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Foreword

Software Technologies: Applications and Foundations (STAF) is a federation of
leading conferences on software technologies. It provides a loose umbrella organization
with a Steering Committee that ensures continuity. The STAF federated event takes
place annually. The participating conferences may vary from year to year, but all focus
on foundational and practical advances in software technology. The conferences
address all aspects of software technology, from object-oriented design, testing,
mathematical approaches to modeling and verification, transformation, model-driven
engineering, aspect-oriented techniques, and tools.

STAF 2016 took place at TU Wien, Austria, during July 4–8, 2016, and hosted the
five conferences ECMFA 2016, ICGT 2016, ICMT 2016, SEFM 2016, and TAP 2016,
the transformation tool contest TTC 2016, eight workshops, a doctoral symposium, and
a projects showcase event. STAF 2016 featured eight internationally renowned keynote
speakers, and welcomed participants from around the world.

The STAF 2016 Organizing Committee thanks (a) all participants for submitting to
and attending the event, (b) the program chairs and Steering Committee members of the
individual conferences and satellite events for their hard work, (c) the keynote speakers
for their thoughtful, insightful, and inspiring talks, and (d) TU Wien, the city of Vienna,
and all sponsors for their support. A special thank you goes to the members of the
Business Informatics Group, coping with all the foreseen and unforeseen work (as
usual ☺)!

July 2016 Gerti Kappel



Preface

The TAP conference promotes research in verification and formal methods that targets
the interplay of proofs and testing: the advancement of techniques of each kind and
their combination, with the ultimate goal of improving software and system depend-
ability. This volume contains the proceedings of TAP 2016, which marks a decade of
TAP conferences since the first edition in 2007. As in the three previous editions, TAP
2016 was part of STAF (Software Technologies: Applications and Foundations), a
federation of leading conferences in software technology.

TAP 2016 took place in Vienna during July 5–7, 2016. The Program Committee
(PC) received 19 paper submissions, each reviewed by three PC members. After two
weeks of lively discussion and careful deliberation, we selected 11 contributions (eight
regular papers, one tool demonstration paper, and two short papers) for inclusion in this
proceedings volume and presentation at the conference. The combination of topics
highlights how testing and proving are increasingly seen as complementary rather than
mutually exclusive techniques, and confirms TAP’s commitment to bringing together
researchers and practitioners from both areas of verification.

The program of TAP was nicely completed by a keynote talk by Kim G. Larsen
(Aalborg University, Denmark) and an industrial keynote talk by Klaus Reichl (Thales,
Austria), whose content is also documented in this volume. We would like to thank
both invited speakers for contributing exciting presentations from the different per-
spective of academic research and industrial practice.

We also thank the PC members and the additional reviewers for their timely and
thorough reviewing work, and for contributing to an animated and informed discussion.
Their names are listed on the following pages. The EasyChair system provided flawless
technical support to the process.

The organization of STAF made for a successful and enjoyable conference in a
wonderful location. We thank all the organizers, and in particular the general chair,
Gerti Kappel, and the organization chair, Tanja Mayerhofer, for their hard work, and
TU Wien for hosting us. Thanks also to Richard Schumi from TU Graz for managing
TAP’s website.

July 2016 Bernhard K. Aichernig
Carlo A. Furia
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From Testing and Verification to Performance
Analysis and Synthesis

of Cyber-Physical Systems

Kim G. Larsen

Department of Computer Science
Aalborg University, Aalborg, Denmark

kgl@cs.aau.dk

Abstract. Timed automata and games, priced timed automata and energy
automata have emerged as useful formalisms for modeling real-time and energy-
aware systems as found in several embedded and cyber-physical systems. In this
talk we will survey how the various components of the UPPAAL tool-suite over a
20 year period have been developed to support various types of analysis of these
formalisms.

This includes the classical usage of UPPAAL as an efficient model checker of
hard real time constraints of timed automata models, but also the branch UPPAAL

TRON which has been extensively used to perform on-and off-line conformance
testing of real-time systems with respect to timed automata specifications.

More ambitiously, UPPAAL TIGA allow for automatic synthesis of strategies –
and subsequent executable control programs – for safety and reachability
objectives. Most recently the branch UPPAAL SMC offers a highly scalable sta-
tistical model checking engine supporting performance analysis of stochastic
hybrid automata, and the branch UPPAAL-STRATEGO supports synthesis (using
machine learning) and evaluation of near-optimal strategies for stochastic priced
timed games. The keynote will review the various branches of UPPAAL and
indicate their concerted applications to a range of real-time and cyber-physical
examples.



Using Formal Methods for Verification
and Validation in Railway

Klaus Reichl, Tomas Fischer, and Peter Tummeltshammer

Thales Austria GmbH, Handelskai 92, 1200 Vienna, Austria
{klaus.reichl,tomas.fischer,

peter.tummeltshammer}@thalesgroup.com

Abstract. A very promising and efficient method of showing the correctness of
a complex system is using formal methods on a model of that system. To this
end there exist plentiful methods and tools for easing the mathematically bur-
densome process of refinement and proofs, as well as the computationally
complex task of model checking.

While in todays industrial applications formal methods are mostly used for
verification (i.e. for showing that the system model fulfills properties such as
completeness and consistency) we propose to use these methods for validation
as well (i.e. correspondence of the model with the customer needs).

In this paper we show the applicability as well as the limitations of this
approach for feature driven development towards continuous verification and
validation. As an example we present a model of a railway interlocking system
written in Event-B.

The model can be instantiated and animated, which in combination with
model checking and formal proofs demonstrates the usefulness of the approach.

The resulting model can be used again to automatically generate test cases
which are suitable to show the correspondence of the implementation and the
model, given that the model supports a sufficient level of detail.
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Using Formal Methods for Verification
and Validation in Railway

Klaus Reichl, Tomas Fischer, and Peter Tummeltshammer(B)

Thales Austria GmbH, Handelskai 92, 1200 Vienna, Austria
{klaus.reichl,tomas.fischer,peter.tummeltshammer}@thalesgroup.com

Abstract. A very promising and efficient method of showing the cor-
rectness of a complex system is using formal methods on a model of that
system. To this end there exist plentiful methods and tools for easing the
mathematically burdensome process of refinement and proofs, as well as
the computationally complex task of model checking.

While in todays industrial applications formal methods are mostly
used for verification (i.e. for showing that the system model fulfills prop-
erties such as completeness and consistency) we propose to use these
methods for validation as well (i.e. correspondence of the model with the
customer needs).

In this paper we show the applicability as well as the limitations of
this approach for feature driven development towards continuous verifi-
cation and validation. As an example we present a model of a railway
interlocking system written in Event-B.

The model can be instantiated and animated, which in combination
with model checking and formal proofs demonstrates the usefulness of
the approach.

The resulting model can be used again to automatically generate test
cases which are suitable to show the correspondence of the implementa-
tion and the model, given that the model supports a sufficient level of
detail.

Keywords: Formal methods · Event-B · Verification · Validation

1 Introduction

The railway domain is characterized by high safety as well as reliability and avail-
ability requirements which demand thorough verification and validation. The
long lifespan (25+ years) of railway systems induces need for changes caused by
feature enhancements or subsystem renewal. No modification may compromise
the required safety properties. This implies the necessity to reason about the
system (and thus about the model) not only in the development phase, but dur-
ing the whole product lifespan. The ambition to keep the cost of change minimal
demands incremental verification and validation instead of full verification and
validation of the whole system.

c© Springer International Publishing Switzerland 2016
B.K. Aichernig and C.A. Furia (Eds.): TAP 2016, LNCS 9762, pp. 3–13, 2016.
DOI: 10.1007/978-3-319-41135-4 1
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However, today’s systems are too complex to be reasoned about by experts
only. It is difficult to comprehend all implications of a modification, some unin-
tended side effects can be overlooked very easily and may have fatal conse-
quences.

The CENELEC standards [5–7] which apply to certification of safety critical
railway applications qualify the use of formal methods as highly recommended.
This is one of the main drivers for the use of formal methods in the railway
domain.

In this paper we show how Event-B can be used to support the verification
and validation in the safety critical railway domain and demonstrate this on a
simple railway model. Section 2 presents the aforementioned railway model used
for demonstration purposes, Sect. 3 explains some principles of formal modeling
applied to the demonstration model and Sect. 4 discusses aspects of verification
and validation of presented model facets as well as perceived limitations. Finally,
Sect. 5 concludes the paper and outlines possible future work.

2 Railway Model

The model presented in this paper is that of a simplified interlocking system
consisting of the following basic elements:

Rail Element is a unit which provides a physical running path for the trains.
Rail elements are e.g. tracks, points or crossings. A rail element consist of one
or more rail segments, e.g. representing different legs of points or crossings.

Rail Connector is a port of a rail element defining the element’s connectivity.
Track is a simple rail element which connects to other rail elements on two ends

(or only on one end in case of a station boundary).
Point is a movable rail element, which connects three rail elements in two dif-

ferent ways (tip–to–left or tip–to–right).
Crossing is an intersection of two tracks.
Signal is a device capable of passing indication whether a route may be entered

by the train. A signal may be opened (green light meaning proceed) or closed
(red light meaning stop).

Route is a safe running path for the train. A route consists of a directed series of
connected rail elements and is protected by a signal, which allows the train to
enter the route only if the route is correctly set up. Setting up the route means
to bring all points into the correct position and ensure that the route does
not interfere with any other route (interlocking functionality). Only after all
prerequisites are fulfilled, the protecting signal may be opened and the train
is allowed to enter the route.

Track Vacancy Detection determines if a particular track section is vacant
(free) or occupied. A track vacancy detection section is a scope of one track
vacancy detector, which may span multiple rail segments. As soon as the train
enters the route, the protecting signal is closed and all track elements being
first occupied and then freed again may be released to be used by another
route.



Formal Methods in Railway 5

The demonstrated model is reduced to the essential, yet is complex enough
to showcase modeling techniques in the domain. The goal of this model is to
exhibit important principles without going into the details rather than to provide
a complete working application.

Fig. 1. Model animation of Event-B railway domain model (Color figure online)

Figure 1 shows the model using model animation on a small example. It shows
a route being set (the bold line from signal S1 to signal S4 via the elements T4,
T3, P2, C1, P4 and T7) and the entry signal being already opened (green light
at signal S1). This route prevents the setting of any conflicting route (e.g. for
the train waiting in front of signal S9 on the occupied tracks T2 and P1 shown
in red).

The interlocking rules (e.g. setting and releasing the route, signaling, etc.)
are the same for all stations operated by a single operator. On the other hand
there is a huge variety among the railway stations – they differ in the layout
and topology, but also in the specific behavior of particular elements. Therefore,
it is beneficial to differentiate between the generic application describing the
interlocking behavior on one side and specific applications built on top of the
generic application adding the particular station data on other side.

The generic application is formulated as a railway model making assump-
tions about the station data (data model), but verified in a generic way, i.e.
independent of any particular station data. The specific application must then
assure that the provided station data meet the assumptions, i.e. are compliant
to the data model. If so, then the verification of the generic application applies
for all specific applications as well without having to be done again.

3 Formal Modeling

The B-Method [1] is a tool-supported formal method based on an abstract
machine notation and was originally developed by Jean-Raymond Abrial. It
has already been used in industrial applications such as the Paris Métro Line
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14 [4,10]. Event-B [2] is a method for system-level analysis and modeling based
on B, and has been utilized in several case studies and industrial applications as
well [8,11].

Event-B is based on set theory and first order logic and is implemented in the
Rodin tool chain. In addition to the Rodin core we use ProB and BMotion Studio
for model checking, visualization and animation, as well as Atelier B Provers and
SMT Solvers.

The demonstration railway model presented in Sect. 2 is structured in layers,
each layer extending and refining the previous ones:

1. Definition of rail entities and railway topology.
2. Distinction between the fixed and the movable rail elements and notion of

rail element movement and position.
3. Track vacancy detection.
4. Signals.
5. Definition of paths within the topology and the topology traversal.
6. Signal dependency constraining the ability to set the signal depending on the

status of path following this signal.
7. Description of path life cycle, i.e. the sequence of steps necessary to construct

a valid path and also dissolve is properly when not needed any more.
. . .

* Demo Station, which supplements data for a particular station.

The layers numbered 1–7 (additional layers can be introduced for additional
model functionality) define the generic application, the last refinement layer rep-
resents the specific application and is used for the visualization and animation.

The presented model defines 75 axioms and 17 invariants, which lead to 126
proof obligations, most of which are proven automatically (3 proven manually).
Note that the number of proof obligations is independent of the station’s size,
but is determined solely by the model complexity.

3.1 Data Model

The data model defines the assumptions about the station data as axioms and
leaves the constants representing the data of the particular station abstract. The
last refinement representing the specific station binds the constants to specific
values conforming to the axioms. Such a formal description of the station data
is stronger (compared to e.g. an XML scheme) due to the expressiveness of the
first order logic and also to the behavioral specification found in the same model.

The example axiom below states that two overlapping sections are not pos-
sible:

TVD SECT SGMT·disjunct:
∀ sect1, sect2·sect1 ∈ TV D SECT
∧ sect2 ∈ TV D SECT
∧ sect1 �= sect2
⇒ TV D SECT SGMT (sect1) ∩ TV D SECT SGMT (sect2) = ∅
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The constant TV D SECT represents the track vacancy detection sections in
the particular station and the constant TV D SECT SGMT is the assignment
of rail segments to the respective track vacancy detection sections.

3.2 Functional and Safety Properties

The functional properties are described as state machines, where variables rep-
resent the current state of the railway station and events represent the state
change, i.e. define the system behavior. Invariants impose restrictions of the
valid state due to the domain model as well as safety constraints. Below we pro-
vide an example on how functional and safety analyses led to certain refinements
of the model.

During the functional analysis a feature was identified requiring the route
release functionality:

Event rem PATH CURR =̂
any

path
where

path·valid:
path ∈ PATH CURR

then
PATH CURR·value:

PATH CURR := PATH CURR \ {path}
RAIL ELEM PATH CURR·value:

RAIL ELEM PATH CURR := RAIL ELEM PATH CURR �− {path}
end

This event removes a path from the set of current paths and also releases all
used railway elements occupied by this path. This event requires only that the
path to be removed is set.

The variable PATH CURR contains the set of current paths and the vari-
able RAIL ELEM PATH CURR identifies the path a particular rail element
belongs to. For each defined path the constant PATH CTOR BEG determines
the connector at which the path begins. The symbol �− denotes the range sub-
traction operator. It returns a subset of the left side term (being a relation),
excluding mappings to elements of the right side term.

During the hazard analysis a safety property was identified requiring that a
signal may be opened only if there is a correctly set up path behind this signal.

path·depend:
∀ sig ·sig ∈ SIGNAL
∧ SIGNAL ASPECT CURR(sig) �= SIGNAL ASPECT DEFAULT ⇒
(

∃ path·path ∈ PATH CURR
∧ SIGNAL CTOR(sig) = PATH CTOR BEG(path)

)
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This invariant states that for all open signals, there must be a path beginning
at this signal (at the connector this signal is associated to).

The constant SIGNAL represents the signals in the particular station and
the constant SIGNAL CTOR the association of the signals to the respective
rail connectors. The variable SIGNAL ASPECT CURR contains the current
signal aspect with the default value being SIGNAL ASPECT DEFAULT rep-
resenting default safe state being closed.

In order to fulfill the above invariant an additional constraint to the event
rem PATH CURR becomes necessary. This is introduced by the following
refinement:

Event rem PATH CURR =̂
where

path·depend:
∀ sig · sig ∈ SIGNAL
∧SIGNAL ASPECT CURR(sig) �= SIGNAL ASPECT DEFAULT
⇒ SIGNAL CTOR(sig) �= PATH CTOR BEG(path)

The new guard disallows the path removal if the signal at the path beginning
is open. After adding this guard to the event the signal-related invariant is valid
again.

3.3 Liveness Properties

An interlocking system is an inherently parallel system, therefore, it is meaning-
ful to reason about its liveness properties and include a subset thereof into the
formal model. There are some properties (e.g. guaranteed time bounds) which
are architecture dependent and hence not modeled. Other properties can be
expressed in terms of model elements and can thus be included into a formal
model. The most important properties are:

Convergence stating that several events refining one abstract event converge
(no oscillation occurs). This property can be expressed in Event-B by marking
the events as convergent and by defining suitable variants. The corresponding
proof obligations are then automatically generated and may be proven.

Deadlock freedom assuring that for every execution path progress is possible.
This property must not only hold globally, but also for a group of events han-
dling one external stimulus and requires that at least one event of that group
is enabled. It can be expressed as a predicate stating that the disjunction of
guards of all events in that group is 	 (tautology). Such a proof obligation
cannot be generated automatically, but it can still be expressed with Event-B
means.

Predictability assuring that the execution path is predictable. This property
must not only hold globally, but also for a group of events handling one
external stimulus and requires that at most one event of that group is enabled.
It can be expressed as a predicate stating that the pairwise conjunction of
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guards of all events in that group is ⊥ (contradiction). Such proof obligation
cannot be generated automatically, but can still be expressed with the Event-
B means.

Causality adding the ability to reason about a time line. This property can be
expressed using temporal logic. However, currently Event-B cannot express
temporal properties.

Progress ensuring that the modeled functionality is eventually fulfilling its ser-
vice obligations. This property can be formulated using suitable (weak or
strong) temporal logic fairness assumption.

4 Verification and Validation

The general steps of verification and validation as we intend to use them on
formal models are depicted in Fig. 2.

Fig. 2. Verification and validation

4.1 Verification

The verification process shall ensure that the model is unambiguous and com-
plete. Formal models allow automatic reasoning, e.g. model finding (search for
counterexamples), model checking, and model proof.

The functional and safety properties are verified semi-automatically through
formal proof with Event-B. Structuring the model into independent modules
reduces the scope of changes to single component only (provided the interfaces
remain stable), and also the prove obligation generator invalidates only those
proofs that are affected by the model modification, subsequently reducing the
overall verification efforts.

In addition, the separation of the station data from the application behavior
means that the verification of generic application has to be performed only once
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and is applicable for all stations (provided the data meet the assumptions).
Hence only the verification of the specific application (data compliance) has to
be done for each station.

The verification of particular station data as a specific instance of the data
model representing the respective station is achieved with the automatic com-
pliance check of the provided data against the formulated axioms.

The verification of liveness properties in our model is still subject to research.
Some of these are expressible as additional invariants and can be verified as such
(by model proof with Event-B); others need the expressiveness of LTL (Linear
Time Logic) properties and consequently have to be verified by model checking.

4.2 Validation

The validation process shall ensure that the model is compliant to the customer
requirements. It means that the functional properties express the required behav-
ior, the safety properties express constraints derived from the hazard analysis
and the data model is neither too general nor too restrictive, i.e. all particular
stations can be expressed as instances of that model.

Despite the high degree of automation a complete “push-button” verification
and especially validation is not feasible. Therefore it is essential to support the
domain experts so that they can perform their tasks effectively. In this process,
domain specific modeling, model visualization and animation (see Fig. 1) are of
major assistance.

Using a precisely formulated formal model with exactly defined semantics
of all artifacts for the validation purposes aids the domain experts. Additional
benefits could be gained by addressing the following limitations:

– A high level language can be built on top of Event-B allowing domain experts
to formulate the problem in “their” language (DSL – Domain Specific Lan-
guage), still utilizing the strong mathematical background of the Event-B
method.

– Object oriented constructs can help to bridge the gap between the domain
model and the “technical” model eliminating the need of mental mapping
between them, thus reducing the modeling and validation effort, as well as
increasing the overall confidence in the model’s correctness.

– Impact analysis of modifications allows performing delta verification and vali-
dation. Continuous verification and validation is beneficial in case of a feature
driven development approach, especially when building a whole product fam-
ily (product line) based on a common core.

– Traceability between the various artifacts (such as elements of a formal model)
including (but not limited to) the requirements, test cases, design and imple-
mentation items is a prerequisite to the successful assessment.

– Report generators should allow incorporating proof obligations, proofs, as
well as model checker results and found counterexamples into the verification
and validation reports. This would save manual efforts and costs and would
improve the traceability.
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– For the broad utilization several other factors must be considered – interop-
erability and integration with other tools, modularization and namespaces,
scalability, teamwork ability and industrial usability in general.

We have analyzed the iUML-B plugin for Rodin, which provides diagram-
matic editors for Event-B. It allows to define data entities and their relationships
as well as to model the behavior as a collection of hierarchical state machines.
Some extra modeling features are also provided, like lifting of behavior to a set of
instances in an object-oriented way or sequencing of events. Diagrams and the
state machine animator help to visualize models and the translator generates
Event-B code automatically.

Our next step is to evaluate, if the (deliberate) restriction in the iUML-B
expressiveness (in comparison with the pure Event-B) poses significant limita-
tions and how the results of subsequent steps (like proofs, model checking and
animation) can be mapped back into the iUML-B notation.

4.3 Implementation and Testing

The general principles of formal model implementation and model based testing
are illustrated in Fig. 3.

Fig. 3. Implementation and automatic test case generation

The final stage of the system development is the implementation stage. This
activity involves the creation of executable components, definition of the concrete
data structures, and the implementation of auxiliary functions which may have
been assumed in the design and were not modeled explicitly.

Manual code writing can be supported by partial code generation, which
translates the formal model into function blocks providing the implementation
of the modeled aspects.
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Automated test case generation helps to assure that the final implementation
is compliant to the model, thus assists in both implementation verification as
well as validation. There exist promising approaches to this topic, such as the
MoMuT tool [3] which is currently under adaptation to support Event-B as an
input language. However, care must be taken to ensure that the generated test
cases deliver expressive results in order to carry the trust we gained in the model
through formal methods to the implementation.

5 Conclusion

In this paper we showed how formal modeling, and in particular Event-B, can
be used to assist verification and validation in the safety critical railway domain
and demonstrated this with a simple railway model.

We believe that set theory together with first order logic is suitable to
describe interlocking systems. The Event-B method and its implementation in
the Rodin tool chain look promising, yet there is still some work to be done
on the way towards an industry-ready set of tools available for the commercial
usage. Moreover, there are some alternatives based on the same theoretical foun-
dation like TLA+ (see [9]), which should also be evaluated and compared with
Event-B considering not only technical, but also economical criteria.

The railway station demonstration model as presented in this publication
has been released under the Eclipse Public License - v 1.0 and can be found at:
https://github.com/klar42/railground.

Acknowledgements. The research leading to these results has received funding from
the European Union’s Seventh Framework Program (FP7/2007–2013) for CRYSTAL –
Critical System Engineering Acceleration Joint Undertaking under grant agreement
no. 332830 and by the Austrian Research Promotion Agency (FFG) project no. 838497.

References

1. Abrial, J.R., Lee, M.K., Neilson, D., Scharbach, P., Sørensen, I.H.: The B-method.
In: Prehn, S., Toetenel, H. (eds.) VDM 1991. LNCS, vol. 552, pp. 398–405. Springer,
Heidelberg (1991)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York (2010)

3. Aichernig, B., Brandl, H., Jobstl, E., Krenn, W., Schlick, R., Tiran, S.:
Momut::UML model-based mutation testing for UML. In: 2015 IEEE 8th Inter-
national Conference on Software Testing, Verification and Validation (ICST), pp.
1–8. IEEE (2015)

4. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful application
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Abstract. We present an abstract framework for sequence testing that
is implemented in Isabelle/HOL-TestGen. Our framework is based on
the theory of state-exception monads, explicitly modelled in HOL, and
can cope with typed input and output, interleaving executions including
abort, and synchronisation.

The framework is particularly geared towards symbolic execution and
has proven effective in several large case-studies involving system models
based on large (or infinite) state.

On this basis, we rephrase the concept of test-refinements for inclu-
sion, deadlock and IOCO-like tests, together with a formal theory of its
relation to traditional, IO-automata based notions.

Keywords: Monadic sequence testing framework · HOL-TestGen

1 Introduction

Automata-based theoretical foundations for test and model-checking techniques
are omnipresent; it can be safely stated that a huge body of literature [7,16,
19,20,22] uses them as a framework for conceptual argument, comparison, and
scientific communication. Usually based on naïve set-theory (in the sense of
Halmos [14]) and paper and pencil notations, they proved as a very intuitive
and flexible framework. In our view, this omnipresence overshadows the fact
that automata theory is a kind of mould into which not everything fits. This
is to a lesser extent a burden on the purely theoretical side: naïve set theory is
known to be inconsistent, and the sheer number of variants of automata notions
makes comparisons more delicate as one might think.

Modelling communication via an automata-product is simple and tempting,
but is the resulting CSP-style, synchronous communication paradigm really what
we want? The automata-paradigm becomes a problem when it comes to formal,
machine-checked presentations and automated reasoning over them. In settings
for the latter, underlying set-theories need either to be typed or axiomatised in
a system like ZFC [11]. Applications based on automated reasoning over these
formalisations turn out to be so difficult that successful tool implementations
c© Springer International Publishing Switzerland 2016
B.K. Aichernig and C.A. Furia (Eds.): TAP 2016, LNCS 9762, pp. 17–36, 2016.
DOI: 10.1007/978-3-319-41135-4_2
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exist only for particular special-cases such as symbolic regular expression rep-
resentations [17,27]. In our view, it is not a coincidence that implementations
of symbolic versions of test-systems like TGV (e.g., STG [16]) or SIOCO [12]
remained in a prototypical stage.

In this paper, we present an alternative to the automata-paradigm, as far as
their application in the field of testing of behavioural models are concerned. Moti-
vated by several projects aiming at the synthesis of test-algorithms for behav-
ioural models with very large and usually infinite state-spaces, we developed a
Monadic Sequence Testing Framework (MST). It is formalised in Isabelle/HOL
and has been used in several major case-studies [2,4,5]. While the framework
is tuned for mechanised deduction, in particular symbolic execution based on
derived rules, it provides a number of theoretic properties which are interesting
in its own. MST combines 1. generalised forms of non-deterministic automata
with input and output, 2. generalises the concept of Mealy-Machines, 3. gener-
alises the concept of extended finite state machines [13], and 4. generalises some
special form of IO Automata, IO LTS’s, etc. [19]. Overall, MST shares with [26]
the vision of a unified framework for generalising and analysing formalism for
symbolic test case generation. Due to shallow representations of programs and
pre-post-condition-based program specifications, the MST approach is intrin-
sic symbolic; no complicated “lifting” of IO Automata or IO LTS’s to symbolic
versions thereof like IOSTS’s is necessary.

We will introduce paper-and-pencil notions for basic automata constructions
(Sect. 2), the general concept of test theories (Sect. 3). In Sect. 4, we introduce
higher-order logic (HOL) Sect. 4 and sketch our formalization of Sect. 2 in HOL.
Finally we introduce our monadic framework, which is demonstrated in Sect. 4.4
on a small example based on an extended infinite automata. In Sect. 5, we gen-
eralise the key-concepts of the MST one step further to a formal definition of
test-refinements; it is shown that this definition is powerful enough to capture
a family of widely known, but up to now unrelated concepts of (sequence) test
conformance. We will show that this is of pragmatic interest for proven correct
test-optimisations as well as theoretic interest due to its link to IO-automata.

2 A Guided Tour on Automata Notions for Testing

In this section, we provide a brief overview of behavioural automata models,
focusing on on symbolic versions of automata concepts.

The Mealy-Machine. A Mealy Machine (MM) [20] is a 6-tuple (S, S0, Σin,
Σout, T,G) consisting of the following: – a finite set of states S – a start state
(initial state) S0 which is an element of S – a finite set of, the input alphabet Σin

– a finite set of symbols, the output alphabet Σout – a transition function T :
S ×Σin → S mapping pairs of a state and an input symbol to the corresponding
next state. – an output function G : S×Σin → Σout mapping pairs of a state and
an input symbol to the corresponding output symbol. In some formulations, the
transition and output functions are coalesced into a single function T : S×Σin,→
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S × Σout. In the literature, also non-deterministic versions are discussed, where
the coalesced T has the form T : S × Σin,→ P(S × Σout). Mealy machines are
related to Moore machines [21] which are equivalent. If the finiteness constraints
are removed, one speaks of a Generalised Mealy Machine (GMM).

The Deterministic Automata. The deterministic finite automaton (DFA)
M is a 5-tuple, (S, S0, Σ, T, F ), consisting of – a finite set of states S, – an
initial or start state S0 ∈ S, – a finite set of symbols, the alphabet Σ, – a
transition function T : S × Σ → S, and – a set of accept states F ⊆ S. If the
finiteness-constraints are lifted, we speak of a deterministic automaton (DA). If
T is generalised to a relation P(S × Σ → S), one speaks of a non-deterministic
finite automaton (NDFA) or a non-deterministic automaton (NDA) respectively.
If the alphabet Σ is structured as a set of pairs Σin × Σout of input-and output
labels, we speak of input-output-tagging of the automata versions. The astute
reader will notice that input-output-tagged NDFA’s and NDA’s can be mapped
to generalised Mealy machines GMM and vice versa.

The interest into symbolic versions of these automata notions was raised
surprisingly recently: Veanes et al. presented Finite Symbolic Automata as a
tool (REX [27]) and investigated their theoretic properties [9].

The Input/Output Automata. Input-output labelled transition systems are
going back to the notions of Lynch and Tuttle [19]. This line of automata def-
initions, which were later on referred as “labelled transition systems,” empha-
sises the annihilation of the difference between input and output to enable some
form of asynchronous communication between tester and the system under test
SUT as well as some rudimentary form of time (the concept supports silent τ
actions to express time elapsing while some internal action in the machine is per-
formed). The theory supports in principle that a SUT can non-deterministically
decide either to accept input or to emit output; in practical testing scenar-
ios, this possibility is usually ruled out. Formally, an IO-automata is defined
as a 5-tuple (S, S0, Σ, T,Task) consisting of: – a (not necessarily finite) set of
states S, – a start state (initial state) S0 which is an element of S, – an alpha-
bet, the signature Σ which is partitioned into three disjoint sets of symbols
Σ = inIOA ∪ out IOA ∪ out IOA ∪ int IOA are called input actions, output actions,
and internal actions, – a transition relation T ⊆ S×Σ×S, and – a task-partition
Task which is defined as an equivalence relation on out IOA ∪ out IOA ∪ int IOA.
In contrast to input-output tagged NDA’s, where Σ is the Cartesian product of
input and output, IO Automata construct Σ as disjoint union.

The task partition is used to define fairness conditions on an execution of the
automaton. These conditions require the automaton to continue giving fair turns
to each of its tasks during its execution. This component of the original formu-
lation is often dropped and replaced by other ones in related approaches [15,24].

Symbolic IO Transition Systems. A Symbolic IO Transition System
(IOSTS) [22] is a tuple (D,Θ, S, S0, Σ, T ) where – D is a finite set of typed
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data, partitioned into a set V of variables and a set P of parameters. For d ∈ D,
type(d) denotes the type of d. – Θ is the initial condition, a Boolean expression
on V , – S is a nonempty, finite set of states and S0 ∈ S is the initial state. – Σ
is a nonempty, finite set of symbols, which is the disjoint union of a set Σ? of
input actions and a set Σ! of output actions. For each action a ∈ Σ, its signature
sig(a) = (p1, . . . , pk) ∈ P k(k ∈ N) is a tuple of parameters. – T is a set of tran-
sitions. Each transition is a tuple (s, a,G,A, s) made of: a location s ∈ S, called
the origin of the transition, an action a ∈ Σ, called the action of the transition,
a Boolean expression G on V ∪ sig(a), called the guard, an assignment A, which
is a set of expressions of the form (x := Ax)x∈V such that, for each x ∈ V , the
right-hand side Ax of the assignment x := Ax is an expression on V ∪ sig(a),
a location s ∈ S called the destination of the transition. Similar attempts to
generalise IO Automata to symbolic versions of IO-LTL’s are [12].

Extended Finite State Machines. An extended finite state machine (EFSM)
[7] is a 7-tuple M = (S,D, I,O, F, U, T ) where – S is a set of symbolic states, – I
is a set of input symbols, – O is a set of output symbols, – D is an n-dimensional
linear space D1 × · · · × Dn, – F is a set of enabling functions fi : D → {0, 1},
– U is a set of update functions ui : D → D, – T is a transition relation,
T : S × F × I → S × U × O EFSM’s have been motivated from the very
beginning by (symbolic) testing techniques [7].

Many variants have been discussed in the literature that attempt to give a
concrete syntax (e.g., a term-language, just assignments) for F and U ; however,
we will refrain from this and try to keep our MST framework abstract on the
level of functions and not their syntactic representations.

Some Common Notions of Automatons. We distinguish the notion of a
trace: Traces(A) contains the set of lists of symbols [a1, a2, a3, . . .] in A (which
is an arbitrary automaton DA, NDA, DFA, NDFA, . . . ), which describe a path
in A. Here, we consider the case of an ESFM similar to an input-output tagged
DA or NDA. A run is a list of triples [(s1, a1, s2), (s2, a2, s3), . . .] which describes
a path in A; Run(A) contains the set of runs in A. With StatesA(t) we denote
the set of reachable states after a trace t ∈ Trace(A). If t ∈ Trace(A) (A is an
input-output tagged DA or NDA, IO Automaton, IOSTS, EFSM), we denote
with InA(t) the set of possible input symbols after t; with OutA(t) the set of
possible output symbols. We call an automaton IO-deterministic, iff for each
trace t ∈ Trace(A), there is at most one reachable state after t : |StatesA(t)| ≤ 1.

For automata A (which is again an input-output tagged DA or NDA, IO
Automaton, IOSTS, EFSM), we define the notion of input-sequences of a trace as
projection of traces into its input components: if t = [(i1, o1), (i2, o2), (i3, o3), . . .]
is in Trace(A), then [i1, i2, i3, . . .] is the corresponding input-sequence of t.

In other words, the relation between a sequence of input-output pairs and
the resulting system state must be a function.

There is a large body of theoretical work replacing the latter testability
hypothesis by weaker or alternative ones (and avoiding the strict alternates of
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Fig. 1. IO-Determinism and Non-IO-Determinism

input and output, adding asynchronous communication between tester and SUT,
or adding some notion of time), but most practical approaches do assume it as
we do throughout this paper. There are approaches (including our own [3]) that
allow at least a limited form of access to the final (internal) state of the SUT.

A sequence of input-output pairs through an automaton A is called a trace,
the set of traces is written Trace(A). The function In returns for each trace the
set of inputs for which A is enabled after this trace; in Fig. 1c for example, In
[(“a”, 1)] is just {“b”}, in Fig. 1a, just {“a”, “b”}. Dually, Out yields for a trace t
and input ι ∈ In(t) the set of outputs for which A is enabled after t; in Fig. 1b
for example, Out([(“a”, 1)],“a”) this is just {1, 2}.

3 A Gentle Introduction to Sequence Testing Theory

Sequence testing is a well-established branch of formal testing theory having its
roots in automata theory. The methodological assumptions (sometimes called
testability hypothesis in the literature) are summarised as follows:

1. The tester can reset the system under test (SUT ) into a known initial state,
2. the tester can stimulate the SUT only via the operation-calls and input of a

known interface; while the internal state of the SUT is hidden to the tester,
the SUT is assumed to be only controlled by these stimuli,

3. the SUT behaves deterministic with respect to an observed sequence of input-
output pairs (it is IO-deterministic).

The latter two assumptions assure the reproducibility of test executions. The
latter condition does not imply that the SUT is deterministic: for a given input
ι, and in a given state σ, the SUT may non-deterministically choose between
the successor states σ′ and σ′′, provided that the pairs (o′, σ′) and (o′′, σ′′) are
distinguishable. Thus, a SUT may behave non-deterministically, but must make
its internal decisions observable by appropriate output.

Equipped with these notions, it is possible to formalise the intended con-
formance relation between a system specification (given as automaton SPEC
labelled with input-output pairs) and a SUT. The following notions are known
in the literature: – inclusion conformance [18]: all traces in SPEC must be pos-
sible in SUT, – deadlock conformance [10]: for all traces t ∈ Traces(SPEC)
and b /∈ In(t), b must be refused by SUT, and – input/output conformance
(IOCO) [25]: for all traces t ∈ Traces(SPEC) and all ι ∈ In(t), the observed
output of the SUT must be in Out(t, ι).
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4 Monadic Sequence Testing Framework

4.1 Higher-Order Logic and Isabelle/HOL

Higher-order logic (HOL) [1,8] is a classical logic based on a simple type
system. Types have been extended by Hindley/Milner style polymorphism:
they consist of type variables ′α,′ β,′ γ, . . . and and type constructors such as
_ ⇒ _,_set,_list,_ × _,_ + _,bool,nat, . . . (for function space, typed sets,
lists, Cartesian products, disjoint sums, Boolean, natural numbers, etc.) with
type classes similar to Haskell: (′α : : linorder)list constrains the set of possible
types, for example, to those types that posses an ordering symbol which satisfies
the properties of a linear order. The simple-typed λ-calculus underlying Isabelle
enforces that any λ-expression e must be typed by a type-expression τ ; we write
e : : τ for e is well-typed and has type τ . Being based on a polymorphically
typed λ-calculus, HOL can be viewed as a combination of a programming lan-
guage such as SML or Haskell, and a specification language providing powerful
logical quantifiers ranging over elementary and function types.

HOL provides the usual logical connectives, e.g., _∧_, _ → _, ¬_ as well as
the object-logical quantifiers ∀x. P x and ∃x. P x; in contrast to first-order logic,
quantifiers may range over arbitrary types, including total functions f : : α ⇒ β.
HOL is centred around extensional equality _ = _ : : α ⇒ α ⇒ bool.

Isabelle/HOL offers support for extending theories in a logically safe way:
a theory extension is conservative if the extended theory is consistent provided
that the original theory was consistent. Conservative extensions can be constant
definitions, type definitions, datatype definitions, primitive recursive definitions
and well-founded recursive definitions.

For example, the polymorphic option-type is defined as:

datatype ’α option = None | Some(the:’α)

which implicitly introduces the constructors None and Some, the selec-
tor the as well as a number of lemmas over this data-type (e.g.,

induction). The option type is also used to model
partial functions which is synonym to .

4.2 Formal Presentations of Automata: Direct Approach

A record of n fields is an n-ary Cartesian where the components have names.
Equipped with this machinery, it is for example simple to formalise the concepts
of, e.g., NA, NDA, ESFM, as introduced semi-formally in Sect. 2. For example,
we can define NA by:

record (’α, ’ σ ) DA = init :: "’σ"
step :: "’σ ×’α ⇒’σ"
accept :: "’σ set"

The record specification construct implicitly introduces constructor functions
(we may write for a an
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deterministic automaton implicitly typed: (nat, nat) DA) as well as selector and
update functions enabling us to write: |.

Constraining the (general, infinite) DA to the more common DFA is straight-
forward: One can define the type-class of “all finite types” in Isabelle/HOL by

class fin = assumes finite: " finite ({x ::’α set. True})"

where the carrier-set of a type is restricted to be finite ( finite is a library con-
cept). Thus, it is possible to formalise the DFA by adding type class constraints
such as

4.3 Formal Presentations of Automata: The Monadic Approach

As shown before, the obvious way to model the state transition relation T of
an NDA is by a relation of the type (σ × (ι × o) × σ) set, (or, for the case of
the partial DA: (σ × ι(→ o × σ) option). Now, types can be isomorphic, i.e.
there exists a bijection of the underlying carrier-sets. This is the case for types
like to (Cartesian isomorphism) as well as: to
(Currying) as well as to (foundational in HOL). Thus, one can
also model the transition relation isomorphically via:

ι ⇒ (σ ⇒ (o × σ) set)
or for a case of a partial deterministic transition function:

ι ⇒ (σ ⇒ (o × σ) option)

In a theoretic framework based on classical higher-order logic (HOL), the dis-
tinction between “deterministic” and “non-deterministic” is actually much more
subtle than one might think, and a more detailed discussion is necessary here.
First, even in an (infinite) DA setting where the transition is a function, the
modelled SUT is not necessarily deterministic with respect to its input sequence,
as the difference between Fig. 1b and c reveals. Actually, provided that suffi-
cient information can be drawn from the output (recall that we assume the SUT
to be input-output deterministic), an arbitrary pre-post-condition style speci-
fication modelling the input-output relation of a system transition is possible.
This is the “usual” kind of non-determinism we need in a specification of a pro-
gram. We argue therefore that a framework like IOLTS, where systems may
non-deterministically decide to accept input or to omit output were an over-
generalisation of little use. Second, a transition function can be under-specified
via the Hilbert-choice operator built-in the HOL-logic and ZFC. This classical
operator, written SOME x. P(x) chooses an arbitrary element x for which P holds
true. We can only infer for that y must be a or b or c.

From the above said, it follows that transition function T in NA or NDA can
be isomorphically represented by:

step ι σ = {(o, σ′)|post(σ, o, σ′)}
or respectively:

step ι σ = Some(SOME(o, σ′). post(σ, o, σ′))
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for some post-condition post. In the former “truly non-deterministic” case step
can and will at run-time choose different results, the latter “under-specified deter-
ministic” version will decide in a given model always the same way: a choice that
is, however, unknown at specification level and only declaratively described via
post. For many systems (like system scheduler [4], processor models [3], etc.)
it was possible to opt for an under-specified deterministic stepping function.
The generalisation to a partial deterministic transition paves the way to cover
EFSM’s; their enabling function F , practically equivalent of a pre-condition of
the transition, can be represented in a partial function by their non-applicability:
F (x) ≡ x /∈ dom(step).

We abbreviate functions of type σ ⇒ (o × σ) set or σ ⇒ (o × σ) option
MONSBE(o, σ) or MONSE(o, σ), respectively; thus, the aforementioned state
transition functions of NDA and DA can be typed by ι → MONSBE(o, σ) for the
general and ι → MONSE(o, σ) for the deterministic setting.

If these function spaces were extended by the two operations bind and unit
satisfying three algebraic properties, they form the algebraic structure of a
monad that is well known to functional programmers as well as category theo-
rists. Popularised by [28], monads became a kind of standard means to incorpo-
rate stateful computations into a purely functional world.

Throughout this paper, we will choose as basis for our Monadic Testing
Framework under-specified deterministic stepping functions. Consequently, we
will concentrate on the MONSE(o, σ) monad which is called the state-exception
monad in the literature.

The algebraic structure of a Monad comes with two operations bind and unit ;
like functional or relational compositions f ◦g resp. ROS, bind can be seen as the
"glue" between computations, while unit represents a kind of neutral element.
bind generalizes sequential composition by adding value passing; together with
unit, which embeds a atomic value into a computation, it can be defined for the
special-case of the state-exception monad in HOL as follows:

definition bindSE :: "(’o,’σ)MONSE ⇒(’o ⇒(’o ’,’ σ )MONSE) ⇒(’o’,’σ )MONSE"
where "bindSE f g = (λσ . case f σ of None ⇒None

| Some (out, σ ’) ⇒ g out σ ’)"
definition unitSE :: "’o ⇒(’o, ’ σ )MONSE" ("(return _)" 8)
where "unitSE e = (λσ . Some(e,σ))"

Generalizing f ◦ g, bindSE takes input and output also into account (in the
sense that a later computation may have the output of prior computations as
input, and that a prior computation may fail (case None in the case distinc-
tion). Following Haskell notation, we will write x ← m1; m2 equivalently for
bindSEm1(λ x.m2). Moreover, we will write return for unitSE.

This definition of bindSE and unitSE satisfy the required monad laws:

bind_left_unit: (x ← return c; P x) = P c
bind_right_unit: (x ← m; return x) = m
bind_assoc: (y ← (x ←m; k x); h y) = (x ←m; (y ←k x; h y))

The concept of a valid monad execution, written σ |= m, can be expressed as
follows: an execution of a monad computation m of type (bool, σ) MONSE is
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valid iff its execution is performed from the initial state σ, no exception occurs
and the result of the computation is true. More formally, σ |= m holds iff
(m σ �= None ∧ fst(the(m σ))), where fst and snd are the usual first and second
projection into a Cartesian product.

We define a valid test-sequence as a valid monad execution of a particular
format: it consists of a series of monad computations m1 . . .mn applied to inputs
ι1 . . . ιn and a post-condition P wrapped in a return depending on observed
output. It is formally defined as follows:

σ |= o1 ← m1 ι1; . . . ; on ← mn ιn; return(P o1 · · · on)

Since each individual computation mi may fail, the concept of a valid test-
sequence corresponds to a feasible path in an NDA, (partial) DA, ESFM or a
GMM, that leads to a state in which the observed output satisfies P .

The notion of a valid test-sequence has two facets: On the one hand, it is
executable, i.e., a program, iff m1, . . . ,mn, P are. Thus, a code-generator can
map a valid test-sequence statement to code, where the mi where mapped to
operations of the SUT interface. On the other hand, valid test-sequences can be
treated by a particular simple family of symbolic executions calculi, characterised
by the schema (for all monadic operations m of a system, which can be seen as
the its step-functions):

(σ |= returnP ) = P

Cm ι σ m ι σ = None

(σ |= ((s ← m ι;m′ s))) = False
(1)

Cm ι σ m ι σ = Some(b, σ′)

(σ |= s ← m ι;m′ s) = (σ′ |= m′ b)
(2)

This kind of rules is usually specialised for concrete operations m; if they
contain pre-conditions Cm (constraints on ι and state), this calculus will just
accumulate them and construct a constraint system to be treated by constraint
solvers used to generate concrete input data in a test.

4.4 Example: Bank

To present the effect of the symbolic rules during symbolic execution, we present
a model of toy bank that allows for checking the account balance as well as for
depositing and withdrawing money. State of the bank system is modelled as a
map from client and account information to the account balance:

type_synonym client = string
type_synonym account_no = int
type_synonym data_base = ( client × account_no) ⇀ int

Our Bank example provides only three input actions for checking the balance as
well as deposit and withdraw money. Our model can be viewed as a transaction
system, in which a series of atomic operations caused by different subjects can
be executed in an interleaved way.
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Fig. 2. SPEC: An Extended Finite State Machine for they toy Bank

datatype in_c = deposit client account_no nat
| withdraw client account_no nat
| balance client account_no

The output symbols are:

datatype out_c = deposit_ok | withdraw_ok | balance_ok nat

Figure 2 shows an extended finite state-machine (EFSM), the operations of
our system model SPEC. A transcription of an EFSM to HOL is straight-forward
and omitted here. However, we show a concrete symbolic execution rule derived
from the definitions of the SPEC system transition function, e.g., the instance
for Eq. 2:

(c,no) ∈ dom(σ) SPEC (deposit c no m) σ = Some(deposit_ok, σ′)

(σ |= s ← SPEC (deposit c no m);m′ s) = (σ′ |= m′ deposit_ok)

where σ = var_tab and σ′ = σ((c,no) := (σ(c,no)+m)). Thus, this rule allows
for computing σ, σ′ in terms of the free variables var_tab, c, no and m. The
rules for withdraw and balance are similar. For this rule, SPEC (deposit c no m)
is the concrete stepping function for the input event deposit c no m, and the
corresponding constraint CSPEC of this transition is (c,no) ∈ dom(σ).

The symbolic execution is deterministic in the processing of valid test-
sequences and computes in one sweep all the different facets: checking enabling
conditions, computing constraints for states and input and computing symbolic
representations for states and output. Since the core of this calculus is repre-
sentable by a matching process (rather than a unification process), the deduction
aspects can be implemented in systems supporting HOL particularly efficiently.

A Simulation of Test-Driver Generation by Symbolic Execution. We
state a family of test conformance relations that link the specification and
abstract test drivers. The trick is done by a coupling variable res that transport
the result of the symbolic execution of the specification SPEC to the attended
result of the SUT.

σ |= o1 ← SPEC ι1; . . . ; on ← SPEC ιn; return(res = [o1 · · · on])
−→ σ |= o1 ← SUT ι1; . . . ; on ← SUT ιn; return(res = [o1 · · · on])



Monadic Sequence Testing and Explicit Test-Refinements 27

Successive applications of symbolic execution rules allow to reduce the premise
of this implication to CSPEC ι1 σ1 −→ . . . −→ CSPEC ιn σn −→ res = [a1 · · · an]
(where the ai are concrete terms instantiating the bound output variables oi),
i.e., the constrained equation res = [a1 · · · an]. The latter is substituted into the
conclusion of the implication. In our previous example, case-splitting over input-
variables ι1, ι2 and ι3 yields (among other instances) ι1 = deposit c1 no1 m,
ι2 = withdraw c2 no2 n and ι3 = balance c3 no3, which allows us to derive
automatically the constraint:

(c1,no1) ∈ dom(σ) −→ (c2,no2) ∈ dom(σ′) ∧ n < σ′(c2,no2) −→
(c3,no3) ∈ dom(σ′′) −→ res = [alloc_ok, release_ok, status_ok(σ′′(c3,no3)]

where σ′ = σ((c1,no1) := (σ(c1,no1) + m))) and σ′′ = σ′((c2,no2) :=
(σ(c2,no2) − n))).

In general, the constraint CSPECi
ιi σi can be seen as an symbolic abstract

test execution; instances of it (produced by a constraint solver such as Z3 inte-
grated into Isabelle) will provide concrete input data for the valid test-sequence
statement over SUT, which can therefore be compiled to test driver code. In our
example here, the witness c1 = c2 = c3 = 0, c1 = c2 = c3 = 5, m = 4 and
n = 2 satisfies the constraint and would produce (predict) the output sequence
res = [deposit_ok,withdraw_ok,balance_ok 2] for SUT according to SPEC.
Thus, a resulting (abstract) test-driver is:

σ |= o1 ← SUT ι1; o2 ← SUT ι2; o3 ← SUT ι3;
return([alloc_ok, release_ok, status_ok 2] = [o1, o2, o3])

A code-generator setup of HOL-TestGen compiles this abstract test-driver to
concrete code in C (for example), that is linked to the real SUT implementation.

