
Using Formal Methods for Verification
and Validation in Railway

Klaus Reichl, Tomas Fischer, and Peter Tummeltshammer(B)

Thales Austria GmbH, Handelskai 92, 1200 Vienna, Austria
{klaus.reichl,tomas.fischer,peter.tummeltshammer}@thalesgroup.com

Abstract. A very promising and efficient method of showing the cor-
rectness of a complex system is using formal methods on a model of that
system. To this end there exist plentiful methods and tools for easing the
mathematically burdensome process of refinement and proofs, as well as
the computationally complex task of model checking.

While in todays industrial applications formal methods are mostly
used for verification (i.e. for showing that the system model fulfills prop-
erties such as completeness and consistency) we propose to use these
methods for validation as well (i.e. correspondence of the model with the
customer needs).

In this paper we show the applicability as well as the limitations of
this approach for feature driven development towards continuous verifi-
cation and validation. As an example we present a model of a railway
interlocking system written in Event-B.

The model can be instantiated and animated, which in combination
with model checking and formal proofs demonstrates the usefulness of
the approach.

The resulting model can be used again to automatically generate test
cases which are suitable to show the correspondence of the implementa-
tion and the model, given that the model supports a sufficient level of
detail.

Keywords: Formal methods · Event-B · Verification · Validation

1 Introduction

The railway domain is characterized by high safety as well as reliability and avail-
ability requirements which demand thorough verification and validation. The
long lifespan (25+ years) of railway systems induces need for changes caused by
feature enhancements or subsystem renewal. No modification may compromise
the required safety properties. This implies the necessity to reason about the
system (and thus about the model) not only in the development phase, but dur-
ing the whole product lifespan. The ambition to keep the cost of change minimal
demands incremental verification and validation instead of full verification and
validation of the whole system.

c© Springer International Publishing Switzerland 2016
B.K. Aichernig and C.A. Furia (Eds.): TAP 2016, LNCS 9762, pp. 3–13, 2016.
DOI: 10.1007/978-3-319-41135-4 1



4 K. Reichl et al.

However, today’s systems are too complex to be reasoned about by experts
only. It is difficult to comprehend all implications of a modification, some unin-
tended side effects can be overlooked very easily and may have fatal conse-
quences.

The CENELEC standards [5–7] which apply to certification of safety critical
railway applications qualify the use of formal methods as highly recommended.
This is one of the main drivers for the use of formal methods in the railway
domain.

In this paper we show how Event-B can be used to support the verification
and validation in the safety critical railway domain and demonstrate this on a
simple railway model. Section 2 presents the aforementioned railway model used
for demonstration purposes, Sect. 3 explains some principles of formal modeling
applied to the demonstration model and Sect. 4 discusses aspects of verification
and validation of presented model facets as well as perceived limitations. Finally,
Sect. 5 concludes the paper and outlines possible future work.

2 Railway Model

The model presented in this paper is that of a simplified interlocking system
consisting of the following basic elements:

Rail Element is a unit which provides a physical running path for the trains.
Rail elements are e.g. tracks, points or crossings. A rail element consist of one
or more rail segments, e.g. representing different legs of points or crossings.

Rail Connector is a port of a rail element defining the element’s connectivity.
Track is a simple rail element which connects to other rail elements on two ends

(or only on one end in case of a station boundary).
Point is a movable rail element, which connects three rail elements in two dif-

ferent ways (tip–to–left or tip–to–right).
Crossing is an intersection of two tracks.
Signal is a device capable of passing indication whether a route may be entered

by the train. A signal may be opened (green light meaning proceed) or closed
(red light meaning stop).

Route is a safe running path for the train. A route consists of a directed series of
connected rail elements and is protected by a signal, which allows the train to
enter the route only if the route is correctly set up. Setting up the route means
to bring all points into the correct position and ensure that the route does
not interfere with any other route (interlocking functionality). Only after all
prerequisites are fulfilled, the protecting signal may be opened and the train
is allowed to enter the route.

