An Adaptive Fictitious Domain Method
for Elliptic Problems

Stefano Berrone, Andrea Bonito, and Marco Verani

Abstract In the Fictitious Domain Method with Lagrange multiplier (FDM) the
physical domain is embedded into a simpler but larger domain called the fictitious
domain. The partial differential equation is extended to the fictitious domain
using a Lagrange multiplier to enforce the prescribed boundary conditions on the
physical domain while all the other data are extended to the fictitious domain. This
lead to a saddle point system coupling the Lagrange multiplier and the extended
solution of the original problem. At the discrete level, the Lagrange multiplier is
approximated on subdivisions of the physical boundary while the extended solution
is approximated on partitions of the fictitious domain. A significant advantage of
the FDM is that no conformity between these two meshes is required. However,
a restrictive compatibility conditions between the mesh-sizes must be enforced to
ensure that the discrete saddle point system is well-posed. In this paper, we present
an adaptive fictitious domain method (AFDM) for the solution of elliptic problems in
two dimensions. The method hinges upon two modules ELLIPTIC and ENRICH
which iteratively increase the resolutions of the approximation of the extended
solution and the multiplier, respectively. The adaptive algorithm AFDM is convergent
without any compatibility condition between the two discrete spaces. We provide
numerical experiments illustrating the performances of the proposed algorithm.
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1 Introduction

In many engineering applications the efficient numerical solution of partial differen-
tial equations on deformable or complex geometries is of paramount importance. In
this respect, one crucial issue is the construction of the computational grid. To face
this problem, one can basically resort to two different types of approaches. In the
first approach, a mesh is constructed on a sufficiently accurate approximation of the
exact physical domain (see, e.g., isoparametric finite elements [8], or isogeometric
analysis [9]), while in the second approach one embeds the physical domain into
a simpler computational mesh whose elements can intersect the boundary of the
given domain. Clearly, the mesh generation process is extremely simplified in
the second approach, while the imposition of boundary conditions requires extra
work. Among the huge variety of methods sharing the philosophy of the second
approach, let us mention here the Immersed Boundary methods (see, e.g., [16] and
the references therein), the Penalty Methods (see, e.g., the seminal work [2]), the
Fictitious Domain/Embedding Domain Methods (see, e.g., [7] and the references
therein). In this paper, we focus on the Fictitious Domain Method with Lagrange
multiplier (FDM) introduced in [11, 12] (see also [1] for the pioneering work
inspiring this approach). In this approach, the physical domain w is embedded
into a simpler and larger domain §2 (the fictitious domain), the right-hand side
is extended to the fictitious domain and the boundary conditions on the boundary
of the physical domain are appended through the use of a Lagrange multiplier.
The FDM gives rise to a saddle point problem whose exact solution restricted to
o corresponds to the solution of the original problem. At the discrete level, the
FDM allows the use of structured and uniform meshes in the fictitious domain,
without requiring any conformity between the bulk mesh and the boundary of the
physical domain. This represents a relevant computational advantage. However,
there are two important issues to be taken into account to build numerical techniques
that are able to take advantage of the crucial features of FDM: the choice of the
discrete spaces for the approximation of the solution and the multiplier, and the
construction of the extension of the right-hand side from the physical domain to the
fictitious one. As pointed out in the analysis performed in [11] in the context of finite
element approximation for the solution of elliptic problems with Dirichlet boundary
conditions, the first condition (inf-sup condition) is essential to ensure existence and
uniqueness of the discrete solution, while the second one influences the regularity of
the extended continuous solution, thus impacting on the approximation properties
of the discrete spaces (on this latter topic, see, e.g., [14]). The first condition turns
out to introduce some restrictive compatibility conditions between the mesh-sizes
of the fictitious domain grid and the subdivision of boundary of the physical domain
(needed to approximate the Lagrange multiplier). The second issue can spoil, for
example, the performance of the linear finite element method on uniform meshes
whenever the original solution is sufficiently regular, e.g. H> regular, while the
extended solution is less regular.
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In view of the above discussion, the computational effectivity of FDM seems
to be a non trivial issue. However, as shown in the present paper, a judicious use
of adaptivity can allow to overcome the above two obstructions and recover the
full potentiality of FDM, i.e. working with discrete spaces (and meshes) violating
the compatibility conditions and recover even in presence of less regular extended
solutions, the optimal performance of finite elements on uniform grids in presence
of regular solutions. In particular, in this work we present an adaptive fictitious
domain method, named AFDM, based on the use of linear finite elements for the
approximation of the solution and piecewise constants for the approximation of the
Lagrange multiplier. In the spirit of the algorithm provided in [6], the method hinges
upon two modules, ELLIPTIC and ENRICH that iteratively modify the discrete
spaces for the approximation of the extended solution and the multiplier. Our
method is proved to be convergent regardless of the imposition of any compatibility
condition between the two discrete spaces. Similar remarks has been already pointed
out in different contexts by Dahlke et al. [10] and Bénsch et al. [4] (see also [3]
for an abstract discussion of inexact Uzawa methods) and we refer to [13] for the
mathematical study of an adaptive algorithm for the Stokes system, which serves as
a benchmark for saddle point problems. Moreover, preliminary numerical results
show that AFDM is optimal with respect to the number of degrees of freedom
employed to approximate the extended solution and the Lagrange multiplier. In two
dimension, the optimality of the adaptive refinement strategy seems to require an
adaptive strategy to generate the successive subdivision of the fictitious domain,
while uniform or quasi-uniform subdivisions can be used for the boundary mesh.

