
Intelligent Systems Reference Library 112

Aleksandra Klašnja-Milićević
Boban Vesin
Mirjana Ivanović
Zoran Budimac
Lakhmi C. Jain

E-Learning
Systems
Intelligent Techniques for
Personalization

Intelligent Systems Reference Library

Volume 112

Series editors

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

Lakhmi C. Jain, University of Canberra, Canberra, Australia;
Bournemouth University, Poole, UK;
KES International, UK
e-mails: jainlc2002@yahoo.co.uk; Lakhmi.Jain@canberra.edu.au

About this Series

The aim of this series is to publish a Reference Library, including novel advances
and developments in all aspects of Intelligent Systems in an easily accessible and
well structured form. The series includes reference works, handbooks, compendia,
textbooks, well-structured monographs, dictionaries, and encyclopedias. It contains
well integrated knowledge and current information in the field of Intelligent
Systems. The series covers the theory, applications, and design methods of
Intelligent Systems. Virtually all disciplines such as engineering, computer science,
avionics, business, e-commerce, environment, healthcare, physics and life science
are included.

More information about this series at http://www.springer.com/series/8578

http://www.springer.com/series/8578

Aleksandra Klašnja-Milićević
Boban Vesin • Mirjana Ivanović
Zoran Budimac • Lakhmi C. Jain

E-Learning Systems
Intelligent Techniques for Personalization

123

Aleksandra Klašnja-Milićević
Faculty of Sciences, Department of Mathematics

and Informatics
University of Novi Sad
Novi Sad
Serbia

Boban Vesin
Department of Computer Science and Engineering
University of Gothenburg/Chalmers, University of

Technology
Gothenburg
Sweden

Mirjana Ivanović
Faculty of Sciences, Department of Mathematics

and Informatics
University of Novi Sad
Novi Sad
Serbia

Zoran Budimac
Faculty of Sciences, Department of Mathematics and

Informatics
University of Novi Sad
Novi Sad
Serbia

Lakhmi C. Jain
University of Canberra
Canberra
Australia

and

Bournemouth University
Poole
UK

and

KES International
UK

ISSN 1868-4394 ISSN 1868-4408 (electronic)
Intelligent Systems Reference Library
ISBN 978-3-319-41161-3 ISBN 978-3-319-41163-7 (eBook)
DOI 10.1007/978-3-319-41163-7

Library of Congress Control Number: 2016943629

© Springer International Publishing Switzerland 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Foreword

In past decade a lot of efforts have been put into development of e-learning: many
systems and repositories of learning objects have been developed, a notion of
learning object has been introduced and spread, learning object metadata standards
have been released, interoperability of e-learning system components have been
discussed. Thousands of papers, thesis and various research works on e-learning are
published every day. It seems that a new journal on e-learning opens every week.
Universities already embrace the power of e-learning to deliver content to students
all over the world, even for free.

E-learning, as an important segment of educational environments, represents a
unique opportunity to learn independently, regardless of time and place, to acquire
knowledge without interruption and based on the principles of traditional education.
E-learning offers a number of advantages for people and companies looking to
develop a new content programme or curricula. That is, whether your trainees are
all together in a classroom or scattered all over the country in different time zones,
they can still tap into the same course materials, and at a time that’s convenient to
them.

One of the most important segments in today’s development and use of the
e-learning system is the personalization of content and building of user profiles
based on the learning behaviour of each individual user. The personalization
options increase efficiency of e-learning, thus gaining much acceptance as it allows
the learners to set their own goals, learn at their own pace, and even decide on their
method of learning thus leading to better learning results. In order to personalize the
learning process and adapt content to each learner, e-learning systems can use
different strategies that have the ability to meet the needs of learners.

This monograph provides a comprehensive research review of intelligent tech-
niques based on the modern perspective of research and innovation for personal-
ization of e-learning systems. Personalized learning approach promotes a tailored
support system, helping learner to learn. In order to personalize learning, one needs
to personalize learning objects and their modules and courses, learning activities
and learning environments.

v

Special emphasis is given to intelligent tutoring systems as a particular class of
e-learning systems, which support and improve the learning and teaching of
domain-specific knowledge. Each of the subsequent chapters of this monograph
reveals leading-edge research and innovative solution that employ personalization
techniques with an application perspective.

It is obvious that different learners have different preferences, needs and
approaches to learning. Psychologists distinguish these differences as individual
learning styles. Learning styles can be defined as unique manners in which learners
begin to concentrate on, process, absorb and retain new and difficult information.
Therefore, it is very important to accommodate for the different styles of learners
through learning environments that they prefer and find more efficient. Furthermore,
in modern Web-based learning environments, the authors avoid creation of static
learning material that is presented to the learner in a linear way, due to the large
amount of interdependences and conditional links between the various pages.
Often, authors create multiple versions of learning resources so the system can
propose to the learner the appropriate one. This leads to the learning concept known
as content adaptation.

An important part of the personalization possibilities is certainly the prospect of
using the recommender system. Recommender system can be defined as a platform
for providing recommendations to users based on a specific type of information
filtering technique that attempt to recommend information items (movies, music,
books, news, Web pages, learning objects and so on). Recommender systems
strongly depend on the context or domain they operate in, and it is often not
possible to take a recommendation strategy from one context and transfer it to
another context or domain. Personalized recommendation can help learners to
overcome the information overload problem, by recommending learning resources
according to learners’ habits and level of knowledge. The first challenge for
designing a recommender component for e-learning systems is to define the learners
and the purpose of the specific context or domain in a proper way.

To improve recommendation quality, metadata such as content information of
items has typically been used as additional knowledge. With the increasing pop-
ularity of the collaborative tagging systems, tags could be interesting and useful
information to enhance algorithms for recommender systems. Collaborative tagging
systems have grown in popularity over the Web in the last years based on their
simplicity to categorize and retrieve content using open-ended tags.

A recent trend in the field of e-learning and tutoring systems is to utilize agent
technology, develop and use different kinds of agents with various degrees of
intelligence, capable of exhibiting both reactive and pro-active behaviour in order to
satisfy their design goals in virtual learning environments. The monograph presents
a possible trend in use of intelligent agents for personalized learning within tutoring
system.

The validity of viewing e-learning initiatives’ development from an information
systems’ perspective is supported by recognizing that both of these efforts are
fuelled by a common goal to harness new technologies to better meet the needs
of their users.

vi Foreword

I believe that the chapters presented in the monograph update on the modern
perspective of the education environments and personalization techniques per
research and innovation, and are beneficial for designing better e-learning systems.
I have recognized the significance of the monograph for researcher, practitioners
and students interested in the personalized e-learning technology. I expect it will
motivate and encourage new issues and challenges for the future scientific research
in this field.

This book is fascinated read for students of all levels and teachers, also for those
curious to learn about the e-learning in a systematic way.

Prof. Valentina Dagienė
Vilnius University, Lithuania

Foreword vii

Preface

The rapid development of the contemporary new Web technologies and methods
made online education increasingly accessible, open and adaptable; allowed new
techniques, approaches and models to emerge and reasoned the revolution in the
digital knowledge age that enabled greater and faster human (social) communica-
tion and collaboration and led to fundamentally new forms of economic activity that
produced the knowledge economy and required changes in education. The
increasing need for quality education requires expertise which is continually being
developed. The integration of e-learning (short form of Electronic Learning) into
the education system is viewed as one way to meet this growing need for
high-quality education.

This monograph brings a result of our attempts to represent the most important
aspects of current theory and practice in emergent e-learning approaches, systems
and environments. As a specific case study we will present in details Web-based
tutoring system we have been developing for last several years. This system
incorporates a lot of contemporary techniques and methods from e-learning and
technology-enhanced learning areas.

The material covered in the monograph is addressed to students, teachers,
researchers and practitioners in the areas of e-learning, recommender systems (RS),
semantic Web and machine learning.

This monograph is organized into five major parts. Part I: Preliminaries, which
includes Chap. 1 of the monograph—Introduction, introduces the motivation and
objectives studied in the subsequently presented research, and presents major
standards and specifications in e-learning.

Part II: E-learning Systems Personalization, which consists of Chaps. 2–7,
provides an overview of personalization techniques in e-learning systems. Chapter
2—Personalisation and Adaptation in E-Learning Systems shows the most popular
adaptation forms of educational materials to learners. Chapter 3—Personalisation
Based on Learning Styles presents the bases of electronic learning techniques for
personalization of learning process based on individual learning styles and the
possibilities of their integration into e-learning systems. The most popular

ix

http://dx.doi.org/10.1007/978-3-319-41163-7_1
http://dx.doi.org/10.1007/978-3-319-41163-7_2
http://dx.doi.org/10.1007/978-3-319-41163-7_7
http://dx.doi.org/10.1007/978-3-319-41163-7_2
http://dx.doi.org/10.1007/978-3-319-41163-7_3

adaptation techniques used in e-learning environments are presented in Chap. 4.
Following chapter—Agents in E-Learning Environments—presents current trends
in use of intelligent agents for personalization. Chapter 6—Recommender Systems
in E-Learning Environments—provides an overview of techniques for recom-
mender systems, folksonomy and tag-based recommender systems to assist the
reader in understanding the material which follows. The overview, presented in
Chap. 7 includes descriptions of content-based recommender systems, collaborative
filtering systems, hybrid approach, memory-based and model-based algorithms,
features of collaborative tagging that are generally attributed to their success and
popularity, as well as a model for tagging activities and tag-based recommender
systems.

Part III: Semantic Web Technologies in E-Learning contains a review of the
basic elements of semantic Web, as well as the possibilities of applying semantic
Web technologies in e-learning. Chapter 9—Design and Implementation of General
Tutoring System Model—displays the details of a general tutoring system model,
supported with semantic Web technologies as well as the principles of creating
courses in different domains supported by this model.

Part IV: Case Study: Design and Implementation of Tutoring System, which
consists of Chaps. 10 and 11, presents the most important requests for imple-
mentation of personalization options in e-learning environments, as well as design,
architecture and interface of Protus 2.1 system. Chapter 10 presents the details
about previous versions of the system, defined user requirements for the new
version of the system, architecture details, as well as general principles for appli-
cation of defined general tutoring model for implementation of programming
courses in Protus 2.1. Chapter 11 presents Protus 2.1 functionalities as well as
personalization options from the end-user perspective.

Part V: Evaluation and Discussion, which contains Chaps. 12 and 13, highlights
the results of the evaluation and discussion of analysis of the results regarding the
validity of the system. Finally, Chap. 13 concludes this monograph, summarizing
the main contributions and discussing the possibilities for future work.

x Preface

http://dx.doi.org/10.1007/978-3-319-41163-7_4
http://dx.doi.org/10.1007/978-3-319-41163-7_6
http://dx.doi.org/10.1007/978-3-319-41163-7_7
http://dx.doi.org/10.1007/978-3-319-41163-7_9
http://dx.doi.org/10.1007/978-3-319-41163-7_10
http://dx.doi.org/10.1007/978-3-319-41163-7_11
http://dx.doi.org/10.1007/978-3-319-41163-7_10
http://dx.doi.org/10.1007/978-3-319-41163-7_11
http://dx.doi.org/10.1007/978-3-319-41163-7_12
http://dx.doi.org/10.1007/978-3-319-41163-7_13
http://dx.doi.org/10.1007/978-3-319-41163-7_13

Contents

Part I Preliminaries

1 Introduction to E-Learning Systems . 3
1.1 Web-Based Learning . 4
1.2 E-Learning . 4
1.3 E-Learning Objects, Standards and Specifications. 7

1.3.1 E-Learning Objects. 8
1.3.2 E-Learning Specifications and Standards 11
1.3.3 Analysis of Standards and Specifications. 15

References . 16

Part II E-Learning Systems Personalization

2 Personalization and Adaptation in E-Learning Systems 21
2.1 Personalization and Personalized Learning 22
2.2 Adaptation of E-Learning Systems . 23
References . 25

3 Personalization Based on Learning Styles 27
3.1 Learning Style’s Theories . 28
3.2 Learning Styles in E-Learning Systems. 31
3.3 Learning Style Index by Felder and Soloman 33

3.3.1 Information Processing: Active and Reflective
Learners . 34

3.3.2 Information Perception: Sensing and Intuitive
Learners . 34

3.3.3 Information Reception: Visual and Verbal Learners . . . 35
3.3.4 Information Understanding: Sequential and Global

Learners . 35
References . 35

xi

http://dx.doi.org/10.1007/978-3-319-41163-7_1
http://dx.doi.org/10.1007/978-3-319-41163-7_1
http://dx.doi.org/10.1007/978-3-319-41163-7_1#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_1#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_1#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_1#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_1#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_1#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_1#Sec4
http://dx.doi.org/10.1007/978-3-319-41163-7_1#Sec4
http://dx.doi.org/10.1007/978-3-319-41163-7_1#Sec5
http://dx.doi.org/10.1007/978-3-319-41163-7_1#Sec5
http://dx.doi.org/10.1007/978-3-319-41163-7_1#Sec12
http://dx.doi.org/10.1007/978-3-319-41163-7_1#Sec12
http://dx.doi.org/10.1007/978-3-319-41163-7_1#Bib1
http://dx.doi.org/10.1007/978-3-319-41163-7_2
http://dx.doi.org/10.1007/978-3-319-41163-7_2
http://dx.doi.org/10.1007/978-3-319-41163-7_2#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_2#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_2#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_2#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_2#Bib1
http://dx.doi.org/10.1007/978-3-319-41163-7_3
http://dx.doi.org/10.1007/978-3-319-41163-7_3
http://dx.doi.org/10.1007/978-3-319-41163-7_3#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_3#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_3#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_3#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_3#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_3#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_3#Sec4
http://dx.doi.org/10.1007/978-3-319-41163-7_3#Sec4
http://dx.doi.org/10.1007/978-3-319-41163-7_3#Sec4
http://dx.doi.org/10.1007/978-3-319-41163-7_3#Sec5
http://dx.doi.org/10.1007/978-3-319-41163-7_3#Sec5
http://dx.doi.org/10.1007/978-3-319-41163-7_3#Sec5
http://dx.doi.org/10.1007/978-3-319-41163-7_3#Sec6
http://dx.doi.org/10.1007/978-3-319-41163-7_3#Sec6
http://dx.doi.org/10.1007/978-3-319-41163-7_3#Sec7
http://dx.doi.org/10.1007/978-3-319-41163-7_3#Sec7
http://dx.doi.org/10.1007/978-3-319-41163-7_3#Sec7
http://dx.doi.org/10.1007/978-3-319-41163-7_3#Bib1

4 Adaptation in E-Learning Environments. 37
4.1 Adaptive Educational Hypermedia . 38
4.2 Content Adaptation . 39
4.3 Link Adaptation. 40
References . 42

5 Agents in E-Learning Environments . 43
5.1 Some Existing Agent Based Systems 44
5.2 HAPA System Overview . 45

5.2.1 Harvesting and Classifying the Learning Material. 46
References . 48

6 Recommender Systems in E-Learning Environments 51
6.1 Recommendations and Recommender Systems 52
6.2 The Most Important Requirements and Challenges

for Designing a Recommender System in E-Learning
Environments . 57

6.3 Recommendation Techniques for RS in E-Learning
Environments—A Survey of the State-of-the-Art 60
6.3.1 Collaborative Filtering Approach 61
6.3.2 Content-Based Techniques . 65
6.3.3 Association Rule Mining. 67

References . 70

7 Folksonomy and Tag-Based Recommender Systems
in E-Learning Environments . 77
7.1 Comprehensive Survey of the State-of-the-Art in Collaborative

Tagging Systems and Folksonomy . 78
7.1.1 Tagging Rights . 80
7.1.2 Tagging Support . 80
7.1.3 Aggregation . 81
7.1.4 Types of Object . 81
7.1.5 Sources of Material . 82
7.1.6 Resource Connectivity . 82
7.1.7 Social Connectivity . 82

7.2 A Model for Tagging Activities . 83
7.3 Tag-Based Recommender Systems . 86

7.3.1 Extension with Tags . 86
7.3.2 Collecting Tags . 87

7.4 Applying Tag-Based Recommender Systems to E-Learning
Environments . 89
7.4.1 FolkRank Algorithm. 91
7.4.2 PLSA . 92
7.4.3 Collaborative Filtering Based on Collaborative

Tagging . 95

xii Contents

http://dx.doi.org/10.1007/978-3-319-41163-7_4
http://dx.doi.org/10.1007/978-3-319-41163-7_4
http://dx.doi.org/10.1007/978-3-319-41163-7_4#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_4#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_4#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_4#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_4#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_4#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_4#Bib1
http://dx.doi.org/10.1007/978-3-319-41163-7_5
http://dx.doi.org/10.1007/978-3-319-41163-7_5
http://dx.doi.org/10.1007/978-3-319-41163-7_5#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_5#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_5#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_5#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_5#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_5#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_5#Bib1
http://dx.doi.org/10.1007/978-3-319-41163-7_6
http://dx.doi.org/10.1007/978-3-319-41163-7_6
http://dx.doi.org/10.1007/978-3-319-41163-7_6#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_6#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_6#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_6#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_6#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_6#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_6#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_6#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_6#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_6#Sec4
http://dx.doi.org/10.1007/978-3-319-41163-7_6#Sec4
http://dx.doi.org/10.1007/978-3-319-41163-7_6#Sec5
http://dx.doi.org/10.1007/978-3-319-41163-7_6#Sec5
http://dx.doi.org/10.1007/978-3-319-41163-7_6#Sec6
http://dx.doi.org/10.1007/978-3-319-41163-7_6#Sec6
http://dx.doi.org/10.1007/978-3-319-41163-7_6#Bib1
http://dx.doi.org/10.1007/978-3-319-41163-7_7
http://dx.doi.org/10.1007/978-3-319-41163-7_7
http://dx.doi.org/10.1007/978-3-319-41163-7_7
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec4
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec4
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec5
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec5
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec6
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec6
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec7
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec7
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec8
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec8
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec9
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec9
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec10
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec10
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec11
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec11
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec12
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec12
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec13
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec13
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec13
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec14
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec14
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec15
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec15
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec16
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec16
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec16

7.4.4 Tensor Factorization Technique for Tag
Recommendation . 98

7.4.5 Most Popular Tags . 106
7.5 Limitations of Current Folksonomy and Possible Solutions 108
References . 110

Part III Semantic Web Technologies in E-Learning

8 Semantic Web . 115
8.1 Knowledge Organization Systems . 116
8.2 Ontologies . 117

8.2.1 Adaptive Educational Systems Technologies
in E-Learning . 119

8.2.2 Standards for E-Learning Environments 119
8.2.3 Semantic Web Methodologies 120
8.2.4 Representation of Ontologies 121
8.2.5 Development Practices of E-Learning Systems. 124
8.2.6 The Objective of Ontologies 126
8.2.7 Ontology Application . 127

8.3 Semantic Web Languages . 129
8.3.1 XML—eXtensible Markup Language 129
8.3.2 RDFS—Resource Description Framework Schema 130
8.3.3 OWL—Ontology Web Language 131

8.4 Graphical Environments for Ontology Development 132
8.4.1 Protégé . 132
8.4.2 NeOnToolkit . 134
8.4.3 TopBraid Composer . 134
8.4.4 Vitro . 135
8.4.5 OWLGrEd . 135
8.4.6 Knoodl . 135

8.5 Educational Ontologies . 136
8.5.1 Domain Ontology . 136
8.5.2 Task Ontology. 137
8.5.3 Teaching Strategy Ontology 137
8.5.4 Learner Model Ontology. 138
8.5.5 Interface Ontology . 138
8.5.6 Communication Ontology . 138
8.5.7 Educational Service Ontology 139

8.6 Adaptation Rules . 139
8.6.1 Semantic Web Rule Language (SWRL) 140
8.6.2 Jess . 141

8.7 Architecture of Semantic E-Learning Systems 142
References . 145

Contents xiii

http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec17
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec17
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec17
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec22
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec22
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec24
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Sec24
http://dx.doi.org/10.1007/978-3-319-41163-7_7#Bib1
http://dx.doi.org/10.1007/978-3-319-41163-7_8
http://dx.doi.org/10.1007/978-3-319-41163-7_8
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec4
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec4
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec5
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec5
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec6
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec6
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec8
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec8
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec12
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec12
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec13
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec13
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec14
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec14
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec15
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec15
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec16
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec16
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec17
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec17
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec18
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec18
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec19
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec19
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec21
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec21
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec22
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec22
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec23
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec23
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec24
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec24
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec25
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec25
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec26
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec26
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec27
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec27
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec28
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec28
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec29
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec29
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec30
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec30
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec31
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec31
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec32
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec32
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec33
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec33
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec34
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec34
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec35
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec35
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec36
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec36
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec37
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Sec37
http://dx.doi.org/10.1007/978-3-319-41163-7_8#Bib1

9 Design and Implementation of General Tutoring
System Model . 149
9.1 Architecture of General Tutoring System Model 150
9.2 System’s Ontologies . 151

9.2.1 Main Components of Ontologies 153
9.2.2 Domain Ontology . 153
9.2.3 Task Ontology. 156
9.2.4 Learner Model Ontology. 158
9.2.5 Teaching Strategy Ontology 161
9.2.6 Interface Ontology . 162

9.3 Adaptation Rules . 163
9.3.1 Syntax of Adaptation Rules . 163
9.3.2 Learning Styles Identification. 165
9.3.3 Rules for Building Learner Model 173
9.3.4 Adaptation Based on Resource Sequencing 176

9.4 Course Development . 179
References . 181

Part IV Case Study: Design and Implementation of Programming
Tutoring System

10 Design, Architecture and Interface of Protus 2.1 System 185
10.1 Personalised Programming Tutoring Systems. 186

10.1.1 Programming Tutoring Systems 186
10.1.2 Tutoring Systems with Implemented

Recommendation . 188
10.2 Previous Versions of Protus 2.1 . 189

10.2.1 Mag System . 190
10.2.2 Protus System . 192

10.3 Protus 2.1 . 201
10.3.1 Learner’s Interface . 201
10.3.2 User Interface for Teachers and Course

Administrators . 202
10.4 Development of Ontologies for Java Programming Course 206

10.4.1 Domain Ontology . 206
10.4.2 Learner Model Ontology. 208
10.4.3 Teaching Strategy Ontology 210
10.4.4 Task Ontology and User Interface Ontology 211

References . 211

xiv Contents

http://dx.doi.org/10.1007/978-3-319-41163-7_9
http://dx.doi.org/10.1007/978-3-319-41163-7_9
http://dx.doi.org/10.1007/978-3-319-41163-7_9
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec4
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec4
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec7
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec7
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec8
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec8
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec9
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec9
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec10
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec10
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec11
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec11
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec12
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec12
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec13
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec13
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec18
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec18
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec19
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec19
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec22
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Sec22
http://dx.doi.org/10.1007/978-3-319-41163-7_9#Bib1
http://dx.doi.org/10.1007/978-3-319-41163-7_10
http://dx.doi.org/10.1007/978-3-319-41163-7_10
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec4
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec4
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec5
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec5
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec6
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec6
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec12
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec12
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec13
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec13
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec14
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec14
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec14
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec15
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec15
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec16
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec16
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec19
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec19
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec20
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec20
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec21
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Sec21
http://dx.doi.org/10.1007/978-3-319-41163-7_10#Bib1

11 Personalization in Protus 2.1 System. 213
11.1 The Protus 2.1 Component for Making Recommendations 214
11.2 Learning Style Identification in Protus 2.1. 217

11.2.1 Adaptation Process in Protus 2.1 217
11.2.2 Calculation of Initial Learning Styles 219
11.2.3 Adaptation of User Interface Based

on the Learning Styles . 222
11.3 Resource Sequencing . 227

11.3.1 Identification of Sequences of Learning Activities
and Personalized Recommendation 229

11.4 Recommendation Process Based on Collaborative Filtering 232
11.5 Tag-Based Personalized Recommendation Using Ranking

with Tensor Factorization Technique 234
11.5.1 Generating Initial Tensor. 235
11.5.2 Computing Tensor Factorization. 235
11.5.3 Generating a List of Recommended Items 236
11.5.4 Tag-Based Recommendation in Protus 2.1. 236

11.6 Use and Functioning of the System . 241
11.6.1 Integration of Java Programming Course

in Protus 2.1 . 243
11.7 Educational Material in Protus 2.1 . 245
11.8 Course Organization and Structure . 250

11.8.1 Testing in Protus 2.1 . 251
11.8.2 Evaluation Process . 256

References . 256

Part V Evaluation and Discussion

12 Experimental Evaluation of Protus 2.1 . 261
12.1 Data Set for Experiment . 262
12.2 Data Clustering . 262
12.3 Statistical Properties of Learners’ Tagging History 264

12.3.1 Learners’ Activities . 264
12.3.2 Tag Usage. 265
12.3.3 Tag Entropy Over Time . 266
12.3.4 Semantic Analysis of Tags . 267

12.4 Experimental Protocol and Evaluation Metrics 268
12.5 Evaluation of Several Suitable Recommendation

Techniques . 269
12.5.1 Settings of the Algorithms. 269
12.5.2 Results of Selected Methods Evaluation 271

12.6 Expert Validity Survey . 279
12.7 Evaluation of Protus 2.1 System from the Educational

Point of View . 280
References . 284

Contents xv

http://dx.doi.org/10.1007/978-3-319-41163-7_11
http://dx.doi.org/10.1007/978-3-319-41163-7_11
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec4
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec4
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec6
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec6
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec6
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec11
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec11
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec12
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec12
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec12
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec14
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec14
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec15
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec15
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec15
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec16
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec16
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec17
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec17
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec18
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec18
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec19
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec19
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec21
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec21
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec22
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec22
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec22
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec23
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec23
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec24
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec24
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec25
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec25
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec26
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Sec26
http://dx.doi.org/10.1007/978-3-319-41163-7_11#Bib1
http://dx.doi.org/10.1007/978-3-319-41163-7_12
http://dx.doi.org/10.1007/978-3-319-41163-7_12
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec3
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec4
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec4
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec5
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec5
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec6
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec6
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec7
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec7
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec8
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec8
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec9
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec9
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec9
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec10
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec10
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec11
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec11
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec16
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec16
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec17
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec17
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Sec17
http://dx.doi.org/10.1007/978-3-319-41163-7_12#Bib1

13 Conclusions and Future Directions . 287
13.1 Contributions of the Monograph . 289
13.2 Future Work and Open Research Questions. 293
References . 294

xvi Contents

http://dx.doi.org/10.1007/978-3-319-41163-7_13
http://dx.doi.org/10.1007/978-3-319-41163-7_13
http://dx.doi.org/10.1007/978-3-319-41163-7_13#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_13#Sec1
http://dx.doi.org/10.1007/978-3-319-41163-7_13#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_13#Sec2
http://dx.doi.org/10.1007/978-3-319-41163-7_13#Bib1

About the Authors

Aleksandra Klašnja-Milićević, Ph.D. is Assistant
Professor at Faculty of Sciences, University of Novi
Sad, Serbia. She attended the Faculty of Technical
Sciences at the University of Novi Sad, Department of
Electrical Engineering and Computer Science, receiv-
ing a B.Sc. degree in 2002. She joined the graduate
programme in Computer Sciences at Faculty of
Sciences, Department of Mathematics and Informatics,
University of Novi Sad in 2003, where she received her
M.Sc. (2007) and Ph.D. degrees (2013). Her research
interests include e-learning and personalization, infor-
mation retrieval, internet technologies, recommender

systems and electronic commerce. She actively participates in several international
projects. She has also served as programme committee member of several interna-
tional conferences. She co-authored one university textbook. She has published 30
scientific papers in proceedings of international conferences and journals.

Boban Vesin, Ph.D. is Research Engineer in the joint
Software Engineering Division at the University of
Gothenburg and Chalmers University of Technology.
Previously, he was Lecturer at Higher School of
Professional Business Studies, University of Novi Sad,
Serbia and Software Engineer at Schneider
Electric DMS Novi Sad, Serbia. He earned his Ph.D. at
the Faculty of Science, University of Novi Sad, in
2014. His major research interests are e-learning and
personalization in intelligent tutoring systems. He has
published over 35 scientific papers in proceedings of
international conferences and journals in the field of

programming, e-learning, semantic Web and software engineering.

xvii

Mirjana Ivanović, Ph.D. since 2002 has been Full
Professor at Faculty of Sciences, University of Novi
Sad, Serbia. She is member of University Council for
informatics. Author or co-author is, of 13 textbooks,
five edited proceedings, one monograph and of more
than 340 research papers on multi-agent systems,
e-learning and Web-based learning, applications of
intelligent techniques (CBR, data and Web mining),
software engineering education, and most of them are
published in international journals and proceedings of
high-quality international conferences. She is/was a
member of programme committees of more than 200

international conferences and general chair and programme committee chair of
several international conferences. Also she has been invited speaker at several
international conferences and visiting lecturer in Australia, Thailand and China. As
leader and researcher she has participated in numerous international projects.
Currently she is Editor-in-Chief of Computer Science and Information Systems
Journal.

Prof. Dr. Zoran Budimac since 2004 has been full
professor at Faculty of Sciences, University of Novi
Sad, Serbia. Currently, he is head of Computing
Laboratory and Chair of Computer Science. His fields
of research interests involve: software quality assur-
ance, software engineering, distributed programming,
programming languages and tools and educational
technologies. He has been principal investigator of
more than 20 international and national projects. He is
author of 13 textbooks and more than 300 research
papers most of which are published in international
journals and international conferences. Also he has

been invited speaker at several international conferences and visiting lecturer at
several universities. He is/was a member of programme committees of more than
100 international conferences and is member of editorial and managing boards of
“Computer Science and Information Systems Journal.”

xviii About the Authors

Lakhmi C. Jain, Ph.D. is with the Faculty of
Education, Science, Technology, and Mathematics at
the University of Canberra, Australia and
Bournemouth University, United Kingdom. He is a
Fellow of the Institution of Engineers Australia.
Professor Jain founded the KES International for pro-
viding a knowledge exchange, cooperation and
teaming.

www.kesinternational.org
Involving around 5,000 researchers drawn from

universities and companies worldwide, KES facilitates
international cooperation and generate synergy in

teaching and research. KES regularly provides networking opportunities for pro-
fessional community through one of the largest conferences of its kind in the area of
KES. His interests focus on the artificial intelligence paradigms and their applica-
tions in complex systems, security, e-education, e-healthcare, unmanned air vehi-
cles and intelligent agents.

About the Authors xix

http://www.kesinternational.org

Abbreviations

ABSS Agent-Based Search System
CBR Case-Based Reasoning
CF Collaborative Filtering
CSA Cognitive Styles Analysis
CSL Cognitive Styles of Learning
EM Expectation–Maximization
FSLSM Felder–Silverman Learning Style Model
GEFT Group Embedded Figures Test
HBDI Herrmann Brain’s Dominance Instrument
HOSVD Higher Order Singular Value Decomposition
ICT Information and Communication Technology
IDE Integrated Development Environment
IF Information Filtering
ILS Index of Learning Styles
IMS CP IMS Content Packaging
IMS SS IMS Simple Sequencing Specification
JDBC Java DataBase Connectivity
JECA Java Error Correction Algorithm
LA Learning Activities
LAO Learning Application Objects
LCMS Learning Content Management Systems
LMS Learning Management Systems
LO Learning Objects
LOM Learning Object Metadata
LOs Learning Objects
LSA Latent Semantic Analysis
LSI Learning Style Inventory
LSP Learning Styles Profiler
LSQ Learning Style Questionnaire
MSD Gregorc Mind Styles Delineator

xxi

MSP Motivational Style Profile
OWL Web Ontology Language
PLE Personal Learning Environment
PLSA Probabilistic Latent Semantic Analysis
QTI Question & Test Interoperability
RACOFI Rule-Applying Collaborative Filtering
RDF Resource Description Framework
RS Recommender Systems
RTF Ranking with Tensor Factorization
SCORM Sharable Content Object Reference Model
SPARQL Simple Protocol and RDF Query Language
SVD Singular Value Decomposition
SWRL Semantic Web Rule Language
W3C World Wide Web Consortium
WCR Web Content Resources
XML Extensible Markup Language

xxii Abbreviations

Abstract

Semantic Web is a next generation of Web that is trying to present information in
such a way that they can be used by computers, for display, automation, integration
and reuse among different applications. The aim of the monograph is to present the
design, implementation and real-life evaluation of a tutoring system for mainte-
nance of courses from various domains using semantic Web technologies. This
process includes the creation of the fundamental building blocks of ontologies and
rules for carrying out the actions for adaptation of teaching materials and learning
processes

The subject of the monograph includes the implementation of a conceptual
model of tutoring system for e-learning in different domains using semantic Web
technologies and implementation of a prototype system that is applied in designing
a personalized tutoring system for learning the Java programming language basics.

xxiii

Part I
Preliminaries

Chapter 1
Introduction to E-Learning Systems

Abstract Recently e-learning systems are experiencing rapid development.
The advantages of learning through a global network are manifold and obvious: the
independence of time and space, learners can learn at their own pace, learning
materials can be organized in one place and used-processed all around the world.
One of the most important segments in today’s development and use of the
e-learning system is the personalization of content and building of user profiles
based on the learning behaviour of each individual user. The personalization
options increase efficiency of e-learning, thus justifying the higher initial cost of
their construction. In order to personalize the learning process and adapt content to
each learner, e-learning systems can use strategies that have the ability to meet the
needs of learners. Also, these systems have to use different technologies to change
the environment and perform the adaptation of teaching materials based on the
needs of learners. The process of adaptation can be in the form of adaptation of
content, learning process, feedback or navigation. This chapter introduces the
motivation and objectives studied in the subsequently presented research, and
presents major standards and specifications in e-learning.

Recently e-learning systems are experiencing rapid development. The advantages
of learning through a global network are manifold and obvious: the independence
of time and space, learners can learn at their own pace, learning materials can be
organized in one place and used-processed all around the world. E-learning is
therefore proved to be efficient, flexible and affordable. Development of e-learning
capacities is obviously much more demanding and more expensive than the
development of a static system since it is desirable for the system to provide
different forms of the same teaching materials which are needed for the successful
implementation of personalized learning. However, the personalization options
increase efficiency of e-learning, thus justifying the higher initial cost of their
construction.

One of the most important segments in today’s development and use of the
e-learning system is the personalization of content and building of user profiles
based on the learning behaviour of each individual user. The constructed profile is

© Springer International Publishing Switzerland 2017
A. Klašnja-Milićević et al., E-Learning Systems,
Intelligent Systems Reference Library 112, DOI 10.1007/978-3-319-41163-7_1

3

intended to help the system in the selection of content and information presented to
the user at a given moment. In order to personalize the learning process and adapt
content to each learner, e-learning systems can use strategies that have the ability to
meet the needs of learners. Also, these systems have to use different technologies to
change the environment and perform the adaptation of teaching materials based on
the needs of learners. The process of adaptation can be in the form of adaptation of
content, learning process, feedback or navigation.

1.1 Web-Based Learning

Web-based learning involves all aspects of the learning process that use the World
Wide Web as a basic technology and the medium of communication. Other terms
are also used such as ‘Online learning’, ‘Virtual education’, ‘Internet-based learn-
ing’ or ‘Education via computer-mediated communication’ (Devedzic 2004).

Basic characteristics of Web-based learning (Harsh and Sohail 2002) are:

• separation of teachers and learners (that is the main difference of this type of
learning compared to the traditional),

• the use of Web technologies for presentation and distribution of educational
content,

• possibilities for two-way communication among learners and between learners
and teachers.

Since 1990, Web-based learning has become an important branch of education.
For learners it offers virtually unlimited access to information and knowledge. It
also offers customization of courses to each individual learner, ‘telelearning’, the
possibilities of mutual cooperation among learners and clear benefits of classroom
and platform independence (Brusilovsky 2004).

On the other hand, teachers and course authors may use numerous benefits of
online courses, such as ‘teleteaching’, authoring tools for course development,
inexpensive and efficient data storage and distribution of course materials, digital
libraries, etc.

There are a number of important elements associated with Web-based learning,
such as: e-learning, distance learning and personalized learning. The following
sections include further clarified certain concepts and related technologies.

1.2 E-Learning

The term “e-learning” has been in existence since October 1999 when it was used
during a CBT Systems seminar in Los Angeles. Together with the terms “online
learning” and “virtual learning”, this word was meant to qualify “a way to learn

4 1 Introduction to E-Learning Systems

based on the use of new technologies allowing access to online, interactive and
sometimes personalized training through the Internet or other electronic media
(intranet, extranet, interactive TV, CD-ROM, and so on), so as to develop com-
petencies while the process of learning is independent from time and place” (Barth
et al. 2014).

By some definitions, e-learning includes not only the Internet as a technical
support to learning, but also other media and resources such as Intranet, audio and
video discs, satellite broadcasting of lectures, interactive television, wireless and
mobile devices, and so on (Devedzic 2006). However, e-learning is converted into
Internet learning as it primarily uses Internet technologies for the creation, adoption,
transfer and facilitation of the learning process (Dutta 2006). One of the objectives
of e-learning is the development of individualized, understandable and dynamic
learning content in real time.

E-learning can be realized in or out of the classroom. It can be self-paced,
asynchronous learning or it may also be instructor-led, synchronous learning.
E-learning usually stands for distance flexible learning. Except that e-learning can
be used in blended learning form, i.e. in conjunction with traditional face-to-face
teaching. We are nowadays witnessing the emergent contemporary new technolo-
gies and methods that make big differences and challenges in all kinds of educa-
tional settings.

On the other hand, the principles behind e-learning and early forms of e-learning
existed even in the 19th century. Long before the appearance of the internet, distance
courses on particular subjects were being offered to students from different countries.
Isaac Pitman, a qualified teacher, taught the pupils shorthand via correspondence in
the 1840s. In fact Pitman was sent completed assignments by his students via the
mail system and (s)he would then send them more work to be finished.

The first testing machine, allowing students to test their knowledge, was invented
in 1924. In 1954, B.F. Skinner, a Harvard Professor, invented the “teaching
machine”. This machine enabled schools to administer programmed instruction to
the students. The first computer based training program, starting from University of
Illinois, was PLATO-Programmed Logic for Automated Teaching (Murphy and
Appeal 1978). PLATO was equipped with many modern concepts in multi-user
computing like: e-mail, instant messaging, chat rooms, forums, message boards,
online testing, picture languages, remote screen sharing, and multiplayer games.

The first e-learning systems served only for delivering information to students.
Starting from the 70s they became more interactive. In Britain the Open University
(Gourley and Lane 2009) highly organized their activities in order to take advan-
tages of e-learning and they primarily have been focused on learning at a distance.
With the appearance of the internet the Open University began to offer a variety of
interactive educational facilities and faster correspondence with students via email
and so on.

The revolution in e-learning happened when first MAC computers in the 1980s
enabled individuals to have computers in their homes. This possibility offered
students an easier way to learn about particular subjects and develop certain skill
sets.

1.2 E-Learning 5

E-learning nowadays is one important issue to spread all forms of education in
our society. E-learning tools and delivery methods expanded as a consequence of
the introduction of the computers and internet in the late 20th century. Also virtual
learning environments began to truly progress, with people gaining access to a
richness of online information and e-learning opportunities.

At the end of the 90s the first learning management systems (LMS) started to be
used frequently. Some universities designed and developed their own systems, but
most of the educational institutions started with systems off themarket. One of the key
commercial systems was offered by the American company Blackboard (Bradford
et al. 2007). In themeanwhile a lot of LMSs have been developed and appeared. Today
in academia predominantly open-source MOODLE system (Aranda 2012; Horvat
et al. 2015) has been in use all over the world. Such systems offer to students and
teachers wide functionalities: exchange learning materials, do tests, communicate
with each other in many ways, track and trace the progress, and so on.

Another important step and achievement in e-learning area happened in the
2000s. In that period a lot of companies all over the world began using e-learning to
train their employees. Workers have had the opportunity to improve upon their
industry knowledge base and expand their skills. At home individuals can access
programs that offered them the ability to earn online degrees and expand their
knowledge. Today, e-learning is more popular than ever and appears in different
forms and offers unlimited opportunities and possibilities to universities, compa-
nies, and individuals in the form of formal and informal learning.

Basically e-learning implies that the learner is at a distance from the
tutor/instructor and uses some form of technology (usually a computer) to access
the learning material. Further the learner uses technology to interact with the
tutor/instructor but also with other learners. Crucially e-learning refers to the use of
information and communication technology (ICT) to enhance and/or support
learning. This certainly encompasses a range of systems, starting from students
using e-mail and accessing course materials online to the whole programs delivered
online. So e-learning is a completely new education philosophy via the Internet,
network, or standalone computer. E-learning applications and processes include
web-based learning, computer-based learning, virtual classrooms and digital/virtual
collaboration.

In contemporary education e-learning supports the different phases of traditional
learning and sometimes it is the only possible method of teaching (e.g. impaired
students, absence of teaching structures, and so on). From this point of view, it is
important to define educational structure and contextualize and tailor it having in
mind:

• teachers (tutors, instructors) with their personal teaching approaches, and
• students (learners, workers) with their personal studying manner.

On contrary to the traditional teaching methods followed a “one size fits all”
approach. Recently it has become clearer that different people learn in different
ways. It was widely recognized that a personalized approach can improve the

6 1 Introduction to E-Learning Systems

learning process, helping people becoming effective lifelong. Personalization helps
learners in developing a feeling of competence and autonomy as they are trusted
with the management of their own learning process.

There are two main directions for the development of e-learning: technical and
pedagogical. Many authors emphasize the technology. Others use technology only
as a tool for presenting content, with an emphasis on the various approaches for the
presentation of the course material to the learners. For them, e-learning is essen-
tially just learning. In the course development, the emphasis is on explanation of
how people learn, how acquire skills and take on the information, what are their
learning styles, and so on. Only after these primary aspects, the question arises, how
the electronic presentation of the material can be tailored to the learner.

E-learning is usually presented as an interaction between the learners and the
simulated electronic environment associated with the domain knowledge interesting
for learners. This electronic environment, in the case of online learning, may be the
Internet (in different versions), intranet or various electronic media. In all these
cases, efficient environment for learning is offered through the interactive use of
text, images, audio and video material, animations and simulations. It may also
include the entire virtual environment. It is possible to learn independently or in a
group and also independently determine the appropriate pace of progress.

E-learning has many advantages over traditional learning in the classroom.
Primarily, the pace of e-learning is tailored to the learner. Then, the costs are
usually lower, without time and space limitations. Also, the material is easier to
maintain. A good alternative to regular e-learning is Blended learning which is a
combination of traditional and e-learning. This form of learning involves combining
traditional classroom lectures with occasional/parallel teaching using some form of
tutoring systems or systems for e-learning (Garrison and Vaughan 2008).

1.3 E-Learning Objects, Standards and Specifications

E-learning as majority of other ICT areas is oriented to “civilizing stage” in order to
develop common technical interoperability standards and specifications. Standards
are essentially abstract and they impose only structural limits on what can be done
with them. In fact, they are intended to provide a sustainable means for the practical
use of appropriate technologies and ways of working.

E-learning standards and specifications have to establish common patterns to
support different aspects of educational and meta-educational activities and
processes.

There are a lot of widely recognized standards in eLearning which describe
different sub-areas. Some of them are devoted to content description, or to the
sequencing of items to be delivered or describe learner and content packaging and
so on.

Also, there exist many other standards underpinning, which support the use of
technology in educational processes like: media standards (USB or CD/DVD-ROM),

1.2 E-Learning 7

network standards (TCP/IP), and file standards (HTML,XML, and so on). Also a new
category called meta-standard has been introduced, like: quality assurance of edu-
cational processes, legal standards as laws and licenses, and political standards as
policies and procedures.

1.3.1 E-Learning Objects

For the success of e-learning, themost important factor is a suitable organization of the
material that is taught in a way that corresponds to the interactive electronic presen-
tation materials (Vesin and Ivanović 2004). The worst solution is to copy the tradi-
tionally written material in the files and simply present them on the screen to learners.
In contrast, preparation of e-learning courses is a long process that requires a lot of
effort by course creators and the entire team working on the project. Educational
institutions and universities that offer online courses have whole departments that are
in charge of organizing representation and presentation of e-learning material.

There are a few simple rules of organizing e-learning materials. They are all
consequences of the general pedagogic rules and requirements for human-computer
interaction:

• It is important to accurately define the target users (learners and their level of
knowledge) and the objectives and outcomes of the course (i.e. what knowledge
is expected that learners acquire after the completion of the course). In cases
where the course is conducted through networks, organization of material on the
server side is only one of the problems—it is necessary to have in mind the
hardware that the learner use, as well as possible data transfer speed in order to
provide satisfactory communication in real time.

• It is necessary to divide the teaching material into modules such as chapters or
lessons, which will enable learners to gain insight into the general structure of
the material, acquire the aims of the course, and to more easily follow the details
in chapters and lessons.

There are wide ranges of user tools that help instructors to prepare material for
the above mentioned instructions (Devedzic 2004).

Learning and teaching activities are deeply connected to the forms and ways of
representation and presentation of teaching material. The absence of agreed unique
standard in this domain as a consequence brings a lot of different interpretations and
definitions of learning objects as the basic unit for representations of teachingmaterial.

For learning objects (LO) variety of names has been used, including content
objects, chunks, educational objects, information objects, intelligent objects,
knowledge bits, knowledge objects, learning components, media objects, reusable
curriculum components, nuggets, reusable information objects, reusable learning
objects, testable reusable units of cognition, training components, units of learning
and so on.

8 1 Introduction to E-Learning Systems

Nevertheless, learning objects have been frequently defined as small, unique,
compact and reusable pieces (units, entities) of teaching material (text, video or
audio representation, animation, interactive simulation, interactive exercises)
(Pitkänen and Silander 2004). IEEE Learning Technology Standards Committee,
recently issued a new definition of LO as “any entity, digital or non-digital, that
may be used for learning, education or training” (Committee et al. 2002; González
and Ruggiero 2009). According to this and other similar definitions, LOs are,
generally speaking, digital elements that are used in learning processes and consist
of following parts: texts, pictures/images, digital video and audio records, interac-
tive multimedia, tests, and lessons. Combining different LOs teachers produce
teaching material for whole courses. The common understanding is that LOs pos-
sess significant potential as basic building blocks of the wide spectrum that can be
used in different technology enhanced learning systems and environments.

LOs could be classified based on different criteria, but always is necessary to
have in mind their pedagogical aspects and wider context of usage. There is a set of
obvious criteria that have to be taken into account for assessment of flexibility and
quality of the LO:

• pedagogical neutrality,
• reusability potential,
• possibility for personalization
• media independence.

Learning object design raises issues of portability, and of the object’s relation to
a broader learning management system. In Committee et al. (2002) reusability of
existing teaching materials in new systems and contexts has been considered.
Relationship between the degree of reusability and complexity of teaching material
and LOs is presented in Fig. 1.1.

It can be seen that as LOs are getting more and more complex their relation and
connection to the particular context (they are created for) has been increasing.
Accordingly, the reusability potential of LOs is decreasing as LOs getting more and
more complex.

Based on different sources analysed in Zdravkovaet al. (2012) essential char-
acteristics of ideal reusable LO are pointed out:

• modular, self-confident, interoperable between different e-learning
environments;

• non-sequential;
• able to satisfy particular teaching goal;
• widely and easily available, easily modifiable;
• rather simple and characterized by a small set of tags;
• independent on particular format of an e-learning system.

LO and its metadata can include some additional types of information:

• General Course Descriptive Data: subject area, language of content, course
identifiers, descriptive keywords, descriptive text,

1.3 E-Learning Objects, Standards and Specifications 9

• Instructional Content: text, images, sound, video, web pages,
• Typology: presentation, simulation, practice, information, and contextual rep-

resentation, conceptual models,
• Relationships to Other Courses,
• Life Cycle: version, status,
• Assessments and Quizzes: questions, answers,
• Glossary: definition, terms, acronyms,
• Rights: restrictions on use, copyrights, cost,
• Educational Level: grade level, typical learning time, age range, and difficulty.

It is essential that LOs could be identified by content management systems and
search engines. To achieve better visibility and accessibility of LOs appropriate
descriptive learning object metadata has to be used. The typical, most important
pieces of metadata include:

1. Topic—usually represented in a taxonomy, determines the subject which is
instructed in the learning object,

2. Objective—the educational objective,
3. Interactivity—the interaction model of the learning object,
4. Prerequisites—the list of skills which the learner must possess before using the

learning object,
5. Technology requirements—the system requirements, necessary that learning

object has to be presented to the learner.

Raw data media
elements

Information
objects

Application objects
(learning objects,
support objects,

marketing,
reference, etc.)

Collections
(Stories, courses,
books, movies)

Aggregate assemblies
(lessons, chapters,

units, brochure, etc)

Audio

Text

Illustration

Annimation

Simulation

Procedure

Principle

Concept

Process

Fact

Overview

Summary

Enabling
objective

Terminal
objective

Procedure

PrincipleConcept

ProcessFact

Overview Summary

Objective Objective Theme

REUSABILITY

CONTEXT- LEAST -

- LEAST -+ MOST +

+ MOST +

Fig. 1.1 Reusability and complexity of teaching material

10 1 Introduction to E-Learning Systems

Creation of high-quality, usable and efficient LOs is definitely not an easy task.
So, to obtain a high level of interoperability and reusability of teaching materials
essential activities have to be oriented to standardization.

1.3.2 E-Learning Specifications and Standards

One of the main motivations and efforts to establish e-learning standards and
specifications were to assure synchronous and asynchronous exchange of educa-
tional materials between different systems. Asynchronous exchange over time
assumes that any one technology can be disposed of and/or replaced while keeping
the investment in the content and processes they support.

To improve reusability of the content, the educational material is naturally
organized in small self-contained pieces of information, i.e. learning objects.
Specific kind of such systems that manage LO are called Learning Content
Management Systems (LCMS). LO is transportable and reusable pieces of
instruction that are digitally delivered and managed. Several organizations (IEEE,
AICC, IMS, and ADL) have developed standards and specifications as guidelines
and best practices on the description and use of e-learning content. There are a lot of
the proposed specifications and the most prominent could be divided into three
groups: metadata, content package and educational design (Verdú et al. 2012).

Metadata—A learning object consists of one or more educational resources that
are described by metadata. One of the most used metadata standards is the LOM—
Learning Object Metadata (LOM), a double IEEE and IMS standard. LOM is
usually encoded in XML, used to describe a learning object. LOM appeared as a
reaction to the Dublin Core standard that was characterized as too simple for
adequately describing learning resources. The purpose of LOM is multifold: to
facilitate learning object interoperability, to support their reusability, and to aid
discoverability. LOM is also integrated in IMS Content Packaging (IMS CP)
standard.

Another well known metadata specification is the Dublin Core Metadata, which
provides a simpler set of elements useful for sharing metadata across heterogeneous
systems. Dublin Education Working Group is still working on improvements of the
Dublin Core for the specific educational needs.

Content Package—Content Packaging is an essential activity for storing of
e-learning material and reusing it in different systems. IMS Content Packaging
(IMS CP) is one of the most widely used formats.

There are other package specifications, mostly derived from other systems as
application profiles. Sharable Content Object Reference Model (SCORM) is a
widely well known content packaging specification. It extends IMS CP with more
sophisticated sequencing and Contents-to-LMS communication.

Educational Design—Learning objects are usually organized in items. Such
organization determines a path through the items.

1.3 E-Learning Objects, Standards and Specifications 11

The IMS CP specification proposes a manifest section called Organizations.
Organizations are used to design pedagogical activities and specify the sequencing
of instructions. It is usually arranged as tree-based structure of learning items
pointing to the resources included in the package. Some other standards exist, such
as IMS Simple Sequencing (IMS SS) and IMS Learning Design (IMS LD). They
provide to the teachers mechanisms for coordination of the educational instructions
founded on students’ profile making the instruction more flexible.

In spite the fact that educational community pays a lot of attention to the
development of this kind of standards the design of more complex adaptive
behaviour is still hard to achieve.

In the rest of the subsection we will briefly present some of the most important
educational standards.

1.3.2.1 S1. IEEE LOM and IMS Learning Resource Metadata

The IEEE LOM as a standard conceptual model has been developed by working
group IEEE 12 (Learning Object Metadata Working Group). It is used to specify
the syntax and semantics and to describe an LO and similar digital resources used to
support learning. Apart from that it aims to provide an extensive metadata
description for LOs. In the context of online LMSs the rationale of the IEEE LOM
is to support the reusability and facilitate their interoperability. This standard
consists of several categories (Verdú et al. 2012):

• General—context independent and semantic properties of the LO,
• Lifecycle—properties related to the description of the resource’s lifecycle,
• Meta-metadata—information about the metadata itself,
• Technical—technical properties,
• Educational—learning and pedagogical properties of the LO,
• Rights—conditions for the use of the LO and intellectual property rights,
• Relation—the resource’s relationship to other LOs,
• Annotation—comments on the educational use of the LO,
• Classification—description of this LO relative to a particular classification

system.

These main categories are further divided into nearly sixty fields. From the
IEEE LOM Schema working document the new standard has been derived—the
IMS Learning Resource Metadata. The IMS also provides a best practice imple-
mentation guide and XML bindings.

Fortunately, LOM was designed in an extensible manner. Some typical ways to
extend the LOM model are following:

• combining the LOM elements with elements from other specifications;
• defining extensions to LOM elements while preserving its set of categories;
• simplifying LOM, reducing the number of LOM elements and its choices;

12 1 Introduction to E-Learning Systems

• extending and reducing at the same time the number of LOM elements.

Based on the previously mentioned extensions, the IMS GLC created the
Question and Test Interoperability (QTI) specification. This specification offers a
data model for the representation of different kinds of questions (e.g. multiple
response, multiple choice, short text questions and fill in-the-blanks) and tests data
and their corresponding results reports.

1.3.2.2 S2. Dublin Core Metadata Initiative

At a workshop held in 1995 in Dublin, Ohio, United States the Dublin Core
(DC) standard has been proposed. The DC metadata element set is a standard for
describing primarily web information resources. It consists of simple sets of ele-
ments to facilitate describing, sharing, finding, and managing information. The
fifteen basic DC metadata elements exist: Contributor, Coverage, Creator, Date,
Description, Format, Identifier, Language, Publisher, Relation, Rights, Source,
Subject, Title and Type. The DC has been quickly adopted by many international
and interdisciplinary communities. As a consequence of its simplicity qualifiers
have been introduced to further specify existing DC elements, in order to increase
the precision of the encoded metadata. Two groups of qualifiers exist: element
refinement and encoding scheme. An important characteristic of this standard is its
aiding to resource discovery and facilitating interoperability. This feature qualifies it
as a preferred format in the Open Archives Initiative Protocol for Metadata
Harvesting.

1.3.2.3 S3. IMS Learner Information Package

LIP—IMS Learner Information Packaging is also specified by IMS Global
Learning Consortium. It includes a collection of information about a product of
learning content (creators, providers or vendors) and a learner as well. LIP
addresses the interoperability of learner information between different learning
management systems and/or Internet-based systems. The core structures of the
IMS LIP are based on: accessibilities, activities, affiliations, competencies, goals,
identifications, interests, qualifications, certifications, licenses, relationship, security
keys, and transcripts. A similar specification, i.e. IEEE Public and Private
Information Specification have been proposed by IEEE.

1.3.2.4 S4. IMS Content Packaging

IMS Content Packaging Specification, as an interoperability specification, allows
tools for content creation, LMSs, and runtime environments to share content in a
standardized set of structures. The main purpose of this specification is: to

1.3 E-Learning Objects, Standards and Specifications 13

standardize the way of definition of learning resources and to facilitate the orga-
nization of different components related to learning content. This obtains structuring
learning content into a package and in this way supports interoperability, i.e.
exchange of packages between different learning environments.

An IMS CP learning object assembles resources and meta-data into a distribution
medium, usually an archive in ZIP format, with its content described in a manifest
file in the root level. The manifest file adheres to the IMS CP schema and contains
specific sections (Verdú et al. 2012):

• Metadata—describes the package as a whole;
• Organizations—describes the organization of the content within a manifest;
• Resources—contains references to resources (files) needed for the manifest and

metadata describing these resources;
• Sub-manifests—defines sub packages.

To describe the learning resources included in the package the manifest uses the
LOM standard. In meanwhile, IMS Global Learning Consortium issued the IMS
Common Cartridge that supports some other standards (e.g. IEEE LOM, IMS CP,
IMS QTI, IMS Authorization Web Service). Their main intention is playing an
important role in the organization and distribution of digital learning content.
The IMS CC manifest includes references for two types of resources:

• Web Content Resources (WCR): static web resources such as PDF documents,
GIF/JPEG images, HTML files, and so on.

• Learning Application Objects (LAO): special kind of resource types that need to
be additionally processed before they can be used within the target system. QTI
assessments, Discussion Forums, Web links, Basic LTI descriptors, etc. are
typical examples of LAO.

1.3.2.5 S5. IMS Simple Sequencing

IMS Learning Design (IMS LD) specification is a meta-language for describing
pedagogical models and educational goals through enabling the modelling of
learning processes (Leo et al. 2004). There are several IMS LD-aware tools in form
of players (e.g. CopperCore, .LRN) and authoring/export tools (e.g. Reload,
LAMS) (Dalziel 2006).

The IMS Simple Sequencing Specification (IMS SS) is used to describe paths
through a collection of learning activities. The specification determines the order in
which learning activities have to be presented to a learner. Apart from that it
declares the conditions under which a resource is delivered during an e-learning
instruction.

In fact, this specification describes behaviours and functionality that conforming
systems must implement. It includes definitions of rules that describe learner’s
interactions with content and the sequencing of LO based on instructional design

14 1 Introduction to E-Learning Systems

strategies selected by the course’s instructor. The LMS maintains a simple user
model based on both the LOs the user has visited and intermediate test results.
The LMS then decides what LO should be next in the sequence. IMS SS is labelled
as simple because it supports a limited number of widely used sequencing beha-
viours so some are ready to label it as a simple mechanism. The wide range of
possible sequencing mechanisms are not addressed in this specification, like:
schedule-based sequencing, artificial intelligence based sequencing, collaborative
learning, customized learning, sequencing requiring data from closed external
systems (e.g., sequencing of embedded simulations), or synchronization between
multiple parallel learning activities. IMS SS is a part of SCORM standard.

1.3.2.6 S6. ADL SCORM

The SCORM (Sharable Content Object Reference Model) has been developed by
the Advanced Distributed Learning Initiative, under the umbrella of the United
States Department of Defense, as a set of standards and specifications for e-learning
(de Oliveira and Gomes 2015). It is the de facto industry, purely a technical
standard for e-learning interoperability. Interoperability, accessibility, and
reusability of learning content as primary goal have been enabled by packaging
content in a zip form. Additional capabilities like sequencing, which includes rules
that specify the order in which a learner may experience LOs, have been included in
SCORM 2004. The standard is an XML-based, and it utilizes a significant work
performed by several sources IEEE,1 AICC (CBT),2 IMS Global Learning
Consortium,3 and Ariadne Foundation.4 In fact SCORM tells programmers how to
write their code so that it can “play well” with other e-learning software.

The next generation of SCORM is happening nowadays. It’s called the Tin Can
API5 and represents a huge leap forward for the e-learning community.

1.3.3 Analysis of Standards and Specifications

Standards for content and descriptions of learner’s information are becoming
increasingly important in LMSs. Most of them are developed for use by LMSs.
Standards make possible exchanging content and learner information and interop-
erability between different learning environments. They can be used independently
of the underlying technology of the specific environment as they are usually

1http://www.ieee.org/index.html.
2http://adlnet.gov/.
3http://www.imsglobal.org/.
4http://www.ariadne-eu.org/.
5http://scorm.com/tincanoverview/.

1.3 E-Learning Objects, Standards and Specifications 15

http://www.ieee.org/index.html
http://adlnet.gov/
http://www.imsglobal.org/
http://www.ariadne-eu.org/
http://scorm.com/tincanoverview/

described in a platform-neutral manner (predominantly in XML). Therefore, it
could happen that their use in an adaptive e-learning environment is restricted in a
way that a specification might not be sufficient to support adaptivity. However, the
baseline support for standards is imperative and represents a starting point for
interoperability between different systems. Today, dozens of LMSs will be avail-
able in academia, open source community and commercial market. For that reason,
specifications like SCORM enable communication with different LMSs and the
dissemination of learning material.

References

Aranda, A. D. (2012). Moodle for distance education. Distance Learning, 8(2), 25–28.
Barth, M., Adomßent, M., Fischer, D., Richter, S., & Rieckmann, M. (2014). Learning to change

universities from within: A service-learning perspective on promoting sustainable consumption
in higher education. Journal of Cleaner Production, 62, 72–81.

Bradford, P., Margaret Porciello, N., & Balkon, D. B. (2007). The blackboard learning system. The
Journal of Educational Technology Systems, 35, 301–314. http://doi.org/10.2190/X137-X73L-
5261-5656

Brusilovsky, P. (2004). KnowledgeTree: A distributed architecture for adaptive e-learning. In
WWW Alt. ’04: Proceedings of the 13th International World Wide Web Conference on
Alternate Track Papers & Posters (pp. 104–113). http://doi.org/10.1145/1013367.1013386

Committee, L. T. S., et al. (2002). IEEE standard for learning object metadata. IEEE Standard,
1484(1), 2004–2007.

Dalziel, J. R. (2006). Lessons from LAMS for IMS learning design. In Sixth International
Conference on Advanced Learning Technologies, (Vol. 3, 1101–1102). http://doi.org/10.1109/
ICALT.2006.1652643

de Oliveira, F., & Gomes, A. S. (2015). A development model of units of learning for multiple
platforms. In 2015 10th Iberian Conference on Information Systems and Technologies (CISTI)
(pp. 1–6).

Devedzic, V. (2004). Education and the semantic web. International Journal of Artificial
Intelligence in Education, 14, 39–65.

Devedzic, V. (2006). Semantic web and education (Vol. 11). http://doi.org/10.1007/978-0-387-
35417-0

Dutta, B. (2006). Semantic web based e-learning. Bangalore: Documentation Research and
Training Centre Indian Statistical Institute.

Garrison, D. R., & Vaughan, N. D. (2008). Blended learning in higher education: Framework,
principles, and guidelines. booksgooglecom (Vol. 1st).

González, L. A. G., & Ruggiero, W. V. (2009). Collaborative e-learning and learning objects.
IEEE Latin America Transactions, 7(5), 569–577. http://doi.org/10.1109/TLA.2009.5361195

Gourley, B., & Lane, A. (2009). Re-invigorating openness at The Open University: The role of
open educational resources. Open Learning: The Journal of Open and Distance Learning, 37–
41. http://doi.org/10.1080/02680510802627845

Harsh, O. K., & Sohail, M. S. (2002). Role of delivery, course design and teacher-student
interaction: Observations of adult distance education and traditional on-campus education. The
International Review of Research in Open and Distributed Learning, 3(2).

Horvat, A., Dobrota, M., Krsmanovic, M., & Cudanov, M. (2015). Student perception of Moodle
learning management system: A satisfaction and significance analysis. Interactive Learning
Environments, 23(4), 515–527.

16 1 Introduction to E-Learning Systems

http://doi.org/10.2190/X137-X73L-5261-5656
http://doi.org/10.2190/X137-X73L-5261-5656
http://doi.org/10.1145/1013367.1013386
http://doi.org/10.1109/ICALT.2006.1652643
http://doi.org/10.1109/ICALT.2006.1652643
http://doi.org/10.1007/978-0-387-35417-0
http://doi.org/10.1007/978-0-387-35417-0
http://doi.org/10.1109/TLA.2009.5361195
http://doi.org/10.1080/02680510802627845

Leo, D. H., Perez, J. I. A., & Dimitriadis, Y. A. (2004). IMS learning design support for the
formalization of collaborative learning patterns. In IEEE International Conference on
Advanced Learning Technologies, 2004. Proceedings. (pp. 350–355). http://doi.org/10.1109/
ICALT.2004.1357434

Murphy, R. T., & Appeal, L. R. (1978). Evaluation of the PLATO IV computer-based education
system in the community college. ACM SIGCUE Outlook, 12(1), 12–28.

Pitkänen, S. H., & Silander, P. (2004). Criteria for pedagogical reusability of learning objects
enabling adaptation and individualised learning processes. In IEEE International Conference
on Advanced Learning Technologies, 2004. Proceedings (pp. 246–250).

Verdú, E., Regueras, L. M., Verdú, M. J., Leal, J. P., de Castro, J. P., & Queirós, R. (2012).
A distributed system for learning programming online. Computers & Education, 58(1), 1–10.
http://doi.org/10.1016/j.compedu.2011.08.015

Vesin, B., & Ivanović, M. (2004). Modern educational tools. In Proceedings of PRIM2004, 16th
Conference on Applied Mathematics, Budva, Montenegro (pp. 293–302).

Zdravkova, K., Ivanović, M., & Putnik, Z. (2012). Experience of integrating web 2.0 technologies.
Educational Technology Research andDevelopment. http://doi.org/10.1007/s11423-011-9228-z

References 17

http://doi.org/10.1109/ICALT.2004.1357434
http://doi.org/10.1109/ICALT.2004.1357434
http://doi.org/10.1016/j.compedu.2011.08.015
http://doi.org/10.1007/s11423-011-9228-z

Part II
E-Learning Systems Personalization

Chapter 2
Personalization and Adaptation
in E-Learning Systems

Abstract Personalization is a feature that occurs separately within each system that
supports some kind of users’ interactions with the system. Generally speaking term
“Personalization” means the process of deciding what the highest value of an indi-
vidual is if (s)he has a set of possible choices. These choices can range from a
customized home page “look and feel” to product recommendations or from banner
advertisements to news content. In this monograph we are interested in personalization
in educational settings. The topic of personalization is strictly related to the shift from a
teacher-centred perspective of teaching to a learner-centred, competency-oriented one.
Two main approaches to the personalization can be distinguished: user-profile based
personalization and rules-based personalization. In the first case this is the process of
making decisions based upon stored user profile information or predefined group
membership. In the second case this is the process of making decisions based on
pre-defined business rules as they apply to a segmentation of users. This chapter
presents the most popular adaptation forms of educational materials to learners.

Today, personalization is feature that occurs separately within each system that
supports some kind of users’ interactions between user and the system. Generally
speaking term “Personalization” means the process of deciding what the highest
value of an individual is if (s)he has a set of possible choices. These choices can
range from a customized home page “look and feel” to product recommendations or
from banner advertisements to news content.

The concept of “Personalization” can easily be understood taking a closer look at
some of the widely existing and using digital technologies that offer personalization
and customization options: browser that help to roam the Internet, email and
messaging systems, the digital boxes that help to watch TV online.

Two main approaches to the personalization can be distinguished: user-profile
based personalization and rules-based personalization. In first case this is the pro-
cess of making decisions based upon stored user profile information or predefined
group membership. In the second case this is the process of making decisions based
on pre-defined business rules as they apply to a segmentation of users.

© Springer International Publishing Switzerland 2017
A. Klašnja-Milićević et al., E-Learning Systems,
Intelligent Systems Reference Library 112, DOI 10.1007/978-3-319-41163-7_2

21

2.1 Personalization and Personalized Learning

In this monograph we are interested in personalization in educational settings. In
e-learning area, “personalization” has a wide range of new meanings. One of the
best explanations could be that “Personalized learning is the tailoring of pedagogy,
curriculum and learning environments to meet the needs and learning styles of
individual learners” (Baguley et al. 2014).

The topic of personalization is strictly related to the shift from a teacher-centered
perspective of teaching to a learner-centered, competency-oriented one. In contrary
to conventional e-learning which tends to treat learners as a homogeneous entity,
personalized e-learning recognizes learners as a heterogeneous mix of individuals.

Essentially personalized e-learning offers to learner’s customization of a variety
of the elements of the online education process:

• The learning environment—content and its appearance to the learner (like
backgrounds, themes, font sizes, colours, and so on)

• The learning content itself—multimedia representations (like textual, graphical,
audio, video, and so on)

• The interaction—include facilitator, student and the learning content (e.g.
mouse, keyboard, tap/swipe; e.g. using Quizzes, Online discussions, “Gaming”,
Tutorials, Adaptive learning approaches)

Apart from the above mentioned ways of personalization (like the “preferences”
and “settings” options that most digital tools offer) other aspects of the learning
environment and process can be personalized:

• What content should be delivered during the learning process?
• How the content should be delivered with special attention to the sequence of its

delivery.
• How students will be evaluated and also with special attention what feedback

options will be used.

Nowadays it is unavoidable demand that educators have to re-evaluate e-learning
courses and there are a lot of important factors that determine it, like: age, cultural
background, the level of education, demographics and so on. Numerous important
aspects should be taken into account when deciding to personalize an e-learning
environment:

• Personalize the environment—determine how online e-learning environments
should look like.

• Personalize the content—incorporate content from the learners’ personal
environment (reflect learners’ browsing habits and preferences).

• Personalize the media—according to their learning styles and preferences some
learners like to watch a short video or read a printed PDF files.

• Personalizing learning sequences—nonlinear presentation of contents allows
learners to choose how they will learn.

22 2 Personalization and Adaptation in E-Learning Systems

• Personalize the roles using photographs and pictures—use a photograph of
the instructor to make the content more “personal.”

• Personalize the conversation—use text or voice/video and adjust used
sentences.

• Personalize the navigation—allow learners to explore various parts of the
content.

• Personalize the learner—Make the course personal to the learner.
• Recognize individual competency—skip known parts of teaching material and

start learning the new topics.
• Personalizing learning objectives—Enable learners to achieve better the

learning objectives.

Harmonization of mentioned aspects will obtain a truly Personal Learning
Environment (PLE) and give learners the chance to learn what they want when they
want, and even to learn according to the preferred method of learning!

2.2 Adaptation of E-Learning Systems

In the last few decades “Adaptation in E-learning” has generated tremendous interest
among researchers in computer-based education. As a consequence, two key terms
appeared: adaptivity and adaptability. Adaptivity is such kind of behaviour where
the user triggers some actions in the system that guides the learning process, i.e.
modifies e-learning lessons using different parameters and a set of pre-defined rules.
Adaptability is such kind of behaviour where the user makes changes and takes
decisions on the learning process, i.e. it is a possibility for learners to personalize an
e-learning lesson by themselves (Khemaja and Taamaallah 2016).

These terms caused a series of possibilities, from those centered on the machine
(adaptivity) to those centered on the user (adaptability). Adaptation in e-learning
today incorporates new technologies and ways of expression practically moving
ahead from Computer Based Training and Adaptive Hypermedia Systems.

Adaptation is usually focused on the student. Also, it is possible adaptation that
involves instructors, but it requires deeper instructor’s involvement and it could be
more time and resource consuming. In such educational settings instead of giving
collective lectures the instructor should provide a personal or group guidance.

Adaptivity and adaptability are inseparable from personalized learning.
Adaptation in e-learning could be seen as a method to create a learning experience
for the learner but also for the instructor. In order to increase the performance of
pre-defined criteria (like economic, educational, user satisfaction-based or
time-based) instructor must configure a set of specific elements (usually based on
content, interface, order, time, assessment, and so on).

Three essential inputs exist in a balanced formula for adaptation: the user
(learner, student), the teacher (tutor, instructor), and the set of pre-defined rules
made by the learning instructor i.e. designer.

2.1 Personalization and Personalized Learning 23

Usually, three essential types of adaptation have been proposed in literature:

1. Interface-based (also known as adaptive navigation). It relates to elements
and options of the interface and usability and adaptability: where particular
elements are positioned on the screen, which properties are defined (size, colour,
etc.) and so on.

2. Learning flow-based. The learning process is dynamically adapted to the
sequence in appropriate (different) ways the contents of the course is delivered.

3. Content-based. In such systems resources and activities dynamically change
their actual content (for example systems based on adaptive presentation).

