methods do not restrict themselves to features
extracted only from the local topology of a node in a PPI network, but integrate
various data sources to represent proteins. For instance, work in [50] proposes three
probabilistic scores, MIS, SEQ, and NET, to combine protein sequence, function
association, protein–protein interactions, and gene–gene interaction networks. The
MIS score is generated from homologs found for a query via PSI-BLAST and
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association rule between GO terms learned by mining the SWISS-PROT database.
The SEQ score is based on sequences, and the NET score is generated from PPI and
gene–gene interaction networks. The three scores are combined in the Statistical
Multiple Integrative Scoring System (SMISS), which is reported to outperform three
baseline methods that combine profile-sequence homology search, profile–profile
homology search, and domain co-occurrence network [366] on the CAFA1 dataset.

A detailed description of data integration methods is provided in Sect. 8.

7 Gene Expression-Based Methods for Function Prediction

A complementary source of data that can be used for function prediction are gene
expression data. cDNA microarray technology allows measuring the amount of
protein a gene makes at a given time under specific conditions. cDNA chains
can be designed to bind complementary mRNA so as to detect the transcription
of specific genes. Gene expression data, also referred to as microarray data, can
be measured in time, as well. Often, expression data measured across different
labs and under different conditions can vary, and standard normalization strategies
help eliminate discrepancies [58] and allow the employment of machine learning
techniques to mine such data. Gene expression data are typically viewed in matrix
format, with genes in rows and gene expressions under different conditions in
columns. By now, many such data exist for different organisms. The Stanford
MicroArray Database [316], now retired, contained expression data for genes in
the human genome. Similar data can now be found in databases, such as the NCBI
Gene Expression Omnibus [22, 84] or EMBL-EBI’s ArrayExpress [178].

Microarray data are prime for machine learning methods to detect changes in
gene expressions indicating the presence of specific types of diseases. Such data
can also be used for function prediction, as similarities between expression profiles
of genes can indicate functional similarities. This hypothesis was investigated early
on in [362], where 40;000 genes were examined for co-expression with five genes
known to be associated with prostate cancer. The guilt-by-association principle
was employed to identify uncharacterized genes significantly co-expressed with at
least one known prostate gene. This approach detected eight novel genes associated
with prostate cancer. While technically this study pursued the exploitation of gene
expression data to detect gene signatures of disease, it opened the way to more
sophisticated machine learning methods for the more detailed problem of function
prediction. Such methods can be organized in the following three categories:

• Unsupervised learning methods: these methods cluster expression pro-
files to identify genes with similar profiles that can be hypothesized to
share functional annotations.

(continued)
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• Supervised learning methods: Predicting function from gene expression
data is a natural learning problem in the supervised setting, and these
methods investigate classifiers, such as SVMs, naive Bayes, NNs, and
more.

• Temporal analysis methods: these methods exploit the ability to mea-
sure gene expression in time during, for instance, a disease. Temporal
expression data can also be used by classifiers to predict the function of
unannotated genes.

7.1 Unsupervised Learning of Gene Expression Data
for Function Prediction

Many different clustering algorithms can be used to organize gene expression
profiles, including clustering algorithms specifically designed for gene expression
data, such as CAST [25]. The issue, however, is what to do with the clusters and
which cluster to employ for function annotation. Measures such as majority [122]
have not been effective [395]. Work in [85] demonstrated an effective approach
relying on hierarchical average-linkage clustering with a variation of the correlation
coefficient as a similarity measure. Analysis showed that genes mapped to the same
cluster were for the most part involved in common cellular processes, directly
validating the hypothesis that clusters of co-expressed genes are also functionally
coherent. This result is often credited as bringing clustering to the forefront of
techniques for analysis of biological data.

The results of the relevance of clustering for functional annotation motivated the
development of a novel clustering algorithm, the Cluster Affinity Search Technique
(CAST) [25]. CAST proceeds in two phases, an add phase where elements with high
affinity to the current cluster are added to the cluster, and a remove phase, where
elements with low affinity are removed from the cluster. Clusters are constructed one
by one, and the algorithm terminates when no changes occur. Evaluation on static
and temporal gene expression data showed that CAST is able to preserve functional
categories. The ability of the algorithm to extract knowledge about diseases from
expression data has also been demonstrated, and has been employed in other works
to study gene signatures of disease [24, 333].

Work in [259] focused on removing noisy and redundant dimensions from
expression profiles via latent semantic indexing [205]. The retained dimensions
are then employed for clustering based on the concept of neighborhood, where
intra-cluster similarity needs to be significantly higher than inter-cluster similarity.
Unannotated genes in a cluster then are assigned the majority annotation of the
characterized genes in the cluster.
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The known issues with clustering regarding how to define similarity and how
many clusters to extract have prompted many researchers to pursue additional
directions. For instance, work in [395] increases confidence in the results via the
novel ontology-based pattern identification (OPI) strategy. Briefly, all decisions such
as attribute weights, choice of similarity threshold, choice of mean or median, and
other decisions that need to be made in clustering algorithms are embedded in
a Euclidean space. Then, a hill climbing algorithm is employed to navigate this
space in order to find decisions that are optimal with regard to an objective function
encoding expected characteristics of optimal clustering. The hill climbing algorithm
minimizes this function for all the GO functional categories and in the process
identifies the best cluster for each category. As in earlier work, unannotated genes
in a cluster are functionally linked to annotated genes in the same cluster. OPI has
been shown able to identify more statistically-significant clusters than other related
work employing the k-means clustering algorithm [297]. OPI has been additionally
validated. About 12 of the 50 genes predicted by OPI to have the antigenic variation
have now been verified.

Dealing with cluster overlaps is another way to increase confidence in the
clustering results. Work in [378] employs different clustering algorithms and
annotates a cluster with the functional class of the least p-value, as calculated from
the fractions of the different functional classes in a cluster. An unannotated gene
is then assigned the functional class of the cluster to which it is mapped, and
the assignment is also associated a confidence value based on the p-value of the
cluster. Consensus clustering is proposed in [246] as an analysis approach to assist
clustering algorithms. Consensus clustering, together with resampling, is proposed
to represent the consensus over multiple runs of clustering algorithm with random
restarts, such as K-means, model-based Bayesian clustering, and self-organizing
maps (SOM), which are typically sensitive to initial conditions.

The method in [333] fuses consensus clustering with ideas proposed in [378]
to carry out both robust and consensus clustering of gene expression data, as well
as assign statistical significance to clusters from known gene functions. While
the method in [246] perturbs gene expression data for a single algorithm, the
method in [333] uses different clustering algorithms. This method proposes a
robust clustering algorithm, which seeks maximum agreement across different
clustering methods by reporting only the co-clustered genes grouped together by
all the different algorithms. To address the issue of robust clustering discarding
gene expression vectors if only one clustering method performs badly, consensus
clustering is proposed, which seeks a minimum agreement. An objective function
is defined to reward clusters with instances of high agreement and penalize
clusters with instances of low agreement. The function is minimized via simulated
annealing. Consensus clustering is reported to improve upon the performance of
individual clustering methods, as measured by the weighted-k measure [7]. Clusters
identified for ten functional classes in [333] were also more likely to be annotated
with the same classes by consensus clustering than individual clustering methods.
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The functional coherence of gene expression clusters is called into question
in [394], which investigates a graph-theoretic approach. Genes are encoded as
vertices, and edges connect genes with correlated expression profiles. Shortest
paths in the graph allow identifying transitively related genes. A simple experiment
is conducted, where shortest paths between genes of the same GO category are
analyzed to check if the genes in these paths are annotated with the same GO
category or a parent or child function in the S. cerevisiae Genome Database
(SGD) [82]. The analysis shows that high accuracy is obtained for mitochondrial
and cytoplasmic genes, but medium accuracy is obtained for nuclear genes. The
graph-theoretic approach in [394] additionally provided functional annotations to
146 genes that were weakly correlated to other genes.

Another approach is employed in [229] to relax the functional coherence
requirement of a cluster. The latter may be weak if one considers all conditions, as
some may act as noise and strong correlation can be obtained upon removal of such
entries. Biclustering or coclustering is employed to address this. Briefly, biclustering
is a specific type of sub-space clustering and refers to the simultaneous clustering
of both rows and columns of a data matrix [127]. Two-way analysis of variance
is then used to identify constant valued sub-matrices. While many methods pursued
biclustering for gene expression data [62, 384], it was work in [43] that demonstrated
a simulated annealing approach to biclustering to perform well on yeast cell cycle
data sets. The two largest clusters were found to contain largely members of two
different families, the ribosomal proteins and the nucleotide metabolism proteins.
The method in [221] further demonstrated the potential of biclustering for functional
annotations. The structure of the GO hierarchy is incorporated in the hierarchical
biclustering process. Genes are first clustered via hierarchical clustering, and then
each node in the hierarchy is annotated with the GO functional class with which it
is most enriched.

While much progress has been made in clustering algorithms, many issues
inherent to clustering remain. One issue, in particular, pertains to the inability
of clustering algorithms to exploit already labeled instances. Supervised learning
methods exploit labeled data, and we review such methods for gene expression data
next.

7.2 Supervised Learning of Gene Expression Data
for Function Prediction

Gene expression data are subjected to a classification setting in [41], where three
different classifiers are compared to learn functions from yeast gene expression
data: Parzen’s window, Fisher’s linear discriminant analysis, two decision tree
classifiers (C4.5 and MOC), and SVMs with different kernels. Comparative analysis
demonstrates SVM with the radial basis kernel to perform best. Work in [192]
compares SVM to kNN classifiers on gene expression data. The cosine similarity
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measure is employed, as it better captures the shape of an expression vector in
high-dimensional space rather than its magnitude. kNN is reported to be better at
predicting the m most appropriate classes for a test gene over SVM.

Multilayer perceptrons are employed in [237] to learn 96 different functional
classes from annotated/labeled yeast gene expression data. Better performance is
obtained over work in [41], but three sources of errors are identified: class size, class
heterogeneity, and Borges effect (termed in [237] to indicate simultaneous mem-
bership of a gene in different functional classes). An iterative learning procedure
is proposed in [237] to address these three sources of error better than a one-pass
learning procedure.

Work in [258] employs multiple expression data sets for learning with SVMs
and presented a strategy to select the most informative data set for learning
individual classes. The learning cost savings measure introduced in [41] is used
to show that blindly combining different data sets is not optimal. A hill-climbing
algorithm is proposed instead to incrementally add the data set that provides the
maximum learning cost savings until a maximum is reached. Comparison with other
classification methods showed this approach to be superior.

A different direction is investigated in [388], namely, that of training on larger
mammalian expression data sets (the earlier works above focused on S. cerevisiae
or Caenorhabditis elegans). An SVM is employed to learn each of the 992 GO
biological process categories and classify 10;000 unannotated genes. Performance
is reported to be mixed, suggesting that more sophisticated techniques may be
needed for mammalian gene expression data sets. Specifically, while SVMs are at
the moment the state of the art in classification of gene expression data [250], there
is room for investigating different classification techniques, such as boosting, active
learning [81], and more.

7.3 Temporal Gene Expression Data Analysis for Function
Prediction

Temporal gene expression data provide dynamic information on the simultaneous
expression levels of genes, effectively providing a dynamic picture of what goes
on in the cell via expression measurements. Both unsupervised and supervised
learning techniques have been applied to temporal expression data. Work in [19,
46, 96, 132, 155, 243] exposes challenges posed by time-series expression data
to clustering algorithms, such as similarity measures, co-clustering, short profile
lengths, and unevenly sampled genes. The issue of possible time offsets in the
expression of different but functionally associated genes is another one that still
challenges temporal gene expression analysis. Some progress has been made.

Temporal gene expression data are used in [148, 193] to learn GO biologi-
cal process annotations for unannotated genes. The gene expression profiles are
transformed into attribute-valued vectors. Attributes constructed by calculating the
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increase or decrease of expression values between two instances separated by an
interval of three time points. Three possible values are assigned, high, medium, and
low. This mapping is central to the ability to use set-based classifiers, which can
only robustly handle nominal attributes. The classifier in [148] achieves a cross-
validation AUC score of 0:8. Testing on the human serum response expression data
set results in labels being correctly predicted for 211 of the 213 genes.

Inductive logic programming and description logics are proposed in [14] for
learning the classification rule set from temporal gene expression patterns. Work
in [241] presents another rule-based classification model which outperforms the
approach in [148]. HMMs are employed in [78] to model the interdependence
between conditions and the dependence of the functional class on them. A dual
HMM modeling both expression values and experiment order is shown to perform
best on yeast gene expression data. Another statistical approach, Mixture Functional
Discriminant Analysis (MFDA), is proposed in [118] to operationalize upon the
observation that temporal profiles of genes belonging to the same functional class
are highly similar. Each individual class is modeled as a mixture of sub-classes, and
the Expectation Maximizaton (EM) algorithm [81] is used to learn the parameters
of the model. MFDA is marginally better over other discriminant analysis methods
on yeast cell cycle expression data.

Work in [353] injects evolution and evaluates the hypothesis that the conservation
of co-expression between pairs of genes that share an evolutionary history can
enable more confident prediction of their functional association and pathways
in which they are involved. The evaluation is conducted on S. cerevisiae and
C. elegans, using correlation as a measure of co-expression. Two types of co-
expression conservation are defined: Paralogous conservation, which refers to two
pairs of genes (A, B) and (A’, B’) in the same organism, where A is homologous to
A’ and B is homologous to B; Orthologous conservation, where the two pairs (A, B)
and (A’, B’) belong to different organisms. A correlation threshold of 0:6 results
in an accuracy of 93% and 82% on orthologous and paralogous conservation in S.
cerevisiae.

Research on temporal gene expression analysis is very active. Work in [244] pro-
poses a clustering algorithm capable of handling unevenly sampled temporal gene
expression data. A novel dissimilarity measure is proposed in [72] to assist graph-
based clustering methods on temporal gene expression data. Smoothing spline
derivatives are combined with hierarchical and partitioning clustering algorithms
in [74] to capture the effects of fasting on the mouse liver. Dynamic clustering
is shown in [215] to statistically estimate the optimal number of clusters and
distinguish significant clusters from noise. A novel sub-space clustering algorithm
is proposed in [341]. A detailed review of the state of analysis methods for temporal
gene expression data is presented in [20].
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8 Data Integration Methods for Protein Function Prediction

Integrative methods exploit and integrate heterogeneous data to improve the accu-
racy of function prediction. This category of methods operates under the umbrella
of machine learning and can be organized in mainly four categories:

• Vector-space integration methods: these methods combine features
extracted from different sources of biological data into one typically
long feature vector. The transformation then allows investigating function
prediction under the umbrella of machine learning.

• Classifier integration methods: these methods do not combine features
into one long vector but instead train separate classifiers on separate feature
vectors extracted from the different biological data. The results of the
classifiers are then combined via the ensemble approach.

• Kernel integration methods: these methods employ a special similarity
matrix known as the kernel matrix. A kernel matrix records the pairwise
similarities between the proteins under investigation. Data sources can
be kept separate, with a kernel matrix for each data source. The kernel
matrices can also be combined via basic algebraic operations. Standard
supervised classifiers, such as SMV and kNN, can be then used.

• Network integration methods: these methods rely on encoding pairwise
similarities as edges of a graph. Different graphs can be constructed for the
different data sources under consideration. The graphs can be then unified,
and function prediction can proceed via generative or discriminative
machine learning models.

8.1 Vector-Space Integration Methods

Methods already described in this review that combine sequence, physico-chemical,
and secondary structure information about a protein into one long feature vector
fall in this category. Other methods that combined genomic context, phylogenetic
profiles, and phylogenetic trees also belong to this category. Here we describe
some recent methods that combine additional data sources to improve the accuracy
of function prediction. However, these methods integrate data from essentially
the same source. The first employ data that are extracted from the amino-acid
sequence, whereas the latter employ data that are extracted from the evolutionary
history of a protein. The ProtFun method proposed in [153] and then applied
to predicting GO annotations in [154], described as a feature-based method for
inferring function from sequence, is indeed a vector-space integration method.
We recall, as described in Sect. 2.3, that ProtFun integrates sequence data with
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post-translational modifications, such as N- and O-glycosalization, phosphorylation,
cleavage of N-terminal signal peptides, and other modifications and sorting events
that a protein is subjected to before performing its function.

Work in [223] takes a unique approach to function prediction by focusing on
proteins with intrinsically disordered regions (IDRs). Some studies estimate that
between 30 and 60 % of eukaryotic proteins contain long stretches of IDRs, and
work in [223] investigates the extent to which function can be inferred from informa-
tion hidden in these regions. Specifically, pattern analysis of the distribution of IDRs
in human protein sequences shows that the functions of intrinsically disordered
proteins are length- and position-dependent. A total of 122 features are extracted
from a protein in [223], and the features cover 14 different sources of biological
information about a protein. The latter range from sequence-based features, such
as sequence length, molecular weight, average hydrophobicity, charge, and more,
to transmembrane-based features, such as number of transmembrane residues,
percentage of N-terminal and C-terminal residues, and more, to secondary-structure
features, Pest region features, phosphorylation features, O- and N- glycosylation
features, and peptide features, and disorder-related features. The latter can be
easily extracted from sequence via tools, such as disEMBL [149]. Correlations
between the 122 features are investigated in [223], and multidimensional scaling
(MDS) is applied to see how organization in a three-dimensional embedded space.
Visualization of the three-dimensional embedded space obtained by MDS shows
not only correlations between features extracted from the same category/source of
biological information, but also correlations across features of different categories.

The attributes are valued and recorded in one long feature vector for each protein,
and an SVM is trained on 26GO categories. Improvements in accuracy are observed
over a version of the classifier without the disorder features and ProtFun [153]
and the method with no disorder. The individual contribution of each feature is
also estimated via loss of classification accuracy upon feature removal. Significant
improvements are observed for specific functional categories, such as kinases,
phosphorylation, growth factors, and helicases.

Work [367] proposes the CombFunc method, which incorporates the ConFunc
method proposed by the same authors (ConFunc is a homology-based method
described in Sect. 2.1) and other methods that use sequence, gene expression,
and protein–protein interaction data. Three categories of features are employed,
sequence-based features, protein–protein interactions, and gene co-expression.
Sequence-based features include those used by ConFunc, the E-values of the top
annotated BLAST and PSI-BLASt hits, the sequence identity between the query
and the top hits, and the sequence coverage of the query by the top hits. The
i-score proposed in the GOtcha method [236] to take into account the annotations
of multiple sequences returned by PSI-BLAST is included in the sequence-based
features.

Other sequence-based sources of data include domain information about they
query, as obtained with Interpro [146] and structures homologous to the query in the
fold library of Phyre2 [167]. The domains and corresponding GO term annotations
of the domains identified by InterPro are used to encode additional features. For
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each of the identified GO terms, the lowest E-value of a domain hit annotated with
that term is recorded and added to the feature set. Pfam domain combinations [329]
are also used to make predictions as in [103]. In this case, only one feature is
added to the feature set, 1 if predicted by the method and 0 otherwise. Features
from the Phyre2 fold library employ GO terms present in the top annotated hit and
the probability score from the HHsearch [323] between the query and hit and the
sequence coverage of the query by the hit.

For the GO terms identified by the interactome analysis, the features added to
the feature set are the fraction of direct and indirect neighbor annotated with each
term. For GO terms identified from the gene expression data, the features added to
the feature set are the fraction of co-expressed genes annotation with the particular
term, as well as the minimum, average, and minimum mutual rank and correlation
coefficients of the co-expressed genes. In this manner, each protein sequence is
transformed into a 30-dimensional feature vector.

Three different SVMs are employed in CombFunc for the different levels of
the GO hierarchy under the molecular function and biological process categories.
One SVM considers only terms one level below the root (for instance, catalytic
activity or binding for the molecular function category). Another SVM considers
the terms in the next two levels, and the third SVM considers the rest of the more
specific terms. The reason for training three separate classifiers is due to the insight
that potentially different subsets of features may be correlated with different levels
in the GO hierarchy.

CombFunc is evaluated on predictions of GO molecular function terms on a set
of 6686 proteins. UniProt-GOA annotations are extracted for the proteins, but only
5000 of them are used for training, with the rest used for testing. On the testing
data set, CombFunc obtains a precision of 0:71 and recall of 0:64. Performance on
prediction of GO biological process terms is slightly lower, with a precision of 0:74
and recall of 0:41.

8.2 Classifier Integration Methods

Integrating data by combining it into essentially a common representation often
results in information loss [195, 397]. For this reason, classifier and kernel inte-
gration methods are pursued as better alternatives over vector space integration
methods.

Integration of different classifiers has been investigated for sequence-based func-
tion prediction. We recall that the GoPred method proposed in [304] and described
in Sect. 2.4 combines different classifiers and then evaluates the performance of
different combination strategies, such as majority voting, mean, weighted mean,
and addition.
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Work in [292] demonstrates that competitive or superior performance can
be obtained on prediction of top-level classes in the FunCat taxonomy [300]
by using an ensemble of classifiers for data integration than by vector space
integration and kernel fusion-based methods. The data sources considered in [292]
are protein sequence, gene expression data, domain information, and protein–
protein interactions. In [292], binary SVMs are trained on each data source, and
three combination strategies are evaluated, weighted majority voting, naive Bayes,
and decision templates [190]. It is worth noting that the naive Bayes and logistic
regression combination strategy for integrating the outputs of several SVMs trained
with different data sources and kernels has already been proposed in [117] and [261],
respectively, to produce probabilistic outputs corresponding to GO terms.

Work in [117] is part of the MouseFunc function prediction project and inte-
grates new data sources not previously considered such as disease, phenotype,
and phylogenetic profiles in training of three different SVMs. Three combination
strategies are evaluated, bootstrap aggregation, hierarchical Bayesian, and naive
Bayes combination. One of the results in [117] is that the naive Bayes combination
of the per-dataset SVMs outperforms a single SVM classifier for several GO terms.
A comparison of the different combination strategies shows that the naive Bayes
performs best, followed by the hierarchical Bayesian over the bootstrap aggregation.

Work in [261] proposes “reconciliation” to address the drawback of making
predictions for GO terms independently; the latter often results in assigning to a
query protein a set of GO terms that are inconsistent with one another; that is, that
do not obey the GO hierarchy. In [261], the different, independent predictions are
calibrated and combined to obtain a set of probabilistic predictions consistent with
the GO topology. A total of 11 distinct reconciliation techniques are considered
to combine predictions for each term obtained from different SVM classifiers with
different kernels. The techniques are three heuristic ones, four variants of a Bayesian
network, an extension of logistic regression to the structured case, and three novel
projection techniques, such as isotonic regression and two variants of a Kullback–
Leibler projection technique. Isotonic regression is shown to perform best in being
able to use the constraints from the GO topology.

Work in [386] addresses the multi-label setting in GO annotation predictions.
A transductive multi-label classifier (TMC) and a transductive multilabel ensemble
classifier (TMEC) are proposed to predict multiple GO terms for unannotated
proteins. The TMC is based on a bidirected birelational graph with edges connecting
protein pairs, function pairs, and protein–function pairs. An interfunction similarity
measure is used to encode function–function edges. Protein–protein similarity is
specific to a data source. Directionality is added to the graph to avoid issues of
annotation change and function label override. The TMC uses network propagation
via a nonsymmetric propagation matrix on the resulting directed bidirectional
graph by optimizing local and global consistency functions [393]. Three TMCs
are trained simultaneously, each one considering a different data source. Sequence,
protein–protein interaction, and gene expression data are considered. The TMEC
then combines the output of the three classifiers via a weighted majority vote
scheme, where a classifier’s influence on determining a particular GO term for a
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protein is proportional to its confidence on that prediction. Evaluation is carried
out on predicting biological process GO categories on benchmark yeast, human,
and fly protein data sets proposed originally in [248]. Comparisons on Ranking
Loss, Coverage, and AUC with related multi-label methods, such as PfunBG [156],
GRF [389], SW [248], MKL-Sum [337], and MKL-SA [44], show comparable or
superior performance by the TMEC [386].

While work in [117, 261, 386] ignores the hierarchy of the taxonomy and then
relies on ensemble techniques to reconcile conflicting predictions, work in [307,
352] either proposes classifiers that obey the GO hierarchy directly, or ensemble
techniques that make final decisions based on the hierarchy of the taxonomy. For
instance, hierarchical multi-label decision trees are combined via bagging in [307].
Hierarchical multi-label decision trees are intuitive in that they exploit the ability
of the decision tree model to obey intrinsic hierarchy in the target taxonomy.
Essentially, the query gene can be compared via sequence similarity to all genes
annotated with a specific GO term, and the tree proceeds down the GO hierarchy.
Bagging is shown in [307] to best combine decision tree classifiers over random
forest and boosting. In [352], the topology of the GO hierarchy is not considered in
the classifiers, but it is directly integrated in a novel ensemble technique.

The key observation employed in [352] is that an annotation for a class/node
in the hierarchy automatically transfers to the ancestors. This is also known as the
“true path” rule (TPR), which governs hierarchical taxonomies, such as GO and
FunCat. The TPR ensemble technique proposed in [352] is a hierarchical ensemble
algorithm that puts together predictions made each node by local base classifiers to
realize an ensemble that obeys TPR. As in ensemble methods, the classifiers are
trained independently, and they make predictions for their corresponding nodes.
The algorithm then combines these predictions via an information propagation
mechanism that can be characterized as a two-way asymmetric information flow.
The information traverses the graph-structured ensemble. While positive predictions
for a node influence in a recursive way its ancestors, negative predictions influence
the offsprings. This is related to work in [157], where negative information
propagates from a node to its offspring. In [352], in addition, positive information
propagates from a node to its ancestors.

Seven biomolecular data sources are integrated in [352], such as sequence,
domain, phylogenetic, protein–protein interaction, and gene expression data. SVMs
and logistic regression are used as base classifiers. Evaluation of the hierarchical
ensemble technique is carried out on S. cerevisiae. Best performance is obtained
by a weighted version of the TPR algorithm, followed by the TPR, a related
hierarchical ensemble technique where information flows only from a node to its
offspring, and a non-hierarchical ensemble technique that ignores the hierarchy
in the ontology [157]. In another related work [188], a discrete approach is
proposed that infers the most probable TPR-consistent assignments. The GO DAG is
modeled as a Bayesian network that infers the most probable assignments via global
optimization. The differential evolution algorithm is adapted for this purpose.
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8.3 Kernel Integration Methods

Kernel-based methods [310] encode the pairwise similarity between proteins in
a similarity matrix, also called a kernel matrix. This is a positive definite and
symmetric matrix K.x; y/, where elements record the similarity between proteins
x; y. Different kernel matrices can be defined to encode protein-pair similari-
ties according to different data sources. For instance, when employing protein
sequences, there are various options. BLAST E-values can be used to fill the
entries of the kernel matrix. Alternatively, the spectrum/string kernel [203], motif
kernel [26], and Pfam kernel can be used [115]. In the string kernel, a protein
sequence x is represented by a vector �.x/ of frequencies of all k-mers, and then
the inner product of two vectors �.x/; �.y/ corresponding to two proteins x; y is
taken to obtain K.x; y/.

For structured data sources, such as protein–protein interaction data, the random
walk kernel [315] and diffusion kernels [183] are employed. Diffusion kernels
encode similarities between the nodes of a network and are variants of K D e�ˇL,
where ˇ > 0 is the parameter that quantifies the degree of diffusion, and L is
the network Laplacian. A comprehensive evaluation in [227] shows that diffusion
kernels give superior performance on function prediction, prioritizing genes related
to a phenotype, and identifying false positives and false negatives from RNAi
experiments. Work in [227] concludes that diffusion kernels should be the kernel of
choice to measure network similarity over other similarity measures, such as direct
neighbors and short path distance.

Kernel matrices corresponding to different data sources can be combined by
carrying out basic algebraic operations such as addition, multiplication, or expo-
nentiation. When addition is employed, the individual kernels can be weighted by
fixed coefficients [196, 275], or by coefficients learned via semi-definite program-
ming [195]. The latter can be computationally demanding, particularly on large
and multiple data sets. In response, more efficient combination schemes have been
proposed recently based on semi-infinite programming [326]. Whatever the strategy
employed to combine individual kernels, the resulting kernel matrix can then be fed
to popular classifiers, such as SVM or kNN.

8.4 Network Integration Methods

Instead of encoding protein similarities on different data sources via kernels,
network methods encode similarities as edges connecting protein pairs in a network.
For instance, sequence similarities between proteins can be estimated via BLAST
E-value or other means (analogous to spectrum or string kernels) and encoded in a
network connecting proteins of similar sequences. Co-expressed genes can also be
connected by edges in a gene expression network. Similar ideas can be employed to
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encode similarities based on phylogenetic profile or phylogenetic tree in networks.
These network-based representations of biological data can be as powerful as PPI
or gene–gene interaction networks and can be simultaneously exploited to predict
function.

Work in [152] focuses on a drawback of many network-based methods that
ignore dependencies between interacting pairs and predict them independently of
one another. In [152], relational Markov networks are employed to build a unified
probabilistic model that allows predicting unobserved interactions concurrently. The
model integrates various attributes and models measurement noise. In essence, PPI
networks, interaction assay readouts, and other protein attributes are represented as
random variables. Variable dependencies are modeled by joint distributions. Since a
naive representation of the joint distribution requires a large number of parameters,
relational Markov models are used instead. Improved performance is reported over
related methods for predicting sub-cellular localization and interaction partners of
the mediator complex.

The MAGIC method proposed in [348] integrates yeast PPI data from the
General Repository of Interaction Datasets (GRID) [37], pairs of genes that have
experimentally determined bindings sites for the same transcription factor, as
extracted from The (SCPD) Promoter Database of S. cerevisiae [396], and gene
expression data. Three separate gene–gene relationship matrices are constructed
from each data source, with an entry encoding whether a particular gene pair has
a functional relationship or not; 0 indicates lack of relationship, and a numeric
value indicates confidence of putative relationship. Different algorithms are used
on each data sources to obtain these relationships. For instance, gene expression
data are subjected to different clustering algorithms, such as K-means, SOM,
and hierarchical clustering, and each of these algorithms are nodes in a Bayesian
network constructed for each gene–gene pair. SCPD data provide gene–gene pairs
directly. These matrices are provided as input to Bayesian networks, one for each
gene-gene pair. A network combine evidence from the different clusters to generate
a posterior belief for whether its corresponding gene-gene pair has a functional
relationship. MAGIC is reported to improve accuracy of the functional groupings
compared with gene expression analysis alone [348].

Work in [255] integrates functional linkage graphs constructed from PPI and
gene expression data. Functional linkage graphs are constructed to encode via edges
evidence for functional similarity. These graphs are used in concert with categorical
data, such as protein motif data, mutant phenotype data, and protein localization
data, to make a final prediction. The categorical features of a query protein are used
as random variables/nodes in a Bayesian network, together with annotated neighbors
of a query protein in the functional linkage graphs. The posterior probability of
the query annotated with a particular GO term is then calculated. This approach is
employed to predict functions for yeast proteins. A cross validation setting shows
that this integrated approach increases recall by 18%, compared to using PPI
data alone at the 50% precision. The integrated predictor also outperforms each
individual predictor. However, improvements in performance are not uniform and
depend on the particular functional category predicted.
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In [126], information present in metabolic networks and gene co-expression
data is indirectly combined. A graph distance function is first defined on metabolic
networks, and the function is combined with a correlation-based distance function
for gene expression measurements. The resulting distance function is used to jointly
cluster genes and network vertices via hierarchical clustering. The resulting clusters
are shown to be interpretable in terms of biochemical network and gene expression
data. A related, clustering-based method is proposed in [347]. Co-expression and
PPI networks are separately evaluated by computing the probability of groups of
genes to be correlated in the networks. The groups of correlated genes are found via
super-paramagnetic hierarchical clustering.