The outline of the paper is as follows. In Sect.2 we introduce the fictitious
domain method, while in Sect.3 we introduce the adaptive fictitious domain
method. Finally, in Sect. 4 we numerically explore the convergence (and optimality)
properties of our algorithm.

2 Fictitious Domains Method

Let @ be a bounded domain of R? with boundary y. To make the presentation
simpler, we assume that w is a polygon. We are interested in employing the
fictitious domain method to solve the following model problem: let f € L*(w),
find u € H)(w) such that

—Au=f inw, @))
u=0 ony. (2)
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The fictitious domain formulation of problem (1)—(2) hinges on a square or
rectangular domain §2 with boundary I" := 92 and such that ® CC £2. It reads:
for any L2-extension f of f to £2, find (i1, A) € H}(£2) x H: (y) such that

/vu-vu—(x,v)yszvdx Yv € Hy(R2), 3)
2 2

(i), =0  VYpeH 3 (y), “

where for v € Hé (£2), its restriction to y is understood in the sense of traces, and

(-,), denotes the duality pairing between H_%(y) and H? (y) (recall that y is a
closed curve). Using an integration by parts formula, it is immediate to verify (see,
e.g., [12]), that the fictitious domain formulation (3)—(4) is equivalent to original
formulation (1)—(2) where

A= [%L (5)

is the jump of g—z across y and n denotes the unit normal exterior to w.

The regularity of & and A depends on the extension chosen for f and the domain
. In the worst case, u € H%_E(Q) for any € > 0 and A € L%(y) satisfies A €
H? (y:), for every straight line y; composing y (see [11]). In what follows we will
drop the symbol ~ if no confusion arises.

In [11], the Babuska-Brezzi’s theory is used to guarantee that problem (3)-(4)
is well posed. In particular, the bilinear form (u, v) + f o Vu - Vv is coercive on
the set {v € H}(£2) : (i, v), = 0 Yu € H™V/2(y)} and that the following inf-sup
condition holds: there exists a constant ¥ > 0 such that

inf sup (v 1y > K. (6)

werr—bipyven@) 1=y o IVl o) ™

3 Adaptive Fictitious Domain Method

In this section we present our adaptive fictitious domain method (AFDM) based
on Uzawa iterations. In Sect.3.1, we describe the infinite dimensional version of
the algorithm, whereas in Sect.3.2 we introduce its adaptive finite dimensional
counterpart.
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3.1 Infinite Dimensional Fictitious Domain Algorithm