Also, there are some key researchers in e-learning area (Brusilovsky 2004) who
recognized and proposed several additional kinds of adaptation:

1. Interactive problem solving support. In order to get an appropriate solution to
a problem the learner is guided (from an online or offline tutor or from a
predefined set of rules) to the next step in the learning process.

2. Adaptive information filtering. In order to provide relevant and categorized
outputs to the learner system takes care of appropriate information retrieval.

3. Adaptive user grouping. Such kind of systems allows ad hoc creation of
learners’ groups and collaborative support for performing particular tasks.

In (Burgos 2011) authors proposed further extension of the classification:

1. Adaptive evaluation. Based on the performance of the learner and the guidance
of the tutor, elements like the actual content, the evaluation model, and the
running of a test can be changed.

2. Changes on-the-fly. In these systems there is the possibility to adapt/modify a
course on-the-fly by the instructor in run-time.

Adaptation and personalization are posing new research and development
challenges to modern e-learning systems. E-learning definitely becomes smarter
from the exploration of the efficiency of interaction analysis methods that empower
these systems with adaptation and personalization. Recently advanced Artificial
Intelligence techniques have been exploited for implementation of smarter online
(but also blended learning) scenarios, including complex character of collaboration.

Analysis of trends in modern e-learning systems showed that the most popular
types of personalization in today’s e-learning systems are (Klašnja-Milićević et al.
2011):

• Learning style identification. Personalization of the system is based on the
identified learning styles of each user of the system.

• Recommendation systems. These systems are used to recommend appropriate
educational material to the learner and to select optimal paths through the
learning materials.

• Link adaptation. The system modifies the appearance and/or availability of
every link that appears on a course Web page, in order to show the learner,
whether the link leads to interesting new information, to new information the

24 2 Personalization and Adaptation in E-Learning Systems

learner is not ready for, or to a page that provides no new knowledge. The
system makes some links inaccessible to the learner if the system estimates from
the learner model that such links take him/her for the irrelevant information.

• Personalised pedagogical agents. The demand of modern e-learning systems is
to make learning process more challenging, exciting and highly interactive.
Usually e-learning environments are equipped with different kinds of agents that
support more intelligent and human-like (teacher-to-student) communication
within the system. Personal, pedagogical avatars (Haake and Gulz 2008) are a
way to facilitate higher quality of delivering topics and assessing acquired
knowledge.

References

Baguley, M., Danaher, P. A., Davies, A., De George-Walker, L., Matthews, K. J., Midgley, W.,
et al. (2014). Educational learning and development: building and enhancing capacity.
Palgrave Macmillan.

Brusilovsky, P. (2004). KnowledgeTree: a distributed architecture for adaptive e-learning. In
WWW Alt. ’04: Proceedings of the 13th international World Wide Web conference on Alternate
track papers & posters (pp. 104–113). http://doi.org/10.1145/1013367.1013386

Burgos, J. L. M. (2011). Semantic web standards. SNET Computer Engineering. Retrieved from
http://www.pdffiller.com/948565-semantic-web-standards_burgos-Semantic-Web-Standards—
SNET-Various-Fillable-Forms-snet-tu-berlin

Haake, M., & Gulz, A. (2008). Visual stereotypes and virtual pedagogical agents. Educational
Technology and Society, 11(4), 1–15.

Khemaja, M., & Taamaallah, A. (2016). Towards situation driven mobile tutoring system for
learning languages and communication skills: Application to users with specific needs. Journal
of Educational Technology & Society, 19(1).

Klašnja-Milićević, A., Vesin, B., Ivanović, M., & Budimac, Z. (2011). E-Learning personalization
based on hybrid recommendation strategy and learning style identification. Computers &
Education, 56(3), 885–899.

2.2 Adaptation of E-Learning Systems 25

http://doi.org/10.1145/1013367.1013386
http://www.pdffiller.com/948565-semantic-web-standards_burgos-Semantic-Web-Standards%e2%80%94SNET-Various-Fillable-Forms-snet-tu-berlin
http://www.pdffiller.com/948565-semantic-web-standards_burgos-Semantic-Web-Standards%e2%80%94SNET-Various-Fillable-Forms-snet-tu-berlin

Chapter 3
Personalization Based on Learning Styles

Abstract It is obvious that different learners have different preferences, needs and
approaches to learning. Psychologists distinguish these differences as individual
learning styles. Therefore, it is very important to accommodate for the different
styles of learners through learning environments that they prefer and find more
efficient. Learning styles can be defined as unique manners in which learners begin
to concentrate on, process, absorb, and retain new and difficult information. While
there are still many open issues with respect to learning styles, the learning style
models agree that learners have different ways in which they prefer to learn. This
chapter presents the bases of electronic learning techniques for personalization of
learning process based on individual learning styles and the possibilities of their
integration in e-learning systems.

It is obvious that different learners have different preferences, needs and approaches
to learning. Psychologists call these differences as the individual learning styles.
Therefore, it is very important to accommodate for the different styles of learners
through learning environments that they prefer and find more efficient. Learning
styles can be defined as unique manners in which learners begin to concentrate on,
process, absorb, and retain new and difficult information (Dunn et al. 1984). They
are distinctive individual patterns of learning, which vary from person to person. It
is necessary to determine what is most likely to trigger each learner’s concentration,
how to maintain it, and how to respond to his or her natural processing style to
produce long term memory and retention (Dorça et al. 2016).

The term learning styles refers to the concept that individuals differ in regard to
what mode of instruction or study is the most effective for them (Pashler et al. 2009).
Proponents of learning style assessment contend that the optimal instruction requires
diagnosing individual learning styles and tailoring instruction accordingly. Many
learning style models exist in literature, e.g. the learning style model by Felder and
Silverman (1988), Kolb (1984), Mumford and Honey (1986), Pask (1976). While
there are still many open issues with respect to learning styles, the learning style
models agree that learners have different ways in which they prefer to learn.

© Springer International Publishing Switzerland 2017
A. Klašnja-Milićević et al., E-Learning Systems,
Intelligent Systems Reference Library 112, DOI 10.1007/978-3-319-41163-7_3

27

3.1 Learning Style’s Theories

According to Felder and Silverman (1988), a learning style model classifies learners
according to the ways in which they receive and process information and acquire
knowledge, while a teaching style model classifies teaching methods according to
how well they address the proposed learning style components. Although the
existence of one unique learning style model and assessment tool, which will
generally be accepted and applied, could brought the benefits to all stakeholders,
today in the field of the learning style theories there is the opposite situation.
Namely, since the early 60s to these days researchers have built over 70 different
learning style models accompanied by the instruments for their assessment. They
mostly differ in a way in which they distinguish the leading factors of the learning
process.

All learning style models can be classified into five learning style families
(Coffield et al. 2004; Dorça et al. 2016; Halawa et al. 2015), according to the
cognition of the learning style concept:

• Learning styles and preferences are constitutionally based, including four
modalities: visual, auditory, kinaesthetic and tactile;

• Learning styles reflect features of the cognitive structure, including patterns of
ability;

• Learning styles are one component of personality type;
• Learning styles are flexibly stable learning preferences;
• Move on from learning styles to learning approaches, strategies, orientations

and conceptions.

Figure 3.1 shows the list consisting of the most frequently used learning style
models, classified within the learning styles families.

The most influential models and instruments of learning styles are chronologi-
cally described below.

Witkin 1962—Group Embedded Figures Test (GEFT). Witkin distinguishes
field-independent from field-dependent learners (Witkin et al. 1975). The main
characteristics of field-independent learners are that they work with an internal
frame of reference, with an intrinsic motivation and self-directed goals; they are less
affected by criticism and define their own learning strategy. On the opposite,
field-dependent learners are operating using an external frame of reference and
extrinsic motivation, so they need structuring and assistance from the instructor.
They have also a need to interact with other learners.

Kolb 1976—Learning Style Inventory (LSI). Kolb considers learning styles as
both flexible and stable, outlining that they are not fixed characteristic of the per-
sonality, but are relatively stable patterns of learners’ behavior. Kolb’s learning
style model is based on the theory of experiential learning which incorporates
growth and development the personality. Learning Style Inventory is an assessment
tool improved through the long period of almost 40 years of using and testing its
validity.

28 3 Personalization Based on Learning Styles

Gregorc 1977—Gregorc Mind Styles Delineator (MSD). According to
Gregorc’s model, there are two dimensions of learners’ unconscious abilities of
perception and ordering, determining his learning style: concrete-abstract and
sequential-random. Individuals may be strong in one or two of the following cat-
egories: concrete sequential, concrete random, abstract sequential and abstract
random.

Dunn and Dunn 1979—Learning Style Questionnaire (LSQ). The main
characteristic of this model is its user-friendly style and its orientation on exami-
nation of motivational factors, social interaction, physiological elements and
environmental factors. Learning Style Questionnaire examines learners’ preferences
for 22 different factors. High learners’ preferences are the initial sign for teachers to
make changes in learning environment by changing the teaching process (through
introduction of different sound, design, teaching time, classroom light, mobility or
adoption of a new kind of teaching techniques).

Curry 1983—Onionmodel. In hismodel, using the onionmetaphor (Curry 1983)
grouped different approaches into three main types, depicting them as different layers
of an onion. He named the outmost layer as ‘instructional preferences’ as a layer that
interact the most with the learning environment and the one to be the least stable but
less important for learning. The second level, the middle one, is called ‘information
processing style’, conceived of as the individual’s intellectual approach to assimi-
lating information, more stable than instructional preferences, but still modifiable by
learning strategies. Finally, the third and innermost layer is named as ‘cognitive

Families of learning styles

Learning styles and
preferences are

largely
constitutionally

based including the
four modalities:

VAKT

Learning styles
reflect deep-seated

features of the
cognitive

structure, including
"patterns of ability"

Learning styles are
one component of
a relatively stable
personality type

Learning styles are
flexibly stable learning

preferences

Move on from learning
styles to learning

approaches,
strategies,

orientations and
conceptions of learning

Dunn and Dunn
Gregorc
Bartlett
Betts

Gordon
Marks
Paivio

Richardson
Sheehan
Torrance

Riding
Broverman

Cooper
Gardner et al.

Guilford
Holzman & Klein

Hudson
Hunt
Kagan
Kogan

Messick
Pettigrew

Witkin

Apter
Jackson

Myers-Briggs
Epstein & Meier

Harrison-Branson
Miller

Allinson & Hayes
Herrmann

Honey & Mumford
Kolb

Felder & Silverman
Hermanussen, Wierstra,

de Jong & Thijssen
Kaufmann

Kirton
McCarthy

Entwistle
Sternberg
Vermunt

Biggs
Conti & Kolody

Grasha-Riechmann
Hill

Marton & Säljö
McKenney & Keen

Pask
Pintrich, Smith,

Garcia & McCeachie
Schmeck

Weinstein,
Zimmerman & Palmer
Whetton & Cameron

Fig. 3.1 Families of learning styles (Coffield et al. 2004)

3.1 Learning Style’s Theories 29

personality style’, the most stable and more significant in complex learning. The
stability comes from the fact that there is no direct interaction with the environment.

The Felder-Silverman 1988—Felder-Solomon Index of Learning Styles. The
Felder-Silverman’s learning and teaching style model consists of the four basic
components, which are:

• Learning style dimensions (Felder et al. 2000):

– Sensing/Intuitive Learners;
– Visual/Verbal Learners;
– Active/Reflective Learners;
– Sequential/Global Learners;

• Questions that define a student’s learning style (five),
• Questions that define teaching style (five) and
• Felder-Solomon Index of Learning Styles.

The main hypothesis of this model is that an optimal learning environment
includes a teaching style that combines both sides of each of the given dimensions
(both sensing and intuitive, both visual and verbal etc.) (Felder and Silvermans
1988).

Riding 1991—Cognitive Styles Analysis (CSA). According to Riding’s model,
learners may improve their learning strategies through the learning process. He
outlines two different dimensions of the learning style: holist-analytic, focused on
the ways of organizing information and verbaliser-imager, considering the ways of
representing information. It is important to mention that these two dimensions are
independent on learners’ intelligence.

Herrmann Brain 1995—Dominance Instrument (HBDI). Herrmann Brain‘s
model considers learning styles as learned patterns of student’s behaviour,
including development and person’s creativity as important learning factors. This is
contrary to the theories of learning styles as fixed personality features.

Vermunt 1996—Inventory of Learning Styles (ILS). This model is based on
the idea of integration of cognitive, affective, meta-cognitive and co-native pro-
cesses. It examines different elements of the learning process like learning strate-
gies, motivation for learning and preferences for organizing information. The model
is based on interviews, primarily for application among university students and
teachers, but its extended version has application in business environment and
among younger learners.

Apter 1998—Motivational Style Profile (MSP). The Apter’s theory considers
human behaviour and experience, not as fixed personality types, but as a dynamic
interplay between ‘reversing’ motivational states. According to Apter’s model,
there are four domains of experience (means-ends, rules, transactions and rela-
tionships) in which we can find an interaction between emotion, cognition and
volition.

Sternberg 1998—Thinking Styles. The Sternberg’s model of learning styles is
based on a new theory of mental self-government. He proposes 13 thinking styles,

30 3 Personalization Based on Learning Styles

which are based on the following concepts: functions, forms, levels, scopes and
meanings of government.

Jackson 2002—Learning Styles Profiler (LSP). Jackson’s model describes
four learning styles named Initiator, Analyst, Reasoner and Implementer. The
model is designed for use both in education and business.

3.2 Learning Styles in E-Learning Systems

Researchers in the field of education mainly share the opinion about the importance
of learning style in learning process in general, and especially in online learning
(Watkins 2015). Many of them focus on finding the evidence of its positive
influence on the performance and the results of the learning process. The instal-
lation of knowledge about learning styles in an online learning system as a tool for
facilitating of learning and its personalization has been emphasized in a lot of
studies. There are numerous studies dealing with the issue of students’ behaviour in
online learning environments, and its connection to the corresponding learning
styles (Cristea and Stash 2006; Dorça et al. 2016; Graf et al. 2010; Liegle and
Janicki 2006; Lu et al. 2007).

There are still different opinions among researchers about the causal relationship
between the adaptability to learning style of the learner in an online learning
environment, and the quality of the learning process. Most of the researchers
consider it important for an adaptive learning system to have a mechanism for
accommodating to a specific learning style of a certain learner (Coffield et al. 2004;
Popescu 2010).

On the other hand, there are some studies which minimize the importance of
adaptation to learning styles in e-learning systems (Freedman and Stumpf 1980;
Holodnaya 2002). The results of these studies mainly fail to show any significant
enhancement in the online learning process arising from the adaptability of the
e-learning system to the learning style. Furthermore, in psychological research
conducted by Holodnaya (2002), learning in an environment which is incompatible
with learner’s preferences could encourage learner in developing some new skills.

However, positive opinions on the influence of the adaptability of an e-learning
environment to a specific learning style during online learning process prevail.
There are a lot of studies where this attitude is substantiated by experiments with
measurable results.

Popescu et al. (2007) consider that e-learning systems with flexibility of
changing instructions through the learning process with respect to the learner’s
learning style preferences could increase efficiency, effectiveness and satisfaction of
learner.

According to Stash et al. (2006), it is important to incorporate a knowledge about
learner’s learning style in e-learning environment. Such e-learning environment,
which provides the learners with a possibility of choosing the most suitable way of
learning could enhance its results.

3.1 Learning Style’s Theories 31

A group of studies emphasizes a navigational behaviour as one of the learner’s
characteristics that is important for more accurate determination of learning style in
online learning systems. That must be taken into account when creating an adaptive
learning system which aims to achieve an acceptable personalization function.

An adaptive navigation support of a learning management system (its ability to
recommend learners the most appropriate learning steps and personalized way of
passing through the learning material) is marked as one of the leading technologies
for achieving adaptability of online learning systems (Brusilovsky 2004).
Numerous studies focus on the navigational behaviour of learner considering
learning styles in learning processes. The most of the existing LMS, like CS383
(Carver et al. 1999), WELSA (Popescu 2010), and TSAL (Hwang et al. 2008), have
the adaptability features based on the learner’s navigational behaviour considering
learning styles in learning processes which are not obligatory online. On the other
hand, Graf et al. (2007) focused their research on students’ behaviour in online
environment only. They have conducted a study about the navigational behaviour
of students in an online course within a learning management system, investigating
the causality between students’ different learning styles, and their activities and
preferences during online learning process. The results of the study can be sum-
marized as follows:

• Students’ different learning styles cause the usage of different strategies for
learning and navigating through the course.

• Monitoring student’s navigating behaviour and processing the output data could
be useful for enhancing the adaptability of the learning management system.

• The information about differences in student’s navigational behaviour can be
used for developing a new pattern in student modelling that identifies learning
styles automatically from students’ behaviour in an online course. This can
improve former student modelling approaches, based mainly on counting the
students’ visits of learning objects, measuring students’ time spent on different
kinds of learning objects or assessing their performance of different parts of
learning courses (exercises, tests, etc.).

Previous conclusions were implemented in the development of LMS called
DeLeS, in which Kumar, (Kinshuk et al. 2011) introduced the extended way for
automatic identification of learning styles in an online learning system. In DeLeS
there are two kinds of patterns for identification of learning styles:

1. Behaviour patterns—for detecting learning styles, and
2. Additional sources—for improving the identification of learning styles.

So, the architecture of DeLeS consists of two basic components:

1. Extraction component (for extracting data from the learning system’s database),
and

2. Calculation component (for quantification of learning styles from students’
behaviour).

32 3 Personalization Based on Learning Styles

This extended architecture of DeLeS includes three kinds of data sources: data
from behaviour patterns, navigation patterns and cognitive abilities. The results of
this study showed that incorporation of data from extended sources about the
students’ learning behaviour (navigation patterns and cognitive traits), has its jus-
tification in improving the accuracy of the learning style identification.

The importance and the influence of knowledge about learning styles in an
adaptive learning environment is doubtlessly worthy of further research.
Irrespective of different opinions in relevant studies, we strongly support the strand
of research in which the modelling of learning style in LMS has to be a built-in
functionality. This could provide the learners with a possibility to define their
learning style, and to choose from different instructional strategies offered.

3.3 Learning Style Index by Felder and Soloman

According to the comprehensive study of the e-learning environment, we selected
Felder and Soloman’s data collection instrument, called Index of Learning Styles
(ILS) (Soloman and Felder 2005). The ILS is a 44-questions, freely available,
multiple-choice learning style instrument, which assesses variations in individual
learning style preferences across four dimensions or domains. These are
Information Processing, Information Perception, Information Reception, and
Information Understanding. Within each of the four domains of the ILS there are
two categories (see Table 3.1):

Table 3.1 Characteristics of ILS based on Soloman and Felder (2005)

Active Reflective

Work in groups Work alone

Preference to try out new material
immediately (ask, discuss, and explain)

Preference to take time to think about a
problem

Practical (experimentalists) Fundamental (theoreticians)

Sensing Intuitive

More patient with details More interested in overviews and a broad
knowledge (bored with details)

By standard methods Innovations

Senses, facts and experimentation Perception, principles and theories

Visual Verbal

Preference to perceive materials as pictures,
diagrams and flow chart

Preference to perceive materials as text

Global Sequential

Prefer to get the big picture first Prefer to process information sequentially

Assimilate and understand information in a
linear and incremental step, but lack a grasp
of the big picture

Absorb information in unconnected chunks,
and achieve understanding in large holistic
jumps without knowing the details

3.2 Learning Styles in E-Learning Systems 33

• Information Processing: Active and Reflective learners,
• Information Perception: Sensing and Intuitive learners,
• Information Reception: Visual and Verbal learners,
• Information Understanding: Sequential and Global learners.

The preferred learning style can be investigated by offering the learner a free
choice between several different forms of examples, activities or explanations at
first, and by observing behaviour and pattern in which (s)he makes the choices.

3.3.1 Information Processing: Active and Reflective
Learners

Within Information Processing domain, we can distinguish example-oriented
learners, called Reflectors, and activity-oriented learners, called Activists (Kolb
1984). Active learners tend to retain and understand information best by doing
something active with it—discussing or applying it or explaining it to others.
Reflectors are people who tend to collect and analyse data before taking an action.
They may be more interested in reviewing other learners’ and professional opinions
than doing real activities. In the e-learning systems, a learner with the active
learning style can be presented with an activity first, then an example, explanation
and theory. For the learner with the reflective style this order would be different—
(s)he is shown an example first, then an explanation and theory, and finally (s)he is
asked to perform an activity.

3.3.2 Information Perception: Sensing and Intuitive
Learners

Within Information Perception domain, sensing learners, called Sensors, tend to be
patient with details and good at memorizing facts and doing hands-on (laboratory)
work. On the other hand, intuitive learners, called Intuitors, may be better at
grasping new concepts and are often more comfortable with abstractions and
mathematical formulations than sensing learners. Sensors often prefer solving
problems using well-established methods, and dislike complications and surprises.
On the other hand, Intuitors like innovation and dislike repetition.

Sensors tend to be more practical and careful than Intuitors. Intuitors tend to
work faster and to be more innovative than Sensors. For example, it is assumed that
sensing learners will be interested in additional materials; therefore this kind of
material can be recommended to them. Intuitors are provided with abstract material,
formulas and concepts. Adequate explanations in e-learning system can be pre-
sented to them in the form of block diagrams or exact syntax rules.

34 3 Personalization Based on Learning Styles

3.3.3 Information Reception: Visual and Verbal Learners

Within Information Reception domainVisual learners remember best what they see—
pictures, diagrams, flow charts, time lines, and demonstrations (Klašnja-Milićević
et al. 2011).Verbal learners get more out of words—written and spoken explanations.

3.3.4 Information Understanding: Sequential and Global
Learners

Within Information Understanding domain Sequential learners tend to follow log-
ical stepwise paths in finding solutions. On the other hand, Global learners may be
able to solve complex problems quickly or put things together in novel ways once
they have grasped the big picture, but they may have difficulty explaining how they
did it. Sequential learners prefer to go through the course step by step, in a linear way
with each step following logically from the previous one, while global learners tend
to learn in large leaps, sometimes skipping learning objects and jumping to more
complex material. According to these characteristics of Sequential learning style,
these learners are led through educational material by a predefined order. On the
other hand, Global learners are provided with an overall view of the course, with
short explanations of each unit and options for accessing the unit they are interested
in by clicking the unit hyperlinks rather than following sequential order.

References

Brusilovsky, P. (2004). KnowledgeTree: A distributed architecture for adaptive e-learning. In
WWW Alt. ’04: Proceedings of the 13th International World Wide Web Conference on
Alternate Track Papers & Posters (pp. 104–113). http://doi.org/10.1145/1013367.1013386

Carver, C. A., Howard, R. A., & Lane, W. D. (1999). Addressing different learning styles through
course hypermedia. IEEE Transactions on Education, 42(1), 33–38.

Coffield, F., Moseley, D., Hall, E., & Ecclestone, K. (2004). Learning styles and pedagogy in post
16 learning: A systematic and critical review. The Learning and Skills Research Centre.

Cristea, A., & Stash, N. (2006). AWELS: Adaptive web-based education and learning styles. In
Sixth IEEE International Conference on Advanced Learning Technologies (ICALT’06)
(pp. 1135–1136). http://doi.org/10.1109/ICALT.2006.1652660

Curry, L. (1983). An organization of learning styles theory and constructs.
Dorça, F., Araújo, R., de Carvalho, V., Resende, D., & Cattelan, R. (2016). An automatic and

dynamic approach for personalized recommendation of learning objects considering students
learning styles: An experimental analysis. In Informatics in education (Vol. 15, pp. 45–62).
Vilnius University.

Dunn, R., Dunn, K., & Freeley, M. E. (1984). Practical applications of the research: Responding to
students’ learning styles–step one. Illinois State Research andDevelopment Journal, 21(1), 1–21.

Felder, R., & Silverman, L. (1988). Learning and teaching styles in engineering education.
Engineering Education, 78, 674–681. http://doi.org/10.1109/FIE.2008.4720326

3.3 Learning Style Index by Felder and Soloman 35

http://doi.org/10.1145/1013367.1013386
http://doi.org/10.1109/ICALT.2006.1652660
http://doi.org/10.1109/FIE.2008.4720326

Felder, R., Silverman, L., & Solomon, B. (2000). Index of learning styles (ILS). Skynet.ie.
Freedman, R. D., & Stumpf, S. A. (1980). Learning style theory: Less than meets the eye.

Academy of Management Review, 5(3), 445–447.
Graf, S., Liu, T. C., & Kinshuk. (2010). Analysis of learners’ navigational behaviour and their

learning styles in an online course. Journal of Computer Assisted Learning, 26(2), 116–131.
http://doi.org/10.1111/j.1365-2729.2009.00336.x

Graf, S., Viola, S. R., & Leo, T. (2007). In-depth analysis of the Felder-Silverman learning style
dimensions. Journal of Research on Technology in Education, 40, 79–93. http://doi.org/10.
1080/15391523.2007.10782498

Halawa, M. S., Hamed, E. M. R., & Shehab, M. E. (2015). Personalized E-learning
recommendation model based on psychological type and learning style models. In 2015
IEEE Seventh International Conference on Intelligent Computing and Information Systems
(ICICIS) (pp. 578–584).

Holodnaya, M. A. (2002). Psychology of intelligence: The paradoxes of the study. Petersburg:
Peter.

Hwang, G.-J., Tsai, P.-S., Tsai, C.-C., & Tseng, J. C. R. (2008). A novel approach for assisting
teachers in analyzing student web-searching behaviors. Computers & Education, 51(2), 926–
938.

Kinshuk, K., Chang, M., Dron, J., Graf, S., Kumar, V., Lin, O., … Yang, G. (2011). Transition
from e-learning to u-learning: Innovations and personalization issues. In 2011 IEEE
International Conference on Technology for Education (T4E) (pp. 26–31).

Klašnja-Milićević, A., Vesin, B., Ivanović, M., & Budimac, Z. (2011). E-learning personalization
based on hybrid recommendation strategy and learning style identification. Computers &
Education, 56(3), 885–899.

Kolb, D. (1984). Individuality in learning and the concept of learning styles (pp. 61–98).
Englewood Cliffs, New Jersey: Prentice Hall.

Liegle, J. O., & Janicki, T. N. (2006). The effect of learning styles on the navigation needs of
web-based learners. Computers in Human Behavior, 22(5), 885–898. http://doi.org/10.1016/j.
chb.2004.03.024

Lu, H., Jia, L., Gong, S., & Clark, B. (2007). The relationship of kolb learning styles, online
learning behaviors and learning outcomes Shu-hong Gong. Learning, 10, 187–196.

Mumford, A., & Honey, P. (1986). The manual of learning styles. Maidenhead, Berkshire:
P. Honey, Ardingly House.

Pashler, H., McDaniel, M., Rohrer, D., & Bjork, R. (2009). Learning styles concepts and evidence.
Psychological Science in the Public Interest, Supplement, 9, 105–119. http://doi.org/10.1111/j.
1539-6053.2009.01038.x

Pask, G. (1976). Styles and strategies of learning. British Journal of Educational Psychology, 46
(2), 128–148.

Popescu, E. (2010). Adaptation provisioning with respect to learning styles in a web-based
educational system: An experimental study. Journal of Computer Assisted learning, 26(4),
243–257.

Popescu, E., Bǎdicǎ, C., & Trigano, P. (2007). Rules for learner modeling and adaptation
provisioning in an educational hypermedia system. In Proceedings—9th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2007
(pp. 492–499). http://doi.org/10.1109/SYNASC.2007.72

Soloman, B. A., & Felder, R. M. (2005). Index of learning styles questionnaire. NC State
University. Available Online at: http://www.Engr.Ncsu.Edu/learningstyles/ilsweb.Html. Last
Visited on May 14, 2010.

Stash, N., Cristea, A. I., & De Bra, P. (2006). Adaptation to learning styles in e-learning: Approach
evaluation.

Watkins, C. (2015). Meta-learning in classrooms. In The SAGE handbook of learning (p. 321).
Witkin, H. A., Moore, C. A., Goodenough, D. R., & Cox, P. W. (1975). Field-dependent and

field-independent cognitive styles and their educational implications. ETS Research Bulletin
Series, 1975(2), 1–64.

36 3 Personalization Based on Learning Styles

http://doi.org/10.1111/j.1365-2729.2009.00336.x
http://doi.org/10.1080/15391523.2007.10782498
http://doi.org/10.1080/15391523.2007.10782498
http://doi.org/10.1016/j.chb.2004.03.024
http://doi.org/10.1016/j.chb.2004.03.024
http://doi.org/10.1111/j.1539-6053.2009.01038.x
http://doi.org/10.1111/j.1539-6053.2009.01038.x
http://doi.org/10.1109/SYNASC.2007.72
http://www.Engr.Ncsu.Edu/learningstyles/ilsweb.Html

Chapter 4
Adaptation in E-Learning Environments

Abstract In e-learning systems, learners usually does not visit educational mate-
rials linearly, but have access to different materials via a number of links to other
lessons or teaching units. In modern Web-based learning environments, the authors
avoid creation of static learning material that is presented to the learner in a linear
way, due to the large amount of interdependences and conditional links between the
various pages. Often, authors create multiple versions of learning resources so the
system can propose to the learner the appropriate one. This leads to the learning
concept known as content adaptation. The order of visiting educational material can
be influenced by manipulating the hypertext links. This process is called link
adaptation. The most popular content and link adaptation techniques used in
e-learning environments are presented in this chapter. The chapter also covers basic
principles of adaptive educational hypermedia systems.

In e-learning systems, learners usually do not visit educational materials linearly,
but have access to different materials with the assistance of a number of links to
other lessons or teaching units. These links can be in the form of navigational
elements (buttons) or in the form of specially emphasized piece of text in the form
of hyperlinks.

In modern Web-based learning, the authors avoid creation of static learning
material that is presented to learner in a linear way, due to the large amount of
interdependence and conditional links between the various pages (De Bra et al.
2003). Therefore, methods and techniques of adaptive hypermedia provide infor-
mation to learners, whether some links:

• lead to material that learner is not ready for,
• propose visit to some useful sites or
• provide additional explanations.

Adaptive educational hypermedia systems use data from the learner model in
order to adapt content and links of hypermedia course according to needs of each
learner (Henze et al. 2004). These systems provide personalized learning using
technology that continuously measures learner’s knowledge and progress.

© Springer International Publishing Switzerland 2017
A. Klašnja-Milićević et al., E-Learning Systems,
Intelligent Systems Reference Library 112, DOI 10.1007/978-3-319-41163-7_4

37

Collected data on learner are used to further customize the display of educational
materials to the needs, pace of work, desires and goals of the learner.

4.1 Adaptive Educational Hypermedia

Adaptive hypermedia is an alternative to the traditional “one-size-fits-all” approach
in the development of hypermedia systems. Adaptive hypermedia systems build a
model of the goals, preferences and knowledge of each individual user. This model
has been used in interaction between system and user, in order to adapt information
and knowledge to the needs of that user. For example, to a learner in an adaptive
educational hypermedia system will be presented educational material that is
adapted specifically to his knowledge of the subject (De Bra 1999), and a suggested
set of the most relevant links to proceed further (Brusilovsky et al. 1996).

Adaptive Hypermedia systems are a combination of text, hypertext, hyperlinks,
audio and video materials in order to form the non-linear medium of information.
Adaptive Hypermedia is a technique of adjustment (presentation, highlighting or
concealment) of hyperlinks with the aim of selecting the appropriate content to the
user. There are two main reasons for the use of adaptive hypermedia: avoiding the
problems that occur when the material is read by the planned schedule and better
adaptation to individual differences among learners (De Bra 2006).

Adaptive Hypermedia systems can sort, highlight or hide the links to individual
Web pages in order to select content to be shown and generate recommendations to
learners, which resources can visit based on analysis of their personal characteristics
(objectives, needs and level of knowledge). Learners can also receive information
about the importance and significance of certain elements of the educational
materials.

Adaptive Hypermedia systems combine hypermedia with techniques for user
modelling and can be used in various application fields, dominated by the education
(De Bra 2006). The aim of adaptive hypermedia is to overcome the problems of the
presentation of the same content to different learners. An approach using adaptive
hypermedia involves collecting data about each learner and adaptation of
learner-system interaction on the basis of this information.

Important question arise when speaking about any kind of adaptive systems:
What can be adapted in this system? Which features of the system can differ for
different users? What is the space of possible adaptations?

In adaptive hypermedia, the adaptable space is quite limited: there are not so
many features which can be altered. At some level of generalization, hypermedia
consists of a set of nodes or hyper documents (for the purpose of brevity, we will
call them “pages”) connected by links. Each page contains some local information
and a number of links to related pages. Hypermedia systems can also include an
index and a global map which provides links to all accessible pages. Adaptive
hypermedia offers two general categories of adaptation:

38 4 Adaptation in E-Learning Environments

• content-level adaptation: the content of regular pages can be adapted and
• link-level adaptation: the links that appear on a course Web page can be the

links from regular pages, index pages, and maps.

Therefore, it can be distinguished content-level and link-level adaptation as two
different classes of hypermedia adaptation. First one is known as adaptive pre-
sentation (content adaptation) and the second one is known as adaptive navigation
support (link adaptation):

• Content adaptation—the system supports presentation of the content in dif-
ferent ways, according to the domain model (concepts, their relations, prereq-
uisites for presentation of material, etc.) and information from the learner model
(De Bra 2006).

• Link adaptation—the system modifies the appearance and/or availability of
every link that appears on a course Web page, in order to show the learner,
whether the link leads to interesting new information, to new information the
learner is not ready for, or to a page that provides no new knowledge (Romero
et al. 2007). The system can make some links inaccessible to the learner if the
system estimates from the learner model that such links take him/her for the
irrelevant information. The system may assume that less successful learners will
be interested in additional material. Therefore, those learners may click the link
for additional material on the interface.

4.2 Content Adaptation

E-learning systems provide additional explanations using so-called conditional
pages—links are displayed, highlighted or removed as needed, based on the
information from the appropriate learner model. With this model, the system can
determine whether certain resources correspond to the identified learner profile and
they are designed to present the learner with important information.

Usually in every course i.e. educational material there are a lot of
cross-references between different chapters/sections. In a paper textbook the author
knows whether such a reference is a forward or a backward reference, and thus
whether the reference is to a concept ‘not yet known’ as opposed to ‘already
known’. In an on-line course with free navigation through text the author cannot
know whether a reference is a forward or backward reference. However, it isn’t
difficult to track a learner’s path through the course text, and thus for the system to
know whether for this learner at this time a reference is a forward or backward
reference. So if an author creates these two versions of the reference the system can
choose and present the appropriate one. This leads to the first important form of
adaptation—content adaptation (Brusilovsky 1998).

There are basically three cases where content adaptation is appreciated.
(Brusilovsky 1998):

4.1 Adaptive Educational Hypermedia 39

• When a reference is made to a concept the learner does not yet know. A short
prerequisite explanation can be inserted to prepare the learner for the rest of the
description of the topic.

• Sometimes the current concept can be elaborated upon further in case the related
concept is already known, or when the knowledge level of the learner is already
high. For these “expert” users an additional explanation can be given that is
beyond the level of the average learner (at the time of visiting the current page).

• Sometimes an interesting comparison is possible with another concept, but only
if that concept is already known. Such a comparative explanation between the
concepts can automatically be shown on the page of the second concept studied
by the learner.

When educational material is carefully and professionally prepared in content
adaptation manner the learner may easily use it and even not be aware that content
adaptation is being performed. If content adaptation is frequently performed in an
educational material the learners may become confused, thinking that they are
“missing out” on some of the information in the course.

4.3 Link Adaptation

The differences in learners’ knowledge, caused by choosing different paths through
the educational material can be compensated for to some extent, but sometimes it is
necessary to guide the learners in a certain direction or to keep learners away from
some learning material they are really not ready for (meaning that a short prereq-
uisite explanation is not sufficient to prepare the learner for the rest of the
description of the topic). The order of visiting educational material can be influ-
enced by manipulating the hypertext links. This reveals the second form of adap-
tation: link adaptation (Brusilovsky 1998).

The basic idea with link-adaptation is to change or annotate the link structure in
such a way that the user is guided towards interesting, relevant information, and
kept away from non-relevant information. Link-adaptation tries to make simpler the
link structure to reduce orientation problems, while retaining a lot of navigational
independence, a typical feature of hypermedia systems.

The techniques found in (De Bra et al. 2000; Kobsa et al. 2001) for
link-adaptation are:

• direct guidance (e.g. a “next” button);
• link sorting (like in search engines);
• link hiding (hide non-relevant links, but keep anchor text);
• link annotation (e.g. use colours to indicate relevance);
• link disabling (make non-relevant links not work);
• link removal (remove non-relevant link anchors);
• map adaptation (provide a personalized overview).

40 4 Adaptation in E-Learning Environments

The system modifies the appearance and/or availability of every link that appears
on a course Web page, in order to show the learner whether the link leads to
interesting new information, to new information the learner is not ready for, or to a
page that provides no new knowledge (Romero et al. 2007). The system can make
some links inaccessible to the learner if the system estimates from the learner model
that such links take him/her for the irrelevant information. The system may assume
that less successful learners will be interested in additional material. Therefore,
those learners using system interface may click the link for additional material.

Link adaptation can be done in several ways, because the links have a position in
the page determined by a link anchor and a destination:

• Adaptive link sorting means that the position of links has an influence on the
learner’s behaviour. This foreseen meaning can be used to sort lists of links so
that the most appropriate links for the current learner, in his current state of
mind, are placed at the top. Links can also be made “available” through a system
of menus and submenus. A usual technique is to show a list of chapters, and the
list of sections of the “current” chapter as list of links. By having only the
sections of one chapter listed at the time the learner is suggested to select only
sections from that chapter and not switching between sections in different
chapters.

• Links are presented through a link anchor. Link anchor can be a word, a phrase
or an icon, displayed in a clear way as a link. On the Web, links are typically
represented by anchors that appear in blue and that are underlined. Images or
icons that are link anchors typically have a blue border. There are different ways
in which the learner can be guided towards or away from certain links by
changing the presentation of the link anchor. Most Web browsers change the
colour of the link anchor after the link is visited (usually become purple).
Nevertheless, it is possible to change the appearance of link anchors in other
ways, and it is also possible to add icons to indicate a special meaning of a link.
The AHA! System (De Bra et al. 2005) has a default link adaptation technique
of link hiding. Link can be inaccessible or invisible to the learner if the system
finds out that it leads to irrelevant information. Colour of link anchors can be
blue, purple or black, and link anchors are not underlined in AHA! so the black
links are effectively hidden. They look just like normal text. It is also possible to
change this colour scheme and use three visible colours, resulting in a technique
of link annotation. Other systems, like ELM-ART (Weber and Brusilovsky
2001) and Interbook (Brusilovsky et al. 2004) for instance, use icons to rec-
ommend ‘for’ or ‘in contradiction of’ certain links (green and red balls).

• Learners expect a link anchor to always correspond to the same link, and hence
to lead to the same link destination. On the other hand, when pages are gen-
erated dynamically (e.g. by an adaptive system) there is no technical reason why
the same anchor cannot lead to a different destination, depending on specific
conditions. A link can for instance lead to a shortened description of a topic or a
detailed description depending on the learner’s progress. In an educational
environment, in (De Bra 2006), the use of an adaptive course (with adaptive

4.3 Link Adaptation 41

tests) is based on the outcome of a test. Result of the test would automatically
lead the learner to a particular chapter at a beginner’s, intermediate or advanced
level.

There is no adaptive hypermedia system that supports all the methods and
techniques presented in this section. Using all link-adaptation techniques simulta-
neously would lead to a confused and non-functional system.

References

Brusilovsky, P. (1998). Adaptive educational systems on the World-Wide-Web : A review of
available technologies. In Proceedings of Workshop “WWW-Based Tutoring” at 4th
International Conference on Intelligent Tutoring Systems (ITS’98), San Antonio, TX.

Brusilovsky, P., Karagiannidis, C., & Sampson, D. (2004). Layered evaluation of adaptive
learning systems. International Journal of Continuing Engineering Education and Life Long
Learning, 14(4), 402–421.

Brusilovsky, P., Schwarz, E., & Weber, G. (1996). ELM-ART: An intelligent tutoring system on
World Wide Web. In Intelligent tutoring systems (pp. 261–269).

De Bra, P. (1999). Design issues in adaptive web-site development. In Proceedings of the 2nd
Workshop on Adaptive Systems and User Modeling on the WWW (pp. 29–39).

De Bra, P. (2006). Web-based educational hypermedia. Data Mining in E-Learning (Advances in
Management Information), 4, 3–16.

De Bra, P., Brusilovsky, P., & Houben, G.-J. (2000). Adaptive hypermedia—From systems to
framework. Journal ACM Computing Surveys, 31(4), 1–6. http://doi.org/10.1145/345966.
345996.

De Bra, P., Stash, N., & Smits, D. (2005). Creating adaptive web-based applications. In: Tutorial
at the 10th International Conference on User Modeling, 1–33.

De Bra, P., Aerts, A., Berden, B., De Lange, B., Rousseau, B., Santic, T. & Stash, N. (2003).
AHA! The adaptive hypermedia architecture. In Proceedings of the fourteenth ACM
conference on Hypertext and hypermedia (pp. 81–84). ACM.

Henze, N., Dolog, P., & Nejdl, W. (2004). Reasoning and ontologies for personalized e-learning in
the semantic web. Educational Technology & Society, 7(4), 82–97.

Kobsa, A., Koenemann, J., & Pohl, W. (2001). Personalised hypermedia presentation techniques
for improving online customer relationships. The Knowledge Engineering Review, 16(02), 111.
http://doi.org/10.1017/S0269888901000108.

Romero, C., Ventura, S., Delgado, J. A., & De Bra, P. (2007). Personalized links recommendation
based on data mining in adaptive educational hypermedia systems. In Creating New Learning
Experiences on a Global Scale (pp. 292–306). Berlin: Springer.

Weber, G., & Brusilovsky, P. (2001). ELM-ART : An adaptive versatile system for web-based
instruction. International Journal of Artificial Intelligence in Education, 12(4), 351–384. http://
doi.org/10.1.1.66.6245.

42 4 Adaptation in E-Learning Environments

http://doi.org/10.1145/345966.345996
http://doi.org/10.1145/345966.345996
http://doi.org/10.1017/S0269888901000108
http://doi.org/10.1.1.66.6245
http://doi.org/10.1.1.66.6245

Chapter 5
Agents in E-Learning Environments

Abstract A recent trend in the field of e-learning and tutoring systems is to utilize
agent technology and develop and use different kinds of agents in virtual learning
environments. Software agents, or simply agents, are usually defined as autonomous
software entities, with various degrees of intelligence, capable of exhibiting both
reactive and pro-active behaviour in order to satisfy their design goals. From the point
of e-learning and tutoring systems harvester and pedagogical agents are of the special
research interest. Harvester agents are in charge of collecting learning material from
online, often heterogeneous repositories and success depends on the quality and
standards of teaching material representation. The main goals of pedagogical agents
are to motivate and guide students through the learning process, by asking questions
and proposing solutions. This chapter presents a possible trend in use of intelligent
agents for personalised learning within tutoring system. Some possibilities of the use
of several kinds of agents in a stand-alone e-learning architecture are proposed.

A recent trend in the field of e-learning and tutoring systems is to utilize agent
technology and develop and use different kinds of agents. Despite the fact that it is
possible to design, develop and use different kinds of sophisticated agents (Ivanović
et al. 2014) two categories of software agents are of the special interest in this
domain: harvester and pedagogical agents.

Software agents, or simply agents, are usually defined as autonomous software
entities, with various degrees of intelligence, capable of exhibiting both reactive and
pro-active behaviour in order to satisfy their design goals (Bǎdicǎ et al. 2011). From
the point of e-learning and tutoring systems harvester and pedagogical agents are of
the special research interest. Harvester agents are in charge of collecting learning
material from online, often heterogeneous repositories and success depends on the
quality and standard of teaching material representation. The core properties of the
agent technology, such as parallel and distributed execution, mobility, and inter-agent
communication, can bring significant benefits to the harvesting process, in terms of
speed and efficiency (Badica and Badica 2009; De la Prieta and Gil 2010).

(Heidig and Clarebout 2011) define pedagogical agents as “lifelike characters
presented on a computer screen that guide users through multimedia learning

© Springer International Publishing Switzerland 2017
A. Klašnja-Milićević et al., E-Learning Systems,
Intelligent Systems Reference Library 112, DOI 10.1007/978-3-319-41163-7_5

43

environments”. The main goals of these agents are to motivate and guide students
through the learning process, by asking questions and proposing solutions (Heller
and Procter 2010).

In following sections, possibilities of using several kinds of agents in a
stand-alone e-learning architecture will be presented.

5.1 Some Existing Agent Based Systems

Recently, several interesting approaches that use software agents in e-learning
systems are reported. Intelligent agents are incorporated in ABITS (Capuano et al.
2000), MathTuthor (Frigo et al. 2005), and Educ-MAS (Gago et al. 2009), in order
to improve the course recommendation results.

Harvester agents are proposed in Sharma and Gupta (2010) to utilize the parallel
and distributed execution of the agent in order to optimize the web crawling pro-
cess. Another system that relies on harvester agents is presented in Baran et al.
(2007)—Agent Based Search System (ABSS). It is intended to improve the quality
of search query results not only harvesting heterogeneous remote learning object
repositories, but also tracking changes in them. Harvested learning objects are
stored in local repositories to be searched by a sophisticated agent-based search
module. Similarly (Barcelos et al. 2011) have developed an agent-based federated
catalog of learning objects (AgCAT)—an efficient system for searching and
retrieving learning objects.

Both of these systems use sophisticated harvesting agents to retrieve the
best-suited learning objects, i.e. they are sophisticated search engines and enable
their users to pull the data using search queries.

On the other hand other kinds of agents are studied in Heidig and Clarebout
(2011). They have provided an interesting analysis of 39 studies related to the
effects of pedagogical agents onto the learning outcome. The initial conclusion is
that only 5 studies have detected positive effects of using pedagogical agents, but
majority of them did not use a control group that learn without the support of
agents. Therefore, the suggestion is for the researchers to better examine additional
elements of learning like the environment, domains, levels of design, etc. that lead
to the beneficial use of pedagogical agents.

SmartEgg is a web-based pedagogical agent that assists students in learning SQL
(Mitrovic et al. 2007). It is integrated into an intelligent e-learning system named
SQL-Tutor. The agent includes a visual representation with animated gestures, and
can express different behaviours. Initial evaluation has shown that the usage of
SmartEgg agent has a significant positive impact onto the student’s motivation
(Mitrovic et al. 2004).

Although many existing systems incorporate either type of agents, there have
been no attempts to efficiently integrate both harvesting and motivational-level
agents. HAPA (HArvester and Pedagogical Agent-based e-learning system) is the
concept of helpful and misleading pedagogical agents in the same environment and

44 5 Agents in E-Learning Environments

with the common goal (Ivanović et al. 2015). HAPA is designed as general
architecture that incorporates agents to facilitate higher quality e-learning activities.
But, first prototype implemented to prove the concept is in the area of programming
and it helps learners in studying essential elements of the programming language
Java. HAPA consists of three main components:

• harvester agents,
• classifier module and
• pair of pedagogical agents.

The task of harvester agents is a collection of the appropriate learningmaterial from
the web. Their results are further delivered to the Classifier module. This module
performs automatic classification of individual learning objects that will be proposed
to a learner. A pair of specially de-signed pedagogical agents (helpful andmisleading)
interacts with students and helps them comprehend the learning material.

5.2 HAPA System Overview

HAPA system is currently standalone e-learning system which helps students in
learning and especially in solving programming problems by writing appropriate
programs. At a later stage HAPA could be included as a component in other tutoring
systems devoted to learning programming languages. The goal of the system is to
be incorporate existing e-learning systems.

A high-level overview of the system architecture is outlined in Fig. 5.1. HAPA
includes several important components: harvester agents, the Classifier module,

Common graphical user interface

Helpful hints Misleading hints

Student’s record

Classifier

Harvester agents

Web
resources

For loops
Inheritance

...

Hint
creation

Fig. 5.1 A high-level overview of the HAPA system

5.1 Some Existing Agent Based Systems 45

repositories of helpful and misleading hints, and pedagogical agents. The func-
tioning of each component and their mutual interactions are described in more
details in the following sub-sections (Ivanović et al. 2015).

5.2.1 Harvesting and Classifying the Learning Material

HAPA is currently mainly focused on the code completion type of tasks, in which
students are expected to fill-in missing parts of the program. The student is given a
code snippet, and then requested to complete the source code according to task
specification. This kind of tasks is well-suited for testing but also for improving the
student’s programming skills.

Initial activity of constructing the code completion tasks is collection of addi-
tional learning material. This material is collected by the harvester agents. For the
purpose of HAPA, the learning material consists of Java source code examples.
With the abundance of these examples available on the web, harvester agents have
been implemented as web crawlers.

After processing the current page, the agent continues the harvesting process on
all pages linked from the current one, and so on up to a predefined depth. Many
agents can be deployed on a computer cluster and perform the harvesting in parallel
and maintained in order to avoid duplicate work. The harvested learning material is
fed into the Classifiermodule, which automatically associates each Java source code
example with appropriate lecture topic i.e. each example is assigned to the appro-
priate lecture topic, such as “for loops”, “inheritance”, “input/output”, and so on. On
the other hand, the teacher is able to analyse and focus on examples of a particular
interest, i.e. those that are directly attached to the lecture topic in question.

In current version of our system, the Classifier’s decision on which example
belongs to which topic is a suggestion to the teacher. In the end, the teacher makes
the final selection and filters the obtained source code examples. In fact teacher
selects the examples that will actually be used, and process them by removing parts
of the code and constructing useful and misleading hints. The hints are incorporated
in pedagogical agent and offered to students during solving particular task. More
intelligent source code classification techniques will be implemented in the future in
order to improve the Classifier’s performance.

5.2.1.1 Pedagogical agents

The significant novelty of our work is the incorporation of two different types of
pedagogical agents—helpful and misleading. As a crucial design step, both agents
are hidden from the student behind the same interface and visual representation
(Fig. 5.2), and take turns in interacting with the student at random time intervals. As
a consequence, the student is never sure with which agent (s)he is interacting. The
main idea of this approach is rather simple: to motivate students not to trust the

46 5 Agents in E-Learning Environments

agent’s hints blindly and stimulate them to critically analyse the problem in
question and the proposed hint, and independently decide on the proper solution.

Recent trend in educational systems is to represent pedagogical agents as life-
like, animated characters so we also decided to implement simple visual
Pedagogical HAPA agent and let students decide if they will activate it or not
(Fig. 5.3). In some situations visual agents can distract the user/student from
concentrating on the problem in question, and in the extreme case, it may negatively
affect his/her willingness to use the system.

Both pedagogical agents are capable of adapting to each individual student.
Agents track a set of information about the student, including his/her personal data,
the ratio of correct and incorrect solutions to each code completion problem, and the
student’s grade for each lecture topic. Based on these data agents can intervene if

Fig. 5.2 Visual representation of a Pedagogical HAPA agent

Fig. 5.3 Learning session supported by visual Pedagogical agent

5.2 HAPA System Overview 47

the student’s success rate becomes unsatisfactory. Additionally, it will repeat the
appropriate code completion tasks until a certain success threshold is reached.

We believe that such approach where students do not know if agent gives correct
or wrong directions and hints is challenging. It can additionally motivate students to
critically think and assess their knowledge. Also in future real working environ-
ments students will face different helpful but also malicious colleagues who will
maybe suggest them wrong and unacceptable procedures and steps. So we would
like to put students in unexpected situations and motivate them to be cautious and
reassess their knowledge and skills and not blindly believe in external hints and
suggestions.

References

Badica, A., & Badica, C. (2009). Specification and verification of an agent-based auction service.
Information Systems Development: Towards a Service Provision Society (pp. 239–248).
doi:10.1007/b137171_25.

Bǎdicǎ, C., Budimac, Z., Burkhard, H. D., & Ivanović, M. (2011). Software agents: Languages,
tools, platforms. Computer Science and Information Systems, 8(2), 255–296. doi:10.2298/
CSIS110214013B.

Baran, R., Zeja, A., Orzechowski, T., Dziech, A., & Lutwin, M. (2007). The data collection
module of the agent based search system (ABSS). In: Proceedings of Webist 2007–3rd
International Conference on Web Information Systems and Technologies, (Vol. IT,
pp. 451–454).

Barcelos, C. F., Gluz, J. C., & Vicari, R. M. (2011). An Agent-based Federated Learning Object
Search Service. Interdisciplinary Journal of E-Learning and Learning Objects, 7.

Capuano, N., Marsella, M., & Salerno, S. (2000). ABITS: An agent based intelligent tutoring
system for distance learning. In: The Electronic Library Vol. 20, (pp. 134–142). http://doi.org/
10.1108/02640470210424473.

De la Prieta, F., & Gil, A. B. (2010). A multi-agent system that searches for learning objects in
heterogeneous repositories. In: Trends in Practical Applications of Agents and Multiagent
Systems. (pp. 355–362).

Frigo, L., Cardoso, J., & Bittencourt, G. (2005). Adaptive interaction in intelligent tutoring
systems. Proceedings of CIAH-2005, International Workshop on Combining Intelligent and
Adaptive Hypermedia Methods/Techniques in Web-based Education Systems in
Salzburg-Autriche (pp. 33–38).Salzburg-Autriche Austria.

Gago, I. S. B., Werneck, V. M. B., & Costa, R. M. (2009). Modeling an educational multi-agent
system in maSE. In Active Media Technology (pp. 335–346). Springer.

Heidig, S., & Clarebout, G. (2011). Do pedagogical agents make a difference to student motivation
and learning? Educational Research Review. http://doi.org/10.1016/j.edurev.2010.07.004.

Heller, B., & Procter, M. (2010). Animated pedagogical agents & immersive worlds: Two worlds
colliding. Emerging Technologies in Distance Education.

Ivanović, M., Mitrović, D., Budimac, Z., Jerinić, L., & Bădică, C. (2015). HAPA: Harvester and
pedagogical agents in e-learning environments. International Journal of Computers
Communications & Control, 10(2), 200–210.

Ivanović, M., Mitrović, D., Budimac, Z., Vesin, B., & Jerinić, L. (2014). Different roles of agents
in personalized programming. New Horizons in Web Based Learning, 7697, 161–170.

48 5 Agents in E-Learning Environments

http://dx.doi.org/10.1007/b137171_25
http://dx.doi.org/10.2298/CSIS110214013B
http://dx.doi.org/10.2298/CSIS110214013B
http://doi.org/10.1108/02640470210424473
http://doi.org/10.1108/02640470210424473
http://doi.org/10.1016/j.edurev.2010.07.004

Mitrovic, A., Martin, B., & Suraweera, P. (2007). Intelligent tutors for all: The constraint-based
approach. IEEE Intelligent Systems, 22(4), 38–45. http://doi.org/10.1109/MIS.2007.74.

Mitrovic, A., Suraweera, P., Martin, B., & Weerasinghe, A. (2004). DB-suite: Experiences with
Three Intelligent, Web-based Database Tutors. Journal of Interactive Learning Research, 15
(4), 409–432.

Sharma, S., & Gupta, J. P. (2010). A novel architecture of agent based crawling for OAI resources.
International Journal of Computer Science and Engineering, 2(4), 1190–1195.

References 49

http://doi.org/10.1109/MIS.2007.74

Chapter 6
Recommender Systems in E-Learning
Environments

Abstract Recommender system can be defined as a platform for providing rec-
ommendations to users based on their personal likes and dislikes. These systems
use a specific type of information filtering technique that attempt to recommend
information items (movies, music, books, news, Web pages, learning objects, and
so on.) to the user. Recommender systems strongly depend on the context or
domain they operate in, and it is often not possible to take a recommendation
strategy from one context and transfer it to another context or domain. Personalized
recommendation can help learners to overcome the information overload problem,
by recommending learning resources according to learners’ habits and level of
knowledge. The first challenge for designing a recommender component for
e-learning systems is to define the learners and the purpose of the specific context or
domain in a proper way. This chapter provides an overview of techniques for
recommender systems, folksonomy and tag-based recommendation to assist the
reader in understanding the material which follows in subsequent chapters.

Recomender systems (RS) strongly depend on the context or domain they operate
in, and it is often not possible to take a recommendation strategy (Drachsler et al.
2009) from one context and transfer it to another context or domain. The first
challenge for designing a RS is to define the learners and the purpose of the specific
context or domain in a proper way (McNee et al. 2006). Learning process includes
three components: learners, teachers/instructors, and learning materials. From a
teacher’s point of view, teaching is an activity to deliver information and skill to
learners with some goals to be achieved. From the learners’ point of view, learning
is an activity to acquire information from teacher to achieve goals set by the teacher.
Learners, with their prior knowledge, acquire new information from the teacher.
Here, social constructivism paradigm can help learners learn collaborative and
sharing knowledge with each other. Basically, knowledge which is needed to be
achieved according to the course, mainly does not influence how many Learning

© Springer International Publishing Switzerland 2017
A. Klašnja-Milićević et al., E-Learning Systems,
Intelligent Systems Reference Library 112, DOI 10.1007/978-3-319-41163-7_6

51

Objects (LOs) the learners have read, but how relevant are LOs that have retrieved
and learned. A learner who has high prior knowledge according to the course is
different from other learners who have low prior knowledge.

In a virtual classroom, teachers provide resources such as text, multimedia and
simulations, and moderate and animate discussions. Remote learners are encour-
aged to peruse the resources and participate in activities. However, it is very dif-
ficult and time consuming for educators to thoroughly track and assess all the
activities performed by all learners on all tools. Moreover, it is hard to evaluate the
structure of the course content and its effectiveness on the learning process.
Resource providers do their best to structure the content assuming its efficacy
(Zaïane and Luo 2001). When instructors put together an on-line course, they may
compile interactive course notes, simulations, demos, exercises, quizzes, asyn-
chronous forums, chat tools, Web resources, etc. This amalgam of on-line hyper-
linked material could form a complex structure that is difficult to navigate. Hence,
personalization features are needed, which adaptively facilitate learner in moni-
toring their learning progress and provide any resources or learning material, that’s
suitable to what they need.

6.1 Recommendations and Recommender Systems

The information on the Web is increasing far more quickly than people can cope
with. Learners are forced to review a number of choices before they discover what
they need. This is often time consuming and frustrating. Given today’s fast paced
lifestyle, a slow and careful search for the elusive item of choice is surely not a
sustainable option. People would rather look at items that are customized to their
interests and preferences. Personalized recommendation (Resnick and Varian 1997)
can help people to overcome the information overload problem, by recommending
items according to users’ interests.

Recommender systems can be defined as a platform for providing recommen-
dations to users based on their personal likes and dislikes. These systems use a
specific type of information filtering (IF) technique that attempt to recommend
information items (movies, music, books, news, Web pages, learning objects, etc.)
to the user (Ricci et al. 2011). To handle this the user’s profile is compared to some
reference characteristics. These characteristics may be from the information item
(the content-based approach) or the user’s social environment (the collaborative
filtering approach) (Adomavicius and Tuzhilin 2005a).

Typically, RSs apply personalization techniques, considering that different users
have different preferences and different information needs (Herlocker et al. 2004).
In order to generate personalized recommendations that are tailored to the user’s
specific needs, recommender systems must collect personal preference information,

52 6 Recommender Systems in E-Learning Environments

e.g., the user’s history of purchase, click-stream data, demographic information,
and so forth. Traditionally, expressions of preference of users for products are
generally called ratings. Two different types of ratings are distinguished.

1. Explicit ratings. Users are required to explicitly specify their preference for any
particular item, usually by indicating their extent of appreciation on 5 or 7-point
Likert scales (Ziegler 2013).

2. Implicit ratings. Explicit ratings require additional efforts on users.
Consequently, users often tend to avoid the burden of explicitly stating their
preferences and either leave the system or rely upon “free-riding” (Avery and
Zeckhauser 1997). Alternatively, gathering preference information from obser-
vations of user behaviour is less intrusive (David 1997).

A ratings database consists of pairs of users and items rated by them, along with
additional information such as timestamps, etc. Given such a ratings database and a
set of preliminary ratings by a new user, the basic requirement of a recommendation
system is to recommend the largest and the most significant set of recommendations
to the new user (Miller 2003). The largest set of recommendations refers to the
maximum number of items in the item database that could be recommended to the
user. The significant items are the ones that the new user will be more likely to rate
in the future.

Based on the nature of reference characteristics, two broad categories of infor-
mation filtering for computing recommendations have emerged: content-based fil-
tering, and collaborative filtering (Goldberg et al. 1992).

Content-based recommender systems recommend items “by comparing repre-
sentations of content contained in an item to representations of content that interests
the user” (Malone et al. 1987). In most cases, a keyword profile is created.
Apparently, this works well in text domains, but not in domains where there is not
much content associated with the items or where a computer cannot easily analyse
this content. Relying on rich descriptions, content-based recommender systems
need significant knowledge engineering efforts to create substantial metadata for the
items. Content-based systems “form profiles for each user independently” (Basilico
and Hofmann 2004). Even if two items were in two neighbour categories that
people normally like both of them, the item from category A would never be
recommended to the user if (s)he only rated items from category B. This problem is
often addressed by introducing some unpredictability. Also, the user has to rate a
suitable number of items before a content-based recommender system can really
comprehend the user’s preferences and present the user with trustworthy recom-
mendations. Therefore, a new user, having very few ratings, would not be able to
get accurate recommendations.

Collaborative filtering systems compute profile similarity between the target user
and the other users “by comparing users’ opinions of items” (Balabanović and
Shoham 1997). Profile similarity is usually computed by comparing rating-vectors

6.1 Recommendations and Recommender Systems 53

with various distance metrics, e.g. Pearson correlation or cosine similarity. They
supply the user with the items (s)he will most likely be interested in, either one
single item or a “ranked list of items”—usually referred as top-N-item (Cosley et al.
2002; McLaughlin and Herlocker 2004). In contrast to content-based systems,
recommender systems based on collaborative filtering can provide the user with
unexpected but fitting recommendations that do not have anything in common with
afore rated items. Collaborative filtering is a very successful methodology in almost
every domain—especially “where multi-value ratings are available” (McLaughlin
and Herlocker 2004). However, they suffer from two key problems: sparsity and
first-rater problem. As most users only rate a small portion of all items, it is highly
difficult to find users with “significantly similar ratings.” Furthermore an item
cannot be recommended before one user has rated it. This can be the case if the item
has newly been introduced to the system (Melville et al. 2002).

A number recommendation systems use a hybrid approach by combining col-
laborative and content-based methods, which helps to avoid certain limitations of
content and collaborative-based systems (Balabanović and Shoham 1997; Basu
et al. 1998; Claypool et al. 1999; Pennock and Horvitz 1999). Different ways to
combine collaborative and content-based methods into a hybrid recommender
system can be classified as follows (Adomavicius and Tuzhilin 2005a):

1. implementing collaborative and content-based methods separately and com-
bining their predictions,

2. incorporating some content-based characteristics into a collaborative approach,
3. incorporating some collaborative characteristics into a content-based approach,

and
4. constructing a general unifying model that incorporates both content-based and

collaborative characteristics.

According to (Breese et al. 1998), algorithms for collaborative recommendations
can be grouped into two general classes: memory-based (or heuristic-based) and
model-based.

Memory-based algorithms (Breese et al. 1998; Resnick et al. 1994; Shardanand
and Maes 1995) essentially are heuristics that utilize the entire database of user
preferences when computing recommendations. These algorithms tend to be simple
to implement and require little training cost. They can also easily take new pref-
erence data into account. However, their online performance tends to be slow as the
size of the user and item sets grow, which makes these algorithms as stated in the
literature unsuitable in large systems. One workaround is to only consider a subset
of the preference data in the calculation, but doing this can reduce both recom-
mendation quality and the number of items that can be recommended due to data
being omitted from the calculation. Another solution is to perform as much of the
computation as possible in an offline setting. However, this may make it difficult to

54 6 Recommender Systems in E-Learning Environments

add new users to the system on a real-time basis, which is a basic necessity of most
online systems. Furthermore, the storage requirements for the pre-computed data
could be high.

Model-based algorithms (Billsus and Pazzani 1998; Goldberg et al. 2001;
Hofmann 2003) use the collection of ratings to learn a model, which is then used to
make rating predictions. Often, the model building process is time-consuming and
is only used periodically. The model is compact and can generate recommendations
very quickly. The disadvantage of model-based algorithms is adding new users,
items, or preferences, which can be the same as re-computing the entire model.

The most important difference between collaborative model-based techniques
and heuristic-based approaches is that the model-based techniques calculate utility
predictions based not on some ad hoc heuristic rules, but, rather, based on a model
learned from the underlying data using statistical and machine learning techniques
(Adomavicius and Tuzhilin 2005a). A method combining memory-based and
model-based approaches was proposed in Pennock et al. (2000). It was empirically
confirmed that the use of this approach can afford better recommendations than pure
memory-based and model-based collaborative approaches.

Over the past several years there has been much research done on recommen-
dation technologies which use a variety of statistical, machine learning, information
retrieval, and other techniques that have significantly advanced early recommender
systems, collaborative and content-based heuristics. As was discussed above, rec-
ommender systems can be classified as (1) content-based, collaborative, or hybrid
(based on the recommendation approach used), and (2) heuristic-based or
model-based (based on the types of recommendation techniques used for the rating
estimation). These two orthogonal dimensions are used to classify the recommender
systems research in the 2 � 3 matrix, presented in Table 6.1 (Adomavicius and
Tuzhilin 2005a).

The recommendation techniques explained in this chapter have performed well
in several applications, including the ones for recommending books, CDs, news
articles or movies (Marlin 2003; Rosset et al. 2002) and some of these methods are
used in the “industrial-strength” recommender systems, such as the ones developed
at Amazon,1 MovieLens,2 and Last.fm.3 However, both collaborative and
content-based methods have certain limitations. Recommender systems can be
extended in several ways that include improving the understanding of users and
items, incorporating the contextual information into the recommendation process,
sustaining multicriteria ratings, and providing more flexible and less disturbing
types of recommendations (Adomavicius and Tuzhilin 2005a).

1http://www.amazon.com.
2http://www.movielens.umn.edu.
3http://www.last.fm.

6.1 Recommendations and Recommender Systems 55

http://www.amazon.com
http://www.movielens.umn.edu
http://www.last.fm

Table 6.1 Classification of RS research (Adomavicius and Tuzhilin 2005b)

Recommendation
Approach

Recommendation technique

Heuristic based Model based

Content - based Commonly used techniques: Commonly used techniques:

TF-IDF (information retrieval) Bayesian classifiers

Clustering Clustering

Representative research examples: Decision trees

Lang 1995 Representative research examples:

Balabanović, Shoham 1997 Pazzani and Billsus 1997

Pazzani and Billsus 1997 Mooney et al. 1998

Mooney and Roy 1999

Billsus and Pazzani 1998, 1999

Zhang et al. 2002

Collaborative Commonly used techniques: Commonly used techniques:

Nearest neighbour Bayesian networks

(cosine, correlation) Clustering

Clustering Artificial neural networks

Graph theory Linear regression

Representative research examples: Probabilistic models

Resnick et al. 1994 Representative research examples:

Hill et al. 1994 Billsus and Pazzani 1998

Shardannand and Maes 1995 Breese et al. 1998

Breese et al. 1998 Goldberg et al. 2001

Nakamura and Abe 1998 Ungar and Foster 1998

Aggarwal et al. 1999 Chien and George 1999

Delgado and Ishii 1999 Getoor and Sahami 1999

Pennock and Horwitz 1999 Pennock and Horwitz 1999

Sarwar et al. 2001 Pavlov and Pennock 2002

Shani et al. 2002

Hofmman 2003, 2004

Hybrid Combining content—based and
collaborative components by:

Combining content—based and
collaborative components by:

Linear combination of predicted
ratings

Incorporating one component as a
part of the model for the other

Various voting schemes Building one unifying model

Incorporating one component as a
part of the heuristic for the other

Representative research examples:

Soboroff and Nicholas 1999

Representative research examples: Basu et al. 1998

Balabanović and Shoham 1997 Condiff et al. 1999

Pazzani 1999 Popescul et al. 2007

Billsus and Pazzani 1998 Schein et al. 2002

Claypool et al. 1999 Ansari et al. 2000

Good et al. 1999

Train and Cohen 2000

56 6 Recommender Systems in E-Learning Environments

6.2 The Most Important Requirements and Challenges
for Designing a Recommender System in E-Learning
Environments

A RS in e-learning environments utilizes information about learners and learning
activities (LA) and recommend items such as papers, Web pages, courses, lessons
and other learning resources which meet the pedagogical characteristics and
interests of learners (Drachsler et al. 2008). Such a RS could provide recommen-
dations to online learning materials or shortcuts. Those recommendations are based
on previous learners’ activities or on the learning styles of the learners that are
discovered from their navigation patterns. To design an effective RS in e-learning
environments, it is important to understand specific learners’ characteristics
(Drachsler et al. 2008; García et al. 2009):

1. Learner’s goal or learner’s task is a feature related with the context of a learner’s
activities in educational system rather than with the learner as an individual.
Depending on the kind of system, it can be the goal of the activity (in appli-
cation systems), a search goal (in information retrieval systems), and a problem
solving or learning goal (in educational (e-learning) systems). In all of these
cases the goal is an answer to the question “Why is the learner using the system
and what does the learner actually want to achieve?” Learner’s goal is the most
unpredictable learner feature: almost always it changes from session to session
and often can change several times within one session. In some systems it is
reasonable to distinguish local or low-level goals which can change quite often
and general or high level goals and tasks which are more stable. For example, in
educational systems the knowledge acquisition is a high-level goal, while the
problem-solving goal is a low-level goal which changes from one educational
problem to another several times within a session.

2. Prior learner’s knowledge of the subject represents one of the most important
feature of the learner for adaptive educational systems. Almost all adaptive
presentation techniques rely on the learner’s knowledge as a source of adap-
tation. Related to the first point, we also need to know if the learners already
have any prior knowledge about what they want to learn. The proficiency level
of the learning activity should fit the proficiency level of the learner (prior
knowledge). The learners may want to reach the learning goals on specific
competence levels, like beginner, advanced or expert levels. Learner’s knowl-
edge is a variable for a particular learner. This means that an adaptive educa-
tional system which relies on learner’s knowledge has to recognize the changes
in the learner’s knowledge state and update the learner model accordingly.

3. Background and experience are two features of the learner which are similar to
user’s knowledge of the subject but functionally differ from it. Learner’s
background can be presented as all the information related to the learner’s
previous experience outside the subject of the educational system, which is
relevant enough to be considered. This includes the learner’s profession,

6.2 The Most Important Requirements and Challenges for … 57

experience of activities in related areas, as well as the learner’s point of view
and perspective. According to learner’s experience it could be identified how
familiar is the learner with the structure of the similar learning environments and
how easy can the learner navigate in it. This is not the same as learner’s
knowledge of the subject (Vassileva 1998). Sometimes, the learner who is
generally quite familiar with the subject itself is not familiar at all with the
structure of educational system. Vice versa, the learner can be quite familiar
with the structure of the educational system without deep knowledge of the
subject. One more reason to differentiate experience from knowledge level is the
existence of an adaptive navigation technique (Pérez et al. 1995; Vassileva
1998) which relies on this feature of the learner.

4. Learner preferences. For different reasons the learner can prefer some links more
than others and some parts of a page more than others. These preferences can be
absolute or relative, i.e., dependent from the current link, goal and current
context in general. Learner’s preferences differ from other learner model com-
ponents in several aspects. Unlike other components, the preferences cannot be
deduced by the system. The learner has to inform the system directly or indi-
rectly (by a simple feedback) about such preferences. It looks more close to
adaptability then to adaptivity.

5. Learner group models accumulate preferences of a specific group of learners
(such as a research laboratory). A group model is a nice starting model for a new
member of the group. Group models are important also for collaborative
activities. It is very hard to collaborate when collaborators use individual learner
models and thus have different adapted views on the same subject.