Different data sources, such as PPI data, gene expression, phenotypic sensitivity,
and transcription factor binding are integrated in [336] in a bipartite graph, with
genes on one side of the graph, and their properties on the other. Biclustering
algorithms based on combinatorial principles are then used to detect statistically
significant subgraphs that correspond to functionally related genes. In [318], a
clustering method based on learning a probabilistic model, referred to as a hidden
modular random field. The relation between hidden variables represents a given
gene network. The learning algorithm minimizes an energy function that considers
network modularity. The method is shown to be highly sensitive for gene clustering
and annotation of gene function.

Recent work in [231] proposes semi-supervised parametric neural models to
combine different bio-molecular networks and predict protein functions. The
models take into account the unbalance between annotated and unannotated pro-
teins in the construction of the integrated network and in the final prediction of
annotations for each functional class. Evaluation on full-genome and ontology-wide
experiments on three eukaryotic organisms show that the UNIPred method proposed
in [231] compares favorably with state-of-the-art methods, such as SW [248] and
MS-kNN [194].

8.5 State of Data Integration Methods for Function Prediction

An increasing volume and diversity of biological data presents both opportunities
and challenges for data integration methods. One such challenge that is relatively
under-explored in data integration methods is how to explore topologies of multiple
different networks. The majority of data integration methods for function prediction
exploit PPI networks but largely ignore other important network data, such as gene-
gene interaction networks and metabolomic interaction networks. Some work exists
in this direction via methods that use random walk or diffusion processes to infer
knowledge from all networks concurrently, though in the context of predicting
disease interactions, disease gene associations, drug target interactions, and drug
disease associations [61, 87, 120, 142, 354]. In this context, many issues regarding
data integration that are currently under-pursued in function prediction methods are
being addressed, such as noise, bias in data collection, concordant and discordant
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data sets, and scalability. A comprehensive review of data integration methods for
disease- and drug-driven problems in molecular biology can be found in [110].

Data integration is identified as a key direction to improve the performance
of function prediction methods. A detailed study in [357] pitches two differ-
ent network-based function prediction approaches against each other, ensemble
techniques that combine classifiers versus state-of-the-art classifiers that integrate
various datasets. The study reports that a modest benefit of 17% in the area under the
ROC (AUROC) is obtained from ensemble techniques over the baseline classifiers.
In contrast, data aggregation results in an 88% improvement in mean AUROC.
The study concludes that substantial evidence supports the view that additional
algorithm development has little to offer for gene function prediction as opposed
to data aggregation. While a saturation point may have been reached for off-the-
shelf machine learning methods, there may be further ground to explore for novel
methods capable of efficiently and effectively integrating noisy and non-uniformly
dense data.

9 Text Mining-Based Methods for Function Prediction

Text mining is a promising machine learning technology for the analysis of biomed-
ical literature in the problem of protein function classification for the fundamental
reason of the abundance of literature that links proteins with each other. This offers
the hope of increasing the size of labeled data available for training and evaluation.

Following the idea of using query proteins to find their homologous proteins,
one of the first applications of text mining was to utilize this notion. In Renner
and Aszodi [294] the authors describe a procedure for the prediction of functions
of novel products. The last steps of the procedure are based on text mining.
First, a protein whose function remains unknown is used as input across multiple
databases (e.g., SWISS-PROT, PIR, PROSITE). The result of these searches are
annotation documents that can be subjected to text mining procedures. In particular,
the documents are compared by checking the terms that occur in them and using
those terms to produce clusters. The principle is that if two documents contain terms
that belong to the same cluster, then the documents probably describe the same
phenomenon. In order to cluster the terms, the authors analyze their co-occurrence
in documents, proceeding to build clusters starting at a term and adding terms that
often co-occur with it, recursively. The probability of a term belonging to a cluster
is then computed as the ratio of the sum of the number of times the term co-
occurred with all the other terms in the same cluster, divided by the total number
of occurrences of the term. For a given document, the “match” score of a cluster
is defined as the maximum probability of belonging to that cluster for all the terms
found in the document. Comparing documents is now a matter of computing the
normalized sum of differences of their match scores across all the clusters. With
such a distance measure, the documents can be clustered. (While this is a valid way
to compute distances, it is intriguing to think what the results would have been if a
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more modern way of clustering documents, such as Topic Modeling [31] had been
utilized.) It was observed that for most proteins, all the documents clustered into a
single clustering, indicating coherence.

Simple text classification approaches have been used for the prediction of
functionality, using the documents with which the proteins are associated. Ray-
chaudhari [291] uses the maximum entropy, naive Bayes, and nearest neighbor
classifiers using training abstracts from PubMed. The features for the classifiers
are bigrams of two co-occurring words subjected to a Q�2 test of correlation with the
class. Results show that the most accurate of classifiers, namely maximum entropy,
is capable of finding the proper class 72.8 % of the time.

A kNN classifier is applied by Keck and Wetter [166] using BLAST searches and
a variety of databases (GenProtEC, MIPS). Results show a very low recall of 0.4,
which can be attributed to a very weak distance metric.

A more elaborate approach of integrating text mining into this problem can be
found in the work of Eskin and Agichtein [97]. In that paper, the authors use the
SVM classifier, combining a variety of text and sequence kernels. First, a seed set
set is created. The set consists of labeled proteins as positive examples and other
proteins with different labels as negative. This set is small due to the availability of
known cases. A text classifier is then trained over the annotations of the sequences
in the set (found in a variety of databases). The feature space employed is the bag-
of-words representation of the annotations. Each word in the annotation receives a
1 for the word’s dimension; words not present receive a 0. This results in a feature
space that is high-dimensional but very sparse. The text kernel is the dot product of
the representation vectors. This classifier, after being trained with the original set, is
used to predict the function of unknown proteins, using textual information available
in databases such as SWISS-PROT. The result of applying the trained classifier is
an enriched, larger set of labeled proteins.

Next, a joint classifier that uses sequence information and text annotations is
trained with the new set. To this end, a kernel for both sequences and text is
defined. The text part of the kernel is, as described above, based on the bag-of-words
representation. The sequence part of the kernel represents sequences as substrings
of length k, or k-mers, obtained by segmenting the sequence with a moving window.
The feature space contains a dimension for each possible k-mer, with a 1 for a k-mer
that appears in the sequence and 0s for those that do not. The kernel is then the inner
product of two such representations. Since matching k-mers in practice are very
rare, the authors utilize the sparse kernel representation that allows for approximate
matching. In it, the kernel is defined as a parameter ˛ raised to the Hamming
distance between the sequences being compared. The combination of the text and
sequence kernels is achieved by kernel composition. The result is a kernel that adds
the two components and a degree two polynomial kernel over the sum of the two
original kernels. The rationale for the polynomial term is to include features for all
pairs of sequences and words. With such combined kernel, the classifier effectively
learns from both sequence and text annotations and the interactions between them.

An additional benefit of this approach is obtained by projecting the classifier onto
the original sequences to learn which regions of the protein have a high positive
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weight with respect to the class and as such, are likely candidates for relevant
functional regions. Experiments conducted by leaving 20 % of the set as a test set
and using the remaining as the training set indicate that the results obtained by the
joint classifier are superior across a variety of functional classes to those obtained
by applying any of the two (text or sequence) classifiers independently. The task of
identifying relevant regions is shown to perform well when comparing the results to
a searchable database, such as NLS [253].

10 Discussion and Prospects for Future Research

A pervasive theme of this survey of function prediction methods has been that
while significant advances are occurring in each of the five categories of methods
for function prediction, significant performance gains are obtained by methods that
ingrate data from diverse sources. Two recent studies point to the fact that data inte-
gration is expected indeed to be the most promising avenue for improved function
prediction performance [231, 357]. Readers with interests beyond computational
protein function prediction may find useful information in this survey on how data
are integrated in the machine learning methods summarized here. Interesting trends
can be observed regarding how different types of features are combined, and how
such trends have evolved over time as driven by the need to balance between
accuracy and computational efficiency.

Considering all the rapid advancements in novel methodologies for function
prediction, it is not easy to keep track of the current state of automated function
prediction. Nor is it easy to objectively conclude whether certain methods are better
than others from summaries of published works, where performance is evaluated in
a controlled setting and on some specific dataset of interest. The CAFA experiment
provides just the avenue for objective comparisons. A large-scale evaluation of
54 automated function prediction methods in CAFA is reported in [287]. Two
main findings are reported: first, that current methods significantly outperform
first-generation ones on all types of query proteins; second, that, although current
methods perform well enough to guide experiments, there is significant room for
improvement.

Specifically, the top five labs/methods in 2013 CAFA on all targets, one- and
multiple-domain proteins are Jones-UCL [70], GOstruct [324], Argot2 [98], Con-
Func [368], and PANNZER [186]. Their comparative performance is summarized
in Fig. 5. The Jones-UCL team consistently outperformed other methods due to a
massive integration of evolutionary analyses and multiple data sources, combining
in a probabilistic manner GO term predictions from PSI-BLAST, SWISS-PROT text
mining, amino-acid trigram mining, FFPred sequence features [225], orthologous
groups, PSSM profile–profile comparisons, and FunctionSpace [224]. A network
propagation algorithm based on the GO graph structure combines the various
predictions. ConFunc [368], we recall, is another data integration method. GOstruct
models the structure of the GO hierarchy in the framework of kernel methods for
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Fig. 5 The performance of the top ten methods is shown here. The methods achieved higher accu-
racy on single-domain proteins. Confidence intervals (95 %) were determined using bootstrapping
with 10;000 iterations on the target sequences

structured-output spaces. The structured output SVM in [324] does not only well
in CAFA 2013, but it also confers high performance to approaches that investigate
text-mined features for automated function prediction with GOstruct [105].

In contrast, The Argot2 web server debuted in [98] is mainly a sequence-
based method, that employs BLAST and HMMER searches of a query sequence
against UnitProtKB and PFAM databases. GO terms are weighted based on E-
values returned by the searches, and the weights are processed according to semantic
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similarity relations between the terms. A recent version of the web server, Argot2.5,
is enriched with more features, including a new semantic similarity measure, and
shown to improve performance even further over Argot2 [197]. Argot2.5 is also
shown to outperform PANNZER [186], which is another sequence-based method.
PANNZER relies on a weighted k-nearest neighbor approach with statistical testing,
after partitioning sequence-similarity results into clusters according to description
similarity. A sophisticated regression model evaluates the support for the candidate
cluster.

The list of the top performers is diverse in terms of methodologies. Perhaps
not surprisingly, and in line with other studies drawn similar observations [124],
sophisticated sequence-based methods can perform comparably to state-of-the-
art data integration methods. A pre-print of a recent, 2016 report can also be
found [158]. In the report, 126 methods from 56 research groups are compared
against one another in a set of 3681 proteins from 18 species. One of the findings
in the report is that top-performing methods in CAFA2 outperform top-performing
ones in CAFA1. This finding suggests that indeed computational function prediction
is improving, possibly due to both an increase in experimental annotations (via high-
throughout wet-laboratory techniques) and improvements in methodology.

Carefully drawn case studies in [287] show that there is room for improvement.
One challenge in function prediction that is not often mentioned is related to the
existence of promiscuous proteins that are multi-functional; indeed, more than
30% of the proteins in SWISS-PROT have more than one leaf in the Molecular
Function ontology; more than 60% have more than one leaf in the Biological
Process ontology. In addition, while data integration is often touted as the most
promising direction, the presence of noisy and erroneous experimental data may be
an additional source of error that needs to be addressed for robust performance.
Finally, machine learning is shown to generally improve performance, and it is
expected that there is more performance to be gained by approaches based on
principles of statistical learning and inference.
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Abstract Nucleosomes are the building blocks of chromatin and control the
physical access of regulatory proteins to DNA either directly or through epigenetic
changes. Its positioning across the genome leaves a significant impact on the DNA
dependent processes, particularly on gene regulation. Though they form structural
repeating units of chromatin they differ from each other by DNA/histone cova-
lent modifications establishing diversity in natural populations. Such differences
include DNA methylation and histone post translational modifications occurring
naturally or by the influence of environment. DNA methylation and histone post
translational modifications interact with DNA resulting in gene expression level
changes without altering the DNA sequences and show high degree of variation
among individuals. Therefore, precise mapping of nucleosome positioning across
the genome is essential to understand the genome regulation. Nucleosome positions
and histone borne polymorphism are usually detected by MNase-Seq and ChIP-
CHIP/ChIP-Seq techniques, respectively. Various computational software are put
forth to analyze the data and create high resolution maps, which would offer
precise knowledge about nucleosome positioning and genomic locations associated
with histone tail modifications. This chapter describes genome level mapping of
nucleosome positions and histone code polymorphisms in yeast Saccharomyces
cerevisiae.
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1 Introduction

The size of the eukaryotic DNA is very large and therefore, it must undergo higher
levels of compaction to fit well inside the tiny nucleus and concurrently must be
able to perform its duty. To solve this issue, negatively charged DNA wraps around
positively charged histone proteins and by neutralizing the charge they assemble
as a DNA–protein complex known as chromatin. Nucleosomes are the basic
repeating structural elements of chromatin which function in a paradoxical way by
safeguarding and stabilizing the genetic material by compaction on one hand and
on the other hand allowing the DNA to be accessible for various cellular processes.
The positions of nucleosomes along a DNA sequence impact gene regulation and
various other DNA dependent processes to a great extent. Nucleosome positions
are non-random and conserved among similar cell types. Studies have succeeded
in identifying factors like chromatin remodeling complexes and the underlying
DNA sequences that provide substantial importance in nucleosome studies. But the
dynamic and complex nature of these factors hampers the prediction of nucleosome
positions in a genome leaving the task more challenging ones.

Besides the nucleosome positioning, polypeptide chain of histone tail that
undergoes covalent modifications such as acetylation or methylation also play a
major role in gene activity. Altogether, the positions of nucleosomes as well as the
post translational modifications of histones foster a new realm of research called
“epigenomics” which analyzes global heritable epigenetic changes (i.e., heritable
change in gene expression without altering the DNA sequences) across the whole
genome. The precise detection and determination of histone post translational
modifications and nucleosome positions are crucial for unveiling the complex nature
of chromatin and its control over gene regulation. Various techniques have been
employed to understand the interaction between gene and histone post transla-
tional modifications. With the advancement in technology, new techniques such
as ChIP-CHIP (Chromatin Immunoprecipitation-CHIP) and ChIP-Seq (Chromatin
Immunoprecipitation- Sequencing) have come up with the potential to accurately
determine the genomic binding sites of DNA associated protein of interest by
chromatin precipitation followed by microarray or NGS and subsequent analysis
using bioinformatics tools.

The baker’s yeast, Saccharomyces cerevisiae is an extensively used model for
epigenetic research as the chromatin was mapped first in this single cell system using
MNase-Sequencing [28]. In addition, smallest genome with only 12,495,682 bp,
easy availability, and short generation time makes yeast a perfect model for studying
intra species epigenetic variability. In this chapter we present a case study of
genome-wide mapping of nucleosome positions in S. cerevisiae. It will also confer
about Single Nucleosome Epi-Polymorphism (SNEP), its reversible nature and
complex pattern in S. cerevisiae.
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2 A Look at the Nucleosome Positioning

Emerging studies on nucleosome positions, histone post translational modifications,
and their influence on gene regulation have accelerated our understanding of
various cellular processes and disease development. In the last decade, mapping
of nucleosomes to find out the position as well as occupancy of nucleosomes has
attracted much attention among researchers. With the advent of a number of relevant
techniques and computational tools, nucleosome maps can be constructed at genome
level and have been succeeded in widening up our apprehension of chromatin
structure and functions. Genome-wide nucleosome maps have been constructed for
several commonly used biological model systems such as yeast, fruit fly, round
worm, and mouse.

Lee et al. [17] have come up with a more and more clear picture of chromatin
structure and have constructed well-positioned nucleosome map for single cellular
eukaryote, S. cerevisiae, which provides information to find out the mechanism
behind nucleosome positioning and occupancy. Kaplan et al. [15] studied the role
of DNA sequence in determining the histone octamer assembly in yeast through a
comparison of in vivo and in vitro nucleosome maps. Nucleosome organization was
found similar in both the cases providing evidence that nucleosome organization
is characterized by its DNA sequence pattern. Nucleosome landscapes depend
on cell type and stage of an organism’s development and therefore multicellular
eukaryotes show different patterns of arrangement of nucleosome positions and their
prediction becomes a challenging task. In order to understand the complexity of
nucleosomal positioning in multicellular organisms, a high resolution nucleosome
map was established for Caenorhabditis elegans using SOLiD NGS technique [32].
Over 44 million putative nucleosome cores were positioned on the C. elegans
genome, which provided an explicit idea of nucleosome positioning in multicellular
eukaryotes. Mavrich et al. [20] constructed a high resolution nucleosome map for
fruit fly, Drosophila melanogaster to understand the co-evolution of chromatin
organization and transcription machinery between drosophila and yeast which
provided evidences for the presence of evolutionarily conserved nucleosomes in
drosophila and yeast. Human nucleosome map of CD4C T cells provided profound
insights into the nucleosome topography and its regulation in human genome [30].

Recent studies focus on to discern the positions of nucleosomes and nucleosome
free regions in a specific gene [26] and attempts to identify how the environmental
cues directly affect the genomic properties of chromatin [14]. Lieleg et al. [18]
reported the clamping activity of ISWI and CHD1 remodelers in the orderly spacing
of nucleosome array. The study further suggested that the remodelers, besides
mediating the mechanism of nucleosome sliding contribute to the nucleosome
clamp.
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3 Nucleosome Purification and Sequencing

Genome-wide nucleosome map construction requires isolation of mononucleo-
somes, which is an important aspect towards the prediction of nucleosome position
at high resolution. Several protocols have been established for isolating mononu-
cleosomes. Chemical methods use cleavage properties of hydroxyl radicals and
methidiumpropyl-EDTA to extract mononucleosome [25]. Nevertheless, the recent
approaches provide an effective way to digest the chromatin and to release mononu-
cleosomes by employing various enzymes like micrococcal nuclease [33] alone or in
combination with DNase [4, 12] or transposase [29] or CpG methyltransferase [16].
Efficiency of these enzymes to release the mononucleosomes varies remarkably as
they are highly influenced by the structure and mechanical properties of chromatin.

Over the last decade, tiling array was the method of choice for constructing
nucleosome maps. But now, it is being replaced by the most promising high
throughput sequencing methods, which can produce massive parallel sequencing
data with the lowest price and higher throughput. The remarkable contributions of
NGS techniques in the field of epigenetics have established a new way to solve many
of the unresolved clinical complications with the support of computer science.

4 Micrococcal Nuclease Sequencing

Micrococcal nuclease based high throughput sequencing (MNase-Seq) is a com-
monly used technique to construct high resolution genome-wide nucleosome map,
which depicts the positions and occupancy of the nucleosomes. Digestion of
exposed DNA using endo-exonuclease activity of MNase, which specifically nick
the linker DNA until it reaches nucleosome core, serve as the key feature of the
process. Samples under investigation are incubated with micrococcal nuclease at
optimal digestion conditions. The DNA wrapped around the histone core is then
extracted from the obtained crude mononucleosomes using effective genomic DNA
isolation protocols. These nucleosomal DNA fragments are concurrently sequenced
using NGS technology.

5 Software/Algorithms for Processing Nucleosome
Experiments Data

The usage of NGS in nucleosome mapping has made the task easier and precise.
Initial steps of MNase-seq experiments apply standard NGS software in order to
map the reads and for quality control. The software measures many indistinct, small
enriched peaks that correspond to individual nucleosomes, which detect 146 bp
with precision of one to several base pairs. The following computational tools are
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commonly used to analyze and confirm whether a DNA sequence is nucleosomal
core sequence and precisely locate its positions onto a reference genome.

Template filtering It is used to call nucleosome position, occupancy, and length.
The position of nucleosome varies from cell to cell while the MNase digestion
varies at the end of a nucleosome due to these variabilities, sequencing reads at each
nucleosome end forms distribution with variable size. Thus, the template filtering is
based on the expected pattern of forward and reverse strand reads that results from
sequencing the nucleosome ends. This model identifies occupancy of forward and
reverses read templates and also locates and correlates read distributions with model
templates that are specific to nucleosomes [33].

Improved Nucleosome positioning from sequencing (iNPS) iNPS classifies the
nucleosomes based on their shape and unveils their biological feature. It locates
positions of nucleosome in a more accurate manner from sequencing data and is a
better version of NPS [6].

NOrMAL It is a modified version of Gaussian mixture model, which specifically
employed to detect and locate the positions of overlapping nucleosomes. It provides
additional inferences about distorted nucleosomes and can also be applied to a
paired end sequencing product [23].

NucleoFinder It is a novel statistical approach that unambiguously detects nucleo-
some positions by mitigating the noise level. It attempts to rectify the experimental
biases and the heterogeneity in nucleosome positions across the cells. The method
infers spacing of nucleosome downstream of active promoters and the abundance or
desolation of dinucleotide (GC/AT) at the nucleosome center, which are the typical
features of nucleosome organization [3].

Probabilistic Inference for Nucleosome Positioning (PING) It exploits nucleosomal
short read data gathered from MNase digestion or sonication. By using mixture
models the method depicts spatial positioning of nucleosomes and also identifies
nucleosomes having low read densities [36].

NUCwave It constructs nucleosome occupancy maps for single end reads as well
as paired end reads obtained from MNase-Seq, ChIP-Seq or CC-Seq [24].

Dynamic Analysis of Nucleosome Position and Occupancy by Sequencing (DAN-
POS) It has been exclusively used for analyzing dynamic nucleosomes at a high
resolution of single base pair. The high resolution analysis, by applying a uniform
statistical configuration, determines nucleosome dynamics which includes changes
in fuzziness, positional and occupancy variation. It can also detect the functional
dynamic nucleosomes locating at the distal regulatory regions of mammalian
genome [5].

FineStr It is a web server that generates map of nucleosome with single base pair
resolution. Sequence data are uploaded in FASTA format to infer the positions of
nucleosome on the genomic sequences. It has significantly contributed to construct
the genome-wide nucleosome position map of C. elegans [10].
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iNuc-PhysChem It identifies the nucleosomal or linker sequences in the genome
based on the physicochemical properties. It has been applied on Homo sapiens,
D. melanogaster, and C. elegans genomes by integrating the physicochemical
properties into an 884-D vector and the software could identify the positions of
most of the nucleosomes successfully [7].

iNuc-PseKNC Nucleosome position maps are predicted using pseudo k-tuple
nucleotide composition. The predictor has been used to position nucleosomes of
H. sapiens, D. melanogaster, and C. elegans. The predictor performs better than
iNuc-PhysChem and the success rate in nucleosome prediction is much higher [13].

Interactive chromatin modeling web server (ICM Web) It is mainly developed for
analyzing the stability of nucleosome and for folding the DNA sequence into 3D
chromatin structure. It constructs an energy level diagram of nucleosome and also
represents nucleosome free regions of DNA [31].

nuMap It offers a platform to unambiguously map the positions of nucleosome
computationally. nuMap application uses YR and W/S models to predict the
transitional and rotational positioning of nucleosomes. It can predict nearly 80 %
of the nucleosome position patterns with a better resolution of 2 bp [2].

Support vector machine classifier It has drawn major attention in bioinformatics,
which analyze the molecular data in a commendable way and therefore have greater
importance in nucleosome mapping. It deciphers the data into a high dimensional
feature space and uses a kernel trick to infer the optimal separating hyperplane.
SVM based approach has been applied to classify nucleosome occupancy and
nucleosome free regions in S. cerevisiae [22].

Viterbi algorithm It is a well-known algorithm which determines the Viterbi
path, the most probable sequence of hidden states. The algorithm is run along
with Markov models and thus it is well known for bioinformatics analysis. Its
involvement in solving problems exclusively of probability makes them useful in
predicting nucleosome positions and generating nucleosome occupancy profiles.

Hidden Markov Models (HMM) The applications of HMM are well known in data
compression, molecular biology, and in the field of artificial intelligence and pattern
recognition. The model is a representation of Bayesian network and is capable of
finding out the unobserved latent states and therefore its application in predicting
nucleosome positions and linker regions is remarkable.

6 Prediction of Nucleosome Position in Yeast

The statistical aspect of predicting nucleosomes is much reliable than random
guess but limited when compared with experimental determination of nucleosome
positioning. The discovery of HMM and its routine use in ChIP techniques
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provide deep perceptive into the nucleosome positioning and is the most accurate
mathematical model in use for mapping the nucleosome. It also potentially involves
in solving a vast variety of well-known biological problems like identification
of a gene or protein secondary structure by analyzing large scale data in an
exhaustive manner. Various parameters like the advancity and duration of methods,
the number of states and allowed transitions used need to be taken into account
while choosing the model, which finally brings the more complicated data into
a simple manner. Applications of HMM in determining the nucleosome positions
and linker boundaries and for mapping the nucleosome at a genome-wide scale are
phenomenal.

A considerable amount of studies have been conducted using different versions
of HMM to predict the nucleosome positions at genome-wide scale. Yuan et al. [35]
generated useful nucleosomal data at an enormous rate to find out the nucleosome
positions in S. cerevisiae. The ChIP-CHIP technique followed by HMM was used
exclusively to detect the hybridization status of the probe with nucleosomal DNA
and to locate the distorted nucleosomal region and linker DNA on the genome
in order to precisely determine the position of nucleosomes. The model could
finally expose the presence of 65–69 % of nucleosomal DNA in the well-positioned
nucleosomes. Lee et al. [17] used affymetrix tiling array with 4 bp resolution
to construct an atlas of nucleosome occupancy in yeast. The HMM used was in
comparison with Yuan et al. [35]. A Viterbi algorithm was run in the HMM to
reveal the sequences of all possible hidden states which successfully detected 40,095
well positioned as well as 30,776 fuzzy nucleosomes providing a key to mark their
positions on the genome. But, HMM could not gather information regarding the
internucleosomal occupancy differences. Yassour et al. [34] showed a coherent,
accurate, and a much improved picture of nucleosome positions in yeast using raw
microarray data of Yuan et al. [35]. A probabilistic graphical model was used for
the easy and precise estimation of data and the predicted inferences were noted in
comparison with Lee et al. [17] and other previous studies. However, surprisingly
with 20 % more accuracy, the model could trace 13 % more nucleosomes than the
original study.

Nagarajan et al. [21] employed a 4 bp resolution tiling array to map the yeast
nucleosome positions at genome-wide scale (Fig. 1). Out of the 6,553,600 array
probes 2,801,855 and 2,570,638 probes have perfectly matched and hybridized
with BY4716 and RM11 yeast strains, respectively (BY4716: MATalpha, laboratory
strain, isogenic to S288c; RM11-1a: MATa, derived from wild isolate). The signals
generated from perfectly matched probes have been considered for analysis (an
average of 34 probes per nucleosome). Nucleosomes are mapped in each strain
independently using three replicates per strain. A customized version of HMM,
by changing the parameters of HMM used by Yuan et al. [35], has been used to
map the positions of nucleosomes. HMM program is run on the entire genome of
S. cerevisiae without restricting to specific region to remove unpredictable trends
in hybridization signal. Therefore, independent run of the HMM in the two strains
have been applied successively in window of 1 kb all along the genome. Parameters
of HMM and all windows posteriors containing a fixed probe are then averaged and
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Fig. 1 Nucleosome position and occupancy in yeast S. cerevisiae. (a) Raw microarray signals and
nucleosome occupancy in the region of PER1 gene. (b) The heatmaps of nucleosome occupancy
around transcriptional start site in BY and RM strains and gene expression divergence between
the two strains. The left curve shows the mean nucleosome occupancy of six main classes of
promoters. (c) The relationship between promoter occupancy and gene expression divergence.
Each dot represents one gene. X-axis: inter-strain gene expression difference. Y-axis: inter-strain
dissimilarity of promoter occupancy (Adapted from [21])

are used for global computational analysis of both state probabilities and most likely
states. HMM also attempts to deal with missing data. The computation of the state
probabilities and most-probable states of “missing probes” is done in the same way
for observed probes, with the aid of neighboring observed information. It predicted
58,694 nucleosomes which were in accordance with previously published reports.
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7 An Overview of Epigenetic Modifications

There are epigenetic factors beyond DNA sequences that naturally play a substantial
role in an organism’s development and cellular differentiation by controlling the
gene expression. Despite this fact, epigenetic factors are always under the influence
of environment and can alter a gene’s function at any stage of an individual’s
lifespan and are constantly being linked up with various diseases. Their clinical
relevance for a variety of cancers has untangled novel methods to diagnose and treat
the illness in a better way. Thus apparently, studying the nature and role played
by epigenetic marks becomes an inevitable part of current research in the field of
biomedical genomics.

The key components responsible for epigenetic changes are DNA methyla-
tion and histone post translational modification. The histone post translational
modifications such as acetylation, phosphorylation, ubiquitination, methylation,
and ADP- ribosylation occur at the N-terminus of histone proteins and regulate
most of the DNA dependent processes like replication, repair, and recombination.
These covalent modifications alter chromatin architecture resulting in variation at
transcription levels. Studies on histone post translational modifications, particularly
acetylation and methylation, have unveiled the dynamic nature of chromatin struc-
ture and its role in gene expression. The significance of other histone modifications
remains poorly understood. Acetylation of histone at lysine has shown both
transcriptional activation and repression. However, the genes function either can
be up regulated or down regulated depends on which lysine is acetylated and the
position of the nucleosome modified. Histone methylation has been well studied on
H3K4 and reported that methylation is associated with active transcription in several
model organisms, ranging from yeast to mammals. Liu et al. [19] discovered that
combinatorial effect of different kinds of histone covalent modifications can result in
distinct transcriptional upshots. The study was performed through a 20 bp resolution
microarray to analyze 12 distinct histone modifications in individual nucleosomes of
S. cerevisiae. It showed that these covalent modifications do not occur independently
and are enriched especially in the gene or promoter regions.

Earlier studies to map the epigenome were limited to single locus. But advance-
ment in microarray and NGS technologies revolutionized scenario. The technology
has been executed to map human epigenome in an unbiased manner and is proven
to be cost effective, accurate, and fast [27]. The necessity of studying DNA–protein
interaction and chromatin architecture has motivated the development of various
ChIP-Seq methods to better understand the interactions. Furey [9] mentioned about
modified ChIP-Seq protocols that require only a little amount of cells and detect
protein DNA interactions with better resolution. In addition to this, the study also
implied that DNase1 hypersensitive site mappings as well as analysis of chromatin
interactions mediated by particular proteins provide additional insights into the
functions of DNA interacting proteins across the genome of individual. Though
ChIP-Seq is considered as a powerful technique to identify the DNA sequence
associated with modifications on histones, limitations of antibody development,
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lack of functional annotation and single modification limit per experiment impel
to use additional techniques for better understanding the chromatin dynamics [9].
Similarly, study by Zentner and Henikoff [37] delineated the involvement of recent
technologies in generating base pair resolution maps of nucleosomes, suggesting
that ChIP-Seq in combination with DNase-Seq and MNase-Seq can be useful in
constructing nucleosome map of base pair resolution. Such maps provide detailed
information about the epigenetic features at genome-wide level and can be used for
epigenetic profiling of specific cell types in multicellular eukaryotes.

8 Discovery of Epi-Polymorphisms in Yeast

Recently, there has been a paramount interest to study the existence of his-
tone borne epigenome variations within the natural populations. Similar to DNA
polymorphism, epi-polymorphism establishes another basis for diversity among
natural populations. Quantitative variations occurring at the levels of DNA methy-
lation/histone post translational modifications can bring about enormous num-
ber of polymorphs in a population which is known as “epi-polymorphism.”
Besides, influence of environment also results in more number of polymorphs.
Epi-polymorphisms are known to be involved in gene activity, genome dynamics,
and diseases development [21, 11]. Nagarajan et al. [21] explored the histone
tail epi polymorphisms in two unrelated yeast strains (BY4716 and RM11-1a).
Nucleosomes that differed in the levels of H3 acetylation at Lysine 14 are known
as ‘Single Nucleosome Epi-Polymorphisms’ (SNEP). To detect such nucleosomes,
ChIP-CHIP technique, followed by custom algorithms was used (Fig. 2) Only pairs
of aligned nucleosomes sharing at least 15 microarray probes (which is the case
of 97 % of aligned pairs) were taken into account to detect SNEPs. Subsequently,
analysis of variance (ANOVA) was applied to each pair.

yijkl D uC ai C ck C dij C eijkl

where yijkl is the Log2 normalized hybridization intensity of probe k in replicate l
strain i [BY or RM] in experiment type j (nucleosome positioning or ChIP-CHIP),
u is the Global mean of the microarray signal, ai is the yeast strain effect (BY or
RM), bj is the Experiment type effect (nucleosome positioning or ChIP-Chip), ck is
the Probe effect, dij is the Interaction term between strain and experiment, eijkl is the
residual.

