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Abstract Inflammasomes are cytosolic innate immune surveillance systems that
recognize a variety of danger signals, including those from pathogens. Listeria
monocytogenes is a Gram-positive intracellular bacterium evolved to live within the
harsh environment of the host cytosol. Further, L. monocytogenes can activate a
robust cell-mediated immune response that is being harnessed as an immunothera-
peutic platform. Access to the cytosol is critical for both causing disease and inducing
a protective immune response, and it is hypothesized that the cytosolic innate
immune system, including the inflammasome, is critical for both host protection and
induction of long-term immunity. L. monocytogenes can activate a variety of
inflammasomes via its pore-forming toxin listeriolysin-O, flagellin, or DNA released
through bacteriolysis; however, inflammasome activation attenuates L. monocyto-
genes, and as such, L. monocytogenes has evolved a variety of ways to limit
inflammasome activation. Surprisingly, inflammasome activation also impairs the
host cell-mediated immune response. Thus, understanding how L. monocytogenes
activates or avoids detection by the inflammasome is critical to understand the
pathogenesis of L. monocytogenes and improve the cell-mediated immune response
generated to L. monocytogenes for more effective immunotherapies.
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1 Introduction

1.1 Overview

Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that
has evolved to survive in a variety of severe environments and infect a wide range
of hosts. These features combine to make L. monocytogenes an important food-
borne pathogen most frequently associated with unpasteurized dairy products, deli
meats, and more recently, fresh produce (Ferreira et al. 2014). Infection with
L. monocytogenes can result in a noninvasive gastroenteritis that is likely severely
underreported (Swaminathan and Gerner-Smidt 2007). More importantly, systemic
listeriosis poses a severe risk to the immunocompromised, including the very young
and old, as well as pregnant women. Complications of listeriosis include sep-
ticemia, meningitis, encephalitis, abortion, and still-borne births, resulting in a
strikingly high mortality rate of 20–30 % even with proper antibiotic therapy
(Swaminathan and Gerner-Smidt 2007).

While L. monocytogenes remains an important foodborne pathogen, there is an
increasing interest in harnessing the robust cell-mediated immune response induced
upon L. monocytogenes infection for use as a potential immunotherapy. Due to its
almost exclusive intracellular lifecycle, described more in detail below, L. mono-
cytogenes stimulates a robust CD8+ T-cell response. Additionally, L. monocyto-
genes is genetically tractable and is able to break self-tolerance, key factors in
making L. monocytogenes an extremely promising cancer immunotherapeutic
platform (Le et al. 2012). As access to the cytosol is an essential prerequisite for
both the pathogenesis and the induction of immunity following L. monocytogenes
infection, understanding how bacteria are sensed by the innate immune system in
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this environment has been a focal point of L. monocytogenes research for the past
decade. Particularly, activation and avoidance of the inflammasome, a critical innate
immune signaling pathway that all cytosolic pathogens must deal with, has become
a recent focus.

1.2 Life Cycle

Listeria monocytogenes can infect a variety of cell types either through phagocy-
tosis by myeloid cells or through active invasion of epithelial cells or hepatocytes
with its virulence factors, internalin A or internalin B, respectively (Mengaud et al.
1996; Shen et al. 2000). Upon entry into the host cell, L. monocytogenes is initially
contained within a phagocytic vacuole. Using its cholesterol-dependent
pore-forming toxin listeriolysin-O (LLO, encoded by the gene hly) and a pair of
phospholipases (PlcA and PlcB), L. monocytogenes escapes from the phagosome
and enters into the cytosol (Portnoy et al. 1988; Mengaud et al. 1991; Camilli et al.
1991; Vazquez-Boland et al. 1992; Hamon et al. 2012).

Unlike most bacterial pathogens, L. monocytogenes is able to not only survive
but also flourish and replicate within the host cytosol. This is a property unique to
L. monocytogenes and other cytosol-adapted pathogens as intracellular pathogens
that mislocalize to the cytosol or non-intracellular pathogens that are placed within
the cytosol are unable to survive or replicate (Beuzón et al. 2000; Goetz et al. 2001;
Slaghuis et al. 2004; Creasey and Isberg 2012). These studies suggest that
L. monocytogenes has evolved specific adaptations to deal with cytosolic stresses,
cell autonomous defense mechanisms, and innate immune detection in the cytosol,
including the inflammasome. For example, L. monocytogenes modifies its pepti-
doglycan through N-deacetylation and O-acetylation to avoid killing by lysozyme
and detection by the innate immune system (Boneca et al. 2007; Rae et al. 2011).
L. monocytogenes can also modulate the production of the innate signaling cytokine
IL-6 through its virulence factor InlH (Personnic et al. 2010); misregulation of these
factors results in the attenuation of L. monocytogenes, demonstrating the impor-
tance of L. monocytogenes carefully controlling its detection by the host (Boneca
et al. 2007; Personnic et al. 2010; Rae et al. 2011).

Once in the cytosol, L. monocytogenes avoid exposure to the extracellular milieu
and the host defenses found there by utilizing the virulence factor ActA to hijack
host actin and propel itself through membrane protrusions into neighboring cells
(Kocks et al. 1992). Both Δhly and ΔactA L. monocytogenes mutants are attenuated;
however, of these, only ΔactA L. monocytogenes are able to mount a protective
cell-mediated immune response (Portnoy et al. 1988; Goossens and Milon 1992;
Bahjat et al. 2009), further highlighting the importance of the cytosol and cytosolic
innate immune recognition in stimulating robust CD8+ T cell-mediated immunity.
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1.3 Innate Immune Response

Once L. monocytogenes accesses the cytosol, it is rarely exposed to extracellular
host defenses; as such, detection by cytosolic innate immune sensors is likely
critical for combating infection. Likewise, as L. monocytogenes must access the
cytosol to cause disease, avoidance or direct inhibition of the cytosolic innate
immune system is likely critical for L. monocytogenes’ virulence. Indeed, multiple
cytosolic innate immune pathways have been demonstrated to recognize
L. monocytogenes infection (reviewed in Witte et al. 2012). Briefly, peptidoglycan
fragments of L. monocytogenes can activate nucleotide binding oligomerization
domain (NOD) proteins leading to the phosphorylation of p38 mitogen-activated
protein kinase (MAPK) and transcription factor NF-κB activation, further leading to
inflammatory cytokine production (O’Riordan et al. 2002; Opitz et al. 2006).
Further, NOD signaling can synergize with interferon (IFN) signaling to enhance
the host innate response (Leber et al. 2008), although it should be noted that type I
IFN induction has been shown to inversely correlate with host protection
(O’Connell et al. 2004; Auerbuch et al. 2004; Carrero et al. 2006). More recently,
cyclic dinucleotides secreted by L. monocytogenes have been shown to be recog-
nized by the STING/IRF3 pathway resulting in the production of type I IFNs
(Woodward et al. 2010; Sauer et al. 2011b). Additionally, as will be highlighted in
this chapter, L. monocytogenes has been reported to activate the inflammasome
through a variety of receptors, ultimately resulting in the activation of caspase-1
(Fig. 1). Caspase-1 activation leads to an inflammatory cell death, pyroptosis,
release of the pro-inflammatory cytokines IL-1β and IL-18, and the production and
release of lipid mediators known as eicosanoids (Fig. 2). The engagement of these
innate pathways resulting in the production of pro-inflammatory cytokines and the
recruitment of innate immune cells is hypothesized to be critical in the development
of adaptive immunity.

