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Abstract This paper presents a review of the available mathematical models and
corresponding non-conforming numerical approximations which describe single-
phase fluid flow in a fractured porous medium. One focus is on the geometrical
difficulties that may arise in realistic simulations such as intersecting and immersed
fractures. Another important aspect is the choice of the approximation spaces
for the discrete problem: in mixed formulations, both the Darcy velocity and the
pressure are considered as unknowns, while in classical primal formulations, a
richer space for the pressure is considered and the Darcy velocity is computed a
posteriori. In both cases, the extended finite element method is used, which allows
for a complete geometrical decoupling among the fractures and rock matrix grids.
The fracture geometries can thus be independent of the underlying grid thanks to
suitable enrichments of the spaces that are able to represent possible jumps of the
solution across the fractures. Finally, due to the dimensional reduction, a better
approximation of the resulting boundary conditions for the fractures is addressed.

1 Introduction

The simulation of subsurface flow is of great importance for a large number
of applications ranging from the production of energy (oil and gas reservoirs,
geothermal energy) to the management of water resources, or the safe storage of
atomic waste and carbon dioxide. Fractures are present in porous media at a variety
of scales. Large fractures and faults in particular are very relevant for the flow since
they can either act as barriers (in the case of impermeable faults) or preferential
pathways for the flow (in the case of permeable fractures). Opposed to small-scale
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fractures, that can be accounted for by upscaling of the permeability, large features
should be explicitly included in the model to reproduce their non-local effects on
the flow. Thanks to the developments of numerical methods and computing power
direct numerical simulations of fracture networks are replacing or complementing
multi-continua approaches such as dual-porosity/permeability.

Fractures and faults are three-dimensional regions characterized by a different
porosity and permeability with respect to the surrounding porous matrix. However,
thanks to their small aperture compared to the typical length and the size of the
domain, they are usually represented as .N�1/-dimensional interfaces immersed
in a N-dimensional matrix. From a computational viewpoint, this avoids the need
for an extremely fine grid to resolve the width of fractures, that are now replaced
by discontinuity surfaces where a suitable reduced .N�1/-dimensional problem
is solved and coupled with the surrounding flow. However, the complexity of
geological structures remains one of the main challenges in large-scale numerical
simulations. Indeed, the data for the construction of the model are usually given
as a large number of possibly intersecting surfaces, called horizons, that separate
layers with different mechanic and hydraulic properties, and a set of surfaces that
represent faults and fractures. In this framework, the construction of a grid which
is conforming with all the aforementioned features is a difficult task, [20], whose
outcome could be a grid that is either too refined to be used, or with low quality
elements. Since in these realistic cases the construction of a high-quality grid that
honours the geometry of hundreds or thousands of fractures is a challenging task,
two alternative approaches are possible:

• to develop numerical methods that are accurate and robust even for very distorted
grids, such as the Mimetic Finite Difference Methods [8];

• to allow the fractures to cross a fairly regular and coarse grid in arbitrary ways,
and to employ the eXtended Finite Element Method (XFEM) to account for the
solution discontinuities within elements.

This paper presents the second approach, reviewing the recent literature on the
application of the XFEM to the simulation of flow in fractured porous media,
focusing on single-phase flow in the presence of one or more, possibly intersecting,
fractures.

The XFEM has been successfully used for the simulation of crack mechanics for
a long time, [22, 23, 44], while its application to flow in fractured media is a recent
development. Allowing for non-matching grids with respect to the fracture network
can be advantageous in geological problems since not only it avoids the burden of
computing a conforming grid, but it avoids the need for re-meshing in the case of
uncertain geometry, i.e. one could perform simulations of different scenarios with
different fracture configurations with the same background grid.

The enrichment of the finite element spaces should be able to effectively
represent discontinuities in the pressure and in the flux across fractures: pressure
jumps arise in the case of impermeable interfaces, while a discontinuous flux can be
observed due to the fact that fluid can enter the fractures and flow along them.
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The development and the analysis of .N�1/-dimensional models for fractures for
single-phase flow have been extensively addressed in [3, 7, 13, 29, 42], where the
fracture flow equations and the proper interface conditions across the fracture have
been first derived, and the continuous and discrete problems have been studied in
their mixed formulation. However, in the aforementioned works, the computational
grid of the porous domain is considered to be matching with the fracture, i.e. the
fracture is the (conforming) interface between two mesh blocks, possibly with
different resolution. Similarly, in more recent works, this type of space discretization
has been employed to describe the flow in faulted sedimentary basins, coupled with
a double-layer model for the fault, see [26, 52]. However, while non-conforming
meshes on the interface could be dealt with by mortaring, this does not allow the
fractures to cut the elements of the grid.

The use of XFEM to deal with fractures as non-matching, immersed interfaces,
was first introduced in 2011, for the single phase case, in [19, 41]. In the former,
the concept of EFEM (Enriched Finite Element Method) is applied to the primal
formulation with suitable enrichments for the pressure, while in the latter the
mixed formulation of the problem is considered, and the authors employ concepts
borrowed from [39] to enrich both the pressure and the Darcy velocity spaces.
In the same years, XFEM have been applied for the discretization of the primal
formulation in [50].

The application to the case of several intersecting fractures is discussed in
[11, 27] in the case of an impervious surrounding medium, with slightly different
coupling conditions at the intersections based on different assumptions on the
fractures permeability. The coupled problem, in the mixed and primal formulation
respectively, are considered in [30, 31, 51]. As concerns the physics of flow in porous
media, some works consider also the case of passive transport of solutes in fractured
porous media, [32], and two-phase flow [34] by means of the XFEM. Moreover, the
coupling of Darcy flow with fracture mechanics (opening, propagation) is addressed
in [37, 48].

Regarding the analysis of the method, the inf-sup stability of XFEM applied to
Darcy flow in porous media has been proven, under suitable conditions, in [19, 21].

This paper is organized as follows. In Sect. 2, we introduce the mathematical
model for single-phase flow in fractured porous media in the equi-dimensional case,
and derive the corresponding hybrid-dimensional, or reduced, model. Intersecting
fractures are considered, as well as the task of assigning boundary conditions for
the fractures. In Sect. 3, we present the numerical discretization techniques for the
problem in primal and dual mixed form, with a focus on the ad-hoc enrichments
at intersections and tips, and on the approximation of coupling terms. Section 4 is
dedicated to solvers for the resulting linear system, in particular to conditioning
issues and the choice of iterative vs. monolithic approaches. Finally, Sect. 5 is
devoted to some concluding remarks and future perspectives.
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2 Governing Equations

In this section, we present the mathematical model of single-phase flow in porous
media, focusing our attention on the description of the fractures. We start consider-
ing the standard Darcy law and mass balance in an equi-dimensional setting, where
the fractures are N-dimensional regions embedded in an N-dimensional porous
matrix. Then we introduce the so called reduced, or hybrid-dimensional, models to
handle fractures as objects of effective lower dimension, intersections and branching
of fractures, and proper boundary conditions to prescribe at the fracture tips and on
the cut matrix boundaries.