Experimental Results Gathered from the Example. The traditional way
to specify a sequence test scenario in HOL-TestGen looks like this:

test_spec test_balance:
assumes account_def : "(c0,no) ∈dom σ0"
and accounts_pos : " init σ 0" and test_purpose : "test_purpose c0 no S"
and sym_exec_spec : "σ0 |=(s ←mbindFailStop S SYS; return (s = x))"
shows "σ 0 |=(s ←mbindFailStop S PUT; return (s = x))"

where the assumptions of this scenario (also called test purposes) are:

– account_def that the initial system state is a map that contains at least a
client cO with an account no,

– the constraint constrains the tests to those where all accounts have a
positive balance, and

– test_purpose constrains the set of possible input sequences S to those that
contain only operations of client c) and two of his accounts.
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We skip the formal definitions of init and test_purpose due to space reasons.
Using explicit test-refinement statements as introduced in Sect. 5, we can

state the above scenario equivalently as as inclusion test as follows:

test_spec test_balance3:
"PUT �IT 〈{σ. init σ∧ (c0,no) ∈dom σ},{ιs . test_purpose c0 no ιs}〉 SYS"
apply(rule inclusion_test_I_opt, simp, erule conjE) (∗ 1 ∗)
using[[no_uniformity]] apply(gen_test_cases 4 1 "PUT") (∗ 2 ∗)
apply(tactic "ALLGOALS(TestGen.REPEAT’(ematch_tac

[@{thm balance.exec_mbindFStop_E},@{thm withdraw.exec_mbindFStop_E},
@{thm deposit.exec_mbindFStop_E},@{thm valid_mbind’_mt}]))") (∗ 3 ∗)

apply(auto simp: init_def) (∗ 4 ∗)
using[[no_uniformity=false]]
apply(tactic "ALLCASES(uniformityI_tac @{context} [\"PUT\"])") (∗ 5 ∗)
mk_test_suite "bank_simpleNB3" (∗ 6 ∗)
(∗ ... ∗)
gen_test_data "bank_simpleNB3" (∗ 7 ∗)

The HOL-TestGen generation process in itself has been described in detail in [6]
to which the interested reader is referred. For space reasons, we can only high-
light the above test-generation script in the Isar language. It starts with the
stages of a test generation from the explicit test-refinement statement over ele-
mentary massage involving the test optimisation theorem inclusion_test_I_opt
(see Sect. 5) labelled (∗ 1 ∗), the splitting-phase of the input sequence labelled
(∗ 2 ∗), the symbolic execution phase labelled (∗ 3 ∗), a simplification of the
resulting constraints in (∗ 4 ∗), the separation of the constraint systems and
test-hypothesises (∗ 5 ∗) and the generation of the resulting test-theorem. Recall
that a test-theorem captures both abstract test-cases and test-hypothesises and
links them to the original test specification (see [6]). In (∗ 6 ∗), an internal data-
structure called test container—named "bank_simpleNB3" where this choice has
no particular importance—is created into which the test-theorem is stored.

The call of the command gen_test_data performs the test-data selection
phase (in our example by using Z3) for the test-container "bank_simpleNB3", i.e.
it converts abstract test cases in concrete tests by finding ground solutions for the
constraints in the abstract test cases. We omit the further phases that compile the
test cases to concrete test-oracles in C, which were linked to the implementation
of PUT which is just an uninterpreted constant in this specification.

For example, we pick from the list of the abstract test cases:

∀ x ∈ dom σ0. 0 ≤the(σ 0 x) −→σ 0 (c0, no) = Some y −→int n’ ≤y + int n −→
σ 0 |=os← mbindFailStop[deposit c0 no n, withdraw c0 no n’, balance c0 no] PUT;

unitSE(os=[deposit_ok, withdraw_ok, balance_ok(nat(y+ int n − int n’))])

This abstract test case says: for any which has only positive values, and a
y with the balance of the account of client c0 on his account no, and sufficient
money on the account such that the deposit and withdraw operations can both
be effectuated (mind the precondition of withdraw that the balance must be suf-
ficiently large for the withdraw), a test-sequence deposit-withdraw-balance must
lead to the observable result that all three operations succeed and produce the



Monadic Sequence Testing and Explicit Test-Refinements 29

result value nat(y + int n − int n’), where nat and int are HOL-library coersions
between nats and integers. They are a result of our operations in the model that
requires at some points natural numbers and at integers on others; this kind of
complication is very common in constraints generated from programs or models.

The test-selection phase chooses, e.g., the following concrete tests from the
abstract test shown above:

(λa. Some 15) |=os ←mbindFailStop [deposit c0 6 (nat 17), withdraw c0 6 (nat 30),
balance c0 6] PUT;

unitSE (os = [deposit_ok, withdraw_ok, balance_ok(2)]))

This concrete test states: if we start with a system state where any account of
any client has the balance 15, then we can run on PUT the sequence: deposit 17
for client c0 on his account no 6, withdraw 30, and we should observe that all
three operations went well and the result of the final one is 2. This concrete test
is now finally a computable function, i.e. a program; the reader interested in the
technical process that compiles it into a test driver in C is referred to Bank.thy
in the HOL-TestGen distribution.

In the following, we are interested in a few experimental measurements that
we did on a conventional laptop with 2.5 GHz i7 processor and 16 Mb Ram, using
Isabelle/HOL-TestGen version 1.8.0. We omit the phases (∗ 1 ∗) and the test-
oracle generation, which were more or less constant and small in the experimental
range. We vary over the first parameter of the test-splitting phase, which is 4 in
the above test-script and n in the following. It defines the length of the input
sequences that were result of the splitting. Since we have 3 different input events
in our model (deposit, withdraw, balance), the space of abstract test-cases grows
asymptotically with this length by 3n. We count the number of seconds and the
number of abstract/concrete tests found (see Table 1).

Table 1. Run-time and number of test cases of the bank example.

(∗ 2 ∗) (∗ 3 ∗) (∗ 4 ∗) (∗ 5 ∗) (∗ 7 ∗)
n sec no sec no sec no sec no sec no

3 15.1 · 100 7 0.9 7 0.1 7 0.8 7 0.7 7
4 63.3 · 100 15 1.7 15 2.1 15 2.5 15 1.8 15
5 7.2 · 103 42 6.1 42 10.3 42 28.0 42 3.8 42
6 > 88.0 · 103 - - - - - - - - -

The splitting phase was not optimised—this is what we usually do in larger
case-studies, where we use a number of switches and screws in HOL-TestGen
to basically prune the splitting process early1. The standard pruning catches
already the constraint stemming from test_purpose that a balance-operation has

1 The core-example of [4] can be decomposed into 70000 abstract test-cases in less
than two hours on a conventional laptop in HOL-TestGen [6].
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to appear at the end and that clients and account numbers are restricted; this
explains why the abstract tests indicated here are below 3n. Note furthermore
that the example is somewhat atypical since the generated abstract tests are all
feasible and all together represent an easy game for the constraint solver.

5 A Formal Theory on Conformance Relations

This schema of a test-driver synthesis can be refined and optimised: we show
three examples of the formalisation of conformance relations as well as formal
proofs of their connection possible in our framework. All notions and lemmas
mentioned here are formally proven in Isabelle/HOL.

Preliminaries and Observations. First, for iterations of stepping functions
an mbind operator can be defined, which is basically a fold over bindSE. It takes
a list of inputs ιs = [i1, . . . , in], feeds it subsequently into SPEC and stops when
an error occurs. The standard definition looks as follows:

When generalising bindSE to sequences of computations over an input
sequence, three different variants are possible:

1. The failsave mbind (our default; written mbindFailSave if necessary). This
operator has a similar semantics than a sequence of method-calls in Java with
a catch-clause at the end: If an exception occurs, the rest of the sequence is
omitted, but the state is maintained, and all depends on the computations
afterwards in the catch clause.

2. The failstop mbind (written mbindFailStop). This operator corresponds to a
C-like exception handling: System halt and the entire sequence is treated as
error. This variant is gained from the above by replacing in the
5th line of the definition above by None.

3. The failpurge mbind. This variant, which we do not detail further in this
paper, ignores the failing computations and executes a stuttering step instead.
In the modelling of some operating system calls, we found this behaviour
useful in situations when atomic actions may fail, report an error, and certain
subsequent atomic actions have to be ignored to avoid error-avalanches.

With these mbind operators, valid test sequences for a stepping-function (be it
from the specification SPEC or the SUT) evaluating an input sequence ιs and
satisfying a post-condition P can be reformulated to:
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σ |= os ← mbind ιs SPEC; return(P ιs os)

Second, revisiting the animation Sect. 4.4 and abstracting the pattern of
the initial test specification, we can now formally define the concept of a test-
conformance notion between an implementation I and a specification S:

(I �〈Init,CovCrit,conf〉 S) ≡ (∀σ0 ∈ Init . ∀ιs ∈ CovCrit . ∀res.
σ0 |= os ← mbind ιs S; return(conf ιs os res)

−→ σ0 |= os ← mbind ιs I; return(conf ιs os res))

Here, Init is a set of initial states, CovCrit a super-set constraining the input
sequences (this set can be either considered as “test purpose” or as “coverage cri-
terion”), a coupling variable res establishing the link between the possible results
of the symbolic execution and their use in a test-oracle of the test-execution. We
call conf a conformance characterisation which represents the exact nature of
the test-refinement we want to characterise.

Inclusion Tests and Proven Correct Test-Optimisations. This means
we have a precise characterisation of inclusion conformance introduced in the
previous section: We constrain the tests to the test sequences where no exception
occurred (as result of a violated enabling condition) in the symbolic execution
of the model. It suffices to choose for the conformance characterisation:

confIT ιs os res ≡ (length(ιs) = length(os) ∧ res = os)

With this conformance characterization, we can define our first explicit test-
refinement notion formally by instantiating the test-refinement schema above:

(I �IT〈Init,CC 〉 S) ≡ (I �〈Init,CC ,confIT〉 S)

The setting for confIT (IT for inclusion test) has the consequence that our sym-
bolic executions were only successful iff possible output-sequence are as long as
the input sequence. This implies that no exception occurred in possible symbolic
runs with possible inputs, i.e., all enabling conditions have to be satisfied.

Now, it can be sformally proven by induction that:

σ |= os ← mbindFailSave ιs f ; return(length(ιs) = length(os) ∧ P ιs os) =
σ |= os ← mbindFailStop ιs f ; return(P ιs os)

This means that in inclusion test-refinements, both mbindFailSave-occurrences
can be replaced by mbindFailStop. This has a minor and a major advantage:

– At test-execution time, the generated code is slightly more efficient (less cases
to check, simpler oracle).



32 A.D. Brucker and B. Wolff

– At symbolic execution time, drastically simpler constraints can be gener-
ated: While mbindFailSave generates disjunctions for both normal behaviour
(enabling condition satisfied) as well as exceptional behaviour (enabling con-
dition violated) were generated, while mbindFailStop generates constraints only
for normal behaviour, which are therefore simpler to solve in the test-data
selection phase by a constraint solver.

A consequence is the following theorem inclusion_test_I_opt, which reads
presented as natural deduction rule as follows:

[

σ0 ∈ Init , ιs ∈ CC ,
σ0 � os ← mbindFailStop ιs S;unitSE(os = res)

]

σ0 ιs res···
σ0 � os ← mbindFailStop ιs I;unitSE(os = res)

I �IT 〈Init,CC 〉 S

Deadlock-Inclusion. Using pre-and postcondition predicates, it is straight-
forward to characterise deadlock conformance: in this kind of test, we investigate
that the SUT blocks (in the sense: enabling condition violated) exactly when it
should according to the specification. Such test scenarios arise, for example, if
a protocol is checked that it only does what the specification admits. In other
words, we test the absence of back-doors in the implementation of a protocol.

This kind of test is expressed in our framework by the conformance charac-
terisation:

confDF pre ιs os res = (length(ιs) = length(os) − 1 ∧ res = os ∧ ¬pre(last(ιs))

With this conformance characterisation, we can define our second explicit test-
refinement notion formally by instantiating the test-refinement schema:

(I �DF〈Init,CC 〉 S) ≡ (I �〈Init,CC ,confDF preS〉 S)

where preS ι is the enabledness condition of S for some input ι. Here, we assume
that preS only depends on the input and not on the state after the execution
of the input sequence. However, this can be easily remedied by a slightly more
powerful pattern.2

The Connection to “traditional” IO Conformance. Another application
of our formalisation is the possibility to actually put standard notions based on
automata-theoretic notion into relation with our MST Framework. Of natural
interest is the IO-Conformance relation mentioned earlier. We pick from a wealth
of alternative definitions [23].

However, recall that our framework assumes synchronous communication
between tester and SUT; and so far ignores concepts such as quiescence.
2 The Monads.thy-library provides the assertSE-operator for this purpose.
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An equivalence between a ioco in the sense of [23] and IOCO in the sense of
our MST Framework is therefore only possible for IO-LTS specifications of a
particular form. Formalising an IO-LTS in this sense results in:

record (’ι, ’o, ’ σ ) io_lts =
init :: "’σ set"
trans :: "(’σ ×(’ ι +’o) ×’σ ) set"

This version of [23] just possesses a disjoint sum of input and output actions;
other versions of the same author provide also one or several internal actions
this would result in .

We skip the straight-forward definitions for “Straces”, “out” and “after” (syn-
onym to “States” in Sect. 2) and define:

definition out :: "[(’ι,’o ,’ σ ) io_lts ,’ σ set ] ⇒ (’o ) set"
where "out TS ss ≡{a. ∃ s ∈ ss . ∃ s ’. (s , Inr a,s ’) ∈ (trans TS)}"

definition ioco :: "[(’ι,’o ,’ σ )io_lts ,(’ ι ,’ o ,’ σ )io_lts ] ⇒ bool" ( infixl"ioco" 200)
where "i ioco s ≡ (∀ t ∈ Straces(s ). out i ( i after t) ⊆out s (s after t))"

On the other hand, we may formalise our own notion of IOCO conformance and
relate these two. To this end we specify a conformance characterisation and the
resulting third explicit test-refinement notion:

confIOCO post ιs os res ≡ (res = os ∧ length(ιs) = length(os) ∧ post (lastιs))
(I �IOCO〈Init,CC 〉 S) ≡ (I �〈Init,CC ,confIOCO postS〉 S)

For the following main result of this paper, we introduce an auxiliary notion:
we call an io_lts A strictly IO-alternating iff all t ∈ Straces(A) that finish in an
input action ι all prolongations in t′ (that is: t@t′ ∈ Straces(A) start with an
output action3). Moreover, we define a function two_step that serves essentially
as wrapper interface to SUT that sends an input action, waits for the returned
output-action and binds the latter to the rest of the computation (rather than
comparing them to a pre-conceived o and stating “inconclusive” if the observed
output does not match to the pre-computed one as in [23].) This enables us to
prove the following theorem that links Tretmanns ioco with ours by:

theorem ioco_VS_IOCO:
assumes "strictly_IO_alternating S" and "io_deterministic S"
shows "∃ S’. I ioco S = ((two_step I) �IOCO〈{x.True},{x.True}〉 S’"

Proof Sketch: We give an existential witness for S’ by defining a con-
version function convert2SE that converts S into its monadic counterpart.
This is done by constructing the Runs of S which must have the form

. Thus, from the set of Runs, the rela-
tion can be reconstructed, which under the assumptions
strictly_IO_alternating and io_deterministic represents a function.

3 In a definition variant with ′τ , these actions must be skipped.
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6 Conclusion and Future Work

We see several conceptual and practical advantages of a monadic approach to
sequence testing, the MST Framework:

1. MST’s generalise GMM’s, io-tagged DA’s and NDA’s, as well as EFSM’s;
they are equivalent to particular forms of IO-LTL’s and IO-STS’s in IOCO
conformance settings.

2. MST’s can cope with non-deterministic system models (provided they are
input-output-deterministic, which we consider a reasonable requirement for
system testability).

3. In case of under-specification-non-determinism, substantial case-studies of
substantial complexities show the feasibility of our approach [4].

4. the monadic theory models explicitly the difference between input and output,
between data under control of the tester and results under control of the SUT,

5. the theory lends itself for a theoretical and practical framework of numerous
conformance notions, even non-standard ones, and which gives

6. ways to new calculi for efficient symbolic evaluation enabling symbolic states
(via invariants) and input events (via constraints) as well as a seamless, the-
oretically founded transition from system models to test-drivers.

We see several directions for future work: On the model level, the formal theory
of sequence testing should be further explored and extended. It is particularly
tempting to incorporate in our MST theory partial-order reduction techniques
for further test refinement optimisations.
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Abstract. αCheck is a light-weight property-based testing tool built on
top of αProlog, a logic programming language based on nominal logic.
αProlog is particularly suited to the validation of the meta-theory of for-
mal systems, for example correctness of compiler translations involving
name-binding, alpha-equivalence and capture-avoiding substitution. In
this paper we describe an alternative to the negation elimination algo-
rithm underlying αCheck that substantially improves its effectiveness.
To substantiate this claim we compare the checker performances w.r.t.
two of its main competitors in the logical framework niche, namely the
QuickCheck/Nitpick combination offered by Isabelle/HOL and the ran-
dom testing facility in PLT-Redex.

1 Introduction

Formal compiler verification has come a long way from McCarthy and Painter’s
“Correctness of a Compiler for Arithmetic Expression” (1967), as witnessed by
the success of CompCert and subsequent projects [21,35]. However outstand-
ing these achievements are, they are not a magic wand for every-day compiler
writers: not only CompCert was designed with verification in mind, whereby the
implementation and the verification were a single process, but there are only a
few dozen people in the world able and willing to carry out such an endeavour.
By verification, CompCert means the preservation of certain simulation relations
between source, intermediate and target code; however, the translations involved
are relatively simple compared to those employed by modern optimizing compil-
ers. Despite some initial work [1,7], handling more realistic optimizations seems
even harder, e.g. the verification of the call arity analysis and transformation in
the Glasgow Haskell Compiler (GHC):

“The [Nominal] Isabelle development corresponding to this paper, including
the definition of the syntax and the semantics, contains roughly 12,000 lines
of code with 1,200 lemmas (many small, some large) in 75 theories, created
over the course of 9 months” (page 11, [7]).

For the rest of us, hence, it is back to compiler testing, which is basically
synonymous with passing a hand-written fixed validation suite. This is not
completely satisfactory, as the coverage of those tests is difficult to assess and
c© Springer International Publishing Switzerland 2016
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because, being fixed, these suites will not uncover new bugs. In the last few
years, randomized differential testing [24] has been suggested in combination
with automatic generation of (expressive) test programs, most notably for C
compilers with the Csmith tool [36] and to a lesser extent for GHC [30]. The
oracle is comparison checking : Csmith feeds randomly generated programs to
several compilers and flags the minority one(s), that is, those reporting different
outputs from the majority of the other compilers under test, as incorrect. Simi-
larly, the outcome of GHC on a random program with or without an optimization
enabled is compared.

Property-based testing, as pioneered by QuickCheck [12], seems to leverage
the automatic generation of test cases with the use of logical specifications (the
properties), making validation possible not only in a differential way, but inter-
nally, w.r.t. (an abstraction of) the behavior of the source and intermediate code.
In fact, compiler verification/validation is a prominent example of the more gen-
eral field of verification of the meta-theory of formal systems. For many classes
of (typically) shallow bugs, a tool that automatically finds counterexamples can
be surprisingly effective and can complement formal proof attempts by warn-
ing when the property we wish to prove has easily-found counterexamples. The
beauty of such meta-theory model checking is that, compared to other general
forms of system validation, the properties that should hold are already given by
means of the theorems that the calculus under study is supposed to satisfy. Of
course, those need to be fine tuned for testing to be effective, but we are mostly
free of the thorny issue of specification/invariant generation.

In fact, such tools are now gaining traction in the field of semantics
engineering, see in particular the QuickCheck/Nitpick combination offered in
Isabelle/HOL [4] and random testing in PLT-Redex [18]. However, a partic-
ular dimension to validating for example optimizations in a compiler such as
GHC, whose intermediate language is a variant of the polymorphically typed
λ-calculus, is a correct, simple and effective handling of binding signatures and
associated notions such as α-equivalence and capture avoiding substitutions. A
small but not insignificant part of the success of the CompCert project is due
to not having to deal with any notion of binder1. The ability to encode possibly
non-algorithmic relations (such as typing) in a declarative way would also be a
plus.

The nominal logic programming language αProlog [11] offers all those facil-
ities. Additionally, it was among the first to propose a form of property based
testing for language specifications with the αCheck tool [9]. In contrast to
QuickCheck/Nitpick and PLT Redex, our approach supports binding syntax
directly and uses logic programming to perform exhaustive symbolic search for
counterexamples. Systems lacking this kind of support may end up with inef-
fective testing capabilities or requiring an additional amount of coding, which
needs to be duplicated in every case study:

1 X. Leroy, personal communication. In fact, the encoding in [22] does not respect
α-equivalence, nor does it implement substitutions in a capture avoiding way.
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“Redex offers little support for handling binding constructs in object languages.

It provides a generic function for obtaining a fresh variable, but no help in

defining capture-avoiding substitution or α-equivalence [. . . ] In one case [. . . ]

managing binders constitutes a significant portion of the overall time spent [. . . ]

Generators derived from grammars [. . . ] require substantial massaging to achieve

high test coverage. This deficiency is particularly pressing in the case of typed

object languages, where the massaging code almost duplicates the specification

of the type system” (page 5, [18]).

αCheck extends αProlog with tools for searching for counterexamples, that is,
substitutions that makes the antecedent of a specification true and the conclusion
false. In logic programming terms this means fixing a notion of negation. To begin
with, αCheck adopted the infamous negation-as-failure (NF) operation, “which
put pains thousandfold upon the” logic programmers. As many good things in
life, its conceptual simplicity and efficiency is marred by significant problems:

– the lack of an agreed intended semantics against which to carry a soundness
proof: this concern is significant because the semantics of negation as failure
has not yet been investigated for nominal logic programming;

– even assuming such a semantics, we know that NF is unsound for non-ground
goals; hence all free variables must be instantiated before solving the negated
conclusion. This is obviously exponentially expensive in an exhaustive search
setting and may prevent optimizations by goal reordering.

To remedy this αCheck also offered negation elimination (NE) [3,26], a
source-to-source transformation that replaces negated subgoals to calls to equiv-
alent positively defined predicates. NE by-passes the previous issues arising for
NF since, in the absence of local (existential) variables, it yields an ordinary
(α)Prolog program, whose intended model is included in the complement of the
model of the source program. In particular, it avoids the expensive term gener-
ation step needed for NF , it has been proved correct, and it may open up other
opportunities for optimization. Unfortunately, in the experiments reported in
our initial implementation of αCheck [9], NE turned out to be slower than NF .

Perhaps to the reader’s chagrin, this paper does not tackle the validation of
compiler optimizations (yet). Rather, it lays the foundations by:

1. describing an alternative implementation of negation elimination, dubbed
NEs—“s” for simplified: this improves significantly over the performance
of NE as described in [9] by producing negative programs that are equiv-
alent, but much more succinct, so much as to make the method competitive
w.r.t. NF ;

2. and by evaluating our checker in comparison with some of its competitors
in the logical framework niche, namely QuickCheck/Nitpick [4] and PLT-
Redex [18]. To the best of our knowledge, this is the first time any of these
three tools have been compared experimentally.

In the next section we give a tutorial presentation of the tool and move then
to the formal description of the logical engine (Sect. 3). In Sect. 4, we detail the
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NEs algorithm and its implementation, whereas Sect. 5 carries out the promised
comparison on two case studies, a prototypical λ-calculus with lists and a basic
type system for secure information flow. The sources for αProlog and αCheck can
be found at https://github.com/aprolog-lang/aprolog. Supplementary material,
including the full listing of the case studies presented here and an online appen-
dix containing additional experiments and some formal notions used in Sect. 3,
but omitted here for the sake of space, are available at [10]. We assume some
familiarity with logic programming.

2 A Brief Tour of αCheck

We specify the formal systems and the properties we wish to check as Horn
logic programs in αProlog [11], a logic programming language based on nominal
logic, a first-order theory axiomatizing names and name-binding introduced by
Pitts [32].

In αProlog, there are several built-in types, functions, and relations with spe-
cial behavior. There are distinguished name types that are populated with infi-
nitely many name constants. In program text, a lower-case identifier is considered
to be a name constant by default if it has not already been declared as something
else. Names can be used in abstractions, written a\M in programs, considered
equal up to α-renaming of the bound name. Thus, where one writes λx.M , ∀x.M ,
etc. in a paper exposition, in αProlog one writes lam(x\M), forall(x\M), etc. In
addition, the freshness relation a # t holds between a name a and a term t that
does not contain a free occurrence of a. Thus, x �∈ FV (t) is written in αProlog
as x # t; in particular, if t is also a name then freshness is name-inequality.
For convenience, αProlog provides a function-definition syntax, but this is just
translated to an equivalent (but more verbose) relational implementation via
flattening.

Horn logic programs over these operations suffice to define a wide variety
of object languages, type systems, and operational semantics in a convenient
way. To give a feel of the interaction with the checker, here we encode a simply-
typed λ-calculus augmented with constructors for integers and lists, following
the PLT-Redex benchmark sltk.lists.rkt from http://docs.racket-lang.org/
redex/benchmark.html, which we will examine more deeply in Sect. 5.1. The
language is formally declared as follows:

Types A,B ::= int | ilist | A → B
Terms M ::= x | λx:A. M | M1 M2 | c | err
Constants c ::= n | nil | cons | hd | tl
Values V ::= c | λx:A. M | cons V | cons V1 V2

We start (see the top of Fig. 1) by declaring the syntax of terms, constants
and types, while we carve out values via an appropriate predicate. A similar
predicate is err characterizes the threading in the operational semantics of the
err expression, used to model run time errors such as taking the head of an
empty list.

https://github.com/aprolog-lang/aprolog
http://docs.racket-lang.org/redex/benchmark.html
http://docs.racket-lang.org/redex/benchmark.html
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ty: type.

intTy: ty. funTy: (ty,ty) -> ty. listTy: ty.

cst: type.

toInt: int -> cst. nil: cst. cons: cst. hd: cst. tl: cst.

id: name_type.

exp: type.

var: id -> exp. lam: (id\exp,ty) -> exp. app: (exp,exp) -> exp.

c: cst -> exp. err: exp.

type ctx = [(id,ty)].

pred tc (ctx,exp,ty).

tc(_,err,T).

.T=)C(fct-:)T,)C(c,_(ct

tc([(X,T)|G],var(X),T).

.)T,)X(rav,G(ct,Y#X-:)T,)X(rav,]G|)_,Y([(ct

.)T,N,G(ct,))U,T(yTnuf,M,G(ct-:)U,)N,M(ppa,G(ct

tc(G,lam(x\M,T),funTy(T,U)) :- x # G, tc([(x,T) |G],M,U).

pred step(exp,exp).

step(app(c(hd),app(app(c(cons),V),VS)),V) :- value(V), value(VS).

step(app(c(tl),app(app(c(cons),V),VS)),VS):- value(V), value(VS).

step(app(lam(x\M,T),V), subst(M,x,V)) :- value(V).

step(app(M1,M2),app(M1’,M2)) :- step(M1,M1’).

step(app(V1,M2),app(M1,M2’)) :- value(V1), step(M2,M2’).

pred is_err(exp).

is_err(err).

is_err(app(c(hd),c(nil)))).

is_err(app(c(tl),c(nil))).

.)1E(rre_si-:))2E,1E(ppa(rre_si

.)2E(rre_si,)1V(eulav-:))2E,1V(ppa(rre_si

Fig. 1. Encoding of the example calculus in αProlog

We follow this up (see the remainder of Fig. 1) with the static semantics (pred-
icate tc) and dynamic semantics (one-step reduction predicate step), where we
omit the judgments for the value predicate and subst function, which are anal-
ogous to the ones in [9]. Note that err has any type and constants are typed
via a table tcf, also omitted.

Horn clauses can also be used as specifications of desired program properties
of such an encoding, including basic lemmas concerning substitution as well
as main theorems such as preservation, progress, and type soundness. This is
realized via checking directives

#check "spec" n : H1, ..., Hn => A.

where spec is a label naming the property, n is a parameter that bounds the
search space, and H1 through Hn and A are atomic formulas describing the precon-
ditions and conclusion of the property. As with program clauses, the specification
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formula is implicitly universally quantified. Following the PLT-Redex develop-
ment, we concentrate here only on checking that preservation and progress hold.

#check "pres" 7 : tc([],E,T), step(E,E’) => tc([],E’,T).

#check "prog" 7 : tc([],E,T) => progress(E).

Here, progress is a predicate encoding the property of “being either a value,
an error, or able to make a step”. The tool will not find any counterexample,
because, well, those properties are (hopefully) true of the given setup. Now, let
us insert a typo that swaps the range and domain types of the function in the
application rule, which now reads:

tc(G,app(M,N),U) :- tc(G,M,funTy(T,U)), tc(G,N,U). % was funTy(U,T)

Does any property become false? The checker returns immediately with this
counterexample to progress:

E = app(c(hd),c(toInt(N)))

T = intTy

This is abstract syntax for hd n, an expression erroneously well-typed and obvi-
ously stuck. Preservation meets a similar fate: (λx:T → int. x err) n steps to
an ill-typed term.

E = app(lam(x\app(var(x),err),funTy(T,intTy)),c(toInt(N)))

E’ = app(c(toInt(N)),err)

T = intTy

3 The Core Language

In this section we give the essential notions concerning the core syntax, to which
the surface syntax used in the previous section desugars, and semantics of αPro-
log programs.

An αProlog signature is composed by sets ΣD and ΣN of, respectively, base
types δ, which includes a type o of propositions, and name types ν; a collection
ΣP of predicate symbols p : τ → o and one ΣF of function symbol declarations
f : τ → δ. Types τ are formed as specified by the following grammar:

τ ::= δ | τ × τ ′ | 1 | ν | 〈ν〉τ
where δ ∈ ΣD and ν ∈ ΣN and 1 is the unit type. Given a signature, the
language of terms is defined over sets V = {X,Y,Z, . . .} of logical variables and
sets A = {a, b, . . .} of names:

t, u ::= a | π · X | 〈〉 | 〈t, u〉 | 〈a〉t | f(t)
π ::= id | (a b) ◦ π

where π are permutations, which we omit in case id ·X, 〈〉 is unit, 〈t, u〉 is a pair
and 〈a〉t is the abstract syntax for name-abstraction. The result of applying the
permutation π (considered as a function) to a is written π(a). Typing for these
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terms is standard, with the main novelty being that name-abstractions 〈a〉t have
abstraction types 〈ν〉τ provided a : ν and t : τ .

The freshness (s #τ u) and equality (t ≈τ u) constraints, where s is a term
of some name type ν, are the new features provided by nominal logic. The
former relation is defined on ground terms by the following inference rules, where
f : τ → δ ∈ ΣF :

a �= b

a #ν b a #1 〈〉
a #τ t

a #δ f(t)

a #τ1 t1 a #τ2 t2

a #τ1×τ2 〈t1, t2〉
a #ν′ b a #τ t

a #〈ν′〉τ 〈b〉t a #〈ν′〉τ 〈a〉t

In the same way we define the equality relation, which identifies terms modulo
α-equivalence, where (a b) · u denotes swapping two names in a term:

a ≈ν a 〈〉 ≈1 〈〉
t1 ≈τ1 u1 t2 ≈τ2 u2

〈t1, t2〉 ≈τ1×τ2 〈u1, u2〉
t ≈τ u

f(t) ≈δ f(u)

a ≈ν b t ≈τ u

〈a〉t ≈〈ν〉τ 〈b〉u
a #ν b a #ν u t ≈τ (a b) · u

〈a〉t ≈〈ν〉τ 〈b〉u
Given a signature, goals G and program clauses D have the following form:

A : : = t ≈ u | t # u

G ::= ⊥ | � | A | p(t) | G ∧ G′ | G ∨ G′ | ∃X:τ. G | Na:ν. G | ∀∗X:τ. G

D ::= � | p(t) | D ∧ D′ | G ⊃ D | ∀X : τ. D | ⊥ | D ∨ D′

The productions shown in black yield a fragment of nominal logic called N-
goal clauses [11], for which resolution based on nominal unification is sound and
complete. This is in contrast to the general case where the more complicated
equivariant unification problem must be solved [8]. We rely on the fact that
D formulas in a program Δ can always be normalized to sets of clauses of the
form ∀X :τ . G ⊃ p(t), denoted def(p,Δ). The fresh-name quantifier N, firstly
introduced in [32], quantifies over names not occurring in a formula (or in the
values of its variables). The extensions shown in red here in the language BNF
(and in its proof-theoretic semantics in Fig. 2) instead are constructs brought in
from the negation elimination procedure (Sect. 4.1) and which will not appear
in any source programs. In particular, an unusual feature is the extensional
universal quantifier ∀∗ [15]. Differently from the intensional universal quantifier
∀, for which ∀X:τ. G holds if and only if G[x/X] holds, where x is an eigenvariable
representing any terms of type τ , ∀∗X:τ. G succeeds if and only if G[t/X] does
for every ground term of type τ .

Constraints are G-formulas of the following form:

C ::=� | t ≈ u | t # u | C ∧ C ′ | ∃X:τ. C | Na:ν. C

We write K for a set of constraints and Γ for a context keeping track of the
types of variables and names. Constraint-solving is modeled by the judgment
Γ ;K |= C, which holds if for all maps θ from variables in Γ to ground terms



44 J. Cheney et al.

if θ |= K then θ |= C. The latter notion of satisfiability is standard, modulo
handling of names: for example θ |= Na:ν. C iff for some b fresh for θ and C,
θ |= C[b/a].

Γ ; K |= A

Γ ; Δ; K ⇒ A
con

Γ ; Δ; K ⇒ G1 Γ ; Δ; K ⇒ G2

Γ ; Δ; K ⇒ G1 ∧ G2
∧R

Γ ; Δ; K ⇒ Gi

Γ ; Δ; K ⇒ G1 ∨ G2
∨Ri

Γ ; K |= ∃X:τ. C Γ, X:τ ; Δ; K, C ⇒ G

Γ ; Δ; K ⇒ ∃X:τ. G
∃R

Γ ; K |= Na:ν. C Γ#a:ν; Δ; K, C ⇒ G

Γ ; Δ; K ⇒ Na:ν. G
NR

Γ ; Δ; K ⇒ 	 	R
Γ ; Δ; K D−→ Q D ∈ Δ

Γ ; Δ; K ⇒ Q
sel

∧{Γ, X:τ ; Δ; K, C ⇒ G | Γ ; K |= ∃X:τ. C}
Γ ; Δ; K ⇒ ∀∗X:τ. G

∀∗ω

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ ; K |= t ≈ u

Γ ; Δ; K p(t)−→ p(u)
hyp

Γ ; Δ; K Di−→ Q

Γ ; Δ; K D1∧D2−→ Q
∧Li

Γ ; Δ; K D−→ Q Γ ; Δ; K ⇒ G

Γ ; Δ; K G⊃D−→ Q
⊃L

Γ ; K |= ∃X:τ. C Γ, X:τ ; Δ; K, C
D−→ Q

Γ ; Δ; K ∀X:τ. D−→ Q
∀L

Γ ; Δ; K ⊥−→ Q
⊥L

Γ ; Δ; K D1−→ Q Γ ; Δ; K D2−→ Q

Γ ; Δ; K D1∨D2−→ Q
∨L

Fig. 2. Proof search semantics of αProlog programs

We can describe an idealized interpreter for αProlog with the “amalgamated”
proof-theoretic semantics introduced in [11] and inspired by similar techniques
stemming from CLP [20] — see Fig. 2, sporting two kind of judgments, goal-
directed proof search Γ ;Δ;K ⇒ G and focused proof search Γ ;Δ;K D−→ Q.
This semantics allows us to concentrate on the high-level proof search issues,
without requiring to introduce or manage low-level operational details concern-
ing constraint solving. We refer the reader to [11] for more explanation and ways
to make those judgments operational. Note that the rule ∀∗ω says that goals of
the form ∀∗X:τ.G can be proved if Γ,X:τ ;Δ;K, C ⇒ G is provable for every
constraint C such that Γ ;K |= ∃X:τ. C holds. Since this is hardly practical, the
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number of candidate constraints C being infinite, we approximate it by modify-
ing the interpreter so as to perform a form of case analysis: at every stage, as
dictated by the type of the quantified variable, we can either instantiate X by
performing a one-layer type-driven case distinction and further recur to expose
the next layer by introducing new ∀∗ quantifiers, or we can break the recursion
by instantiation with an eigenvariable.

4 Specification Checking

Informally, #check specifications correspond to specification formulas of the form

Na.∀X. G ⊃ A (1)

where G is a goal and A an atomic formula (including equality and freshness
constraints). Since the N-quantifier is self-dual, the negation of (1) is of the form
Na.∃X.G ∧ ¬A. A (finite) counterexample is a closed substitution θ providing

values for X such that θ(G) is derivable, but the conclusion θ(A) is not. Since we
live in a logic programming world, the choice of what we mean by “not holding”
is crucial, as we must choose an appropriate notion of negation.

In αCheck the reference implementation reads negation as finite failure
(not):

Na.∃X:τ . G ∧ gen[[τ ]](X) ∧ not(A) (2)

where gen[[τ ]] are type-indexed predicates that exhaustively enumerate the inhab-
itants of τ . For example, gen[[ty]] yields the predicate:

gen_ty(intTy). gen_ty(listTy).

gen_ty(funTy(T1,T2)) :- gen_ty(T1), gen_ty(T2).

A check such as (2) can simply be executed as a goal in the αProlog interpreter,
using the number of resolution steps permitted to solve each subgoal as a bound
on the search space. This method, combined with a complete search strategy such
as iterative deepening, will find a counterexample, if one exists. This realization
of specification checking is simple and effective, while not escaping the traditional
problems associated with such an operational notion of negation.

4.1 Negation Elimination

Negation Elimination [3,26] is a source-to-source transformation that replaces
negated subgoals with calls to a combination of equivalent positively defined
predicates. In the absence of local (existential) variables, NE yields an ordinary
(α)Prolog program, whose intended model is included in the complement of the
model of the source program. In other terms, a predicate and its complement
are mutually exclusive. Exhaustivity, that is whether a program and its com-
plement coincide with the Herbrand base of the program’s signature may or
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may not hold, depending on the decidability of the predicate in question; nev-
ertheless, this property, though desirable, is neither frequent nor necessary in a
model checking context. When local variables are present, the derived positivized
program features the extensional universal quantifier presented in the previous
section.

The generation of complementary predicates can be split into two phases:
term complementation and clause complementation.

Term Complementation. A cause of atomic goal failure is when its arguments
do not unify with any of the program clause heads in its definition. The idea
is then to generate the complement of the term structure in each clause head
by constructing a set of terms that differ in at least one position. However,
and similarly to the higher-order logic case, the complement of a nominal term
containing free or bound names cannot be represented by a finite set of nominal
terms. For our application nonetheless, we can pre-process clauses so that the
standard complementation algorithm for (linear) first order terms applies [19].
This forces terms in source clause heads to be linear and free of names (including
swapping and abstractions), by replacing them with logical variables, and, in
case they occurred in abstractions, by constraining them in the clause body by
a concretion to a fresh variable. A concretion, written t@a, is the elimination
form for abstractions and can be implemented by translating a goal G with an
occurrence of [t@a] (notation G[t@a]) to ∃X.t ≈ 〈a〉X ∧ G[X]. For example, the
clause for typing lambdas is normalized as:

tc(G,lam(M,T),funTy(T,U)):- new x. tc([(x,T) |G],M@x,U).

Hence, we can use a type-directed version of first-order term complemen-
tation, not[[τ ]] : τ → τ set and prove its correctness in term of exclusivity
following [3,27]: the intersection of the set of ground instances of a term and
its complement is empty. Exhaustivity also holds, but will not be needed. The
definition of not[[τ ]] is in the appendix [10], but we offer the following example:

not[[exp]](app(c(hd), )) =

{lam( , ), err, c( ), var( ), app(c(tl), ), app(c(nil), ), app(c(toInt( )), ),

app(var( ), ), app(err, ), app(lam( , ), ), app(app( , ), )}

Clause Complementation. The idea of the clause complementation algorithm is
to compute the complement of each head of a predicate definition using term
complementation, while clause bodies are negated pushing negation inwards until
atoms are reached and replaced by their complement and the negation of con-
straints is computed. The contributions (in fact a disjunction) of each of the
original clauses are finally merged. The whole procedure can be seen as a nega-
tion normal form procedure, which is consistent with the operational semantics
of the language.

The first ingredient is complementing the equality and freshness constraints,
yielding (α-)inequality neq [[τ ]] and non-freshness nfr [[ν, δ]]: we implement these
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notG(	) = ⊥ notD(	) = ⊥
notG(⊥) = 	 notD(⊥) = 	

notG(p(t)) = p¬(t) notD(G ⊃ p(t)) =
∧{∀(p¬(u)) | u ∈ not[[τ ]](t)} ∧
(notG(G) ⊃ p¬(t))

notG(t ≈τ u) = neq [[τ ]](t, u)
notG(a #τ u) = nfr [[ν, τ ]](a, u)
notG(G ∧ G′) = notG(G) ∨ notG(G′) notD(D ∧ D′) = notD(D) ∨ notD(D′)
notG(G ∨ G′) = notG(G) ∧ notG(G′) notD(D ∨ D′) = notD(D) ∧ notD(D′)

notG(∀∗X:τ. G) = ∃X:τ. notG(G) notD(∀X:τ. D) = ∀X:τ. notD(D)
notG(∃X:τ. G) = ∀∗X:τ. notG(G)
notG( Na:ν. G) = Na:ν. notG(G) notD(Δ) = notD(def(p, Δ))

Fig. 3. Negation of a goal and of clause

using type-directed code generation within the αProlog interpreter and refer
again to the appendix [10] for their generic definition.

Figure 3 shows goal and clause complementation: most cases of the former,
via the notG function, are intuitive, being classical tautologies. Note that the
self-duality of the N-quantifier allows goal negation to be applied recursively.
Complementing existential goals is where we introduce extensional quantification
and invoke its proof-theory.

Clause complementation is where things get interesting and differ from the
previous algorithm [9]. The complement of a clause G ⊃ p(t) must contain a
“factual” part, built via term complementation, motivating failure due to clash
with (some term in) the head. We obtain the rest by negating the body with
notG(G). We take clause complementation definition-wise, that is the negation
of a program is the conjunction of the negation of all its predicate definitions.
An example may help: negating the typing clauses for constants and application
(tc from Fig. 2) produces the following disjunction:

(not_tc(_,err,_) /\ not_tc(_,var(_),_) /\ not_tc(_,app(_,_),_) /\

not_tc(_,lam(_,_),_) /\ not_tc(_,c(C),T):- neq(tcf(C), T))

\/

(not_tc(_,err,_) /\ not_tc(_,var(_),_) /\ not_tc(_,c(_),_) /\

not_tc(_,lam(_,_),_) /\

not_tc(G,app(M,N),U):- forall* T. not_tc(G,M,funTy(T,U)) /\

not_tc(G,app(M,N),U):- forall* T. not_tc(G,N,T))

Notwithstanding the top-level disjunction, we are not committing to any form of
disjunctive logic programming: the key observation is that ‘∨’ can be restricted to
a program constructor inside a predicate definition; therefore it can be eliminated
by simulating unification in the definition:

(G1 ⊃ Q1) ∨ (G2 ⊃ Q2) ≡ θ(G1 ∧ G2 ⊃ Q1)

where θ = mgu(Q1, Q2). Because ∨ is commutative and associative we can per-
form this merging operation in any order. However, as with many bottom-up
operations, merging tends to produce a lot of redundancies in terms of clauses
that are instances of each other. We have implemented backward and forward
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subsumption [23], by using an extension of the αProlog interpreter itself to check
entailment between newly generated clauses and the current database (and vice-
versa). Despite the fact that this subsumption check is partial, because the cur-
rent unification algorithm does not handle equivariant unification with mixed
prefixes [25] and extensional quantification [8], it makes all the difference: the
not_is_err predicate definition decreases from an unacceptable 128 clauses to
a much more reasonable 18. The final definition of not tc follows, where we (as
in Prolog) use the semicolon as concrete syntax for disjunction in the body:

not_tc(_,c(C),T) :- neq_ty(tcf(C),T).

not_tc([],var(_),_).

not_tc([(X,T)|G],var(X’),T’) :- (neq_ty(T,T’); fresh_id(X,X’)),

not_tc(G,var(X’),T’).

not_tc(G,app(M,N),U) :- forall* T:ty. not_tc(G,M,funTy(T,U));

not_tc(G,N,T).

not_tc(G,app(M,N),listTy) :- forall* T:ty. not_tc(G,M,funTy(T,listTy));

not_tc(G,N,T).

not_tc(G,app(M,N),intTy) :- forall* T:ty. not_tc(G,M,funTy(T,intTy));

not_tc(G,N,T).

not_tc(_,lam(_),listTy).

not_tc(_,lam(_),intTy).

not_tc(G,lam(M,T),funTy(T,U)):- new x:id. not_tc([(x,T)|G],M@x,U).

Regardless of the presence of two subsumed clauses in the app case that our
approach failed to detect, it is a big improvement in comparison to the 38 clauses
generated by the previous algorithm [9]. And in exhaustive search, every clause
counts.

Having synthesized the negation of the tc predicate, αCheck will use it inter-
nally while searching, for instance in the preservation check, for

∃E.∃T. tc([],E ,T ), step(E ,E ′), not tc([],E ′,T )

Soundness of clause complementation is crucial for the purpose of model
checking; we again express it in terms of exclusivity. The proof follows the lines
of [26].

Theorem 1 (Exclusivity). Let K be consistent. It is not the case that:

– Γ ;Δ;K ⇒ G and Γ ;notD(Δ);K ⇒ notG(G);

– Γ ;Δ;K D−→ Q and Γ ;notD(Δ);K notD (D)−→ notG(Q).

5 Case Studies

We have chosen as case studies here the Stlc benchmark suite, introduced in
Sect. 2, and an encoding of the Volpano et al. security type system [34], as
suggested in [5]. For the sake of space, we report at the same time our comparison
between the various forms of negation, in particular NEs vs. NE , and the other
systems of reference, accordingly, PLT-Redex and Nitpick.
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PLT-Redex [13] is an executable DSL for mechanizing semantic models built
on top of DrRacket. Redex has been the first environment to adopt the idea of
random testing a la QuickCheck for validating the meta-theory of object lan-
guages, with significant success [18]. As we have mentioned, the main drawbacks
are the lack of support for binders and low coverage of test generators stem-
ming from grammar definitions. The user is therefore required to write her own
generators, a task which tends to be demanding.

The system where proofs and disproofs are best integrated is arguably
Isabelle/HOL [4]. In the appendix [10] we report some comparison with its ver-
sion of QuickCheck, but here we concentrate on Nitpick [5], a higher-order model
finder in the Alloy lineage supporting (co)inductive definitions. Nitpick works
translating a significant fragment of HOL into first-order relational logic and then
invoking Alloy’s SAT-based model enumerator. The tool has been used effectively
in several case studies, most notably weak memory models for C++ [6]. It would
be natural to couple Isabelle/HOL’s QuickCheck and/or Nitpick’s capabilities
with Nominal Isabelle [33], but this would require strengthening the latter’s
support for computation with names, permutations and abstract syntax modulo
α-conversion. So, at the time of writing, αCheck is unique as a model checker
for binding signatures and specifications.

All test have been performed under Ubuntu 15.4 on a Intel Core i7 CPU 870,
2.93 GHz with 8 GB RAM. We time-out the computation when it exceeds 200
seconds. We report 0 when the time is <0.01. These tests must be taken with
a lot of salt: not only is our tool under active development but the comparison
with the other systems is only roughly indicative, having to factor differences
between logic and functional programming (PLT-Redex), as well as the sheer
scale and scope of counter-examples search in a system such as Isabelle/HOL.

5.1 Head-to-Head with PLT-Redex
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Fig. 4. Loglinear-plot of TESS on prog theorem

We first measure the amount
of time to exhaust the search
space (TESS) using the three
versions of negations sup-
ported in αCheck, over a bug-
free version of the Stlc bench-
mark for n = 1, 2, . . . up to
the point where we time-out.
This gives some indication of
how much of the search space
the three techniques explore,
keeping in mind that what is
traversed is very different in
shape; hence the more reli-
able comparison is between
NE and NEs. As the results
depicted in Fig. 4 suggests,



50 J. Cheney et al.

Table 1. TFCE on the stlc benchmark, Redex-style encoding

bug check NF NE NEs cex Description/Class

1 pres 0.3 (7) 1 (7) 0.37 (7) (λx.xerr)n range of function in app rule

matched to the arg. (S)prog 0 (5) 3.31 (9) 0.27 (5) hd n

2 prog 0.27 (8) t.o. (11) 85.3 (12) (cons n) nil value (cons v) v omitted (M)

3 pres 0.04 (6) 0.04 (6) 0.3 (6) (λx.n)m order of types swapped in func-

tion pos of app (S)prog 0 (5) 3.71 (9) 0.27 (8) hd n

4 prog t.o t.o t.o ? The type of cons is incorrect (S)

5 pres t.o. (9) t.o. (10) 41.5 (10) tl ((cons n) err) tail red. returns the head (S)

6 prog 29.8 (11) t.o. (11) t.o. (12) hd ((cons n) nil) hd red. on part. appl. cons (M)

7 prog 1.04 (9) 18.5 (10) 1.1 (9) hd((λx.err)n) no eval for argument of app (M)

8 pres 0.02 (5) 0.03 (5) 0.1 (5) (λx.x)nil lookup always returns int (U)

9 pres 0 (5) 0.02 (5) 0.1 (5) (λx.y)n vars do not match in lookup (S)

NEs shows a clear improvement over NE , while NF holds its ground, however
hindered by the explosive exhaustive generation of terms.

However, our mission is finding counterexamples and so we compare the time
to find counterexamples (TFCE) using NF , NE , NEs on the said benchmarks.
We list in Table 1 the 9 mutations from the cited site. Every row describes
the mutation inserted with an informal classification inherited from ibidem—
(S)imple, (M)edium or (U)nusual, better read as artificial. We also list the coun-
terexamples found by αCheck under NF (NE(s) being analogous but less instan-
tiated) and the depths at which those are found or a time-out occurred.

