
Advances in Property-Based Testing for αProlog

James Cheney1(B), Alberto Momigliano2, and Matteo Pessina2

1 University of Edinburgh, Edinburgh, UK
jcheney@inf.ed.ac.uk

2 Università degli Studi di Milano, Milan, Italy
momigliano@di.unimi.it, matteo.pessina3@studenti.unimi.it

Abstract. αCheck is a light-weight property-based testing tool built on
top of αProlog, a logic programming language based on nominal logic.
αProlog is particularly suited to the validation of the meta-theory of for-
mal systems, for example correctness of compiler translations involving
name-binding, alpha-equivalence and capture-avoiding substitution. In
this paper we describe an alternative to the negation elimination algo-
rithm underlying αCheck that substantially improves its effectiveness.
To substantiate this claim we compare the checker performances w.r.t.
two of its main competitors in the logical framework niche, namely the
QuickCheck/Nitpick combination offered by Isabelle/HOL and the ran-
dom testing facility in PLT-Redex.

1 Introduction

Formal compiler verification has come a long way from McCarthy and Painter’s
“Correctness of a Compiler for Arithmetic Expression” (1967), as witnessed by
the success of CompCert and subsequent projects [21,35]. However outstand-
ing these achievements are, they are not a magic wand for every-day compiler
writers: not only CompCert was designed with verification in mind, whereby the
implementation and the verification were a single process, but there are only a
few dozen people in the world able and willing to carry out such an endeavour.
By verification, CompCert means the preservation of certain simulation relations
between source, intermediate and target code; however, the translations involved
are relatively simple compared to those employed by modern optimizing compil-
ers. Despite some initial work [1,7], handling more realistic optimizations seems
even harder, e.g. the verification of the call arity analysis and transformation in
the Glasgow Haskell Compiler (GHC):

“The [Nominal] Isabelle development corresponding to this paper, including
the definition of the syntax and the semantics, contains roughly 12,000 lines
of code with 1,200 lemmas (many small, some large) in 75 theories, created
over the course of 9 months” (page 11, [7]).

For the rest of us, hence, it is back to compiler testing, which is basically
synonymous with passing a hand-written fixed validation suite. This is not
completely satisfactory, as the coverage of those tests is difficult to assess and
c© Springer International Publishing Switzerland 2016
B.K. Aichernig and C.A. Furia (Eds.): TAP 2016, LNCS 9762, pp. 37–56, 2016.
DOI: 10.1007/978-3-319-41135-4 3



38 J. Cheney et al.

because, being fixed, these suites will not uncover new bugs. In the last few
years, randomized differential testing [24] has been suggested in combination
with automatic generation of (expressive) test programs, most notably for C
compilers with the Csmith tool [36] and to a lesser extent for GHC [30]. The
oracle is comparison checking : Csmith feeds randomly generated programs to
several compilers and flags the minority one(s), that is, those reporting different
outputs from the majority of the other compilers under test, as incorrect. Simi-
larly, the outcome of GHC on a random program with or without an optimization
enabled is compared.

Property-based testing, as pioneered by QuickCheck [12], seems to leverage
the automatic generation of test cases with the use of logical specifications (the
properties), making validation possible not only in a differential way, but inter-
nally, w.r.t. (an abstraction of) the behavior of the source and intermediate code.
In fact, compiler verification/validation is a prominent example of the more gen-
eral field of verification of the meta-theory of formal systems. For many classes
of (typically) shallow bugs, a tool that automatically finds counterexamples can
be surprisingly effective and can complement formal proof attempts by warn-
ing when the property we wish to prove has easily-found counterexamples. The
beauty of such meta-theory model checking is that, compared to other general
forms of system validation, the properties that should hold are already given by
means of the theorems that the calculus under study is supposed to satisfy. Of
course, those need to be fine tuned for testing to be effective, but we are mostly
free of the thorny issue of specification/invariant generation.

In fact, such tools are now gaining traction in the field of semantics
engineering, see in particular the QuickCheck/Nitpick combination offered in
Isabelle/HOL [4] and random testing in PLT-Redex [18]. However, a partic-
ular dimension to validating for example optimizations in a compiler such as
GHC, whose intermediate language is a variant of the polymorphically typed
λ-calculus, is a correct, simple and effective handling of binding signatures and
associated notions such as α-equivalence and capture avoiding substitutions. A
small but not insignificant part of the success of the CompCert project is due
to not having to deal with any notion of binder1. The ability to encode possibly
non-algorithmic relations (such as typing) in a declarative way would also be a
plus.

The nominal logic programming language αProlog [11] offers all those facil-
ities. Additionally, it was among the first to propose a form of property based
testing for language specifications with the αCheck tool [9]. In contrast to
QuickCheck/Nitpick and PLT Redex, our approach supports binding syntax
directly and uses logic programming to perform exhaustive symbolic search for
counterexamples. Systems lacking this kind of support may end up with inef-
fective testing capabilities or requiring an additional amount of coding, which
needs to be duplicated in every case study:

1 X. Leroy, personal communication. In fact, the encoding in [22] does not respect
α-equivalence, nor does it implement substitutions in a capture avoiding way.



Advances in Property-Based Testing for αProlog 39

“Redex offers little support for handling binding constructs in object languages.

It provides a generic function for obtaining a fresh variable, but no help in

defining capture-avoiding substitution or α-equivalence [. . . ] In one case [. . . ]

managing binders constitutes a significant portion of the overall time spent [. . . ]

Generators derived from grammars [. . . ] require substantial massaging to achieve

high test coverage. This deficiency is particularly pressing in the case of typed

object languages, where the massaging code almost duplicates the specification

of the type system” (page 5, [18]).

αCheck extends αProlog with tools for searching for counterexamples, that is,
substitutions that makes the antecedent of a specification true and the conclusion
false. In logic programming terms this means fixing a notion of negation. To begin
with, αCheck adopted the infamous negation-as-failure (NF) operation, “which
put pains thousandfold upon the” logic programmers. As many good things in
life, its conceptual simplicity and efficiency is marred by significant problems:

– the lack of an agreed intended semantics against which to carry a soundness
proof: this concern is significant because the semantics of negation as failure
has not yet been investigated for nominal logic programming;

– even assuming such a semantics, we know that NF is unsound for non-ground
goals; hence all free variables must be instantiated before solving the negated
conclusion. This is obviously exponentially expensive in an exhaustive search
setting and may prevent optimizations by goal reordering.

To remedy this αCheck also offered negation elimination (NE) [3,26], a
source-to-source transformation that replaces negated subgoals to calls to equiv-
alent positively defined predicates. NE by-passes the previous issues arising for
NF since, in the absence of local (existential) variables, it yields an ordinary
(α)Prolog program, whose intended model is included in the complement of the
model of the source program. In particular, it avoids the expensive term gener-
ation step needed for NF , it has been proved correct, and it may open up other
opportunities for optimization. Unfortunately, in the experiments reported in
our initial implementation of αCheck [9], NE turned out to be slower than NF .

