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    Chapter 4   
 Plant Derived Polymers, Properties, 
Modifi cation & Applications                     

    Abstract     Current polymeric research has explored various applications in drug 
delivery and its related biomedical applications. Natural polymers especially those 
are derived from plant sources has evidenced for growing interest and attention in 
biomedical and pharmaceuticals sectors. Owing to their relative abundance, low 
cost, and biodegradable and eco-friendly profi les, plant derived polysaccharides are 
more preferred over the synthetic polymers. Present work demonstrates the drug 
delivery applications of plant based polysaccharides especially in nanotechnology 
sector. Outstanding features of these polysaccharides attributed to its unique 
physico-chemical properties. These plants polymer based nanomaterials used or 
investigated as release retardant in sustained or controlled release drug delivery 
systems. Nanomaterials of these plant based polysaccharide exhibit high water 
content, functionality, biocompatibility, tunable size from submicrons to tens of 
nanometers, large surface area for multivalent bioconjugation, and interior network 
for the incorporation of therapeutics. These unique properties present great potential 
for the utilization of polysaccharide-based microgels/nanogels in tissue biomedical 
implants, engineering, bionanotechnology, and particularly, drug delivery.  

  Keywords     Plant   •   Nanomaterials   •   Polysaccharides   •   Drug delivery   •   Biomedical   • 
  Natural polymer   •   Nanotechnology   •   Nanoparticles  

4.1           Introduction 

 Owing to their relative toxicity and stability issues under physiological environment 
drugs are rarely administered as such since most of them are always formulated into 
a desirable dosage form with the support of active excipients. Active excipients are 
those excipients that may mask the toxic or undesirable effect of drug without 
affecting its signifi cant biological activity. Additionally most of the recent formula-
tions tend to enhance biological activity by increasing its stability profi le especially 
under in vivo environment. According to International Pharmaceutical Excipients 
Council excipients are those substances, other than the active drug substances of 
fi nished dosage form, though some excipients also exert similar or different biologi-
cal activity then active drug and sometime impart synergistic or cumulative effect 
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to the active drug. Objectives of each and every excipients is to either aid the 
 processing of the drug delivery system through its manufacture, protect, bioavail-
ability, support or enhance stability, assist in product identifi cation, or patient 
acceptability, or enhance any other features of the general safety and effi ciency of 
the drug delivery system throughout storage or use [ 1 ]. Therefore excipients plays a 
major role in deciding the fi nal fate of drug under both in vitro and in vivo environ-
mental conditions. Currently a variety of excipients have been explored as binding, 
fl avoring, suspending, lubricating, gelling, sweetening and bulking agent among 
others [ 2 ]. They also play an important role in preserving the effi ciency, safety, and 
stability of active drug and guarantying that they deliver their assured benefi ts to the 
patients. One of the major advantages of excipients is that their utilization at opti-
mal concentration offers enhanced functionality, pharmaceutical manufacturers 
with cost-savings in drug development and help in drug formulations innovation. 
Since excipients are the largest components of any pharmaceutical formulation, 
therefore its essential to determine their stability and toxicological parameters from 
pre formulation studies. They can be obtained from natural or synthetic origin and 
in contrast with natural excipients, synthetic excipients are more utilized in pharma-
ceutical dosage forms [ 3 ]. Owing to the exclusive properties and advantages over 
naturally derived compounds, including a low sensitivity to various ingredients or 
moisture, resulting in more effi cient and effective pharmaceutical products, syn-
thetic and semi-synthetic products are preferred more [ 3 ]. Synthetic and semi-syn-
thetics excipients differentiated on the basis of their origin such as pure synthetic 
organic chemical called as synthetic compound and substance that is naturally 
derived but has been chemically modifi ed is called as semi-synthetic. 

 Polymeric materials obtained from lipids, carbohydrates and protein covers a 
broad class of excipients. Most of them are derived from natural polysaccharides 
and their derivatives. Polysaccharides of plant origin endow a group of polymers 
that are widely used in pharmaceutical formulations and play a signifi cant role in 
evaluating the underlying mechanism and rate of drug release from the dosage form. 
Currently variety of plant based polysaccharides have been explored as excipients 
in the formulation of solid, liquid and semisolid dosage forms in which they play 
distinct functions as fi lm formers, matrix formers or release modifi ers, disintegrates, 
binders, stabilizers, emulsifi ers, suspending agents, thickeners or viscosity enhancers 
and muco adhesives [ 4 ,  5 ]. Additionally plant based natural polymers can also be 
used in the implants, micro particles, fi lms, nanoparticles, beads, formulation and 
manufacture of solid monolithic matrix systems, inhalable and injectable systems as 
well as viscous liquid formulations [ 5 – 7 ]. These plant based polymers are not only 
considered over synthetic polymers because of its signifi cant features such as 
biodegradability, biocompatibility, non toxic and low cost and relative abundance 
compared to their and synthetic counter parts [ 8 ,  9 ], however also as natural 
resources are renewable and provide constant supply of raw material if cultivated or 
harvested in a sustainable manner [ 10 ]. The most popular plant based natural 
polymers that are used in pharmacy and other fi elds are chitosan, ispaghula, acacia, 
agar, guar gum, carrageenan, gelatin, shellac and gum karaya. These natural 
polymers are extensively used in pharmaceutical industry as adjuvant, emulsifying 
agent and adhesive in packaging; and also suitable for cosmetic and pharmaceutical 
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product development. Moreover various wide ranges of applications in drug delivery 
have been explored since as polymers, they endow exclusive properties which so far 
have not been exhibited by any other materials [ 11 ]. Natural polymers can be 
conjugated with small molecular weight proteins, polypeptides, lipids, surfactants, 
drugs, peptides, metals, nucleic acid, antibody, etc. They can be modifi ed in such a 
way so that large chains and functional groups can be conjugated with other low and 
high molecular-weight materials to attain new materials with a variety of 
physicochemical properties. To overcome their demerits, natural polymers are 
tailored by chemical modifi cation. Various physico-chemical modifi cation reports 
are also available on natural gums, mucilages and other polysaccharides suggesting 
their potential role in pharmaceutical industry especially in drug delivery [ 12 ,  13 ]. 
Owing to the rising concern towards natural polymeric materials as pharmaceutical 
excipients, it’s very diffi cult to document all the polymers at one platform, though 
we tried to cover most of the plant based polymers with its physic-chemical 
modifi cations and current applications in pharmaceutical industry.  