Interestingly,distinct levels of acetylation at H3K14 in nucleosomes of two
strains were clearly visible. Out of the 58,694 nucleosomes, 5442 differed in their
levels of acetylation between BY and RM strains (Fig. 3). The SNEPs accounted
for nearly 10 % of the nucleosomes investigated and were random in distribution.
The possibilities of epi-polymorphisms in nucleosomes adjacent to SNEPs were
higher indicating positional effect of H3K14ac SNEP. Acetylation variability did
not correlate with transcriptional variability of the two strains. However, abundance
of acetylation was associated with genes with higher transcription variability. Genes
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Fig. 2 Overview of chromatin immunoprecipitation assay. Chromatin immunoprecipitation
(ChIP) has turned out to be an efficient assay that detects genomic locations linked with proteins
of interest and is extensively being applied in epigenomic research. The assay begins by treating
cells with formaldehyde to bring about a tight in situ cross link between protein and chromatin
followed by fragmentation by MNase treatment. MNase activity releases raw mononucleosomes
and they are processed through DNA extraction protocol. Some of the antibodies are efficient
enough to target various histone tail post translational modifications, which are one of the principal
causes for epigenetic variation. They detect and bind with specific histone modification. The cross
linking is reversed to digest the protein and to release purified nucleosomal DNA associated with
specific modification. The resulting mononucleosomal DNA fragments are identified using either
microarray (ChIP-CHIP) or high throughput sequencing (ChIP-Seq) methods. However, among
the techniques ChIP-Seq is being widely used due to its high resolution, low background noise,
and high genomic coverage and has firmly rooted as a pivotal assay in epigenomics. The ChIP-Seq
data are analyzed using various bioinformatics tools to identify the positions of modifications on
the reference nucleosome map (Adapted from [19])
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with SNEPs were found to be more flexible in terms of transcription levels than
those without H3K14 modification. The number of epi-polymorphisms was high at
conserved DNA region. It opens up a new avenue “population epigenomics” and
raises important questions on the origin of epigenomic variability and its role in the
intra species variability in response to local environmental changes.

9 Types of Single Natural Epi-Polymorphisms

The identification of SNEPs within natural population has brought an abrupt
inclination in researchers to find out the origin of such differences and their influence
on the physiology. Notwithstanding, studying the inter-individual differences at
epigenome level in a population are more strenuous in contrast to genetic variability
studies as the epigenome marks are self-regulating. Beside this fact, environmental
factors or the information coded in the DNA sequences can also regulate epigenome
modifications or such modifications may inherit epigenetically. Therefore, it is
essential to study the stability of such intra specific epi-polymorphisms and its
correlation with DNA polymorphisms. Abraham et al. [1] studied the inheritance
of induced histone acetylation in the yeast strains by exposing the cells to an epi-
drug. Acetylation variations at some nucleosomes were found to be persistent but
others were lost after a few generations, therefore they were known as “persistent”
and “labile” epi-polymorphisms,” respectively (Fig. 4). Labile epi-polymorphisms
were associated with poor genetic control in contrast to persistent epi-polymorphism

Fig. 3 Single Nucleotide Epi-Polymorphisms (SNEPs) in yeast S. cerevisiae. Schematic represen-
tation of nucleosome organization in the regulatory region of AHA1 gene. The rectangles represent
nucleosomes. The nucleosomes are colored according to the mean log(ac/nuc) value across all
probes of the nucleosome. The SNEP detection (�log10(P-value)) is indicated on each nucleosome.
The blue spot, a highly significant SNEP covers the DNA binding site for HSF1 transcription factor.
Arrow indicates the transcription start site. Brown box indicates beginning of coding sequence
(Adapted from [21])
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Fig. 4 Types of Single Nucleotide Epi-Polymorphisms (SNEPs). SNEPs initially present but may
be lost after undergoing perturbing environmental conditions called “labile.” The SNEPs present
after undergoing perturbing environmental conditions are called “persistent” (Adapted from [1])

that showed a tight link with genetic modifiers. The ephemeral nature of labile epi-
polymorphism aroused due to exposure to different environmental conditions and
these polymorphisms were lost after a few generations. But the very stable nature
of persistent SNEPs endured in the descendants providing a strong intimation of
DNA encoded determinism of epi-polymorphisms. The confounding and reversible
nature of some of the epi-mutations limits the further research.

10 Complex Pattern of Single Natural Epi-Polymorphism

Filleton et al. [8] studied the epigenomic variations of H3K4me3, H3K9ac,
H3K14ac, H4K12ac, H3K4me1 marks in three unrelated yeast strains (BY4716,
RM11-1a, and YJM789) using ChIP-Seq technique. The epigenetic variation was
abundant and complex for every mark due to the influence one modification over
the others. The existence of complex pattern of epi-polymorphism in unicellular
eukaryotic yeast suggests that a much higher level of complex pattern can be
expected in case of multicellular organisms.

11 Conclusion

Epigenomics research has provided profound insights into disease development and
diagnosis and has expanded novel clinical interventions to defeat the illness in
a more successful way. Nucleosome positions and the flexibility of histone post
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translational modifications are the two major factors controlling gene expression
apart from the DNA base sequences. Any change in the position of nucleosome or
modifications occurring at the histone tail alters the gene expression level drastically
and eventually leading to severe health complications. Thus understanding the
influence of nucleosome positions and histone borne polymorphisms in gene
regulation and their implication in acute diseases necessitates the development
of high resolution nucleosome maps. The positions of nucleosome and histone
post translational modifications can be mapped through MNase-Seq or ChIP-
CHIP/ChIP-Seq techniques, respectively, in combination with computational tools.
The nucleosome maps have been generated for several model organisms such
as yeast, round worm, fruit fly, mouse, and human. However, among the model
organisms, yeast remains as a useful epigenetic model since it is a single cellular
eukaryote and its chromatin has been characterized thoroughly. The detection of
epi-polymorphisms in yeast provides a basis for population epigenomics and might
contribute to strategies in developing robust personalized medicines in future.
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Perspectives of Machine Learning Techniques
in Big Data Mining of Cancer
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Abstract Advancements in cancer genomics and the emergence of personalized
medicine hassle the need for decoding the genetic information obtained from various
high-throughput techniques. Analysis and interpretation of the immense amount of
data that gets produced from clinical samples is highly complicated and it remains
as a great challenge. The future of cancer medical discoveries will mostly depend
on our ability to process and analyze large genomic data sets by relating the
profiles of the cancer genome to direct rational and personalized cancer therapeutics.
Therefore, it necessitates the integrative approaches of big data mining to handle this
large-scale genomic data, to deal with high complexity somatic genomic alterations
in cancer genomes and to determine the etiology of a disease to determine drug
targets. This demands the progression of robust methods in order to interrogate
the functional process of various genes identified by different genomics efforts.
This might be useful to understand the modern trends and strategies of the fast
evolving cancer genomics research. In the recent years, parallel, incremental, and
multi-view machine learning algorithms have been proposed. This chapter addresses
the perspectives of machine learning algorithms in cancer genomics and gives an
overview of state-of-the-art techniques in this field.
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1 Introduction

Novel research in the field of biomedical science is mainly driven by high-
throughput experiments, such as gene chips from microarray which measures the
expression levels of all human genes, or proteomics data using mass spectrometry
that detects several thousands of proteins in a sample. Most advanced techniques
include high-throughput sequencing (HTS) techniques such as next-generation
sequencing (NGS) data that are inevitable to obtain huge volume of data on
cells, tissues, disease, and individual genome and that uncover the characteristics
of thousands of entities in a single experiment [50]. With the increasing growth
of experiments and its published data in the field of biomedicine, there is huge
demand to develop novel techniques for better accessibility of information from
biomedical data. A vast amount of this information from several experimental
findings has been stored in public repositories such as NCBI, EBI, and Sanger
database. Relevant scientific articles supporting these experimental evidences are
stored in literature databases such as MEDLINE, PubMed Central, BioMed Central,
etc. On the downside, experimental data remain along with high levels of noise
which require complex statistical measures and various normalization techniques.
Typically handling large amounts of data from the HTS experiments can be a real
challenge [47]. Research articles published as an outcome of HTS experiments such
as NGS and gene expression data are shown in Fig. 1a, b.

Fig. 1 Literature growth of PubMed articles. (a) PubMed articles on microarray data. (b) PubMed
articles on NGS data. (c) PubMed articles on machine learning
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Challenges that emerge from this flood of data include parallelization of algo-
rithms, compression of genomic sequences, and cloud-based execution of complex
scientific workflows. The field of biomedical informatics is on the cusp of entering
a new era where big data handling emerged, thus providing room for unlimited
information growth. Data mining and big data analytics remain as one of the best
resources for diagnosis, prognosis, treatment, and cure of all patients in need of
medical care. There are numerous current areas of research within the realm of
healthcare including Bioinformatics, Image Informatics (e.g., Neuroinformatics),
and Clinical Informatics and Translational BioInformatics (TBI). There is an
increasing demand for translational medicine, i.e., the accelerated transition of
biomedical research results into medical practice.

The volume of data being produced is increasing at an exponential rate and hence
storage and sharing of these vast amounts of data is computationally expensive. In
this regard, machine learning (ML) algorithms would be the right choice to extract
information from these large volumes of data [63]. Literature growth in the number
of machine learning algorithms in cancer is shown in Fig. 1c. Despite the fact that
these algorithms are computationally expensive, the computational requirements
give the impression that it is equal to the amount of data being processed.
Therefore, the scientific breakthroughs of the future will undoubtedly be powered
by advanced computing capabilities that will allow researchers to manipulate and
explore massive datasets. Somehow, the pressure is to shift development toward
high-throughput parallel architectures, crucial for real-world applications.

In this post genomic revolution, several studies have been reported in the
literature that is based on different strategies to enable the early cancer diagnosis and
prognosis. These studies mainly explain the biomarkers and differentially expressed
coding and non-coding RNAs. Dataset generated from these studies are the most
promising entities for cancer detection and identification. Patient samples from
various cancer tissues and control samples are subjected to differential expression
studies and biomarkers of cancer are identified to enable screening at early stages.
These studies also aid in discriminating benign from malignant tumors. Various
aspects regarding the prediction of cancer outcome based on gene expression
signatures are the outcome of high-throughput techniques such as microarrays,
NGS, etc. Even though gene signatures could significantly improve our ability for
prognosis in cancer patients, there is possibility of false predictions and hence there
is huge need for machine learning analytics in cancer detection.

2 Need for Big Data in Oncology

Big data has set its path many fields, including oncology where data from next-
generation DNA sequencing to electronic medical records to linked registry and
insurance claims data. For research outcome, the development of big data infras-
tructure holds immense promise because it enables research involving patients who
are not in clinical trials. Despite the fact that only 3 % of the cancer patients are
willing to clinical trials, big data resources now allow researchers to observe large,
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retrospective, and heterogeneous cohorts of cancer patients from screening to end-
of-life care [8]. A clinical trial does not have a sound proof of real-world data
whereas the big data infrastructure, with data on real-world patients and practices
might be a solution for answering questions regarding treatment effectiveness and
long-term outcomes for cancer cure.

2.1 Big Data Era: A Challenge in Oncology Practice
and Research

Big data contributes to make decisions regarding treatment of cancer patients for
personalized medicine at the bedside and the rapid pace of scientific discovery. This
remains as one of the challenges for oncologists without research that disseminate
evidence from existing data. New, interdisciplinary science collaborators and tools
are being developed to transform terabytes, petabytes, and exabytes of data into
useful research data sets that represent discrete patient populations. Handling of
these intensive datasets in large scale can be achieved by means of machine learning.
Therefore, clinical practitioners who generate and collect data medical records will
play an increasingly vital role in the future of big data [61]. Models and diagnostic
tools developed using these stored data will remain as the hub between medical
treatment and cure of the diagnosed cancer patient.

2.2 New Opportunities for Big Data

Several national policies have recently advanced the big data research agenda, in
America and other countries in the world including the American Recovery and
Reinvestment Act of 2009 and the Patient Protection and Affordable Care Act.
Several ambitious and exciting investments in big data include the US Food and
Drug Administration’s Mini-Sentinel, PCORNet (the National Patient-Centered
Clinical Research Network), Oncology Cloud (the cloud-based data repository),
and the American Society of Clinical Oncology’s CancerLinq. Next-Generation
Sequencing (NGS) shifts the bottleneck in sequencing processes from experimental
data production to computationally intensive informatics-based data analysis at
comparatively higher and reduced cost. Advent of this technique aids the identifica-
tion and storage of various diseases and normal genes of several patients. Research
in these areas can provide great insight into the intricate regulations underlying
different diseases and uncover connections to those diseases generate new leads
for effective therapy. High-throughput data analysis and their implementation using
recent machine learning approaches would aid novel discovery of novel targets for
diagnosis and treatment [14].
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2.3 Emergence of Big Data in Cancer Informatics

The field of oncology is on the cusp of its most essential period where it enters a
new era to start handling Big Data for bringing about unlimited potential in the field
of informatics. Data mining and Big Data analytics are helping to realize the goals
of diagnosing, treating, and healing all patients in need of healthcare [11]. Cancer
Informatics is a combination of information science and computer science within
the realm of cancer. Several research fields such as Health Informatics including
Bioinformatics, Image Informatics (e.g. Neuroinformatics), Clinical Informatics,
Public Health Informatics, and also Translational BioInformatics (TBI) are playing
a crucial role in the cancer research. Research in this field can range from data
acquisition, retrieval, storage, analytics employing data mining techniques, and
prediction. Bioinformatics uses molecular level data, Neuroinformatics employs
tissue level data, Clinical Informatics applies patient level data, Image informatics
utilizes images from various diagnostic scans such as mammography, CT (comput-
erized tomography) scan, MRI (magnetic resonance index), PET (positron emission
tomography), etc., and Public Health Informatics utilizes population data (either
from the population or on the population) [25].

3 Big Data for Cancer Informatics

The digitization of hospital medical records of cancer patients and huge amount of
data revolved to the top companies such as Microsoft, SAS, IBM, Dell (DELL),
and Oracle (ORCL) since expertise in data-mining, helps the providers of medical
oncology and additionally improving the cancer cure for the people. This explosion
of data has been proven by International Data Corporation (IDC) that the data in
worldwide reached about 0.8 ZB in 2009 and predicted to reach up to 40 ZB by
the year of 2020. For accessing these data sets for analysis, the users can hire
the infrastructure on the basis of “Pay as you Go” which avoids large capital
infrastructure and maintenance cost.

Cancer related data generated from high-throughput techniques include (1) gene
expression data (Microarray) (2) NGS data (3) protein–protein interaction (PPI)
data, (4) pathway annotation data (5) gene ontology (GO) information (6) gene–
disease association data, etc. These data are highly important for many research
directions including cancer diagnosis and treatment.

3.1 Gene Expression Data

In microarray analysis, the expression levels of thousands of normal and cancer
genes are analyzed over different conditions, such as developmental stages of
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cancer diagnosis, treatment response, metastasis, etc. Microarray-based gene
expression profiling is used to record the expression levels for analysis. The
analysis results may be used to suggest biomarkers for cancer diagnosis,
prevention, and treatment. There are many public sources for microarray
databases, such as Array Express (www.ebi.ac.uk/arrayexpress), Gene Expression
Omnibus (www.ncbi.nlm.nih.gov/geo), and Stanford Microarray Database
(smd.princeton.edu). In addition to the common microarray repositories, cancer
specific gene expression data are also stored by The Cancer Genome Atlas Research
Network (TCGA), ONCOMINE, etc.

3.2 Next-Generation Sequencing (NGS) Data

In NGS data several next-generation sequence data such as DNA, RNA, small non-
coding RNAs such as microRNA, siRNA, etc. are produced. Various analytical
methods are used to understand their features, functions, structures, and evolution.
Although RNA sequencing is mainly used as an alternative for microarrays, it can
be used for additional purposes also, such as cancer gene mutation identification,
identification of post-transcriptional mechanisms, detection of viruses and exoge-
nous RNAs, and identification of polyadenylation. Important sequence databases
include NCBI (www.ncbi.org), DNA Data Bank of Japan (www.ddbj.nig.ac.jp)
and non-coding RNA databases such as miRBase (www.mirbase.org), SILVIA
(www.arb-silva.de/), etc. Sequence Read Archive (www.ncbi.nlm.nih.gov/sra) and
European Nucleotide Archive (www.ebi.ac.uk/ena) are the repositories of NGS
sequences from various HTS experiments. National Cancer Institute (NCI) has
developed Cancer Genomics Hub (CGHub) for storing, cataloging, and accessing
cancer specific NGS sequencing data.

3.3 Protein–Protein Interaction Data

PPIs provide crucial information regarding all biological processes. PPI networks
will not only determine the functional role of genes, but will also determine the
biomarkers involved in the dysregulatory function of a disease. Databases such as
Human Protein Reference Database (HPRD) data [33], STRING (string.embl.de),
and BioGRID (thebiogrid.org) are important repositories of PPI data. PPIs in
the interactome also enables the discovery of various disease mechanisms and
functional associations in cancer.

http://www.ebi.ac.uk/arrayexpress
http://www.ncbi.nlm.nih.gov/geo
http://smd.princeton.edu/
http://www.ncbi.org/
http://www.ddbj.nig.ac.jp/
http://www.mirbase.org/
http://www.arb-silva.de/
http://www.ncbi.nlm.nih.gov/sra
http://www.ebi.ac.uk/ena
http://string.embl.de/
http://thebiogrid.org/
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3.4 Pathway Annotation Data

Pathway analysis is useful for understanding molecular basis of a disease and
various enzymes and reactions involved in their regulatory pathway mechanism.
Disease etiology and various biological components (genes and proteins) associated
with cancer are thoroughly understood from the pathways. Signaling pathways
such as transforming growth factor beta (TGF“) pathways, tumor necrosis factor
(TNF) pathways involved in various cancer types function either in tumor growth
suppression or promote late stage progression. Pathway analysis can also be used
to predict cancer drug targets, and helps to integrate diverse biological information
and assign functions to genes. Pathway database includes KEGG (www.kegg.org),
Reactome, and Pathway Commons.

3.5 Gene Ontology (GO) Information

The GO (www.geneontology.org) database [23] provides gene ontologies of various
biological processes, cellular components, and molecular functions of the gene.
Several tools utilize the GO database for bioinformatics research. Tools such as
AmiGO, DAVID [26], etc. are some of the GO annotation tools. GO also builds
ontologies for anatomies, to validate semisupervised and unsupervised analytics
results from data. Generally GO covers three domains, viz., cellular component,
molecular function, and biological process. GO enrichment analysis involves
identification of GO terms that are significantly overrepresented in a given set
of genes using statistical hypergeometric test. Tools such as The Database for
Annotation, Visualization and Integrated Discovery (DAVID) (david.ncifcrf.gov),
Gene Set Enrichment Analysis (GSEA) (http://www.broadinstitute.org/gsea) are
developed for enrichment analysis. Methods of network analysis and enrichment
analysis have been used to identify targets of various cancers.

3.6 Gene–Disease Association Data

Gene disease association data include genes that are responsible for biomarkers of
diseases such as cancer based on their function, mutation, and causative agents.
Databases such as Online Mendelian Inheritance in Man (OMIM) [22] and Compar-
ative Toxicogenomics Database (CTD) [15] are the major gene disease association
database. OMIM database provides phenotype description (molecular basis known,
molecular basis unknown, gene and phenotype combined) of the disease genes.
These associations play a major role in the cancer diagnosis.

http://www.kegg.org/
http://www.geneontology.org/
http://david.ncifcrf.gov/
http://www.broadinstitute.org/gsea
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Storage of this vast amount of data is computationally expensive and hence
several tools emerged with the emergence of big data analytics. Tools and web
services available for big data storage and utility are shown in Table 1.

4 Techniques for Big Data Analytics

Supervised, unsupervised, and hybrid machine learning approaches are widely
used tools for big data analytics. Machine learning techniques are shown as an
illustration in Fig. 2. The problem of big data volume can be somewhat minimized
by dimensionality reduction which can be performed by feature selection and
reduction methods such as principal component analysis (PCA) and singular
value decomposition (SVD). Another important tool used in big data analytics
is mathematical optimization methods such as multi-objective and multi-modal
optimization methods, namely pareto optimization and evolutionary algorithms,
respectively.

Big data analytics has a close proximity to data mining approaches. Mining
big data is more challenging than traditional data mining due to massive volume
of data. Some of the clustering algorithms include CLARA (Clustering LARge
Applications) and BIRCH (Balanced Iterative Reducing using Cluster Hierarchies).
Reduction of computational complexity of data mining algorithms can be performed
by spectral regression discriminant analysis that significantly reduces the time
and space complexity. In the recent years, distributed and parallel computing
technologies have provided the best solution to large-scale computing problems,
due to their scalability, performance, and reliability. Hence distributed computing
is performed for big data analytics. Mining of distributed data remains as the new
paradigm of data analytics. Further, cloud computing infrastructure-based systems
are utilized for performing distributed machine learning, such as the Distributed
GraphLab framework.

Cloud computing infrastructure and distributed processing platforms such as
MapReduce are widely used for big data analytics. In the recent years, distributed
file system technologies, such as HDFS [64] and QFS [54], as well as NoSQL
databases for unstructured data, such as MongoDB15 and CouchDB16 have been
widely used for big data analytics. Machine learning libraries such as Apache
Mahout [55], Apache Spark platform, a MapReduce variant for iterative and fast
computations on big data are also used. MapReduce is a data-parallel architecture,
originally developed by Google [16]. Apache Hadoop (hadoop.apache.org) is a
highly used open-source implementation of MapReduce. MapReduce is a functional
paradigm where the input data is fed to the map function and the resultant temporary
data to a reduce function. Hadoop, an actual implementation of MapReduce handles
the process of large datasets in a distributed computing environment. For example,
chromatin immune precipitation (ChIP) exploits this reduce function for integrating
the heights of pileups read across Loci for the detection of the transcriptional
regulation.

http://hadoop.apache.org/
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Table 1 Tools and web services for big data analytics

Functional role Algorithm: description

Genomic sequence
mapping

CloudAligner: A MapReduce based application for mapping short
reads generated by next-generation sequencing [51] CloudBurst: A
parallel read-mapping algorithm used for mapping next-generation
sequence data to the human genome and other genomes [60]
BlastReduce: A parallel short DNA sequence read mapping algorithm
for aligning sequence data for use in SNP discovery, personal genomics
(www.cbcb.umd.edu/software/blastreduce) Rainbow: A cloud-based
software package for the automation of large-scale whole-genome
sequencing (WGS) data analyses [12] SEAL: A suite of distributed
applications for aligning, manipulating, and analyzing short DNA
sequence reads [44] DistMap is a toolkit for distributed short-read
mapping on a Hadoop cluster. (The nine supported mappers are BWA,
Bowtie, Bowtie2, GSNAP, SOAP, STAR, Bismark, BSMAP, and
TopHat.) [56]

Genomic sequencing
analysis

Crossbow: A scalable software pipeline that combines Bowtie and
SoapSNP for whole genome resequencing analysis [38] Contrail: An
algorithm for de novo assembly of large genomes from short
sequencing reads [59] CloudBrush: A distributed genome assembler
based on string graphs [10] SOAP3: Short sequence read alignment
algorithm that uses the multi-processors in a graphic processing unit to
achieve ultra-fast alignments [43]

RNA sequence
analysis

Myrna: A cloud computing pipeline for calculating differential gene
expression in large RNA sequence datasets [37] FX RNA: Sequence
analysis tool for the estimation of gene expression levels and genomic
variant calling [24] Eoulsan: An integrated and flexible solution for
RNA sequence data analysis of differential expression [28] GATK: A
gene analysis toolkit for next-generation resequencing data [49]
Nephele: A set of tools, which use the complete composition vector
algorithm in order to group sequence clustering into genotypes based
on a distance measure [13]

Sequence
filemanagement

Hadoop-BAM: A novel library for scalable manipulation of aligned
next-generation sequencing data [52] SeqWare: A tool set used for
next-generation genome sequencing technologies which includes an
LIMS, Pipeline and Query Engine [53]

Sequence and
Alignment tool

GPU-BLAST: An accelerated version of NCBI-BLAST which uses
general purpose graphics processing unit (GPU), designed to rapidly
manipulate and alter memory to accelerate overall algorithm processing
[67] BioDoop: A set of tools which modules for handling Fasta
streams, wrappers for Blast, converting sequences to the different
formats and so on [41]

Search engine Hydra: A protein sequence database search engine specifically
designed to run efficiently on the Hadoop MapReduce Framework [42]
CloudBlast: Scalable BLAST in the cloud [48]

Cancer Genome
Repositories

Cancer Genome Anatomy (CGA) Project, National Cancer Institute,
USA (http://cancer-genetics.org) The Cancer Genome Atlas Research
Network (TCGA) (http://cancergenome.nih.gov/) SNP500Cancer
(http://snp500cancer.nci.nih.gov): Sequence and genotype verification
of SNPs

(continued)

http://www.cbcb.umd.edu/software/blastreduce
http://cancer-genetics.org/
http://cancergenome.nih.gov/
http://snp500cancer.nci.nih.gov/
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Table 1 (continued)

Functional role Algorithm: description

Mutation and SNP
analysis

BlueSNP: An algorithm for computationally intensive SNP analyses
[27] COSMIC: Catalogue of Somatic Mutations in Cancer

Clustering CLARA (Clustering LARge Applications) [31] BIRCH (Balanced
Iterative Reducing using Cluster Hierarchies) [71] CLIQUE [7] a graph
theoretical clustering method

Distributed file
system technologies

HDFS [20] and QFS [62] NoSQL databases for unstructured data.
MongoDB15 (www.mongodb.org) and CouchDB16
(couchdb.apache.org)

Machine learning
library for big data
analytics

Apache Mahout [35], which contains implementations of various
machine learning techniques, such as classifiers and clusteringMLlib17
(spark.apache.org/mllib) is a similar library to perform machine
learning on big data on the Apache Spark platform, a MapReduce
variant for iterative and fast computations on big data

Fig. 2 Machine learning methods

4.1 Big Data Storage

Novel storage solutions have increased the availability of cancer genomics data
sets to the research community. For example, the International Cancer Genome
Consortium (http://cancergenome.nih.gov) and The Cancer Genome Atlas (http://
cancergenome.nih.gov/) each has the capability to store over two petabytes of
genomic data across 34 cancer types. They provide wide applications related
to mutational signature analysis [1] and pan-cancer analysis [66]. These studies
provide essential link between large-scale genomics and translational research.

http://www.mongodb.org/
http://couchdb.apache.org/
http://spark.apache.org/mllib
http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
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Other services like Cancer Genomics Hub [69], the Database of Genotypes and
Phenotypes [46], the European Genome Archive [39], and the European Nucleotide
Archive [40] provide access to users to download the data of interest and databases
like Catalogue of Somatic Mutations in Cancer [5] and cBioPortal for Cancer
Genomics [9] provide all the curated published data. Cloud computing might enable
the access of these data freely available to the public.

4.2 Cloud Computing Services

Cloud computing also could enable the options for the users to (1) Run applications
on the cloud, (2) Analyze and download the data, (3) Perform downstream analysis
with the results obtained. Some of the service providers include the Globus
Genomics System [45], an Amazon cloud-based analysis and data management
client built on the open-source, web-based Galaxy platform [21]. Some of the data
management systems allow users to integrate large-scale genomics data and other
metadata which includes TranSMART [2], BioMart [30], and the Integrated Rule-
Oriented Data System (iRODS) (http://irods.org/). These platforms enable the use
of cloud computing and perform the analysis at reduced cost more efficiently at a
faster rate.

5 Machine Learning for Cancer Using Big Data

Machine learning is a field of computer science that studies the computational
methods that learn from data. There are mainly two types of learning methods
in machine learning, such as supervised and unsupervised learning methods. In
supervised learning a set of objects with class label (training set) is used. The
knowledge obtained from training data is further used to assign label to unknown
objects called the test. On the other hand, unsupervised learning methods do not
depend on training instances with class labels. One of the most powerful and
efficient preprocessing tasks is the feature selection. Hybrid learning methods
such as Deep learning have become popular in the recent years and provide
significantly high accuracy. For machine learning using big data properties such
as Scalability, Robustness, Transparency, and distributed data processing is highly
needed. Figure 3 shows the machine learning for big data from biological samples.

Recent advancements in high-throughput technologies (HTTs) have produced
huge amounts of cancer data that are collected and stored in various public and
private repositories and are available to the medical research community. The
development of a community resource projects such as TCGA has the potential
support for personal medicine as it provides large-scale genomic data about specific
cancer. TCGA provides various clinical cancer data in order to understand the
molecular basis of cancer through the application of high-throughput genome

http://irods.org/
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Fig. 3 Machine learning for big data

technologies. NCBI databases such as SRA and GEO also store the HTS data for
cancer along with EBI Array Express. However, the accurate prediction of a disease
outcome and diagnosis is the most interesting and challenging task for physicians.
Hence, ML methods have become a popular technique to advocate this challenge.
Additionally, feature selection methods have been published in the literature with
their application in cancer [57, 68].
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5.1 Feature Selection

Feature selection is very important for big data analytics due to semi-infinite
programming (SIP) problem [36]. The SIP is an optimization problem that can either
be associated with a finite number of variables and an infinite number of constraints,
or an infinite number of variables and a finite number of constraints. To address the
SIP problem, various researchers have proposed novel feature selection techniques
and provided various solutions. Tan et al. [65] proposed a method for multiple
kernel learning (MKL) subproblems with low bias on feature selection of the
dataset. In bioinformatics, protein sequence analysis and PPI analysis are complex
problems in functional genomics to be reduced dimensionally and handled with
feature vectors. Despite the reduction in complexity, prediction accuracy may be
reduced by selecting lower number of feature vectors. To overcome this problem,
Bagyamathi and Inbarani [4] proposed a new feature selection method by combining
improved harmony search algorithm with rough set theory to tackle the feature
selection problem in big data. Barbu et al. [6] proposed a novel feature selection
method with annealing technique for big data learning. Zeng et al. [70] proposed
an incremental feature selection method called FRSA-IFS-HIS (AD) using fuzzy-
rough set theory on hybrid information systems.