Perhaps to the reader’s chagrin, this paper does not tackle the validation of
compiler optimizations (yet). Rather, it lays the foundations by:

1. describing an alternative implementation of negation elimination, dubbed
NEs—“s” for simplified: this improves significantly over the performance
of NE as described in [9] by producing negative programs that are equiv-
alent, but much more succinct, so much as to make the method competitive
w.r.t. NF ;

2. and by evaluating our checker in comparison with some of its competitors
in the logical framework niche, namely QuickCheck/Nitpick [4] and PLT-
Redex [18]. To the best of our knowledge, this is the first time any of these
three tools have been compared experimentally.

In the next section we give a tutorial presentation of the tool and move then
to the formal description of the logical engine (Sect. 3). In Sect. 4, we detail the



40 J. Cheney et al.

NEs algorithm and its implementation, whereas Sect. 5 carries out the promised
comparison on two case studies, a prototypical λ-calculus with lists and a basic
type system for secure information flow. The sources for αProlog and αCheck can
be found at https://github.com/aprolog-lang/aprolog. Supplementary material,
including the full listing of the case studies presented here and an online appen-
dix containing additional experiments and some formal notions used in Sect. 3,
but omitted here for the sake of space, are available at [10]. We assume some
familiarity with logic programming.

2 A Brief Tour of αCheck

We specify the formal systems and the properties we wish to check as Horn
logic programs in αProlog [11], a logic programming language based on nominal
logic, a first-order theory axiomatizing names and name-binding introduced by
Pitts [32].

In αProlog, there are several built-in types, functions, and relations with spe-
cial behavior. There are distinguished name types that are populated with infi-
nitely many name constants. In program text, a lower-case identifier is considered
to be a name constant by default if it has not already been declared as something
else. Names can be used in abstractions, written a\M in programs, considered
equal up to α-renaming of the bound name. Thus, where one writes λx.M , ∀x.M ,
etc. in a paper exposition, in αProlog one writes lam(x\M), forall(x\M), etc. In
addition, the freshness relation a # t holds between a name a and a term t that
does not contain a free occurrence of a. Thus, x �∈ FV (t) is written in αProlog
as x # t; in particular, if t is also a name then freshness is name-inequality.
For convenience, αProlog provides a function-definition syntax, but this is just
translated to an equivalent (but more verbose) relational implementation via
flattening.

Horn logic programs over these operations suffice to define a wide variety
of object languages, type systems, and operational semantics in a convenient
way. To give a feel of the interaction with the checker, here we encode a simply-
typed λ-calculus augmented with constructors for integers and lists, following
the PLT-Redex benchmark sltk.lists.rkt from http://docs.racket-lang.org/
redex/benchmark.html, which we will examine more deeply in Sect. 5.1. The
language is formally declared as follows:

Types A,B ::= int | ilist | A → B
Terms M ::= x | λx:A. M | M1 M2 | c | err
Constants c ::= n | nil | cons | hd | tl
Values V ::= c | λx:A. M | cons V | cons V1 V2

We start (see the top of Fig. 1) by declaring the syntax of terms, constants
and types, while we carve out values via an appropriate predicate. A similar
predicate is err characterizes the threading in the operational semantics of the
err expression, used to model run time errors such as taking the head of an
empty list.

https://github.com/aprolog-lang/aprolog
http://docs.racket-lang.org/redex/benchmark.html
http://docs.racket-lang.org/redex/benchmark.html


Advances in Property-Based Testing for αProlog 41

ty: type.

intTy: ty. funTy: (ty,ty) -> ty. listTy: ty.

cst: type.

toInt: int -> cst. nil: cst. cons: cst. hd: cst. tl: cst.

id: name_type.

exp: type.

var: id -> exp. lam: (id\exp,ty) -> exp. app: (exp,exp) -> exp.

c: cst -> exp. err: exp.

type ctx = [(id,ty)].

pred tc (ctx,exp,ty).

tc(_,err,T).

.T=)C(fct-:)T,)C(c,_(ct

tc([(X,T)|G],var(X),T).

.)T,)X(rav,G(ct,Y#X-:)T,)X(rav,]G|)_,Y([(ct

.)T,N,G(ct,))U,T(yTnuf,M,G(ct-:)U,)N,M(ppa,G(ct

tc(G,lam(x\M,T),funTy(T,U)) :- x # G, tc([(x,T) |G],M,U).

pred step(exp,exp).

step(app(c(hd),app(app(c(cons),V),VS)),V) :- value(V), value(VS).

step(app(c(tl),app(app(c(cons),V),VS)),VS):- value(V), value(VS).

step(app(lam(x\M,T),V), subst(M,x,V)) :- value(V).

step(app(M1,M2),app(M1’,M2)) :- step(M1,M1’).

step(app(V1,M2),app(M1,M2’)) :- value(V1), step(M2,M2’).

pred is_err(exp).

is_err(err).

is_err(app(c(hd),c(nil)))).

is_err(app(c(tl),c(nil))).

.)1E(rre_si-:))2E,1E(ppa(rre_si

.)2E(rre_si,)1V(eulav-:))2E,1V(ppa(rre_si

Fig. 1. Encoding of the example calculus in αProlog

We follow this up (see the remainder of Fig. 1) with the static semantics (pred-
icate tc) and dynamic semantics (one-step reduction predicate step), where we
omit the judgments for the value predicate and subst function, which are anal-
ogous to the ones in [9]. Note that err has any type and constants are typed
via a table tcf, also omitted.

Horn clauses can also be used as specifications of desired program properties
of such an encoding, including basic lemmas concerning substitution as well
as main theorems such as preservation, progress, and type soundness. This is
realized via checking directives

#check "spec" n : H1, ..., Hn => A.

where spec is a label naming the property, n is a parameter that bounds the
search space, and H1 through Hn and A are atomic formulas describing the precon-
ditions and conclusion of the property. As with program clauses, the specification



42 J. Cheney et al.

formula is implicitly universally quantified. Following the PLT-Redex develop-
ment, we concentrate here only on checking that preservation and progress hold.

#check "pres" 7 : tc([],E,T), step(E,E’) => tc([],E’,T).

#check "prog" 7 : tc([],E,T) => progress(E).