4.2     Sources of Plant Polymers 

 Diversity of natural polymers in nature confers variation in their structural and gell-
ing properties. As a matter of fact native polymers show variability and versatility, 
associated with their complex structures, not found in other classes of polymers. 
Plant and algal derived polysaccharides are the precursors for the diverse polymers 
which are widely used in drug delivery industry as advanced therapeutics. From a 
view of commercial utilization plant derived polymers are at most priority, however 
more researches are currently enduring on algal polysaccharides because of its com-
plex structure related gelling properties. Moreover mammalian and microbial poly-
saccharide is another foundation for the polymeric industries because of their unique 
properties or because they provide a cheaper and superior alternative to other materi-
als derived from plant, animal, or synthetic sources. Throughout the whole literature 
we found that usage of polysaccharides falls into three distinct areas: food applica-
tions, nonfood applications and biological purpose, whereas their growth and evalu-
ation requires considerable investment in time, money, and technology. Many of 
these native polysaccharides for which potential industrial applications have been 
claimed have not proved to be of commercial value. Thus latest tools are required for 
their better study. Further discoveries in polymeric sciences furnish the continuous 
supply of novel polysaccharide from novel origin which makes a trouble in covering 
all the polymers under one platform. Combining together, here our attempt addresses 
the nature’s broad class of polysaccharide from diverse origin with their current 
advancements and contribution in the fi eld of pharmaceutics. Exploration of exten-
sive class of plant based polysaccharides suitable for nanodelivery, chiefl y from 
natural sources with techniques to increase its development in pharmaceutics. Here 
in this chapter we have covered the following set of objectives to explore the diverse 
polysaccharides in pharmaceutical sciences.

4.2 Sources of Plant Polymers



122

•    To cover the utmost diversity of natural polysaccharides with aim to distinguish 
their commercial and medicinal utilization according to their structure related 
gelling properties.  

•   Broad view of nano applications of these polymers  
•   Latest equipments and knowledge used in the structural interpretation and gelling 

properties evaluation of diverse polysaccharides from different foundation.    

 Natural polysaccharides based polymers guarantee a new class of compounds for 
the development of a variety of drug delivery systems. They are now distinguished 
as valuable polymers for their signifi cant pharmaceutical properties. These 
renewable compounds are extremely advantageous as compared to synthetic 
polymers in properties like non-toxic, biocompatible and show a number of peculiar 
physico-chemical properties [ 14 ]. Polysaccharides have some common uniqueness 
which are signifi cant from a view of its applications; they have the ability to form 
multiple hydrogen bonds implying the local stiffness of the molecules, generally 
giving them the property of being water-soluble, but they also can be water-insoluble 
when they form intermolecular hydrogen bonds with each other to give crystals or 
large, high molecular weight, insoluble crystalline aggregates, granules, or fi bers; 
from this rigidity, they get a high thickener character [ 15 ]. Knowledge of solution 
properties is needed to understand the polysaccharides’ behavior in different 
applications. The main factors affecting the solution properties of polysaccharides 
are the molecular structures of the polysaccharides themselves, for example, the 
content of side galactose units and degree of substitution, molar mass, and 
temperature, pH, and ionic strength circumstances [ 16 ]. 

 Polysaccharides are present in all kind of organisms, mammals, plants and 
microorganisms (Table  4.1 ). Because of its abundance it’s very diffi cult to furnish 
absolute classifi cation of polysaccharides. Polysaccharide derived from plants 
polymers are nowadays of greatest interest. This interest is generated by the features 
of these natural sources, such as being able to produce biodegradable and 
biocompatible new products and as value-added materials [ 16 ]. Whereas algal 
galactans like agar, alginate and carrageenan are the major hydrocolloids used as 
texturing agents for food and non-food applications. Their extraordinary gelling and 
thickening properties make them more complex then plant polysaccharides [ 17 ,  18 ]. 
In this context mammalian and microbial polysaccharides also play a great 
contribution in pharmaceutical fi eld [ 18 – 24 ]. More focusing event in studding the 
polysaccharides is to establish a relationship between its structural and gelation 
properties. Various chemical, physical and biochemical tools are now available for 
their precise chemical and structural characterization.

   Recently advance techniques and equipments have provided a more precise view 
of the interaction between the structural and the gelling characteristics of these com-
plex polysaccharides. The quantitative estimation of all the constituent sugars, moe 
specifi cally the acid labile 3,6-anhydyrogalactose can be done by methanolysis and 
reductive acid hydrolysis procedures coupled to different chromatographic separa-
tions techniques. This advancement also presents the means of determining sugar 
linkages, substitutions and sequences using chemical, enzymatic and spectroscopic 