In this chapter, we will focus on how L. monocytogenes activates different
inflammasomes. We will also discuss the downstream consequences of inflamma-
some activation on the pathogenesis of L. monocytogenes. Finally, we will discuss
how engagement of the inflammasome influences the innate and adaptive immune
responses to L. monocytogenes, with a focus on its impact on the development of
L. monocytogenes as an immunotherapeutic platform.

2 Activation of Different Inflammasomes

2.1 NLRP3 Activation

NLRP3 belongs to the Nod-like receptor family of pattern recognition receptors and
recognizes a variety of danger signals including ATP, uric acid crystals, and toxins
(Mariathasan et al. 2006). L. monocytogeneswas first observed to activate the NLRP3
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inflammasome in the seminal paper by Mariathasan et al. (2006) who demonstrated
that cytosolic L. monocytogenes can activate the NLRP3 inflammasome, while
vacuole-contained L. monocytogenes fail to activate the inflammasome, suggesting
that the cytosolic recognition is critical. Concurrently, Kannengati et al. (2006)
observed that L. monocytogenes total RNA could stimulate the NLRP3 inflamma-
some, further suggesting that L. monocytogenes could activate the NLRP3 inflam-
masome through a variety of mechanisms. More recently, activation of the Nrlp3
inflammasome specifically in unprimed bone marrow-derived macrophages infected
with L. monocytogenes has been reported (Wu et al. 2010; Fernandes-Alnemri et al.
2013; Lin et al. 2014). However, the importance of NLRP3 in L. monocytogenes
infection has also been questioned, as Franchi et al. (2007) failed to find any
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Fig. 1 In vitro mechanisms of activation and avoidance of the inflammasome by L. monocy-
togenes. L. monocytogenes lipoproteins and flagellin can signal through toll-like receptors (TLRs)
via MyD88 and IRAK1 to activate the transcription factor NF-κB and prime cells for
inflammasome activation by up-regulating IL-1β and NLRP3 transcripts. L. monocytogenes can
then activate the NLRP3 inflammasome via a K+ efflux secondary to extracellular or intracellular
LLO-induced pores. Vacuole rupture by LLO can result in cathepsin B release that along with p60
can also activate the NLRP3 inflammasome. Flagellin can activate the NLRC4 inflammasome,
while bacteriolysis and the subsequent DNA release can activate the AIM2 inflammasome.
L. monocytogenes limits the activation of any of these inflammasomes via the tight control of LLO
or flagellin, or by unknown mechanisms of combating cytosolic stress and limiting bacteriolysis
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difference in caspase-1 processing and IL-1β release in Nlrp3−/− cells following
L. monocytogenes infection. Similarly, Sauer et al. (2010) failed to find any signifi-
cant role for the NLRP3 inflammasome during L. monocytogenes infection.

These differing observations beg the questions: “Which components of
L. monocytogenes stimulate the NLRP3 inflammasome and what role, if any, does it
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Fig. 2 Activation of the inflammasome attenuates L. monocytogenes through macrophage
recruitment. In wild-type L. monocytogenes infection, L. monocytogenes minimally activates
caspase-1 and maintains its intracellular niche, ultimately promoting a pathogenic infection. In
contrast, inflammasome-activating L. monocytogenes results in robust caspase-1 activation and
pyroptosis, release of IL-1β and IL-18, and eicosanoids. These effects result in expulsion of
L. monocytogenes, increased activated macrophage recruitment, and potentially an influx of
neutrophils. Increased macrophage recruitment restricts L. monocytogenes infection
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play under physiologic conditions?” Pore-forming toxins have been demonstrated
to activate the NLRP3 inflammasome, and Mariathasan and colleagues hypothe-
sized that LLO could act like many other NLRP3 agonists and result in intracellular
K+ disruptions to activate the NLRP3 inflammasome (Mariathasan et al. 2006).
While their original interpretation was that the importance of LLO was to facilitate
the access of L. monocytogenes to the cytosol, it is also possible that pore forma-
tion, and not cytosolic access, was the critical function of LLO in NLRP3 activation
during their studies, particularly as these studies used a high MOI of 50.
Additionally, Meixenberger et al. (2010) suggest that cathepsin B release from
LLO-damaged phagosomes can stimulate the NLRP3 inflammasome. While some
data have directly suggested that cytosolic access of intact bacteria is required for
L. monocytogenes NLRP3 activation, more data are consistent with a role of
extracellular LLO in NLRP3 activation (Meixenberger et al. 2010; Hamon and
Cossart 2011; Sakhon et al. 2013). Extracellular LLO can induce caspase-1 pro-
cessing and IL-1β release depending on NLRP3 (Meixenberger et al. 2010) by
stimulating a K+ efflux (Hamon and Cossart 2011). Blocking bacterial uptake with
cytochalasin D still results in the activation of caspase-1, suggesting that low
amounts of LLO from extracellular L. monocytogenes can activate the inflamma-
some (Hamon and Cossart 2011). Further, purified LLO that maintains
pore-forming ability, but not hemolytically inactive LLO (LLOW492A), can activate
caspase-1 (Sakhon et al. 2013), and these results are independent of the
cholesterol-binding activity (Hara et al. 2008; Hamon and Cossart 2011). Taken
together, these results suggest that pore formation from extracellular LLO can
trigger K+ efflux resulting in NLRP3 inflammasome activation. However, LLO
expression, activity, and stability are tightly regulated during L. monocytogenes
infection (Glomski et al. 2002; Schnupf et al. 2006a, b), thus limiting the likelihood
of high extracellular concentrations of LLO during infection in vivo and potentially
suggesting that NLRP3 activation by LLO is an in vitro artifact.