6. Rated learning activities (LAs). The aggregated ratings of the learning activities
as awarded by other learners can provide valuable information (the rated
learning activities). Learners with the same learning goal or similar study time
per week could benefit from the ratings received from more advanced learners.
Nearly all potential learning activities are unknown to the learners. Learners are
(by definition) not able to rate learning activities in advance, because if they
already knew them, they would no longer be potential learning activities.
Moreover, the learners will at least have to read through a learning activity
before they are able to rate it. Many people are able to rate movies because they
have heard or read about it, or have already seen the movie. In the domain of
learning, however, it is unlikely that a learner will already be familiar with
certain learning activities. Consequently, it is less of a problem for ‘movie
lovers’ to rate movies in advance to specify a profile than it is for learners to rate
learning activities in advance. Requiring learners to rate an initial set of learning
activities, as in movielens.org, does not, therefore, seem feasible. Other mech-
anisms to specify a learner profile have to be devised. Even for the learners with
the same interests, we may need to recommend different learning activities,
depending on the individual proficiency levels, learning goals and context. For
instance, the learners with no prior knowledge in a specific domain should be
advised to study basic learning activities first, while more advanced learners
should be advised to continue with more specific learning activities.

58 6 Recommender Systems in E-Learning Environments

7. Learning paths. Beginning learners could benefit from historical information
about the successful study behaviour of the more advanced learners in the same
learning network, in the same learning paths. From the learning activities which
are frequently positively rated and their sequence, the most popular learning
paths will emerge. The most successful learning paths with regard to efficiency
and effectiveness could be recommended.

8. Learning strategies. RS in e-learning would benefit if we apply the learning
strategies derived from educational psychology research (Koper and Olivier
2004). Such strategies could use pedagogical rules as guiding principles for
recommendation, like ‘go from simple to more complex tasks’ or ‘gradually
decrease the amount of contact and direct guidance’. This entails taking into
account the metadata about specific learning activities, but not the actual design
of the specific learning activities themselves.

E-learning systems should be able to recognize and exploit these learners’
characteristics serve as guidelines for framework design and platform implemen-
tation for a good RS for e-learning (Angehrn et al. 2001; Savidis et al. 2007; Zaïane
and Luo 2001).

• A good RS should be highly personalized. Relevant learning materials should be
chosen and presented to learners or researchers based on learner’s learning style,
interests, preferences, current activities, etc.

• A good RS should recommend materials at the appropriate time and location.
A good RS should deliver relevant learning materials to learner at the most
appropriate time and locations to facilitate learners’ acquisition of knowledge
and skills.

• A good RS should support non-disruptive view of experience. Non-disruptive
means that learners have the option to either follow or discount relevant
materials based on their learning needs.

• A good RS should be socially situated. A good RS should be able to recognize
and exploit the learners’ social networks, role models, levels of trust and
influence, etc. RS should also help the learners to recognize their knowledge
acquisition process in the context of the group.

• A good RS should include the adoption phase. A good RS should be able to
monitor, understand and model the different phases of adoption of the knowl-
edge by the learner. In particular it includes the phases in which the new
concepts are experimented with, evaluated, internalized and finally applied.

• A good RS should support the continuous learning process. A good RS should
support just-in-time learning, by better analysing their current and future
activities. Also it should provide motivational support and stimulation.

• A good RS should provide high level of interactivity. A good RS should provide
very active, cognitive and diverse mode of interaction with the learner in the
form of a rich choice of interaction strategies.

• A good RS should provide appropriate course materials according to learners’
learning style. Each person learns differently and needs to develop his/her own

6.2 The Most Important Requirements and Challenges for … 59

learning skills in his/her own way. Learners have different backgrounds,
strengths and weaknesses, interests, ambitions, senses of responsibility, levels of
motivation, and approaches to studying and learning. For example, different
learners prefer different presentation forms: some prefer multimedia contents
(simulations, presentations, graphical material and hypertext documents); while
others prefer traditional Web pages (questionnaires, exercises, research studies).

6.3 Recommendation Techniques for RS in E-Learning
Environments—A Survey of the State-of-the-Art

Personalized recommendation approaches are first proposed in e-commerce area for
product purchase (Balabanović and Shoham 1997; Resnick and Varian 1997),
which help consumers to find products they would like to purchase by creating a list
of recommended products for each given consumer (Cheung et al 2003; Schafer
et al. 2001). Literature review shows that there are also many researchers who have
attempted to adopt recommender systems to e-learning environments. For example,
(Shen and Shen 2005) described a mechanism focused on how to organize the
learning materials based on domain ontology which can guide the learning
resources recommendation according to learning status. A multi-attribute assess-
ment method is proposed in Lu (2004) to justify a learner’s need and deployed a
fuzzy matching method to find suitable learning contents to best perform each
learner need. Research paper (Luo et al. 2002) presented a method to organize
components and courseware using the hierarchy and association rules of the con-
cepts, which can recommend the relative contents to learners and also can help them
to control the learning schedule. However, most of these methods missing one
important issue in e-learning RS, that is, the natural learning behaviour is not lonely
but interactive which relying on friends, classmates, lecturers, and other sources to
make the choices for learning.

Designers and instructors, when devising the on-line structure of the course and
course material, have a navigation pattern in mind and assume all on-line learners
would follow a consistent path; the path put out in the design and materialized by
some hyperlinks. Learners, however could follow different paths generating a
variety of sequences of learning activities. Often some sequences are not the
optimum sequences, and probably not the sequence intended by the designer.
Instructors are in desperate need for non-intrusive and automatic ways to get
objective feedback from learners in order to better follow the learning process and
appraise the on-line course structure effectiveness. On the learner’s side, it would be
very useful if the system could automatically guide the learner’s activities and
intelligently recommend on-line activities or resources that would favour and
improve the learning. The automatic recommendation could be based on the tea-
cher’s intended sequence of navigation in the course material, or, more interest-
ingly, based on navigation patterns of other successful learners. For example,
during the learning process, a learner read a useful material, summarized what (s)he

60 6 Recommender Systems in E-Learning Environments

has learned or got the answer of a typical question, some learners with similar
learning status will likely need these resources.

E-learning system uses different recommendation techniques in order to suggest
online learning activities to learners, based on their preferences, knowledge and the
browsing history of other learners with similar characteristics. RSs assist the natural
process of relying on friends, classmates, lecturers, and other sources for making
the choices of learning (Lu 2004). In the educational setting, these recommendation
systems can be classified according to their field of application or focus (Romero
et al. 2007):

1. learner-centered (Gaudioso et al 2003; Zaíane 2002), in order to suggest good
learning experiences for the learners in accordance to their preferences, needs
and level of knowledge; and

2. teacher-centered, with the aim of helping the teachers and/or authors of the
e-learning systems to improve the functionalities or performances of these
systems based on learner information (W Chen and Wasson 2003; Romero et al.
2003). Some other examples of educational applications of these systems are:
obtaining more feedback about teaching; finding out more about how learners
learn on the Web; evaluating learners in terms of their browsing patterns;
classifying learners into groups; or restructuring the contents of the website in
order to personalize the course.

Each recommendation strategy has its own strengths and weaknesses. According
to set of the most important requirements for a good RS in e-learning environment,
have been explored and defined in the previous section, in the remainder of this
section we present a survey of the state-of-the-art in RSs for e-learning systems. We
identify challenges and various limitations for each traditional recommendation
method, then consider some tag-based profiling approaches for extending their
capabilities.

6.3.1 Collaborative Filtering Approach

Collaborative systems track past actions of a group of learners to make a recom-
mendation for individual members of the group (Tan et al. 2008). Based on the
assumption that learners with similar past behaviours (rating, browsing, or learning
path) have similar interests, a collaborative filtering system recommends learning
objects the neighbours of the given learner have liked.

This approach relies on a history record of all learner interests such as can be
inferred from their ratings of the items (learning objects/learning actions) on a
website. Rating can be explicit (explicit ratings or customer satisfaction question-
naires) or implicit (from the studying patterns or click-stream behaviour of the
learners). The proportion of actual studying hours to the total hours of the course is
recorded as the implicit rating scores, and transformed to corresponding explicit
rating scores, from 1 to 5. The learners’ rating scores can be given in a m * n

6.3 Recommendation Techniques for RS in E-Learning Environments—A Survey … 61

matrix, as it is shown in Table 6.2, where L = {I1,I2,…,Im} is a list of m learners,
O = {o1,o2,…,on} is the list of n learning objects, and Rj,k gives the rating of object
Ok, given by learner j. Also, it can be rating of object ok given by intelligent tutoring
system for learner j. There exists a distinguished learner Ia2L called the active
learner for whom the task of collaborative filtering algorithm is to find learning
object likeliness.

The neighbourhood formation scheme usually uses Pearson correlation or cosine
similarity as a measure of proximity (Resnick et al. 1994; Shardanand and Maes
1995).

An exploratory study of a recommender system, using collaborative filtering to
support (virtual) learners in a learning network, has been reported in Koper (2005).
The author simulated rules for increasing/decreasing motivation and some other
disturbance factors in learning networks, using the Netlogo tool. Closely related to
this study is an experiment reported in Janssen et al. (2007). The authors offered to
learners a similar recommendation system. The recommendations did not take
personal characteristics of learners (or possible ‘matching errors’) into account.
Another system implemented by Soonthornphisaj et al. (2006) allows all learners to
collaborate their expertise in order to predict the most suitable learning materials to
each learner. This smart e-learning system applies the collaborative filtering
approach that has an ability to predict the most suitable documents to the learner.
All learners have the chance to introduce new material by uploading the documents
to the server or pointing out the Web link from the Internet and rate the currently
available materials.

One of the first attempts to develop a collaborative filtering system for learning
resources has been the Altered Vista (AV) system (Recker et al. 2003; Recker and
Walker 2003; Walker et al. 2004). The AV system (Walker et al. 2004) uses a
database in which a learner evaluations of learning resources are stored. Learners
can browse the reviews of others and can get personalized learning resource rec-
ommendations from the system. AV does not aim to support learners directly by
giving them feedback on their work. Instead, AV provides an indirect learning
support in which suitable learning tools are recommended. The team working on
AV explored several relevant issues, such as the development of non-authoritative
metadata to store learner-provided evaluations (Recker and Walker 2003), the
design of the system and the review scheme it uses (Walker et al. 2004), as well as
results from pilot and empirical studies from using the system to recommend to the
members of a community both interesting resources and people with similar tastes

Table 6.2 Learner’s rating
matrix

O1 … Ok … On

I1 R1, 1 … R1, k … R1, n

…

I1 Rj, 1 … Rj, k … Rj, n

…

I1 Rm, 1 … Rm, k … Rm, n

62 6 Recommender Systems in E-Learning Environments

and beliefs. A survey-based evaluation of AV showed a predominant positive
feedback, but also identified issues with the system’s incentive and with regard to
privacy (Walker et al. 2004).

Another system of the educational collaborative filtering applications is the
Web-based PeerGrader (PG) (Gehringer 2001; Lynch et al. 2006). The purpose of
this tool is to help learners improve their skills by reviewing and evaluating
solutions of their fellow learners blindly. PG works in the following way:

• the learners get a task list and each learner chooses a task,
• the learners submit their solutions to the system, where they are read by another

learner who then provides feedback in form of textual comments,
• the authors modify their solutions based on the comments they have received,

and re-submit their modified solutions again to the system, where they will be
reviewed by other learners, then the solutions’ authors grade each review with
respect to whether it was helpful or not.

• finally, the system calculates grades for all learner solutions.

One of PG’s strengths is to provide learners with high-quality feedback also in
ill-defined homework tasks that do not have clear-cut gold standard solutions (such
as design problems). This kind of feedback could not be generated automatically.
A disadvantage is the time required for the system to work effectively: due to the
complexity of the reviewing process and the textual comments, the evaluation of a
single learner answer is very time consuming. This may cause learner drop-outs and
deadline problems (Lynch et al. 2006). Also, studies with PG revealed problems
with getting feedback of high quality. An evaluation of subjective usefulness
showed that the system was appreciated by its users (Lynch et al. 2006), yet a
systematic comparison of PG scores to expert grades has not been conducted.

A newer Web-based collaborative filtering system, the Scaffolded Writing and
Rewriting in the Discipline (SWoRD) system (Cho et al. 2006; Cho and Schunn
2007) addresses the problem of writing homework in the form of a long text, which
cannot be reviewed in detail by a teacher for time reasons. Because of this, learners
do often not receive any detailed feedback on their solutions at all. Having such
feedback, it would be beneficial for learners, since they could use it to improve their
future work. To address this problem, SWoRD relies on peer reviews and imple-
ments an algorithm that follows the typical journal publication and reviewing
process. An evaluation showed that the participants benefitted from multi-peers’
feedback more than from single-peer’s or single expert’s feedback (Cho and
Schunn 2007).

A different approach is used by the LARGO system (Pinkwart et al. 2006),
where learners create graphs of US Supreme Court oral arguments.
Within LARGO, collaborative scoring is employed to assess the quality of a “de-
cision rule” that a learner has included in his diagram. Since this assessment
involves interpretation of legal argument in textual form, it cannot be automated
reasonably. While the overall LARGO system has been tested in law schools and
shown to help lower-aptitude learners (Pinkwart et al. 2007), empirical studies to

6.3 Recommendation Techniques for RS in E-Learning Environments—A Survey … 63

test the educational effectiveness of the specific collaborative scoring components
have not been conducted.

Rule-Applying Collaborative Filtering (RACOFI) Composer system (Anderson
et al. 2003; Lemire et al. 2005; Lemire 2005) combines two recommendation
approaches by integrating a collaborative filtering engine, that works with ratings
that learners provide for learning resources, with an inference rule engine that is
mining association rules between the learning resources and using them for rec-
ommendation. RACOFI studies have not yet assessed the pedagogical value of the
recommender, nor do they report some evaluation of the system by learners.

Manouselis and (Manouselis and Costopoulou 2007) tried a typical,
neighborhood-based set of collaborative filtering algorithms in order to support
learning object recommendation. The examined algorithms have been
multi-attribute ones, allowing the recommendation service to consider
multi-dimensional ratings that learners provide on learning resources. The perfor-
mance of the same algorithms is changing, depending on the context where testing
takes place. The results from the comparative study of the same algorithms in an
e-commerce and a e-learning setting (Manouselis et al. 2011) have led to the
selection of different algorithms from the same set of candidate ones.

In summary, the relatively few educational systems with collaborative filtering
components have an underlying algorithm to determine solution quality based on
collaborative scoring. Yet, existing systems are often specialized for a particular
application area such as legal argumentation (LARGO), writing skills training
(SWoRD), or educational resource recommendation (AV), or they involve a rather
complicated and long-term review process (SWoRD, PG).

The collaborative filtering (CF) based techniques, in general, suffer from several
limitations. Two serious limitations with quality evaluation are: the sparsity prob-
lem and the “cold-start” problem (Lu 2004). The sparsity problem occurs when
available data is insufficient for identifying similar learners or items (neighbours)
due to an immense amount of learners and items (Sarwar et al. 2001). It is difficult
for collaborative filtering based recommender systems to precisely compute the
neighbourhood and identify the learning objects to be recommended even though
learners are very active, each individual has only expressed a rating on a very small
portion of the items (Linden et al. 2003). Also, a severe problem is the cold start
problem (first-rater), which occurs when a new learner/learner object is introduced
and thus has no previous ratings information available (Massa and Avesani 2004).
With this situation, the system is generally unable to make high quality
recommendations.

The CF-based techniques rely heavily on explicit learner input (e.g., previous
customers’ rating/ranking of products), which is either unavailable or considered
intrusive. With sparsity of such learner input, the recommendation precision and
quality drop significantly. This is because without good and trusted ratings entered
by the learners, recommendations become useless and untrustworthy. To recom-
mend learning activities or learning objects it is better to use real past activities
(history logs) by learners as input for their profiles. Also, in the case of intelligent

64 6 Recommender Systems in E-Learning Environments

tutoring system, collaborative filtering approach can be carried out according to
ratings (grades) for learners’ knowledge level, provided by the tutoring system.

6.3.2 Content-Based Techniques

Content-based techniques recommend items (learning objects/learning actions)
similar to the ones the learners preferred in the past. They base their recommen-
dations on individual information and ignore contributions from other learners
(Billsus and Pazzani 1998). In content-based systems, items are described by a
common set of attributes. Learner’s preferences are predicted by considering the
association between the item ratings and the corresponding item attributes.
Therefore, learner can receive proper recommendations without help from other
learners. Content-based techniques can be classified into two different categories
(Aguzzoli et al 2002; Schmitt and Bergmann 1999; Wilson et al. 2003):

1. Case based reasoning (CBR) techniques and
2. Attribute—based techniques.

Case based reasoning techniques recommend items with the highest correlation
to items the learner liked before. Case-based reasoning is useful to keep the learner
informed about aimed learning goals. These techniques are domain-independent, do
not require content analysis and the quality of the recommendation improves over
time when the learners have rated more items. The disadvantage of the new learner
problem also states to case-based reasoning techniques. Nevertheless, specific
disadvantages of case-based reasoning are overspecialization and sparsity, because
only items that are highly correlated with the learner profile or interest can be
recommended. Through case-based reasoning the learner is limited to a set of items
that are similar to the items (s)he already knows (Adomavicius and Tuzhilin 2005a).

Recent research papers present different facets of CBR in teaching or learning
process. Pixed (Project Integrating eXperience in Distance Learning), which is an
adaptive hypermedia ontology-based system implements case based reasoning
method (Heraud et al. 2004). The Pixed approach assumes positions of a learner as
a kind of expert of her/his own learning skills, or at least as a real practitioner of his
own practices. The learner builds her/his knowledge by interacting with the learning
environment, trying to benefit as much as possible from the available educational
activities. Learning is considered as a problem-solving task. The goal is to learn a
specific concept proposed in the domain knowledge ontology. The way to reach this
goal is one particular path among the different available educational activities
linked to that ontology. (Sørmo and Aamodt 2002) propose building “a cognitive
model of how humans solve problems in the domain and use this model in
attempting to solve the problem, both from the point of view of the current learner
(using the learner model) and of an expert (represented by an expert model)”. The
case-based reasoner has to evaluate the learner’s solution and to explain why s/he

6.3 Recommendation Techniques for RS in E-Learning Environments—A Survey … 65

does or does not fit the observed features of the problem. (Funk and Conlan 2003)
make research more closely related to Pixed. Their goal is the same: to use learner
feedback in order to adapt the learning environment. The learner feedback can be
exploited in two ways: direct feedback exploitation during the learning process, in
the form of learners’ comments, and feedback exploitation by authors and tutors
after the learning process in order to integrate it into the proposed courses, by
comparing the learners’ result with the result of other cases. The authors associate
CBR with filtering techniques by attempting to create learner profiles taking into
account different feedbacks. (Elorriaga and Fernández-Castro 2000) propose to use
CBR to deploy an instructional planner which adapts the sequences observed in
logs in order to create instructional sequences for a complete course. In Heraud
et al. (2004), a case—based reasoning system was developed to offer navigational
guidance to the learner. It is based on past user’s interaction logs and it includes a
model describing learning sessions.

Attribute–based techniques recommend items based on the matching of their
attributes to the learner profile. Attributes could be weighted for their importance to
learner. Adding new LAa or learners to the network will not cause any problem.
Attribute-based techniques are sensitive to changes in the profiles of the learners
(Drachsler et al. 2008). They can always control the personalized RS by changing
their profile or the relative weight of the attributes. A description of needs in their
profile is mapped directly to available LA. A serious disadvantage is that an
attribute-based recommendation is static and not able to learn from the network
behaviour. That is the reason why highly personalized recommendation cannot be
achieved. Attribute-based techniques work only with information that can be
described in categories. Media types, like audio and video, first need to be classified
to the topics in the profile of the learner. This requires category modelling and
maintenance which could raise serious limitations for learning environments. Also
the overspecialization can be a problem, especially if learners do not change their
profile. Attribute-based recommendations are useful to handle the ‘cold-start’
problem because no behaviour data about the learners is needed. Attribute-based
techniques can directly map characteristics of learners (like learning goal, prior
knowledge, and available study time) to characteristics of LA (Drachsler et al.
2007). There are several applications that tackle attribute—based techniques
problems such as prediction and visualization. Attribute–based Ant Colony System
(AACS) (Yang and Wu 2009) uses a method of finding learning objects that would
be suitable for a learner based on the most frequent learning trails followed by the
previous learners. The system updates the trails pheromones from different
knowledge levels and different styles of learners to create a powerful and dynamic
learning object search mechanism. There are three prerequisites for achieving this:

1. the adaptive learning portal knows the learner’s attributes which include the
learner’s knowledge level and learning style

2. the learner’s attributes and learning object’s attributes which have been anno-
tated by teacher or content providers

3. matching the relationships between learners and learning object.

66 6 Recommender Systems in E-Learning Environments

6.3.3 Association Rule Mining

Association rule mining techniques (Agrawal and Srikant 1995) are one of the most
popular ways of representing discovered knowledge and describe a close correla-
tion between frequent items in a database. An association rule consists of an
antecedent (left-hand side) and a consequent (right-hand side). The intersection
between the antecedent and the consequent is empty. An:

X) Y

type association rule expresses a close correlation between items (attribute-value) in
a database (Zheng et al. 2001). Most association rule mining algorithms require the
user to set at least two thresholds, one of minimum support and the other of
minimum confidence. The support S of a rule is defined as the probability that an
entry satisfies both X and Y. Confidence is defined as the probability an entry has
satisfies Y when it satisfies X. Therefore the aim is to find all the association rules
that satisfy certain minimum support and confidence restrictions, with parameters
specified by the user. Therefore, the user must have a certain amount of expertise in
order to find the right support and confidence settings to achieve the best rules.

Association rule mining has been applied to e-learning systems in order to
intelligently recommend on-line learning activities to learners, based on the actions
of previous learners which can improve course content navigation as well as to
assist the on-line learning process (Arenas-García et al. 2007).

Count the learners’ browsing records, learning path and testing grades and
finding out the connection between learning objects, association rule can be used to
calculate the learning profiles of the new learners and perform the following tasks:

• building recommender agents for on-line learning activities or shortcuts (Zaíane
2002),

• automatically leading the learner’s activities and intelligently recommend
on-line learning activities or shortcuts in the course Web site to the learners (Lu
2004),

• identifying attributes of performance inconsistency between various groups of
learners (Minaei-Bidgoli et al. 2004),

• discovering interesting learner’s usage information in order to provide feedback
to course author (Romero et al. 2004),

• finding out the relation among the learning materials from a large amount of
educational material data (Lu et al. 2003),

• finding learners’ mistakes that are often occur together (Merceron and Yacef
2004),

• optimizing the content of an e-learning portal by determining the content of
most interest to the learner (Ramli 2005),

• deriving useful patterns to help educators and instructors evaluating and inter-
preting on-line course activities (Zaiane 2002), and

6.3 Recommendation Techniques for RS in E-Learning Environments—A Survey … 67

• personalizing e-learning based on comprehensive usage profiles and a domain
ontology (Markellou et al. 2005).

Most of the subjective approaches involve learner participation in order to
express, in accordance to his or her previous knowledge, which rules are of interest.
Hence, subjective measures are becoming increasingly important (Silberschatz and
Tuzhilin 1996). Some suggested subjective measures (Liu et al. 2000) are:

• Unexpectedness: Rules are interesting if they are unknown to the learner or
contradict the learner’s knowledge.

• Actionability: Rules are interesting if learners can do something with them.

There are several specific research papers about the application of association
rule mining and recommender systems in e-learning systems. Association rules for
classification applied to e-learning (Castro et al. 2007), have been investigated in
the areas of learning recommendation systems (Chu et al. 2003; Zaíane 2002),
learning material organization (Tsai et al. 2001), learner learning assessments
(Hwang et al. 2003; Kumar 2005; Okamoto and Matsui 2003; Silva and Vieira
2001), course adaptation to the learners’ behaviour (Hsu et al. 2003; Markellou
et al. 2005), and evaluation of educational Web sites (Machado and Becker 2003).

(Wang et al. 2002) developed a portfolio analysis tool based on associative
material clusters and sequences among them. This knowledge allows teachers to
study the dynamic browsing structure and to identify interesting or unexpected
learning patterns. (Minaei-Bidgoli et al. 2004) propose mining interesting contrast
rules for Web-based education systems. Contrast rules help one to identify attri-
butes characterizing patterns of performance difference between various groups of
learners. (Markellou et al. 2005) propose an ontology-based framework and dis-
cover association rules, using the Apriori algorithm. The role of the ontology is to
determine which learning materials are more suitable to be recommended to the
learner. (Jia Li and Zaïane 2004) use recommender agents for recommending online
learning activities or shortcuts in a course Web site based on a learner’s access
history. (Romero et al. 2004) propose to use grammar-based genetic programming
with multi-objective optimization techniques for discovering useful association
rules from learner’s usage information. (Merceron and Yacef 2004) use association
rules and symbolic data analysis, as well as traditional SQL queries to mining
learner data captured from a Web-based tutoring tool. Their goal is to find mistakes
that often occur together. (Freyberger et al. 2004) use association rules to determine
what operation to perform on the transfer model that predicts a learner’s success.

Apriori algorithm (Agrawal et al. 1993) is a prominent algorithm for mining
frequent itemsets for Boolean association rules. In Apriori algorithm, it is
time-consuming that the database has been scanned for many times. Therefore,
many algorithms, like the DIC algorithm (Brin et al. 1997), DHP algorithm (Park
et al. 1995) and AprioriTid algorithm (Agrawal et al. 1993), etc., are proposed
successively to improve the performance.

Association rule mining and frequent pattern mining were applied in (Zaíane
2002) to extract useful patterns that might help teacher, educational managers, and

68 6 Recommender Systems in E-Learning Environments

Web masters to evaluate and understand on-line course activities. A similar
approach can be found in Minaei-Bidgoli et al. (2004), where distinguish rules,
defined as sets of conjunctive rules describing patterns of performance difference
between groups of learners, were used. A computer-assisted approach to diagnosing
learner learning problems in science courses and offer learners advice was presented
in Hwang et al. (2003), based on the concept effect relationship (CER) model, a
specification of the association rules technique.

A hypermedia learning environment with a tutorial component was described in
(Costabile DeMarsico et al. 2005). It is called Logiocando and targets children of the
fourth level of primary school (9–10 years old). It includes a tutor module, based on
if-then rules, that emulates the teacher by providing suggestions on how and what to
study. In Okamoto and Matsui (2003) it can be found the description of a learning
process assessment method that resorts to association rules, and the well-known
ID3 DT learning method. A framework that employ Web usage mining to support
the validation of learning site designs was defined in Machado and Becker (2003),
applying association and sequence techniques (Srivastava et al. 2000).

In Markellou et al. (2005), a framework for personalized e-learning based on
aggregate usage profiles and domain ontology were presented, and a combination of
Semantic Web and Web mining methods was used. The Apriori algorithm for
association rules was applied to capture relations among URL references based on
the navigational patterns of learners. A test result feedback (TRF) model that
analyses the relationships between learner learning time and the corresponding test
results was introduced in Hsu et al. (2003). The objective was twofold: on the one
hand, developing a tool for supporting the tutor in reorganizing the course material;
on the other, a personalization of the course tailored to the individual learner needs.
The approach was based on association rules mining. A rule-based mechanism for
the adaptive generation of problems in Intelligent Tutoring System (ITS) in the
context of Web-based programming tutors was proposed in Kumar (2005). In
Hwang et al. (2003), a Web-based course recommendation system, used to provide
learners with suggestions when having trouble in choosing courses, was described.
The approach integrates the Apriori algorithm with graph theory.

Some of the main drawbacks of association rule algorithms are (García et al.
2007):

• association rule mining algorithms normally discover a huge quantity of rules
and do not guarantee that all the rules found are relevant,

• the used algorithms have too many parameters for somebody non expert in data
mining and

• the obtained rules are far too many, most of them non-interesting and with low
comprehensibility.

In order to provide better recommendations, and to be able to use recommender
systems in more complex types of e-learning environments, most of the methods
reviewed in this subsection would need significant extensions. Therefore, we
consider some tag-based profiling approaches for extending their capabilities.

6.3 Recommendation Techniques for RS in E-Learning Environments—A Survey … 69

References

Adomavicius, G., & Tuzhilin, A. (2005a). Personalization technologies. Communications of the
ACM. http://doi.org/10.1145/1089107.1089109.

Adomavicius, G., & Tuzhilin, A. (2005b). Toward the next generation of recommender systems: A
survey of the state‐of‐the‐art and possible extensions. IEEE Transactions on Knowledge and
Data Engineering, 17(6), 734–749.

Agrawal, R., Imielinski, T., & Swami, A. (1993). Database mining: A performance perspective.
Knowledge and Data Engineering, IEEE Transactions on, 5(6), 914–925.

Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. In Data Engineering, 1995.
Proceedings of the Eleventh International Conference on (pp. 3–14).

Aguzzoli, S., Avesani, P., & Massa, P. (2002). Collaborative case-based recommender systems. In
Advances in Case-Based Reasoning (pp. 460–474). Springer.

Anderson, M., Ball, M., Boley, H., Greene, S., Howse, N., McGrath, S., & Lemire, D. (2003).
Racofi: A rule-applying collaborative filtering system.

Angehrn, A., Nabeth, T., Razmerita, L., & Roda, C. (2001). K-InCA: using artificial agents to help
people learn and adopt new behaviours. In Advanced Learning Technologies, 2001.
Proceedings. IEEE International Conference on (pp. 225–226).

Arenas-García, J., Meng, A., Petersen, K. B., Lehn-Schioler, T., Hansen, L. K., & Larsen,
J. (2007). Unveiling music structure via plsa similarity fusion. In Machine Learning for Signal
Processing, 2007 IEEE Workshop on (pp. 419–424).

Balabanović, M., & Shoham, Y. (1997). Fab: Content-based, collaborative recommendation.
Communications of the ACM. http://doi.org/10.1145/245108.245124.

Basilico, J., & Hofmann, T. (2004). Unifying collaborative and content-based filtering. In
Proceedings of the twenty-first international conference on Machine learning (p. 9).

Basu, C., Hirsh, H., Cohen, W., & others. (1998). Recommendation as classification: Using social
and content-based information in recommendation. In AAAI/IAAI (pp. 714–720).

Billsus, D., & Pazzani, M. J. (1998). Learning Collaborative Information Filters. In ICML (Vol.
98, pp. 46–54).

Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms for
collaborative filtering. In Proceedings of the Fourteenth conference on Uncertainty in artificial
intelligence (pp. 43–52).

Brin, S., Motwani, R., Ullman, J. D., & Tsur, S. (1997). Dynamic itemset counting and implication
rules for market basket data. In ACM SIGMOD Record (Vol. 26, pp. 255–264).

Castro, F., Vellido, A., Nebot, À., & Mugica, F. (2007). Applying data mining techniques to
e-learning problems. In Evolution of teaching and learning paradigms in intelligent
environment (pp. 183–221). Springer.

Chen, W., & Wasson, B. (2003). Coordinating collaborative knowledge building. International
Journal of Computers and Applications, 25(1), 1–10.

Cheung, K. W., Kwok, J. T., Law, M. H., & Tsui, K. C. (2003). Mining customer product ratings
for personalized marketing. Decision Support Systems, 35(2), 231–243. http://doi.org/10.1016/
S0167-9236(02)00108-2.

Cho, K., & Schunn, C. D. (2007). Scaffolded writing and rewriting in the discipline: A web-based
reciprocal peer review system. Computers & Education, 48(3), 409–426.

Cho, K., Schunn, C. D., & Wilson, R. W. (2006). Validity and reliability of scaffolded peer
assessment of writing from instructor and student perspectives. Journal of Educational
Psychology, 98(4), 891.

Chu, K.-K., Chang, M., & Hsia, Y.-T. (2003). Designing a course recommendation system on web
based on the students’ course selection records. In World conference on educational
multimedia, hypermedia and telecommunications (Vol. 2003, pp. 14–21).

Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., & Sartin, M. (1999). Combining
content-based and collaborative filters in an online newspaper. In Proceedings of ACM SIGIR
workshop on recommender systems (Vol. 60).

70 6 Recommender Systems in E-Learning Environments

http://doi.org/10.1145/1089107.1089109
http://doi.org/10.1145/245108.245124
http://doi.org/10.1016/S0167-9236(02)00108-2
http://doi.org/10.1016/S0167-9236(02)00108-2

Cosley, D., Lawrence, S., & Pennock, D. M. (2002). REFEREE: An open framework for practical
testing of recommender systems using ResearchIndex. In Proceedings of the 28th international
conference on Very Large Data Bases (pp. 35–46).

Costabile, M. F., De Marsico, M., Lanzilotti, R., Plantamura, V. L., & Roselli, T. (2005). On the
usability evaluation of e-learning applications. In System Sciences, 2005. HICSS’05.
Proceedings of the 38th Annual Hawaii International Conference on (p. 6b–6b).

David, N. (1997). Implicit Rating and Filtering. In 5th DELOS Workshop on Filtering and
Collaborative Filtering (ERCIM), Budapest, Hungary (pp. 31–36).

Drachsler, H., Hummel, H., & Koper, R. (2007). Recommendations for learners are different:
Applying memory-based recommender system techniques to lifelong learning.

Drachsler, H., Hummel, H. G. K., & Koper, R. (2008). Personal recommender systems for learners
in lifelong learning networks: the requirements, techniques and model. International Journal of
Learning Technology, 3(4), 404–423.

Drachsler, H., Hummel, H. G. K., & Koper, R. (2009). Identifying the goal, user model and
conditions of recommender systems for formal and informal learning. Journal of Digital
Information, 10(2).

Elorriaga, J. A., & Fernández-Castro, I. (2000). Using case-based reasoning in instructional
planning. towards a hybrid self-improving instructional planner. International Journal of
Artificial Intelligence in Education (IJAIED), 11, 416–449.

Freyberger, J., Heffernan, N., & Ruiz, C. (2004). Using association rules to guide a search for best
fitting transfer models of student learning. In Workshop on analyzing student-tutor interactions
logs to improve educational outcomes at ITS conference (pp. 1–10).

Funk, P., & Conlan, O. (2003). Using case-based reasoning to support authors of adaptive
hypermedia systems. In AH2003: workshop on adaptive hypermedia and adaptive web-based
systems (pp. 113–120).

García, P., Amandi, A., Schiaffino, S., & Campo, M. (2007). Evaluating Bayesian networks’
precision for detecting students’ learning styles. Computers & Education, 49(3), 794–808.

García, E., Romero, C., Ventura, S., & De Castro, C. (2009). An architecture for making
recommendations to courseware authors using association rule mining and collaborative
filtering. User Modeling and User-Adapted Interaction, 19(1–2), 99–132.

Gaudioso, E., Santos, O. C., Rodríguez, A., & Boticario, J. G. (2003). A proposal for modeling a
collaborative task in a web-based collaborative learning environment. In International
Conference on User Modeling (pp. 70–79).

Gehringer, E. F. (2001). Electronic peer review and peer grading in computer-science courses.
ACM SIGCSE Bulletin, 33(1), 139–143.

Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave
an information tapestry. Communications of the ACM, 35(12), 61–70.

Goldberg, K., Roeder, T., Gupta, D., & Perkins, C. (2001). Eigentaste: A constant time
collaborative filtering algorithm. Information Retrieval, 4(2), 133–151.

Heraud, J.-M., France, L., & Mille, A. (2004). Pixed: An ITS that guides students with the help of
learners’ interaction log. In International conference on intelligent tutoring systems, workshop
analyzing student tutor interaction logs to improve educational outcomes. Maceio, Brazil
(pp. 57–64).

Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative
filtering recommender systems. ACM Transactions on Information Systems. http://doi.org/10.
1145/963770.963772.

Hofmann, T. (2003). Collaborative filtering via gaussian probabilistic latent semantic analysis. In
Proceedings of the 26th annual international ACM SIGIR conference on Research and
development in informaion retrieval (pp. 259–266).

Hsu, H.-H., Chen, C.-J., & Tai, W.-P. (2003). Towards error-free and personalized Web-based
courses. In Advanced Information Networking and Applications, 2003. AINA 2003. 17th
International Conference on (pp. 99–104).

Hwang, G.-J., Hsiao, C.-L., & Tseng, J. C. R. (2003). A computer-assisted approach to diagnosing
student learning problems in science courses. J. Inf. Sci. Eng., 19(2), 229–248.

References 71

http://doi.org/10.1145/963770.963772
http://doi.org/10.1145/963770.963772

Janssen, J., den Berg, B., Tattersall, C., Hummel, H., & Koper, R. (2007). Navigational support in
lifelong learning: enhancing effectiveness through indirect social navigation. Interactive
Learning Environments, 15(2), 127–136.

Koper, R. (2005). Increasing learner retention in a simulated learning network using indirect social
interaction. Journal of Artificial Societies and Social Simulation, 8(2).

Koper, R., & Olivier, B. (2004). Representing the learning design of units of learning. Educational
Technology and Society.

Kumar, A. (2005). Rule-based adaptive problem generation in programming tutors and its
evaluation. In The 12th international conference on artificial intelligence in education. July
(pp. 18–22).

Lemire, D. (2005). Scale and translation invariant collaborative filtering systems. Information
Retrieval, 8(1), 129–150.

Lemire, D., Boley, H., McGrath, S., & Ball, M. (2005). Collaborative filtering and inference rules
for context-aware learning object recommendation. Interactive Technology and Smart
Education, 2(3), 179–188.

Li, J., & Zaïane, O. R. (2004). Combining usage, content, and structure data to improve web site
recommendation. In E-Commerce and Web Technologies (pp. 305–315). Springer.

Linden, G., Smith, B., & York, J. (2003). Amazon. com recommendations: Item-to-item
collaborative filtering. Internet Computing, IEEE, 7(1), 76–80.

Liu, B., Hsu, W., Chen, S., & Ma, Y. (2000). Analyzing the subjective interestingness of
association rules. Intelligent Systems and Their Applications, IEEE, 15(5), 47–55.

Lu, J. (2004). Personalized e-learning material recommender system. In International conference
on information technology for application (pp. 374–379).

Lu, J., Yu, C. S., & Liu, C. (2003). Learning style, learning patterns, and learning performance in a
WebCT-based MIS course. Information and Management, 40(6), 497–507. http://doi.org/10.
1016/S0378-7206(02)00064-2.

Luo, S., Sha, S., Shen, D., & Jia, W. (2002). Conceptual network based courseware navigation and
web presentation mechanisms. In Advances in Web-Based Learning (pp. 81–91). Springer.

Lynch, C., Ashley, K., Aleven, V., & Pinkwart, N. (2006). Defining ill-defined domains; a
literature survey. In Proceedings of the workshop on intelligent tutoring systems for ill-defined
domains at the 8th international conference on intelligent tutoring systems (pp. 1–10).

Malone, T. W., Grant, K. R., Turbak, F. A., Brobst, S. A., & Cohen, M. D. (1987). Intelligent
information-sharing systems. Communications of the ACM, 30(5), 390–402.

Machado, L. dos S., & Becker, K. (2003). Distance education: A web usage mining case study for
the evaluation of learning sites. In Advanced Learning Technologies, 2003. Proceedings. The
3rd IEEE International Conference on (pp. 360–361).

Manouselis, N., & Costopoulou, C. (2007). Analysis and classification of multi-criteria
recommender systems. World Wide Web, 10(4), 415–441. http://doi.org/10.1007/s11280-
007-0019-8.

Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H., & Koper, R. (2011). Recommender
Systems in Technology Enhanced Learning. In Recommender Systems Handbook (pp. 387–
415). http://doi.org/10.1007/978-0-387-85820-3.

Markellou, P., Mousourouli, I., Spiros, S., & Tsakalidis, A. (2005). Using semantic web mining
technologies for personalized e-learning experiences. Proceedings of the Web-Based
Education, 461–826.

Marlin, B. M. (2003). Modeling User Rating Profiles For Collaborative Filtering. In NIPS
(pp. 627–634).

Massa, P., & Avesani, P. (2004). Trust-aware collaborative filtering for recommender systems. In
On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE (pp. 492–
508). Springer.

McLaughlin, M. R., & Herlocker, J. L. (2004). A collaborative filtering algorithm and evaluation
metric that accurately model the user experience. In Proceedings of the 27th annual
international ACM SIGIR conference on Research and development in information retrieval
(pp. 329–336).

72 6 Recommender Systems in E-Learning Environments

http://doi.org/10.1016/S0378-7206(02)00064-2
http://doi.org/10.1016/S0378-7206(02)00064-2
http://doi.org/10.1007/s11280-007-0019-8
http://doi.org/10.1007/s11280-007-0019-8
http://doi.org/10.1007/978-0-387-85820-3

McNee, S. M., Riedl, J., & Konstan, J. A. (2006). Making recommendations better: An analytic
model for human-recommender interaction. In CHI’06 extended abstracts on Human factors in
computing systems (pp. 1103–1108).

Melville, P., Mooney, R. J., & Nagarajan, R. (2002). Content-boosted collaborative filtering for
improved recommendations. In AAAI/IAAI (pp. 187–192).

Merceron, A., & Yacef, K. (2004). Mining student data captured from a web-based tutoring tool:
Initial exploration and results. Journal of Interactive Learning Research, 15(4), 319.

Miller, B. (2003). Toward a personalized recommender system. PhD thesis, University of
Minnesota–Twin Cities.

Minaei-Bidgoli, B., Tan, P.-N., & Punch, W. (2004). Mining interesting contrast rules for a
web-based educational system. In Machine Learning and Applications, 2004. Proceedings.
2004 International Conference on (pp. 320–327).

Okamoto, T., & Matsui, T. (2003). Knowledge Discovery from Learning History Data and and its
Effective Use for Learning Process Assessment under the e-learning Environment. In Society
for Information Technology & Teacher Education International Conference (Vol. 2003,
pp. 3141–3144).

Park, J. S., Chen, M.-S., & Yu, P. S. (1995). An effective hash-based algorithm for mining
association rules (Vol. 24). ACM.

Pennock, D. M., & Horvitz, E. (1999). Analysis of the axiomatic foundations of collaborative
filtering. Ann Arbor, 1001, 42110–48109.

Pennock, D. M., Horvitz, E., Lawrence, S., & Giles, C. L. (2000). Collaborative filtering by
personality diagnosis: A hybrid memory-and model-based approach. In Proceedings of the
Sixteenth conference on Uncertainty in artificial intelligence (pp. 473–480).

Pérez, T., Lopistéguy, P., Gutiérrez, J., & Usandizaga, I. (1995). HyperTutor: From hypermedia to
intelligent adaptive hypermedia. In ED-MEDIA’95, World conference on educational
multimedia and hypermedia (pp. 529–534).

Pinkwart, N., Aleven, V., Ashley, K., & Lynch, C. (2006). Toward legal argument instruction with
graph grammars and collaborative filtering techniques. In Intelligent Tutoring Systems
(pp. 227–236).

Pinkwart, N., Aleven, V., Ashley, K., & Lynch, C. (2007). Evaluating legal argument instruction
with graphical representations using largo. Frontiers In Artificial Intelligence And
Applications, 158, 101.

Ramli, A. A. (2005). Web usage mining using apriori algorithm: UUM learning care portal case. In
International conference on knowledge management, Malaysia (pp. 1–19).

Recker, M. M., & Walker, A. (2003). Supporting“ word-of-mouth” social networks through
collaborative information filtering. Journal of Interactive Learning Research, 14(1), 79.

Recker, M. M., Walker, A., & Lawless, K. (2003). What do you recommend? Implementation and
analyses of collaborative information filtering of web resources for education. Instructional
Science, 31(4–5), 299–316.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: An open
architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM conference
on Computer supported cooperative work (pp. 175–186).

Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM. http://
doi.org/10.1145/245108.245121.

Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to Recommender Systems Handbook.
Recommender Systems Handbook. http://doi.org/10.1007/978-0-387-85820-3_1.

Romero, C., Ventura, S., & De Bra, P. (2004). Knowledge discovery with genetic programming
for providing feedback to courseware authors. User Modelling and User-Adapted Interaction,
14(5), 425–464. http://doi.org/10.1007/s11257-004-7961-2.

Romero, C., Ventura, S., De Bra, P., & De Castro, C. (2003). Discovering prediction rules in
AHA! courses. In User Modeling 2003 (pp. 25–34). Springer.

References 73

http://doi.org/10.1145/245108.245121
http://doi.org/10.1145/245108.245121
http://doi.org/10.1007/978-0-387-85820-3_1
http://doi.org/10.1007/s11257-004-7961-2

Romero, C., Ventura, S., Delgado, J. A., & De Bra, P. (2007). Personalized links recommendation
based on data mining in adaptive educational hypermedia systems. In Creating New Learning
Experiences on a Global Scale (pp. 292–306). Springer.

Rosset, S., Neumann, E., Eick, U., Vatnik, N., & Idan, Y. (2002). Customer lifetime value
modeling and its use for customer retention planning. In Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery and data mining
(pp. 332–340).

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering
recommendation algorithms. Proceedings of the 10th …, 1, 285–295. http://doi.org/10.1145/
371920.372071.

Savidis, A., Grammenos, D., & Stephanidis, C. (2007). Developing inclusive e-learning and
e-entertainment to effectively accommodate learning difficulties. Universal Access in the
Information Society, 5(4), 401–419.

Schafer, J. Ben, Konstan, J., & Riedl, J. (2001). E-commerce recommendation applications.
Applications of Data Mining to Electronic …, 115–153. http://doi.org/10.1007/978-1-4615-
1627-9_6.

Schmitt, S., & Bergmann, R. (1999). Applying case-based reasoning technology for product
selection and customization in electronic commerce environments. In 12th Bled Electronic
Commerce Conference (Vol. 273).

Shardanand, U., & Maes, P. (1995). Social Information Filtering: Algorithms for Automating
“Word of Mouth.” In ACM Conference on Human Factors in Computing Systems (CHI) (Vol.
1, pp. 210–217). http://doi.org/10.1145/223904.223931.

Shen, L., & Shen, R. (2005). Ontology-based learning content recommendation. International
Journal of Continuing Engineering Education and Life Long Learning, 15(3–6), 308–317.

Silberschatz, A., & Tuzhilin, A. (1996). What makes patterns interesting in knowledge discovery
systems. Knowledge and Data Engineering, IEEE Transactions on, 8(6), 970–974.

Silva, D. R., & Vieira, M. T. P. (2001). An Ongoing assessment model in distance learning.
Soonthornphisaj, N., Rojsattarat, E., & Yim-Ngam, S. (2006). Smart e-learning using

recommender system. In Computational intelligence (pp. 518–523). Springer.
Sørmo, F., & Aamodt, A. (2002). Knowledge communication and CBR. In ECCBR Workshops

(pp. 47–60).
Srivastava, J., Cooley, R., Deshpande, M., & Tan, P.-N. (2000). Web usage mining: Discovery and

applications of usage patterns from web data. ACM SIGKDD Explorations Newsletter, 1(2),
12–23.

Tan, H., Guo, J., & Li, Y. (2008). E-learning recommendation system. In Computer Science and
Software Engineering, 2008 International Conference on (Vol. 5, pp. 430–433).

Tsai, C.-J., Tseng, S.-S., & Lin, C.-Y. (2001). A two-phase fuzzy mining and learning algorithm
for adaptive learning environment. In Computational Science-ICCS 2001 (pp. 429–438).
Springer.

Vassileva, J. (1998). DCG + GTE: Dynamic Courseware Generation with Teaching Expertise.
Instructional Science, 26(3–4), 317–332.

Walker, A., Recker, M. M., Lawless, K., & Wiley, D. (2004). Collaborative information filtering:
A review and an educational application. International Journal of Artificial Intelligence in
Education, 14(1), 3–28.

Wang, D., Bao, Y., Yu, G., & Wang, G. (2002). Using page classification and association rule
mining for personalized recommendation in distance learning. In Advances in Web-Based
Learning (pp. 363–374). Springer.

Wilson, D. C., Smyth, B., & Sullivan, D. O. (2003). Sparsity reduction in collaborative
recommendation: A case-based approach. International Journal of Pattern Recognition and
Artificial Intelligence, 17(05), 863–884.

Yang, Y. J., & Wu, C. (2009). An attribute-based ant colony system for adaptive learning object
recommendation. Expert Systems with Applications, 36(2), 3034–3047.

Zaiane, O. (2002). Building a Recommender Agent for e learning Systems Computers in
Education. Citeulike.org.

74 6 Recommender Systems in E-Learning Environments

http://doi.org/10.1145/371920.372071
http://doi.org/10.1145/371920.372071
http://doi.org/10.1007/978-1-4615-1627-9_6
http://doi.org/10.1007/978-1-4615-1627-9_6
http://doi.org/10.1145/223904.223931

Zaíane, O. R. (2002). Building a recommender agent for e-learning systems. In Computers in
Education, 2002. Proceedings. International Conference on (pp. 55–59).

Zaïane, O. R., & Luo, J. (2001). Towards evaluating learners’ behaviour in a web-based distance
learning environment. In Advanced Learning Technologies, 2001. Proceedings. IEEE
International Conference on (pp. 357–360).

Zheng, Z., Kohavi, R., & Mason, L. (2001). Real world performance of association rule
algorithms. In Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining (pp. 401–406).

Ziegler, C.-N. (2013). Social Web Artifacts for Boosting Recommenders. Springer.

References 75

Chapter 7
Folksonomy and Tag-Based
Recommender Systems in E-Learning
Environments

Abstract Collaborative tagging is technique, highly employed in different
domains, which is used for automatic analysis of users’ preferences and recom-
mendations. To improve recommendation quality, metadata such as content
information of items has typically been used as additional knowledge. With the
increasing reputation of the collaborative tagging systems, tags could be interesting
and provide useful information to enhance algorithms for recommender systems.
Besides helping user to organize his/her personal collections, a tag also can be
regarded as a user’s personal opinion expression, while tagging can be considered
as implicit rating or voting on the tagged information resources or items. The
overview, presented in this chapter includes descriptions of content-based recom-
mender systems, collaborative filtering systems, hybrid approach, memory-based
and model-based algorithms, features of collaborative tagging that are generally
attributed to their success and popularity, as well as a model for tagging activities
and tag-based recommender systems.

Collaborative tagging is a technique, highly employed in different domains, which
is used for automatic analysis of users’ preferences and recommendations. To
improve recommendation quality, metadata such as content information of items
has typically been used as additional knowledge. With the increasing reputation of
the collaborative tagging systems, tags could be interesting and useful information
to enhance algorithms for recommender systems. Collaborative tagging systems
allow users to upload their resources, and to label them with arbitrary words,
so-called tags (Golder and Huberman 2006). The systems can be distinguished
according to what kind of resources they supported. Flickr,1 for instance, allows the
sharing of photos, del.icio.us2 the sharing of bookmarks, CiteULike3 and Connotea4

the sharing of bibliographic references, and 43Things5 even the sharing of goals in

1http://www.flickr.com.
2http://www.del.icio.us.
3http://www.citeulike.org.
4http://www.connotea.org.
5http://www.43things.com.

© Springer International Publishing Switzerland 2017
A. Klašnja-Milićević et al., E-Learning Systems,
Intelligent Systems Reference Library 112, DOI 10.1007/978-3-319-41163-7_7

77

http://www.flickr.com
http://www.del.icio.us
http://www.citeulike.org
http://www.connotea.org
http://www.43things.com

private life. Essentially, all these systems are very similar. Once a user is logged in,
(s)he can add a resource to the system, and assign arbitrary tags. The collection of
all his assignments is his personomy, the collection of all personomies constitutes
the folksonomy. The user can explore his personomy, as well as the personomies of
the other users, in all dimensions: for a given user one can see all resources (s)he
had uploaded, together with the tags (s)he had assigned to them (Jäschke et al.
2007). Besides helping user to organize his/her personal collections, a tag also can
be regarded as a user’s personal opinion expression, while tagging can be con-
sidered as implicit rating or voting on the tagged information resources or items
(Liang et al. 2008). Thus, the tagging information can be used to make recom-
mendations. The rest of this chapter will review in more detail the collaborative
tagging systems, folksonomy and tag-based RSs, relevant to the results of the
research presented in this monography. Section 7.1 provides comprehensive survey
of the state-of-the-art in collaborative tagging systems and folksonomy. Section 7.2
presents a model for tagging activities. Tag-based recommender systems and
approaches for extension and collecting tags are described in Sect. 7.3.

7.1 Comprehensive Survey of the State-of-the-Art
in Collaborative Tagging Systems and Folksonomy

Collaborative tagging is the practice of allowing users to freely attach keywords or
tags to content (Golder and Huberman 2006). Collaborative tagging is most useful
when there is nobody in the “librarian” role or there is simply too much content for
a single authority to classify. People tag pictures, videos, and other resources with a
couple of keywords to easily retrieve them in a later stage. The following features of
collaborative tagging are generally attributed to their success and popularity
(Mathes 2004; Quintarelli 2005; Wu et al. 2006):

• Low cognitive cost and entry barriers. The simplicity of tagging allows any
Web user to classify their favourite Web resources by using keywords that are
not constrained by predefined vocabularies.

• Immediate feedback and communication. Tag suggestions in collaborative tag-
ging systems provide mechanisms for users to communicate implicitly with each
other through tag suggestions to describe resources on the Web.

• Quick adaptation to changes in vocabulary. The freedom provided by tagging
allows fast response to changes in the use of language and the emergency of
new words. Terms like Web2.0, ontologies and social network can be used
readily by the users without the need to modify any pre-defined schemes.

• Individual needs and formation of organization. Tagging systems provide a
convenient means for Web users to organize their favourite Web resources.
Besides, as the systems develop, users are able to discover other people who are
also interested in similar items.

78 7 Folksonomy and Tag-Based Recommender Systems …

• Scalability. Predefined vocabularies become imprecise when a domain grows.
Instead, tags can reach a nearly unlimited granularity.

• Serendipity. Controlled vocabularies are designed to ease retrieval. Less popular
content that resides in the so-called long-tail of the information space is hard to
find. Tags enable users to discover long-tail information by browsing through
the folksonomy network of items, tags, and users.

• Inclusiveness. The set of potential tags includes every user’s views, preferences,
or language as well as all potential topics.

Since tags are created by individual users in a free form, one important problem
facing tagging is to identify most appropriate tags, while eliminating noise and
spam. For this purpose, Noll et al. (2009) define a set of general criteria for a good
tagging system.

• High coverage of multiple facets. A good tag combination should include
multiple facets of the tagged objects. The larger the number of facets the more
likely a user is able to recall the tagged content.

• High popularity. If a set of tags are used by a large number of people for a
particular object, these tags are more likely to uniquely identify the tagged
content and the more likely to be used by a new user for the given object.

• Least-effort. The number of tags for identifying an object should be minimized,
and the number of objects identified by the tag combination should be small. As
a result, a user can reach any tagged objects in a small number of steps via tag
browsing.

• Uniformity (normalization). Since there is no universal ontology, different
people can use different terms for the same concept. We have observed two
general types of divergence: those due to syntactic variance, e.g., colour, col-
orize, colorize, colourise; and those due to synonym, e.g., learner and pupil,
which are different syntactic terms that refer to the same underlying concept.
These kinds of divergence are a double-edged sword. On the one hand, they
introduce noises to the system; on the other hand it can increase recall.

• Exclusion of certain types of tags. For example, personally tags are less likely to
be shared by different users. Thus, they should be excluded from public usage.
Rather than ignoring these tags, tagging system includes a feature that
auto-completes tags as they are being typed by matching the prefixes of the tags
entered by the user before. This not only improves the usability of the system
but also enables the convergence of tags.

Another important aspect of tagging systems is how they operate. Authors in
Marlow et al. (2006) explained some important dimensions of tagging systems’
design that may have immediate effect on the content and effectiveness of tags
generated by the system. Some of these dimensions are listed below.

7.1 Comprehensive Survey of the State-of-the-Art in Collaborative … 79

7.1.1 Tagging Rights

The permission a user has to tag resources can affect the properties of an emergent
folksonomy. Systems can determine who may remove a tag. Also, systems can
choose the resources which users tag or specify different levels of permissions to
tag. The spectrum of tagging permissions ranges from:

• Self-tagging—users can only tag their own contributions (e.g. Technorati6). In
self-tagging systems, a resource can only be tagged by its creator. For instance,
most blog service providers allow tagging of a post only by its owner. Being the
sole annotator, a blogger therefore does not directly interact with or is influenced
by other bloggers, in contrast to collaborative tagging systems. It is therefore
interesting to study the possible differences between collaborative and
self-tagging systems.

• Permission-based—users make a decision who can tag their resources. For
instance, systems can specify different levels of permissions to tag (as with the
friends, family, and contact distinctions in Flickr). Likewise, systems can
determine who may remove a tag, whether no one (e.g., Yahoo! Podcasts),
anyone (e.g., Odeo), the tag creator (e.g., Last.fm) or the resource owner (e.g.,
Flickr).

• Free-for-all—any user can tag any resource. Free-for-all systems are obviously
broad, both in the size of the group of tags assigned to a resource and in the
nature of the tags assigned. For instance, tags that are assigned to a photo may
be radically divergent depending on whether the tagging is performed by the
photographers, their friends, or strangers looking at their photos.

7.1.2 Tagging Support

One important aspect of a tagging system is the way in which users assign tags to
items. They may assign arbitrary tags without prompting, they may add tags while
considering those already added to a particular resource, or tags may be proposed.
There are three different categories:

• Blind tagging—user cannot see the other tags assigned to the resource they’re
tagging.

• Viewable tagging—users can see the other tags assigned to the resource they’re
tagging. Implications may be overweighting certain tags that were associated
with the resource first, even if they would not have arisen otherwise.

• Suggestive tagging—user can see recommended tags for the resource they’re
tagging. The suggested tags may be based on existing tags by the same user,

6http://www.technorati.com.

80 7 Folksonomy and Tag-Based Recommender Systems …

http://www.technorati.com

tags assigned to the same resource by other users or tags generated from or other
sources of related tags such as automatically gathered contextual metadata, or
machine-suggested tag synonyms. A suggestive system may help associate the
tag usage for a resource, or in the system, much faster than a blind tagging
system would. A convergent folksonomy is more likely to be generated when
tagging is not blind.

7.1.3 Aggregation

The aggregation of tags around a given resource is an important consideration. The
system may allow for a multiplicity of tags for the same resource which may result
in duplicate tags from different users. Alternatively, many systems ask the group to
collectively tag an individual resource. It is able to distinguish two models of
aggregation.

• Bag-model—the equal tag can be assigned to a resource multiple times, like in
Delicious, allowing statistics to be generated and users to see if there is
agreement among taggers about the content of the resource. In the case that a
bag-model is being used, the system is afforded the ability to use aggregate
statistics for a given resource to present users with the collective opinions of the
taggers. In addition, these data can be used to more accurately find relationships
between users, tags, and resources given the added information of tag
frequencies.

• Set-model—a tag can be applied only once to a resource, like in Flickr and
Youtube. Many systems ask the group to collectively tag an individual resource,
thus denying any repetition.

7.1.4 Types of Object

The implications for the nature of the resultant tags are numerous, any object that
can be virtually represented can be tagged or used in a tagging system. The types of
resource tagged allow us to distinguish different tagging systems. Popular systems
include simple objects, like: webpages, bibliographic materials, images, videos,
songs, etc. In reality, any object that can be virtually represented can be tagged or
used in a tagging system. For example, there are systems that let users tag physical
locations or events (e.g., Upcoming7).

7http://www.upcoming.yahoo.com.

7.1 Comprehensive Survey of the State-of-the-Art in Collaborative … 81

http://www.upcoming.yahoo.com

7.1.5 Sources of Material

Some systems restrict the sources through architecture (e.g., Flickr), while others
restrict the sources solely through social norms (e.g., CiteULike). Resources to be
tagged can be supplied:

• by the participants (YouTube,8 Flickr, Technorati, Upcoming)
• by the system (ESP Game,9 Last.fm, Yahoo! Podcasts10)
• open to any Web resource (Delicious, Yahoo! MyWeb2.011)

7.1.6 Resource Connectivity

Resources in a tagging system may be connected to each other independently of
their tags. For example, Web pages may be connected via hyperlinks, or resources
can be assigned to groups (e.g. photo albums in Flickr). Connectivity can be
roughly categorized as: linked, grouped, or none.

7.1.7 Social Connectivity

Users of the system may be connected. Many tagging systems include social net-
working facilities that allow users to connect themselves to each other based on
their areas of interest, educational institutions, location and so forth. Like resource
connectivity, the social connectivity could be defined as linked, grouped, or none.

The term folksonomy defines a user-generated and distributed classification
system, emerging when large communities of users collectively tag resources. Wal
(2007) and Hotho et al. (2006a, b, c) are defined a folksonomy as follows.

A folksonomy is a quadruple F: = (U; T; I; Y), where U, T, I are finite sets of
instances of users, tags, and items and Y defines a relation, the tag assignment,
between these sets, that is, Y � U � T � I.

Folksonomies became popular on the Web with social software applications
such as social bookmarking, photo sharing and weblogs. A number of social tag-
ging sites such as Delicious, Flickr, YouTube, CiteULike have become popular.
Commonly cited advantages of folksonomies are their flexibility, rapid adaptability,
free-for-all collaborative customisation and their serendipity (Mathes 2004). People
can in general use any term as a tag without exactly understanding the meaning of

8http://www.youtube.com.
9http://www.espgame.org.
10http://podcasts.yahoo.com.
11http://myweb.yahoo.com.

82 7 Folksonomy and Tag-Based Recommender Systems …

http://www.youtube.com
http://www.espgame.org
http://podcasts.yahoo.com
http://myweb.yahoo.com

the terms they choose. The power of folksonomies stands in the aggregation of
tagged information that one is interested in. This improves social serendipity by
enabling social connections and by providing social search and navigation
(Quintarelli 2005). Folksonomy shows a lot of benefits (Peters and Stock 2007):

• represent an authentic use of language,
• allow multiple interpretations,
• are cheap methods of indexing,
• are the only way to index mass information on the Web,
• are sources for the development of ontologies, thesauri or classification systems,
• give the quality “control” to the masses,
• allow searching and—perhaps even better—browsing,
• recognize neologisms,
• can help to identify communities,
• are sources for collaborative recommender systems,
• make people sensitive to information indexing.

There are two types of folksonomies: broad and narrow folksonomies (Wal
2007). The broad folksonomy, like Delicious, has many people tagging the same
object and every person can tag the object with their own tags in their own
vocabulary. Thus, in theory there is a great number of tags that all refer to the same
object (item), because users might independently use very distinct tags for the same
content. The narrow folksonomy, which a tool like Flickr represents, provides
benefit in tagging objects that are not easily searchable or have no other means of
using text to describe or find the object.

The narrow folksonomy is done by one or a few people providing tags that the
person uses to get back to that information. The tags, unlike in the broad folk-
sonomy, are singular in nature. The same tag cannot be associated with a single
object multiple times; in other words, the creator or publisher of an object is often
the person who creates the first tags (unlike in broad folksonomies), and the option
to tag may be even restricted to that person. After all, a much smaller number of
tags for one and the same object can be identified in a narrow folksonomy. The
differences between narrow and broad folksonomies from a graph perspective are
depicted in Fig. 7.1, where U is the set of users, T is the set of available tags and I is
the set of items. The figure also illustrates that narrow folksonomies are a special
case of broad folksonomies with the constraint that each item links to exactly one
user.

7.2 A Model for Tagging Activities

Social tagging systems allow their users to share their tags of particular resources.
Each tag serves as a link to additional resources tagged in the same way by other
users (Marlow et al. 2006). Certain resources may be linked to each other; at the

7.1 Comprehensive Survey of the State-of-the-Art in Collaborative … 83

same time, there may be relationships between users according to their own social
interests, so the shared tags of a folksonomy come to interconnect the three groups
of protagonists in social labelling systems: Users, Items, and Tags.

Many researchers (Cattuto et al. 2007; Halpin et al. 2007; Mika 2005) suggested
a tripartite model that represents the tagging process:

Tagging : ðU; T ; IÞ

where U is the set of users who participate in a tagging activity, T is the set of
available tags and I is the set of items being tagged. Figure 7.2 shows a conceptual
model for social tagging system where users and items are connected through the
tags they assign. In this model, users assign tags to a specific item; tags are

Fig. 7.1 The structural difference between narrow and broad folksonomies

Fig. 7.2 Conceptual model
of a collaborative tagging
system (Marlow et al. 2006)

84 7 Folksonomy and Tag-Based Recommender Systems …

represented as typed edges connecting users and items. Items may be connected to
each other (e.g., as links between Web pages) and users may be associated by a
social network, or sets of affiliations (e.g., users that work for the same company).

Examination (Golder and Huberman 2006) of the collaborative tagging system,
such as Delicious, has revealed a rich variety in the ways in which tags are used,
regularities in user activity, tag frequencies, and great popularity in bookmarking,
as well as a significant stability in the comparative proportions of tags within a
given url.

• Tags may be used to identify the topic of a resource using nouns and proper
nouns (i.e. photo, album or photographer).

• To classify the type of resource (i.e. book, blog, article, review, event).
• To denote the qualities and characteristics of the item (i.e. funny, useful, cool).
• A subset of tags, such as myfavourites, mymusic and myphotos reflect a notion

of self-reference.
• Some tags are used by individuals for task organization (e.g. to read, job search,

and to print).

Time is an important factor in considering collaborative tagging systems, in fact
definitions and relationships among tags could vary over time. For certain users, the
number of tags can become stable over time, while for others, it keeps growing.
There are three hypotheses about tags behaviour over time (Halpin et al. 2007):

• Tags convergence: the tags assigned to a certain Web resource tend to stabilize
and to become the majority. In an organizational setting with an almost stable
number of contributors and a slowly growing number of topics, the number of
tags used in a given domain might converge. This convergence might be
interpreted as a sign of maturity of a certain topic, which in turn could trigger
measures that bring the underlying tagged resources as well as the contributors,
the underlying social network or community, to a higher level of maturity
(Maier and Thalmann 2008).

• Tags divergence: tag-sets that don’t converge to a smaller group of more stable
tags, and where the tag distribution repeatedly changes. Xu et al. notice two
types of divergence in tags: divergence due to syntactic variance: blogs, blog-
ging, or blog and those due to synonyms cell-phone and mobile-phone. The
divergence has pros and cons. It introduces noise to a tagging system, but it also
can improve recall.

• Tags periodicity: after one group of users tag some local optimal tag-set,
another group uses a divergent set but, after a period of time the new group’s set
becomes the new local optimal tag-set. This process may repeat and so lead to
convergence after a period of instability, or it may act like a chaotic attractor.

7.2 A Model for Tagging Activities 85

7.3 Tag-Based Recommender Systems

Recommender systems in general recommend interesting or personalized infor-
mation objects to users based on explicit or implicit ratings. Usually, recommender
systems predict ratings of objects or suggest a list of new objects that the user
hopefully will like the most. The approaches of profiling users with user-item rating
matrix and keywords vectors are widely used in recommender systems. However,
these approaches are used for describing two-dimensional relationships between
users and items. In tag recommender systems the recommendations are, for a given
user u2U and a given resource r2R, a set T̂ðu; rÞ� T of tags. In many cases,
T̂ðu; rÞ is computed by first generating a ranking on the set of tags according to
some quality or relevance criterion, from which then the top n elements are selected
as representative tags (Jaschke et al. 2007).

Personalized recommendation is used to conquer the information overload
problem, and collaborative filtering recommendation is one of the most successful
recommendation techniques, to date. However, collaborative filtering recommen-
dation becomes less effective when users have multiple interests, because users
have similar taste in one aspect may behave quite different in other aspects.
Information got from social tagging websites not only tells what a user likes, but
also why (s)he likes it. Tagging represents an action of reflection, where the tagger
sums up a series of thoughts into one or more summary tags, each of which stands
on its own to describe some aspect of the resource based on the tagger’s experi-
ences and beliefs (Bateman et al. 2007).

In the remainder of this section, we first describe the proposed extension with
integrating tags information to improve recommendation quality. We then present
two different ways for collecting tags which can work complementary to collabo-
rative tagging, result to tag collections with improved quality.

7.3.1 Extension with Tags

The current recommender systems usually use collaborative filtering techniques,
which traditionally exploit only pairs of two-dimensional data. As collaborative
tagging is getting more widely used social tags as a powerful mechanism that
reveals three-dimensional correlations between users–tags–items, could also be
employed as background knowledge in a recommender system.

The first adaptation lies in reducing the three-dimensional folksonomy to three
two-dimensional contexts: <user, tag> and <item, tag> and <user, item>. This can
be done by augmenting the standard user-item matrix horizontally and vertically
with user and item tags correspondingly (Tso-sutter et al. 2008). User tags are tags
that user u uses to tag items and are viewed as items in the user-item matrix. Item
tags, are tags that describe an item i, by users and play the role of users in the

86 7 Folksonomy and Tag-Based Recommender Systems …

user-item matrix (see Fig. 7.3). Furthermore, instead of viewing each single tag as
user or item, clustering methods can be applied to the tags such that similar tags are
grouped together.

A tag based recommender system must approach several challenges to be suc-
cessful in a real world application (Marinho et al. 2011):

• tags should describe the annotated item,
• items should awake the interest of the user,
• suggested items should be interesting and relevant,
• the suggestions should be traceable such that one easily understands why (s)he

got the items suggested,
• the suggestions must be delivered timely without delay,
• the suggestions must be easy to access (i.e., by allowing the user to click on

them or to use tab-completion when entering tags),
• the system must ensure that recommendations do not obstruct the normal usage

of the system.

Recommending tags can serve various purposes, such as: increasing the chances
of getting an item annotated, reminding a user what an item is about and consol-
idating the vocabulary across the users.

7.3.2 Collecting Tags

The quality of tags can directly affect the recommendation process. Collaborative
tagging exploits the “wisdom of crowds”. The following alternative ways for col-
lecting tags can work complementary to collaborative tagging, resulting to tag
collections with improved quality (Marinho et al. 2011).

Fig. 7.3 Extend user-item matrixes by including user tags as items and item tags as users
(Tso-sutter et al. 2008)

7.3 Tag-Based Recommender Systems 87

Tagging based on experts: An expert is someone who possesses a high level of
knowledge in a particular domain (Marinho et al. 2011). This implies that experts
provide tags that are objective and cover multiple aspects. The main advantage of
using experts is the high-quality of the resulting tags, especially for e-learning
systems. An expert should be someone who is able to recognizes the usefulness of
an item/document/learning object before the others do, thus becoming the first to
assign tags to it and bring it to the attention of other users. Generally speaking, the
earlier a user has tagged a document, the more credit (s)he should receive for his
actions. This comes, of course, to the cost of manual work, which is both time
consuming and expensive.

Tagging based on content: Several items, like URLs, songs, etc., contain a rich
content. By crawling associated information from theWeb and by converting it into a
suitable representation, tags can be collected using data mining algorithms. In the tag
recommendation task some of the tags to be predicted in the test set never appeared in
the training set, which forced the participants (Tatu et al. 2008) to use the textual
content of the items to come up with new tags. The advantage of content-based tags
is that no humans must be directly involved during the collection process. The
disadvantages are that these tags can be noisy and that their computation is intensive.

Compared to the alternative methods, social tagging has the advantage of pro-
ducing large-scale tag collections. The quality of tags generally improves with a
large number of taggers. Nevertheless, social tagging is prone to the cold-start
problem, as new resources are seldom tagged. The main advantages and disad-
vantages of the described approaches are shown in Table 7.1 (Marinho et al. 2011).

In the rest of this chapter, we analyse a new approach which improves the
understanding of learners, incorporating the tag information into the recommen-
dation process. We first describe the proposed features of collaborative tagging that
are generally attributed to their success in e-learning. We then present several
different recommendation algorithms for developing tag-based recommender sys-
tems which are suitable for e-learning environments. The FolkRank algorithm,
developed as a folksonomy search engine by using the graph model, is reported in
Sect. 7.4.1. Probabilistic latent semantic analysis (PLSA), as a novel statistical
technique for the analysis of two-mode and co-occurrence data, is described in
Sect. 7.4.2. Section 7.4.3 reviews a method for tag-based profile construction with
collaborative filtering based on collaborative tagging. Tensor factorization tech-
nique for tag recommendation is shown in Sect. 7.4.4. In Sect. 7.4.5 three types of
“Most Popular Tags” algorithms are examined.