We start this section by describing the infinite dimensional fictitious domain
algorithm for solving (3)—(4). It consists of Uzawa-type successive iterations: Given

a>0and Ay € H_%(y) we seek, forj > 1,

uj € HY(2) : /vuj-vu =/fv+(xj_1,v>y Vo e H\(R), ()
2 2
NEH ) (ypwy = Ko p)y —a (uj, ), Ve H2(y) (8)

where we denote by (-, ), the scalar product in H_%(y) and where we used the
identification of L?(y) and have with a slight abuse of notation H 2 (y) CH —3 ).
The Schur complement operator S : H: (y) > H 2 (y) C H? (y) defined as

SA=uy . ©)

where u; € H}(£2) is the solution to
/ Vuy - Vo = (A,v), VYve Hé([?) .
2

The operator S is symmetric and positive definite [12] and is instrumental in the
analysis of the Uzawa iterations. In fact, (7)—(8) can be written using S as

A= —aS)h_y +auy  inH (), (10)

where uy € H}(£2) is given by

/Vu]wVU:/fv Yu € Hy(R2).
2 2

It is immediate to verify that if 0 < o < 2/||S|| hen

_1 _1 ,t
ZL(H 2(y).H 2(y))

B:=|I—aS| <1 (11)

1 1
ZLH 2H 2)

and thus the infinite dimensional fictitious domain algorithm is convergent.

3.2 Adaptive Finite Dimensional Fictitious Domain Method

We now introduce our adaptive finite dimensional fictitious domain algorithm
(AFDM) which iteratively builds a sequence of nested finite dimensional spaces to
achieve a reduction of the approximation error between each iterative step. We start
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with an initial conforming subdivision % of £2 made of triangles and an initial
subdivision of y (made of segments). We assume that

foreach T € %, % M y is connected, (12)

which is automatically satisfied upon assuming that the initial subdivision %
is sufficiently fine to capture the interface and could be enforced via uniform
refinements without affecting the asymptotic performances of the algorithm. From
now on, j > 0 will always denote the AFDM iteration counter. We denote by f,
and .%; the j-th conforming partitions of §2 and y made of triangles and segments,
respectively. The diameters of the elements T € .7 and £ € .7 are denoted
hr := diam(T) and h; := diam(¥{), respectively. We emphasize that the two
partitions built by the adaptive algorithm described below are mutually independent
and in particular no compatibility conditions between the two partitions is required.
This is a crucial difference from the results in [11] (see Remark 2 below). The
shape regularity constant of a generic subdivision .7 is maxye & Z—;, where pr is the
diameter of the largest ball inside 7. The shape regularity constant of a sequence of
subdivision {F}};>0 is

hr
sup max —.
i>0 T€Z: pr

Associated with conforming partitions .7 of §2 and . of y, we introduce the
finite dimensional spaces

Vg :={vel®):vjre 2(T) VT € F} N Hy(£2)
and
My 1= {w e L*(y) : w|¢ € 2°(0) VL € 7},
where for k € N, 22%(D) is the set of polynomials of degree k in D. In the following,
we set V; 1= Vg/. and M; := My/..

The finite dimensional adaptive fictitious domain algorithm relies on two sub-
routines described now.