Here, progress is a predicate encoding the property of “being either a value,
an error, or able to make a step”. The tool will not find any counterexample,
because, well, those properties are (hopefully) true of the given setup. Now, let
us insert a typo that swaps the range and domain types of the function in the
application rule, which now reads:

tc(G,app(M,N),U) :- tc(G,M,funTy(T,U)), tc(G,N,U). % was funTy(U,T)

Does any property become false? The checker returns immediately with this
counterexample to progress:

E = app(c(hd),c(toInt(N)))

T = intTy

This is abstract syntax for hd n, an expression erroneously well-typed and obvi-
ously stuck. Preservation meets a similar fate: (λx:T → int. x err) n steps to
an ill-typed term.

E = app(lam(x\app(var(x),err),funTy(T,intTy)),c(toInt(N)))

E’ = app(c(toInt(N)),err)

T = intTy

3 The Core Language

In this section we give the essential notions concerning the core syntax, to which
the surface syntax used in the previous section desugars, and semantics of αPro-
log programs.

An αProlog signature is composed by sets ΣD and ΣN of, respectively, base
types δ, which includes a type o of propositions, and name types ν; a collection
ΣP of predicate symbols p : τ → o and one ΣF of function symbol declarations
f : τ → δ. Types τ are formed as specified by the following grammar:

τ ::= δ | τ × τ ′ | 1 | ν | 〈ν〉τ
where δ ∈ ΣD and ν ∈ ΣN and 1 is the unit type. Given a signature, the
language of terms is defined over sets V = {X,Y,Z, . . .} of logical variables and
sets A = {a, b, . . .} of names:

t, u ::= a | π · X | 〈〉 | 〈t, u〉 | 〈a〉t | f(t)
π ::= id | (a b) ◦ π

where π are permutations, which we omit in case id ·X, 〈〉 is unit, 〈t, u〉 is a pair
and 〈a〉t is the abstract syntax for name-abstraction. The result of applying the
permutation π (considered as a function) to a is written π(a). Typing for these



Advances in Property-Based Testing for αProlog 43

terms is standard, with the main novelty being that name-abstractions 〈a〉t have
abstraction types 〈ν〉τ provided a : ν and t : τ .

The freshness (s #τ u) and equality (t ≈τ u) constraints, where s is a term
of some name type ν, are the new features provided by nominal logic. The
former relation is defined on ground terms by the following inference rules, where
f : τ → δ ∈ ΣF :

a �= b

a #ν b a #1 〈〉
a #τ t

a #δ f(t)

a #τ1 t1 a #τ2 t2

a #τ1×τ2 〈t1, t2〉
a #ν′ b a #τ t

a #〈ν′〉τ 〈b〉t a #〈ν′〉τ 〈a〉t

In the same way we define the equality relation, which identifies terms modulo
α-equivalence, where (a b) · u denotes swapping two names in a term:

a ≈ν a 〈〉 ≈1 〈〉
t1 ≈τ1 u1 t2 ≈τ2 u2

〈t1, t2〉 ≈τ1×τ2 〈u1, u2〉
t ≈τ u

f(t) ≈δ f(u)

a ≈ν b t ≈τ u

〈a〉t ≈〈ν〉τ 〈b〉u
a #ν b a #ν u t ≈τ (a b) · u

〈a〉t ≈〈ν〉τ 〈b〉u
Given a signature, goals G and program clauses D have the following form:

A : : = t ≈ u | t # u

G ::= ⊥ | � | A | p(t) | G ∧ G′ | G ∨ G′ | ∃X:τ. G | Na:ν. G | ∀∗X:τ. G

D ::= � | p(t) | D ∧ D′ | G ⊃ D | ∀X : τ. D | ⊥ | D ∨ D′

The productions shown in black yield a fragment of nominal logic called N-
goal clauses [11], for which resolution based on nominal unification is sound and
complete. This is in contrast to the general case where the more complicated
equivariant unification problem must be solved [8]. We rely on the fact that
D formulas in a program Δ can always be normalized to sets of clauses of the
form ∀X :τ . G ⊃ p(t), denoted def(p,Δ). The fresh-name quantifier N, firstly
introduced in [32], quantifies over names not occurring in a formula (or in the
values of its variables). The extensions shown in red here in the language BNF
(and in its proof-theoretic semantics in Fig. 2) instead are constructs brought in
from the negation elimination procedure (Sect. 4.1) and which will not appear
in any source programs. In particular, an unusual feature is the extensional
universal quantifier ∀∗ [15]. Differently from the intensional universal quantifier
∀, for which ∀X:τ. G holds if and only if G[x/X] holds, where x is an eigenvariable
representing any terms of type τ , ∀∗X:τ. G succeeds if and only if G[t/X] does
for every ground term of type τ .

Constraints are G-formulas of the following form:

C ::=� | t ≈ u | t # u | C ∧ C ′ | ∃X:τ. C | Na:ν. C

We write K for a set of constraints and Γ for a context keeping track of the
types of variables and names. Constraint-solving is modeled by the judgment
Γ ;K |= C, which holds if for all maps θ from variables in Γ to ground terms



44 J. Cheney et al.

if θ |= K then θ |= C. The latter notion of satisfiability is standard, modulo
handling of names: for example θ |= Na:ν. C iff for some b fresh for θ and C,
θ |= C[b/a].

Γ ; K |= A

Γ ; Δ; K ⇒ A
con

Γ ; Δ; K ⇒ G1 Γ ; Δ; K ⇒ G2

Γ ; Δ; K ⇒ G1 ∧ G2
∧R

Γ ; Δ; K ⇒ Gi

Γ ; Δ; K ⇒ G1 ∨ G2
∨Ri

Γ ; K |= ∃X:τ. C Γ, X:τ ; Δ; K, C ⇒ G

Γ ; Δ; K ⇒ ∃X:τ. G
∃R

Γ ; K |= Na:ν. C Γ#a:ν; Δ; K, C ⇒ G

Γ ; Δ; K ⇒ Na:ν. G
NR

Γ ; Δ; K ⇒ 	 	R
Γ ; Δ; K D−→ Q D ∈ Δ

Γ ; Δ; K ⇒ Q
sel

∧{Γ, X:τ ; Δ; K, C ⇒ G | Γ ; K |= ∃X:τ. C}
Γ ; Δ; K ⇒ ∀∗X:τ. G

∀∗ω

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ ; K |= t ≈ u

Γ ; Δ; K p(t)−→ p(u)
hyp

Γ ; Δ; K Di−→ Q

Γ ; Δ; K D1∧D2−→ Q
∧Li

Γ ; Δ; K D−→ Q Γ ; Δ; K ⇒ G

Γ ; Δ; K G⊃D−→ Q
⊃L

Γ ; K |= ∃X:τ. C Γ, X:τ ; Δ; K, C
D−→ Q

Γ ; Δ; K ∀X:τ. D−→ Q
∀L

Γ ; Δ; K ⊥−→ Q
⊥L

Γ ; Δ; K D1−→ Q Γ ; Δ; K D2−→ Q

Γ ; Δ; K D1∨D2−→ Q
∨L

Fig. 2. Proof search semantics of αProlog programs

We can describe an idealized interpreter for αProlog with the “amalgamated”
proof-theoretic semantics introduced in [11] and inspired by similar techniques
stemming from CLP [20] — see Fig. 2, sporting two kind of judgments, goal-
directed proof search Γ ;Δ;K ⇒ G and focused proof search Γ ;Δ;K D−→ Q.
This semantics allows us to concentrate on the high-level proof search issues,
without requiring to introduce or manage low-level operational details concern-
ing constraint solving. We refer the reader to [11] for more explanation and ways
to make those judgments operational. Note that the rule ∀∗ω says that goals of
the form ∀∗X:τ.G can be proved if Γ,X:τ ;Δ;K, C ⇒ G is provable for every
constraint C such that Γ ;K |= ∃X:τ. C holds. Since this is hardly practical, the