2.1 Equi-Dimensional Models

We consider an inert and at rest porous medium which can be modeled as a bounded,
connected, and open set D � R

N , ND2 or 3. We assume that the medium is
saturated with a single incompressible fluid phase that is composed of a unique
component, e.g., water. The boundary, which is required to be regular enough for the
forthcoming assumptions, is indicated by @D with outward unit normal nD . Let us
assume that D contains several fractures, that all together constitute a single domain
� of spatial dimension N such that � � D, which is a possibly unconnected,
open subset of D. The fracture network can also be seen as the union of fracture
branches �i. The surrounding porous rock, namely, the remaining part of D, is called
˝ :D D n � . The outer boundary of the rock matrix is indicated by @˝ D ˝ \ @D,
while the outer boundary of the fracture network is indicated by @� and defined by
@� :D � \ @D. Moreover, the internal part of the fracture boundary, namely, the
interface between the fracture domain and the surrounding medium, is indicated by
� and defined as � :D � \ ˝ . For each fracture branch, we call its own part of this
internal boundary �i. The unit normal, pointing out of � into ˝ , is indicated by n.
We suppose that for each fracture branch there exists a central axis O�i, which is a
non self-intersecting .N�1/-dimensional surface, such that a fracture branch can be
described as

�i D
�

x 2 R
N W x D s C rni; s 2 O�i; jrj <

di

2

�
; (1)

where di is the aperture of �i, which may depend on the curvilinear abscissa s,
and ni is the unit normal associated with the central axis O�i. We assume that the
apertures di are small compared to other characteristic dimensions of the fractures.
With definition (1) the fracture domain is composed by � D [�i, but note that �i

may intersect each other with a non-null intersection. See Fig. 1 for an illustration
of the aforementioned notation.
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Fig. 1 Notation for a general
configuration of fractures in
the equi-dimensional model
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In this work we assume that the fractures are filled by a porous medium
themselves such that Darcy flow takes place in both the rock matrix and fractures.
In the relevant case of open fractures the lubrication model could be used, see for
instance [53].

2.1.1 Dual Formulation

In this part, our objective is to compute the steady-state pressure field p and the
Darcy velocity field, or macroscopic velocity, u in the entire porous domain D. To
this purpose, following for example [9], we employ the law of mass conservation
together with Darcy’s law and, to ease the notation, we assume homogeneous
boundary conditions for the pressure on the whole boundary. The system of
equations for the porous matrix ˝ is given by

8̂<
:̂

r � u D f
u C �rp D 0

in ˝ ,

p D 0 on @˝ ,

(2a)

where the scalar source term f represents a possible volume source or sink and �

denotes the symmetric and positive definite permeability tensor in ˝ . To simplify
the notation we consider a permeability tensor that is already scaled with the
viscosity. Coupled with (2a), a similar system of equations can be considered for
the fracture network. The data and unknowns related to the fractures are indicated
with a subscript f. We obtain

8̂
<
:̂

r � uf D ff
uf C �frpf D 0

in � ,

pf D 0 on @� .

(2b)

Following [42] we require that the permeability tensor in the fracture system, for
each fracture branch, can be written as �f;i D �i;nNi C �i;�Ti, where the projection
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matrix Ni in the direction normal to O�i and the projection matrix Ti in the direction
tangential to O�i are defined as follows:

Ni :D ni ˝ ni and Ti :D I � Ni:

To couple the systems (2a) and (2b) we consider the following classical interface
conditions, namely

(
p D pf

u � n D uf � n
on �: (2c)

Combining (2a)–(2c), we obtain the strong problem formulation in its dual form.

Problem 1 (Dual Equi-Dimensional Strong Formulation) Find velocity fields
u; uf and pressure fields p; pf such that (2) is fulfilled.

The proof of the well-posedness of Problem 1 in its mixed weak form can be found
in a number of references, such as [15, 24, 46, 49].

2.1.2 Primal Formulation

A common formulation for single-phase porous-media flow is the so-called primal
formulation, that can be obtained inserting Darcy’s law for matrix and fracture
domain, namely, the second lines of (2a), (2b) into the mass-balance equations,
namely, the first lines of (2a), (2b), as well as into the flux-coupling condition,
namely, the second line of (2c). In particular, for the matrix domain ˝ , we obtain

( �r � .�rp/ D f in ˝ ,

p D 0 on @˝ ,
(3a)

while for the fracture domain � , we have

( �r � .�frpf/ D ff in � ,

pf D 0 on @� ,
(3b)

coupled by

(
p D pf

�rp � n D �frpf � n
on �: (3c)

The problem can, in this case, be cast as follows.
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ˆ

(a) (b)

Fig. 2 Model domains with fracture. (a) Equi-dimensional model domain. (b) Hybrid-
dimensional model domain which includes a lower dimensional fracture

Problem 2 (Primal Equi-Dimensional Strong Formulation) Find pressure fields
p; pf such that (3) is fulfilled.

The well-posedness of Problem 2 and its weak form can be found in any standard
textbook on partial differential equations or finite elements (Fig. 2).

2.2 Hybrid-Dimensional Models

In this section, we present the hybrid-dimensional model, or reduced model, in the
case of single fracture dividing the domain in two unconnected parts. We refer to
[2, 6, 19, 25, 42] for a detailed presentation. The derivation of the model is based
on its dual formulation, however, we present also its primal formulation, obtained
with a “post-processing”. For both formulations, we briefly introduce their weak
formulation to be used for the numerical discretization.