4 Plant Derived Polymers, Properties, Modifi cation & Applications



123

     Table 4.1    Classifi cation of polysaccharides   

 Plant 
polysaccharides 

 Cellulose and its derivatives, starch (cyclodextrins and amylose) and its 
derivatives, rosin, inulin, pectin, psyllium and arabinogalactans (larch) 
Other polysaccharides from different sources like aloe, cereal, psyllium, 
quince seed and oat brans also play some important role. 
  Gums and mucilages  
 Xanthan gum, gellan gum, konjac glucomannan, Xyloglucan, Guar gum 
(guar beans), Karaya gum (Sterculia gum), Gum tragacanth (Astragalus 
shrubs), Chicle gum (From Chicle tree), Konjac glucomannan (From 
Konjac plant), Gum Arabic (Acacia tree), Gum ghatti (sap of Anogeissus 
tree), Locust bean gum (carub tree), Cashew gum Mastic gum (mastic 
tree), Tamarind kernel gum, Hakeagibbosa gum, Irvingiagabonensis, 
Moringaoleifer gum, Kyaha gum, Okra, Grewia, mucilage gum, Mimosa 
scabrella, Mimosa pudica, Albizia gum, Hupu gum, Lepidium sativum, 
Gum Copal, Gum Damar, Bhara Gum, Moi gum, Cactus mucilage, 
Cordia gum, Hakea, Karaya gum, Mucuna gum, Satavari mucilage, 
Ocimum seed, Mucilage, Leucaena seed gum, Cassia tora, Cashew gum, 
Asario mucilage, Bavchi mucilage, Abelmoschus mucilage, 
galactomannans (locust bean, guar, fenugreek and tara gum, 
hexofuranosides) Gum kondagogu, gum olibanum, Sida acuta gum 
(SAG), Cashew-nut tree exudate gum, gum from Meryta sinclairii, peach 
tree gum, angico gum, Laguncularia racemosa, Durian seed gums, 
Lepidium perfoliatum, Flaxseed gum, Albizia lebbeck gum, seeds of 
Gleditsia sinensis Lam gum, Mesquite gum (Prosopis spp.), Albizia 
procera gum, Yanang (Tiliacora triandra) leaves, Mesona Blumes gum, 
tamarind seed gum, Salvia macrosiphon) seed gum, hsian-tsao leaf gum, 
fl amboyant (Delonix regia) seed gum, Boswellia and Commiphora gum, 
Angum gum, Gum karaya (Sterculia urens L.), Bael gum 

 Algal 
polysaccharides 

  Brown algae : mannitol, Alginates and fucose/fucans/fucoidans, 
sargassan, Laminaran, Polyuronan, alginic acid 
  Green algae : Ulvan Oligo-Ulvans 
  Red algae : Agar/Agarose (agarans), carrageenans, hypneans, porphyran, 
furcellaran, funoran, dulsan, and iridophycan, mannans, crystalline 
mannas and xylomannans, rhamnanns 
  Mirco alga : Spirulan, sacran 
 However certain green algae polysaccharides also play some important 
role. Cyanobacteria (cyanobacterial polysaccharide) of the genera 
Aphanocapsa, Cyanothece, Gloeothece, Synechocystis, Phormidium, 
Anabaena and Nostoc are able to produce sulfated polysaccharides 
containing uronic acids 

 Microbial 
polysaccharides 

  Bacterial polysaccharide : Bacterial cellulose, dextran, bacterial 
hyaluronic acid, xanthan, emulsan, β-d glucans, curdlan, alignate, gellan 
and pullulan, Scleroglucan and Schizophyllan. Bacterial Hyaluronic 
Acid, kefi ran, exopolysacharide (EPS). xanthan gum, dextran, welan 
gum, gellan gum, diutan gum and pullulan. 
  Fungal polysaccharides  (Chitin, Scleroglucan, Lentinan, Schizophyllan 
Krestin, galactofurinase) 
  Yeast polysaccharide : Zymosan, glucans, glycogen, mannan 

 Mammalian 
polysaccharides 

 Glycosaminoglycans (Hyaluronic acid or hyaluronan, Chondroitin 
sulphate), gelatin and heparin sulfate. Chitin and chitosan 

 Others  β 1,3-Glucans derived from a variety of natural sources (such as yeasts, 
grain, mushroom or seaweed), poly-gamma-glutamate (Aminoacid 
polymer) 

4.2 Sources of Plant Polymers
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methods. Developments in multi- and low-angle laser-light diffusion detectors cou-
pled to high performance size exclusion chromatography now render the determina-
tion of molecular weight and molecular weight distribution of these galactans more 
accessible. Moreover techniques like NMR, rheology, dissolution techniques, bioad-
hesion testing methods, DSC, desulfation methods, various carbohydrate determina-
tion methods, SEC, freeze-drying, scanning electron microscopy, colorimetry, 
turbidimetry, X-ray diffraction method, plane polarized microscopy¸ fi ngerprinting 
approaches, Chromatographic separations of the fragments by HPLC, HPAEC and/
or capillary electrophoresis and mass- spectrometric identifi cation methods using the 
recently developed ESI-MS-MS and/or MALDITOF-MS technologies. (high perfor-
mance size exclusion chromatography) coupled to multiple or low angle laser light 
scattering detectors, various other hydrolysis and chemical modifi cation methods, 
establish a more clear link between structure and gelation of polysaccharides. From 
the view of their applications and structural complexicity now a day’s polymers from 
algal sources are getting more magnitude of concern then from plants, mammalian 
and microbial resources. However here we have targeted certain gelling polysaccha-
rides of natural origin with a objective to study its broad pharmaceutical applications, 
to testify their effectiveness in curing various human disorders and how current 
research is employing different tools in studying and improving their native proper-
ties [ 18 – 32 ]. 

 Carbohydrate-containing structures are amongst the most complex, heteroge-
neous, and abundant biomolecules on earth. Diversity of polysaccharides has given 
germination to modern knowledge to understand its structure related gelling proper-
ties. It is essential to classify these compounds to distinguish their role and quality 
in the drug delivery systems. Throughout our literature survey we comes to conclu-
sion that plant derived polysaccharides has wide applications in pharmaceutics 
however algal or sulphated polysaccharides gives more advancement to the area of 
polymeric sciences [ 5 ,  33 ]. Whereas mammalian polysaccharides are considered as 
non toxic biomolecules having excellent mucoadhesive capacity and many impor-
tant applications in formulation of bioadhesive drug delivery systems. Besides its 
mucoadhesive properties, it was found that this biopolymer may enhance the 
absorption of drugs and proteins via mucosal tissues. Furthermore microbial poly-
saccharides are more economic and exclusive polymers provide an alternate source 
to the current polymers exploiting industries.  

4.3     Methods of Extractions 

4.3.1     Cold Extraction 

 5 g of dried algal material was dissolved in 250 mL of distilled water and kept in 
orbital shaking incubator for 12 h at 20–25 °C degree. To obtain polysaccharide 
fraction the insoluble fraction was removed by centrifugation (15,000 rpm at 4 °C). 
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The supernatant was separated and treated with ethanol (1:3 v/v). Ethanol precipi-
tated fraction was again dissolved in distilled water and dialyzed. The obtained 
dialyzed sample was lyophilized weighed (0.38 g) and coded as EC [ 34 ].  