5.2 Machine Learning Based Cancer Prediction

Machine learning based cancer prediction enables the diagnosis of cancer patients
more accurately and hence can be used for the estimation of various cancers.
One of the recent studies involves the breast cancer risk estimation by means
of artificial neural networks (ANNs) and it achieves best results with area under
the curve (AUC) value of 0.965 using tenfold cross validation [3]. Breast cancer
recurrence prediction was performed by Eshlaghy et al. [18] using support vector
machine (SVM) classification achieving an accuracy of 95 %. Breast cancer survival
prediction by Delen et al. [17] achieved an accuracy of 93 % using decision tree
machine learning method. Several features such as age at diagnosis, tumor size,
number of nodes, histology, mammography findings were generated as features
for classification to enable higher accuracy and increase the prediction. With the
advancement of machine learning techniques, big data applications enable faster
prediction of samples. The Spark system contains one of the most reliable advanced
analytics tools, named MLlib (machine learning library) and SparkR, which enables
modelling the new framework to handle big data. Workflow of cancer prediction
using machine learning approach is illustrated in Fig. 4.
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Fig. 4 Machine learning approaches for cancer classification

5.3 Deep Learning

Deep learning attempts to model high-level abstractions in data using supervised
and/or unsupervised learning algorithms, in order to learn from multiple levels
of abstractions. It uses hierarchical representations for data classification. Deep
learning methods have been used in many applications, viz., pattern recognition,
computer vision, natural language processing, and sequence analysis of HTS data.
Due to exponential increase of data in these applications, deep learning is useful
for accurate prediction from voluminous data. Recent research development aids
in the effective and scalable parallel algorithms for training deep models. In deep
learning, Input data is partitioned into multiple samples for data abstractions. The
intermediate layers are used to process the features at multiple levels for prediction
from data. The final prediction is performed at the output layer using the outputs of
its immediate upper layer. Figure 5 illustrates the architecture of deep learning.
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Fig. 5 Deep learning algorithm

6 Challenges in Big Data Analytics of Cancer

Scientific community faces several challenges of Big Data analytics such as scalable
infrastructure for parallel computation, management and storage of large-scale
datasets, and data-mining analytics. The Apache Hadoop ecosystem, Spark and
other data management systems provide libraries and tools for data storage, access to
the data and enable parallel processing of Big Data. These efforts meet the first two
infrastructural challenges. Machine learning and artificial intelligence enable the
exploitation of information hidden in Big Data which solves the problem regarding
big data analytics.

Big Data is high dimensional, heterogeneous, complex or unstructured, massive
and has various challenges when traditional statistical approaches are applied as they
are mainly designed for analyzing relatively smaller samples. Biological systems
are so complex that they cannot be adequately described by traditional statistical
methods (e.g., classical linear regression analysis, and correlation-based statistical
analysis) whereas many modern data-driven learning techniques such as SVM,
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decision trees, and boosting could provide more feasible solutions. In biology, most
of the methods used in genome-wide research are based on statistical testing and
computation of probabilistic scoring. In this post genomic era, machine learning
has been envisaged by biologists as a high-performance scalable learning system
for data-driven biology. With the emergence of encyclopedia of DNA elements
(ENCODE) project [32], numerous data are available to the data scientists for
machine learning analysis.

The recent establishment of TCGA and the ICGC facilitates the integration
and sharing of cancer genome data. Integration of various omics data referred to
as integromics could define tumor heterogeneity, genetic events such as mutation
and explain the role of signaling pathways in cancer biology [58]. Drug activity
studies and further data on drug sensitivity profiles of the cancer genome could
provide a powerful platform to guide rational and personalized cancer therapeutics.
In the recent years, there is huge growth in the genomic data which enables new
integromics study, particularly related to tumor heterogeneity and biomarker dis-
covery. In addition to the identification of candidate biomarkers involved in cancer,
functional genetic alterations, i.e. driver events are identified by the evaluation of
both clinical and functional data. Identification of these integromics data and further
detection of driver mutations in cancer is of high challenge in this omics year. Big
data analytics approaches enable the possibility of prediction of these events and
enter the path of translational medicine to achieve complete cure for cancer survival.

7 Limitations of Big Data Analytics in Cancer

Big data analytics in cancer genomics has quite a large number of limitations in
terms of number of patient samples (sample size), missing values, selection bias,
and other data handling methods. Some of the major issues involved in these big
data limitations are as follows:

(1) The sample size of the cancer patients may not be big when compared with the
number of attributes (features) to perform statistical analysis. This may be due
to the lack of availability of samples, cost of high-throughput experiments, etc.

(2) Selection of dataset for the study from the raw data is more difficult. Hence,
selection bias may occur while selecting a subset of data from real data for
analysis besides the size of the data.

(3) Missing values (MVs) is a common problem in big data mining. MVs may
occur as a form of outliers or even wrong data. In many cases the problem can
be significant and hence missing values are generated using imputation methods
either through generation [19] or elimination of data [29].

(4) Data handling is a major limitation in big data due to the underdevelopment of
more algorithms to some extent and the lack of facilities for big data handling.
Data handling requires more attention in this aspect.
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(5) Next major limitation involves the possibility of false positives in statistical
analyses which occur due to data handling errors and data bias in machine
learning techniques for cancer.

(6) Lack of knowledge in handling of data and novel algorithms in big data result
in wrong predictions during the interpretation of results.

8 Conclusion

Perspectives of machine learning techniques in big data analytics of cancer are well
depicted in this chapter. The complexity of omics data in cancer biology needs
to be integrated to provide complete solution to disease diagnosis and treatment.
Functional evaluation should be considered even for clinical as well as mechanistic
applications of cancer genome data. A deep understanding of both cancer biology
and machine learning approaches will facilitate the designing of novel diagnostic
tools and enable the possibility of personal genomics. Moving forward, it is clear
that progress will accelerate the translational research and lead to the demonstrated
success in personalized medicine during the near future. The big data processing
capabilities of cloud computing will facilitate large-scale, multi-disciplinary data
sharing and utility in this new area of big data omics. Data from cancer genomics
can facilitate the paradigm shift from hypothesis-driven to hypothesis-generating
research. Next-generation sequencing analysis can be performed from the cloud-
based computational biology and has the potential to revolutionize the medical
field. From the current approaches in big data analytics, it is evident that the
integration of multidimensional heterogeneous data from various high-throughput
techniques demands statistical exploration and model generation using feature
selection and classification algorithms in machine learning to provide promising
tools for inference in the cancer domain.
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Mining Massive Genomic Data for Therapeutic
Biomarker Discovery in Cancer: Resources,
Tools, and Algorithms

Pan Tong and Hua Li

Abstract Cancer research is experiencing an evolution empowered by high-
throughput technologies that makes it possible to collect molecular information
for the entire genome at the DNA, RNA, protein, and epigenetic levels. Due to
the complex nature of cancer, several organizations have launched comprehensive
molecular profiling for thousands of cancer patients using multiple high-throughput
technologies to investigate cancer genomics, transcriptomics, proteomics, and
epigenomics. To speed up the bench-to-bedside translation, additional efforts
have been made to profile hundreds of preclinical cell line models coupled with
systematic screening of anticancer agents. This leads to an explosion of massive
genomic data that shifts the bottleneck from data generation to data analytics. In
this chapter, we will first introduce different types of genomic data as well as
resources from publicly accessible data repositories that can be utilized to search for
therapeutic targets for cancer treatment. We then introduce software tools frequently
used for genomic data mining. Finally, we summarize working algorithms for the
discovery of therapeutic biomarkers.

Keywords Genomics • Transcriptomics • Proteomics • Epigenomics •
Biomarker discovery • Cancer

1 Introduction

Cancer is a disease of genetics involving dynamic changes of the genome [1].
Multiple genetic alterations have been identified in cancer including somatic
mutations, DNA copy number change, epigenetic modifications, and dysregulated
gene expression. Systematic discovery of cancer-driven alterations not only helps
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us better understand tumorigenesis but also plays crucial roles in developing
biomarkers for cancer detection, diagnosis, and prognosis. Over the last decade,
there has been a dramatic advance in technologies allowing holistic interroga-
tions of various aspects of cellular process including mRNAs (transcriptome),
proteins (proteome), sequence and structural variations (genomics), metabolites
(metabolomics), and interactions (interactome). While data from individual assay
type is informative for certain aspects of biology, integrative analysis using multi-
assay data sets is more powerful and provides deeper insights into understanding
complex biological systems and diseases. As a result, there is an increasing trend
for both individual laboratories and large consortia to generate multi-assay genomic
profiling of cancer patients. For example, pioneering studies from the Sanger
Institute and the Johns Hopkins Hospital identified frequent mutations in melanoma
and colon cancer [2, 3]. Later studies in Boston and New York uncovered activating
mutations in lung cancer which predicted response to kinase inhibitors [4–6].
Soon thereafter, the Human Cancer Genome Project was proposed by US National
Cancer Institute which was later called The Cancer Genome Atlas (TCGA) [7].
In parallel, the International Cancer Genome Consortium (ICGC) was launched to
foster international collaborations for large-scale cancer genomics studies [8]. To
speed up the transition from bench to bedside, cell line models derived from cancer
patients have been under extensive investigation. Several studies have generated
comprehensive genomic characterizations of hundreds of cell line models coupled
with drug screening enabling us to generate predictors of drug sensitivity based on
genomic information [9–12].

While genomic data is now generated faster and cheaper than ever before, our
ability to manage, analyze, and interpret it has not paced with the data deluge.
Consequently, for the first time in history, the bottleneck in cancer research is
shifting from data collection to data mining [13]. The objective of this chapter is
to bridge the gap between advances in high-throughput genomics and our ability
to manage, integrate, and analyze genomic data with special focus on therapeutic
biomarker discovery. We begin with the definition of biomarker and an overview
of different types of genomic data. We then summarize resources from publicly
data repositories that can be utilized to search for therapeutic targets. We further
introduce software tools frequently used for genomic data mining. Finally, we
discuss working algorithms for the discovery of biomarkers.

2 Biomarkers in Cancer

According to National Cancer Institute, a biomarker is defined as a molecule found
in blood or other body fluids that is objectively measured and evaluated as an
indicator of disease status, pathogenic processes, or pharmacologic responses to
therapeutic agents [14]. Biomarkers have been utilized for various applications
including (1) measuring the natural history of disease, (2) correlating with clinical
outcomes, (3) determining the biological effect of a therapeutic intervention, and



Mining Massive Genomic Data for Therapeutic Biomarker Discovery. . . 339

(4) serving as surrogate endpoints in clinical trials [15, 16]. Based on their
utility, several types of biomarkers exist. Diagnostic biomarkers are used for early
disease detection. Predictive biomarkers can infer the efficacy or toxicity of a
drug. Prognostic biomarkers are used to assess if a patient receiving treatment will
perform well or whether more aggressive treatment is needed to prevent recurrence.
Staging biomarkers are used to determine the stage of progression of a disease.

Several methods can be used to identify candidate biomarkers. The classic
approach is to identify biomarkers based on tumor biology where pivotal molecules
in regulatory pathways are selected as candidates. However, such approach is time-
consuming giving the large number of molecules and metabolites to be searched
for. Recent development of high-throughput technologies has brought biomarker
discovery into the “omics” era enabling simultaneous measurement of thousands of
molecules. Genomics studies involving genotyping and next-generation sequencing
have identified a considerable amount of biomarkers (such as single-nucleotide
polymorphisms and structural variations) associated with drug efficacy and disease
progression [17, 18]. Similarly, transcriptome and proteome profiling have also
revealed biomarkers (such as dysregulated expression of RNA and proteins) that
are highly correlated with clinical outcomes [19, 20].

3 High-Throughput Genomics

Over the past decade, there has been a dramatic advance in technologies enabling
genome-scale data collection regarding various aspects of cellular process including
sequence and structural variation, transcriptome, epigenome, and proteome. These
technologies generate massive amounts of genomic data faster than ever before.
Below we summarize major types of genomics data in cancer research and related
technologies used to collect such data.

3.1 Transcriptomics

Transcriptomics is the study of the complete set of RNA transcripts produced by the
genome. Data collected for transcriptome starts with DNA microarrays using either
spotted oligonucleotides or in situ synthesized probes to quantitatively measure
mRNA levels of a large number of genes. The emergence of low-cost short read
sequencing, also known as next-generation sequencing (NGS) technology, escalates
transcriptomics studies to a new level by overcoming many drawbacks inherent in
microarray such as requirement of carefully designed probes, cross-hybridization,
high background noise, and low resolution [21]. In addition to provide fast and
accurate measurement of transcripts, NGS RNA sequencing also facilitates deeper
understanding of the transcriptome including alternative splicing, gene fusion, and
isoform expression. It is worth noting that transcriptomics studies are not limited
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to the investigation of messenger RNA. For example, whole genome profiling of
microRNAs and other noncoding RNAs is usually employed to decipher post-
transcriptional regulation of gene expression [22].

3.2 Proteomics

Proteomics is the large-scale study of proteins including protein abundance, modi-
fications, localizations and interactions. The growth of proteomics studies owes to
the advances in protein technologies such as capillary electrophoresis, high perfor-
mance liquid chromatography (HPLC), matrix-assisted laser desorption/ionization
(MALDI), and mass spectrometry [23]. The reverse-phase protein array (RPPA) first
introduced in the early 2000s is widely used in biomarker discovery, therapeutic
target evaluation, and cancer research. It now becomes a promising tool for clinical
trials [24].

3.3 Epigenomics

Epigenomics refers to the study of epigenetic modifications in the DNA sequence
as well chromatin including DNA methylation, covalent modifications of cytosine,
and post-translational modifications of histones such as methylation, acetylation,
and phosphorylation [25]. Functionally, epigenetic modifications are involved in
regulation of gene expression, gene dosage, chromosome inactivation, and genome
imprinting. It has been found that changes in epigenomics have been implicated
in multiple diseases including cancer [26]. Epigenomics can be studied using DNA
methylation array or next-generation sequencing with chemically treated DNA [27].

3.4 Sequence Variation

Genomic sequence variation includes single-nucleotide polymorphisms (SNP),
mutations, copy number variations, and structural variations. The ultimate goal
of human genetics is to identify all genomic sequence variation and deciphers
how they contribute to phenotype and diseases. Currently, SNP arrays are cost-
effective instruments to identify SNPs and copy number variations. In contrast, NGS
technologies can be applied to interrogate all the genomic variations and provide
higher resolution data for downstream functional studies [28].
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4 Resources for Genomic Data

There is a rich source of public genomic data which provides unprecedented
possibilities for hypothesis generation and data mining.

4.1 Gene Expression Omnibus (GEO)

GEO (http://www.ncbi.nlm.nih.gov/geo) is the largest public repository for high-
throughput gene expression data [29]. GEO archives and freely distributes microar-
ray, next-generation sequencing, and other forms of high-throughput functional
genomic data generated by the scientific community. There are three main entities
in GEO database: Platform, Sample, and Series [30]. A Platform record includes a
summary description of the array or sequencer and an additional table providing
probe annotation or sequence information. Each Platform record is assigned a
unique GEO accession number with prefix GPL. A Sample record provides all
information related to a sample including phenotype information, experimental
protocol, and abundance measurements for each feature recorded in the Platform.
Sample accession numbers have a GSM prefix. A Series record defines a set of
Samples related to a particular study and provides a description of overall study
design. Series records have a prefix GSE. As of 2013, the GEO database hosts
>32,000 records of Series submitted by around 13,000 laboratories, corresponding
to 800,000 samples derived from over 1600 organisms [31]. Genomic data is
worthless without contextual biological details and analysis methodologies for
preprocessing. To ensure important information is preserved, scientific reporting
standards have been proposed such as MIAME (Minimum Information About a
Microarray Experiment) for data annotation and MINiML (MIAME Notation in
Markup Language) for XML based data exchange [31]. The GEO database is in
compliance with both MIAME and MINiML standards which greatly facilitates data
retrieval. In addition to provide a searchable database for data retrieval, GEO now
includes basic data mining and visualization functionalities. Users can compare two
sets of samples with specified statistical parameters, construct clustered heatmaps,
retrieve profiles with similar patterns of expression, and identify profiles belonging
to the same homologs [32]. A major update recently was the release of GEO2R web
application which allows users to perform sophisticated analysis using R [31]. Once
a user specifies a Series number to be analyzed, GEO will retrieve the data using
GEOquery [33] in the backend. The retrieved data is then subjected to analysis
specified by user or from default settings. Results computed from the server are
transferred to user using JSON and rendered as HTML page. Since R script is
provided, users can always reproduce the analysis and fine-tune it offline.

http://www.ncbi.nlm.nih.gov/geo
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4.2 ArrayExpress

ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) is the European counterpart of
GEO. ArrayExpress complies with the MIAME and MAGE-ML (Microarray Gene
Expression Markup Language) standards to ensure data consistency. Currently,
ArrayExpress contains more than 1.8 million samples with high-throughput assays
across over 62,000 studies with a total file size of 40 TB. Programmatic access
of the ArrayExpress data is available through the ArrayExpress Bioconductor
package [34].

4.3 The Cancer Genome Atlas (TCGA)

The first public repository dedicated to cancer is TCGA (https://tcga-data.nci.
nih.gov/tcga/). The overall goal of TCGA is to generate comprehensive, multi-
dimensional profiling of genomic alterations in major cancer types. TCGA is
organized by different centers responsible for sample collection, processing, and
analysis. First, Tissue Source Sites (TSSs) collect biospecimens from eligible
cancer patients and deliver them to Biospecimen Core Resources (BCRs). BCRs
then catalogue, process, and verify the received samples before submitting to
Data Coordinating Centers (DCC). DCCs provide molecular analytes for the
Genome Characterization Centers (GCCs) and Genome Sequencing Centers (GSCs)
for genomic characterization. The generated genomic data is passed to Genome
Data Analysis Centers (GDACs) for information processing, analysis, and tool
development. All data generated is made publicly available through TCGA Data
Portal (https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp) and CGHub (https://
cghub.ucsc.edu/). TCGA employs several high-throughput technologies including
microarrays, next-generation sequencing, and reverse-phase protein array (RPPA) to
interrogate global alterations at DNA, RNA, and protein levels. In particular, RNA
sequencing provides transcriptomic monitoring of gene expression, isoforms, gene
fusions, and noncoding RNAs. DNA sequencing determines genetic alterations such
as insertions, deletions, polymorphisms, and copy number variations. SNP-based
platforms assess single-nucleotide polymorphisms (SNPs), copy number variations,
and loss of heterozygosity (LOH). Array-based methylation provides epigenetic
information at CpG sites. Bisulfite sequencing characterizes DNA methylation at
single nucleotide resolution. RPPA provides quantitative measurements of protein
expression with high sensitivity. Since its inaugural in 2006, TCGA has comprehen-
sively profiled more than 10,000 samples across 33 cancer types.

https://www.ebi.ac.uk/arrayexpress/
https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp
https://cghub.ucsc.edu/
https://cghub.ucsc.edu/
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4.4 International Cancer Genome Consortium (ICGC)

While TCGA provides comprehensive genomic characterization for cancer patients
in the USA, the ICGC project (https://icgc.org/) aims to generate an extensive
catalogue of genomic abnormalities for cancer patients throughout the world con-
tributed by different participating countries. Currently, the ICGC data portal records
78 projects covering 50 different cancer types. The ICGC data portal periodically
updates with newly generated data and provides tools for data downloading,
visualizing, and querying. Due to the large size of data which may take months
to download, ICGC partners with Amazon Web Services to facilitate data access
through the cloud. ICGC also releases analytic workflows so that users can analyze
their data using the same workflows after initiating an Amazon machine.

4.5 The NCI-60 Cell Line Panel

Immortalized cell lines derived from human cancer have made significant contri-
butions to cancer biology and formed the basis of current understanding of drug
sensitivity and resistance. Therefore, systematic genomic characterization of cell
line models coupled with pharmacological interrogation would greatly facilitate
biomarker identification and drug development. One of the early endeavors is the
NCI-60 project which has released a panel of 60 cell lines with high-throughput
gene genomic profiling including DNA copy number, gene expression, protein
expression, and mutation and additional anticancer drug screening [11]. The NCI-
60 panel quickly becomes a rich source of information to investigate mechanisms of
drug resistance. A major discovery using the NCI-60 data set has been the linkage
between P-glycoprotein expression and multi-drug resistance [35].

4.6 Cancer Cell Line Encyclopedia (CCLE)

Following the success of NCI60, the CCLE project (http://www.broadinstitute.
org/ccle/home) [9] has extended genomic characterization to around 1000 cell
lines using gene expression, chromosomal copy number, and massively parallel
sequencing technology. CCLE has also screened 24 anticancer drugs from 479 cell
lines using an automated compound-screening platform [9]. An integrative analysis
of the CCLE data identified genetic, lineage and gene expression based predictors
of pharmacological vulnerabilities which had important clinical implications for
personalizing cancer therapy [9].

https://icgc.org/
http://www.broadinstitute.org/ccle/home
http://www.broadinstitute.org/ccle/home
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4.7 Genomics of Drug Sensitivity in Cancer (GDSC)

Similar to CCLE, the GDSC (http://www.cancerrxgene.org/) database has profiled
138 anticancer drugs encompassing both targeted agents and cytotoxic therapeutics
across 700 cancer cell lines [12]. Initial analysis using GDSC data found that
mutated cancer genes were markers of sensitivity or resistance to a broad range
of anticancer drugs. Further, the mutated cancer genes mostly associated with
sensitivity were found to be oncogenes that were direct targets of the drug [12]. On
the other hand, inactivating mutations in tumor suppressors were associated with
drug resistance [12]. For example, mutations in BRAF, an oncogene responsible
for protein kinase signaling, were associated with sensitivity of BRAF inhibitors
MEK1 and MEK2. In contrast, mutations in TP53, an important tumor suppressor
responsible for apoptosis, conferred resistance to nutlin-3a, which was an inhibitor
of MDM2 that negatively regulated p53 protein [36].

4.8 Cancer Therapeutics Response Portal (CTRP)

In addition to identify biomarkers of drug sensitivity, genomic characterization
coupled with drug screening can also shed light on mechanisms of action (MoA).
Recently, the CTRP (http://www.broadinstitute.org/ctrp/) database published high
quality screening data of 481 compounds across 860 cancer cell lines spanning
23 lineages [10]. By comparing the sensitivity pattern of compounds targeting
the same gene, targeting genes in the same pathway and targeting genes that
metabolically process the compounds, the authors observed that sensitivity may
depend on metabolic activation, import of the compound, the presence of target-drug
complex, and the presence of target expression. On the other hand, drug resistance
was linked to drug inactivation or an efflux mechanism that depleted drug from the
cell [10].

4.9 Project Achilles

In an effort to identify genes essential for cell proliferation and viability in
cancer cell lines, Project Achilles (https://www.broadinstitute.org/achilles) employs
genome-wide genetic perturbation experiments using pooled shRNA technology.
The screening pipeline uses around 54,000 shRNA plasmids targeting 11,000 genes
with a minimum representation of 200 cells per shRNA [37]. The pooled shRNA
screens are able to silence or knock-out genes and thus identify genes essential for
growth and survival. After incubation for a certain period of time, the cell lines are
harvested to determine relative levels of shRNA plasmids using Illumina sequencing
technology. When linked with genetic characteristics of the cell lines, Project
Achilles provides valuable information for prioritizing targets for therapeutic drug
development.

http://www.cancerrxgene.org/
http://www.broadinstitute.org/ctrp/
https://www.broadinstitute.org/achilles


Mining Massive Genomic Data for Therapeutic Biomarker Discovery. . . 345

While individual data resource introduced here can be helpful in addressing
different questions, it is usually more valuable to integrate across different resources
since they largely provide complementary information. For example, candidate
biomarkers overexpressed in cancers can be identified using the TCGA data.
The therapeutic relevance of such biomarkers in terms of in vitro drug sensi-
tivity can then be evaluated using the NCI-60 panel, the CCLE, and the GDSC
database. Finally, essentiality of these biomarkers from knock-out experiments can
be extracted from the Project Achilles data. Such an integrated analysis not only
provides a full picture of the utility associated with identified biomarkers, but
greatly narrows down the number of candidates and thus can greatly reduce costs in
validating the biomarkers.

5 Tools for Mining Genomic Data

Choosing the right set of tools is vital for genomic data mining. One of the
most popular tools is the R programming language, an open source environment
for statistical computing. R has strong support for statistical analysis including
linear and nonlinear modeling, hypothesis testing, time series analysis, spatial
analysis, clustering, and classification. R also provides various facilities for data
manipulation, calculation, and visualization [38]. Further, R is highly extensible
with lots of packages contributed by users in the R community. Among the
various packages dedicated to high-throughput genomics, Bioconductor is one
of the most comprehensive and versatile tools [39]. It greatly facilitates rapid
creation of pipelines by combining multiple procedures. Bioconductor includes
tools for all stages of analysis ranging from data generation to final presentation.
Bioconductor also has high quality documentation through three levels: vignettes
that provide example usages of a particular package; manual pages that precisely
describe inputs, outputs and examples of a function; and workflows that showcase
complete analysis spanning multiple tools and packages. Recently, Bioconductor
has enhanced its functionality by enabling analysis of next-generation sequencing
data. Core infrastructure includes Biostrings for DNA and amino acid sequence
manipulation, ShortRead for FASTQ files, IRanges and GenomicRanges for genome
coordinate calculation, GenomicAlignments and Rsamtools for aligned sequencing
data, BSgenome for curated whole-genome sequence, and rtracklayer for integration
of genome browsers with experimental data. Currently, Bioconductor has 1104
packages, 895 annotation databases, and 257 packaged experimental data and the
functionality is still expanding.

Genomic data will be useless if no metadata is given regarding the entities
measured such as gene symbols, probe ID, genomic coordinates, and genome
versions. Public service providers and instrument vendors have websites from which
users can download relevant information for offline data wrangling. However, this
process is time-consuming, error-prone, and irreproducible. The biomaRt package
hosted on the Bioconductor repository provides a unified interface for accessing a
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large collection of databases including NCBI (National Center for Biotechnology
Information), Ensembl, UCSC (University of California, Santa Cruz), COSMIC
(Catalogue of Somatic Mutations in Cancer), Uniprot (Universal Protein Resource),
HGNC (HUGO Gene Nomenclature Committee providing official gene names), and
Reactome (curated biological pathways) [40]. BiomaRt allows seamless integration
of identifier mapping and annotation into data analysis, creating a powerful platform
for biological data mining [41].

Although R combined with Bioconductor proves to be a powerful computing
engine for genomic analysis, users are required to have reasonable programming
skills to fully unleash its power. Alternately, there are web-based tools suited
for both experimentalists and computational colleagues where analysis can be
performed with mouse click. Galaxy is one of such tools with a web-based graphical
user interface for accessible, reproducible, and transparent genomic data mining
[42]. By encapsulating high-end computation tools while hiding the technical details
of computation and storage, the Galaxy software becomes highly accessible to
users without programming skills. By automatically tracking metadata regarding
input data sets, analysis parameters, analytic components and output data, and by
supporting user specified annotations and tags, Galaxy makes it easy to assemble
and reproduce any given analysis [43]. Galaxy also makes analysis transparent by
allowing users to share their analysis using Galaxy’s sharing model. This includes
a web-based framework for displaying results, customizable web pages that users

Fig. 1 An example Galaxy workflow for RNAseq differential expression analysis. Each box
represents a tool with input and output files. Users can connect the output files of one component
to the input of another component to form a complete analysis. A compatible link between
components will become green to aid users. Here input FASTQ files are fed into Tophat for
alignment. The resulting bam file is then sorted and indexed for Cuffdiff differential gene
expression analysis
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can freely modify, and a public repository hosting published items such as datasets,
histories, and workflows [42].

The Galaxy workflow greatly enhances usability by providing a drag-and-drop
interface for building analytic pipelines. Figure 1 demonstrates a workflow for
RNAseq differential expression analysis. Users insert different analytic components
into the workflow canvas and connect them to form a complete analysis. The
workflow editor verifies each link between the tools for compatibility. Compatible
links will turn green transiently to visually aid workflow construction. To further
simplify the creation of workflows, Galaxy allows users to create workflows from
analysis history. This feature greatly simplifies workflow usage since users do not
need to plan analysis upfront. In addition, Galaxy is highly extensible. Any piece of
software written in any language can be integrated into the Galaxy workflow. To add
a new tool to Galaxy, users only need to specify a configuration file dictating how to
run the tool. Additionally, users need to describe input and output parameters so that
the Galaxy framework knows how to work with the tool abstractly and automatically
generates a web interface for it.

An alternative tool to Galaxy is the GenePattern software (www.genepattern.org/)
which also does not require programming skills. GenePattern is claimed as a
pipeline builder providing form-based methods for data preprocessing, analysis,
and visualization [44]. GenePattern hosts different modules through a centralized
repository so that users can download or upgrade when needed. In addition to
the graphical user interface, GenePattern also allows command line access which
makes automatic batch processing possible. Currently, users can access GenePattern
through R, Matlab, and Java by invoking a local GenePattern instance. The
combination of a graphical user interface with a programmatic console becomes a
unique feature of GenePattern. Since its first release in 2004, GenePattern has over
23,000 registered users from over 2900 commercial and non-profit organizations
worldwide.

There are also tools built on well-curated cancer genomic data. Here we
illustrate two examples: cBioPortal (http://www.cbioportal.org/) and Oncomine
(http://www.oncomine.org). cBioPortal provides a web interface for exploring, visu-
alizing, analyzing, and downloading multi-platform cancer genomic data [45]. By
hosting a large set of well-curated cancer genomic data including somatic mutation,
mRNA and microRNA expression, protein expression, DNA copy number, and
DNA methylation, cBioPortal greatly facilitates integrative genomic analysis by
allowing users to query multiple data types and their associations at individual gene
level. Further, cBioPortal also supports mutual exclusivity analysis for genomic
alterations, survival analysis, co-expression analysis, enrichment analysis, and
network analysis. While cBioPortal focuses on multi-platform cancer genomic data,
Oncomine specializes in microarray gene expression data. Currently, Oncomine
hosts 715 datasets consisting of 86,733 samples. Oncomine also provides a web
interface for users to perform differential gene expression, co-expression, inter-
action network, cancer outlier profile analysis (COPA), and molecular concept
analysis [46].

http://www.genepattern.org/
http://www.cbioportal.org/
http://www.oncomine.org/
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6 Algorithms for Cancer Biomarker Discovery

To identify biomarkers of various utilities, both supervised and unsupervised
methods can be used. For supervised biomarker discovery, an outcome variable
associated with each sample is required so that candidate markers predictive to the
outcome variable can be identified. In comparison, unsupervised methods rely on
the genomic assays only and search candidate biomarkers by modeling the signals
from genomic measurements. Below we introduce several popular algorithms for
both supervised and unsupervised biomarker discovery.

6.1 Supervised Methods

A common task of genomic biomarker discovery is to compare the gene expression
levels (e.g., transcriptomic expression, proteomic expression, or microRNA expres-
sion) of samples under different treatment conditions or at different time points.
This task is usually called a differential gene expression (DEG) analysis. Numerous
methods have been published for DEG analysis using high-throughput genomics
data. A straightforward approach is to use a two-sample t-test (in the case of binary
outcome) or a linear regression framework (in the case of categorical or continuous
outcome). However, genomic data may contain outlier measurements that violate
the underlying statistical assumptions. Therefore, various variants of these methods
have been developed by considering statistical robustness. One of the most popular
methods used in gene expression analysis is the significance analysis of microarray
(SAM) software developed by Tusher et al. [47]. For a two-sample comparison,
SAM computes a “relative difference” metric d(i) for each gene i:

d.i/ D x1.i/ � x2.i/

s.i/C s0

Here x1.i/ and x2.i/ are the average expression in the two groups, s(i) is the gene
specific standard deviation of the repeated measurements, and s0 is a stabilizing
constant chosen to penalize uninteresting genes with poor signal to noise ratio. Since
a theoretical null distribution of d(i) is difficult to obtain, SAM instead resorts to a
permutation based approach to assess statistical significance.

The original SAM software only dealt with binary outcome. Later versions of
SAM allowed the analysis of data with multiclass outcome, continuous outcome,
and censored survival time. To do this, the authors extended the definition of d(i) as
following:

d.i/ D ri

s.i/C s0
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Here ri is a score defined differently for different types of outcome. More details
about this extension can be found on the SAM manual (http://statweb.stanford.edu/~
tibs/SAM/).