During the process, we substitute the fracture � by its centre line O� and the
surrounding porous medium is enlarged to fill the gap. In practical cases, this step
is very seldom performed since the fracture geometry is directly given as an object
of codimension one. The Darcy equations (2a) for the rock matrix are thus the same
as in the equi-dimensional case and we focus only on the Eqs. (2b) for the fracture.
Since ˝ is split in two parts ˝1;2, we define n D n1 D �n2, where ni is the outward-
pointing normal of ˝i. Let us introduce the normal and tangential divergence and
gradient on the fracture: given two regular functions a and a, respectively vector-
and scalar-valued, we define

r � a D rn � a C r� � a with rn � a :D N W ra and r� � a :D T W ra;

ra D rna C r�a with rna :D Nra and r�a :D Tra:
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2.2.1 Dual Formulation

We decompose the Darcy velocity in the fracture into its normal part uf;n :D Nuf

and tangential part uf;� :D Tuf, such that uf D uf;n C uf;� . We consider first the
conservation equation which is integrated along the normal direction of O� for the
fracture aperture d. We obtain a conservation equation in the tangential space of
O� for the reduced flux Ou :D R d=2

�d=2
uf;� which involves also the contribution of the

incoming flux from the surrounding porous medium, namely,

r� � Ou D Of C �u � n� O� in O�; (4)

where the reduced source term is defined as Of :D R d=2

�d=2
ff. In (4) we made use of the

jump operator defined as �u � n� O� :D u1 � n� u2 � n, with an abuse of notation for the
normal n. We consider now the Darcy equation projected on the tangential space of
O� and integrated in normal direction for the aperture of the fracture, obtaining

Ou C O�r� Op D 0 in O�; (5)

where Op is the reduced pressure in the fracture, defined as Op :D 1
d

R d=2

�d=2
pf. In the

previous equation, O� is the effective permeability in tangential direction, defined as
O� :D d�f;� . Finally, projecting Darcy’s law on the normal space of the fracture and
integrating in normal direction on the first and on the second half of the aperture,
we end up with coupling conditions between the lower-dimensional fracture and the
rock matrix. Using a suitable approximation of the integral of ui � n, as discussed in
[7, 42], we get

(
�u1 � n C .1 � �/u2 � n D 2� O� . p1 � Op/

�u2 � n C .1 � �/u1 � n D 2� O� . Op � p2/
on O�; (6)

where � O� is the effective permeability in normal direction of the fracture, defined
as � O� :D �f;n=d. Moreover, � 2 .0:5; 1� is a closure parameter related to the
pressure cross profile in the fracture, see the aforementioned works for more details.
Considering (2a) coupled with (4)–(6) we obtain the following hybrid-dimensional
problem.

Problem 3 (Dual Hybrid-Dimensional Strong Formulation) Find .ui; pi/ for
i D 1; 2 and . Ou; Op/ such that

8̂
<
:̂

r � ui D fi
ui C �irpi D 0

in ˝i,

pi D 0 on @˝i,

and

8̂
<
:̂

r� � Ou D Of C �u � n� O�
Ou C O�r� Op D 0

in O� ,

Op D 0 on @ O� ,

(7a)
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with interface conditions

(
�u1 � n C .1 � �/u2 � n D 2� O� . p1 � Op/

�u2 � n C .1 � �/u1 � n D 2� O� . Op � p2/
on O�: (7b)

An alternative form of the interface conditions (7b), introduced in [18], is

(
ffu � ngg O� D � O� �p� O�
�0 �u � n� O� D � O�

�ffpgg O� � Op� on O�; (7b-bis)

with �0 D 4=.2� � 1/ and where we have used the average operators ffpgg O� :D
1
2

. p1 C p2/ and ffu � ngg O� :D 1
2

.u1 � n C u2 � n/, as well as the jump operator for
the pressure �p� O� :D p1 � p2.

We now introduce the weak formulation of the reduced problem, which will be
useful to present the XFEM in Sect. 3. For a detailed presentation of the suitable
functional spaces refer to [7]. We start by introducing the following bilinear forms
and functionals for the rock matrix

ad.u; v/ :D
X

i

.Hui; vi/˝i
C �

� O� ffu � ngg O� ; ffv � ngg O�
�

O�

C�0

�
� O� �u � n� O� ; �v � n� O�

�
O� ; with i D 1; 2;

with H :D ��1, � O� :D ��1
O� the inverse of the permeabilities. The bilinear form and

the functional which include the source term and possibly boundary conditions read

bd. p; v/ :D �
X

i

. pi; r � vi/˝i
and F.q/ :D

X
i

. fi; qi/˝i
:

The weak formulation for the fracture requires to introduce the following bilinear
forms and functional

Oad. Ou; Ov/ :D . O� Ou; Ov/ O� ; Obd. Op; Ov/ :D � . Op; r� � Ov/ O� and OF.Oq/ :D
�Of ; Oq

�
O�

with O� :D O��1 the inverse of the effective tangential permeability. Finally the
bilinear form which couples the fracture and the surrounding porous medium

cd.u; Oq/ :D
�
�u � n� O� ; Oq

�
O� :

The weak formulation of (7) is given as follows.
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Problem 4 (Dual Hybrid-Dimensional Weak Formulation) Find .ui; pi/ for i D
1; 2 and . Ou; Op/ respecting the given boundary conditions such that

(
ad.u; v/ C bd. p; v/ C cd. Op; v/ D 0

bd.q; u/ D F.q/
and

(
Oad. Ou; Ov/ C Obd. Op; Ov/ D 0

Obd.Oq; Ou/ � cd.Oq; u/ D OF.Oq/
;

for all test functions v, q, Ov and Oq defined in their proper spaces.

2.2.2 Primal Formulation

As for the equi-dimensional setting, a primal formulation can be derived by inserting
Darcy’s laws into the mass balance equations in (7a).

Problem 5 (Primal Hybrid-Dimensional Strong Formulation) Find pi for i D
1; 2 and Op such that

( �r � �irpi D fi in ˝i,

pi D 0 on @˝i,
and

( �r� � O�r� Op D Of � ��rp � n� O� in O� ,

Op D 0 on @ O� ,
(8a)

with interface conditions (7b-bis) reformulated as

(
� ff�rp � ngg O� D � O� �p� O�
��0 ��rp � n� O� D � O�

�ffpgg O� � Op� on O�: (8b)

Proceeding to the weak formulation of the primal problem, we define the matrix
bilinear form

ap. p; q/ D
X

i

.�irpi; rqi/˝i
C �

�0� O� ffpgg O� ; ffqgg O�
�

O� C
�
� O� �p� O� ; �q� O�

�
O�

and the fracture bilinear form

Oap. Op; Oq/ D
� O�r� Op; r� Oq

�
O� C �

�0� O� Op; Oq�
O� :

The coupling between matrix and fracture is accounted for by the bilinear form

cp. p; Oq/ D �
�0� O� ffpgg O� ; Oq�

O� :

This allows to obtain the weak formulation of Problem 5.
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Problem 6 (Primal Hybrid-Dimensional Weak Formulation) Find pi for i D
1; 2 and Op respecting the given boundary conditions such that

(
ap. p; q/ � cp.q; Op/ D F.q/

�cp. p; Oq/ C Oap. Op; Oq/ D OF.Oq/
;

for all test functions q and Oq defined in their proper spaces.