Track Vacancy Detection determines if a particular track section is vacant
(free) or occupied. A track vacancy detection section is a scope of one track
vacancy detector, which may span multiple rail segments. As soon as the train
enters the route, the protecting signal is closed and all track elements being
first occupied and then freed again may be released to be used by another
route.



Formal Methods in Railway 5

The demonstrated model is reduced to the essential, yet is complex enough
to showcase modeling techniques in the domain. The goal of this model is to
exhibit important principles without going into the details rather than to provide
a complete working application.

Fig. 1. Model animation of Event-B railway domain model (Color figure online)

Figure 1 shows the model using model animation on a small example. It shows
a route being set (the bold line from signal S1 to signal S4 via the elements T4,
T3, P2, C1, P4 and T7) and the entry signal being already opened (green light
at signal S1). This route prevents the setting of any conflicting route (e.g. for
the train waiting in front of signal S9 on the occupied tracks T2 and P1 shown
in red).

The interlocking rules (e.g. setting and releasing the route, signaling, etc.)
are the same for all stations operated by a single operator. On the other hand
there is a huge variety among the railway stations – they differ in the layout
and topology, but also in the specific behavior of particular elements. Therefore,
it is beneficial to differentiate between the generic application describing the
interlocking behavior on one side and specific applications built on top of the
generic application adding the particular station data on other side.

The generic application is formulated as a railway model making assump-
tions about the station data (data model), but verified in a generic way, i.e.
independent of any particular station data. The specific application must then
assure that the provided station data meet the assumptions, i.e. are compliant
to the data model. If so, then the verification of the generic application applies
for all specific applications as well without having to be done again.

3 Formal Modeling

The B-Method [1] is a tool-supported formal method based on an abstract
machine notation and was originally developed by Jean-Raymond Abrial. It
has already been used in industrial applications such as the Paris Métro Line



6 K. Reichl et al.

14 [4,10]. Event-B [2] is a method for system-level analysis and modeling based
on B, and has been utilized in several case studies and industrial applications as
well [8,11].

Event-B is based on set theory and first order logic and is implemented in the
Rodin tool chain. In addition to the Rodin core we use ProB and BMotion Studio
for model checking, visualization and animation, as well as Atelier B Provers and
SMT Solvers.

The demonstration railway model presented in Sect. 2 is structured in layers,
each layer extending and refining the previous ones:

1. Definition of rail entities and railway topology.
2. Distinction between the fixed and the movable rail elements and notion of

rail element movement and position.
3. Track vacancy detection.
4. Signals.
5. Definition of paths within the topology and the topology traversal.
6. Signal dependency constraining the ability to set the signal depending on the

status of path following this signal.
7. Description of path life cycle, i.e. the sequence of steps necessary to construct

a valid path and also dissolve is properly when not needed any more.
. . .

* Demo Station, which supplements data for a particular station.

The layers numbered 1–7 (additional layers can be introduced for additional
model functionality) define the generic application, the last refinement layer rep-
resents the specific application and is used for the visualization and animation.

The presented model defines 75 axioms and 17 invariants, which lead to 126
proof obligations, most of which are proven automatically (3 proven manually).
Note that the number of proof obligations is independent of the station’s size,
but is determined solely by the model complexity.

3.1 Data Model

The data model defines the assumptions about the station data as axioms and
leaves the constants representing the data of the particular station abstract. The
last refinement representing the specific station binds the constants to specific
values conforming to the axioms. Such a formal description of the station data
is stronger (compared to e.g. an XML scheme) due to the expressiveness of the
first order logic and also to the behavioral specification found in the same model.

The example axiom below states that two overlapping sections are not pos-
sible:

TVD SECT SGMT·disjunct:
∀ sect1, sect2·sect1 ∈ TV D SECT
∧ sect2 ∈ TV D SECT
∧ sect1 �= sect2
⇒ TV D SECT SGMT (sect1) ∩ TV D SECT SGMT (sect2) = ∅



Formal Methods in Railway 7

The constant TV D SECT represents the track vacancy detection sections in
the particular station and the constant TV D SECT SGMT is the assignment
of rail segments to the respective track vacancy detection sections.