While LLO is believed to be the primary molecule triggering the NLRP3
inflammasome, both bacterial RNA (Kanneganti et al. 2006) and the secreted vir-
ulence factor, p60 encoded by the gene invasion-associated secreted endopeptidase
(iap), from L. monocytogenes have been shown to activate the NLRP3 inflamma-
some (Schmidt and Lenz 2012). The N-terminal LysM and SH3 domain region
(L1S) of p60 stimulates IL-1β and IL-18 release, independent of the act of
pyroptotic cell death, in bone marrow-derived dendritic cells (Schmidt and Lenz
2012). Given the recent reports about the importance of gasdermin D-dependent
host cell death in cytokine secretion (Shi et al. 2015; Kayagaki et al. 2015), it is
unclear how IL-1β and IL-18 are being secreted in this scenario; however, Schmidt
and Lenz found that ROS inhibition with the inhibitor DPI impaired IL-1β secre-
tion, while IL-18 secretion remained intact. Further, in BMDCs from mice on a
129S6 background that lack caspase-11, IL-1β secretion was impaired, while IL-18
was unaffected (Schmidt and Lenz 2012). These observations suggest different
licensing mechanisms for IL-1β and IL-18, potentially allowing either the host cell
or the invading pathogen to fine-tune the downstream consequences of inflamma-
some activation.
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Most work examining L. monocytogenes and the NLRP3 inflammasome has been
done with murine cells. However, human peripheral blood mononuclear cells
(PBMCs) infected with L. monocytogenes can undergo LLO-induced NLRP3-
dependent inflammasome activation that depends on phagosomal acidification and
cathepsin B release (Meixenberger et al. 2010). These results suggest that the
observed differences for the role of the NLRP3 inflammasome may also stem from
the cell types used. More importantly, the state of the cells used in experiments
matters. Multiple groups were able to find a role for the NLRP3 inflammasome in the
first hour of L. monocytogenes infection when using unprimed cells (Wu et al. 2010;
Fernandes-Alnemri et al. 2013; Lin et al. 2014). Interestingly, for L. monocytogenes
to induce a rapid NLRP3-dependent inflammasome activation, intact toll-like
receptor (TLR) signaling must be present as MyD88−/− cells fail to activate the
inflammasome (Fernandes-Alnemri et al. 2013; Lin et al. 2014). Further, this
response is dependent on the MyD88 downstream signaling molecule IL-1
receptor-associated kinase (IRAK1) as IRAK1−/− cells also fail to activate the
inflammasome and secrete IL-1β and IL-18 (Thomas et al. 1999; Fernandes-Alnemri
et al. 2013; Lin et al. 2014). In the presence of priming, however, IRAK1 is dis-
pensable for inflammasome activation (Lin et al. 2014); additionally, a prolonged
infection results in NLRP3-independent inflammasome activation (Lin et al. 2014).
These results suggest that L. monocytogenes can rapidly activate the NLRP3
inflammasome early in infection, as long as an intact TLR pathway is present. Many
groups do not use unprimed cells, as priming is generally required for inflammasome
activation in vitro (Latz et al. 2013), potentially explaining the observed discrep-
ancies in the importance of NLRP3.

2.2 NLRC4 Activation

The NLRC4 inflammasome recognizes flagellin and type III secretion system
components (Miao et al. 2010b). As L. monocytogenes is a Gram-positive pathogen
and lacks type III secretion components, its flagellin is likely the key activator of the
NLRC4 inflammasome. In line with this, L. monocytogenes engineered to hyper-
express flagellin can activate the NLRC4 inflammasome (Sauer et al. 2011a;
Warren et al. 2011). Additionally, ΔflgK L. monocytogenes lack the adaptor
molecule between the flagellar hook and flagellin monomers, and infection with this
strain results in excess flagellin secretion and hyperactivation of the NLRC4
inflammasome (Warren et al. 2008). However, L. monocytogenes likely avoids the
activation of the NLRC4 inflammasome by shutting off flagellin expression in
mammalian hosts (Peel et al. 1988; Shen and Higgins 2006). As such, L. mono-
cytogenes inflammasome activation was shown to be independent of NLRC4
(Franchi et al. 2007; Sauer et al. 2010). Similarly, infection with L. monocytogenes
deficient in flagellin (ΔflaA) resulted in similar caspase-1 processing and IL-1β
release (Warren et al. 2008) as infection with wild-type L. monocytogenes. Taken
together, these results suggest that although L. monocytogenes flagellin can activate
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the NLRC4 inflammasome, likely in a manner similar to other bacterial flagellin
being dependent on the adaptor molecule Naip5 (Kofoed and Vance 2011; Zhao
et al. 2011), L. monocytogenes largely avoids the activation of this inflammasome
through the control of its flagellin in vivo.

2.3 AIM2 Activation

As opposed to the NLR family members described above, AIM2 (absent in mel-
anoma) is a member of the interferon-inducible class of genes (DeYoung et al.
1997). The AIM2 inflammasome through its HIN200 domain recognizes
double-stranded DNA, rich in adenine and thymine that is mislocalized to the
cytosol (Fernandes-Alnemri et al. 2009; Hornung et al. 2009). Initial evidence for
the involvement of AIM2 in L. monocytogenes infection came from observations
that ΔflaA mutant L. monocytogenes could still induce caspase-1 activation in the
absence of NLRP3 (Warren et al. 2008; Wu et al. 2010). However, caspase-1
activation was abrogated in Aim2−/− cells, suggesting that the AIM2 inflammasome
is responsible for the remaining caspase-1 activation (Wu et al. 2010; Kim et al.
2010). Additionally, Warren et al. (2010) observed that a component of lysed
L. monocytogenes could activate the AIM2 inflammasome. Similarly, transfected
L. monocytogenes’ genomic DNA could also activate the AIM2 inflammasome
(Warren et al. 2010). Using Hoechst-labeled L. monocytogenes, Wu et al. (2010)
were able to observe colocalization of L. monocytogenes with GFP-labeled AIM2,
further suggesting that L. monocytogenes DNA is able to activate the AIM2
inflammasome.

Finally, Sauer et al. (2010) demonstrated that bacteriolysis within the cytosol
resulted in the activation of the AIM2 inflammasome, identifying a likely mecha-
nism for how bacterial DNA accesses the cytosol to be recognized by AIM2. These
experiments demonstrated that wild-type L. monocytogenes lyses at low levels
throughout the course of infection resulting in the recognition of cytosolic DNA by
AIM2. Treatment of cytosolically replicating L. monocytogenes with the bactericidal
β-lactam antibiotic, ampicillin, but not the bacteriostatic antibiotic chloramphenicol,
triggered the increased bacteriolysis and subsequently increased inflammasome
activation (Sauer et al. 2010). Additionally, a L. monocytogenes mutant was iden-
tified that was defective for cytosolic survival leading to increased cytosolic bac-
teriolysis and ultimately increased AIM2-dependent inflammasome activation.
Finally, L. monocytogenes engineered to lyse specifically within the host cytosol
through the expression of the bacteriophage proteins holin and lysin resulted in a
significant bacteriolysis and subsequent cell death (Sauer et al. 2010). Importantly,
these data implicated cytosolic survival and avoidance of cell autonomous defenses
as important mechanisms of avoiding detection by the AIM2 inflammasome.
Further, a similar mechanism of cytosolic bacteriolysis was subsequently found to be
the mechanism of AIM2 activation following Francisella tularensis infection using
a similar reporter system (Peng et al. 2011).
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2.4 Other NLR Engagement