The analysis of Problem 6 is straightforward and presented in, for example, [50].
However, the situation becomes more involved if the fracture is allowed to end
inside the interior of the matrix, yielding a non-Lipschitz domain ˝ . A rigorous
mathematical analysis of this setup is carried out in [37].

2.3 Branching and Intersections

In this part, we present several strategies to model the intersection of fractures.
This is an important aspect, since the complex nature of networks of possibly
heterogeneous fractures requires an appropriate treatment to avoid un-physical
results. In a crossing, however, the different properties of every fracture branch can
overlap and a unique association of properties is not always possible, so that, in
general, new properties have to be defined for the crossing area, based on physical
arguments to be provided by the modeler. If there is a crossing of fractures with very
different permeabilities, one fracture always dominates a crossing from a geological
point of view. For example, if there exists a highly permeable fracture which
becomes intersected over time by an almost impermeable fracture, the crossing
permeability is more likely to be almost impermeable than highly conductive or
averaged. It is then neither a realistic choice to always average the permeabilities
in a crossing nor to neglect the connection between different fractures. In the
forthcoming reduced models, to simplify the notation, we focus our attention on
a single fractures intersection inside the porous domain where several fracture
branches O�k meet. In all the subsequent cases, the model for the flow in the
fractures, in the surrounding rock matrix and the coupling conditions between each
fracture and the corresponding portion of the rock matrix are the same as in (7), or
equivalently (8), but separately for all the pieces. The reduction process, similarly
to the previous part, replaces the equi-dimensional domain, which represents the
intersecting region, to a single point, which is ip :D Tnf

kD1 O�k with nf the number
of participating branches, and introduce a new variable OpI which represents the
pressure in the intersection.

The equi-dimensional setting for a crossing is shown in Fig. 3 on the example
of four intersecting fracture branches. The equi-dimensional model domain can be
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Fig. 3 Crossing with
intersection geometries and
location of pressure
unknowns in the
equidimensional model

pIp
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Id

d

d

y

x

n

decomposed into three different domain types: matrix, fracture and crossing, namely

D D
�

[
i

˝i

	
[

�
[
i

�i

	
[ I:

We define the crossing area I with boundaries to the fractures (solid red lines) and
boundaries to the rock matrix (dashed red lines), respectively as

.@I/f;i ..D @�i \ @I and .@I/m ..D @In.[
i

@�i/:

Introducing the green boundaries in Fig. 4 by connecting the appropriate corners
in our crossing region, we get a closed control area for which we can write the mass
conservation equation which gives a relation between the crossing area pressure and
the adjacent fracture pressures pi. For the reduced model, mass conservation implies

nfX
kD1

Ouk � �kjip D fI ; (9)

where �k is the unit tangent along the fracture branch O�k, or, in other words, �kjip is
the unit outward normal of O�k at ip. Moreover, fI 2 R is an integrated source term
given for the intersection.

In the following, we will distinguish three different approaches for assigning
boundary/coupling conditions for the fracture branches O�k at the intersection point
ip. The first two admit rather general intersection situations and are mainly suited
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Fig. 4 Crossing with
definition of geometrical
parameters inside the crossing
area

pI

p

p

I

d

for the primal formulation in connection with assigning degrees of freedom in
the intersection point for every fracture branch: assuming pressure continuity and
Robin-type conditions. The third assumes an X-shaped intersection of four fracture
branches and is especially tailored for the dual formulation in connection with a
lower-dimensional XFEM approach to capture the discontinuity in the intersection.

2.3.1 Assuming Pressure Continuity

If the properties, e.g., permeability and aperture, of the fractures and in the
intersection are equal, or at least comparable, a simple strategy is to impose a
pressure and normal flux continuity. The model is valid also if we can consider the
intersection as a void space, i.e., infinite permeability, or small enough that it can
be neglected. In the latter case the source term at the intersection may be omitted.
Following [4, 5, 10] and the references therein, we require mass conservation (9)
together with pressure continuity

Opkjip D OpI 8k D 1; : : : ; nf: (10)

With (9) and (10), it is possible to eliminate the value OpI of the pressure at the
intersection. Moreover the primal formulation of (10) is straightforward. In some
cases the heterogeneity between fractures could be severe and the aforementioned
model behaves poorly, see [27].

2.3.2 Robin Boundary Conditions

In [51], an alternative to requiring pressure continuity in the intersection has been
proposed which amounts to replace the Dirichlet-type coupling (10) by Robin-type
conditions for each fracture branch.

Considering the equi-dimensional setup from Figs. 3 and 4, we assume that the
Darcy velocity uk associated with the fracture branch �k can be prolongated to the
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intersection region I and be defined there as

ukjI D ��I�k
1

`�
k

. pI � pk/;

where `�
k is the distance between the crossing point ip and the point @�k \ O�k.

Proceeding to the reduced model and integrating along the green lines in Fig. 4
yields the Robin boundary condition

Ouk � �kjip D ��
k

>�I�k
d�

k

`�
k

. Opk � OpI/; (11)

where d�
k D ˇ̌

@� �
k

ˇ̌
is the length of the interface (green) for fracture k within I and

��
k the unit outward normal on that interface.

The mass conservation (9) can be rewritten as

nfX
kD1

��
k

>�I�k
d�

k

`�
k

. Opk � OpI/ D fI: (12)

Conditions (11) and (12) can be easily incorporated into the primal hybrid-
dimensional problem formulation (8).

2.3.3 Dual Formulation for X-Shaped Intersections

In the case of two intersecting fractures with an X-shaped intersection, a mathe-
matically rigorous derivation of coupling conditions is presented in [27, 35]. These
conditions are perfectly suited for incorporation into a dual problem formulation
discretized by XFEM. In this case, we have nf D 4 but we make an explicit use
of the fact that two distinct fractures intersect and associate only one index k with
the two branches of one fracture, see Fig. 5. This allows to formulate for a quantity
Oqk associated with fracture k its average ffOqkggip and jump �Oqk�ip at the intersection
point ip. The model takes into account the aperture, permeability and angle at the
intersection between fractures as well as the permeability in the intersecting region.