3.2.1 The Module ELLIPTIC

The module ELLIPTIC adaptively constructs approximations U; of the exact
solution u; to (7). To describe this procedure, we let u; € H| (£2) satisfying

/VM]VU:/fU+/A]—IU VUEH(I)(Q), (13)
Q 2 14

fora given A;_; € M.
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In contrast to (7) where A;_; € H_%(y), we note that A;,_; belongs to a
finite dimensional subspace of L*(y). Moreover, we observe that (13) is a weak
formulation of

—Auj=f inw, —Auj=f in2\o,

ou;
[uj] =0 ony, [3_Ii| =Aj—1 ony, (14)
nly

;=0 onds2.
If &; stands for an adjustable error tolerance, then the module ELLIPTIC,
(z, Uj) = ELLIPTIC(z_l s Aj_l, Sj),

constructs adaptively a refined mesh .7; of .7;_; such that the solution of the discrete
elliptic problem

UjEVjZ /VUJVV=/fV+/Aj_1V VVGV/, (15)
Q2 Q 14

approximate #; within in the prescribed tolerance ¢;, i.e.
V(@ — Upllz) = & - (16)
The adaptive ELLIPTIC module iterates a classical strategy of the type
SOLVE — ESTIMATE — MARK — REFINE

until condition (16) is satisfied (see, e.g., [15]).

The following upper bound for the error of any inner-iterate is instrumental in
ESTIMATE. A corresponding lower bound is also valid and we refer to [5] for their
proofs.

Proposition 3.1 (Upper Bound for ELLIPTIC) Let u; € H}(82) be the solution
to (13) and U; € V; be the discrete Galerkin solution to (15) associated with any
refinement T of F;—i. Assume that the initial subdivision satisfy (12). Then, there
exists a positive constant K* only depending on 7' through its shape-regularity
constant such that the following a posteriori error estimate holds

i Z im2
TeT!
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where
2 i
BT = RR gy + b Y W%, + hrll A 1 PR
e edge of T
with
i i i {e—A~_ oneNvy,
Ry = (f+ AUl Ji:= § e = A v (18)
[5:]e one\y.

Here [.], is the jump across the edge e and T is the topological interior of T.

Remark 1 (Elliptic Estimator) We note that the non-standard terms containing A;_;
in the estimator /(T above both measure the discrepancy from the exact relation
A= [g—Z]y, see (5). In particular, within an element 7, VU; is continuous so that

8Ui
||A]—l ||L2(Tﬂ}/) || o - A]—l ||L2(%ﬂy)’
TNy

i

Ut
where denotes the jump of -~ across Tn y and m denotes one of the

[ om ]Tm
normal to 7' N Y.

3.3 The Module ENRICH

Let V}' be the restriction of functions in V;. We denote by II; : V}' — M the
orthogonal L2-projection onto M. The module

% = ENRICH(Sj1. U €)) . (19)
constructs a refinement .%; of .%j_; such that

1= Ul ) = Ce (20)

for a given C independent of j.

The quantity ||(I — Hj)l]j||H, o) is not computed exactly but estimated as

follows. Standard interpolation error estimates together with a trace estimate and
the stability of the L2-projection yield

[, —M)U¢ [, = M)Ui(¢p — ®)
I = M) Ujllg-12p) = sup F—o———= sup =
ey 1blarg,  semio 11112y
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1/2 —-1/2
<y MO DUl 106~ D)l
- PEH!/2(y) ||¢||H1/2(y)

1/2
< Clliy/ (I = M)Ujlli2q) < Cmaxh)' (4 = )Tz
J

< Cmax ho) |Ujllm 2y = Cmax he) | Ul o).
tes ¢

where @ € M and C is a generic constant independent of j. Now the stability
estimate ||Ujl| g1 (o) < C|lfll2 () imply

I = M) Ujllg—112(y) < C(m?XhZ)”f”LZ(.Q)- (21)

Based on this, the ENRICH routine refines recursively all the elements of .
until they all have a mesh-size smaller than . The resulting mesh is output of

ENRICH since it satisfies (20).

&j
G

3.4 The Module UPDATE

The discrete Lagrange multiplier is updated by the module UPDATE

Aj = UPDATE(Z, ., Aj—1, Uj,a) , (22)
which computes according to (8)

AjeM: Ay = A —alU; (23)

We note that as U; € V; its restriction to y is an element of V}/ (by construction).