3.2 Functional and Safety Properties

The functional properties are described as state machines, where variables rep-
resent the current state of the railway station and events represent the state
change, i.e. define the system behavior. Invariants impose restrictions of the
valid state due to the domain model as well as safety constraints. Below we pro-
vide an example on how functional and safety analyses led to certain refinements
of the model.

During the functional analysis a feature was identified requiring the route
release functionality:

Event rem PATH CURR =̂
any

path
where

path·valid:
path ∈ PATH CURR

then
PATH CURR·value:

PATH CURR := PATH CURR \ {path}
RAIL ELEM PATH CURR·value:

RAIL ELEM PATH CURR := RAIL ELEM PATH CURR �− {path}
end

This event removes a path from the set of current paths and also releases all
used railway elements occupied by this path. This event requires only that the
path to be removed is set.

The variable PATH CURR contains the set of current paths and the vari-
able RAIL ELEM PATH CURR identifies the path a particular rail element
belongs to. For each defined path the constant PATH CTOR BEG determines
the connector at which the path begins. The symbol �− denotes the range sub-
traction operator. It returns a subset of the left side term (being a relation),
excluding mappings to elements of the right side term.

During the hazard analysis a safety property was identified requiring that a
signal may be opened only if there is a correctly set up path behind this signal.

path·depend:
∀ sig ·sig ∈ SIGNAL
∧ SIGNAL ASPECT CURR(sig) �= SIGNAL ASPECT DEFAULT ⇒
(

∃ path·path ∈ PATH CURR
∧ SIGNAL CTOR(sig) = PATH CTOR BEG(path)

)



8 K. Reichl et al.

This invariant states that for all open signals, there must be a path beginning
at this signal (at the connector this signal is associated to).

The constant SIGNAL represents the signals in the particular station and
the constant SIGNAL CTOR the association of the signals to the respective
rail connectors. The variable SIGNAL ASPECT CURR contains the current
signal aspect with the default value being SIGNAL ASPECT DEFAULT rep-
resenting default safe state being closed.

In order to fulfill the above invariant an additional constraint to the event
rem PATH CURR becomes necessary. This is introduced by the following
refinement:

Event rem PATH CURR =̂
where

path·depend:
∀ sig · sig ∈ SIGNAL
∧SIGNAL ASPECT CURR(sig) �= SIGNAL ASPECT DEFAULT
⇒ SIGNAL CTOR(sig) �= PATH CTOR BEG(path)

The new guard disallows the path removal if the signal at the path beginning
is open. After adding this guard to the event the signal-related invariant is valid
again.

3.3 Liveness Properties

An interlocking system is an inherently parallel system, therefore, it is meaning-
ful to reason about its liveness properties and include a subset thereof into the
formal model. There are some properties (e.g. guaranteed time bounds) which
are architecture dependent and hence not modeled. Other properties can be
expressed in terms of model elements and can thus be included into a formal
model. The most important properties are:

Convergence stating that several events refining one abstract event converge
(no oscillation occurs). This property can be expressed in Event-B by marking
the events as convergent and by defining suitable variants. The corresponding
proof obligations are then automatically generated and may be proven.

Deadlock freedom assuring that for every execution path progress is possible.
This property must not only hold globally, but also for a group of events han-
dling one external stimulus and requires that at least one event of that group
is enabled. It can be expressed as a predicate stating that the disjunction of
guards of all events in that group is 	 (tautology). Such a proof obligation
cannot be generated automatically, but it can still be expressed with Event-B
means.

Predictability assuring that the execution path is predictable. This property
must not only hold globally, but also for a group of events handling one
external stimulus and requires that at most one event of that group is enabled.
It can be expressed as a predicate stating that the pairwise conjunction of



Formal Methods in Railway 9

guards of all events in that group is ⊥ (contradiction). Such proof obligation
cannot be generated automatically, but can still be expressed with the Event-
B means.

Causality adding the ability to reason about a time line. This property can be
expressed using temporal logic. However, currently Event-B cannot express
temporal properties.