Table 7.1 Characterization of tag collection methods (Marinho et al. 2011)

Method Advantages Disadvantages

Social tagging Scalability, social context, “wisdom of crowds” Polysemy, cold start

Experts Accurate tags Costly process, difficult scalability

Content-based Automation, avoids cold start Noise, computationally intensive

88 7 Folksonomy and Tag-Based Recommender Systems …

7.4 Applying Tag-Based Recommender Systems
to E-Learning Environments

Collaborative tagging systems have grown in popularity over the Web in the last
years on account of their ability to categorize and recover content using open-ended
tags (Godoy and Amandi 2008). The increasing number of users providing infor-
mation about themselves through collaborative tagging activities caused the
appearance of tag-based profiling approaches, which assume that users expose their
preferences for certain contents through tag assignments. Thus, the tags could be
interesting and useful information to enhance recommender system’s algorithms.
Tag-based recommender systems (Milicevic et al. 2010) analyse tags, discover
preferences of a given user and provide suggestions for the user which items could
be interesting. The main advantage of the tag-based recommenders is that user
preferences and interests are expressed by used tags of the given person. Therefore,
these recommenders provide more accurate and personalized recommendations. On
the other hand, majority of the tag-based recommenders consider only textual
(syntactical) similarities among tags. It causes problems when there are tag syn-
onyms and according to the syntactical similarity these relations will not be
revealed. The similar problem can occur when a given tag has more different
meanings—so called polysemy. These issues are handled by various techniques
which extend standard tag-based recommenders and provide semantically more
accurate recommendations (as analysed in Sect. 7.3.1). In this chapter we investi-
gate the suitability of tag-based recommender systems into a new context:
e-learning. The innovation with respect to the e-learning systems lies in their ability
to support learners in their own learning paths by recommending tags and learning
items, and also their ability to promote the learning performance of individual
learners (Manouselis et al. 2011).

Using tags enables useful item organization and browsing techniques, such as
“pivot browsing” (Millen et al. 2006), which provides a simple and effective
method for discovering new and relevant items. Learners could benefit from writing
tags in two important ways: first, tagging is proven to be a meta-cognitive strategy
that involves learners in active learning and engages them with more effectively in
the learning process. As summarized by Bonifazi et al. (2002), tags could help
learners to remember better by highlighting the most significant part of a text, could
encourage learners to think when they add more ideas to what they are reading, and
could help learners to clarify and make sense of the learning content while they try
to reshape the information. Learners’ tags could create an important trail for other
learners to follow by recording their thoughts about specific tutorial resource and
could give more comprehensible recommendation about the resources. While the
viewing of tags used on a webpage can give a learner some idea of its importance
and its content, it falls short of supporting a learner in finding the exact point of
interest within the page. The following features of collaborative tagging are gen-
erally attributed to their success in e-learning (Bateman et al. 2007; Dahl and
Vossen 2008; Doush et al. 2012):

7.4 Applying Tag-Based Recommender Systems to E-Learning Environments 89

1. The information provided by tags makes available insight on learner’s com-
prehension and activity, which is useful for both educators and administrators.

2. Collaborative tagging has potential to further enhance peer interactions and peer
awareness centered on learning content.

3. Tagging, by its very nature, is a reflective practice which can give learners an
opportunity to summarize new ideas, while receiving peer support through
viewing other learners’ tags/tag suggestions.

4. In e-learning there is a lack of the social cues that inform instructors about the
understanding of new concepts by their learners. Collaborative tags, created by
learners to categorize learning contents, would allow instructors to reflect at
different levels on their learners’ progress. Tags could be examined at the
individual level to examine the understanding of a learner (e.g. tags that are out
of context could represent a misconception), while tags examined at the group
level could identify the overall progress of the class. Working with instructors of
online courses employing tagging would help to shed light on the perceived
benefits of reflection based on tags.

5. Tagging provides possible solutions for learners’ engagement in a number of
different annotation activities—add comments, corrections, links, or shared
discussion. E-learning systems currently lack sufficient support for
self-organization and annotation of learning content (Bateman et al. 2007).
However, walk through a university campus we can see learners engaged in a
number of annotation activities. These include writing notes, creating marginalia
in books, highlighting text, creating dog ears on pages or bookmarking pages.
During lectures as many as 99 % of learners take notes (Palmatier and Bennett
1974), and 94 % of learners at the post-secondary level believe that note-taking
is an important educational activity (Wiley 2007). In this sense tagging is
beneficial to note-taking, since tags represent an aspect or cue to be used in the
tagger’s recall process.

Traditionally, e-learning systems intend to provide direct customized instruction
to learners by finding the mismatches between the knowledge of the expert and the
actions that reflect the assimilation of that knowledge by the learner (Santos and
Boticario 2008). Their main limitations are:

1. e-learning systems are specific of the domain for which they have been designed
(since they have to be provided with the expert knowledge) and

2. it is unrealistic to think that it is possible to code in a system all the possible
responses to cover the specific needs of each learner at any situation of the
course.

In this sense, a dynamic support that recommends learners what to do to achieve
their learning goals is desirable. Also, such systems should have capability to find
appropriate content on the Web, and capability to personalize and adjust this
content based on the system’s examination of its learners and the collected tags
given by the learners and domain experts.

90 7 Folksonomy and Tag-Based Recommender Systems …

7.4.1 FolkRank Algorithm

The FolkRank algorithm has been inspired by the PageRank algorithm which
exploits the network structures of Web pages. The PageRank algorithm assumes
that a hyperlink from one page to another is a vote from the former to the latter
(Page et al. 1999). The more votes a page receives, the more important that page is
assumed to be.

This idea is similar to an item which is tagged with important tags by important
learners becomes important itself. For example, one definition/example/task could
be tagged with important tags by important learner with high knowledge level. Such
definition/example/task may be considered as an important definition/example/task.
The same holds, symmetrically, for tags and learners. The distribution of weights
can thus be described as the fixed point of a weight passing scheme on the Web
graph.

The hyperlinks indicate how important a learning object is. Tags, though,
incorporate more information than does a simple hyperlink, which represents a
learner created textual description of a LO. Thus, intuition would suggest that
additional information can be harnessed in some way to create better search results.
That tags can provide useful information for new statistical approaches which take
into account human-based voting and knowledge, using algorithms similar to
PageRank.

The FolkRank algorithm adopted the same weight spreading approaches as in the
PageRank. The main difference, however, lies in the graph (Hotho et al. 2006a, b, c).
In the FolkRank, the graph of tags has no direction, while the PageRank uses directed
graphs.

Folksonomy-Adapted PageRank. The FolkRank algorithm transforms the
hypergraph formed by the traditional tag assignments into an undirected, weighted
tripartite graph GF = (VF, EF), which serves as input for an adaption of PageRank
(Page et al. 1999). At this, the set of nodes is VF ¼ L[T [I and the set of edges is
given via EF ¼ fI; tg; ft; ig; fI; igjðI; t; iÞ 2 Yf g. The weight x of each edge is
determined according to its frequency within the set of tag assignments, i.e.
xðI; tÞ ¼ i 2 I : ðI; t; iÞ 2 Yf gj j is the number of items the learner l tagged with
keyword t.

Accordingly, x(t; i) counts the number of learners who annotated item i with tag
t, and x(I; i) determines the number of tags a learner l assigned to an item i. With
GF represented by the real matrix A, which is obtained from the adjacency matrix
by normalizing each row to have a sum equal to 1, and starting with any vector ~x of
non-negative reals, adapted PageRank iterates as ~x dA~xþð1� dÞ~p.

Adapted PageRank utilizes vector ~p, used to express learner preferences by
giving a higher weight to the components which represent the learner’s preferred
Web pages, fulfilling the condition ~xk k1¼ ~pk k1. Its influence can be adjusted by d
ε [0; 1]. Based on this, FolkRank algorithm defined as follows.

7.4 Applying Tag-Based Recommender Systems to E-Learning Environments 91

The FolkRank algorithm computes a topic specific ranking in folksonomies: If
~p specifies the preference in a topic (e.g. preference for a given tag), ~x0 is the result
of applying the adapted PageRank with d = 1 and ~x1 is the result of applying the
adapted PageRank with some d < 1, then ~x ¼ ~x1 � ~x0 is the final weight vector.
~x1½x� denotes the FolkRank of x 2 V (Hotho et al. 2006a, b, c).

FolkRank yields a set of related learners and items for a given tag. Following
these observations, FolkRank can be used to generate recommendations within a
folksonomy system. These recommendations can be presented to the learner at
different points in the usage of a folksonomy system (Hotho et al. 2006a, b, c):

• Learning objects that are of potential interest to a learner can be suggested to
him. This kind of recommendation increases the chance that a learner finds
useful items that (s)he did not even know existed by “serendipitous” browsing.

• When using a certain tag, other related tags can be suggested. This can be used,
for instance, to speed up the consolidation of different terminologies and thus
facilitate the emergence of a common vocabulary.

• While folksonomy tools already use simple techniques for tag recommenda-
tions, FolkRank additionally considers the tagging behaviour of other learners.

• Other learners that work on related topics can be made explicit, improving thus
the knowledge transfer within organizations and fostering the formation of
communities.

FolkRank is robust against online updates since it does not need to be trained
every time a new learner, item or tag enters the system. However, FolkRank is
computationally expensive and not trivially scalable. It is more suitable for systems
where real-time recommendations are not a requirement. (Hotho et al. 2006a, b, c)
investigated FolkRank ranking in contrast to the Adapted PageRank. Results pre-
sent that the Adapted PageRank ranking contains many globally frequent tags,
while the FolkRank ranking provides more personal tags. While the differential
nature of the FolkRank algorithm usually pushes down the globally frequent tags
such as “Web”, though, this happens in a distinguished manner: FolkRank will keep
them in the top positions, if they are indeed relevant to the learner under
consideration.

7.4.2 PLSA

Probabilistic latent semantic analysis (PLSA) is a useful statistical technique for the
analysis of two-mode and co-occurrence data, which has applications in informa-
tion retrieval and filtering, natural language processing, machine learning from text,
and in related areas. PLSA has been shown to improve the quality of collaborative
filtering based recommenders (Hofmann 1999) by assuming an underlying lower
dimensional latent topic model.

92 7 Folksonomy and Tag-Based Recommender Systems …

Web users show different types of behaviour depending on their information
needs and their intended tasks. These tasks are captured implicitly by a collection of
actions taken by users during their visits to a site. For example, in a dynamic
e-learning Web site, user tasks may be reflected by sequences of interactions with
application to browse course information, to register for courses, to read a tutorial,
to study an example or to solve a test. The identification of intended learner tasks
can shed light on various types of learner navigational behaviours. There may be
many learner groups with different (but overlapping) behaviour types. These may
include learners who engage in reading content by browsing through a variety of
learning objects in different categories; learners who are goal-oriented showing
interest in a specific category; or learners who prefer to go through the course step
by step, in a linear way with each step following logically from the previous one, or
learners who tend to learn in large leaps. Most current Web usage mining systems
use different data mining techniques, such as clustering, association rule mining,
and sequential pattern mining to extract usage patterns from user historical navi-
gational data (Pierrakos et al. 2003). Generally, these usage patterns are standalone
patterns at the page view level. They, however, do not capture the intrinsic char-
acteristics of Web users’ activities, nor can they quantify the underlying and
unobservable factors that lead to specific navigational patterns.

Thus, to better understand the factors that lead to common navigational patterns,
it is necessary to develop techniques that can automatically characterize the users’
underlying navigational objectives and to discover the hidden semantic relation-
ships among users as well as between users and Web objects. A common approach
for capturing the latent or hidden semantic associations among co-occurring objects
is Latent Semantic Analysis (LSA) (Deerwester et al. 1990). It is mostly used in
automatic indexing and information retrieval (Hofmann 1999), where LSA usually
takes the (high dimensional) vector space representation of documents based on
term frequency as a starting point and applies a dimension reducing linear pro-
jection, such as Singular Value Decomposition (SVD) to generate a reduced latent
space representation (Deerwester et al. 1990).

Probabilistic latent semantic analysis (PLSA) models, proposed by Hofmann
(1999, 2003), provide a probabilistic approach for the discovery of latent variables
which is more flexible and has a more solid statistical foundation than the standard
LSA. The basis of PLSA is a model often referred to as the aspect model [17].
Assuming that there exist a set of hidden factors underlying the co-occurrences
among two sets of objects, PLSA uses Expectation-Maximization (EM) algorithm to
estimate the probability values which measure the relationships between the hidden
factors and the two sets of objects.

According to Hotho et al. (2006a, b, c) a folksonomy can be described as a
tripartite graph whose vertex set is partitioned into three disjoint sets of users
U = {u1, …, ul}, tags T = {t1, …, tn} and items I = {i1, …, im}. This model can be
simplified to two bipartite models. The collaborative filtering model IU is built from
the item user co-occurrence counts f(i, u). The annotation-based model IT derives
from the co-occurrence counts between items and tags f(i, t). In the case of social

7.4 Applying Tag-Based Recommender Systems to E-Learning Environments 93

bookmarking IU becomes a binary matrix ðf ði; uÞ 2 f0; 1gÞ, as users can bookmark
a given Web resource only once.

The aspect model of PLSA associates the co-occurrence of observations with a
hidden topic variable Z = {z1 … zk}. In the context of collaborative filtering an
observation corresponds to the bookmarking of an item by a user and all obser-
vations are given by the co-occurrence matrix IU (Wetzker et al. 2009). Users and
items are assumed independent given the topic variable Z. The probability that an
item was bookmarked by a given user can be computed by summing over all latent
variables Z:

P imjulð Þ ¼
X
k

P imjzkð ÞP zkjulð Þ;

Analogous to (3), the conditional probability between tags and items can be
defined as:

P imjtnð Þ ¼
X
k

P imjzkð ÞP zkjtnð Þ;

Following the Cohn’s and Hofmann’s procedure (2001), we can now combine both
models based on the common factor PðimjzkÞ by maximizing the log-likelihood
function:

L ¼
X
m

a
X
I

f im; ulð Þ logP imjulð Þþ ð1� aÞ
X
n

f im; tnð Þ logP imjtnð Þ
" #

where a is a predefined weight for the influence of each two-mode model. Using the
Expectation-Maximization (EM) algorithm (Cohn and Hofmann 2001) it can be
performed maximum likelihood parameter estimation for the aspect model. The
standard procedure for maximum likelihood estimation in latent variable models is
the Expectation Maximization (EM) algorithm (Arenas-García et al. 2007). EM
alternates two coupled steps:

1. an expectation (E) step where posterior probabilities are computed for the latent
variables,

2. a maximization (M) step, where parameters are updated. Standard calculations
yield the E-step equation:

P zkjul; imð Þ ¼ P imjzkð ÞP zkjulð Þ
P imjulð Þ

P zkjtn; imð Þ ¼ P imjzkð ÞP zkjtnð Þ
P imjtnð Þ

94 7 Folksonomy and Tag-Based Recommender Systems …

and then re-estimate parameters in the maximization (M) step as follows:

P zkjulð Þ /
X
m

f ul; imð ÞP zkjul; imð Þ

P zkjtnð Þ /
X
m

f tn; imð ÞP zkjtn; imð Þ

P imjzkð Þ / a
X
l

f ul; imð ÞP zkjul; imð Þ

þ ð1� aÞ
X
n

f tn; imð ÞP zkjtn; imð Þ

Based on the iterative computation of the above E and M steps, the EM algo-
rithm monotonically increases the likelihood of the combined model on the
observed data. Using the parameter, this model can be easily reduced to a collab-
orative filtering or annotation-based model by setting to 1.0 or 0.0 respectively.

It is possible to recommend items to a user ul weighted by the probability
P(im|ul). For items already bookmarked by the user in the training data this weight
set to 0, thus they are appended to the end of the recommended item list.

PLSA as a hybrid approach to the task of item recommendations in folksonomies
that includes user generated annotations produces better results than a standard
collaborative filtering or annotation-based methods.

7.4.3 Collaborative Filtering Based on Collaborative
Tagging

Collaborative filtering is based on the assumption that people with similar tastes
(i.e., people who agreed in the past) will prefer similar items (i.e., will agree in the
future) (Shardanand and Maes 1995). Traditionally, collaborative filtering tech-
niques predict ratings of items or suggest a list of new items that the user will like
the most. In the case of e-learning, collaborative systems track past actions of a
group of learners to make a recommendation for individual members of the group
(Tan et al. 2008). Based on the assumption that learners with similar past behaviors
(browsing, learning path, item ratings or grades that they received by the system)
have similar interests and similar appropriate level of knowledge, a collaborative
filtering system recommends learning objects of the given learner. This approach
relies on a historic record of all learner interests such as can be inferred from their
ratings of the items (learning objects/learning actions) on a website. Rating can be
explicit (explicit ratings or learner satisfaction questionnaires) or implicit (from the
studying patterns or click-stream behaviour of the learners).

7.4 Applying Tag-Based Recommender Systems to E-Learning Environments 95

The learner profiles can be represented in a learner-item matrix X 2 Rm�n, for
m learners and n items. The matrix can be decomposed into row vectors:

X :¼ x1; . . .; xm½ �T with xl :¼ xl;1; . . .; xl;n
� �

; for l :¼ 1; . . .;m

where xl;i indicates that learner l rated item i by xl;i 2 R. Each row vector xl
corresponds thus to a learner profile representing the item’s ratings of a particular
learner. This decomposition usually leads to algorithms that leverage learner-learner
similarities, such as the well-known user-based collaborative filtering (Resnick
et al. 1994). Given two learners xu and xv, we then quantify learners’ similarity
simðxu; xvÞ as the cosine of the angle between their vectors:

sim xu; xvð Þ ¼ xu; xvh i
xuk k xvk k :

Alternatively, Pearson Correlation (and its variations—e.g., weighted Pearson)
(Herlocker et al. 2004) could be used.

The matrix X can alternatively be represented by its column vectors:

X :¼ x1; . . .; xn½ �T with xr :¼ xu;1; . . .; xm;r
� �

; for u :¼ 1; . . .; n

in which each column vector xr corresponds to a specific item’s ratings by all
m learners. This representation usually leverages item-item similarities and leads to
item-based CF algorithms (Deshpande and Karypis 2004).

Collaborative filtering for tag recommendations in folksonomies aim at
modelling user interests based on their historical tagging behaviours, and recom-
mend tags to a user from similar users or user groups (Golder and Huberman 2006).
Tags are used for navigation, finding resources and serendipitous browsing and thus
provide an immediate benefit for users. CF tag-based RSs usually include tag
recommendation mechanisms easing the process of finding good tags for a resource,
but also consolidating the tag vocabulary across users. Specifically, during the
collaborative step, users who share similar tagging behaviours with the user to
whom we want recommend tags too are chosen based on the between-user simi-
larities, which are calculated based on the users’ tagging history. This step usually
requires a pre-computed look-up table for the between-user similarities, which is
usually in the form of weighted symmetric matrices.

In the case of e-learning, collaborative tags represent a form of practical meta-
data, which could be useful for detailed learning object descriptions. Also, tagging
provides possible solutions for learners’ engagement in a number of different
annotation activities—add comments, corrections, links, or shared discussion.
Learners’ tags could create an important trail for other learners to follow by
recording their thoughts about the specific resources and could give more com-
prehensible recommendation about the resources. Therefore, we can conclude that
tag collection of like-minded learners offer active learners advice on what is

96 7 Folksonomy and Tag-Based Recommender Systems …

important in a tutorial, what is difficult in a lesson, which example is useful etc.
(e.g. learners could observe tag clouds describing course concepts).

Traditionally, collaborative filtering techniques exploit only pairs of
two-dimensional data. Thus, because of the ternary relational nature of folksonomy
which provides a 3-dimensional relationship between users, items and tags, tradi-
tional CF cannot be applied directly in e-learning systems. The first adaptation lies
in reducing the ternary relation Y to a lower dimensional space (Marinho and
Schmidt-Thieme 2008). In the case of user-based CF, we consider matrix X as
alternatively the two 2-dimensional projections (Fig. 7.4) for learner l, and item i:

pYLI 2 0; 1f g Lj j� Ij j with pYLI
� �

I;i: ¼ 1 if there exist t 2 T s:t ðL; t; iÞ 2 Y and 0 else

pYLT 2 0; 1f g Lj j� Tj j with pYLT
� �

I;t: ¼ 1 if there exist i 2 L s:t ðL; t; iÞ 2 Y and 0 else

We first compute the set Nk
I of the k learners that are most similar to learner l,

based on the row decomposed version of X and for a given k:

Nk
I :¼ argmax

k

v2LnfIg
sim(xu; xvÞ

where the superscript in the argmax function indicates the number k 2 N of
neighbors to be returned. Having the neighbourhood determined, we can extract the
set T̂ðI; iÞ of s recommended tags for a given user l, a given item i, and some s 2 N,
as follows:

T̂ðI; iÞ :¼ argmax
S

t2T

X
v2Nk

I

simðxu; xvÞdðv; t; iÞ

where dðv; t; iÞ :¼ 1 if dðv; t; iÞ 2 Y and 0 else

Learners

Items

Le
ar
ne

rs

Items
Tags

Y

Le
ar
ne

rs

Tags

Fig. 7.4 Projections of Y into the learner’s item and learner’s tag spaces (Tso-sutter et al. 2008)

7.4 Applying Tag-Based Recommender Systems to E-Learning Environments 97

In order to apply collaborative filtering algorithms for tag recommendation in
folksonomies, some data transformation must be performed. Such transformations
lead to information loss, which can lower the recommendation quality, but col-
laborative filtering algorithms are robust against online updates since it does not
need to be trained every time a new learner, item or tag enters the system.
Especially in the learning process, consideration of like-minded learners that
worked on related topics can be of great importance for active learner. Furthermore,
as Sood et al. (2007) point out, tag recommendations “fundamentally change the
tagging process from generation to recognition” which requires less cognitive effort
and time.

7.4.4 Tensor Factorization Technique for Tag
Recommendation

Most developing recommendation algorithms (Hotho et al. 2006a, b, c; Xu et al.
2006) try to exploit the provided data (users—u, items—i, tags—t) only in
2-dimensional relations. These pairs: (users, tags), (users, items), (tags, items) are
analysed by the different types of the algorithms which determine the most relevant
and appropriate content—tags or items for the users. However, these algorithms do
not consider the 3 dimensions of the problem altogether, and therefore they miss a
part of the semantics that is carried by the 3-dimensions.

Researcher Symeonidis et al. (2008) recognized that involving and exploring
existent relationships between tags, users and items can reveal more relevant
effects. They suggested tensor based technique which can address the problem of
recommendation by capturing the multimodal perception of items by particular
users (learning materials by particular learners). It can perform 3-dimensional
analysis on the social tags data, attempting to discover the latent factors that
determine the associations among the triplets user–tag–item. Consequently, items
can be recommended according to the captured associations. That is, given a learner
and a tag, the purpose is to predict whether and how much the learner is likely to
label with this tag a specific learning item.

As a simple example, let us consider the social tagging system of learners in
e-learning system, we developed—Protus 2.1. Assume we have two learners. One
would like to revise (study/repeat) the examples of examination task and therefore
has tagged Example 4 as “useful” and Example 6 as “suitable”. Another learner
learned studiously and has tagged introductory example as “useful” and “basics” for
learning next, complex learning material. When wanting to study “useful” exam-
ples, both learners are recommended some examples, while the first learner is
expecting the examples of examination task and the other prefers the introductory
examples.

98 7 Folksonomy and Tag-Based Recommender Systems …

Recommendation algorithms based on tensor factorization generate their rec-
ommendations using ranking score which is computed according to spectral attri-
butes extracted from the underlying folksonomy data structure. By representing Y
as a tensor, one is able to exploit the underlying latent semantic structure in A
formed by multi-way correlations between users, tags, and items. There are different
ways to represent Y as A (Symeonidis et al. 2008), for example, proposed to
interpret Y as a sparse tensor (Fig. 7.5 left) in which 1 indicates positive feedback
and the remaining data as 0:

au;t;i ¼ 1; ðu; t; iÞ 2 Y
0; else

�

Rendle et al. (2009) on the other hand, distinguish between positive and negative
examples and missing values in order to learn personalized ranking of tags. The
idea is that positive and negative examples are only generated from observed tag
assignments. All other entries, i.e., all tags for an item that a user has not tagged yet,
are assumed to be missing values (Fig. 7.5 right).

In this section, we will analyse the recommendation systems based on tensor
factorization using Higher Order Singular Value Decomposition (HOSVD). We first
provide an outline of SVD approach (Singular Value Decomposition), tensor and
Higher Order Singular Value Decomposition (HOSVD) method. Next, we analyse
the steps of the Ranking with Tensor Factorization (RTF) algorithm. In the rest of
the section, we denote tensors by calligraphic uppercase letters (e.g., A;B),
matrices by uppercase letters (e.g., A, B), scalars by lowercase letters (e.g., a, b), and
vectors by bold lowercase letters (e.g., a, b).

7.4.4.1 SVD Algorithm

The tensor reduction technique based on a SVD (Berry et al. 1995) calculates
matrix approximation. The SVD of a matrix FI1�I2 can be written as a product of
three matrices:

Fig. 7.5 Tensor representations—Left (Symeonidis et al. 2008), Right (Rendle et al. 2009)

7.4 Applying Tag-Based Recommender Systems to E-Learning Environments 99

FI1�I2 ¼ UI1�I1 � SI1�I2 � VT
I2�I2

where U is the matrix with the left singular vectors of F, VT is the transpose of the
matrix V with the right singular vectors of F and S is the diagonal matrix of singular
values of F. Visualization of the matrix SVD is shown in Fig. 7.6.

By preserving only the largest c < {I1, I2} singular values of S, SVD results to
matrix F̂, which is an approximation of F. The tuning of c is empirically determined
by the information percentage that is preserved compared to the original matrix (De
Lathauwer et al. 2000).

7.4.4.2 Tensors and HOSVD Algorithm

A tensor is a multi-dimensional matrix. N-order tensor A is denoted as
A 2 RI1�I2�...�IN , with elements ai1;...;iN .

Definition. The n-mode product of a tensor A 2 RI1�I2�...�IN by a matrix
U 2 RIn�In , denoted by A �n U, is an I1 � I2 � . . .� In�1 � Jn�ð
Inþ 1 � . . .� INÞ—tensor of which the entries are given by De Lathauwer (1997):

A�n Uð Þi1i2...in�1jninþ 1...iN¼
X
in

ai1i2...in�1 ininþ 1. . .iNujnin

We only use 3-order tensors (the three dimensions are: u-users, i-items and t-
tags) where A 2 Ru�t�i. Each tensor element measures the preference of a (user u,
tag t) pair on an item i. Tensor A can be metricized i.e., represented by building
matrix representations in which all the column (row) vectors are stacked one after
the other.

Thus, after the unfolding of tensor A for all three modes, we create 3 new
matrices A1, A2 and A3 as follows (De Lathauwer et al. 2000):

A1 2 RIu�It Ii ;
A2 2 RIt�IuIi ;
A3 2 RIuIt�Ii

Fig. 7.6 Visualization of the matrix SVD

100 7 Folksonomy and Tag-Based Recommender Systems …

where A1, A2, and A3 are called the 1-mode 2-mode, 3-mode matrix unfolding of A,
respectively. The unfolding of A in the three modes, is illustrated in Fig. 7.7.

In terms of n-mode products, SVD on a regular two-dimensional matrix (i.e.
2-order tensor), can be rewritten as follows (De Lathauwer et al. 2000):

F ¼ S�1 Uð1Þ �2 Uð2Þ

where Uð1Þ ¼ Uð1Þ1 Uð1Þ2 . . .Uð1ÞIu

� �
is a unitary (Iu � Iu)-matrix, Uð2Þ ¼

Uð2Þ1 Uð2Þ2 . . .Uð2ÞIu

� �
is a unitary (It � It)-matrix and S is an (Iu � It)-matrix with the

following properties:

• Pseudodiagonality S ¼ diag r1; r2; . . .; rminfIu;Itg
� �� �

• Ordering r1� r2� � � � � rminfIu;Itg � 0
� �

By extending this form of SVD, the HOSVD of 3-order tensor A can be written
as follows (De Lathauwer et al. 2000):

A ¼ S�1 U
ð1Þ �2 U

ð2Þ �3 U
ð3Þ

Fig. 7.7 Visualization of the
three unfoldings of a 3-order
tensor A

7.4 Applying Tag-Based Recommender Systems to E-Learning Environments 101

where U(1), U(2), U(3) contain the orthonormal vectors (called the 1-mode 2-mode
and 3-mode singular vectors, respectively) spanning the column space of the A1, A2,
A3 matrix unfoldings. S is the core tensor and has the property of all orthogonality.
This process is illustrated in Fig. 7.8.

An initial 3-order tensor A 2 Ru�t�i is created from the usage data triplets (user,
tag, and item). Each tensor element measures the preference of a (user u, tag t) pair
on an item i. This initial tensor A is matricized in all three modes. Thus, after the
unfolding of tensor A for all three modes, we create 3 new matrices A1, A2, A3, as
follows.

A1 2 RIu�It Ii ;
A2 2 RIt�IuIi ;
A3 2 RIuIt�Ii

SVD is applied on these three matrix unfoldings. It results into total 9 new
matrices.

A1 ¼ Uð1Þ � S1 � VT
1

A2 ¼ Uð2Þ � S2 � VT
2

A3 ¼ Uð3Þ � S3 � VT
3

For tensor dimensionality reduction, there are three parameters to be determined.
The numbers c1, c2, and c3 of left singular vectors of matrices U(1), U(2), U(3) which
are determinative for the final dimension of the core tensor S. Since each of the
three diagonal singular matrices S1, S2 and S3, are calculated by applying SVD on
matrices A1, A2, and A3, respectively, we use different c1, c2, and c3 values for each
matrix U(1), U(2), U(3). The numbers c1, c2, and c3 are empirically chosen by
maintaining a percentage of information of the original S1, S2 and S3 matrices after
appropriate modification. Usually the percentage is set to 70 % of the original
matrix.

Fig. 7.8 Visualization of HOSVD

102 7 Folksonomy and Tag-Based Recommender Systems …

The core tensor S governs the interactions among user, item and tag entities.
Since we have selected the dimensions of U(1), U(2), U(3) matrices, we proceed to
the construction of the core tensor S, as follows (Symeonidis et al. 2008):

S = A�1 U
ð1ÞT
c1 �2 U

ð2ÞT
c2 �3 U

ð3ÞT
c3

where A is the initial tensor, Uð1Þ
T

c1 is the transpose of the c1-dimensionally reduced

U(1) matrix, Uð2Þ
T

c2 is the transpose of the c2-dimensionally reduced U(2), and Uð3Þ
T

c3 is
the transpose of the c3-dimensionally reduced U(3). Finally, tensor Â is built by the
product of the core tensor S and the mode products of the three matrices U(1), U(2),
U(3) as follows:

bA ¼ S�1 U
ð1Þ
c1 �2 U

ð2Þ
c2 �3 U

ð3Þ
c3

where S is the c1, c2, and c3 reduced core tensor, Uð1Þc1 is the c1-dimensionally

reduced U(1) matrix, Uð2Þc2 is the c2-dimensionally reduced U(2) matrix, Uð3Þc3 is the c3-
dimensionally reduced U(3) matrix.

The reconstructed tensor bA measures the associations among the users, tags and
items. The model parameters to be learned are then the quadruple

ĥ :¼ S;Uð1Þc1 ;Uð2Þc2 ;U
ð3Þ
c3

� �
.

The basic idea is to minimize an element-wise loss on the elements of bA by
optimizing the square loss, i.e.,

argmin
ĥ

X
ðu;t;iÞ2U�T�I

âu;t;i � au;t;i
� �2

7.4.4.3 Ranking with Tensor Factorization

Rendle et al. (2009) propose Ranking with Tensor Factorization (RTF), a method
for learning an optimal factorization of A for the specific problem of tag recom-
mendations. First, the observed tag assignments are divided in positive and nega-
tive. All other entries (e.g. all tags for an item that a user has not tagged yet) are
assumed to be missing values, as described in Sect. 5.3.4 (see right-hand side of
Fig. 7.8). Let PA :¼ ðu; iÞj9t 2 T : ðu; t; iÞ 2 Yf g be the set of all distinct user/item
combinations in Y, the sets of positive and negative tags of a particular ðu; iÞ 2 PA
are then defined as:

T þu;i : ¼ tjðu; iÞ 2 PA^ðu; t; iÞ 2 Yf g
T�u;i : ¼ tjðu; iÞ 2 PA^ðu; t; iÞ 62 Yf g

7.4 Applying Tag-Based Recommender Systems to E-Learning Environments 103

http://dx.doi.org/10.1007/978-3-319-41163-7_5

From this, pairwise tag ranking constraints can be defined for the values of bA:
au;t1;i [au;t2;i , u; t1; ið Þ 2 T þu;i^ u; t2; ið Þ 2 T�u;i

From a semantically point of view this scheme makes more sense as the
user/item combinations that have no tags are the ones that the recommender system
will have to predict in the future. Thus, instead of minimizing the least-squares as in
the HOSVD-based methods, an optimization criterion that maximizes the ranking
statistic AUC (area under the ROC-curve) is proposed. The AUC measure for a
particular ðu; iÞ 2 PA is defined as:

AUCðĥ; u; iÞ :¼ 1

T þu;i
			 			 T�u;i			 			

X
tþ 2T þu;i

X
t�2T�u;i

H0;5 âu;tþ ;i � âu;t�;i
� �

where Ha is the Heaviside function:

Ha :¼
0; x\0
a; x ¼ 0
1; x[0

8<
:

The overall optimization task with respect to the ranking statistic AUC and the
observed data is then:

argmax
ĥ

X
ðu;iÞ2PA

AUCðĥ; u; iÞ

7.4.4.4 Multi-mode Recommendations

Once bA is computed, the recommendation list with the N highest scoring tags for a
given user u and a given item i can be calculated by:

Topðu; i:NÞ :¼ argmax
N

t2T
âu;t;i

Recommending N items to a given user u for a particular tag t can be determined
in a similar manner. Moreover, other tags can be recommended to a particular user
u given a specific tag t, according to the total score that results by aggregating all
items that are tagged with tag t by user u. Thus, according to the data representation,
tensor modeling permits multi-mode recommendations in an easy way.

To exemplify this approach, we apply the RTF algorithm to an illustrative
example, which is illustrated in Fig. 7.9. As it can be seen, 4 learners tagged 4
different items. In the figure, the arrow lines and the numbers assigned to them
represent the correspondence between the three types of entities. For example,

104 7 Folksonomy and Tag-Based Recommender Systems …

learner L1 tagged with tag “useful” (denoted as T1) the item “Introductory example”
(denoted as I1). From Fig. 7.9, we can see that learners L1 and L2 have common
interests on introductory example, while learners L3 and L4 have common interests
in the examples of examination task. A 3-order tensor A 2 R4�4�4 can be created
from these illustrative example. We use the co-occurrence frequency of learner, tag
and item as the elements of tensor A, which are given in Table 7.2.

After performing the tensor reduction analysis, we get the reconstructed tensor
Â. Table 7.3 gives the output of the tensor reduction algorithm, which is also
illustrated in Fig. 7.10. We can notice that the algorithm outputs new associations
between the considered entities (the last rows in Table 7.3 and the dotted lines in
Fig. 7.10). Even though in the original data, learner L1 did not tag item I2, the
algorithm is capable to conclude that if L1 would tag them, then L1 would likely
(likelihood 0.35) use tag “introductory example”. As well, the algorithm can
assume that if L4 would tag item I4 with another tag, then L4 would likely (like-
lihood 0.44) use the tag “suitable”.

Fig. 7.9 Illustrative example

Table 7.2 Tensor created
from the used data

Arrow line Learner Tag Item Weight

1 L1 T1 I1 1

2 L2 T1 I1 1

3 L2 T2 I2 1

4 L3 T3 I3 1

5 L3 T4 I4 1

6 L4 T4 I4 1

7.4 Applying Tag-Based Recommender Systems to E-Learning Environments 105

The tensor reduction approach is able to capture the latent associations among
the multi-type data entities: learners, tags and items. These associations can further
be used to improve the recommendation procedure.

7.4.5 Most Popular Tags

The web algorithms Most Popular Tags are based on tag calculations. In the rest of
this section it will be presented that these methods are efficient and cheap and their

Table 7.3 Tensor constructed from the usage data of the illustrative example

Arrow line Learner Tag Item Weight

1 L1 T1 I1 0.72

2 L2 T1 I1 0.5

3 L2 T2 I2 1.18

4 L3 T3 I3 0.35

5 L3 T4 I4 0.35

6 L4 T4 I4 0.44

7 L1 T2 I2 1.18

8 L4 T3 I4 0.72

Fig. 7.10 Presentation of the tensor reduction algorithm output for the illustrative example

106 7 Folksonomy and Tag-Based Recommender Systems …

computational complexity is low and therefore might be good candidates for online
computation of recommendations.

If we want to compute, for a given pair (u, i), the most popular tags of the user u
(or the item i), we need to linearly scan Y to calculate the occurrence counts for u’s
tags (or i’s tags) and afterwards sort the tags we gathered by their count.

For an user u 2 U, the set of all his tag assignments is Yu :¼ Y \ fug � T � Ið Þ.
The sets Yi (for any item i 2 I) and Yt (for any tag t 2 T) are defined accordingly.
Similarly, for t 2 T and i 2 I, Yt;u : Y \ fug � ftg � Rð Þ and Yt,i are defined,
accordingly. Finally, for a user u 2 U, the set of all his tags can be defined as
Tu : ft 2 T j9i 2 I : ðu; t; iÞ 2 Yg. The set Ti (for any item i 2 I) is defined
accordingly.

There are three types of “Most Popular Tags” algorithms:

1. Recommending the most popular tags of the folksonomy is the simplest
approach. It recommends, for any user u 2 U and any item i 2 I, the same set:

T̂ðu; iÞ :¼ argmax
n

t2T
Ytj jð Þ

2. Tags that globally are most specific to the item will be recommended when
using the most popular tags by item:

T̂ðu; iÞ :¼ argmax
n

t2T
Yt;i
		 		� �

3. Since users might have specific interests for which they already tagged several
items, using the most popular tags by user is another option:

T̂ðu; iÞ :¼ argmax
n

t2T
Yt;u
		 		� �

None of the aforementioned methods applied alone will, in general, provide the
best recommendations. Nevertheless, the simplicity and cost efficiency of algo-
rithms based on tag counts make them a favoured approach for use in existing
folksonomy systems. Jäschke et al. (2007) experimented with a mix of the rec-
ommendations generated by variants 2 and 3 which are called most popular tags
mix.

7.4.5.1 Mix of “Most Popular Tags” Recommenders

The main idea of this approach is to recommend a mix of the most popular tags of
the user with the most popular tags of the item. The simplest way to mix the tags is
to summate their counts and then sort them by newly obtained count:

7.4 Applying Tag-Based Recommender Systems to E-Learning Environments 107

T̂ðu; iÞ :¼ argmax Yt;u
n

t2T

				
				þ Yt;i

		 		
 �

This way of mixing is called most popular tags mix 1:1, since we just add
unchanged, existing counts. For instance, if the item has been tagged three times
with “popular” by other users and the user has used the tag “popular” four times for
other items, the tag “popular” would get a count of seven.

Although this method already contributes good results, the influence of the
user-based recommendation will be very small compared to the item-based rec-
ommendation if many people have tagged this item. On the contrary, if a user has
tagged many items, his most popular tags might have counts that are much higher
than the counts provided by the items. Therefore, Jäschke et al. (2007) introduced
another mix variant, where the tag counts of the two participating sets are nor-
malized and weighted before they are added. Normalization function is defined for
each tag t 2 Ti:

normiðtÞ :¼
Yt;i
		 		�mint02T Yt0;i

		 		
maxt02T Yt0;i

		 		�mint02T Yt0;i
		 		

For t 2 Tu, the normalization normuðtÞ is defined in analogue manner. After
normalization the weights of all tags in Ti and Tu lie between zero and one—with
the most popular tag(s) having weight 1 and the least important tag(s) having
weight 0. A pre-defined factor q 2 ½0; 1� allows to balance the influence of the user
and the item:

T̂ðu; iÞ : argmax
n

t2T
qnormiðtÞþ ð1� qÞnormuðtÞð Þ

This method is called The Most Popular Tags q—Mix. The Most Popular Tags 0
—Mix is just the most popular tags by user strategy, since the normalization does
not change the order of the tags. Similarly, The Most Popular Tags 1—Mix is just
the most popular tags by item strategy. However, due to normalization The Most
Popular Tags 0.5—Mix is not identical to The Most Popular Tags Mix 1:1.

7.5 Limitations of Current Folksonomy and Possible
Solutions

Tagging systems have the potential to improve search, recommendation and per-
sonal organization while introducing new modalities of social communication. As
described in this section, there has been a lot of research done on tag-based

108 7 Folksonomy and Tag-Based Recommender Systems …

recommendation techniques that have significantly advanced the state-of-the-art in
comparison to early recommender systems utilized collaborative and content-based
heuristics. Despite the rapid expansion of applications that support tagging of items,
the simplicity and ease of use of tagging however, lead to problems with current
folksonomy systems, which hinder the growth or affect the usefulness of the sys-
tems. The problems can be classified in some categories (Gordon-Murnane 2006;
Mathes 2004; Pluzhenskaia 2006; Shepitsen et al. 2008). We consider set of lim-
itations which can directly affect the tag-based recommendation process in
e-learning environments.

1. Tags have little semantics and many variations. Thus, even if a tagging activity
can be considered as the learner’s cognitive process, the resulting set of tags
does not always correctly and consistently represent the learner’s mental model.

2. As an uncontrolled vocabulary that is shared across an entire system, the terms
in a folksonomy have inherent ambiguity, as different learners apply terms to
items in different ways. Tag ambiguity, in which a single tag has many mean-
ings, can falsely give the impression that items are similar when they are in fact
unrelated.

3. Tag redundancy, in which several tags have the same meaning, can obfuscate
the similarity among items. Redundant tags can hinder algorithms that depend
on identifying similarities between items.

4. The use of different word forms such as plurals and parts of speech also worsen
the problem.

There are some different approaches aiming to solve the mentioned problems.
First one tries to educate learners to improve “tag literacy” (Guy and Tonkin 2006).
An important condition for this way of resolving problems is to better examine
learner researches about folksonomies (Bar-Ilan et al. 2006; Lin et al. 2006; Winget
2006), concerning the “deep nature” of tags (Veres 2006a), discussing aspects of
the folksonomy interoperability (Veres 2006b) and the “semiotic dynamics” of
folksonomies in terms of tag co-occurrences (Cattuto et al. 2007). For training the
learner’s selection of “good” tags it may be useful that the system would suggest
some tags (MacLaurin 2010). Tag-suggestions can operate on a syntactical level
(e.g., a learner attaches “graph” and the system suggests “graphics”) or even on a
relational level (e.g., a learner attaches “graphics” and the system suggests “image”,
because both words do often co-occur in items’ tag clouds (Xu et al. 2006). Also,
tag-suggestion can be based on experts’ opinions, providing higher quality of the
resulting tags that are objective and cover multiple aspects.

These extensions open huge number of opportunities for future work in this area.
They can improve tag-based recommendation capabilities and make collaborative
tagging systems applicable to even broader range of applications.

7.5 Limitations of Current Folksonomy and Possible Solutions 109

References

Arenas-García, J., Meng, A., Petersen, K. B., Lehn-Schioler, T., Hansen, L. K., & Larsen,
J. (2007). Unveiling music structure via plsa similarity fusion. In IEEE Workshop on Machine
Learning for Signal Processing, 2007 (pp. 419–424).

Bar-Ilan, J., Shoham, S., Idan, A., Miller, Y., & Shachak, A. (2006). Structured vs. unstructured
tagging–A case study. In Proceedings of the WWW 2006 Collaborative Web Tagging
Workshop.

Bateman, S., Brooks, C., McCalla, G., & Brusilovsky, P. (2007). Applying collaborative tagging
to e-learning. WWW, 1–7. http://doi.org/10.1.1.64.8892

Berry, M. W., Dumais, S. T., & O’Brien, G. W. (1995). Using linear algebra for intelligent
information retrieval. SIAM Review, 37(4), 573–595. http://doi.org/10.1137/1037127

Bonifazi, F., Levialdi, S., Rizzo, P., & Trinchese, R. (2002). A web-based annotation tool
supporting e-learning. In Proceedings of the Working Conference on Advanced Visual
Interfaces—AVI ’02, (p. 123). http://doi.org/10.1145/1556262.1556281

Cattuto, C., Schmitz, C., Baldassarri, A., Servedio, V. D. P., Loreto, V., Hotho, A.,… Stumme, G.
(2007). Network properties of folksonomies. Ai Communications, 20(4), 245–262.

Cohn, D., & Hofmann, T. (2001). The missing link-a probabilistic model of document content and
hypertext connectivity. Advances in Neural Information Processing Systems, 430–436.

Dahl, D., & Vossen, G. (2008). Evolution of learning folksonomies: Social tagging in e-learning
repositories. International Journal of Technology Enhanced Learning, 1(1–2), 35–46.

De Lathauwer, L. (1997). Signal processing based on multilinear algebra. Katholieke Universiteit
Leuven.

De Lathauwer, L., De Moor, B., & Vandewalle, J. (2000). A multilinear singular value
decomposition. SIAM Journal on Matrix Analysis and Applications, 21(4), 1253–1278.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing
by latent semantic analysis. Journal of the American Society for Information Science, 41(6),
391.

Deshpande, M., & Karypis, G. (2004). Item-based top-n recommendation algorithms. ACM
Transactions on Information Systems (TOIS), 22(1), 143–177.

Doush, I. A., Alkhateeb, F., Maghayreh, E. A., Alsmadi, I., & Samarah, S. (2012). Annotations,
collaborative tagging, and searching mathematics in e-learning. arXiv Preprint. arXiv:1211.
1780.

Godoy, D., & Amandi, A. (2008). Hybrid content and tag-based profiles for recommendation in
collaborative tagging systems. In Proceedings of the Latin American Web Conference,
LA-WEB 2008 (pp. 58–65). http://doi.org/10.1109/LA-WEB.2008.15

Golder, S. A., & Huberman, B. A. (2006). The structure of collaborative tagging systems. Journal
of Information Science, 32(2), 198–208.

Gordon-Murnane, L. (2006). Social bookmarking, folksonomies, and web 2.0 tools. Red Orbit.
http://www.Encyclopedia.com/doc/1G1-146693738.Html, March 2009).

Guy, M., & Tonkin, E. (2006). Tidying up tags. D-Lib Magazine, 12(1), 1082–9873.
Halpin, H., Robu, V., & Shepherd, H. (2007). The complex dynamics of collaborative tagging. In

Proceedings of the 16th International Conference on World Wide Web (pp. 211–220).
Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative

filtering recommender systems. ACM Transactions on Information Systems. http://doi.org/10.
1145/963770.963772

Hofmann, T. (1999). Probabilistic latent semantic indexing. In Proceedings of the 22nd Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval
(pp. 50–57).

Hofmann, T. (2003). Collaborative filtering via Gaussian probabilistic latent semantic analysis. In
Proceedings of the 26th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (pp. 259–266).

110 7 Folksonomy and Tag-Based Recommender Systems …

http://doi.org/10.1.1.64.8892
http://doi.org/10.1137/1037127
http://doi.org/10.1145/1556262.1556281
http://arxiv.org/abs/1211.1780
http://arxiv.org/abs/1211.1780
http://doi.org/10.1109/LA-WEB.2008.15
http://www.Encyclopedia.com/doc/1G1-146693738.Html
http://doi.org/10.1145/963770.963772
http://doi.org/10.1145/963770.963772

Hotho, A., Jäschke, R., Schmitz, C., & Stumme, G. (2006a). Information retrieval in folksonomies:
Search and ranking. In Lecture Notes in Computer Science (Including Subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 4011 LNCS, pp. 411–426).
http://doi.org/10.1007/11762256_31

Hotho, A., Jäschke, R., Schmitz, C., & Stumme, G. (2006b). BibSonomy: A social bookmark and
publication sharing system. In Proceedings of the Conceptual Structures Tool Interoperability
Workshop at the 14th International Conference on Conceptual Structures (Vol. 87, p. 102).

Hotho, A., Jäschke, R., Schmitz, C., Stumme, G., & Althoff, K.-D. (2006c). Folkrank: A ranking
algorithm for folksonomies. In LWA (Vol. 1, pp. 111–114).

Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., & Stumme, G. (2007). Tag
recommendations in folksonomies. In Knowledge discovery in databases: PKDD 2007
SE—52 (Vol. 4702, pp. 506–514). http://doi.org/10.1007/978-3-540-74976-9_52

Liang, H., Xu, Y., Li, Y., & Nayak, R. (2008). Collaborative filtering recommender systems using
tag information. In Proceedings—2008 IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology—Workshops, WI-IAT Workshops 2008
(pp. 59–62). http://doi.org/10.1109/WIIAT.2008.97

Lin, X., Beaudoin, J. E., Bui, Y., & Desai, K. (2006). Exploring characteristics of social
classification. Advances in Classification Research Online, 17(1), 1–19.

MacLaurin, M. B. (2010). Selection-based item tagging. Google Patents.
Maier, R., & Thalmann, S. (2008). Institutionalised collaborative tagging as an instrument for

managing the maturing learning and knowledge resources. International Journal of
Technology Enhanced Learning, 1(1–2), 70–84.

Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H., & Koper, R. (2011). Recommender
systems in technology enhanced learning. In Recommender systems handbook (pp. 387–415).
http://doi.org/10.1007/978-0-387-85820-3

Marinho, L. B., Nanopoulos, A., Schmidt-Thieme, L., Jäschke, R., Hotho, A., Stumme, G., et al.
(2011). Social tagging recommender systems. In Recommender systems handbook
(pp. 615–644). Berlin: Springer.

Marinho, L. B., & Schmidt-Thieme, L. (2008). Collaborative tag recommendations. In Data
analysis, machine learning and applications (pp. 533–540). Berlin: Springer.

Marlow, C., Naaman, M., Boyd, D., & Davis, M. (2006). HT06, tagging paper, taxonomy, Flickr,
academic article, to read. In Proceedings of the Seventeenth Conference on Hypertext and
Hypermedia (pp. 31–40).

Mathes, A. (2004). Folksonomies—Cooperative classification and communication through shared
metadata. Computer Mediated Communication—LIS590CMC, 1–13. http://doi.org/10.1.1.135.
1000

Mika, P. (2005). Ontologies are us: A unified model of social networks and semantics. In The
Semantic Web–ISWC 2005 (pp. 522–536). Berlin: Springer.

Milicevic, A. K., Nanopoulos, A., & Ivanovic, M. (2010). Social tagging in recommender systems:
A survey of the state-of-the-art and possible extensions. Artificial Intelligence Review, 33,
187–209. http://doi.org/10.1007/s10462-009-9153-2

Millen, D. R., Feinberg, J., & Kerr, B. (2006). Dogear: Social bookmarking in the enterprise.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(pp. 111–120).

Noll, M. G., Au Yeung, C., Gibbins, N., Meinel, C., & Shadbolt, N. (2009). Telling experts from
spammers: Expertise ranking in folksonomies. In Proceedings of the 32nd International ACM
SIGIR Conference on Research and Development in Information Retrieval (pp. 612–619).

Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: Bringing
order to the web.

Palmatier, R. A., & Bennett, J. M. (1974). Notetaking habits of college students. Journal of
Reading, 18(3), 215–218.

Peters, I., & Stock, W. G. (2007). Folksonomy and information retrieval. Proceedings of the
American Society for Information Science and Technology, 44(1), 1–28.

References 111

http://doi.org/10.1007/11762256_31
http://doi.org/10.1007/978-3-540-74976-9_52
http://doi.org/10.1109/WIIAT.2008.97
http://doi.org/10.1007/978-0-387-85820-3
http://doi.org/10.1.1.135.1000
http://doi.org/10.1.1.135.1000
http://doi.org/10.1007/s10462-009-9153-2

Pierrakos, D., Paliouras, G., Papatheodorou, C., & Spyropoulos, C. D. (2003). Web usage mining
as a tool for personalization: A survey. User Modeling and User-Adapted Interaction, 13(4),
311–372.

Pluzhenskaia, M. (2006). Folksonomies or fauxsonomies: How social is social bookmarking. In
17th ASIS&T SIG/CR Classification Research Workshop. Abstracts of Posters (S. 23-24).

Quintarelli, E. (2005). Folksonomies: power to the people.
Rendle, S., BalbyMarinho,L.,Nanopoulos,A.,&Schmidt-Thieme,L. (2009). Learningoptimal ranking

with tensor factorization for tag recommendation. In Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (pp. 727–736).

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: An open
architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM Conference
on Computer Supported Cooperative Work (pp. 175–186).

Santos, O. C., & Boticario, J. G. (2008). Intelligent support for inclusive eLearning. In
Proceedings—2008 IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology—Workshops, WI-IAT Workshops 2008 (pp. 361–364). http://doi.
org/10.1109/WIIAT.2008.372

Shardanand, U., & Maes, P. (1995). Social information filtering: Algorithms for automating
“Word of Mouth.” In ACM Conference on Human Factors in Computing Systems (CHI) (Vol.
1, pp. 210–217). http://doi.org/10.1145/223904.223931

Shepitsen, A., Gemmell, J., Mobasher, B., & Burke, R. (2008). Personalized recommendation in
social tagging systems using hierarchical clustering. In Proceedings of the 2008 ACM
Conference on Recommender systems (pp. 259–266).

Sood, S. C., Owsley, S. H., Hammond, K. J., & Birnbaum, L. (2007). TagAssist: Automatic tag
suggestion for blog posts. In Proceedings of the 1st International Conference on Weblogs and
Social Media (ICWSM 2007) (pp. 1–8).

Symeonidis, P., Ruxanda, M. M., Nanopoulos, A., & Manolopoulos, Y. (2008). Ternary semantic
analysis of social tags for personalized music recommendation. In ISMIR (Vol. 8, pp. 219–224).

Tan, H., Guo, J., & Li, Y. (2008). E-learning recommendation system. In 2008 International
Conference on Computer Science and Software Engineering, (Vol. 5, pp. 430–433).

Tatu, M., Srikanth, M., & D’Silva, T. (2008). Rsdc’08: Tag recommendations using bookmark
content. ECML PKDD Discovery Challenge, 2008, 96–107.

Tso-sutter, K. H. L., Marinho, L. B., & Schmidt-Thieme, L. (2008). Tag-aware recommender
systems by fusion of collaborative filtering algorithms. Search, 1995–1999. http://doi.org/10.
1145/1363686.1364171

Veres, C. (2006a). Concept modeling by the masses: Folksonomy structure and interoperability. In
Conceptual Modeling-ER 2006 (pp. 325–338). Berlin: Springer.

Veres, C. (2006b). The language of folksonomies: What tags reveal about user classification. In
Natural language processing and information systems (pp. 58–69). Berlin: Springer.

Wal, T. Vander. (2007). Folksonomy coinage and definition. Vanderwalnet.
Wetzker, R., Said, A., & Zimmermann, C. (2009). Understanding the user: Personomy translation

for tag recommendation. ECML PKDD Discovery Challenge, 2009.
Wiley, D. (2007). Connecting learning objects to instructional design theory: A definition, a

metaphor, and a taxonomy. The Instructional Use of Learning Objects: Online Version. 2000.
Available on Web Site: http://reusability.Org/read/chapters/wiley.Doc

Winget, M. (2006). User-defined classification on the online photo sharing site Flickr… Or, how I
learned to stop worrying and love the million typing monkeys. Advances in Classification
Research Online, 17(1), 1–16.

Wu, S., Ghenniwa, H., Zhang, Y., & Shen, W. (2006). Personal assistant agents for collaborative
design environments. Computers in Industry, 57(8–9), 732–739. http://doi.org/10.1016/j.
compind.2006.04.010

Xu, Z., Fu, Y., Mao, J., & Su, D. (2006). Towards the semantic web: Collaborative tag
suggestions. In Collaborative Web Tagging Workshop at WWW2006, Edinburgh, Scotland.

112 7 Folksonomy and Tag-Based Recommender Systems …

http://doi.org/10.1109/WIIAT.2008.372
http://doi.org/10.1109/WIIAT.2008.372
http://doi.org/10.1145/223904.223931
http://doi.org/10.1145/1363686.1364171
http://doi.org/10.1145/1363686.1364171
http://reusability.Org/read/chapters/wiley.Doc
http://doi.org/10.1016/j.compind.2006.04.010
http://doi.org/10.1016/j.compind.2006.04.010

Part III
Semantic Web Technologies in E-Learning

Chapter 8
Semantic Web

Abstract The Semantic Web is a next generation of the Web in which information
is presented in such a way that it can be used by computers not only to be presented
but also to be used for automation of the search, integration, and reuse between
applications. The goal of the Semantic Web is to develop the basis for intelligent
applications that enable more efficient information use by not just providing a set of
linked documents but a collection of knowledge repositories with meaningful
content and additional logic structure. Also, one of the main goals is to build an
appropriate infrastructure for intelligent agents to perform complex actions on the
network. There are a number of important concepts that enable the development of
the Semantic Web. This chapter presents the most important of them: knowledge
organization systems, ontologies, Semantic Web languages and adaptation rules.
Possibilities of applying Semantic Web technologies in e-learning systems are
presented in this chapter.

The Semantic Web has emerged as a vision of Tim Berners-Lee,1 the global Web as
a universal medium for data, information and knowledge (Berners-Lee 2000). In
1999, he expressed his vision of the Semantic Web as follows: “I have a dream for
the Web (in which computers) become capable of analysing all the data on the Web
—the content, links, and transactions between people and computers. A Semantic
Web, which makes this possible, has yet to emerge, but when it does, the day-to-day
mechanisms of trade, bureaucracy and our daily lives will be handled by machines
talking to machines. The intelligent agents, people have touted for ages will finally
materialize”.

People in their daily activities use the Web to do various tasks such as finding
the meaning of foreign words, the provision of books in the library, search the lower
prices of certain items, and so on. However, the computer cannot fulfil these tasks
without human guidance because the Web pages are designed to be read by people,
not computers. Therefore, the Semantic Web can be considered as an attempt to
display and store information that are understandable to computers so that they can

1Berners-Lee is the director of the World Wide Web Consortium (W3C). The World Wide Web
Consortium (W3C) is the main international standards organization for the World Wide Web.

© Springer International Publishing Switzerland 2017
A. Klašnja-Milićević et al., E-Learning Systems,
Intelligent Systems Reference Library 112, DOI 10.1007/978-3-319-41163-7_8

115

work with demanding tasks involved in finding, sharing and exchanging infor-
mation online.

The Semantic Web is a next generation of the Web in which information is
presented in such a way that it can be used by computers not only for display but
also to automate the search, integration, and reuse between applications (Alsultanny
2006). The goal of the Semantic Web is to develop the basis for intelligent
applications that enable more efficient information use by not just providing a set of
linked documents but a collection of knowledge repositories with meaningful
content and additional logic structure (Sheth et al. 2005). Also, one of the main
goals is to build an appropriate infrastructure for intelligent agents to perform
complex actions on the network. In order to do that, agents must retrieve and
process the relevant information. That process requires unconditional integration of
agents and networks, and full use of the advantages offered by the existing
infrastructure. Further, the Semantic Web is an explicitly declared and integrated
into Web applications that provides semantic access and extract of relevant infor-
mation from the text. Finally, the Semantic Web is a way to reliably implement
deep integration of Web services that are understandable to computers. This creates
a network of tightly coupled services, that will intelligent agents be able to discover,
execute and automatically combine (Berners-Lee et al. 2001).

The problem with today’s Web is that it is huge, but not enough “smart” to easily
integrate information, needed by the user. Such integration is required in almost all
forms of Web use. Most of the data from the Web is represented in natural language
and as such it is not understandable to computers. On the other hand, people can
only handle a small portion of the information from the Web and it would be useful
if computers would take over part of the job for processing and analysing content
from the Web. Unfortunately, the Web is generally oriented and is intended for
human use, which means that all content on the Web is readable for computers but
not understandable. Users need Semantic Web to display information in an accu-
rate, computer understandable way, in a form suitable for sharing, reuse and pro-
cessing by software agents. Explicit representation of the metadata enables the
development of the Web that offers completely new forms of services, such as, for
example, the intelligent search techniques and efficient exchange and filtering
information.

There are a number of important concepts that enable the development of the
Semantic Web. The following sections will present the most important concepts
like: knowledge organization systems, ontologies, Semantic Web languages and
adaptation rules.

8.1 Knowledge Organization Systems

Independently of an area or domain of human being activities and efforts like:
meteorology or bank transactions, proteins or engine parts, concepts are needed
(Shadbolt et al. 2006). Collected data about definitions, systematisations and

116 8 Semantic Web

structuring of used concepts in different domains must be structured, organized and
allow easy access. The term knowledge organization systems is intended to
incorporate all types of structures for organizing information and promoting
knowledge management (Hodge 2000). Knowledge organization systems are used
to organize materials for the purpose of retrieval and easier managing. These sys-
tems serve as a bridge between the user’s need for information and the available
information and knowledge.

Modern technologies have enabled the appearance of the new generation of
knowledge systems and they should be able to quickly and efficiently complete
their tasks (Gruber 2008):

• Capture new information. Accessible and cheap sensors, microprocessors,
memory, fiber networks, and cellular telephony influenced that most of users
have computers, smart mobile phones, digital cameras, and broadband Internet
access. These things enable users to upload their digital lives and spend more
time online.

• Store acquired information. Cheap disk storage allows sharing huge amounts
of information among people.

• Distribution of information. The Internet is an information superconductor
connecting the planet.

• Communication. Asynchronous collaboration systems (email, wikis and blogs)
overcome barriers of space and time and other limitations for conversation.
People can easily communicate and share knowledge.

Initially, artificial intelligence techniques were applied for knowledge reengi-
neering to achieve the semantics, but maintaining the knowledge bases is not an
easy task either (Babu and Krishnamurthy 2013). Even more, the manifestation of
digital libraries as one of the important knowledge based system has thrown up
potential challenges for knowledge acquisition as well as integrating with wide
range of intelligent applications (d’Aquin et al. 2008).

Various structures and features of a knowledge organization system are used for
building online repositories. New varieties of knowledge organization systems, like,
taxonomies, vocabularies and ontologies were brought into existence, mostly to
serve specific functions (Gilchrist 2000).

8.2 Ontologies

The word ontology is of Greek origin and is derived from the word ontos which
means being or existing and logos meaning science or learning. In philosophy it
presents the unit of existence and study of the properties of elements. More
specifically, the word ontology is the study of the things that exist in a particular
area or domain (Gruber 1995).

8.1 Knowledge Organization Systems 117

Informally, the ontology of a certain domain regards terminology (domain
vocabulary), all important concepts in the domain, their classification, taxonomy,
their connections (including the all relevant hierarchy and constraints) and all the
axioms of the domain (Devedžić 2004). Formally, for someone who wants to
discuss matters of a domain D using a language L, ontology provides catalogue of
elements that exist in a domain D. These types of ontology have been presented in
the form of concepts, relations and predicates defined in the language L. Either
formally or informally, ontology is a very important part of any knowledge domain.
Ontology is often a key part of the knowledge and all the other knowledge must rely
and refer to it.

Ontologies are a glossary of terms whose semantics are formally defined. They
formally and explicitly define concepts within a particular domain, the relationships
between these concepts and their properties (Gascueña et al. 2006). Also, the
ontologies are useful in various domains since they allow people and software
agents to understand presented information and structure of the knowledge. Reuse
of ontologies and its individual parts are also enabled, i.e. development of a new
ontology is not required if appropriate ontologies are already present in the area.

In artificial intelligence, the term ontology is used for one of two related things
(Chandrasekaran et al. 1999):

• presentation language, often specialized for a particular domain or topic,
• segment of knowledge that describes a domain with appropriate presentation

language.

In both cases, there is always a corresponding data structure that represents the
ontology.

Semantic Web technologies seem to be a promising technological foundation for
the next generation of e-learning systems (Breslin et al. 2011). Ontology, generally
defined as a representation of a shared conceptualization of a particular domain, is
one of essential components of the Semantic Web. The initial work on imple-
menting ontologies as the backbone of e-learning systems is presented in
(Mizoguchi and Bourdeau 2015). Since that time, many authors have proposed the
usage of ontologies for different purposes in e-learning environments, such as
adaptive hypermedia, personalization, and learner modelling (Jovanovic et al.
2007).

Ontologies provide a vocabulary of terms whose semantics are formally speci-
fied. Interest in ontologies has also grown as researchers and system developers
have become more interested in reusing and sharing knowledge across wide range
of systems (Swartout & Tate, 1999). Currently, one key obstacle to sharing
knowledge is that different systems use different concepts and terms for describing
domains. These differences make it difficult to take knowledge out of one system
and use it smoothly in another. If we could develop ontologies that might be used as
the basis for multiple systems, they would share a common terminology that would
facilitate sharing and reuse of knowledge. Developing such reusable ontologies is
an important goal of ontology research.

118 8 Semantic Web

8.2.1 Adaptive Educational Systems Technologies
in E-Learning

Building adaptive educational system requires a lot of effort and often is done from
scratch. It becomes even more demanding with the constant increase of the infor-
mation available on the Web and with the involvement of complex adaptation
strategies for the instructional content presentation and navigation (Aroyo and
Mizoguchi 2003).

Important concern about the Semantic Web is the cost of ontology development
and maintenance (Shadbolt et al. 2006). In some areas, the costs would be easy to
justify. For example, an ontology could be a powerful and essential tool in
well-structured areas such as scientific applications.

In order to provide a richer set of educational functionalities and increase
effectiveness of distance learning, educational systems need to interoperate, col-
laborate and exchange content or re-use functionality (Aroyo and Dicheva 2004).
Key tools for enabling the interoperability are:

• semantic conceptualization and ontologies,
• common standardized communication syntax, and
• large-scale service-based integration of educational content and functionality

provision and usage.

In certain commercial applications, the potential benefit and productivity gain
from using well-structured and coordinated vocabulary specifications will com-
pensate the costs of ontology development and the costs of maintenance. In fact,
costs might decrease as an ontology’s user base increases, and number of required
ontology engineers increases as the user community grows. The consequence is that
the effort involved per user in building ontologies for large communities becomes
very small very quickly (Shadbolt et al. 2006).

8.2.2 Standards for E-Learning Environments

The Semantic Web offers new technologies to the developers of e-learning systems
in order to provide more intelligent access and management of learning material, as
well as semantically richer modelling of the learners (Aroyo and Dicheva 2004).
The learning technology community is quickly adopted to many of the Semantic
Web technologies. Determining of how researchers and practitioners are using
semantic technologies are crucial for apprehension of certain key trends in the
Semantic Web (Cardoso 2007).

An ultimate goal of e-learning system developers nowadays is to create infor-
mation and knowledge components that are easily accessible and usable by
numerous learners (Aroyo and Dicheva 2004). For example, many researches
demand the integration of diverse and heterogeneous data sets that originate from

8.2 Ontologies 119

distinct communities of scientists in separate subfields (Shadbolt et al. 2006). In
order to integrate vast amount of data from various sources, these data should
follow previously agreed formats and standards. Scientists, researchers, and regu-
latory authorities from various areas need a way to integrate these data (Shadbolt
et al. 2006). This is being achieved in large part through the adoption of common
conceptualizations in the form of ontologies.

As need for implementation of Web semantics grows, the user community,
including organization like the World Wide Web Consortium (W3C), has directed
major efforts at specifying, developing, and deploying languages for sharing
information (Shadbolt et al. 2006). The ultimate goal for these languages was to
provide a foundation for semantic interoperability. The W3C defined the first
Resource Description Framework (RDF) specification in 1997. RDF provided a
simple but powerful representation language for Universal Resource Identifiers and
became an official W3C recommendation. That was a crucial step in drawing
attention to the specification and promoting its widespread deployment to enhance
the Web’s functionality and interoperability (Shadbolt et al. 2006).

There is a growing concern towards the need of extending the existing educa-
tional standards, such as the IEEE/IMS LOM standard, in the context of the
Semantic Web so as to allow improved semantic annotation of learning resources
(Aroyo and Dicheva 2004). Significant evolution of standards as improvements and
innovations will allow the delivery of more complex and sophisticated semantic
applications (Cardoso 2007). Numerous initiatives are oriented towards developing
ontologies for biology, medicine, distance learning, and other related fields. These
communities have been developing language standards that can be deployed on the
Web (Shadbolt et al. 2006).

8.2.3 Semantic Web Methodologies

The common problems in educational environments are related to keeping up with
the constant requirements for flexibility and adaptability of content and for
reusability and sharing of learning objects and structures (Devedzic and Harrer
2005). Another problem in the current web-based educational systems research is
that assessment of the existing systems is difficult as there is no common reference
architecture, nor standardized approaches. Thus, there is an increasing need for
efficient support for the designers and authors of adaptive educational systems
(Aroyo and Dicheva 2004).

Until a few years ago the building of ontologies was done in a rather ad hoc
fashion. Meanwhile, there have been some few, but influential proposals for
guiding the ontology development process (Staab et al. 2001). In contrast to other
methodologies (Guarino and Welty 2000), which mostly restrict their attention
within the ontology itself, authors in (Staab et al. 2001) presented approach that
focuses on the application-driven development of ontologies. Their methodology
cover majority of aspects: starting from the early stages of setting up a knowledge

120 8 Semantic Web

management project to the final roll out of the ontology-based application. This
methodology is comprised of following phases (Staab et al. 2001):

• Feasibility study. Knowledge management system is efficient only if it is
properly integrated into the organization in which it is operational. Many factors
other than technology determine success of such a system. To analyse these
factors, feasibility study must be performed in order to identify
problem/opportunity areas and potential solutions, and later, to put them into a
wider organizational perspective. The feasibility study serves as a decision
support for economic and technical project feasibility, in order to select the most
promising focus area and target solution (Staab et al. 2001).

• Kickoff phase for ontology development. The result of this phase is an
ontology requirements specification document that describes what an ontology
should support and it describes ontology application. It should also guide an
ontology engineer to decide about inclusion, exclusion and the hierarchical
structure of concepts in the ontology. In this early stage, one should look for
already developed and potentially reusable ontologies (Staab et al. 2001).

• Refinement phase. The goal of this phase is to produce a mature and
application-oriented target ontology according to the specification given in the
kickoff phase (Staab et al. 2001).

• Evaluation phase. The evaluation phase serves as a proof for the usefulness of
developed ontologies and their associated software environments. In a first step,
the ontology engineer checks, whether the created ontology fulfils defined
ontology requirements specification and whether the ontology supports the
competency questions analysed in the kick-off phase of the project. In a second
step, the ontology is tested in the target application environment. Later, feed-
back from users may be a valuable input for further refinement of the ontology
(Staab et al. 2001).

• Maintenance phase. In the real world and environments, different aspects and
things are constantly changing—and so does specifications for ontologies. To
reflect these changes ontologies have to be maintained frequently like other parts
of software, too. The maintenance of ontologies is primarily an organizational
process that must have precisely defined rules for the update processes within
ontologies (Staab et al. 2001).

8.2.4 Representation of Ontologies

People describe ontologies as sets of declarative statements in natural language.
However, the statements in a natural language are difficult for computers to process.
Ontology presentation in computers requires formal languages. Ontologies have
various forms depending on the level of abstraction. When implemented in a
computer, they usually appear as XML files (Bray et al. 1998). Since ontologies
always represent some concepts and relations between them, they can be

8.2 Ontologies 121

graphically depicted by visual languages. Graphical tools for building ontologies
always support the conversion from graphic formats to XML and other textual
representation of the data.

Ontologies are the basis for sharing conceptualization of a domain, semantic
annotation and design of concepts, their relationships and properties (Sivashanmugam
et al. 2003). Ontologies aim at capturing domain knowledge in a generic way and
provide a commonly agreed understanding of a domain. This knowledge may be
reused and shared across applications (Staab et al. 2001). Ontologies as form of
knowledge organization in systems are used for:

• data retrieval and directing an user toward documents of his/her interest more
efficiently,

• data browsing,
• navigation through documents, locating and identification of information,
• providing the user with general overview of knowledge structure in domain,
• providing arranged sequences or orders of existing documents.