3.5 The AFDM Algorithm

We are now in a position to detail the iterative structure of AFDM. Each iteration
of the algorithm consists of an inner solver employing ELLIPTIC in place of (7),
followed by an application of the module ENRICH and by an update of the multiplier
performed by the module UPDATE.
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ADAPTIVE FICTITIOUS DOMAIN METHOD (AFDM)
Given the initial triangulations % and %, and
the parameters a, g > 0, 0 < ¢{ < 1 set j = 1 and
iterate:
1. Select any function Ape M.
2. Update g < {gj1.
3. Compute (, Uj) = ELLIPTIC(J i, Aj_1,¢)).
4. Enrich % = ENRICH(Y}-1, U}, &)).
5. Compute A; = UPDATE(.7, .7}, Aj—1, Uj, ).
6. Updatej<«j+ 1.
7. Go to step (2).

The algorithm AFDM is convergent [5] as reported in the theorem below.

Theorem 1 (Convergence) Let o > 0 be such that (11) holds and assume that
the initial subdivision satisfy (12). Let (7, /;, U;, A;) be the sequence of meshes
and subdivision produced by AFDM . There exist positive constants C, and § < 1
depending on the shape regularity constant of { J;}j=o such that

IV~ Ul + 1A — Aj||H7%(y) <C¥. (24)
Remark 2 (Compatibility Condition) In [11] the authors obtain a priori error esti-
mates for the finite element approximation of (3)—(4) under the assumption that the
mesh size of the bulk triangulation is sufficiently large compared to the mesh size
of the boundary triangulation, i.e. there holds a compatibility condition between
the discrete spaces. This latter is a crucial requirement to prove the validity of
a discrete inf-sup condition and thus the existence of the discrete solution. We
emphasize that the convergence of our adaptive algorithm holds without enforcing
any compatibility condition, thus possibly violating, the discrete inf-sup condition
(see [4, 10] for similar results in different contexts).

The algorithm AFDM described above never ends until a stopping criterion is
appended. In principle, we can resort to (24) to obtain an a priori estimate for
the necessary number of iterations to reach a prescribed tolerance. However, this
strategy is not implementable as the constant § appearing in (24) is not accessible
in practice. For this reason, we now provide an a-posteriori error estimate for the
quantity ||[V(u — Upll2e) + 1A — Aj—1 ||H7%(y) which can be employed to stop

AFDM while guarantying a prescribed approximation error.
Proposition 3.2 (Upper Bound for AFDM) Let (1, 1) € H)(2) x H™2(y) be the

solution to (3)—(4) and {(U;, Aj—1)} be the sequence of approximations produced by
AFDM. Assume that the initial subdivision satisfy (12). Then there exists a constant
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C, depending on the shape regularity constant of J; such that

V= Ul + 1A — A= ||H_%(y) <C(ng+ns,) . (25)
where
12
N = ( 3 n,-(T)Z) (26)
Teg;
1/2
= (D0 helVUlidg) 27)
Ze&”j_l
and
2 .12 2 2 2
(D2 = W3Rl +he Y Weilliag hrl Al s
eedgeinT
with
o
-], — Ai— oneNy,
Reji= (F+ AUlr,  Joyi= ] Lgle ™A y (28)

aU;
[ Je onel\y.

Remark 3 (Boundary Indicator) In view of the results contained in [17], the
indicator 7.%,_, measures the mismatch between the trace of U; on y and the exact
homogeneous Dirichlet boundary condition (2).

4 Numerical Results

In this section we illustrate numerically the convergence properties of the AFDM
algorithm and investigate numerically its optimality studied in [5]. Before present-
ing the numerical results we discuss some details regarding the implementation of
AFDM.