The inflammasomes mentioned above are the traditionally described inflamma-
somes as well as the primary inflammasomes that L. monocytogenes has been
demonstrated to engage. Beyond the receptors described above, other NLRs
including NLRC5 and NLRP6 have been studied in regard to L. monocytogenes
infection. The NLRC5 inflammasome largely regulates MHC class I-associated
gene expression (Meissner et al. 2010). Nlrc5−/− mice infected with L. monocyto-
genes have impaired CD8+ T-cell responses, both in the number and in the ability to
produce the effector cytokine, IFNγ. CD4+ T-cell responses are not impaired in
these mice, consistent with the role of NLRC5 in regulating MHC I-associated gene
expression (Yao et al. 2012; Biswas et al. 2012). NLRC5 has also been shown to
associate with NLRP3 and contribute to NLRP3 inflammasome activation (Davis
et al. 2011; Yao et al. 2012). As discussed above, L. monocytogenes has been
shown, in some cases, to activate the NLRP3 inflammasome, although the specific
contribution of NLRC5 to this activation will require additional studies. That said,
infection of Nlrc5−/− mice with L. monocytogenes resulted in partial impairments in
caspase-1 processing and IL-1β secretion, suggesting a role for this protein in a
more traditional inflammasome-dependent response (Yao et al. 2012). Finally,
Nlrc5−/− mice infected with L. monocytogenes have higher bacterial burdens (Yao
et al. 2012; Biswas et al. 2012), although it is unclear whether this is due to
deficient CD8+ T-cell responses or to a more canonical inflammasome-dependent
infection control mechanism.

NLRP6 has been shown to have roles in altering the gut microbiota to promote
gut inflammation and ultimately tumorigenesis (Elinav et al. 2011; Normand et al.
2011; Chen et al. 2011). Interestingly, Nlrp6−/− mice infected orally with
L. monocytogenes are largely protected from lethal L. monocytogenes infection, with
75 % surviving lethal challenge. Further, Nlrp6−/− mice harbor lower bacterial
burdens in their spleens and livers and fail to lose weight following infection (Anand
et al. 2012). These effects appear to be independent of the gut microbiota compo-
sition, but instead depend on increases in circulating monocytes and neutrophils in
Nlrp6−/− mice after L. monocytogenes infection both systemically in the blood and
locally in the peritoneal cavity (Anand et al. 2012). Though NLRP6 seems to have
important roles in L. monocytogenes infection, this appears to occur independent of
canonical inflammasome activation as caspase-1 activation and IL-1β processing are
not impaired following L. monocytogenes infection in Nlrp6−/− macrophages
(Anand et al. 2012). Similarly, in human PBMCs, NLRP6 is dispensable for
canonical inflammasome activation by L. monocytogenes (Meixenberger et al.
2010). Taken together, these results suggest that though NLRP6 has a role in
L. monocytogenes pathogenesis, it is likely independent of the effects from
inflammasome signaling.

Finally, among the remaining NLRs, a few have been tested for L. monocyto-
genes-dependent phenotypes. HEK293 cells reconstituted with NLRP2 or NLRP12
result in increases in IL-1β production when infected with L. monocytogenes,
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suggesting that L. monocytogenes can also engage these inflammasomes, although
which components of L. monocytogenes are recognized by these receptors remains
unknown (Tsuchiya et al. 2010). Conversely, in human PBMCs, NLRP1 and
NLRP12 are dispensable for inflammasome activation by L. monocytogenes
(Meixenberger et al. 2010). These results suggest that L. monocytogenes can
potentially engage other NLRs; however, the effects of this engagement are unclear
and the mechanisms by which they are activated require more in-depth future
studies.

In conclusion, although under in vitro conditions L. monocytogenes has been
found to activate the NLRP3, NLRC4, and AIM2 inflammasomes (Fig. 1), the
in vivo relevance of each of inflammasomes is unclear. As discussed in more detail
below and as shown in Fig. 1, molecules that engage the NLRP3 and NLRC4
inflammasomes are under the tight control in physiologic settings, thus limiting
their ability to be sensed by their respective inflammasomes. Although AIM2 is the
most likely relevant inflammasome in vivo, L. monocytogenes also has yet unde-
fined ways of avoiding cytosolic bacteriolysis, suggesting that overall, L. mono-
cytogenes limits inflammasome activation.

3 Avoidance of Inflammasome Activation

Avoidance of cell death is critical for the virulence of L. monocytogenes as mutants
that misregulate LLO activity in the cytosol cause necrosis and are highly attenu-
ated in vivo (Glomski et al. 2003). Similarly, L. monocytogenes that hyperactivate
the inflammasome or induce apoptosis are also attenuated (Sauer et al. 2011a;
Warren et al. 2011; Theisen and Sauer, unpublished results). Thus, although
L. monocytogenes can activate multiple inflammasomes during infection in vitro, it
is likely that it largely avoids doing so during infection in vivo to protect its
intracellular niche. As a pathogen that utilizes a replication niche rich in inflam-
masome receptors, it is critical that L. monocytogenes has evolved mechanisms to
avoid detection or actively inhibit the inflammasome.

3.1 Avoidance of NLRP3

As described above, LLO, through its pore-forming activity, is capable of activating
the NLRP3 inflammasome, likely when found in high concentrations extracellu-
larly. However, expression, stability, and activity of LLO are tightly regulated to
prevent host cell toxicity, either directly through pore formation and necrosis or
potentially through pore-induced NLRP3 activation. LLO expression is both tran-
scriptionally and post-transcriptionally regulated through the activity of the PrfA
transcription factor and the 5′ UTR, respectively (Shen and Higgins 2005; Schnupf
et al. 2006a). Additionally, LLO in the host cytosol is ubiquitinated and targeted for
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proteosomal degradation (Schnupf et al. 2006b). Finally, and perhaps most
importantly, LLO toxicity is limited at the level of pore-forming activity such that
LLO is maximally active only at an acidic pH, a characteristic unique to LLO
among the cholesterol-dependent cytolysins (Glomski et al. 2002). Each of these
levels of regulation contributes to minimizing the toxicity of LLO to maximize
virulence as misregulated LLO can lead to cytotoxicity and result in severe atten-
uation of virulence (Glomski et al. 2003). Taken together, these studies demonstrate
that L. monocytogenes carefully regulates the expression of its pore-forming toxin
to limit host cell damage and maintain its virulence, in the process likely avoiding a
robust activation of the NLRP3 inflammasome under physiologic conditions.