Many technologies have been introduced for the implementation of Semantic
Web that allows creating, storing and linking data, building vocabularies, and
defining rules for handling this data (Horrocks 2008). Some of the standardized
technologies that allows linked data process are:

• RDF—Resource Definition Framework
• OWL—Web Ontology Language
• SKOS—Simple Knowledge Organization System
• RIF—Rule Interchange Format
• etc.

It is not a question which language is best for building elements of the Semantic
Web, the goal is to find the most suitable language for the representation of
Semantic Web elements (Gómez-Pérez and Corcho 2002). Not all of these lan-
guages are useful for different applications: each of them will require different
specifications since, for instance, they have different complexity levels. For
example, authors in (Cardoso 2007) presented that the Semantic Web does not
require complex ontologies and that large majority of developed ontologies are
rather small. They showed that the Semantic Web does not even need OWL and can
achieve important objectives such as data-sharing and data-integration using just
RDF alone.

8.2.4.1 Example: Ontology of an E-Learning System

Let’s give an example of learner modelling in a simple e-learning system. System
contains some basic concepts such as learner, course, lesson, course author and
mentor. Only certain relations between concepts are presented: the author of course
creates a course, mentor prepares lessons, learner attends lessons that are part of the

122 8 Semantic Web

course, etc. This is a series of declarative sentences that represent ontology concepts
and their relationships. These sentences are only understandable to people. As such,
they are not formally defined and adapted for computer processing.

At a higher level of abstraction, this ontology with its concepts can be informally
displayed as a semantic network diagram (Fig. 8.1).

Previous diagram suffers from many drawbacks, such as its informality, lack of
detail, etc. To make this ontology presented more formally, UML diagram can be
used (Fig. 8.2). This diagram represents the same part of the domain but formally
presented and in more detail.

Figure 8.3 shows the same ontology in XML-based format with use of Web
Ontology Language (OWL) language, which will be discussed in more detail in this
chapter. Ontology graphic editor automatically generates the appropriate part of the
code. This representation of ontologies is most commonly used at the implemen-
tation level of ontologies in systems.

Mentor

LessonCourse

Course author Learner

prepares

visits

is part of

creates

Fig. 8.1 E-learning system
ontology presented as
semantic network

Learner

0..n 1..n

0..1 1..1

visits

is part of

creates

creates

0..n

0..n

0..n

0..n

Mentor

Name
Surname
TitleCourse

Title
Unit

Course author

Name
Surname
Tiltle

Lesson

Title
Date
Type

Fig. 8.2 UML class diagram
of e-learning system

8.2 Ontologies 123

8.2.5 Development Practices of E-Learning Systems

Considering the specification requirements for e-learning systems, the authoring of
adaptive educational system should be based on a strict separation and indepen-
dency of the domain expert and the course author. This implies separate definitions
of the educational resources and the adaptation and personalization strategies
(Aroyo and Dicheva 2004). Therefore, an important goal for engineering of
e-learning systems is to maintain a clear separation between concepts and resources.
Therefore, authors in (Aroyo and Dicheva 2004) identified three groups of
authoring activities:

• authoring of the content,
• authoring of the instruction process and
• authoring of the adaptation and personalization.

Fig. 8.3 E-learning system ontology presented by the OWL

124 8 Semantic Web

8.2.5.1 Authoring of Content

Educational ontologies typically consist of concepts definitions, relations and
axioms (Staab et al. 2001). Authoring of educational content in e-learning systems
concerns creation of learning objects, their annotation, and links between them.
Content authors in distance learning systems can explicitly define the semantics of
resources within domain. At this level, the authors perform following activities
(Aroyo and Dicheva 2004):

• Domain-related authoring activities. These activities include constructing and
editing of the domain model that includes creation of concepts and their links.
Concept from a domain is defined as a pair, consisting of the concept’s name
and the corresponding set of attributes. A link presents an association between
two concepts of a certain type with a specific weight and specified link direction.

• Resource-related authoring activities. These activities include building a
collection of educational resources and creating of a resource repository. Each
resource is enriched with the appropriate metadata to facilitate its further use
within the course sequencing module.

Therefore, Semantic Web applications consist of two separate but linked layers
(Knublauch 2004):

• Semantic Web Layer that makes ontologies and interfaces available to the
public, and

• Internal Layer which consists of the control and reasoning mechanisms.

While the latter components can reside inside a black box, the artefacts in the
Semantic Web Layer are shared with other applications, and must therefore meet
higher quality standards than the internal components (Knublauch 2004).

8.2.5.2 Authoring of Instructional Process

Authoring of the instructional process in educational systems typically involves
course construction activities (generating a course tasks model) that serve as a basis
for the further sequencing of course tasks (Aroyo and Dicheva 2004). In order to
produce an instructional task sequence the author usually:

• selects concepts from the domain model and assigns them to course topics
• selects specific sequences of course topics realizing the learning goals, and
• assigns course tasks for each topic (each task will cover more than one learning

activity).

8.2 Ontologies 125

8.2.5.3 Authoring of the Adaptation and Personalization

These authoring activities ensure structuring and editing of domain concepts and
resources, modelling of the course process, task sequencing and selecting and
applying an appropriate adaptation strategy (Aroyo and Dicheva 2004). With the
new frameworks and architectures that are evolving in order to meet the semantic
challenge, the goal has become to provide the learners and course authors with a
seamless personalized interaction with the educational systems (Aroyo and Dicheva
2004).

8.2.6 The Objective of Ontologies

Regardless of the fact that ontologies have been used for many years in various
domains and fields, there is still an open question: “Why ontologies?” One answer
might be: because they are the basic building blocks of the systems and applications
that supports the Semantic Web. Semantic cooperation between Web applications is
possible only if the semantics of Web data are explicitly displayed on the Web in
the form of a computer understandable and theoretical content domain—ontology.
With the automated use and computer interpretation of ontology, computers
themselves may offer unlimited support and automate the access and processing of
information on the Web. Therefore, use of ontologies takes burden off the user and
most of the work is carried out by the Semantic Web (Fensel and Musen 2001).

Ontologies provide access to global collection of human knowledge that com-
puters can understand and process. Once the knowledge from a certain domain is
put on a Web in the form of related ontologies, it creates the basis for further
development of intelligent applications in that particular field, because it facilitates
the problem of knowledge acquisition.

Ontologies play multiple roles in architecture of the Semantic Web (Horrocks
et al. 2005):

• Ontologies allow processing, sharing, and reusing knowledge from the Web.
This is achieved by using mutual concepts and terminology between different
applications.

• They provide a higher level of interoperability on the Web, as they provide
various forms of mapping data, because these mappings require semantic
analysis.

• They allow the use of intelligent services—agents for search, information fil-
tering, intelligent information integration, knowledge management, etc.

Ontologies are used to build many useful elements of intelligent systems, both in
the general representation and in the process of knowledge engineering. Some of
these basic elements are (Gruber 1995):

126 8 Semantic Web

• Vocabulary. Ontologies provide a vocabulary of terms in the relevant field.
These vocabularies are different from natural vocabularies (where words can be
interpreted differently depending on the people who interpret them) as they offer
logical statements that describe the terms and their relations. Also, ontologies
define rules for combining these terms and their relationships in order to expand
vocabulary. Ontologies define terms in a unique and unambiguous way, inde-
pendent on the environment or the person who is observing them.

• Concept hierarchy. Taxonomy or concepts hierarchy is hierarchical catego-
rization or classification of the entities within the relevant domain. Each
ontology presents taxonomy in a computer-understandable way. Specific rela-
tions among concepts are formally defined in ontologies and provide consis-
tency in the use of ontologies.

• Content theory. Since ontologies identify classes of objects, their relationships
and hierarchies that exist in a domain, they are, in fact, authentic Content theory.
Ontologies not only identify classes, relationships and hierarchies, but they are
descriptive and determined by use of appropriate Ontology representation
languages. These languages will be discussed later in this chapter.

• Consistency checking. Well-structured and processed ontologies allow different
checks of correctness and consistency (type and value checking). They also
allow portability between different applications that can perform this
verification.

• Reuse and sharing of knowledge. The most important role of ontologies is not
display of vocabularies and hierarchies, but enabling reuse and sharing of
knowledge between different applications. The aim is to offer a description of
each concept and relationship that exist within the domain and make them
available to a variety of intelligent agents and applications.

Although there are many languages for presenting ontologies and tools for
knowledge base development, easy sharing and reuse of ontologies is not easy to
achieve as there are different ontologies that present the same knowledge but are
written in different languages.

8.2.7 Ontology Application

Although it is hard to predict future trends in e-learning, it is obvious that the
current vision of the Educational Semantic Web provides interoperability and
reusability, based on implemented semantics, standardized communication among
modular and service-oriented systems (Aroyo and Dicheva 2004). Course authors
have few tools to easily and efficiently generate Semantic Web annotations using
OWL, RDF or other languages concerning content use or creation (Shadbolt et al.
2006). OWL is most widely used but still needs additional tools and software
development environments to support its production and application. An essential
element for success is the availability of support for user-friendly, structured and

8.2 Ontologies 127

automated authoring of educational systems, with balance of exploiting explicit
semantic information and collecting and maintaining its semantics (Aroyo and
Dicheva 2004). Modern ontology development tools such as Protégé (with the
OWL Plugin) allow users to design and implement Semantic Web components and
provide intelligent tools for finding mistakes, similar to a debugger in a program-
ming environments (Knublauch 2004).

Some practices for development of software for the Semantic Web are presented
in (Knublauch 2004). Authors demonstrated a realistic example scenario from the
tourism domain, presented software architecture for those applications and sug-
gested appropriate development guidelines. Dealing with ontologies and concepts
increases our conceptual awareness and influences the style of information per-
ception, which reflects in the demands for using and authoring web based educa-
tional systems (Aroyo and Dicheva 2004).

However, not only are ontologies useful for applications in which knowledge
plays a key role, but rules and inference are also implemented and used
(Gómez-Pérez and Corcho 2002). The OWL language itself is designed to support
various types of inference—typically, inheritance and classification. Because it’s
difficult to specify a formalism that will capture all the knowledge in a particular
domain, there are other approaches to inference on the Web. Work has begun on the
Rule Interchange Format, an attempt to support and interoperate across a variety of
rule-based formats (Shadbolt et al. 2006).

Numerous areas of ontologies application can be classified into four categories:
cooperation, interoperability, education and modelling (Sheth et al. 2005).

Cooperation. Different people may have different views on the same problem
when working on a team project. For them, ontologies offer a unique skeleton of
knowledge as a guideline for further development. Even more important role of
ontologies is enabling cooperation and communication between intelligent agents.
Knowledge exchange between different agents is clearer when agents are aware of
ontologies that other agents are using as data models.

Interoperability. Ontologies allow the integration of information from different
and separate sources. Users typically do not care how it will get the information; the
more important for them is to get all the information they need. Different appli-
cations are often required to access various sources of knowledge in order to get to
all the available information. These different sources may contain information in
different formats and at different level of detail. Therefore, if all sources identify the
same ontology, then data conversion and integration of information can be easily
performed and automated.

Education. Ontologies are also a good medium for the publication of scientific
papers and creation of references database. Since they usually occur on the basis of
consensus about the knowledge of the domain, ontologies can provide reliable and
objective information for those who want to learn more about a given domain.

Modelling. Ontologies are important re-usable building blocks for intelligent
applications modelling, and can be includes as pre-existing modules of knowledge.

There are some other categories of ontology use such as in electronic commerce
(to enable communication between sellers and buyers) and for automated search.

128 8 Semantic Web

8.3 Semantic Web Languages

There are common attempts to standardize the form of information in the various
components of the e-learning systems (Aroyo and Mizoguchi 2003). However, the
differences are still present, since there are different proposals for standards and
terminology for describing resources and activities.

In the literature, the terms Web-based ontology languages and Semantic Web
languages are used interchangeably. Semantic Web languages are formal languages
for creating ontologies and the Semantic Web. Semantic Web technology is built in
layers, i.e. it is carried out in steps (Berners-Lee et al. 2001; Dutta 2006).
Higher-level Semantic Web languages use the syntax and semantics of lower-levels
languages (Fig. 8.4).

XML allows users to add arbitrary structure to their documents and to create tags
for labelling Web pages or parts of the text (Bray et al. 1998). Although the
meaning of the XML tags is intuitively clear, it does not allow adding semantics.
XML is only used as a transport mechanism. Resource Description Framework—
RDF and Resource description framework schema—RDFS provide a basic
framework for displaying metadata on the Web. Other languages for knowledge
representation on the Web, such as OWL (based on RDF), provide a more precise
support for knowledge representation.

8.3.1 XML—eXtensible Markup Language

Important step towards implementation of syntax and semantics of data in appli-
cations is agreement upon their unique presentation. All Semantic Web languages
use XML syntax in order to prevent unnecessary and costly modification of
applications for bridging differences in semantics and syntax of the data. In fact,

Fig. 8.4 Semantic Web
layers (Berners-Lee et al.
2001; Dutta 2006)

8.3 Semantic Web Languages 129

XML is a meta-language for representation of Semantic Web languages (Bray et al.
1998). For example, XML Schema defines a class of XML documents using XML
syntax. RDF provides a framework for representing metadata about Web resources,
and can be represented in XML as well. RDF Schema, OWL and other Web
ontology languages also use XML syntax.

Extensible Markup Language (XML) is a markup language that defines a set of
rules for encoding documents in a format that is both human-readable and
machine-readable. Each XML document contains one or more elements, which
boundaries are delimited by start-tags and end-tags. Each XML Schema provides
the necessary framework for creating categories of XML documents.

XML is a specification for computer-readable documents (Klein 2001). Markup
means that certain sequences of characters in the document contain information
indicating the role of the document’s content.

XML does not indicate a specific computer data interpretation. The information
in XML documents are only presented in unique syntax, but their use and semantics
are not specified. In other words, XML defines only the structure of the documents,
not their computational interpretation. It offers a structured document format,
without specifying the dictionary. To represent knowledge and semantics more
precise XML-based languages must be used.

8.3.2 RDFS—Resource Description Framework Schema

RDFS or RDF Schema is a language for the presentation of knowledge that pro-
vides basic elements for description of ontologies (also called RDF vocabularies)
for the purpose of structuring resources (Brickley and Guha 2008). The first version
of the language was published by W3C in April 1998 and the final recommenda-
tions were published in February 2004. The most important RDFS components are
included in the expressive language OWL.

The RDF data model is similar to classic conceptual modelling approaches such
as entity–relationship or class diagrams, as it is based upon the idea of making
statements about resources (in particular Web resources) in the form of
object-attributes-value expressions. Description of resources in RDF is presented as
list of triples, each of which contain a resource (object), its characteristics (at-
tributes), and the values of these properties (value). The value can be in the text
form or as a link to other resources. Each RDF description can be represented as a
directed labelled graph (semantic network), whose parts are equivalent to other
RDF expressions.

RDF model provides a mechanism for the description of the individual resources
independent of the domain. It does not define the semantics of an application
domain, nor make assumptions about specific domains. In order to define elements
of specific domains and their semantics (ontologies), other environments are nee-
ded. RDF is used to describe the instance of the ontology, and RDF Schema defines
the ontology itself.

130 8 Semantic Web

RDF Schema (or RDFS) is a set of classes with certain properties using the RDF
extensible knowledge representation language, providing basic elements for the
description of ontologies, otherwise called RDF vocabularies, intended to structure
RDF resources.

RDF and RDFS allow the description of the facts about Web resources, but they
often require richer and more accurate elements to define the formal semantics of
Web resources. For example, in the RDFS, classes cannot be compared and it is
impossible to define the constraints of cardinalities.

8.3.3 OWL—Ontology Web Language

The Web Ontology Language (OWL) is a family of knowledge representation
languages or ontology languages for authoring ontologies or knowledge bases,
endorsed by the World Wide Web Consortium (Bechhofer 2009; Brickley and Guha
2008). This family of languages is based on two (largely, but not entirely com-
patible) semantics: OWL DL and OWL Lite.

OWL Dictionary includes a set of XML elements and attributes, with a precisely
defined meaning. They are used to describe the terms of domains and their relations
in the ontology. OWL vocabulary is based on the RDF vocabulary. OWL also
shares all the elements of the domain types (values belonging to XML data types)
and domain objects (individual buildings like the appearance of classes defined in
OWL or RDF). There are two kinds of OWL properties:

• properties that connect objects to other objects (defined with owl:
ObjectProperty)

• properties that connect objects with values of data types (defined with owl:
DatatypeProperty)

OWL allows the definition of additional constraints and relationships between
resources, such as cardinality, domain restriction, union, intersection, inverse and
transitive rules.

SPARQL—Simple Protocol and RDF Query Language
Unlike OWL and RDF, SPARQL is not intended for the representation of

ontologies and resources, but for the selecting data on the Web. More specifically,
the SPARQL is query language for RDF.

SPARQL can be used for:

• selecting information from RDF graphs,
• selecting RDF subgraphs and
• construct new RDF graphs based on information selected from existing RDF

graphs.

SPARQL queries have syntax similar to traditional database query languages
like SQL. Therefore, these queries have the keywords SELECT and WHERE.

8.3 Semantic Web Languages 131

8.4 Graphical Environments for Ontology Development

Graphical environments for ontology development integrate ontology editor with
other tools, and usually support use of multiple languages for ontology presenta-
tion. Their aim is to offer support for the whole ontology development process and
their subsequent use.

8.4.1 Protégé

Currently, the leading editor for ontology development is Protégé, developed at
Stanford University (Protégé 2011). Protégé is a graphical tool for ontology editing
and knowledge acquisition that can be adapted to enable conceptual modelling with
new and evolving Semantic Web languages. Protégé allows the definition of
ontology concepts (classes), their attributes, hierarchies and different constraints as
well as instances of classes (Fig. 8.5).

The Protégé OWL Plugin provides a SWRL editor, which enables the formal-
ization of SWRL rules in conjunction with OWL ontologies. It provides graphical
user interface for easy development and management of ontologies. Moreover, the

Fig. 8.5 Protégé ontology editor

132 8 Semantic Web

SWRLTab within it provides editor and validation tool to develop inference rules.
In addition, other ontologies can be imported to achieve knowledge reuse.

Protégé can be used for creation of domain models at a conceptual level without
having to know the syntax of the language ultimately used on the Web. Users can
concentrate on the concepts and relationships in the domain and the facts about
them that need to be expressed. For example, for development of ontology of wines,
food, and appropriate wine–food combinations, authors can focus on Bordeaux and
lamb instead of markup tags and correct syntax (Informatics 2010).

Protégé is highly customizable, which makes its adaptation as an editor for a new
language faster than creating a new editor from scratch. The following features
make this customization possible (Noy et al. 2001):

• An extensible knowledge model. It is possible to redefine declaratively the
representational primitives that system uses.

• A customizable output file format. Protégé components that translate from the
Protégé internal representation to a text representation in any formal language
can be implemented.

• A customizable user interface. Protégé user-interface components for displaying
and acquiring data can be replaced with new components that fit the new lan-
guage better.

• An extensible architecture that enables integration with other applications.
Protégé can be connected directly to external semantic modules, such as specific
reasoning engines operating on the models in the new language.

Besides the fact that Protégé is a good, intuitive and widely used tool, it also
provides an open-source Java API that enables access the ontological model and use
of Protégé Forms from a Java environment.

8.4.1.1 Ontology Modelling in Protégé

Concerning ontologies modeling, there are essentially two ways to do it: the
Protégé-Frames editor; and the Protégé OWL editor (Burgos 2011). The first one is
based on the concept of knowledge representation which involves creating of
ontologies by building conceptualization of concepts and organizing them in a
hierarchy. This phase also includes creation of a set of relationships between
concepts and creating instances from this concepts. Connections between ontology
classes are defined that can be discovered by querying the system. In addition, there
are some important characteristics of Protégé-Frames that must be highlighted: it
includes a plug-in architecture which can contain some elements such as graphics,
sounds, different storage formats as well as additional support tools (Burgos 2011).

Modelling of ontologies in Protégé OWL editor is a second method (Burgos
2011). OWL as one of the current standard for Semantic Web presents a mean for
creation all ontology elements: classes, their properties and instances. Moreover this
editor can support OWL and RDF ontologies as well as the edition and

8.4 Graphical Environments for Ontology Development 133

visualization of its classes, properties and rules. Possibility of integration and
execution of reasoners are equally important. Reasoners are pieces of software that
enable the inference property to spread its power across the ontology.

8.4.2 NeOnToolkit

The NeOn Toolkit is the ontology engineering environment originally developed as
part of the NeOn Project (Suarez-Figueroa et al. 2012). It is an open source
multi-platform ontology engineering environment, which provides comprehensive
support for the ontology engineering life-cycle. The toolkit is based on the Eclipse
platform, a leading development environment, and provides an extensive set of
plug-ins (currently 45 plug-ins are available) covering a variety of ontology engi-
neering activities, including annotation and documentation, development,
human-ontology interaction, knowledge acquisition, management, modularization
and customization, neon plugins, old main page, ontology dynamics, ontology
evaluation, ontology matching, reasoning, inference and reuse.

8.4.3 TopBraid Composer

TopBraid Composer is an enterprise-class modelling environment for developing
Semantic Web ontologies and building semantic applications (Waldman, n.d.). It
combines world’s leading semantic web modelling capabilities with the most
comprehensive data conversion options and a powerful Integrated Development
Environment (IDE) for building semantic web and Linked Data applications
(Alatrish 2012).

Fully compliant with W3C standards, TopBraid Composer offers comprehensive
support for developing, managing and testing configurations of knowledge models
and their instance knowledge bases. TopBraid Composer is the leading
industrial-strength RDF editor and OWL ontology editor, as well as the best
SPARQL tool on the market.

Composer comes in 3 editions: Free (limited free version), Standard and
Maestro.

As part of TopBraid Suite, Composer incorporates a flexible and extensible
framework with a published API for developing semantic client/server or
browser-based solutions that can integrate disparate applications and data sources.

134 8 Semantic Web

8.4.4 Vitro

First developed for a research and scholarship portal at Cornell University, Vitro is
a general-purpose web-based ontology and instance editor with customizable public
browsing (Lowe et al. 2011). Vitro is a Java web application that runs in a Tomcat
servlet container. Vitro allows users to:

• create or populate ontologies in OWL format,
• edit ontology instances and relationships,
• build a public web site that will display collected data,
• search and brows data.

8.4.5 OWLGrEd

The OWLGrEd Ontology Visualizer is an online tool for visualizing OWL
ontologies using a compact UML-based notation (Liepins et al. 2014). OWLGrEd
is a free UML style graphical editor for OWL ontologies (Barzdinš et al. 2010). It
has additional features for graphical ontology exploration and development,
including interoperability with Protégé.

8.4.6 Knoodl

Knoodl is a web-based, collaborative ontology editor. Each resource in an ontology
has its own web-page which is half structured content from the ontology and half
unstructured content in the form of wikitext. Content in Knoodl is organized into
Communities, which can be created by any user. Communities have a role-based
permissions model. Ontologies can be imported and exported as OWL files, with or
without the associated wikitext.

All Knoodl functionality is exposed as Java Beans so users can write their own
semantic applications by writing Java Server Pages and Java Script. Future releases
will support ontology guided search and a rich application development framework
which will give users the ability to design custom forms for entering data or queries
and custom views for displaying data.

Many more ontology editor exists in the word, but among them Protégé is
proved to be the most popular (Alatrish 2012), and therefore was used for devel-
opment of Protus ontologies described in this monograph.

8.4 Graphical Environments for Ontology Development 135

8.5 Educational Ontologies

Educational ontologies are different forms of ontologies that are used in systems for
semantic learning. It is possible to identify several categories of these ontologies
(Aroyo and Mizoguchi 2003; Chen 2009; Mizoguchi et al. 2007):

• domain ontology,
• task ontology,
• teaching strategy ontology,
• learner model ontology,
• interface ontology,
• communication ontology,
• educational service ontology.

These categories will be presented in more details in subsequent sections.

8.5.1 Domain Ontology

Systems for semantic learning cannot achieve their goals without domain ontology
that describes the basic theoretical concepts and relations in the area that is being
taught. Domain ontology is not only important for educational purposes but for all
Semantic Web applications. Since the goal of systems for semantic learning is to
track progress of learners’ mastering specific domain, the course authors should
present knowledge with this type of ontologies.

There are two major types of domain knowledge—subject domain and structure,
which leads to two types of ontologies (Dicheva et al. 2005):

• Domain ontology. A domain ontology represents the basic concepts of the
domain under consideration along with their interrelations and basic properties.

• Structure ontology. A structure ontology defines the logical structure of the
content. It is generally subjective and depends greatly on the goals of the
ontology application. It typically represents hierarchical and navigational
relationships.

While a domain ontology can be used as a mechanism for establishing a shared
understanding of a specific domain, a structure ontology enforces a disciplined
approach to authoring, which is especially important in collaborative and dis-
tributed authoring.

136 8 Semantic Web

8.5.2 Task Ontology

This ontology complements the domain ontology by representing the semantics of
the problem being solved. Concepts and relations that are included in this ontology
presents a link to the problem types, structures, areas, activities and steps that
learner must follow in the problem solving process. For example, task ontology in
educational applications may include concepts such as: problem, scenario, question,
answer, guide, hint, exercise, explanation, simulation, etc. Task ontology in
semantic learning systems formalize tasks and activities of all relevant participants
in the system (learners, lecturers, authors), therefore this ontology could also be
called Instructional design ontology, Training ontology, Authoring task ontology,
etc.

The term task ontology can be interpreted in two ways (Ikeda et al. 1998):

• task-subtask decomposition together with task categorization such as diagnosis,
scheduling, design, etc.

• an ontology for specifying problem solving processes.

The latter shares the word usage with domain ontology which means an ontology
of a domain and specifies concepts and relations appearing in a domain of interest.

The advantages of the integration of task ontology into educational systems are
as follows (Ikeda et al. 1998):

• Task ontology provides human-friendly primitives in terms of which users can
easily describe their own problem solving processes (descriptiveness,
readability).

• The system can simulate the problem solving processes at the conceptual level
and present users with the execution process in terms of conceptual level
primitives (conceptual level operations).

• The system translates problem solving knowledge into symbol level code
(symbol level operations).

8.5.3 Teaching Strategy Ontology

This ontology provide instructors and authors with capabilities for modelling
learning activities, and define knowledge and principles that underpin the peda-
gogical actions (Aroyo and Mizoguchi 2003). For example, teaching strategy
ontology can define a series of actions that are carried out when a learner makes a
mistake, or it can define the behaviour of a system that encourages learners to use
alternative solutions.

The goal of teaching strategy ontology is to provide the author with a facility to
model the author’s teaching experiences (Chen et al. 1998). According to each

8.5 Educational Ontologies 137

learner’s specific error, the author can represent an appropriate teaching strategy
with the use of such an ontology.

8.5.4 Learner Model Ontology

Designers of a semantic learning system use concepts from the learner model
ontology to build a learner model. These ontologies and their corresponding learner
models are the most important element of adaptive system behaviour. Content of
learner model ontology mostly depends on the application in which it is imple-
mented. More specifically, the learner model ontology should collect the objective
and subjective data about learner. Data on learners’ progress and learning history
should be recorded, stored and updated for each individual learner.

Learner model ontology helps the author to represent a suitable learner model
mechanism so that the intelligent tutoring system can behave adaptively to the
learner’s understanding state (Mizoguchi 2004). It facilitates to build learner
models in intelligent training systems.

8.5.5 Interface Ontology

The purpose of this ontology is to define adaptive behaviour of the semantic
learning system at the user interface level. Therefore, interface ontology provides
explicit modelling of adaptation for learners with different characteristics (Devedzic
2006).

The aim of this ontology is to help the author define intelligent tutoring system
interface in his own style and to make the user interface adaptive to different
learners (Chen et al. 1998).

Interface ontology contains definitions of the user interface segments that will be
connected to adaptation rules for displaying/removal of user interface elements,
based on the data from the task ontology. In this way it is possible to define parts of
the interface that will display the introductory remarks, explanations, examples,
navigating options, execution of specific functionalities, etc. Then, for example, in
order to customize the user interface for learner with global learning style, it is
necessary to display navigational elements for that learner, that is, all elements that
belong to the specific class (that represent navigational elements) will be presented.

8.5.6 Communication Ontology

Different semantic learning systems, pedagogical agents, educational servers and
educational services communicate with each other using messaging (Bittencourt

138 8 Semantic Web

et al. 2009). Communication ontology defines the semantics of the message content,
and creates glossary of terms used in messages.

8.5.7 Educational Service Ontology

This ontology provides tools for creating computer-readable descriptions of ser-
vices, defines consequences of their use and explicitly represents the service logic
(Paolucci and Sycara 2003). Educational services have their own characteristics,
capabilities, interfaces and results, and they all must be recorded in unambiguous,
computer understandable form to allow pedagogical agents to recognize them and
automatically execute.

8.6 Adaptation Rules

Although ontologies have a set of basic implicit reasoning mechanisms derived
from the description logic which they are typically based on (such as classification,
relations, instance checking, etc.), they need rules to make further inferences and to
express relations that cannot be represented by ontological reasoning (e.g., in a
learning domain it could be necessary to express the fact that a topic A is a
prerequisite of topic B to make the right suggestions to the learner). Thus,
ontologies require a rule system to derive/use further information that cannot be
captured by them, and rule systems require ontologies in order to have a shared
definition of the concepts and relations mentioned in the rules. Rules also allow
adding expressiveness to the representation formalism, reasoning on the instances,
and they can be orthogonal to the description logic on which ontologies are based
on (Henze et al. 2004).

There are different types of adaptation rules depending on the knowledge they
store:

• Decision rules. These rules are used to generate the feedback based on user
actions. Decision rules are executed based on defined conditions. When the
conditions are fulfilled, the system makes decisions on further action based on
corresponding rules. Most often, these actions represent a selection of educa-
tional material that will be displayed to learner, selection of recommended
pages, choice of navigation, etc.

• Association rules. The objective of association rules (Romero et al. 2004) is to
look for relationships among attributes types in databases, taking place in the
antecedent and consequent of the rules. Association rules are typically used in
e-commerce to model the clients’ preferences and purchases. These rules have
the format: IF “user acquires the product A” THEN “user also acquires the
product B” with values of support and confidence (Srikant and Agrawal 1997)

8.5 Educational Ontologies 139

greater than a user-specified minimum threshold. In the more general form of
these rules, the rule antecedent and consequent can present more than one
condition. The confidence of the rule is the percentage of transactions that
contain the consequent among transactions that contain the antecedent. The
support of the rule is the percentage of transactions that contain both antecedent
and consequent among all transactions in the data set (Romero et al. 2004).

• Classification rules. The objective of classification rules (Romero et al. 2004) is
to obtain knowledge in order to create a classification system (similar to a
classification tree). In the antecedent of the rule there are some requirements (in
form of conditions) that should match a certain object so that it can be con-
sidered to belong to the class that identifies the consequent of the rule. From a
syntactic point of view, the main difference with association rules is that they
have a single condition in the consequent which is the class identifier name
(Tran et al. 2006).

• Prediction rules. The objective of prediction rules is to predict an objective
attribute depending on the values of another group of attributes. Its syntax is
similar to classification rules that have only one condition in the consequent, but
now it is similar to any other condition (Romero et al. 2005).

• Causal rules. These rules are temporal. Causal relationships do not only indi-
cate that the variables are related (associated) in general, more importantly they
show how the variations of one variable cause changes of other variable.
Therefore causality is more useful for prediction and reasoning (Li et al. 2013).

• Optimization rules. These rules define the actions that are performed in order to
optimize functionalities, learning process, navigation, code, etc.

Data processing mechanisms integrated in Semantic Web languages restrict the
use of ontologies. Therefore, various attempts to formalize the logical layer
ontologies are present. Semantic Web Rule Language (Horrocks et al. 2004) is
presented as an important step in this direction, which upgrades the previous work
on a development of RuleML languages. The presence of a standardized language
for defining rules allows simultaneous use of ontologies and adaptation rules in
order to improve Semantic Web applications.

Details about adaptation rules, their types, use and implementation process will
be presented in Sect. 9.3.

8.6.1 Semantic Web Rule Language (SWRL)

SWRL (Sicilia et al. 2011) is a language specifically targeted to introduce inference
rules in knowledge models represented in OWL. Semantic Web Rule Language is
probably the most popular formalism in Web community for expressing knowledge
in the form of rules. Specifically, SWRL is based on a combination of Web
Ontology Language (Bechhofer 2009) and Rule Markup Language (Paschke and

140 8 Semantic Web

http://dx.doi.org/10.1007/978-3-319-41163-7_9

Boley 2010) and has been proposed as a W3C candidate standard for formalizing
the expression of rules in Web context.

Rules are represented as an implication between antecedent (body) and conse-
quent (head). The intended meaning can be read as ‘‘whenever the conditions
specified in the antecedent hold, then the conditions specified in the consequent
must also hold’’.

The main advantage of SWRL is the simplicity it offers, while extending the
expressiveness of OWL. Another benefit of SWRL is its compatibility with OWL
syntax and semantics, since they are both combined in the same logical language.

It is worthy to mention that most of the existing rule-based applications for the
Web have adopted SWRL approach in order to express rules. SWRL is neither a
highly expressive language (e.g., no negation is available) nor a decidable one, but
it remains simple (Papataxiarhis et al. 2009).

Adaptation rules defined in SWRL are in the form:

Antecedent ⟹ consequent.

These rules consist of an antecedent (body) and a consequent (head), each of
which consists of a (possibly empty) set of atoms. Informally, meaning of the rule
is: if the antecedent holds (is true), then the consequent must also hold. An empty
antecedent is treated as trivially holding (true), and an empty consequent is treated
as trivially not holding (false). Rules with an empty antecedent can thus be used to
provide unconditional facts; however such unconditional facts are better stated in
OWL itself, i.e., without the use of the rule construct.

A detailed description of adaptation rules used for creation of general tutoring
system model will be shown in Sect. 9.3 named Adaptation rules.

8.6.2 Jess

Usually, the SWRL rules are translated into existing rule systems (e.g., Jess) that
handle the reasoning tasks partially, since they are not aimed to manage knowledge
expressed in terms of first-order logic or its subsets (Papataxiarhis et al. 2009).

Jess (Java Expert System Shell) is a Java framework for editing and applying
rules, since it contains a scripting environment and a rule engine, as well
(Friedman-Hill 1997). Recently, the evolution of rule technologies on the Web has
led Jess to rebound its practical value in the community of Web developers.
Moreover, the fact that Jess is a Java-based system facilitates its integration with a
number of Web programming paradigms like Java servlets or applets. Finally, Jess
was accessed via SWRL-Jess Bridge. Jess is also a rule-based inference engine that
can support RDF, OWL and SWRL inference. For this inference it must use
SWRLTab, which is one of the OWL Plug-ins for Protégé (Lee et al. 2005).

Defined SWRL rules can be executed using the Jess application programming
interface that enables creation of the new instance of Jess rule engine. An instance
of this class loads all defined rules, check the terms defined in them and starts

8.6 Adaptation Rules 141

http://dx.doi.org/10.1007/978-3-319-41163-7_9

executing rules if all conditions are met. After execution of the rule, the inferred
knowledge can be written back to the ontology repository and update the knowl-
edge base.

8.7 Architecture of Semantic E-Learning Systems

The first necessary precondition for the development of semantic e-learning systems
is an adequate development of the Semantic Web. It is necessary that the Semantic
Web is sufficiently widespread as the Web itself. Naturally, it is a long and sys-
tematic process. Parallel with the development of the Semantic Web, it is necessary
that more and more educational content exists in the semantic environment. It
involves the development of a large number of ontologies, description of educa-
tional content using these ontologies, the development of special education services
of the Semantic Web, as well as the development of Semantic Web languages, tools
and related technologies.

Figure 8.6 shows the environment required for the storage of educational
materials for teaching, testing, evaluation and other educational activities in the
Semantic Web (Devedžić 2004; Mustapacsa et al. 2010; Shah 2012). This envi-
ronment is a generalization of the virtual classrooms architecture. Educational
material is available through a variety of educational servers and special Web
applications that are responsible for the management, administration and access to
material from physical servers. Learners, lecturers and course authors access edu-
cational material from the client side. The educational content is an arbitrary
material, pedagogically organized and structured in such a way that interested
learners can use it to become familiar with the domain knowledge, in order to

Fig. 8.6 The learning environment in the Semantic Web

142 8 Semantic Web

understand it and develop the ability to solve appropriate problems. Intelligent
pedagogical agents offer the necessary information, knowledge and content flow
between clients and servers.

Figure 8.7 shows the basic concepts of machine learning based on the semantic
Web. Their brief specifications are (Devedzic 2006):

• The authors are preparing educational content in the form of multimedia
teaching material, such as questionnaires, tests, exercises, simulations, etc. This
content is usually structured as a coherent unit of learning, such as lessons,
chapters or tests.

• Ontologies represent basic knowledge (such as knowledge of the domain or
pedagogical knowledge) by defining the terminology, concepts, relationships,
hierarchies of concepts and constraints. It allows sharing and reuse of educa-
tional content and cooperation between different educational applications.

• Pedagogical agents help in locating, searching, selecting, organizing and
integrating teaching materials from different educational servers. They are also
used to support individual and group learning and to support cognitive processes
of learners.

• Learners are always interested in personalized learning, as all people have
their own personal habits, approaches, goals, desires and pace of learning.

• Different natural, visual, and representation languages are used to decode
and display information contained in the learning material. Also, different for-
mal languages can be used to develop educational content for display of
ontologies and educational services. Different languages are used to define the
communication between different pedagogical agents.

• Although technology is not the ultimate goal of the e-learning systems, its use is
key development factor. Trends and polarity of current technological support
must not be ignored when e-learning systems are developed.

• Various tools for learning, teaching and creating courses often come as
powerful integrated Web software applications. There are also many other
software tools of different possibilities for the preparation of educational
content.

Fig. 8.7 Concepts of semantic web learning systems

8.7 Architecture of Semantic E-Learning Systems 143

• Semantic Web Services are used to offer teachers, learners, and course authors
access to educational content from different domains of interest. They are
usually associated with educational servers and can support a number of dif-
ferent educational activities.

Figure 8.8 shows the general model of educational server for semantic learning
systems (Devedžic 2004; Shah 2012). Educational server should use intelligent
technologies to personalize learning materials. Server should possess personaliza-
tion planner that helps intelligent tutor to choose, prepare and adapt material from
the domain that will be displayed for learner in accordance to his/her learning
manner and style.

E-learning system gradually re-builds the learner model during sessions, in order
to keep track of the learner’s actions and his/her progress, to detect and correct
his/her errors and possibly to redirect the session accordingly. At the end of the
session, all data about learner are recorded in learner model. The learner model is
then used along to other information and knowledge to initialize the next session for
the same learner.

From the teachers’ perspective, educational server allows them to access, view
and search collections of learning objects and access educational materials. Server
also offers the possibility to monitor different classes of learners and provide access
to the learner model, both during and after the presentation sessions. Server itself
may provide the tools to perform the basic course activities or can use client tools
for connection to server and use educational services that server provides.

From the perspective of a course author, educational servers extend authoring
tools. With the help of authoring tools, domain authors gain access to the various

Fig. 8.8 Educational server model (Shah 2012)

144 8 Semantic Web

ontologies stored in the educational server libraries. Authors can define their own
ontology and publish them in the library. They also can reuse existing ontologies
from the library and perform the necessary changes to them. Authors can create,
maintain, update and delete learning objects and courses, change instructional
design, approach or update learner model, etc.

Learners must be provided with individual path through educational material and
the possibility of cooperation with other learners. Important goals of educational
systems are ease of access to the learning material and content filtering for indi-
vidual learners. Ontologies are used to provide personalization and semantic search
and integration of content from different sources.

In order to personalize the learning process and adapt content to each individual
learner, e-learning systems must use strategies that will meet the needs of individual
learners. Also, these systems must use different technologies for adaptation of user
interface and teaching materials based on the needs of learners (Devedzic 2006).
The process of personalisation can include adaptation of content, learning process,
feedback or navigation. As a result of such adaptation, the same lesson can be
presented to different learners in a completely different way.

Consider for example, the case of system for electronic learning of Java pro-
gramming language, where learners visit series of lessons about Java programming
language syntax, and at the same time test their newly acquired knowledge (Vesin
et al. 2012). If learner wants to learn the syntax of the loop statements, the system
would first display educational materials that explain the syntax rules of these
statements, and then present a range of appropriate, illustrative solved examples. If
another learner wants to learn the practical application of these commands, the
system could test learners’ knowledge of the basic concepts of the Java language
syntax (for example: basic expressions or declaration of variables), and only after
that, system would present details about syntax and use of loop statements. At the
end of the process, system could eventually test learners’ new gained knowledge
from current lesson.

References

Alatrish, E. S. (2012). Comparison of ontology editors. E-RAF Journal on Computing, 4, 23–38.
Alsultanny, Y. A. (2006). e-Learning system overview based on semantic web. The Electronic

Journal of E-Learning, 4(2), 111–118.
Aroyo, L., & Mizoguchi, R. (2003). Authoring Support framework for intelligent educational

systems. In AIED-2003 (pp. 362–364).
Aroyo, L., & Dicheva, D. (2004). The new challenges for e-learning: The Educational Semantic

Web. Educational Technology and Society.
Babu, P. B., & Krishnamurthy, M. (2013). Library automation to resource discovery: a review of

emerging challenges. The Electronic Library, 31(4), 433–451. doi:10.1108/EL-11-2011-0159
Barzdinš, J., Barzdinš, G., Čerans, K., Liepinš, R., & Sprogis, A. (2010). OWLGrEd: A UML style

graphical editor for OWL. In CEUR Workshop Proceedings (Vol. 596, pp. 23–28). doi:10.
1007/978-3-642-16101-8_9

8.7 Architecture of Semantic E-Learning Systems 145

http://dx.doi.org/10.1108/EL-11-2011-0159
http://dx.doi.org/10.1007/978-3-642-16101-8_9
http://dx.doi.org/10.1007/978-3-642-16101-8_9

Bechhofer, S. (2009). OWL: Web ontology language. In Encyclopedia of Database Systems
(pp. 2008–2009). Berlin: Springer.

Berners-Lee, T. (2000). Semantic web-xml2000. http://www.w3.org/2000/Talks/1206-xml2k-Tbl/
Berners-Lee, T., Hendler, J., Lassila, O., et al. (2001). The semantic web. Scientific American, 284

(5), 28–37.
Bittencourt, I. I., Costa, E., Silva, M., & Soares, E. (2009). A computational model for developing

semantic web-based educational systems. Knowledge-Based Systems, 22(4), 302–315. doi:10.
1016/j.knosys.2009.02.012

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., & Yergeau, F. (1998). Extensible markup
language (XML). World Wide Web Consortium Recommendation REC-Xml-19980210. http://
www.w3.org/TR/1998/REC-Xml-19980210, 16.

Breslin, J. G., Passant, A., & Vrandečić, D. (2011). Social semantic web. In Handbook of Semantic
Web Technologies (pp. 467–506). Berlin: Springer.

Brickley, D., & Guha, R. V. (2008). RDF Schema 1.1—W3C Recommendation. doi:10.1016/
B978-0-12-373556-0.00006-X.

Burgos, J. L. M. (2011). Semantic web standards. SNET Computer Engineering. Retrieved from
http://www.pdffiller.com/948565-semantic-web-standards_burgos-Semantic-Web-Standards—
SNET-Various-Fillable-Forms-snet-tu-berlin

Cardoso, J. (2007). The semantic web vision: Where are we? IEEE Intelligent Systems, 22(5), 84–
88. doi:10.1109/MIS.2007.4338499

Chandrasekaran, B., Josephson, J. R., & Benjamins, V. R. (1999). What are ontologies, and why
do we need them? IEEE Intelligent Systems, 1, 20–26.

Chen, C.-M. (2009). Ontology-based concept map for planning a personalised learning path.
British Journal of Educational Technology, 40(6), 1028–1058.

Chen, W., Hayashi, Y., Jin, L., Ikeda, M., & Riichiro Mizoguchi. (1998). An ontology-based
intelligent authoring tool. In Proceedings of the Sixth International Conference on Computers
in Education (pp. 41–49).

d’Aquin, M., Motta, E., Sabou, M., Angeletou, S., Gridinoc, L., Lopez, V., & Guidi, D. (2008).
Toward a new generation of semantic web applications. IEEE Intelligent Systems, 23(3).
doi:10.1109/MIS.2008.54.

Devedzic, V. (2006). Semantic web and education.Book (Vol. 11). doi:10.1007/978-0-387-35417-0.
Devedžić, V. (2004). Web intelligence and artificial intelligence in education. Educational

Technology & Society, 7(4), 29–39.
Devedzic, V., & Harrer, A. (2005). Software patterns in ITS architectures. International Journal of

Artificial Intelligence in Education, 15(2), 63–94.
Dicheva, D., Sosnovsky, S., Gavrilova, T., & Brusilovsky, P. (2005). Ontological web portal for

educational ontologies. In SW-EL’05: Applications of Semantic Web Technologies for
E-Learning (p. 19).

Dutta, B. (2006). Semantic web based e-learning. Bangalore: Documentation Research and
Training Centre Indian Statistical Institute.

Fensel, D., & Musen, M. A. (2001). The semantic web: A brain for humankind. IEEE Intelligent
Systems, 16(2), 24–25.

Friedman-Hill, E. J., & others. (1997). Jess, the java expert system shell. Distributed Computing
Systems, Sandia National Laboratories, USA.

Gascueña, J. M., Fernandez-Caballero, A., & Gonzalez, P. (2006). Domain ontology for
personalized e-learning in educational systems. In ICALT (pp. 456–458).

Gilchrist, A. (2000). The well-connected community: Networking to the edge of chaos.
Community Development Journal, 35(3), 264–275. doi:10.1093/cdj/35.3.264

Gómez-Pérez, A., & Corcho, O. (2002). Ontology languages for the semantic web. IEEE
Intelligent Systems and Their Applications, 17(1), 54–60. doi:10.1109/5254.988453.

Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge sharing?
International Journal of Human-Computer Studies, 43(5), 907–928.

Gruber, T. (2008). Collective knowledge systems: Where the social web meets the semantic web.
Journal of Web Semantics, 6(1), 4–13. doi:10.1016/j.websem.2007.11.011

146 8 Semantic Web

http://www.w3.org/2000/Talks/1206-xml2k-Tbl/
http://dx.doi.org/10.1016/j.knosys.2009.02.012
http://dx.doi.org/10.1016/j.knosys.2009.02.012
http://www.w3.org/TR/1998/REC-Xml-19980210
http://www.w3.org/TR/1998/REC-Xml-19980210
http://dx.doi.org/10.1016/B978-0-12-373556-0.00006-X
http://dx.doi.org/10.1016/B978-0-12-373556-0.00006-X
http://www.pdffiller.com/948565-semantic-web-standards_burgos-Semantic-Web-Standards---SNET-Various-Fillable-Forms-snet-tu-berlin
http://www.pdffiller.com/948565-semantic-web-standards_burgos-Semantic-Web-Standards---SNET-Various-Fillable-Forms-snet-tu-berlin
http://dx.doi.org/10.1109/MIS.2007.4338499
http://dx.doi.org/10.1109/MIS.2008.54
http://dx.doi.org/10.1007/978-0-387-35417-0
http://dx.doi.org/10.1093/cdj/35.3.264
http://dx.doi.org/10.1109/5254.988453
http://dx.doi.org/10.1016/j.websem.2007.11.011

Guarino, N., & Welty, C. (2000). Identity, unity, and individuality: towards a formal toolkit for
ontological analysis. In ECAI 2000 (pp. 219–223).

Henze, N., Dolog, P., & Nejdl, W. (2004). Reasoning and ontologies for personalized e-learning in
the semantic web. Educational Technology & Society, 7(4), 82–97.

Hodge, G. (2000). Systems of Knowledge Organization for Digital Libraries: Beyond Traditional
Authority Files. Knowledge Organization.

Horrocks, I. (2008). Ontologies and the semantic web. Communications of the ACM. DOI 10.
1145/1409360.1409377.

Horrocks, I., Parsia, B., Patel-Schneider, P., & Hendler, J. (2005). Semantic web architecture:
Stack or two towers? In Principles and practice of semantic web reasoning (pp. 37–41). Berlin:
Springer.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., Dean, M., & others. (2004).
SWRL: A semantic web rule language combining OWL and RuleML. W3C Member
Submission, 21, 79.

Ikeda, M., Seta, K., Kakusho, O., & Mizoguchi, R. (1998). Task ontology: Ontology for building
conceptual problem solving models. In Proceedings of ECAI98 (pp. 126–133).

Informatics, S. M. (2010). The Protégé ontology editor and knowledge acquisition system
welcome to protég. Knowledge Acquisition, 2010–2010.

Jovanovic, J., Rao, S., Gasevic, D., Hatala, M., & Devedzic, V. (2007). An Ontological
Framework for Educational Feedback.

Klein, M. (2001). XML, RDF, and relatives. IEEE Intelligent Systems, 2, 26–28.
Knublauch, H. (2004). Ontology-driven software development in the context of the semantic web:

An example scenario with protege/OWL. In 1st International Workshop on the ModelDriven
Semantic Web MDSW2004.

Lee, M.-C., Ye, D. Y., & Wang, T. I. (2005). Java learning object ontology. In Advanced Learning
Technologies, 2005. ICALT 2005. Fifth IEEE International Conference on (pp. 538–542).

Li, J., Le, T. D., Liu, L., Liu, J., Jin, Z., & Sun, B. (2013). Mining causal association rules. In 2013
IEEE 13th International Conference on Data Mining Workshops (ICDMW) (pp. 114–123).

Lowe, B., Caruso, B., Cappadona, N., Worthington, M., Mitchell, S., & Corson-Rikert, J. (2011).
The vitro integrated ontology editor and semantic web application. In ICBO.

Mizoguchi, R. (2004). Tutorial on ontological engineering: Part 02: Ontology development, tools
and languages. New Generation Computing, 22, 61–96.

Mizoguchi, R., & Bourdeau, J. (2015). Using Ontological Engineering to Overcome AI-ED
Problems: Contribution, Impact and Perspectives. International Journal of Artificial
Intelligence in Education, 1–16.

Mizoguchi, R., Hayashi, Y., & Bourdeau, J. (2007). Inside theory-aware and standards-compliant
authoring system. In SW-EL’07 (18 p.).

Mustapa\csa, O., Karahoca, D., Karahoca, A., Yücel, A., & Uzunboylu, H. (2010). Implementation
of semantic web mining on e-learning. Procedia-Social and Behavioral Sciences, 2(2), 5820–
5823.

Noy, N. F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R. W., & Musen, M. A. (2001).
Creating semantic web contents with protégé-2000. IEEE Intelligent Systems and Their
Applications, 16(2), 60–71. doi:10.1109/5254.920601

Paolucci, M., & Sycara, K. (2003). Autonomous semantic web services. IEEE Internet Computing,
7(5), 34–41. doi:10.1109/MIC.2003.1232516

Papataxiarhis, V., Tsetsos, V., Karali, I., Stamatopoulos, P., & Hadjiefthymiades, S. (2009).
Developing rule-based applications for the Web: Methodologies and Tools. In Handbook of
research on emerging rule-based languages and technologies: Open solutions and
approaches.

Paschke, A., & Boley, H. (2010). Rule markup languages and semantic web rule languages. Rule
Markup Languages and Semantic Web Rule Languages, 1–24. doi:10.4018/978-1-60566-402-
6.ch001.

Protégé. (2011). The Protégé ontology editor. Financial executive (Vol. 19). doi:10.5121/ijait.
2011.1401.

References 147

http://dx.doi.org/10.1145/1409360.1409377
http://dx.doi.org/10.1145/1409360.1409377
http://dx.doi.org/10.1109/5254.920601
http://dx.doi.org/10.1109/MIC.2003.1232516
http://dx.doi.org/10.4018/978-1-60566-402-6.ch001
http://dx.doi.org/10.4018/978-1-60566-402-6.ch001
http://dx.doi.org/10.5121/ijait.2011.1401
http://dx.doi.org/10.5121/ijait.2011.1401

Romero, C., Ventura, S., & De Bra, P. (2004). Knowledge discovery with genetic programming
for providing feedback to courseware authors. User Modelling and User-Adapted Interaction,
14(5), 425–464. doi:10.1007/s11257-004-7961-2

Romero, C., Ventura, S., Hervas, C., & Gonzalez, P. (2005). Rule discovery in web-based
educational systems using grammar-based genetic programming. Data Mining VI: Data
Mining, Text Mining and Their Business Applications, 205–214. doi:10.2495/DATA050211

Shadbolt, N., Hall, W., & Berners-Lee, T. (2006). The semantic web revisited. IEEE Intelligent
Systems. http://doi.org/10.1109/MIS.2006.62.

Shah, N. K. (2012). E-learning and semantic web. International Journal of E-Education,
E-Business, E-Management and E-Learning, 2(2), 113.

Sheth, A., Ramakrishnan, C., & Thomas, C. (2005). Semantics for the semantic web: The implicit,
the formal and the powerful. International Journal on Semantic Web and Information Systems
(IJSWIS), 1(1), 1–18.

Sicilia, M.-Á., Lytras, M. D., Sánchez-Alonso, S., García-Barriocanal, E., & Zapata-Ros, M.
(2011). Modeling instructional-design theories with ontologies: Using methods to check,
generate and search learning designs. Computers in Human Behavior, 27(4), 1389–1398.

Sivashanmugam, K., Sivashanmugam, K., Verma, K., Verma, K., Sheth, A., Sheth, et al. (2003).
Adding Semantics to Web Services Standards. In Proceedings of the International Conference
on Web Services (pp. 395–401).

Srikant, R., & Agrawal, R. (1997). Mining generalized association rules. Future Generation
Computer Systems. doi:10.1016/S0167-739X(97)00019-8.

Staab, S., Studer, R., Schnurr, H. P., & Sure, Y. (2001). Knowledge processes and ontologies.
IEEE Intelligent Systems and Their Applications, 16(1), 26–34. doi:10.1109/5254.912382

Suarez-Figueroa, M. C., Gomez-Perez, A., & Fernandez-Lopez, M. (2012). The NeOn
methodology for ontology engineering. In Ontology Engineering in a Networked World
(pp. 9–34). doi:10.1007/978-3-642-24794-1

Swartout, W., & Tate, A. (1999). Guest editors’ introduction: Ontologies. IEEE Intelligent
Systems, 1, 18–19.

Tran, T., Cimiano, P., & Ankolekar, A. (2006). Rules for an ontology-based approach to
adaptation. In Proceedings—SMAP 2006: 1st International Workshop on Semantic Media
Adaptation and Personalization (pp. 49–54). doi:10.1109/SMAP.2006.31.

Vesin, B., Ivanović, M., Klašnja-Milićević, A., & Budimac, Z. (2012). Protus 2.0: Ontology-based
semantic recommendation in programming tutoring system. Expert Systems with Applications,
39, 12229–12246. doi:10.1016/j.eswa.2012.04.052

148 8 Semantic Web

http://dx.doi.org/10.1007/s11257-004-7961-2
http://dx.doi.org/10.2495/DATA050211
http://doi.org/10.1109/MIS.2006.62
http://dx.doi.org/10.1016/S0167-739X(97)00019-8
http://dx.doi.org/10.1109/5254.912382
http://dx.doi.org/10.1007/978-3-642-24794-1
http://dx.doi.org/10.1109/SMAP.2006.31
http://dx.doi.org/10.1016/j.eswa.2012.04.052

Chapter 9
Design and Implementation of General
Tutoring System Model

Abstract Regardless of used methodology, central problem in creating web-based
educational systems and taking benefits from their wide use is the fact that the
current approaches are rather inflexible and inefficient. Design of such systems must
be directed to allow reuse or sharing of content, knowledge, and functional com-
ponents of those systems. According to techniques and methodologies presented in
previous chapters, it is possible to develop modern personalized educational system
and fully use benefits that Semantic Web technologies offer. In this chapter, general
tutoring model is presented that allows building the personalized courses from
various domains. This chapter presents architecture of a general tutoring system
whose components are modelled and implemented using Semantic Web tech-
nologies. Presented tutoring system framework offers options to build, organize and
update specific learning resources (educational materials, learner profiles, learning
path through materials, and so on.).

Regardless of used methodology, central problem in creating web-based educa-
tional systems and taking benefits from their wide use is the fact that the current
approaches rather inflexible and inefficient (Aroyo and Dicheva 2004). Design of
such systems must be directed to allow reuse or sharing of content, knowledge, and
functional components of those systems. According to previous presented tech-
niques and methodologies, it is possible to developed modern personalized edu-
cational system and fully use benefits that semantic web technologies offer. In next
chapter, general tutoring model will be presented. It allows building personalized
courses from various domains.

Four basic components are necessary for building the semantic web framework
for tutoring system model (Borland 2007):

• Machine readable markup for web content. XML (eXtensible Markup
Language) is used for creation of self-describing documents. New markup
languages will be necessary to define semantics of a web content.

• Tools that can read and index semantic markup. The semantic web rely on
distributed resources indexed by a centralized knowledge base.

© Springer International Publishing Switzerland 2017
A. Klašnja-Milićević et al., E-Learning Systems,
Intelligent Systems Reference Library 112, DOI 10.1007/978-3-319-41163-7_9

149

• Development of tools and services that process semantic information. This
component can be viewed as service ready to communicate with intelligent
agents, not just humans.

• Semantic agents with capabilities to reason and to support decision making.

This chapter presents architecture of a general tutoring system model that can be
used to build courses from different domains. All elements of the tutoring system
are modelled and implemented using Semantic Web technologies. Presented
tutoring system framework offers options to build, organize and update specific
learning resources (educational materials, learner profiles, learning path through
materials, etc.).

Defined tutoring system model can deploy an unlimited number of personalized
courses from different domains and contain formal rules for adapting educational
material to each individual learner. The model includes definitions of basic concepts
of ontological architecture and specification of the relations between the defined
concepts.

Presented architecture extends the usage of Semantic Web concepts, where the
representation of each component is made by a specific ontology, allowing a clear
separation of the tutoring system components and explicit communication among
them. In addition to the ontological system architecture, adaptation rules that allow
easy incorporation and modification of personalisation options are defined.

General tutoring system model allows formalization of the educational material
and components of an existing tutoring system. Protus 2.1 is a new version of Protus
(Vesin et al. 2013). The new version is created by extending the general model
proposed in this chapter. Development of teaching materials for Java programming
and its integration in the defined tutoring system model will be shown in Chap. 10.

9.1 Architecture of General Tutoring System Model

The main purpose of the general tutoring system model is an adaptation of teaching
materials tailored to particular learners based on their knowledge, needs and desires
with the help of integrated recommendation systems. Proposed architecture is
highly modular and includes five central components: application module, adap-
tation module, domain module, learner model and session monitor (Fig. 9.1).

The domain module presents storage for all essential learning material, tutorials
and tests. It is presented with the domain ontology and describes how the infor-
mation content is structured.

The learner model is a collection of both static and dynamic data about the
learner. The system uses that information in order to predict the learner’s behaviour,
and thereby adapt educational material to his/her individual needs. This model is
presented by Learner model ontology.

The application module performs the adaptation. To be exact, the adaptation
module follows the instructional directions specified by the application module.

150 9 Design and Implementation of General Tutoring System Model

http://dx.doi.org/10.1007/978-3-319-41163-7_10

These two components are separated in order to make adding of a new adaptation
functionalities easier.

Within the session monitor component, the system gradually re-builds the
learner model during sessions, in order to keep track of the learner’s actions and
his/her progress, detect and correct his/her errors and possibly redirect the session
accordingly. At the end of every session, the learner model is updated and then
used along with other information and knowledge to initialize the next session for
the same learner. This process is carried out with adaptation rules for learner model
update.

The adaptation module contains rules for supporting the adaptive functionality
of the system. An example of adaptive functionality is a choice whether certain
learner has sufficient knowledge to study a certain lesson/document.

Integration of appropriate educational ontologies and adaptation rules for each
component of the system will allow the development of tutoring systems fully
supported by the Semantic Web technologies.

Examples of ontologies integrated in general tutoring system model, their use
and defined adaptation rules will be presented in Sects. 9.2 and 9.3. General
tutoring system model, specifications of tutoring system components, the form of
defined ontologies and precise definition of integrated adaptation rules will also be
presented.

9.2 System’s Ontologies

Over the last decade, special attention has been focused on ontologies and their use
in applications in the field of education, knowledge management end data inte-
gration. Ontology engineering is a set of actions directed toward the development of

Session monitor

Application
module

Adaptation module
Domain
module

Learner model

Learner’s interface
(interface ontology)

Server side of system
Learner model

ontology

Domain
ontology

Task
ontology

Teacher’s ontology

Teaching strategy
ontology

Rules for learner
model update

Adaptation
rules

Fig. 9.1 Architecture of general tutoring system model

9.1 Architecture of General Tutoring System Model 151

domain specific ontologies (Strohmaier et al. 2013). On that basis, the ontology
engineering is a key aspect for improving existing tutoring system.

Ontologies provide a formal and explicit definition of concepts, their attributes
and relations (Fensel 2004). One of the aims of the development of our Protus 2.1
tutoring system is the integration of the following educational ontologies:

• ontology for presenting a domain—domain ontology,
• ontology for building learner model—learner model ontology,
• ontology for presenting activities in the system—task ontology,
• ontology for specifying pedagogical actions and behaviours—teaching strategy

ontology and
• ontology for specifying behaviours and techniques at the learner interface level

—interface ontology.

Implemented set of ontologies facilitates knowledge sharing, its re-use, efficient
learner modelling, and scalability of the system. Ontologies are defined using OWL
—formal language for creating ontologies (Bechhofer 2009). Ontological archi-
tecture of our system is not only used for display of meta-data, but also for creating
decisions about the personalization and customization of educational material
towards needs of individual learners (Fig. 9.2).

When creating ontologies, it is necessary to use open, standardized languages
such as XML, RDF and OWL. They will enable the standardization and formal-
ization of content and enable reuse of system components. Therefore, tutoring
system architecture presented in this chapter will enable semantic representation of
components and implementation of system’s adaptivity (Vesin et al. 2012).

Learner model ontology
Learner modeling

 Cognitive processes monitoring
 Reports

User interface ontology
Display of educational content

 User interface adaptation
 Recommendation of resources

Teaching strategy ontology
Adaptation and personalization

options
 Performs adaptation

Task ontology
Educational material taxonomy

 Connections between concepts and resources
 Roles of concepts and resources

Domain ontology
Concepts and resources

 Structures of lessons
 Hierarchy of concepts, resources and attributes

Adaptation rules
Learning styles identification

Recommendation

Learner modeling rules
Learner model update

Fig. 9.2 Ontologies and adaptation rules in tutoring system model

152 9 Design and Implementation of General Tutoring System Model

9.2.1 Main Components of Ontologies

Ontology is a formal explicit description of concepts in the domain, their attributes
and constraints. The basic components of ontologies are (Wand et al. 1999):

• Classes (types, sorts, categories, kinds). Classes are collections of objects, i.e.
concepts.

• Individuals (Instances). Individuals are concrete objects created from classes.
• Attributes (properties, slots). Attribute is a directed binary relation that spec-

ifies class characteristics. They represent attributes of instances and sometimes
act as data values (Datatype property) or link to other instances (Object prop-
erty). OWL also has a third type of property—Annotation properties.
Annotation properties can be used to add information (metadata) to classes,
individuals and object/datatype properties. OWL allows classes, properties,
individuals and ontology itself to be annotated with various pieces of
information/meta-data. These pieces of information may take the form of
auditing or editorial information. For example, it could represent details about
creation date, author, comments or references to resources such as Web pages
etc.

• Relationships. Relations represent a way in which certain objects are in relation
to other objects.

Classes and a set of individual instances of the classes make ontology knowledge
base.

9.2.2 Domain Ontology

One of the main goals of the learning process is to understand and to acquire a body
of knowledge for a given domain (Brusilovsky 2004). Domain module presents
storage for all essential learning material, tutorials and tests. It describes how the
content intended for learning has to be structured. The domain module is structured
as a taxonomy of concepts, with attributes and relations connecting them with other
concepts, which naturally leads to the idea of using ontologies to represent this
knowledge. Ontology for a particular domain of knowledge usually contains (Vesin
et al. 2012):

• Course taxonomy—contains definitions of types and use of educational
materials. Therefore, general tutoring system model offers the possibility for
creating educational material for a presentation of theoretical explanations,
additional materials, tests, etc.

• Domain knowledge—consists of elements that represent concreate concepts
(lessons). These concepts can be divided into categories, and are specific for
each course that was developed with defined general tutoring system model. For

9.2 System’s Ontologies 153

example, following concepts should be formed in order to implement online
programming course: syntax rules, loop statements, branching statements,
methods, etc.

Proposed general tutoring system model allows development of courses from
different domains. Each course consists of a series of lessons (concepts) showing
the individual segments of the domain being taught (Fig. 9.3). Each lesson consists
of a series of resources that represent individual parts of the lesson (introduction,
explanations, examples, practice assignments, etc.). Each lesson is linked to one or
more suitable tests to check learners’ knowledge. Based on the test results, system
determines learners’ progress, update the learner model and generate personaliza-
tion options for learners.

9.2.2.1 Concepts

Ontology class Concept is used for storing data about a single lesson. Each concept
is presented by an arbitrary number of resources (class Resources) in the form of
text files, images, illustrations, charts, etc. Each resource is defined by its resource
type (class Resource type). Therefore, resources can be used to present: theory
(class Theory), examples (class Example), tasks (class Assignment), exercise (class
Exercise), explanations (class Explanation), etc. Resources defined in the general
tutoring system model are stored in the form of html documents.

Datatype properties of classes Concept and Resource are shown in Table 9.1.
Other information in the ontology is stored in the form of relations with the cor-
responding classes (Object properties), which will be shown in Sect. 9.2.3 named
Task ontology.

1st lesson (concept)Selection of
resource

Test

Learner Course
author

Learner model
ontology

Interface
adaptation

Course

Resource 1 Resource 2 Resource m

Personalisation

Learner model

2nd. lesson (concept)

Test

Resource 1 Resource 2 Resource m

nth lesson (concept)

Test

Resource 1 Resource 2 Resource m

Learners’
actions

...

...

...

...

Fig. 9.3 Educational material in general tutoring system model

154 9 Design and Implementation of General Tutoring System Model

9.2.2.2 Resources

All concepts must be supported with various types of resources. Types of resources
are defined in the resource ontology that is part of the domain ontology. During
learning sessions, system selects which of the available resources will be presented
depending on generated recommendations for particular learner.

Details about resources are kept in Resource class instances. Each instance of the
Resource class contains basic information on individual resources, which will later
be used for the subsequent selection of appropriate resources in the process of
personalization. Specific type and role are determined for every resource
(Table 9.1).

All resources are grouped according to their type, role and assigned concept and
this categorization is the basis of successful recommendations of resources during
the personalization process.

Each resource is assigned by the appropriate resource type (class ResourceType).
Topology of Resource type ontology is shown in Fig. 9.4. This ontology contains
the types of resources that are required for a specific course. It is possible to define
specific resource types depending on structure and particularities of the course
being taught. The most general resource type is DomainResource (Vesin et al.
2012). DomainResource has three subtypes: CourseMaterial, AdditionalMaterial
and ExaminationMaterial. Classes CourseMaterial and AdditionalMaterial repre-
sent the theoretical and practical explanations, respectively, that are presented to the
learners.

ExaminationMaterial can be further specialized to Task and Exam. The Exam is
consisted of various Tasks. Since the first developed course material has been for
the programming course, most types of tasks are programming oriented. Tasks
could include code completion, code correction, listing errors, etc. During the
development of courses from other domains (not programming) it is possible to
define general type tasks (class type General).

Table 9.1 Learner model attributes in classes Concept and Resource

Concept

hasId[type:int] Identification number of concept

hasName[type:string] Concepts name

Resource

hasId[type:int] Identification number of resource

hasName[type:string] Resource’s name

supports[type: string] Resource’s role

isVisited[type: string] Is resource visited?

isRecommended[type: string] Is resource recommended?

hasFileType[type: string] File type

hasRole[type: string] Resource’s role

9.2 System’s Ontologies 155

The entire educational material of a course (class CourseMaterial) can be further
subdivided into smaller instructional units. CourseMaterial can contain: introduc-
tion (presented by Introduction class), basic information (class BasicInfo), goals
(class Goals), theory (class Theory), various explanations (class Explanation) and
definitions of project assignments (class ProjectAssignements). All these types of
materials correspond to the basic types of educational materials of the programming
course but can also be used for the more general courses. It is also possible to define
new types of materials.

Ontology presented in Fig. 9.4 provides further information for the Task
ontology and the Teaching strategy ontology which will be explained in more
details in Sects. 9.2.3 and 9.2.4.

9.2.3 Task Ontology

Task ontology is a vocabulary for domain independently description of a problem
solving structure and educational tasks (Vesin et al. 2013). It complements the
domain ontology by representing semantic features of the problem-solving
(Devedzic 2006). Task ontology specifies domain knowledge by giving roles to
each object and presents relations between them. This ontology does not describe

ResourceType

CourseMaterial

ResourceType

AdditionalMaterial

ResourceType

ExaminationalMaterial

ResourceType

Introduction

ResourceType

Theory

ResourceType

SintaxRule

ResourceType

ProjectAssignments

ResourceType

BasicInfo

ResourceType

Goals

ResourceType

Example

ResourceType

Excercise

ResourceType

Exam

ResourceType

Task

ResourceType

CompliteCode

ResourceType

ResultTask

ResourceType

CorrectCodeTask

ResourceType

ErrorsTask

ResourceType

FullProgram

subTypeOf

subTypeOf subTypeOf subTypeOf subTypeOf
subTypeOf

subTypeOf

subTypeOf

subTypeOf

subTypeOf

subTypeOf

subTypeOf

subTypeOf

subTypeOf

subTypeOf

subTypeOf

ResourceType

DomainResource

ConsistOf

Fig. 9.4 An excerpt of resource ontology of general tutoring system model

156 9 Design and Implementation of General Tutoring System Model

the content taught by the learning material. Instead, each class of the ontology
stands for a particular instructional role for a learning concept.

Task ontology shows the role of specific resource from domain otology. For
example, if resource has fact or definition role it is used to increase basic knowledge
and if its role is example, than it is used to increase learner’s practical skills.

An excerpt of task ontology of resources in General tutoring system model is
depicted in Fig. 9.5. The ontology represents learning material grouped by the
resources. The class Concept is used to annotate a unit of knowledge which is
represented by some Resource.

Details about resources are kept in Resource class instances. Each instance of
Resource class contains basic information on individual resources, which are used
for the subsequent selection of appropriate resources in the process of personal-
ization. Specific type and role is determined for every resource.

Each concept is presented to a learner using number of resources. In this way,
concepts in the general tutoring system model contain: introduction, theory,
explanations, examples, tasks, etc. Each of these elements is shown using adequate
resources, for example, HTML or text files, images in jpg format, etc.

Concepts and resources can be arranged by the hasPrerequisite property. The
hasPrerequisite property is proposed for navigational purposes. It allows pointing
out concepts/resources that must be mastered before starting to study a certain
concept/resource, and the concepts/resource for which it is a prerequisite.
Concept/resource will not be covered unless that the prerequisite condition is sat-
isfied. There can be different sequence of concepts/resources that depends on
navigational sequence determined for particular learner. SWRL rules update
ontologies and implement navigation through the educational materials.

Resources play certain roles in particular resource fragments. For example, some
resources represent the crucial information, while the others just represent a mean to
provide additional information or a comparison.

In the proposed ontology, we represent these facts by instances of ResourceRole
class and its two properties: hasRole and supports. For example, resources like

Fig. 9.5 Task ontology in general tutoring system model

9.2 System’s Ontologies 157

BasicInfo and Example have different roles. The role of the first is to represent
introductory information for lesson and the role of the former is to provide addi-
tional information.

On the other hand, both resources support adaptation to learner with Reflective
style of learning (Vesin et al. 2011). Resource properties can be further extended by
assigning a ResourceType.

Similarly, the resources roles can be further extended by specifying their types.
Concepts, their types and resources form task ontology of Protus 2.1 system.