The results in Table 1 show a remarkable improvement of NEs over NE , in
terms of counter-examples that were timed-out (bug 2 and 5), as well as major
speedups of more than an order of magnitude (bugs 3 (ii) and 7). Further, NEs
never under-performs NE , probably because it locates counterexample at a lower
depth. In rare occasions (bug 5 again) NEs even outperforms NF and in several
cases it is comparable (bug 1, 3, 7, 8 and 9). Of course there are occasions (2 and
6), where NF is still dominant, as NEs counter-examples live at steeper depths
(12 and 16, respectively) that cannot yet be achieved within the time-out.

We do not report TFCE of PLT-Redex, because, being based on randomized
testing, what we really should measure is time spent on average to find a bug.
The two encodings are quite different: Redex has very good support for evalua-
tion contexts, while we use congruence rules. Being untyped, the Redex encoding
treats err as a string, which is then procedurally handled in the statement of
preservation and progress, whereas for us it is part of the language. Since [18],
Redex allows the user to write certain judgments in a declarative style, provided
they can be given a functional mode, but more complex systems, such as typing
for a polymorphic version of a similar calculus, require very indirect encoding,
e.g. CPS-style. We simulate addition on integers with numerals (omitted from
the code snippets presented in Sect. 2 for the sake of space), as we currently
require our code to be pure in the logical sense, as opposed to Redex that maps
integers to Racket’s ones. W.r.t. lines of code, the size of our encoding is roughly
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1/4 of the Redex version, not counting Redex’s built-in generators and substi-
tution function. The adopted checking philosophy is also somewhat different:
they choose to test preservation and progress together, using a cascade of three
built-in generators and collect all the counterexamples found within a timeout.

The performance of the negation elimination variants in this benchmark is
not too impressive. However, if we adopt a different style of encoding (let’s call
it PCF, akin to what we used in [9]), where constructors such as hd are not
treated as constants, but are first class, e.g.:

tc(G,hd(E),intTy) :- tc(G,E,listTy).

step(hd(cons(H,Tl)), H) :- value(H),value(Tl).

then all counter-examples are found very quickly, as reported in Table 2. In bug
4, NEs struggles to get at depth 13: on the other hand PLT-Redex fails to find
that very bug. Bug 6 as well as several counterexamples disappear as not well-
typed. This improved efficiency may be due to the reduced amount of nesting of
terms, which means lower depth of exhaustive exploration. This is not a concern
for random generation and (compiled) functional execution as in PLT-Redex.

Table 2. TFCE on the Stlc benchmark, PCF-style encoding. NEs cex shown

bug# check NF NE NEs cex

1 pres 0.05 (5) 2.79 (5) 0.04 (5) (λx.hdx)N

2 prog 0 (4) 7.76 (9) 0.8 (7) (cons N) nil

3 pres 0 (4) 0.05 (4) 0 (4) (λx.nil)nil

4 prog 0.15 (7) t.o. (10) 199.1 (12) N + (cons N nil)

5 pres 0(4) 0.04 (4) 0(4) tl (cons N) nil

7 prog 5.82 (9) 151.2 (11) 19.54. (10) (λx.nil)(N + M)

8 pres 0.01 (4) 0.04 (4) 0.1 (4) (λx.x)nil

9 pres 0 (4) 0.04 (4) 0.1 (4) (λx.y) N

5.2 Nitpicking Security Type Systems

To compare Nitpick with our approach, we use the security type system due
to Volpano, Irvine and Smith [34], whereby the basic imperative language IMP
is endowed with a type system that prevents information flow from private to
public variables2. For our test, we actually selected the more general version of
the type system formalized in [28], where the security levels are generalized from
high and low to natural numbers. Given a fixed assignment sec of such security
levels to variables, then lifted to arithmetic and Boolean expressions, the typing
judgment l � c reads as “command c does not contain any information flow to
2 For an interesting case study regarding instead dynamic information flow and carried

out in Haskell, see [17]. A large part of the paper is dedicated to the fine tuning of
custom generators and shrinkers.
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variables < l and only safe flows to variables ≥ l.” Following [28], we call this
system syntax-directed.

The main properties of interest relate states that agree on the value of
each variable (strictly) below a certain security level, denoted as σ1 ≈<l σ2 iff
∀x. sec x < l → σ1(x) = σ2(x). Assume a standard big-step evaluation semantics
for IMP, relating an initial state σ and a command c to a final state τ :

Confinement If 〈c, σ〉 ↓ τ and l � c then σ ≈<l τ ;
Non-interference If 〈c, σ〉 ↓ σ′, 〈c, τ〉 ↓ τ ′, σ ≈≤l τ and 0 � c then σ′ ≈≤l τ ′;

We extend this exercise by considering also a declarative version (std) l �d c
of the syntax directed system, where anti-monotonicity is taken as a primitive
rule instead of an admissible one as in the previous system; finally we encode
also a syntax-directed termination-sensitive (stT ) version l �⇓ c, where non-
terminating programs do not leak information and its declarative cousin (stTd)
l �⇓d c. We then insert some mutations in all those systems, as detailed in
Table 3 and investigate whether the following equivalences among those systems
still hold:

st↔std l � c iff l �d c and stT↔stTd l �⇓ c iff l �⇓d c.

Again the experimental evidence is quite pleasing as far as NE vs. NEs
goes, where the latter is largely superior (5 (ii), 1 (i), 7 (ii)). In one case NEs
improves on NF (1 (ii)) and in general competes with it save for 4 (ii) and
5 (i) and (ii). To have an idea of the counterexamples found by αCheck, the
command (SKIP; x :=1), sec x = 0, l = 1 and state σ mapping x to 0 falsifies
confinement 1 (i); in fact, this would not hold were the typing rule to check the
second premise. A not too dissimilar counterexample falsifies non-interference 1
(ii): c is (SKIP; x :=y), sec x, y = 0, 1, l = 0 and σ maps y to 0 and x undefined

Table 3. αCheck vs. Nitpick on the Volpano benchmark suite. (sp) indicates that
Nitpick produced a spurious counterexample.

bug check Nitpick NF NE NEs Description

1 conf (sp) 0.03 (5) 4.4 (8) 2.1 (7) second premise of seq rule omitted

dittonon-inter t.o. 9.13 (8) 6.71 (8) 6.1 (8)

2 non-inter (sp) 3.3 (8) 2.1 (8) 1.9 (8) var swap in ≤ premise of assn rule

3 st→std 0.95 t.o t.o t.o inversion of ≤ in antimono rule ditto

std→st 0.75 0.8 (7) 0.3 (7) 0.3 (7)

4 st→std ≤ assumption omitted in IF: true

dittostd→st 1.3 0.9 (7) t.o. t.o

5 st→std 5.1(sp) 24.5 (11) t.o t.o as 2 but on decl. version of the rule

dittostd→st 1.1 0.2 (7) t.o. 24.6 (11)

6 stT→stTd 5.1(sp) t.o t.o t.o as 2 but on term. version of the rule

dittostTd→stT 1.0 0.01 (5) 0.32 (7) 0.05 (6)

7 stT→stTd as 4 but on term-decl. rule: true

dittostTd→stT 1.6 1.7 (8) 12.5 (9) 1.2(8)
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(i.e. to a logic variable), while τ maps y to 1 and keeps x undefined. We note
in passing that here extensional quantification is indispensable, since ordinary
generic quantification is unable to instantiate security levels so as to find the
relevant bugs.

The comparison with Nitpick3 is more mixed. On one hand Nitpick fails
to find 1 (ii) within the timeout and in other four cases it reports spurious
counterexamples, which on manual analysis turn out to be good. On the other
it nails down, quite quickly, two other cases where αCheck fails to converge at
all (3 (i), 6 (i)). This despite the facts that relations such as evaluations, �d and
�⇓d, are reported not well founded requiring therefore a problematic unrolling.

The crux of the matter is that differently from Isabelle/HOL’s mostly func-
tional setting (except for inductive definition of evaluation and typing), our
encoding is fully relational: states and security assignments cannot be seen as
partial functions but are reified in association lists. Moreover, we pay a signifi-
cant price in not being able to rely on built-in types such as integers, but have to
deploy our clearly inefficient versions. This means that to falsify simple compu-
tations such as n ≤ m, we need to provide a derivation for that failure. Finally,
this case study does not do justice to the realm where αProlog excels, namely it
does not exercise binders intensely: we are only using nominal techniques in rep-
resenting program variables as names and freshness to guarantee well-formedness
of states and of the table encoding the variable security settings. Yet, we could
not select more binding intensive examples due to the current difficulties with
running Nitpick under Nominal Isabelle.

6 Conclusions and Future Work

We have presented a new implementation of the NE algorithm underlying our
model checker αCheck and experimental evidence showing satisfying improve-
ments w.r.t. the previous incarnation, so as to make it competitive with the
NF reference implementation. The comparison with PLT-Redex and Nitpick,
systems of considerable additional maturity, is also, in our opinion, favourable:
αCheck is able to find similar counterexamples in comparable amounts of time;
it is able to find some counterexamples that Redex or Nitpick respectively do
not; and in no case does it report spurious counterexamples. Having said that,
our comparison is at most just suggestive and certainly partial, as many other
proof assistants have incorporated some notion of PBT, e.g. [29,31]. A notable
absence here is a comparison with what at first sight is a close relative, the Bed-
wyr system [2], a logic programming engine that allows a form of model checking
directly on syntactic expressions possibly containing binding. Since Bedwyr uses
depth-first search, checking properties for infinite domains should be approx-
imated by writing logic programs encoding generators for a finite portion of
that model. Our initial experiments in encoding the Stlc benchmark in Bedwyr
have failed to find any counterexample, but this could be imputed simply to

3 Settings: [sat solver=MiniSat JNI,max threads=1,timeout=200].
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our lack of experience with the system. Recent work about “augmented focusing
systems” [16] could overcome this problem.

All the mutations we have inserted so far have injected faults in the speci-
fications, not in the checks. This make sense for our intended use; however, it
would be interesting to see how our tool would fare w.r.t. mutation testing of
theorems.

Exhaustive term generation has served us well so far, but it is natural to
ask whether random generation could have a role in αCheck, either by simply
randomizing term generation under NF or more generally the logic programming
interpreter itself, in the vein of [14]. More practically, providing generators and
reflection mechanism for built-in datatypes and associated operators is a priority.

Finally, we would like to implement improvements in nominal equational
unification algorithms, which would make subsumption complete, via equivariant
unification [8], and more ambitiously introduce narrowing, so that functions
could be computed rather then simulated relationally. In the long run, this could
open the door to use αCheck as a light-weight model checker for (a fragment)
of Nominal Isabelle.
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Abstract. In this paper we show how the research domain of enu-
merative combinatorics can benefit from testing and formal verifica-
tion. We formalize in Coq the combinatorial structures of permutations
and maps, and a couple of related operations. Before formally proving
soundness theorems about these operations, we first validate them, by
using logic programming (Prolog) for bounded exhaustive testing and
Coq/QuickChick for random testing. It is an experimental study prepar-
ing a more ambitious project about formalization of combinatorial results
assisted by verification tools.

1 Introduction

Enumerative combinatorics is the branch of mathematics studying discrete struc-
tures of finite cardinality when some of their parameters are fixed. One of its
objectives is counting, i.e. determining these cardinalities. This research domain
also studies non-trivial structural bijections between two families of structures
and algorithms for exhaustive generation up to some size. In this paper we show
how the research domain of enumerative combinatorics can benefit from testing
and formal verification. In enumerative combinatorics we target combinatorial
maps, defined as a pair of permutations acting transitively on a set. In software
engineering we focus on automated testing and interactive deductive verification
with the Coq proof assistant [2].

We formalize in Coq the notions of permutation and combinatorial map,
two operations on permutations, and two operations on combinatorial maps.
Technically we first define these operations on functions. Then we formally prove
that they can be restricted to permutations, and finally to maps for the last two.
In other words we prove that they respectively preserve permutations and the
map structure.

Unless the proof is trivial, it is common to test lemmas and theorems before
proving. Main validation methods are random(ized) testing, bounded exhaustive
testing (BET) [5] and finite model finding [3]. In the following we deal with
random testing and BET. BET checks a formula for all its possible inputs up to
a given small size. It is often sufficient to detect many errors, while providing
counterexamples of minimal size. A challenge for BET is to design and implement
c© Springer International Publishing Switzerland 2016
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efficient algorithms to generate the data. We address it in a lightweight way by
exploiting the features of logic programming implemented in a Prolog system.
Prolog is well suited for algorithm prototyping due to its closeness to first-order
logic specifications. Thanks to backtracking, characteristic predicates written in
Prolog can often be used for free as bounded exhaustive generators.

We present a successful application of random and bounded exhaustive test-
ing to debug Coq specifications of combinatorial structures. Our original app-
roach of both case studies (permutations and maps) also is a contribution in
formalization of mathematics. In comparison with other approaches [8,10,16],
our formalization is very close to the mathematical definition of a map, as a
transitive pair of permutations. Our work is freely available at http://members.
femto-st.fr/alain-giorgetti/en/coq-unit-testing. It has been developed with Coq
8.4 and SWI-Prolog 5.10.4 [28].

The paper is organized as follows. Section 2 presents the testing methodology
on the simple example of permutations. Section 3 introduces the notion of rooted
map, its formalization in Coq, correctness theorems, and random and bounded
exhaustive testing performed before trying to prove them. Section 4 describes
related work and Sect. 5 concludes.

2 Testing Coq Conjectures

This section presents our methodology for testing Coq specifications. Before
investing time in proving false lemmas we want to check their validity. Property-
based testing (PBT) is popular for functional languages, as exemplified by Quick-
Check [7] in Haskell. QuickCheck like approach has also been adopted by proof
assistants, e.g. Isabelle [1], Agda [12], PVS [22], FoCaLiZe [6] and more recently
Coq [23]. We consider here two kinds of PBT: random testing (in Sect. 2.2) and
bounded exhaustive testing (in Sect. 2.3). They are illustrated by the running
example of permutations on a finite set presented in Sect. 2.1.

2.1 Permutations in Coq

Permutations on a finite set form an elementary but central combinatorial fam-
ily. In particular, permutations are the core of the definition of combinatorial
maps. It is well known that any injective endofunction on a finite domain is a
permutation. However, as far as we know, no popular Coq library defines per-
mutations as injective endofunctions supporting the two operations of insertion
and direct sum that we introduce here for their interest in the formal study of
rooted maps in Sect. 3. In the following the reader is required to have some basic
knowledge about Coq.

Listing 1.1 shows our Coq formalization of permutations. A permutation is
defined as an injective function from an interval of natural numbers (whose lower
bound is 0) to itself. In Coq the inductive type nat of Peano natural numbers
is predefined, with the constructors 0 for zero and S for the successor function.
We manipulate functions defined on nat (later called natural functions) but we

http://members.femto-st.fr/alain-giorgetti/en/coq-unit-testing
http://members.femto-st.fr/alain-giorgetti/en/coq-unit-testing
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only impose constraints for the elements in the interval, whatever the defini-
tion outside the interval. The predicates is endo and is inj respectively define
the properties of being an endofunction and injectivity. Then a permutation is
a record structure composed of a natural function and the proofs that the lat-
ter satisfies the two previous properties. For convenience we also consider their
conjunction is permut.
De f i n i t i o n i s e n d o ( n : nat ) ( f : nat → nat ) := ∀ x , x < n → f x < n .
D e f i n i t i o n i s i n j ( n : nat ) ( f : nat → nat ) := ∀ x y ,
x < n → y < n → x <> y → f x <> f y .

Record permut ( n : nat ) : Set := MkPermut {
f c t : nat → nat ;
endo : i s e n d o n f c t ;
i n j : i s i n j n f c t } .

D e f i n i t i o n i s p e rmu t n f := i s e n d o n f ∧ i s i n j n f .

Listing 1.1. Permutations as injective endofunctions in Coq.

We can define a more concrete encoding of permutations: a permutation p
on {0, . . . , n − 1} may also be represented by the list [p(0); p(1); . . . ; p(n − 1)]
of its images, called its one-line notation in combinatorics. For instance the list

[1; 0; 3; 2; 6; 4; 5] represents the permutation p =

(

0 1 2 3 4 5 6
1 0 3 2 6 4 5

)

. We’ll generate

permutations as lists and go from this representation to the functional one with
the help of the function list2fun defined by
De f i n i t i o n l i s t 2 f u n ( l : l i s t nat ) : nat → nat := fun ( n : nat ) ⇒ nth n l n .

The function nth in Coq standard library is such that (nth n l d) returns the
n-th element of l if it exists, and d otherwise.

Let f be a function defined on {0, . . . , n − 1} and i a natural number. The
insertion before i in f is the function f ′ defined on {0, . . . , n} as follows: (a) it
is f if i > n; (b) it is f extended with the fixed-point f(n) = n if i = n; (c) if
i < n then f ′(n) = i, f ′(j) = n if f(j) = i, and f ′(j) = f(j) if 0 ≤ j ≤ n−1 and
f(j) �= i. The operation of insertion in a natural function is defined in Coq by
De f i n i t i o n i n s e r t f u n n ( f : nat → nat ) ( i : nat ) : nat → nat :=
fun x ⇒ i f l e l t d e c i n then

match nat compare x n wi th
Eq ⇒ i

| Lt ⇒ i f e q na t d e c ( f x ) i then n e l s e f x
| Gt ⇒ x
end

e l s e x .

The direct sum of a function f1 defined on {0, . . . , n1 − 1} and a function f2
defined on {0, . . . , n2 − 1} is the function f on {0, . . . , n1 + n2 − 1} such that
f(x) = f1(x) if 0 ≤ x < n1 and f(x) = f2(x − n1) + n1 if n1 ≤ x < n1 + n2.
It is an extension of the well-known direct sum on permutations [18, p. 57]. The
direct sum is defined in Coq on natural functions by
De f i n i t i o n sum fun n1 f1 n2 f2 : nat → nat := fun x ⇒
i f l t g e d e c x n1 then f1 x e l s e
i f l t g e d e c x ( n1+n2 ) then ( f 2 ( x−n1 ) ) + n1 e l s e x .

Listing 1.2 states that both operations preserve permutations. To validate
these lemmas, we define Boolean versions is endob, is injb and is permutb of the
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logical properties is endo, is inj and is permut. Listing 1.3 shows the functions
is endob and is permutb. An evaluation of (is endob n f) returns true iff the
function f is an endofunction on {0, . . . , n − 1}. The lemma is endo dec states
that the Boolean function is endob is a correct implementation of the predicate
is endo. Similar lemmas are proved for the other two Boolean functions. If the
correlation between is endo and is endob is quite immediate, it is not the case
for is inj and is injb. To define is injb, we rely on another lemma we have proved:
a function f is injective on {0, 1, . . . , n} iff the list [f(0); f(1); . . . ; f(n)] of its
images has no duplicate.
Lemma i n s e r t p e rmu t : ∀ ( n : nat ) ( p : permut n ) ( i : nat ) ,
i s p e rmu t (S n ) ( i n s e r t f u n n ( f c t p ) i ) .

Lemma sum permut : ∀ n1 ( p1 : permut n1 ) n2 ( p2 : permut n2 ) ,
i s p e rmu t ( n1 + n2 ) ( sum fun n1 ( f c t p1 ) n2 ( f c t p2 ) ) .

Listing 1.2. Preservation properties of the insertion and sum operations.

F i x p o i n t i s e n dob au x n f m := match m with
0 ⇒ i f ( l t d e c ( f 0) n ) then t r u e e l s e f a l s e

| S p ⇒ i f ( l t d e c ( f m) n ) then i s e n dob au x n f p e l s e f a l s e
end .
D e f i n i t i o n i s e n dob n f := match n wi th

0 ⇒ t r u e
| S p ⇒ i s e n dob au x n f p
end .
Lemma i s e n d o d e c : ∀ n f , ( i s e n dob n f = t r u e ↔ i s e n d o n f ) .
D e f i n i t i o n i s p e rmu tb n f := ( i s e n dob n f ) && ( i s i n j b n f ) .

Listing 1.3. Boolean functions for permutations.

2.2 Random Testing

QuickChick [17] is a random testing plugin for Coq. It allows us to check the
validity of executable conjectures with random inputs. QuickChick is mainly a
generic framework providing combinators to write testing code, in particular
random generators. The general workflow that we follow to validate by testing
a conjecture like ∀ x: T, precondition x→ conclusion (f x), where precondition
and conclusion are logical predicates, starts with the definition of a random gen-
erator gen T of values of type T that satisfy the property precondition. Then we
have to turn conclusion into a Boolean function conclusionb – if it is possible,
otherwise QuickChick does not apply – that we prove semantically equivalent
to the logical predicate. The test is run by using the following command which
generates a fixed number of inputs using the generator gen T and for each one
applies the function f and verifies the property under test (conclusion):

QuickCheck (forAll gen T (fun x ⇒ conclusionb (f x)).

In this approach we rely on the generator which is here part of the trusted code.
QuickChick proposes some theorems (or axioms) about its different combinators
which could be used to prove that the generator is correct, but it may be hard
work. In the following we propose to test that the generator produces correct
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outputs. For that purpose, we implement the same approach: turning the logical
property precondition into an executable one preconditionb.

We now illustrate QuickChick features on permutations encoded as natural
functions. However, QuickChick cannot deal with functions so we generate per-
mutations as lists and then transform them into functions, as detailed in Sect. 2.1.
Let us notice that QuickChick heavily uses monads. However, in the following we
explain very informally some piece of code.

We first define a generator for permutations on {0, . . . , n−1}, as lists without
any duplicate containing 0, 1, . . .n − 1 in any order:
F i x p o i n t gen pe rmut l ( n : nat ) : G ( l i s t nat ) := match n wi th

0 ⇒ r e tu rnGen n i l
| S p ⇒ do ! m ← choose (0 , n ) ; l i f t G e n ( i n s e r t p o s p m) ( gen pe rmut l p )
end .

If n is 0, the output is the empty list. Otherwise (n is the successor of p) the recur-
sive call (gen permutl p) generates a list encoding a permutation on {0, . . . , p−1}
and the function inserts p in the latter at a position m which is randomly chosen
(using the combinator choose). The combinator liftGen applies a function, here
insert pos p m, to the result of a generator. To have confidence in this generator,
we test that the outputs do not contain any duplicate, that their length is n and
that their elements are natural numbers less than n. These three conditions are
implemented by the Boolean predicate list permutb.
QuickCheck ( s i z e d ( fun n ⇒ f o r A l l ( g en pe rmut l n ) ( l i s t p e rmu t b n ) ) ) .
+++ OK, pas sed 10000 t e s t s

The maximal number of tests (10000 here) can be adjusted by the user. We
iterate over different values for n thanks to the use of the combinator sized.

We can follow the same process to validate that permutations as natural func-
tions are obtained by applying the translation function list2fun on lists generated
by the previous generator gen permutl:
De f i n i t i o n fun permutb n l := i s p e rmu tb n ( l i s t 2 f u n l ) .
QuickCheck ( s i z e d ( fun n ⇒ f o r A l l ( g en pe rmut l n ) ( fun permutb n ) ) ) .
+++ OK, pas sed 10000 t e s t s

We are now ready to test the conjectures formulated in Listing 1.2, following
the same methodology: (i) when a natural function representing a permutation
is to be generated, we use the list generator gen permutl; (ii) the logical property
under test is turned into its Boolean version composed with the translation
function list2fun. For example testing Lemma insert permut is obtained by
QuickCheck ( s i z e d ( fun n ⇒ f o r A l l ( g en pe rmut l n )

( fun l ⇒ ( f o r A l l a r b i t r a r yN a t
( fun i ⇒ l e t f := l i s t 2 f u n l i n

i s p e rmu tb (S n ) ( i n s e r t f u n n f i ) ) ) ) ) ) .

This QuickCheck command has the same structure as the previous ones except
that we use two generators, one for permutations and another one for arbitrary
natural numbers, named arbitraryNat. This command passed 10000 tests. If we
inject a fault in the definition of insert fun, e.g. replacing the result n by S n in
the Lt case, we get a counterexample, e.g. l = [0; 1] and i = 0 for n = 2.
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2.3 Bounded Exhaustive Testing

For testing Coq specifications we also advocate in favor of bounded exhaustive
testing (BET) and its lightweight support with logic programs, for many reasons.
Firstly BET is especially well adapted to enumerative combinatorics, because
it corresponds to the familiar research activity of generation of combinatorial
objects in this domain. Secondly BET provides the author of a wrong lemma
with the smallest combinatorial structure revealing her error. Thirdly the combi-
natorial structures formalized in Coq as inductive structures with properties are
often easy to formalize in first-order logic with Prolog predicates. Fourthly the
Prolog backtracking mechanism often provides bounded exhaustive generators
for free. All these advantages are illustrated in this paper.

In order to make the validation tasks easier, we extend a Prolog validation
library created by Valerio Senni [27] and previously applied to the validation of
algorithms on words encoding rooted planar maps [14]. The library provides full
automation for symmetric bounded exhaustive comparison for increasing bound
values. It returns counterexamples whenever validation fails (so the debugging
process is guided by those counterexamples), and it collects statistics such as
generation time and memory consumption. We illustrate some of the validation
library features on the example of permutations. The reader is assumed to be
familiar with logic programming, or can otherwise read a short summary in [14].

We encode a function f on {0, . . . , n − 1} by the Prolog list of its images
[f(0), . . . ,f(n − 1)], its one-line notation. A list is linear if it has no duplicates.
Listing 1.4 shows a Prolog predicate line such that the formula line(L,N) (resp.
line(L,K,N)) holds iff L is a linear list of length N (resp. K) with elements in
{0, . . . , N-1}. We then say for short that L is a permutation list. In other words,
this characteristic predicate of permutations corresponds to (is permut n) in Coq.
The predicate is parameterized by the list length. This is not strictly required for
formal specification but useful for generation purposes. The formula in(K,I,J)
holds iff the integer K is in the interval [I..J].
line([],0,_).
line([Y|P],K,N) :- K > 0, Km1 is K-1, Nm1 is N-1, in(Y,0,Nm1),
line(P,Km1 ,N), \+ member(Y,P).

line(P,N) :- line(P,N,N).

Listing 1.4. Permutations in Prolog.

A clear advantage of logic programming is that the predicate line works in
two ways: as an acceptor of permutation lists, and as a generator enumerating
permutation lists of a given length. For a characteristic predicate p and a given
size n the query scheme

Q: p(L,n), write_coq(L), fail.
indeed allows the enumeration of all the accepted data of size n. The query
forces the construction of a first datum L of size n accepted by p, its output
on a stream, and the failure of the proof mechanism by using the built-in fail.
Since the proof fails, the backtracking mechanism recovers the last choice-point
(necessarily in p) and triggers the generation of a new datum, until there are
no more choice-points. Here the predicate write_coq is defined by the user to
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output (as side-effect) a test case in Coq syntax. For instance, it can easily be
defined so that the query

line(L,3), write_coq(3), fail.

writes one Coq line such as
Eval compute in (is permutb 3 ( list2fun [2;0;1])) .

for each permutation list of length 3. These lines constitute a test suite for the
Coq function is permutb, under the assumptions that the Coq function list2fun
and the Prolog program in Listing 1.4 are correct. The latter can be checked
in two ways: by visual inspection of the lists it generates, or by counting. For
counting, the library provides the predicate iterate so that the query

:- iterate(0,6,line).

outputs the numbers 1, 1, 2, 6, 24, 120 and 720 of distinct lists of length n from 0
to 6 accepted by the predicate line. We then easily recognize the first numbers
n! of permutations of length n.

We can now adapt the predicate write_coq of the query Q to the BET of
the lemmas in Listing 1.2. For Lemma insert permut the query evaluation can
generate in a Coq file all the Coq lines of the form

Eval compute in (is permutb (n + 1) ( insert fun n (list2fun l) i )).

for n up to some bound, for 0 ≤ i ≤ n and for any list l (of length n) satisfying
line(l,n). Then we check that the compilation of the generated Coq file always
produces true. We proceed similarly with the lemma sum permut.

As mentioned before about the property is inj, it may be hard to write a
Boolean version of a property and to prove its correctness. In that case BET
sometimes remains possible, as illustrated by the following example. Suppose
that we find no implementation of the property is permut. Then we generate a
non-computational proof generalizing the following example
Goal i s p e rmu t 3 ( l i s t 2 f u n ( 2 : : 0 : : 1 : : n i l ) ) . u n f o l d i s p e rmu t .
un f o l d l i s t 2 f u n . un f o l d l i s t 2 f u nX . s p l i t .
− un f o l d i s e n d o . i n t r o s x Hx . a s s e r t ( x = 0 ∨ x = 1 ∨ x = 2 ) . omega .

f i r s t o r d e r ; s ub s t ; s imp l ; omega .
− un f o l d i s i n j . i n t r o s x y Hx Hy Hxy .

a s s e r t ( x = 0 ∨ x = 1 ∨ x = 2 ) . omega .
a s s e r t ( y = 0 ∨ y = 1 ∨ y = 2 ) . omega .
f i r s t o r d e r ; s ub s t ; s imp l ; omega . Qed .

The proof first splits into one subproof for the property is endo and one for
is inj. Each subproof works by enumeration of the possible values of x (and y for
injectivity). This approach holds whenever the property is universally quantified
with variables i of type nat upper bounded by some number b. Then the tactic
enumerates all the possible values of i. The assertion is proved by the tactic
omega which implements a decision procedure for linear arithmetics (the Omega
test [24]). The proof is then decomposed into cases by the firstorder tactic.
In the subproof for injectivity each case contains hypotheses x =... and y =...
assigning values to both variables. After replacement of x and y with their values
the Omega test ends the proof.



64 C. Dubois et al.

3 Case Study of Rooted Maps

It is now time to apply our test methodology to more challenging Coq theorems.
As case study we consider the combinatorial family of rooted maps, formalized
in Coq as transitive permutations (Sect. 3.1). Then we introduce two operations
that should construct a map from one or two smaller ones by edge addition
(Sect. 3.2). Both operations are defined as combinations of the two operations
of insertion and direct sum defined in Sect. 2. Finally we check by testing and
then prove formally that both operations preserve permutations and transitivity
(Sect. 3.3). Section 3.4 reports some testing and proving statistics.

3.1 Definitions and Formalization

A topological map is a cellular embedding of a connected graph (possibly with
loops and multiple edges) into a compact, oriented surface without bound-
ary [19]. A face of a topological map is a connected component of the com-
plement of the graph in the surface. By definition each face is homeomorphic to
an open disc. Figure 1(a) shows a topological map. It is drawn on the plane for
convenience, but should be considered as drawn on the sphere, so that the outer
face (the infinite white piece of the plane) becomes homeomorphic to an open
disk. We admit the existence of a map containing a single vertex, no edges, and
a single face, called the vertex map. Any other map contains at least one edge.

A half-edge, i.e. an edge equipped with one of its two possible orientations,
is usually called a dart. The other dart on the same edge is called the opposite
dart. The vertex at the source of a dart and the face to the right of a dart are
said to be incident to that dart. A loop is an edge whose two associated darts are
incident to the same vertex. We only consider labeled topological maps, whose
darts are identified by a unique label. In the drawings the label of a dart is
always written in its incident face and near its incident vertex. For instance, the
dart 11 in Fig. 1(a) is incident to the outer face, it is incident to the same vertex
as the darts 3 and 4, and its opposite dart is labeled by 10.

Edmonds [13] reduced topological maps to their combinatorial structure,
defined as follows. A (combinatorial) labeled map with n edges is a triple (D,R,L)

Fig. 1. Two representations of a rooted map.
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where D is a finite set of even cardinality 2n, R is a permutation of D and L is
a fixed-point free involution of D such that the group 〈R,L〉 generated by R and
L acts transitively on D. This transitivity means that any element of D can be
obtained from any other element of D by finitely many applications of the permu-
tations R, L and their inverse. Figure 1(b) shows the combinatorial map (D,R,L)
corresponding to the topological map in Fig. 1(a). More generally the one-to-one
correspondence between topological and combinatorial labeled maps works as fol-
lows. An element of the set D is a dart of the topological map. The permutations
R and L respectively encode its vertices and edges. An orbit of the permutation R
lists the darts encountered when turning counterclockwise around a vertex. The
involution L exchanges each dart with its opposite on the same edge. For instance,
the orbit (5 0 6) of R encodes the leftmost vertex in Fig. 1(a) and the orbit (8 9) of
L encodes the loop in Fig. 1(a). The transitive action of the permutations R and
L corresponds to the connexity of the embedded graph.

A rooting of a map is essentially the choice of one of its darts, called its root.
The edge which includes the root dart is called the root edge. By convention,
the vertex map is also considered to be rooted. In the drawings the root dart is
indicated by an arrow, as the dart 11 in Fig. 1(a). Two labeled maps (D,R,L)
and (D′, R′, L′) are isomorphic if there is a bijection θ from D to D′ such that
R′ = θ−1R θ and L′ = θ−1L θ. This bijection is called a labeled map isomor-
phism. For a predefined root d ∈ D, two labeled maps (D,R,L) and (D,R′, L′)
with the same set of darts D are root-preserving isomorphic if they are isomor-
phic and their isomorphism preserves the root d. A rooted combinatorial map
(or map for short) is an equivalence class for the relation of root-preserving iso-
morphism between labeled maps. For the purpose of enumeration, the special
virtue of rooted maps is that they have no symmetries, in the sense that the
automorphism group of any rooted map is trivial.

In order to simplify the formalization and formal reasoning we refine the usual
definition of a combinatorial labeled map. In the usual definition of a labeled
map M = (D,R,L) the set of darts D is any finite set and the permutation L
is any fixed-point free involution on D. Here we fix D to {0, . . . , 2e − 1} for any
map with e edges. Since rooted maps are defined modulo conjugation, we also
fix L to the fixed-point free involution that swaps 2i and 2i+1 for all 0 ≤ i < e.
This involution is formalized in Coq by
De f i n i t i o n opp ( n : nat ) : nat := i f ( even odd dec n ) then ( n+1) e l s e (n−1).

Such a map is said to be local. For instance, the combinatorial map in Fig. 1(b)
is local. A local map can be represented using only its vertex permutation R,
called its rotation. To root a local map, we always choose the largest element
(2e − 1) of D.

We now define the transitivity of any function f on some set D so that a
triple (D,R, opp) is a local map iff its rotation R is transitive. We say that there
is a step between two elements x and y of D by a function f iff f(x) = y,
f(y) = x or opp(x) = y. Two numbers x and y are connected by f iff there is a
path (i.e. a sequence of steps) from x to y. Finally, a function f is transitive on
D if any two elements of D are connected by f .
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I n d u c t i v e connected n ( f : nat → nat ) : nat → nat → nat → Prop :=
| c0 : ∀ x y , x < n → y < n → x = y → connected n f 0 x y
| c f i r s t : ∀ l x y z , x < n → y < n → z < n →

f x = y ∨ f y = x ∨ opp x = y →
connected n f l y z → connected n f (S l ) x z .

D e f i n i t i o n i s t r a n s i t i v e f u n ( n : nat ) ( f : nat → nat ) : Prop :=
∀ x , x < n → ∀ y , y < n → ∃ m, connected n f m x y .
D e f i n i t i o n t r a n s i t i v e f u n ( n : nat ) ( f : nat → nat ) : Prop :=
∀ y , y < n → ∀ x , x < y → ∃ m, connected n f m x y .
D e f i n i t i o n i s t r a n s i t i v e n ( p : permut n ) := t r a n s i t i v e f u n n ( f c t p ) .

Listing 1.5. Definition of transitivity.

Listing 1.5 shows a Coq formalization of transitivity on {0, . . . , n − 1} of a nat-
ural function. The connectivity property is specified by the inductive predicate
connected so that (connected n f l x y) holds iff the natural numbers x and y are
related by exactly l steps of f. The constructor cfirst states that a path between
x and y can be decomposed into its first step and its end, while the constructor
c0 expresses the trivial case where x = y. This definition is completed by three
lemmas (not shown here): one lemma decomposing a path into its beginning and
its last step and two lemmas respectively proving the symmetry and the transi-
tivity of the binary relation (connected n f l). The definitions is transitive fun and
transitive fun implement two versions of the property of transitivity of a func-
tion. Decompositions into cases in several proofs are dramatically shortened by
using the second definition transitive fun of transitivity considering only numbers
x strictly smaller than y. Using symmetry of the predicate connected we prove
that both definitions of transitivity are equivalent. The predicate is transitive
defines the transitivity of a permutation as the transitivity of its associated
function.

All the maps considered hereafter are local and are encoded by their transitive
rotation. A local map (D,R, opp) with e edges is formalized in Coq by a record
composed of its vertex permutation of length 2e (its rotation) and the property
that this permutation is transitive, as follows:
Record map ( e : nat ) : Set := {
r o t a t i o n : permut (2∗ e ) ;
t r a n s i t i v e : i s t r a n s i t i v e r o t a t i o n } .

3.2 Map Construction Operations

An edge is an isthmus if both of its associated darts are incident to the same
face. A map is isthmic (resp. non-isthmic) if it is not the vertex map and its root
edge is (resp. not) an isthmus. We define here an operation cI constructing an
isthmic map from two maps and a family of operations ckN (indexed by a number
k) constructing a non-isthmic map from one map. Both operations proceed by
addition of one edge.

Isthmic Operation. The operation cI is illustrated by an example in Fig. 2.
It adds an isthmic edge between a local map M1 with e1 edges and a local map
M2 with e2 edges. The result is a map M = cI(M1,M2) with e1 + e2 + 1 edges.
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Fig. 2. Example of construction of an isthmic map.

Let d1 = 2e1, d2 = 2e2 and d = 2e1 +2e2 +2 be the numbers of darts of M1, M2

and M . The additional edge is composed of the two darts d − 1 (= d1 + d2 + 1)
and d − 2 (= d1 + d2). The root of M is the dart d − 1, while its opposite dart
opp(d − 1) is d − 2.
De f i n i t i o n i s t hm i c f u n d1 ( r1 : nat → nat ) d2 ( r2 : nat → nat ) : nat → nat
:= match d1 wi th
| 0 ⇒ match d2 wi th

| 0 ⇒ i n s e r t f u n 1 ( i n s e r t f u n 0 r2 0) 1
| S d2m1 ⇒ i n s e r t f u n ( d2+1) ( i n s e r t f u n d2 r2 d2m1) ( d2+1)
end

| S d1m1 ⇒ match d2 wi th
| 0 ⇒ i n s e r t f u n ( d1+1) ( i n s e r t f u n d1 r1 d1 ) d1m1
| S d2m1 ⇒

i n s e r t f u n ( d1+d2+1)
( i n s e r t f u n ( d1+d2 ) ( sum fun d1 r1 d2 r2 ) (d1m1+d2 ) )

d1m1
end end .

Listing 1.6. Isthmic operation in Coq.

Listing 1.6 presents a Coq function isthmic fun implementing this operation
on two natural functions r1 and r2 representing the rotations R1 and R2 of M1

and M2. If R1 and R2 represent the vertex map (d1 = d2 = 0) then the resulting
map M is reduced to one non-loop edge and the resulting rotation R is the
permutation (0) (1). If M1 is the vertex map (d1 = 0) and M2 is not empty
(d2 �= 0) then the dart d − 2 (= d2) is added just before the dart d2 − 1 in its
orbit in R2 and then the dart d − 1 (= d2 + 1) is added as a fixed-point of R.
If M1 is not empty (d1 �= 0) and M2 is the vertex map (d2 = 0) then the dart
d − 2 (= d1) is added as a fixed-point, and then the dart d − 1 (= d1 + 1) is
added just before the dart d1 − 1 in its orbit. Otherwise, when M1 and M2 are
not the vertex map, the direct sum R′ = sum(R1, R2) is computed thanks to a
call to the function sum fun. Then the dart d1 + d2 is inserted just before the
dart d2 − 1+d1 in its orbit in R′, and finally the dart d1 +d2 +1 is inserted just
before the dart d1 − 1 in its orbit in the resulting permutation.

Non-isthmic Operation. For 0 ≤ k ≤ 2e the operation ckN adds a non-isthmic
edge in a local map M with e edges (represented by its rotation R of length
d = 2e) to obtain a local map M ′ with e + 1 edges represented by its rotation
R′ of length d′ = 2e + 2. The resulting permutation R′ is obtained by insertion
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Fig. 3. Examples of construction of non-isthmic maps.

of the new root d + 1 and its opposite d in R. If M is the vertex map, the new
edge is added – as a loop – in a unique way to obtain M ′. Otherwise, there are
d+1 ways to add the new edge, distinguished by the value of k between 0 and d.
Figure 3 shows a map M with three edges (in Fig. 3(a)) and three maps obtained
by application of the operation ckN on M , for different values of k. Two of them
are planar maps whereas the last one in Fig. 3(d) is a toroidal map (a map on
a torus). When k = d − 1 and k = d the added edge is a loop. These cases are
respectively illustrated in Fig. 3(b) and (c). Note that the order of insertion of
darts is important: in Fig. 3(b), the dart d is inserted just before the dart d − 1
but then the dart d+1 is inserted just before the dart k = d−1, so that the dart
d finally is just before d + 1 in its orbit in the rotation R′ of M ′. In all the other
cases, the dart d is just before the dart d − 1 in R′. Figure 3(d) shows a case
0 ≤ k < d − 1 where the dart k is not incident to the same face as d − 1. In this
case, the new edge can only be added through a hole perfored in the surface.

Listing 1.7 presents a Coq function non isthmic fun implementing this oper-
ation on a natural function r representing the vertex permutation R of a local
map with d darts, when k is d or less. When d = 0 the rotation R represents the
vertex map, the new edge is a loop and the resulting function is the permutation
(0 1). Otherwise, the dart d is inserted just before the root d − 1 of M in its
orbit in R. Let us denote here by Q the resulting permutation. Then the dart
d + 1 is inserted just before the dart k in its orbit of Q.
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De f i n i t i o n n o n i s t hm i c f u n ( d : nat ) ( r : nat → nat ) ( k : nat )
( k l e d : k ≤ d ) : nat → nat :=
match d wi th
| 0 ⇒ i n s e r t f u n 1 ( i n s e r t f u n 0 r 0) 0
| S dm1 ⇒ i n s e r t f u n (S d ) ( i n s e r t f u n d r dm1) k
end .

Listing 1.7. Non-isthmic operation in Coq.

3.3 Validation and Proof

We have separately formalized combinatorial maps and two map constructions
as operations on natural functions. It remains to prove that each operation pre-
serves transitive permutations. We proceed in two steps. The first step consists
in checking and proving that both operations preserve permutations. The second
step concerns transitivity.

Preservation of Permutations. The proof that the construction operations
preserve permutations is decomposed into intermediate lemmas. For example,
one of them
Lemma i s t hm i c e ndo : ∀ d1 ( r1 : permut d1 ) d2 ( r2 : permut d2 ) ,
i s e n d o (S (S ( d1 + d2 ) ) ) ( i s t hm i c f u n d1 ( f c t r1 ) d2 ( f c t r2 ) ) .

states that the isthmic operation preserves endofunctions, and
Lemma n o n i s t hm i c i n j : ∀ d ( r : permut d ) k ( k l e d : k ≤ d ) ,
i s i n j (S (S d ) ) ( n o n i s t hm i c f u n d ( f c t r ) k k l e d ) .

states that the non-isthmic operation preserves injectivity.
As in Sect. 2.3, we validate by BET that the isthmic and non-isthmic oper-

ations preserve permutations. In the non-isthmic case, we meet a specificity of
testing with dependent types. The non-isthmic operation is indeed parameter-
ized by a proof. So the BET has to generate such a proof for each test input.
It can be automated only if all these proofs share a common pattern (notion of
uniform proof). In the present case we need a uniform proof of x ≤ y for any
pair of natural numbers x and y. Fortunately the Coq predicate ≤ is reflected
by the Boolean function leb :nat→nat→bool through the lemma
Lemma l e b c omp l e t e : ∀ m n , l e b m n = t r u e → m ≤ n .

so that the term (leb complete x y eq refl) is a uniform Coq proof of x ≤ y.
For the preservation of permutations by the non-isthmic operation the BET
generates test cases such as
Eva l compute i n (
l e t p r oo f := l e b c omp l e t e 2 3 e q r e f l
i n i s p e rmu tb 5 ( n o n i s t hm i c f u n 3 ( l i s t 2 f u n [ 0 ; 0 ; 0 ] ) 2 p r oo f ) ) .

for x = 2 and y = 3. After this validation we have proved all the permutation
preservation lemmas.

Random testing also allows us to validate the preservation of permutations by
the isthmic operation. The following QuickCheck command randomly generates
a first natural number d1, a permutation list l1 of length d1 and then a second
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number d2 together with a permutation list of length d2 and checks if the isthmic
operation builts a permutation from the corresponding natural functions.
QuickCheck ( f o r A l l a r b i t r a r yN a t ( fun d1 ⇒

f o r A l l ( g en pe rmut l d1 ) ( fun l 1 ⇒ l e t f 1 := l i s t 2 f u n l 1 i n
f o r A l l a r b i t r a r yN a t ( fun d2 ⇒

f o r A l l ( g en pe rmut l d2 ) ( fun l 2 ⇒ l e t f 2 := l i s t 2 f u n l 2 i n
i s p e rmu tb (S (S ( d1 + d2 ) ) ) ( i s t hm i c f u n d1 f1 d2 f2 ) ) ) ) ) ) .

Unfortunately for non isthmic fun, this process is not applicable. We could follow
the same process: generate a natural number d, a permutation list of length d and
a number k less than d and so on. Thanks to the choose combinator provided by
QuickChick, it is easy to provide such a k. However, we are not able to produce
a proof term for k ≤ d which is an argument required by non isthmic fun because
QuickChick does not provide a correctness proof for choose. A solution could be
to rewrite non isthmic fun without this proof argument.

Preservation of Transitivity. We first validate and then demonstrate that
the isthmic and non-isthmic operations preserve transitive permutations and
therefore can be considered as operations on (local) maps. These properties are
formalized by the two theorems presented in Listing 1.8. Theorem isthmic trans
(resp. non isthmic trans) states that the isthmic (resp. non-isthmic) operation
preserves the transitivity when acting on two permutations (resp. one permuta-
tion) of even length.
Theorem i s t hm i c t r a n s : ∀ d1 ( r1 : permut d1 ) d2 ( r2 : permut d2 ) ,

even d1 → even d2 → i s t r a n s i t i v e r1 → i s t r a n s i t i v e r2 →
i s t r a n s i t i v e ( i s t hm i c p e rmu t r1 r2 ) .

Theorem n o n i s t hm i c t r a n s : ∀ d ( r : permut d ) k ( k l e d : k ≤ d ) ,
even d → i s t r a n s i t i v e r → i s t r a n s i t i v e ( non i s t hm i c pe rmut r k l e d ) .

Listing 1.8. Preservation of transitivity by the isthmic and non-isthmic operations.

F i x p o i n t n l i s t n ( f : nat → nat ) : nat → l i s t nat := fun x ⇒ match n wi th
0 ⇒ ( opp x ) : : n i l

| S m ⇒ el imDup ( ( n l i s t m f x ) ++
( i f e q na t d e c ( f m) x then m: : n i l e l s e n i l ) ++
( i f e q na t d e c x m then ( f m) : : n i l e l s e n i l ) )

end .
F i x p o i n t d f s ( g : nat → l i s t nat ) ( n : nat ) ( v : l i s t nat ) ( x : nat ) :=
i f ( i n d e c eq na t d e c x v ) then v e l s e match n wi th

0 ⇒ v
| S n ’ ⇒ f o l d l e f t ( d f s g n ’ ) ( g x ) ( x : : v )
end .
D e f i n i t i o n i s t r a n s i t i v e f u n b n f := i f
e q na t d e c n ( l e n g t h ( d f s ( n l i s t n f ) n n i l 0 ) ) then t r u e e l s e f a l s e .

Listing 1.9. Boolean function for transitivity.

For testing we propose in Listing 1.9 an implementation of the transitivity
predicate defined in Listing 1.5. It is based on a depth-first search in the graph
where a directed edge goes from x to y if f(x) = y, f(y) = x or opp(x) = y,
for any two vertices x and y in {0, . . . , n − 1}. The call (nlistn f x ) returns the
list of neighbors of x in this graph. The auxiliary function elimDup eliminates
duplicates in a list. The depth-first search is implemented by the function dfs
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inspired by the function with the same name in [21]. The function fold left is
such that (fold left f [x1;..;xk] a) computes f (.. (f (f a x1) x2) ..) xk.

Proving the soundness of this implementation wrt. its specification in
Listing 1.5 is not an easy task and is therefore left as a future work. The sound-
ness of is transitive funb can however be checked, for instance by counting the
first numbers of transitive permutations. The number t(e) of transitive permu-
tations of length 2e is indeed equal to the number of rooted maps, multiplied
by the number 2e−1(e − 1)! of isomorphic local labeled maps in a rooted map
if e > 0 (Remember that a rooted map is an equivalence class of isomorphic
labeled maps, for root-preserving isomorphisms). The first numbers of rooted
maps and many references about them can be found in [29].

Let d = 2e be an even natural Coq number and let l be a Coq list of all the
permutation lists of length d. The Coq code
De f i n i t i o n i s t r a n s i t i v e l i s t b d l := i s t r a n s i t i v e f u n b d ( l i s t 2 f u n l ) .
Eva l compute i n ( l e n g t h ( f i l t e r ( i s t r a n s i t i v e l i s t b d ) l ) .

computes the length of the list obtained by filtering the transitive permutation
lists. Thus it should compute t(e). The list l is generated by the Prolog-based
BET presented in Sect. 2. This validation is feasible only for e = 0, 1, 2, 3. It
correctly counts t(e) = 1, 2, 20, 592 after examining (2e)! permutations. For e = 4
the Coq compilation runs out of memory. After this validation by counting, we
use the Boolean function is transitive funb to test the theorems in Listing 1.8.