3.2 Avoidance of NLRC4

Similar to the tight regulation of LLO, L. monocytogenes has developed exquisite
control over expression of its flagellin, regulating the expression through temper-
ature sensing as well as yet to be identified signals found in the host cell cytosol. At
the physiologic temperature of 37 °C, L. monocytogenes limits the expression of its
flagellin through the transcriptional repressor, MogR. However, at temperatures
below 37 °C, such as those found in the external environment, L. monocytogenes
must express flagellin (Peel et al. 1988), and MogR repression must be removed.

Repression by MogR is relieved by the anti-repressor GmaR (Shen et al. 2006).
Thus, the balance between these two factors is important in the expression of
flagellin. As an added measure to ensure that flagellin is not expressed at 37 °C,
there is post-transcriptional regulation of GmaR so that MogR is the dominant
component regulating flagellin expression (Kamp and Higgins 2009). Therefore,
similar to what is observed for LLO, although flagellin can activate the NLRC4
inflammasome, L. monocytogenes tightly limits its expression in the presence of
inflammasome components. Whether this level of regulation evolved to facilitate
the avoidance of TLR5 detection or inflammasome activation is unclear; however
given that the majority of L. monocytogenes’ lifecycle in the host is in the cytosol, it
is enticing to imagine a strong selective pressure exerted by inflammasome
detection leading to the tight control of flagellin expression. Indeed, recent evidence
suggests that, contrary to previous reports, primary human macrophages utilize a
specific splice variant of NLR family, apoptosis inhibiting protein (NAIP) to
facilitate the recognition of flagellin through the NLRC4 inflammasome (Kortmann
et al. 2015).

3.3 Avoidance of AIM2

In addition to regulating LLO and flagellin to avoid detection by the inflammasome,
as a pathogen that makes its life in the cytosol, fidelity during replication and
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evasion of host defense mechanisms is essential for L. monocytogenes to avoid
detection by the AIM2 inflammasome. Work by Werner Goebel’s laboratory
suggests that cytosolic pathogens have developed unique defenses to survive the
harsh environment, that is, the host cytosol. Non-cytosolic pathogens that are
placed into the cytosol by microinjection fail to replicate and in some cases are
killed, whereas cytosol-adapted pathogens survive and thrive (Goetz et al. 2001;
Slaghuis et al. 2004). Further, additional studies demonstrated that even intracel-
lular pathogens that mislocalize to the cytosol, such as ΔsifA mutant Salmonella
enterica subsp. Typhimurium, are unable to survive (Beuzón et al. 2000). Finally,
Legionella pneumophila ΔsdhA mutants mislocalize to the cytosol, subsequently
lyse, and activate the inflammasome (Creasey and Isberg 2012; Ge et al. 2012).
Taken together, these data suggest that bacteria such as L. monocytogenes that are
able to survive and replicate within the harsh environment of the cytosol must have
evolved mechanisms to deal with these stresses and/or active host defenses. Recent
evidence suggests that the loss of these survival adaptations ultimately results in the
lysis of L. monocytogenes in the cytosol, leading to AIM2 activation and virulence
attenuation, further highlighting the importance of inflammasome avoidance in
promoting L. monocytogenes virulence (Sauer et al. 2010, Daniel Pensinger,
Grischa Chen and JD Sauer unpublished data).

The specific adaptations that allow L. monocytogenes to survive within the
cytosol of cells and avoid AIM2 inflammasome activation are largely unknown.
L monocytogenes Δyvck mutants lyse in the macrophage cytosol, resulting in
hyperactivation of the AIM2 inflammasome and virulence attenuation (Sauer et al.
2010). The function of YvcK, a conserved protein of unknown function, in
maintaining cell wall integrity specifically in the cytosol remains unknown, though
the loss of yvck sensitizes L. monocytogenes to lysozyme and numerous cell
wall-acting antibiotics in vitro, suggesting that yvck plays an integral role in dealing
with cell wall stress (Burke et al. 2014, Daniel Pensinger and JD Sauer unpublished
data). Similarly, L. monocytogenes deficient in either the N-deacetylation (Δpgd) or
O-acetylation (Δoat) of peptidoglycan are sensitive to lysozyme and lyse within the
host cytosol (Rae et al. 2011). Finally, Witte et al. (2012) reported a number of
L. monocytogenes mutants that hyperinduce host cell death and undergo bacteri-
olysis in the host cell cytosol, though these mutants were not fully characterized as
activating the AIM2 inflammasome. However, it is likely given their lysis pheno-
types correlating with increased host cell death that these genes are required for the
avoidance of host cytosolic defense mechanisms to promote the avoidance of the
AIM2 inflammasome. Importantly, maintaining bacterial integrity in the cytosol as
a mechanism of avoiding AIM2 detection is a conserved virulence mechanism as
Peng et al. (2011) recently demonstrated that a series of Francisella tularensis
mutants that hyperactivate the inflammasome do so due to cytosolic bacteriolysis.
Taken together, these data suggest that maintenance of the cell wall is a critical
determinant of L. monocytogenes virulence, in part due to the necessity of avoiding
AIM2 activation.
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3.4 Active Inhibition of the Inflammasome

Although pathogens such as Yersinia spp. and Pseudomonas aeruginosa express
molecules that actively inhibit inflammasome activation (Sutterwala et al. 2007;
Brodsky et al. 2010), there is little evidence of L. monocytogenes actively inhibiting
the inflammasome. Instead, it is presumed that the lack of robust inflammasome
activation observed during L. monocytogenes infection is due to avoiding detection.
These data are supported by the studies demonstrating that L. monocytogenes
engineered to activate the inflammasome through ectopic expression of flagellin are
able to potently activate the inflammasome (Sauer et al. 2011a; Warren et al. 2011).
Likewise, L. monocytogenes-infected macrophages are still capable of robustly
responding to transfected DNA, suggesting that L. monocytogenes is not actively
inhibiting AIM2 inflammasome activation (JD Sauer unpublished observations).
While it is possible, and maybe even likely given its importance in host defense,
that L. monocytogenes actively inhibits pyroptosis under certain conditions or for
the activation of specific inflammasomes, studies to date have not identified such a
mechanism. The lone potential example is during in vivo infection where
L. monocytogenes can activate cholesterol 25-hydroxylase (Ch25h) downstream of
liver X receptors (LXRs) through type I INF production (Zou et al. 2011). Ch25h
results in the expression of Cd5l, a pro-survival gene that limits the activation of
both caspase-3 and caspase-1, ultimately limiting host cell inflammasome activation
and pyroptosis. Further, this response seems to be conserved among other down-
stream targets of LXRs (Zou et al. 2011), suggesting that L. monocytogenes may
activate this pathway to limit caspase-1 activation and preserve its niche.