An important concept for biomarker discovery is that statistical significance does
not ensure biological significance. Clinically useful biomarkers need to have strong
dynamic range and a manageable gene size so that they can be easily assayed in
a single panel. The SAM method computes a score for each gene and additional
filtering step is needed to narrow down the gene list. The Top Scoring Pair (TSP)
method uses a different strategy by comparing the relative expression of every
possible gene pairs [48]. It effectively reduces the number of biomarkers to two
and limits the selected genes to have a strong contrast easy to quantify [48]. Let the
expression of a particular gene in sample i be xi and let the class label associated
with each sample be c which can be any value in f1, 2, : : : , Cg. TSP computes the

frequency of observing xi < xj for each class c as pij .c/ D P
�

xi < xj

ˇ
ˇ
ˇc

	
. In the

case of CD 2, the TSP score �ij is defined as following although this metric can be
extended to higher number of classes:

�ij D
ˇ
ˇpij.1/� pij.2/

ˇ
ˇ

The TSP method selects genes based on their relative expression, which is different
from other approaches used in DEG analysis. Further, a TSP pair provides a simple
rule to classify samples into different classes. For example, if gene i has higher
expression than gene j in a TSP pair, the sample will be classified as class 1 or
class 2 otherwise depending on the relative conditional probabilities. Notice that this
classification rule only requires relative expression between the two genes, which
will make such biomarkers more robust and easy to interpret. Various studies have
reported the success of TSP as a two-gene classifier [49–51]. However, for data
sets with a complex phenotype, a single TSP pair may not be sufficient. The so-
called k-TSP method has been proposed to make use of top k scoring pairs [52,
53]. Although a majority vote can be used to obtain a final classification, other
supervised machine learning methods have been used and benchmarked including
support vector machine, decision trees, naive Bayes classifier, k-nearest neighbor
(k-NN), and prediction analysis of microarray (PAM) [52, 53].

A major approach to narrow down selected biomarkers is through variable
selection in the framework of linear regression. The traditional stepwise variable
selection approach only works for data with a small set of features and becomes
computationally infeasible for big data such as microarray or RNAseq. Shrinkage
estimators such as lasso (least absolute shrinkage and selection operator) have been
developed to efficiently deal with such high-dimensional genomic data. Later efforts
have extended the original lasso method including the grouped lasso by Yuan et al.
where variables are selected or excluded in groups [54], the elastic net by Zou et al.
which deals with correlated variables through a hybrid penalty [55], the graphical
lasso by Friedman et al. for space covariance estimation [56], and the regularization
paths for support vector machine [57].

http://statweb.stanford.edu/~tibs/SAM/
http://statweb.stanford.edu/~tibs/SAM/
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Here we summarize the algorithms for lasso and closely related methods
including elastic net and ridge regression. Given the response variable Y 2 R and
a predictor vector X 2 Rp in a p dimensional space, we can approximate a linear

function through E
�

Y
ˇ
ˇ
ˇX D x

	
D “0 C xTˇ after observing N observation pairs

(xi, yi) for i D 1; 2; : : : ; N by solving the following optimization problem [58]:

min
.“0;“/2RpC1

R� .“0; “/ D min
.“0;“/2RpC1

"
1

2N

NX

iD1

�
yi � “0 C xi

Tˇ
�2 C �P˛ .“/

#

where P˛(“) is the elastic net penalty term [55] defined as

P˛ .“/ D .1� ˛/ 12 jjˇjj2�2 C ˛jjˇjj1�1 .
Here � is a tuning parameter that users can specify or can be automatically

calculated using cross validation based on prediction error.
Both the lasso algorithm (when ˛ D 1) and ridge regression (when ˛ D 0)

are special cases of the elastic net method. Lasso provides coefficient estimates as
either zero (for excluded variables) or nonzero (for selected variables) which is quite
appealing for big genomic data. Ridge regression, on the other hand, only shrinks
the coefficients and provides nonzero estimates only. For correlated variables, lasso
tends to just pick one while ignore others. On the other hand, ridge regression allows
borrowing information across all variables but retains all variables in the model. The
elastic net with 0 < ˛ < 1 enjoys the nice properties of both and usually performs
better in genomic data. Elastic net has been efficiently implemented using cyclical
coordinate descent and is publicly available in the R package glmnet.

Traditional strategies for biomarker discovery have focused on individual genes.
However, tumorigenesis is a multi-step process involving sequential acquisitions
of multiple genomic alterations regulated by different pathways and regulatory
networks [62]. It is therefore appealing to identify biomarkers as sets of genes.
According to Huang et al., three types of gene set analysis tools are available
[63]. The first type is called singular enrichment analysis (SEA) which takes a
preselected gene list as input and iteratively computes statistical enrichment of
annotated gene sets by comparing them to random gene sets. The second type is
called modular enrichment analysis (MEA) which considers inter-relationships as
well as redundancies among annotated gene sets. MEA extends enrichment analysis
from gene-centric or term-centric analysis to module-centric analysis which is more
biologically plausible. The third type is called gene set enrichment analysis (GSEA).
Different from SEA or MEA which requires a filtered gene list as input, GSEA
takes into account all genes available and thus avoids the need of arbitrary cutoff for
gene filtering. Different tools have different advantages and limitations. Users need
to choose a tool that best fits their needs by considering the underlying statistical
model, gene set annotation source, programming requirement, and output format.

Algorithms to identify cancer biomarkers are not limited to deal with a single
data type. Several methods have been developed to integrate information across
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data types. For example, integIRTy (integration using item response theory) is
able to identify altered genes from multiple assay types accounting for multiple
mechanisms of alteration [64]. integIRTy applies a latent variable approach to
adjust for heterogeneity among different assay types for accurate inference. RABIT
(regression analysis with background integration) is able to integrate public tran-
scription factor (TF) binding profiles with tumor-profiling datasets [65]. RABIT
controls confounding effects from copy number alteration, DNA methylation,
and TF somatic mutation to identify cancer-associated TFs using a regression
framework. Another interesting method is PARADIGM (PAthway Recognition
Algorithm using Data Integration on Genomic Models) that integrates different
genomic information based on pathway activity [66]. PARADIGM uses a factor
graph to represent NCI pathway information which makes it effective to model
different types of genomic data and various regulatory relationships.

6.2 Unsupervised Methods

The aforementioned methods are supervised since they require an outcome variable.
There are also unsupervised methods for cancer biomarker discovery. Motivations
for these methods originate from the fact that certain perturbations in the genome
such as focal copy number change, gene fusions and mutations may lead to
marked over-expression of oncogenes in a subset of samples. Since these oncogene
activation events do not necessarily occur across all samples, traditional analytical
approaches based on mean expression will fail [59]. Therefore, several methods
have been proposed for this situation. For example, cancer outlier profile analysis
(COPA) was developed to discover oncogenic chromosomal aberrations from outlier
profiles based on median and median absolute deviation of gene expression. COPA
identified the fusion of ERG and ETV1 which led to marked over-expression in
57 % of prostate cancer patients [59]. Later, a method called PACK (profile analysis
using clustering and kurtosis) showed improved result by using Bayesian informa-
tion criterion (BIC) and kurtosis [60]. Tong et al. developed SIBER (systematic
identification of bimodally expressed genes using RNAseq data) using mixture
model [61]. SIBER compares favorably to other methods and enjoys nice properties
such as robustness, increased statistical power, and invariance to transformation
[61]. We briefly summarize the SIBER algorithm here. Suppose the expression of
a gene in sample s is es, SIBER models the distribution of gene expression Pr(es)
using a two-component mixture model each with mean expression �1, �2 and a
shared dispersion parameter � as following:

Pr .es/ D �f .esI�1; �/C .1 � �/ f .esI�2; �/

where � is the proportion of samples coming from the first component with density
function f (es;�1,�). The density function frequently used to model RNAseq data
can be negative Binomial, generalized Poisson or log-normal distribution. After
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estimating the parameters (� , �1,�2,�), SIBER computes a generalized bimodality
index BI as following:

BI D
p
� .1 � �/

ˇ
ˇ
ˇ�1 � �2

ˇ
ˇ
ˇ

q
.1 � �/ �21 C ��22

where �2
1, �2

2 were the variance of the two components. Through extensive simula-
tion and real data analysis, Tong et al. showed that SIBER was a robust and powerful
method to identify biomarkers with switch-like expression pattern [61].

7 Concluding Remarks

With recent advances in genomic technologies, the accumulation of genomic data
is far exceeding Moore’s law leading to the genomic data deluge. This represents a
clear opportunity as well as pressing challenge for computational scientists to wade
through the huge amount of data for biological insights. To identify biomarkers
for cancer therapeutics, we should be familiar with relevant data resources and
equip ourselves with effective computational tools. Given the extreme challenges for
genomic data, the future success of cancer genomic research requires a continuous
refinement and expansion of software tools and algorithms for the management,
analysis, integration, and interpretation of high-throughput data.
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NGS Analysis of Somatic Mutations
in Cancer Genomes

T. Prieto, J. M. Alves, and D. Posada

Abstract The emergence of next-generation sequencing (NGS) technologies has
facilitated the accumulation of large genomic datasets for most types of cancer. The
analysis of these data has confirmed the early predictions of extensive sequence and
structural diversity of cancer genomes, fueling the development of new computa-
tional approaches to decipher inter- and intratumoral somatic variation within and
among cancer patients. Overall, these techniques have led to a better understanding
of the disease as well as to relevant improvements in the diagnosis and therapy of
cancer. In this chapter, we review current approaches for the analysis of somatic
mutations in cancer genomes using NGS.

Keywords Cancer genomics • Somatic mutations • Driver mutations • Somatic
variant calling • Tumor clones • Intra-tumor heterogeneity • Inter-tumor hetero-
geneity • Clonal inference • Tumor phylogenetic reconstruction

1 Introduction

It has long been recognized that the large majority of cancer cells in a tumor are
genomically heterogeneous despite its monoclonal origin. After malignant transfor-
mation of a healthy cell (tumor initiation), the continuous growth of the tumor mass
(tumor progression) contributes to the accumulation of somatic mutations within
the malignant progeny, promoting the proliferation through time of distinct genetic
lineages or clones. From an evolutionary perspective, a tumor may be interpreted as
an uncontrollable expansion of a cell population where mainly Darwinian selection,
but also random genetic drift and migration, coupled with the genomic instability
of cancer cells, play major roles in shaping the distribution and frequency of its
clones [26].
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Exploring the extent of somatic alterations occurring in the genomes of cancer
cells is critical, for both basic and translational research, allowing for a better
understanding of the disease and providing better diagnoses and therapies in
a clinical setting [66, 70]. Fortunately, with the recent improvements in next-
generation sequencing (NGS) technologies, it is becoming increasingly affordable
to obtain high-throughput data from cancer genomes, and, with the emergence of
new molecular and computational methods, several solutions are now available to
explore both the mutational and phenotypic landscape of tumors [44].

Throughout this chapter, we review the current strategies and challenges for the
analysis of NGS data from cancer genomes. In particular, we focus on the detection
of somatic variants, on the recognition of clones and their evolutionary relationships,
and on the identification of mutations associated with tumorigenesis.

2 Sequencing Approaches in Cancer Genomics

A critical step in cancer genomics is the identification of the genetic mutations
that have accumulated during tumor development. On this basis, somatic mutation
profiling is generally carried out by comparing sequence information from both
healthy and tumor samples of a given patient (paired or matched samples) (Fig. 1a).
This fairly simple workflow is, however, made complicated by specificities of
the different high-throughput sequencing applications available. At present, most
sequencing efforts are being directed towards the identification of somatic variants
in protein-coding sites, either by targeting specific genes or extending the analysis
over the entire exome (about 2 % of the human genome).

In theory, targeted sequencing strategies (e.g., Whole-Exome Sequencing or
WES) represent a cost-effective approach to study cancer genomes, as it restricts
the analysis to the genomic regions that are expected to be functionally relevant.
Moreover, given its relatively low cost compared to whole-genome surveys, targeted
sequencing data could in principle be obtained from multiple tumor samples,
providing more accurate estimates of the overall genetic diversity. However, targeted
approaches have been found to (1) preferentially capture reference alleles at
heterozygous positions, and (2) provide uneven coverage depth across the targeted
regions [45]. The latter can, for example, compromise the inference of copy number
states, which in turn can affect variant discovery and posterior inferences based on
these variants.

Whole-Genome sequencing (WGS), on the other hand, consists of a broader
methodology designed to sequence the entire genome of an individual sample,
thus allowing a more comprehensive characterization of the sequence and structural
plasticity of cancer genomes. In addition, WGS typically yields a homogeneous
genome coverage, making it more suitable for copy number variant detection than
WES [87]. Whole-genome sequencing is becoming increasingly popular in cancer
genomics, due to its ability to survey multiple classes of genomic variants in a
single assay, coupled with higher detection accuracy [4]. Indeed, as sequencing
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costs continue to decrease, and more robust methods to analyze complex genome
structures emerge, the cancer genomics community will surely begin deciphering
the functional implications of non-coding and structural variants in cancer.

While the scope of the current chapter falls exclusively on the sequence variabil-
ity of cancer genomes, it is important to note that other layers of heterogeneity
can be explored in cancer using NGS-based strategies, like variation in DNA
methylation, gene expression, or metabolic pathways [11].

3 Analyzing Cancer NGS Data

As in most NGS studies, cancer NGS data from both healthy and tumor samples are
typically provided in a raw state to the user. As a consequence, a series of processing
steps are essential before further analyses, including (1) aligning the reads to a
genome reference, (2) marking reads that have been sequenced multiple times
(i.e., de-duplication), (3) realigning reads around known indels to exclude potential
mapping artifacts, and (4) recalculating per-base quality scores, as estimates from
sequencing platforms are occasionally inaccurate and can be biased [75]. In recent
years, a variety of statistical algorithms have been developed to perform such steps
in a fairly robust manner [81].

Fig. 1 Workflow of a hypothetical cancer NGS study. (a) Independent sequencing of paired
healthy and tumor samples from a single cancer patient. (b) Detecting germline and somatic muta-
tions (i.e., specific to tumor samples). (c) Estimating the number of clones and their phylogenetic
history. (d) Distinguishing between driver and passenger mutations using the frequency of somatic
mutations over many cancer patients
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It should be emphasized that the standard strategy in cancer research generally
relies on population-level sequencing from bulk tissue samples. That is, the NGS
reads obtained correspond to DNA fragments derived from multiple cells (typically
hundreds of thousands or more) mixed together (i.e., we do not know which
reads are from which cell). Given the extensive diversity within individual tumors,
this concept resembles “pooling” experiments (i.e., pool sequencing or pool-seq)
[63] as each tumor sample will contain a heterogeneous combination of normal
cells and one or more cancer clones (Fig. 1b). Analyzing cancer NGS data is
not straightforward, ultimately requiring ad hoc bioinformatic tools for proper
identification of somatic variants segregating in the tumoral population.

3.1 Profiling Somatic Variation

As stated above, genomic information of tumors often stems directly from a
heterogeneous population of distinct cell types (healthy and malignant) which may
affect, to a large extent, the downstream interpretation of the data. In consequence,
specific features of cancer genomes should be considered while calling genetic
variants in order to reduce potential sequencing artifacts that could be confounded
with real biological variation. These include tumor purity, tumor ploidy, and
intratumoral heterogeneity (ITH).

1. Tumor purity, also called tumor cellularity, reflects the relative proportion of
tumor and normal cells in a sample. Traditionally, purity scores were estimated
by pathological review of sectioned specimens. Interestingly, recent in silico
methods as ABSOLUTE [8], ASCAT [76], THetA [53], and TITAN [27] rely on
NGS data to determine the degree of healthy “contamination” in tumor samples,
which may then be used as an initial parameter in variant detection [68].

2. As previously mentioned, cancer cells exhibit inherent genomic instability, which
may lead to aberrant gains and losses of entire chromosomes in malignant cells
and therefore changes in tumor ploidy. Consequently, distinct karyotype profiles
(i.e., genomic organization) are expected to segregate within individual samples
[52], breaking fundamental assumptions of germline variant calling software
(see below).

3. Finally, ITH will often cause somatic mutations at variable frequencies in tumor
samples. Given the potential functional significance of low-frequency somatic
mutations, it is important to distinguish them from sequencing errors. Sequencing
multiple tumor samples from the same patient (multiregion sequencing) may help
circumvent these limitations [24, 69].

In addition, it is important to note that most variant calling software tools
are limited to a specific type of genomic variation (see Table 1). On this basis,
different calling algorithms should be applied depending on the type of variants
under interrogation. Continuous advances of NGS-based methods towards variant
detection have considerably improved our ability to interpret genomic information
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Table 1 Computational methods commonly used in cancer studies for detecting somatic variants

Variant caller
Joint
analysis SNV Indel

Unbalanced
SVs

Balanced
SVs References

Platypus
p p

Rimmer et al. [59]
HaplotypeCaller

p p
McKenna et al. [43]

FreeBayes
p p

Garrison and Marth [22]
Samtools mpileup

p p
Li [36]

JointSNVMix
p p

Roth et al. [60]
DeepSNV

p p
Gerstung et al. [25]

FaSD-somatic
p p

y Wang et al. [79]
SomaticSniper

p p
Larson et al. [32]

Shimmer
p p

Hansen et al. [28]
Dindel

p
Albers et al. [1]

Strelka
p p p

Saunders et al. [62]
Mutect

p p p
Cibulskis et al. [13]

EBCall
p p p

Shiraishi et al. [65]
HapMuc

p p p
Usuyama et al. [74]

VarScan
p p p p

Koboldt et al. [30]
Seraut

p p p p p
Christoforides et al. [12]

SMUFIN
p p p p p

Moncunill et al. [47]
BreakDancer

p p p
Fan et al. [20]

HMMcopy
p p

Lai et al. [31]
Patchwork

p p
Mayrhofer et al. [41]

OncoSNP-SEQ
p p

Yau [83]
Control-FREEC

p p
Boeva et al. [5]

SegSeq
p p

Chiang et al. [10]
Pindel

p p
Ye et al. [84]

CREST
p p p

Wang et al. [78]
DELLY

p p p
Rausch et al. [58]

GASV-Pro
p p

Sindi et al. [67]
TIGRA

p p
Chen et al. [9]

Hydra
p p

Quinlan et al. [57]
Meerkat

p p p
Yang et al. [82]

LUMPY
p p p

Layer et al. [34]

and are now being widely applied to study cancer genomic diversity and evolution.
However, due to the systematic errors of sequencing technologies, it should be
highlighted that orthogonal validation is ultimately required to confirm that the
variants identified are real.
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3.1.1 Single Nucleotide Variants

Single-nucleotide variants (SNVs) represent the most frequent class of somatic
variation in cancer [49]. This has motivated the development of a large variety
of statistical tools to detect somatic point mutations from cancer genomes. At
present, two main strategies are routinely used in cancer NGS variant calling,
namely independent or joint analysis [79]. Arguably, independent analysis of
paired normal and tumor samples is still the most frequent approach, where
genotype information from healthy and tumoral tissues from the same patient is
initially inferred independently, being subsequently compared in order to distinguish
germline from de novo somatic variation. Independent SNV-calling software include
the Genome Analysis Toolkit (GATK) [43], FreeBayes [22], Samtools [36], and
Platypus [59]. However, these methods have been developed for germline variation
and therefore assume a homogenous population of diploid cells, which is not usually
the case for tumors.

Conversely, joint variant calling analysis represent an improved statistical
approach towards somatic variant discovery, where tumor and matched normal
variants are simultaneously called, using a frequentist or a Bayesian approach. The
former makes use of allele frequency estimates between paired samples to classify
germline and somatic mutations, whereas Bayesian methods usually incorporate
a prior somatic mutation rate. Table 1 summarizes some of the most common
computational tools used for somatic SNV discovery.

3.1.2 Insertion and Deletions

Perhaps owing to the difficulty of mapping NGS reads that overlap small insertion
or deletion events (indels), the characterization of these variants in cancer genomes
has so far received little attention. Nevertheless, new approaches are becoming
available that allow for gapped alignment and local de novo assemblies around
potential indel sites, significantly improving the reliability of indel calls [37, 43,
48]. Interestingly, these methods are being implemented in most SNV-calling tools,
allowing the parallel analysis of both types of variant (Table 1).

3.1.3 Structural Variants

Structural variants (SVs) can be defined as a wide collection of genomic rearrange-
ments, which may involve the loss or gain of genetic material. These rearrangements
range from balanced structural changes, such as inversions and translocations, to
unbalanced alterations, such as copy number variants/aberrations (CNVs/CNAs).
While the process by which SVs accumulate in cancer genomes remains unclear—
i.e., gradual acquisition vs. chromothripsis/chromoplexy; see [86] for a detailed
review, new and robust NGS-based inferential methods are boosting our ability to
understand the architecture of cancer genomes. In Table 1 we list some of these
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methods, which make use of mapping distance and orientation information from
paired-end reads and split reads, as well as differences in depth of sequencing
coverage, to predict SVs.

3.2 Understanding Clonal Composition and Tumor Evolution

Patterns of genetic variation, within and between populations, have been tradition-
ally used by evolutionary geneticists to infer the demographic, mutational, and/or
selective processes shaping the evolution of species. A similar rationale may be
applied in cancer research, where the analysis of intra- and inter-tumoral genetic
heterogeneity is expected to provide relevant insights into the biological processes
driving cancer development [42]. Indeed, obtaining a snapshot of the genomic
intratumoral diversity (i.e., number and distribution of clones) at a certain point in
cancer progression, identifying clones with metastatic potential or drug resistance,
detecting the presence or absence of a given clone in longitudinal samples, different
tumor regions or metastases and, in general, reconstructing clonal evolution is
crucial for a better understanding of cancer, but also to improve clinical diagnosis
and treatment strategies [56].

Interestingly, different algorithms have been recently designed to reconstruct
the clonal composition of pooled tumor samples from allele frequency estimates
and/or copy number profiles (Table 2). By assuming an infinite-sites model (i.e.,
mutations never happen twice at the same position), these methods apply the
pigeonhole principle (Fig. 2) for clustering mutations segregating at similar fre-
quencies, allowing the construction of mutation profiles of distinct clones and

Table 2 Computational methods for studying clonal evolution

Software Variant type Clonal tree reconstruction References

THetA CNVs Oesper et al. [53]
Pyclone SNVs Roth et al. [61]
Clomial SNVs Zare et al. [85]
SciClone SNVs Miller et al. [46]
CloneHD SNVs, CNVs Fischer et al. [21]
SubcloneSeeker SNVs, CNVs

p
Qiao et al. [56]

PhyloWGS SNVs, CNVs
p

Deshwar et al. [16]
AncesTree SNVs

p
El-Kebir et al. [19]

CITUP SNVs
p

Malikic et al. [39]
LICHeE SNVs

p
Popic et al. [54]

PhyloSub SNVs
p

Jiao et al. [29]
Trap SNVs

p
Strino et al. [71]

TuMult CNVs
p

Letouzé et al. [35]
MEDICC CNVs

p
Schwarz et al. [64]
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Fig. 2 Applying the “pigeonhole principle” for reconstructing clonal evolution from somatic
mutations. Consider the example above, where three mutations (star shapes) are present at variable
frequencies in a tumor sample: one mutation (red) is fixed in the tumor cell population (100 %),
another mutation (orange) is present in the large majority of tumor cells (70 %), and a third
mutation (light blue) is present in only half of the tumor cells (50 %). The “pigeonhole principle”
reasoning implies that when the sum of allele frequencies of any two mutations is above 100 %
(e.g., 70 %C 50 %D 120 %), there must be some cells harboring both mutations. This principle
thus provides the potential genotypes that might exist in the population. Moreover, since each
mutation is not allowed to occur multiple times during evolution (infinite-sites model), tree A and
B represent unfeasible scenarios, as both require the same mutation to occur in different branches
of the tree. Finally, as mutations present in a greater fraction of tumor cells are expected to occur
earlier in the tumor phylogeny, tree D represents the most likely scenario of clonal evolution

inferring their cell prevalence, genealogy, and geographical distribution (Fig. 1c).
Importantly, multiregion sequencing from (1) multiple sites from a primary tumor
[38], or (2) primary and metastatic sites [24], is becoming common practice
in cancer research, providing detailed information about clonal stratification and
dissemination potential.

3.3 Identifying Driver Mutations

Tumor evolution has been traditionally seen as the consequence of clonal competi-
tion and adaptation by natural selection, although this paradigm has been recently
challenged for some solid tumors [38, 69]. In any case, a fundamental line of
research in cancer genomics has been the identification of driver mutations (Fig. 1d),
the somatic variants that confers selective growth advantage to the cancer cell
bearing it, and of the driver genes where these mutations take place. On the other
hand, a mutation that does not provide a cancer cell with any selective advantage
is called a passenger mutation. Determining whether a somatic mutation is a
driver or a passenger remains challenging, as it implies detecting the footprint of
natural selection, a recurrent issue in evolutionary biology. In recent years, several
computational approaches have been developed in order to detect driver genes in
cancer. These methods could be grouped in five main categories:
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1. Strategies based on functional impact. A somatic mutation can be synonymous,
nonsynonymous, disrupt the expression product, change the reading frame,
upregulate or downregulate the expression of genes, etc. (i.e., it can have distinct
functional consequences). Those mutations responsible for a significant pheno-
typic impact are thought to be drivers. Different tools are currently available to
predict driver events by estimating the functional relevance of somatic mutations.
For example, CHASM software [7] uses a machine learning method together
with well-curated databases (e.g., COSMIC) to quantify the potential functional
significance of somatic mutations.

2. Strategies based on dN/dS ratio. An excess of nonsynonymous vs. synonymous
(dN/dS) somatic mutations is considered an evidence of positive selection [3].

3. Strategies based on mutation recurrence. Somatic mutations detected more
frequently than expected by chance in independent tumors of several patients
are thought to be drivers. Software as MuSiC [15] or MutSigCV [33] apply this
concept in which mutation profiles of multiple cancers are integrated to predict
driver mutation events.

4. Strategies based on mutation clustering. An excess of somatic mutations in a
given region of the genome can be a signal of natural selection acting over
that genomic region. OncodriveCLUST [73] explores this idea by searching for
mutation clusters in protein-coding sequences.

5. Strategies based on pathways and networks. Somatic mutations can be annotated
as drivers when associated with a pathway known to be targeted in cancer [18].
A common approach is to analyze whether somatic mutations are included in
cancer-related gene sets or are part of biological interaction networks.

As with the somatic mutation calling algorithms, an ideal solution is yet to
be developed. Meanwhile, performing an integrated meta-analysis using multiple
methods seems to be a good choice [18].

Apart from determining whether a given somatic mutation is a driver event in
tumorigenesis, some researchers have also tried to represent the order of accumula-
tion of driver mutations using oncogenetic trees. Unlike phylogenetic trees, which
represent evolutionary relationships among samples, oncogenetic trees make use of
tumor mutation profiles from different patients in order to reconstruct the sequential
accumulation of driver events in cancer, therefore identifying common evolutionary
pathways and mutational dependencies [3, 17, 72].

4 Single-Cell Genomics

A recent strategy that has been gaining momentum in the cancer community is based
on sequencing genomes from single cells. Originally introduced by Navin in 2011
[51], single-cell sequencing approaches allow researchers to assess the genomes of
individual malignant cells, either from the tumor or from circulating tumor cells
(CTCs), thus significantly improving our ability to assess genomic heterogeneity
within tumors [50, 80]. Nevertheless, given the limited amount of starting material,
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multiple rounds of whole-genome amplification are often needed before extensive
sequencing, which introduces a high number of sequence artifacts that can be
confounded with genuine biological variation [77]. Other technical errors, such as
uneven genome amplification, allelic dropout (ADO) and low coverage breadth,
may also generate substantial artificial variability in cancer genomes, compromising
the power to detect real somatic events from single-cell data [23].

Nevertheless, it is important to highlight that NGS data analyses based on
single-cell sequencing information circumvent the cell heterogeneity issue of bulk
sequencing approaches. Thus, if one is willing to ignore variations due to tumor
ploidy or ADO, traditional “germline” algorithms can be applied to detect somatic
variants, as each sample represents individual cells for which genotypes can be
directly inferred [51, 80]. Similarly, single-cell genomics opens the door to classical
phylogenetic and population genetics methods for the study of tumor evolution [55].

Therefore, with the continuous improvements in sequencing technologies, it
seems obvious that single-cell approaches will become a key—perhaps the default—
sequencing strategy for tumors in the future. However, given the high amount
of technical errors currently associated with single-cell methods, independent
validation of the mutations events is often needed, largely impacting the economical
cost.

5 Future Prospects in Cancer Genomics

Notwithstanding its recent emergence, the field of cancer genomics has evolved
rapidly. At the beginning, most of the progress was a consequence of international
projects and associations as The Cancer Genome Atlas (http://cancergenome.nih.
gov/) and the International Cancer Genome Consortium (https://icgc.org/), which
by releasing data and dedicated software for the scientific community, have already
contributed to the design of new therapeutic targets and improved treatment
plans [6].

In the future, it seems clear that cancer genomics will benefit the most from the
implementation of single-cell genomics and further progress in NGS technologies.
As just mentioned, single-cell sequencing studies will allow for a more detailed
description of ITH [51, 80]. On the other hand, a shift towards third-generation
sequencing technologies should significantly reduce the computational demands of
most genomic analyses, allowing the development of alternative and more flexible
strategies to study cancer genomes. For instance, longer reads provided by third-
generation technologies are expected to considerably improve haplotype phasing, a
key point to understand epistatic interactions in cancer cells.

From a clinical perspective, the adoption of NGS technologies in cancer research
is also expected to significantly improve precision medicine and personalized care
[66]. Tumor dynamics and clones identified from NGS can help patient prognosis
[2]. Indeed, once sequencing of matched samples becomes routinely implemented in
clinical settings, patients’ specific treatments could be considered in order to reduce

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
https://icgc.org/


NGS Analysis of Somatic Mutations in Cancer Genomes 367

many present-day side effects, while allowing the discovery of new therapeutic
targets and/or the identification of clonal lineages capable of driving recurrent
events.

In summary, as cancer NGS data continues to accumulate in publicly available
databases, big data approaches are crucially needed for proper characterization
of cancer genomes. At present, even though most methodologies still lack a
comprehensive benchmarking, big efforts are being made in order to circumvent
the computational burden of NGS data handling and processing (e.g., CRAMTools)
[14]. In addition, cloud computing is becoming a valuable resource for many cancer
research centers that lack the physical infrastructure to store the massive amounts
of data being generated [40]. Driven by these technological improvements, together
with the reduction of sequencing costs, addressing important questions requiring
larger sample sizes in cancer genomics will certainly become possible.

Glossary
Allelic dropout (ADO): lack of amplification of one of the two alleles at a site.

Balanced structural variants: a class of genomic rearrangements characterized
by changes in the linear sequence of a genome, without altering the overall content
of cellular DNA. It includes chromosomal inversions and translocations.

Cell prevalence: relative fraction of tumor cells carrying a given somatic
mutation.

Chromothripsis: a single catastrophic event that comprises multiple structural
changes in a limited genomic region (e.g., arm of a given chromosome).

Chromoplexy: large-scale changes in the structural architecture of the whole
cancer genome where broken DNA segments from one chromosome may get
incorporated by different chromosomes in a completely distinct configuration.

Circulating tumor cells (CTCs): cancer cells which have been released from the
primary tumor and can be isolated from peripheral blood.

Clone: set of genetically identical cells that descend from a common ancestral
cell. In practice, a clone represents a collection of cells that harbor the same somatic
genomic variants, including SNVs, CNAs, SVs, studied.

Copy number variants/aberrations (CNVs/CNAs): a DNA segment of a cancer
genome typically larger than 1 kb, that differs in terms of its copy number with
respect to the healthy genome.

Coverage depth: number of reads which align to a given position of the
reference genome. Sometimes coverage depth is simply referred to as “coverage”
or “sequencing depth.” It provides the redundancy needed to ensure data accuracy.

Coverage breadth: percentage of the genome sequence which is covered by at
least one sequencing read.

Driver mutations: selectively advantageous somatic mutations. They are thought
to be responsible for clonal expansions.

Driver genes: mutated genes involved in pathways implicated in cancer progres-
sion.
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Infinite-sites model: a description of the process of mutation accumulation in
populations in which mutations can only happen once at a given position of the
DNA sequence.