9.2.4 Learner Model Ontology

Building the learner model and tracking related cognitive processes are important
aspects in providing personalization. The learner model serves for a representation
of information about an individual learner that is essential for an adaptive system to
provide the adaptation effect. The system uses that information from learner model
in order to predict the learner’s behaviour, and thereby adapt to his/her individual
needs (Vesin et al. 2012). Data from learner model in Protus 2.1 is classified along
three layers as presented in Fig. 9.6.

Learner model

Personal Data Performance data Learner history

username

experience

password

affiliation

prior knowledge

gender

address

date of birth

name

reasoning ability

skills gained

interaction kind

delivery mode

instruction mode

cognitive style

collaborative skill

concept history

results

test id

test log

overall time

current level

current unit

unit log

prerequisiteness

knowledge level

Fig. 9.6 Layers of learner model

158 9 Design and Implementation of General Tutoring System Model

• Objective information, which includes data supplied directly by the learner
like: personal data, previous knowledge, preferences, etc. The learner edits this
data during his/her registration on the system.

• Learner’s performance, which includes data about level of knowledge of the
subject domain, his/her misconceptions, progress and the overall performance
for particular learner.

• Learning history, which includes information about lessons and tests learner
has already studied, his/her interaction with system, the assessments (s)he
underwent, etc.

The learner model stores personal preferences and information about the lear-
ner’s mastery of domain concepts (Ullrich 2004). The information is regularly
updated according to the learner’s interactions with the content and is used by the
Teaching strategy ontology to draw conclusions and decisions.

Learner model ontology collects information about a learner and his/her actions:
learner’s username, access time and numerical results of interaction (visited
resources, test results, etc.). This ontology is automatically updated whenever a
request or action reaches the Web server (for example, visited lesson, resource,
calculated test grade, etc.).

The ontology illustrated in Fig. 9.7 offers the opportunity to map all information
about the learner, starting from confidential data (like password) to the knowledge
evolution history.

Tutoring system model defines two categories of users: teachers (class Teacher)
and learners (class Learner). Teacher and Learner classes are subclasses of class
User.

The class Learner is built from three components: Performance, PersonalInfo,
and LearningStyle. These three classes are related to association through
hasPerformance, hasInfo, and hasLearningStyle properties (Fig. 9.7).

Classes Learner, Performance, PersonalInfo i LearningStyle represent Learner
model ontology. Each class contains a number of attributes (Datatype Properties)

Class

User

Class

Performance

Class

PersonalInfo

Class

LearningStyle

Class

Visual/Verbal

Class

Sensing/Intuitive

hasCategory

hasLearningStyle

hasPerformance

hasInfo

isTypeOf

isTypeOf

Class

Teacher

Class

Learner

isCategoryOf

isCategoryOf

isCategoryOf

isCategoryOf

Class

Sequential/Global

Class

Active/ReflectiveClass

LearningStyleCategory

Fig. 9.7 Learner model ontology in general tutoring system model

9.2 System’s Ontologies 159

that are used to store data about each individual learner. Attributes of the classes
Learner, Performance, PersonalInfo and LearningStyle are shown in Table 9.2.
Other information are stored in the ontology using relationships with appropriate
classes (Object properties), which will be shown later in this chapter.

Class LearningStyle represents the preferred learning style for particular learner.
This class offers four categories to the dimensions of the Felder-Silverman
Learning Style Model (Felder and Silverman 1988):

• sequential/global,
• active/reflective,
• visual/verbal and
• sensing/intuitive.

At run time, learner interacts with a tutoring system. These interactions can be
used to draw conclusions about possible his/her interests, goals, tasks, knowledge,
etc. These conclusions can be used later for providing personalization. Ontology for
learner observations should therefore provide a structure of information about
possible learner interaction.

Figure 9.8 depicts such ontology as a part of Learner model ontology. Learner
performance is maintained according to a class Interaction. Interaction is based on

Table 9.2 Class attributes of learner model ontology

Learner

id [type:int] Learner’s identification number

PersonalInfo

learner[type:int] Learner’s identification number

name[type:string] Learner’s name

lastname[type:string] Learner’s last name

gender[type:string] Learner’s gender

address[type:string] Learner’s address

birthDate[type:dateTimeStamp] Learner’s date birth

birthPlace[type:string] Learner’s birth place

previousKnowledge[type:string] Previous knowledge of the learner

affiliation[type:string] Learner’s affiliation

Performance

learner[type:int] Learner’s identification number

course[type:int] Active course’s code

percentage[type:double] Percentage of course

avgGrade[type:double] Average grade

lesson[type:int] Last lesson

curLesson[type:int] Current lesson

resurs[type:int] Current resource

LearningStyle

learner[type:int] Learner’s identification number

160 9 Design and Implementation of General Tutoring System Model

actions taken by specific learner, during specific Session. Interaction implies a
Concept learned from the experience, which is represented by conceptUsed prop-
erty. Interaction has a certain value for Performance, which is in this context
defined as a floating point number and restricted to the interval from 1 to 5. This
ontology is responsible for updating the Learner model ontology.

9.2.5 Teaching Strategy Ontology

Authoring of adaptation and personalization is actually authoring of learner models
and applying different adaptation strategies and techniques to ensure efficient tai-
loring of the learning content to the individual learners and their learning style
(Aroyo and Mizoguchi 2003; Vesin et al. 2012).

Figure 9.9 shows how the adaptation is carried out by the Teaching strategy
ontology. The decisions are drawn on the basis of the information contained in the
Condition class (that is generated by the information about learning style and
performance of the learner) as well as teaching goals. Class AdaptationType con-
tains information about type of adaptation and are composed of data coming from
several other components such as Learner model ontology, Task ontology and
Domain ontology.

Personalization presents the choice of the most appropriate learning pattern or
resource that will be recommended to the learner. This action depends on many
conditions but it implies only one decision. The decision determines what concept
and resource the system is going to present to the learner.

Class

Performance

Class

Interaction

Class

InteractionType

Class

Learner

Class

Session

conceptUsed

hasGradehasResult

hasInteraction

partOf

began ended

hasType

External

TimeAndDate

External

Float

Class

Concept

Fig. 9.8 Ontology for learner observation and modeling

9.2 System’s Ontologies 161

9.2.6 Interface Ontology

Interface ontology is result of the final stage of communication among the different
components of the architecture. Figure 9.10 shows the steps performed within the
Interface ontology. System reads a decision from the Teaching strategy ontology,
and based on that Decision it creates Navigation sequence of resources recom-
mended for particular learner and generates an interface view to the learner (Vesin
et al. 2012).

For example, if Decision includes recommending certain resource for learner
than presentation will contain Resource of specific Resource type. On the other
hand, if Decision contains data about recommended navigational pattern, then
Protus 2.1 adds recommended Resource to current Navigational sequence.

Interface ontology can be used to specify the content of the pages or to stan-
dardize content and query vocabulary. This process is implemented with adaptation
rules and will be described in Sect. 9.3.

Class

Personalization

Class

LearningStyle

Class

Condition

Class

TeachingGoalsClass

CurrentGoal

Class

NavigationSequence

Class

Resouce

Class

BehaviourPattern

Class

Decision

Class

Performance

determines

basedOn

generates

generates

Class

Learner

hasLearningStyle

hasPerformance

isTypeOf

basedOn

basedOn

consistsOf
isTypeOf

Class

Resource

Fig. 9.9 Teaching Strategy ontology of general tutoring system model

Class

Decision

Class

Presentation

Class

NavigationSequence

implements
creates

consistsOf

Class

Resource

Fig. 9.10 Interface ontology
of general tutoring system
model

162 9 Design and Implementation of General Tutoring System Model

9.3 Adaptation Rules

SWRL rules are one of the most popular forms of knowledge representation, due to
its simplicity, comprehensibility and expressive power (Romero et al. 2006). There
are different types of adaptation rules depending on the knowledge they store. They
are referred to as (as described in Sect. 8.6):

• decision rules,
• association rules,
• classification rules,
• prediction rules,
• causal rules,
• optimization rules, etc.

Rules used in general tutoring system model can be categorized as (Vesin et al.
2012):

• Learner modelling rules that add knowledge about a learner. They are nec-
essary for the learner style identification based on observed learning preferences.

• Adaptation rules that define the strategies of adaptation, taking into account
domain features, system adaptation goals, user features, context and used pre-
sentation methods. They are necessary for content adaptation based on identified
learning style and/or learning preferences for every particular learner (Popescu
et al. 2007).

Adaptation rules for reaching the adaptation goal can be defined taking into
account the knowledge domain, learners’ current knowledge, his/her preferences and
learning style. Also, the definition of adaptation rules requires considering the set of
available adaptation methods and techniques (such as hiding text/links, link anno-
tations, presentation methods, altering navigation sequences, etc.) (Carmagnola et al.
2005).

The advantage of presenting teaching strategies in the form of SWRL rules is
that these strategies can be explicitly presented, viewed, edited and re-used in other
systems.

9.3.1 Syntax of Adaptation Rules

The proposed rules consist of an antecedent (body) and a consequent (head), each
of which consists of a (possibly empty) set of atoms (Horrocks et al. 2004).

Informally, meaning of the rule is: if the antecedent holds (is “true”), then the
consequent must also hold. A typical SWRL rule is of the following form:

9.3 Adaptation Rules 163

http://dx.doi.org/10.1007/978-3-319-41163-7_8

a1^a2^. . .^an!b1^b2^. . .^bm
where ai and bi are OWL atoms of the following forms:

• Concepts, e.g., C(x), where C is an OWL description, in general, and x is
either a variable, an OWL individual (facts about class membership, property
values of individuals or facts about individual identity) or a data value.

• Object properties, e.g., P(x,y), where P is an OWL property and x, y are
either variables, individuals or data values.

• Datatype properties, e.g., P(x,y), where P is an OWL property, x is variable
or individual, while y is a data value.

• B(x1, x2, …, xn), where B is a built-in relation and x1, x2, …, xn are
either variables, individuals or data values.

• SameAs(x,y) or differentFrom(x,y) where x, y are either variables,
individuals or data values.

An empty antecedent is treated as trivially holding (true), and an empty con-
sequent is treated as trivially not holding (false). Rules with an empty antecedent
can thus be used to provide unconditional facts; however such unconditional facts
are better stated in OWL itself, i.e., without the use of the rule construct.

Non-empty antecedents and consequents hold if all of their constituent atoms
hold, i.e., they are treated as conjunctions of their atoms.

While the abstract SWRL syntax is consistent with the OWL specification, and is
useful for defining XML and RDF serializations, it is rather verbose and not par-
ticularly easy to read (Horrocks et al. 2004). In the rest of the section we will,
therefore, often use a relatively informal human readable form similar to that used
in many published papers.

In this informal syntax, a rule has the form:

antecedent) consequent

where both antecedent and consequent are conjunctions of atoms written as
a1 ∧ … ∧ an.

Variables are indicated using the standard convention of prefixing them with a
question mark (e.g., ?x). Using this syntax, a rule asserting that the composition of
parent and brother properties implies the uncle property would be written:

parentð?x; ?yÞ ^ brotherð?y; ?zÞ) uncleð?x; ?zÞ

This code defines the rule: if x, y and z are instances of the class person, and if
relations are defined such that the person y is parent of a person x and person y and
z are brothers, then automatically person z is uncle of persons x, i.e. relations uncle
is defined over these two instances of the class person.

164 9 Design and Implementation of General Tutoring System Model

In this syntax, built-in relations that are functions can be written in appropriate
notation for functions, i.e.:

?x ¼ op : numeric�add 3; ?zð Þ

can be written instead of:

op : numeric�add ð?x; 3; ?zÞ

During learning sessions, the most important system’s task is execution of rules
and the subsequent adaptation of the learner interface. Each rule is evaluated and, if
all conditions hold, the body (action) of the rule is executed.

Defined rules of presented tutoring system model have general form and could
be used in other systems, for development of courses from other domains. System
administrators using Protégé system can change, delete or add new SWRL rule
adaptations which allow adding new personalisation options. Protégé offers
SWRLTab editor for defining SWRL adaptation rules.

The remainder of this section presents the approach of defining rules for the
adaptation and personalisation in a general tutoring system model. Typical rules for
adaptation of teaching materials to the learner’s needs are presented. Adaptation
based on the learning style identification by Felder-Silverman model will be pre-
sented first, followed by rules for generating recommendations and update of
learner model ontology.

9.3.2 Learning Styles Identification

There are over seventy identifiable approaches to investigate and/or describe
learning style preferences as presented in the Sect. 3.1. We decided to use in our
system one such data collection instrument, called Index of Learning Styles
(ILS) (Soloman and Felder 2005). The ILS is a 44 question, freely available,
multiple-choice learning styles instrument, which assesses variations in individual
learning style preferences across four dimensions or domains, including two cate-
gories of learners in each dimension:

• Information Processing domain: Active and Reflective learners,
• Information Perception domain: Sensing and Intuitive learners,
• Information Reception domain: Visual and Verbal learners,
• Information Understanding domain: Sequential and Global learners.

In our system, before initial session, and after learning style has been determined
by the ILS (questionnaire at the beginning of the course), current learning style
category of the particular learner must be written in Learner model ontology (Vesin
et al. 2012).

9.3 Adaptation Rules 165

http://dx.doi.org/10.1007/978-3-319-41163-7_3

For example, if system determines that learner belongs to Active category within
Information Processing domain, Learner model ontology should be updated with
that fact with the appropriate rule:

Learner(?x) ∧ hasLearningStyle(?x,?y) ∧ hasCategory(?y,?z) ∧
isCategoryOf(?z,active) → hasLearningStyle(?x,active)

AR1

The meaning of the rule AR1 is: if the active learning style is determined for the
current learner x, then learner model ontology should be updated and active
learning style should be assigned to that learner (active property). Analog appro-
priate rules support entering other categories within different learning styles
domains.

At the beginning of every session, system requests information about the status
of the course from the Learner model ontology for the particular learner (Fig. 9.7).
This data includes information about the current lesson and the learning style
category of learner within each of the four domains of the ILS. Request for
appropriate resources which will be presented to the learner, based on this data, is
sent to the Application module. Further, all activities of learners are monitored, as
well as all requests (s)he send to the system.

Personalization actions and presentation of lessons are determined by ILS and
learners performance. If conditions (that personalization is based on) are generated
by the learning style of the learner (Fig. 9.8) then rule system starts personalization
based on appropriate condition. For learner with active learning style, generated
condition is act, for learner with reflective learning style generated condition is ref,
etc.

Examples of rules that implement those actions are:

Learner(?x) ∧ hasLearningStyle(?x,active) ∧ Generates
(active, ?z) ∧ Condition (?z) → Condition(act)

AR2

Learner(?x) ∧ hasLearningStyle(?x, reflective) ∧ Generates
(reflective, ?z) ∧ Condition (?z) → Condition(ref)

AR3

The meaning of the rules AR2 and AR3 are: if the currently active learner x has a
particular learning style (active/reflective) and this style generates a certain con-
dition z then an instance of the appropriate class Condition should be initialized
(active style generates a condition act, reflective style generates condition ref).

Generated conditions are used for determining further actions which will be
described in detail later in this section.

After conditions are determined, system makes appropriate decision for pre-
sentation based on adaptation type (Vesin et al. 2012).

There are three adaptation types, so far implemented in General tutoring system
model: styleMatch (matching appropriate learning styles), adaptInterface
(displaying/hiding interface elements) and navigation (altering navigation through
course).

166 9 Design and Implementation of General Tutoring System Model

Several rules for making decisions about further personalization are:

Personalisation(?p) ∧ basedOn(?p,?c) ∧ Condition(act) ∧
CurrentGoal(?g) isTypeOf(?g, stylematch)→ determines(?p,
act100)

AR4

Personalisation(?p) ∧ basedOn(?p,?c) ∧ Condition(ref) ∧
CurrentGoal(?g) isTypeOf(?g, stylematch)→ determines(?p,
ref100)

AR5

Personalisation(?p) ∧ basedOn(?p,?c) ∧ Condition(act) ∧
CurrentGoal(?g) isTypeOf(?g, adaptinterface)→ determines(?
p, act101)

AR6

Personalisation(?p) ∧ basedOn(?p,?c) ∧ Condition(ref) ∧
CurrentGoal(?g) isTypeOf(?g, adaptinterface)→ determines(?
p, ref101)

AR7

Personalisation(?p) ∧ basedOn(?p,?c) ∧ Condition(act) ∧
CurrentGoal(?g) isTypeOf(?g, navigation)→ determines(?p,
act102)

AR8

Personalisation(?p) ∧ basedOn(?p,?c) ∧ Condition(ref) ∧
CurrentGoal(?g) isTypeOf(?g, navigation)→ determines(?p,
ref102)

AR9

System makes a decision based on the current learning style of the learner and
current adaptation type. Therefore, active instances of Decision class are deter-
mined. Decision named act100 is activated when learner’s current learning style is
active and styleMatch adaptation type needs to be implemented. Decision named
ref101 is activated when learner’s current learning style is Reflective and
adaptInterface adaptation type needs to be implemented, etc.

Further personalization depends of Decision made by previous rules.

9.3.2.1 Adaptation Rules in Information Processing Domain: Active
and Reflective Learners

Within Information Processing domain it could be distinguished example-oriented
learners, named Reflectors, and activity-oriented learners, named Activists (Kolb
1984).

Active learners tend to retain and understand information best by doing some-
thing active with it—discussing or applying it or explaining it to others.

Reflectors are people who tend to collect and analyse data before taking an
action. They may be more interested in reviewing other learners’ and professional
opinions rather than doing real activities.

In General tutoring system model, a learner with the active learning style is
shown an activity first, then a theory, explanation and example at the end
(Klašnja-Milićević et al. 2011).

For example, in case of a specific learner style, the recommended action would
be to present the learner first with the preferred media type and then with the

9.3 Adaptation Rules 167

alternative representation types. Several rules that implement presentation of
sequencies of resources are:

Resource(?x) ∧ isTypeOf(?x, excercise) ∧ Resource(?y) ∧
isTypeOf(?y,example) ∧ Decision(act100) → hasPrerequisite
(?y,?x)

AR10

Resource(?x) ∧ isTypeOf(?x, theory) ∧ Resource(?y) ∧ isTypeOf
(?y,example) ∧ Decision(act100) → hasPrerequisite(?x,?y)

AR11

Purposes of the previous rules are to define prerequisites among resources. The
meaning of the rules AR10 is: if adaptation under the symbol ACT100 is chosen for
active learner then resources that present exercises have priority in respect to
resources that display examples. Therefore, the rule AR10 defines that exercise is
prerequisite for presenting an example and meaning of the rule AR11 is to assign
higher priority for presenting the theory over examples.

For the learner with the reflective style this order is different—(s)he is shown an
example first, then an explanation and theory, and finally (s)he is asked to perform
an activity.

Example of rules that adapt the order of resources based on reflective learning
style are:

Resource(?x) ∧ isTypeOf(?x, excercise) ∧ Resource(?y) ∧
isTypeOf(?y, example) ∧ Decision(ref100) → hasPrerequisite
(?x,?y)

AR12

Resource(?x) ∧ isTypeOf(?x, theory) ∧ Resource(?y) ∧ isTypeOf
(?y, example) ∧ Decision(ref100) → hasPrerequisite(?y,?x)

AR13

Meanings of these rules (AR12 and AR13) are analogous to previously mentioned
(AR10 and AR11). From the learners’ point of view, results of the firing this rules are
displaying resources in adequate order. Examples of interface for learners with active
and reflective learning style are presented in Figs. 9.11 and 9.12, respectively.

Other form of personalization for Information processing domain is link anno-
tation. Every resource is given a certain role. For example, if resource has fact or
definition role it is used to increase basic knowledge (preference of the reflective
learners).

On the other hand, if role of a resource is to present examples then this resource
is used to increase the practical knowledge of learners (for the activists). If certain
role is predefined for learners with active learning style, than that resource is
recommended to learner. The corresponding rule that implements this activity is:

Learner(?x) ∧ hasLearningStyle(?x,active) ∧ Resource(?r) ∧
ResourceRole(?c) ∧ supports(?r,?c) ∧ supports (?r, active) →
isRecommended(?r, true)

AR14

168 9 Design and Implementation of General Tutoring System Model

The meaning of the previous rule is: if current learner has active learning style,
and if resource r has a defined role to display teaching materials for active learners,
then this resource for that learner should be recommended (property
isRecommended receives true value). isRecommended is a data valued property
atom that consists of an OWL data property (recommended).

With rule AR14, recommendation status of that resource is set to true, therefore
changes in user interface will be made.

In this case, system seeks resources that are predefined for learners with active
learning style. For example, a learner with the active learning style can participate
in activities such as quiz, chatting, and discussion options. Therefore, system
annotate appropriate link that provides communication options (Fig. 9.13). Similar
rules are used for adaptation to other learning styles, too.

9.3.2.2 Adaptation Rules in Information Perception Domain: Sensing
and Intuitive Learners

Within Information Perception domain sensing learners, named Sensors, tend to be
patient with details and good at memorizing facts and doing hands-on (laboratory)
work. On the other hand intuitive learners, named Intuitors may be better at
grasping new concepts and are often more comfortable than sensing learners with
abstractions and mathematical formulations.

Sensors often like solving problems by well-established methods and dislike
complications and surprises. On the other hand, Intuitors like innovation and dislike
repetition. Sensors tend to be more practical and careful than Intuitors. Intuitors
tend to work faster and to be more innovative than Sensors.

Fig. 9.11 User interface for activists

Fig. 9.12 User interface for reflectors

Fig. 9.13 Recommendation of Communication option

9.3 Adaptation Rules 169

For example, it is assumed that sensing learners will be interested in additional
materials, therefore they may click the button for additional material on the interface
(Fig. 9.14.) (Klašnja-Milićević et al. 2011). Rules that implement these actions are:

Learner(?x) ∧ hasLearningStyle(?x,sensing) ∧ Resource(?r) ∧
isTypeOf(?r, excercise) ∧ ConceptRole(?c) ∧ supports(?r,?c)
∧ supports (?c, sensing) → isRecommended(?r, true)

AR15

Learner(?x) ∧ hasLearningStyle(?x,sensing) ∧ Resource(?r) ∧
isTypeOf(?r, example) ∧ ConceptRole(?c) ∧ supports(?r,?c) ∧
supports (?c, sensing) → isRecommended(?r, true)

AR16

These adaptation rules set value, of recommendation attribute of specific
instances of resources class, to true. In the above case, rules AR15 and AR16 are
used to recommend resources to Sensor learner. If Recommended attribute for
resource is set to true, it gives an information to Teaching strategy ontology that
particular resource is appropriate to learner and it could be presented to him/her.

Intuitors are provided with abstract material, formulas and concepts. Adequate
explanations are presented in a form of block diagrams or exact syntax rules.
Example of rule that implements those actions is:

Learner(?x) ∧ hasLearningStyle(?x,intuitive) ∧ Resource(?r)
∧ isTypeOf(?r, explanation) ∧ ConceptRole(?c) ∧ supports(?
r,?c) ∧ supports (?c, intuitive) → isRecommended(?r, true)

AR17

Rule AR17 is used to recommend syntax rule resource to Intuitive learner that
results in adding appropriate tab in tabbed pane (Fig. 9.15).

9.3.2.3 Adaptation Rules in Information Reception Domain: Visual
and Verbal Learners

Within Information reception domain, there are two categories of learners: Visual
and Verbal. Visual learners remember best what they see—pictures, diagrams, flow
charts, time lines, and demonstrations (Klašnja-Milićević et al. 2011).

Fig. 9.14 Recommendation of Additional material option

Fig. 9.15 Recommendation of Syntax rules option

170 9 Design and Implementation of General Tutoring System Model

Verbal learners get more out of words—written and spoken explanations.
System recommends appropriate resources with the following rules:

Learner(?x) ∧ hasLearningStyle(?x,visual) ∧ Resource(?r) ∧
ConceptRole(?c) ∧ supports(?r,?c) ∧ supports (?c, visual) →
isRecommended(?r, true)

AR18

Learner(?x) ∧ hasLearningStyle(?x,verbal) ∧ Resource(?r) ∧
ConceptRole(?c) ∧ supports(?r,?c) ∧ supports (?c, verbal) →
isRecommended(?r, true)

AR19

The rule AR18 is used for recommending resources that contain pictures and
diagrams to Visual learner (Fig. 9.16) while former rule recommends resource with
written explanation to Verbal learner (Fig. 9.17). The examples of verbal and visual
presentation of a learning material are given for the Java programming course that is
implemented in Protus 2.1. Details of this course will be presented in Chap. 10.

9.3.2.4 Adaptation rules in Information Understanding domain:
Sequential and Global learners

Within Information Understanding domain, Sequential learners tend to follow
logical stepwise paths in finding solutions.

On the other hand Global learners may be able to solve complex problems
quickly or put things together in novel ways once they have grasped the big picture,
but they may have difficulty explaining how they did it.

Fig. 9.16 Lesson for visual learners

9.3 Adaptation Rules 171

http://dx.doi.org/10.1007/978-3-319-41163-7_10

Sequential learners prefer to go through the course gradually, in a linear way
with each step followed logically from the previous one, while Global learners tend
to learn in large leaps, sometimes skipping learning objects and jumping to material
that is more complex.

According to these characteristics of learning styles, Sequential learners go
through lessons by in advance predefined order (Klašnja-Milićević et al. 2011)
while the Global learners are provided with the possibility to freely jump through
the courseware. To define order of concepts, next rules are implemented (rules are
defined only for the adaptation to a sequential learning style because learners with a
global learning style are presented learning material in a predefined sequence):

Learner(?x) ∧ hasLearningStyle(?x,explanation) →
hasPrerequisite(loopStatements,explanation)

AR20

Learner(?x) ∧ hasLearningStyle(?x,sequential) →
hasPrerequisite(executionControl,loopStatements)

AR21

Learner(?x) ∧ hasLearningStyle(?x,sequential) →
hasPrerequisite(classes,executionControl)

AR22

itd.

Adaptation rules AR20, AR21 and AR22 are used to define presentation layout
for sequential learners. Where hasPrerequisite is a data valued property atom that
defines prerequisites among resources. Based on the defined prerequisites, system
can make decision whether to present one lesson in time in sequential order (for
Sequential learners) or to present links to all lessons at ones to learner (in case of
Global learners).

In the first case, the interface elements for sequential navigation (in our case the
buttons for Next/Previous resource/lesson) will be shown to a learner (Fig. 9.18).

Fig. 9.17 Lesson for verbal learners

172 9 Design and Implementation of General Tutoring System Model

On the other hand, interface elements for non-sequential navigation will be
presented (Fig. 9.19) for Global learner.

Adaptation rules, which are used to form the learner model and update Learner
model ontology will be presented in next section.

9.3.3 Rules for Building Learner Model

This section describes several examples of methods that can be used for a learning
style modelling. The adaptive feedback in existing e-learning systems is usually
based solely on an initial assessment of the learning style profile, which is then

Fig. 9.18 Navigation for sequential learners

Fig. 9.19 Elements for
global learners

9.3 Adaptation Rules 173

expected to remain stable (Klašnja-Milićević et al. 2011). However, research
indicates that learning styles of an individual can vary depending on the task or the
learning content. Hence, it seems counter-productive to lock the learner into a fixed
learning style profile after the initial assessment

When a learner is logged in, a session is initiated based on learner specific
learning style and accordingly sequence of lessons are recommended to him/her.
A learner has possibility to change order of lessons (s)he attends. After selecting a
lesson, from the collection of lessons available, system chooses presentation
method of lesson based on the learners preferred style. For the rest of the lesson,
learner is free to switch between presentation methods by using the media expe-
rience bar (Fig. 9.20). When the learner completes the sequence of learning
materials, the system evaluates his/her knowledge degree for each lesson.

Following rule updates learner model (Vesin et al. 2011):

Learner(?x) ∧ Interaction(?y) ∧ hasInteraction(?x,?y) ∧
Resource(?r) ∧ resourceUsed(?y,?r) ∧ Performance(?p) ∧
hasResult(?y,?p) ∧ hasGrade(?p,?m) ∧ swrlb:greaterThan(?m,
1) → isLearned(?r, true) ∧ hasPerformance(?x,?p)

AR23

With the rule AR23, system is using recorded results of learner’s interaction,
earned grade and data about used resources to memorize learner’s performance in
the session. Variables x, y, r, m and p present Learner, Interaction, Resource, Grade
and Performance.

Resource presents a learning object which has been accessed by the learner in
the current session.

Fig. 9.20 Experience bar

174 9 Design and Implementation of General Tutoring System Model

Meaning of the rule AR23 is: if the learner interacts with specific concept and
during that interaction (s)he took the test and earned specific grade, than system
should memorize that learner’s performance. In addition, isLearned property of that
particular concept should be set to true.

Rule AR23 is only executed when learner earn positive grade.
If learner shows insufficient knowledge, next rule is executed:

Learner(?x) ∧ Interaction(?y) ∧ hasInteraction(?x,?y) ∧
Resource(?r) ∧ resourceUsed(?y,?r) ∧ Performance(?p) ∧
hasResult(?y,?p) ∧hasGrade(?p,?m) ∧ swrlb:equal(?m, 1) →
hasExecuted(?x,?r) ∧ hasPerformance(?x,?p)

AR24

Previous rule marks concept as executed but learned status is still left negative,
meaning that new concept that supports same learning object will be used in next
iteration.

If learner does not provide required level of performance results within session
with presentation method used for certain learning style category, his/her current
learning style category will be modified by next rule:

Learner(?x) ∧ hasLearningStyle(?x,verbal) ∧ Interaction(?i)
∧ hasInteraction(?x,?i) ∧ Resource(?r) ∧ resourceUsed(?i,?r)
∧ ResourceRole(?s) ∧ hasRole(?r,?s) ∧ supports(?s, verbal) ∧
Performance(?p) ∧ hasResult(?i,?p) ∧ hasGrade(?p, grade) ∧
swrlb:lessThan(grade, required) → hasLearningStyle(?x,
visual)

AR25

Variables x, i, r, s and p present Learner, Interaction, Resource, Resource role
and Performance, respectively. Meaning of the rule is: if in any time of the exe-
cution of system, exists learner with Verbal learning style which interacts with
system and during that interaction (s)he had accessed appropriate resource but not
earned sufficient grade (required grade level is kept in global value required), than,
learning style of that learner should be changed.

If initial learning style for learner was visual, than next rule would be executed:

Learner(?x) ∧ hasLearningStyle(?x, visual) ∧ Interaction(?i)
∧ hasInteraction(?x,?i) ∧ Resource(?r) ∧ resourceUsed(?i,?r)
∧ ResourceRole(?s) ∧ hasRole(?r,?s) ∧ supports(?s, visual) ∧
Performance(?p) ∧ hasResult(?i,?p) ∧ hasGrade(?p, grade) ∧
swrlb:lessThan(grade, required) → hasLearningStyle(?x,
verbal)

AR26

Rule AR26 launches for learners with visual learning style. The meaning of the
rules is: if learner x with Verbal learning style interacts with system and during that
interaction (s)he had accessed appropriate resource r but not earned sufficient grade

9.3 Adaptation Rules 175

(required grade level is kept in global value required), than, learning style of that
learner should be changed to other style from Information reception domain: i.e.
Visual learning style. That implies that in next session, learner will be presented
with resources that are defined to support that new learning style category.

Similar rules will be executed for other categories of learning styles
(intuitive/sensing, global/sequential and active/reflective).

9.3.4 Adaptation Based on Resource Sequencing

Resource sequencing is a well-established technology in the field of intelligent
tutoring systems (Janssen et al. 2007). The idea of resource sequencing is to gen-
erate a personalized course for each learner by dynamically selecting the most
optimal teaching actions, presentation, examples, task or problems at any given
moment. By optimal teaching action it is considered an operation that in the context
of other available operations brings the learner closest to the ultimate learning goal.
Most often the goal is to learn and acquire some knowledge up to a specific level in
an optimal amount of time. However, it is easy to imagine other learning goals,
such as minimizing learner error rates in problem solving.

Adaptation rules that generate recommendations in general tutoring system
model can be divided into two categories:

• off-line rules,
• recommendation rules.

The details of the recommendation process and examples of implemented rules
are presented in the rest of the section.

9.3.4.1 Off-Line Rules

Off-line rules use data from Learner model ontology on-the-fly to recognize
learners’ goals and content profiles. Learners are grouped into clusters, i.e. indi-
vidual learning styles categories within the four defined domains of learning styles.
Based on the results of the questionnaires it was possible to define 16 (24) clusters.
Clusters are used to identify common features and activities of learners from the
same cluster (Vesin et al. 2011).

At the beginning of the learning process in our system, Protus 2.1 distinguishes
cluster that learner belongs to with one of the appropriate rules. System generates a
list of recommended learning materials and activities to learners from the same
cluster.

For example, learners from cluster cl1 belong to following categories: active,
sensitive, visual and sequential within the domains: Information processing,
Information perception, Information reception and Information understanding,
respectively. Then, learners from cluster cl2 belong to following categories: active,

176 9 Design and Implementation of General Tutoring System Model

sensitive, visual and global learners within the domains: Information processing,
Information perception, Information reception and Information understanding,
respectively. Table 9.3 contains a complete list of the clusters and corresponding
learning styles.

Corresponding rule is defined for each cluster. Example of rule that is triggered
if learner belongs to cluster cl1 (rule AR27) and cluster cl2 (rule AR28) are (analog
rules are used for other clusters):

Learner(?x) ∧ Performance(?p) ∧ hasPerformance(?x,?p) ∧
Condition(?c) ∧ generates(?p,?c) ∧ BehaviourPattern(?b) ∧
include(?p,?b) ∧ isTypeOf(?b,?n) ∧ NavigationSequence(?n) ∧
consistsOf(?n,a1) ∧ consistsOf(?n,b2) ∧ consistsOf(?n,c1) ∧
consistsOf(?n,d1) ∧ consistsOf(?n,e4)∧ swrlb:greatherThen
(grade, required) → belong(?x,?cl1)

AR27

Learner(?x) ∧ Performance(?p) ∧ hasPerformance(?x,?p) ∧
Condition(?c) ∧ generates(?p,?c) ∧ BehaviourPattern(?b) ∧
include(?p,?b) ∧ isTypeOf(?b,?n) ∧ NavigationSequence(?n) ∧
consistsOf(?n,a1) ∧ consistsOf(?n,b2) ∧ consistsOf(?n, d1) ∧
consistsOf(?n, e4) ∧ consistsOf(?n, c1)∧ swrlb:greatherThen
(grade, required) → belong(?x,?cl2)

AR28

Rules AR27 and AR28 determine that learner belongs to the appropriate pattern,
based on navigation sequence n that contains learning resources {a1, b2, c1, d1, e4}
and {a1, b2, d1, e4, c1}, respectively. This sequence is a list that contains: taken
tutorial, visited examples, tasks and tests taken, etc. In this case, determined pat-
terns are cl1 and cl2, respectively.

Variables x, p, c, b and n present Learner, Performance, Condition,
BehaviorPattern, and Navigation Sequence, respectively.

Condition class collects data about learner’s performance and his/her learning
style and generates appropriate type of performed personalization that will be
implemented. Generated personalization, in fact, presents specific navigational
pattern recommended to learner.

Meaning of the rule is: if in any time of the execution of the system, exists
learner which interacts with system under specific condition and during that
interaction (s)he successfully completed navigational sequence (predefined for
specific behaviour pattern), than that sequence can be treated as appropriate for that

Table 9.3 Learning styles clusters

Clusters Cluster 1 Cluster 2 Cluster 3 Cluster 4 … Cluster 16

Information processing Active Active Active Active Reflective

Information perception Sensing Sensing Sensing Sensing Intuitive

Information reception Visual Visual Verbal Verbal Verbal

Information understanding Sequential Global Sequential Global Global

Cluster’s code cl1 cl2 cl3 cl4 … cl16

9.3 Adaptation Rules 177

learner and (s)he should be put in adequate cluster. Pattern discovering is only
executed if learner successfully completes navigation sequence, that is to say, if
learner has earned sufficient grade.

During course, system updates the database of learners’ interaction with the
system. This database contains interaction data to build sequential patterns.

Next rule is used to update the navigation pattern:

Learner(?x) ∧ Concept(?c) ∧ Resource(?r) ∧ hasResource(?c,?
r) ∧ isLearned(?c, true) ∧ hasPerformance(?x,?p) ∧
BehaviourPattern(?b) ∧ NavigationSequence(?n) ∧ isTypeOf(?
b,?n) → swrl:add(?n,?r,?p)

AR29

Adaptation rule AR29 adds visited resource to navigation pattern for the current
session.

SWRL function swrl:add(?x,?y,?z) adds resource y and details about
learner z to navigation pattern x.

Meaning of rule AR29 is: if at any point of the systems’ execution exists a
learner who has successfully mastered a concept that contains particular resource,
then system should add that resource and details about learner to the successful
navigation pattern.

9.3.4.2 Recommendation Rules

Recommendation rules produce a list of recommended learning objects. From the
existing list of learning content and based on the discovered sequences of educa-
tional resources, the list of recommended actions and recourses is sent to alter
learner-system interaction within a new session.

The recommendation module is design to create a recommendation list
according to the ratings of these frequent sequences, provided by the system (Vesin
et al. 2012). Patterns are ranked based on assessment of learners after visit to
resources in specific order.

For example, if the learner is determined to belong to cluster cl1, it means that (s)
he is attended sequence of resources: {a1, b2, c1, d1, e4}.

Based on that initial sequence, Protus 2.1 rated highest extended set of resources:
{a1, b2, c1, d1, e4, f2} and, therefore, resource f2 is recommended to him/her.

Recommendations are generated with following adaptation rules:

Learner(?x) ∧ Performance(?p) ∧ hasPerformance(?x,?p) ∧
Condition(?c) ∧ generates(?p,?c) ∧ BehaviourPattern(?b) ∧
include(?p,?b) ∧ isTypeOf(?b,?n) ∧ NavigationSequence(?n) ∧
belong(?x,?cl1) → isRecommended(f2,true)

AR30

Meaning of the rule AR30 is: if in any time of the execution of the system, exists
learner whom specific navigation sequence of resources has been recommended
(with specific condition) than system should recommend to him/her next specific

178 9 Design and Implementation of General Tutoring System Model

resource that belongs to that navigational sequence. Recommendation status of the
resource f2 is set to true, therefore link to that resource is annotated or highlighted.
Wether student is following the recommended path or not, does not influence the
rules itself, but influence execution of rules in next sessions because ratings of
frequent navigation sequences are calculated after every session.

Ratings of frequent sequences are not calculated only by sequences followed by
a student itself but earned grades throughout session are also included in calcula-
tion. Therefore, every system-imposed path still counts towards placing the learner
in a particular cluster.

The above SWRL rules can be executed using the Jess rules engine after pro-
viding the factual knowledge. The system uses the Jess’s Java API that allows the
creation of Jess rule engine instances. An instance of this class loads all defined
rules and check the terms defined in them and starts execution of rules if all
conditions are met. After firing the rule, the inferred knowledge can be written back
to the ontology repository and update the knowledge base (Chi 2009). Rules will
automatically start immediately after all requirements defined in them are fulfilled.
After firing the rule, the inferred knowledge can be written back to the ontology
repository and update the knowledge base. Whereas ontologies were used to
increase interoperability and reusability of domain information, rules were
employed to represent the adaptation logic in a way that teachers can inspect,
understand and modify the rationales behind adaptive functionalities.

9.4 Course Development

Model and architecture of general tutoring system described in this book consists of
clearly defined adaptable, expandable and separated components (Vesin et al.
2012). System enables easy modification of adaptation and personalization of
learning materials that are offered to learners. Formally defined ontologies will
allow the reuse of tutoring system components for implementation of similar
systems.

General tutoring system model enables the development of courses in different
domains in three phases (Fig. 9.21):

• creation of skeleton application with use of Vaadin Java framework (Grönroos
2010),

• creation of individual courses, appropriate teaching materials for each course as
well as a set of appropriate tests for assessment of acquired learners’ knowledge,

• presentation of personalized learning materials to each individual learner.

Three phases of course development provides a clear separation of the activities
of three groups of system designers:

9.3 Adaptation Rules 179

• designers of the system’s architecture and user interface
• authors who take care of personalization that is performed in tutoring system

and
• authors of learning materials.

Complete separation of the content and its design on one hand and application
design and presentation of materials on the other hand, allows the development of
courses in different domains and easy reuse of individual components of applica-
tion. Different courses follow the same learning process that contains: monitoring
learners’ activities, development of appropriate learner model and personalization
of learning materials (Fig. 9.22).

Defined general tutoring system architecture enables the development of courses
from different domains supported with various forms of user interface personali-
sation and adaptation of educational material. Next chapter presents concretisation
of the general tutoring system architecture for generating a Java programming
course within the system Protus 2.1.

Teacher’s interface Tutoring systemVaadin and
MySQL

Protus 2.1
components

Data Storage
Teaching material

Tests

Course
overview

Testing

Personalisation

Courses

Learner

Teacher

System’s
author

Fig. 9.21 The development of courses from different domains in general tutoring system
architecture

PersonalisationSession monitor

Learner

Learner model
ontology

User
interface

Personalized
teaching material

Fig. 9.22 Learners’ activities in general tutoring system model

180 9 Design and Implementation of General Tutoring System Model

References

Aroyo, L., & Dicheva, D. (2004). The new challenges for e-learning: The educational semantic
web. Educational Technology and Society.

Aroyo, L., & Mizoguchi, R. (2003). Process-aware authoring of web-based educational systems.
In CAiSE Workshops.

Bechhofer, S. (2009). OWL: Web ontology language. In Encyclopedia of database systems
(pp. 2008–2009). Berlin: Springer.

Borland, J. (2007). A smarter web. Technology Review, 110(2), 64–71. http://doi.org/Article
Brusilovsky, P. (2004). KnowledgeTree: A distributed architecture for adaptive e-learning. In

WWW Alt. ’04: Proceedings of the 13th International World Wide Web Conference on
Alternate Track Papers and Posters (pp. 104–113). http://doi.org/10.1145/1013367.1013386

Carmagnola, F., Cena, F., Gena, C., & Torre, I. (2005). A semantic framework for adaptive
web-based systems. In SWAP (Vol. 166, pp. 82–97).

Chi, Y.-L. (2009). Ontology-based curriculum content sequencing system with semantic rules.
Expert Systems with Applications, 36(4), 7838–7847.

Devedzic, V. (2006). Semantic web and education (Vol. 11). http://doi.org/10.1007/978-0-387-
35417-0

Felder, R., & Silverman, L. (1988). Learning and teaching styles in engineering education.
Engineering Education, 78, 674–681. http://doi.org/10.1109/FIE.2008.4720326

Fensel, D. (2004). Ontologies: A silver bullet for knowledge management and electronic-commerce
(p. 162). Berlin: Spring.

Grönroos, M. (2010). Book of Vaadin: Vaadin 6.4. Writing.
Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., Dean, M., et al. (2004).

SWRL: A semantic web rule language combining OWL and RuleML. W3C Member
Submission, 21, 79.

Janssen, J., den Berg, B., Tattersall, C., Hummel, H., & Koper, R. (2007). Navigational support in
lifelong learning: enhancing effectiveness through indirect social navigation. Interactive
Learning Environments, 15(2), 127–136.

Klašnja-Milićević, A., Vesin, B., Ivanovic, M., & Budimac, Z. (2011). Integration of
recommendations and adaptive hypermedia into java tutoring system. Computer Science and
Information Systems, 8(1), 211–224. http://doi.org/10.2298/CSIS090608021K

Kolb, D. (1984). Individuality in learning and the concept of learning styles (pp. 61–98).
Englewood Cliffs, New Jersey: Prentice Hall.

Popescu, E., Bǎdicǎ, C., & Trigano, P. (2007). Rules for learner modeling and adaptation
provisioning in an educational hypermedia system. In Proceedings—9th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2007
(pp. 492–499). http://doi.org/10.1109/SYNASC.2007.72

Romero, C., Ventura, S., Hervas, C., & Gonzalez, P. (2006). Rule mining with {GBGP} to
improve web-based adaptive educational systems. In Data mining in e-learning (Vol. 4,
pp. 171–188). Retrieved from http://library.witpress.com/pages/listPapers.asp?q_bid=392

Soloman, B. A., & Felder, R. M. (2005). Index of learning styles questionnaire. NC State
University. Available Online at: http://www.Engr.Ncsu.Edu/learningstyles/ilsweb.Html. Last
Visited on May 14, 2010.

Strohmaier, M., Walk, S., Pöschko, J., Lamprecht, D., Tudorache, T., Nyulas, C., … Noy, N. F.
(2013). How ontologies are made: Studying the hidden social dynamics behind collaborative
ontology engineering projects. Web Semantics: Science, Services and Agents on the World
Wide Web, 20, 18–34.

Ullrich, C. (2004). Description of an instructional ontology and its application in web services for
education. In Proceedings of Workshop on Applications of Semantic Web Technologies for
E-learning, SW-EL (Vol. 4, pp. 17–23).

References 181

http://doi.org/Article
http://doi.org/10.1145/1013367.1013386
http://doi.org/10.1007/978-0-387-35417-0
http://doi.org/10.1007/978-0-387-35417-0
http://doi.org/10.1109/FIE.2008.4720326
http://doi.org/10.2298/CSIS090608021K
http://doi.org/10.1109/SYNASC.2007.72
http://library.witpress.com/pages/listPapers.asp%3fq_bid%3d392
http://www.Engr.Ncsu.Edu/learningstyles/ilsweb.Html

Vesin, B., Ivanovic, M., Klašnja-Milićević, A., & Budimac, Z. (2011). Rule-based reasoning for
altering pattern navigation in programming tutoring system. In 2011 15th International
Conference on System Theory, Control, and Computing (ICSTCC) (pp. 1–6).

Vesin, B., Ivanović, M., Klašnja-Milićević, A., & Budimac, Z. (2012). Protus 2.0: Ontology-based
semantic recommendation in programming tutoring system. Expert Systems with Applications,
39, 12229–12246. http://doi.org/10.1016/j.eswa.2012.04.052

Vesin, B., Ivanović, M., Klašnja-Milićević, A., & Budimac, Z. (2013). Ontology-based
architecture with recommendation strategy in Java tutoring system. Computer Science and
Information Systems, 10(1), 237–261. http://doi.org/10.2298/CSIS111231001V

Wand, Y., Storey, V. C., & Weber, R. (1999). An ontological analysis of the relationship construct
in conceptual modeling. ACM Transactions on Database Systems (TODS), 24(4), 494–528.

182 9 Design and Implementation of General Tutoring System Model

http://doi.org/10.1016/j.eswa.2012.04.052
http://doi.org/10.2298/CSIS111231001V

Part IV
Case Study: Design and Implementation

of Programming Tutoring System

Chapter 10
Design, Architecture and Interface
of Protus 2.1 System

Abstract General tutoring system model, presented in previous chapter, can be
used as a skeleton for an implementation of concrete programming tutoring system.
This chapter presents details about implementation of Java programing course
based on defined model. Protus 2.1 is a tutoring system designed to provide learners
with personalized courses from various domains. It is an interactive system that
allows learners to use teaching material prepared for appropriate courses and also
includes parts for testing acquired knowledge. In spite of the fact that this system is
designed and implemented as a general tutoring system, the first completely
implemented and tested version was for an introductory Java programming course.
This chapter presents the most important requests for implementation of person-
alization options in e-learning environments, as well as design, architecture and
interface of Protus 2.1 system. Details about previous versions of the system,
defined user requirements for the new version of the system, architecture details, as
well as general principles for application of defined general tutoring model for
implementation of programming course in Protus 2.1 are presented.

General tutoring system model, presented in Chap. 9 presents a skeleton for an
implementation concrete programming tutoring system. This section presents
details about implementation of Java programing course based on defined model.

Protus 2.1 is a tutoring system designed to provide learners with personalized
courses from various domains. It is an interactive system that allows learners to use
teaching material prepared for appropriate courses and also includes parts for
testing acquired knowledge. In spite of the fact that this system is designed and
implemented as a general tutoring system, the first completely implemented and
tested version of the system was for an introductory Java programming course
(Vesin et al. 2009). Java is chosen because it is a clear example of an
object-oriented language and it is therefore suitable for the teaching of the concepts
of object-orientation. The course is designed for learning programming basics for
learners with no previous object-oriented programming experience.

Protus 2.1 fulfills three primary goals, identified by earlier exploration in this
field (Jones et al. 2006). The first goal was to provide a personalized tutoring

© Springer International Publishing Switzerland 2017
A. Klašnja-Milićević et al., E-Learning Systems,
Intelligent Systems Reference Library 112, DOI 10.1007/978-3-319-41163-7_10

185

http://dx.doi.org/10.1007/978-3-319-41163-7_9

system for learners in a platform independent manner. The second goal was to
provide the teachers with useful reports identifying the strengths and weaknesses of
the learner’s learning process. Finally, the third goal was to provide a rapid
development tool for creating basic elements of tutoring system: new learning
objects, units, tutorials and tests.

General tutoring system model, defined in Chap. 9, enables implementation of
an unlimited number of personalized courses from different domains and defining
formal rules for adaptation of educational materials to each individual learner.

This chapter will summarize the general setup of Protus 2.1 system before
discussing the recommendation module in detail in Chap. 11. After reviewing and
illustrating current state of the art in this area in Sect. 10.1. Section 10.2 presents
previous versions of Protus system, while programming course in Protus 2.1 is
described in the Sect. 10.3. Section 10.4 describes development of ontologies
specifically for a programming course.

10.1 Personalised Programming Tutoring Systems

Computer technology has been used to develop a wide range of educational soft-
ware, from early computer-based training systems to Web-based adaptive hyper-
media, multimedia courseware, and educational games. These systems have given
learners access to a great variety of pedagogical approaches that supplement
classroom learning and provide items outside the classroom. This variety has been
helpful in reaching learners who don’t do well with traditional lecture and textbook
instruction. Our attention was focused only on a specific kind of tutoring systems.
In the rest of this section, we first describe programming tutoring systems in
general, then we present tutoring systems that use different recommendation tech-
niques in order to suggest the most appropriate online learning activities for
learners, based on their preferences, learning style, knowledge and the browsing
history of other learners with similar characteristics.

10.1.1 Programming Tutoring Systems

Most of the tutoring systems for learning programming languages found on the
Web are more or less only well-reformatted versions of lecture notes or textbooks
(Vesin et al. 2009). As a consequence, in these systems are not implemented
interactivity and adaptivity.

The functions that such systems can perform vary. Some of them are used for
learner assessment like Java Bugs (Suarez and Sison 2008) and JITS (Sykes and
Franek 2003; Sykes 2007). Also, some of them are adaptive Web-based tutorials
(García et al. 2009). One step further in implementation of adaptation was made by
systems like JOSH-online (Bieg and Diehl 2004), iWeaver (Wolf 2003) and

186 10 Design, Architecture and Interface of Protus 2.1 System

http://dx.doi.org/10.1007/978-3-319-41163-7_9
http://dx.doi.org/10.1007/978-3-319-41163-7_11

CIMEL ITS (Blank et al. 2005; Wei et al. 2005). JavaBugs examines a complete
Java program and identifies the most similar correct program to the learner’s
solution among a collection of correct solutions. After that it builds trees of mis-
conceptions using similarity measures and background knowledge (Suarez and
Sison 2008). The developers of this system focused on the construction of a bug
library for novice Java programmer errors, which is a collection of commonly
occurring errors and misconceptions.

The WWW-based introductory LISP course ELM-ART (ELM Adaptive Remote
Tutor) is based on ELM-PE (Brusilovsky et al. 1996), an on-site intelligent learning
environment that supports example-based programming, intelligent analysis of
problem solutions, and advanced testing and debugging facilities. For annotating
the links, the authors use the traffic light metaphor. A red ball indicates pages which
contain information for which the user lacks some knowledge, a green ball indicates
suggested links, etc. Java Intelligent Tutoring System—JITS is a tutoring system
designed for learning Java programming (Sykes and Franek 2003). JITS imple-
ments Java Error Correction Algorithm (JECA), an algorithm for a compiler that
enables error correction intelligently changing code, and identifies errors more
clearly than other compilers. This practical compiler intelligently learns and corrects
errors in learners’ program (Sykes 2007). iWeaver is an interactive Web-based
adaptive learning environment, developed as a multidisciplinary research project at
RMIT University Melbourne, Australia (Wolf 2003). iWeaver was designed to
provide an environment for the learner by implementing adaptive hypermedia
techniques to teach the Java programming language. It implements several estab-
lished adaptation techniques, including link sorting, link hiding and conditional
page content. The current version of iWeaver does not support adaptive navigation,
which is one of the best researched areas of adaptive environments. JOSH is an
interpreter for the Java programming language (Bieg and Diehl 2004) originally
designed to make easier teaching Java to beginners. Recently the interpreter was
restructured into a server based interpreter applet and integrated into an online
tutorial on Java programming called JOSH-online. CIMEL ITS is an intelligent
tutoring system that provides one-on-one tutoring to help beginners in learning
object-oriented analysis and design. It uses elements of UML before implementing
any code (Blank et al. 2005). A three-layered Learner model is included which
supports adaptive tutoring by deducing the problem-specific knowledge state from
learner solutions, the historical knowledge state of the learner and cognitive reasons
about why the learner makes an error (Wei et al. 2005). This Learner model
provides an accurate profile of a learner so that the intelligent tutoring system can
support adaptive tutoring.

Most of the existing e-learning platforms for teaching programming have not yet
taken the advantage of adaptivity (Emurian 2006; Holland et al. 2009; Sykes and
Franek 2003), possibly because the expected profit has not justified the high effort
of implementing and authoring adaptive courses. Moreover, most of the adaptive
tutoring systems do not support e-learning standards. Our system recommends a
media experience that is most likely to be chosen in the current learning context by
the current learner. This recommendation mechanism is attempting to accommodate

10.1 Personalised Programming Tutoring Systems 187

a possible variation in a learner’s learning style profile. Also, up to now most, if not
all systems do not take into consideration the important aspect of learning style
preferences or how and when to adjust the presented topic based on the preferred
presentation method of the learner.

10.1.2 Tutoring Systems with Implemented
Recommendation

A personalized recommender system that uses Web mining techniques for rec-
ommending a learner, which (next) links to visit within an adaptive educational
hypermedia system was described in (Romero et al. 2006). They presented a
specific mining tool and a recommender engine that they have integrated in the
AHA! system, in order to help the teacher to carry out the whole Web mining
process. They made several experiments with real data in order to show the suit-
ability of using together, clustering and sequence mining algorithms, for discov-
ering personalized recommendation links (Brusilovsky et al. 1996).

Another system described in (Soonthornphisaj et al. 2006) allows all learners to
collaborate and exchange their expertise in order to predict the most suitable
learning materials to each learner. This smart e-learning system applies the col-
laborative filtering approach (Soonthornphisaj et al. 2006) that has an ability to
predict the most suitable documents to the learner. All learners have the chance to
introduce new material by uploading the documents to the server or pointing out the
Web link from the Internet and rate the currently available materials. My Online
Teacher 2.0 (MOT 2.0) successfully combines Web 2.0 features (such as tags,
rating system, feedback, etc.) in order to support both learners and teachers in
personalized systems (Ghali and Cristea 2009). Ghali and Cristea focus on a study
which can explain how to use and combine more effectively the recommendation of
peers and content adaptation to enhance the learning outcome in e-learning systems.

In the last few years, some research studies have been conducted on developing
an approach that identifies learning styles from learners’ behavior in an online
course (Arenas-García et al. 2007; García et al. 2007; Sabine Graf et al. 2010). The
rationale is that adapting courses to the learning preferences of the learners has a
positive effect on the learning process, leading to an increased efficiency, effec-
tiveness and/or learner satisfaction (Popescu 2010). The adaptive response of
existing environments is often restricted to pictures and text instead of multimedia
presentations, with some exceptions like the iWeaver (Wolf 2003). Systems like
Logic-ITA, ProGuide and Jeliot 3 gave us good ideas and perspective which
functionalities could be included in new Web-based tutoring system (Merceron and
Yacef 2004; Myller 2006). Compared to current tutoring systems which only
execute on a standalone machine (JavaBugs, JITS, CIMEL ITS, Jeliot 3) or have
just basic interactivity and adaptivity implemented (JOSH-online, Java Bugs,
Logic-ITA), Protus 2.1 system integrates content and link adaptation in order to

188 10 Design, Architecture and Interface of Protus 2.1 System

accomplish completely functional Web-based tutoring system with personalization
capability. Protus 2.1, as an e-learning system, offers a constant on-the-fly adap-
tation of the course units and their presentation to the current needs and preferences
of the individual learner. This guarantees a significant, individual success of a
learner. None of the above mentioned systems implement full use of the recom-
mender techniques (like collaborative filtering, association rule mining and clus-
tering), just the basic data mining techniques. Second, besides learning content
ranking and tagging, Protus 2.1 also supports learning path generation and per-
sonalization based on the learning style identification. Our work differs from pre-
vious mentioned papers in several aspects. First, we combine several adaptation
techniques, both recommendations of material and adaptive hypermedia, in order to
personalize the lessons presentation to learners. Second, besides learning content
ranking and tagging, Protus 2.1 also supports learning material clustering and
learning path generation. Third, despite the great variety of tutoring systems in the
literature we chose to focus our attention on a programming tutoring system that
defines scalable and adaptable architecture. Protus 2.1 provides the possibility to
import knowledge from various domains so that the process of learning can be
performed in whatever domain of knowledge. This choice enabled us to develop a
system for knowledge presentation and acquisition that tries to be independent of
the specific domain.

10.2 Previous Versions of Protus 2.1

Protus 2.1 is improved and enhanced version of its predecessors Mag and Protus
Systems (Table 10.1):

• Mag tutoring system, which is used for presentation of the basic concepts of
the Java programming language as well as to assess the knowledge of learners.

Table 10.1 Functionalities of previous versions

System’s functionalities Mag Protus Protus 2.1

Java online course x x x

Reports on the progress of learners x x x

Communication between learners and mentors x x x

Adding new learning materials x x x

Possibility to enter additional courses x x

Integrated systems for generating recommendations x x

Learning style identification x x

Reuse and sharing of learning material x x

Semantic Web technologies integrated x

Possibilities for adding new adaptation methods x

Tag-based recommendation x

10.1 Personalised Programming Tutoring Systems 189

Mag system did not include any of recommender systems for the implementa-
tion of the course personalization (Vesin et al. 2009).

• Protus system (abbreviation of: Programming Tutoring System) supported
recommendations of learning materials based on the identified learning styles of
each individual learner. Protus was designed as general online tutor for learning
content from different domains.

10.2.1 Mag System

Mag is a tutoring system designed to help learners in learning programming lan-
guages (Klašnja-Milićević et al. 2009). The first completely proposed and tested
version was for an introductory Java programming course. The main idea was that a
learner who was attending a course become familiar with the Java programming
language basics, its syntax, basic elements and commands. It is an interactive
system that allows learners to use teaching material prepared for programming
languages within courses and to test their knowledge. The system offers multiple
options: a review of course materials, testing of knowledge, online programming,
etc.

Mag system is based on a centralized architecture, which includes two clearly
separate parts of the system (Fig. 10.1):

• server-side application with a database that includes lessons, examples, tests and
data on each individual learner,

• series of Web pages that form an interactive course.

Learner model
Database of

lessons, examples
and tests

Learner’s interfaceAdministrator’s interface

Fig. 10.1 Mag system architecture

190 10 Design, Architecture and Interface of Protus 2.1 System

The server side of the system contains application for system administrators
(learner’s mentors) (Fig. 10.2). The basic functionalities of this application are:

• review and update of learners’ database (adding and deleting data on learners)
• reports on the learners’ progress (passed lessons, taken tests, success in par-

ticular lessons, etc.),
• review and update database of administrators (mentors)
• receiving reports on the progress of learners (learners are divided into classes,

each class is assigned by a mentor),
• search options on learners’ data with different criteria,
• communication with learners (review of received and sent messages),
• adding new units, tutorials, examples and tests designed for specific lessons.

The system uses and updates the database of learners, administrators, tests and
lessons. Messages, sent between learners and mentors, as well as tutorials, lessons,
examples and tests are kept in the appropriate file system.

Online course consists of a series of .jsp pages intended for a learner, which
allow logging, signing of new learners, presentation of education material, testing
knowledge, review the of learners’ success, and communication with the mentor
(Fig. 10.3).

Fig. 10.2 Administrator’s interface of Mag

10.2 Previous Versions of Protus 2.1 191

10.2.2 Protus System

Protus is designed as an extension of existing Web-based Java tutoring system—
Mag. Components which support different recommendation techniques were inte-
grated in Protus in order to allow standardization and formalization of the content
and enable the reuse and the interoperability of the systems. Protus provides two
general categories of personalization based on adaptive hypermedia and recom-
mendation systems. Design and implementation of a recommendation system that
takes into account characteristics of learners to generate recommendations of
educational materials are presented in (Klašnja-Milićević et al. 2011).

The module for generating recommendations in Protus is designed to:

• recognize the behaviour patterns of learners and identify their learning styles,
• form clusters (categories) of similar learners, based on their learning styles and
• categorize teaching materials based on their rating and present recommended

learning materials for learners.

Besides being beneficial for providing learners with a personalized learning
experience, the implemented architecture and the reasoning that is performed over
it, are also useful for generating feedback for teachers—other key participants in the
learning process. Likewise, the framework can be used to provide feedback to
teachers about the learners’ activities, their performance, achieved knowledge level
and so on. In both cases, the feedback can help in improving the learning process.

To support integration of recommendation technics several goals had been ful-
filled in Protus system:

• separation of two different interfaces—for learners and teachers,

Fig. 10.3 Mag system

192 10 Design, Architecture and Interface of Protus 2.1 System

• a strict separation of different modules: domain, application, adaptation and
learnermodel, in order to ensure a goodmodularization of the system components,

• continuous monitoring of learner progress and development of a dynamic
learner model,

• enabling communication and collaboration among learners and between learners
and teachers,

• assessment of knowledge and increasing competency level of learners,
• functionalities for creation of new learning content and migration of content

from external sources,
• semantically rich descriptions of the components’ functionality, in order to

allow effective interoperability among system components, and
• providing effective coordination and communication between the system

components.

10.2.2.1 System’s Architecture of Protus

The architecture of Protus is based on experiences gained from similar Web-based
learning systems (Chen et al. 2010; Merino and Kloos 2008; Šimić 2004) and
architecture for ontology-supported adaptive Web-based education systems sug-
gested in De Bra et al. (2003), Devedzic (2006). Figure 10.4 presents the general
architecture of redesigned and extended Protus system. Protus system consists of
five functional modules: domain module, learner model, application module,
adaptation module and session monitor.

Fig. 10.4 Protus 2.1 system architecture

10.2 Previous Versions of Protus 2.1 193

The domain module presents the storage for all essential learning material,
tutorials and tests. It describes how the information content is structured.

The adaptation module is responsible for building and updating learner’s model
characteristics and also for personalization of content presented to the learner. It
processes changes of learner’s characteristics based on learner’s activities and it
provides an adaptation of the visible aspects of the system for specific learner. Its
main tasks also include storage and management of learning material, presenting
that material to learners, generating of reports and test results etc.

Each learner model is a collection of both static and dynamic data about the
learner. Static data include personal data, specific course objectives, etc. Dynamic
data include scores, time spent on specific lesson, marks, etc. Above mentioned
data, the learner model contains also a representation of the learner’s performance
and learning history. The system uses that information in order to predict the
learner’s behaviour, and thereby adapt to his/her individual needs.

Within session monitor component, the system gradually re-builds the learner
model during the session, in order to keep track of the learner’s actions and his/her
progress, to detect and correct his/her errors and possible to redirect the session
accordingly. At the end of the session, all of learners’ preferences are recorded in
learner model. The learner may change this information at any time by editing
his/her preferred learning style. Therefore, if a learner does not agree with the
system’s assumptions about his/her preferences, (s)he can inspect his/her learner
model and make changes in it during learning sessions. The learner model is then
used along with other information and knowledge to initialize the next session for
the same learner.

The application module performs the adaptation. To be exact, the adaptation
module follows the instructional directions specified by the application module.
These two components are separated in order to make adding new content clusters
and adaptation functionalities easier. For example, application module creates
decision which material will be presented to learner while adaptation module
presents chosen material to learn.

10.2.2.2 Data Structure in Protus

The architecture of Protus uses a Java DataBase Connectivity (JDBC) connection to
the database which stores and retrieves specific information of concert to the sys-
tem. The Protus system uses and updates the database with data about learners,
teachers, course, unit, the lessons, tagging and evaluation process. The Enitity
Relationship—ER diagram of the database is shown in Fig. 10.5. The database
consists of seven tables:

1. Learner. It contains basic information about the learner as well as some
information about the learning styles and learner’s progress (Table 10.2).

2. Teacher. It contains basic information about the teacher (Table 10.3).
3. Lesson. It contains information about the lessons (Table 10.4).

194 10 Design, Architecture and Interface of Protus 2.1 System

Unit Coursecontain

Lesson

contain

Learnercurently on Tag

wroted

Teacher

Session

(0,N)

(0,N)

(0,N)

(0,N)

(0,N)

(0,N)

(1,1)

(0,1)

(0,1)

(1,1)

supervise

(0,N)(0,1)

Fig. 10.5 ER diagram of Protus system database

Table 10.2 Table learner

Field Type Description

idlearner Int Identification number of learners

name varchar Learner’ s name

surname varchar Learner’ s surname

username varchar Learner’ s username

password varchar Learner’ s password

gender varchar Gender of learner

year int Year of birth

adr varchar Learner’ s adress

processing int Category within ‘Information Processing’ domain

perception int Category within ‘Information Perception’ domain

reception int Category within ‘Information Reception’ domain

understanding int Category within ‘Information Understanding’ domain

begin_time date Date of the course beginning

overall_time time Total duration of the course

avg_grade decimal Average grade of learner

percentage decimal Percentage of course completed

lesson int Number of completed lesson

curlesson int Current lesson

10.2 Previous Versions of Protus 2.1 195

4. Unit. It contains information about the unit, lesson and learning objects (re-
sources) from which lesson is consisted (Table 10.5).

5. Course. It contains information about the course, units, lessons, the number of
learners attending the course and duration of the course (Table 10.6).

Table 10.3 Table teacher

Field Datatype Description

idteacher Int Identification number of teacher

firstname varchar Teacher’s first name

lastname varchar Teacher’s last name

username varchar Teacher’s username

password varchar Teacher’s password

title varchar Teacher’s title

Table 10.4 Table Lesson

Field Datatype Description

idlesson int Identification number of lesson

name varchar Name of the lesson

resources int Overall number of learning objects

intro int Number of resources of introduction type

basic info int Number of resources of basic info type

example int Number of resources of example type

explanation int Number of resources of explanation type

theory int Number of resources of theory type

activity int Number of resources of activity type

syntax int Number of resources of syntax type

unit int Identification number of unit

Table 10.5 Table Session

Field Datatype Description

idsession int Identification number of session

learner int Identification number of learner who has completed session

lesson int Lesson visited during session

sessiontime time Duration of the session

grade int Earned grade

Table 10.6 Table Unit Field Datatype Description

idunit int Identification number of unit

name varchar Name of the unit

course int Identification number of course

lesson int Number of lessons

196 10 Design, Architecture and Interface of Protus 2.1 System

6. Session. It contains information about learner sessions that the learner has
completed during the course and the grades (s)he earned for them (Table 10.7).

7. Tag. It contains information about tags and information about lessons and
learning objects for which the tag is placed (Table 10.8).

10.2.2.3 User Interface in Protus

Two main roles exist in the system, intended for two types of system’s users:

• Learners—they are attending the course and use the system in order to gain
certain knowledge and

• Teachers and content authors—the lessons and learner database administra-
tors. They track learning process of learners and help them with their assign-
ments, as it will be presented later in the section.

Therefore, as in previous version of the system—in Mag, separated user inter-
faces are provided for learners and teachers (Vesin et al. 2009). Teacher’s interface
helps in process of managing data about a learner and course material. This com-
ponent has not undergone major changes over the previous version of the system.
Improvements have been made only in terms of advanced features reporting on the
progress of learners.

Table 10.7 Table Course

Field Datatype Description

idcourse int Identification number of course

name varchar Name of the course

unit int Number of units

lesson int Number of lessons

LSsuported int Learning styles which are suported

learner_num int Number of learners attending the course

duration varchar Duration of the course

teacher int Id of supervisor

Table 10.8 Table Tag

Field Datatype Description

idtag int Identification number of tag

idlearner int Identification number of learner

lesson int Identification number of lesson

Learning_object int Identification number of learning object

value varchar Entered tag

session int Identification number of session

10.2 Previous Versions of Protus 2.1 197

Learner’s interface is a series of Web pages that provide two options: taking
lessons and testing learner’s knowledge. All data about learner and his progress in
the course, as well as data about tutorials, tests and examples are stored in the
system’s server.

10.2.2.4 Learner’s User Interface in Protus

For every lesson the same sequence of activities has to be followed. At the
beginning of a lesson, participants are shown a short introductory text on the
lesson’s topic (Fig. 10.6), additionally explained with appropriate examples
(Fig. 10.7). At the end of each lesson a post-test is conducted. Test contains several
multiple-choice questions and Protus provides feedback on their answers and gives
the correct solutions after every submitted answer.

Fig. 10.6 Lessons tutorial

198 10 Design, Architecture and Interface of Protus 2.1 System

10.2.2.5 Teacher’s User Interface in Protus

Besides being beneficial for providing learners with personalized learning experi-
ence, Protus system is also useful for generating feedback for other participants in
the learning process-content authors and teachers. Content authors are typically
subject matter experts who create learning content, that is subsequently used by
teachers who wrap that content into a learning design. Protus can be used to provide
feedback to teachers about the learners’ activities, their performance, achieved
collaboration level and the similar activities. In both cases, the feedback helps in
improving the learning process.

Protus aims at helping teachers rethink the quality of the learning content and
learning design of the course they teach. To this end, the system provides teachers
with feedback about the relevant aspects of the learning process taking place in the
online learning environment they use. The provided feedback is based on the

Fig. 10.7 Lessons example

10.2 Previous Versions of Protus 2.1 199

analyses of the context data collected in the learning environment. In particular,
Protus informs teachers about:

• the activities the learners performed during the learning process,
• the usage of learning content they had prepared and deployed in the tutoring

system,
• the peculiarities of the interaction among learners.

Figure 10.8 depicts the graphic interface that represents the real interaction of
the teachers with Protus, where the assessment and tracking data and statistics are
generally shown. This form facilitates data retrieval and provides appropriate results
for the teacher. Teacher can combine parameters and filters in order to obtain
reports that will be presented in form of charts and tables. The chart type varies
according to the selected filters. For example, the teacher could know what specific
material was more used by learners, what kind of learning style they preferred or
what grades they earned for every particular lesson. These reports can show results
for group of learners or for every learner separately.

Fig. 10.8 Teachers’ interface in Protus

200 10 Design, Architecture and Interface of Protus 2.1 System

10.3 Protus 2.1

The general tutoring system model presented in Chap. 9 presented the basis for
development of new and improved version of Protus. It is important to note that the
original architecture of Mag and Protus did not bring any kind of homogenous
representation of components. Each one was represented by different formats, using
a variety of tools. Thus, for example, the format of learning materials in Protus had
to be changed in order to optimize the system, so it was not possible to use some of
the existing material. Also, the use of various technologies prevents reuse and
sharing of educational material with other systems. To make the system more
widely available and to allow its easier development and upgrading, the need arose
to represent each component of the system in form of the ontology. Each com-
ponent will be responsible for specific tasks. This approach will make it easier to
understand the role of each component and, consequently, to promote interoper-
ability among the components of the architecture. The developed system is highly
modular, which allows better flexibility and future replacement of various com-
ponents as long as they comply with the current interface.

System Protus 2.1 enables the development of courses from different domains.
Each course consists of a series of lessons (concepts) showing the individual
segments of the domain being processed. Each lesson consists of a series of
resources that represent files with descriptions of individual parts of lessons (in-
troduction, explanations, examples, tasks, exercises, etc.). Each lesson is linked to
one or more appropriate tests to check learners’ knowledge. Based on the results of
tests level of learner progress is determined, learner model is updated and further
personalization options are generated.