Progress ensuring that the modeled functionality is eventually fulfilling its ser-
vice obligations. This property can be formulated using suitable (weak or
strong) temporal logic fairness assumption.

4 Verification and Validation

The general steps of verification and validation as we intend to use them on
formal models are depicted in Fig. 2.

Fig. 2. Verification and validation

4.1 Verification

The verification process shall ensure that the model is unambiguous and com-
plete. Formal models allow automatic reasoning, e.g. model finding (search for
counterexamples), model checking, and model proof.

The functional and safety properties are verified semi-automatically through
formal proof with Event-B. Structuring the model into independent modules
reduces the scope of changes to single component only (provided the interfaces
remain stable), and also the prove obligation generator invalidates only those
proofs that are affected by the model modification, subsequently reducing the
overall verification efforts.

In addition, the separation of the station data from the application behavior
means that the verification of generic application has to be performed only once



10 K. Reichl et al.

and is applicable for all stations (provided the data meet the assumptions).
Hence only the verification of the specific application (data compliance) has to
be done for each station.

The verification of particular station data as a specific instance of the data
model representing the respective station is achieved with the automatic com-
pliance check of the provided data against the formulated axioms.

The verification of liveness properties in our model is still subject to research.
Some of these are expressible as additional invariants and can be verified as such
(by model proof with Event-B); others need the expressiveness of LTL (Linear
Time Logic) properties and consequently have to be verified by model checking.

4.2 Validation

The validation process shall ensure that the model is compliant to the customer
requirements. It means that the functional properties express the required behav-
ior, the safety properties express constraints derived from the hazard analysis
and the data model is neither too general nor too restrictive, i.e. all particular
stations can be expressed as instances of that model.

Despite the high degree of automation a complete “push-button” verification
and especially validation is not feasible. Therefore it is essential to support the
domain experts so that they can perform their tasks effectively. In this process,
domain specific modeling, model visualization and animation (see Fig. 1) are of
major assistance.

Using a precisely formulated formal model with exactly defined semantics
of all artifacts for the validation purposes aids the domain experts. Additional
benefits could be gained by addressing the following limitations:

– A high level language can be built on top of Event-B allowing domain experts
to formulate the problem in “their” language (DSL – Domain Specific Lan-
guage), still utilizing the strong mathematical background of the Event-B
method.

– Object oriented constructs can help to bridge the gap between the domain
model and the “technical” model eliminating the need of mental mapping
between them, thus reducing the modeling and validation effort, as well as
increasing the overall confidence in the model’s correctness.

– Impact analysis of modifications allows performing delta verification and vali-
dation. Continuous verification and validation is beneficial in case of a feature
driven development approach, especially when building a whole product fam-
ily (product line) based on a common core.

– Traceability between the various artifacts (such as elements of a formal model)
including (but not limited to) the requirements, test cases, design and imple-
mentation items is a prerequisite to the successful assessment.

– Report generators should allow incorporating proof obligations, proofs, as
well as model checker results and found counterexamples into the verification
and validation reports. This would save manual efforts and costs and would
improve the traceability.



Formal Methods in Railway 11

– For the broad utilization several other factors must be considered – interop-
erability and integration with other tools, modularization and namespaces,
scalability, teamwork ability and industrial usability in general.

We have analyzed the iUML-B plugin for Rodin, which provides diagram-
matic editors for Event-B. It allows to define data entities and their relationships
as well as to model the behavior as a collection of hierarchical state machines.
Some extra modeling features are also provided, like lifting of behavior to a set of
instances in an object-oriented way or sequencing of events. Diagrams and the
state machine animator help to visualize models and the translator generates
Event-B code automatically.

Our next step is to evaluate, if the (deliberate) restriction in the iUML-B
expressiveness (in comparison with the pure Event-B) poses significant limita-
tions and how the results of subsequent steps (like proofs, model checking and
animation) can be mapped back into the iUML-B notation.

4.3 Implementation and Testing

The general principles of formal model implementation and model based testing
are illustrated in Fig. 3.