Advances in Property-Based Testing for αProlog 45

number of candidate constraints C being infinite, we approximate it by modify-
ing the interpreter so as to perform a form of case analysis: at every stage, as
dictated by the type of the quantified variable, we can either instantiate X by
performing a one-layer type-driven case distinction and further recur to expose
the next layer by introducing new ∀∗ quantifiers, or we can break the recursion
by instantiation with an eigenvariable.

4 Specification Checking

Informally, #check specifications correspond to specification formulas of the form

Na.∀X. G ⊃ A (1)

where G is a goal and A an atomic formula (including equality and freshness
constraints). Since the N-quantifier is self-dual, the negation of (1) is of the form
Na.∃X.G ∧ ¬A. A (finite) counterexample is a closed substitution θ providing

values for X such that θ(G) is derivable, but the conclusion θ(A) is not. Since we
live in a logic programming world, the choice of what we mean by “not holding”
is crucial, as we must choose an appropriate notion of negation.

In αCheck the reference implementation reads negation as finite failure
(not):

Na.∃X:τ . G ∧ gen[[τ ]](X) ∧ not(A) (2)

where gen[[τ ]] are type-indexed predicates that exhaustively enumerate the inhab-
itants of τ . For example, gen[[ty]] yields the predicate:

gen_ty(intTy). gen_ty(listTy).

gen_ty(funTy(T1,T2)) :- gen_ty(T1), gen_ty(T2).

A check such as (2) can simply be executed as a goal in the αProlog interpreter,
using the number of resolution steps permitted to solve each subgoal as a bound
on the search space. This method, combined with a complete search strategy such
as iterative deepening, will find a counterexample, if one exists. This realization
of specification checking is simple and effective, while not escaping the traditional
problems associated with such an operational notion of negation.

4.1 Negation Elimination

Negation Elimination [3,26] is a source-to-source transformation that replaces
negated subgoals with calls to a combination of equivalent positively defined
predicates. In the absence of local (existential) variables, NE yields an ordinary
(α)Prolog program, whose intended model is included in the complement of the
model of the source program. In other terms, a predicate and its complement
are mutually exclusive. Exhaustivity, that is whether a program and its com-
plement coincide with the Herbrand base of the program’s signature may or



46 J. Cheney et al.

may not hold, depending on the decidability of the predicate in question; nev-
ertheless, this property, though desirable, is neither frequent nor necessary in a
model checking context. When local variables are present, the derived positivized
program features the extensional universal quantifier presented in the previous
section.

The generation of complementary predicates can be split into two phases:
term complementation and clause complementation.

Term Complementation. A cause of atomic goal failure is when its arguments
do not unify with any of the program clause heads in its definition. The idea
is then to generate the complement of the term structure in each clause head
by constructing a set of terms that differ in at least one position. However,
and similarly to the higher-order logic case, the complement of a nominal term
containing free or bound names cannot be represented by a finite set of nominal
terms. For our application nonetheless, we can pre-process clauses so that the
standard complementation algorithm for (linear) first order terms applies [19].
This forces terms in source clause heads to be linear and free of names (including
swapping and abstractions), by replacing them with logical variables, and, in
case they occurred in abstractions, by constraining them in the clause body by
a concretion to a fresh variable. A concretion, written t@a, is the elimination
form for abstractions and can be implemented by translating a goal G with an
occurrence of [t@a] (notation G[t@a]) to ∃X.t ≈ 〈a〉X ∧ G[X]. For example, the
clause for typing lambdas is normalized as:

tc(G,lam(M,T),funTy(T,U)):- new x. tc([(x,T) |G],M@x,U).

Hence, we can use a type-directed version of first-order term complemen-
tation, not[[τ ]] : τ → τ set and prove its correctness in term of exclusivity
following [3,27]: the intersection of the set of ground instances of a term and
its complement is empty. Exhaustivity also holds, but will not be needed. The
definition of not[[τ ]] is in the appendix [10], but we offer the following example:

not[[exp]](app(c(hd), )) =

{lam( , ), err, c( ), var( ), app(c(tl), ), app(c(nil), ), app(c(toInt( )), ),

app(var( ), ), app(err, ), app(lam( , ), ), app(app( , ), )}

Clause Complementation. The idea of the clause complementation algorithm is
to compute the complement of each head of a predicate definition using term
complementation, while clause bodies are negated pushing negation inwards until
atoms are reached and replaced by their complement and the negation of con-
straints is computed. The contributions (in fact a disjunction) of each of the
original clauses are finally merged. The whole procedure can be seen as a nega-
tion normal form procedure, which is consistent with the operational semantics
of the language.

The first ingredient is complementing the equality and freshness constraints,
yielding (α-)inequality neq [[τ ]] and non-freshness nfr [[ν, δ]]: we implement these



Advances in Property-Based Testing for αProlog 47

notG(	) = ⊥ notD(	) = ⊥
notG(⊥) = 	 notD(⊥) = 	

notG(p(t)) = p¬(t) notD(G ⊃ p(t)) =
∧{∀(p¬(u)) | u ∈ not[[τ ]](t)} ∧
(notG(G) ⊃ p¬(t))

notG(t ≈τ u) = neq [[τ ]](t, u)
notG(a #τ u) = nfr [[ν, τ ]](a, u)
notG(G ∧ G′) = notG(G) ∨ notG(G′) notD(D ∧ D′) = notD(D) ∨ notD(D′)
notG(G ∨ G′) = notG(G) ∧ notG(G′) notD(D ∨ D′) = notD(D) ∧ notD(D′)

notG(∀∗X:τ. G) = ∃X:τ. notG(G) notD(∀X:τ. D) = ∀X:τ. notD(D)
notG(∃X:τ. G) = ∀∗X:τ. notG(G)
notG( Na:ν. G) = Na:ν. notG(G) notD(Δ) = notD(def(p, Δ))

Fig. 3. Negation of a goal and of clause

using type-directed code generation within the αProlog interpreter and refer
again to the appendix [10] for their generic definition.