The main aim of Protus 2.1 was to improve adaptation of the teaching material
according to demand and need of each individual learner. This version of the
system supports personalization options in the form of recommendation systems.
Also, for the first time, Vaadin framework was used to develop system’s compo-
nents. Vaadin is an open source Web application framework for rich Internet
applications. In contrast to JavaScript libraries and browser-plugin based solutions,
it features a server-side architecture, which means that the majority of the logic runs
on the servers (Grönroos 2010).

Protus 2.1, like previous versions of this system, consists of two basic compo-
nents: user interface for learners and user interface for teachers.

10.3.1 Learner’s Interface

Learners attend courses through the Web interface implemented in Protus 2.1
system (Fig. 10.9). The user interface of this system offers the learner the following
functionalities:

• review of the offered courses and teaching materials,

10.3 Protus 2.1 201

http://dx.doi.org/10.1007/978-3-319-41163-7_9

• various display formats of teaching materials adapted to different learning styles,
• testing of acquired knowledge,
• communication with the mentor and other learners,
• reports about progress, test results, coursework and their own learning styles.

Organization of pages within Protus 2.1 system is presented in Fig. 10.10.
Sequence of pages changes depending on whether the learner first entered the
system or continuing his/her course. Details of applied personalization and use of
Protus 2.1 will be presented in Chap. 11.

10.3.2 User Interface for Teachers and Course
Administrators

Besides being beneficial for providing learners with personalized learning experi-
ence, Protus 2.1 system is also useful for generating feedback for other participants
in the learning process—administrator and/or teachers (Klašnja-Milićević et al.
2011). Protus 2.1 can be used to provide feedback to teachers about the learners’
activities, their performance, achieved collaboration level and the similar activities.
In both cases, the feedback helps in improving the learning process. Teachers have
access to special functions within Protus 2.1 system. There are two levels of
privileges. First is the higher level—a level with unlimited possibilities. A teacher

Fig. 10.9 User interface of Protus 2.1

202 10 Design, Architecture and Interface of Protus 2.1 System

http://dx.doi.org/10.1007/978-3-319-41163-7_11

with this privilege level can enter information about new teachers and data nec-
essary for their connection. Other teacher’s activities are limited to editing the
learners’ data. All teachers can access and modify the data of all active learners.

Fig. 10.11 Application’s intro screen

Existing learner

Log in Registration ILS questionnaire

Home page

Course LO browser Statistics Communication

Settings Help

Tag browser

Test Sign out

New learner

Fig. 10.10 Site map—Protus 2.1

10.3 Protus 2.1 203

During the application launch, basic information about learners and teachers is
loaded automatically from the database (Fig. 10.11). These data are entered into the
appropriate lists. Protus 2.1 aims at helping teachers rethink the quality of the
learning content and learning design of the course they teach. To this end, the
system provides teachers with feedback about the relevant aspects of the learning
process taking place in the online learning environment they use. The provided
feedback is based on the analyses of the context data collected in the learning
environment.

In panel Learners list of all learners can be loaded from the database
(Fig. 10.12). Edit button opens a dialog for editing information about the learner.
Each of the fields is ready to enter the new data. Data on gender, class, and country
of residence of the learner is entered by selecting one of the options. If an unau-
thorized user wants to make changes to the data, the system prevents it and (s)he
receives a warning message.

In particular, Protus 2.1 provides statistical reports to the teacher. Teachers can
use these reports to inform about the learner’s activities during the learning process.

All teaching materials in the system Protus 2.1 are in the form of HTML doc-
uments. The system loads the document specified in that moment for active learners
on the basis of data from the model learner and displays it in a Web browser.

Fig. 10.12 The main window of the administrative part of the system

204 10 Design, Architecture and Interface of Protus 2.1 System

Administrator’s module of the system Protus 2.1 has integrated HTML editor that
allows the creation and review of teaching materials (Fig. 10.13).

Lessons generated with html editor can be previewed within integrated Web
browser in Protus 2.1 administrative module (Fig. 10.14).

Fig. 10.13 Entry of new HTML resource

Fig. 10.14 Overview of teaching material

10.3 Protus 2.1 205

10.4 Development of Ontologies for Java Programming
Course

Authoring of adaptation and personalization is actually authoring of learner models
and applying different adaptation strategies and techniques to ensure efficient tai-
loring of the learning content to the individual learners (Aroyo and Riichiro
Mizoguchi 2003).

The major goal of learning systems is to support a given pedagogical strategy
(Dehors and Faron-Zucker 2006). In this scope pedagogical ontologies can be
associated with reasoning mechanisms and rules to enforce a given strategy. Often
this strategy consists of selecting or computing a specific navigation sequences
among the resources. Thus, formal semantics are required in Protus 2.1 to enable
such computation.

Protus 2.1 is built on the basis of a general tutoring system model presented in
Chap. 9. Educational ontologies for different purposes were included in the new
version of the system, such as for:

• presenting a domain—domain ontology,
• building learner model—learner model ontology,
• presenting of activities in the system—task ontology,
• specifying pedagogical actions and behaviours—teaching strategy ontology,
• specifying behaviours and techniques at the learner interface level—interface

ontology.

System’s ontologies in Protus 2.1 are written in OWL. Protégé tool was used for
development of ontologies and their translation into OWL (Protégé 2011).

In order to develop a complete course in Java programming basic, it was nec-
essary to create appropriate educational materials and integrate it into the existing
tutoring system model.

The following subsections present the specific content of ontologies for imple-
mentation of Java programming course and activity of Protus 2.1 during the exe-
cution of this specific course. Details of Domain ontology, Learner model ontology
and Teaching strategy ontology, specific to the Java programming domain are
presented. Data stored in the Task ontology and User interface ontology, as well as
adaptation rules that are executed over them, remain unchanged regardless of the
specific domain.

10.4.1 Domain Ontology

Java programming course in Protus 2.1 contains 18 Concepts (lessons) grouped into
Units. Therefore, Java course contains: an introductory lesson, syntax, loop state-
ments, execution control, etc. (Fig. 10.15).

206 10 Design, Architecture and Interface of Protus 2.1 System

http://dx.doi.org/10.1007/978-3-319-41163-7_9

Each concept can be assigned any number of different resources (text files,
images, animations, etc.). All resources are assigned depending on their Resource
type. So we have: theory, examples, assignments, exercises, syntax rules, and so on.
Resources in Protus 2.1 are stored in the form of HTML documents.

10.4.1.1 Concepts

An excerpt of a domain ontology covering basics of Java programming concepts
with subConceptOf relationships between these concepts has been shown In Fig. 9.
14 (Vesin et al. 2013). This figure depicts the root concept with some of its sub
concepts: Syntax, LoopStatements, ExecutionControl and Classes. The
LoopStatements concept is further specialized and fine-grained into ForStatement,
WhileStatement and DoWhileStatement. Clear specification of other relations
between concepts will be useful for further personalization purposes.

New lessons in domain ontology are created by a new instance of the Concept
class. An example of Concept class instance that is used to collect information
about the ForStatement concept is presented in Table 10.9.

Concept

Classes

Concept

LoopStatements

Concept

DoWhileStatement

Concept

WhileStatement

Concept

JavaProgrammingCourse

Concept

ForStatement

Concept

ExecutionControl

Concept

Syntax

subConceptOf
subConceptOf subConceptOfsubConceptOf

subConceptOfsubConceptOfsubConceptOf

Fig. 10.15 An excerpt of ontology as domain topology of Protus 2.1

Table 10.9 Example of instance of Concept class Concept

Property description Property name Property value Property type

Concept’s id hasId C009 Datatype property

Concept’s name hasName For Statement Datatype property

Resource’s type hasResource R017 Object property

Superclass subConceptOf loopStatements Object property

Prerequisite hasPrerequisite ExecutionControl Object property

Prerequisite hasPrerequisite Syntax Object property

10.4 Development of Ontologies for Java Programming Course 207

http://dx.doi.org/10.1007/978-3-319-41163-7_9
http://dx.doi.org/10.1007/978-3-319-41163-7_9

This particular instance of Concept class (Table 10.9) has unique id: C009. It has
been used for defining a lesson named ForStatement and it contains data about its
superclass (it is subConcept of loopStatements concept) and concepts that are
prerequisite for it (ExecutionControl and Syntax).

10.4.1.2 Resources

Details about resources are kept in Resource class instances. Each instance of the
Resource class contains basic information on individual resources, which will later
be used for the subsequent selection of appropriate resources in the process of
personalization. Specific type and role are determined for every resource.

An example of instance of the Resource class that is used to display the syntax
rules of for statement is presented in Table 10.10.

This particular instance of Resource class has unique id: R017. It is used for
presenting a syntax rule for a lesson (concept) named ForStatement and it contains
a link to a certain jpg file (Fig. 10.16) that will be presented to the learner if the
system chooses this resource during personalization activities. All resources are
grouped by their type, role and the concept they support and these groups present a
basis for successful recommendation during the personalization process.

10.4.2 Learner Model Ontology

During a learning session, the learner interacts with a tutoring system. Learner
interactions can be used to draw conclusions about his/her possible interests, goals,
tasks, knowledge, etc. These conclusions can be used later for providing person-
alization. Ontology for learner observations should therefore provide a structure of
information about possible learner interaction.

Table 10.10 Example of instance of the Resource class

Property description Property name Property value Property type

Resource’s id hasId R017 Datatype property

Resource’s name hasName forLoop017 Datatype property

Resource’s type isTypeOf Syntax rule Object property

Concept’s type isResourceFor For Statement Object property

Resource’s role supports Visual style Datatype property

Is resource visited? isVisited yes Datatype property

Is resource recommended isRecommended no Datatype property

File Type hasFileType jpg Datatype property

Concept’s role hasRole definition Datatype property

Link to used figure hasFigure Figure 6.jpg Annotation properties

208 10 Design, Architecture and Interface of Protus 2.1 System

All actions of learners in Protus 2.1 are recorded in Interaction class. The
interaction involves all relevant actions of the learner during particular session
(Session class).

An example of instance of Interaction class that is used to keep track of the
learner’s interaction during one session is presented in Table 10.11.

This particular instance of Interaction class has unique id: I007. It is formed
during session S1012 when learner with id L01 took test and gained results, which
are all collected in instance of Performance class with id P01. Instances of
Performance class contain, among other, data about grade that learner earned
during current testing. Based on that Performance data, system makes decision of
further personalization within Teaching strategy ontology described in Sect. 10.4.3
(adaptation rules: AR23 do AR26).

Fig. 10.16 Figure resource
in Protus 2.1

Table 10.11 Example of instance of Interaction class

Property description Property name Property value Property type

Interaction’s id hasId I007 Datatype property

Session partOf S1012 Object property

Interaction’s type hasType T02 (test) Object property

Used concept conceptUsed C032 Object property

Learner whoInteracted L01 Object property

Performance hasResult P01 Object property

10.4 Development of Ontologies for Java Programming Course 209

10.4.3 Teaching Strategy Ontology

Authoring of adaptation and personalization is actually authoring of learner models
and applying different adaptation strategies and techniques to ensure efficient tai-
loring of the learning content to the individual learners and their learning styles
(Vesin et al. 2012).

An instance of the Condition class that was formed based on the Performance
data of every learner is presented in Table 10.12. This particular instance of
Condition class has unique id I006. It contains data collected based on learner’s
learning style and performance. The instance is populated with adaptation rules
presented in Sect. 9.3 (adaptation rules: AR1 i AR2).

The system monitors the movement of each learner through the learning mate-
rials. Adaptation rules updates instance of the BehaviourPattern in the manner
presented in Sect. 9.3.3 (adaptation rules: AR29 i AR30). Instance of this class
represents a specific type of NavigationalSequence class that contains array of
resources which learner interacted with.

For example, an instance of the class BehaviourPattern contains the information
presented in Table 10.13. This particular instance of BehaviourPattern class is type
of NavigationalSequence marked as NS02, that learner made during session S1012,
with rating of 0.37 and it generates instance of Personalization class marked as
PR09.

The presence of these specific instances of Personalisation classes means that
the currently active learner will be presented with teaching material intended for
learners with visual learning style.

Table 10.12 Example of instance of Condition class

Property description Property name Property value Property type

Condition’s id hasId I006 Datatype property

LS of learner generatedBy LS03 Object property

LS Category hasLearningStyleCategory visual Datatype property

LS domain hasLearningStyleDomain Information Reception Datatype property

Learner’s performance generatedBy P01 Object property

Personalization Generates PR09 Object property

Table 10.13 Example of instance of BehaviourPattern class

Property description Property name Property value Property type

Behaviour pattern’s id hasId BP0016 Datatype property

Navigational sequence isTypeOf NS02 Object property

Session partOf S1012 Datatype property

Personalization generate PR09 Object property

Ratings of navigational sequence hasRate 0,37 Datatype property

210 10 Design, Architecture and Interface of Protus 2.1 System

http://dx.doi.org/10.1007/978-3-319-41163-7_9
http://dx.doi.org/10.1007/978-3-319-41163-7_9

All personalization activities within Protus 2.1 are performed based on previ-
ously mentioned data in instances of Condition and BehaviourPattern classes.
Chapter 11 will present a few examples of performed personalization based on all
collected data about learner’s interaction with the system (adaptation rules: AR27 i
AR28).

10.4.4 Task Ontology and User Interface Ontology

Task ontology defines roles of certain concepts and resources while User interface
ontology creates an array of resources that are recommended and presented to active
learner. Therefore, the data stored in these ontologies and adaptation rules executed
over them, remain unchanged regardless of the specific domain.

References

Arenas-García, J., Meng, A., Petersen, K. B., Lehn-Schioler, T., Hansen, L. K., & Larsen,
J. (2007). Unveiling music structure via plsa similarity fusion. In 2007 IEEE Workshop on
Machine Learning for Signal Processing (pp. 419–424).

Aroyo, L., & Riichiro, M. (2003). Authoring support framework for intelligent educational
systems. In AIED-2003 (pp. 362–364).

Bieg, C., & Diehl, S. (2004). Educational and technical design of a web-based interactive tutorial
on programming in Java. Science of Computer Programming, 53(1), 25–36.

Blank, G., Parvez, S., Wei, F., & Moritz, S. (2005). A web-based ITS for OO design. In Workshop
on Adaptive Systems for Web-Based Education Tools and Reusability (Vol. 12).

Bra, P. de, Aerts, A., Berden, B., Lange, B. de, Rousseau, B., Santic, T., et al. (2003). AHA! The
adaptive hypermedia architecture. In Proceedings of the Fourteenth ACM Conference on
Hypertext and Hypermedia—HYPERTEXT ’03, 4, 81. doi:10.1145/900065.900068

Brusilovsky, P., Schwarz, E., & Weber, G. (1996). ELM-ART: an intelligent tutoring system on
World Wide Web. In Intelligent Tutoring Systems (pp. 261–269).

Chen, J. M., Chen, M. C., & Sun, Y. S. (2010). A novel approach for enhancing student reading
comprehension and assisting teacher assessment of literacy. Computers and Education, 55,
1367–1382. doi:10.1016/j.compedu.2010.06.011

Dehors, S., & Faron-Zucker, C. (2006). Qbls: a semantic web based learning system. In World
Conference on Educational Multimedia, Hypermedia and Telecommunications (ED-MEDIA).

Devedzic, V. (2006). Semantic web and education. Book (Vol. 11). http://doi.org/10.1007/978-0-
387-35417-0

Emurian, H. H. (2006). A web-based tutor for Java (TM): evidence of meaningful learning.
International Journal of Distance Education Technologies, 4(2), 10.

García, P., Amandi, A., Schiaffino, S., & Campo, M. (2007). Evaluating Bayesian networks’
precision for detecting students’ learning styles. Computers and Education, 49(3), 794–808.

García, E., Romero, C., Ventura, S., & De Castro, C. (2009). An architecture for making
recommendations to courseware authors using association rule mining and collaborative
filtering. User Modeling and User-Adapted Interaction, 19(1–2), 99–132.

Ghali, F., & Cristea, A. I. (2009). MOT 2.0: a case study on the usefulness of social modeling for
personalized e-learning systems. In AIED (pp. 333–340).

10.4 Development of Ontologies for Java Programming Course 211

http://dx.doi.org/10.1007/978-3-319-41163-7_11
http://dx.doi.org/10.1145/900065.900068
http://dx.doi.org/10.1016/j.compedu.2010.06.011
http://doi.org/10.1007/978-0-387-35417-0
http://doi.org/10.1007/978-0-387-35417-0

Graf, S., & Ives, C., et al. (2010). A flexible mechanism for providing adaptivity based on learning
styles in learning management systems. In 2010 IEEE 10th International Conference on
Advanced Learning Technologies (ICALT), (pp. 30–34).

Grönroos, M. (2010). Book of Vaadin: Vaadin 6.4. Writing.
Holland, J., Mitrovic, A., & Martin, B. (2009). J-LATTE: a constraint-based tutor for java.
Jones, N., Macasek, M., Walonoski, J., Rasmussen, K., & Heffernan, N. (2006). Common tutor

object platform—An e-learning software development strategy. In Proceedings of the 15th
international conference on World Wide Web, Edinburgh, Scotland (pp. 307–316).

Klašnja-Milićević, A., Vesin, B., Ivanovic, M., & Budimac, Z. (2011). Integration of
recommendations and adaptive hypermedia into java tutoring system. Computer Science and
Information Systems, 8(1), 211–224. doi:10.2298/CSIS090608021K

Klašnja-Milićević, A., Vesin, B., Ivanović, M., & Budimac, Z. (2009). Integration of
recommendations into Java tutoring system. In The 4th International Conference on
Information Technology ICIT 2009 Jordan.

Merceron, A., & Yacef, K. (2004). Mining student data captured from a web-based tutoring tool:
initial exploration and results. Journal of Interactive Learning Research, 15(4), 319.

Merino, P. J. M., & Kloos, C. D. (2008). An architecture for combining semantic web techniques
with intelligent tutoring systems. In Intelligent Tutoring Systems (pp. 540–550).

Myller, N. (2006). Automatic prediction question generation during program visualization. In
Proceedings of the Fourth Program Visualization Workshop.

Popescu, E. (2010). Adaptation provisioning with respect to learning styles in a w-based
educational system: an experimental study. Journal of Computer Assisted Learning, 26(4),
243–257.

Protégé. (2011). The Protégé Ontology Editor. Financial Executive (Vol. 19). http://doi.org/10.
5121/ijait.2011.1401

Romero, C., Ventura, S., Hervas, C., & Gonzalez, P. (2006). Rule mining with {GBGP} to
improve web-based adaptive educational systems. In Data mining in e-learning (Vol. 4,
pp. 171–188). Retrieved from http://library.witpress.com/pages/listPapers.asp?q_bid=392

Šimić, G. (2004). The multi-courses tutoring system design. Computer Science and Information
Systems, 1(1), 141–155.

Soonthornphisaj, N., Rojsattarat, E., & Yim-Ngam, S. (2006). Smart e-learning using
recommender system. In Computational Intelligence (pp. 518–523). Springer.

Suarez, M., & Sison, R. (2008). Automatic construction of a bug library for object-oriented novice
java programmer errors. In Intelligent Tutoring Systems (pp. 184–193).

Sykes, E. (2007). Developmental process model for the Java intelligent tutoring system. Journal of
Interactive Learning Research, 18(3), 399.

Sykes, E. R., & Franek, F. (2003). An intelligent tutoring system prototype for learning to program
java TM.

Vesin, B., Ivanović, M., & Budimac, Z. (2009). Learning management system for programming in
java. Annales Universitatis Scientiarum De Rolando Eötvös Nominatae, Sectio-Computatorica,
31, 75–92.

Vesin, B., Ivanović, M., Klašnja-Milićević, A., & Budimac, Z. (2012). Protus 2.0: ontology-based
semantic recommendation in programming tutoring system. Expert Systems with Applications,
39, 12229–12246. doi:10.1016/j.eswa.2012.04.052

Vesin, B., Ivanović, M., Klašnja-Milićević, A., & Budimac, Z. (2013). Ontology-based
architecture with recommendation strategy in Java tutoring system. Computer Science and
Information Systems, 10(1), 237–261. doi:10.2298/CSIS111231001V

Wei, F., Moritz, S. H., Parvez, S. M., & Blank, G. D. (2005). A student model for object-oriented
design and programming. Journal of Computing Sciences in Colleges, 20(5), 260–273.

Wolf, C. (2003). iWeaver: towards’ learning style’-based e-learning in computer science
education. In Proceedings of the Fifth Australasian Conference on Computing
Education-Volume 20 (pp. 273–279).

212 10 Design, Architecture and Interface of Protus 2.1 System

http://dx.doi.org/10.2298/CSIS090608021K
http://doi.org/10.5121/ijait.2011.1401
http://doi.org/10.5121/ijait.2011.1401
http://library.witpress.com/pages/listPapers.asp%3fq_bid%3d392
http://dx.doi.org/10.1016/j.eswa.2012.04.052
http://dx.doi.org/10.2298/CSIS111231001V

Chapter 11
Personalization in Protus 2.1 System

Abstract The ultimate goal of developing Protus 2.1 system has been increasing
the learning opportunities, challenges and efficiency. Two important ways of
increasing the quality of Protus 2.1 service are to make it intelligent and adaptive.
Different techniques need to be implemented to adapt content delivery to individual
learners according to their learning characteristics, preferences, styles, and goals.
Protus 2.1 provides two general categories of personalization in system based on
adaptive hypermedia and recommender systems: content adaptation and adaptation
of user interface. Several approaches are used to personalize the material presented
to the learner. Programming course in Protus 2.1 offers three types of personal-
ization to each individual learner: (1) use of recommender systems, (2) learning
styles personalization and (3) personalization based on resource sequencing. This
chapter presents Protus 2.1 functionalities as well as personalization options from
the end-user perspective.

The ultimate goal of developing Protus 2.1 system has been increasing the learning
opportunities, challenges and efficiency. Two important ways of increasing the
quality of Protus 2.1 service are to make it intelligent and adaptive.

Different techniques need to be implemented to adapt content delivery to indi-
vidual learners according to their learning characteristics, preferences, styles, and
goals. Protus 2.1 provides two general categories of personalization in system based
on adaptive hypermedia and recommender systems: (Ivanović et al. 2008):

• Content adaptation—presenting the content in different ways, according to the
domain module and information from the learner model. All learners and
contents are grouped into classes of similar objects in order to recommend
optimum resources and pathways. The principle of clustering is maximizing the
similarity inside an object group and minimizing the similarity between the
object groups.
Such clusters needed to be defined in Protus 2.1 in order to provide learner with
the most suitable learning material and to form the most suitable pathway. The
system maintains different versions of pages it presents to the learners or in
some cases different versions of page fragments within the page, it selects the

© Springer International Publishing Switzerland 2017
A. Klašnja-Milićević et al., E-Learning Systems,
Intelligent Systems Reference Library 112, DOI 10.1007/978-3-319-41163-7_11

213

adequate version to be presented to the learner according to the information in
learner model.
System also hides advanced content from a novice learner and shows suitable
additional content to more advanced learner. Personalisation is based on the fact
that learners with different learning styles will master the content easier if it is
presented to them in an appropriate way, for example with block diagrams or
graphic representation of the syntax rules rather than with textual descriptions.

• Adaptation of user interface involves adaptation of certain user interface ele-
ments displayed on Web pages in order to present recommendations of certain
teaching materials.
User interface adaptation in Protus 2.1 is performed in the form of link adap-
tation. The system modifies the appearance and/or availability of every link that
appears on a course Web page, in order to show the learner whether the link
leads to interesting new information, to new information the learner is not ready
for, or to a page that provides no new knowledge. System makes some links
inaccessible to the learner if the system estimates from the learner model that
such links take him/her to the irrelevant information.
System assumes that less successful learners will be interested in additional
materials. Therefore, those learners may click the link for additional material on
the interface.

Several approaches can be used to personalize the material presented to the
learner. Programming course in Protus 2.1 offers three types of personalization to
each individual learner:

• use of recommender systems (Klašnja-Milićević et al. 2011a)
• learning styles personalization (Klašnja-Milićević et al. 2011b) and
• personalization based on resource sequencing (Vesin et al. 2012).

Application of those three techniques will be explained in subsequent sections.

11.1 The Protus 2.1 Component for Making
Recommendations

A recommender System in e-learning environments assists learners in discovering
relevant learning actions and educational material that perfectly match their profile,
at the right time, in the right context, and in the right way, keep them motivated and
enable them to complete their learning activities in an effective and efficient way
(Tang and McCalla 2005).

The Protus 2.1 component for building automatic recommendations is composed
of three modules (Fig. 11.1):

• A learner-system interaction module, which pre-processes data to build learner
models. The information from learners’ registration form and learning style

214 11 Personalization in Protus 2.1 System

survey are collected in order to create an initial personal profile. The data about
all learners’ activities like sequential patterns, visited pages (tutorials, theory
session or examples), test results and grades earned are collected within this
module and saved into the server logs. The functionality available by clicking
on an active learning object includes searching and categorization, as well as the
ability to add tags or notes, and to modify/delete selected tags or notes. All
information about tagging process are kept in tags repository and used for
tag-based recommendation.

• An off-line module, which uses learner models on-the-fly to recognize learners’
goals and content profiles. After appropriate learning style is determined for
each learner, based on the initial survey, learning content is filtered, depending
on the current status of the course, learner’s affiliation and learners’ tags. The
offline module is launched periodically to perform all necessary calculations
(user/cluster assignment, evaluation computation). Calculations are performed
using a current snapshot of input data, and all results are stored until all pro-
cedures are finished. The previously computed results are left intact at this stage.
Upon completion, the old results are overwritten with the newly calculated data.
This allows the recommendation engine, to be very quick, with computational
complexity kept at minimum. That is because all requirements to be done online
are to look up the user in the users/clusters assignment database and retrieve
ranks and recommendations for that given cluster.

Registration form
(Learning styles

survey)

Learner

CF recommendation

System provided
ratings

Tag-based
recommendation

Recommender system

Server logs

Learner objects - LOs

Selection and categorization of
recourses

Learner-system interaction

Course
Theory session
Tutorials
Examples
Tests

Learner profiles

Offline modeling

Content filtering and
indexing

Tags repository

Clustering based on preferred
styles

Sequence discovery –
Apriory all

Tagging interface
 Creating
 Editing
 Searching
 Browsing

Fig. 11.1 The recommendation component

11.1 The Protus 2.1 Component for Making Recommendations 215

• A recommendation engine, which produces a recommendation list according to
the:

– learners’ and experts’ tags for each generated cluster and
– the ratings of the frequent sequences, provided by Protus 2.1 system

From the filtered list of learning content the list of recommended actions is sent
to alter learner–system interaction within a new session.

When learners access the system for the first time, their learning styles need to be
tested. The Felder-Silverman learning style model (FSLSM) is considered the most
appropriate to be used in a computer-based educational system (Kinshuk et al.
2011). It describes the learning style on a more detailed level than the other models.
By using dimensions instead of types, the strengths of learners’ preference towards
a particular learning style can be represented. Moreover, FSLSM is based on ten-
dencies, enabling the learning style model to consider exceptional behaviour.
Furthermore, FSLSM is widely used in adaptive learning systems focusing on
learning styles and some researchers even argue that it is the most appropriate
model for the use in adaptive learning systems (Carver et al. 1999; Kuljis and Liu
2005). Based on this model a corresponding psychometric assessment instrument
was created. It was called the Felder-Solomon’s Index of Learning Styles (ILS). It is
a 44-item questionnaire where learners’ personal preferences for each dimension are
expressed with values between +11 and −11 per dimension, with steps ±2. This
range comes from the eleven questions that are posed for each dimension (Graf
2007). This style indicates a preference for some presentation methods over others.

According to the different combinations of learning styles it is possible to define
clusters, which determined learner profiles. These results are stored in the learner
model, which are used for the adaptation in Protus 2.1 (Klašnja-Milićević et al.
2011b).

When a learner is registered or logged in, (s)he can begin the process of learning.
A learning session is initiated based on the learner’s specific learning style and
sequence of lessons is recommended to him/her. The learner can change the order
of lessons (s)he is attending. After selecting a lesson, from the collection available
in Protus 2.1, the system chooses a presentation method for the lesson based on the
preferred style. For the rest of the lesson, learners are free to switch among pre-
sentation methods using the media experience bar, which will be explained in detail
in Sect. 11.2. When the learner completes the sequence of learning contents, the
system evaluates the learner’s knowledge degree. The test contains several
multiple-choice questions and code completion tasks. Protus 2.1 then provides
feedback to the learner on his/her answers and gives the correct solutions after the
test. Recommendations cannot be made for the entire set of (all) learners in the
same way, because even for learners with similar learning interests, their ability to
solve a task can vary due to variations in their knowledge level. In our approach, we
perform a data clustering technique as a first step to cluster learners based on their
learning styles. These clusters are used to identify coherent choices in frequent
sequences of learning activities.

216 11 Personalization in Protus 2.1 System

Recommendation list can be created according to the ratings of these frequent
sequences, provided by Protus 2.1 system. Also, a recommendation list can be
created according to the learners’ and experts’ tags in every cluster, separately.
During the learning process learner can tag each learning object. The details of the
whole personalization process are presented in the rest of the Chapter.

11.2 Learning Style Identification in Protus 2.1

It is obvious that different learners have different preferences, needs and approaches
to learning. Psychologists call these differences individual learning styles.
Therefore, it is very important to take into account these different learning styles
when implementing learning environments in order to make educational process
more efficient. Learning styles can be defined as unique manners in which learners
begin to concentrate on, process, absorb, and retain new and difficult information
(Dunn et al. 1984; Pritchard 2013).

The term learning styles refers to the concept that individuals differ in regard to
what mode of instruction or study is most effective for them (Pashler et al. 2009).
Proponents of learning-style assessment argue that optimal instruction requires
diagnosing individuals’ learning style and tailoring instruction accordingly. While
many learning style models exist in literature, in Protus 2.1 system we implemented
model by (Felder and Silverman 1988) concerning the different Cognitive Styles of
Learning (CSL) learners may have, which were described in (Klašnja-Milićević
et al. 2011b). Based on those CSL, a GUI interface was developed to enable the
learner himself/herself to categorize his/her CSL, set his/her learning goals and
characteristics of work environment and the kind of course (s)he wants to take. At
run-time, the learner model is updated taking into account the learning activities.

Before initial session, and after learning style has been determined by the ILS,
current learning style category of the particular learner must be written in learner
model of Protus 2.1. The learning style will be further investigated (and updated if
necessary) by observing a pattern in the choices (s)he makes.

11.2.1 Adaptation Process in Protus 2.1

There are over seventy identifiable approaches to investigate and/or describe
learning style preferences. As we already mentioned, we used one such data col-
lection instrument, called Index of Learning Styles—ILS (Felder et al. 2000).
The ILS is a 44 question, freely available, multiple-choice learning styles instru-
ment, which assesses variations in individual learning style preferences across four
dimensions or domains. These are Information Processing, Information Perception,

11.1 The Protus 2.1 Component for Making Recommendations 217

Information Reception, and Information Understanding. Within each of the four
domains of the ILS there are two categories of learners:

• Information Processing: Active and Reflective learners,
• Information Perception: Sensing and Intuitive learners,
• Information Reception: Visual and Verbal learners,
• Information Understanding: Sequential and Global learners.

In the rest of the section adaptation process in Protus 2.1 based on learning styles
identification is presented.

At the beginning of the learning session Protus 2.1 requests information about
the status of the course from the Learner model ontology for the particular learner
(Fig. 11.2). This data includes information about the current lesson and the learning
style category of the learner within one of the four domains of the ILS. Request for
appropriate resources which will be presented to the learner, based on this data, is
sent to the Teaching strategy ontology. Further, all activities of learners are mon-
itored, as well as all requests (s)he send to the system and a Learner model ontology
is updated accordingly.

If the learner does not provide the required level of performance results within a
session based on the presentation method used for his/her certain learning style
category, his/her current learning style category will be modified. In those cases, the
system changes the current learning style of the learner to its alternative, from the
same domain. Learning styles are grouped in pairs (active and reflective, sensing
and intuitive, visual and verbal, sequential and global), therefore every learning
style has only one alternative within the domain. The established threshold of
knowledge can change over time depending on the level of learners’ knowledge.

Learner Task ontology Learner model Strategy ontology

[new user] fillTheSurvey() createUser()

[old user] start()

dataState()

resourceRequest()

dataRetrieval()
presentingResource()

action/request() updatingNavigationalSequence()

userCreated()

reedState()

updating()

Learning
style
identification

Fig. 11.2 Adaptation based on the learning styles

218 11 Personalization in Protus 2.1 System

For example, if a learner with Verbal learning style interacts with the system and
during that interaction (s)he had accessed appropriate concept, but not earned
sufficient grade (required grade level is kept in global value required), then, the
learning style of that learner should be changed to its alternative from Information
reception domain: Visual learning style. That implies that in the next session, the
learner will be presented with resources that are defined to support a particular
learning style category.

Details of the adaptation process implemented in Protus 2.1 and executed
adaptation rules are presented in Sect. 9.3 (adaptation rules: from AR1 to AR22).

11.2.2 Calculation of Initial Learning Styles

Each question in the questionnaire belongs to one of the four dimensions of
learning styles (information processing, information perception, information
reception and information understanding). Eleven questions were assigned to each
of the four dimensions. Two answers are offered for every question and each of
them pulls the final result in one of two categories within the proper dimension of
learning styles.

Once a learner submits answers, the system fills in appropriate table (Table 11.1)
by entering the one point for each answer in the appropriate field. Then numbers

Table 11.1 Example of completed table for the learning styles determination

Active/Reflexive Sensitive/Intuitive Visual/Verbal Global/Sequential

Question a b Question a b Question a b Question a b

1 1 – 2 1 – 3 – 1 4 1 –

5 – 1 6 1 – 7 1 – 8 – 1

9 – 1 10 – 1 11 – 1 12 1 –

13 – 1 14 – 1 15 1 – 16 1 –

17 1 – 18 – 1 19 1 – 20 1 –

21 1 – 22 – 1 23 – 1 24 – 1

25 – 1 26 1 – 27 1 – 28 – 1

29 1 – 30 – 1 31 – 1 32 1 –

33 1 – 34 1 – 35 – 1 36 1 –

37 1 – 38 – 1 39 1 – 40 1 –

41 1 – 42 – 1 43 1 – 44 1 –

Overall (sum of marks within one column)

Active/Reflexive Sensitive/Intuitive Visual/Verbal Global/Sequential

a b a b a b a b

Sum 7 4 Sum 4 7 Sum 6 5 Sum 8 3

Index of the particular style

−2 2 −1 −3

11.2 Learning Style Identification in Protus 2.1 219

http://dx.doi.org/10.1007/978-3-319-41163-7_9

from the same column are summed. The final index is calculated based on the
number of responses marked as A and B. Thus, the value of the index is −6 if all
eleven responses was of type A, the index is −5 if there are ten types A responses
and only one type B, the index is −4 if nine answers was type A and two answers
were type B, and so on.

11.2.2.1 Explanation of Index

If the calculated index is in the range of −2–2 then learner is slightly leaning to one
or another category within the dimension. If the index is −4, −3, 3, or 4, then the
learner moderately leaning to one category and it will be easier for him/her to learn
in an environment that favours this category. In the case that the index is −6, −5, 5,
or 6, learner lean extremely to one category within scale and may have great
difficulty if taught in an environment that supports the opposite category.

Next, the system calculates numerical value of learning styles for a learner and
initializes the appropriate learner model. Initialization of the learner model plays an
important role in defining the initial options for personalisation of the system.

Initialization of the learner model plays an important role in defining the initial
personalization options in the system.

Listings 11.1, 11.2 and 11.3 presents segments of code that calculate the
numerical value of learning styles based on the responses of learners and initialize
the appropriate learning model.

Listing. 11.1 Reading of learner’s answers

220 11 Personalization in Protus 2.1 System

Protus 2.1 with a code segment in Listing 11.1 reads the learner’s answers and
fill in the appropriate array.

Responses that belong to a category of learning styles within each dimension are
added up (Listing 11.2).

Based on these data, the final indexes for each of four dimensions of learning
styles are calculated (Listing 11.3).

Based on the obtained data, Protus 2.1 collects information on initial learning
style, updates the Learner model ontology and presents the results of a question-
naire as presented on the Fig. 11.3.

Listing. 11.2 Adding
answers by groups

Listing. 11.3 Final
calculation of learning styles
index

11.2 Learning Style Identification in Protus 2.1 221

11.2.3 Adaptation of User Interface Based on the Learning
Styles

Protus 2.1 personalizes user interfaces to each individual learner, based on the
learner model and their learning styles. Personalization includes presentation of
recommended resources and links. Depending on the identified learning styles,
Protus 2.1 modifies the user interface that presents teaching materials (Fig. 11.4).
Process of user interface adaptation will be covered in next section, referring to all
categories of learning styles separately.

Fig. 11.3 Results of ILS questionnaire

Fig. 11.4 Java programming course in Protus 2.1

222 11 Personalization in Protus 2.1 System

11.2.3.1 Information Processing: Active and Reflective Learners

Within Information Processing domain, we can distinguish example-oriented
learners, called Reflectors, and activity-oriented learners, called Activists (Kolb
1984). Active learners tend to retain and understand information best by doing
something active with it—discussing or applying it or explaining it to others.
Reflectors are learners who tend to collect and analyse data before taking an action.
They may be more interested in reviewing other learners’ and professional opinions
than doing real activities. In Protus 2.1 system, a learner with the active learning
style is shown an activity first, then a theory, explanation and example (Fig. 11.5).
For the learner with the reflective style this order is different—(s)he is shown an
example first, then an explanation and theory, and finally (s)he is asked to perform
an activity (Fig. 11.6).

11.2.3.2 Information Perception: Sensing and Intuitive Learners

Within Information Perception domain, sensing learners, called Sensors, tend to be
patient with details and good at memorizing facts and doing hands-on (laboratory)
work. On the other hand, intuitive learners, called Intuitive learners, may be better at
grasping new concepts and are often more comfortable with abstractions and
mathematical formulations than sensing learners. Sensors often prefer solving
problems using well-established methods, and dislike complications and surprises.
On the other hand, Intuitive learners like innovation and dislike repetition. Sensors
tend to be more practical and careful than Intuitive learners. Intuitive learners tend
to work faster and to be more innovative than Sensors. Presentation of the lesson to
the learner with sensing and intuitive styles is given in Figs. 11.7 and 11.8. For

Fig. 11.5 Active style presentation

Fig. 11.6 Reflective style presentation

Fig. 11.7 Sensing style
presentation

11.2 Learning Style Identification in Protus 2.1 223

example, it is assumed that sensing learners will be interested in additional mate-
rials, therefore they may click the button for additional material on the interface
(Fig. 11.7). Intuitive learners are provided with abstract material, formulas and
concepts as shown in Fig. 11.8. Adequate explanations are given in the form of
block diagrams or exact syntax rules.

11.2.3.3 Information Reception: Visual and Verbal Learners

Within Information Reception domain, Visual learners remember best what they see
—pictures, diagrams, flow charts, time lines, and demonstrations. Verbal learners
get more out of words—written and spoken explanations. Figure 11.9 shows a
presentation of the topic For loop to a learner with a preference for textual material
(verbalizer style). Figure 11.10 shows the presentation of the same material to a
learner with a visual preference. Based on the visual preference, the topic about the
For loop is presented as a block diagram.

11.2.3.4 Information Understanding: Sequential and Global Learners

Within Information Understanding domain Sequential learners tend to follow
logical stepwise paths in finding solutions. On the other hand, Global learners may
be able to solve complex problems quickly or put things together in novel ways
once they have grasped the big picture, but they may have difficulty explaining how
they did it. Sequential learners prefer to go through the course step by step, in a
linear way with each step following logically from the previous one, while global
learners tend to learn in large leaps, sometimes skipping learning objects and
jumping to more complex material. According to these characteristics of Sequential
learning style, learners go through lessons in Protus 2.1 by a predefined order
(Fig. 11.11). On the other hand, Global learners are provided with an overall view

Fig. 11.8 Intuitive style presentation

224 11 Personalization in Protus 2.1 System

Fig. 11.9 Verbal style presentation

Fig. 11.10 Visual style presentation

Fig. 11.11 Navigation buttons for sequential learners

11.2 Learning Style Identification in Protus 2.1 225

of the course, with short explanations of each unit and options for accessing the unit
they are interested in by choosing the unit hyperlinks rather than following
sequential order (Fig. 11.12).

Different researches have shown that learning style may change depending on
the task that the learner has mastered. Also, learning style may change according to
the content of learning. Therefore, it is counterproductive to leave the user’s
learning style unchanged throughout the whole course. For the rest of the course,
learners were free to switch between presentations methods by using the experience
bar (Fig. 11.13).

At any time, learner can get a brief overview of the attended course and display
his/her learning styles (Fig. 11.14). A similar report is displayed after the learner
checks out from the current session.

Fig. 11.12 Presentation for
global learners

226 11 Personalization in Protus 2.1 System

11.3 Resource Sequencing

Resource sequencing is a well-established technique in application of intelligent
tutoring systems in the educational process (Janssen et al. 2007). The idea of
resource sequencing is to generate a personalized course for each learner by
dynamically selecting the most optimal teaching actions, presentation, examples,
task or problems at any given moment. By optimal teaching action, it is considered
an operation that in the context of other available operations brings the learner
closest to the ultimate learning goal. Most often, the goal is to learn and acquire
some knowledge up to a specific level in an optimal amount of time. Learners could
follow different paths based on their preferences and generate a variety of learning

Fig. 11.13 Experience bar

Fig. 11.14 Style report

11.3 Resource Sequencing 227

activities. All these variations in a series of learning activities are recorded by
Protus 2.1 system.

In order to monitor learner’s performance during the session, Protus 2.1 records
results of learner’s interaction, earned grades and data about used concepts (navi-
gation through resources). Set of visited concepts and resources represents a nav-
igation pattern. These results are used in building a global database of navigational
patterns.

After each learners’ request, the system examines visited resources and com-
pares it with Navigational patterns of other learners (Fig. 11.15). Protus 2.1 finds
similar learners based on their grades (achieved for the same lesson) and completes
personalized recommendation of the learning content according to the ratings of
these frequent sequences. Patterns are ranked based on the results achieved by
learners on tests (Vesin et al. 2011). Specifically, the average score is calculated for
learners that passed through the teaching material in the same order.

If the learner has successfully mastered a particular concept (Table 10.9, Sect. 9.3.1.),
which is supported by specific resources (Table 10.10, Sect. 9.2), then the system adds
that resource to the appropriate successful navigation pattern (Fig. 11.16).

Specifically, this would mean that if learner interacted with system through a
certain navigation pattern, then system should recommend the next highest ranked
resource that fits the pattern.

For example, let learner has visited resources that display introductory remarks
(Intro resource), basic information (basicInfo resource) and various explanations
(Explanation resource) for a lesson. While recommendations which resource will be
presented to an active learner are being generated, the system takes into account
learners who visited resources in the same order within the same lesson. The system

Learner Task ontology Learner model Strategy ontology

dataState()

resourceRequestWithBestRating()

dataRetrieval()

presentingResource()

action/request()

navigationalSequenceRetrieval()

Rating of
sequencies

reedRecentPatterns()

recentPatternsRetrieval()

findSimilarLearners()

dataRetrieval()

Fig. 11.15 Adaptation based on the navigation pattern

228 11 Personalization in Protus 2.1 System

http://dx.doi.org/10.1007/978-3-319-41163-7_10
http://dx.doi.org/10.1007/978-3-319-41163-7_9
http://dx.doi.org/10.1007/978-3-319-41163-7_10
http://dx.doi.org/10.1007/978-3-319-41163-7_9

then compares the grades of those learners who afterwards visited Syntax rules
resource and the grades of those learners who visited Activity resource. Resource,
that brought higher scores to learners who have visited it, is being recommended to
current learner.

Recommendation status of that resource is set to true, therefore, one of the
several changes in user interface must be made (depending on the included resource
type):

• link to that resource is annotated or highlighted (Fig. 11.16a),
• the interface elements for sequential navigation will be hidden, giving the

learner possibility to freely jump through the courseware (in a case of sequential
learning style category) or presented (in a case of sequential learning style
category, Fig. 11.16b),

• additional tabbed pane elements will be added to related or more complex
content to help situate the learnt subject and contribute in creating a clear overall
view on the subject being thought (Fig. 11.16c).

Also, if learner visits a particular concept and during this interaction solve test
related to this concept and obtain positive evaluation, then system records the
results of this interaction in the learner model ontology (Listing 11.4) with adap-
tation rules presented in Sect. 9.3 (adaptation rules AR27-AR30) and marks that
resource as visited (Table 10.10, Sect. 9.3).

11.3.1 Identification of Sequences of Learning Activities
and Personalized Recommendation

In contrast to traditional classroom-based learning, the learning behaviour in
Web-based environments is more determined by the learner’s own decisions how to
organize learning process (Northrup 2001). Learners could follow different paths
based on their preferences and generate a variety of learning activities. All these
variations in series of learning activities are noted down by Protus 2.1 system.

Fig. 11.16 User interface adaptation a Annotation b Presented interface elements c Adding
elements

11.3 Resource Sequencing 229

http://dx.doi.org/10.1007/978-3-319-41163-7_9
http://dx.doi.org/10.1007/978-3-319-41163-7_10
http://dx.doi.org/10.1007/978-3-319-41163-7_10

In order to investigate learning activities in detail, sequential pattern mining
algorithm of AprioriAll (Pi-lian 2005) is adopted to extract behavioural (interaction)
patterns from the log file. These patterns will be useful to analyse how learners
evolve from the beginning of learning of particular unit, until they successfully finish
it, or even give up. Learners with different learning styles have different sets of
frequent sequences. Hence, learners were clustered based on their learning styles and
then behavioural patterns were discovered for each learner by AprioriAll algorithm.

11.3.1.1 The Process of Mining Sequential Patterns by Apriori All
Algorithm

Let l ¼ fi1; i2; . . .; img be a set of learning objects, called items. An itemset is a
non-empty set of items. A sequence is an ordered list of itemsets. We denote an
itemset i by i1; i2; . . .; im, where ij is an item. We denote a sequence s by
ðs1; s2; . . .; snÞ, where sj is an itemset. A sequence a1; a2; . . .; anh i is contained in
another sequence b1; b2; . . .; bnh i if there exist integers k1\k2\. . .\knh i such that
a1�bk1 ; a2�bk2 ; . . .; an�bkn .

In a set of sequences, a sequence s—is maximal if s is not contained in any other
sequence (Agrawal and Srikant 1995). A learner supports a sequence s if s is
contained in the learner-sequence for this learner. The support for sequence is
defined as the fraction of total learners who support this sequence.

Given a database D of learners’ access transactions, the problem of mining
sequential patterns is to find the maximal sequences among all sequences that have

Listing. 11.4 Pseudo code of learning process in Protus 2.1

Listing. 11.5 Algorithm for
pruning of sequential patterns

230 11 Personalization in Protus 2.1 System

a certain learner-specified minimal support. Each such maximal sequence represents
a sequential pattern. We call a sequence satisfying the minimum support constraint a
large sequence.

The process of mining sequential patterns can be split into five phases (Agrawal
and Srikant 1995). To conveniently explain them, we use a small part of the
database, as shown in Table 11.2. Each transaction consists of the following fields:
learner-id, access-time, and the access path in the transactions. Phases are:

• Sort phase: The original database is sorted with learner-id as the major key and
access time as the minor key. Table 11.2 shows the result set of learner
sequences after sorting.

• Large-itemsets (l-itemsets) phase: In this phase, we find the set of all large
itemsets. Without loss of generality, we assume that the set of l-items is mapped
to a set of consecutive letters. Suppose the minimal support is 60 %, and the
minimal support customer sequence is thus 3. The result of large 1-itemsets is
listed in Table 11.3.

• Transformation phase: In a transformed learner sequence, each transaction is
replaced by the set of l-itemsets contained in that transaction. If a transaction
does not contain any l-itemset, it is not retained in the transformed database.
This transformed database is shown in Table 11.4.

• Sequence phase: This is an essential phase of the process. In this phase, an
algorithm uses a set of large itemsets to find the desired sequences. The idea is
that, given the l-itemsets, the set of all the sequences with minimum support
should be found. In each pass, we use the large sequences of the previous pass to
generate the candidate sequences, and then measure their support by making a

Table 11.2 Database sorted by learner-id and transaction time

Learner-id Access-time Access path

1
1
1
1

2010. January 20.
2010. January 22.
2010. January 23.
2010. January 24.

Lesson1 introduction, Lesson1 overview, Lesson 1 theory
session Lesson1 exercise, Lesson 1 syntax rule,
Lesson 1 example 2, Lesson 1 example 3
Lesson 1 example 1, Test 1

2
2
2

2010. January 15.
2010. January 16.
2010. January 17.

Lesson 1 overview, Lesson 1 theory session
Lesson 1 example 3, Lesson 1 example 1,
Test 1

3
3
3
3

2010. January 18.
2010. January 20.
2010. January 21.
2010. January 22.

Lesson 1 theory session
Lesson 1 syntax rule
Lesson 1 example 3, Lesson 1 example 1
Lesson 1 exercise, Test 1

4
4
4
4

2010. January 21.
2010. January 23.
2010. January 24.
2010. January 26.

Lesson1 introduction, Lesson1 overview, Lesson 1 theory
session, Lesson1 exercise,
Lesson 1 syntax rule,
Lesson 1 example 2, Lesson 1 example 3, Test 1

5
5
5
5

2010. January 16.
2010. January 17.
2010. January 18.
2010. January 19.

Lesson1 introduction, Lesson1 overview
Lesson 1 theory session
Lesson1 exercise
Lesson 1 example 1, Lesson 1 example 2, Test 1

11.3 Resource Sequencing 231

pass over the database. The first pass over the database is made in the l-itemset
phase, and we determine the large 1-sequences shown in Table 11.3. The large
sequences together with their support at the end of the third and fourth pass are
shown in Tables 11.5 and 11.6, respectively.

• Maximal phase: to reduce information redundancy, the sequential patterns
contained in other sequential patterns are pruned (see algorithm in Listing 11.1).
Table 11.7 shows Maximal Large 5-Sequences, after pruning.

11.4 Recommendation Process Based on Collaborative
Filtering

The task of a collaborative filtering system is to predict the usefulness rating of a
particular learner l for a similar learner l’ (Herlocker et al. 2004). Therefore, the
rating vector of a learner l is represented by Rl = (rl1, rl2, …, rli). The entry rlj of Rl

is provided by Protus 2.1 to indicate the learner’s knowledge degree for the unit (s)
he is currently used in the learning process.

The collaborative filtering system compares the learner’s ratings with the ratings
of all other learners, who have been rated. Then a weighted average of the other
learners rating is used as a prediction. If Sl is set of frequent sequences that a learner
l has been rated for, then we can define the mean rating of learner l as:

Table 11.3 Large itemsets Large itemsets Mapped to

Lesson1 introduction a

Lesson1 overview b

Lesson 1 theory session c

Lesson1 exercise d

Lesson 1 syntax rule e

Lesson 1 example 1 f

Lesson 1 example 2 g

Lesson 1 example 3 h

Test 1 i

Table 11.4 Transformed
database

Learner id Mapped to

1 <(abc)(de)(gh)(fi)>

2 <(bc)(hf)i>

3 <ce(hf)(di)

4 <(abc)de(ghi)

5 <(ab)cd(fgi)>

232 11 Personalization in Protus 2.1 System

Table 11.5 Large
3-sequences

Sequence Support

abc 3

abd 3

abg 3

abi 3

abh 3

bcd 3

bce 3

bcg 3

bch 3

bcf 3

bdg 3

bdh 3

bgh 3

bhi 4

bci 4

ceh 4

cdg 3

cdi 4

chi 3

ghi 3

hfi 3

ehf 3

dgi 3

dgh 3

Table 11.6 Large
4-sequences

Sequence Support

abcd 3

abcg 3

abch 3

abgh 3

abhi 3

abdg 3

abdh 3

bcgh 3

bchi 3

bghi 3

cdgh 3

cehf 3

cdgi 3

dghi 3

11.4 Recommendation Process Based on Collaborative Filtering 233

�rl ¼ ð1= Slj jÞ
X

i2 Sl

rli

When Pearson correlation (Herlocker et al. 1999) is used, similarity is deter-
mined from the correlation of the rating vectors of learner l and the other learner l’.
This value measures the similarity between the two learners’ rating vectors.

qðl; l0Þ ¼
X

i2 Sl \ Sl0

ðrli � �rlÞ � ðrl0i � �rl0 Þ
 !, ffiX

i2 Sl \ Sl0

ðrli � �rlÞ2 �
X

i2 Sl \ Sl0

ðrl0i � �rl0 Þ2
s0

@

1

A

The prediction formula is based on the assumption that the prediction is a
weighted average of the other learners’ ratings.

pcolðl; iÞ ¼ �rl þ kli
X

l2Li

qðl; l0Þðrl0i � �rl0 Þ

where Li—is the set of learners who were rated for sequence i; the factor kli is used
to normalize the weights.

kli ¼ 1=
X

l0 2Li

qðl; l0Þ
 !

When this procedure is executed, Protus 2.1 can recommend relevant links and
actions to target learner during the learning process based on similarities with other
learners. The system can be considered successful if the observed learner is rated
with a similar grade.

11.5 Tag-Based Personalized Recommendation Using
Ranking with Tensor Factorization Technique

The task of tag-based personalized recommendation is to provide a learner with a
personalized ranked list of tags for a specific item. We have implemented the
recommendation component of Protus 2.1 system that recommends the most
popular tags and experimentally compare it with the previous version of the system,
which will be shown in Chap. 5. On the basis of comprehensive comparisons of

Table 11.7 Maximal large
5-Sequences (after pruning)

Sequences

<abcgh>

<abchi>

<abghi>

234 11 Personalization in Protus 2.1 System

http://dx.doi.org/10.1007/978-3-319-41163-7_5

techniques that can be used to recommend tags, in the rest of this section, we will
show the possibility of implementing the system using Ranking with Tensor
Factorization (RTF) technique, as analyzed in the Sect. 7.4.4. The recommendation
process consists of three phases:

• generating initial tensor,
• computing tensor factorization,
• generating a list of recommended items.

11.5.1 Generating Initial Tensor

To generate the initial tensor, we have been used 3-dimensional data of learners,
items (learning objects) and tags. The third-order tensor A 2 RI�J�K represents this
data where I, J and K are the dimensions of the data of learners, items and tags,
respectively. A value ðAÞijk ¼ aijk can represent, for example, how many times
learner i tagged an item k with a tag j. In this phase following steps can be
recognized:

1. A learner set is generated.
2. Set of tags is resolved. These are the tags used by the learners.
3. Item set is resolved. These are the items tagged with the tags by the learners.
4. Iterate through all the learners, tags and items. Resolve if a current item is

tagged by the current tag and learner. If so—mark the existing relationship in the
tensor.

5. Store the empty relations (if a learner does not tag an item with a tag) of a
current learner. These relations will be used to resolve the recommendations.

11.5.2 Computing Tensor Factorization

To compute a tensor factorization, the initial tensor has to be defined, and then the
following steps should be applied:

1. Firstly, the initial tensor is split into the three mode matrices.
2. Secondly, the dimensions are reduced for each mode matrix. These reduced

matrices are multiplied to compute a core tensor.
3. Finally, the reduced matrices are transformed, multiplications are applied. The

factorized tensor is computed.

11.5 Tag-Based Personalized Recommendation Using Ranking … 235

http://dx.doi.org/10.1007/978-3-319-41163-7_7

11.5.3 Generating a List of Recommended Items

When the factorized tensor is computed, the recommendations can be determined.
The task of tag recommendation is to predict which tags a learner is most likely to
use for tagging an item. That means a tag recommender has to predict the numerical
values of the factorized tensor indicating how much the learner likes a tag for an
item. Instead of predicting single elements the system should provide the learner a
personalized list of the best N tags for the item.

11.5.4 Tag-Based Recommendation in Protus 2.1

Collaborative tagging activities in e-commerce caused the appearance of tag-based
user’s profiling approaches, which assume that users expose their preferences for
certain contents through tag assignments (Manouselis et al. 2011). Thus, the tags
could be interesting and useful information to enhance recommender system’s
algorithms. The innovation with respect to the e-learning system lies in their ability
to support learners in their own learning path by recommending tags and learning
items, and also their ability to promote the learning performance of individual
learners.

A tag is a keyword assigned by a user to represent the subject content, format,
utility or affective characteristics of a bookmark, photograph, video, audio, post,
wiki, blog or other online resources. The goal of tagging is to make a collection of
resources easier to search, to discover, to share and to navigate (Ding et al. 2008).
Using tags for characterizing digital educational resources is commonly referred to
as collaborative tagging, whereas the collection of tags created by the different users
individually is referred to as folksonomy (Zervas and Sampson 2013).

Learners could benefit from writing tags in several important ways. Tagging is
proven to be a meta-cognitive strategy that involves learners in active learning and
engages them more effectively in the learning process. As summarized by (Bonifazi
et al. 2002), tags could help learners to remember better by highlighting the most
significant part of a text, could encourage learners to think when they add more
ideas to what they are reading, and could help learners to clarify and make sense of
the learning content while they try to reshape the information. Learners’ tags could
create an important trail for other learners to follow by recording their thoughts
about specific learning material and could give more comprehensible recommen-
dations about the learning process. Tags presented on a webpage can give a learner
some idea of its importance and its content.

The information provided by tags makes available insight on learner’s com-
prehension and activity, which is useful for both learners and teachers. Tagging, by
its very nature, is a reflective practice which can give learners an opportunity to
summarize new ideas, while receiving peer support through viewing other learners’
tags/tag suggestions. Tagging interface in Protus 2.1 (Fig. 11.17) provides possible

236 11 Personalization in Protus 2.1 System

solutions for learners’ engagement in a number of different annotation activities—
add comments, corrections, links, or shared discussion.

Learning resources in Protus 2.1 have been created using the authoring tools by
instructors and they have been stored in a resource repository. Along presentation
of resources to learner, user interface in Protus 2.1 also contain options for creating
and reviewing tags for every resource. Therefore, learners are able to view and rate
the resources.

To create a tag in Protus 2.1 the learner simply starts by choosing an active
learning object in the content and enter arbitrary keywords in the appropriate
textfield (Fig. 11.18). The system allows participants to enter as many tags as they
wish, separated by commas. This makes it possible to use spaces in tags, rather than
restricting the participant to a single word. This is in contrast to many popular
tagging systems which only allow single word tags. The system allows multi-word
tags to eliminate the problem of establishing a convention for word combination.

Whenever the learner returns to that particular learning object, the list of tags (s)
he has previously made will re-appear (Fig. 11.19). When particular tag is selected,
two options are presented: Edit and Remove, which give learner option to modify or
delete this tag.

The most popular tags added by other learners, appear under Others’ Tags.
Learner has ability to add any tags from the Others’ tags to My tags list. An
example of these functionalities is shown in Fig. 11.20.

Fig. 11.17 Tags menu

Fig. 11.18 Interface for
creating tags

11.5 Tag-Based Personalized Recommendation Using Ranking … 237

According to the research that we have made by comparative analysis of
tag-based recommender algorithms, the recommended tags list is generated
according to the learners’ and experts’ tags based on Ranking with Tensor
Factorization model which produced more accurate recommendations then existing
state-of-the-art algorithms (Milicevic et al. 2010) (Fig. 11.21).

Fig. 11.19 List of my tags

Fig. 11.20 List of other’s
tags

Fig. 11.21 List of
recommended tags

238 11 Personalization in Protus 2.1 System

11.5.4.1 Tag Browsing

Tag browsing, in terms of an individual learner, is an interface that automatically
categorize information based on tags. In the community sense it is a way to gain a
global view of the tagging of the entire community, while still allowing learners to
browse the individual contributions of peers. This functionality can be accessed
through the tag menu, and provides three options: My Tags, Others’ tags, and
Community Tags.

Information provided by the individual learner is located under My Tags in the
interface (Fig. 11.22). My Tags list presents all the tags the learner has been used,
which are ordered from the most to least frequently used tag. When individual tag is
selected, an option Visit selected lesson is presented, which links the learner to the
lesson that was tagged. Textfield named Name filter adds functionalities for search
among tags.

By expanding the Others’ Tags section, the list of active learners in community
and the tags they entered (Fig. 11.23).

Fig. 11.22 My tags section

11.5 Tag-Based Personalized Recommendation Using Ranking … 239

By expanding the Community Tags section (Fig. 11.24), the most popular tags
are shown in descending order of number of times used according to the overall use
of tags, independent of individual learner who specifies tags. This gives the learner
an idea, at a much higher level, the overall view of all the content. The learner can

Fig. 11.23 Other’s tags section

Fig. 11.24 Community tags section

240 11 Personalization in Protus 2.1 System

get a sense of what are the most important terms and/or ideas at a course level. By
choosing one of the tags, the learner can visit lesson that was tagged. If a learner
chooses to search for any specific tag, corresponding lesson and learning object will
be displayed.

11.6 Use and Functioning of the System

Protus 2.1 is aims at developing courses in different domains. Java programming
course is at this moment only fully developed course and used in real educational
setting.

Protus 2.1 offers a Web interface for presenting of learning material and testing
knowledge.

This section describes the user interface and explains the guidelines that were
taken into account for its design. First screen after starting the system offers the
possibility of registering a new user—option Sign up (Fig. 11.25) or signing in an
existing one—option Sign in (Fig. 11.26). Each profile stores personal information
supplied directly by the learner, like: last name, first name, birth year, login details,
etc. (static information), and information about progress through course, grades, and
learning styles (dynamic information). Dynamic data is constantly updated by the
system during learning sessions.

A standardized form of the learner model presented in this monograph enables
the exchange of learner’s data with other systems.

The first time that learners use Protus 2.1, system asks them to fill the ques-
tionnaire that contain the ILS questions to predict their own learning styles
(Fig. 11.27).

Initial learning style of learner is calculated based on the learners’ answers based
on the learning style-model by Felder and Soloman. Learning style is recorded in
appropriate learner model (Klašnja-Milićević et al. 2011b).

It is very important for learners to take questionnaire seriously and answer all
provided questions because initialization of learner model is directly dependent on

Fig. 11.25 Sign up form of Protus 2.1

11.5 Tag-Based Personalized Recommendation Using Ranking … 241

their answers. Protus 2.1 disables the start of the course until learner answers all the
questions.

When a learner is logged in, a session is initiated based on learner’s specific data
and sequence of lessons is recommended to him/her. All information on the current
lesson, percentage of mastered materials, learner’s grades achieved during session,
overall average grade, etc. are set to their initial values and entered in Learner
model ontology. In this way, the learner begins chosen course (Fig. 11.28).

Fig. 11.26 Registration form of Protus 2.1

Fig. 11.27 ILS questionnaire

242 11 Personalization in Protus 2.1 System

11.6.1 Integration of Java Programming Course
in Protus 2.1

Teaching material for Java programming course in Protus 2.1 is organized into six
units with a total of 18 lessons (Fig. 11.29). Lessons are arranged in the following
units:

• Introduction,
• Syntax,
• Loop statements,
• Execution control,
• Classes,

Fig. 11.28 Home page of Protus 2.1

Java programming course

Unit 1.
Introduction

Primitive types

Basic elements

Unit 5.
Classes

Interfaces and
inner classes

Polymorphism

Inheritance

Encapsulation

Unit 3.
Loop statements

break and
continue

for statement

while statement

do-while statement

Unit 6.
Referential types

Error handling with
exceptions

Arrays

Methods, arguments
and return values

Creating new data
types: class

Unit 2.
Syntax

Operators

Program example

Unit 4.
Execution control

switch statement

if-else statement

Fig. 11.29 Lessons hierarchy in Java programming course

11.6 Use and Functioning of the System 243

• Referential types.

When a learner is logged in, a session is initiated based on learner’s specific data
from Learner model ontology and sequence of lessons is recommended to him/her
(Fig. 11.30).

During course, lessons can be displayed to learner in two ways:
Display of lesson in predefine order. This type of display is offered to learners

with sequential learning styles.
Learner individually choose order of lessons. Learner with global learning style

are allowed to independently select order of presented lessons and resources.

Fig. 11.30 Learning process in Protus 2.1

244 11 Personalization in Protus 2.1 System

After selecting a lesson, from the collection of lessons available in Protus 2.1
(Fig. 11.31), system chooses presentation method of lesson based on the learner’s
preferred style. For the rest of the lesson, learners were free to switch between
presentation methods by using the media experience bar.

User interface for learners is presented in Fig. 11.31. Each lesson is presented in
a tabbed pane. Each tab contains corresponding part of the lesson, i.e. presents
corresponding teaching resource.

Depending on the generated recommendations, order of tabs is changed, indi-
vidual options are displayed/hidden, appropriate types of resource are displayed or
certain links are highlighted.

11.7 Educational Material in Protus 2.1

This particular prototype of Protus 2.1 is realized to help learners in learning the
essentials of Java programming languages (Klašnja-Milićević et al. 2011a). Java
was chosen because it is a programming language widely used at our University,
and because it is a clear example of an object-oriented language and therefore
suitable for teaching the concepts of object-orientation.

The environment is designed for learners with no programming experience. It is
an interactive system that allows learners to use the teaching material prepared
within appropriate course. It also includes a part for testing the learner’s acquired
knowledge.

The learning content is divided into units, each of which consists of several
lessons (Concepts). Every lesson contains several resources (presented in different

Fig. 11.31 Learner’s interfaces

11.6 Use and Functioning of the System 245

tabs—Fig. 11.32): Introduction, Basic info, Theory, Explanation, Examples, Syntax
rules, Activity, etc.

To every lesson an unlimited number of resources and tests can be attached.
Their number can be increased by teachers using an appropriate authoring tool.
Resources that present explanations and syntax rules have two form of presentation
—verbal and textual. Appropriate form is elected based on current category of
learning styles within an Information reception domain for current learner.

Teaching materials in Protus 2.1 are presented in HTML form. System loads a
recommended document for current learner and displays it in a Web browser.

Lessons (concepts) implemented in Java programming course are grouped into 6
units as shown in Fig. 11.33.

In the next Figures we will illustrate different recourses for some lessons. For
example, the resources for For loop lesson illustrate structure and design of
resource and its form of presentation to learner. Following resources are presented:
Introduction (Fig. 11.34), Basic information (Fig. 11.35), Examples (Fig. 11.36),
Explanation (Fig. 11.37), Syntax rules for learners with verbal learning style
(Fig. 11.38) and Syntax rules for learners with visual style learning (Fig. 11.39).

Educational
material

Unit 1.
Lesson k,1

Introduction 1

Unit n

Unit k

Unit 2.

Unit n-1
Lesson k,m-1

Lesson k,i

Lesson k,2

Lesson k.m

Introduction n

Information 1

Information n

Test 1

Test k

Task 1

Task m

Test n

...
...

...
... ...

.. .
...

...

...

Fig. 11.32 Education material hierarchy

Introduction

Syntax Loop statements

Execution control

Referential types

Classes

Grouping of lessons

Nodes are units
Every unit consists of several lessons

Connectors represent the initial order of units

Nodes are units
Every unit consists of several lessons

Connectors represent the initial order of units

Fig. 11.33 Grouping of lessons

246 11 Personalization in Protus 2.1 System

Fig. 11.34 Introduction in For loop lesson

Fig. 11.35 Basic information in For loop lesson

11.7 Educational Material in Protus 2.1 247

Fig. 11.36 Examples in For loop lesson

Fig. 11.37 Explanations in For loop lesson

248 11 Personalization in Protus 2.1 System

Fig. 11.38 Syntax rules for Verbal learner in For loop lesson

Fig. 11.39 Syntax rules for Visual learner in For loop lesson

11.7 Educational Material in Protus 2.1 249

11.8 Course Organization and Structure

When a learner logs in, a session is initiated based on learner’s specific data and
sequence of lessons is recommended to him/her (Fig. 11.40). A learner has the
possibility to change order (s)he will attend lessons by choosing the options from
the lesson/course sidebar. After selecting a lesson, from the collection of lessons
available in Protus 2.1, system chooses a presentation method of lesson based on
the learner’s preferred style.

During sessions, learners visit certain resources and solve various tasks. When
the learner completes the sequence of learning materials, Protus 2.1 system eval-
uates the learner’s acquired knowledge. Tests, designed for every lesson, contain
several multiple-choice questions. Protus 2.1 provides feedback on learners’
answers and gives the correct solutions after every question. The learners’ ratings
are interpreted according to the percentage of correct answers. Details about testing
options will be cover in Sect. 11.8.

Log out option closes the current user session and updates the learner model.
The learning content is divided into units, each of which consists of several

lessons (Concepts). Every lesson contains several resources (presented in different
tabs—Fig. 11.41): Introduction, Basic info, Theory, Explanation, Examples, Syntax
rules, Activity, etc. To every lesson an unlimited number of resources and tests can
be attached. Their number can be increased by teachers using an appropriate
authoring tool. Protus 2.1 administrator’s module contains additional functionalities
for adding new learning material: lessons, resources and tests. This module was
presented in Sect. 10.3.2.

Fig. 11.40 Protus 2.1 welcome screen

250 11 Personalization in Protus 2.1 System

http://dx.doi.org/10.1007/978-3-319-41163-7_10

The learner is also provided with an overview of offered courses (Fig. 11.42)
and menu with additional options. This menu includes shortcuts to a short user
manual (Fig. 11.43) and settings of the basic system options (Fig. 11.44). Learner
is also provided with possibilities for sending (Fig. 11.45) and receiving
(Fig. 11.46) messages to/from teacher or other learners.

11.8.1 Testing in Protus 2.1

At the end of each lesson a post-testing should be conducted (Fig. 11.47). When the
learner completes the sequence of learning materials, the system evaluates the
degree of acquired knowledge. The test contains several multiple-choice questions.

Fig. 11.41 Course options within Protus 2.1

Fig. 11.42 Overview of offered courses

11.8 Course Organization and Structure 251

Protus 2.1 provides feedback on their answers and gives the correct solutions after
every question (Figs. 11.48 and 11.49). The post-test section is followed by a test
summary (Fig. 11.50).

Fig. 11.43 Short manual

Fig. 11.44 Settings options

252 11 Personalization in Protus 2.1 System

Fig. 11.45 Communication with other users

Fig. 11.46 Messages from other users

11.8 Course Organization and Structure 253

Fig. 11.47 Test form

Fig. 11.48 Feedback after correct answer

254 11 Personalization in Protus 2.1 System

Fig. 11.49 Feedback after incorrect answer

Fig. 11.50 Test summary

11.8 Course Organization and Structure 255

11.8.2 Evaluation Process

System evaluates the learner’s acquired knowledge and ratings is interpreted
according to the percentage of correct answers, as follows:

• 10 (excellent)—(90–100 %)
• 9 (good)—(80–89 %)
• 8 (average)—(70–79 %)
• 7 (passing)—(60–69 %)
• 6 (marginal)—(50–59 %)

This grading scale is based on our university grading system. Consequently,
learners have a better sense of having mastered the material using this evaluation
approach. The system can be easily transformed and adapted to other standards of
grading. Two learners are said to be similar to each other if they are evaluated by
the system with the same ratings for a similar navigation sequence.
Recommendation process can be carried out according to these learning sequences
based on the collaborative filtering (CF) approach.

References

Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. In Data Engineering, 1995.
Proceedings of the Eleventh International Conference on (pp. 3–14).

Bonifazi, F., Levialdi, S., Rizzo, P., & Trinchese, R. (2002). A web-based annotation tool
supporting e-learning. Proceedings of the Working Conference on Advanced Visual Interface—
AVI ’02, 123. http://doi.org/10.1145/1556262.1556281.

Carver, C. A., Howard, R. A., & Lane, W. D. (1999). Addressing different learning styles through
course hypermedia. IEEE Transactions on Education, 42(1), 33–38.

Ding, Y., Toma, I., Fried, M., Kang, S.-J., & Yan, Z. (2008). Integrating social tagging data: Upper
Tag Ontology (UTO). IEEE International Conference on Systems, Man and Cybernetics, 2008.
SMC 2008, 460–466.