The isthmic operation combines insertion and direct sum. One could think
that it preserves transitivity because these two operations also do. In fact, it is
not so simple. In particular, the direct sum operation does not preserve transi-
tivity. It can be understood by coming back to its definition. But it can also be
quickly invalidated by BET on an executable version of the wrong property:
Theorem s um t r a n s i t i v e : ∀ d1 r1 d2 r2 , even d1 → even d2 →
i s p e rmu t d1 r1 → i s t r a n s i t i v e f u n d1 r1 →
i s p e rmu t d2 r2 → i s t r a n s i t i v e f u n d2 r2 →
i s t r a n s i t i v e f u n ( d1 + d2 ) ( sum fun d1 r1 d2 r2 ) .

The BET provides us with the smallest counterexample where r1 and r2 are the
function (list2fun [1; 0]) encoding the transposition exchanging 0 and 1.

Random testing also allows us to invalidate this conjecture and obtain some
counterexamples. For some executions, we retrieve exactly the previous smallest
one. As a process for generating transitive permutations is lacking, we generate
permutations as functions (as previously) and filter those which are transitive
using the Boolean predicate is transitive funb. The following QuickCheck com-
mand does the job. If f1 (or f2) is not transitive, the test case is discarded (it is
done by the combinator written as =⇒).
QuickCheck ( f o r A l l gen even ( fun d1 ⇒

f o r A l l ( g en pe rmut l d1 ) ( fun l 1 ⇒ l e t f 1 := l i s t 2 f u n l 1 i n
i s t r a n s i t i v e f u n b d1 f1=⇒

f o r A l l gen even ( fun d2 ⇒
f o r A l l ( g en pe rmut l d2 ) ( fun l 2 ⇒ l e t f 2 := l i s t 2 f u n l 2 i n

i s t r a n s i t i v e f u n b d2 f2=⇒
i s t r a n s i t i v e f u n b ( d1 + d2 ) ( sum fun d1 f1 d2 f2 ) ) ) ) ) ) .

2 [ 0 ; 1 ] 4 [ 2 ; 0 ; 1 ; 3 ] ∗∗∗ F a i l e d ! A f t e r 3 t e s t s and 0 s h r i n k s
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Each transitivity preservation proof reduces to the preservation of connec-
tivity between any two numbers (darts) x and y with x < y. For instance the
most complex case in the proof of Theorem isthmic trans is 0 ≤ x < d1 (x ∈ R1)
and d1 ≤ y < d1 + d2 (y ∈ R2). Its proof constructs a path between x and y by
concatenation of a path from the dart x to the root d1 − 1 of R1, a step between
d1 − 1 and the root d − 1 = d1 + d2 + 1, a step between the root d − 1 and its
opposite d− 2 = d1 +d2 through the fixed-point free involution opp, a step from
d − 2 to the root d2 − 1 of R2, relabelled d1 + d2 − 1, and finally a path from
that dart d1 + d2 − 1 to y in the relabelling of R2.

3.4 Some Metrics

The case study is composed of 80 definitions, 185 lemmas and 2 theorems,
for a total of 5580 lines of Coq code. Among them around 280 lines are ded-
icated to validation. These lines contain 23 definitions and 4 lemmas. They
include Boolean versions of some logical definitions used by both random test-
ing and BET, e.g. the Boolean function is permutb, their corresponding correct-
ness proofs, and the generators required by QuickChick. The Prolog code for
BET is composed of 44 lines added to the validation library and 860 lines whose
execution generates test suites for the case study.

All the validations by counting and BET presented in the paper are executed
with lists up to length 4, in less that 21 s on a PC Intel Core i5-2400 3.10 GHz
× 4 under Linux Ubuntu 14.04 (the time for test generation is neglictible). The
QuickChick random tests (10000 test cases for each validation step except for the
wrong conjecture) are generated and executed in less than 54 s. These are rea-
sonable times for thousands of automatically generated tests. For a comparison
the Coq compilation time is around 20 s.

4 Related Work

Several techniques and tools help strengthening the trust in programs manipulat-
ing structured data. Randomized property-based testing (RPBT) consists in ran-
dom generation of test data to validate given assertions about programs. RPBT
has gained much popularity since the appearance of QuickCheck for Haskell [7],
followed by e.g. Quickcheck for Isabelle [5]. In RPBT a random data generator
can be defined by filtering the output of another one, in a similar way as an
exhaustive generator can be defined by filtering another exhaustive generator in
BET. A more generic approach is type-targeted testing [26], wherein types are
converted into queries to SMT solvers whose answers provide counterexamples.
SmallCheck and Lazy SmallCheck [25] are two Haskell libraries for property-
based testing, allowing an automatic exhaustive testing for small values. In Coq,
as far as we know, there is no equivalent to the Haskell library SmallCheck.

The theory of combinatorial maps was developed from the early 1970’s.
Tutte [30,31] proposed the most advanced work in this direction, develop-
ing an axiomatic theory of combinatorial maps without referencing topology.
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More recently Lazarus [20] conducted a computational approach on graphs and
surfaces based on combinatorial maps. He notably proposed a formal defini-
tion of the basic operation of edge deletion on combinatorial labeled maps. An
advanced formalization related to maps is that of combinatorial hypermaps to
state and prove the Four Colour Theorem in the Coq system [15,16]. Note that
combinatorial hypermaps generalize combinatorial maps by allowing an arbi-
trary permutation L (i.e., not necessarily a fixed-point free involution). This
formalization does not explicitly state that L and R are bijective, but adopt the
alternative definition of a hypermap as a triple of endofunctions that compose
to the identity [15, p. 19]. It would be interesting to investigate this idea with
local maps rather than hypermaps, and to determine to what extent it could
simplify our formalization. Some formal proofs about combinatorial maps or
variants have already been carried out in the domain of computational geom-
etry. Dufourd et al. have developed a large Coq library specifying hypermaps
used to prove some classical results such as Euler formula for polyhedra [10],
Jordan curve theorem [11], and also some algorithms such as convex hull [4]
and image segmentation [9]. In these papers, a combinatorial map or hypermap
is represented by an inductive type with some constraints. Its constructors are
related to the insertion of a dart or the links of two darts. This representation
differs from ours that relies on permutations. In [8], Dubois and Mota proposed
a formalization of generalized maps using the B formalism, very close to the
mathematical presentation with permutations and involutions. Here we simplify
the structure by fixing the involution.

5 Conclusion

We have shown how to use random testing and bounded exhaustive testing to
validate Coq definitions and theorems. The bounded exhaustive testing is based
on logical specifications. It is assisted by a validation library in Prolog. We
have applied these methods on two case studies. The second case study is also
an original formalization of rooted maps with an interactive theorem prover.
It directly encodes the combinatorial definition of a rooted map (as a transitive
pair of injective endofunctions) and two basic operations for constructing them
from smaller ones. The properties that these operations preserve permutations
and transitivity are formalized, validated by random and bounded exhaustive
testing, and then proved with some interactivity.

These two case studies about combinatorial structures show that logic pro-
gramming features make Prolog an effective tool for prototyping and validating
this kind of Coq code. Our focus is more on the design and validation method-
ology than on the resulting algorithms. The present work is intended to serve as
a methodological guideline for further studies, in particular with other families
of combinatorial objects.
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Abstract. Deciding whether a given test suite is effective enough is
certainly a challenging task. Focusing on a software program’s function-
ality, we propose in this paper a new method that leverages Boolean
functions as abstract reasoning format. That is, we use machine learning
in order to infer a special binary decision diagram from the considered
test suite and extract a total variable order, if possible. Intuitively, if an
ROBDD derived from the Boolean functions representing the program
under test’s specification actually coincides with that of the test suite
(using the same variable order), we conclude that the test suite is effec-
tive enough. That is, any program that passes such a test suite should
clearly show the desired input-output behavior. In our paper, we provide
the corresponding algorithms of our approach and their respective proofs.
Our first experimental results illustrate our approach’s practicality and
viability.

Keywords: Software testing · Machine learning · BDD · ROBDD

1 Introduction

Test suite generation and in turn the decision whether a test suite is good enough
are certainly quite complex tasks. In this paper, we focus on the latter and in
particular on the functional aspect. That is, we would like to know whether
a given test suite examines the functionality of our p rogram to the best of
our knowledge. Certainly, a test suite examining all possible input combinations
would be an assuring approach, but exhaustive testing of the entire I/O space
is certainly impossible in most cases due to the sheer number of required tests.

Now, let us consider the example of a Boolean function as illustrated in
Fig. 1. The function has n = 3 input variables, and let us assume that we have
an exhaustive test suite TS containing 2n test cases s.t. all input combinations
are tested. While TS certainly is effective due to checking the entire I/O space,
for a subset T ⊆ TS, T ’s effectiveness is unclear. If we assume there to be, e.g.,
40 inputs, exhaustive testing with 240 test cases is however certainly impossible.
Our idea now is to learn a canonical representation from T that we then compare

c© Springer International Publishing Switzerland 2016
B.K. Aichernig and C.A. Furia (Eds.): TAP 2016, LNCS 9762, pp. 76–93, 2016.
DOI: 10.1007/978-3-319-41135-4 5
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Fig. 1. An illustration of our approach for a simple Boolean function, and a table
reporting on the performance of several test suites T ⊆ TS.

to a corresponding representation derived from the program under test’s spec-
ification, in order to check whether they are equivalent. In case of equivalence,
we then assume that the test suite captures the same behavior as the program.
This leads us to the immediate and important question: What is an attractive
canonical representation suitable for a test suite and the tested program?

As described in Sect. 3, we use reduced ordered binary decision diagrams
(ROBDDs) as our canonical format. In particular, like illustrated in Fig. 1, we
infer a binary decision tree DT from the considered test suite T via machine
learning. In the learning algorithm proposed in Sect. 3.1, similar to the algorithm
C4.5 (see Sect. 2) we take the local information gain into account when choosing
the next decision variable. Consequently, the variable order in DT ’s individual
paths is determined via the entropy of the local situations in order to come
up with a “good” order. Our next step is to derive an ordering graph O for
DT as described Sect. 3.2, and if it is cycle-free, we extract a total variable
order and reduce DT to an ROBDD (for the latter see Sect. 3.3). Afterwards we
derive an ROBDD for the system under test (SUT) from its Boolean functions’
specification with the concept described in Sect. 3.4.

Our argument is that if the two ROBDDs coincide, then a program satisfy-
ing T should implement the desired I/O behavior. Our experiments reported in
Sect. 4 show an excellent correlation between our classification and fault identi-
fication capabilities. Note that if O features cycles, then there are contradicting
variable orders in DT ’s paths (see Sect. 3.2) that we would need to resolve by
reordering the variables in some paths (this is not implemented yet).

Now let us come back to our example. If we consider the table in Fig. 1,
we can see, e.g., that for a subset size of 4 (=n + 1), out of the

(

2n

n+1

)

= 70
subsets, there is a single one that we would consider to be effective, and that
the likelihood of achieving this with some T ⊆ TS increases with a higher subset
size. While our approach cannot yet be used to derive missing test cases, it can
serve for adding a quality label to some existing test suite T .

Please note that we chose a single Boolean function as example out of sim-
plicity, but our approach can consider any number of outputs (a set of Boolean
functions, or a Boolean formula) as long as the test cases provide values for all
input variables and the outputs’ values are deterministic for a test case.
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2 Preliminaries

We use Boolean functions as abstract representation format for a program
(or also a combinatorial circuit) in our approach. Static Single Assignment form
as discussed in [3] and digitizing non-Boolean variables (via predicates) would
help to use our work also for more complex programs.

An n-ary Boolean function f : B
n → B with n inputs maps n Boolean

(B = {0, 1} represents the Boolean values False and True as usual) input values
to a single Boolean output value. A test case t in a test suite T thus is a vector
(x1, .., xn+1) defining n input values and f ’s expected output when executing t.
For our implementation, we consider the following unary and binary standard
operators in a Boolean function: ¬ (not), ∧ (and), ∨ (or), and ⊕ (xor).

An essential ingredient of our approach is that we learn a decision tree
from a test suite. As depicted in more detail in Sect. 3.1, we use an altered version
of the widely used C4.5 algorithm [15] for this. The algorithm computes the
entropy and information gain when selecting nodes/variables while growing the
tree. So let us first define these two terms.

In information theory, entropy is commonly used as a measure of purity or
impurity of an arbitrary set of examples, and we would like to choose an optimal
next decision variable in this respect. In our case, for a test suite T , we take
a Boolean output variable (if there are more, we have to choose one) and can
derive the entropy E(T ) with respect to this variable according to Eq. 1. In this
equation, pt represents the proportion of test cases s.t. the considered output
variable’s value is True, and pf gives the same proportion for False (pt +pf = 1).
If all test cases result in the same output value, then entropy is 0, while an
entropy of 1 indicates pt = pf = 0.5. In general, we have 0 ≤ E(T ) ≤ 1.

E(T ) ≡ − pt log2 pt − pf log2 pf . (1)

When growing the tree, the variables for nodes n ∈ N are selected by inves-
tigating the effectiveness of the various input variables in classifying the test
cases. Informally, the information gain of a variable reports the expected reduc-
tion in entropy caused by partitioning the test suite according to this variable.
Formally, the information gain Gain(T, v) of variable v for a set of test cases T is
computed as of Eq. 2, where Values(v) returns the domain of variable v (which
is B in our case) and Tb ⊆ T denotes T ’s subset s.t. v has value b ∈ Values(v).
Coming back to the learning algorithm, it selects a variable with the highest
information gain. If there is no variable v s.t. Gain(T, v) > 0, the current node
becomes a leaf labeled by b ∈ B s.t. b is the most probable classification of the
inputs leading to this leaf. Consequently, there can still be misclassifications.

Gain(T, v) ≡ E(T ) −
∑

b∈Values(v)

|Tb|
|T | E(Tb). (2)

We use special binary decision diagrams (BDDs) [1] as canonical format
for our comparison. A BDD describes a Boolean function f via a rooted, directed
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acyclic graph. In particular, the BDD consists of nodes N for representing the
consideration of a Boolean variable, two nodes L representing f ’s two possible
outcomes False and True, and directed edges E connecting the nodes as follows.
Each node n ∈ N is labeled by a variable var (n) and has a pair of outgoing
edges e0(n) and e1(n) leading to a child node for the corresponding evaluation
(the i of ei(n)) of variable var (n). Nodes in L have no outgoing edge.

A canonical variant of BDDs are reduced ordered binary decision diagrams
(ROBDD)s [5]. A specific feature of an ROBDD is that it implements a certain
variable order in the graph, i.e., there is a total order s.t. for n, n′ ∈ N we have
that if v1 = var (n) appears before v2 = var (n′) in some path, then this is the
case for all paths Πk in the BDD (the BDD is an OBDD then) s.t. both variables
appear in them. Furthermore, an ROBDD is reduced, which means that each
node in the OBDD represents a different Boolean function. Due to the resulting
canonicity of an ROBBD, we can easily decide equivalence:

Definition 1. Two ROBDDs A and B are equivalent iff their root nodes are
equivalent. Two nodes n1 ∈ A and n2 ∈ B are equivalent if they are either

1. leaf nodes with the same label, or
2. non-leaf nodes that have the same label and the pairs of outgoing edges

(e0(n1), e0(n2)) and (e1(n1), e1(n2)) lead to equivalent nodes respectively.

Determining two ROBDDs’ equivalence is linear in the size of the smaller
(if not equivalent) ROBDD where its size is given by the number of its nodes.

3 Classifying Test Suite Effectiveness

Via comparing the canonical representations of the test suite and the program
under test, we aim to decide whether a test suite is effective enough. The basic
steps of our approach at achieving this are illustrated in Fig. 2.

Fig. 2. Process of our test suite classification approach.

Our initial step is to learn a decision tree DT from the considered test suite
T , where we report on the details of this step in Subsect. 3.1. An important
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prerequisite here is that the test cases in T are unique, since duplicates affect
the information gain as computed for selecting the next decision variable in a
tree. Like we mentioned in the introduction, furthermore the output variables’
values have to be deterministic for the input values (as provided by some t ∈ T ).

As depicted in Subsect. 3.2, we then investigate the variable orders in the
individual paths in DT and derive a total variable order if possible, i.e., if DT is
ordered. If there is such a total variable order Ψ , we reduce DT to an ROBDD
as described in Subsect. 3.3. Furthermore, we derive an ROBDD for the program
or system under test as depicted in Subsect. 3.4, using the same order Ψ .

In our last step, we finally compare the two resulting ROBDDs according to
Definition 1, using the recursive algorithm isEqual given in Fig. 3.

Fig. 3. Function to decide whether two ROBDDs are equivalent.

3.1 Learning a Decision Tree from a Test Suite

Aiming at deriving a representative ROBDD for T , we certainly would like to
avoid any misclassification of a test as it could occur with C4.5 (see Sect. 2). To
this end, we extended the algorithm as shown in Fig. 4.

Our recursive function ADDNODE takes as input a test suite TS, a set of vari-
ables V , and a node N , and returns the root node of a binary decision tree.
Initially, the set V contains n Boolean input variables of the tested Boolean
function (if there is more than one function, then this means all variables other
than the one chosen as the considered output during learning). Node N is a new
and empty node in DT , where we assign N ’s properties inside ADDNODE. These
properties are N.v, and two successor nodes N.true and N.false. As stated in
the preliminaries, there are two types of nodes. First, decision nodes which rep-
resent a test of some input variable v ∈ V (s.t. N.v = v) which divides the
local TS ′ into two subsets TS ′

vt
and TS′

vf
according to the value of variable v.

Correspondingly, each such decision node has exactly two successor nodes. Then
there are leaf nodes, reporting the output’s value of the test cases classified to
this node (thus N.v ∈ B). A leaf node does not have any successor nodes.
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Fig. 4. Function to learn a decision tree from a test-suite TS .

In line 2, the function MAX IG returns a variable v and its information gain g
s.t. g is the maximum gain of all v ∈ V (obviously there could be more than one
such v). If there is such a variable with g > 0, we select it and recursively update
N.v and the true and false successor nodes. The two recursive calls of ADDNODE
use as input TSvt

⊆ TS s.t. v is True (or the complement TSvf
for False), the

variable set V ′ ← V \{v} s.t. v was removed from V , and a fresh new node N ′.
If there is no variable with g > 0, our adaption takes control. That is, if

there are still different output values for TS indicated by entropy E(TS) > 0,
we select the first variable from V (V.head) as decision variable and proceed like
for a decision variable selected as of above (with corresponding recursive calls
for the successor nodes). If all expected outcomes for the tests in TS coincide
(E(TS) = 0), N is a leaf node to be assigned this expected outcome OUT(TS).

Note that we assume the test suites to be deterministic. Thus the algorithm
in Fig. 4 derived from C4.5 is guaranteed to terminate without misclassifications.

3.2 Isolating a Total Variable Order from DT

Two crucial questions for our approach are whether there is a total variable
order fitting the learned decision tree DT, and in turn how to extract such an
order so as to use it for generating an ROBDD for the SUT. For tackling these
questions, we start by constructing an ordering graph as of Definition 3. But let
us first define a path Π in DT and its variable sequence Φ = var (Π), as well as
DT ’s alphabet.

Definition 2. A path Π of length |Π| = n in a decision tree DT is a sequence
of nodes π0...πn−1 such that there is an edge from πi to πi+1 (πi is parent of
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πi+1) for 0 ≤ i < n−2. The path of some node s in DT is the node sequence from
DT ’s root node r to s. Φ = var (Π) is the sequence of variables φi considered at
the individual nodes πi in Π s.t. φi = var (πi). For the leaves, that per definition
have no variable label but are labeled either False or True, we have ε = var (πi)
s.t. in this case we have |Φ| = |Π| − 1. The alphabet Σ = alphabet (DT) is the
union of the variables considered at the individual nodes in DT.

Definition 3. An ordering graph O for a decision tree DT is a directed graph
represented by the tuple (Q, q0, T ⊆ Q × Q,Σ, l : Q → Σ,λ : Σ → Q) such that

– Σ = alphabet(DT) is a finite alphabet inherited from DT
– Q is a finite set of nodes, where |Q| = |Σ| and for each σ ∈ Σ there is some

qσ ∈ Q s.t. l(qσ) = σ
– q0 is the root node, where l(q0) = var(r) such that r is DT’s root node
– T is the transition relation, where (qσ, qδ) ∈ T iff DT features two nodes s and

d s.t. (1) s is a parent of d, and (2) l(qσ) = var (s) and l(qδ) = var(d).
– l is a labeling function that assigns each q ∈ Q some σ ∈ Σ.
– λ is a function that returns for some σ ∈ Σ a qσ ∈ Q such that l(qσ) = σ.

Corollary 1. Due to |Q| = |Σ| and the definition of Q, we have that for every
σ ∈ Σ there is a unique q ∈ Q such that l(q) = σ.

When deriving an ordering graph for a given decision tree, the construction
of Q, q0, l and λ is straightforward, and for T we can use the algorithm CREATET
given in Fig. 5. This algorithm’s idea is to traverse the whole tree from the leaves
towards the root, and whenever we end up at the root or some state that we
have visited before, we proceed with the next leaf. For each node visited in
this process, we add its incoming edge to T , so that we end up with the edge
collection required by Definition 3. It is easy to see that the algorithm terminates
and that its run-time is linear in the amount of nodes in DT.

Via the following Theorem 1, we can then decide whether there is a total
variable order that aggregates the individual partial orders as defined via var (Π)
by the available paths Π in DT. For our investigations it will suffice to focus on
the leaves’ paths since all other paths are contained in them.

Theorem 1. For a decision tree DT with alphabet Σ there exists a total variable
order that does not contradict any path from the root to some leaf if and only if
there is no cycle in the corresponding ordering graph O as of Definition 3.

Proof (Sketch). A basic observation about ordering graphs is that for any edge
in DT from s to d s.t. var (s) = σ ∈ Σ and var (d) = δ ∈ Σ, there is also a
directed edge from qσ to qδ in O s.t. l(qσ) = σ and l(qδ) = δ. It is important to
note that, according to Definition 3, O does not contain any other edges.

Now, let us assume that the partial variable orders as defined by the indi-
vidual paths in DT contradict each other. That is, there are some variables
σ and δ in Σ s.t. in some path Π1 we have i < j for σ = var (π1

i) and
δ = var (π1

j), but there is also some path Π2 s.t. j < i for σ = var (π2
i)

and δ = var (π2
j). Since for any such edge in DT, there is a corresponding
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Fig. 5. Function to create T of an ordering graph for a binary tree DT.

directed edge in O, this means that qδ = λ(δ) is reachable from qσ = λ(σ) via
the node sequence λ(var (π1

i)) . . . λ(var (π1
j)), while qσ is reachable from qδ via

the sequence implied by Π2 (i.e., λ(var (π2
j)) . . . λ(var (π2

i))). Consequently, O
has a cycle.

Now let us assume that for any two variables σ and δ in Σ and the paths Πk

that consider both variables, we have for σ = var (πk
i) and δ = var (πk

j) that
either i < j for all k or j < i for all k. In other words, there are no contradictions
between the individual partial orders of DT ’s paths. Without losing generality let
us assume i < j. Consequently, qδ is reachable from qσ via any sequence implied
by some path Πk in DT that features σ and δ. However, qσ is unreachable from
qδ. That is, due to our observation on O’s edges, this would require the presence
of a path in DT where we would consider qδ before qσ, but which contradicts
our assumption. With the definition of Q, we thus cannot have a cycle in O, so
that O is indeed a directed acyclic graph (DAG).

For identifying cycles in a directed graph, we can use, e.g., the STRONG-
CONNECT algorithm depicted in [19].

If the ordering graph is indeed a DAG, we can retrieve some total order Ψ
(as a sequence of ψi ∈ Σ) via the topological sorting algorithm variant
CREATEORDER given in Fig. 6. The underlying idea is as follows: It is easy to
see that we have that for every σ ∈ Σ, the source nodes qα of qσ’s incoming
edges define the complete set of variables α ∈ Σ that are considered right before
σ for some path in DT . Consequently these variables also have to appear before
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σ in a total order, and we have to consider this property in a recursive way
(reasoning again from α). For easy access, we thus store T ’s edges in a fashion
that every q ∈ Q has a list of parents q.inlist and a list of children q.outlist .
Now, if we traverse O starting with q0, and follow the outgoing edges of some qσ

only whenever all of qσ’s incoming edges have been followed, we can establish a
total order by appending σ ∈ Σ to the order (once) whenever the outgoing edges
of qσ “become available”. If O is indeed a DAG, we can do so in a breadth-first
manner (for a cycle this obviously would not work).

Fig. 6. Function to derive a total order Ψ of an acyclic ordering graph O.

In our algorithm, thus, whenever we add a variable δ to Ψ (line 17), we remove
the obligation of δ having to appear prior to σ for all σ s.t. λ(σ) is a child of λ(δ)
in line 12 (or 6 for q0’s children). Obviously, whenever all obligations have been
met for some σ s.t. |λ(σ).inlist | = 0, we can select σ (line 10) and append it to Ψ
(line 17). Since there is no reason to search for such a σ in the whole Σ, we keep a
worklist Ω containing those λ(σ) for which some of σ’s obligations already have
been met (and have been removed from λ(σ).inlist). This worklist is filled with
nodes in two ways. That is, the first node without any obligation is obviously
the root note, so that we have l(q0) as first item of Ψ (line 3) and initially fill Ω
with q0’s children (lines 5–7) after treating them as described above (line 6). The
second option is that, whenever we remove in line 11 an obligation from λ(σ)
when considering some δ �= l(q0) s.t. λ(δ) is λ(σ)’s parent, we search whether
the node is already in Ω and add it if this is not the case (lines 13–15).
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Now let us show that this algorithm is complete and sound. That is (1) that
it can always derive a sequence Ψ (a total order) from some acyclic ordering
graph O, and (2) that a derived sequence Ψ is indeed a total order for DT .

Theorem 2. For some acyclic ordering graph O, the algorithm as of Fig. 6 ter-
minates and derives a sequence Ψ of variables ψi ∈ Σ.

Proof (Sketch). Due to line 4 and the fact that we only append σ ∈ Σ (l : Q →
Σ) to Ψ in line 17, this leaves us to show that the algorithm terminates correctly
if O is a DAG. Given the algorithm’s structure, the crucial lines in this respect
are lines 9 and 10. That is, line 2 is no problem if O is a DAG, but we have to
show that Ω becomes empty at some point such that we leave the while loop,
and that we can indeed pop some qσ in line 10 for avoiding a deadlock.

Let us start with the latter s.t. Ω is non-empty. Now let us assume that Ω
contains some qσ s.t. |qσ.inlist| > 0 with qδ ∈ qσ.inlist. Due to T and lines 10 to
15, this means that either qδ is in Ω, or one of its ancestors λ(var (πk

i )) in path
Πk in DT s.t. i < j for δ = l(πk

j ). That is, since we initialized Ω with all children
of q0, due to lines 10 to 15 the only way for none of them to be in Ω would be
that all obligations of qδ were already fulfilled and qδ was already chosen in line
10 and added to Ψ . But then qδ would not be in qσ.inlist (see also the argument
below). Assuming λ(var (πk

i )) to be in Ω then means that either we could choose
this node if its inlist is empty, or via its inlist we could again find some node in
Ω as described above. Since O is acyclic and |Q| = |Σ| is finite, the number of
times we have to do this until finding some node in Ω s.t. its inlist is empty is
limited. It directly follows that if |Ω| > 0, then there is also always a node qσ in
Ω s.t. |qσ.inlist| = 0 that we can choose in line 10.

Now let us show that Ω becomes empty eventually, which directly follows
from the fact that |Q| is finite and that we have that some qσ ∈ Q is added to
Ω only once. That is, if q0 is a parent of qσ, then we add it to Ω in line 7. If not,
then, when the first of qσ’s parents is chosen in line 10, we add qσ to Ω in line 14.
When in Ω, qσ is not added a second time due to line 13. After qσ was chosen in
line 10 (and consequently removed from Ω) it will never be added again. That
is, all of σ’s obligations regarding variables that have to appear prior to σ have
been met s.t. λ(σ).inlist became empty–there is no further incoming edge that
has not been considered so far and could add qσ to Ω via lines 11 to 14. Since
|Q| is finite and there is always a node to choose in line 10, thus Ω becomes
empty at some point s.t. the algorithm terminates successfully if O is acyclic.

Corollary 2. Each σ ∈ Σ appears exactly once in Ψ as of Theorem 2.

The validity of the corollary is easy to see via Corollary 1, the definitions of T
and Q, and the fact that some q ∈ Q is added and removed from Ω (s.t. q’s label
is appended to Ψ) exactly once (for the latter see the proof of Theorem 2). That
is, every q aside q0 (but whose label is initially appended to Ψ in line 4) has some
incoming edge(s) and if O is a DAG it is finally added to Ω (lines 7 or 14) when
the first of its parents is selected (lines 5 or 10) as well as finally selected itself
in line 10 (s.t. l(q) is appended to Ψ in line 17) since the algorithm terminates
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(for both see the proof of Theorem 2). From Corollary 1 it then directly follows
that each σ ∈ Σ appears exactly once in Ψ .

Theorem 3. The sequence Ψ returned by the algorithm as of Fig. 6 for some
acyclic ordering graph O is a total order. This means that for every path Π in
O’s DT we have for any 0 ≤ i, j < |Π| s.t. i �= j that k < m if i < j or k > m
if i > j for ψk = λ(πi) and ψm = λ(πj).

Proof (Sketch). This directly follows from Corollary 2 and the proof of
Theorem 2. That is, since qσ is removed from Ω and appended to Σ only if
all the obligations about variables that have to be present in Ω prior to σ (as
encoded “recursively” in λ(σ).inlist), it is ensured that there is no path in DT
that has some variable α being considered before σ s.t. α is not in Ψ when adding
σ. Due to Corollary 2, we furthermore have that every σ ∈ Σ is present in Ψ
and appears exactly once. Thus Ψ is a total order as desired.

3.3 Reducing the Learned Decision Tree DT to an ROBDD

If we successfully retrieved a total variable order from DT, we use an algorithm
depicted by Bryant in [4] to reduce our ordered decision tree to an ROBDD. The
idea behind his algorithm is to implement the following three rules [5]:

1. Remove duplicate leaf nodes: Eliminate all but one DT’s leaf nodes with
the same label and redirect all edges from the eliminated nodes to the corre-
sponding remaining equivalent one.

2. Remove duplicate nodes representing variables: If two nodes n1, n2 ∈
N have the same label, the outgoing edges e0(n1) and e0(n2) point to equiva-
lent nodes, and also the outgoing edges e1(n1) and e1(n2) point to equivalent
nodes, then eliminate n1 and redirect all its incoming edges to n2.

3. Remove redundant tests: If a node n’s outgoing edges e0(n) and e1(n)
lead to the same node n′, eliminate n and redirect its incoming edges to n′.

Figure 7 illustrates the application of these three reduction rules on an exam-
ple decision tree with three variables. From left to right, we first applied rule
1, such that we only have two leaf nodes, one for each b ∈ B. Then we merge
redundant nodes (rule 2) leaving us with only two nodes labeled with x3 instead
of four. In the last step, we remove two nodes with redundant/meaningless tests
for x2 and x3 arriving at the ROBDD on the right. If none of the three reduction
rules is applicable anymore, then the result is an ROBDD.

3.4 Creating an ROBDD for the SUT’s Specification

For creating an ROBDD from a Boolean function f , we use the algorithm pre-
sented in [2]. The underlying scheme is based on the if-then-else normal form
(INF), where a Boolean function is built entirely via the if-then-else opera-
tor, e.g., the if-then-else operator x → y0, y1 is defined by x → y0, y1 =
(x ∧ y0) ∨ (¬x ∧ y1). From f ’s INF we create an ROBDD by applying Shan-
non expansion [17], where the total variable order Ψ obtained from DT is used
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Fig. 7. Reduction of ordered decision tree to ROBDD, from left to right [5].

to replace the variables by constants in B. Please note that any variable v present
in TS but not appearing in DT or Ψ (v is of no consequence) should be appended
to Ψ for this construction (but should be absent from the ROBDD in the end).

When replacing the variables by Boolean constants, the Shannon cofactors
emerge. Each cofactor can be viewed as an outgoing edge of a node in the
ROBDD where the replaced variable represents the node. While creating the
ROBDD, equivalent nodes are replaced such that after finalizing the ROBDD
none of the reduction rules introduced in Sect. 3.3 can be applied.

Since the size of the ROBDD depends heavily on the variable order used, and
finding a variable order that minimizes an ROBDD’s size is a co-NP-complete
problem [4], we extract a variable order from DT via entropy-based learning,
rather than trying to come up with an ideal order for the SUT’s ROBDD to be
used then also for the test suite T ’s ROBDD.

4 Experimental Results

For evaluating our approach, we investigated its performance for 20 examples
taken from [24] representing formal specifications (as shown in Fig. 8) for TCAS
II, an aircraft collision avoidance system. For these 20 Boolean specifications with
5 to 14 Boolean input variables, we generated corresponding Boolean functions
and exhaustive test suites featuring all possible input combinations.

The results reported in Table 2 were obtained by generating 100 different ran-
dom test suites T s.t. we could classify T for each example. Since we cannot yet
classify T if its ordering graph has some cycle, we sometimes had to create more
than the 100, where the corresponding number of discarded ones is given in Table 1
(there were next to none classifiable duplicates that we had to discard). Each T was
derived by randomly selecting test cases t from an example’s exhaustive test suite
s.t. t ∈ T with a probability of 0.5.

For each of an example’s 100 test suites, we calculated the mutation score,
i.e., the proportion of mutants that T was able to kill. If some T showed different
behavior for a mutant f ′ compared to f , then T was able to kill the mutant. For
generating the mutants f ′ we replaced f ’s binary operators with alternatives,
where the number of resulting mutants (#f ′) is given in Table 1.
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Fig. 8. The 20 TCAS II examples taken from [24].

Table 1. Number of detected cycles while creating 100 random test suites and the
number of mutants #f ′ for each example.

Example 1 2 3 4 5 6 7 8 9 10

Cycles 155 197 444289 0 18 72 898 6 0 144

#f ′ 22 34 45 4 19 27 20 16 9 14

Example 11 12 13 14 15 16 17 18 19 20

Cycles 75391 340002 192 43 47 641685 8588 2216 54 0

#f ′ 18 16 12 11 16 36 10 10 8 7

Considering our classification into effective and ineffective test suites (sets
T+ and T−), and comparing it to the maximum mutation score (1.0 for all
examples), we would get only a few “false” positives (MS(T ∈ T+)) like for
example 8, where one of the two T ∈ T+ killed only 14 out of 16 mutants (we
found those two remaining mutants to be equivalent after closer inspection).
For the total 37 T s classified to be effective for some example, this means that
only for one T the corresponding MS(T ) was less than the maximum achievable
mutation score. Since T+ was underrepresented in the random test suites (as we
expected), we generated for each of the six examples 1/6/9/10/15/20 another
100 test suites s.t. we could classify 50 as effective and 50 as ineffective and
report their performance in Table 3. Note that for examples 2, 3, 12, 14, and
16 we could not derive 50 effective test suites, likely a downside of us currently
requiring O to be acyclic. Out of those 300 effective T s only one for example 15
did not have MS(T ) = 1.00 (= max.) but killed 16 out of 17 generated mutants
only (MS(T ) = 0.94). If we consider the ratio between T+ and T− from Table 2
we can also say that our approach is quite conservative in handing out its quality
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Table 2. Performance for 100 random T classified as effective T+ or ineffective T−.

Sample |Ti| |T ∈ Ti| MS(T ∈ Ti) Sample |Ti| |T ∈ Ti| MS(T ∈ Ti)

min. avg. max. min. avg. max. min. avg. max. min. avg. max.

1 T+ 1 63 63 63 1.00 1.00 1.00 11 T+ 0 – – – – – –

T− 99 49 62 78 0.64 0.96 1.00 T− 100 3973 4099 4219 1.00 1.00 1.00

2 T+ 0 – – – – – – 12 T+ 0 – – – – – –

T− 100 213 250 289 0.74 0.87 1.00 T− 100 749 805 875 0.94 0.99 1.00

3 T+ 0 – – – – – – 13 T+ 0 – – – – – –

T− 100 331 398 444 0.75 0.93 1.00 T− 100 1987 2045 2132 1.00 1.00 1.00

4 T+ 5 18 22 24 1.00 1.00 1.00 14 T+ 0 – – – – – –

T− 95 9 15 21 0.75 0.99 1.00 T− 100 44 63 77 1.00 1.00 1.00

5 T+ 1 265 265 265 1.00 1.00 1.00 15 T+ 22 234 259 278 1.00 1.00 1.00

T− 99 226 252 288 0.95 0.98 1.00 T− 78 231 254 282 0.88 0.99 1.00

6 T+ 1 1031 1031 1031 1.00 1.00 1.00 16 T+ 0 – – – – – –

T− 99 966 1000 1075 0.70 0.94 1.00 T− 100 164 192 235 0.69 0.94 1.00

7 T+ 0 – – – – – – 17 T+ 0 – – – – – –

T− 100 475 498 553 0.85 0.97 1.00 T− 100 968 1019 1067 1.00 1.00 1.00

8 T+ 2 125 127 129 0.88 0.94 1.00 18 T+ 1 504 504 504 1.00 1.00 1.00

T− 98 102 125 158 0.69 0.95 1.00 T− 99 473 510 547 1.00 1.00 1.00

9 T+ 1 71 71 71 1.00 1.00 1.00 19 T+ 0 – – – – – –

T− 99 50 63 73 0.55 0.92 1.00 T− 100 103 124 143 1.00 1.00 1.00

10 T+ 1 4211 4211 4211 1.00 1.00 1.00 20 T+ 2 61 69 77 1.00 1.00 1.00

T− 99 3978 4090 4219 0.86 0.99 1.00 T− 98 47 63 78 0.85 0.98 1.00

label. Keeping in mind that T does not provide the entire truth table, thus the
learned classification is certainly attractive from those two points of view, at
least considering our first experiments. Since we saw in our experiments also
that some T s with an ideal mutation score of 1.0 were classified as ineffective
(T ∈ T−), there is the immediate question whether the computed mutation scores
were holistic enough, and what would be an ideal benchmark for comparing our
classification (since it could also have been more precise than the mutants).

In terms of encoding efficiency, we see in Table 3 that the average size (amount
of decision nodes) in the ROBBD R derived for some T was below 2 ∗ #v, and
most of the times ranged between #v and #v + #v

2 . Even the maximum size
for any R was below 2.5 ∗ #v. Thus it seems that our information gain based

Table 3. The experimental results for 6 of the 20 example specifications.

ex.#v ∅ |R| max. |R| MS(T ∈ T+) = 1 MS(T ∈ T−) = 1 ∅ |T ∈ T+| ∅ |T ∈ T−|
1 7 11.06 15 50 22 68.56 63.42

6 11 17.04 26 50 39 1847.38 1848.18

9 7 9.36 12 50 30 67.56 65.18

10 13 14.34 17 50 48 5467.16 5457.62

15 9 11.05 15 49 40 259.06 252.78

20 7 7.8 14 50 32 31.18 25.84
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learning of DT gives a compact ROBDD R with a size far below the worst case
2#v − 1 [1].

The run-time for our classification can vary quite a bit with the example.
For examples 10 and 20, it took us about 117 s and about 0.5 s to classify all 100
test suites as of Table 3, which we find to be quite attractive.

5 Related Research

In [23], Weyuker introduces a method to assess test data adequacy through pro-
gram inference. Weyuker defines the relation that if a program is adequately
tested, then it is correct, but a correct program does not imply that it has been
adequately tested. For assessing adequacy, Weyuker uses inference adequacy,
where a test suite is adequate if and only if the test suite contains sufficient data
to infer the computations defined in the program under test and its specifications.
Weyuker infers programs in a subset of Lisp, but we learn a decision tree from the
test data. Inference adequacy also depends on the determination of equivalence,
but equivalence of a specification, a program, and an inferred program is in gen-
eral undecidable. Therefore Weyuker uses approximations to make the inference
adequacy criterion usable. Since T gives an incomplete truth table, our learned
decision tree DT also is some sort of approximation. In [21] Walkinshaw intro-
duces a test suite adequacy assessment method based on inductive inference,
which does not require exact inference, but uses the Probably Approximately
Correct (PAC) [20] framework for approximations. To determine equivalence of
the inferred model of the test suite and the program under test’s specifications
we transfer both into ROBDDs where equivalence is decidable.

A family of different strategies, including MAX-A and MAX-B, for automat-
ically generating test cases for Boolean expressions in disjunctive normal form
(DNF) is given in [24], where they investigate also the fault detection effective-
ness of the different strategies. For our evaluation we used their examples, but
in contrast to evaluating test case generation (TCG), our approach classifies any
given test suite T . In [6], Chen et al. describe how to generate test suites that
satisfy the MUMCUT strategy for testing Boolean expressions in DNF. The
MUMCUT strategy guarantees to detect seven fault types found in Boolean
expressions. Also in that paper, the examples from [24] were used to evaluate
their approach. In contrast to MAX-A, MAX-B, and MUMCUT, for our app-
roach it is not necessary for the program under test’s specifications to appear in
a certain normal form.

A strategy to assess the effectiveness of a test suite for decisions (i.e. Boolean
expressions) is the modified condition/decision coverage (MCDC) criterion [7]
which requires that each condition within a decision is shown by execution to
independently affect the outcome of the decision. Showing that each condition
independently affects the decision’s outcome requires either that the test case
generation was directed to satisfy the MCDC criterion, or to execute the program
with the inputs from the test suite and check which conditions affect the outcome.
Our classification approach does not require the execution of the program under
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test. MCDC requires for n input variables a test suite at least of size n + 1. We
saw the requirement reflected also in our experiments when considering T+. Since
the size of a BDD is very sensitive to its variable order, Friedman and Supowit
showed in [9] an algorithm for finding an optimal one which is in O(n23n).
Grumberg et al. propose in [10] an approach in which the variable ordering
algorithm for creating BDDs gains experience from training models and uses
the learned knowledge for finding good orders. In our work, we use entropy and
information gain measures for the concrete example and a specific local situation
for establishing the variable order.

In contrast to the work about learning automata [13,16,18,22] which is based
on active learning while executing the program under test, our approach is pas-
sive which means that executing the program under test to classify the test suite
effectiveness is not necessary.

6 Conclusion

In this paper, we proposed a new approach at classifying a test suite T ’s effec-
tiveness in identifying a program’s functional faults. To this end, we tailored a
special learning algorithm from C4.5 in order to learn a representative decision
tree DT from T . If possible, we showed how to isolate a total variable order
Ψ from DT via a derived ordering graph, so that we then use Ψ when deriv-
ing a corresponding reduced ordered binary decision diagram also for the SUT’s
specification. If we were able to retrieve an order Ψ , we reduce also DT to an
ROBDD in order to check the two ROBDDs for equivalence.

Our argument is that if they are equivalent, we can assume that a program
satisfying T implements the desired functionality as described by the specifica-
tion (in the form of Boolean functions). In our initial experiments as reported
in this paper, we computed the mutation score for random test suites and com-
pared it to our classification. Even if we assume only the maximum mutation
score to be the benchmark for our effectiveness classification (without some error
margin), there were only very few “false positives”, i.e. 2 out of 337 effective T s.
That we classified also some test suites with a perfect mutation score to be inef-
fective raises the question whether our mutations, and the mutation score in
general, is holistic enough as benchmark for our classification, or if our effec-
tiveness label was more precise than the considered mutations. A corresponding
investigation with more examples from multiple domains and further mutation
operators [11,12,14] will be subject to future work.

Aside conducting more experiments and evaluating further benchmark
options, future research will also target the question of whether there would be
more attractive representations like multi-terminal binary decision diagrams [8]
(compared to an ROBDD) for our cause. Currently we are working on finding a
suitable approximation metric that relaxes exact equality. Also the implementa-
tion of a reordering algorithm is on our agenda, so that we can use our approach
also if the initial ordering graph is not acyclic.
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Abstract. We present a novel symbolic bounded model checking app-
roach to test reachability properties of model-driven software implemen-
tations. Given a concrete initial state of a software system, a type graph,
and a set of graph transformations, which describe the system’s structure
and its behavior, the system is tested against a reachability property that
is expressed in terms of a graph constraint. Without any user interven-
tion, our approach exploits state-of-the-art model checking technologies
successfully used in hardware industry. The efficiency of our approach is
demonstrated in two case studies.

1 Introduction

The growing demand for more sophisticated functionality considerably increases
the complexity of state-of-the-art software and the complexity of today’s software
development [1,10,18]. With the rise in complexity, more defects tend to get
introduced into the code [27]. To counter this challenge, graphical and textual
modeling languages, like the Unified Modeling Language (UML) [20], began to
permeate the modern software development process. The motivation of lifting
models to first-class development artifacts is twofold: first, models abstract away
irrelevant details and, second, they express ideas and solutions in the language
of the problem domain offering a focused view to the developers.

In the context of the model-driven engineering (MDE) paradigm, model trans-
formations play a pivotal role [8,23] when rewriting the models, e.g., to generate
executable code or to perform refactorings, or when specifying the behavior of
models. Unfortunately, software development based on models and model trans-
formations is not immune to defects. In fact, errors introduced at the modeling
layer might propagate to the executable code and might be hard to detect.
Baurry et al. [3] emphasize that model transformations show characteristics
that lead to challenging barriers to systematic testing. One particular prob-
lem encountered when testing is the complexity of the resulting output models
whose correctness cannot be easily validated. A natural solution is a constructive
approach where first the models are generated by executing the model transfor-
mation and then checking constraints the output model has to satisfy. If the
c© Springer International Publishing Switzerland 2016
B.K. Aichernig and C.A. Furia (Eds.): TAP 2016, LNCS 9762, pp. 94–111, 2016.
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model transformation contains errors, however, this approach does not provide
any debugging support, because the intermediate models are not considered
and hence the defect becomes hard to trace. Also, the testing is usually non-
exhaustive and model transformations are often applied nondeterministically.
Again, as a consequence, defects might be overseen. A solution is the lightweight,
i.e., depth-bounded, integration of verification approaches like model checking
into the testing process. In model checking, a specification is tested against the
system and, in case a violation is found, an error trace is returned. Model check-
ing is successfully used to verify hardware systems; for software, however, there
are still many challenges that have to be overcome. Models and model transfor-
mations miss many of the features that make software model checking difficult
and, thus, model checking is a promising technique to overcome the barriers of
testing model transformations.

In this paper, we propose a lightweight verification approach based on sym-
bolic model checking for testing the correctness of graph transformations. It is
“lightweight” in the sense that it only allows to verify systems up to a user-
defined object count. Among the multitude of available model transformation
languages, we choose graph transformations [11,21], which offer a formal and
concise language to describe modifications on graphs and, hence, on models.
Graph transformations can be shown to be Turing complete [17] and, there-
fore, they are as expressive as any other conventional programming language.
Any software system may thus formally be described by a graph transformation
system (GTS). The testing and verification of correctness properties of graph
transformation systems has been previously explored and implemented in pre-
vious works, most notably by CheckVML [22] and Groove [16]. Both of these
approaches represent states as graphs and enumerate the set of all reachable
states before evaluating a property to valid or producing a counterexample trace.
With MocOCL [6] we too presented a model checker that enumerates the states
on the fly leading to better performance when short counterexamples exist.

In contrast to previous works, we present a symbolic model checking approach
in this paper that uses logical formulas to represent the state space. For the
symbolic encoding of graph transformation systems we employ relational logic
because of (a) the high resemblance between sentences of relational logic, on
the one hand, and graphs and graph transformations on the other hand, and
(b) the tool support available to convert bounded, first-order relational logic
into propositional logic [26]. We thus map the execution semantics of graph
transformation systems to bounded, first-order relational logic. On this basis
we construct a relational transition system (RTS) that is then automatically
checked by state-of-the-art hardware model checkers. A similar yet preliminary
relational encoding of graph transformations in Alloy [14] has been presented
by [2]. Our approach, in contrast, performs the encoding fully automatic, needs
no manual interaction with Alloy during the verification, and is extensible to
accommodate the translation of amalgamated/parallel graph transformations [4]
and arithmetic integer expression in attribute values. Both of these extensions
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have been implemented but are saved for future work as they go beyond the
scope of this paper.

This paper is structured as follows. We start with a presentation of our
running example in Sect. 2. Then we introduce the required preliminaries in
Sect. 3. In Sect. 4 we provide a high-level overview of our proposed approach. In
Sect. 5 we outline the relational semantics of graph transformations in depth and
discuss the symbolic encoding. Then we present the results of two case studies
in Sect. 6. Section 7 concludes with an outlook on future work.

2 Running Example

Fig. 1. Metamodel of DP

In the Dining Philosophers (DP)
problem’s setup [9,12] a group of
philosophers sits around a table
with a plate in front of each of them
and a fork on each side of the plate.
Philosophers transition through a
sequence of three states: thinking,
hungry, and eating. Once they fin-
ish eating they go back into think-
ing. Each philosopher requires two forks to start eating. These forks, however,
are shared with the philosophers sitting to the philosopher’s left and right.

The static structure of the DP problem’s graph transformation system is
given in terms of the metamodel shown in Fig. 1. The behavior of each philoso-
pher is defined by four graph transformations depicted in Fig. 2. The Get Hun-
gry transformation rewrites the philosopher’s state attribute to transition from

Fig. 2. Graph transformations for the dining philosophers in Henshin
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state thinking to state hungry . A hungry philosopher needs to eat and attempts
to acquire a left fork first; this is achieved by applying the Get Left Fork trans-
formation that establishes a hold reference between a hungry philosopher and
her left fork. The negative application conditions (NAC), forbid#1 and for-
bid#2, ensure that a holds reference my only be established to those forks not
held by the philosopher herself (forbid#1 ) or any other philosopher (forbid#2 ).
Once a philosopher holds the left fork, the Get Right Fork &Eat transformation
picks up the appropriate right fork and changes the philosopher’s state from
hungry to eating . Again, the NACs forbid#1 and forbid#2 prohibit forks from
being picked up if held by a philosopher. If a philosopher is done eating, the
Release Forks transformation puts back the forks on the table and switches the
philosopher’s state to thinking again.