Insertion and deletion events (indels): relatively small gain or loss of nucleotides.
Intratumoral heterogeneity (ITH): genomic variation harbored by cancer cells

within a given tumor.
Multiregion sequencing: a study design in which different regions of the same

tumor are sampled, sequenced, and compared.
Oncogenetic tree: a graphical representation of the order in which driver events

can take place.
Orthogonal validation: validation of variants usually performed with a different

technology. In the context of NGS, orthogonal validation could be carried out, for
instance, using a hybridization-based method (e.g., DNA microarrays).

Paired or matched samples: healthy and tumor samples obtained from the same
patient.

Passenger mutations: neutral mutations acquired during tumor development.
Pigeonhole principle: also called Dirichlet’s box, states that if frequencies of two

different somatic mutations which are present in a tumor cell population sum up to
more than 100 %, then some tumor cells must harbor both mutations.

Pool sequencing (Pool-seq): sequencing of the DNA molecules from a pool of
cells. In cancer research, it is usually referred to as bulk-seq.

Reference alleles: alleles matching the genome reference.
Single nucleotide variant (SNV): point mutation at a specific base position of the

genome.
Somatic mutations: mutations which are not inherited but appear de novo during

the development of a multicellular organism.
Structural variants (SVs): genomic structural rearrangements which span from

1 kb to many megabases.
Targeted sequencing: sequencing of specific genomic regions (i.e., targets) from

a given sample.
Tumor ploidy: refers to the number of chromosome sets present in malignant

cells.
Tumor purity/cellularity: proportion of malignant cells in a given sample.
Unbalanced structural variants: usually defined as relatively large genomic

rearrangements (>1 kb), involving loss or gain of genetic material. Generally
described as copy number variants (CNVs), it includes insertions, deletions, and/or
duplications of different sizes.

Whole-genome sequencing (WGS): sequencing of the complete genomic
sequence contained in a sample.
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OncoMiner: A Pipeline for Bioinformatics
Analysis of Exonic Sequence Variants in Cancer

Ming-Ying Leung, Joseph A. Knapka, Amy E. Wagler,
Georgialina Rodriguez, and Robert A. Kirken

Abstract With recent developments in high-throughput sequencing technologies,
whole exome sequencing (WES) data have become a rich source of information
from which scientists can explore the overall mutational landscape in patients
with various types of cancers. We have developed the OncoMiner pipeline for
mining WES data to identify exonic sequence variants, link them with associated
research literature, visualize their genomic locations, and compare their occur-
rence frequencies among different groups of subjects. This pipeline, written in
Python on an IBM High-Performance Cluster, HPC Version 3.2, is accessible at
oncominer.utep.edu. It begins with taking all the identified missense mutations
of an individual and translating the affected genes based on Genome Reference
Consortium’s human genome build 37. After constructing a list of exonic sequence
variants from the individual, OncoMiner uses PROVEAN scoring scheme to assess
each variant’s functional consequences, followed by PubMed searches to link
the variant to previous reports. Users can then select subjects to visualize their
PROVEAN score profiles with Circos diagrams and to compare the proportions
of variant occurrences between different groups using Fisher’s exact tests. As such
statistical comparisons typically involve many hypothesis tests, options for multiple-
test corrections are included to control familywise error or false discovery rates. We
have used OncoMiner to analyze variants of cancer-related genes in 14 samples
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taken from patients with cancer, six from cancer cell lines, and ten from normal
individuals. Variants showing significant differences between the cancer and control
groups are identified and experiments are being designed to elucidate their roles in
cancer.

Keywords Computational pipeline • Cancer research • Exome • Exonic
sequence variants • Bioinformatics

1 Introduction

Advances of next-generation sequencing technologies in the past few years have
greatly facilitated research studies on many human diseases at the genomic level.
In a genome, the collection of all protein-coding regions, known as exons, is called
the exome. Although the whole exome represents only less than 3 % of the entire
human genome [1], somatic mutations within the exome can lead to serious genetic
disorders and diseases like cancers. In many recent studies, analyses of whole exome
sequencing (WES) data have proven to be an efficient way of identifying novel
genetic alterations associated with various types of cancer. For example, WES of a
rare case of familial childhood acute lymphoblastic leukemia has revealed several
putative predisposing mutations in Fanconi anemia genes [2]. Using WES, Li et al.
[3] have identified mutations in cell–cell adhesion genes in Chinese patients with
lung squamous cell carcinoma, while Robles et al. [4] have found that colorectal
tumors associated with inflammatory bowel disease have distinct genetic features
from sporadic colorectal tumors.

At the cancer bio-repository housed at The University of Texas at El Paso
(UTEP), an increasing number of tissue samples from patients with cancer in local
hospitals have been collected. Research projects using WES have been initiated in
order to better understand the molecular mechanisms and cellular pathways involved
in the disease development. However, one critical obstacle that arises from the use
of WES is the massive dataset produced from a single tumor source. Bioinformatics
methods that can filter through multiple mutations and identify a short list of exonic
variants for focused experimental investigation in the wet lab would be required.
Depending on the specific dataset and the goals of their investigations, researchers
may have certain preferences for scoring schemes, visualization tools, and statistical
comparison methods in the process of selecting this shortlist.

While such functionalities may be available separately in various existing WES
data analysis tools, they are found in different software packages or web-servers,
making them difficult to be applied directly by cancer researchers who generally
would not have the necessary time or experience to deal with technical computing
issues. The initial motivation for our group to develop OncoMiner was the need
of an easy-to-use pipeline for local researchers to explore high-dimensional WES
datasets with their selected approach of combining the evolution-based PROVEAN
scoring scheme [5], Circos visualization tool [6], and statistical analysis with
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corrections of multiple testing by controlling familywise error or false discovery
rate. It also provides a user interface for researchers to directly submit their
WES data for analysis through the OncoMiner website and receive the results
via email. Recognizing that the selection of these choices of variant prioritization,
visualization, and statistical methodologies may need to be changed from time to
time for different research questions and study design, OncoMiner is implemented
with a flexible modular structure, allowing pipeline components to be modified and
added in the future.

A brief review of recent WES data analysis programs is given in Sect. 2, followed
by a description of the implementation of OncoMiner in Sect. 3, and a detailed
explanation of the statistical analysis with multiple-testing corrections in Sect. 4.
An application of OncoMiner to compare cancer and normal samples is presented
in Sect. 5. Some future developments planned for OncoMiner are given in the
concluding Sect. 6.

It should be noted that OncoMiner is different from the package ONCOMINE
with a similar name. The latter, originally developed by Rhodes et al. [7] in 2004,
is a database and data-mining platform for cancer microarray data and does not
provide tools for WES data analysis.

2 Existing Exome Sequence Analysis Tools

Many different bioinformatics tools have been developed in the past few years
to analyze WES data, with the aim of identifying disease-driving mutations and
discovering biomarkers to help diagnosis and treatment selections. As WES datasets
are typically large, complex, and noisy, they pose considerable computational
challenges in all the steps involved in WES data management and analysis, which
include data preprocessing, sequence alignment, post-alignment processing, variant
calling, annotation, visualization, and prioritization.

The earlier bioinformatics tools for handling WES data include Variant Effect
Predictor [8] distributed in Ensembl 2011 [9], SNPeffect [10], AnnTools [11],
MuSiC [12], snpEff [13], VARIANT [14], as well as the annotation tool ANNOVAR
[15], the probability-based disease gene finder tool VAAST [16], and the specialized
phosphorylation-related polymorphism analysis tool PhosSNP [17].

After their first introduction, additional tools developed later have been incor-
porated to the widely used ANNOVAR and VAAST software. For example, a
web-based version wANNOVAR has been developed by Chang and Wang [18],
and step-by-step protocols for using ANNOVAR and wANNOVAR are provided by
Yang and Wang [19]. Dong et al. [20] pre-computed a set of variant prioritization
ensemble scores for over 87 million possible exome variants and made them
publicly available through ANNOVAR. Vuong et al. [21] implemented AVIA by
adopting the ANNOVAR framework and adding visualization functionality. To
improve the performance of the original VAAST, a new VAAST 2.0 has been
developed by Hu et al. [22]. Kennedy et al. [23] described the protocols of best
practices in prioritizing variants using VAAST 2.0.
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Aside from additions and updates to the more established software, new tools
continue to be created. For example, Douville et al. [24] have developed the
cancer-related analysis of variants toolkit CRAVAT and Nadaf et al. [25] have
implemented ExomeAI for detecting recurrent allelic imbalance in tumors, while
Hansen et al. [26] have written a set of novel scripts for variant annotation and
selection in the environment of Mathematica [27]. Several comprehensive reviews
and surveys of bioinformatics analysis tools for WES, or more generally, whole
genome sequencing data have been given by Gnad et al. [28], Pabinger et al. [29],
Bao et al. [30], and Raphael et al. [31]. These reviews, as well as other more specific
studies, such as McCarthy et al. [32] and Granzow et al. [33], generally point to
the lack of concordant results from these different tools. The development of new
computational methodologies and exploration of new combinations of established
approaches to analyze WES for identifying biologically or clinically important
sequence variants are still ongoing.

OncoMiner is a tool designed for identifying possible cancer-associated variants
from a list of single-nucleotide substitutions and small insertion/deletions reported
as the results of WES. Analyses of copy-number aberrations or large-genome
rearrangements are not included. As the major functions currently supported by
OncoMiner involve variant scoring, visualization, and statistical comparison, we
first give a brief review of other software that can, although separately, provide
similar functions.

2.1 Variant Scoring

To prioritize the long list of exonic variants and select those most likely to have the
greatest impacts in relation to a disease of interest, biomedical researchers would
have to evaluate each listed variant by a score that indicates the deleteriousness of
the resulting change in the amino acid. Dong et al. [20] have recently compared
18 current deleteriousness-scoring methods, including the popular PolyPhen-2 [34]
and SIFT [35] function prediction scores and the support vector machine based
CADD ensemble score [36]. The majority of these scoring methods are available
in the ANNOVAR software mentioned above and the dbNSFP v2.0 database [37],
where a few other scoring methods, including the evolution-based PROVEAN [5]
score have been added in late 2015 [38]. As we have chosen to use PROVEAN in
the OncoMiner pipeline, we will explain its scoring scheme in greater detail below.

PROVEAN stands for Protein Variation Effect Analyzer. It provides predictions
of the functional effects of protein sequence variations, including single or multiple
substitutions and insertions and deletions (indels) in amino acid sequences. It is the
first established variant scoring scheme to consider indels in addition to amino acid
substitutions. Like many other computational approaches, PROVEAN assesses the
potential impact of amino acid changes on gene functions based on the principle that
evolutionarily conserved amino acid positions across multiple species are likely to
be functionally important. If an amino acid change occurs at conserved positions, it
has higher chances of leading to deleterious effects on gene functions.
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PROVEAN score calculations require a database containing a diverse set of
naturally occurring homologous and distantly related sequences, e.g., the National
Center for Biotechnology Information (NCBI) Non-Redundant (NR) Protein
Database [39] and the UniProtKB/Swiss-Prot Database [40], to compare with
the query sequence. Suppose a query sequence Q is mutated to Q ’ by the variant
v. For each database sequence S, an alignment score A(Q, S) between Q and S is
obtained. Another similar alignment score A(Q ’, S) is obtained between S and the
mutated query sequence Q ’. The difference

�.Q; v; S/ D A .Q’; S/� A .Q; S/

is called the “delta score.” A negative delta score would imply that the variant
causes the query sequence to become less similar to S. If we observe a significantly
negative average delta scores for Q when aligned with the sequences in the database,
it suggests that the variant v has a deleterious effect.

To avoid bias due to the presence of very large numbers of highly similar
sequences in certain family of proteins in the database, PROVEAN calculates an
unbiased average delta score for Q by first forming clusters of highly similar
sequences, obtains the average scores of the clusters that are sufficiently similar
to Q, and then takes an overall average of those cluster averages. As this process
of aligning and clustering sequences is computational intensive, PROVEAN score
calculation for a large number of queries is generally very slow. However, the
process can speed up substantially using parallel computing technologies or by
pre-computing PROVEAN scores for the known variants to date and storing them
systematically in a look-up table.

2.2 Visualization

The importance of visualization in genomics data analysis has long been recognized.
Pabinger et al. [29] give a very informative survey of a total of 40 such software,
most of which are also included in the review by Pavlopoulos et al. [41]. Some
genomic sequence analysis software such as VAAST 2.0 [22], VARIANT [14], and
VarSifter [42] also provide visualization functionalities. In addition, the output of
CRAVAT [24] includes a formatted submission file for the interactive visualization
tool Mutation Position Imaging Toolbox [43] that allows users to map single-
nucleotide variants onto the coordinates of available 3D protein structures in the
Protein Data Bank at rcsb.org [44].

Among a large variety of visualization tools available at many different internet
sites, it is not an easy task for biomedical researchers to gain sufficient familiarity
with them to decide which ones will best fit their specific diseases of interest and
learn how to use them effectively. Fortunately, as pointed out by Bao et al. [30], there
are already ongoing efforts to integrate these visualization tools. The Oncoprint tool
in the cBio Cancer Genomics Portal [45] and its integration with the Integrative
Genomics Viewer [46] are such examples.

http://rcsb.org/
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In the article by Nielsen et al. [47] that provides a guide to genomic data
visualization methods, the authors divide such software into three categories.
First, there are the finishing tools for de novo or re-sequencing experiments.
Second, there are tools for browsing annotations and experimental data in relation
to reference genomes. Finally, the third category contains visualization tools to
compare sequence data from different individuals. The visualization function of
OncoMiner belongs to the third category. It focuses on the task of visualizing
genomic locations of potential deleterious variants to help biomedical researchers
to decide on a shortlist of variants for further investigation based on their specific
research questions and previous knowledge. An existing program that provides
variant location visualization function is AVIA [21], which includes the Circos
visualization tool [6] to display the genomic locations of the variants and their
deleterious scores. However, the use of Circos diagrams for the computationally
intensive PROVEAN scores by OncoMiner is not part of the visualization options
provided by AVIA.

2.3 Statistical Analysis

One important goal of WES data analysis is to detect genetic variants that have
influence on the risk of diseases such as cancer. This will require assessing the
prevalence of a particular variant in a disease group versus the control group. If
we are considering only a single variant, testing for statistical significant difference
between the disease and control groups can be done by a straightforward two-sample
z-test for comparing proportions when the sample sizes are sufficiently large. For
small sample sizes, one can use the Fisher’s exact test instead [48]. WES datasets,
however, provide a large number of variants for each individual, leading to the need
of testing thousands of hypotheses at the same time. In such settings, suitable control
of the probability of false positive findings is an important issue. WES analysis tools
require suitable p-value adjustments in their statistical analysis to make appropriate
corrections for multiple testing, while keeping a reasonable level of statistical power.
These issues have been mentioned in Raphael et al. [31], Sham and Purcell [49], and
Wang et al. [50], among others. In Sects. 4 and 5 of this chapter, we will provide
examples, using both simulated and real datasets to illustrate the impacts of the
multiple-test corrections in the selection of potential disease associated variants.

3 The OncoMiner Pipeline

OncoMiner is developed for mining WES data with the aim of identifying exonic
variants, linking them to associated research literature, visualizing their genomic
locations, and comparing their frequencies of occurrence among different groups
of subjects. The pipeline, implemented on UTEP’s IBM High-Performance Cluster,
HPC Version 3.2, is accessible at oncominer.utep.edu.

http://oncominer.utep.edu/
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3.1 OncoMiner Overview

OncoMiner runs on an IBM Platform LSF (Load Sharing Facility), a cluster
management product provided by IBM Platform Computing [51], for job scheduling
services atop the Red Hat Enterprise Server Linux Operating System running on the
HPC at UTEP.

The base hardware platform is a blade server equipped with a 12-core Intel
Xeon E5-2630 processor and 64GB of RAM sharing a 15 TB storage array. At
the time of writing, OncoMiner has exclusive access to nine blades with a total
of 108 CPU cores and provisional access to additional blades depending on the
cluster’s computational load. New blades can be added to the cluster as funding
permits, and OncoMiner can utilize all available CPUs, since all of its computational
activity is managed via the Platform LSF scheduler. It is also possible to use another
open source cluster management system, such as HTCondor [52], to implement
OncoMiner on other clusters provided that all the compute nodes are configured to
share a common file system.

The pipeline begins with taking individual datasets resulting from Otogenetics
exome sequencing [53], identifies all the missense mutations, and translates the
affected genes in all predicted splice variants based on the Genome Reference Con-
sortium’s human genome build 37 (GRCh37), retrievable from NCBI’s Annotation
Release 104 for CRCh37 [54]. OncoMiner currently supports three major functions
on exonic variants:

1. Parallel computation of PROVEAN scores and PubMed search for a collection
of individual datasets submitted by the user.

2. Simultaneous visualization of multiple PROVEAN score and PubMed publica-
tion profiles generated by Step 1 above.

3. Comparative analysis of two groups of multiple individual datasets to identify
variants with statistically significant differences between the groups.

The OncoMiner user interface is a Python web service implemented using the
Web Service Gateway Interface at wsgi.org [55] and the web.py web framework at
webpy.org [56].

3.2 Parallel PROVEAN Scoring

Since the PROVEAN scoring scheme is computationally intensive, using it on typi-
cal WES datasets from a single individual generally would take over a week to com-
plete the calculations on a regular desktop computer. For supporting high-volume
PROVEAN scoring [5], OncoMiner allows the submission of full-exome sequenc-
ing results as CSV files containing a specified collection of named columns indicat-
ing the chromosome number, location, NCBI gene name, reference nucleotide, and
the modified nucleotide(s) of each variant. One input file typically contains WES

http://wsgi.org/
http://web.py/
http://webpy.org/
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Table 1 Columns of an input file to OncoMiner

Column name Information to be entered Example entry

Var_index Unique numeric identifier of the variant 123
Chrom Chromosome number on which the variant occurs chr3
Left Locus of the variant from the 50 end of the

chromosome
67936561

Right Locus immediately after the end of the variant in
the reference (unmutated) chromosome sequence;
will be leftC 1 for single-nucleotide
polymorphisms

67936562

Ref_seq Nucleotide at the left locus in the reference
chromosome

g

Var_seq1 Nucleotide at the left locus in the first copy of the
mutated chromosome

c

Var_seq2 Nucleotide at the left locus in the second copy of
the mutated chromosome

a

Var_score Read score of the variant on a scale of 0–35 with 35
indicating the highest reliability

34

Gene_name GenBank name of the gene where the variant
occurs

AAK1

Where_in_transcript “CDS” indicates that the variant occurs in a coding
sequence region. Rows with any other values are
ignored

CDS

Change_type1 “Synonymous” or “non-synonymous”, indicating
the impact of the first chromosome copy’s
nucleotide variant on the coded protein.
Synonymous variants are not scored

Non-synonymous

Change_type2 Same as in change_type1 but on the second
chromosome copy

Non-synonymous

dbSNP (optional) The dbSNPa ID of the nucleotide variant, if it is
available; otherwise blank

rs1801058

The required column names are listed along with explanations of the information expected to be
entered. The last column gives an example showing the entries corresponding to a heterozygous
single-nucleotide substitution occurring on a coding region of the AAK1 gene, leading to non-
synonymous variants on both copies of chromosome 3
adbSNP is a database for short genetic variations maintained by NCBI [57]

data for a single individual with approximately 10,000 nucleotide variants in a text
file of around 20 MB. Table 1 shows a list of columns needed to be entered in the
input file, and Fig. 1 gives a very small example to show what the file looks like
when opened in an Excel spreadsheet.

OncoMiner produces output files with the same structure as the input, except that
new columns indicating the protein variation implied by a nucleotide variation and
the PROVEAN score of each protein variation, as well as some annotation columns
are added. All protein sequences are computed based on the GenBank annotation
and nucleotide sequence data for human genome build 37 [54].
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Fig. 1 Snapshot of the first ten entries in a typical OncoMiner input file for PROVEAN scoring.
The file must contain the 12 required columns as described in Table 1 above, and may be in CSV
or Excel format

OncoMiner computes the PROVEAN score for all the isoforms of each protein
that are annotated in the GenBank build; therefore, a single input row frequently
results in multiple output rows corresponding to different isoforms. Furthermore,
a single input row describing a heterozygous variant may require two nucleotide
variants to be processed. All output rows arising from a single input row appear
contiguously in the output file.

After all PROVEAN scoring is complete, OncoMiner builds a summary output
file by selecting, for each input row, the output row that yielded the lowest (implying
most damaging) PROVEAN score. The summary output file thus contains exactly
one row for each row in the input dataset. Both the fully scored output containing
all protein isoforms and the summary file are included in the results sent to the user
who submitted the job.

The PROVEAN scoring facility is implemented as a collection of Bash shell
and Python scripts, driven by a single main Bash shell script provean_pipeline.sh
that manages all processing for a submitted exome sequence variant dataset. When
a dataset is submitted via the OncoMiner web interface, the web server saves the
dataset as a temporary file and invokes provean_pipeline.sh via the Platform LSF
scheduler in order to process the temporary file. All data related to a given input
job are stored in a uniquely named job-specific disk directory created at the time of
submission, which allows OncoMiner to handle multiple simultaneous submissions.
A large dataset can take days to complete on the current hardware platform, if none
of the sequence variants have previously been scored; therefore, user-submitted
jobs must be accompanied by an email address for the output file to be sent when
complete.

Each instance of provean_pipeline.sh will perform the following activities:

1. Analyze the structure of the input file, verifying that the necessary data columns
exist. OncoMiner is able to accept any input file that contains the specific
columns required to produce PROVEAN input from nucleotide variant data.
Additional columns are preserved and will appear unchanged in the output,
aside from possible duplication of rows due to the processing of multiple
isoforms as described above.

2. Remove input rows with low read quality, if those data are available. Read
quality is an indication of how confident the sequencer is that a particular region
has been sequenced correctly.
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3. Compute the collection of protein variants implied by each nucleotide variation.
OncoMiner uses a custom Python library to perform gene translation locally
by mapping human genome sequence files into RAM and using the GenBank
CDS annotation to assemble and translate the appropriate exon sequences.
It computes the native protein sequence of each isoform documented in the
GenBank annotation, and the protein variant for each isoform as implied by the
nucleotide variant under consideration.

4. For each protein variant sequence, compute the Human Genome Variation
Society (HGVS) notation describing the differences between the native protein
and the variant. This HGVS variant is the input required by PROVEAN. HGVS
is a very compact notation which describes the variant protein sequence as an
“edit” to the native protein sequence. OncoMiner computes the HGVS notation
for a protein by using the Python standard library’s difflib module to compute
the differences between the protein sequences, and then using a table lookup to
convert difflib output to an HGVS string.

5. Compute an intermediate dataset suitable for generating input to PROVEAN,
using the following procedure:

(a) Build a map that associates with each native protein isoform a list of
all protein variants found for that isoform. This operation is performed
globally, so that all protein variants in the input dataset that affect a specific
isoform appear together. Because a single PROVEAN job can compute the
scores of multiple variants of a single protein, this permits OncoMiner to
run the smallest possible number of PROVEAN jobs.

(b) Generate a text file describing all the necessary PROVEAN scoring compu-
tations. For each scoring job, this file contains the native protein sequence,
each protein variant, and the input data row that generated each variant.

6. Submit each PROVEAN scoring job in the intermediate file to the IBM LSF
cluster job scheduler. Each scoring job first consults a local database to see
whether a score for each of its variants has already been computed, and
uses any such scores found. If any previously unknown variants of the job’s
specific isoform require scores to be computed, a PROVEAN job is started.
This is by far the most computationally intensive stage of processing. On the
hardware available at the time of writing, it takes approximately 40 CPU-weeks
to complete all PROVEAN scoring for a full-exome sequence dataset whose
variants must all be scored rather than looked up in the database.

7. Collect all scores as they become available and assemble an output file that
preserves the structure of the input, with columns indicating protein variants and
PROVEAN scores appended, named “AA.variation” and “PROVEAN.score.”

8. Interrogate the PubMed database for each output row and annotate the output
file with the following additional information in new columns:

(a) A URL linking to search results for the row’s dbSNP ID, if supplied, and if
that search returned any results.
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(b) A URL linking to search results for the row’s gene name and HGVS variant,
if that search returned any results.

(9) Email the output file to the email address specified in the submitted job.

3.3 Visualization of PROVEAN Score Profiles

Circos is a visualization tool, available at circos.ca [6], that produces circular
genome and chromosome diagrams and allows data associated with chromosome
loci to be visualized using heat-maps and inter-locus linkage.

OncoMiner can build Circos heat-map diagrams of multiple datasets containing
PROVEAN score information, each dataset comprising the WES data for a single
individual, with PROVEAN scores attached. In this manner, the PROVEAN-
predicted impact of variants in different parts of the genome can be visually
compared. This facility is available via OncoMiner’s web-based user interface.
While OncoMiner will accept as many datasets as uploaded, we recommend no
more than ten datasets for a single visualization job, because visual crowding in the
resulting diagrams would make interpretation difficult.

The user must supply a bin size (expressed in kilobases) for the heat-map
resolution. OncoMiner extracts the PROVEAN scores for each bin and finds
the minimum PROVEAN score in each bin. OncoMiner then generates Circos
parameter files to produce separate Circos heat-map diagrams for each chromosome
and the entire genome. The whole-genome heat-map is displayed in the browser
when all diagrams have been generated.

In the displayed Circos diagram, lower scores are coded as warmer colors with
the more damaging scores displayed in darker shades of red. The PROVEAN
heat-map uses five colors to map the range of PROVEAN scores in all plotted
datasets linearly. Each individual dataset is rendered as a separate concentric ring.
A summary heat-map reflecting the most-damaging PROVEAN scores among all
displayed datasets is plotted as a ring surrounding the individual dataset rings.

The outermost ring of the heat-map uses five colors from light blue to dark blue to
plot the maximum number of PubMed references found among the variants in each
bin, with darker colors reflecting more publications. Publication counts are capped
at 20, so a variant with 150 PubMed results will be plotted as if it had 20 PubMed
results and indicated as 20C. Each heat-map region is a link to the data rows for that
region in the uploaded datasets. Each chromosome in the outer ring of the diagram
is a link to the specific chromosome’s heat-map. A sample genome heat-map for
five individuals is shown in Fig. 2.

Circos diagrams can provide compact visualizations of the distribution of
PROVEAN scores of multiple datasets. In addition, a comparison of the summary
PROVEAN score ring (the outermost red ring) with the blue ring can help
researchers identify chromosomal regions with possibly damaging exonic variants
that have not been much reported in published literature. Such regions are found in
chromosomes 1, 9, and X in Fig. 2.

http://circos.ca/
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Fig. 2 A sample Circos diagram generated by OncoMiner. PROVEAN score profiles are shown
for five female individuals in the five inner rings. The outermost red ring is the summary plot
reflecting the minimum PROVEAN scores of the individuals. OncoMiner allows users to choose
the range of PROVEAN scores to be displayed. Here, only the negative scores, where the minimum
score is �1230.334 in the datasets, are displayed. The blue ring indicates PubMed search result
counts for the most-referenced variant in each bin. The outermost ring displays the ideograms
representing the 24 human chromosomes (1–22, X, and Y), showing their relative sizes and
banding patterns

3.4 Comparative Statistical Analysis of Exonic Variants

To achieve the goal of identifying exonic variants that are likely to play critical roles
in cancer so that experiments can be designed to test their biological relevance,
the final step of OncoMiner is to summarize the occurrence frequencies of the
combined collection of exonic variants in all the individual datasets grouped into
two categories, cancer and control, compare them between the two groups, and then
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perform Fisher’s exact tests to see if the differences are statistically significant.
As these statistical comparisons are performed for a large number of variants,
there are many hypotheses being tested simultaneously. Multiple-test corrections
are therefore provided by OncoMiner to control familywise error and false discovery
rates. The necessity of such error control, the conditions under which they should
be applied, and the algorithms to implement them are explained in the next section.

4 Error Control for Multiple Tests

After the PROVEAN score computations are complete, users can then select
subjects to produce a combined list of exonic sequence variants for comparing the
proportions of occurrences of each variant between different groups of subjects. As
such statistical comparisons would typically involve a large number of hypothesis
test endpoints, adjustments for p-values to correct for multiple tests are often
included to control familywise error or false discovery rates. These procedures
are built into OncoMiner. To illustrate the necessity of multiplicity corrections, we
present an example that will inform the subsequent discussion.

4.1 Motivating Example

We first present a simple example to illustrate the importance of multiple-test
corrections. To be clear, this toy example employs test endpoints based on simulated
random variables and does not represent actual research results. Suppose p-values
are reported for comparing the incidence of 40 specific variants between the patient
and control groups. In this list, none of the reported p-values have been corrected
for multiplicity and those statistically significant at 5 % are marked with asterisks:

0.815 0.466 0.405 0.298 0.096 0.681 0.664 0.401 0.834 0.415
0.005* 0.208 0.675 0.723 0.685 0.995 0.826 0.782 0.387 0.142
0.467 0.391 0.896 0.101 0.692 0.094 0.319 0.517 0.035* 0.982
0.029* 0.870 0.012* 0.637 0.674 0.881 0.518 0.251 0.086 0.709

If we consider a reported p-value smaller than 0.05 to be indicative of the
particular variant being associated with the disease outcome, those p-values with
asterisks associated with variants 11, 29, 31, and 33 would suggest that they are
significantly associated with the disease outcome. However, note that there are 40
reported p-values in this example. This implies that for a pointwise 5 % significance
level, on average 2 out of 40 of these endpoints will be spurious rejections of the
null hypothesis of no association. Since the reported p-values were simulated as
uniform [0,1] variables, the four seemingly significant endpoints, identified using a
0.05 pointwise significance level, actually occurred solely by chance. Indeed, when
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a multiplicity control like a simple p-value Bonferroni adjustment (as explained
in Sect. 4.3 below) is applied, none of the test endpoints would be considered
statistically significant, which reflects the chance model of null association used to
generate the data. This example illustrates the “why” behind multiplicity controls.
Without adjustments made for multiplicity to the data, pointwise significance often
presents itself as compelling evidence, when in reality, it occurs solely by chance as
in this example. This happens even more convincingly when the set of endpoints is
larger than 40, as is often the case with WES studies.

After realizing the need for multiplicity correction, the next tasks are to define the
family of inference and decide on the type of error control to employ. In general, an
experimenter should first define the family of inference explicitly before considering
the type of error control to employ. This is not always a clear task, but is probably
one of the most important considerations. When faced with even a moderately
sized set of p-values as in the motivating example, the first question asked of the
investigator should be “what defines the family of inference?” In some cases, it may
be reasonable to group test endpoints (e.g., by gender, age, or ethnicity) into smaller
sets within which hypothesis tests are performed and multiplicity corrections are
controlled.

Consideration of the family of inference is even more important for high-
dimensional data. For example, a collection of individual WES datasets has a
combined 25,000 variants for comparison between the cancer and control groups.
It would not be prudent to carry out the analysis using a multiplicity control of
any type with all 25,000 variants. Rather, experimental and exploratory analyses,
along with relevant known biological information, can limit the family of inference
without substantially inflating the overall type I error for the analysis. For instance, a
researcher may be only interested in those variants found on a specific list of cancer-
related genes, and the family of inferences should be defined only on the collection
of relevant variants.

Following identification of the family (or families) of inference, a reasonable
approach to error control should be decided upon. In general, there are two
major approaches to limiting errors in large studies: familywise error rate (FWER)
approaches that directly limit the incidence of one or more type I errors for the
entire family of inferences and false discovery rate (FDR) approaches that limit
the incidence of false positives among only the set of rejections. Deciding between
which type of error control to employ is often difficult. For example, in the
motivating example, the investigator may wish to make overall conclusions across
all variants. Hence, there would be 40 association tests. If the investigator finds
the claim of null association across all gene mutations plausible, then an FWER
control procedure is most suitable. In contrast, if the investigator is cautious about
making a type II error and finds the global null association claim implausible, then
an FDR procedure is probably most suitable. When there are many test endpoints, as
in WES studies, FDR control is an appropriate screening tool and FWER is usually
only relevant once a smaller set of candidate variants is identified.