Figure 3 shows goal and clause complementation: most cases of the former,
via the notG function, are intuitive, being classical tautologies. Note that the
self-duality of the N-quantifier allows goal negation to be applied recursively.
Complementing existential goals is where we introduce extensional quantification
and invoke its proof-theory.

Clause complementation is where things get interesting and differ from the
previous algorithm [9]. The complement of a clause G ⊃ p(t) must contain a
“factual” part, built via term complementation, motivating failure due to clash
with (some term in) the head. We obtain the rest by negating the body with
notG(G). We take clause complementation definition-wise, that is the negation
of a program is the conjunction of the negation of all its predicate definitions.
An example may help: negating the typing clauses for constants and application
(tc from Fig. 2) produces the following disjunction:

(not_tc(_,err,_) /\ not_tc(_,var(_),_) /\ not_tc(_,app(_,_),_) /\

not_tc(_,lam(_,_),_) /\ not_tc(_,c(C),T):- neq(tcf(C), T))

\/

(not_tc(_,err,_) /\ not_tc(_,var(_),_) /\ not_tc(_,c(_),_) /\

not_tc(_,lam(_,_),_) /\

not_tc(G,app(M,N),U):- forall* T. not_tc(G,M,funTy(T,U)) /\

not_tc(G,app(M,N),U):- forall* T. not_tc(G,N,T))

Notwithstanding the top-level disjunction, we are not committing to any form of
disjunctive logic programming: the key observation is that ‘∨’ can be restricted to
a program constructor inside a predicate definition; therefore it can be eliminated
by simulating unification in the definition:

(G1 ⊃ Q1) ∨ (G2 ⊃ Q2) ≡ θ(G1 ∧ G2 ⊃ Q1)

where θ = mgu(Q1, Q2). Because ∨ is commutative and associative we can per-
form this merging operation in any order. However, as with many bottom-up
operations, merging tends to produce a lot of redundancies in terms of clauses
that are instances of each other. We have implemented backward and forward



48 J. Cheney et al.

subsumption [23], by using an extension of the αProlog interpreter itself to check
entailment between newly generated clauses and the current database (and vice-
versa). Despite the fact that this subsumption check is partial, because the cur-
rent unification algorithm does not handle equivariant unification with mixed
prefixes [25] and extensional quantification [8], it makes all the difference: the
not_is_err predicate definition decreases from an unacceptable 128 clauses to
a much more reasonable 18. The final definition of not tc follows, where we (as
in Prolog) use the semicolon as concrete syntax for disjunction in the body:

not_tc(_,c(C),T) :- neq_ty(tcf(C),T).

not_tc([],var(_),_).

not_tc([(X,T)|G],var(X’),T’) :- (neq_ty(T,T’); fresh_id(X,X’)),

not_tc(G,var(X’),T’).

not_tc(G,app(M,N),U) :- forall* T:ty. not_tc(G,M,funTy(T,U));

not_tc(G,N,T).

not_tc(G,app(M,N),listTy) :- forall* T:ty. not_tc(G,M,funTy(T,listTy));

not_tc(G,N,T).

not_tc(G,app(M,N),intTy) :- forall* T:ty. not_tc(G,M,funTy(T,intTy));

not_tc(G,N,T).

not_tc(_,lam(_),listTy).

not_tc(_,lam(_),intTy).

not_tc(G,lam(M,T),funTy(T,U)):- new x:id. not_tc([(x,T)|G],M@x,U).

Regardless of the presence of two subsumed clauses in the app case that our
approach failed to detect, it is a big improvement in comparison to the 38 clauses
generated by the previous algorithm [9]. And in exhaustive search, every clause
counts.

Having synthesized the negation of the tc predicate, αCheck will use it inter-
nally while searching, for instance in the preservation check, for

∃E.∃T. tc([],E ,T ), step(E ,E ′), not tc([],E ′,T )

Soundness of clause complementation is crucial for the purpose of model
checking; we again express it in terms of exclusivity. The proof follows the lines
of [26].

Theorem 1 (Exclusivity). Let K be consistent. It is not the case that:

– Γ ;Δ;K ⇒ G and Γ ;notD(Δ);K ⇒ notG(G);

– Γ ;Δ;K D−→ Q and Γ ;notD(Δ);K notD (D)−→ notG(Q).

5 Case Studies

We have chosen as case studies here the Stlc benchmark suite, introduced in
Sect. 2, and an encoding of the Volpano et al. security type system [34], as
suggested in [5]. For the sake of space, we report at the same time our comparison
between the various forms of negation, in particular NEs vs. NE , and the other
systems of reference, accordingly, PLT-Redex and Nitpick.



Advances in Property-Based Testing for αProlog 49

PLT-Redex [13] is an executable DSL for mechanizing semantic models built
on top of DrRacket. Redex has been the first environment to adopt the idea of
random testing a la QuickCheck for validating the meta-theory of object lan-
guages, with significant success [18]. As we have mentioned, the main drawbacks
are the lack of support for binders and low coverage of test generators stem-
ming from grammar definitions. The user is therefore required to write her own
generators, a task which tends to be demanding.

The system where proofs and disproofs are best integrated is arguably
Isabelle/HOL [4]. In the appendix [10] we report some comparison with its ver-
sion of QuickCheck, but here we concentrate on Nitpick [5], a higher-order model
finder in the Alloy lineage supporting (co)inductive definitions. Nitpick works
translating a significant fragment of HOL into first-order relational logic and then
invoking Alloy’s SAT-based model enumerator. The tool has been used effectively
in several case studies, most notably weak memory models for C++ [6]. It would
be natural to couple Isabelle/HOL’s QuickCheck and/or Nitpick’s capabilities
with Nominal Isabelle [33], but this would require strengthening the latter’s
support for computation with names, permutations and abstract syntax modulo
α-conversion. So, at the time of writing, αCheck is unique as a model checker
for binding signatures and specifications.

All test have been performed under Ubuntu 15.4 on a Intel Core i7 CPU 870,
2.93 GHz with 8 GB RAM. We time-out the computation when it exceeds 200
seconds. We report 0 when the time is <0.01. These tests must be taken with
a lot of salt: not only is our tool under active development but the comparison
with the other systems is only roughly indicative, having to factor differences
between logic and functional programming (PLT-Redex), as well as the sheer
scale and scope of counter-examples search in a system such as Isabelle/HOL.