3 Preliminaries

Graph Transformations. Graphs and graph transformations are a popular choice
to formally describe models and model transformations. For this purpose the
theory of graph transformations has been extended to support rewriting of
attributed, typed graphs with inheritance and containment (part-of) relations
[5]. In the following, we summarize the concepts relevant for this work. For details
see [11,21]. A graph G = (VG, EG) consists of a set VG of nodes, a set EG of
edges. Further, we define a source and a target function, src : EG → VG and
tgt : EG → VG, that map edges to their source and target vertices. A morphism
m : G → H is a structure preserving mapping between graphs G and H. A dou-
ble pushout graph transformation p : L ← K → R, with injective morphisms
l : K → L and r : K → R, describes how the left-hand side (LHS) graph L
is transformed into the right-hand side (RHS) graph R via an interface graph
K. A graph transformation p : L ← K → R is applied to a host graph G if
there exists an injective morphism m : L → G, called a match, that maps the
LHS graph L into the host graph G. This match must not violate the dangling
edge condition, which demands that all neighbors of a node that is marked for
deletion are deleted by p as well. A match must also satisfy certain applica-
tion conditions contained in the LHS that describe either forbidden patterns,
so-called negative application conditions (NAC), or desired patterns, so-called
positive application conditions (PAC). The application of transformation p at
match m rewrites graph G to the result graph H. A transformation p preserves
those nodes and edges that are both in the domain of morphisms l and r, while
it deletes those nodes and edges in L that are not in the co-domain of l and
creates those nodes and edges in R that are not in the co-domain of r.

Relational Logic. Bounded, first-order relational logic1 extends propositional
logic with relational variables of a given arity, a finite universe of objects, and
quantifiers. Each relational variable is assigned an upper bound and, optionally,

1 Our presentation of the logic follows the one presented for Alloy [13] and Kodkod
[26] that in turn are based on Tarski’s exposition of the relational calculus [24].
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Fig. 3. Syntax and semantics of relational logic [26]

a lower bound. Upper and lower bounds are specified as sets of tuples constructed
from the set of objects in the universe. Syntax and semantics are provided in
Fig. 3. A bounded, first-order relational problem P is a tuple (U ,Rel ,F , ar ,�,�)
consisting of

1. a finite universe of discourse U , i.e., a set of uninterpreted objects,
2. a set Rel of relational variables,
3. a first-order relational formula F ,
4. a map ar : Rel → N that assigns an arity to each relational variable r ∈ Rel ,
5. maps � : Rel → P(U n) and � : Rel → P(U n) that define n-ary lower and

upper bounds for relations.

A relational constant is a set of n-ary tuples including the empty set. The set of
relational expressions is recursively defined as the smallest set consisting of the
empty set and the set of all atoms, i.e., the universe U , the relations r ∈ Rel , and
all expressions resulting from applying either (i) a unary operator like transitive
closure (+) or transposition (−1) to another expression or (ii) a binary operator,
union (∪), intersection (∩), join (.), difference (\), or product (×), to the former
and another expression (see Fig. 3). The evaluation of an expression yields a set
of tuples over U . An atomic relational formula is a sentence constructed over
two relational expressions connected by the subset ⊆ operator. Formulas can
be quantified and composed into composite formulas using the usual logical
connectives, and (∧), or (∨), and not (¬). A model of a relational problem is
an assignment, i.e., a binding, of tuples to relational variables such that (1) the
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assigned tuples lie within the lower and upper bounds of the relational variable
and (2) the formula evaluates to true. Note that this treatment of relational
logic is untyped; admissible bindings to relational variables are solely defined by
their lower and their upper bounds. Further note, that the logic also supports
reasoning over bit-vectors of fixed-size n that represent integer values in the
range (−2n−1, 2n−1 − 1).

A relational transition system (RTS) extends a relational problem by a set
Rel ′ of next state relational variables. Moreover, an RTS replaces the lower
bound � with an initial binding ι.

Definition 1. A bounded, first-order relational transition system S is a tuple
(U ,Rel ,Rel ′,T , ar , ι,�) that consists of

1. a finite universe of discourse U ,
2. a set Rel of unary and binary relational variables,
3. a set Rel ′ ={r′|r ∈ Rel} of next state relational variables,
4. a transition relation T, i.e., a conjunction of first-order relational formulas

over Rel ∪ Rel ′,
5. a map ar : Rel ∪ Rel ′ → N that assigns an arity to each relational variable

r ∈ Rel ∪ Rel ′,
6. an initial state map ι : Rel → P(U n) that assigns to each relational variables

its initial binding,
7. an upper bound map � : (Rel ∪ Rel ′) → P(U n).

A state in an RTS is a binding b of a set of tuples to each relational variable
r ∈ Rel . A trace is a finite sequence of states b0b1 . . . bn with ι = b0 such that
P� U r1 . . . rnr′

1 . . . r′
n T �b0∪b′

1 ∧ · · · ∧ P� U r1 . . . rnr′
1 . . . r′

n T �bn−1∪b′
n is

satisfied. Here, b′
i denotes the binding for the next state relational variables in

Rel ′. Denote by ρ a relational formula that defines a reachability property for an
RTS, then a trace b0b1 . . . bn is called a witness of ρ if P�U r1 . . . rnr′

1 . . . r′
n ρ�bn

evaluates to true.

4 Architecture

Our symbolic model checking approach tests a model-driven implementation of
a software system against a reachability property up to a certain bound. Here,
a model-driven implementation of a system consists of

(a) an EMF2 model M that describes the static structure of the system and
(b) a set R of graph transformations that describes the system’s execution

behavior.

For the verification our tool expects in addition the following inputs specified by
a verification engineer:

2 Eclipse Modeling Framework (EMF): eclipse.org/modeling/emf/.

http://eclipse.org/modeling/emf/
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(c) an instance model Mι of M that describes the initial state of the system,
(d) a graph constraint that describes the reachability property, and
(e) an object bound map Γ : VT → N that defines the maximal number of objects

per class in instances of M.

Internally, the EMF model M is represented as an attributed type graph GT =
(VT , ET ) with inheritance and containment edges [5], whose vertices VT repre-
sent the classes and whose edges ET represent the references and the attributes
of the system. Attribute types and values are restricted to integers Int , Boolean
Bool , and user-defined enumerations Enum. The initial state Mι is a typed graph
GM = (VM , EM ) with a type morphism type : GM → GT that maps “objects”
objC ∈ VM to their types, i.e., classes, C ∈ VT . A reachability property is pro-
vided the verification engineer and modeled as a graph constraint [11], which
describes a desired or an undesired pattern that is matched against an instance
of M. Next observe that the semantics of bounded, first-order relational logic is
defined by propositional logic [25]. By applying these semantic definitions to the
previously constructed RTS we construct a sequential circuit, or more specifi-
cally, an and-inverter graph (AIG), which is, roughly speaking, a Boolean circuit
that uses only AND and NOT gates. We store the resulting AIG—together with
the reachability properties that we want to verify—in the AIGER file format,
which is the standardized input format of all model checkers that compete in the
Hardware Model Checking Competition. By storing the (depth-bounded) GTS
in an AIGER file, we are not limited to a specific model checker and we can
directly exploit the most recent developments in hardware model checking like
the successful IC3 algorithm [7].

In the following we give a high-level description of the workflow that generates
in three steps from a model-driven implementation, first, a symbolic, relational
transition system, second, a propositional formula by instantiating the first-order
quantifiers in the transition relation of the RTS, and third, an and-inverter graph
by rewriting the propositional formula (see Fig. 4). In particular, the emf2fol
converter first constructs the universe U from the object bound map Γ . It then
generates unary and binary relational variables for each class, and attribute and
reference in M, respectively. Next, it assigns appropriate upper bounds, i.e., sets
of atoms from U , to each relational variable. Finally, it extracts the initial state
of the RTS from Mι. The gt2fol converter generates from the set of graph
transformations the transition relation T as a conjunction of existentially quan-
tified relational logic formulas and from the graph constraint the reachability
property ρ. Note that due to the use of double pushout graph transformations,
which are free of side effects, we can straightforwardly derive all relational frame
conditions for the RTS (cf. [19]).

Next, the fol2bool converter uses the Kodkod API to instantiate3 the
bounded, first-order relational formulas of the transition relation and the reach-
ability property into Boolean functions, i.e., propositional formulas. The result-
ing Boolean functions are rewritten into an AIG by the bool2aig converter and
stored in the AIGER format. Next, a model checker mc is used to verify the

3 Note that we do not use Kodkod’s model finding capabilities but only use it to
translate relational logic formulas into propositional formulas.
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AIG. In case the model checker determines that a desired or undesired state is
reachable it reports the result to the user together with a witness that may be
used to re-construct a trace of the RTS. Otherwise, it returns “unreachable.”

5 Relational Semantics of Graph Transformation Systems

In the following, we constructively specify the relational semantics of a GTS,
that is, we define a mapping between components of the GTS and the compo-
nents of a bounded, first-order relational transition system (RTS). The mapping
that we explain in this section is implemented in the emf2fol and the gt2fol
converters (see Fig. 4).

Relational Variables, Universe, Bounds, and Initial State. First, the emf2fol
component reads in the type graph M = (VT , ET ). The universe U , which con-
sists of a set of (uninterpreted) objects, is derived by emf2fol from the object
bound map Γ : VT → N and is defined as U = {(objC,i) | C ∈ VT , 0 < i ≤ Γ (C)}
where C denotes an element in the of classes VT from the type graph M and
objC,i an instance, i.e., an object, of class C.

Next, emf2fol uses the function relgen : VT ∪ET → Rel to generate for each
class C in VT a unary relational variable C and likewise for each enumeration
E in Enum a unary relational variable E. For each attribute attr ∈ ET the
translation generates a binary relational variable C attr and for each reference
ref ∈ ET from a source class C to a target class D it creates a binary relational
variable C ref. Moreover, relational variables Int and Bool are generated for the
primitive types Int and Bool if necessary.

The upper bound map � : Rel → P(U n) is derived as follows. Given a
unary relational variable C = relgen(C), C ∈ VT the upper bound is defined
by �(C) = {(ci) | 0 < i ≤ Γ (C)}. The upper bound of a relational variable
for an attribute C attr is constructed from the product of the upper bounds of
class C and the domain of the attribute, i.e., �(C attr) = �(C) × �(D), where

Fig. 4. Workflow of our symbolic model checking approach (external tools are displayed
in light gray)
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D ∈ {Int,Bool,E1, . . . ,En}. Likewise, the upper bound of a relational variable
derived from a reference is constructed from the product of the source and the
target class’s upper bounds, i.e., �(C ref) = �(C) × �(D) with source class C
and target class D. If a class C has subclasses, the union of all its subclasses’
instances is added to C’s upper bound. This reflects the is-a relationship between
instances of a subtype and its supertype. Formally, let Sub(C) denote the set of
all subclasses of class C. The upper bound of C is then defined as above plus
the union of all upper bounds of its subclasses, i.e., �(C) = {(ci) | 0 < i ≤
Γ (C)} ∪ ⋃

S∈Sub(C) �(S).
Finally, the initial state map ι : Rel → P(U n), which defines a relational

variable’s initial binding, is derived from the initial model Mι. Let atom : VMι
∪

EMι
→ U be a function that maps an object v ∈ VMι

, an object reference or an
attribute e ∈ EMι

to an object in U , then ι is defined as follows.

ι(r) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

{atom(v) | v ∈ VMι
, type(v) = C} if ∃C ∈VT . relgen(C) = r

{(atom(v), atom(a)) | a ∈ EMι
,

type(a) = attr , srcMι
(a) = v} if ∃ attr ∈ET . relgen(attr) = r

{(atom(v), atom(e)) | e ∈ EMι
,

type(e) = ref , srcMι
(e) = v} if ∃ ref ∈ET . relgen(ref ) = r

Example. For the Dining Philosophers problem (see Sect. 2) emf2fol derives the
universe U = {Table1 ,Philosopher1 ,Philosopher2 ,Fork1 ,Fork2 ,−2 ,−1 , 0 , 1}
from the object bound map Γ = {(Table, 1), (Philosopher, 2), (Fork, 2)} and
the 2-bit integer values are allocated for the PhilState enumeration.4 Next, the
emf2fol component generates unary relational variables Table, Philosopher, Fork,
and PhilState. As enumerations are mapped onto integers, emf2fol automati-
cally infers the necessary bitwidth of 2 to represent the three literals thinking,
hungry, and eating of enumeration PhilState, which are mapped to −2, −1,
and 0, respectively. Further, binary relational variables are generated for each
attribute and reference, e.g., for reference forks in class Table the relational vari-
able Table forks is generated. Note that it is possible to instruct emf2fol to omit
the generation of relational variables for user-specified attributes and references.
For example, we omit all id attributes because they solely exist to aid the manual
construction of instance models. Table 1 lists all generated relational variables.

Next, upper bounds are assigned to each of the generated relational vari-
ables. For example, the relational variable Philosopher is assigned the upper
bound �(Philosopher = {(Philosopher1), (Philosopher2)}. The upper bound of
the Philosopher right relational variable is defined as

�(Philosopher right) = � (Philosopher) × �(Fork)
={(Philosopher1 ,Fork1 ), (Philosopher1 ,Fork2 )

(Philosopher2 ,Fork1 ), (Philosopher2 ,Fork2 )}.

4 Note that internally integers are stored using the two’s complement representation;
hence, with n-bits the integer values in the range [−2n−1, 2n−1−1] can be represented.
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Table 1. Generated variables and bounds for the Dining Philosophers problem

Class Variable Upper Bound

Table Table {(Table1 )}
philosophers Table philosophers {(Table1 ,Philosopher1 ), (Table1 ,Philosopher2 )}
forks Table forks {(Table1 ,Fork1 ), (Table1 ,Fork2 )}

Philosopher Philosopher {(Philosopher1 ), (Philosopher2 )}
right Philosopher right {(Philosopher1 ,Fork1 ), (Philosopher1 ,Fork2 ), (Philosopher2 ,Fork1 ),

(Philosopher2 ,Fork2 )}
left Philosopher left {(Philosopher1 ,Fork1 ), . . ., (Philosopher2 ,Fork2 )}
holds Philosopher holds {(Philosopher1 ,Fork1 ), . . ., (Philosopher2 ,Fork2 )}
state Philosopher state {(Philosopher1 ,−2), . . . , (Philosopher1 , 0), (Philosopher2 ,−2), . . . ,

(Philosopher2 , 0)}
Fork Fork {(Fork1 ), (Fork2 )}
PhilState PhilState {(−2), (−1), (0)}
Int Int {(−2), (−1), (0), (1)}

Table 1 also lists the upper bounds derived for the Dining Philosophers problem.
The initial state map for two dining philosophers is defined as follows:

ι = {(Table, {(Table1 )}), (Philosopher, {(Philosopher1 ), (Philosopher2 )}),
(Fork, {(Fork1 ), (Fork2 )}), (Table philosophers, {(Table1 ,Philosopher1 ),
(Table1 ,Philosopher2 )}), (Table forks, {(Table1 ,Fork1 ), (Table1 ,Fork2 )}),
(Philosopher state, {(Philosopher1 ,−2 ), (Philosopher2 ,−2 )}), . . . }.

Graph Transformations. The gt2fol component translates graph transforma-
tions into a symbolic transition relation T . Formally, gt2fol translates a set Π
of graph transformation into a conjunction of first-order, relational formula as
follows. Given sets Rel and Rel ′ of current and next state relational variables
derived by relgen as described above, from each (double pushout) graph transfor-
mation pi : Lhsi ← Ki → Rhsi in Π = {p1, . . . , pn}, with negative and positive
application conditions Naci and Paci, respectively, the transition relation T

T :=
∧

i

(Pre(Lhsi,Paci,Naci,Rhsi) =⇒ Post(Lhsi,Rhsi)) ∧ (1)

¬
(

∨

i

Pre(Lhsi,Paci,Naci,Rhsi)

)

=⇒ Rel .= Rel ′

is derived where Pre : G × G × G × G → F is a function that generates from
a quadruple of graphs a conjunction f ∈ F of relational formulas that mimic
the match conditions of the transformation’s LHS. Here, F denotes the set of all
relational formulas. Function Post : G × G → F, on the other hand, generates
a conjunction of relational formulas from the LHS and RHS that mimic the
deletions in the LHS and the additions/modifications on the RHS. Intuitively,
Formula 1 states, that whenever one of the graph transformations is applicable,
then perform the necessary modifications on the graph; otherwise, if none of the
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transformations is applicable, do not perform any changes. Here, Rel .= Rel ′ is
defined as r1 = r′

1 ∧ r2 = r′
2 ∧ · · · ∧ rn = r′

n with ri ∈ Rel and r′
i ∈ Rel ′.

Function Pre generates the following relational formulas, i.e., constraints,
from the transformation’s LHS. For each object objC of class C in the LHS we
allocate a fresh, relational variable c and add a constraint ∃ c : C that binds c
to tuples in C. If objC of class C has a reference ref to a target object objD of
class D, with relational variables c, d allocated for objC and objD, and relation
C ref generated for reference ref , then the condition (c, d) ⊆ C ref is derived.

If an attribute attr of objC is assigned an expression e, then Pre generates
formula (c, expr(e)) ∈ C attr where expr : Int ∪ Bool ∪ Enum → Rexpr converts
an integer, Boolean, or enumeration expression into a corresponding relational
expression. This expression describes an additional constraint that a matching
subgraph must satisfy. Thus, we generate a condition that requires the attribute
value of the object that is bound to c to evaluate to the same value as expr(e).
For an overview of the conditions generated by Pre see Table 2.

Table 2. Relational formulas generated by function Pre

If the graph transformation contains PAC patterns, they are translated into
formulas of relational logic like the LHS pattern because they, too, demand the
existence of nodes, edges, or matching attribute expressions in the matching
host graph. Thus, the translation of LHS and PAC patterns follow the same
procedure as described above.

Negative application conditions, in contrast to LHS and PAC patterns,
describe forbidden patterns that must not be satisfied by any matching sub-
graph. As such we generate equivalent relational formulas as for the LHS, but
negate them such that the formula ¬∃ n : N is generated assuming that the rela-
tional variable n was allocated for a node in the NAC graph of type N . Note
that none of the conditions generated for references and attributes in the NAC
graph need to be negated and are thus equivalent to those generated for the LHS
graph.
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Fig. 5. Dangling edge example

Finally, the injectivity5 and the dangling edge conditions, also generated by
Pre, are necessary to faithfully translate the graph modifying instructions into
relational logic. The injectivity condition ensures that all elements of the LHS,
the NACs, and the PACs are mapped to exactly one element in a matching
host graph, which is enforced by binding each existentially quantified relational
variable to a distinct object of the universe. The generated injectivity condi-
tion performs a pairwise test of inequality on all variables bound by the same
expression. For example, given variables c1, c2, both of which are bound by C,
the condition ¬(c1 = c2) is generated to ensure that c1 and c2 are assigned to
two different objects. The second condition ensures that no dangling edges are
left behind after deleting nodes from the graph. This implies that all possible
references to and from a node that is scheduled for deletion need to be deleted
explicitly. We translate this requirement into a condition that checks whether
the set of all possible references from and to an object that is scheduled for dele-
tion coincides with the set of actually deleted references. For example, in Fig. 5b
object objD, an instance of class D, is deleted together with references coming
from two objects, objC,1 and objC,2, and one reference to object objE . Class D
may have references coming from objects of class C and references to object of
class E. In the following we assume that the translation generates unary rela-
tional variables C, D, and E for classes C, D, and E, binary relational variables
C toD and D toE, and allocates existentially quantified variables c1, c2, d, and e
(see Fig. 5a). The formula C toD − {(c1, d), (c2, d)} = ∅ resembles the dangling
edge condition for reference between objects of class C and class D. It consists
of the following components:

– The relational variable C toD is bound to the set of all tuples (objC , objD)
with obj c ∈ �(C) and obj d ∈ �(D) having a toD reference;

– the expression C toD represents the set of all possible references between class
C and class D;

– the set {(c1, d), (c2, d)} represents the actually deleted objects.

Thus, the formula above checks whether the set of all actually deleted references,
i.e., (c1, d) and (c2, d), coincides with the set of all existing references between C

5 Currently, we only support injective graph pattern matching.
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and D. If, however, a third reference had pointed from c3 to d (see Fig. 5a), the
expression C toD− {(c1, d), (c2, d)} would evaluate to {(c3, d)} and thus violate
{(c3, d)} = ∅. In this case the graph transformation must not be applied as the
dangling edge condition would be violated.

The RHS describes the effects of the graph transformation; once a matching
subgraph of the LHS, the NACs, and the PACs is found it is rewritten according
to the RHS that specifies which nodes, edges, and attributes are created and/or
deleted. The function Post generates relational formulas over Rel and Rel ′ that
mimic the modifications of the transformation’s RHS as follows. If the transfor-
mation creates an object objC of class C, two conditions are created, one by Pre
and one by Post . First, function Pre checks for the non-existence of an object
bound to relational variable c in the current state with ∃c : C′ ∧ c Ę C, i.e.,
the formula asserts that the object bound to c is inactive in the current state
relational variable C. Second, function Post generates a condition that adds the
new object (bound to c) to relational variable C such that the next state rela-
tional variable C′ is set to C′ = C + c. The procedure for the deletion of an
object bound to c is similar except that (i) Pre checks for the existence of an
object that is scheduled for deletion, i.e. ∃c : C and (ii) Post updates the next
state relational variable C′ to reflect the removal of the object (bound to c), i.e.,
C′ = C− c. Addition and deletion of (multiple) objects to and from a relational
variable can be combined, i.e., C′ = C+{c1, . . . , cm}−{cm+1, . . . , cn}. Note that
the addition and deletion of references and attributes proceeds analogous to the
addition and deletion of objects. For example, Post generates for the deletion of
a reference ref from an object bound to c pointing to an object bound to d the
formula C ref′ = C ref − (c, d). The formulas generated by Post are summarized
in Table 3. In addition, the Post function also generates conditions for those
relational variables that do not change, as otherwise arbitrary tuples could be
assigned to these relational variables.

Table 3. Relational formulas generated by function Post
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Fig. 6. Scheme of a relational formula produced from a graph transformation

Fig. 7. Scheme of a relational formula produced from a graph constraint

The encoding outlined in Tables 2 and 3 translates a graph transformation
p ∈ R over Rel , which is fixed w.l.o.g to Rel = {A,B,C,D,E} for the following
explanations, into a relational formula following the scheme outlined in Fig. 6.
Here, function match returns constraints that mimic the transformation’s LHS
and controls the creation of new nodes, while functions inj and dec generate
injectivity constraints and dangling edge conditions, respectively.

Graph Constraints. Reachability properties are modeled by graph constraints
that the verification engineer supplies. In contrast to graph transformations, a
graph constraint does not alter a matching host graph; it may thus be used to
describe a desired or an undesired pattern in a graph, i.e., a good or a bad state
of the system. Thus, graph constraints are graph transformations with identical
left-hand and right-hand sides. Formally, a graph constraint is translated into a
relational formula ρ := Preρ[Lhs,Pac,Nac], where function Preρ : G×G×G → F

translates the triple LHS, PAC, and NAC into a conjunction of relational formu-
las. For this purpose, the encoding presented in Table 2 are re-used to translate a
graph constraint into a relational formula. The scheme of the relational formula
generated from a graph constraint is depicted in Fig. 7. It coincides with that of
a graph transformation (see Fig. 6) in all but two aspects: (1) the absence of the
implication, i.e., there is no RHS, and (2) the dangling edge condition, which is
omitted because a graph constraint may not delete elements.

6 Case Studies

In two case studies, we compare our tool Gryphon with the state-of-the-art
tool Groove [16]. First, we consider the Dining Philosophers problem of Sect. 2
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Fig. 8. Runtime comparison (sec) of Groove and Gryphon on the dining philosopher
benchmark

and second, we showcase the railway interlocking scenario inspired by [15]. The
experiments were run on an IntelTMCore i5 M580 2.67 GHz CPU with 8 GB of
RAM running Gentoo 2.2 (Linux kernel 3.14.14). For the benchmarks we use the
OracleTMJavaTMSE 7 Runtime Environment (build 1.7.0 71-b14), the Henshin
API6 in version 0.0.1, the IC3 based model checker iimc7 in version 2.0, and
Groove8 in version 5.5.2 (build: 20150324114640). The heap size was set to
6 GB and the timeout was set to 720 s. The runtimes of each benchmark were
averaged over 10 consecutive runs.

Case Study 1: Dining Philosophers. For this benchmark with our tool, we mod-
eled the Dining Philosophers problem as described in Sect. 2. In a similar manner,
we modeled the metamodel, i.e., the type graph, used for the implementation of
the graph transformation in Groove. Then we formulated the following three
invariants: (i) No two philosophers hold the same fork (SAME FORK), (ii) if a
philosopher holds a fork, its either her left or her right fork (LEFT RIGHT), and
(iii) the philosophers do not deadlock (DEADLOCK).

For the benchmarks we use initial models with five, seven, and nine thinking
philosophers. We consider the test case, where none of them holds a fork at
the beginning. Figure 8 compares the runtimes of our tool with the runtimes of
Groove. Interestingly, for Groove we observed a deviation of up to one third
of its average runtime. Note that for neither of the tools, we experienced time or
memory timeouts. The latter is especially remarkable for Groove as it performs
an explicit search of the state space. Gryphon could solve all benchmarks of
this case study in less than 10 s.

Case Study 2: Interlocking Railway Systems. The second set of benchmarks
targets an interlocking railway systems [15]. A railway system is described by a

6 Available from https://www.eclipse.org/henshin/install.php.
7 Available from http://ecee.colorado.edu/wpmu/iimc/download/.
8 Available from https://sourceforge.net/projects/groove/files/groove/5.5.2/.

https://www.eclipse.org/henshin/install.php
http://ecee.colorado.edu/wpmu/iimc/download/
https://sourceforge.net/projects/groove/files/groove/5.5.2/
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Fig. 9. Runtime comparison (sec) of Groove and Gryphon for the interlocking rail-
way benchmark with 4, 6, 8, and 10 trains (T)

scheme plan that consists of a track plan, a control table, and a set of release
tables. The topology of the railway network is captured by the track plan, which
displays tracks and their lengths, entry and exit tracks, and points. A route
consists of a set of tracks, the first of which may be entered if the guarding
signal shows proceed. Each row in the control table is associated with a route
and specifies the tracks that need to be cleared in order for a train to pass the
signal guarding the route. If the route passes a point, the control table specifies
the required position of the point. A point is locked either in normal position,
leading the train straight ahead, or in reverse position, in which case the train is
routed to another line. A train must obtain a lock on a point prior to passing it
and is required to release it after traversing the point. The release table associated
with a point specifies the track, where a train must release the acquired lock.

The verification of the railway system then centers around three safety
properties: (i) collision freedom prohibits two trains occupying the same track;
(ii) no-derailment demands that a point does not change position while being
occupied by a train; (iii) run-through requires a point to be set in position as
specified by the control table for the specific route when a train is about to enter
the point.

For the evaluation, we define four different initial states that instantiate the
implementation with four, six, eight, and ten trains. The results are shown in
Fig. 9. On the NO COLLISION property, Groove is faster by a factor of two to
three. For the other two properties, Groove is (slightly) faster for the bench-
marks on 4 and 6 trains, but with 8 and 10 trains, the symbolic approach out-
performs the explicit approach on average.

7 Conclusion

We presented a novel model checking approach for the verification of graph
transformations as used in model-driven engineering. Our approach is completely
automatic and allows modelers to benefit from the very efficient hardware model
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checkers, e.g. the successful IC3 algorithm. In this paper, we explained the inter-
nal realization of our tool that translates the modeling artifacts to sequential
circuits. In two case studies we showed the potential of our tool by comparing it
with Groove, a state-of-the-art model checker for graph transformations.

In future work, we plan to implement optimizations in the encoding and we
expect further improvements in the running times. Further, we plan to implement
a visualization component for the witness that are returned in case a property
is shown reachable by our tool.
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22. Schmidt, A., Varró, D.: CheckVML: a tool for model checking visual modeling
languages. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol.
2863, pp. 92–95. Springer, Heidelberg (2003)

23. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-
driven software development. IEEE Softw. 20(5), 42–45 (2003)

24. Tarski, A.: On the calculus of relations. J. Symb. Log. 6(3), 73–89 (1941)
25. Torlak, E.: A Constraint Solver for Software Engineering: Finding Models and

Cores of Large Relational Specifications. Ph.D. Thesis, Massachusetts Institute of
Technology, 2009. AAI0821754

26. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O., Huth,
M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007)

27. Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging, 2nd edn. Morgan
Kaufmann Publishers Inc., San Francisco (2009)

http://www.omg.org/spec/UML/2.4.1/


Testing-Based Formal Verification for Theorems
and Its Application in Software Specification

Verification

Shaoying Liu(B)

Department of Computer Science, Hosei University, Tokyo, Japan
sliu@hosei.ac.jp

Abstract. Verifying a specification for software can be converted into
theorem proving. In this paper, we describe a testing-based formal veri-
fication (TBFV) method for automatically testing theorems. The advan-
tage of the method over conventional theorem proving is that it can
quickly detect faults if the theorem is not valid and quickly provide us
with confidence in the validity of the theorem if it is valid. We discuss the
principle and algorithms for test case generation in TBFV and present an
example to illustrate how TBFV can be applied in checking designs. We
also present a prototype supporting tool we have developed and a con-
trolled experiment for evaluating the performance of TBFV. The result
shows that TBFV is effective and efficient to find faults in certain setting.

1 Introduction

Before undertaking the implementation of a software system, it is important to
ensure that the corresponding specification is consistent and valid in order to
prevent faults in the specification from slipping into the implementation. The
ideal approach to fulfilling this goal is perhaps to formally verify the relevant
consistency and validity properties. A property can be expressed as a theorem,
therefore, verifying a property becomes proving a theorem.

A theorem is usually expressed as a sequent H1, H2, ..., Hr � C. To check
whether conclusion C can be deduced from the hypotheses H1, H2, ..., Hr, a
formal proof needs to be conducted. But unfortunately, formal proof is usually
unable to be fully automated, although some machine theorem prover, such as
ACL2 [1] and PVS [2], may help automate part of the proof process. Since such
a proof is inevitably tedious and rather difficult to carry out in practice, it may
not be suitable for realistic software verification during the development process,
considering various theoretical and practical constraints [3].

Furthermore, since it is rare in practice for a software specification not to
contain faults just after it is written, formal proof of its properties will have
little chance to succeed. One may argue that even if a formal proof cannot be
successful, conducting the proof may help humans detect faults. Our experience
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suggests that this may be true, but the challenge is that the cost, complex-
ity and difficulty of such a proof are too high to afford for most practitioners
and companies (except a few rare cases). We believe that one possible solu-
tion to this challenge is automatic fault detection by means of rigorous testing.
Although testing is unable to guarantee the validity of theorems like proof, it
can help uncover and remove faults and build sufficient confidence in the valid-
ity in practice. This view has been justified by the fact that almost all of the
software systems in use are not formally proved; the developers’ confidence in
their quality is ensured only by testing (both static and dynamic testing).

In this paper, we put forward a testing-based formal verification (TBFV)
method for this goal. By formal verification in the context of “testing-based”
here, we do not mean formal proof. Instead, we mean a rigorous analysis following
well-defined rules in general (e.g., test coverage rules). TBFV is characterized
by generating test cases (i.e., values for the free variables in the theorem) to
evaluate the hypotheses and the conclusion in the manner consistent with the
principle of formal proof. When the hypotheses evaluate to true with a test
case, if the conclusion evaluates to false with the same test case, it will indicate
the invalidity of the theorem; in other words, it finds faults in the theorem. As
discussed in Sect. 7, this technique is highly effective to detect faults in faulty
properties. The challenge is how to determine the validity of the theorem if it is
truly valid. In Sect. 5, we discuss this issue and propose a condition under which
the analyst (or designer) should have a sufficient confidence in the validity of
the theorem.

Compared with formal proof, TBFV has two major advantages. One is that
it can be fully automated, which allows practitioners to avoid the complexity and
cost problems in formal proof. This advantage has and will continue to make the
technique attractive in practice according to our experiences with industry in
both Japan and China. Another advantage is that it can identify faults quickly
for faulty properties, as indicated by our experiment presented in Sect. 7.

The rest of the paper is organized as follows. Sections 2 to 5 discuss the prin-
ciple of the TBFV method, handling of quantifiers, test case generation algo-
rithms, and building confidence in theorems. Sections 6 to 9 present an example,
an experiment for evaluating TBFV, and a prototype supporting tool. Finally,
Sect. 10 concludes the paper and points out future research directions.

2 Principle of TBFV

In this section, we elaborate on the principle underlying the TBFV method and
identify important issues to be addressed in the subsequent sections.

Let sequent H1, H2, ..., Hr � C denote a theorem in first order predicate
logic. To verify the validity of the theorem using TBFV, we take the following
steps:

Step 1: Convert the conjunction of the hypotheses H1 ∧ H2 ∧ · · ·∧ Hr into a
disjunctive normal form and make the following sequent:
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P1 ∨ P2 ∨ · · · ∨ Pn � C, where each Pi (i = 1...n) is a conjunction of atomic
predicates (e.g., relations) or their negations.

Step 2: Generate a test set Ti (a set of test cases) from each Pi (i.e., every test
case in Ti satisfies Pi) for the sequent Pi � C, which is called a sub-theorem.

A detailed explanation for this theory is given below.

Step 3: Analyze the test result for Pi � C to determine whether any fault
is found, or a sufficient confidence in the validity of the sub-theorem can be
established.

To apply TBFV, quantifiers in the hypotheses, if any, must be removed prop-
erly. This will ensure that the hypotheses can be automatically transformed into
a disjunctive normal form in Step 1 with a standard algorithm. According to
the first order predicate calculus, to prove P1 ∨P2 ∨ · · · ∨Pn � C, we must prove
every Pi � C (i = 1, 2, ..., n). To this end, as mentioned in Step 2, a test set Ti

must be generated in which every test case satisfies Pi, and then used to evaluate
C. If there exists any test case t in Ti such that C(t) evaluates to false, it proves
that Pi � C is not valid. In other words, the presence of faults is confirmed. But
if no test case in Ti leads to such a result, we must decide whether Ti is adequate
to establish a confidence in the sub-theorem for the verifier (the person who is
carrying out the verification), as required in Step 3. If not, additional tests must
be carried out until the confidence is built.

Three issues involved in these steps are particularly important for the effec-
tiveness of TBFV. The first is how a quantifier can be removed properly. Another
issue is how a test set should be generated based on the conjunctive clause Pi in
Step 2. The last issue is how the invalidity or validity of each sub-theorem Pi �
C and the corresponding theorem P1 ∨ P2 ∨ · · · ∨ Pn � C can be determined in
Step 3. These issues are discussed in turn from the next section.

3 Treatment of Quantifiers

In principle, every quantified predicate expression in the hypothesis Pi of Pi � C is
converted into a boolean function, which is treated as an atomic predicate, in order
to allow for the application of the standard algorithm to convert non-quantified
predicate expressions into disjunctive normal forms. Specifically, let a universally
quantified expression be ∀x ∈ X · P (x). Then, we convert it into a boolean func-
tion, say f(X ′), which is defined as follows:

f(X ′: 2X) �
∧

x∈X′
P (x)

where the name f must not occur in P (x) and X ′ is the input variable of f
denoting a subset of X (where 2X represents the power set of X). Given a
specific X ′, if every element x in X ′ satisfies P (x), f will yield true; otherwise,
it will yield false. When X ′ = X, ∀x ∈ X ·P (x) is equivalent to f(X ′); otherwise,
(∀x ∈ X · P (x)) ⇒ f(X ′).
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Similarly, let an existentially quantified expression be ∃x∈X · P (x). Then, we
convert it into a boolean function, say g(X ′), which is defined as follows:

g(X ′: 2X) �
∨

x∈X′
P (x)

where the name g must not occur in P (x) and X ′ is the input variable of g
denoting a subset of X. Given a specific X ′, if some x in X ′ satisfies P (x), g will
yield true; otherwise, it will yield false. When X ′ = X, ∃x∈X ·P (x) is equivalent
to g(X ′); otherwise, g(X ′) ⇒ (∃x∈X · P (x)).

This treatment will help us to choose an appropriate subset X ′ of the domain
X as a test case to evaluate the quantified expression. In the case of universally
quantified expression, this treatment will not affect the judgement of finding
faults in a test using TBFV. That is, if the boolean function f helps confirm the
presence of faults, the corresponding quantified expression will also be able to
do so. However, in the case of the existentially quantified expression, the same
relationship between it and the boolean function g may not be established, but
if using g confirms the presence of faults, it will be able to provide a warning
message about the possibility of fault presence in the original sub-theorem.

4 Test Set Generation

To test whether Pi � C is valid or not, it is necessary to generate a test set such
that each test case of the set satisfies Pi. Since Pi is supposed to be a conjunction
of atomic predicates or their negation, say Pi = Q1

i ∧Q2
i ∧· · ·∧Qm

i , generating a
test set for Pi is equivalent to generating a test set to satisfy Q1

i ∧Q2
i ∧ · · ·∧Qm

i .
There might be a situation where conclusion C contains more free variables than
the hypothesis Pi. For example, all of the free variables in Pi are x1, x2, and
x3, but C contains the free variables x1, x2, x3, and y. In this case, a test case
should not only contain values for x1, x2, and x3, but also contain a value for y.
The values for x1, x2, and x3 must be produced under the constraint of Pi, but
the value for y should be chosen randomly from its type because for any value
of y, x1, x2, and x3 must satisfy C if the sub-theorem is valid.

We first discuss how to automatically generate a test case for atomic predi-
cates and then for their conjunctions.

4.1 Test Case Generation for Atomic Predicates

Let Qj
i (x1, x2, ..., xq) (j = 1, ...,m) be an atomic predicate occurring in Q1

i ∧Q2
i ∧

· · ·∧Qm
i . The variables x1, x2, ..., xq are free variables but may be part of all the

free variables x1, x2, ..., xw used in the conjunction, where w ≥ q. A variable can
denote either a numeric value or a value of compound type (e.g., set, sequence,
map, or composite type) that is available in many of the model-based formal
notations, such as VDM-SL, Z, and SOFL [4], although their syntax may differ
slightly. We start discussing the case of atomic expressions with only numeric
variables, and then extend to expressions with variables of compound types.
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4.1.1 Numeric Variables
An atomic predicate can be divided into the following three kinds, depending on
the pattern of expressions involving free variables.

(a) Only one free variable x1 (i.e., q = 1) is involved and Qj
i (x1) has the format

x1 
 E, where 
 ∈ {=, >, <, >=, <=, <>} is a relational operator and E
a constant. The operator >= means “greater than or equal to”, <= means
“less than or equal to”; <> means inequality; and the others are commonly
used operators.

(b) Only one free variable x1 is involved and Qj
i (x1) has the format E1 
 E2,

where E1 and E2 are both terms (or arithmetic expressions) and both contain
the free variable x1.

(c) More than one free variable is involved and Qj
i (x1, x2, ..., xq) has the format

E1 
 E2, where E1 and E2 are both terms possibly involving all the free
variables x1, x2, ..., xq.

Generating a test case to satisfy x1 
 E in case (a) is rather simple.
A collection of test case generation algorithms for this kind of expression is
given in Table 1, where σ is a positive integer, which can be produced randomly,
and “:=” denotes the assignment operator. For example, when operator 
 is
“>=”, “<>” or “>”, a test case for variable x1 can be produced by the assign-
ment x1 := E + σ, whilst the remaining input variables x2, x3, ..., xq are assigned
any value from their type, respectively. Note that each of the algorithms in the
table can be used independently.

Table 1. Algorithms for case (a)

No. of � Algorithms of test case Algorithms of test case generation for

algorithms generation for x1 the remaining input variables (i = 2,..., q)

(1) = x1 := E xi := any ∈ Type(xi)

(2) >=, <> or > x1 := E + σ xi := any ∈ Type(xi)

(3) <= or < x1 := E − σ xi := any ∈ Type(xi)

Generating a test case to satisfy E1 
 E2 in case (b) becomes a little more
complicated: it first needs to transform the format E1
E2 to the format x1
E,
and then to apply the algorithms for case (a).

Generating a test case to satisfy E1 
 E2 in case (c) requires more actions:

(1) Randomly assigning values from appropriate types to the variables x2, ..., xq

to transform the format into the format E1 
 E2 in case (b).
(2) Applying the algorithms for case (b) to the derived format E1 
 E2.

4.1.2 Compound Variables
The above algorithms cannot handle operators defined in compound data types.
Since the essential idea for handling operations of compound variables for all



Testing-Based Formal Verification for Theorems and Its Application 117

kinds of compound types is similar, we only choose the set type in SOFL as an
example to discuss the algorithms for test case generation.

Let q = 1 and Qj
i (x1, x2, ..., xq) be E(x1), where x1 is a variable denoting a

single set of elements, E(x1) is a term involving x1 and an operator defined on set
types, such as inset (membership), notin (non-membership), card (cardinality),
union (union of sets), inter (intersection of sets), diff (difference between sets),
subset (subset), psubset (proper subset), and power (power set). Then, a set
of algorithms for generating a test case from each kind of atomic predicate is
shown in Table 2, in which E1 and E2 denote two set values (i.e., two specific
sets), get(E1) represents an element obtained from set E1 (a nondeterministic
operator), and w is a natural number.

Table 2. Algorithms for test case generation from set type expressions

No. of Expression E(x1) Algorithms of test case generation the Randomly selecting values for

algorithms for x1 rest input variables (i = 2,..., q)

(1) x1 inset E1 x1 := get(E1) xi ∈ Type(xi)

(2) x1 notin E1 x1 := get(Type(x1) \ E1) xi ∈ Type(xi)

(3) card(x1) = u x1 := {a1, a2, ..., au}, where

x1 : set of T, and ak ∈ T,

k = 1, 2, ..., u

xi ∈ Type(xi)

(4) union(x1, E1) = E2 x1 := E2\E1 xi ∈ Type(xi)

(5) inter(x1, E1) = E2 x1 := E2, where E2 ⊆ E1 xi ∈ Type(xi)

(6) diff (x1, E1) = E2 x1 := E1 union E2 xi ∈ Type(xi)

(7) subset(x1, E1) x1 := E1 xi ∈ Type(xi)

(8) psubset(x1, E1) x1 := E1\{get(E1)} xi ∈ Type(xi)

(9) x1 = E1 x1 := E1 xi ∈ Type(xi)

(10) x1 <> E1 x1 := {get(Type(x1))}\ E1 xi ∈ Type(xi)

(11) power(x1) = E1 x1 := getLargest(E1) xi ∈ Type(xi)

In this table, x1 in Algorithms (1) and (2) denotes an element of a set
(e.g., E1), while in the rest of algorithms it denotes a set whose type is set
of T where T is the element type already defined. Algorithm (1) shows that a
test case for x1 can be generated by assigning any value from E1 (as indicated by
the assignment x1 := get(E1)). Algorithm (3) indicates that a test case for set
x1 to satisfy the condition card(x1) = u is to randomly select u elements from
its element type T . Algorithm (4) states that a test case for set x1 to satisfy the
condition union(x1, E1) = E2 (the union of x1 and E1 is equal to E2) is to assign
the difference set between E2 and E1 (i.e., x1 := E2\E1). The other algorithms
in the table can be similarly interpreted, we therefore do not elaborate on them
for brevity.

Note that the algorithms in the table are suitable for dealing with expressions
involving only one input variable x1. However, if more than one input variable
is involved, a similar measure to that of dealing with numeric terms can be
taken. That is, first randomly select values v2, ..., vq for variables x2, ..., xq to
convert the expression into one satisfying the condition required, and then apply
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the corresponding algorithms in Table 2 to generate a satisfactory value for x1.
Thus, a full test case for the predicate can be generated.

4.2 Generation for Conjunctions

We can now focus on the more challenging issue of generating test cases from
the conjunction Q1

i ∧Q2
i ∧· · ·∧Qm

i . A primitive way as proposed in our previous
publication [5] is to generate a test case satisfying one of the atomic predicates,
say Qj

i (j = 1, ...,m), and then use the same test case to evaluate the rest atomic
predicates in the conjunction. If it also satisfies all of the rest atomic predicates,
a qualified test case for the conjunction is found; otherwise, another attempt to
generate a new test case must be made to repeat the same process. However, our
experience suggests that this algorithm may not be efficient in many situations.
Existing SAT solvers, such as RISS [6], may be used for test data generation
for a conjunction, but since the SAT solver only deals with propositional logic,
its capability is limited for our formal notation that adopts first-order predicate
logic. Existing SMT solvers, such as Yices [7] and Z3 [8], may be a better pos-
sibility for the solution due to their capability of dealing with predicate logic,
but they are difficult to be adopted in our work for two major reasons. One is
that they do not cope with many operators both syntactically and semantically
that are defined in various types of our SOFL language with which a theorem
is written. This poses an obstacle to the generation of test data satisfying the
required criteria and predicates that involve those operators. Another reason is
the difficulty in incorporating the SMT solver into our supporting tool for the
TBFV approach presented in this paper. In fact, our work on TBFV is part of
our ongoing Agile Formal Engineering Method project that aims to build tool
supports for both specification and its verification based on our SOFL language
that has been using by industry in Japan and other countries. Therefore, we
must build an independent tool support with the capability of dealing with all
of the syntaxes in SOFL.

In this section, we propose a new and more efficient algorithm for generating
test cases for conjunctions below than our previous algorithm. The essential idea
of the algorithm is first to form an ordered partition of the atomic predicate set
{Q1

i , Q2
i , ..., Qm

i } according to variable dependency, and then properly apply
the primitive algorithm mentioned above to generate a qualified test case for the
conjunction if it is satisfiable. Before introducing the details of the algorithm, we
first need to introduce several notations and concepts to be used in the algorithm
below.
Notations:

– V ar(E) denotes the set of free variables occurring in predicate E.
– [1..n] denotes the set of integers {1, 2, . . . , n}.
– {Q1

i , Q2
i , ..., Qm

i } denotes all of the atomic predicates in the conjunction Q1
i ∧

Q2
i ∧ · · · ∧ Qm

i .
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Definition 1. Let E1 and E2 be two predicate expressions. If E2 contains more
free variables than E1, i.e., V ar(E1) ⊂ V ar(E2), E2 is said to be dependent on
E1 and the dependency relation is represented as E1 � E2.

For example, predicate x + y > 0 is dependent on x > 0; that is, x > 0 �
x + y > 0.

Definition 2. Let {R1, R2, ..., Ru} be a set of predicate sets. If it satisfies the
following two conditions

(1) ∀i∈[1..u−1]∀E1∈Ri,E2∈Ri+1 · E1 � E2

(2) ∀i∈[1..u]∀E1,E2∈Ri
· ¬(E1 � E2),

we say {R1, R2, ..., Ru} is an ordered set of predicate sets on �.

For instance, {{x > 0, y > 1}, {x+ y > 10}, {x ∗ y + z > 1, x+ y ∗ z < 100}}
is an ordered set of predicates on �, while {{x > 0, x ∗ y > 1}, {x + y > 10},
{x ∗ y + z > 1, x + y ∗ z < 100}} is not an ordered set because there exists a
predicate x ∗ y > 1 in the first predicate set on which the predicate x + y >
10 in the second predicate set is not dependent (violating condition (1)). It is
also because the two predicates in the first predicate set satisfies the dependent
relation, i.e., x > 0 � x ∗ y > 1, which violates condition (2) in the definition.

Definition 3. Let R be a predicate set and t be a test case. If t satisfies every
predicate in R, we say t satisfies R.

Suppose R = {x > 0, x + y < 10} and a test case t = {(x, 5), (y, 3)}. Then,
obviously t satisfies R by definition because t satisfies both x > 0 and x+y < 10.

On the basis of these symbols and concepts, we give an algorithm for gener-
ating a test case from the conjunction below.

Algorithm 4.2.1. /*Java-based pseudocode*/

No. 1 Construct a partition {R1, R2, ..., Ru} for the set {Q1
i , Q2

i , ..., Qm
i }

(1 ≤ u ≤ m) such that {R1, R2, ..., Ru} is an ordered set of predicate sets
on �;

No. 2 t0 := {}; i := 1; flag := 0; /*initializing variable t0 representing the
initial test case*/

No. 3 while ( i ≤ u || flag ≤ NoOfFailure) {

A := ObtainInstantiatedPredicates(Ri, ti−1); /*A is an array of
predicates*/

ti := GenerateTestCase(A); /*ti is a new test case generated based
on the predicates in A*/

if (ti = {})
{i := i − 1; flag := flag + 1; }

else {i := i + 1; }
}

No.4 if (flag > NoOfFailure) {Display a test case generation failure message}
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else {Display a test case generation success message and ti is the
generated test case}
No. 5 End.

The essential idea of the algorithm is to generate a test case that satisfies all
of the predicates in Ri (1 ≤ i ≤ u) and then utilize the values in the test case
in generating a more complete test case for Ri+1. Repeat this process until Ru

is reached and a qualified test case is produced. However, if the generation fails
for Ri, it will go one step back to retry generating a test case for Ri−1 and then
repeat the same process. But if the number of failings to generate the qualified
test case satisfying all R1, R2, ..., Ru reaches the pre-defined number denoted
by NoOfFailure (e.g., 100), a failure message will be issued as the result of the
algorithm.

In the algorithm, the function ObtainInstantiatedPredicates(Ri, ti−1)
obtains an array A whose elements are the atomic predicates resulting from
substituting the value of every variable in test case ti−1 for the same variable in
the atomic predicates in Ri. For instance, suppose

Ri = {x ∗ y + z > 1, x + y ∗ z < 100}, containing two predicates and
Ri−1 = {x + y > 10}, and the test case for Ri−1 is
ti−1 = {(x, 8), (y, 9)}. Then, we get A from ObtainInstantiated
Predicates(Ri, ti−1) as follows:
A = {8 ∗ 9 + z > 1, 8 + 9 ∗ z < 100}.