4.3.2     Hot Extraction [Mild Acidic (EHA), Alkaline (EHB) 
and Radical Hydrolysis (EHR)] 

 5 g of dried algal material was extracted with HCl (0.1 M) and maintained at 80 °C 
with constant mechanical stirring for different periods of time. The acid solublized 
fraction was separated by centrifugation (15,000 rpm at 4 °C) for 15 min. Similar 
procedure was again repeated for alkaline hydrolysis using NaBH 4  (0.1 M). Both 
fractions were lyophilized and their yield was denoted as EHA and EHB. For all 
the procedures the reaction time between sample and hydrolyzing agent was lim-
ited to 2 h.

  
%yield of POR

Dry weight of Porphyran g

Dry weight of Seaweed g
=

( )
( )

´1000
   

4.3.3       Radical Hydrolysis (EHR) 

 Radical hydrolysis was conducted by using ascorbate (0.1 M) and H 2 O 2  (0.1 M) at 
25 °C for 5 g of dried algal sample and the lyophilized product was denoted as HER 
[ 35 – 37 ]. The percentage yield was calculated on the basis of following equation:

  
%yield of POR

Dry weight of Porphyran g

Dry weight of Seaweed g
=

( )
( )

´1000
   

4.3.4       Microwave Assisted Extraction (EM) 

 Domestic Microwave oven (CATA 2R, 140–700 W, Catalyst System, Pune, India) 
equipped with closed vessel (100 mL), power sensor, temperature sensor and tem-
perature controller was used at conditions specifi ed in the Table  4.1 . 5 g of distilled 
water dissolved algal sample was introduced in to the closed vessel followed by open-
ing of the vessel and cooling in an ice bath shortly to relieve the pressure. Subsequent 
procedures were similar to those for hot extraction of polysaccharides [ 29 ].  

4.3 Methods of Extractions
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4.3.5     Ultrasonic Extraction (EU) 

 5 g of algal sample was dissolved in distilled water and placed in a 250 mL beaker. 
The beaker and its contents were placed in to 42 kHz bath (Branson Ultrasonic 
cleaning bath unit, model 1510 DTH) and extracted under specifi ed conditions 
(Table  4.1 ). After this, the beaker was taken out of the sonication bath and subsequent 
steps were followed as mentioned in Hot extraction for polysaccharides [ 38 ].  

4.3.6     Enzymatic Hydrolysis (EE) 

 5 g of algal sample was treated with different percent of weighed amount of  cellu-
lase  in conditions as specifi ed in Table  4.1 . After the addition of distilled water pH 
was adjusted (4.5). Rest procedure was followed in a similar manner as followed in 
hot extraction method [ 39 ].   

4.4     Chemical Composition Analysis 

 Chemical composition of polysaccharides can be determined by these methods. 
Total sugar content, galactose and 3, 6 anhydrogalactose (AGR) contents were 
estimated by phenol sulfate [ 40 ,  41 ] resorcinol methods. Furthermore sulfur and 
protein content were determined by toluidine [ 42 ,  43 ] methods [ 40 – 43 ]. The organic 
functional groups of the polysaccharides preparations can be identifi ed by using an 
FTIR spectrophotometer via the KBr 141 pressed-disc method.  

4.5     Physical Properties 

4.5.1     Determination of Gelling Strength (GS) 

 5 % polysaccharide solution can be prepared in an autoclave at 100 °C. Gel formation 
took place in dark place at 25 °C after which the gel was kept at 10 °C overnight in 
a refrigerator [ 44 ]. Strength of the gel was measured at 20 °C using a Model TA-XT2 
Texture analyser (Stable Micro System, Surrey, UK).  

4.5.2     Determination of Gelling Temperature (GT) and Melting 
Temperature (MT) 

 The gelling and melting temperatures were measured according the method 
described by Craigie and Leigh [ 45 ]. For measurement of gelling temperature, 
10 mL solution of agar was allowed to cool gradually and a thermometer was 
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emerged in the sol. The temperature at which the thermometer was fi xed to the gel 
was noted. For melting temperature the gel was heated on a water bath and one iron 
ball (ca. 1 g of weight) was placed on the surface of the gel. The temperature at 
which the ball touched the bottom of the tube was noted.  

4.5.3     Viscosity Measurement (VS) 

 Apparent Viscosity of polysaccharide can be measured by Brookfi eld Viscometer 
(Synchrolectric Viscometer, Stoughton, MASS 02072). Spindle No. 1 at 60 rpm was 
used for measuring apparent viscosities of agar samples (5 % in deionized water) at 
60 °C.  

4.5.4     Molecular Mass Determination (MM) 

 Owing to structural similarity with many polysaccharides, Agarose of known MW 
was taken as standard. 5 % polysaccharide solution of all fractions (test samples) 
and agarose (standard) was prepared in double distilled water. Flow time of the all 
solutions (test and standard) and solvent (double distilled water) was determined by 
using Cannon-Ubbeholde viscometer which gives the intrinsic viscosities [η] values 
of all preparation. Viscosity average MWs were calculated from the intrinsic 
viscosity using the Mark–Houwink equation for agarose, [η] = 0.07 M 0.72 where 
[η] is mL/g [ 46 ,  47 ].   

4.6     Physical-Chemical Modifi cation of Plant Based 
Natural Polymers (PBNPS) 

 In contrast with synthetic polymers plant based natural polymers have their dominant 
features that can be physically or chemically modifi ed for improvement in their 
respective utilization and applications. Owing to the diverse class of natural 
polymers it’s very diffi cult to cover each and every polymer therefore here in this 
section we are more emphasizing on starch and cellulose based modifi cation as an 
ideal tool to endow the strategic platform for other PBNPs. PBNPs can also be 
modifi ed by grafting or conjugation on either linear or branched backbone or on its 
active functional groups. This type of tailoring can be achieved by surface 
modifi cation, polymer-peptide conjugation, polymer-DNA conjugation, polymer- 
siRNA conjugation, conjugation of polymer-surfactant, polymer-antibody, polymer- 
gene and polymer-drug. These conjugates can be formulated in to nano or micro 
forms for their delivery at suitable site. 