4 Role in Pathogenesis

4.1 Role of Caspase-1/11

As described above, L. monocytogenes can interact with many different inflam-
masomes in vitro, culminating in the activation of caspase-1. Initial studies of
murine caspase-1 were actually studies of both caspase-1 and caspase-11 double
deletions (Kayagaki et al. 2011). Caspase-11 has largely been implicated in
Gram-negative infections recognizing the LPS moiety of many of these pathogens
(Wang et al. 1998; Kayagaki et al. 2011). L. monocytogenes has been found to
induce caspase-11 expression upon infection; however, genetic deletion of
caspase-11 still allows caspase-1 to function normally (Akhter et al. 2012), sug-
gesting that caspase-11 is dispensable in L. monocytogenes infection.

Initial reports suggested that mice deficient in caspase-1/11 had impaired
clearance of L. monocytogenes, resulting in an increased death rate, particularly at
late time points in infection (Tsuji et al. 2004). Mice were rescued with exogenous
IL-18 or IFNγ, suggesting that the production of these critically important cytokines
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is impaired in caspase-1/11−/− mice (Tsuji et al. 2004). While these initial exper-
iments suggest a critical role for caspase-1/11 in controlling L. monocytogenes
infection, further experiments have failed to find a similar role. Both Sauer et al.
(2011a) and Tsuchiya et al. (2014) observed no increased susceptibility to
L. monocytogenes in caspase-1/11−/− mice at 2 days post infection. Similarly, there
was no increased susceptibility to L. monocytogenes in zebrafish lacking caspase-1
(Vincent et al. 2015). These studies are consistent with the tight levels of regulation
observed with potential inflammasome agonists as well as the critical nature of host
cell survival that has previously been reported to promote L. monocytogenes vir-
ulence. The differences between the initial characterization of caspase-1 and more
recent studies likely stem from the time points examined, the background of mice
used in the initial studies (C57Bl/6 J × 129SV/J), as well as the differences in the
strains of L. monocytogenes used for each of the studies. Taken together, the more
recent studies suggest that caspase-1 is dispensable for the control of L. monocy-
togenes early during infection, likely due to L. monocytogenes avoiding the acti-
vation of the inflammasome and maintaining its intracellular niche. However, it is
possible that later in infection when bacterial burdens are high, the inflammasome
plays a role in host protection. Importantly, as briefly discussed above and in more
detail below, under conditions in which L. monocytogenes does activate the
inflammasome, due to ectopic flagellin expression or mutations that result in
detection by AIM2, caspase-1 activation and the subsequent pyroptosis severely
attenuate virulence, further highlighting the importance of inflammasome evasion
for L. monocytogenes pathogenesis.

4.2 Role of ASC

ASC is an adaptor molecule required for cytokine secretion and pyroptosis
downstream of both the NLRP3 and AIM2 inflammasomes (Broz et al. 2010). In
the case of CARD-containing inflammasomes, such as the NLRC4 inflammasome,
ASC is only required for cytokine secretion and is dispensable for pyroptosis (Broz
et al. 2010). Thus, as discussed above, the majority of inflammasome activation by
L. monocytogenes requires signaling through ASC for both pyroptosis and cytokine
secretion (Fig. 1). As such, ASC−/− peritoneal macrophages fail to activate
caspase-1 or secrete IL-1β and IL-18 (Ozören et al. 2006). Consistent with obser-
vations that the loss of caspase-1 has no effect on L. monocytogenes virulence
in vivo (Sauer et al. 2011a; Tsuchiya et al. 2014), the loss of ASC results in similar
susceptibility to L. monocytogenes (Sauer et al. 2011a). Interestingly, recent work
by Tsuchiya suggests that ASC deficiency may in some cases result in enhanced
host protection during L. monocytogenes infection (Tsuchiya et al. 2014). ASC−/−

mice are able to withstand a bacterial load of 1 × 106 colony forming units
(CFU) of L. monocytogenes, a log higher than the LD50 for wild-type C57Bl/6
mice, and harbor lower bacteria burdens in their livers. The investigators report that
ASC promotes the production of the anti-inflammatory cytokine IL-10 and that
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protection in ASC-deficient mice is likely due to reduced IL-10 production
(Tsuchiya et al. 2014). Taken together, these results suggest that similar to the loss
of caspase-1, the loss of ASC does not promote the virulence of L. monocytogenes,
and in fact may result in enhanced protection, although this phenotype may be
independent of ASC’s role in caspase-1 activation (Tsuchiya et al. 2014).

4.3 Role of IL-1β and IL-18

IL-1β and IL-18 have been examined in the context of L. monocytogenes infection
well before these cytokines were known to be downstream of the inflammasome.
Initial reports of IL-1 receptor-deficient (IL-1R1−/−) mice that lack signaling of
IL-1α and IL-1β suggested that these mice are more susceptible to L. monocyto-
genes (Labow et al. 1997); however, this was done in a mixed background (B6/129)
and is likely confounded by the fact that 129 mice are more susceptible to
L. monocytogenes at baseline (Gahan and Collins 1995). Further examination on a
clean C57Bl/6 background suggests that there is no alteration in acute virulence in
the absence of IL-1 signaling (Glaccum et al. 1997). Similarly, mice deficient just in
IL-1β show no differences in susceptibility (Zheng et al. 1995), suggesting that IL-1
signaling is dispensable during initial infection.

Priming of cells via signal one, largely through NF-κB signaling, is critical in
up-regulating IL-1β transcripts (Latz et al. 2013). In TLR2−/− macrophages, IL-1β
secretion is impaired following L. monocytogenes infection likely through tran-
scriptional impairment (Ozören et al. 2006). Further, the loss of tumor progression
locus 2 (TPL2), a factor critical in orchestrating cytokine responses downstream of
TLR signaling, impairs IL-1β secretion following L. monocytogenes infection
through impairments of IL-1β transcript up-regulation (Mielke et al. 2009).
Interestingly, the loss of TPL2 increases the susceptibility of mice to L. monocy-
togenes, though the regulation of other key innate cytokines such as TNF-α and
IFN-γ is similar regardless of whether TPL2 is present or not (Mielke et al. 2009).
Even though TPL2 influences the levels of IL-1β, the increased susceptibility of
TPL2−/− mice does not recapitulate the phenotype of IL-1R1−/− mice; thus, the
increased susceptibility of TPL2−/− mice is not likely due to the changes in IL-1β
but instead to some other undescribed effect of loss of TPL2.

Characterization of the role of IL-18, particularly in acute infection, has also
resulted in conflicting reports. Initial studies suggested that IL-18 is critical in acute
infection, and the lack of IL-18 leads to an increased susceptibility (Neighbors et al.
2001). IL-18 is critical in stimulating IFN-γ, a crucial cytokine for controlling
L. monocytogenes infection, and thus, decreases in IL-18 production result in less
IFN-γ production, leading mice to succumb to infection. While these observations
were made in initial reports, the authors also observed decreases in TNF-α pro-
duction, another critical cytokine in innate susceptibility, and suggest that the
corresponding lack of TNF-α from IL-18-deprived mice is largely what is
responsible for susceptibility to infection. More recent studies in both IL-18−/− and
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IL-18Rα−/− contradict these earlier results and suggest that IL-18−/− mice are
actually more resistant to L. monocytogenes, particularly at high doses (Lochner
et al. 2008; Tsuchiya et al. 2014). These results are in line with reports that suggest
that ASC−/− mice, which also lack IL-18 secretion, are less susceptible to
L. monocytogenes (Tsuchiya et al. 2014). The reason for this decreased suscepti-
bility could stem from an increased influx of leukocytes in the initial 72 h
postinfection that are resistant to apoptosis (Lochner et al. 2008).