To generate a test case for Ri based on A, we need to apply the function
GenerateTestCase(A). The test case generated from this function is actually
a more complete one than ti−1 that satisfies all of the atomic predicates in A.
Assume that array A has n atomic predicates as its elements, we give an algo-
rithm used to implement the function GenerateTestCase(A) below.

Algorithm 4.2.2. /* Java-based pseudocode*/

satisfyingConjunction := false;
for (int i := 0; i < A.length();i++){
tc := GenerateTestCasefromFirstPredicate(A(0));
j := 0;

while (j < A.length() && Satisfy(A(j), tc)){
j := j + 1;

}
if (j < A.length())

{A := Rotate(A); }
else {satisfyingConjunction := true;

break; }
}
if (satisfyingConjunction == false) {

tc = {};
}

return tc;
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The essential idea of this algorithm is first to generate a test case satisfying
the first atomic predicate of A (i.e., A(0)) and then to test whether it satisfies
all of the other atomic predicates in A. If yes, a successful test case is generated;
otherwise, repeat the same process for the other atomic predicates in A until
all of the atomic predicates of A is exhausted. In this algorithm, the function
GenerateTestCasefromFirstPredicate(A(0)) produces a test case as the result
that satisfies the first atomic predicate in A. Satisfy (A(j), tc) yields true if test
case tc satisfies A(j); otherwise it yields false. Rotate(A) yields a permutation
of A by moving the first element of A to the last position and all of the other
elements are shifted to one position on the left in A. For the sake of space,
examples are omitted.

5 Building Confidence

From the discussions above, we can clearly see the benefit of the TBFV method
in determining the invalidity of the sub-theorem Pi � C (also with the same
merit for the whole theorem). However, if the sub-theorem is valid, using TBFV
to prove its validity is a challenge. In theory, testing-based approach generally
lacks the power of proving the sub-theorem for the obvious reason. In this case,
what we can expect is to achieve a sufficient confidence of the theorem. The
question is what test cases and how many of them should be tried to establish
the confidence. Apparently, it is extremely difficult to give a unique answer for
this question. We propose a criterion for generating adequate test cases based
on the idea of equivalent domain partition for black-box testing [9] next.

Criterion 5.1. Let x1, x2, ..., xq be all of the free variables occurring in Pi.
Then, the test set T for verifying Pi � C should contain all of the tuples (each
tuple is a test case) in the following product set:

valueSpace(x1) × valueSpace(x2) × · · · × valueSpace(xq)

where valueSpace(xi) (i = 1, ..., q) denotes a set of the following three values in
the type of xi:

(1) Great value,
(2) special value or boundary value, and
(3) small value.

The notions of great value, special or boundary value, and small value for
each data type can be defined differently. For example, for the integer int type,
a great value can be a sufficiently big positive integer; a small value can be a
sufficiently small negative integer; and a special value can be zero. But for a
set type (e.g., set of int), a great value can be a large set of integers; a small
value can be a small set of integers; and a boundary value is the empty set {}.
The decision on the specific value of each kind in practice can be made by the
verifier, or by the supporting tool that implements a pre-defined criterion.

As far as the number of necessary test cases is concerned, it is really difficult
to say and to decide. It should depends on the criticality of the corresponding
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property and the software system under verification. Considering the time and
cost constraints in practice, our experience suggests that if a fairly large number
of test cases (e.g., 200) are used but still no fault is found, it should be reasonable
enough to be confident of the theorem and the validity of the corresponding
property, although this may never be 100 % correct. Of course, this number can
be flexible for different systems and situations in practice.

6 Example

For the sake of space, we only take the feasibility property of the operation
charging card with cash in the Suica Card System described in Sect. 7 for example
to show how the TBFV method can be applied. The feasibility of the operation
requires that for every input satisfying the pre-condition, there must exists an
output that satisfies the post-condition. Specifically, the property is given as
follows:

(∀x∈NonPositiveInt ·x < amount1∧x ≤ ˜buffer)∧amount1 ∈ int∧ ˜buffer ∈
int ∧ ˜buffer < 50000 �

˜buffer + amount1 > 50000∧
∃overlimit msg1∈string · overlimit msg1 = “Amount is over the limit.”
∨
˜buffer + amount1 < 50000∧
∃buffer∈int · buffer = ˜buffer + amount1

In this property, NonPositiveInt denotes the set containing zero and all the
negative integers, the decorated variable ˜buffer denotes the value of the state
variable buffer of the Suica Card before the operation whilst buffer represents
the value after the operation, and string is a built-in type containing all of
possible strings.

To generate test cases for the hypothesis, we first need to remove the universal
quantifier as suggested in Sect. 3 by selecting a subset of NonPositiveInt. We
use SubNonPositiveInt to represent the subset and let SubNonPositiveInt =
{−1, 0}, considering the nature of the values in NonPositiveInt and the body
of the quantified expression. We then convert the hypothesis into the following
predicate:

(−1 < amount1 ∧ −1 ≤ ˜buffer) ∧ (0 < amount1 ∧ 0 ≤ ˜buffer)∧
amount1 ∈ int ∧ ˜buffer ∈ int ∧ ˜buffer < 50000 .

This predicate can be further simplified but we omit the discussion for the sake
of space. Based on this predicate, we generate three test cases for all of the two
free variables amount1 and ˜buffer as shown in Table 3. It is apparent that only
test case 3 makes the hypothesis true but make the conclusion false because there
is no case of ˜buffer+ amount1 = 50000 is defined in the conclusion, which is a
fault.



Testing-Based Formal Verification for Theorems and Its Application 123

Table 3. Example test cases

Variables Test case 1 Test case 2 Test case 3

amount1 150000 0 35000

˜buffer 0 49999 15000

7 Experiment

7.1 Background

We have applied our TBFV technique to verify 52 properties that are derived
from a mutant formal specification in SOFL for the Suica Card System (SCS)
of the East Japan Railway Company. The original formal specification defines
the following services in 6 modules: registering a card, buying tickets, charging
card with cash, charging from bank account, entering station, exiting station, and
updating commutation ticket. The derived properties include feasibility, integra-
tion properties, and some relevant algebraic properties whose detailed definitions
are presented in our previous publication [10].

Our experiment was designed to concentrate only on one important thing
that is the fault detection rate using TBFV, which is defined as follows:

Fault detection rate = the number of the faults found / the total number of
faults injected

The reason is simple. Before understanding how good the performance of our
TBFV method is in comparison with other verification techniques (e.g., formal
proof, specification review), we first need to know how effective the TBFV tech-
nique is in finding faults. An experiment for comparison requires more resources,
training, and material preparations, therefore we plan to conduct it in the future.

For the purpose of our experiment in this paper, we created the mutant
formal specification by injecting 231 faults in the original specification. The faults
are roughly divided into two categories: consistency-related fault and validity-
related fault. A consistency-related fault is a defect that results in the violation
of some consistency properties mentioned above. A validity-related fault is a
defect that does not violate any consistency-related properties but is undesirable
with respect to the user’s requirements. A simple example is that the operator
“+” (plus) should be “−” (minus) in the expression card.buffer= ˜card.buffer
+ ticket.price that defines the updating of the buffer of the Suica card after a
train ticket with the price is purchased.

An experienced researcher in our lab was asked to inject the faults based
on the consideration of fault distribution (evenly injecting faults throughout the
specification rather than concentrating on some parts) and to derive the 52 prop-
erties from the formal specification. The faults were created mainly by applying
some mutation operators normally used for mutation testing [11]. The mutation
operators include operator replacement, insertion, and deletion at arithmetic,
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Table 4. The summary of the experiment result

Processes Pro- Faults injected Faults Found Fault detection Test

perties rate cases

Buy With Card 5 29 (C: 24, V: 5) 28 (C: 24, V: 4) 96.6% (C: 100%, V: 80%) 12

Buy With Card Cash 10 47 (C: 40, V: 7) 46 (C: 39, V: 7) 97.9% (C: 97.5%, V: 100%) 22

Charge With Cash 5 23 (C: 17, V: 6) 22 (C: 17, V: 5) 95.7% (C: 100%, V: 83.3%) 12

Charge From Bank 10 44 (C: 36, V: 8) 43 (C: 36, V: 7) 97.7% (C: 100%, V: 87.5%) 25

Entering Station 5 16 (C: 15, V: 1) 16 (C: 15, V: 1) 100% (C: 100%, V: 100%) 12

Exiting Station 5 25 (C: 21, V: 4) 24 (C: 21, V: 3) 96% (C: 100%, V: 75%) 14

Register Card 6 29 (C: 23, V: 6) 28 (C: 23, V: 5) 96.6% (C: 100%, V: 83.3%) 15

Update Commute Ticket 6 18 (C: 14, V: 4) 18 (C: 14, V: 4) 100% (C: 100%, V: 100%) 13

All processes 52 231 (C: 190, V: 41) 225 (C: 189, V: 36) 97.4% (C: 99.5%, V: 87.8%) 125

condition, or logical expression levels, and violation of informal requirements.
The experiment was carried out manually by three experienced graduate stu-
dents. They followed the instructions of our TBFV technique to generate test
cases, evaluate each property, and analyze the evaluation result to determine
whether and what faults are found. The identified faults are all finally confirmed
by the person who carried out the fault injection into the specification.

7.2 Experiment Result

Table 4 shows the details of the experiment. The column named Processes lists
up all of the processes used in the experiment. The column named Properties
gives the numbers of the properties derived from each corresponding process. The
columns named Inserted faults, Detected faults, and Test cases give the
number of the injected faults, the faults detected by using TBFV, and the test
case produced, respectively. In the columns of Inserted faults and Detected
faults, each number of faults (e.g., 29) is actually divided into two parts: C: No1,
V: No2, where No1 denotes the number of the consistency-related faults and No2
represents the number of the validity-related faults. Thus, 29 (C: 24, V: 5) for
example, means that the total 29 faults are constituted by 24 consistency-related
faults and 5 validity-related faults.

The result of the experiment demonstrates that our TBFV is effective in the
sense that it uses a small number of test cases to find all or most of the injected
faults. The average fault detection rate for all of the 52 properties derived from
all of the 8 process specifications is 97.4% in which the average consistency-
related fault detection rate is 99.5% and the validity-related fault detection rate
is 87.8%.

7.3 Experience and Lessons

Our experience in the experiment indicates three positive aspects of the TBFV
method. One is the simplicity in use. Another aspect is the high effectiveness
and efficiency of the TBFV technique because all or most of the injected faults
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could be found with a small number of test cases. Although this result is limited
due to the relatively small scale of the experiment, the result indicates a high
potential of the technique. The final positive point is that the technique can be
applied without any need to understand formal proof. This will likely create a
high possibility for practitioners to adopt the technique with little psychological
barriers.

We have also learned two important lessons. One is that the TBFV technique
can only tell us whether there exist any faults in the target property or not, but
it may not necessarily directly tell us what are the faults. In fact, the majority
of the injected faults were found in the process of test case generation, which
takes up approximately 86 % of the total faults we found in the experiment. The
reason is that generating test cases inevitably requires the verifier to exam every
aspect of the property, which often leads to the discovery of faults. Another
lesson learned is concerned with verifying a sub-theorem such as Pi � C where
Pi is a contradiction. The difficulty lies in the lack of a theoretical instruction on
when the test case generation based on Pi should be given up. Although such a
situation may be easily found out by humans, it is likely to pose a threat when
test cases are generated automatically with a tool.

8 Supporting Tool

A prototype software tool called TBFV-Tool to support our TBFV method has
been developed by our research group, but its improvement is still undergoing.
In this paper, we only briefly report the desired functionality in the tool.

Fig. 1. Structure of the supporting tool TBFV-Tool

Figure 1 shows the structure of the tool. The core of the tool is a parser of the
SOFL specification language [4] using which logical expressions in a theorem can
be written. SOFL stands for Structured Object-Oriented Formal Language, and
its grammar for writing logical expressions inherits from VDM-SL but with many
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improvements for comprehensibility. In the examples of this paper, we try not to
show the SOFL syntax in order to save the space for explaining it. Instead, we use
the commonly used first order predicate logic in the examples. The second layer of
the tool includes two functional modules: test case generation and logical formula
evaluation. The former is responsible for automatically generating test cases from
logical formulas whilst the latter performs evaluation of logical formulas with the
generated test cases. The uttermost outside layer has two functional modules:
verification database management and GUI management. The former manages
all of the documents in relation to the verification of the theorem whilst the latter
deals with GUI pages for human and machine interaction, including building all
of the necessary frames and areas for displaying all of the necessary information.
The implementation of the entire tool is still ongoing and its details will be
reported somewhere else after its completion.

9 Related Work

The idea of our TBFV method is shared by some of existing studies, but they are
mostly concerned with how testing is used to facilitate theorem proving while
our aim is to avoid theorem proving by only using testing to detect faults and
enhance confidence in the validity of theorems.

Chamarthi and Manolios present a method in [12] for rigorously analyzing
designs and their specifications using an interactive theorem prover called ACL2s
[1]. The main idea is to use the deductive verification engine of ACL2s to decom-
pose properties into subgoals that are either proven to be true or tested to find
counterexamples. In this work, deduction and testing are used in an interleaved,
synergistic fashion, where random testing and bounded exhaustive testing are
adopted as the testing strategy. Eakman et al. report the authors’ experience in
integrating formal methods with traditional testing-based software development
process through two projects called FORMED and SITAPS, respectively. The
former combines UML with the semi-automated theorem prover ACL2s and the
latter developed a proof framework based on a compilation of a domain specific
language (DSL) called Ivory into ACL2s for verifying user specified and compiler
generated assertions. The advocated development methodology includes mod-
elling in a DSL, testing whether the model captures properly the properties of
specification, testing whether the model and code meet the specification, and
formally proving properties or generate counter-examples.

Dybjer et al. [13] present a combination of testing and proving by extending
the proof assistant Agda/Alfa for dependent type theory with a tool QuickCheck
for random testing of functional programs. Testing is used for debugging pro-
grams and specifications before a proof is attempted. It can also be used repeat-
edly during proof for testing suitable subgoals. Paraskevopoulou et al. have
ported the QuickCheck framework to Coq [14], a formal proof management sys-
tem, with a result of constructing a prototype Coq plugin called QuickChick
[15]. The purpose of QuickChick is to support formal proof with testing and to
verify the correctness of the testing code written manually, but it does not try to
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automatically generate test data satisfying properties. Instead, it provides ways
for the users to construct property-based generators, thus giving experienced
users more control over how the data is generated. Bulwahn describes a new
QuickCheck for Isabelle/HOL that detects faulty specifications and invalid con-
jectures using not only random testing but also bounded exhaustive testing and
symbolic testing [16]. The work reported in [17] also discusses how testing can be
used to improve formal proof for programs, but the technique relies on domain
partition of the induction variable used in a loop to be proved. Chamarthi et al.
present an idea of using random testing to find countexamples to conjectures for
theorem proving [18]. A similar technique is also adopted by Owre in his work
on integrating testing with formal proof using PVS [19].

For test case generation based on pre-post style formal specifications, an early
work on partitioning the conjunction of pre-condition, post-condition, and invari-
ant to generate test cases for aVDMoperationwas reportedbyDickandFaivre [20].
The similar principles are applied by Legeard et al. for test case generation from B
or Z notation [21], and has been adapted in many test case generation tools, some of
which use interactive theorem prover [22]. TestEra [23] is a testing tool that accepts
representation constraints and generates non-isomorphic test data by using a solu-
tion enumeration technique to use propositional constraint solver or SAT engine
[24]. Aichernig and Salas took the mutation testing view to propose a fault-based
approach to test case generation for pre- and post-condition specifications in OCL
[25,26]. The essential idea is first to mutate the pre- and post-conditions and then
try to generate test cases fromthe specification thathelpfind theanticipated errors.

10 Conclusion

We have proposed the TBFV method for verifying software specification prop-
erties in realistic software development. The method is characterized by using
testing to replace formal proof in theorem proving where each theorem can be
used to represent a system property. A group of algorithms for test case genera-
tion from formal logical expressions are described, and various important issues,
such as building confidence by testing, effectiveness evaluation by experiment,
and tool support, are discussed. Although theoretically the TBFV method may
not replace formal proof in verifying the validity of theorems, it can bring prac-
tical benefits with high confidence, such as saving time and cost, for industrial
software development due to its operational simplicity and automation.

Our future research will continue to concentrate on developing more effective
test case generation methods, improving the capability of the current supporting
tool, and applying the method in more software projects.
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Abstract. Applying deductive verification to formally prove that a
program respects its formal specification is a very complex and time-
consuming task due in particular to the lack of feedback in case of proof
failures. Along with a non-compliance between the code and its spec-
ification (due to an error in at least one of them), possible reasons of
a proof failure include a missing or too weak specification for a called
function or a loop, and lack of time or simply incapacity of the prover
to finish a particular proof. This work proposes a complete methodol-
ogy where test generation helps to identify the reason of a proof failure
and to exhibit a counterexample clearly illustrating the issue. We define
the categories of proof failures, introduce two subcategories of contract
weaknesses (single and global ones), and examine their properties. We
describe how to transform a formally specified C program into C code
suitable for testing, and illustrate the benefits of the method on com-
prehensive examples. The method has been implemented in StaDy, a
plugin of the software analysis platform Frama-C. Initial experiments
show that detecting non-compliances and contract weaknesses allows to
precisely diagnose most proof failures.

1 Introduction

Among formal verification techniques, deductive verification consists in estab-
lishing a rigorous mathematical proof that a given program meets its specifi-
cation. When no confusion is possible, one also says that deductive verification
consists in “proving a program”. It requires that the program comes with a for-
mal specification, usually given in special comments called annotations, includ-
ing function contracts (with pre- and postconditions) and loop contracts (with
loop variants and invariants). The weakest precondition calculus proposed by
Dijkstra [19] reduces any deductive verification problem to establishing the valid-
ity of first-order formulas called verification conditions.

In modular deductive verification of a function f calling another function g,
the roles of the pre- and postconditions of f and of the callee g are dual. The
precondition of f is assumed and its postcondition must be proved, while at
c© Springer International Publishing Switzerland 2016
B.K. Aichernig and C.A. Furia (Eds.): TAP 2016, LNCS 9762, pp. 130–150, 2016.
DOI: 10.1007/978-3-319-41135-4 8
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any call to g in f , the precondition of g must be proved before the call and its
postcondition is assumed after the call. The situation for a function f with one
call to g is presented in Fig. 1. An arrow in this figure informally indicates that
its initial point provides a hypothesis for a proof of its final point. For instance,
the precondition Pref of f and the postcondition Postg of g provide hypotheses
for a proof of the postcondition Postf of f . The called function g is proved
separately.

Fig. 1. Proof of f that calls g

To reflect the fact that some contracts become
hypotheses during deductive verification of f
we use the term subcontracts for f to des-
ignate contracts of called functions and loops
in f .
Motivation. One of the most important diffi-
culties in deductive verification is the manual
processing of proof failures by the verification
engineer since proof failures may have several
causes. Indeed, a failure to prove Preg in Fig. 1
may be due to a non-compliance of the code to the specification: either an error
in the code code1, or a wrong formalization of the requirements in the specifica-
tion Pref or Preg itself. The verification can also remain inconclusive because of
a prover incapacity to finish a particular proof within allocated time. In many
cases, it is extremely difficult for the verification engineer to decide how to pro-
ceed: either suspect a non-compliance and look for an error in the code or check
the specification, or suspect a prover incapacity, give up automatic proof and try
to achieve an interactive proof with a proof assistant (like Coq [41]).

A failure to prove the postcondition Postf (cf. Fig. 1) is even more complex
to analyze: along with a prover incapacity or a non-compliance due to errors in
the pieces of code code1 and code2 or to an incorrect specification Pref or Postf ,
the failure can also result from a too weak postcondition Postg of g, that does not
fully express the intended behavior of g. Notice that in this last case, the proof of g
can still be successful. However, the current automated tools for program proving
do not provide a sufficiently precise indication on the reason of the proof failure.
Some advanced tools produce a counterexample extracted from the underlying
solver that cannot precisely indicate if the verification engineer should look for a
non-compliance, or strengthen subcontracts (and which one of them), or consider
adding additional lemmas or using interactive proof. So the verification engineer
must basically consider all possible reasons one after another, and maybe initiate
a very costly interactive proof. For a loop, the situation is similar, and offers an
additional challenge: to prove the invariant preservation, whose failure can be due
to several reasons as well.

The motivation of this work is twofold. First, we want to provide the verifica-
tion engineer with a more precise feedback indicating the reason of each proof fail-
ure. Second, we look for a counterexample that either confirms the non-compliance
and demonstrates that the unproven predicate can indeed fail on a test datum, or
confirms a subcontract weakness showing on a test datum which subcontract is
insufficient.
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Approach and Goals. The diagnosis of proof failures based on a counterexam-
ple generated by a prover can be imprecise since from the prover’s point of view,
the code of callees and loops in f is replaced by the corresponding subcontracts.
To make this diagnosis more precise, one should take into account their code as
well as their contracts. A recent study [42] proposed to use function inlining and
loop unrolling (cf. Sect. 6). We propose an alternative approach: to use advanced
test generation techniques in order to diagnose proof failures and produce coun-
terexamples. Their usage requires a translation of the annotated C program into
an executable C code suitable for testing. Previous work suggested several com-
prehensive debugging scenarios relying on test generation only in the case of non-
compliances [38], and proposed a rule-based formalization of annotation transla-
tion for that purpose [37]. The cases of subcontract weakness remained undetected
and indistinguishable from a prover incapacity.

The overall goal of the present work is to provide a complete methodology for a
more precise diagnosis of proof failures in all cases, to implement it and to evaluate
it in practice. The proposed method is composed of two steps. The first step looks
for a non-compliance. If none is found, the second step looks for a subcontract
weakness. We propose a new classification of subcontract weaknesses into single
(due to a single too weak subcontract) and global (possibly related to several sub-
contracts), and investigate their relative properties. Another goal is to make this
method automatic and suitable for a non-expert verification engineer.

The contributions of this paper include:

– a classification of proof failures into three categories: non-compliance (NC), sub-
contract weakness (SW) and prover incapacity,

– a definition and comparative analysis of global and single subcontract weak-
nesses,

– a new program transformation for diagnosis of subcontract weaknesses,
– a complete testing-based methodology for diagnosis of proof failures and gen-

eration of counterexamples, suggesting possible actions for each category, illus-
trated on several comprehensive examples,

– an implementation of the proposed solution in a tool called StaDy1, and
– experiments showing its capability to diagnose proof failures.

Paper Outline. Section 2 presents the tools used in this work and an illustra-
tive example. Section 3 defines the categories of proof failures and counterexam-
ples, and presents program transformations for their identification. The complete
methodology for the diagnosis of proof failures is presented in Sect. 4. Our imple-
mentation and experiments are described in Sect. 5. Finally, Sects. 6 and 7 present
some related work and a conclusion.

2 FRAMA-C Toolset and Illustrating Example

This work is realized in the context of Frama-C [31], a platform dedicated to
analysis of C code that includes various analyzers in separate plugins. The Wp

1 See also http://gpetiot.github.io/stady.html.

http://gpetiot.github.io/stady.html


Your Proof Fails? Testing Helps to Find the Reason 133

plugin performs weakest precondition calculus for deductive verification of C pro-
grams. Various automatic SMT solvers can be used to prove the verification con-
ditions generated by Wp. In this work we use Alt-Ergo 0.99.1 and CVC3 2.4.1.
To express properties over C programs, Frama-C offers the behavioral specifi-
cation language acsl [4,31]. Any analyzer can both add acsl annotations to be
verified by other ones, and notify other plugins about its own analysis results by
changing an annotation status.

For combinations with dynamic analysis, Frama-C also supports e-acsl
[18,40], a rich executable subset of acsl suitable for runtime assertion check-
ing. e-acsl can express function contracts (pre/postconditions, guarded behav-
iors, completeness and disjointness of behaviors), assertions and loop contracts
(variants and invariants). It supports quantifications over bounded intervals of
integers, mathematical integers and memory-related constructs (e.g. on validity
and initialization). It comes with an instrumentation-based translating plugin,
called e-acsl2c [30,33], that allows to evaluate annotations at runtime and report
failures. The C code generated by e-acsl2c is inadequate2 for test generation,
which creates the need for a dedicated translation tool.

For test generation, this work relies on PathCrawler [6,32,43], a Dynamic
Symbolic Execution (DSE) testing tool. It is based on a specific constraint solver,
Colibri, that implements advanced features such as floating-point and modu-
lar integer arithmetic. PathCrawler provides coverage strategies like all-paths
(all feasible paths) and k-path (feasible paths with at most k consecutive loop iter-
ations). It is sound, meaning that each test case activates the test objective for
which it was generated. This is verified by concrete execution. PathCrawler
is also complete in the following sense: if the tool manages to explore all feasible
paths of the program, then the absence of a test for some test objective means that
the test objective is infeasible (i.e. impossible to activate), since the tool does not
approximate path constraints [6, Sect. 3.1].

Example.To illustrate various kinds of proof failures, let us consider the example
of C program in Fig. 2 coming from [23]. It implements an algorithm proposed in
[3, p. 325] that sequentially generates Restricted Growth Functions (RGF). A
function a : {0, . . . , n−1} → {0, ..., n−1} is an RGF of size n > 0 if a(0) = 0 and
a(k) ≤ a(k − 1) + 1 for any 1 ≤ k ≤ n − 1 (that is, the growth of a(k) w.r.t. the
previous step is at most 1). It is defined by the acsl predicate is_rgf on lines 1–2
of Fig. 2, where the RGF a is represented by the C array of its values. For conve-
nience of the reader, some acsl notations are replaced by mathematical symbols
(e.g. keywords and integer are respectively denoted by ∃, ∀ and Z).

Figure 2 shows a main function f and an auxiliary function g. The precondition
of f states that a is a valid array of size n>0 (lines 22–23) and must be an RGF
(line 24). The postcondition states that the function is only allowed to modify the

2 e-acsl2c relies on complex external libraries (e.g. to handle memory-related annota-
tions and unbounded integer arithmetic of e-acsl) and does not assume the precondi-
tion of the function under verification, whereas the translation for test generation can
efficiently rely on the underlying test generator or constraint solver for these purposes
[37].
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Fig. 2. Successor function for restricted growth functions (RGF)

values of array a except the first one a[0] (line 25), and that the generated array
a is still an RGF (line 26). Moreover, this (simplified) contract also states that if
the function returns 1 then the first modified value in RGF a has increased (lines
27–30). Here denotes the value of a[j] in the Pre state, i.e. before the
function is executed.

We focus now on the body of the function f in Fig. 2. The loop on lines
36–37 goes through the array from right to left to find the rightmost non-increasing
element, that is, the maximal array index i such that a[i] ≤a[i-1]. If such an index
i is found, the function increments a[i] (line 40) and fills out the rest of the array
with zeros (call to g, line 41). The loop contract (lines 33–35) specifies the interval
of values of the loop variable, the variable that the loop can modify as well as a
loop variant that is used to ensure the termination of the loop. The loop variant
expression must be non-negative whenever an iteration starts, and must strictly
decrease after each iteration.

The function g is used to fill the array with zeros to the right of index i. In
addition to size and validity constraints (lines 7–8), its precondition requires that
the elements of a up to index i form an RGF (lines 9–10). The function is allowed
to modify the elements of a starting from the index i+1 (line 11) and generates
an RGF (line 12). The loop invariants indicate the value interval of the loop vari-
able k (line 15), and state that the property is_rgf is satisfied up to k (line 16).
This invariant allows a deductive verification tool to deduce the postcondition.
The annotation loop assigns (line 17) says that the only values the loop can change
are k and the elements of a starting from the index i+1. The term n-k is a variant
of the loop (line 18).

The acsl lemma on lines 4–5 states that if an array is an RGF, then each of
its elements is at most equal to its index. Its proof requires induction and cannot
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be performed by Wp, which uses it to ensure the absence of overflow at line 40
(stated on line 39).

The functions of Fig. 2 can be fully proved using Wp. Suppose now this exam-
ple contains one of the following four mistakes: the verification engineer either
forgets to specify the precondition on line 24, or writes the wrong assignment
a[i]=a[i]+2; on line 40, or puts a too general clause loop assigns i,a[1..n-1]; on line
34, or forgets to provide the lemma on lines 4–5. In each of these four cases, the
proof fails (for the precondition of g on line 41 and/or the assertion on line 39) for
different reasons. In fact, the code and specification are not compliant only in the
first two cases, while the third failure is due to a too weak subcontract, and the last
one comes from a prover incapacity. This work proposes a complete testing-based
methodology to automatically distinguish the three reasons and suggest suitable
actions in each case.

3 Categories of Proof Failures and Counterexamples

Let P be a C program annotated in e-acsl, and f the function under verification
in P . Function f is assumed to be recursion-free. It may call other functions, let g
denote any of them. A test datum V for f is a vector of values for all input variables
of f . The program path activated by a test datum V , denoted πV , is the sequence
of program statements executed by the program on the test datum V . We use the
general term of a contract to designate the set of e-acsl annotations describing
a loop or a function. A function contract is composed of pre- and postconditions
including e-acsl clauses requires, assigns and ensures (cf. lines 22–30 in Fig. 2).
A loop contract is composed of loop invariant, loop variant and loop assigns clauses
(cf. lines 15–18 in Fig. 2).

In Sect. 3.1, we define non-compliance and briefly recall the detection tech-
nique published in [37]. Section 3.2 is part of the original contribution of this paper,
which introduces new categories of proof failures and a new detection technique.

3.1 Non-compliance

Figure 3 illustrates the translation of an annotated program P into another C pro-
gram, denoted PNC, on which we can apply test generation to produce test data
violating some annotations at runtime. In Fig. 3, f is the function under verifica-
tion and g is a called function. This translation is formally presented in [37]. PNC

checks all annotations of P in the corresponding program locations and reports
any failure. For instance, the postcondition Postf of f is evaluated by the follow-
ing code inserted at the end of the function f in PNC:

int post_f; Spec2Code(Postf, post_f); fassert(post_f); (†)

For an e-acsl predicate P , we denote by Spec2Code(P, b) the generated C code
that evaluates the predicate P and assigns its validity status to the Boolean vari-
able b (see [37] for details). The function call fassert(b) checks the condition b and
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Fig. 3. (a) An annotated code, vs. (b) its translation in PNC for DNC

reports the failure and exits whenever b is false. Similarly, preconditions and post-
conditions of a callee g are evaluated respectively before and after executing the
function g. A loop invariant is checked before the loop (for being initially true)
and after each loop iteration (for being preserved by the previous loop iteration).
An assertion is checked at its location. To generate only test data that respect the
precondition Pref of f , Pref is checked at the beginning of f by an inserted code
similar to (†) except that fassert is replaced by fassume that assumes the given
condition.

Definition 1 (Non-compliance). We say that there is a non-compliance (NC)
between code and specification in P if there exists a test datum V for f respecting its
precondition, such that the execution of PNC reports an annotation failure on V .
In this case, we say that V is a non-compliance counterexample (NCCE).

Test generation on the translated program PNC can be used to generate
NCCEs. We call this technique Non-Compliance Detection, denoted DNC. In this
work we use the PathCrawler test generator that will try to cover all program
paths. Since the translation step added a branch for the false value of each annota-
tion, PathCrawler will try to cover at least one path where the annotation does
not hold. (An optimization in PathCrawler avoids covering the same fassert

failure many times.) The DNC step may have three outcomes. If an NCCE V has
been found, it returns (nc, V , a) indicating the failing annotation a and record-
ing the program path πV activated by V on PNC. Second, if it has managed to
perform a complete exploration of all program paths without finding any NCCE,
it returns no (cf. the discussion of completeness in Sect. 2). Otherwise, if only a
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partial exploration of program paths has been performed (due to a timeout, par-
tial coverage criterion or any other limitation), it returns ? (unknown).

3.2 Subcontract Weakness and Prover Incapacity

Following the modular verification approach, we assume that the called functions
have been verified before the caller f . To simplify the presentation, we also assume
that the loops preserve their loop invariants, and focus on other proof failures
occurring during the modular verification of f .

More formally, a non-imbricated loop (resp. function, assertion) in f is a loop
(resp. function called, assertion) in f lying outside any loop of f . A subcontract for
f is the contract of some non-imbricated loop or function in f . A non-imbricated
annotation in f is either a non-imbricated assertion or an annotation in a subcon-
tract for f . For instance, the function f of Fig. 2 has two subcontracts: the contract
of the called function g and the contract of the loop on lines 33–37. The contract
of the loop in g on lines 15–19 is not a subcontract for f , but is a subcontract for g.

We focus on non-imbricated annotations in f and assume that all subcontracts
for f are respected: the called functions in f respect their contracts, and the loops
in f preserve their loop invariants and respect all imbricated annotations. Let cf
denote the contract of f , C the set of non-imbricated subcontracts for f , and A the
set of all non-imbricated annotations in f and annotations of cf . In other words,
A contains the annotations included in the contracts C ∪ {cf} as well as the non-
imbricated assertions in f . We also assume that every subcontract of f contains
a (loop) assigns clause. This is not restrictive since such a clause is necessary to
prove any nontrivial code.

Subcontract Weakness. To apply testing for the contracts of called functions
and loops in C instead of their code, we use a new program transformation of P
producing another program P SW. The code of all non-imbricated function calls
and loops in f is replaced by the most general code respecting the corresponding
subcontract as follows.

For the contract c ∈ C of a called function g in f , the program transforma-
tion (illustrated by Fig. 4) generates a new function g_sw with the same signature
whose code simulates any possible behavior respecting the postcondition in c, and
replaces all calls to g by a call to g_sw. First, g_sw allows any of the variables (or,
more generally, left-values) listed in the assigns clause of c to change its value (line
2 in Fig. 4(b)). It can be done by assigning a non-deterministic value of the appro-
priate type using a dedicated function, denoted here by Nondet() (or simply by
adding an array of fresh input variables and reading a different value for each use
and each function invocation). If the return type of g is not void, another non-
deterministic value is read for the returned value ret (line 3 in Fig. 4(b)). Finally,
the validity of the postcondition is evaluated (taking into account these new non-
deterministic values) and assumed in order to consider only executions respecting
the postcondition, and the function returns (lines 4–5 in Fig. 4(b)).

Similarly, for the contract c ∈ C of a loop in f , the program transformation
replaces the code of the loop by another code that simulates any possible behavior
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Fig. 4. (a) A contract c ∈ C of callee g in f , vs. (b) its translation for DSW

Fig. 5. (a) A contract c ∈ C of a loop in f , vs. (b) its translation for DSW

respecting c, that is, ensuring the “loop postcondition” I ∧ ¬b after the loop, as
shown in Fig. 5. In addition, the transformation treats in the same way as in PNC

all other annotations in A: preconditions of called functions, initial loop invariant
verifications and the pre- and postcondition of f (they are not shown in Figs. 4(b)
and 5(b) but an example of such transformation is given in Fig. 3).

Definition 2 (Global subcontract weakness). We say that P has a global
subcontract weakness for f if there exists a test datum V for f respecting its pre-
condition, such that the execution of PNC does not report any annotation failure
on V , while the execution of P SW reports an annotation failure on V . In this case,
we say that V is a global subcontract weakness counterexample (global SWCE)
for the set of subcontracts C.

Remark 1. Notice that we do not consider the same counterexample as an NCCE
and an SWCE. Indeed, even if it is arguable that some counterexamples may illus-
trate both a subcontract weakness and a non-compliance, we consider that non-
compliances usually come from a direct conflict between the code and the specifi-
cation and should be addressed first, while subcontract weaknesses are often more
subtle and will be easier to address when non-compliances are eliminated.

Again, test generation can be applied on P SW to generate global SWCE can-
didates. When it finds a test datum V such that P SW fails on V , we use runtime
assertion checking: if PNC fails on V , then V is classified as an NCCE, otherwise V
is a global SWCE (cf. Remark 1). We call this technique Global Subcontract Weak-
ness Detection for the set of all subcontracts, denoted DSW

global. The DSW
global step

may have four outcomes. It returns (nc, V , a) if an NCCE V has been found for
the failing annotation a, and (sw, V , a, C) if V has been finally classified as an
SWCE, where a is the failing annotation and C is the set of subcontracts. The
program path πV activated by V and leading to the failure (on PNC or P SW) is
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recorded as well. If DSW
global has managed to perform a complete exploration of all

program paths without finding a global SWCE, it returns no. Otherwise, if only a
partial exploration of program paths has been performed it returns ? (unknown).

A global SWCE does not explicitly indicate which single subcontract c ∈ C
is too weak (cf. Remark 2 below). To do so, we propose another program trans-
formation of P into an instrumented program P SW

c . It is done by replacing only
one non-imbricated function call or loop by the most general code respecting the
postcondition of the corresponding subcontract c (as indicated in Figs. 4 and 5)
and transforming other annotations in A in the same way as in PNC.

Definition 3 (Single subcontract weakness). Let c be a subcontract for f . We
say that c is a too weak subcontract (or has a single subcontract weakness) for f
if there exists a test datum V for f respecting its precondition, such that the exe-
cution of PNC does not report any annotation failure on V , while the execution of
P SW
c reports an annotation failure on V . In this case, we say that V is a single

subcontract weakness counterexample (single SWCE) for the subcontract c in f .

For any subcontract c ∈ C, test generation can be separately applied on P SW
c

to generate single SWCE candidates. If such a test datum V is generated, it is
checked on PNC to classify it as an NCCE or a single SWCE (cf. Remark 1). This
technique, applied for all subcontracts one after another until a first counterexam-
ple V is found, is called Single Contract Weakness Detection, and denoted DSW

single.
The DSW

single step may have three outcomes. It returns (nc, V , a) if an NCCE V has
been found for a failing annotation a, and (sw, V , a, {c}) if V has been finally clas-
sified as a single SWCE, where a is the failing annotation and c is the single too
weak subcontract. The program path πV activated by V and leading to the failure
(on PNC or P SW

c ) is recorded as well. Otherwise, it returns ? (unknown).

Global vs. Single Subcontract Weaknesses. Even after an exhaustive path
testing, the absence of a single SWCE for any subcontract c cannot ensure the
absence of a global SWCE, as detailed in the following remark.

Remark 2. A proof failure can be due to the weakness of several subcontracts,
while no single one of them is too weak. In other words, the absence of single
SWCEs does not imply the absence of global SWCEs. When a single SWCE exists,
it can indicate a single too weak subcontract more precisely than a global SWCE.

Fig. 6. Two examples where the proof of f fails due to subcontract weaknesses
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Indeed, consider the example in Fig. 6a, where the proof of the postcondition of
f fails. If we apply DSW

single to any of the subcontracts, we always have
at the end of f (we add 1 to x by executing the translated subcontract, and add 2
twice by executing the other two functions’ code), so the postcondition of f holds
and no weakness is detected. If we run DSW

global to consider all subcontracts at once,
we only get after executing the three subcontracts, and can exhibit a
global SWCE.

On the other hand, running DSW
global produces a global SWCE that does not

indicate which of the subcontracts is too weak, while DSW
single can sometimes be

more precise. For Fig. 6b, since the three callees are replaced by their subcontracts
for DSW

global, it is impossible to find out which one is too weak. Counterexamples
generated by a prover suffer from the same precision issue: taking into account all
subcontracts instead of the corresponding code prevents from a precise identifica-
tion of a single too weak subcontract. In this example DSW

single can be more precise,
since only the replacement of the subcontract of g3 also leads to a single SWCE: we
can have by executing g1, g2 and the subcontract of g3, exhibiting the
contract weakness of g3. Thus, the proposed DSW

single technique can provide the ver-
ification engineer with a more precise diagnosis than counterexamples extracted
from a prover.

We define a combined subcontract weakness detection technique, denotedDSW,
by applying DSW

single followed by DSW
global until the first counterexample is found. In

other words, DSW looks first for single, then for global subcontract weaknesses.
DSW may have the same four outcomes as DSW

global. It allows us to be both precise
(and indicate when possible a single subcontract being too weak), and complete
(able to find global subcontract weaknesses even when there are no single ones).

Prover Incapacity. When neither a non-compliance nor a global subcontract
weakness exists, we cannot demonstrate that it is impossible to prove the property.

Definition 4 (Prover incapacity). We say that a proof failure in P is due to a
prover incapacity if for every test datum V for f respecting its precondition, neither
the execution of PNC nor that of P SW reports any annotation failure on V . In other
words, there is no NCCE and no global SWCE for P .

4 Diagnosis of Proof Failures Using Structural Testing

In this section, we present an overview of our method for diagnosis of proof fail-
ures using the detection techniques of Sect. 3, illustrate it on several examples and
provide a comprehensive list of suggestions of actions for each category of proof
failures.

The Method. The proposed method is illustrated by Fig. 7. Suppose that the
proof of the annotated program P fails for some non-imbricated annotation a ∈ A.
The first step tries to find a non-compliance using DNC. If such a non-compliance
is found, it generates an NCCE (marked by 1© in Fig. 7) and classifies the proof
failure as a non-compliance. If the first step cannot generate a counterexample,
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Fig. 7. Combined verification methodology in case of a proof failure on P

the DSW step combines DSW
single and DSW

global and tries to generate single SWCEs,
then global SWCEs, until the first counterexample is generated. It can be classi-
fied either as a non-compliance 1© (that is possible if path testing in DNC was not
exhaustive, cf. Remark 1 and Definitions 2 and 3) or a subcontract weakness 2©.
If no counterexample has been found, the last step checks the outcomes. If both
DNC and DSW have returned no, that is, both DNC and DSW

global have performed a
complete path exploration without finding a counterexample, the proof failure is
classified as a prover incapacity 3© (cf. Definition 4). Otherwise, it remains unclas-
sified 4©.

Figure 8 illustrates the method on several variants of the illustrating example.
It details the lines modified in the program of Fig. 2 to obtain the new variant,
the intermediate results of deductive verification, DNC and DSW, and the final
outcome. The final outcome includes the proof failure category and, if any, the
generated counterexample V , the recorded path πV , the reported failing anno-
tation a and a set of too weak subcontracts S. This outcome can be extremely
helpful for the verification engineer. Suppose we try to prove in Wp a modified
version of the function f of Fig. 2 where the precondition at line 24 is missing (cf.
#1 in Fig. 8). The proof of the precondition on line 10 (for the call of g on line 41)
fails without indicating a precise reason. The DNC step generates an NCCE (case
1©) where is_rgf(a,n) is clearly false due to a[0] being non-zero, and indicates the
failing annotation (coming from line 10). That helps the verification engineer to
understand and fix the issue.

Let us suppose now that the clause on line 34 has been erroneously written as
follows: loop assigns i, a[1..n-1]; (cf. #2 in Fig. 8). The loop on lines 36–37 still
preserves its invariant. The DNC step does not find any NCCE, as this modifica-
tion did not introduce any non-compliance between the code and its specification.
Thanks to the spec-to-code replacement shown in Fig. 5, DSW

single for the contract
of this loop will detect a single subcontract weakness for the loop contract (case
2©), leading to a failure of the precondition of g (on line 10) for the call on line
41. With this indication, the verification engineer will try to strengthen the loop
contract and find the issue.

Suppose now the lemma on lines 4–5 is missing (cf. #4 in Fig. 8). The proof
of the assertion at line 39 of Fig. 2 (stating the absence of overflow at line 40) fails
without giving aprecise reason, since theprover does not perform the induction and
cannot deduce the right bounds on a[i]. Neither DNC nor DSW produces a coun-
terexample, and as the initial program has too many paths, their outcomes are ?
(unknown) (case 4©). For such situations, we introduce the possibility to reduce the
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input domain for test generation by using a new acsl clause typically. The verifi-
cation engineer can insert the clause typically n<5; after the line 22 to reduce the
array size for test generation (this clause is ignored by the proof). Running StaDy
now allows the tool to perform a complete exploration of all program paths (for
n<5) both for DNC and DSW without finding a counterexample. StaDy classifies
the proof failure for the program with the reduced domain as a prover incapacity
(case 3©, cf. #3 in Fig. 8). That gives the verification engineer more confidence that
the proof failure has the same reason on the initial program for bigger sizes n. She
may now try an interactive proof or add additional lemmas or assertions, and does
not waste her time looking for a bug or a subcontract weakness.

Fig. 8. Method results for different versions of the illustrating example

Suggestions of Actions. Based on the possible outcomes of the method (illus-
trated in Fig. 7), we are able to suggest the most suitable actions to help the veri-
fication engineer with the verification task. A reported non-compliance (nc, V , a)
means that there is an inconsistency between the precondition, the annotation a
and the code of the path πV leading to a. Thanks to the counterexample, the user
will understand the issue by tracing the values of variables along πV , or exploring
them in a dubugger [35]. In Frama-C, the execution on V can be conveniently
explored using Value or PathCrawler [31]. If an NCCE is generated, there is
no need to try an automatic or interactive proof, or look for a subcontract weak-
ness—it will not help.

A reported subcontract weakness (sw, V , a, S) for a set of subcontracts S means
that at least one of them has to be strengthened. By Definitions 2 and 3, the non-
compliance is excluded here, that is, the execution of PNC on V respects the anno-
tation a. Thus the suggested action is to strengthen the subcontract(s) of S. In the
case of a single subcontract weakness, S is a singleton so the suggestion is very pre-
cise and helpful to the user. Again, trying interactive proof or writing additional
assertions or lemmas will be useless here since the property can obviously not be
proved.
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For a prover incapacity, the verification engineer may add lemmas, assertions
or hypotheses that can help the theorem prover to succeed, or try another theorem
prover, or use a proof assistant like Coq, even if it can be more complex and time-
consuming.

Finally, when the verdict is unknown, i.e. test generation for DNC and/or DSW

times out, the verification engineer may strengthen the precondition for test gen-
eration to reduce the input domain, or extend the timeout to give StaDy more
time to conclude.

5 Implementation and Experiments

Implementation. The proposed method for diagnosis of proof failures has been
implemented as a Frama-C plugin, named StaDy. It relies on other plugins: Wp
[31] for deductive verification and PathCrawler [6] for structural test genera-
tion. StaDy currently supports a significant subset of the e-acsl specification
language, including requires, ensures, behavior, assumes, loop invariant, loop variant

and assert clauses. Quantified predicates and and builtin terms as
or are translated as loops (recall that e-acsl allows only finite intervals

of quantification). Logic functions and named predicates are treated by inlining.
The and constructs are treated by saving the initial values of formal
parameters and global variables at the beginning of the function. Validity checks
of pointers are partially supported due to the current limitation of the underlying
test generator: we can only check the validity of input pointers and global arrays.
The assigns clauses are considered only during the DSW phase: we do not try to fix
an incomplete assigns clause (with missing variables, leading to a non-compliance)
because provers usually give a sufficiently clear feedback about that; but we do
try to identify a too weak (i.e. too permissive) assigns clause since provers would
report a failure elsewhere in this case. Inductive predicates, recursive functions
and real numbers are not yet supported.

The research questions we address in our experiments are the following.

RQ1 Is StaDy able to precisely diagnose most proof failures in C programs?
RQ2 What are the benefits of the DSW step (in particular, with respect to DNC)?
RQ3 Is StaDy able to generate NCCEs or SWCEs even with a partial testing
coverage?
RQ4 Is StaDy’s execution time comparable to the time of an automatic proof?

Fig. 9. Summarized experiments of proof failure diagnosis for mutants with StaDy
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Experimental Protocol. The evaluation used 20 annotated programs from an
independent benchmark [7], whose size varies from 35 to 100 lines of annotated C
code. These programs manipulate arrays, they are fully specified in acsl and their
specification expresses non-trivial properties of C arrays. To evaluate the method
presented in Sect. 4 and its implementation, we apply StaDy on systematically
generated altered versions3 (or mutants) of correct C programs. Each mutant is
obtained by performing a single modification (or mutation) on the initial program.
The mutations include: a binary operator modification in the code or in the speci-
fication, a condition negation in the code, a relation modification in the specifica-
tion, a predicate negation in the specification, a partial loop invariant or postcon-
dition deletion in the specification. Such mutations model frequent errors in the
code and specification (e.g. confusions between + and −, ≤ and <, ≤ and ≥, a
missing loop invariant, pre- or postcondition, etc.) that can lead to proof failures.
In this study, we do not mutate the precondition of the function under verifica-
tion, and restrict possible mutations on binary operators to avoid creating absurd
expressions, in particular for pointer arithmetic.

The first step tries to prove each mutant using Wp. In our experiments, each
prover tries to prove each verification condition during at most 40 s. The proved
mutants respect the specification and are classified as correct. Second, we apply the
DNC method on the remainingmutants. It classifies proof failures for somemutants
as non-compliances and indicates a failing annotation. The third step applies the
DSW method on remaining mutants, classifies some of them as subcontract weak-
nesses and indicates a weak subcontract. If no counterexample has been found by
the DSW, the mutant remains unclassified. The results are summarized in Fig. 9.
The columns present the number of generated mutants, and the results of each of
the three steps: the number (#) and ratio (%) of classified mutants, maximal and
average execution time of the step over classified mutants (t✓ or t✗) and over non-
classified mutants (t?) at this step. The ratios are computed with respect to the
number of unclassified mutants remaining after the previous step. TheDNC+DSW

columns sum up selected results after both DNC and DSW steps: the average and
maximal time (t) are shown globally over all mutants. The time is computed until
the proof is finished or until the first counterexample is generated.The final number
of remaining unclassified mutants (#?) is given in the last column.

Experimental Results. For the 20 considered programs, 928 mutants have been
generated. 80 of them have been proved byWp. Among the 848 unproven mutants,
DNC has detected a non-compliance induced by the mutation in 776 mutants
(91.5 %), leaving 72 unclassified. Among them, DSW has been able to exhibit a
counterexample (either an NCCE or an SWCE) for 48 of them (66.7 %), finally
leaving 24 programs unclassified.