4.1 Implementation Issues

Data structures for representing the (two dimensional) triangular bulk mesh of the
fictitious domain £2 and the (one dimensional) boundary mesh of y are organized
as binary trees starting from the O-th level meshes % and .%), respectively. The
initial bulk mesh 9 is a regular mesh of the domain £2 constructed ignoring the
conformity with y. The initial boundary mesh . is made of the edges of y,
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level 3 oAdded Boundary Point

level 2 « Boundary Points
level 1

level O

14

Fig. 1 Example of boundary refinement: (top-left) four different levels of refinement of the
boundary mesh and (bottom-left) associated bulk mesh with local refinement (dotted line); (right)
boundary points produced by the refinement of the bulk elements

which is assumed to be a polygonal curve, see Fig. 1(left). The refinement of the
triangular bulk mesh is performed by employing the longest edge splitting. The
refined elements are labeled as non-active and the newly created elements become
active. Notice that additional refinements of neighboring elements may be needed
in order to ensure conformity.

The refinement strategy advocated for the boundary mesh is more involved. On
each boundary edge, we consider the points given by the intersection between the
edge itself and the triangular mesh elements. We refer to these points as to boundary
points. Whenever a refinement of a boundary edge is needed, we split the edge at the
closest boundary point to the edge mid-point, see Fig. 1(right). In Fig. 1(bottom-left)
we sketch three successive refinement of the horizontal portion of y. In Fig. 1(top-
left), we report the meshes resulting from the first four steps of a uniform refinement
of the boundary elements. In case no boundary nodes are available, we perform
successive refinements of the triangle containing the edge until one boundary nodes
becomes available. However the two children produced by refinement of the triangle
are labeled as non-active unless needed by the bulk mesh refinement procedure.

In our implementation the elements of the mesh . are always determined by
the intersection between the boundary y and a triangle (not necessarily active)
belonging to the infinite binary tree with root .%. In view of this construction, the
levels of refinement to which the elements in . and in .7 belong to are completely
independent. Clearly, the above construction of . adds some geometric restrictions
on the set of meshes we can deal with. However, the advantage at the computational
level is quite remarkable because all the computer operations required by the
refining process, as well as all the numerical computation of integrals involving the
interaction between bulk and boundary objects (mesh elements or functions) can be
always performed at the level of the single element (or of the binary tree stemming
from it) without affecting the binary data structure of the neighboring elements.
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For the sake of presentation in the rest of this section we employ the following
notation. We set ¢ = u — U; and e} = A — A;. Moreover, we denote by || - ||o the

L*(£2) or L*(y)-norm depending on the context and by | - |; the H'(§2)-seminorm.

4.2 Test Case: L-Shape Domain

We consider the L-shaped domain @ = (—1 1)> \ (-1 0)> with boundary y. We
are interested in the following model problem: we choose f € L?(w) such that, after
introducing polar coordinates (r, ¢), the solution to (1)—(2) is

u(r, @) = h(r)r*3sin(2/3(¢ + 7/2))
where

w(3/4—r) _rPifr>0

h(r) = W(V_ 1/4) +W(3/4_r)’ W(}’) o 0 else.

The fictitious domain formulation of problem (3)—(4) is obtained by embedding @
in the square domain £2 = (—1 1)? with boundary I = 952, see Fig. 2, and extend
f by zero outside w. It is not difficult to see that u € H e (w), for any € > 0 and
the exact Lagrange multiplier is

2
A= gh(r) 13,

In the following, we explore the convergence and optimality properties of
AFDM algorithm. The AFDM algorithm is applied with the following parameters:
a = 0.5, ¢ = 0.95 and different values of gy, namely g = 1.0, 0.5, 0.25, 0.1
(see Sect. 3 for the precise meaning of the parameters). In the sequel, we report the
results obtained by AFDM. The outer iteration of AFDM is stopped when