Fig. 5 Geometry and notation for the case of X-shaped intersections
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This model allows a pressure and Darcy velocity discontinuity across the inter-
section, where the jumps are computed accounting for the pressure and fluxes from
both fractures. In addition to the mass conservation (9), the coupling conditions are

8̂
ˆ̂<
ˆ̂̂:

jIj
di

2X
kD1

O�ik

d�
k

ffOuk � �kggip D �Opi�ip

O�0

dj

di
O�ii � Oui � �i�ip D ffOpiggip � OpI

for i; j D 1; 2; i ¤ j; (13)

where d�
k D dk= sin 	 and 	 is the angle between the two fractures, O�ij is the

tangential projection along O�j and then O�i of the inverse of the permeability in
the intersection region, namely O�ij :D �>

i ��1
I �j. Note the similarity of (13) to

the interface conditions (7b-bis) of the “full” dual hybrid-dimensional problem.
This allows to directly apply the corresponding XFEM techniques in a lower-
dimensional context. Moreover, the system of equations (13) can be viewed as
a generalization of (10) since the former boils down to the latter providing the
intersection permeability goes to infinity or the dimension of the intersection goes
to zero.

2.4 Boundary Conditions

This section is divided into two parts: Dirichlet boundary conditions for a matrix
boundary that is intersected by fractures and conditions for fracture tips that are
located in the interior of the matrix domain.

2.4.1 Dirichlet Conditions for Fractured Porous Media

Boundary conditions for fractured porous media systems with explicitly modeled
fractures are not easy to define. The simplest choice is to prescribe a constant
pressure along a domain boundary or a linear change, for example for the case
of a hydrostatic pressure distribution. This often does not reflect the highly
heterogeneous structure in the case of fractured porous media systems. That again
leads to a strong influence of the boundary conditions on the solution if the domain is
not chosen large enough. For field scale simulations, one usually obtains pointwise
pressure information from which the best boundary conditions are to be picked.
In [51], a possibility is presented to interpolate pointwise pressure data along a
given boundary including the information of the geometrical position and geological
parameters (aperture, permeability) of the fractures intersecting with this boundary.

In particular, the situation depicted in Fig. 6 is considered. For a boundary
segment ! � @˝ that is parametrized by 
 2 Œ0; 1�, the left and right pressure
values pleft and pright at 
 D 0 and 
 D 1 are assumed to be known. The segment
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Fig. 6 Partitioning of the boundary according to intersecting fractures

! is intersected by nf fractures that divide it in nf C 1 parts !i. The goal is
to find a pressure distribution pb on ! that accounts for the presence of the
intersecting fractures by admitting jumps across the fracture-boundary intersections

j. Proceeding analogously to the derivation of Problem 6, one has to find pb such
that pb.0/ D pleft, pb.1/ D pright and

nfX
iD0

.�b;irpb; rqb/!i
C

nfX
jD1

� O� .
j/
�
ŒŒpb��jŒŒqb��j C �0.ffpbggj � pfj/ffqbggj

� D 0;

(14)

for all test functions qb. Here, �b;i D �>
b �i�b is the permeability along the boundary

segment, while ŒŒ � ��j and ff � ggj refer to the jump and average in the fracture-boundary
intersection 
j. In order to derive a closed system, one is left with the choice of
the fracture pressures pfj. In [51], two options are discussed. The first one assumes
pfj D ffpbggj such that the fracture pressures are indeed an outcome of solving (14).
The second one builds upon expert knowledge to describe explicit values for pfj.

In order to facilitate the solution of (14), it is assumed that pb is piecewise linear
with respect to the unfractured parts !i, namely,

pb.
/ D mi
 C bi on !i; (15)

with the two unknown coefficients mi; bi. By choosing appropriate test functions qb,
analytical expressions for these coefficients are derived for an arbitrary number of
fractures and the case pfj D ffpbggj, see [51].

For example, for one single fracture, nf D 1, the slopes are given by

m0 D pright � pleft
�b;0

�
O�

C j!1j C j!0j �b;0

�b;1
C .

�b;0

�b;1
� 1/

;

m1 D pright � pleft
�b;1

�
O�

C j!0j C j!1j�b;1

�b;0
C .1 � �b;1

�b;0
/
:
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In [51], the resulting boundary conditions are shown to be superior to standard
choices. In particular, the transition from the inner part of the domain to the
boundary appears much more natural in the presence of blocking fractures.

2.4.2 Boundary and Coupling Conditions for Fracture Tips

We consider now the situation where parts of the fractures are ending inside the inte-
rior of the matrix domain, namely, in O�tip D @ O� \ ˝ . Apart from being challenging
from the mathematical and numerical point of view, the modeling question is what
kind of boundary or coupling conditions should be prescribed at O�tip.

An obvious easy choice is to prescribe no-flow conditions across the fracture tip
[7], namely,

Ou � �j O�tip D 0: (16)

In many situations, this condition is well justified by the essential modeling
assumption that the fracture aperture d is small compared to its lateral dimensions.
However, there can be problem settings where (16) may not be accurate enough. In
particular, if the tangential permeability of the fracture is larger than the normal one,
namely, O� > � O� , the flow across the fracture tip could be rather large compared to the
flow over the fracture’s lateral boundaries and should be taken into consideration.

Taking into account the flow across the tip can be achieved by assigning a
corresponding source term f˝ for the matrix domain [50],

f˝ D ı O�tip Ou � �j O�tip : (17)

The coupling condition (17) can be complemented by a condition involving the
matrix and fracture pressures. For example, one could aim for

Opj O�tip D ŒŒp�� O�tip
: (18)

Conditions (17) and (18) are discussed and investigated for the discretized pri-
mal formulation in [50]. While (17) is implemented as a source for the matrix
domain, (18) can be realized as a Dirichlet condition for the fracture. However,
a proper mathematical derivation from the continuous setting as well as thorough
numerical comparisons with (16) are still missing.

3 Numerical Discretization by Means of XFEM

Before we present the numerical approximation of the previous reduced models,
both in dual and primal form, using the extended finite element method (XFEM),
we provide a very brief overview of its historical development and some pointers to
the literature.
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Ideally, one would want to use a mesh that is as structured and axis-aligned
as possible. The standard Galerkin finite-element method, however, cannot handle
discontinuities in the solution except by resolving them through the grid, namely,
by doubling and decoupling the degrees of freedom along the discontinuities.
Coming from the structural-mechanics problem of evolving cracks that leads to
discontinuities in the solution (displacement, stress, strain), an extension to the
standard finite-element scheme was developed, [22, 23, 44], and called “eXtended
Finite Element Method.”

From the more theoretical point, Nitsche’s method, intentionally developed to
handle Dirichlet constraints, evolved to a new possibility to treat interface problems,
[16, 38, 39]. XFEM and Nitsche’s method applied to interface problems are in
this case essentially the same approach. An overview of recent problems where
XFEM methods are investigated is given in [1]. Some works that influence the
following presentation are [23, 40, 44]. XFEM was first used in the fractured
porous media context in [19, 33] for lower dimensional fractures introducing a
discontinuous solution in the matrix, in [11] for lower dimensional fracture networks
having different permeabilities in the network and therefore also discontinuities, and
in [41] for thin heterogeneities (equi-dimensional) which are not resolved directly
with the grid but rather with the XFEM.