Regarding RQ1, StaDy has found a precise reason of the proof failures and
produced a counterexample in 824 of the 848 unproven mutants, i.e. classifying
97.2 %. Exploring the benefits of detecting a prover incapacity requires to manu-
ally reduce the input domain, to try additional lemmas or an interactive proof, so

3 Available at: https://github.com/gpetiot/StaDy/tree/master/TAP 2016/benchmark.

https://github.com/gpetiot/StaDy/tree/master/TAP_2016/benchmark.
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it was not sufficiently investigated in this study (and probably requires another,
non mutational approach).

Regarding RQ2, DNC alone diagnosed 776 of 848 unproven mutants (91.5 %).
DSW diagnosed 48 of the 72 remaining mutants (66.7 %) bringing a significant
complementary contribution to a better understanding of reasons of many proof
failures.

To addressRQ3, we set a timeout for any test generation session to 5 s (i.e. one
session for theDNC step, and several sessions forDSW steps), and limit the number
of explored program paths using the k-path criterion (cf. Sect. 2) with k = 4. Both
the session timeout and k-path heavily limit the testing coverage but StaDy still
detects 97.2 % of faults in the generated programs. That demonstrates that the
proposed method can efficiently classify proof failures and generate counterexam-
ples even with a partial testing coverage and can therefore be used for programs
where the total number of paths cannot be limited (e.g. by the typically clause).

Concerning RQ4, on the considered programs Wp needs on average 2.6 s per
mutant (at most 4.4 s) to prove a program, and spends 13.0 s on average (at most
61.3 s) when the proof fails. The total execution time of StaDy is comparable: it
needs on average 2.7 s per unproven mutant (at most 19.9 s).

Summary. The experiments show that the proposed method can automatically
classify a significant number of proof failures within an analysis time comparable
to the time of an automatic proof and for programs for which only a partial testing
coverage is possible. The DSW technique offers an efficient complement to DNC for
a more complete and more precise diagnosis of proof failures.

6 RelatedWork

Assisting program verification and generation of counterexamples have been
addressed in different research work (e.g. [2,5,8,10,13,17,20,21,28,29,34,36,39]).
We detail below a few projects most closely related to the present work.

Understanding Proof Failures. When SMT solvers fail on some verification
conditions and provide a counter-model to explain that failure, the counter-model
can be turned into a counterexample for the program under verification. This non-
trivial task is designed in [29] and implemented for SPARK, a subset of Ada tar-
geted for formal verification. This static analysis is complementary to our combi-
nation of static and dynamic analyses. It would be useful to adapt it to C/ACSL
programs. For C programs, SMT models are already exploited, for instance by the
CBMC model checker [26].

A two-step verification in [42] compares the proof failures of an Eiffel pro-
gram with those of its variant where called functions are inlined and loops are
unrolled. It reports code and contract revision suggestions from this comparison.
Inlining and unrolling are respectively limited to a given number of nested calls
and explicit iterations. If that number is too small the semantics is lost and a warn-
ing of unsoundness is reported. A bigger number of inlinings often overpasses the
capacity of the solver, while DSE, focusing on one path at a time, can be expected
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to be more efficient. Another benefit of DSE is the possibility to use concrete val-
ues (e.g. discovered in a previous execution) even when the constraints become
very complex and the solver cannot generate a counterexample.

Dafny has also been recently extended with tools for diagnosing proof fail-
ures [12]. When the proof times out, an algorithm decomposes it and tries to diag-
nose on which part the user has to focus to prevent the timeout. Then, if the proof
fails, following the approach we proposed in our previous work [37], a DSE tool
is used to try to find counterexamples demonstrating non-compliance between
program and specification. But, when no counterexample is found, the user must
manually try to find the reason of the proof failure (with the Boogie Verification
Debugger), whereas we extend the approach by further exploiting DSE to auto-
matically identify subcontract weaknesses. The notions of global and single SW
and their comparison are also new.
Proof Tree Analysis. More precision can be statically obtained by analyzing
the unclosed branches of a proof tree. The work [24] is performed in the context
of KeY and its verification calculus that applies deduction rules to a dynamic
formula mixing a program and its specification. It proposes falsifiability preser-
vation checking that helps to distinguish whether the branch failure comes from
a programming error or from a contract weakness. However this technique can
detect bugs only if contracts are strong enough. Moreover it is automatic only if
a prover (typically, an SMT solver) can decide the non-satisfiability of the first-
order formula expressing the falsifiability preservation condition. The test gener-
ation proposed in [22] exploits the proof trees built by the KeY prover during
a proof attempt. The relevance of generated tests depends on the quality of the
provided specification, and it does not allow to distinguish non-compliances from
specification weaknesses.
Combination of Static and Dynamic Analysis. Static and dynamic analysis
work better when used together, as in Synergy [27], its interprocedural and com-
positional extension in Smash [25], the method sante [9] and the present method.
Static analysis maintains an over-approximation that aims at verifying the cor-
rectness of the system, while dynamic analysis maintains an under-approximation
trying to detect an error. Both abstractions help each other in a way similar to
the counterexample guided abstraction refinement method (Cegar) [16]. The
work [10] combines symbolic execution, testing and automatic debugging, through
the identification of counterexamples violating metamorphic relations for the pro-
gram under test. The debugging builds a cause-effect chain to a failure, by analy-
sis of some path conditions. Comparatively, our method focuses on deductive
verification rather than on symbolic execution, and aims at verifying behavioral
pre-post specifications rather than metamorphic relations.
Counterexamples for Non-inductive Invariants. Counterexamples can be
generated to show that invariants proposed for transition systems are too strong or
too weak [15]. Differences with our work are the focus on invariants, the formalism
of transition systems, and the use of random testing (with QuickCheck).
Other Verification Feedbacks. Our goal was to find input data to illustrate
proof failures. A complementary work [35] proposed to extend a runtime assertion
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checker to use it as a debugger to help the user understand complex counterexam-
ples. For NC errors in the code, [11] proposed to analyze a trace formula to identify
the fragments of code that can cause them. Our approach is complementary on
two points. First, we detect either NC or SW errors. Second, we consider that the
origin of an NC can be either in the code or in the specifications. Combining our
method with such a localization of causes of NC errors, extended to specifications,
would be another contribution.

Checking Prover Assumptions. Axioms are logic properties used as hypothe-
ses by provers and thus usually not checked. Model-based testing applied to a
computational model of an axiom can permit to detect errors in axioms and thus
to maintain the soundness of the axiomatization [1]. This work is complemen-
tary to ours because it tackles the case of deductive verification trivially succeed-
ing due to an invalid axiomatization, whereas we tackle the case of inconclusive
deductive verification. [14] proposed to complete the results of static checkers with
dynamic symbolic execution using Pex. The explicit assumptions used by the ver-
ifier (absence of overflows, non-aliasing, etc.) create new branches in the program’s
control flow graph which Pex tries to explore. This approach permits to detect
errors out of the scope of the considered static checkers, but does not provide coun-
terexamples in case of a specification weakness.

The present work continues previous efforts to facilitate deductive verifica-
tion by generating counterexamples. We propose an original detection technique
of three categories of proof failure that gives a more precise diagnosis than in the
previous work using testing. That is due to dedicated detection methods for non-
compliances and subcontract weaknesses, as well as the definition and detection
of single and global subcontract weaknesses. To the best of our knowledge, such
a complete testing-based methodology, automatically providing the verification
engineer with a precise feedback on proof failures was not studied, implemented
and evaluated before.

The different techniques of assisting deductive verification (in particular, by
generating counterexamples using solvers’ counter-models or by test generation)
being relatively recent and intrinsically incomplete, further work is still required
to better compare them and understand in which cases which technique is more
practical.

7 Conclusion and FutureWork

We proposed a new approach to improve the user feedback in case of a proof fail-
ure. Our method relies on test generation and helps to decide whether the proof
has failed or timed out due to a non-compliance (NC) between the code and the
specification, a subcontract weakness (SW), or a prover weakness. This approach
is based on a spec-to-code program transformation that produces an input pro-
gram for the test generation tool. Our experiments show that our implementation–
in a Frama-C plugin, StaDy–was able to diagnose over 97 % of unproven pro-
grams. In particular, the subcontract weakness detection (DSW) proposed in this
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paper was able to diagnose 66.7 % of proof failures that remained unclassified after
the non-compliance detection (DNC).

One benefit of the proposed approach is the ability to provide the verification
engineer with a precise reason and a counterexample that facilitate the processing
of proof failures. Generated counterexamples illustrate the issue on concrete val-
ues and help to find out more easily why the proof fails. The method is completely
automatic, relies on the existing specification and does not require any additional
manual specification or instrumentation task. As a consequence, this method can
be adopted by less experienced verification engineers and software developers.

While the complete method requires to have the source code of called func-
tions, the global subcontract weakness detection (DSW

global) remains applicable even
without their source code. Another limitation is related to a potentially big num-
ber of program paths, which cannot be explored. However, our initial experiments
show that in practice most proof failures can be automatically classified even after
test generation with a partial test coverage, within a testing time comparable to
the time of the proof attempt.

We are convinced that the proposed methodology facilitates the verification
task and lowers the level of expertise required to conduct deductive verification,
removing one of the major obstacles for its wider use in industry. Future work
includes further evaluation of the proposed technique, a study of optimized com-
binations of DNC and DSW for subsets of annotations and subcontracts, experi-
ments on a larger class of programs and a better support of e-acsl constructs in
our implementation. In the DEWI project, we apply StaDy to verification of pro-
tocols of wireless sensor networks. An experimental comparison of StaDy with
the inlining-based technique of [42] is another work perspective that will require
the implementation of that technique in Frama-C.
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Abstract. We present an approach to the classification of error mes-
sages in the context of static checking in the style of ESC/Java. The
idea is to compute a semantics-based signature for each error message
and then group together error messages with the same signature. The
approach aims at exploiting modern verification techniques based on,
e.g., Craig interpolation in order to generate small but significant signa-
tures. We have implemented the approach and applied it to three bench-
mark sets (from Apache Ant, Apache Cassandra, and our own tool). Our
experiments indicate an interesting practical potential. More than half
of the considered error messages (for procedures with more than just one
error message) can be grouped together with another error message.

1 Introduction

The classification of error messages, bug reports, exception warnings, etc. is
an active research topic [1,3,5,13,16,25,30]. The underlying motivation is that
grouping related error messages together will help with their analysis. The prob-
lem of classification is to infer what error messages are related (and, in what
sense).

In this paper, we address the problem of classification in the context of sta-
tic checking of sequential procedural programs in the style of ESC/Java, as
in [4,15,21]. Although in this context error messages may refer to an error in
the specification rather than the code, the same motivation applies. The error
messages may come in batches of, say, thousands, and they have to be analyzed,
if only to debug the specification.

In the context of static checking, it seems natural to explore whether con-
cepts and techniques from semantics and verification can be put to use for the
classification of error messages.

In this paper, we present an approach to semantics-based classification of
error messages which come in the form of a sequence of statements along with a
witness; a witness here is an initial state from which the execution of the sequence
of statements leads to the violation of a specified assertion. As in verification,
semantics here is used to abstract away from syntactical details. For example,
we can abstract a statement (or a sequence of statements) by its summary in
the form of a pre-and postcondition pair.
c© Springer International Publishing Switzerland 2016
B.K. Aichernig and C.A. Furia (Eds.): TAP 2016, LNCS 9762, pp. 151–168, 2016.
DOI: 10.1007/978-3-319-41135-4 9
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The idea behind the approach is to compute a semantics-based signature
for each of the error messages and then group together error messages with
the same signature. More concretely, we associate each error message with a
new verification problem. We apply a verification engine to infer a proof in the
form of Hoare triples. We remove the invariant-type Hoare triples (of the form
{F} st {F}, expressing that an assertion F is invariant under a statement st).
We take the remaining change-type Hoare triples to construct the signature.

Intuitively, the larger the number of invariant-type Hoare triples (and the
smaller the number of change-type Hoare triples), the more error messages will
be grouped together under the resulting signature. The approach exploits the
fact that modern verification engines can often be geared to produce proofs
with a large number of invariant-type Hoare triples. (We here think of Craig
interpolation, constraint solving, and static analysis [9,24,29].)

We have implemented the new approach to classification on top of our own
extended static checker for Java. We have applied it to three benchmark sets
(from Apache Ant, Apache Cassandra, and our own tool). Our experiments
indicate an interesting practical potential of the approach. More than half of
the considered error messages (for procedures with more than just one error
message) can be grouped together with another error message.

The technical contribution of this paper is to introduce the approach and
to present an experimental evaluation of its implementation. The conceptual
contribution is the formal foundation of the approach which associates each
error message with a verification problem and constructs a small but significant
signature from a correctness proof.

Roadmap. The next section illustrates the approach on an example. Section 3
fixes the notation and terminology of standard concepts. Section 4 introduces
the approach together with its formal foundation. Section 5 presents the experi-
mental evaluation and Sect. 6 discusses the related work.

2 Overview

We motivate our approach to classifying bugs using interpolation with the illus-
trative example in Fig. 1. For simplicity of exposition, the example is constructed
to be of reasonable size. However, real Java programs such as the ones used in
our experiments show similar patterns in larger methods.

Figure 1 shows a method m that takes two objects a and b of type A, and
one integer x as input. We analyze this method with a static checker such as
ESC/Java [15] to obtain error messages that indicate uncaught exceptions1. In
this paper, we consider an error message to consist of a specific initial state and
an error trace whose execution from the initial state leads to a state that violates
an assertion guarding an uncaught run-time exception.
1 The fact that we use a static checker is not crucial for our discussion. The error

messages could also be generated using a bounded model checker such as [14,20], or
a testing tool such as Randoop [27].
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1 void m(A a, A b, int x) {

2 if (x>0) {

3 A obj = null;

4 try {

5 obj = b.clone();

6 } catch (Exception e) {

7 e.printStackTrace ();

8 }

9 obj.bar();

10 a.bar();

11 }

12 a.bar();

13 }

Fig. 1. Example procedure m.

For the method m, the error messages that are produced by the static checker
can be classified according to the line in the method where the run-time error
occurs as follows:

1. If x ≤ 0, and a is null the execution of m leads to a NullPointerException
on line 12.

2. If x > 0 and a==null, a NullPointerException is thrown on line 10.
3. If x > 0 and b==null, a NullPointerException is thrown on line 9

Figure 2 shows an example of an error message for each of these three types.
Each error message starts from a given initial state, which is followed by the
sequence of statements executed on the corresponding error traces, and ends in
the (implicit) assertion that is violated when starting execution from the initial
state. For convenience, the initial states of the error messages are described
symbolically by an assume statement at the beginning of each trace. Note that
if we used a random testing tool such as Randoop instead of a static checker,
then several error messages of each type may be reported. For example, a testing
tool might generate multiple test cases that invoke m with a==null and different
values for x that satisfy x > 0.

Grouping error messages syntactically based on the line in the program where
a run-time error occurs may seem appropriate at first. However, this strategy
does not yield a meaningful classification of bugs on its own. Two error messages
that fail at the same program location may do so for different reasons and should
therefore not be grouped together. Conversely, two error messages that fail at
different program locations may do so for the same reason and should therefore
be grouped together. Specifically, in our example the error messages of type 1 and
2 capture cases in which an error occurs because m has been called with the value
null passed to parameter a. That is, the parameter a will be dereferenced with
a NullPointerException regardless of the value of x. It therefore seems more
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assume(a == null

&& b == null

&& x == 0);

assume(x <= 0);

assert(a!=null);

Type 1

assume(a == null

&& b == A@15ce

&& x == 1);

assume(x > 0);

A obj = null;

obj = b.clone();

obj.bar();

assert(a!=null);

Type 2

assume(a == null

&& b == null

&& x == 1);

assume(x > 0);

A obj = null;

e.printStackTrace ();

assert(obj!=null);

Type 3

Fig. 2. Different syntactic types of error messages for the method m in Fig. 1.

appropriate to take into account only the error-relevant condition a==null that
is common to the error messages of type 1 and 2 and group them together during
classification. On the other hand, type 3 error messages should still be grouped
separately. Our approach aims to infer such a semantics-based characterization
of what is essential for the reason why the assertion in an error message fails.

The approach groups error messages by computing an error signature for
each individual error message as follows. First, we replace the failing assert
statement at the end of the error message by an assume statement with the
same condition. The resulting trace will not have any feasible execution because
the final condition is always violated. That is, if τ is the trace resulting from
this transformation, then {�} τ {⊥} is a valid Hoare triple, where � stands for
the assertion true and ⊥ for false. We can thus use an interpolating theorem
prover to generate a Hoare proof for the validity of this triple. For instance, the
generated Hoare proof for the trace obtained from the error message of type 2
may look as follows:

{�}
assume(a == null && b == A@15ce && x == 1);

{a == null}
assume(x > 0);

{a == null}
obj = null;

{a == null}
obj = b.clone();

{a == null}
obj.bar();

{a == null}
assert(a != null);

{⊥}

Observe that the intermediate assertion a == null is maintained throughout
the trace after initialization. It captures the reason why the trace described by
the original error message fails.
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The next step is to extract the sequence of intermediate assertions from the
Hoare proof and replace all consecutive occurrences of the same assertion by
just one copy of that assertion. We refer to the resulting condensed sequence of
intermediate assertions as the error signature of the original error message. For
our error messages of type 2, the error signature computed from the given Hoare
proof only consists of the assertion a == null.

We group error messages that have identical error signatures together into
equivalence classes. We refer to these equivalence classes as buckets. For example,
the error signature for the error messages of type 1 is also a == null. Hence, all
type 1 and type 2 error messages will be grouped together in the same bucket.
On the other hand, the error signature of the type 3 error messages consists of
the two assertions �, obj == null. Type 3 error messages will therefore end up
in a separate bucket.

In general, an error signature consists of a non-trivial sequence of assertions
that captures how the error condition is propagated through the trace of the
error message. Intuitively, an error signature abstracts away from the specific
values of the initial state of an error message and the syntax of the statements
in its error trace, including the specific location of the failing assertion. Error
signatures only maintain the error-relevant semantic conditions that hold along
the trace of the error message. For example, an error message has the error sig-
nature �, obj == null if its initial state satisfies � (i.e., the initial state can
be arbitrary). Moreover, its error trace contains one statement that establishes
the postcondition obj == null from a state that satisfies �, and if it ends with
an assert statement whose execution fails if obj == null holds; it can contain
an arbitrary number of additional statements as long as they leave the corre-
sponding assertion (which is � or obj == null according to the position within
the error trace) invariant. That is, an error message with the error signature
�, obj ==null consists of:

– an initial state that satisfies �, which is the case for any initial state.
– a (possibly empty) sequence of statements st for which � is invariant, which is

the case for every statement st (the Hoare triple {�} st {�} holds trivially),
– a statement st that establishes the postcondition obj == null (i.e., the Hoare

triple {�} st {obj == null} holds),
– a (possibly empty) sequence of statements st for which the assertion
obj == null is invariant (i.e., the Hoare triple {obj == null} st {obj == null}
holds), and finally

– an statement assert(F) that fails when executed in a state where the assertion
obj == null is true (i.e., the Hoare triple {obj == null} assume(F ) {⊥} holds).

Note that the first assertion of an error signature can generalize the initial state
of an error message. This is needed in order to group together error messages
with different initial states.

We have found that error signatures provide a useful classification mechanism
in the context of static checking of Java programs if the classification is restricted
to the error messages that belong to the same method, i.e., if it is combined with
a coarse syntactic classification mechanism based on method affiliation.
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3 Preliminaries

The purpose of this section is to fix the notation and terminology for existing,
standard concepts.

We assume a simple imperative language whose basic statements st consist
of assignments as well as assume and assert statements:

x ∈ X program variables
e ∈ E expressions
F ∈ F formulas
st ::= assume(F ) | assert(F ) | x := e (basic) statements

We do not define the syntax of expressions e ∈ E and formulas F ∈ F . We only
require that they fall into quantifier-free first-order logic for a signature that is
defined by a suitable theory T (e.g., linear integer arithmetic). Moreover, we
require that the variables appearing in e and F are drawn from the set X . We
assume standard syntax and semantics of first-order logic and use � and ⊥ to
denote the Boolean constants for true and false, respectively.

A state s = (M,β) consists of a model M of the theory T and an assignment
β of the variables in X to values drawn from the universe of M . The model M
may be fixed for all states if M is the canonical model of the theory T (e.g., the
integer numbers in the case of linear integer arithmetic). For an expression e,
we denote by s(e) the value obtained by interpreting e in s and we use similar
notation for formulas. We write s |= F to say that s satisfies F , i.e., s(F ) = �.
A formula is valid if s |= F for all states s and it is called unsatisfiable if ¬F is
valid.

Following the presentation in [11,26], we define the semantics of statements
using the weakest precondition transformer wp, which maps a pair of a statement
st and a formula F to another formula:

wp(assume(G), F ) = G ⇒ F

wp(assert(G), F ) = G ∧ F

wp(x := e, F ) = F [e/x]

The Hoare triple {F} st {F ′} stands for the formula F ⇒ wp(st , F ′).
For example, the Hoare triple {x = 0} assume(x �= 0) {⊥} is valid, whereas

the Hoare triple {x = 0} assert(x �= 0) {⊥} is not valid.
A trace τ is a finite sequence of basic statements τ = st1; . . . ; stn. We extend

both wp and Hoare triples from statements st to traces τ in the expected way.
A sequence of formulas and statements F1, st1, F2, . . . , stn, Fn+1 is called a

Hoare sequence if for all i ∈ [1, n], {Fi} st i {Fi+1} is valid. Intuitively, the Hoare
sequence corresponds to an annotation or proof outline to prove the Hoare triple
{F1} τ {Fn+1} for the trace τ = st1, . . . , stn.

A trace τ is called infeasible if {�} τ {⊥} is valid. Intuitively, the execution
of the sequence of statements of an infeasible trace always (i.e., for every starting
state) blocks on some assume statement in the sequence.
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4 Classifying Error Traces Through Error Signatures

The purpose of this section is to introduce the formal foundation for an app-
roach to the classification of error traces based on concepts and techniques from
verification.

Definition 1. A trace τ is called error trace if ¬({�} τ {�}) is satisfiable. An
error message is a pair ε = (τ, s0) of an error trace τ and a state s0 such that
s0 |= ¬({�} τ {�}).

Intuitively, an error trace has at least one execution that violates an assert
statement in the trace. Every state s0 such that s0 |= ¬({�} τ {�}) is the initial
state s0 of such a faulty execution of τ . The initial state s0 may be obtained
from the satisfiable formula ¬({�} τ {�}) by using a model-generating theorem
prover. It could also be obtained directly (together with τ) from a failed test or
a bug report.

An error trace has at least one execution that does not block on any assume
statement (namely, the faulty execution). This fact may help to avoid the con-
fusion with the terminology of error trace in software model checking as in [17].

The definition implies that an error trace must contain at least one assert
statement. To simplify the discussion, we will restrict ourselves to error traces
that contain exactly one assert statement and assume that this statement is the
last statement in the trace.

4.1 From Error Messages to Proofs

The notion of error trace is not directly amenable to the use of verification
technology and to the concept of proof. Recall that an error trace has some exe-
cution that violates an assert statement, which also means that it may still have
normally terminating executions. The notion of an error trace is thus incom-
patible with the notion of an infeasible trace. We know that the infeasiblity
of a trace can be tied to a proof. In order to make the connection from error
traces to proofs, we transform error traces to infeasible traces. Intuitively, the
transformation of an error trace eliminates all normally terminating executions
from them. Given an error message (τ, s0), the first step of the transformation
is to encode the given initial state s0 of a faulty execution of τ into an assume
statement that is prepended to τ . The resulting trace is still feasible.2 In fact,
the trace has exactly one execution. The execution must start in the state s0
(otherwise the newly added assume statement would immediately block the exe-
cution). The execution fails the assert statement in the trace. The second step
of the transformation is to replace the assert statement in the trace is by an
assume statement. The resulting trace is infeasible.

Notation τ : For a trace τ , we denote by τ the trace obtained from τ by
replacing every assert statement of the form assert(F ) in τ by assume(F ).
2 Note that we use weakest preconditions, as opposed to weakest liberal preconditions;

see Sect. 4. For example, the trace assume(x = 0); assert(x �= 0) is not infeasible
since wp(assume(x = 0); assert(x �= 0), ⊥) = (x = 0 ⇒ (x �= 0 ∧ ⊥)) = (x �= 0).



158 A. Podelski et al.

Definition 2 (Infeasible Extension of Error Messages). Let ε = (τ, s0)
be an error message and let {x1, . . . , xk} be the (finite) set of variables occurring
in the statements of τ . Let further e1, . . . , ek be expressions that define the values
of x1, . . . , xk in the state s0.3 Then the trace τ ′ of the form

τ ′ = assume(x1 = e1 ∧ · · · ∧ xk = ek); τ

is the infeasible extension of the error message ε.

Remark 3 (Infeasibility of infeasible extension of error message). If ε is an error
message and τ ′ its infeasible extension, then τ ′ is infeasible.

Note that, in the formal setting as introduced in Sect. 3, all three kinds of
statements are deterministic. In the presence of a non-deterministic statement
such as havoc(x), we would need to add an assume statement to encode the non-
deterministically chosen value for x in the faulty execution of an error trace τ .
Definition 2 would accommodate this in the setting where each non-deterministic
assignment statement in a trace is of the form x := x(i) with each x(i) a fresh
renaming of x.

4.2 Error Signatures

Let ε be an error message and τ its infeasible extension. An error signature σ
for ε is a sequence of formulas that can be extended to form a Hoare sequence
with τ by allowing each formula in σ to be repeated for some (possibly empty)
subtrace of τ . That is, each formula in σ is invariant for some subtrace of τ
and each consecutive pair of formulas in σ is inductive for some statement in
τ that connects the respective invariant subtraces. The intuition behind this
definition is that the error signature abstracts the irrelevant statements in the
trace (those contained in the invariant subtraces) while keeping the statements
that are relevant for understanding the error (those connecting the invariant
subtraces). The following definition makes this notion formally precise.

Definition 4 (Error Signatures). Let τ = st1; . . . ; stn be an infeasible exten-
sion of an error message ε. A sequence of formulas σ = F1, . . . , Fm−1 with
m ≤ n is an error signature of ε if there exists a strictly monotone function
h : [1,m] → [1, n] such that:

– the sequence

�, sth(1), F1, sth(2), F2, . . . , sth(m−1), Fm−1sth(m),⊥

is a Hoare sequence,

3 In the general case, we may not be able to describe s0 using simple equalities and
instead must consider its diagram [6]. For the sake of the clarity of presentation, we
skim over these technicalities.
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– every Fi is invariant on the subtrace from sth(i) to the last statement before
sth(i+1), i.e., for every i ∈ [1,m − 1], the sequence

Fi, sth(i), Fi, sth(i)+1, Fi, . . . , sth(i+1)−1, Fi

is a Hoare sequence.

We call the trace sth(1), . . . , sth(m) the abstract slice of ε induced by σ and h.

Remark 5. Let ε = (τ, s0) be an error message and σ an error signature of ε.
Then the formulas in σ are all different from ⊥. This means that σ corresponds
to a proof that the execution of τ that starts in s0 is non-blocking and fails the
final assert statement in τ .

Note that error signatures always exist. In particular, for the infeasible exten-
sion τ = st1; . . . ; stn of an error message ε, the sequence of formulas

σ = wp(st2; . . . ; stn,⊥), . . . ,wp(stn,⊥)

is an error signature of ε. Evidently this error signature is not very informative,
as the abstract slice of ε induced by σ is identical to τ . We will discuss below
how to compute error signatures that yield proper abstract slices.

4.3 Classifying Error Messages

In the following, let sig be a function that maps error messages to error signa-
tures. Then sig defines an equivalence relation =sig on error messages. Two error
messages ε1 and ε2 are equivalent with respect to sig if sig maps them to the
same error signature:

ε1 =sig ε2 ⇔ sig(ε1) = sig(ε2).

Definition 6 (Buckets). Given a set of error message E and a function sig
mapping the elements of E to error signatures, we refer to the equivalence classes
in the quotient E/ =sig as buckets.

We now have everything in place to give the classification algorithm, which
is shown in Algorithm 1. The algorithm takes as input a set E of error mes-
sages. The output of the algorithm is the map Buckets whose domain is a set
of error signatures (such that every error message in E is covered by some error
signature in the domain). Each error signature σ in the domain is mapped to
the corresponding bucket, i.e., a set of error messages which all have the error
signature σ.

The algorithm computes a function sig mapping error messages to error sig-
natures, as follows. For every error message ε = (τ, s0) in E, we first compute
its infeasible extension τ ′ using the helper function InfeasibleExtension. Sup-
pose τ ′ is of length n. Then we compute the formulas F0, . . . , Fn+1 for a Hoare
sequence of τ ′ by applying an interpolating theorem prover to the path formula
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Algorithm 1. Classification of error messages.
Input: E: set of error messages
Output: Buckets: map from error signatures to buckets of error messages from E

1 begin
2 for ε ∈ E do
3 (τ, s0) ← ε ;
4 τ ′ ← InfeasibleExtension(τ, s0) ;
5 F0, . . . , Fn+1 ← Interpolate(τ ′) ;
6 // remove successive duplicates in F1, . . . , Fn ;
7 curr ← 1 ;
8 σ ← F1 ;
9 for i from 1 to n do

10 if Fi �= Fcurr then
11 σ ← σ, Fi ;
12 curr ← i ;

13 end if

14 end for
15 if σ �∈ dom(Buckets) then
16 Buckets[σ] ← ∅;
17 end if
18 Buckets[σ] ← Buckets[σ] ∪ {ε};

19 end for

20 end

constructed from τ ′. This step is implemented by the function Interpolate.
Note that the resulting interpolant sequence always satisfies F0 = � and
Fn+1 = ⊥. Moreover, the subsequence F1, . . . , Fn is guaranteed to be an error
signature for ε. However, it is not yet abstracting any statements in τ ′. To obtain
a proper error signature, we exploit the observation that interpolating theorem
provers often produce interpolant sequences that consecutively repeat the same
interpolant. Thus, we simply iterate over the formulas F1, . . . , Fn and remove
consecutive duplicates of formulas Fi to obtain the actual error signature σ for
ε. The obtained error signature is then used to insert the current error message
into its bucket.

5 Evaluation

Our approach to categorize error messages is embodied in a tool called Bucketeer.
More precisely, the tool implements Algorithm 1 where the helper procedure
Interpolate is implemented using the interpolation procedure of Princess [28].
The tool is available online, together with the benchmarks discussed in this
paper.4

We have implemented the tool on top of a (prototype of a) static checker for
Java [2]. The static checker is similar to OpenJML [8]. It uses Princess [28] to test
4 http://www.csl.sri.com/∼schaef/experiments.zip.

http://www.csl.sri.com/~schaef/experiments.zip
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an SMT formula for satisfiability and to compute a model if possible. It checks
for null pointer dereferences, out-of-bound access to arrays, and division by zero
errors. The checks are realized by inserting assertions into the code. Assertion
violations are detected by translating the transition relation of each method into
an SMT formula; a model of the SMT formula corresponds to an execution that
violates an assertion (during the construction of the SMT formula, the checker
unwinds loops (twice), and it replaces method calls by the specified (possibly
trivial) contracts). The corresponding error message, i.e., the error trace for
the failing execution together with the computed model, is fed to Bucketeer.
For performance reasons, the static checker ensures that no two error messages
share the same sequence of statements in the error trace (otherwise, we might
find an infinite number of error messages). Bucketeer, however, does not require
that error messages exercise different paths. Bucketeer categories error messages
which belong to the same method (which makes sense only if more than one
error message belongs to the method).

For the test of equality between formulas used in Line 10 of Algorithm 1
(“Fi �= Fcurr”), we use syntactic equality. In our experiments, using the more
costly test of logical equivalence instead of syntactic equality does not change
the outcome of the tests. The reason lies in the fact that the generation of the
formulas by the interpolation procedure is optimized towards using the same
formula whenever possible. This means in particular that the generation of a
syntactically new but logically equivalent formula is unlikely.

Experimental Setup. To evaluate our approach we conducted two experimental
analyses: a quantitative analysis to evaluate if the number of buckets that have
to be investigated by the user is significantly lower than the number of original
error traces, and a qualitative analysis where we analyze the buckets for one
application in-depth to assess if the error traces that are grouped in one bucket
actually share properties that make it easier to fix them together.

For the quantitative analysis, we evaluate Bucketeer approach on three open-
source Java applications: the build system Apache Ant, the database Cassandra,
and on our own tool, Bucketeer. Table 1 shows an overview of the benchmarks
and a summary of some of the raw data of our evaluation.

Applied to Ant, the static checker finds 2470 methods with error traces, out
of which 820 methods have more than one error trace. Bucketeer is applied to the
in total 2715 error traces of those 820 methods. Applied to Cassandra, the static
checker finds 2190 methods with error traces, out of which 937 methods have
more than one error trace. Bucketeer is applied to the in total 3243 error traces
of those 937 methods. Applied to Bucketeer itself, the static checker finds 203
methods with error traces, out of which 102 methods have more than one error
trace. Bucketeer is applied to the in total 376 error traces of those 102 methods.
Summarizing over all three benchmark sets, Bucketeer is applied to 6333 error
traces of 1859 methods.

We discuss the results of the quantitative analysis in Sect. 5.1. For the quali-
tative analysis, which we discuss in Sect. 5.2, we manually inspected all buckets
produced by running Bucketeer on its own source code.
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Table 1. Raw data of the experimental evaluation

Benchmarks Ant Cassandra Bucketeer

Lines of code 271k 299k 15k

# of methods 7847 9373 331

Time for static checking (min) 87.35 55.65 6.00

# of methods with error traces 2470 2190 203

# of methods with multiple error traces 820 937 102

Sum of error traces in methods with multiple traces 2715 3243 376

Time for categorization (min) 25.23 54.78 6.06

Number of Buckets 1595 2041 258

The experiments were run on a 2.7 GHz i7 machine with 16 GB memory and
an initial size of 4 GB for the Java virtual machine. We used an analysis timeout
of 30 s per method. We experimented with larger timeouts up to five minutes
per method but it had no significant effect on the number of methods that could
be analyzed.

The time for the static checking and the time for categorization given in
Table 1 does not account for the time spent on methods that time out or where
the interpolant generation crashes.

Due to the timeout we were not able to analyze 1053 methods in Ant, 346
methods in Cassandra, and 132 methods in Bucketeer. These methods are not
included in the numbers reported above.

The interpolating prover crashed for all methods where interpolation involved
reasoning about the sub-typing relation used in our encoding of Java programs.
We excluded these methods from our evaluation (1012 methods for Ant, 896
methods for Cassandra, and 80 methods for Bucketeer). These methods are not
included in the numbers reported above.

5.1 Quantitative Analysis

The distribution of the numbers n of error traces across the methods of a bench-
mark program is needed in order to interpret the performance of a classification
tool on the benchmark program (in principle, the lower the number of error
traces, the lower are the chances that some of them can be grouped together).
Figure 3 shows, for n = 2, 3, . . ., how many methods contain n error traces (the
number of methods with n = 1 error traces (which is available in Table 1) is not
present here because the classification tool is not applied to such methods). As
expected, the number of methods decreases with increasing n.

We observe that the number of methods containing four or more error traces
almost adds up to the number of methods containing only two error traces. This
indicates that a user of a static checker will encounter methods with more than
four error traces relatively frequently.
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Fig. 3. Number of methods (on y-axis) with n error traces (x-axis).

We can see that the distribution of error traces across methods is similar
for Ant and Cassandra, while for Bucketeer there are more methods with three
or more error traces. The difference may stem from the fact that the code of
Bucketeer implements more involved algorithms.

As shown in Table 1, the overall time cost may almost double when one adds
classification to static checking. The cost for classification lies in the interpolant
generation, which is a relatively new technique in SMT solving, with a high
potential for optimization. In any case, the cost for classification seems accept-
able.

We next evaluate how many error traces can be categorized in buckets of a
given size. For Ant, 1595 buckets are generated, which means that, on average,
each bucket contains 1.7 error traces. For Cassandra, 2041 buckets are generated,
which means an average of 1.6 error traces per bucket. For Bucketeer, 258 buckets
are generated, which means an average of 1.45 error traces per bucket.

One way to evaluate the effectiveness of our tool for classification is to mea-
sure its behavior in view of the two extreme cases of unsatisfactory behavior.
The two extreme cases are the scenario (a) where each trace ends up in a sep-
arate bucket (no trace is grouped together with another one), and the scenario
(b) where all traces of a method are grouped together into one single bucket. To
compare against scenario (a), we count how many traces are grouped in buckets
of a given size n, for n = 1, 2, . . .. Figure 4 shows the percentage of error traces
that are grouped in buckets of size n. More than half of the error traces (from
50 % to 65 %) are categorized in a bucket of size n ≥ 2, i.e., more than half of

Fig. 4. Percentage of trace (y-axis) grouped in a bucket of size n (x-axis).
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Fig. 5. Number of methods that (y-axis) contain n buckets (x-axis).

the error traces are grouped together with at least one other error trace. This
means that we are rather far away from the scenario (a).

To compare against the scenario (b), we count the number of methods con-
taining n buckets, for n = 1, 2, . . .. Figure 5 shows that a very large portion of
the methods have two or more buckets. In other words, we are rather far away
from the scenario (b).

5.2 Qualitative Analysis

The goal of our qualitative analysis was to evaluate if the error messages grouped
in one bucket have a common root cause and, thus, the grouping helps to reduce
redundant work for the user. To this end, we manually investigated the buckets
that Bucketeer produced when we applied it to its own source code. Evaluating
the tool on the code written by us introduces some confirmation bias. On the
other hand, since we are familiar with the code it also increases our confidence
in judging if error messages in a bucket have a common root cause.

We inspected all 65 buckets generated for Bucketeer that contained at least
two error messages. These buckets can be grouped into two categories. The first
category consists of buckets that contain error messages that fail because the
initial state of the method sets one of the method parameters to null which
is dereferenced later in the method body. 73 % of the buckets in Bucketeer are
of that form. These buckets contain between two and seven error messages (the
average is 3 error messages per bucket). All these error messages have in common
that the initial state sets a particular method parameter to null, which triggers
a run-time exception somewhere in the method body. Often the actual run-time
error occurs at different points in the method body. However, the important
observation is that these error messages share the initialization statement of the
specific input parameter and they all can be fixed by enforcing that this parame-
ter is not null. That is, instead of inspecting each error message in the bucket,
a user of Bucketeer can pick any error message in one of these buckets, fix it by
adding an adequate precondition, and thus eliminate all other error messages in
the bucket without further inspection. The grouping of error messages provided
by our approach can therefore reduce the user’s workload substantially for these
types of buckets.
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The remaining 27 % of the buckets that we inspected contained error mes-
sages where the initial state assumes a field to be null which is dereferenced
later on the trace. Again, each bucket contains between two and seven error
messages with an average of 3 error messages per bucket. The error messages in
each bucket share that the initial state sets a field of an object to null which is
dereferenced later in the method body. All error messages in one bucket share
the initial state that sets the field to null. Some error messages also share the
statement that raises the run-time exception (but take different paths to get
there). Others raise run-time exceptions at different statements but because of
the same field. That is, all error messages in one bucket can be fixed by adding
a precondition that ensures that the given field is not null (or, alternatively,
by guarding all dereferencing expressions with an appropriate check if such a
precondition cannot be established). Again, the grouping of the error messages
helps the user of Bucketeer by reducing the number of error messages that she
has to inspect.

Thus, for all the buckets that we inspected, the contained error messages had
a common root cause that could be fixed after inspecting only one error message
in the bucket. In summary, the qualitative analysis shows that the grouping of
error error messages done by Bucketeer is useful.

6 Related Work

The classification and bucketing of error messages is an active research topic. We
will discuss what seems the most relevant work in our context. In summary, no
existing approach to classification and bucketing addresses the question whether
the comparison between error messages can be based on criteria other than
syntactic or statistical criteria (as opposed to criteria based on the semantics of
statements as in our work).

The original motivation for our work stems from the work in [3] which
addresses the error traces generated by a software model checker (somewhat con-
fusingly, the existing notions of error trace are subtly but substantially different
from each other). The classification of error traces in [3] is based on common
statements that have been identified as a possible root cause. The software model
checker then only reports one error trace per root cause. The identification of
the root cause works by comparing error traces to non-error traces which are
obtained from correct executions of the program (in this it is similar to dynamic
fault localization techniques such as delta debugging [31]). Our approach does
not require any successful executions of a program to compare against.

A static approach to cluster static analysis errors is presented in [23]. They
introduce the notion of sound dependency of alarms which is based on the trace
partitioning abstract domain. An alarm depends on another alarm if it spuri-
ousness implies the spuriousness of the other alarm. This is different from our
error signatures which can, in general, group arbitrary traces, even if they do
not share control locations.

Other approaches, such as [19] or [22] cluster static analysis alarms (not nec-
essarily only error traces) using unsound techniques. That is, their approaches
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may suppress alarms related to genuine errors, or highlight alarms that are actu-
ally false positives. Our approach just groups error traces. It does not suppress
or highlight particular error traces, and genuine errors and false alarms may be
grouped in the same bucket if they share the same error signature.

Most industrial static analyzers such as Coverity, HP Fortify, Facebook Infer,
or Red Lizards Goanna have complex systems to categorize error messages, group
them into buckets, and eliminate potential false alarms. These approaches usu-
ally combine statistical analysis, feasibility checks, and data-flow analysis and
are heavily customized. While our approach is similar in spirit, we try to obtain
a more semantic categorization of error traces with our error signatures. Existing
approaches tend to group traces that violate the same property, while the error
signatures capture that traces perform similar computations. That is, using error
signatures is conceptually different from existing approaches.

A related problem to classification of error messages is duplicate analysis of
bug reports in bug tracking systems [1,30]. Existing techniques for automating
the analysis of bug reports focus on the verbal description of the bug that is
provided by the bug reporter. The information in the bug report that describes
the actual error trace is typically incomplete and not amenable to automated
analysis. For example, in a bug report for a program crash, one will at most find
a stack trace of the program state when the crash occurred but no further infor-
mation about the actual execution leading to that state. Recently, techniques
have been explored to automatically reconstruct the actual error trace from a
field failure by using symbolic execution [18].

The focus of our classification approach is on error traces of sequential pro-
grams. This is different in the work on the classification of concurrency bugs
to identify the type of concurrency violation (out of order violation, atomicity
violation, deadlocks, etc.); see, e.g., [5,16]. The approach in [16] is related to our
tool in that it also uses an SMT solver to perform this type of classification.

The notion of error signature that we introduce in this paper is somewhat
related to the notion of error invariants and abstract slices explored in [7,13,25].
There, the goal is to obtain an explanation of a bug in an individual error trace.
In contrast, the work of this paper is about the classification of a set of error
traces.

The work on tools to infer preconditions such as [10] and [12] is related to our
work in the sense that it may be conceivable to classify error messages according
to the same precondition. In comparison, error signatures are strictly more fine
grained (i.e., error messages with different error signatures may still share the
same precondition; e.g., the precondition can always be � if the initial state is
irrelevant for reaching the error).

7 Conclusion

We have presented an approach that uses concepts and techniques from seman-
tics and verification in order to classify error messages in the context of static
checking. We have presented the formal foundation that allows us to associate
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each error message with a verification problem whose solution (i.e., the proof
of validity of a certain correctness property for a program derived from the
error message) can be used to construct a small but significant error signa-
ture (on which the classification is based). We have implemented the approach
and applied it to three benchmark sets. Our experiments indicate an interesting
practical potential.

While our motivation stems from the context of extended static checking,
it may be interesting to explore how the approach can be used to complement
existing approaches to classification in other contexts (abstract interpretation,
bounded model checking, testing, . . . ).

A more fundamental question for future research concerns the existence of a
metric for error signatures in order to define a distance between error messages.

Acknowledgement. This work is funded in parts by AFRL contract No. FA8750-15-
C-0010 and the National Science Foundation under grant CCF-1350574.
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Abstract. We propose a bidirectional collaboration between declara-
tive debugging and testing for detecting errors in the sequential subset
of the programming language Erlang. In our proposal, the information
obtained from the user during a debugging session is stored in form of
unit tests. These test cases can be employed afterwards to check, through
testing, if the bug has been actually corrected. Moreover, the debugger
employs already existing tests to determine the correctness of some sub-
computations, helping the user to locate the error readily. The process,
contrarily to usual debugger frameworks is cumulative: if later we find
a new bug we have more information from the previous debugging and
testing iterations that can contribute to find the error readily.

1 Introduction

One of the most important underlying ideas of the software development life
cycle [1] is that the assets from one phase can be employed both in the next
phases and in successive iterations of the cycle. For instance, the testing phase
produces test cases that allow checking whether the system satisfies the initial
requirements. If later the system is modified, for instance to improve its efficiency,
the initial tests (or at least part of them) can be employed again to check whether
the initial requirements are still verified.

However, there is a task in the software development cycle that often consti-
tutes the exception to this rule: debugging. In spite of the introduction of tools
that try to automatize the location of errors, debugging is still a manual and
very time-consuming non-trivial task that requires a careful comparison between
the actual and the expected results of some subcomputations. Unfortunately, the
very useful information gathered during a debugging session is usually thrown
away once the debugging session is finished.
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We propose a modification of the general framework followed in declarative
debugging, also known as algorithmic debugging [9], a debugging technique that
asks questions to the user until a bug is found. In our proposal the answers
given by the user are stored in the form of test cases that make persistent the
valuable information obtained during a debugging session. In order to prove the
applicability of the new debugging schema, we have implemented the new schema
in the Erlang Declarative Debugger EDD [3]. The same ideas can enhance any
declarative debugger implemented for a system allowing unit tests.

Furthermore, the relation between debugging and testing can be seen as
a bidirectional collaboration. One of the major complaints about declarative
debugging is the large number of questions asked to the user in order to find the
bug. In our proposals, each question is compared in advance with the existing
test cases, in order to determine if the answer can be entailed without further
assistance from the user. We have observed that this feature is very helpful in
practice, especially if there are more than one bug in the system, since the user
can focus directly on the code affected by the error, disregarding the fragments
of code that have been checked and found correct in previous debugging sessions.

The rest of the paper is structured as follows: Sect. 2 presents our proposal
as a new general debugging framework. Section 3 describes how our tool takes
advantage of test cases to improve declarative debugging, while Sect. 4 shows how
test cases are generated by our declarative debugger. Finally, Sect. 5 concludes
and discusses some lines of future work. The tool EDD, modified to take into
account the generation and use of test cases, is publicly available at https://
github.com/tamarit/edd.

2 A New General Debugging Schema

Declarative debugging is a semi-automatic debugging technique that abstracts
the execution details to focus on results. It can be presented as a general schema
with the following structure:

declarative debugger(initialSymptom) −>
T = execution tree(initialSymptom)
while (|T| �= 1)

pick up a node N in T with N �= root(T)
ask the oracle whether N is valid/invalid
if N is valid:

remove N and its subtree from T
else

T = subtree rooted by N
return root(T)

The debugger starts when the user detects a computation returning an unex-
pected result, the initialSymptom. Then, it builds an execution tree representing
the initial symptom. The nodes of the tree can be depicted with the form C = V ,
with C a computation (function evaluation) and V its computed result. A node
is considered valid if its result is the expected for the associated computation,

https://github.com/tamarit/edd
https://github.com/tamarit/edd
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and invalid otherwise. In particular, the root of the tree represents the compu-
tation of the initial symptom and thus it is invalid. The children of each node
correspond to the subcomputations needed to obtain the result at the parent.
The final goal is to locate a buggy node, an invalid node with valid children. The
fragment of code represented by this node is then considered as the source of
the error, because it has produced an erroneous output from valid inputs (the
children results). Each iteration of the main loop chooses an unknown node N,
possibly following some strategy [10], and asks to the user about its validity.
If N is valid, the subtree rooted by N is removed from the tree. If it is invalid
then the subtree rooted by N becomes the new debugging tree. Observe that
after each iteration the size of the tree decreases, and that in every iteration its
root is invalid. Then, it is possible to ensure that in a finite number of iterations
we will get a tree with only one node (|T| = 1), and that this node is a buggy
node. Both operations, removing subtrees rooted by valid nodes, and replacing
the tree by a subtree rooted by an invalid node, are safe, in the sense that the
tree obtained after the operation contains at least one buggy node, and every
buggy node in the new tree is also buggy in the original tree.

In this paper, we consider EDD [3], a declarative debugger for the sequential
subset of the programming language Erlang [6] that follows this schema. The
nodes of the execution trees in EDD have the form m : f(t1, . . . , tn) = r, with m
the name of an Erlang module, f a function defined in m, t1, . . . , tn the arguments
of a call to f occurred during the computation, and r the computed result. EDD
also debugs anonymous functions, and allows the user inspecting the body of
functions looking for more particular errors [4] but these features are not used
in this paper.

Our proposal extends the initial framework by taking into account exist-
ing test cases and also by generating new test cases following the information
gathered from the user. We distinguish two kinds of test cases:1

– Positive test cases, depicted as ?assertEqual(C,V), indicating that V is the
expected result for computation C.

– Negative test cases ?assertNotEqual(C,V’), indicate that V’ is not the
expected result for C.

The extended framework that we propose is presented in Fig. 1. It takes as
additional input parameter a set of test cases inputTCs, used to decide initially
that some of the nodes of the execution tree are valid or invalid. In particular, the
lines 5 and 6 look for positive test cases that occur in the tree. These nodes are
valid, and their subtrees can be safely removed. Lines 7–10 initialize outputTCs,
the list that stores the new test cases obtained after each question answered
by the user. It takes the initial symptom with its value as first negative test
case if there is not a positive test case for the same call in the initial set of

1 Erlang also supports test cases ?assert(...) with predicates. Our system can han-
dle these test cases when their predicates involve equality or inequality operators,
but we will focus only on ?assertEqual and ?assertNotEqual for simplicity in the
presentation.
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Fig. 1. Declarative debugging with test cases

test cases.2 Line 13 looks for nodes that can be detected as invalid from the
information contained in the test cases. This is the task of the Boolean function
invalidTC defined in lines 29–31, which receives a node and a set of input test
cases and return true if it is possible to determine that the node is invalid from
the information contained in the test cases. As the function indicates, a node in
the tree can be pointed out as invalid in two situations:

1. If there is a positive test case for the same computation but with a different
associated value (then the value contained in the node is not the correct
result).