4.6 Physical-Chemical Modifi cation of Plant Based Natural Polymers (PBNPS)
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4.6.1     Chemical Modifi cations of Plant Based Natural 
Polymers (PBNPS) 

 Chemical modifi cation of plant based natural polymer involves the polymer mole-
cules in its native form. Modifi cation is generally achieved through derivatization 
such as esterifi cation, etherifi cation and oxidation, crosslinking, cationization and 
grafting. Nevertheless, there has been shortage of new methodologies in chemical 
modifi cations since this type of modifi cation endows issues concerning consumers 
and the environment. Currently polymeric science is adopting combinational treat-
ment using various types of chemical treatments to create new kinds of modifi ca-
tions. In a similar way, chemical methods have been combined with physical 
modifi cations such as microwave, radiation and extrusion to produce modifi ed poly-
mer with specifi c functional properties. Overall merits of these modifi cations were to 
reduce the time of modifi cation and encourage production. Owing to the presence of 
large amount of hydroxyl groups at the surface of PBNPs different chemical modifi -
cations have been attempted, including etherifi cation, esterifi cation, oxidation, 
silylation, polymer grafting, etc. noncovalent Surface modifi cation by adsorbing sur-
factants and polymer coating has also been reported. Chemical modifi cations of plant 
based natural polymers (PBNPs) have been mainly conducted to alter their surface 
energy characteristics which can further improve compatibility, particularly when 
employed in conjunction with hydrophobic or nonpolar matrices in nanocomposites. 
Additionally chemical modifi cations establish stable negative or positive electro-
static charges on the surface of PBNPs. This introduction of charge provides better 
dispersion. Conducting this chemical modifi cation or functionalization in a safe 
mode i.e. only alter the surface characteristics of PBNPs by maintaining the unique 
morphology. This step may avoid any polymorphic conversion and to preserve the 
integrity of the crystal. Various polymers especially polysaccharides have been 
chemically modifi ed such as Kaur et al. [ 48 ] reported various surface modifi cations 
of starch e.g. microwave radiation with lipase as catalyst [ 49 ,  50 ], hydrophobic reac-
tion of starch and alkenyl ketene dimer [ 51 ], esterifi cation of starch nanoparticles 
with lipase as a catalyst [ 52 ], dual modifi ed crosslink-phosphorylated [ 53 ], cross-
linking coupled with osmotic pressure [ 54 ], starch-based hydrogels prepared by UV 
photopolymerization [ 55 ], starch esterifi ed with ferulic acid [ 56 ], microwave-assisted 
synthesis of starch maleate and starch succinates [ 57 ,  58 ], microwave and ultrasound 
irradiation [ 59 ], hydroxypropylation and enzymatic hydrolysis [ 60 ], Ozone-oxidised 
starch [ 61 – 63 ]. 

4.6.1.1     Noncovalent Surface Chemical Modifi cations of Plant Based 
Natural Polymers (PBNPS) 

 Noncovalent surface chemical modifi cations of plant based natural polymers 
(PBNPs) are usually achieved by surface adsorption of surfactants. This was initially 
studied by Heux et al. [ 64 ,  65 ] who employed surfactant consisting of the 
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mono- and di-esters of phosphoric acid bearing alkylphenol tails and the obtained 
surfactant-coated CNs dispersed very well in nonpolar solvents [ 64 ]. it was further 
observed that surfactant molecules formed a thin layer of about 15 Å at the surface 
of the CNs [ 66 ]. Later on various surface modifi er (ionic and non-ionic) were used 
to accelerate the characteristics of whole CNs based formulation [ 67 ]. Recently 
saccharide-based amphiphilic block copolymers were used to induce the surface 
modifi cation on CNs, which resulted in to the excellent dispersion abilities in 
nonpolar solvents [ 68 ].  

4.6.1.2     Tempo-Mediated Oxidation 

 At present, the more frequently used pre-treatment is TEMPOmediated oxidation. 
Certainly, the TEMPO-oxidized cellulose nanofi bers, confers a complete class of 
nanocellulose valuable of consideration, in addition to PBNPs and MPBPs. This 
oxidation based method is the most reliable method for altering the surface 
modifi cation of natural/raw cellulose, in which functional groups such as carboxylate 
and aldehyde can be incorporated into solid native cellulose under suitable conditions 
[ 69 – 74 ]. Additionally in contrast with energy consumption of repeated cycles of a 
high pressure homogenizer (700–1400 MJ/kg), this oxidation based pre-treatment 
considerably decline the consumption to values less than 7 MJ/kg [ 58 ,  60 ]. 