5.1 Head-to-Head with PLT-Redex

7 8 9 10 11

100

101

102

103

depth level

ti
m

e
(s

ec
)

NF
NE
NEs

Fig. 4. Loglinear-plot of TESS on prog theorem

We first measure the amount
of time to exhaust the search
space (TESS) using the three
versions of negations sup-
ported in αCheck, over a bug-
free version of the Stlc bench-
mark for n = 1, 2, . . . up to
the point where we time-out.
This gives some indication of
how much of the search space
the three techniques explore,
keeping in mind that what is
traversed is very different in
shape; hence the more reli-
able comparison is between
NE and NEs. As the results
depicted in Fig. 4 suggests,



50 J. Cheney et al.

Table 1. TFCE on the stlc benchmark, Redex-style encoding

bug check NF NE NEs cex Description/Class

1 pres 0.3 (7) 1 (7) 0.37 (7) (λx.xerr)n range of function in app rule

matched to the arg. (S)prog 0 (5) 3.31 (9) 0.27 (5) hd n

2 prog 0.27 (8) t.o. (11) 85.3 (12) (cons n) nil value (cons v) v omitted (M)

3 pres 0.04 (6) 0.04 (6) 0.3 (6) (λx.n)m order of types swapped in func-

tion pos of app (S)prog 0 (5) 3.71 (9) 0.27 (8) hd n

4 prog t.o t.o t.o ? The type of cons is incorrect (S)

5 pres t.o. (9) t.o. (10) 41.5 (10) tl ((cons n) err) tail red. returns the head (S)

6 prog 29.8 (11) t.o. (11) t.o. (12) hd ((cons n) nil) hd red. on part. appl. cons (M)

7 prog 1.04 (9) 18.5 (10) 1.1 (9) hd((λx.err)n) no eval for argument of app (M)

8 pres 0.02 (5) 0.03 (5) 0.1 (5) (λx.x)nil lookup always returns int (U)

9 pres 0 (5) 0.02 (5) 0.1 (5) (λx.y)n vars do not match in lookup (S)

NEs shows a clear improvement over NE , while NF holds its ground, however
hindered by the explosive exhaustive generation of terms.

However, our mission is finding counterexamples and so we compare the time
to find counterexamples (TFCE) using NF , NE , NEs on the said benchmarks.
We list in Table 1 the 9 mutations from the cited site. Every row describes
the mutation inserted with an informal classification inherited from ibidem—
(S)imple, (M)edium or (U)nusual, better read as artificial. We also list the coun-
terexamples found by αCheck under NF (NE(s) being analogous but less instan-
tiated) and the depths at which those are found or a time-out occurred.

The results in Table 1 show a remarkable improvement of NEs over NE , in
terms of counter-examples that were timed-out (bug 2 and 5), as well as major
speedups of more than an order of magnitude (bugs 3 (ii) and 7). Further, NEs
never under-performs NE , probably because it locates counterexample at a lower
depth. In rare occasions (bug 5 again) NEs even outperforms NF and in several
cases it is comparable (bug 1, 3, 7, 8 and 9). Of course there are occasions (2 and
6), where NF is still dominant, as NEs counter-examples live at steeper depths
(12 and 16, respectively) that cannot yet be achieved within the time-out.

We do not report TFCE of PLT-Redex, because, being based on randomized
testing, what we really should measure is time spent on average to find a bug.
The two encodings are quite different: Redex has very good support for evalua-
tion contexts, while we use congruence rules. Being untyped, the Redex encoding
treats err as a string, which is then procedurally handled in the statement of
preservation and progress, whereas for us it is part of the language. Since [18],
Redex allows the user to write certain judgments in a declarative style, provided
they can be given a functional mode, but more complex systems, such as typing
for a polymorphic version of a similar calculus, require very indirect encoding,
e.g. CPS-style. We simulate addition on integers with numerals (omitted from
the code snippets presented in Sect. 2 for the sake of space), as we currently
require our code to be pure in the logical sense, as opposed to Redex that maps
integers to Racket’s ones. W.r.t. lines of code, the size of our encoding is roughly



Advances in Property-Based Testing for αProlog 51

1/4 of the Redex version, not counting Redex’s built-in generators and substi-
tution function. The adopted checking philosophy is also somewhat different:
they choose to test preservation and progress together, using a cascade of three
built-in generators and collect all the counterexamples found within a timeout.

The performance of the negation elimination variants in this benchmark is
not too impressive. However, if we adopt a different style of encoding (let’s call
it PCF, akin to what we used in [9]), where constructors such as hd are not
treated as constants, but are first class, e.g.:

tc(G,hd(E),intTy) :- tc(G,E,listTy).

step(hd(cons(H,Tl)), H) :- value(H),value(Tl).

then all counter-examples are found very quickly, as reported in Table 2. In bug
4, NEs struggles to get at depth 13: on the other hand PLT-Redex fails to find
that very bug. Bug 6 as well as several counterexamples disappear as not well-
typed. This improved efficiency may be due to the reduced amount of nesting of
terms, which means lower depth of exhaustive exploration. This is not a concern
for random generation and (compiled) functional execution as in PLT-Redex.

Table 2. TFCE on the Stlc benchmark, PCF-style encoding. NEs cex shown

bug# check NF NE NEs cex

1 pres 0.05 (5) 2.79 (5) 0.04 (5) (λx.hdx)N

2 prog 0 (4) 7.76 (9) 0.8 (7) (cons N) nil

3 pres 0 (4) 0.05 (4) 0 (4) (λx.nil)nil

4 prog 0.15 (7) t.o. (10) 199.1 (12) N + (cons N nil)

5 pres 0(4) 0.04 (4) 0(4) tl (cons N) nil

7 prog 5.82 (9) 151.2 (11) 19.54. (10) (λx.nil)(N + M)

8 pres 0.01 (4) 0.04 (4) 0.1 (4) (λx.x)nil

9 pres 0 (4) 0.04 (4) 0.1 (4) (λx.y) N

5.2 Nitpicking Security Type Systems

To compare Nitpick with our approach, we use the security type system due
to Volpano, Irvine and Smith [34], whereby the basic imperative language IMP
is endowed with a type system that prevents information flow from private to
public variables2. For our test, we actually selected the more general version of
the type system formalized in [28], where the security levels are generalized from
high and low to natural numbers. Given a fixed assignment sec of such security
levels to variables, then lifted to arithmetic and Boolean expressions, the typing
judgment l � c reads as “command c does not contain any information flow to
2 For an interesting case study regarding instead dynamic information flow and carried

out in Haskell, see [17]. A large part of the paper is dedicated to the fine tuning of
custom generators and shrinkers.



52 J. Cheney et al.

variables < l and only safe flows to variables ≥ l.” Following [28], we call this
system syntax-directed.