In the literature such techniques are very often referred to as “partition-of-unity”
PUFEM and “generalized finite-element methods” GFEM. The difference here is
that those are usually on a global level where XFEM adopts the same techniques on
an element-local formulation. The composite finite element method, first presented
in [36], is a special type of a geometric multi-grid methods and falls therefore in the
category of multi-scale methods.

3.1 Modification and Addition of Basis Functions

In the classical Galerkin finite-element approach, the discrete solution, ph.x/, at
a global point x in space, which lies within an element E, is defined by the sum
over all shape functions associated with this element multiplied by the value of the
corresponding degree of freedom Qpi, cf. for example [14],

ph.x/ D
X
i2NE

bi.x/ Qpi: (19)

Here, bi denotes the shape function of the degree of freedom i, NE D fn1; : : : ; nrg
denotes the set of standard degrees of freedom of the element E. All matrix elements
which are not cut by a fracture are treated with such a standard finite element
approach.

If an element E is cut by a fracture, additional degrees of freedom Qp e
j are

introduced. Those elements which are cut by at least one fracture are called enriched
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elements. The discrete solution on an enriched element E can be written as

ph.x/ D
X
i2NE

bi.x/ us
i .x/ Qpi C

X
j2Ne;E

be
j .x/ ue

j .x/ Qp e
j (20)

Here, Ne;E is the set of enriched degrees of freedoms. To capture discontinuities
in the solution the basis functions are multiplied by discontinuous functions,
where us

i denotes the discontinuity functions for the standard degrees of freedom,
while ue

j denotes the discontinuity functions for the enriched degrees of freedom,
respectively. These functions will be defined below.

In the course of this work, the standard basis at cut elements is chosen to be same
as for uncut elements, i.e., (bi-)linear and the additional shape-functions are chosen
to be of the same type as the standard shape-functions, i.e., also (bi-)linear, bi D be

j
if i and j refer to degrees of freedom located at the same vertex. Then, be

j denotes the
nodal shape function of an enriched node j. Furthermore, the XFEM concept is here
used in combination with the Ritz-Galerkin approach, i.e., the basis-function space
and the test-function space are equal.

The choice of the discontinuity functions is somehow arbitrary, as long as certain
conditions are fulfilled. One commonly desired goal is to choose the discontinuity
functions such that the resulting enriched basis functions are forced to be zero in all
nodes. On the one hand this leads to a propitious quality: the nodal interpolation is
still guaranteed by the solution in the standard nodes alone, [44]. More importantly
this property yields to enriched basis functions which are completely local with
respect to the cut elements and every basis function has only one discontinuity
(within this element) for every set of additional degrees of freedom. This avoids
blending elements, [28], which have to be introduced otherwise. However, this is
only valid for the special case of a single interface per element. The general, more
complex case of several (intersecting) interfaces is more demanding and discussed
in, for example, [50]. There are many other possible choices for the discontinuity
functions with different properties. For example, they can be chosen such that the
standard basis remains unmodified and the discontinuity is only represented by the
enriched basis or such that the mean of the enriched basis functions is zero.

To become more explicit, we define the discontinuity functions by using the sign
function sgn which is positive one on the side of the positive normal direction and
negative one on the other, as

us
i .x/ ..D 1

2
jsgn.x/ C sgn.xi/j ; ue

i .x/ ..D 1

2
jsgn.x/ � sgn.xi/j :

The second term, sgn.xi/, associates a constant value to every node, so that the
discontinuity function for the original degrees of freedom is one if x and xi lie on
the same side of the interface and zero if they are on different sides, and vice versa
for the additional degrees of freedom. The modified basis functions for this kind
of discontinuity functions are exemplarily shown for the one-dimensional case in
Fig. 7. For this approach, the orientation of the normal vector n of the interface has
to be chosen. This choice is arbitrary.
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Fig. 7 The zero dimensional fracture with local coordinate � divides the one dimensional matrix
element. Solid lines show the two modified basis functions associated to node two (degrees of
freedom two and five), dashed lines the modified basis of degrees of freedom three and six at node
three.

3.2 Primal Formulation with XFEM

The matrix domain ˝ is discretized by nm triangular or quadrilateral elements Ej

into Th
m D fEjgnm

jD1 independent of � . The fracture � is discretized with lower-

dimensional elements, Th
f D fEj

fgnf

jD1, independent of Th
m. We define all elements

E 2 Th
m which are totally in or partly belonging to ˝i as Ei D E \ ˝i. All elements

which are not fully included in one sub-domain belong to both. The discrete space
can then be defined as

Qh
i D fqh;i 2 C0.˝i/ W qh;ijE\˝i 2 Q1.Ei/; E 2 Th

mg

for quadrilateral elements E, with Q1 being replaced by P1 for triangular elements.
The complete discrete space for the rock matrix domain is then just the product
space of the sub-domain spaces Qh

m D Qh
1 � Qh

2, where the elements cut by a
fracture are contained twice but each with the cut basis. The discrete space for �

reads

Qh
f D fOqh 2 C0.�/ W OqhjEf 2 Q1.Ef/; Ef 2 Th

f g

so that the combined space is Qh D Qh
m � Qh

f . This allows to obtain the discrete
formulation of Problem 6.

Problem 7 (Primal Hybrid-Dimensional Discrete Formulation) Find ph D
. ph;1; ph;2/ and Oph in subspaces of Qh

m and Qh
f that respect the given boundary

conditions such that

(
ap. ph; qh/ � cp.qh; Oph/ D F.qh/

�cp. ph; Oqh/ C Oap. Oph; Oqh/ D OF.Oqh/
;

for all test functions qh and Oqh defined in proper subspaces of Qh
m and Qh

f .
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3.3 Dual Mixed Formulation

In [19], and in some more recent works such as [30–32] the XFEM is applied to
the dual mixed formulation of the problem in a similar way, but with different
FEM spaces. In particular, the lowest order Raviart-Thomas pair RT0;P0, see
[47, 49], is employed for velocity and pressure, respectively. This is a common
choice in porous media simulations, which guarantees local mass conservation.
In the aforementioned works the domain is discretized by means of a triangular
or tetrahedral grid, however, the method could be generalized to the case of
quadrilateral or hexahedral grids.