Dunn, R., Dunn, K., & Freeley, M. E. (1984). Practical applications of the research: Responding to
students’ learning styles–step one. Illinois State Research andDevelopment Journal, 21(1), 1–21.

Felder, R., & Silverman, L. (1988). Learning and teaching styles in engineering education.
Engineering Education, 78, 674–681. http://doi.org/10.1109/FIE.2008.4720326.

Felder, R., Silverman, L., & Solomon, B. (2000). Index of Learning Styles (ILS). Skynet.ie.
Graf, S. (2007). Adaptivity in learning management systems focussing on learning styles. Vienna

University of Technology.
Herlocker, J. L., Konstan, J. A., Borchers, A., & Riedl, J. (1999). An algorithmic framework for

performing collaborative filtering. In Proceedings of the 22nd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (pp. 230–237).

Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative
filtering recommender systems. ACM Transactions on Information Systems. http://doi.org/10.
1145/963770.963772.

Ivanović, M., Pribela, I., Vesin, B., & Budimac, Z. (2008). Multifunctional environment for
E-learning purposes. Novi Sad Journal of Mathematics, 38(2), 153–170.

256 11 Personalization in Protus 2.1 System

http://doi.org/10.1145/1556262.1556281
http://doi.org/10.1109/FIE.2008.4720326
http://doi.org/10.1145/963770.963772
http://doi.org/10.1145/963770.963772

Janssen, J., den Berg, B., Tattersall, C., Hummel, H., & Koper, R. (2007). Navigational support in
lifelong learning: Enhancing effectiveness through indirect social navigation. Interactive
Learning Environments, 15(2), 127–136.

Kinshuk, K., Chang, M., Dron, J., Graf, S., Kumar, V., Lin, O., Yang, G. et al. (2011). Transition
from e-learning to u-learning: innovations and personalization issues. In Technology for
Education (T4E), 2011 IEEE International Conference on (pp. 26–31).

Klašnja-Milićević, A., Vesin, B., Ivanovic, M., & Budimac, Z. (2011a). Integration of
recommendations and adaptive hypermedia into java tutoring system. Computer Science and
Information Systems, 8(1), 211–224. http://doi.org/10.2298/CSIS090608021K.

Klašnja-Milićević, A., Vesin, B., Ivanović, M., & Budimac, Z. (2011b). E-learning personalization
based on hybrid recommendation strategy and learning style identification. Computers &
Education, 56(3), 885–899.

Kolb, D. (1984). Individuality in learning and the concept of learning styles (pp. 61–98).
Englewood Cliffs, New Jersey: Prentice Hall.

Kuljis, J., & Liu, F. (2005). A comparison of learning style theories on the suitability for
e-learning. Web Technologies, Applications, and Services, 2005, 191–197.

Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H., & Koper, R. (2011). Recommender
systems in technology enhanced learning. In Recommender Systems Handbook (pp. 387–415).
http://doi.org/10.1007/978-0-387-85820-3.

Milicevic, A. K., Nanopoulos, A., & Ivanovic, M. (2010). Social tagging in recommender systems:
A survey of the state-of-the-art and possible extensions. Artificial Intelligence Review, 33, 187–
209. http://doi.org/10.1007/s10462-009-9153-2.

Northrup, P. (2001). A framework for designing interactivity into web-based instruction.
Educational Technology, 41(2), 31–39.

Pashler, H., McDaniel, M., Rohrer, D., & Bjork, R. (2009). Learning styles concepts and evidence.
Psychological Science in the Public Interest, Supplement, 9, 105–119. http://doi.org/10.1111/j.
1539-6053.2009.01038.x.

Pi-lian, W. T. H. E. (2005). Web log mining by an improved aprioriall algorithm. Engineering and
Technology, 4(2005), 97–100.

Pritchard, A. (2013). Ways of learning: Learning theories and learning styles in the classroom.
Routledge.

Tang, T. Y., & McCalla, G. (2005). Smart recommendation for an evolving e-learning system:
Architecture and experiment. International Journal on Elearning, 4(1), 105.

Vesin, B., Ivanovic, M., Klašnja-Milićević, A., & Budimac, Z. (2011). Rule-based reasoning for
altering pattern navigation in programming tutoring system. In System Theory, Control, and
Computing (ICSTCC), 2011 15th International Conference on (pp. 1–6).

Vesin, B., Ivanović, M., Klašnja-Milićević, A., & Budimac, Z. (2012). Protus 2.0: Ontology-based
semantic recommendation in programming tutoring system. Expert Systems with Applications,
39, 12229–12246. http://doi.org/10.1016/j.eswa.2012.04.052.

Zervas, P., & Sampson, D. G. (2013). The effect of users’ tagging motivation on the enlargement
of digital educational resources metadata. Computers in Human Behavior. http://doi.org/10.
1016/j.chb.2013.06.026.

References 257

http://doi.org/10.2298/CSIS090608021K
http://doi.org/10.1007/978-0-387-85820-3
http://doi.org/10.1007/s10462-009-9153-2
http://doi.org/10.1111/j.1539-6053.2009.01038.x
http://doi.org/10.1111/j.1539-6053.2009.01038.x
http://doi.org/10.1016/j.eswa.2012.04.052
http://doi.org/10.1016/j.chb.2013.06.026
http://doi.org/10.1016/j.chb.2013.06.026

Part V
Evaluation and Discussion

Chapter 12
Experimental Evaluation of Protus 2.1

Abstract Implemented Protus 2.1 for Java programming language has been used
in real-life educational environments. The experiments were realized on an edu-
cational dataset, consisting of 440 learners, 3rd year undergraduate students of the
Department of Information technology at Higher School of Professional Business
Studies, University of Novi Sad. The experiment lasted for two semesters. Involved
learners were programming beginners that successfully passed the basic computer
literacy course at previous semester. They were divided into two groups: the
experimental group and the control group. Learners of the control group learned
with the previous version of the system and did not receive any recommendation or
guidance through the course, while the learners of the experimental group were
required to use Protus 2.1 system. Learners from both groups did not take any
parallel traditional course and they were required not to use any additional material
or help. This chapter highlights the results of the evaluation and discussion of
analysis of the results regarding the validity of the tutoring system presented in the
previous chapters.

Implemented Protus 2.1 for Java programming language has been used in real-life
educational environments. The experiments were realized on an educational dataset,
consists of 440 learners, 3rd year undergraduate students of the Department of
Information technology at Higher School of Professional Business Studies,
University of Novi Sad. The experiment lasted for two semesters. Involved learners
were programming beginners that successfully passed the basic computer literacy
course at previous semester. They were divided into two groups: the experimental
group and the control group. Learners of the control group learned with the pre-
vious version of the system (Vesin et al. 2009) and did not receive any recom-
mendation or guidance through the course, while the learners of the experimental
group were required to use Protus 2.1 system. Learners from both groups did not
take any parallel traditional course and they were required not to use any additional
material or help.

© Springer International Publishing Switzerland 2017
A. Klašnja-Milićević et al., E-Learning Systems,
Intelligent Systems Reference Library 112, DOI 10.1007/978-3-319-41163-7_12

261

12.1 Data Set for Experiment

The experimental group consisted of 340 learners, while the control group consisted
of 100 learners.

In order to assess whether the means of two groups are statistically different from
each other, the t-test was utilized. Both groups of learners completed the
Norm-referenced test which allows us to compare learners’ intellectual abilities
(Glaser 1963). Results of this test were combined with grades that learners earned at
a basic computer literacy course at the first semester of their studies. The aim of a
computer literacy course was to teach data structures and algorithms by presenting
exercises of algorithm simulations to the learners.

For these learners programming coursework in any programming language was
not assessed. The most important outcome was therefore the introduction of general
problem solving concepts, rather than focusing on teaching the syntax of a specific
programming language. The predetermined alpha level adopted for hypothesis
testing was 0.05, as significance levels of less than 0.05 are considered statically
significant, degrees of freedom (df) for the test was 438. Table 12.1 reports the
obtained t-test results. Since the calculated value of t (1.23) is not greater than table
value of t (1.96), we can conclude that the differences between the experimental and
the control group are negligible and there is no need for additional equalization of
groups.

12.2 Data Clustering

The learners from the experimental group filled out the Felder-Soloman Index of
Learning Styles Questionnaire (Felder 2005) (Fig. 12.1). The aim was to cluster
learners from the experimental group into a sub-class according to the learning
style. Figure 12.2 shows the comparison of learners’ stated preferences corre-
sponding to learning styles across all four domains.

Based on the results of the questionnaires it was possible to define appropriate
clusters, which determined learner profiles for 340 learners from the experimental
group. Clusters were formed for different combinations of learning styles within the
three categories (Table 12.2). Category Information processing was omitted in
order to increase the number of learners in a separate cluster and to obtain more
relevant data for recommendations. In future research, when increasing the number

Table 12.1 The analysis of the test score difference

Type of test Group N Df Mean t-calculated value t-table value

Intellectual abilities Experimental 340 438 117,25 1.23 1.96

Control 100 – 111,69 – –

Level of significance a = 0.05

262 12 Experimental Evaluation of Protus 2.1

of learners participating in the experiment it can be taken into account. The sum-
mary use of data per each cluster is shown on Table 12.3. Number of learners,
number of LOs, number of tags, average number of tags per learners and average

Fig. 12.1 ILS questionnaire

Fig. 12.2 Learning styles results

12.2 Data Clustering 263

number of tags per LO were measured. In order to understand the characteristics of
learner tags, and learner tagging behavior, in the next section, we will examine tag
characteristics of learners in Protus 2.1 system.

12.3 Statistical Properties of Learners’ Tagging History

This section investigates how Protus 2.1 learners utilize tags in order to organize
their collections of learning objects. It further discusses global, as well as item and
user-level, patterns that emerge from this collaborative tagging activity.

When we analyzed the dataset in terms of learners’ activity and tags’ usage, all
clusters were considered together.

12.3.1 Learners’ Activities

We studied how many LO were tagged on average by each learner in the system
(Fig. 12.3) and found that 12 % of the learners tagged less than 10 LOs (low
activity) 23 % tagged between 10 and 50 LOs (medium activity) and 65 % tagged
between 50 and 72 LOs (high activity). We also analyzed the tagging vocabulary,
i.e., how many different tags each learner used to define her/his preferred LOs
(Fig. 12.4). We found that 21 % of the learners used less than 20 different tags, 71 %
used between 20 and 35 tags and the remaining 8 % used between 35 and 65 tags.

Table 12.2 Cluster identification based on different styles

Cluster1 Cluster2 Cluster 3 Cluster 4 … Cluster 8

Sensing Sensing Sensing Sensing Intuitive

Visual Visual Verbal Verbal Visual

Sequential Global Sequential Global Global

49 learners 46 learners 39 learners 42 learners … 48 learners

Table 12.3 Characteristics of the data sets per cluster

Clust1 Clust2 Clust3 Clust4 Clust5 Clust6 Clust7 Clust8

Num. of learners 49 46 39 42 35 42 39 48

Num. of LO 72 72 72 72 72 72 72 72

Num. of tags 2402 2707 3283 2380 2243 2486 2289 2268

Avg. num. of tags per
learners

54, 6 57, 3 67 49, 6 64, 1 59, 2 58, 7 63

Avg. num. of tags per
LO

33, 4 37, 6 45, 6 33, 6 31, 6 34, 5 31, 8 31, 5

264 12 Experimental Evaluation of Protus 2.1

12.3.2 Tag Usage

In order to understand the characteristics of learner tags, and learner tagging
behaviour, we examined tag characteristics of learners in Protus 2.1 system.
Figure 12.5 illustrates the frequency of use of the first fifteen popular tags in the
learner tag set. The X-axis denotes the number of learners entered over time. The
Y-axis denotes the proportion of tag usage in a specific time. Here, each line
represents a tag.

Overall, these tag patterns reveal that after examining about 20 learners, the
frequency of learner tags tends to remain stable at fixed proportions of the total tag

Fig. 12.3 Learner activities on LOs

Fig. 12.4 Learners activities on tags

12.3 Statistical Properties of Learners’ Tagging History 265

frequency. In other words, as the number of learners increases and a tagged object
receives more and more tags, the frequency of at which a tag is selected tends to
become fixed (Golder and Huberman 2006).

In their work, (Golder and Huberman 2006) proposed the concept of conver-
gence or stabilization, and indicated that stability has important implications for the
collective usefulness of individual tagging behavior. Likewise, this stabilization
might appear during instances of shared knowledge, as well as when users imitate
the tag selection of other users. Thus, the tag extraction process of our research
design helps demonstrate how our tag-based system might facilitate knowledge
sharing among learners. Furthermore, as group ideas or opinions on a reading
change, this should be reflected by a corresponding change in the previously stable
tag frequencies.

12.3.3 Tag Entropy Over Time

Research on the collaborative tagging process itself has found that the position of a
tag correlates with its expressiveness. Tag entropy is a measurement of specificity
where more general tags should have higher entropies because they might appear in
different topics, whereas seldom tags are often more specific to a topic, thus have
lower entropies. The entropy of a tag is defined as:

HðTÞ ¼ �
X
t2T

pðtÞ log2 pðtÞ

Here, T is the set of tags in the profile of the learner, p(t) is the probability that
the tag t was utilized by learner and log2 pðtÞ is called self-information. Using base
2 for the computation of the logarithm allows to measure self-information as well as
entropy in bits.

Fig. 12.5 The stabilization of learner tags’ relative proportions over time

266 12 Experimental Evaluation of Protus 2.1

Figure 12.6 shows the strong correlation between the position and the infor-
mativeness of a tag.

It appears that learners tend to assign common tags at the beginning of the
tagging process and more specific tags later. There exist, at least three potential
explanations for this effect (Wetzker et al. 2010):

1. The affinity to label from general to specific could be a universal behavioral
pattern of humans that exists in other domains.

2. The effect could also be a consequence from users’ intention to classify new
content into a set of relatively constant categories. Adding frequent category
tags at the beginning and content specific tags later would result in an increase in
entropy as the one observed in Fig. 12.6.

3. Finally, the perceived association between tag position and entropy could be
initiated by the tag recommendation functionality.

12.3.4 Semantic Analysis of Tags

A semantic analysis of tags was performed to better understand different utilization
of tags. Tags were classified according to (Sen et al. 2006) that is also based on the
categories of (Golder and Huberman 2006):

1. Factual tags—tags may be used to identify the topic of an object using nouns
and proper nouns (e.g. operators, loop, arrays) or to classify the type of object
(e.g. tutorial, task, example, basic info, explanation, definition),

2. Subjective tags—tags may be used to denote the qualities and characteristics of
the item (e.g. useful, interesting, difficult, easy, understandable, blurry) and

Fig. 12.6 Tag entropy H(T) over time

12.3 Statistical Properties of Learners’ Tagging History 267

3. Personal tags—item ownership, self-reference, tasks organization—a subset of
tags often used by individuals to organize their own learning objects. Much like
self-referencing tags, some tags are used by individuals for task organization
(e.g. to read, to practise, to print).

When we analyzed how these tags were used and re-used among learners, we
found the vast majority of the tags (Table 12.4) were of the personal (44 % of tags)
and subjective type (40 % of tags). The rest of the tags (16 % of tags) were factual
in their nature and could be used to identify the topic of a learning object. The
obtained distribution indicates the fact that learners adapt learning objects them-
selves and organize them for easily managing. In a MovieLens study (Sen et al.
2006), for comparison, the distribution was 63 % factual 29 % subjective, 3 %
personal and 5 % other.

12.4 Experimental Protocol and Evaluation Metrics

The performance of the proposed models is evaluated by holding out a part of the
data set as ground-truth data (the test set), and building prediction models from the
remaining data (the training set).

We randomly divided the data set into a training set and a test set with sizes 80
and 20 % of the original set, respectively. As performance measures for the item
and tag recommendations, we use the classic metrics of precision and recall which
are standard in such scenarios (Herlocker et al. 2004). Precision and recall have
been in use to evaluate information retrieval systems for many years. Mapping in a
recommender system manner, precision and recall have the following definitions
regarding the evaluation of top-N recommendations.

For a test user that receives a list of N recommended tags (top-N list), precision
and recall are defined as follows:

• Precision is the ratio of the number of relevant tags in the top-N list (i.e., those
in the top-N list that belong in the future set of tags posted by the test user) to N.

• Recall is the ratio of the number of relevant tags in the top-N list of the total
number of relevant tags (all tags in the future set posted by the test user).

With i being the item from the randomly picked post of user u and bT ðu; iÞ the set
of recommended tags, recall and precision can be calculated as:

Table 12.4 Types analysis of each tag

• PERSONAL • SUBJECTIVE • FACTUAL

• 44 % • 40 % • 16 %

268 12 Experimental Evaluation of Protus 2.1

recall bT ðu; iÞ� �
¼ 1

Uj j
X
u2U

tagsðu; iÞ \ bT ðu; iÞ��� ���
tagsðu; iÞj j

precision bT ðu; iÞ� �
¼ 1

Uj j
X
u2U

tagsðu; iÞ \ bT ðu; iÞ��� ���
ðu; iÞj j

All experiments are repeated 10 times and we report the mean of the runs. For
each run, we use exactly the same train/test splits.

12.5 Evaluation of Several Suitable Recommendation
Techniques

The classical measures precision and recall were chosen to evaluate the perfor-
mance of several suitable recommendation techniques for RS in e-learning
environments.

First, we describe the specific settings used to run evaluated algorithms. Then we
present and discuss the results of Protus 2.1 evaluation.

12.5.1 Settings of the Algorithms

Before starting full experimental evaluation of selected algorithms we determined
the sensitivity of appropriate parameters to different algorithms and from the sen-
sitivity plots we fixed the optimum values of these parameters and used them for the
rest of the experiments. The analysis was performed for all eight clusters. Given the
similarity of the obtained values of parameters the results of the first cluster are
shown only.

Most Popular Tags. We counted how many post’s tags occur globally and used
the top tags as recommendations.

Most Popular Tags by Item. For a given item we counted for all tags in how
many posts they occur together with that item. We then used the tags that occurred
most often together with that item as a recommendation.

Most Popular Tags q—Mix. Before comparing Most Popular Tags q—Mix
algorithm with the others, we focused on finding an appropriate size of the
parameter q. Hence, we observed a similar precision/recall behavior for all values
of q 2 0; 0:1; . . .; 0:9; 1f g. As can be seen in Fig. 12.7, variation of algorithm with
the most popular tags by user ðq ¼ 0Þ performs worse than a variety of algorithm
with the most popular tags by item ðq ¼ 1Þ for all numbers of recommended tags.
All mixed versions perform better than most popular tags by user and all mixed

12.4 Experimental Protocol and Evaluation Metrics 269

versions with q� 0:5 perform better than most popular tags by item. The best
performance is obtained if q ¼ 0:6.

Adapted PageRank. With the parameter d = 0.7 we stopped computation after
10 iterations or when the distance between two consecutive weight vectors was less
than 10−6. In~p, we gave higher weights to the user and the item from the post which
was chosen. While each user, tag and item got a preference weight of 1, the user
and item from that particular post got a preference weight of 1 + |U| and 1 + |I|,
respectively.

FolkRank. The same parameter and preference weights were used as in the
Adapted PageRank.

Collaborative Filtering (CF) based on Tags. For Collaborative Filtering algo-
rithm the neighbourhood is computed based on the user-tag matrix pUTY. The only
parameter to be tuned in the CF based algorithms is the number k of best neighbors
(Sarwar et al. 2001). We examine the effect of the variation of recalls according to
the neighbourhood size k which is closely connected with tag preference genera-
tion. Figure 12.8 shows a graph of how recall changes as the neighbour size grows
from 10 to 90. Recommender quality initially improves as we increase the neigh-
bourhood size from 10 to 30. However, after the neighbourhood of size 30,
increasing the value of k did not lead to statistically significant improvements. That
is, once the number of nearest neighbours, k, is sufficiently large, the recommen-
dation quality for each user is not changed by any further increases in the number of
nearest neighbours. Considering this trend, we selected 30 as our optimal choice of
the neighbourhood size.

Fig. 12.7 Precision and recall of most popular tags q mix for q 2 0; 0:1; . . .; 0:9; 1f g

270 12 Experimental Evaluation of Protus 2.1

HOSVD—based model. Since there is no straightforward way to find the optimal
values for c1, c2 and c3, we follow the way according to (Symeonidis et al. 2010)
that a 70 % of the original diagonal of X(1), X(2) and X(3) matrices can give good
approximations. Thus, c1, c2 and c3 are set to be the numbers of singular values by
preserving 70 % of the original diagonal of X(1), X(2) and X(3) respectively in each
run.

RTF. We ran RTF with ku; ki; ktð Þ 2 ð8; 8; 8Þ; ð16; 16; 16Þ; ð32; 32; 32Þf g
dimensions, as in (Rendle et al., 2009). The corresponding model is called “RTF 8”,
“RTF 16”, and “RTF 32”. The other hyper parameters are: learning rate a ¼ 0:5,
regularization c ¼ cc ¼ 10�5, iterations iter = 500. The model parameters ĥ are
initialized with small random values drawn from the normal distribution N (0, 0.1).

12.5.2 Results of Selected Methods Evaluation

In the following subsection, we will present and discuss the results of selected
methods evaluation. First, we compare simple methods based on counting tag
occurrences (Most Popular Tags), specific approaches for improving the perfor-
mance of such methods and an adaptation of User-based Collaborative Filtering,
named Collaborative Filtering based on Tags. Then, we analyse the prediction
quality of graph-based approaches, Adapted PageRank and FolkRank, and tensor
based approaches, HOSVD and RTF. Finally, we give a comparative analysis of the
best representation of these considered techniques, together.

Fig. 12.8 Recall of collaborative tag-based CF according to the variation of neighborhood size

12.5 Evaluation of Several Suitable Recommendation Techniques 271

12.5.2.1 Comparison of Methods Based on Counting Tag Occurrences
and Standard Collaborative Filtering Based on Tags

In our experiments we compared simple methods based on counting tag occur-
rences: Most Popular Tags, Most Popular Tags by Item, Most Popular Tags by
User, Most Popular Tags 0.6–mix and standard Collaborative Filtering based on
Tags.

There are two types of diagrams, which are used for all eight clusters in Protus
2.1 system. The first type of diagram (Fig. 12.9) shows in a straightforward manner
how the recall depends on the number of recommended tags. The other diagrams
are presented with usual precision/recall plots. Here a data point on a curve stands
for the number of tags recommended, starting with the highest ranked tag on the left
of the curve and ending with ten tags on the right. Therefore, the steady decrease of
all curves in those plots means that the more tags of the recommendation are
regarded, the better the recall and the worse the precision will be. Figure 12.9
shows how the recall increases, when more tags of the recommendation are used.
All algorithms perform significantly better than the baselineMost Popular Tags and
the Most Popular Tags by User strategy, whereas it is much harder to beat the Most
Popular Tags by Item. The idea to suggest the most popular tags by item results in a
recall which is very similar to using the CF recommender based on user’s item
similarities. In contrast to these two approaches, the Most Popular Tags q Mix-

Fig. 12.9 Recall for methods based on counting tag occurrences as a function of number of
recommended tags for the eight clusters of Protus 2.1 system

272 12 Experimental Evaluation of Protus 2.1

recommender includes also the user’s tags in the recommendations. As the dia-
grams show, it is successful and could gain results better than those of CF. The
precision-recall plots in Fig. 12.10 extend diagrams from Fig. 12.9 with the pre-
cision measure. All algorithms perform significantly better than the baseline Most
Popular Tags and the Most Popular Tags by User strategy. It is remarkable that the
Most Popular Tags 0.6–Mix recommender provides on average better precision and
recall than both Collaborative Filtering algorithms and Most Popular Tags by Item.

12.5.2.2 Comparison of Graph-Based Approaches

We saw in Sect. 7.4 that in order to apply standard CF-based algorithms to folk-
sonomies, some data transformation must be performed. Such transformations lead
to information loss, which can lower the recommendation quality. Another
well-known problem with CF-based methods is that large projection matrices must
be kept in memory, which can be time/space consuming and thus compromise real
time recommendations. Also, for each different mode to be recommended, the
algorithm must be eventually changed, demanding an additional effort for offering
multi-mode recommendations.

FolkRank builds on PageRank and proved to give significantly better tag rec-
ommendations than CF, because FolkRank has ability to exploit the information

Fig. 12.9 (continued)

12.5 Evaluation of Several Suitable Recommendation Techniques 273

http://dx.doi.org/10.1007/978-3-319-41163-7_7

that is appropriate to the specific user together with input from other users via the
integrating structure of the underlying hypergraph. When comparing the prediction
quality of CF, Adapted PageRank and FolkRank (Fig. 12.11) one can see that
FolkRank outperform both two. FolkRank is able to predict, additionally to globally
relevant tags, the exact tags of the user which CF could not. This is due to the fact
that FolkRank considers, via the hypergraph structure, also the vocabulary of the
user himself, which CF by definition doesn’t do. This method also allows for mode
switching with no change in the algorithm. Moreover, as well as CF-based algo-
rithms, FolkRank is robust against online updates since it does not need to be
trained every time a new user, item or tag enters the system. However, FolkRank is
computationally expensive and not trivially scalable, making it more suitable for
systems where real-time recommendations are not a requirement.

12.5.2.3 Comparison of Methods Based on Tensor Factorization

Similarly, tensor factorization methods also work directly over the ternary relation
of the folksonomy. Although the tensor reconstruction phase can be expensive, it

Fig. 12.10 Recall and precision for methods based on counting tag occurrences for eight clusters
of Protus 2.1 system

274 12 Experimental Evaluation of Protus 2.1

can be performed offline. After the lower dimensional tensor is computed, the
recommendations can be done fast, making these algorithms suitable for real-time
recommendations. A potential disadvantage of tensor factorization methods is that
easy mode switching can only be achieved if one considers that the different rec-
ommendation problems, i.e., user/item/tag, can be addressed by minimizing the
same error function. If one chooses HOSVD for example, the reconstructed tensor
can be used for multi-mode recommendations with trivial mode switching, but at
the cost of eventually solving the wrong problem: HOSVD minimizes a least-square
error function while social tagging RS are more related to ranking. If one tries to
optimally reconstruct the tensor with regard to an error function targeted to a
specific recommendation mode on the other hand, accuracy is eventually improved,
but at the cost of making mode switching more involved. Even though RTF and
HOSVD have the same prediction method and thus prediction complexity, in
practice RTF models are much faster in prediction than comparable HOSVD
models, because RTF models need much less dimensions than HOSVD for attaining
better quality. Also, for the task of personalized ranking HOSVD has three major
drawbacks to RTF (Rendle et al. 2009):

Fig. 12.10 (continued)

12.5 Evaluation of Several Suitable Recommendation Techniques 275

1. HOSVD doesn’t take into account missing values. For tag recommendation the
missing values are usually filled with zeros (Symeonidis et al. 2008).

2. HOSVD optimizes for minimal element-wise error. But for the ranking problem
of tag recommendation, we are interested in another objective function.

3. HOSVD has no regularization. For machine learning tasks, preventing over-
fitting is very important so HOSVD is predisposed to overfitting.

A final problem with HOSVD is sensitivity to the number of dimensions and that
they have to be chosen carefully. Also HOSVD is sensitive to the relations between
the user, item and tag dimensions (e.g. choosing the same dimension for all three
dimensions leads to poor results). In contrast to this, for RTF it can be chosen the
same number of dimensions for user, item and tag. Besides this theoretical analysis,
in Fig. 12.11 it can be seen that the prediction quality of RTF is clearly better to the
one of HOSVD. Also, Fig. 12.11 shows that even with a very small number of 8
dimensions, RTF achieves almost similar results as HOSVD. Increasing the
dimensions of RTF to 16 dimensions, it already outperforms HOSVD in quality.
Furthermore, for RTF, by increasing the number of dimensions we get better results.
When comparing the prediction quality of RTF and FolkRank (Fig. 12.11) one can

Fig. 12.11 Recall and precision for graph-based and tensor-based methods for eight clusters of
Protus 2.1 system

276 12 Experimental Evaluation of Protus 2.1

see that RTF with 8/16 dimensions achieves comparable results whereas 32
dimensions outperform FolkRank in quality.

12.5.2.4 Summary of Algorithms’ Advantages and Disadvantages

According to the conducted experiments on real-life dataset and educational
environment, in this section, we briefly discuss the main advantages and disad-
vantages of the aforementioned algorithms. Standard CF-based algorithms need
some data transformation in order to apply to folksonomies. Such transformations
lead to information loss, which can lower the recommendation quality. Another
problem with CF-based methods is that large projection matrices must be kept in
memory, which can be time and space overwhelming and thus compromise
real-time recommendations. Also, for each different mode to be recommended, the
algorithm must be eventually improved, demanding an additional effort for offering
multi-mode recommendations. As well as CF-based algorithms, FolkRank is robust
against online updates since it does not need to be trained every time a new user,
item or tag enters the system. However, FolkRank is computationally expensive and
not trivially scalable, making it more suitable for systems where real-time

Fig. 12.11 (continued)

12.5 Evaluation of Several Suitable Recommendation Techniques 277

recommendations are not a requirement. FolkRank also allows mode switching with
no change in the algorithm. Similarly, tensor factorization methods work directly
over the ternary relation of the folksonomy. Although the tensor reconstruction
phase can be expensive it can be performed offline. After the lower dimensional
tensor is computed, the recommendations can be done quickly, making these
algorithms appropriate for real-time recommendations. A possible drawback of
tensor factorization methods is that easy mode switching can only be achieved if
one considers that the different recommendation problems, i.e., user/item/tag, can
be addressed by minimizing the same error function. If one chooses HOSVD for
example, the reconstructed tensor can be used for multi-mode recommendations
with simple mode switching, but at the cost of solving the wrong problem: HOSVD
minimizes a least-square error function while social tagging RS is more related to
ranking. Figure 12.12 shows a comparison between some of the aforementioned
algorithms. We selected only the best representatives of the considered techniques.
We can conclude that the best method is RTF followed by FolkRank and HOSVD.

Fig. 12.12 Recall and precision for the best representatives of the considered techniques

278 12 Experimental Evaluation of Protus 2.1

12.6 Expert Validity Survey

In order to systematically verify the relationship between learning comprehension
and learner data tagging, and in order to help teachers evaluate learner knowledge,
an experimental test was created with the expert tag set.

The collection of learner tags was compared with the tags given independently
by 4 experts in the field. The expert tag set was comprised of 165 tags of which 100
were different.

Within expert tag set, we elaborated two research questions:

1. Which learning objects can be found by a simulated query with the expert tags
on the complete set of learner tags and which relevance (number of matching
tags) does it have? With respect to this question, we found that the ratio of
matches was in average 45 % of the expert tags also assigned to a learning
object by the learners.

2. How many keywords assigned as tags are already present as text in the LO? This
question addresses if the tags given to the learning items stay close to the
original item. The results were that experts tend to tag more abstractly and

Fig. 12.12 (continued)

12.6 Expert Validity Survey 279

conceptual then learners. According to (Sen et al. 2006) categories (as we
described in Sect. 12.3.4), the distribution was 73 % factual, 16 % subjective,
4 % personal and 7 % other.

Given that 55 % of the expert tags were tags not within the body of tags used by
learners, we question the benefits of providing these tags to learners at all. The lack
of expert time and willingness to fill in metadata has been cited (Friesen 2001), as a
significant hurdle to deploying learning objects. If expert tags provide limited value
to learners, it may be more appropriate to bootstrap data sets with automatic tagging
features and reduce the load on those who are creating content. We note the
potential pedagogical benefits of collaborative tagging as suggested by (Jones et al.
2006): that the tags themselves represent the expertise of the users. This proposes
that at a collaborative level, a tag set can be observed as the course is being given
by the experts to improving an insight into the topics and concepts that learners are
filtering from the online material.

Beyond the issue of expert time is the issue of control in the classroom. Unlike
the open Web, where individual success is evaluated by the individual, success in
e-learning systems are typically dictated through a series of educator prepared
exams. It has observed (Bateman et al. 2007) that educators are hesitant to change
their teaching to adopt new methods in the classroom (virtual or otherwise), because
of a loss of control. By engaging educators actively in the process of creating tags,
it may reduce their fears of these new technologies. However, our results showed
only 45 % of the expert tags were represented in the tags of the learners. Also
(Halpin et al. 2007) suggested that unlike open a Web system, the educator in the
classroom is not merely a peer, and their tags may be more relevant to the exam-
inations, which may be useful to learners.

12.7 Evaluation of Protus 2.1 System
from the Educational Point of View

Educational research measures are needed to evaluate whether learners actually do
benefit from the usage of the recommender system. From the educational point of
view, learners only benefit from learning technology when it makes learning more
effective, efficient or attractive. Efficiency indicates the time that learners needed to
reach their learning goal. Effectiveness is a measure of the total amount of com-
pleted, visited, or studied lessons during a learning phase (Drachsler et al. 2009). In
our study, we track only lessons that are successfully completed, meaning that
learners passed the appropriate test at the end of the particular lesson. It is related to
the efficiency variable through counting the actual study time. To answer this
question, we randomly selected a sample of 100 learners from the experimental
group and 100 learners from the control group. The results of the experiment
showed that the learners in the experimental group should be able to complete a
course in less time than learners in the control group who learned with the previous

280 12 Experimental Evaluation of Protus 2.1

version of the system (Fig. 12.13). Figure 12.14 shows that the experimental group
continuously completed more lessons successfully than the control group.

Satisfaction reflects the individual satisfaction of learners with the given rec-
ommendations. Satisfaction is closely related to the motivation of the learner and
therefore a rather important measure of learning. To get a subjective evaluation of
our system, at the end of the course we organized a non-mandatory questionnaire
that collected learners’ (from the experimental group) opinions about the main
features of the system. The results of the questionnaire were used to improve the
quality of lessons. This questionnaire (Table 12.5) maps a set of 16 questions over
4 dimensions: ‘ease of tagging’, ‘usefulness of tagging’, ‘usefulness of Protus 2.1
system and tag exchange’, and ‘Protus 2.1 system is easy-to-use’.

Fig. 12.13 Efficiency comparison between groups

Fig. 12.14 Average completions of lessons per group

12.7 Evaluation of Protus 2.1 System from the Educational Point of View 281

Out of 100 learners, 75 filled in the questionnaire. Participants are asked to give
a level of agreement to each question on a 1–5 scale (strongly disagree, disagree,
neutral, agree, and strongly agree). For example, the fifth question in Table 12.5 is
about the relevance and the unexpectedness of tags suggested by Protus 2.1.
A response of 1 would mean a learner strongly disagree, while 5 would mean a
learner strongly agrees with the statement: “the tags suggested by Protus 2.1 are
both relevant and unexpected”.

To examine the internal consistency and content validity of this survey, the
Cronbach’s a coefficient was calculated for the 20-item questionnaire. Cronbach’s
a (alpha) (Bland and Altman 1997) is a coefficient of reliability. It is usually used as
a measure of the internal stability. It was first named Cronbach’s a by Lee
Cronbach in 1951, as he had intended to continue with further coefficients. a a is
not robust against omitted data. Several other Greek letters have been used by later
researchers to assign other measures used in a similar context (Cortina 1993).
Cronbach’s a is defined as:

Table 12.5 Questionnaire—Analysis of satisfaction with Protus 2.1 system

Question Response

1 2 3 4 5

I can easily construct meaningful words or phrases to represent the learning
objects with tags

I can clearly indicate the meaning of tags which describes the context of
learning objects

The proposed tags allow me to express the right term when entering tags

Reviews of my previous own tags facilitate the recall of learning objects’
ideas and information

The tags suggested by Protus 2.1 are both relevant and unexpected

I am comfortable with others knowing what I mean about learning object

I am interested in seeing others who are likeminded to me regarding specific
topics

Having a high level of influence on my neighbours is important to me

I think the using tags enable me to easily grasp the structure and concepts of
learning objects

I think that exploiting tagging information provide me with effective
feedback during the learning process

The tagging activities inspire me to make new ideas

I think that Protus 2.1’s user interface is simple to learn (understand) and
efficient to use

I can start quickly with Protus 2.1 system

I believe that Protus 2.1 is effective at learning my preferences

I am satisfied with Protus 2.1’s recommendations

I trust that Protus 2.1 has ability to make correct recommendations for me

282 12 Experimental Evaluation of Protus 2.1

a ¼ K
K 1

1

PK
i¼1

r2Yi

r2X

0
BB@

1
CCA

where K is the number of items or testlets, r2X is the variance of the observed entire
test scores, and r2Yi the variance of item i for the current sample of persons (DeVellis
1991). In order to determine if a question item is correlated with a factor, we
applied the distinguish validity test by using the factor analysis method to observe
each question item. Four factors among these items are shown in Table 12.6. The
eigenvalues of the four factors are greater than 1.00 with variance 68.12 %
explained. From the experimental results, it was found that some question items,
were not correlated with factors (that is, their load was less than 0.5). As a result, 4
questions items were dropped, reducing the overall number to 16. In addition, the
experiment shows that the internal reliability indexes of the four factors are 0.776,
0.833, 0.716, and 0.768, respectively.

Table 12.6 Rotated factor loadings and Cronbach’s a value for four factors

Items Factor1 Factor2 Factor3 Factor4

Factor 1: Easy to tagging a = 0.776

I1 0.672 – – –

I2 0.727 – – –

I3 0.812 – – –

Factor 1: Usefulness of tagging a = 0.833

I6 – 0.614 – –

I7 – 0.718 – –

I8 – 0.588 – –

Factor 1: Usefulness of tagging a = 0.716

I9 – – 0.731 –

I10 – – 0.708 –

I11 – – 0.645 –

I12 – – 0.811 –

Factor 1: Usefulness of tagging a = 0.768

I15 – – – 0.871

I16 – – – 0.738

I17 – – – 0.645

I18 – – – 0.821

I19 – – – 0.672

a = 0.814, total variance explained is 68.12 %

12.7 Evaluation of Protus 2.1 System from the Educational Point of View 283

The a coefficient is 0.814 after deleting non-correlated factors. Therefore, these
results suggest that these factors were sufficiently reliable for representing learner
tagging behaviours, when the Cronbach’s a is higher than 0.7 (Hwang et al. 2008;
Nunnally et al. 1967).

The statistical analysis of the survey results is summarized in Table 12.7. The
major findings are presented as follows:

1. 97 % of the learners indicated that creating tags were easy, and that it was easy
to construct meaningful words or phrases to represent the learning objects with
tagging objects.

2. 85 % of the learners thought that tagging activity can help learners summarize
new ideas and quickly grasp the structure and concepts. Some learners indicated
that their tags were more accurate after sufficient tagging practice.

3. 93 % of the learners agreed that Protus 2.1 is capable of helping them to easily
comprehend the context of learning objects, and can help them improve their
learning efficiency.

4. 94 % of the learners regarded that Protus 2.1 system is easy-to-use.

References

Bateman, S., Brooks, C., McCalla, G., & Brusilovsky, P. (2007). Applying collaborative tagging
to e-learning. WWW, 1–7. http://doi.org/10.1.1.64.8892.

Bland, J. M., & Altman, D. G. (1997). Statistics notes: Cronbach’s alpha. Bmj, 314(7080), 572.
Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications.

Journal of Applied Psychology. http://doi.org/10.1037/0021-9010.78.1.98.
DeVellis, R. F. (1991). Guidelines in scale development. In Scale Development (pp. 51–60).
Drachsler, H., Hummel, H. G. K., & Koper, R. (2009). Identifying the goal, user model and

conditions of recommender systems for formal and informal learning. Journal of Digital
Information, 10(2).

Felder, R. M. (2005). A study of the reliability and validity of the Felder-Soloman index of
learning styles. Engineering Education, 113, 77. http://doi.org/10.1109/IIAI-AAI.2015.284.

Friesen, N. (2001). What are educational objects? Interactive Learning Environments, 9(3), 219–
230.

Table 12.7 Statistical results of the questionnaire for evaluating Protus 2.1 system

Questionnaire item
(four factors)

Strongly
disagree (%)

Disagree
(%)

Neutral
(%)

Agree
(%)

Strongly
agree (%)

Easy to tagging in Protus
2.1

– 16.81 42.19 38.31 2.69

Usefulness of tagging in
Protus 2.1

– 4.35 27.19 53.14 15.32

Usefulness of Protus 2.1
system

– – 25.71 68.1 6.19

Protus 2.1 is easy-to-use – – 46 47.8 6.1

284 12 Experimental Evaluation of Protus 2.1

http://doi.org/10.1.1.64.8892
http://doi.org/10.1037/0021-9010.78.1.98
http://doi.org/10.1109/IIAI-AAI.2015.284

Glaser, R. (1963). Instructional technology and the measurement of learing outcomes: Some
questions. American Psychologist, 18(8), 519.

Golder, S. A., & Huberman, B. A. (2006). The structure of collaborative tagging systems. Journal
of Information Science, 32(2), 198–208.

Halpin, H., Robu, V., & Shepherd, H. (2007). The complex dynamics of collaborative tagging. In
Proceedings of the 16th International Conference on World Wide Web (pp. 211–220).

Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative
filtering recommender systems. In: ACM Transactions on Information Systems. http://doi.org/
10.1145/963770.963772.

Hwang, G.-J., Tsai, P.-S., Tsai, C.-C., & Tseng, J. C. R. (2008). A novel approach for assisting
teachers in analyzing student web-searching behaviors. Computers & Education, 51(2), 926–
938.

Jones, N., Macasek, M., Walonoski, J., Rasmussen, K., & Heffernan, N. (2006). Common tutor
object platform–an e-learning software development strategy. In Proceedings of the 15th
International Conference on World Wide Web, Edinburgh (pp. 307–316). Scotland.

Nunnally, J. C., Bernstein, I. H., & Berge, J. M. F. T. (1967). Psychometric theory (Vol. 226).
JSTOR.

Rendle, S., Balby Marinho, L., Nanopoulos, A., & Schmidt-Thieme, L. (2009). Learning optimal
ranking with tensor factorization for tag recommendation. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 727–
736).

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th International Conference on World
Wide Web (Vol. 1, pp. 285–295). http://doi.org/10.1145/371920.372071.

Sen, S., Lam, S. K., Rashid, A. M., Cosley, D., Frankowski, D., Osterhouse, J.,& Riedl, J. (2006).
Tagging, communities, vocabulary, evolution. In Proceedings of the 2006 20th Anniversary
Conference on Computer Supported Cooperative Work (pp. 181–190).

Symeonidis, P., Nanopoulos, A., & Manolopoulos, Y. (2010). A unified framework for providing
recommendations in social tagging systems based on ternary semantic analysis. Knowledge
and Data Engineering, IEEE Transactions on, 22(2), 179–192.

Symeonidis, P., Ruxanda, M. M., Nanopoulos, A., & Manolopoulos, Y. (2008). Ternary semantic
analysis of social tags for personalized music recommendation. In ISMIR (Vol. 8, pp. 219–
224).

Vesin, B., Ivanović, M., & Budimac, Z. (2009). Learning management system for programming in
java. Annales Universitatis Scientiarum De Rolando Eötvös Nominatae, Sectio-Computatorica,
31, 75–92.

Wetzker, R., Zimmermann, C., Bauckhage, C., & Albayrak, S. (2010). I tag, you tag: Translating
tags for advanced user models. In Proceedings of the Third ACM International Conference on
Web Search and Data Mining (pp. 71–80).

References 285

http://doi.org/10.1145/963770.963772
http://doi.org/10.1145/963770.963772
http://doi.org/10.1145/371920.372071

Chapter 13
Conclusions and Future Directions

Abstract E-learning is an important segment of educational environments. It
represents a unique opportunity to learn independently, regardless of time and
place, to acquire knowledge without interruption and customized to the individual
and based on the principles of traditional education. Today, the most popular forms
of e-learning are: web-based e-learning systems, virtual classrooms or tutoring
systems. This monograph presents how the Semantic web technologies, ontologies
and adaptation rules can be used to improve the performance of an existing tutoring
system. The architecture of a personalized tutoring system that relies entirely on
Semantic Web technologies and standards is presented. Ontologies that correspond
to the components of the traditional tutoring system are shown in detail. This
chapter concludes the monograph, summarizing the main contributions and dis-
cussing the possibilities for future work.

E-learning is an important segment of educational environments. It represents a
unique opportunity to learn independently, regardless of time and place, to acquire
knowledge without interruption and customized to the individual and based on the
principles of traditional education. Today, the most popular forms of e-learning are:
Web-based e-learning systems, Virtual classrooms or Tutoring systems.

E-learning systems use various techniques to generate recommendations for
selection of appropriate teaching materials and activities to learners based on their
needs, skills and learning styles. Recommendation systems in e-learning adapts
educational materials and/or user interface to the specific needs and demands of
learners.

Recommender systems made significant progress over the last decade when
numerous content-based, collaborative, and hybrid methods were proposed and
several “industrial-strength” systems have been developed. However, despite all of
these advances, the current generation of recommender systems still requires further
improvements to make recommendation methods more effectively in a broader
range of applications. With the increasing popularity of the collaborative tagging
systems, surveyed in this monograph, tags could be interesting and useful infor-
mation to enhance recommender systems’ algorithms. Besides helping users

© Springer International Publishing Switzerland 2017
A. Klašnja-Milićević et al., E-Learning Systems,
Intelligent Systems Reference Library 112, DOI 10.1007/978-3-319-41163-7_13

287

organize his or her personal collections, a tag also can be regarded as a user’s
expression, while tagging can be considered as an implicit rating or voting on the
tagged information or items. Thus, the tagging information can be used to make
recommendations.

Monograph presents approaches for the development of a general model of the
personalized Web tutoring system for attending courses in various domains. On the
basis of this model Protus 2.1 system was developed. This system automatically
adapts instructional materials and user interface to the requirements, habits and
knowledge level of each learner. Differences between learners are determined based
on the current level of knowledge, individual learning styles, characteristics,
requirements and goals of learners. The system automatically directs the activities
of learners and generates referral links, actions and teaching materials in the
learning process.

The main research directions of the monograph can therefore be summarized as
follows.

Chapter 1 started with an introduction of the monograph research aim. The
chapter further highlighted research objectives of the monograph.

Chapter 2 presents the basis of electronic learning techniques for personaliza-
tion of the learning process and the possibilities of their integration in e-learning
systems.

Chapter 3 presents the bases of electronic learning techniques for personal-
ization of learning process based on individual learning styles and the possibilities
of their integration in e-learning systems.

Chapter 4 shows the most popular forms of adaptation of educational materials
to learners. Details for personalisation based on recommender systems, link adap-
tation and learning style identification are presented.

Chapter 5 presents current trends for use of intelligent agents for personaliza-
tion in e-learning systems.

Chapter 6 provided a comprehensive survey of the state-of-the-art in recom-
mender systems, collaborative tagging systems and folksonomy for tagging activ-
ities which can be used for extending the capabilities of recommender systems.

Chapter 7 presents a theoretical overview of tag-based recommender systems in
e-learning environments and identifies the limitations of the current generation of
collaborative tagging techniques and discusses about some approaches for
extending their capabilities.

Chapter 8 contains a review of the basic elements of Semantic Web, as well as
the possibilities for application of Semantic Web technologies in e-learning.

Chapter 9 displays the details of a general tutoring system model, supported by
Semantic Web technologies and the principles of creating courses from different
domains supported by this model.

Chapter 10 contains the details about previous versions of the system, defined
user requirements for the new version of the system, architectural details, and
general principles for application of defined general tutoring model for imple-
mentation of programming courses in Protus 2.1.

288 13 Conclusions and Future Directions

http://dx.doi.org/10.1007/978-3-319-41163-7_1
http://dx.doi.org/10.1007/978-3-319-41163-7_2
http://dx.doi.org/10.1007/978-3-319-41163-7_3
http://dx.doi.org/10.1007/978-3-319-41163-7_4
http://dx.doi.org/10.1007/978-3-319-41163-7_5
http://dx.doi.org/10.1007/978-3-319-41163-7_6
http://dx.doi.org/10.1007/978-3-319-41163-7_7
http://dx.doi.org/10.1007/978-3-319-41163-7_8
http://dx.doi.org/10.1007/978-3-319-41163-7_9
http://dx.doi.org/10.1007/978-3-319-41163-7_10

Chapter 11 considers adaptation based on learning styles and possibilities for
applying a recommender system based on collaborative tagging techniques in
developing a Protus 2.1 tutoring system that adapts to the interests and level of
learners’ knowledge in the various fields.

Chapter 12 analyses the statistical properties of learners’ tagging history and
presents an evaluation of the performance of several suitable recommendation
techniques for RS in e-learning environments and comparison of describing tech-
niques. Also, this chapter considers expert tag set in order to systematically verify
the relationship between learning comprehension and learner data tagging, and in
order to help teachers evaluate learner knowledge. Finally, in this chapter evalua-
tion of Protus 2.1 system from the educational point of view is performed.

Chapter 13 concludes the monograph, summarizing the main contributions, and
discussing the possibilities for future work.

13.1 Contributions of the Monograph

This monograph presents how the Semantic Web technologies, ontologies and
adaptation rules can be used to improve the performance of an existing tutoring
system. The architecture of a personalized tutoring system that relies entirely on
Semantic Web technologies and standards is presented. Ontologies that correspond
to the components of the traditional tutoring system are shown in detail.

Presented system’s architecture fully supports the use of Semantic Web tech-
nologies for building basic elements of the system and defining the personalization
rules.

Ontologies will completely change the way systems are designed and organized.
A large knowledge base is still formed without possibilities of information sharing
and reuse. In the future, the development of intelligent tutoring systems will
facilitate an extensive library of ontologies. Instead of development of such systems
from scratch, it will be possible to use system components extracted from existing
libraries and repositories. This process will shorten development time and improve
the robustness and reliability of newly created knowledge base and tutoring systems
itself.

The explicit conceptualization of system components in the form of ontologies,
promote the exchange and reuse of knowledge, and communication and coopera-
tion between system components. Improved the use of ontology to construct sys-
tems that require explicitly structured knowledge. Such systems allow learners to
access larger collection of information and resources. Displayed architecture is
modular and allows greater flexibility and the possibility for replacement of indi-
vidual components until they correspond to the current interface. Defined ontolo-
gies can serve as a foundation of knowledge that can be further extended and
modified in order to define adaptive systems from different domains.

Although ontologies have a set of basic implicit reasoning mechanisms derived
from the description logic, which they are typically based on (such as classification,

13 Conclusions and Future Directions 289

http://dx.doi.org/10.1007/978-3-319-41163-7_11
http://dx.doi.org/10.1007/978-3-319-41163-7_12
http://dx.doi.org/10.1007/978-3-319-41163-7_13

relations, instance checking, etc.), they need rules to make further inferences and to
express relations that cannot be represented by ontological reasoning. Thus,
ontologies require a rule system to derive/use further information that cannot be
captured by them, and rule systems require ontologies in order to have a shared
definition of the concepts and relations mentioned in the rules. The rules also allow
adding expressiveness to the representation formalism, reasoning on the instances,
and they can be orthogonal to the description logic on which ontologies are based on.

As a part of Web 2.0, collaborative tagging is getting popular as an important tool
to classify dynamic content for searching and sharing. We analyzed the potential of
collaborative tagging systems, including personalized and biased user preference
analysis, and specific and dynamic classification of content for applying collabo-
rative tagging techniques into Java Tutoring system. Appropriate selection of col-
laborative tagging techniques could lead to applying the best results in terms of
increasing motivation in learning process and understanding of the learning content.
The scientific contributions are summarized as follows. First, in this monograph, we
demonstrated how programming tutoring systems can be enabled to provide adap-
tivity based on learning styles. We introduced a general concept for a tutoring system
to automatically generate course that fit to the learning styles of the learners. The
only additional effort from the teachers and course developers is to provide some
meta-data in order to annotate the learning material. Furthermore, learners were
asked to fill out the ILS questionnaire for detecting their learning styles. The concept
was implemented and an experiment with 440 learners was performed to show the
effectiveness of the realized concept. Then, we evaluated statistical properties of
learners’ tagging history. We studied how many LO were tagged on average by each
learner in the system and found that even 65 % learners show high activity, tagged
between 50 and 72 LOs. In order to understand the characteristics of learner tags, and
learner tagging behaviour, we examined tag characteristics of learners in Protus 2.1
system. We have noted: as the number of learners increases and a tagged object
receives more and more tags, the frequency of at which a tag is selected tends to
become fixed. This concept of convergence or stabilization has important implica-
tions for the collective usefulness of individual tagging behaviour. Likewise, this
stabilization might appear during instances of shared knowledge, as well as when
learners imitate the tag selection of other learners. Research on the collaborative
tagging process itself has found that the position of a tag correlates with its
expressiveness. Tag entropy is a measurement of specificity where more general tags
should have higher entropies because they might appear in different topics, whereas
seldom tags are often more specific to a topic, thus have lower entropies. It appears
that learners tend to assign common tags at the beginning of the tagging process and
more specific tags later. A semantic analysis of the tags was performed to better
understand different utilization of tags. When we analyzed how these tags were used
and re-used among learners, we found the vast majority of the tags were of the
personal (44 % of the tags) and subjective type (40 % of the tags).

The most significant part of the research focuses on appropriate selection of
collaborative tagging techniques which could lead to applying the best results in
terms of increasing motivation in learning process and understanding of the

290 13 Conclusions and Future Directions

learning content. As a result, personalized and the most likely preferred recom-
mendations can be estimated to an active learner that are in accordance with the
learner’s interests, his learning style, demographic characteristics and previously
acquired knowledge. First, we compare simple methods based on counting tag
occurrences (Most Popular Tags), specific approaches for improving the perfor-
mance of such methods and an adaptation of the User-based Collaborative
Filtering, named Collaborative Filtering based on Tags. All algorithms perform
significantly better than the baseline Most Popular Tags and the Most Popular Tags
by User strategy, whereas it is much harder to beat the Most Popular Tags by Item.
The idea to suggest the Most Popular Tags by Item results in a recall which is very
similar to using the CF recommender based on user’s item similarities. In contrast
to these two approaches, the Most Popular Tags 0.6 Mix-recommender includes
also the learner’s tags in the recommendations. It is successful and could gain
results better than those of CF.

Then, we analysed the prediction quality of graph-based approaches, Adapted
PageRank and FolkRank, and tensor based approaches, HOSVD and RTF.
FolkRank builds on PageRank and proved to give significantly better tag recom-
mendations than CF, because FolkRank has ability to exploit the information that is
appropriate to the specific learner together with input from other learners via the
integrating structure of the underlying hypergraph. When comparing the prediction
quality of CF, Adapted PageRank and FolkRank one can see that FolkRank out-
perform both too. This method also allows for mode switching with no change in
the algorithm. Moreover, as well as CF-based algorithms, FolkRank is robust
against online updates since it does not need to be trained every time a new learner,
item or tag enters the system. However, FolkRank is computationally expensive and
not trivially scalable, making it more suitable for systems where real-time recom-
mendations are not a requirement. Similarly, tensor factorization methods also work
directly over the ternary relation of the folksonomy. Although the tensor recon-
struction phase can be expensive, it can be performed offline. After the lower
dimensional tensor is computed, the recommendations can be done quickly, making
these algorithms appropriate for real-time recommendations. A possible drawback
of tensor factorization methods is that easy mode switching can only be achieved if
one considers that the different recommendation problems, i.e., learner/item/tag, can
be addressed by minimizing the same error function. If one chooses HOSVD for
example, the reconstructed tensor can be used for multi-mode recommendations
with simple mode switching, but at the cost of solving the wrong problem: HOSVD
minimizes a least-square error function while social tagging RS is more related to
ranking. We selected only the best representatives of the considered techniques. We
concluded that the best method is RTF followed by FolkRank and HOSVD.

Also, we have carried out other experiments to evaluate the performance of the
system from the points of view of both teachers and learners. The results demon-
strated the potential pedagogical benefits of collaborative tagging that the tags
themselves represent the expertise of the users. This proposes that at a collaborative
level, a tag set can be observed as the course is being given by the experts to
improve an insight into the topics and concepts that learners are filtering from the

13.1 Contributions of the Monograph 291

online material. The general opinion of experts has been very positive. They have
demonstrated a high degree of motivation and have especially liked the novelty of
using learners’ data to improve e-learning courses, to be able to apply modifications
to courses directly from the system and have the possibility of working and sharing
information with other teachers and educational experts. However, experts have
indicated that the creation of the repository or knowledge database is a hard task.

From the educational point of view, learners only benefit from learning tech-
nology when it makes learning more effective, efficient or attractive. The results of
the experiment showed that the learners who were required to use Protus 2.1 system
should be able to complete a course in less time than learners in the control group
who learned with the previous version of the system. Also, these learners contin-
uously completed more lessons successfully than the control group. To get a
subjective evaluation of our system, at the end of the course we organized a
non-mandatory questionnaire that collected learners’ opinions about the main fea-
tures of the system. The results are very encouraging:

1. Learners indicated that creating tags were easy, and that it was easy to construct
meaningful words or phrases to represent the learning objects with tagging
objects.

2. Learners thought that tagging activity can help learners summarize new ideas
and quickly grasp the structure and concepts. Some learners indicated that their
tags were more accurate after sufficient tagging practice.

3. Learners agreed that Protus 2.1 is capable of helping them to easily comprehend
the context of learning objects, and can help them improve their learning
efficiency.

4. Learners regarded that Protus 2.1 system is easy-to-use.

The main achievement of this work is the following:

• defining the general tutoring system model using Semantic Web technologies,
• design of separate components of personalized tutoring system in the form of

educational ontologies,
• explicit display of adaptation rules for easier understanding, update and reuse of

tutoring system components,
• implementation of various personalization options in a tutoring system, and
• presented possibilities for use of Semantic Web technologies to build a tutoring

system.

This architecture provides a foundation for further expansion of the system and
allows detailed modelling of the personalization process. Also, the adaptation rules
can be modified in order to achieve specific requirements during the personalization
process and learner modelling.

Presented tutoring system architecture enables the implementation of other
programming courses or courses from other domains with minimal changes to the
defined architecture. Changes would include the addition of new educational
materials and modification options for testing learners’ knowledge.

292 13 Conclusions and Future Directions

13.2 Future Work and Open Research Questions

The rapid development of collaborative tagging system and related emerging
technology suggests new ideas for personalized recommendation and determine a
great number of challenges for future work.

Future studies could focus more specifically on measuring the impact of prior
learner experience (with computers and the Internet) and interest (in the knowledge
domain) on the effect of creating tags. Additionally, future studies could investigate
whether there are more factors which also have an influence on the effect of choice
of tags. Possible candidates could be a mood or stress level.

Improvements in the experimental design could verify the findings reported in
this monograph and increase their external validity. Similar comparative studies
could be carried out involving more learners and more experts and teachers from
other areas (unrelated to computer science) in order to obtain a more heterogeneous
teacher’s profile. This will allow the study of other interesting questions such as: Is
it possible that different teachers in different areas might coincide in their evaluation
of patterns?; What is the behaviour of experts and teachers as they progress through
a course?; Can tuples that are found to be valid and useful in one course later be
applied to another course with a different profile? These aspects could lead to a
confirmation that would focus uniquely on a detailed analysis of the changes made
and whether the process is efficient and likely to be corresponding to non-guided
course content revision.

Even though the source code was written specifically for the Java programming
course that was used in the experimental evaluation, it is feasible that with adequate
programming effort, adapted versions of Protus 2.1 can be created for other
knowledge domains. We can, also, integrate other sequence mining algorithms
(Han et al. 2005) such as SPADE, FreeSpan, CloSpan and PSP, and other clustering
algorithm without demanding the learner to specify any parameter. We plan to
evaluate the quality of the recommendations based on feedback from learners as
well as on results using a testing set of data. Finally, it would be very useful to
develop a real-time feedback loop between data mining and the recommendation
system. We can use, for example, intelligent agents for doing on-line data mining
automatically and for communicating with the recommender systems. In this way
the system could work completely autonomously. The agents can mine data only
when they notice enough volume of new data. And the authors do not have to
pre-process and apply mining algorithms; they only have to organize the new
recommender links if they want.

In the domain of tensor factorization for social tagging Recommender Systems
as a recent and prominent field, the research study of this area has just begun to
expose the benefits that those methods have to propose. A mainly interesting
research direction considers investigating tensor factorization models that highlight
both high recommendation accuracy and easy mode switching. As emphasized
before, folksonomies usually do not contain numerical ratings, but recently the

13.2 Future Work and Open Research Questions 293

GroupLens1 research group released a folksonomy dataset in which numerical
ratings for the tagged items are also given (Marinho et al. 2011). This represents
several research opportunities on how to exploit the item’s rating information in
order to improve recommendations. In this case, a single data structure for all the
modes, such as tensors or hyper-graphs, would eventually fail since the ratings are
only related to user-item pairs and not to tags. Similar issues can be investigated for
content-based methods. It is proven that content-based methods usually neglect the
user information, but past research shows that hybrid methods that combine user
preferences with the item’s content usually conduct to better recommenders. Here,
again, tensor or hyper-graph representations would be unsuccessful since items’
content is only related to the items but not to the users or tags. So hybrid-based
methods that achieve some kind of synthesis between folksonomy representations
and items’ content would be appreciated contribution to the area.

Finally, Protus 2.1 proposed a new, dynamic approach to adaptive behavior in
learning style-responsive environments. Future work will deal with an in-depth
analysis of the results with respect to different learning style dimensions as well as
the different adaptation features. We also plan to add more adaptation features to
our concept and implement them. Another future direction will be to combine the
proposed concept with an automatic learner modelling approach so that the system
is able to automatically detect the learning styles of the learners based on their
behaviour and actions in the system.

References

Han, J., Pei, J., & Yan, X. (2005). Sequential pattern mining by pattern-growth: Principles and
extensions*. In Foundations and Advances in Data Mining (pp. 183–220). Springer.

Marinho, L. B., Nanopoulos, A., Schmidt-Thieme, L., Jäschke, R., Hotho, A., Stumme, G.,
Symeonidis, P. et al. (2011). Social tagging recommender systems. In Recommender systems
handbook (pp. 615–644). Springer.

1http://www.grouplens.org/.

294 13 Conclusions and Future Directions

http://www.grouplens.org/

	Foreword
	Preface
	Contents
	About the Authors
	Abbreviations
	Abstract
	Preliminaries
	1 Introduction to E-Learning Systems
	Abstract
	1.1 Web-Based Learning
	1.2 E-Learning
	1.3 E-Learning Objects, Standards and Specifications
	1.3.1 E-Learning Objects
	1.3.2 E-Learning Specifications and Standards
	1.3.2.1 S1. IEEE LOM and IMS Learning Resource Metadata
	1.3.2.2 S2. Dublin Core Metadata Initiative
	1.3.2.3 S3. IMS Learner Information Package
	1.3.2.4 S4. IMS Content Packaging
	1.3.2.5 S5. IMS Simple Sequencing
	1.3.2.6 S6. ADL SCORM

	1.3.3 Analysis of Standards and Specifications

	References

	E-Learning Systems Personalization
	2 Personalization and Adaptation in E-Learning Systems
	Abstract
	2.1 Personalization and Personalized Learning
	2.2 Adaptation of E-Learning Systems
	References

	3 Personalization Based on Learning Styles
	Abstract
	3.1 Learning Style’s Theories
	3.2 Learning Styles in E-Learning Systems
	3.3 Learning Style Index by Felder and Soloman
	3.3.1 Information Processing: Active and Reflective Learners
	3.3.2 Information Perception: Sensing and Intuitive Learners
	3.3.3 Information Reception: Visual and Verbal Learners
	3.3.4 Information Understanding: Sequential and Global Learners

	References

	4 Adaptation in E-Learning Environments
	Abstract
	4.1 Adaptive Educational Hypermedia
	4.2 Content Adaptation
	4.3 Link Adaptation
	References

	5 Agents in E-Learning Environments
	Abstract
	5.1 Some Existing Agent Based Systems
	5.2 HAPA System Overview
	5.2.1 Harvesting and Classifying the Learning Material
	5.2.1.1 Pedagogical agents

	References

	6 Recommender Systems in E-Learning Environments
	Abstract
	6.1 Recommendations and Recommender Systems
	6.2 The Most Important Requirements and Challenges for Designing a Recommender System in E-Learning Environments
	6.3 Recommendation Techniques for RS in E-Learning Environments—A Survey of the State-of-the-Art
	6.3.1 Collaborative Filtering Approach
	6.3.2 Content-Based Techniques
	6.3.3 Association Rule Mining

	References

	7 Folksonomy and Tag-Based Recommender Systems in E-Learning Environments
	Abstract
	7.1 Comprehensive Survey of the State-of-the-Art in Collaborative Tagging Systems and Folksonomy
	7.1.1 Tagging Rights
	7.1.2 Tagging Support
	7.1.3 Aggregation
	7.1.4 Types of Object
	7.1.5 Sources of Material
	7.1.6 Resource Connectivity
	7.1.7 Social Connectivity

	7.2 A Model for Tagging Activities
	7.3 Tag-Based Recommender Systems
	7.3.1 Extension with Tags
	7.3.2 Collecting Tags

	7.4 Applying Tag-Based Recommender Systems to E-Learning Environments
	7.4.1 FolkRank Algorithm
	7.4.2 PLSA
	7.4.3 Collaborative Filtering Based on Collaborative Tagging
	7.4.4 Tensor Factorization Technique for Tag Recommendation
	7.4.4.1 SVD Algorithm
	7.4.4.2 Tensors and HOSVD Algorithm
	7.4.4.3 Ranking with Tensor Factorization
	7.4.4.4 Multi-mode Recommendations

	7.4.5 Most Popular Tags
	7.4.5.1 Mix of “Most Popular Tags” Recommenders

	7.5 Limitations of Current Folksonomy and Possible Solutions
	References

	Semantic Web Technologies in E-Learning
	8 Semantic Web
	Abstract
	8.1 Knowledge Organization Systems
	8.2 Ontologies
	8.2.1 Adaptive Educational Systems Technologies in E-Learning
	8.2.2 Standards for E-Learning Environments
	8.2.3 Semantic Web Methodologies
	8.2.4 Representation of Ontologies
	8.2.4.1 Example: Ontology of an E-Learning System

	8.2.5 Development Practices of E-Learning Systems
	8.2.5.1 Authoring of Content
	8.2.5.2 Authoring of Instructional Process
	8.2.5.3 Authoring of the Adaptation and Personalization

	8.2.6 The Objective of Ontologies
	8.2.7 Ontology Application

	8.3 Semantic Web Languages
	8.3.1 XML—eXtensible Markup Language
	8.3.2 RDFS—Resource Description Framework Schema
	8.3.3 OWL—Ontology Web Language

	8.4 Graphical Environments for Ontology Development
	8.4.1 Protégé
	8.4.1.1 Ontology Modelling in Protégé

	8.4.2 NeOnToolkit
	8.4.3 TopBraid Composer
	8.4.4 Vitro
	8.4.5 OWLGrEd
	8.4.6 Knoodl

	8.5 Educational Ontologies
	8.5.1 Domain Ontology
	8.5.2 Task Ontology
	8.5.3 Teaching Strategy Ontology
	8.5.4 Learner Model Ontology
	8.5.5 Interface Ontology
	8.5.6 Communication Ontology
	8.5.7 Educational Service Ontology

	8.6 Adaptation Rules
	8.6.1 Semantic Web Rule Language (SWRL)
	8.6.2 Jess

	8.7 Architecture of Semantic E-Learning Systems
	References

	9 Design and Implementation of General Tutoring System Model
	Abstract
	9.1 Architecture of General Tutoring System Model
	9.2 System’s Ontologies
	9.2.1 Main Components of Ontologies
	9.2.2 Domain Ontology
	9.2.2.1 Concepts
	9.2.2.2 Resources

	9.2.3 Task Ontology
	9.2.4 Learner Model Ontology
	9.2.5 Teaching Strategy Ontology
	9.2.6 Interface Ontology

	9.3 Adaptation Rules
	9.3.1 Syntax of Adaptation Rules
	9.3.2 Learning Styles Identification
	9.3.2.1 Adaptation Rules in Information Processing Domain: Active and Reflective Learners
	9.3.2.2 Adaptation Rules in Information Perception Domain: Sensing and Intuitive Learners
	9.3.2.3 Adaptation Rules in Information Reception Domain: Visual and Verbal Learners
	9.3.2.4 Adaptation rules in Information Understanding domain: Sequential and Global learners

	9.3.3 Rules for Building Learner Model
	9.3.4 Adaptation Based on Resource Sequencing
	9.3.4.1 Off-Line Rules
	9.3.4.2 Recommendation Rules

	9.4 Course Development
	References

	Case Study: Design and Implementation of Programming Tutoring System
	10 Design, Architecture and Interface of Protus 2.1 System
	Abstract
	10.1 Personalised Programming Tutoring Systems
	10.1.1 Programming Tutoring Systems
	10.1.2 Tutoring Systems with Implemented Recommendation

	10.2 Previous Versions of Protus 2.1
	10.2.1 Mag System
	10.2.2 Protus System
	10.2.2.1 System’s Architecture of Protus
	10.2.2.2 Data Structure in Protus
	10.2.2.3 User Interface in Protus
	10.2.2.4 Learner’s User Interface in Protus
	10.2.2.5 Teacher’s User Interface in Protus

	10.3 Protus 2.1
	10.3.1 Learner’s Interface
	10.3.2 User Interface for Teachers and Course Administrators

	10.4 Development of Ontologies for Java Programming Course
	10.4.1 Domain Ontology
	10.4.1.1 Concepts
	10.4.1.2 Resources

	10.4.2 Learner Model Ontology
	10.4.3 Teaching Strategy Ontology
	10.4.4 Task Ontology and User Interface Ontology

	References

	11 Personalization in Protus 2.1 System
	Abstract
	11.1 The Protus 2.1 Component for Making Recommendations
	11.2 Learning Style Identification in Protus 2.1
	11.2.1 Adaptation Process in Protus 2.1
	11.2.2 Calculation of Initial Learning Styles
	11.2.2.1 Explanation of Index

	11.2.3 Adaptation of User Interface Based on the Learning Styles
	11.2.3.1 Information Processing: Active and Reflective Learners
	11.2.3.2 Information Perception: Sensing and Intuitive Learners
	11.2.3.3 Information Reception: Visual and Verbal Learners
	11.2.3.4 Information Understanding: Sequential and Global Learners

	11.3 Resource Sequencing
	11.3.1 Identification of Sequences of Learning Activities and Personalized Recommendation
	11.3.1.1 The Process of Mining Sequential Patterns by Apriori All Algorithm

	11.4 Recommendation Process Based on Collaborative Filtering
	11.5 Tag-Based Personalized Recommendation Using Ranking with Tensor Factorization Technique
	11.5.1 Generating Initial Tensor
	11.5.2 Computing Tensor Factorization
	11.5.3 Generating a List of Recommended Items
	11.5.4 Tag-Based Recommendation in Protus 2.1
	11.5.4.1 Tag Browsing

	11.6 Use and Functioning of the System
	11.6.1 Integration of Java Programming Course in Protus 2.1

	11.7 Educational Material in Protus 2.1
	11.8 Course Organization and Structure
	11.8.1 Testing in Protus 2.1
	11.8.2 Evaluation Process

	References

	Evaluation and Discussion
	12 Experimental Evaluation of Protus 2.1
	Abstract
	12.1 Data Set for Experiment
	12.2 Data Clustering
	12.3 Statistical Properties of Learners’ Tagging History
	12.3.1 Learners’ Activities
	12.3.2 Tag Usage
	12.3.3 Tag Entropy Over Time
	12.3.4 Semantic Analysis of Tags

	12.4 Experimental Protocol and Evaluation Metrics
	12.5 Evaluation of Several Suitable Recommendation Techniques
	12.5.1 Settings of the Algorithms
	12.5.2 Results of Selected Methods Evaluation
	12.5.2.1 Comparison of Methods Based on Counting Tag Occurrences and Standard Collaborative Filtering Based on Tags
	12.5.2.2 Comparison of Graph-Based Approaches
	12.5.2.3 Comparison of Methods Based on Tensor Factorization
	12.5.2.4 Summary of Algorithms’ Advantages and Disadvantages

	12.6 Expert Validity Survey
	12.7 Evaluation of Protus 2.1 System from the Educational Point of View
	References

	13 Conclusions and Future Directions
	Abstract
	13.1 Contributions of the Monograph
	13.2 Future Work and Open Research Questions
	References