In the following description of FWER and FDR approaches to error control,
the notations as shown in Table 2 will be used. Note that V is the number of true
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Table 2 Notations
representing the number of
decisions when testing a set
of null hypotheses

Truth/decision Non-significant Significant Total

True null hypothesis U V I
False null hypothesis T S M–I
Total A R M

null hypotheses that are rejected out of the total rejected null hypotheses (R). The
total number of test endpoints is denoted by M. In all error-control problems, the
magnitude of V, either relative to M or R, is of primary interest.

4.2 Conditions for Error Control

Both FWER and FDR approaches to error control considered in this chapter are
flexible methodologies that apply under a very general set of conditions. For M tests,
the set of null and alternative hypotheses may be denoted by Hi and H’

i , respectively,
for i D 1; : : : ;M. For strong control of any set of null hypotheses fHig, there is
almost always a subset of the fHig that are true and FWER is controlled for any of
these possible sets.

In WES settings, the number of inferences (M) is usually quite high and many
subsets of the inferences can be highly correlated. Whenever particular subsets of
the inferences are correlated, this should be recognized and, ideally, be capitalized
on in order to lower the multiplicity corrected critical value and achieve more
powerful error control. Resampling-based methodologies for making multiplicity
adjustments are a powerful option for FWER or FDR error control for almost any
setting with correlated inferences. See Westfall and Young [58] for an introduction.
However, in very high-dimensional settings these are still very computationally
demanding and, if many sets of analyses are being considered, the computational
demand will be unwieldy. In this section, resampling-based methodologies will not
be discussed, but other still powerful methods are available that do not require such
extensive computational resources.

4.3 Control of Type I Errors

Conservative approaches of error control usually restrict attention to procedures that
limit the probability of one or more false rejections of the null hypothesis. In WES
analysis settings, this is usually far too conservative since researchers rarely find it
is reasonable that all null hypotheses could simultaneously be true when testing a
large number of test endpoints. Hence, this conservative approach, which focuses
on the overall FWER of the family of inferences, is a classic methodology but
limiting in many genomics scenarios since it directly controls P(V � 1) for a set
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of inferences. At the same time, approaches that achieve FWER control provide
a set of plausible significant endpoints that are likely to be reproducible in future
related studies. Hence, genomics researchers should not completely disregard this
type of error control, but instead attempt to address the conservative nature of FWER
corrections while also employing other approaches to multiplicity control.

Utilizing the notations in Table 2, the following probability statements define the
FWER:FWER D P .reject at least one Hi W i 2 f1 : : :Mg/

For any probability distribution, FWER has an upper bound provided by a pre-
specified significance level ˛. In order to employ multiplicity adjustments among
any set of possibly correlated endpoints, we need to bound the probability of the
union of all M sets Ai D fYi > cg for random variables Yi (iD 1, : : : , M) and a
critical value c. FWER control requires that the union of all Ai is bound by a pre-
specified FWER ˛, such that

P

�
M[

iD1Ai

�
D

MX

iD1
P .Ai/�

X

i<j

P
�
Ai\Aj

�C � � � C .�1/MP

�
M\

iD1Ai

�
�

MX

iD1
P .Ai/ D ˛:

For error control, the objective is to bound the above inequality so that the
probability of the union of all Ai is as close to ˛ as possible. The Bonferroni

adjustment assumes
XM

iD1P .Ai/ D MP .Ai/ D ˛, resulting in a per-comparison

error of P .Ai/ D ˛
.

M . When the Yi endpoints are independent, the Bonferroni

adjustment is exact. However, it can be conservative if the endpoints are dependent
[59], meaning that the type I FWER will be lower than ’, and the power for
the set of inferences reduced. Hence, Bonferroni adjustments are very effective
if the endpoints are not significantly correlated but lack power when endpoints
significantly co-vary. Methods exist to correct for the conservative nature of
the Bonferroni adjustment [59], and one such modification is incorporated into
OncoMiner as an alternative to Bonferroni adjustments of FWER. A review of
multiplicity corrections from this framework is available from Elsäßer et al. [60].

4.4 Control of False Discoveries

Another approach to error control is to limit error control to the inferences that are
rejections of the null hypothesis. As this class of procedures controls the number
of false rejections (V) out of the total number of rejections (R), they are called
FDR methods. With reference to the notations defined in Table 2, FDR is defined
as E(V/R), the proportion of times a null hypothesis is falsely rejected among
the rejected hypotheses. For a specific � 2 Œ0; 1�, FDR is controlled by making
E .V=R/ � � .

Recall that FWER control implies P .V � 1/ is bound by ’ for a set of inferences,
and it protects against type I error in the strong sense. In practice, the proportion of
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times a null hypothesis is falsely rejected among the rejected hypotheses provides
a more powerful method that still protects against “false discoveries” in the weak
sense. The use of the proportion of type I errors among the significant tests (R) leads
to a more powerful and “adaptive” procedure so that whenever a large number of
tests are truly significant (S), the cutoff is lower using FDR than an FWER control.
Thus, any procedure which controls FWER also controls FDR, but the reverse is not
usually true. In fact, if there are a large number of false null hypotheses, which is
usually the case with WES data analyses, then we would expect S (in Table 2) to be
large, resulting in

E .V=R/ D E .V= .V C S// � P .V � 1/ :

The FDR method was originally derived assuming independent endpoints [61].
Later, Benjamini and Yekutieli [62] demonstrate how the standard FDR method-
ology still controls E(V/R) whenever the endpoints are positively dependent and
Sabatti et al. [63] provide justification about why positive dependency is a reason-
able assumption in genetic association studies. As a result, in large scale studies
with multiple correlated endpoints, the FDR procedure is likely to result in greater
power for the set of inferences. Moreover, the use of the FDR and related concepts
has been recognized as providing a unified framework for these kinds of analyses
[64].

A closely related alternative to FDR control is false discovery proportion (FDP)
control that directly limits P .V=R > �/ for a pre-specified threshold � 2 Œ0; 1�

[65, 66]. Both FDR and FDP control are useful in genomic settings for exploratory
analysis where the investigator is primarily concerned with identifying subsets of
the test endpoints that are statistically significant. In a hypothesis testing setting,
if RD 0, then there is no probability of false discovery or a type I error (hence
FDRDFWERD 0). Rather, whenever R� 1, the ratio V/R is in the interval [0,1]
and can be bounded to limit the proportion of the rejections of the null hypothesis
that are false (note that V denotes the number out of R that are false rejections).

Note that the incidence of false discoveries may be controlled using a proba-
bilistic formulation (FDP) or expectation (FDR). There are advantages and disad-
vantages to each approach. Since FDR control strictly limits the expectation or the
proportion of false discoveries, the method is effective in limiting that expectation
in the long run to a pre-specified significance level. However, in any particular
application of the FDR, the empirical rate of false discoveries may exceed � . Thus,
in general, control of FDP seems more consistent with the classical framework of
FWER control as it controls the probability of false rejections. However, due to
the prevalence of FDR control, which is known to be adaptive to high-dimensional
settings, in the genomics literature, we have selected to use FDR control in
OncoMiner.
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4.5 FDR Control Algorithm

The FDR control algorithm used by OncoMiner is due to Benjamini and Hochberg
[61]. For a set of test endpoints fY1, : : : , YMg there is a corresponding set of p-values
fp1, : : : , pMg which are assumed to be independent and uniformly distributed.
If these observed p-values are ordered fp(1), : : : , p(M)g, then the subset that are
statistically significant with FDR controlled at some value ’ in [0,1] is partitioned
using the threshold b� D max

˚
1 � � � M W p.�/ < ˛�=M



: Any test endpoints are

significant for .i/ D .1/; : : : ;
�
b�

	
whenever p.i/ � p�

b�
	: These test endpoints should

be regarded as those that are not likely to be false positives out of the set of rejections
of the null hypothesis and warrant further consideration. Follow-up analysis may be
warranted to further investigate the practical and statistical significance of these
endpoints using more stringent methods, such as FWER control.

Another approach for employing FDR control is to follow the two-stage strategy
proposed by Benjamini and Yekutieli [62] and Reiner et al. [67]. This allows for a
very liberal screening stage where FDR is controlled at a relatively large value (q1).
If a subset of genes is found to be significantly associated with the outcome at this
stage, then this subset will be analyzed again where FDR is controlled at another
rate (q2). The result of this two-stage approach is that the FDR is conservatively
controlled at q1q2. The values of q1 and q2 can be chosen at the discretion of the
investigators such that q1q2D q. This FDR correction is also being incorporated
into the OncoMiner pipeline.

5 Using OncoMiner to Analyze Exonic Variants in Cancer

Genomic DNA was isolated from 14 tumor specimens and six human leukemia
cell lines from the cancer bio-repository housed at UTEP using the Puregene Core
Kit A (Qiagen) according to the manufacturer’s instructions for genomic DNA
purification. The ratio of absorbance at 260 and 280 nm was determined to establish
purity of the DNA samples [68] prior to sending for WES analysis. The WES results,
provided by Otogenetics [53], included CSV files containing the exonic variants of
the individual subjects and all the required input information for OncoMiner.

Using the “Submit to PROVEAN” function at the OncoMiner site, the individual
WES data files were submitted for PROVEAN score calculations. The output files
for all the subjects in this study were then uploaded to the “Compute Statistics” page
where they were merged into a summary file, in which the entire collection of over
70,000 variants in the subjects are listed, along with counts of occurrences for each
variant in the cancer group and the control group.

Rather than analyzing this entire collection of variants, we focused on those
occurring on a selected list of 290 cancer-related genes relevant to the investigations
of our local researchers. This reduces the number of variants under consideration to
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Table 3 Variants in cancer-related genes with PROVEAN score <�2.5 that show statistically
significant differences between the cancer and control groups with FDR controlled at 0.05

Variant Gene Location PROVEAN AA.from AA.to Cancer Control

chr13.80911525.g.a.g* SPRY2 106 �2.943 P S 16 1
chr17.37884037.c.g.c* ERBB2 1140 �2.848 P A 14 0
chr2.215645464.c.g.c BARD1 281 �2.672 R S 13 1
chr8.48805818..g.g PRKDC 1248 �5.781 S Fr.Sh. 16 2

Those marked with asterisks are also significant with FWER controlled at 0.05

1061. Among these, 483 variants had PROVEAN scores lower than �2.5 and hence
would be considered potentially deleterious [5]. However these would still be too
many to be practically investigated in the wet lab.

On the other hand, we could also select variants that show significant differences
in their occurrence frequencies between the cancer group and the control group
datasets. We first noted that if a variant occurred in the majority (or minority) of
subjects in both the cancer and control groups, it would suggest there were no
substantial differences between the groups. So we narrow down to those variants
that occur in the majority (>50 %) of the cancer group but in the minority (<50 %)
of the control group or vice versa. We refer to this as the majority/minority criterion,
which was satisfied by 33 out of 1061 variants in the cancer-related genes. These
33 variants defined our family of inference. If the FWER was controlled at 0.05,
11 of these variants were found statistically significant using the Fisher’s exact test
[48]. If instead FDR was controlled at 0.05, 10 additional variants were found to be
significant.

As our goal was to identify only a few variants that can be further investigated in
the wet lab for their possible roles in cancer, we looked for those suggested by both
the PROVEAN scores and the statistical comparison. Only two variants in the genes
SPRY2 and ERBB2 with PROVEAN score <�2.5 showed significant differences
between the cancer and control groups when FWER is controlled at 0.05. Two
additional variants in the genes PRKDC and BARD1 satisfy the same criteria if,
instead of FWER, we control FDR at 0.05 using the Benjamini and Hochberg [61]
approach.

Table 3 displays the information about the four identified variants. The first three
columns indicate the chromosomal location and the change in nucleotides, the name
of the gene where the variant is located, and the position of the affected amino
acid in the translated protein. The fourth column displays the PROVEAN scores,
followed by the next two columns indicating the original amino acid at that position
(AA.from) and what it is changed to (AA.to). The last two columns, respectively,
show the frequencies of the variant found among the 20 samples in the cancer
group and among the 10 samples in the control group. The first three variants in
Table 3 are single-nucleotide substitutions, but the fourth represents an insertion
of the nucleotide “g” on the PRKDC gene that causes a frame shift resulting in
completely modifying the amino acid sequence starting from position 1248 of the
protein.
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It is interesting to note that although a large volume of biomedical literature
(over 22,000 articles found by a PubMed search) already exists for the four cancer-
related genes above, not much information about the specific variants have been
reported. Would this imply that the variants may have certain roles in cancer that are
still to be elucidated? Are possible deleterious biological effects of these significant
variants not observable so far? Alternatively, it might be possible that the variants are
more prevalent in patients with cancer in the El Paso region where over 70 % of the
population is Hispanic. These call for further investigations with a larger collection
of WES datasets and carefully designed experiments.

6 Future Work

We have implemented the OncoMiner pipeline as a web-server to which users can
submit their own WES data to be analyzed and receive the results via email. It
uses the resources of our local high-performance cluster to score, visualize, and
make statistical comparisons of exonic variants for groups of individuals. We will
continue to expand and fine-tune the pipeline’s capabilities as its usage increases.
For example, we are incorporating a version of JCVI-SIFT [69] and a customized
scoring scheme that reflects biochemical properties of amino acids. Other features
such as Circos diagram visualization of the statistical comparison results are also
being added to OncoMiner.

Although requiring a good amount of time and wet-lab resources, we will
proceed with experimental verification of selected exonic sequence variants from the
OncoMiner’s results in an effort to establish their biological relevance eventually.
In the meantime, we would continue to assess the reliability and scalability of
OncoMiner using different collections of datasets from public databases such as
the International Cancer Genome Consortium (ICGC), The Cancer Genome Atlas
(TCGA), and others as reviewed by Pavlopoulos et al. [41].

For the statistical analysis, there are situations where variants from more than
two groups of individuals need to be compared. For example, an investigation may
call for an overall comparison of three or more groups of patients with different
cancer types. We are extending the current Fisher’s exact test code on OncoMiner
to handle multiple group comparisons.

It is well recognized that correlation structures among the variants will need
to be taken into consideration in the statistical component of OncoMiner. The
pairwise dependencies can be incorporated into the FWER multiplicity adjustments
for large sets of association tests using methods adapted from Hunter [70] and
Worsley [71]. Similarly, resampling methods could also be utilized for complex
pairwise dependency structures. However, our preliminary analyses have revealed
that the dependencies are not restricted to the usual linear correlations among
pairs of variants. We have also detected higher-dimensional dependencies that may
affect the resulting shortlist of variants. It would be an important task to capture
the dependency structures and effectively incorporate them with suitable statistical
error-control strategies in the variant selection process.
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A Bioinformatics Approach for Understanding
Genotype–Phenotype Correlation
in Breast Cancer

Sohiya Yotsukura, Masayuki Karasuyama, Ichigaku Takigawa,
and Hiroshi Mamitsuka

Abstract Breast cancer (BC) patients can be clinically classified into three types,
called ER+, PR+, and HER2+, indicating the name of biomarkers and linking
treatments. The serious problem is that the patients, called “triple negative” (TN),
who cannot be fallen into any of these three categories, have no clear treatment
options. Thus linking TN patients to the main three phenotypes clinically is very
important. Usually BC patients are profiled by gene expression, while their patient
class sets (such as PAM50) are inconsistent with clinical phenotypes. On the other
hand, location-specific sequence variants are expected to be more predictive to
detect BC patient subgroups, since a variety of somatic, single mutations are well-
demonstrated to be linked to the resultant tumors. However those mutations have not
been necessarily evaluated well as patterns to predict BC phenotypes. We thus detect
patterns, which can assign known phenotypes to BC TN patients, focusing more
on paired or more complicated nucleotide/gene mutational patterns, by using three
machine learning methods: limitless arity multiple procedure (LAMP), decision
trees, and hierarchical disjoint clustering. Association rules obtained through LAMP
reveal a patient classification scheme through combinatorial mutations in PIK3CA
and TP53, consistent with the obtained decision tree and three major clusters (occu-
pied 182/208 samples), revealing the validity of results from diverse approaches.
The final clusters, containing TN patients, present sub-population features in the
TN patient pool that assign clinical phenotypes to TN patients.
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This paper is an extended and detailed version on a pilot study conducted in
Yotsukura et al. (Brief Bioinform, to appear).

Keywords Bioinformatics Approach • Genotypes • Phenotypes • Breast can-
cer • Correlation analysis

1 Background

Breast cancer (BC) statistics demonstrate that patients with estrogen receptors
(ERC) or progesterone receptors (PRC) are 60 % likely to respond to endocrine
therapy (such as tamoxifen, a preferred medication and endocrine-receptor blocker
[2]) with positive outcomes [3]. Furthermore research has exhibited potential
benefits to treating HER2+ enriched patients with specific anti-HER2 therapy (such
as Herceptin) [4]. For the remaining patients who cannot fall into these three
categories, i.e., negatives against ER, PR, and HER2, are known as triple negative
(TN) patients, for which the treatment methods exhibit poor results [5, 6]. TN
patients possess an aggressive histological phenotype with limited treatment options
and very poor prognosis after extant treatments and standard chemotherapeutic
regimens [7, 8]. Since TN is labeled by clinical markers, there is an urgent need
to classify the similarities of TN cases consistently with clinical phenotypes to
distinguish a novel treatment regiment for these patients.

Till now, the major methods for classifying breast cancers mostly incorporate
gene expression data, which do not necessarily integrate its applicability to current
treatments [6, 7, 9]. In gene expression profiling, PAM50 inherently demonstrates
the various co-expression between 50 histologically and pathologically breast
cancer related genes to classify the differences between breast cancer subgroups,
while the PAM50 co-expression clusters cannot directly associate with the clinical
markers, or the clinical treatments [10]. For instance, a Her2-enriched subtype
detected by PAM50 can also include pools of TN patients, which is inconsistent,
since a TN patient cannot be Her2C by the clinical definition. Table 1 highlights
the inconsistencies between biomarker subtypes and the corresponding clinical

Table 1 Connection of molecular subtypes to clinical phenotypes, and prevalence rates for BC
molecular subtypes

Subtype Clinical phenotype Approximated prevalence (%)

Luminal A ERC and/or PRC, Her2�, low Ki67 40

Luminal B ERC and/or PRC, Her2C, (or Her2� with high
Ki67)

20

TN/basal-like ER�, PR�, Her2� 15–20

Her2 type ER�,PR�, Her2C 10–15

There are four molecular phenotypes currently used, whilst only two of them, Luminal A and
Luminal B, are identified within ERC/PRC. This table is from the Susan G. Komen website [17]



A Bioinformatics Approach for Understanding Genotype–Phenotype. . . 399

phenotypes. In summary, the discrepancy of knowledge between clinical treatments
and subtype classification has impeded the change in morbidity and mortality within
cancer patients.

Sequence variants are believed to mark a region of the human genome which
influences the risk of disease. More importantly, somatic mutations are specific to
location and tumors cannot arise without them [11], which makes somatic variants
useful to identify subgroups within a population. Several attempts have been already
conducted to find mutation enrichment patterns linking to clinical phenotypes
[9, 12, 13], while their analysis is at the level of only single nucleotides, single
genes, or single gene families. The purpose of our work is to explore mutational
combinations at numerous (at least three) levels of biomolecules, i.e., position-wise,
gene-wise, and pathway-wise levels. We attempted to detect not only single but also
complex reasonable patterns in exonic somatic variants from three levels, through a
variety of viewpoints in machine learning. These patterns provide a strategic and
schematic overview that outline the identified mutations and/or polymorphisms
causing or predisposing to BC. In our work, we have employed limitless arity
multiple procedure (LAMP), decision tree, and hierarchical disjoint clustering to
investigate the linkage of the somatic variants to the clinical phenotypes, including
TN cases.

2 Methods

We explain three machine learning methods, which we will use in our experiments:
LAMP, decision tree, and hierarchical disjoint clustering. The data is a matrix with
patients for rows and their features for columns. We first use mutation data, where
features are mutations, taking binary values, where if a patient has some mutation
at a particular location, the corresponding element is one; otherwise zero. We call
this data mutation-wise features of patients. Next this data is transformed into a gene
level, i.e., if a patient has some mutation at a particular gene, the corresponding gene
is one; otherwise zero. We call this data gene-wise features of patients. We further
set up pathway-wise features, which will be described later in this section.

2.1 Limitless Arity Multiple Procedure

Frequent itemset mining (FIM) is a technique to identify conjunctive combinations
of items (i.e., mutations) that are frequently associated together in given data, being
relevant to a particular label, such as TN. LAMP [14] is a tool, which efficiently
scrutinizes the relevance of all possible conjunctive (AND) combinations of given
features to the given class label. LAMP provides p-values further, which can be
computed through multiple testing procedure of possible conjunctive combinations.
The obtained combinations of features can be regarded as rules to explain the given
class significantly.
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2.2 Decision Tree

Decision tree is used to explain categorical response variables by given features.
Methodologically, decision tree is to recursively split data based upon the predictors
that best distinguish the response variable classes. We use the rpart package [15] to
run the decision tree algorithm over our data, and the obtained results, such as the
population demographics, are demonstrated by the party package [16].

2.3 Hierarchical Disjoint Clustering

Clustering is grouping instances (patients) using their features, based on some
distance criterion. That is, two instances are likely to be in the same group (cluster)
if their distance is closer. The distance can be measured by the similarity between
features of given two instances. We use bottom-up hierarchical clustering, which
starts with the closest (most similar) pairs of patients and repeats merging them
until all patients are in one group, by which we can easily see the process of
merging groups. So important points of clustering are two: generating features and
computing some distance between instances by using features. In fact our clustering
has three steps: (1) generating features, (2) computing the distance between patients,
and (3) doing clustering with fixing the number of clusters by using gap statistic,
which are all described below in more detail:

(1) Generating pathway-wise features
A patient can be first represented by a binary vector xi D .xi;1; : : : ; xi;p/

> 2
f0; 1gp, where p is the number of genes and xi;j is 1 if the j-th gene has a
mutation; otherwise zero. We then focus on the pathway topology of the genes.
For example, in our experiments, we use four genes (p D 4):FGFR2, PI3KCA,
AKT1, and TP53, where their pathway is shown in Fig. 4, forming a forward,
directed graph (Fig. 1a). We add, for one gene, one binary feature, which can be
one if the corresponding gene or the upstream gene has a mutation; otherwise
zero, indicating the mutation status of the two neighboring genes. This is
pathway-wise features, more formally given as, xpath

i D .xpath
i;1 ; : : : ; x

path
i;p /

> 2
f0; 1gp:

xpath
i;j D

(
1 xi;j D 1orxi;�.j/ D 1;
0 otherwise;

where �.j/ is the index of the left-hand side gene of gene j in Fig. 1a.
Figure 1b shows an example that xpath can be computed from x.

(2) Cosine distance over gene-wise and pathway-wise features
We then use the cosine distance D.xi; xi0/ of two patients xi and xi0 . In

other words, we compute two n � n distance matrix over patients, Dgene and
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Fig. 1 Generating
pathway-wise features. (a) A
possible (and real in this
work) directed graph with
four genes. (b) An example of
generating pathway-wise
feature xpath from a gene-wise
feature x

FGFR2 PI3KCA AKT1 TP53

01 10

FGFR2 PI3KCA AKT1 TP53

11 10

a

b

Dpath, from the cosine distance over fxigniD1 and fxpath
i gniD1, respectively. The

final distance matrix is then obtained by averaging over these two matrices:
D D 1

2

�
Dgene C Dpath

�
.

The cosine distance D.xi; xi0/ of two patients xi and xi0 is

D.xi; xi0/ D 1 � x>i xi0

kxik2 kxi0k2 D 1 �
I .xi/\I .xi0/pjI .xi/j jI .xi0/j

;

where I .xi/ D fj j xij D 1g is a set of genes with mutations. Note that the
cosine distance is in between Œ0; 1�, where zero (minimum) or one (maximum) is
that two patients have totally consistent or inconsistent mutations, respectively.

(3) The optimal number of clusters with gap statistic for average linkage hierarchi-
cal clustering

We use the standard “hclust” function in R (in the “stat” library, an R default
package) to run average linkage hierarchical clustering. The number of clusters
is selected by a criterion, slightly modified from “gap statistic” [18], which
examines the within-cluster dispersion by random sampling. This criterion is
computed by modifying the clusGap function in the R “cluster” package.
The number of bootstrap sampling is set to 100 (default), and the maximum of
the gap statistic is chosen by the option Tibs2001SEmax which also follows
the procedure to define the local maximum of the statistic [18].

We can compute the sum of within-cluster dispersion, Wk for k clusters:

Wk D
kX

iD1

1

n

0

@
X

j;j02Ci

Djj0

1

A ;

where Ci is an index set of the i-th cluster. The basic idea of the gap statistic is
to select k, which maximizes the difference of Wk between that computed from
the given data and the expected value under a null reference distribution:
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Gap.k/ D Enflog.Wk/g � log.Wk/;

where En is the expectation of a sample of size n under a null reference
distribution.

We follow [18] to generate reference features, which are further transformed
into binary: Our n � p data matrix, X, is first scaled so that the mean of each
column is zero. We then perform singular value decomposition of X: UDV>,
where D was computed by the same procedure as the distance matrix from
the observed data. We computed the reference data Z D Z0V>, where Z0 is a
uniform random matrix, for each column, with the same value range as XV .
We then transform each .i; j/ element Zij of Z into a binary, as follows, after
recovering the column scaling of Z:

(
1 Zij � 0:5;
0 Zij < 0:5;

where if all values are zero for one row, the maximum value of this row was set
at one. We finally generate Z repeatedly to estimate Enflog.Wk/g.

3 Experiments

Again three levels of features were considered in this study: (1) mutation-wise
defines the original SNP in respect to the location and nucleotide (A,C,T, or G),
(2) gene-wise indicates whether the gene has any mutation or not, and lastly (3)
pathway-wise indicates whether a specific pathway has a mutation or not.

3.1 Data

3.1.1 Main Data and Preparation

The somatic mutational data from The Cancer Genome Atlas Research Network
(TCGA) (https://tcga-data.nci.nih.gov/tcgafiles/, IlluminaGA_DNASeq BRCA
dataset from genome.wustl.edu Level_2.3.3.0.) was pre-processed patient data,
consisting of 993 tumor samples and 1032 normal samples. Our rendition of the
data analysis focuses on the intrinsic mutational codes, TCGA is sufficient to
address our needs, due to its large size and previous publications for cohesive and
methodological investigation of the breast cancer patients [19]. All SNV annotation
was done through the GRCh37 human genome.

The original matrix of patients with somatic mutations was curated as follows
(Table 2): we selected particular mutations by the annotated information of PAM50
subtypes, TN status, and somatic mutations, which appeared in three patients at
minimum, because mutations appearing only once or twice would be unreliable
(Dataset A). For statistical consistency, the matched normal samples were then

https://tcga-data.nci.nih.gov/tcgafiles/
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Table 2 Molding of our working datasets

Phenotype Dataset A Dataset B Dataset C Dataset D

TN 77 77 77 30

Her2 53 48 48 24

ERC/PRC 341 341 341 154

Matched normal 547 466 0 0

Total 1013 932 466 208

This table shows the progression of how our datasets have been
modified from the initially obtained Data from TCGA to the current
working dataset. The initial dataset was (n=1013). We then decreased
the matched normal number to equal to the total in other groups
(n=932). Next, we removed all the matched normal (Dataset C)
(n=466) to focus on the BC samples. Finally, Dataset D consists of
only patients with exonic mutation (n=208). Note that all mutations
appear at least three times in data

reduced to be equal in size to the cancer patient samples, resulting in a reduced
number of patients in total (Dataset B). Out of only the cancer patients (Dataset C),
the patients that exhibit at least one exonic mutation were selected (Dataset D).

Patients were then labeled by clinical phenotypes as follows: by using the
absence of clinical molecular markers, the patients were divided into two groups
(TN or non-TN), to label the TN population. Then the PAM50 classifier was
applied to collocate the Her2-enriched patients in the non-TN patients, to divide the
patients into the Her2+ labeled patients and those labeled by ER+/PR+ (Fig. 3b).
This cascade manner was taken, because the original data contains samples labeled
by both Her2 and TN, which, however, should be TN patients, since this is not
consistent with clinical markers. By using the cascade manner, our population of
Her2C samples were clearly not TN.

3.1.2 Integrative Genomic Viewer

SNVs were associated with their genes through Integrative Genomic Viewer (IGV)
[20], which allows to visually represent SNVs specific to chromosome numbers
through the gene annotation of RefSeq (GRCh37/hg19). We obtained the RefSeq
annotation of the genes for the SNV locations in our dataset and applied the
mutation positions to obtain the relevant genes, through visualization of IGV. The
result generated a unique gene-specific matrix, which consisted of all mutation
positions combined into a binary vector for the corresponding gene. By using this
matrix, our dataset was represented not only by mutation-wise features but also their
corresponding genes, which we call gene-wise features.
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3.1.3 Database for Annotation, Visualization, and Integrated Discovery

To confirm the function of the gene, we used Database for Annotation, Visualization
and Integrated Discovery (DAVID) [21], which associates the genes (identified from
Refseq) to biochemical pathways (or diseases, etc.) and its significance in somatic
breast cancer. For biochemical pathways and diseases, DAVID integrates KEGG
pathways and OMIM, respectively:

Kyoto Encyclopedia of Genomes and Genes (KEGG) [22] is a manually
curated gene network which visually displays biochemical pathways for query
genes. We identified pathways (corresponding to genes) through KEGG, to be
used as features, which we call pathway-wise features.
Online Mendelian Inheritance in Man (OMIM) [23] is a current compre-
hensive knowledgebase associating the relevant genes to all known diseases to
enhance genomic analysis. Integrating all NCBI and Entrez sources, it allows for
a global search of the query genes to related diseases.

The nine genes annotated by RefSeq were queried to check if they are connected
to pathways in KEGG [22] through DAVID [21].

3.2 Evaluation Measures

3.2.1 Precision, Coverage, and F-Measure

The relevance of mutations (and their combinations) to clinical phenotypes was
examined by precision, coverage (recall), and F-measure, which were computed
by using R [24] and Bioconductor.

Precision, coverage, and F-measure are given as follows:

Precision D NS;R

NS
;

Coverage D NS;R

NR
;

where NS be the number of patients with subtype S, and among those patients, let
NS;R be the number of patients consistent with rule R, while NR be the number of
all patients which are consistent with rule R. In general, a higher coverage will
result in a lower precision value. Therefore, F-measure or F, the harmonic mean
of precision and coverage, was used to evaluate rules, thinking about the balance
between precision and coverage:

1

F
D 1

2
�

�
1

Precision
C 1

Coverage

�
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Table 3 30 exonic, somatic mutations selected

ID Chromosome Position Ref Variant rs id (dbSNP) Class Type #patients

m1 1 16947064 G C rs12041479 SNV RNA 4

m2 1 16950470 C T rs12144467 SNV RNA 4

m3 2 198266834 T C – SNV Missense 5

m4 3 178921553 T A rs121913284 SNV Missense 11

m5 3 178936082 G A rs121913273 SNV Missense 19

m6 3 178936091 G A rs104886003 SNV Missense 32

m7 3 178938934 G A – SNV Missense 5

m8 3 178952085 A G rs121913279 SNV Missense 70

m9 3 178952085 A T rs121913279 SNV Missense 10

m10 9 69501969 C A rs7040086 SNV RNA 4

m11 10 123258034 A C – SNV Missense 1

m12 10 123258034 A T rs121913476 SNV Missense 3

m13 14 105246551 C T rs121434592 SNV Missense 11

m14 15 23096921 A C rs4778307 SNV RNA 4

m15 16 4432029 A C rs3810818 SNV Missense 4

m16 17 7577120 C A – SNV Missense 1

m17 17 7577120 C T rs28934576 SNV Missense 4

m18 17 7577121 G A rs121913343 SNV Missense 4

m19 17 7577539 G A rs121912651 SNV Missense 5

m20 17 7578190 T C – SNV Missense 4

m21 17 7578190 T G rs121912666 SNV Missense 1

m22 17 7578190 T A – SNV Missense 1

m23 17 7578212 G C – SNV Nonsense 1

m24 17 7578212 G A – SNV Nonsense 3

m25 17 7578263 G A rs397516435 SNV Nonsense 4

m26 17 7578265 A G – NA Missense 4

m27 17 7578271 T C – NA Missense 3

m28 17 7578271 T G – NA Missense 2

m29 17 7578271 T A – NA Missense 1

m30 17 7578406 C T rs28934578 SNV Missense 10

From the most-left to the most-right columns, for each mutation, the ID, chromosome, position,
original nucleotide, variant, id of dbSNP, class, type, and number of patients corresponding to the
mutation are shown

3.3 Results: 30 Single “Hotspot” Mutations

The Dataset B with 466 positives and 466 negatives has 30 mutational positions
(MP), which are shown in Table 3 and also we call mutation-wise features.
30 MP containing 23 missense, 3 nonsense, and 4 RNA variants and highlighted
in Fig. 2. The majority of the SNPs were located in chromosomes 17 and 3,
occupying 50 % and 20 %, respectively. Three hotspot locations were observed in
chromosome 3 consisting of 70 (33.7 %), 32 (15.4 %), and 19 (9.1 %) patients.