Fig. 3. Implementation and automatic test case generation

The final stage of the system development is the implementation stage. This
activity involves the creation of executable components, definition of the concrete
data structures, and the implementation of auxiliary functions which may have
been assumed in the design and were not modeled explicitly.

Manual code writing can be supported by partial code generation, which
translates the formal model into function blocks providing the implementation
of the modeled aspects.



12 K. Reichl et al.

Automated test case generation helps to assure that the final implementation
is compliant to the model, thus assists in both implementation verification as
well as validation. There exist promising approaches to this topic, such as the
MoMuT tool [3] which is currently under adaptation to support Event-B as an
input language. However, care must be taken to ensure that the generated test
cases deliver expressive results in order to carry the trust we gained in the model
through formal methods to the implementation.

5 Conclusion

In this paper we showed how formal modeling, and in particular Event-B, can
be used to assist verification and validation in the safety critical railway domain
and demonstrated this with a simple railway model.

We believe that set theory together with first order logic is suitable to
describe interlocking systems. The Event-B method and its implementation in
the Rodin tool chain look promising, yet there is still some work to be done
on the way towards an industry-ready set of tools available for the commercial
usage. Moreover, there are some alternatives based on the same theoretical foun-
dation like TLA+ (see [9]), which should also be evaluated and compared with
Event-B considering not only technical, but also economical criteria.

The railway station demonstration model as presented in this publication
has been released under the Eclipse Public License - v 1.0 and can be found at:
https://github.com/klar42/railground.

Acknowledgements. The research leading to these results has received funding from
the European Union’s Seventh Framework Program (FP7/2007–2013) for CRYSTAL –
Critical System Engineering Acceleration Joint Undertaking under grant agreement
no. 332830 and by the Austrian Research Promotion Agency (FFG) project no. 838497.

References

1. Abrial, J.R., Lee, M.K., Neilson, D., Scharbach, P., Sørensen, I.H.: The B-method.
In: Prehn, S., Toetenel, H. (eds.) VDM 1991. LNCS, vol. 552, pp. 398–405. Springer,
Heidelberg (1991)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York (2010)

3. Aichernig, B., Brandl, H., Jobstl, E., Krenn, W., Schlick, R., Tiran, S.:
Momut::UML model-based mutation testing for UML. In: 2015 IEEE 8th Inter-
national Conference on Software Testing, Verification and Validation (ICST), pp.
1–8. IEEE (2015)

4. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful application
of B in a large project. In: Wing, J.M., Woodcock, J. (eds.) FM 1999. LNCS, vol.
1708, pp. 369–387. Springer, Heidelberg (1999)

5. Cenelec European Standard: 50126-railway applications: the specification and
demonstration of reliability, availability, maintainability and safety (RAMS). Euro-
pean Committee for Electrotechnical Standardization (1999)

https://github.com/klar42/railground


Formal Methods in Railway 13

6. Cenelec European Standard: 50129-railway applications: communication, signalling
and processing systems - safety related electronic systems for signalling. European
Committee for Electrotechnical Standardization (2003)

7. Cenelec European Standard: 50128-railway applications: software for railway con-
trol and protection systems. European Committee for Electrotechnical Standard-
ization (2011)

8. Khuu, M.T.: Modeling a safe interlocking using the event-B theory Plug-in.
Advance Project (2014)

9. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co. Inc., Boston
(2002)

10. Lecomte, T., Servat, T., Pouzancre, G., et al.: Formal methods in safety-critical
railway systems. In: 10th Brasilian Symposium on Formal Methods, pp. 29–31
(2007)

11. Singh, N.K.: Using Event-B for Critical Device Software Systems. Springer, London
(2013)


	Using Formal Methods for Verification and Validation in Railway
	1 Introduction
	2 Railway Model
	3 Formal Modeling
	3.1 Data Model
	3.2 Functional and Safety Properties
	3.3 Liveness Properties

	4 Verification and Validation
	4.1 Verification
	4.2 Validation
	4.3 Implementation and Testing

	5 Conclusion
	References