While most IL-1β and IL-18 signaling is believed to occur downstream of the
inflammasome, there have been caspase-1-independent observations of IL-1β and
IL-18 secretion (Uchiyama et al. 2013; Tsuchiya et al. 2014). One such mechanism
relies on Fas (CD95/Apo-1) signaling. Peritoneal exudate cells (PECs) deficient in
Fas secreted less IL-1β and IL-18 after L. monocytogenes infection (Uchiyama et al.
2013), suggesting that Fas is required for cytokine secretion. Interestingly, this
mechanism is caspase-1, caspase-11, NLRP3, and NLRC4 independent, while it is
dependent on ASC (Uchiyama et al. 2013). In line with the reports that suggest
IL-1β maturation can occur through caspase-8 activation (Gringhuis et al. 2012;
Bossaller et al. 2012), L. monocytogenes can activate caspase-8 in a Fas-dependent
manner, suggesting that in this instance, IL-1β and IL-18 could be processed
through caspase-8 and not caspase-1. Additionally, IL-18 can be processed to its
mature form through neutrophil serine proteases (Sugawara et al. 2001). In
caspase-1/11−/− mice infected with lethal doses of L. monocytogenes, elevated
neutrophil serine protease activity was observed that correlated with the increased
IL-18 production (Tsuchiya et al. 2014). Taken together, while not all studies are
consistent, and differences in mouse backgrounds, L. monocytogenes strains, doses,
and infection kinetics could account for discrepancies, the preponderance of data
suggests that the inflammatory cytokines downstream of inflammasome activation
are dispensable for host defense during L. monocytogenes infection.

4.4 Innate Immune Cell Infiltrate

During murine L. monocytogenes infection, there is a robust, initial infiltrate of
myelomonocytic cells (MMCs) consisting of neutrophils and Ly6Chi monocytes
into the splenic white pulp (Waite et al. 2011; Williams et al. 2013). Because
L. monocytogenes largely avoids activating the inflammasome, much of the work
examining the host response to pyroptosis has used an engineered strain of
L. monocytogenes that ectopically expresses flagellin resulting in hyperactivation of
the inflammasome and attenuation (Sauer et al. 2011a; Warren et al. 2011; Williams
et al. 2013; Vincent et al. 2015). Infection with inflammasome-activating
L. monocytogenes resulted in an earlier MMC infiltrate that penetrates into the
deep T-cell zones of the spleen; however, this infiltrate is less robust and clears
earlier than with wild-type infection, corresponding to a drop in burden (Williams
et al. 2013). Similar early innate immune cell infiltrates consisting of predominantly
macrophages were observed in zebrafish infected with inflammasome-activating
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L. monocytogenes ultimately resulting in attenuation (Fig. 2) (Vincent et al. 2015).
Previous work with Salmonella enterica subsp. Typhimurium similarly engineered
to robustly activate the inflammasome suggests that pyroptosis expels bacteria for
uptake by bactericidal neutrophils ultimately resulting in phagocyte oxidase-
dependent attenuation (Miao et al. 2010a). However, neutrophil depletion does not
specifically rescue virulence defects following the activation of pyroptosis by L.
monocytogenes (Sauer et al. 2011a; Vincent et al. 2015). Instead, depletion of
macrophages rescues the virulence defect of inflammasome-activating L. monocy-
togenes (Vincent et al. 2015). Why the attenuation of L. monocytogenes is inde-
pendent of neutrophils while S. typhimurium is dependent on neutrophils is unclear,
although it is important to note that the depletion of neutrophils was not directly
assessed in the Salmonella studies; rather, the loss of phagocyte oxidase implicated
the role for neutrophils (Miao et al. 2010a). In wild-type L. monocytogenes
infection, neutrophils are dispensable for defense, while inflammatory monocytes
are critical (Shi et al. 2011), suggesting that attenuation following inflammasome
activation likely depends on the cell type critical in clearing the pathogen normally.

5 Adaptive Immune Response to L. monocytogenes

The specific mechanisms by which L. monocytogenes infection triggers robust
CD8+ T cell-dependent cell-mediated immune responses are largely unknown.
Generally, the initial innate response is posited to inform the type and robustness of
the adaptive immune response (Janeway 1989). It was hypothesized that activation
of the inflammasome and its resulting robust innate inflammatory response would
contribute to mounting a better adaptive immune response. As discussed below,
surprising results suggest that activation of the inflammasome is detrimental for the
activation of L. monocytogenes-triggered adaptive immunity (Sauer et al. 2011a).
Importantly, understanding how CD8+ T-cell responses form following L. mono-
cytogenes infection and how we can improve them is critical in the development of
L. monocytogenes as a cancer immunotherapeutic platform.

5.1 Protective Immunity

To understand how the inflammasome impacts the generation of adaptive immu-
nity, multiple groups independently generated strains of L. monocytogenes that
hyperactivate the inflammasome (Sauer et al. 2011a; Warren et al. 2011). Both
groups utilized expression systems whereby flagellin expression was activated
exclusively in the cytosol of infected macrophages, limiting flagellin detection to
the NAIP5/NLRC4 inflammasome while limiting the potential impact of
TLR5-mediated flagellin recognition. Warren et al. (2011) observed that mice
immunized with flagellin-expressing L. monocytogenes could survive a subsequent
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lethal challenge, suggesting that the activation of the inflammasome allows a
protective immune response to form. While all mice immunized with a high dose of
inflammasome-activating bacteria survived the subsequent lethal dose challenge, no
wild-type control mice were analyzed as a comparison, and neither T-cell responses
nor bacterial burdens after lethal challenge were examined to determine whether the
response was better or worse than that activated by non-inflammasome-activating
L. monocytogenes.