The cut mixed finite element spaces can be defined as follows. For each
element Em let RT0.Em;i/ D ˚

vhjEm;i W vh 2 RT0.Em/



be the restriction of the
standard RT0 functions to the sub-element Em;i, and analogously let P0.Em;i/ D˚
qhjEm;i W qh 2 P0.Em/



be the restriction of the standard P0 functions. See Fig. 8 for

a sketch of the restricted basis functions and the corresponding degrees of freedom
in the 2D case.

The discrete velocities and pressure in ˝ are then sought in the following spaces
respectively:

Vh D V1;h � V2;h Qh D Q1;h � Q2;h

where

Vi;h D ˚
vh 2 Hdiv.˝i/ W vh 2 RT0.Em;i/ 8Em 2 Th

m



Qi;h D ˚

qh 2 L2.˝i/ W qh 2 P0.Em;i/ 8Em 2 Th
m



:

The finite element spaces for the fracture problem, on � , are the standard RT0-P0

in N�1 dimensions, thus, the discrete flux and pressure in the fracture are sought in
the spaces

OVi;h D ˚Ovh 2 Hdiv.�/ W Ovh 2 RT0.Ef/ 8Ef 2 Th
f



OQi;h D ˚Oqh 2 L2.�/ W Oqh 2 P0.Ef/ 8Ef 2 Th

f



:

Fig. 8 Basis functions for the lowest order Raviart-Thomas pair, restricted to the subdomains ˝i
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In the case of intersecting fractures, one could consider non-matching fracture grids
at the intersection: in this case, a suitable XFEM enrichment should be considered
also in the fractures. We refer to [27] for details.

We can now define QVh D Vh � OV, and QQh D Qh � cQh, and Wh D QVh � QQh and
formulate the discrete version of Problem 4.

Problem 8 (Dual Hybrid-Dimensional Discrete Formulation) Find .uh; Ouh;

ph; Oph/ 2 Wh such that

ah.uh; Ouh; vh; Ovh/ C bh. ph; Oph; vh; Ovh/ � bh.qh; Oqh; uh; Ouh/ D
F.vh; Ovh; qh; Oqh/ 8.vh; Ovh; qh; Oqh/ 2 Wh

for all test functions qh and Oqh defined in proper subspaces of Qh
m and Qh

f .

The well-posedness of the dual discrete problem has been proven in [19] for
the case of given pressure in the fracture, and in [21] for the fully coupled case.
Particularly relevant is the problem of the inf-sup stability of the extended spaces:
indeed, even if we start from a stable pair the enriched spaces could present
instabilities in some particular configurations. Sufficient conditions on the fracture
geometry and on the underlying grid of the porous medium are given in the two
aforementioned works.

3.4 Fracture Grids and Approximation of the Coupling Terms

Once the finite element spaces for both the fracture and the rock matrix are defined,
one crucial ingredient is the approximation of the coupling term between the two
media. To simplify the presentation, we consider only fracture and matrix grids
which are genuinely non-matching if each fracture element is fully contained in a
N-dimensional element or is contained in a pair of facing N-dimensional elements.
In the important case of matching geometries, a standard technique can be employed
to approximate the coupling term, see for example [29]. The construction of the
fracture grid can be done in two different ways. One possibility is to consider the
fracture grid induced by the intersection between the background mesh and the
interface. This approach avoids the construction of complex interpolation operators,
explained in the sequel, but can be done easily only in the two-dimensional case
and may produce elements with strongly varying aspect ratios. One possibility to
overcome these difficulties consists in using the trace of higher dimensional basis
functions as in the Trace FEM method, coupled with suitable stabilizations, see
[17, 43, 45]. To allow a higher flexibility in the numerical discretization, it is possible
to introduce an interpolation operator M W OQh ! Qh which maps the value of
the pressure in the fracture elements to the corresponding element in the matrix
grid. Note that it has to take into account also fractions of fracture elements. In the
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particular case of a piecewise constant approximation for pressure, following [34],
the discrete version of M is a rectangular matrix Mh with entries

ŒMh�ij D
Z

OKj\Ki

1dx;

where Ki is the i-th element in matrix mesh and OK is the j-th element in the
fracture mesh. To preserve mass conservation at discrete level, we consider the
approximation of the adjoint operator M� W Qh ! OQh as the transpose of Mh.

In [29], the authors note that, in the case of an immersed fracture, if the fracture
grid is too fine compared with the mesh of the matrix, depending also on the
permeability contrast, the solution in the fracture could present oscillations. The
authors suggest a possible explanation which is related to the singularity of the
solution at the fracture tip. The aforementioned work is in the context of non-
matching, but still conforming (i.e. aligned with the grid) discretizations, and the
authors consider a mortar technique to deal with the non-matching elements at
the interface. The same phenomenon is also observed when the XFEM method is
employed. In fact considering the simple domain depicted in Fig. 9, it is possible
to obtain the solutions reported in Fig. 10 where the fracture behaves like a barrier
only in its middle part. The domain is discretized using a structured triangular mesh
where each boundary edge is approximated with n segments, while the fracture is
discretized using m segments. The results show that, also in the case of XFEM, the
oscillations occur when the discretization of the fracture is finer than the rock mesh.
Apart from cases where the mesh is too coarse the oscillations exhibit a frequency
that depends only on the discretization of the outer medium. In this particular case
it can be estimated as n=2 for most of the cases. We notice that this frequency
corresponds to the n�th eigenfunction of the problem. Indeed, if n is odd the
solution becomes asymmetrical. It is also interesting that, for fixed n, the amplitude
of the oscillations is constant with increasing m, while if we refine both fracture and

0.47

0.25 0.250.5

Fig. 9 Representation of the domain for the oscillation problem. In the fracture we highlight the
pieces with different permeability
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Fig. 10 In the left, the grid sizes of the matrix and the fracture are comparable. In the centre, the
fracture grid is finer than the rock grid, some oscillations are present. In the right, both meshes
are refined maintaining the same ratio of the grid size as the solution in the centre. In this case the
amplitude of the oscillations decreases

Fig. 11 Basis function enrichment around fracture tips. Red circles indicate XFEM enrichment,
green squares enrichment by radial functions. Left: pure XFEM enrichment according to [50].
Right: XFEM and radial functions enrichment as suggested in [37]

medium the amplitude decreases. This phenomena are particularly relevant when
the normal or tangential (or both) permeability change sharply along the fracture.