 For chemical modifi cation of plant based natural polymers (PBNPs) 
(2,2,6,6-Tetramethylpiperidine-1-oxyl)-mediated (or TEMPO-mediated) oxidation 
employed to convert the hydroxylmethyl groups present on their surface to their 
carboxylic form. Advantage of this reaction is that the oxidation reaction is highly 
selective for primary hydroxyl groups, thus the whole reaction is “green” and easy 
to execute. This reaction encompass the application of stable nitroxyl radical, the 
2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) in the presence of NaBr and NaOCl. 
This TEMPO-Mediated Oxidation was initially explored by De Nooy et al. In his 
study he observed that only the hydroxymethyl groups of polysaccharides were 
oxidized, whereas the secondary hydroxyls remained unaffected. The whole method 
is based on of pre-treatment consisting cellulose fi bers oxidation via the addition of 
NaClO to aqueous cellulose suspensions in the presence of 2,2,6,6-tetramethyl-1- 
piperidinyloxy (TEMPO) and NaBr (at pH 10–11 at room temperature). During this 
chemical reaction primary hydroxyl groups (C6) selectively transformed to 
carboxylate groups by means of the C6 aldehyde groups. Additionally only the 
NaOH and NaClO are consumed [ 73 ]. Owing to the presence of the repulsive forces 
among the ionized carboxylates (which overpower the hydrogen bonds by holding 
them together) nanofi brils within the fi bers separate from each other [ 75 ]. Amount 
of NaClO supplemented in reaction determines number of carboxylate groups 
formed on the surface of the MPBPs i.e. more carboxylate groups when more 
amount of NaClO is added. Similarly this supplementation of NaClO allows the 
oxidation for extended time [ 76 ]. It was reported that enhancing the addition 
concentration of NaClO (3.8–5.0 mmol/g) increases the carboxylate content from 
0.2 to 0.3 mmol/g. Additionally this reaction extends the oxidation time period from 
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40–45 min to 115–130 min. TEMPO based oxidation reaction is applied over vari-
ous sources such as cotton linters, tunicate, wood pulp, ramie, bacterial cellulose 
and even spruce holocellulose [ 74 ,  77 ]. These researchers have described the 
effectiveness of this reaction on the basis of their oxidation effi ciency of their pre- 
treatment [ 77 ] (Table  4.2 ).

   One more TEMPO-mediated oxidation based methodology reported by Isogai 
et al., Isogai et al., and Saito et al. [ 78 – 80 ] based on the same principle apart from 
pH 7, NaClO instead and NaBr, and replacement of the primary oxidant NaClO 
with NaClO 2 . In one review Isogai et al. [ 78 ,  79 ] already discussed the dissimilarity 
among these two processes. During fi rst process oxidation of C 6 -primary hydroxyls 
of wood cellulose achieved by TEMPO/NaBr/NaClO system at pH 10 and at room 
temperature, however very little amount of aldehyde groups (<0.08 mmol/g) are 
present in the oxidized cellulose [ 78 ,  79 ]. On contrary no aldehyde groups is 
obtained by the TEMPO/NaClO/NaClO 2  system at pH 5–7, from oxidized wood 
cellulose with a higher molecular weight. Moreover concentration of carboxylate 
was found to be 0.8 mmol/g, and the optimum reaction time and temperature 
required are higher [ 78 ,  79 ]. Recently TEMPO electro-mediated reaction discovered 
by Isogai et al. [ 78 ,  79 ] was explored as an alternative method to oxidize the 
C6-primary hydroxyls of cellulose. Electro-mediated oxidation with TEMPO at 
pH 10, and 4-acetamido-TEMPO at pH 6.8 in a buffer solution were recently applied 
to softwood bleached kraft pulp explored as new sustainable method to yield 
MPBPs. Such MPBPs must be having carboxylate and aldehyde groups on its 
surface so that and it could well replace the fi rst two systems, however longer 
oxidation times are required, resulting in to high yield more than 80 % and preserves 
the main characteristics of TEMPO-oxidized MFC produced from bleached 
softwood kraft pulp [ 78 ,  79 ]. This procedure of pre-treatment with TEMPO 
oxidation is followed by mechanical treatment, which can be achieved using a 
cooking blender or an ultra turax system. To remove the partial fi brillated MPBPs, 
generally centrifugation is employed separation on a laboratory scale. However now 
day’s sonication is employed inspite of blending in order to separate the TEMPO 
oxidized pulp and it was observed that the sonication time infl uences the yield of 
nanofi brils [ 75 ,  81 ]. TEM characterization confi rmed the transformation of 97.5 % 
of the fi ber suspension into MPBPs with a width of 3–5 nm. On contrary Li and 
Renneckar [ 82 ], measured an average thickness value of 1.38 nm and a length of 

   Table 4.2    Effectiveness of TEMPO based oxidation reaction in terms of oxidation effi ciency of 
their pre-treatment   

 Reaction  Raw material 
 Oxidation 
effi ciency  Reference 

 TEMPO based oxidation reaction using 
NaClO at high concentration 

 Sulfi te pulp  70–95 %  [ 77 ] 

 Cotton linters  62 % 
 Ramie  85 % 
 Spruce 
holocellulose 

 96 % 
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580 nm with the help of AFM after 30 min of sonication. Various researchers estab-
lished apparent relationship between sonication time and its signifi cant impact on 
the nanofi bril dimensions. It has been reported that with longer sonication time 
thickness decreased to 0.74 nm and the length to 260 nm. 

 It was observed that when this TEMPO-mediated oxidation was employed for 
oxidation of CNs only half of the accessible hydroxymethyl groups are available to 
react, whereas the other half is buried within the crystalline particle. Araki et al. [ 83 ] 
demonstrated CNs maintained their initial morphological integrity and formed a 
homogeneous suspension when dispersed in water after the TEMPOmediated 
oxidation. This is due to the presence of the newly installed carboxyl groups that 
imparted negative charges at the CN surface and thus induced electrostatic 
stabilization. Later on similar observations were reported by Montanari et al. [ 71 ]. 
In his study he has observed that excessive TEMPO-mediated oxidation decreases 
crystal size which results in to the partial delamination of cellulose chains. Similarly 
various authors have investigated the degrees of oxidation that can be examined by 
using specifi c amounts of the primary oxidizing agent (NaOCl). Such an investigation 
was based on supramolecular structure, morphology, and crystallographic 
parameters of the CNs. It was observed that many TEMPO-oxidized or carboxylated 
natural polymers such as CN suspensions when dispersed in water give display 
birefringence patterns and do not show fl occulation or sedimentation. This occurs 
due to the polyanionic character carried by the negative charges on the CNs surfaces.  

4.6.1.3     Cationization of Plant Based Natural Polymers 

 During this process positive charges are introduced on the surface of plant based 
natural polymers (PBNPs) e.g. weak or strong ammonium containing groups, such 
as epoxypropyltrimethylammonium chloride can be grafted onto the plant based 
natural polymers (PBNPs) surfaces [ 84 ]. This can be achieved by the nucleophilic 
addition of the alkali-activated cellulose hydroxyl groups to the epoxy moiety of 
epoxypropyltrimethylammonium chloride. Ultimately aforementioned step resulted 
in stable aqueous suspensions of PBNPs such as CNs with unexpected thixotropic 
gelling properties. Shear birefringence was reported in some reports while no liquid 
crystalline chiral nematic phase separation was observed which may lead to high 
viscosity of the suspension.  