406 S. Yotsukura et al.

Chromosome 1

16.944 mb

16.945 mb

16.946 mb

16.947 mb

16.948 mb

16.949 mb

16.95 mb

16.951 mb

16.952 mb

16.953 mb

16.954 mb

16.955 mb

16.956 mb

16.957 mb

CROCCP2

Chromosome 2

198.26 mb

198.27 mb

198.28 mb

198.29 mb

SF3B1

Chromosome 3

178.87 mb

178.88 mb

178.89 mb

178.9 mb

178.91 mb

178.92 mb

178.93 mb

178.94 mb

178.95 mb

PIK3CA

Chromosome 9

69.48 mb

69.49 mb

69.5 mb

69.51 mb

69.52 mb

69.53 mb

Chromosome 10

123.24 mb

123.25 mb

123.26 mb

123.27 mb

123.28 mb

123.29 mb

123.3 mb

123.31 mb

123.32 mb

123.33 mb

123.34 mb

123.35 mb

FGFR2

FGFR2

FGFR2

FGFR2

FGFR2

FGFR2

FGFR2

FGFR2

FGFR2

FGFR2

FGFR2

Chromosome 14

105.24 mb

105.245 mb

105.25 mb

105.255 mb

105.26 mb

AKT1

AKT1

AKT1

Chromosome 15

23.095 mb

23.1 mb

23.105 mb

23.11 mb

LOC283683

Chromosome 16

4.39 mb

4.4 mb

4.41 mb

4.42 mb

4.43 mb

4.44 mb

4.45 mb

4.46 mb

CORO7

CORO7

CORO7−PAM16

CORO7

PAM16 VASN

Chromosome 17

7.575 mb

7.58 mb

7.585 mb

7.59 mb

TP53

TP53

TP53

TP53

TP53

TP53

TP53

TP53

TP53

TP53

TP53

TP53

TP53

TP53

TP53

Fig. 2 Genomic view of the 30 mutations over nine chromosomes

While in chromosome 17, the number of patients per mutation was all five or less
except one with ten patients.

Interestingly, the four RNA variants appear only in relatively minor chromo-
somes 1, 9, and 15. Dataset D (Table 2), a mutation-only extraction set from Dataset
B, contains only 208 samples comparatively less than the other relative studies [13],
due to the minimum mutation restriction (n=3), where 182 (87.5 %), 25 (12 %), and
one (0.5 %) patients exhibited one, two, and three mutations, respectively (Table 4).
In this study, we focused mainly on Dataset D. All 208 samples are SNP-presenting
BC patients, which allow for cancer patients to be distinguished from normal by
nucleotide variants alone.
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Table 4 #patients
(Dataset D)

#mutations ER+/PR+ Her2+ TN Total

1 133 21 28 182

2 20 3 2 25

3 1 0 0 1

Total 154 24 30 208

This table shows the number of patients within
each subtype of the mutations-only (dataset D)
Dataset. Please see the methodology for the
explanation of the conditions for the subsetting
n=208

Breast Cancer

Her2-Her2+

ER+ ER-

PR-PR+

TNER+/PR+Her2+ ER+/PR+Her2+

All Patients
(208/932)

Matched_normal
(0/466)

Breast Cancer
(208/466)

TN
(30/77)

Not-TN
(178/389)

PAM50-Her2+
(24/48)

PAM50-Her2-
(154/341)

(# ≥1 mutated / # total)

a b

Fig. 3 Classification cascade. (a:left) A cascade classification system on clinical breast cancer
phenotypes, and (b:right) distribution of 208 patients over phenotypes

3.3.1 Phenotypes and Mutation Count Ratios

The patients in Dataset D were labeled in a cascade manner (Fig. 3), resulting in 154
(74 %) in ER+/PR+, 24 (11.5 %) in Her2+, and 30 (14.4 %) in TN. The BC patients
(n=466) showed a similar ratio of 341 (73.2 %) in ER+/PR+, 48 (10.3 %) in Her2+,
and 77 (16.5 %) in TN (Table 4). Thus, no correlation was observed between the
clinical phenotypes and the number of mutations.

3.3.2 TP53 Status in TN Patients

The 30 MPs were located in the nine unique genes (gene-wise features), according to
RefSeq annotation: CROCCP2, SF3B1, PIK3CA, LOC100132672, FGFR2, AKT1,
LOC283683, VASN, and TP53 (Table 5). 143 (68.1 %) patients had mutations in
PIK3CA, followed by 48 (23.1 %) in TP53 and 11 (5.3 %) in AKT1 (Table 12),
where PIK3CA and TP53 are on chromosomes 3 and 17, respectively.

The ER+/PR+ patients occupied 154/208 (74 %) patients, by which the majority
of patients were labeled by ER+/PR+. Also for each gene, the ER+/PR+ patients
were 119/148 (83.2 %) patients with mutations in PIK3CA and 10/11 (90.9 %) in
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AKT1, while they were only 22/48 (45.8 %) patients with mutations in TP53 and
instead TN patients were 21/48 (43.8 %). The bulk of mutations of TP53 in TN
amongst the nine genes (Table 5) establishes a clear but distinguishing link of TP53
gene to TN patients and different from other genes [13]. The existing percentage of
genes with mutations appearing in patients of BC and also three clinical phenotypes
for the five known genes was rather consistent with our data (Table 6).

3.3.3 Mutations in Apoptosis Genes

Two statistically significant pathways were identified in KEGG: hsa05200 (path-
ways in cancer) with AKT1, FGFR2, TP53, and PIK3CA, and hsa04210 (apoptosis)
with AKT1, TP53, and PIK3CA (Table 7). Figure 4 demonstrates the integration
of the pathway-wise features to create a forward directed association in the
cancer pathway with RAS and MIM2, highlighting its influence onto/by the four
genes. Also, the SNPs in PIK3CA, AKT1, TP53, and FGFR2 were recognized as
significant genes, within cancer pathways by OMIM. More specifically, SNPs in
PIK3CA and AKT1 as pertinent for somatic breast cancer.

3.4 Results: LAMP

3.4.1 Patient Classification Tree

LAMP allows association analysis to detect hidden significant features, which can
discriminate patients in one class from patients in other classes [14]. We considered
three settings (Table 8): (˛1, ˛2, and ˛3) of class labels over BC patients: (˛1)
the entire BC class, (˛2) two classes of non-TN or TN, and (˛3) three clinical
phenotypes: ER+/PR+, Her2+, and TN. “non-BC” normal samples were added to
each setting, meaning ˛1, ˛2, and ˛3 had two, three, and four classes, respectively.

LAMP over mutation-only samples indicates that only ˛2 and ˛3 were tested
with both mutation-wise and gene-wise features (Table 9). m6 and m8 mutations
in PIK3CA were found to be significantly associated with the non-TN population
in BC patients demonstrated by ˛2 in both mutation-wise and gene-wise features.
More importantly, m6 could further divide the non-TN patients to the respective
phenotypic population (˛3). Overall, the mutation-wise and gene-wise analysis was
relatively consistent, yet the gene-wise analysis was more informative, due to its
less sparse feature matrix.

We further validated our mutation-wise results by analyzing the broad-scale
analysis of using Dataset B under three LAMP settings (Table 10). ˛1 detected
seven significant combinations, through sequence variants mostly comprised of
chromosome 3 (PIK3CA), followed by chromosomes 17 (TP53) and 14 (AKT1).
˛2 detected three new mutations for the TN population. Finally, ˛3 observed
five more significant mutations compared to the only one found in Dataset D.
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Table 6 Mutational gene profiling of breast cancer on five genes

Gene Breast cancer ER+ and/or PR+ HER2+ TN

PIK3CA 26 % [25–27] 34.5 % [26, 27] 22–31 % [26, 27] 8.3 % [27]

TP53 20–50 % [28, 29] 62.1–72.6 % [30] 47.6–48.3 % [30, 31] 89 % [32]

AKT1 1.2–4 % [25, 33, 34] 3.2 % [27] >1 % [27] >1 % [27]

FGFR2 1–2 % [35–38] 4.8 % [35, 36] 1 % [35, 36] 2–4 % [35, 36, 38, 39]

SF3B1 1.8 % [40] 2.1 % [40] 1.8 % [40] 0.5 % [40]

ATM 2 %[41]

Frequency of somatic gene mutations in the apoptotic network in invasive breast cancer subtypes

Table 7 Relevant KEGG pathways

ID Name Relevant gene p-value Adjusted p-value Fold enrichment

hsa05200 Pathways AKT1 2.66086E-4 0.012166 (Bonf.) 15:503048

in cancer FGFR2 0.006102 (Benj.)

TP53 0.251217 (FDR)

PIK3CA

hsa04210 Apoptosis AKT1 8.58566E-4 0.03874 (Bonf.) 43:83602

TP53 0.003943 (Benj.)

PIK3CA 0.80856 (FDR)

Two pathways in KEGG are related with genes with 30 mutations. Their details, such as name,
relevant genes, and p-value, are shown

chr1
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chr4

chr5
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MAPK Signaling
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Fig. 4 Genomic association from position to gene to pathway. The most left-hand side shows 24
chromosomes, where nine out of 24 have the 30 iconic mutations, which are considered in this
work. A more detail view is given in Fig. 2. Also these 30 mutations are summarized into Table 3
with detailed information. The 30 mutations are further on nine genes, which are shown in the
middle of the figure. Table 5 presents more detailed information on the relationships between the
30 mutations and nine genes. The right-hand side shows the apoptosis pathway obtained from the
KEGG database, in which four (colored by blue) out of the nine genes are located. These four
genes are PIK3CA, FGFR2, AKT1, and TP53
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Table 8 Data setting for LAMP

Subtype groups (˛1) (˛2) (˛3) Subgroup name

BC 466 BC

BC_nonTN 389 BC

BC_TN 77 TN

matched_nonTN 466 466 non-BC

BC_nonTN_Her2 48 Her2C
BC_nonTN_nonHer2 341 ERC/PRC
BC_TN_nonHer2 77 TN

match_nonTN_nonHer2 466 non-BC

Total 932 932 932

Summary of patient counts for Dataset B through each subgroup
division (See Table 2). The counts for the various subtypes shown
in Fig. 3

m6 and m8 (˛2) were consistent with those for non-TN (Table 9); however, four
positions already established as significant features for BC-only setting in Dataset
D failed to be detected in the non-TN sub-population of Dataset B. In summary,
the broad-scale analysis confirmed the non-TN sequence variants and indicated that
single mutations are not necessarily definitive and consistent in identifying clinical
phenotypes.

Table 11 confirmed the gene-wise features for the previous positions for BC
in ˛1, yet also detected genes, such as CROCCP2, that were undetected through
mutation-wise features alone. In contrast, ˛2 and ˛3 identified many significant
mutation-wise features in the same genes. Our findings were biased to the ER+/PR+
phenotype in ˛3, therefore we applied the PAM50 Her2-enriched label to detect
Her2-enriched samples to have an association with PIK3CA even though it is less
significant compared to its ER+/PR+ counterpart.

Significant gene-wise features (Table 11) were summarized into a classification
scheme outlining BC patients (Algorithm 2). There were no single mutation
markers, which could assign BC patients to either of the three clinical phenotypes
directly, leading us to focus on the patients with more than one mutation. For
instance, a combination of TP53 and PIK3CA was found as a significant feature
(Table 11).

3.4.2 Examining the Combination of TP53 and PIK3CA

No novel decisive patterns could be found within the double mutations (Fig. 5a),
since the distribution was rather broad. However, the double gene-wise mutation by
TP53 and PIK3CA was an established pattern (Fig. 5b, c) [9, 12, 13, 19], observed
in 9/23 patients. Overall, PIK3CA (P+) and TP53 (T+) exhibited high frequency
of mutation (left of Fig. 6) over the three clinical phenotypes. The mutated/non-
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Algorithm 2: Patient Classification Tree Generated by LAMP (Summary of
Table 11)

If mutationD PIK3CA _ TP53 _ AKT1 _ CROCCP2 _ SF3B1 _ (˛1)
FGFR2 then
If mutationDTP53 then (˛2)
patientD TN (77/466)
else (˛2)
If mutationD PIK3CA then (1st of ˛3)
patientD Her2C (48/389)
else (1st of ˛3)
patientD ERC/PRC (341/389)
else (˛1)
patientD matched_normal (466/932)
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Fig. 5 Co-occurrences. The distribution of patients over the number of mutations, focusing on
double mutations, at the (a:left) mutation-wise, (b:middle) gene-wise, and (c:right) gene-wise over
clinical phenotypes level.

mutated combination of the two genes: P+T+, P-T+, P+T-, and P-T-, subsequently
contain high occurrences (right of Fig. 6).

A highly referenced driver gene, TP53, is responsible for 20–40 % of BC patients
[42] and further 40–62 % TN patients [12, 13] (Table 12 and 21 (70 %) of 30 TN
patients for T+ in out data). This suggests the possibility that TP53 can be a probable
marker for TN. However, the distribution of P+T+ over the three phenotypes is
similar to P+ or P+T-, contrasting from T+ or P-T+ (Fig. 6). Other minor pairwise
mutations were mainly with PIK3CA and for ER+/PR+, while the pair of SF3B1 and
CROCCP2 was also found for this phenotype (Fig. 5c). For Her2+, this trend was
found but unclear, because of the small double-mutated Her2+ and TN populations,
implying the subtleness of the trend.
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Fig. 6 Double mutations. Patient distributions over clinical phenotypes, focusing on double
mutations of PIK3CA and TP53

Table 12 #patients with
mutations in nine genes

Gene ER+/PR+ Her2+ TN Total

PIK3CA 119 18 6 143 (68.1 %)

TP53 22 5 21 48 (23.1 %)

AKT1 10 1 1 11 (5.3 %)

CROCCP2 6 1 1 8 (3.8 %)

SFSB1 5 0 0 5 (2.4 %)

FGFR2 3 0 1 4 (1.9 %)

VASN 2 1 1 4 (1.9 %)

LOC100132672 2 0 2 4 (1.9 %)

LOC283683 3 0 1 4 (1.9 %)

All 154 24 30 208

For each of the nine genes with 30 mutations, the number
of patients in ER+/PR+, Her2+, TN, and the total number of
patients are shown

3.5 Results: Decision Tree

We used Dataset D with gene-wise features to generate a decision tree [15] (Fig. 7),
which separate Dataset D first by TP53, subsequently by PIK3CA for T+ pool. The
tree model identified the T- and P+T+ groups as predominately containing patients
with ER+/PR+ and Her2+, respectively, whereas P-T+ shows a comparatively equal
distribution over ER+/PR+ and TN [16]. These results confirmed the importance
of the significant gene features captured by LAMP and also the double mutations
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Fig. 7 Resultant decision tree by (rpart). This decision tree shows that the first feature used to
partition the data is the mutation in TP53, and then PIK3CA. That is, if there is a mutation in
TP53, the instance is first classified as ER+/PR+; otherwise then if there is a mutation in PIK3CA
further, the instance can be ER+/PR+ or Her2+. Here the number of instances without any mutation
in TP53 is 160 (the left panel) and the number of instances with mutations both in PIK3CA and
TP53 is 9 (the middle panel). The rest 39 instances are half likely to be TN (the right panel)

by TP53 and PIK3CA. It presented a similar pattern to the classification tree by
LAMP (Algorithm 2) initially utilizing TP53, then PIK3CA as separation attributes.
However, LAMP demonstrated that TP53 non-mutated patients, i.e., T-, were further
separated, while through recursive partitioning, T+ patients were further divided.
In other words, BC patients were classified into T+, P+T-, and P-T-, while T-,
P+T+, and P-T+ in the decision tree. This is unexpected, since it was reported
that TP53 mutations are strong characteristic of the TN phenotype [32, 42, 43], but
the decision tree shows no direct correlation between TP53 and TN, implying the
subtleness of their correlation. More importantly, the decision tree result presented
the double mutation class of PIK3CA and TP53, confirming the importance of co-
static interaction between these two genes.
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the gap statistic.The percentages in the right side indicate the ratio of patients who assigned to the
largest cluster in the number of patients. The color bars in the right side represent the ratios of
clusters sharing the same mutation. The bottom table represents the numbers of ER+/PR+, Her2+,
and TN in each cluster
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3.6 Results: Hierarchical Disjoint Clustering

3.6.1 Minor Clusters Reveal the Complexity of Cancer

Clustering over Dataset D with gene-wise and pathway-wise features generated ten
clusters by the dendrogram with PIK3CA as the primary split, followed by TP53
and AKT1 as the surrogate splits, resulting in the six minor and four major clusters
(Fig. 8). Cluster 3 demonstrates a typical cluster emphasizing the complexity of
cancer. Comprised of only one Her2+ and the rest as ER+/PR+, this cluster
illustrates that Her2+ and ER+/PR+ cannot be perfectly distinguished from each
other through gene-wise and pathway-wise information.

In contrast, clusters 1, 2, and 4 are comprised of both TN and one non-TN
phenotype, implying some possible phenotype assignment to the TN patients, while
the significance is questionable, due to the small size. In addition, clusters 1 and 2
are in chromosomes 15 and 9, respectively, are associated with unknown genes.

3.6.2 Mutational Landscapes Between PIK3CA and TP53

92.3 % of BC patients were located into the last four clusters. As indicated on
the right panel of Fig. 6, clusters 7, 9, and 10 correspond to P+T-, P+T+, and
P-T+ patients, respectively, which appeared in the LAMP, decision tree results.
In particular, the interaction between PIK3CA and TP53 is iconically captured by
cluster 9 (p D 8:3087�15 for P+T+ by LAMP). Cluster 8 shows a typical cancer
cluster, comprising both ER+/PR+ and Her2+ patients. Also this cluster comprised
of the chromosomes 14 and 15 mutations, pertaining to AKT-1 and LOC283683,
respectively, providing some insight into the interaction of the LOC283683 to the
AKT1 gene, which warrants further investigation.

In conclusion, minor clusters implied rather insignificant patterns to assigning
clinical phenotypes to TN patients, while major clusters revealed rather clear
characteristics especially highlighting the interaction of two driver genes, PIK3CA
and TP53. All ten clusters (except cluster 6) can be used to link TN patients to
clinical phenotypes, if those patients have the mutation-wise or gene-wise features
in the corresponding cluster (Tables 13 and 14). Finally, clinical phenotypes were
proved to be more correlated to gene-wise and pathway-wise features than the
mutation-wise feature alone.

4 Discussion

4.1 Importance of Somatic Mutations

Key components of cells are gene elements or genetic codes of DNA, which
form a basis of control and function through organized communication networks
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Table 14 Mutations and genes significantly relevant to clusters

Cluster Feature #pat
Precision
(Nopt/#pat)

Coverage
(Nopt/Nos) F-measure Adj. pval

1 LOC283683 4 0.75 (3/4) 1 (3/3) 0:8572 3:7882�05

2 LOC100132672 4 0.5 (2/4) 1 (2/2) 0:6667 5:0167�03

3 CROCCP2 8 0.75 (6/8) 1 (6/6) 0:8571 3:75�09

4 NOMO2 4 0.5 (2/4) 1 (2/2) 0:6667 5:0167�03

5 SF3B1 5 0.4 (2/5) 1 (2/2) 0:5714 8:3612�03

7 PIK3CA 143 0.9371 (134/143) 1 (134/134) 0:9675 4:3716�44

8 AKT1 11 0.9091 (10/11) 1 (10/10) 0:9524 4:5927�15

9 TP53 & PIK3CA 9 1 (9/9) 1 (9/9) 1 8:3087�15

9 TP53 48 0.1875 (9/48) 1 (9/9) 0:3158 1:3935�05

10 TP53 48 0.8125 (39/48) 1 (39/39) 0:8966 6:0571�33

1 m14 4 0.5 (2/4) 1 (2/2) 0:6667 1:3378�02

3 m1 4 0.75 (3/4) 0.5 (3/6) 0:6 1:6057�03

3 m2 4 0.5 (2/4) 1 (2/2) 0:6667 1:3378�02

5 m3 5 0.4 (2/5) 1 (2/2) 0:5714 2:2297�02

7 m8 70 0.9286 (65/70) 0.4851 (54/134) 0:6373 4:2181�10

7 m6 32 0.9375 (30/32) 0.2239 (30/134) 0:3615 2:3319�04

7 m5 19 0.9474 (18/19) 0.1343 (18/134) 0:2353 9:445�03

7 m4 11 1 (11/11) 0.0821 (11/134) 0:1517 3:4052�02

8 m13 11 0.9091 (10/11) 1 (10/10) 0:9524 7:8733�15

10 m30 10 0.7 (7/10) 0.1795 (7/39) 0:28572 7:7925�03

10 m17 4 1 (4/4) 0.1026 (4/39) 0:1861 2:1713�02

10 m25 4 1 (4/4) 0.1026 (4/39) 0:1861 2:1713�02

10 m26 4 1 (4/4) 0.1026 (4/39) 0:1861 2:1713�02

There were ten clusters obtained from hierarchical clustering using the gene-wise and pair-wise
features. #pat is the counts of the patients with the feature. Nopt is the number of patients with the
feature and in the cluster. Nos is the number of patients in the cluster

known as biological pathways. Somatic mutations or “inherited errors” within the
DNA, can influence the transcribed gene outputs, i.e., proteins, such as TP53 and
PIK3CA in our work, which play key roles in the apoptotic and cancer pathways
[22]. That is, the variant inherited by the patient is the cause of ceasing functions
within the control pathway, leads to the disease. In the case of breast cancer
identifying these aberrations with a varied clinical phenotype may be the key linkage
for the development of novel treatments. For example, TN patients possessing
TP53 mutations demonstrate complications in the p53 signaling pathway of the
apoptotic biochemical framework, resulting in absence of “programmed cell death”
[47, 48]. This leads to proliferation of cancer cells, resulting in a breast tumor. A
ERC/PRC patient possessing a PIK3CA or AKT1 mutation, subsequently affecting
the PIK3CA-AKT1 signaling pathway of apoptosis, has a similar outcome. There-
fore, the mutations of abnormal proteins may be potential targets for developing
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drugs. In the case of siRNA therapy, without a better understanding of the mutation-
subtype link, viable targets cannot be designed.

The subset of patients, which express multiple somatic mutations in the same
pathway, was expected to have a combined feature of the individual gene-wise
mutation patterns. In fact, PIK3CA mutation co-occurrences are observed in other
cancers, such as intestinal and endometrial cancer, with adenomatous polyposis
coli gene and MAPK, respectively [49, 50]. In this study, we identified a minor
population of TN patients that display correlations of mutation frequencies in both
PIK3CA and TP53 [6, 12, 19]. That is, cluster 9 or P+T+, say m8 with m30, are
the corresponding mutational combinations. We observed that the distribution of
P+T+ was similar to P+T- rather than P-T+ or T+, implying the dominance of
P+ over T+. Our dataset was (1) heavily biased to mutations in PIK3CA, and (2)
with only nine patients of P+T+, by which P+T+ cannot be statistically examined,
and so the similarity of P+T+ to P+T- might be just a result due to the limitation
of our dataset. More importantly, these complex mutations reflect the complex
nature of the biochemical control cross-talk in breast cancer. We believe double
or combinatorial mutations like P+T+ would be useful, because P+T+ might be
the combined-oncogenic driver that distinguishes a sub-population of the true-
clinical TN phenotype [12, 27, 51], making P+T+ patients potential candidates
for the extant ERC/PRC hormone therapy regiment. This finding demonstrates
that mutational combinations with additional pathways or molecular information
might be an approach for finding a more precise prognostic biomarkers [47]. Thus
our focus is on a mutational pair rather than a single SNP and detecting the sub-
population of TN patients. We use machine learning methods to determine a better
link of known clinical phenotypes with current treatments. These points make our
work unique, even comparing with past and recent efforts on characterizing TN
patients from somatic mutations mostly based on experiments and some statistical
analysis [12, 13].

In general, the subtypes differ in genomic complexity. From the analysis, it
became apparent that breast cancer is not one single entity but rather encompasses
distinct characteristic biomolecular features within intrinsic subtypes. Gene-wise,
there is a subtle difference from well-known drivers of TP53 and PIK3CA [12, 13].
Mutation-wise, however, these driver alterations can provide a modicum on treat-
ment response and clinical prognosis. TN patients’ treatment regimens are still
mainly based on the application of chemotherapy. The molecular profiles of these
patients may help interplay between optimal drug and the predictive value of
molecular alterations. Drugs that selectively target molecular pathways correlated
with the malignant phenotype will exhibit a maximum efficacy for the given patient.
Due to the high clonality of TN patients, targeted therapy of the known aberration or
mutation will be the best possible option to allow the body to fight the cancer cells
in an efficient manner, while minimizing resistance [13]. That is, if a Her2 subtype
patient exhibits a PIK3CA gene mutation, Trastuzumab, might not benefit from this
drug, due to the drug being affect by the aberrations in PIK3CA [13]. Therefore,
investing the molecular profiles can assist to identify the current optimal treatments
for the non-TN patient.
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4.2 Discriminating Her2+ Patients from ER+/PR+ Patients

LAMP analysis demonstrated that a PIK3CA mutation is a definitive genetic
constraint for ERC/PRC, while gene-wise analysis demonstrated that PIK3CA can
also produce a Her2+ phenotype (Algorithm 2). Similar to our analysis, past reports
established that PIK3CA mutations can inhibit Her2+ signaling, i.e., expressing
ERC/PRC subtype [12], while 18.6–21.4 % of PIK3CA mutations expressed the
Her2C phenotype, being statistically insignificant [52, 53].

Our data further emphasized the pathway-dependent, domain-specific, yet non-
nucleovariant specific nature of the PIK3CA mutations [54]. In other words, we
observed that PIK3CA mutations are contributing factors in both the ERC/PRC
and Her2C subgroups, but in different significance levels. As expected, most Her2+
patients fell into cluster 7, yet outliers were also split into the other groups. Due
to the high sample ratio of ER+/PR+ (74 %), our analysis on the current data was
limited to distinguish the ER+/PR+ and TN patients [52, 53].

4.3 Different Types of TN Patient Clusters

Currently, only the treatments for ER+/PR+ and Her2+ patients are promising,
whereas TN patients, who usually possess an aggressive form of BC, are still in
need of a probable treatment [5, 6]. Our clustering exhibits that TN patients can
be further classified into two types: (1) a true TN or (2) characteristically similar
ER+/PR+ phenotype. The first type is cluster 6 with m11, which has only one TN
patient and might be a true TN, yet warrants further investigation. The latter is
indicative of clusters 1 and 2, which have both TN and ER+/PR+ patients. In other
words, these TN patients share same positional mutations as ER+/PR+ patients but
with different expressed phenotype. These types of clusters are expressed in distinct
clusters and therefore may be applicable to allocate the trivial distinct TN population
of patients to extant treatable groups. Similar to the second but a different type is a
mixture of the three phenotypes that are not simple in the interpretation. Cluster 7,
mostly with mutations in PIK3CA, is typified by 13 mutational positions, where six
out of 13 have mixed phenotypic distributions. An assumption would be to use the
predominant subtype in that sub-population as a characteristic for that mutational
position. More concretely, 81.8 % patients with m8 are with ER+/PR+ phenotype,
whereas only 18.2 % express the other phenotypes, by which a patient with the
expressional mutation of this position will be likely to be ER+/PR+. Another feature
of the clustering specific to patients with a single mutation can be summarized,
particularly for TN patients (Table 13: details of all mutations in TN patients). For
instance, mutations in chromosome 17 were predominately grouped into cluster 10
with a mixture distribution of phenotypes (Fig. 8). Patients in cluster 10, mainly with
only one mutation, were then linked to their mutation-wise features. In other words,
TN patients can be allocated to the corresponding extant treatable phenotypes via
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positional mutations. For instance, cluster 10 has some positions, such as m22 and
m23, which can be considered as the true TN. We believe that combining our
analysis with the current methods would be helpful to identify the TN patients who
can receive probable treatments.

5 Conclusion

Currently, combinatorial therapy is administered to prevent alternative growth, yet
has also further conferred the patient to a faster development of resistance. As much
as 50 % of ER+/PR+ patients administered endocrine therapy eventually acquire
resistance, resulting in a relapse of the BC tumor [45]. For example, ER+/PR+
patients often demonstrate a slight up-regulation of the Her2 signaling [45]. It has
also been reported that bidirectional cross-talk between the Her2, ER, and other
signaling pathways has contributed to endocrine resistance. This can often cause
misinterpretation of the BC subtype which is used for current treatments. In these
cases, classification of mutational identification may be beneficial for these patients
for therapy selection.

Due to the high costs of gene expression profiling, plus their poor ability to
simultaneously compare the expression of related biological samples properly, we
believe the “intrinsic code” is a more appropriate method to target the patients’ BC
clinical phenotype. That is, the classification of somatic mutations can contribute
to identify viable targets for therapy selection. Our study showed that knowledge
of the mutational patterns in the drivers, TP53 and PIK3CA, can give insight into
the specific functional characteristics that lead to the biological selection of the
breast cancer subtypes. We observed that the TP53 and PIK3CA combinational
mutation pattern may influence a subset of TN phenotype. To access if the specific
dual mutation pattern identified in our cluster directly influences the TN tumor
phenotype, it warrants more investigation. The biomolecular approach, combining
position-wise, gene-wise, and pathway-wise levels, instituted in our study has hinted
into the associative complex nature and mechanisms involved in the clonality of the
different subtypes. The biological context in which the mutations occur will help
unravel new perspectives for novel therapeutic approaches, such as personalized
targeted therapy and siRNA therapy, or even assist in current therapy selection.
Furthermore, it may help to decipher the somatic based mechanisms that create
the modifying effects that result in tumor development. Specific aberrations may
provide a subtle link of the clinical impact that these drivers may play in gene-
environment cross-talk to subtype differentiation. We believe our approach can be
clinically applied to assist in proper treatment by specific targets to minimize the off-
targets of conventional drugs and may help to delay the onset of antibiotic resistance
for the patient.
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6 Future Directives

The breast cancer tumor development undergoes numerous changes from the
development to the progression of the various clinical stages. Our analysis used
biomolecular features to characterize the various subtypes through clinical markers,
but more investigation is needed to incorporate the cancer staging into the anal-
ysis, such that the somatic mutation architecture within stage progression can be
characterized for the subtypes. Understanding the passenger mutations role in the
progression may allow us to better understand molecular mechanisms of metastasis
in a genomic level and improve the clinical management of the aggressive forms,
such as TN. In our study [1], we have observed that the somatic mutations provide a
“modicum in the intrinsic code” which can be used to classify the various subtypes,
but a similar method can be used for the progression of metastasis of the disease. In
essence, these transcriptional signatures can serve as prognostic markers to identify
patients who are at the highest risk for developing metastases, which subsequently
enable the development of tailored personalized treatment strategies.
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