3.5 Basis Function Enrichment Around Fracture Tips

If a fracture branch ends inside the interior of the matrix domain in the fracture tip
O�tip, the question arises on how to enrich the basis functions inside an element Etip

that contains O�tip. For the primal formulation, an ad-hoc solution is presented and
used in [50]. In Etip, only those basis functions are enriched that correspond to the
vertices of the element face that is intersected by the fracture, see the left picture of
Fig. 11. While this approach is attractive for its simplicity, it disregards the potential
singularity in the solution at the tip O�tip. As described in [37], it is more appropriate
to account explicitly for this singularity by adding radial functions

g1.r; 	/ D p
r sin.	=2/; g2.r; 	/ D p

r cos.	=2/;

multiplied with the standard basis functions bi in Etip. Here, r is the distance from
O�tip, while 	 indicates the angle with respect to the tangential fracture direction. This
situation is depicted in the right picture of Fig. 11.
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4 Solvers

In this section, we discuss some issues related with the numerical solution of the
system resulting from numerical discretization. In particular, we present the problem
of ill-conditioning in the presence of very small sub-elements, and the possibility of
using iterative strategies in a domain-decomposition framework as an alternative to
a fully monolithic approach.

4.1 Conditioning

Since we are considering an arbitrary position of the interface with respect to
the underlying grid, it is possible that, when an element E is cut into two sub-
elements E1, E2, the ratio jEij

jEj is very small or even zero for some elements/some
configurations of the interface. The case of jEij D 0, corresponding to a fracture
that contains one or two adjacent vertices of the element, is an exception ruled out
by the assumptions of the XFEM method and should be handled separately, while
the case of small sub-elements can lead to ill-conditioned matrices. In particular,
the condition number can degenerate as �.Th

m; O�/ D minE2G miniD1;2
jEij
jEj tends

to zero, where G denotes the set of elements that are cut by the interface. This
problem has been investigated for the case of a mixed formulation in [19]. In
this work, a numerical experiment is presented, where, changing the position of
a vertical fracture on a structured grid, the authors obtain smaller and smaller values
of �.Th

m; O�/ and compute the corresponding maximum and minimum eigenvalue of
the matrix C defined as

C D
�

A BT

�B 0

�
;

arising from the discretization with XFEM of the Darcy problem in the cut bulk
medium. While the maximum eigenvalue is approximately constant, the minimum
decreases with �. Even if the matrix is not symmetric and positive definite, the ratio
between maximum and minimum eigenvalue

ic.C/ D maxi j�i.C/j
mini j�i.C/j

can be used as an indicator of ill-conditioning. In [19] an optimal preconditioner P
for the problem is presented and tested on the same problem, showing that ic.P�1C/

is constant for all �. Moreover, a simpler diagonal preconditioner PL can be used
to perform matrix equilibration: in this case the preconditioner is not optimal with
respect to the grid size h, but for a fixed h one still obtains a constant ratio ic.P�1

L C/.
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4.2 Iterative Approaches

The coupled problem of flow in a porous matrix and a fracture has been interpreted
in a domain-decomposition framework in [2] under the assumptions of pressure
continuity across the fracture, i.e. the assumptions of permeable fractures. It is
shown how, in the cases of a fracture that cuts the domain ˝ in two disjoint parts ˝i

the problem can be recast as a global equation on the interface O� for the unknown Op.
In a more recent work, [42], the concept is generalized to the case of fractures with
arbitrary permeability, including the case of (nearly) impermeable interfaces. Once
again the problem can be formulated as a positive definite problem on the interface
O� . In particular, in the case � D 1 the problem simplifies again to a problem for only
one scalar unknown Op,

S1. Op; f1/ C S2. Op; f2/ C r� � . O�r� Op/ D ff (21)

where S1;2. Op; f1;2/ are the Robin-to-Neumann operators accounting for the coupling
with the flow problem in ˝1;2. The interface Eq. (21) can then be solved iteratively.
This approach is meant to provide an efficient method for the solution of the
coupled fracture-medium problem: indeed, when considering a mixed formulation,
the system is not positive definite and in realistic configurations it can be very large.
Therefore, it can be convenient to eliminate some of the unknowns to obtain a
problem that is easier to solve.

In the context of non-matching discretizations, an iterative approach for the
solution of the coupled problem is also discussed in [19], where a similar approach
is used, adding more information and numerical evidence about the convergence of
the procedure. In particular, it is proven that the iterative method converges for some
values of a relaxation parameter ! that must satisfy

! & M2
O�

� O�
�0

O�; where M O� D min

(
1; h

s
maxf�1; �2g

� O�

)
:

Numerical experiments show that, for small � O�= O� ratios the relaxation parameter
can be very small and convergence is achieved in just few iterations, while for higher
ratios the iterative method converges very slowly.

In the relevant case of a discrete fracture network approximation, namely, where
the rock matrix is supposed to be impervious, an interesting approach is proposed
in [11, 12, and references therein] to solve in an efficient way the global system
of equations. The authors consider the continuous coupling conditions among the
fractures, as presented in Sect. 2.3.1, and a primal formulation of the problem. In
this part, to simplify the notation we assume that the equi-dimensional domain are
the fractures while the one-codimensional domain are the intersections among the
fractures. To decouple the solution on each fracture, the transmission conditions (10)
are imposed in a weak way through an optimization problem, i.e. naming S a strip
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of intersecting elements between two fractures solve

8̂
<
:̂

min J.p/ D min
X
S2S

�p�S

2 C 2kffu � nggSk2

s.t. p solution in each fracture

where S is the set of all the intersection regions, the norms are defined on proper
spaces and u � n is a suitable reconstruction of the normal flux at the intersection S.
The optimal solution of the minimum problem gives J. p/ D 0 and can be computed
numerically using a gradient method. With this method the linear system, which
couple all the fractures, has much smaller size than the aforementioned approaches
and the computation of the pressure in each fracture is completely parallelizable.

5 Conclusions

In this review paper, we presented several mathematical models and numerical algo-
rithms to simulate single-phase flow in a porous medium containing fractures. Two
main challenges are addressed. First, the fractures play a crucial role in subsurface
flows and should be carefully accounted for to achieve reliable simulations, however
their geometrical and geological data pose several difficulties from a modeling and
discrete point of view. A common approach which is broadly used in the literature is
to consider an hybrid-dimensional model where the fractures are treated as objects
of lower dimension. Second, the position of the fractures may be unknown and
several scenarios are needed to obtain a representative solution of the problem, or to
speed up the simulations: for this reason it is better to allow these fractures to be geo-
metrically decoupled from the surrounding porous medium. In this case, an XFEM
approach can be a valuable option to overcome this requests. Several geometrical
difficulties have been addressed in this paper, such as the treatment of intersections
and tips. To the best of our knowledge, several interesting issues are still open for
further investigation, such as a full three-dimensional setting for general networks
of fractures with XFEM, a physical derivation of a more appropriate condition at the
fracture tip, suitable stabilizations to increase the robustness of the linear solvers and
a deep analysis for the case of vanishing aperture.
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