4.6.1.4     Esterifi cation, Silylation and Other Surface Chemical 
Modifi cations of Plant Based Natural Polymers 

 Sassi and Chanzy have reported homogeneous and heterogeneous acetylation of 
plant based natural polymers such as CNs. In this study they have induced 
homogeneous and heterogeneous acetylation by using acetic anhydride in acetic 
acid [ 85 ]. After TEM and X-ray diffraction analysis of acetylated samples, only a 
limited reduction in CN length was observed. This was happened because of limited 
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reduction in CN length was observed, which was further explained by nonswelling 
mechanism which only affects the cellulose chains localized at the crystal surface. 
The partially acetylated molecules instantaneously partition into the acetylating 
medium as they adequately solublize during homogeneous acetylation whereas the 
cellulose acetate stay insoluble due to the presence of unreacted cellulose chains in 
surrounded the crystalline core. In some cases of natural plant based polymers 
concurrent occurrence of hydrolysis and acetylation has been also reported e.g. as 
found in the case of cellulose. Application of some prominent simultaneous 
esterifi cation/hydrolysis based reactions were also explored in the case Fischer 
esterifi cation of amorphous cellulose chains as a viable one-pot reaction methodology 
that allows isolation of acetylated CNs in a single-step process [ 86 ,  87 ]. Yuan et al. 
[ 88 ] has recently explored the environmentally friendly CN surface acetylation 
which involves low reagent consumption and simple-to-apply procedure. Another 
reaction which is recently employed on cellulose matrix was based on alkenyl 
succinic anhydride (ASA), development of ASA-CA emulsion, to yield acylated 
CNs with high hydrophobic features. Highly substituted CN esters were recently 
developed by Berlioz et al. via highly effi cient method (fatty acid chains based on 
dried CNs via a gas-phase process) for an almost complete surface esterifi cation of 
CNs proceeded from the surface of the substrate to the crystal core. This method 
yielded fully reacted (esterifi ed) CN without change in its native morphological 
features. Reaction of natural plant based polymers with organic fatty acid chlorides 
[having different lengths of the aliphatic chain (C12 to C18)], was also reported 
which resulted in high density of C18 fatty acid, advantageous enough for further 
grafting on such lengthy aliphatic chain (C12 to C18) [ 89 ]. Silylated based PBNPs 
modifi cation was observed in case of cellulose whiskers. This has been resulted 
from acid hydrolysis of tunicate which have been partially silylated by a series of 
alkyldimethylchlorosilanes. This reaction yielded a product with the carbon 
backbone of the alkyl moieties ranging from a short carbon length to longer lengths 
[ 90 ]. Degree of silylation (DOS) plays an important role in deciding solubility of 
cellulose and its dispersion in solvent e.g. DOS between 0.6 and 1, encourages 
dispersion in solvents of low polarity leading to stable suspensions with preserved 
morphological integrity whereas at time when DOS >1 leads to deeper silylation 
(chains in the core of the crystals became silylated) which can further resulted in to 
disintegration of the crystals and ultimately the loss of original morphology 
characteristics. However some highly silylated CN was investigated by Roman and 
Winter as nanocomposites [ 91 ]. Lastly, it has been observed that  N -octadecyl 
isocyanate based modifi cation assist in improving the stiffness and ductility of the 
resultant nanocomposites [ 92 ].  

4.6.1.5     Carboxymethylation and Acetylation 

 Carboxymethylation is another chemical pre-treatment which increases the anionic 
charges in the formation of carboxyl groups on the surface of the MPBPs. In 
previous work carboxymethylated MPBPs was compared its dimensions with 
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non- pretreated MPBPs [ 93 ] and it was observed that carboxymethylation treatment 
makes the fi brils highly charged and easier to liberate. Moreover it was observed 
that net specifi c energy consumption required after carboxymethylation was 2.2 
MWh/t per pass through a microfl uidizer, whereas 5.5 MWh/t per pass was required 
to obtain MPBPs without pre-treatment [ 94 ]. Zimmermann’s research group 
developed acetylation process in which grafting of acetyl moieties intend to reduce 
the hydrophilicity of MPBPs and increase the chemical affi nity between MPBPs 
and a nonpolar solvent. For improving compatibility with the PLA matrix Tingaut 
et al. [ 95 ] developed PLA/MFC biocomposites with acetylated MPBPs. Further 
they observed that concentration of an acetyl content above 4.5 % encourages 
signifi cant alteration in the crystalline structure of MPBPs. In this study acetylation 
was done in the inner crystalline regions of the MPBPs and prevents hornifi cation 
upon drying. Modifi cation with acetyl groups reduces the chances of hydrogen 
bonding between MPBPs and therefore facilitates improved dispersibility in an 
apolar polymeric matrix. It was later discovered that MPBPs especially MFC can be 
stored in a dry form which allow its possible industrial-scale production.  