The main properties of interest relate states that agree on the value of
each variable (strictly) below a certain security level, denoted as σ1 ≈<l σ2 iff
∀x. sec x < l → σ1(x) = σ2(x). Assume a standard big-step evaluation semantics
for IMP, relating an initial state σ and a command c to a final state τ :

Confinement If 〈c, σ〉 ↓ τ and l � c then σ ≈<l τ ;
Non-interference If 〈c, σ〉 ↓ σ′, 〈c, τ〉 ↓ τ ′, σ ≈≤l τ and 0 � c then σ′ ≈≤l τ ′;

We extend this exercise by considering also a declarative version (std) l �d c
of the syntax directed system, where anti-monotonicity is taken as a primitive
rule instead of an admissible one as in the previous system; finally we encode
also a syntax-directed termination-sensitive (stT ) version l �⇓ c, where non-
terminating programs do not leak information and its declarative cousin (stTd)
l �⇓d c. We then insert some mutations in all those systems, as detailed in
Table 3 and investigate whether the following equivalences among those systems
still hold:

st↔std l � c iff l �d c and stT↔stTd l �⇓ c iff l �⇓d c.

Again the experimental evidence is quite pleasing as far as NE vs. NEs
goes, where the latter is largely superior (5 (ii), 1 (i), 7 (ii)). In one case NEs
improves on NF (1 (ii)) and in general competes with it save for 4 (ii) and
5 (i) and (ii). To have an idea of the counterexamples found by αCheck, the
command (SKIP; x :=1), sec x = 0, l = 1 and state σ mapping x to 0 falsifies
confinement 1 (i); in fact, this would not hold were the typing rule to check the
second premise. A not too dissimilar counterexample falsifies non-interference 1
(ii): c is (SKIP; x :=y), sec x, y = 0, 1, l = 0 and σ maps y to 0 and x undefined

Table 3. αCheck vs. Nitpick on the Volpano benchmark suite. (sp) indicates that
Nitpick produced a spurious counterexample.

bug check Nitpick NF NE NEs Description

1 conf (sp) 0.03 (5) 4.4 (8) 2.1 (7) second premise of seq rule omitted

dittonon-inter t.o. 9.13 (8) 6.71 (8) 6.1 (8)

2 non-inter (sp) 3.3 (8) 2.1 (8) 1.9 (8) var swap in ≤ premise of assn rule

3 st→std 0.95 t.o t.o t.o inversion of ≤ in antimono rule ditto

std→st 0.75 0.8 (7) 0.3 (7) 0.3 (7)

4 st→std ≤ assumption omitted in IF: true

dittostd→st 1.3 0.9 (7) t.o. t.o

5 st→std 5.1(sp) 24.5 (11) t.o t.o as 2 but on decl. version of the rule

dittostd→st 1.1 0.2 (7) t.o. 24.6 (11)

6 stT→stTd 5.1(sp) t.o t.o t.o as 2 but on term. version of the rule

dittostTd→stT 1.0 0.01 (5) 0.32 (7) 0.05 (6)

7 stT→stTd as 4 but on term-decl. rule: true

dittostTd→stT 1.6 1.7 (8) 12.5 (9) 1.2(8)



Advances in Property-Based Testing for αProlog 53

(i.e. to a logic variable), while τ maps y to 1 and keeps x undefined. We note
in passing that here extensional quantification is indispensable, since ordinary
generic quantification is unable to instantiate security levels so as to find the
relevant bugs.

The comparison with Nitpick3 is more mixed. On one hand Nitpick fails
to find 1 (ii) within the timeout and in other four cases it reports spurious
counterexamples, which on manual analysis turn out to be good. On the other
it nails down, quite quickly, two other cases where αCheck fails to converge at
all (3 (i), 6 (i)). This despite the facts that relations such as evaluations, �d and
�⇓d, are reported not well founded requiring therefore a problematic unrolling.

The crux of the matter is that differently from Isabelle/HOL’s mostly func-
tional setting (except for inductive definition of evaluation and typing), our
encoding is fully relational: states and security assignments cannot be seen as
partial functions but are reified in association lists. Moreover, we pay a signifi-
cant price in not being able to rely on built-in types such as integers, but have to
deploy our clearly inefficient versions. This means that to falsify simple compu-
tations such as n ≤ m, we need to provide a derivation for that failure. Finally,
this case study does not do justice to the realm where αProlog excels, namely it
does not exercise binders intensely: we are only using nominal techniques in rep-
resenting program variables as names and freshness to guarantee well-formedness
of states and of the table encoding the variable security settings. Yet, we could
not select more binding intensive examples due to the current difficulties with
running Nitpick under Nominal Isabelle.

6 Conclusions and Future Work

We have presented a new implementation of the NE algorithm underlying our
model checker αCheck and experimental evidence showing satisfying improve-
ments w.r.t. the previous incarnation, so as to make it competitive with the
NF reference implementation. The comparison with PLT-Redex and Nitpick,
systems of considerable additional maturity, is also, in our opinion, favourable:
αCheck is able to find similar counterexamples in comparable amounts of time;
it is able to find some counterexamples that Redex or Nitpick respectively do
not; and in no case does it report spurious counterexamples. Having said that,
our comparison is at most just suggestive and certainly partial, as many other
proof assistants have incorporated some notion of PBT, e.g. [29,31]. A notable
absence here is a comparison with what at first sight is a close relative, the Bed-
wyr system [2], a logic programming engine that allows a form of model checking
directly on syntactic expressions possibly containing binding. Since Bedwyr uses
depth-first search, checking properties for infinite domains should be approx-
imated by writing logic programs encoding generators for a finite portion of
that model. Our initial experiments in encoding the Stlc benchmark in Bedwyr
have failed to find any counterexample, but this could be imputed simply to

3 Settings: [sat solver=MiniSat JNI,max threads=1,timeout=200].



54 J. Cheney et al.

our lack of experience with the system. Recent work about “augmented focusing
systems” [16] could overcome this problem.

All the mutations we have inserted so far have injected faults in the speci-
fications, not in the checks. This make sense for our intended use; however, it
would be interesting to see how our tool would fare w.r.t. mutation testing of
theorems.

Exhaustive term generation has served us well so far, but it is natural to
ask whether random generation could have a role in αCheck, either by simply
randomizing term generation under NF or more generally the logic programming
interpreter itself, in the vein of [14]. More practically, providing generators and
reflection mechanism for built-in datatypes and associated operators is a priority.

Finally, we would like to implement improvements in nominal equational
unification algorithms, which would make subsumption complete, via equivariant
unification [8], and more ambitiously introduce narrowing, so that functions
could be computed rather then simulated relationally. In the long run, this could
open the door to use αCheck as a light-weight model checker for (a fragment)
of Nominal Isabelle.