N7 + 0z, < e

In Fig. 2 we display the initial and the final mesh together with two intermediate
adaptively refined meshes, while in Fig. 3 (left) we report the final discrete solution
U plotted on the fictitious domain and in Fig.3 (right) we collect the graphs of
final discrete Lagrange multiplier A together with the exact multiplier A and the
restriction of U on the boundary y. A close inspection of the figures reveals that
the algorithm AFDM correctly approximates the exact pair (u, ). As the value of 8
is unknown, an a priori choice for £ is impossible. However, as already observed
in [4], a practical choice for £ seems to be § = 0.95. Indeed, larger values of &
clearly guarantee the boundedness of the inner iterations of ELLIPTIC, but at the
expense of an increased number of outer iterations. Values of £ close to 0.95 ensure
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@ 1
08 | 08l
0.6 0.6 F
04 - 0.4
02 02 |
0 0
-0.2 b =02
-0.4 - =04 -
-0.6 - -0.6 [
08 | -0.8
-1 s
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
®) 4 1
08 - 08
06 F 0.6 [
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0 0
-0.2 . -0.2 [
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-0.6 -0.6 |
-08 -08 [
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-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Fig. 2 Adaptive meshes produced by AFDM. (a) Initial mesh 7 (left) and mesh at iteration 12
(right), (b) mesh at iteration 18 (left) and final mesh (right)

Az: -24 El: 66

Fig. 3 Left: discrete solution U in the fictitious domain. Right: zoom on y at the reentrant corner
of the discrete solutions U (red), A (blue) and exact multiplier A (green)
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Table 1 Computed rates of convergence of the true errors and of the error estimators 7g; and
1.5, with respect to the total number of dofs #.7; + #.,—, for different values of &

llf llo lef' 11 lefill—1 i N7, N
g =1 —0.9073 —0.5257 —0.4279 —0.5201 —0.6892
g = 0.5 —0.9347 —0.5447 —0.4232 —0.5080 —0.7072
gy = 0.25 —0.9019 —0.5368 —0.4104 —0.5062 —0.7491
g = 0.1 —0.8819 —0.5584 —0.3924 —0.4980 —0.7966
Table 2 Growing rate r of BT+ 4TS, 4T #5

the total number of dofs

(second column), bulk dofs & = —1.8951 —1.9415 | —0.9895
(third) and boundary dofs g =05 | —1.9326 —1.9595 | —0.9928
(fourth) with respect to gj, i.e. gy = 0.25 | —2.0156 —2.0319 | —1.0240
r such that #(-); € 0(¢}) g =01 |—2.2928 —2.3096 | —1.0831

an optimal decay rate of the H!-error. This motivates the initial choice of setting
& = 0.95 for running the numerical tests.

In the following, we further explore the optimality properties of AFDM and see
their dependency on the parameter ¢y. In particular, in Table 1 we report the rates
of convergence with respect to the total number of degrees of freedom, of the
true errors for e} in L*(£2), H'(R2), the error for e}_l in an approximate H -3 (y)
computed as a weighted L? norm

1/2
A A . 2
ey ~ ey ym o= (20 held = AilBg)
Zej,-,l

and the error estimators 7.7 and 7.%,_, .
From the third and fourth columns we infer that the total error ||V (u—U)) || ;2(2)+
A=A IIH, b decreases to zero roughly as (#.7; +#.%—1) ", the optimal decay
y

for piecewise approximations of u. This is corroborated by the results in columns
five and six which are thus in agreement with Proposition 3.2.

In Table 2 we collect the growing rates of the total number of dofs #.7; + #.7_1,
of the bulk dofs #.7; and of the boundary dofs #.7,_;. The results shows that optimal
convergence is dictated by the regularity of the original non-extended solution u.
Finally, collecting the results of Tables 1-2, we realize that both the total error and
the error indicator 7 + 1.5,_, decay as ¢;.

5 Conclusions

We introduced an Adaptive Fictitious Domain Method (AFDM). The core of
the method is based on two modules, ELLIPTIC and ENRICH that iteratively
modify the discrete spaces for the approximation of the extended solution and the
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multiplier, respectively. Numerical results show that AFDM is convergent, regardless
of the imposition of any compatibility condition between the two discrete space.
Moreover, preliminary tests seem to suggest the optimal behaviour of AFDM. This
last topic requires further investigations, which is the topic of [5].
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