2. If there is a negative test case for the same computation and for the same
value, that is, the test case indicates directly that the result is unexpected.

2 The positive test case, if exists, indicates that the initial symptom is wrong indicating
also the expected value. This makes the addition of the negative test case redundant.
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It is safe to replace the tree T by the subtree T’ rooted by a node verifying
any of these two conditions. Line 12 of Fig. 1 takes the smallest tree T’ with
these characteristics; although this tree might not be unique, the completeness
property for debugging trees with an invalid root [4] ensures that any of these
trees will reveal an error. This is important, because a smaller tree means, gen-
erally, less questions to the user. The rest of the code is similar to the original
schema. Finally, both the buggy node and the new test cases are returned.

This general idea has been put into practice extending EDD using EUnit
tests [5]. EUnit belongs to the general testing framework family known as unit
testing, a well-established testing methodology that allows users to indicate the
expected values obtained when executing a function with some specific argu-
ments. Thus, the tests generated by EDD can be executed using EUnit, which
allows the user to check that the problem has been actually solved after the error
has been corrected, simply running the generated tests. Notice that the tests will
check not only the main result, that could be checked readily by the user, but
also all the intermediate results obtained during the debugging process. This is
important because correcting an error sometimes introduces inadvertently a new
one. The exhaustive checking of the computation helps to check that this is not
the case. Note also that the tests generated are not affected by code changes since
they are only expressing the intended interpretation of one particular function.

Fig. 2. Code for the quicksort function and its corresponding tests

3 When Declarative Debugging Met Testing

We illustrate these ideas with the quicksort module presented in Fig. 2, which is
an adaptation of the code in [7]. The module contains 3 functions: qs, leq and
partition. The function qs takes as arguments a binary predicate F representing
the notion of order and a list, and returns the list ordered using the QuickSort
algorithm. Lists in Erlang are represented as sequences of elements [E1,. . ., En] or
[H|T] where H is the first element of the list (called head) and T is the rest of the
list (called tail). Erlang also allows the use of tuples, represented as sequences of
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elements enclosed in curly braces: {E1,. . ., En}. As usual in functional languages,
the function qs is defined by two clauses that are tried in top-down order by
applying pattern matching. The first clause (line 3) returns the empty list if the
argument is an empty list. The second clause (lines 4–6) accepts a non-empty
list [E|R], splits the tail R using E as pivot and recursively sort the partitions
A and B. The function leq is simply a wrapper of the predefined operator =<.
Finally, the function partition takes as input parameters an order function F, a
pivot element E and a list and divides the latter into two according to the pivot
and the order function. Notice the usage of a case expression to decide in which
partition the head H must be inserted. The module quicksort includes also a
testing function (quicksort test) defining four simple positive unit tests obtained
from a previous debugging session. The third test in this function (line 21) fails,
hence revealing that there is at least one error. We start the debugging process
by introducing the failing test case in EDD:

> edd:dd(”quicksort:qs( fun quicksort:leq/2, [7,1] )”).

Following the schema of Fig. 1, EDD builds the execution tree corresponding
to this computation, which can be examined in Fig. 3(A),3 and uses the same
test cases to prune the tree, obtaining that nodes 3, 5, 6, and 7 are entailed as
valid (marked with diagonals in the corners) and can be safely removed together
with their subtrees. The pruning of the associated subtrees removes 5 of the 8
initial possible questions, and leaves only the shaded nodes in the debugging
tree. Then, the following question about node 2 is asked to the user:

quicksort:partition(fun quicksort:leq/2, 7, [1]) = {[1], []}? y

The intended meaning of partition is to split the input list ([1]) into two
lists, one containing the elements less than or equal to 7, and another one with
the elements greater than 7. The result of the call is valid so the user answers y
(yes). At this point, after just one user answer, the debugger identifies node 8
as buggy:

Call to a function that contains an error:
quicksort:qs(fun quicksort:leq/2, [7, 1]) = [7, 1]
Please, revise the second clause:
qs(F, [E | R]) −> {A, B} = partition(F, E, R),

qs(F, B) ++ [E] ++ qs(F, A).

The error is in line 6, which should be qs(F, A) ++ [E] ++ qs(F, B). Before
starting the next section we assume that the error has been corrected.

It is important to note that, since EDD is based in a formal semantics, it is
possible to prove the soundness and completeness of the technique. The key point
for proving these properties is the existence of an intended interpretation, that
corresponds with the semantics that the programmer had in mind when imple-
menting the system; by comparing this intended interpretation with the actual
execution we are able to discover the buggy node. In our work, the soundness
and completeness results are easily extended by ensuring that the test cases are
3 Nodes’ modules are not shown for the sake of clarity.
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Fig. 3. Debugging trees of the EDD sessions

a subset of the intended interpretation, that can be used to appropriately prune
the tree before asking the user to answer the rest of the questions. More details
on the proofs are available in [4].

4 When Testing Met Declarative Debugging

The previous debugging session not only finds a bug but it also generates one new
positive test case4 ?assertEqual(partition(fun leq/2, 7, [1]), {[1], [ ]}). As outlined
4 Notice that, as explained in Sect. 2, a negative test case ?assertNotEqual for the root
qs(fun leq/2, [7,1]) is not generated as the test suite already contains a positive test
for it (see line 21 in Fig. 2).
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in the introduction, this test case can be used later in the software development
cycle, as well as by EDD in later debugging sessions. In fact, if we execute the
test cases again after fixing the bug detected in the previous section, we find
out that the fourth unit test of quicksort test (line 22) still fails, indicating that
another bug is hidden in the program:

> quicksort:qs( fun quicksort:leq/2, [ 7, 8, 1 ] ).
[1,7]

Again we start the debugger, using this unit test as initial symptom. In this
case, the execution tree contains 11 nodes—Fig. 3(B)—with 10 potential ques-
tions to be asked. Thanks to the original test suite together with the unit test
case generated in the previous debugging session, the debugger prunes the tree,
keeping only the 3 grey nodes, i.e., 2 potential questions. As explained before,
nodes with diagonals in the corners correspond to valid results w.r.t. the test
cases.

Hence, the debugger presents the following debugging session:

> edd:dd( ”quicksort:qs( fun quicksort:leq/2 , [7,8,1 ] )” ).
quicksort:partition(fun quicksort:leq/2, 7, [8, 1]) = {[1], []}? v
What is the value you expected? {[1],[8]}
quicksort:leq(8, 7) = false? t

Call to a function that contains an error:
quicksort:partition(fun quicksort:leq/2, 7, [8, 1]) = {[1], []}
Please, revise the second clause
partition(F, E, [H | T]) −>

{A, B} = partition(F, E, T),
case F(H, E) of
true −> {[H | A], B};
false −> {A, B}

end.

The first question is about the validity of the partition of [8,1] using 7 as pivot.
The result {[1],[]} is wrong, so the user could simply answer n (no). However,
our debugger introduces a refinement on the schema of Fig. 1. Since positive test
cases are more informative than negative ones and they allow EDD to prune more
nodes, we have introduced in EDD an option (letter v from value) that allows
the user to type the correct value in addition to answering no. This command
produces an ?assertEqual test case instead of the negative one. In this session
the user decides to use this option and indicates that the correct value should
be {[1],[8]}. The second question is answered by the user with t, meaning
trusted. In EDD this answer indicates that the user considers that function leq
is correct so all the nodes containing a call to leq must be marked as valid,
therefore generating as many positive ?assertEqual unit tests as distinct calls to
leq are found in the tree—in this case there are two calls. Finally, EDD points
out to the second error (line 15 in Fig. 2). We realize that the false branch inside
partition is incorrect: the first element H of the list, which is greater than the
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pivot E, must be appended to B. Fixing this second bug will result in replacing
line 15 by false−> {A, [H|B]}.

As well as detecting the buggy function, EDD has extended the test suite
with four unit tests:

?assertEqual(partition(fun leq/2, 7, [1]), {[1], []}),
?assertEqual(partition(fun leq/2, 7, [8, 1]), {[1],[8]}),
?assertEqual(leq(8, 7), false),
?assertEqual(leq(1, 7), true).

Of course, although very useful, employing/generating test can be disabled
in EDD using options:

– not load tests: do not use existing EUnit tests to prune the execution tree.
– not save tests: do not generate EUnit tests from the user answers.

5 Conclusions and Ongoing Work

Debugging is usually a manual task that involves the comparison of the actual
and the expected behavior of the debugged system. Unfortunately, this very
valuable information, which requires a great amount of time and effort, is dis-
carded once the error is found. In fact, debuggers are often considered auxiliary
tools and are not properly integrated in the software development cycle. In this
paper we have shown how to improve this situation by employing an algorithmic
debugger that stores the information extracted from the user during the debug-
ging sessions in the form of unit tests. These tests are especially useful to check
whether the error has been effectively corrected, and can become part of the
tests produced during the testing phase.

Moreover, the result of this fruitful collaboration between testing and algo-
rithmic debugging is also beneficial for the debugger, since the unit tests can
be employed for automatically detecting if some subcomputations are valid or
not, thus reducing the number of questions that the user must consider. The
unit tests employed for this purpose can be both those generated in a previous
debugging session and those produced during the testing phase. We have applied
the new general framework to the EDD, an already existing declarative debugger
for the sequential subset of the programming language Erlang. The result is a
debugger that generates for free and uses unit tests in the format required by
the EUnit tool.

It is worth mentioning that although generated automatically, our test cases
are different from those generated by usual automated test case generators, where
the user needs to examine the generated test suites looking for unit tests pro-
ducing erroneous results. This is known as the oracle problem [2]. In our case,
the test case output is obtained directly from the user during the debugging,
and thus this problem does not occur.

As future work, it would be interesting to use and generate not just spe-
cific tests but properties, as those defined by PropEr [8], a QuickCheck-inspired
property-based testing tool for Erlang. In this way we could further prune the
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debugging tree and store trust answers more accurately. Finally, it would also be
interesting to apply the same framework to different languages, and performing
an extensive experimental work to check the impact of the proposal.

Acknowledgments. We thank the anonymous reviewer of a previous work published
in the journal Science of Computer Programming for suggesting us this line of work.
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Abstract. Developing provably correct graph transformations is not a trivial
task. Besides writing the code, a developer must as well specify the pre- and
post-conditions. The objective of our work is to assist developers in producing
such a Hoare triple in order to submit it to a formal verification tool. By
combining static and dynamic analysis, we aim at providing more useful
feedback to developers. Dynamic analysis helps identify inconsistencies
between the code and its specifications. Static analysis facilitates extracting the
pre- and post-conditions from the code. Based on this proposal, we implemented
a prototype that allows running, testing and proving graph transformations
written in small-tALC, our own transformation language.

Keywords: Symbolic execution � Test case generation � Graph transformation
development

1 Introduction

For most of untrained developers, writing Hoare-style provably correct graph trans-
formations is particularly demanding because besides the transformation code, they
have to specify formally the pre- and post-conditions in a suitable logic.

Our ultimate goal is an integrated development environment that allows developing
and reasoning about graph transformations written in small-tALC, a logic-based graph
transformation language. In the previous work [1], we focused on using a prover to
verify a given Hoare triple presenting the transformation. However, in practice, a proof
based on Hoare logic is difficult to perform and often many programing efforts are
needed before submitting a transformation to the prover. Thus, in this work, we turn
our attention to assisting developers in writing provably correct transformations.

Section 2 presents briefly our graph transformation language small-tALC. Section 3
presents our approach to help developers analyzing better their transformations. On the
one hand, we use dynamic analysis to detect inconsistencies between the code and its
specifications (Sect. 3.1). On the other hand, we use static analysis to construct the pre-
and post-conditions from a code (Sect. 3.2). This paper reports on how these techniques
can complement each other in a testing environment to offer useful feedback to
developers.
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2 Small-tALC Environment for Graph Transformations

Our graph transformation language is based on ALC (Attributive Language with
Complements) [2], a member of theDescription Logic family. This logic uses a three-tier
framework: concepts, facts and formulae. A concept represents a set of individuals and a
role represents a binary relation between the individuals.

At the concept level, a concept C can be empty, atomic or built from other con-
cepts. ALC provides the following concept constructors: intersection (C1\ C2), union
(C1[ C2), complement (¬C) and existential or universal restrictions on roles (9r C
and 8r C). The fact level allows making assertions about an individual owned by a
concept, or involved in a role. The grammar of facts is summarized in the following:
(i:C) asserts that an individual i is an instance of a concept C; (i r j) and (i (¬r) j) assert
respectively that an instance of a role r exists or not between two individuals i and
j. The final level is about formulae defined by a Boolean combination of ALC facts.
This formula level includes negation (¬f), conjunction (f1 ^ f2) and disjunction (f1 _
f2) of formulae.

Concepts, facts and formulae are the core of small-tALC, a rule-based imperative
programming language that we’ve developed for specifying and reasoning about graph
transformations [1]. Note that individuals of a concept can be represented as the nodes
of a graph; in the same way, a role between two individuals corresponds to an edge.
Thus, a graph can be described by a formula in which each node is represented by a fact
(i:C) and each edge between two nodes i and j is represented by a fact (i r j).
Manipulating a graph results in modifying the formula representing it.

small-tALC provides statements to manipulate the structure of a graph: add (i:C) and
delete (i:C) for adding and respectively deleting a node (an individual) from a concept1;
add (i r j) and delete (i r j) for adding and respectively deleting an edge (a role) between
two nodes. small-tALC also proposes (select i with f), a non-deterministic assignment
statement allowing to select a set of individuals satisfying a formula. In this work, we
focus only on transformation of graph structure and do not deal with the values of
attributes that maybe associated to graph’s elements.

small-tALC enables sequential composition, branching, iteration and modularity.
A small-tALC program comprises transformation rules and a main function, as the
program’s entry, that orders the rules to be executed. To allow reasoning about graph
transformation programs, a rule is annotated with assertions specifying its pre- and
post-conditions. The distinctive feature of small-tALC is that formulae occur not only in
assertions (such as pre- and post-conditions or loop invariants), but also in statements
(branching and iteration conditions, select conditions). In this way, assertions are akin
to graph manipulation statements and based on the same logic dialect. Assertions lead
to a Hoare-like calculus for small-tALC with potential tests and proofs.

Figure 1 gives an example of a small-tALC rule which redirects the edges between
nodes of concept A and nodes of concept B to the edges between nodes of concept
A and new nodes of concept C. The rule is structured into three parts: a pre-condition,
the code (a set of statements) and a post-condition. small-tALC is designed as a domain

1 The individual is not deleted from the graph because it can be still owned by other concepts.
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specific language, not a general purpose one. Thus, to simplify its syntax, all rules work
on the same input and output graphs and the pre- and post-conditions are specified on
these global graphs. In this example, the pre-condition expresses that a is a node of
concept A, b a node of concept B and that a is linked to b via role (or edge) r. While
there are nodes a and b satisfying the while condition, the rule selects these nodes,
deletes the link between them, add a new node c of concept C, then connects the
selected node a with the new node c via the role r. The post-condition expresses that
there are three nodes a, b and c of concepts A, B and C respectively and that a is
connected to c via role r2.

For executing and reasoning on small-tALC programs, we developed an environ-
ment composed of a Java code generator to enable executing small-tALC rules, a JUnit
test case generator for rule testing and an Isabelle/HOL verification condition generator
coupled to a tableau prover for Hoare triples.

3 Assistance for Writing Small-tALC Programs

Our objective is to provide assistance on writing both small-tALC code and specifica-
tions by combining static and dynamic analysis [3]. In Sect. 3.1 we report how testing
can help developers correct their code with respect to given specifications. In Sect. 3.2
we investigate the symbolic execution technique to help a developer construct pre- and
post-conditions from a given code.

3.1 Dynamic Analysis for Detecting Defects in Transformation Code

We consider a situation where the correct specifications of a code are given, especially
the pre-condition. As presented in Sect. 2, the pre- and post-conditions are formulae
specifying graphs before and after a transformation. Each fact of the pre-condition
represents the existence of a node or an edge in the source graph. Each fact of the

Fig. 1. Rule redirecting (a r b) to (a r c)

2 We can strengthen the post-condition by adding the fact (a ¬r b) to insist that there is no edge
between a and b. However, we intentionally keep it weak to illustrate that developers can write any
post-condition, not exactly the strongest post condition wrt. the given pre-condition.
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post-condition represents the existence of a node or an edge in the target graph. Thus,
from the given pre-condition we can generate a source graph and, from the given
post-condition, generate a set of test cases for the required properties. In our frame-
work, dynamic analysis consists in testing the target graph obtained by the transfor-
mation with the generated test cases which are expressed in JUnit. In this context, we
defined and implemented a unit testing library for small-tALC having about twenty
assertion methods allowing testing the existence and multiplicity of nodes and edges.

Figure 2 shows the result of the generation of a source graph and the test cases
corresponding to the pre- and post-conditions of the example in Fig. 1. The generated
source graph represents the minimal graph configuration satisfying the pre-condition.

Suppose that the developer did not write the statement add(a r c) in the code. Because
of this missing statement, the corresponding test assertExistEdge(a r c) fails. This test
result reveals then an inconsistency between the code and its specifications. Moreover, it
informs the developer about the non-existence of the edge r between a and c3.

When the proof fails on verifying a program, the prover can give a counter example
without further suggestions about the code’s inconsistencies. This counterexample can
be used as the program’s graph input instead of a graph generated from the precon-
dition to provide more feedback about the behavior of the code in such situation.

3.2 Static Analysis for Constructing Specifications from Code

Assume now that a code is correct, but developers need help to define the formal
specification. We aim at computing, from the given code, conditions that must be
satisfied before and after applying the transformation. For small-tALC programs whose
symbolic values are explicitly defined in the code’s formulae, such computation can be
easily done by using a technique based on symbolic execution. We analyze the code’s
control flows to generate all possible execution paths and then execute each path
symbolically to construct incrementally the pre- and post-conditions by considering the
required conditions of each path.

We recall that the axiomatic semantics of each small-tALC statement is defined by
the formulae representing its pre- and post-conditions, which specify a graph before
and after executing the statement. Thus, on tracing the path’s statements, we can
compute progressively the formulae representing the pre- and post-conditions of the
path by updating them according to the pre- or post-conditions of each encountered

Fig. 2. Source graph and test cases generated from the running example

3 If the post-condition was strengthened by the fact (a ¬r b), the corresponding test
assertNotExistEdge(a r b) will have been also generated.

186 A. Makhlouf et al.



statement. An execution path is analyzed in two directions. A forward computation
extracts a formula representing the post-condition and a backward computation extracts
a formula representing the pre-condition. Path statements are processed differently in
each computation mode. Figure 3 presents, in a simplified functional style, the algo-
rithms to update the extracted specification according to the semantics of the
encountered statement.

In this figure, FC represents the Forward Condition formula and BC the Backward
Condition formula. st(f) denotes a small-tALC statement, where st can be add, delete or
select and f is the formula specifying the manipulated graph element. If st is add or
delete, f can be (i:C) to represent a node, or (i r j) to represent an edge. The auxiliary
functions pre(st(f)) and post(st(f)) extract respectively the pre- and post-conditions of st
(f). For example, pre(add(i r j)) = (i (¬r) j) and post(add(i r j)) = (i r j) as we allow
only one edge of a given relation between two nodes. For the select statement, pre
(select(f)) = post(select(f)) = f. The auxiliary functions addFM(C, f) and delFM(C, f)
are used respectively to add the formula f into the path’s conjunction C (if C does not
already contain f) or delete the formula f in the conjunction (if C contains f). C denotes
a post-condition Q in a forward computation, or a pre-condition P in a backward
computation.

For a given path, FC and BC of the classic control statements are computed in the
same way as strongest post-condition and weakest pre-condition computations respec-
tively [4]. Figure 4 illustrates the FC computation for the post-conditionQ of the example
in Fig. 1. We consider only the execution path in which the while condition is true.

The computed formula is then presented to developers in the testing framework (c.f.
Sect. 3.3) to allow them to verify if the conditions of the analyzed path are respected in
the current rule’s pre- and post-conditions issued from analyzing previous execution
paths or written by developers themselves.

Fig. 3. Forward and Backward computations for analyzing small-tALC statements

Fig. 4. FC computation for the example
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The consequence rule of Hoare logic rule allows to strengthen the precondition
and/or to weaken the post-condition of a Hoare triple: given P1 ! P2 and Q2 ! Q1,
if {P2} S {Q2} then {P1} S {Q1}. Ideally P1 should be the weakest precondition wp(S,
Q1) of S with respect to Q1 and vice versa (i.e. Q1 should be the strongest
post-condition sp(S, P) of S with respect to P1). However, developers can write a rule
with the independent specifications P2 and Q2 where some facts of the precondition P2
are not necessarily considered for the post-condition Q2. Considering the rule in Fig. 1,
(a r b) in the pre-condition has been translated into (a r c) without considering (a ¬r b)
in the post-condition.

3.3 Combining Dynamic and Static Analysis

The two scenarios represented in Sects. 3.1 and 3.2 are the borderline cases of small-
tALC transformations development. In practice, both of specifications and code are
partially and imprecisely defined. Complementary to the diagnostics provided by a
prover, we propose an approach that allows treating an incomplete Hoare triple by
verifying its consistency in an incremental manner. In general developers prefer testing
to proving, so our assistance provides them feedback via a testing framework com-
bining white-box testing and black-box testing [5].

A developer may write a code and weak specifications, apply the white-box testing
to detect inconsistencies between them and use the static analysis technique to complete
them. On the basis of the static analysis technique, extracted specifications from the code
are compared to pre- and post-conditions given by the developer to help him correct or
complete his specifications. This comparison yields black-box test cases generated from
the extracted pre- and post-conditions then executed on a graph generated from the
given pre- and post-conditions respectively. Each test which fails corresponds to a
missing or an incorrect fact in the formula representing the given specification.
Therefore, during the development of a transformation program, in each iteration, a
developer can alternate between the two approaches depending on his needs.

4 Discussion

Our small-tALC environment combines two techniques for verifying a Hoare triple. The
prover we developed [1] can prove the correctness of a transformation for all arbitrary
graphs satisfying the pre-condition without executing the transformation. This formal
verification technique, although has been well developed [6, 7], is not really applicable
during the transformation development where the Hoare triple is often still incomplete.
The testing environment presented in this paper proposes a more pragmatic solution,
from the developer’s point of view, to detect inconsistencies in an under-developed
transformation. By using both of the above techniques, we try to take advantage of
multiple complementary approaches [3, 8, 9] for assisting transformation developers.

To assist developers, testing has been used for generic imperative languages. Our
approach shares with [5] the idea to use a deductive program verification mechanism
for extracting specification by symbolically executing small-tALC rules. Our forward
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and backward test cases generations are based on code-driven paths exploration as in
[5, 10]. The transitions from code to specification and vice versa are straightforward
with small-tALC because it uses the same logic to specify programs and properties to be
verified. This is often less direct for conventional imperative languages where there is a
possible gap between the logic defining the semantics of the language and the logic
used for formalizing the correctness of programs. In such cases, sometimes it is difficult
to identify symbolic values [11] and symbolic execution is often achieved for only a
limited subset of the target language features [10].

The design of language GP2 [12] is close to small-tALC. Building blocks in GP
programs are conditional rule schemata whose nodes and edges are labeled by
sequences of expressions over parameters of type integer, string and list. Condition of a
rule schema can be expressed then on the existence of a specific labeled edge or the
in/out degree of a node. small-tALC does not propose such computations on nodes and
edges: individuals (nodes) and roles (edges) within a rule define only local structural
properties of a graph. We do not define variables and values in order to simplify the
small-tALC’s computation model. The conditions of our calculus are ALCQ formulae
while GP uses E-conditions [6], i.e. nested graph conditions extended with expressions
as labels and assignment constraints for specifying properties of labels [7]. Tools to
help the designer when a fail occurs are not addressed in GP.

Few works have been proposed for testing graph transformation implementations.
Close to our work, [13] generates test cases for the graph pattern matching phase; [14]
generates JUnit test cases from a Fujaba graphical story diagram. Both approaches are
based on the graph pattern matching phase of the transformation rule to generate test
cases, not on logical rule specifications as we propose.

5 Conclusion

Thanks to the formal semantic basis of small-tALC, we can apply both dynamic and
static analysis techniques in an effortless way to reason about small-tALC programs and
give useful feedback to developers during the transformation development.

Our current test data generation is rather simplistic and just covers a minimal
configuration of possible source graphs. We are improving our algorithm for generating
more graphs from the typical graph on the basis of Molloy-Reed algorithm [15, 16] and
allowing also graph inputs provided by developers as the prover’s counterexample.

In this paper we did not deal with loop invariants as conditions of a transformation,
we plan to automatically infer and test invariant candidates gathered from their cor-
responding post-condition as proposed in [17]. This attempt is based on the fact that a
small-tALC loop iterates on all individuals selected from a logic formula in order to
achieve the same logic property for all transformed elements. We also aim at enhancing
interface functionalities between test and proof processes. For instance, suppose that
our testing environment validates a rule’s post-condition on a given path. One can
imagine, with the help of a prover, computing the strongest post-condition of this path
by symbolic execution. The correctness of the path can be proven if the strongest
post-condition implies the given post-condition. If this implication holds for all paths in
the code, then the original Hoare triple is valid [4].
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Abstract. The use of formal methods and proof assistants helps to
increase the confidence in critical software. However, a formal proof is
only a guarantee relative to a formal specification, and not necessary
about the real requirements. There is always a jump when going from
an informal specification to a formal specification expressed in a logical
theory. Thus, proving the correctness of a piece of software always makes
the implicit assumption that there is adequacy between the formalised
specification –written with logical statements and predicates– and the
real requirements –often written in English–. Unfortunately, a huge part
of the complexity lies precisely in the specification itself, and it is far
from obvious that the formal specification says exactly and completely
what it should say. Why should we trust more these predicates than the
code that we’ve first refused to trust blindly, leading to these proofs? We
show in this paper that the proving activity has not replaced the test-
ing activity but has only changed the object which requires to be tested.
Instead of testing code, we now need to test predicates. We present recent
ideas about how to conduct these tests inside the proof assistant on a
few examples, and how to automate them as far as possible.

Keywords: Formal certification · Predicate testing · Proof assistant

1 Introduction

One way to increase our confidence in software is to formally prove its cor-
rectness using a proof assistant. Proofs assistants enable to write code, logical
statements and proofs in the same language, and offer the guarantee that every
proof will be automatically checked. Many of them are functional programming
languages, like Coq [2], Idris [3] and Agda [9], and others, like the B-Method [1]
belong to the imperative paradigm. These different paradigms are internally sup-
ported by different logic. Systems like Coq, Idris and Agda are based on various
higher order logics (CoC, a variant of ML and LUO respectively) and are real-
isations of the Curry-Howard correspondence, while the B-Method is based on
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Hoare logic. These different foundations lead to different philosophies and dif-
ferent ways to implement and verify a software, but all of them greatly increase
the confidence on the produced software. However, these guarantees tend to be
too often considered as perfect, when they are in fact far from it. Knuth was–
certainly ironically– saying “Beware of bugs in the above code; I have only proved
it correct, not tried it”. The reality is precisely that a proof is not enough. When
we prove the correctness of a function, we only gain the guarantee expressed by
the proven lemma, and nothing more.

Say we want to implement a formally verified sorting function for list of
elements of type T , where T is ordered by a relation ≤. We can decide to define
the sorting function with a “weak” type, like sort : List T → List T , and to
use an external lemma to ensure the correctness of the function. Which property
does this function has to respect? First, the output has to be sorted, so we need
to define this notion of being sorted, here as an inductive predicate:

data isSorted : {T:Type} -> (Order T) -> (List T) -> Type where
NilIsSorted : (Tord : Order T) -> isSorted Tord []
SingletonIsSorted : (Tord : Order T) -> (x:T)

-> isSorted Tord [x]
ConsSorted : {Tord : Order T} -> (h1:T) -> (h2:T) -> (t:List T)

-> (isSorted Tord (h2::t)) -> (h1 ≤ h2)
-> (isSorted Tord (h1::(h2::t)))

The first and second constructor of this predicate say that [ ] and [x] are sorted
according to any order, and for any x. The third one says that a list of two
or more elements is sorted if h1 ≤ h2, and if the list deprived from its head
is also sorted. In order to express that the result of sort is sorted, we can
prove the following lemma: sort correct : ∀ (T : Type) (Tord : Order T ) (l :
List T ), isSorted Tord (sort l). The problem with this specification is that it
does not say anything about the content of the output. The function sort could
just return the empty list [ ] all the time, it would still be possible to prove
this correctness lemma. Here, the problem is that the function is underspecified,
and it is therefore possible to write a senseless implementation, which is unfor-
tunately provably correct. Only a careful reader could realise that the lemma
sort correct forgets to mention that the input and output list should be in bijec-
tion, meaning that everything which was originally in the input list should still
be in the output, and that nothing else should have been added.

Another bug in the specification could have been to simply forget the third
constructor ConsSorted. But things more nasty can happen. Imagine that
this constructor would have been written with a typo, and that the condition
(h1 ≤ h2) would have been incorrectly written as (h1 ≤ h1). Any list would be
seen as “sorted”, just because of this single typo, and the algorithm could for
example return its input unchanged. One could object that when doing the proof
of correctness, we should realize that the proof is being done too easily, without
having to use the essential property that the output is being built such as any
element in the list is always lower or equal than its next element. The reality is
quite different because many effort are going in the direction of proof automa-
tion, which aims to let the machine automatically generate the proof for some
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kind of goals. For example, Coq has already a Ring prover [7] and many others
automations, and Idris has been recently equipped with a hierarchy of provers
for algebraics structures [6]. There are even extensions to languages, such as
Ltac [4] and Mtac [10] that aim to help the automation of tactics. The problem
is that the machine is never going to find a proof “too easy”, and will never
report that something seems weird with the specification given by the user.

Thus, if we want to trust the proven software, we’re now forced to believe
that there is adequacy between the formal specification and the informal require-
ments. A switch has occurred. We used to have to trust code, but we now have to
trust logical statements and predicates. But when the specification is too often
as complicated as the code, why should we blindly believe in it, when we’ve
first refused to blindly trust the code? The primary aim of this paper is to raise
awareness on the adequacy concern, and to see how heterogeneous approaches,
that mixes both proofs and tests, can help to go a step forward in the certi-
fication process, in the context of proof assistants based on type theory. More
precisely, we:

– Show some basic approaches to the problem of underspecification (Sect. 2)
– Present a new way to test the predicate in the proof assistant, by automatically

generating terms, and we completely automate these tests. We also show how
we can go a step forward by replacing these tests about the predicate by some
proofs (Sect. 3)

– We discuss possible directions for making dependently typed programming
languages more adapted to the testing of specifications (Sect. 4).

We use Idris, a dependently typed programming language, but all the ideas
that we present here can be applied to any proof assistant based on type theory.
The running example that we use in this paper can be found online at https://
github.com/FranckS/ProofsAndTests.

2 Naive and Usual Approaches to the Adequacy Problem

When confronted to this problem of adequacy between the intuitive notion
and the formalised one, a first possibility is to formalise the notion multiple
times, with different predicates, and to prove that they are equivalent. With our
example, that means that we need to find another formalisation isSorted′ of
being sorted, and to prove the following lemma. pred equiv : ∀ (T : Type) (l :
List T ), (isSorted l) ↔ (isSorted′ l). This approach aims at increasing the con-
fidence in our formal definitions by assuming that if we’ve managed to define
multiple times the same notion, then we’ve surely succeeded to define the notion
we wanted. The biggest problem with this approach is to be able to find some
alternative formalisations that are sufficiently different from the original one.
Obviously, if the new formalisations are too similar to the original one (and in
the worst case the new ones are just syntactical variants of the first one), then
we won’t gain any guarantee. The ideal would be to capture the same notion
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by using very different points of view, and we will show in Sect. 3 an original
approach for doing so.

In order to gain confidence in the formal specifications we write, another
traditional approach is to test the predicate on some values. That consists in
defining a few terms, usually by hand, for which we know if the predicate should
hold or not, and to prove that the predicate effectively holds when it should, and
that it does not when it should not. For example, with the predicate isSorted
defined above, we can prove that it holds on the list [3, 5, 7] that we know sorted.

isSorted_test1 : isSorted natIsOrdered [3, 5, 7]
isSorted_test1 =

let p1 : (3 <= 5) = tryDec (lowerEqDec natIsOrdered 3 5) in
let p2 : (5 <= 7) = tryDec (lowerEqDec natIsOrdered 5 7) in

ConsSorted 3 5 [7]
(ConsSorted 5 7 [] (SingletonIsSorted _ 7) p2) p1

This test is a test done by proof : we show that the predicate holds on some
specific value, here [3, 5, 7], by doing the proof. We can go a step forward by
removing the need of doing these specific proofs by hand, because in this case,
the predicate isSorted can be decided: there exists an algorithm that produces
a proof of (isSorted l) if appropriate, or a proof of (not (isSorted l)) otherwise.

decideIsSorted : (Tord : Order T) -> (l:List T)
-> Dec(isSorted Tord l)

decideIsSorted Tord [] = Yes (NilIsSorted Tord)
decideIsSorted Tord [x] = Yes (SingletonIsSorted Tord x)
decideIsSorted Tord (h1::(h2::t)) with (lowerEqDec Tord h1 h2)

| (Yes h1_lower_h2) with (decideIsSorted Tord (h2::t))
| (Yes h2_tail_sorted) = Yes

(ConsSorted h1 h2 t h2_tail_sorted h1_lower_h2)
| (No h2_tail_not_sorted) = No [...]

| (No h1_not_lower_h2) = No [...]

Now, in order to do tests by proof, we can simply run the decision procedure.

isSorted_test1’ : Dec (isSorted natIsOrdered [3,5,7])
isSorted_test1’ = decideIsSorted natIsOrdered [3,5,7]

And if we evaluate isSorted test1′, the system will answer Y es and a proof of
isSorted [3, 5, 7], which means that the predicate has passed this test. With this
technique, we can run semi-automatically a few tests on the predicate isSorted.
It is semi-automatic in the sense that we still have to define by hand some terms
that we know sorted or unsorted but we can let the machine produce the proof
that the predicate holds or not on these specific values. This is not too bad –and
this is in fact all of what is usually done, when it is actually done– but we would
like to have a stronger guarantee, and not only that the predicate will coincide
with our intuitive notion on a couple of tested terms.
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3 Testing the Predicate by Automatic Generation of Terms

The key idea that this paper wants to convey is that it is often easier to generate
examples of a notion than it is to precisely define it. We can operate an interesting
change of point of view by generating the set of terms that we precisely wanted
to describe with the predicate. With our example of sorted lists, that means that
we need to define the same notion of being sorted, but this time with a definition
example-based. Writing a function that produces all the sorted lists might be a
bit more difficult than just giving a few examples, but this complicated function
will have the main advantage of being so different from the predicate that if the
two notions agree, then we will have gain a great confidence on the predicate.
We decide to use coinduction and the type Stream (a coinductive version of lists,
potentially infinite) in order to generate –with what we call a generator– all the
sorted lists of size n.

generateSortedList : (T : Type) → (recEnu : RecEnum T ) → (Tord :
Order T ) → (n : Nat) → Stream (List T ).

To do so, the type T needs to be recursively enumerable, which means that
there must exist a computational map Nat → Maybe c with the condition
that this map is surjective, which means that any value of type c should be
hit at least once by the map : map is surjective : (y : c) → (x : Nat ∗
∗ (computableMap x = Just y)).

We want to check that this function and the predicate coincide. Since the
predicate isSorted is decidable with decideIsSorted, we can automatically check
whether the generated sorted lists of size n are automatically sorted (according
to isSorted) by running this decision procedure. But since there can be infinitely
many generated sorted lists of size n when n > 0, we will only check that the
generator and the predicate coincide on a finite observation1 of the resulting
stream. The key point is that this observation can be arbitrary big, and the
bigger it is, the better the guarantee is about isSorted.

We show how the observation is made on an example. Let T be a type that
only contains three constant values A, B and C. Since T is finite, it is therefore
obviously recursively enumerable. We define on it the strict order A < B < C.
Let’s automatically generate the first m sorted lists of T , of size n, by unfolding
m times the result of generateSortedList.

testGenerator : (m:Nat) -> (n:Nat) -> Maybe(Vect m (List T))
testGenerator m n =

let x = generateSortedList T TisRecEnu TisOrdered n
in unfold_n_times x m

We can ask for the first 8 sorted lists of size 4 by evaluating testGenerator 8 4:

Just [[A, A, A, A], [A, A, A, B], [A, A, A, C], [A, A, B, B],
[A, A, B, C], [A, A, C, C], [A, B, B, B], [A, B, B, C]]
: Maybe (Vect 8 (List T))

1 A finite observation of a stream, also called approximation at rank m of a stream,
is a vector of size m that has the same m first elements than the stream.
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Now, instead of simply generating the first m sorted lists, we run the decision
procedure on all of these m tests in order to know if the predicate and the
generator agree on this portion. The result will be a vector m booleans.

testSorted : (m:Nat) -> (n:Nat) -> Vect m Bool
testSorted m n =

let x = generateSortedList T TisRecEnu TisOrdered n in
let y = Smap (\l => let res = decideIsSorted TisOrdered l in

case res of
Yes _ => True
No _ => False) x in

unfold_n_times_with_padding y m True

And we can inspect the result of running the first 8 tests of size 4 by evaluating
testSorted 8 4.

[True, True, True, True, True, True, True, True] : Vect 8 Bool

When we want to test isSorted on a large number of tests, we might not
want to inspect manually the result of each test. We can write a function
testSorted result : (m : Nat) → (n : Nat) → Bool that calls testSorted m n
and does the boolean And on each element of the resulting vector. Now, we can
for example test the predicate on the first 50 sorted lists of size 9 by running
testSorted result 50 9 and if we do so we get the overall result True which
means that the predicate agrees with the generator on all these 50 tests.

However, if the predicate isSorted has been incorrectly written, then the
result of this test might inform us that there’s something wrong with the formal
specification. For example, if we’ve forgotten the third constructor consSorted
in the definition of isSorted, then the result of (testSorted 8 4) will be False,
which means that at least one of the produced list is not seen as sorted according
to isSorted, and we will therefore know that this predicate does not capture our
intuitive notion of sortedness.

In order to go a step forward, we can decide to replace the tests on the
predicate by proofs. Instead of testing the predicate on a finite subset of all
the generated sorted lists as we just did, we can try to prove that any of the
automatically generated sorted list is provably sorted according to isSorted.

generated_implies_pred_holds : {T:Type}
-> (recEnu:RecEnum T) -> (Tord : Order T) -> (n:Nat)
-> (All (generateSortedList T recEnu Tord n)

(\l => isSorted Tord l))

Proof. By induction on n. When n is zero, there is only one sorted list generated,
which is the empty list, and we know that the empty list is sorted thanks to the
constructor NilIsSorted. When n is some successor (S pn), we know by using
recursively the lemma on the smaller value pn that all sorted lists of size pn are
sorted according to isSorted. Since the Stream of all sorted lists of size (S pn)
has been made from the Stream of all sorted lists of size pn by adding to all of
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them –on the head position– an element lower or equal to their respective current
heads, we know that the property has been preserved at the higher rank. ��

This lemma has the advantage of not requiring the predicate to be decidable,
whereas this was needed when we automatically tested the predicate on a finite
observation. However, one could object that this lemma is itself built by using
a predicate, All, and that we can’t necessary trust blindly such a specification.
The answer is that no guarantee is perfect, and all we can do is to add some
guarantees, but there is necessarily always something to trust. Moreover, this
new kind of specifications and proofs –about the predicate itself– uses more
primitive components like streams and the predicate All, and these components
can be provided once and for all. If they are part of some standard library being
used intensively, there is very low risk that they do not capture the desired
semantic.

4 Conclusions and Future Work

In this paper we’ve presented a new way to test a predicate based on an auto-
matic generation of terms that should have the desired property. This adequacy
between the predicate and the generator helps to gain confidence in the pred-
icate. The technique presented on Sect. 3 was based on a finite observation of
the terms generated in endless amount, processed by the decision procedure. We
have also shown on an example how these tests can be automated.

We haven’t been able to find much work done in the direction of predicate
testing in the environment of proof assistants, but we strongly believe that this
aspect is crucial, as there is absolutely no point to prove the “correctness” of a
function relatively to a bad specification. One could however question why formal
certification is needed at all, if after going through all the effort of interactive
theorem proving we still have to test the specification itself, and also need tools
to support it. We believe that the process of formalisation helps to uncover things
that were missing or weakly specified in the informal requirements. For example,
the development of the formally verified compiler CompCert [8] has contributed
to brought to light many under-specified behaviours in the specification of the
C standard.

The machinery developed for the running example presented in this paper is
extremely specific and it is not reasonable to believe that this work should and
could be done for every formal specification. What it shows is that we really
need to explore how proof assistants themselves could help to gain confidence
about predicates and logical formulae. A possible direction could be to build
execution engines for formal specifications written in dependent type theories.
Such a system would take in input a predicate and would produce some of the
terms that make this predicate hold. The ideal would be to have a query system
where one could ask the system to try to look if some specific terms are captured
by the predicate. Since the problem of finding proof is undecidable in the general
case in higher-order logics (that’s also the case in first-order logic), such a system
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can’t be complete and entirely automatic, and therefore the user would have to
help the system at times.

Another possible direction is to equip proof assistants with many robust and
generic concepts (like being sorted) once and for all. That would save the user
from the error prone activity of writing many primitive logical properties. Equip-
ping proof assistants with many generic and useful concepts already available,
like bricks ready to be assembled, is another current challenge to make proofs
assistants really usable.
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7. Grégoire, B., Mahboubi, A.: Proving equalities in a commutative ring done
right in Coq. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603,
pp. 98–113. Springer, Heidelberg (2005). http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.61.3041

8. Krebbers, R., Leroy, X., Wiedijk, F.: Formal C semantics: CompCert and the C
standard. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 543–548.
Springer, Heidelberg (2014). https://hal.inria.fr/hal-00981212

9. Norell, U.: Dependently typed programming in Agda. In: Koopman, P., Plasmeijer,
R., Swierstra, D. (eds.) AFP 2008. LNCS, vol. 5832, pp. 230–266. Springer,
Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-04652-0 5

10. Ziliani, B., Dreyer, D., Krishnaswami, N.R., Nanevski, A., Vafeiadis, V.: Mtac: a
monad for typed tactic programming in Coq. In: ACM SIGPLAN International
Conference on Functional Programming, ICFP 2013, Boston, pp. 87–100, 25–27
September 2013. http://doi.acm.org/10.1145/2500365.2500579

http://dx.doi.org/10.1007/BFb0020001
http://dx.doi.org/10.1007/BFb0020001
http://dx.doi.org/10.1007/978-3-662-07964-5
http://journals.cambridge.org/article_S095679681300018X
http://dx.doi.org/10.1016/S1571-0661(04)80508-5
http://doi.acm.org/10.1145/359104.359106
http://doi.acm.org/10.1145/359104.359106
https://fs39.host.cs.st-andrews.ac.uk/publications/paper_Slama_Brady_JFP.pdf
https://fs39.host.cs.st-andrews.ac.uk/publications/paper_Slama_Brady_JFP.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.3041
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.3041
https://hal.inria.fr/hal-00981212
http://dx.doi.org/10.1007/978-3-642-04652-0_5
http://doi.acm.org/10.1145/2500365.2500579


Author Index

Botella, Bernard 130
Brucker, Achim D. 17

Caballero, Rafael 171
Cheney, James 37

Dubois, Catherine 57

Felbinger, Hermann 76
Fischer, Tomas 3

Gabmeyer, Sebastian 94
Genestier, Richard 57
Giorgetti, Alain 57, 130

Julliand, Jacques 130

Kosmatov, Nikolai 130

Liu, Shaoying 112

Makhlouf, Amani 183
Martin-Martin, Enrique 171
Momigliano, Alberto 37

Percebois, Christian 183
Pessina, Matteo 37
Petiot, Guillaume 130
Pill, Ingo 76
Podelski, Andreas 151

Reichl, Klaus 3
Riesco, Adrián 171

Schäf, Martin 151
Seidl, Martina 94
Slama, Franck 191
Strecker, Martin 183

Tamarit, Salvador 171
Tran, Hanh Nhi 183
Tummeltshammer, Peter 3

Wies, Thomas 151
Wolff, Burkhart 17
Wotawa, Franz 76


	Foreword
	Preface
	Organization
	Abstracts of Invited Contributions
	From Testing and Verification to Performance Analysis and Synthesis of Cyber-Physical Systems
	Using Formal Methods for Verification and Validation in Railway
	Contents
	Invited Contribution
	Using Formal Methods for Verification and Validation in Railway
	1 Introduction
	2 Railway Model
	3 Formal Modeling
	3.1 Data Model
	3.2 Functional and Safety Properties
	3.3 Liveness Properties

	4 Verification and Validation
	4.1 Verification
	4.2 Validation
	4.3 Implementation and Testing

	5 Conclusion
	References

	Regular Contributions
	Monadic Sequence Testing and Explicit Test-Refinements
	1 Introduction
	2 A Guided Tour on Automata Notions for Testing
	3 A Gentle Introduction to Sequence Testing Theory
	4 Monadic Sequence Testing Framework
	4.1 Higher-Order Logic and Isabelle/HOL
	4.2 Formal Presentations of Automata: Direct Approach
	4.3 Formal Presentations of Automata: The Monadic Approach
	4.4 Example: Bank

	5 A Formal Theory on Conformance Relations
	6 Conclusion and Future Work
	References

	Advances in Property-Based Testing for Prolog
	1 Introduction
	2 A Brief Tour of Check
	3 The Core Language
	4 Specification Checking
	4.1 Negation Elimination

	5 Case Studies
	5.1 Head-to-Head with PLT-Redex
	5.2 Nitpicking Security Type Systems

	6 Conclusions and Future Work
	References

	Tests and Proofs for Enumerative Combinatorics
	1 Introduction
	2 Testing Coq Conjectures
	2.1 Permutations in Coq
	2.2 Random Testing
	2.3 Bounded Exhaustive Testing

	3 Case Study of Rooted Maps
	3.1 Definitions and Formalization
	3.2 Map Construction Operations
	3.3 Validation and Proof
	3.4 Some Metrics

	4 Related Work
	5 Conclusion
	References

	Classifying Test Suite Effectiveness via Model Inference and ROBBDs
	1 Introduction
	2 Preliminaries
	3 Classifying Test Suite Effectiveness
	3.1 Learning a Decision Tree from a Test Suite
	3.2 Isolating a Total Variable Order from DT
	3.3 Reducing the Learned Decision Tree DT to an ROBDD
	3.4 Creating an ROBDD for the SUT's Specification

	4 Experimental Results
	5 Related Research
	6 Conclusion
	References

	Lightweight Symbolic Verification of Graph Transformation Systems with Off-the-Shelf Hardware Model Checkers
	1 Introduction
	2 Running Example
	3 Preliminaries
	4 Architecture
	5 Relational Semantics of Graph Transformation Systems
	6 Case Studies
	7 Conclusion
	References

	Testing-Based Formal Verification for Theorems and Its Application in Software Specification Verification
	1 Introduction
	2 Principle of TBFV
	3 Treatment of Quantifiers
	4 Test Set Generation
	4.1 Test Case Generation for Atomic Predicates
	4.2 Generation for Conjunctions

	5 Building Confidence
	6 Example
	7 Experiment
	7.1 Background
	7.2 Experiment Result
	7.3 Experience and Lessons

	8 Supporting Tool
	9 Related Work
	10 Conclusion
	References

	Your Proof Fails? Testing Helps to Find the Reason
	1 Introduction
	2  FRAMA-C Toolset and Illustrating Example
	3 Categories of Proof Failures and Counterexamples
	3.1 Non-compliance
	3.2 Subcontract Weakness and Prover Incapacity

	4 Diagnosis of Proof Failures Using Structural Testing
	5 Implementation and Experiments
	6 Related Work
	7 Conclusion and Future Work
	References

	Classifying Bugs with Interpolants
	1 Introduction
	2 Overview
	3 Preliminaries
	4 Classifying Error Traces Through Error Signatures
	4.1 From Error Messages to Proofs
	4.2 Error Signatures
	4.3 Classifying Error Messages

	5 Evaluation
	5.1 Quantitative Analysis
	5.2 Qualitative Analysis

	6 Related Work
	7 Conclusion
	References

	Tool Demonstration
	Debugging Meets Testing in Erlang
	1 Introduction
	2 A New General Debugging Schema
	3 When Declarative Debugging Met Testing
	4 When Testing Met Declarative Debugging
	5 Conclusions and Ongoing Work
	References

	Short Contributions
	Combining Dynamic and Static Analysis to Help Develop Correct Graph Transformations
	Abstract
	1 Introduction
	2 Small- \hbox{t}_{{\cal ALC}} Environment for Graph Transformations
	3 Assistance for Writing Small- \hbox{t}_{{\cal ALC}} Programs
	3.1 Dynamic Analysis for Detecting Defects in Transformation Code
	3.2 Static Analysis for Constructing Specifications from Code
	3.3 Combining Dynamic and Static Analysis

	4 Discussion
	5 Conclusion
	Acknowledgment
	References

	Automatic Predicate Testing in Formal Certification
	1 Introduction
	2 Naive and Usual Approaches to the Adequacy Problem
	3 .24em plus .1em minus .1emTesting the Predicate by Automatic Generation of Terms
	4 Conclusions and Future Work
	References

	Author Index