References

1. Aspinall, D., Beringer, L., Momigliano, A.: Optimisation validation. Electron.
Notes Theor. Comput. Sci. 176(3), 37–59 (2007)

2. Baelde, D., Gacek, A., Miller, D., Nadathur, G., Tiu, A.F.: The Bedwyr system
for model checking over syntactic expressions. In: Pfenning, F. (ed.) CADE 2007.
LNCS (LNAI), vol. 4603, pp. 391–397. Springer, Heidelberg (2007)

3. Barbuti, R., Mancarella, P., Pedreschi, D., Turini, F.: A transformational approach
to negation in logic programming. J. Log. Program. 8, 201–228 (1990)

4. Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic proof and disproof in
Isabelle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS,
vol. 6989, pp. 12–27. Springer, Heidelberg (2011)

5. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010)

6. Blanchette, J.C., Weber, T., Batty, M., Owens, S., Sarkar, S.: Nitpicking C++
concurrency. In: Schneider-Kamp, P., Hanus, M. (eds.) Proceedings of the 13th
International ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, pp. 113–124. ACM (2011)

7. Breitner, J.: Formally proving a compiler transformation safe. In: Proceedings of
the 2015 ACM SIGPLAN Symposium on Haskell, Haskell 2015, pp. 35–46. ACM,
New York (2015)

8. Cheney, J.: Equivariant unification. J. Autom. Reasoning 45(3), 267–300 (2010)
9. Cheney, J., Momigliano, A.: Mechanized metatheory model-checking. In: Leuschel,

M., Podelski, A. (eds.) PPDP, pp. 75–86. ACM (2007)
10. Cheney, J., Momigliano, A., Pessina, M.: Appendix to Advances in property-based

testing for αProlog (2016). http://momigliano.di.unimi.it/alphaCheck.html
11. Cheney, J., Urban, C.: Nominal logic programming. ACM Trans. Program. Lang.

Syst. 30(5), 26 (2008)

http://momigliano.di.unimi.it/alphaCheck.html


Advances in Property-Based Testing for αProlog 55

12. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of the 2000 ACM SIGPLAN International Con-
ference on Functional Programming (ICFP 2000), pp. 268–279. ACM (2000)

13. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex.
The MIT Press, Massachusetts (2009)

14. Fetscher, B., Claessen, K., Pa�lka, M., Hughes, J., Findler, R.B.: Making random
judgments: automatically generating well-typed terms from the definition of a type-
system. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 383–405. Springer,
Heidelberg (2015)

15. Harland, J.: Success and failure for hereditary Harrop formulae. J. Log. Program.
17(1), 1–29 (1993)

16. Heath, Q., Miller, D.: A framework for proof certificates in finite state explo-
ration. In: Kaliszyk, C., Paskevich, A. (eds.) Proceedings Fourth Workshop on
Proof eXchange for Theorem Proving, PxTP 2015, Berlin, Germany, 2–3 Aug 2015,
vol. 186. EPTCS, pp. 11–26 (2015)

17. Hritcu, C., Hughes, J., Pierce, B.C., Spector-Zabusky, A., Vytiniotis, D., Azevedo
de Amorim, A., Lampropoulos, L.: Testing noninterference, quickly. In: Proceed-
ings of the 18th ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2013, pp. 455–468. ACM, New York (2013)

18. Klein, C., Clements, J., Dimoulas, C., Eastlund, C., Felleisen, M., Flatt, M.,
McCarthy, J.A., Rafkind, J., Tobin-Hochstadt, S., Findler, R.B.: Run your
research: on the effectiveness of lightweight mechanization. In: Proceedings of the
39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2012, pp. 285–296. ACM, New York (2012)

19. Lassez, J.-L., Marriott, K.: Explicit representation of terms defined by counter
examples. J. Autom. Reasoning 3(3), 301–318 (1987)

20. Leach, J., Nieva, S., Rodŕıguez-Artalejo, M.: Constraint logic programming with
hereditary Harrop formulas. TPLP 1(4), 409–445 (2001)

21. Leroy, X.: Formal verification of a realistic compiler. CACM 52(7), 107–115 (2009)
22. Leroy, X., Grall, H.: Coinductive big-step operational semantics. Inf. Comput.

207(2), 284–304 (2009)
23. Loveland, W.D., Nadathur, G.: Proof procedures for logic programming. Technical

report, Durham, NC, USA (1994)
24. McKeeman, W.M.: Differential testing for software. Digit. Tech. J. 10(1), 100–107

(1998)
25. Miller, D.: Unification under a mixed prefix. J. Symb. Comput. 14(4), 321–358

(1992)
26. Momigliano, A.: Elimination of negation in a logical framework. In: Clote, P.G.,

Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, p. 411. Springer, Heidelberg
(2000)

27. Momigliano, A., Pfenning, F.: Higher-order pattern complement and the strict
lambda-calculus. ACM Trans. Comput. Log. 4(4), 493–529 (2003)

28. Nipkow, T., Klein, G.: Concrete Semantics-with Isabelle/HOL. Springer,
Heidelberg (2014)

29. Owre, S.: Random testing in PVS. In: Workshop on Automated Formal Methods
(AFM) (2006)

30. Palka, M.H., Claessen, K., Russo, A., Hughes, J.: Testing an optimising compiler
by generating random lambda terms. In: AST 2011, pp. 91–97. ACM (2011)

31. Paraskevopoulou, Z., Hritcu, C., Dénès, M., Lampropoulos, L., Pierce, B.C.: Foun-
dational property-based testing. In: Urban, C., Zhang, X. (eds.) Interactive Theo-
rem Proving. LNCS, vol. 9236, pp. 325–343. Springer, Heidelberg (2015)



56 J. Cheney et al.

32. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. Comput.
183, 165–193 (2003)

33. Urban, C., Kaliszyk, C.: General bindings and alpha-equivalence in nominal
Isabelle. Log. Methods Comput. Sci. 8(2), 1–35 (2012)

34. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis.
J. Comput. Secur. 4(2–3), 167–187 (1996)

35. Ševč́ık, J., Vafeiadis, V., Zappa Nardelli, F., Jagannathan, S., Sewell, P.: Com-
pCertTSO: a verified compiler for relaxed-memory concurrency. J. ACM 60(3),
22:1–22:50 (2013)

36. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in c
compilers. In: PLDI 2011, pp. 283–294. ACM, New York (2011)


	Advances in Property-Based Testing for Prolog
	1 Introduction
	2 A Brief Tour of Check
	3 The Core Language
	4 Specification Checking
	4.1 Negation Elimination

	5 Case Studies
	5.1 Head-to-Head with PLT-Redex
	5.2 Nitpicking Security Type Systems

	6 Conclusions and Future Work
	References