In contrast, similar immunization studies with inflammasome-activating
L. monocytogenes found that adaptive immune responses were impaired. While
immunization of mice with high doses of attenuated inflammasome-activating or
nonactivating L. monocytogenes both conferred some degree of protection from the
subsequent lethal challenge, mice were significantly less protected when immu-
nized with strains that activated the inflammasome. More strikingly, when immu-
nized at low doses, inflammasome-activating strains were unable to confer any
protection above mock-immunized mice, whereas non-inflammasome-activating
immunizations led to a significant protection from the subsequent lethal challenge
(Sauer et al. 2011a). Similarly, immunization with inflammasome-activating
L. monocytogenes resulted in an impaired antigen-specific primary CD8+ T-cell
response, with about half as many antigen-specific CD8+ T cells forming compared
to immunization with non-inflammasome-activating strains (Sauer et al. 2011a).
Further, these CD8+ T-cell deficits persist into the memory stage (Sauer et al.
2011a), and levels of the recall CD8+ T cells at 2 days after challenge are also
impaired (Theisen and Sauer, unpublished results). Interestingly, the recall response
examined at 5 days post challenge results in similar levels of expanded
antigen-specific CD8+ T cells (Sauer et al. 2011a), suggesting that the rate of
expansion upon recall is slower and likely contributes to the differences seen in
bacterial burdens upon challenge. Finally, caspase-1 mice immunized with
L. monocytogenes mount more robust protective immune responses compared to
the wild-type (Sauer et al. 2011a, JD Sauer unpublished data). Taken together, these
data suggest that at high immunizing doses, some protection can be conferred from
L. monocytogenes strains that activate the inflammasome, but that this response is
impaired compared to strains that avoid inflammasome activation, and at lower
immunizing doses, T-cell activation is insufficient to confer the protection from a
subsequent lethal challenge (Fig. 3).

How inflammasome activation inhibits L. monocytogenes-stimulated immunity
remains unclear. Inflammasome-activating strains of L. monocytogenes are atten-
uated in vivo (Sauer et al. 2011a; Warren et al. 2011; Vincent et al. 2015); however,
some of the adaptive immunity studies have been done with Δact L. monocytogenes
to normalize the differences in bacterial burden (Sauer et al. 2011a; Williams et al.
2013). Further, the depletion of MMCs, which partially rescues inflammasome-
activating L. monocytogenes virulence defects, does not affect the defects in the
development of CD8+ T cells or protective immunity (Fig. 3) (Williams et al.
2013), suggesting that deficits in adaptive immunity are independent of virulence
defects and are consistent with evidence that immunity is independent of bacterial
burden (Mercado et al. 2000). Interestingly, inflammasome activation is required
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for T-cell responses to a variety of other pathogens, including Candida albicans,
Schistosoma mansoni, and Bordetella pertussis (Dunne et al. 2010; Ritter et al.
2010; van de Veerdonk et al. 2011). However, these responses largely require
CD4+ T cell-dependent Th1 or Th17 responses, not the CD8+ T-cell response that
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Fig. 3 Inflammasome-associated inflammation impairs host cell-mediated immune responses to
L. monocytogenes. In wild-type L. monocytogenes infection, L. monocytogenes minimally
activates caspase-1 and, through a not fully understood mechanism, induces a robust
multifunctional CD8+ T-cell response. In contrast, activation of the inflammasome by
L. monocytogenes results in robust caspase-1 activation and impairment of multifunctional
CD8+ T-cell generation through the inflammasome-associated inflammatory milieu, independent
of IL-1β and IL-18. Inflammasome activation also results in a robust, early recruitment of
myelomonocytic cells that while attenuating L. monocytogenes do not impair CD8+ T-cell
generation
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L. monocytogenes induces, suggesting that inflammasome activation may have
different roles in regulating the adaptive immune response pending the type of
response required for pathogen control.

5.2 Influence of Cytokines

Preliminary data suggest that inflammasome-dependent inhibition of immunity is
largely mediated by the inflammatory milieu and not deficits in antigen presentation
or costimulation. However, the specific inflammatory mediators that inhibit the
generation of robust cell-mediated immunity remain unknown (Erin Theisen and JD
Sauer, unpublished data). We and others have examined how deficiency of either
IL-1β or IL-18 influences the adaptive immune response. In our hands, the loss of
IL-1β, IL-18, or both still results in impairments in the protective immune response
following the immunization with inflammasome-activating L. monocytogenes,
suggesting that these cytokines do not negatively influence the development of
adaptive immunity. Further, IL-18−/− or IL-18Rα−/− mice do not have impairments
in generating antigen-specific CD8+ T cells that have effector functions (Lochner
et al. 2008; Haring and Harty 2009). Similarly, the loss of IL-18Rα does not impact
the rate of contraction or formation or maintenance of memory T cells (Haring and
Harty 2009). Interestingly, it seems that the loss of IL-18 does result in fewer CD4+

T cells; however, this ultimately does not impact the generation of protective
immunity as IL-18−/− or IL-18Rα−/− mice harbor similar burdens of L. monocy-
togenes following the lethal challenge (Lochner et al. 2008; Haring and Harty
2009).

Taken together, these results suggest that inflammasome activation is detrimental
to the influence of adaptive immunity; however, the reason for this inhibition
remains largely unknown. We hypothesize that an undescribed inflammatory
component is responsible for these defects.

6 Concluding Remarks

In this chapter, we have discussed the mechanisms by which L. monocytogenes can
activate the inflammasome. However, in vivo data suggest that under physiologic
conditions, L. monocytogenes largely avoids activating the inflammasome as evi-
denced by multiple studies that demonstrate no change in virulence in
caspase-1-deficient mice and attenuation when L. monocytogenes is engineered to
robustly activate the inflammasome (Sauer et al. 2011a; Warren et al. 2011; Vincent
et al. 2015).

Attenuated L. monocytogenes is currently being developed as a cancer
immunotherapeutic platform, and early returns in multiple phase I and II clinical
trials have been exceptionally positive (Le et al. 2015). How L. monocytogenes is
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able to mount a CD8+ T-cell response that is able to break self-tolerance remains
unknown. It was initially hypothesized that inflammasome activation and its
associated inflammation would positively influence cell-mediated immunity;
however, inflammasome activation ultimately impairs the adaptive immune
response generated to L. monocytogenes (Sauer et al. 2011a; Williams et al. 2013).
It is possible that although the inflammasome is detrimental in the context of strong
non-self-antigens, it could be beneficial in the context of less robust or
self-antigens. Studies to assess this possibility are currently underway.

While L. monocytogenes largely avoids inflammasome activation, immunization
of caspase-1/11−/− mice results in better protective immune responses than
wild-type mice, suggesting that even low-level inflammasome activation is detri-
mental to the development of adaptive immunity (Sauer et al. 2011a). Additionally,
current platforms of L. monocytogenes immunotherapy are limited in the com-
plexity of antigens they can produce, and for the production of more complex
antigens, the host must be able to transcribe and translate the antigens—similar to
the idea of immunization with plasmid DNA. Platforms of L. monocytogenes
designed to release plasmid DNA encoding complex tumor antigens through
engineered bacteriolysis or antibiotic-mediated lysis (van Pijkeren et al. 2010; Sauer
et al. 2010) are severely inhibited due to inflammasome activation. Thus, under-
standing and modulating inflammasome activation by L. monocytogenes is critical
for its success as an immunotherapeutic platform.
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