4.6.1.6     Polymer Grafting of Plant Based Natural Polymers 

 Two main approaches, specifi cally, the “grafting-onto” and “grafting-from” has 
been carried on the surface of plant based natural polymers during polymer grafting. 
First strategy involve the grafting on to the open ends hydroxyl groups at the PBNPs 
surface of presynthesized polymer chains by using a coupling agent. In second 
strategy “grafting-from”  in situ  surface-initiated polymerization (from immobilized 
initiators on the substrate) has been carried out to form the polymeric chains. First 
approach was initially utilized by Ljungberg et al. [ 96 ]. In his work he has grafted 
maleated polypropylene onto the surface of tunicate-extracted CNs, which was 
resulted in to nanocrystals with good compatibility and high adhesion when 
dispersed in atactic polypropylene. Grafting of amine terminated polymers on the 
surface of TEMPO-mediated oxidized was investigated by Araki et al. [ 83 ] and 
Vignon et al. [ 97 ] Similarly grafting of DNA oligomers on the surface of CNs was 
studied by Mangalam et al. [ 98 ] All of these researchers reported high grafting 
density that was enough for grafted chains to crystallize at the surface of CNs. 
Cocrystallization phenomenon was fi rst reported by Cao et al. [ 99 ] to yield grafted 
CNs polymer. This research has further promoted cocrystallizations of the free 
chains of the respective polymer matrices during CN-based nanocomposite pro-
cessing. Additionally this phenomenon of cocrystallization signifi cantly enhances 
the interfacial adhesion by inducing the formation of a co-continuous phase 
between the matrix and fi ller, resulted in to the highly improved mechanical 
strength of the resulting nanocomposites. Second approach known as “grafting 
from” was fi rst reported by Habibi et al. [ 100 ], who has utilized stannous octoate 
(Sn(Oct)2) as a grafting and polymerization agent to graft polycaprolactone onto 
the surface of CNs via ring-opening polymerization. Pranger et al. [ 101 ] studied  in 
situ  polymerization of furfuryl alcohol from the surface of cellulose whiskers. 
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Later on various researchers produced thermoresponsive substrates by the polymer-
ization of vinyl monomers from the surface of CNs [ 102 ].   

4.6.2     Procedure for the Development of Microfi brillated Plant 
Based Polymers (MPBPS) by Physical Modifi cation 

 MPBPs is currently fabricated from a number of different natural sources e.g. wood, 
bleached kraft pulp (starting material for MPBPs production) [ 73 ,  76 ,  94 ,  103 – 105 ], 
and bleached sulfi te pulp [ 106 ,  107 ] (Figs.  4.1  and  4.2 ). Still various sources are 
needed to explore to fulfi ll the demand for such raw materials offering environmental 
benefi ts owing to their renewable nature and their low energy consumption in pro-
duction [ 108 ]. Considering cellulose, Eucalyptus sulfi te wood pulp, Bleached Luffa 
cylindrica fi bers, Bleached sulfi te pulp, Bleached sisal pulp, Sisal fi bers (Agave 
sisalana), Elemental chlorine free bleached hardwood kraft pulp from Birch, Mixture 
of pine and spruce pulps ( Betula pendula ), Bleached and unbleached kraft hardwood 
pulps, Softwood sulfi te pulp of spruce ( Picea abies ) and white fi r ( Abies alba ), 
Wheat straw ( Triticum sp .) Refi ned fi brous wheat straw (Vitacel, Rettenmaier & 
Sohne GmbH & Co.KG), Refi ned beech wood (Fagus sylvatica) (Mikro-Technik 
GmbH & Co. KG), Refi ned fi brous beech wood pulp (Arbocel, Rettenmaier & Sohne 
GmbH & Co. KG), Bleached sulfi te softwood (Domsjo ECO Bright), Elemental 
chlorine free bleached hardwood kraft pulp from Birch ( Betula pendula ), Domsjo 
dissolving plus (Sweden), Softwood dissolving pulp (Domsjo), Wood pulp, Softwood 
dissolving pulp (Domsjo), Softwood dissolving pulp (Domsjo), Bleached kraft bam-
boo ( P. pubescens ), Domsjo dissolving plus (Sweden), Bleached sulfi te pulp, Sisal 
fi bers ( Agave sisalana ), are the main sources as reported by Lavoine et al. [ 109 ]. 
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  Fig. 4.1    Schematic representation of production of microfi brillated natural polymers       
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Irrespective of the source, natural polymers are manufactured from a pulp suspen-
sion mainly using a mechanical treatment. There are several types of equipments 
available to defi brillate the pulp and obtain nanopolymer. Various physical methods 
have been applied to transform the raw cellulose in micrometer size in to suspension 
or nano crystal form in nanometer size. Various physical methods that can be applied 
for this purpose are mentioned below.

4.6.2.1        Mechanical Treatments 

   Homogenizer and Microfl uidizer 

 With the help of Gaulin homogenizer, Turbak et al. [ 110 ], for the fi rst time applied 
mechanical treatment produce to manufacture all kinds of microfi brillated cellulose 
[ 93 ,  103 ,  111 – 115 ]. During this type of modifi cation slurry of selected natural poly-
mer is forced at elevated pressure and fed via a spring-loaded valve assembly. Fibers 

  Fig. 4.2    Illustration demonstrating microfi brillated plant based polymers and their arrangement in 
plants       
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are subjected to a huge pressure dive under elevated shearing forces. This was car-
ried out by allowing the valve to open and close in quick progression. Combined 
force aggravates high degree of fi brillation of the cellulose fi bers [ 115 ]. Equipment, 
Gaulin homogenizer most frequently used the microfl uidizer since it makes it pos-
sible to obtain more uniformly sized fi bers [ 111 ]. This equipment function when the 
masses of wood pulp passes through thin z-shaped chambers under high pressure 
[ 116 ] which results in the formation of very thin cellulose nanofi bers. During this 
mechanical process chambers of different sizes are employed to increase the degree 
of fi brillation. This equipment used various time supplementation of raw material 
passage from chamber which consequently increases the number of passes. This fac-
tor limits the likely scaling-up of production and consequently creates negative envi-
ronmental force with high energy consumption.  

   Grinding Process 

 Transformation of raw micro natural polymer in to fi brillated polymer can also be 
achieved by grinding process. There are various equipments used for grinding raw 
plant based polymer. Using equipment known as grinder, Masukoc was the fi rst 
researcher to build and sell apparatus. Grinder generates shearing forces that help in 
breakdown of the cell wall structure. During this process raw material in form of 
pulp is passed through a static grind stone and a rotating grind stone revolving at 
about 1500 rpm. Grinder promotes separation of microfi brill by breakdown the cell 
wall which contains nanofi bers in a multilayer structure. This step encourages 
individualized nanofi bers from the pulp when material passes from the grinder after 
multiple attempts. It has been observed that multiple passes of raw fi bers from  Pinus 
radiate  infl uence MPBPs morphology. After sequential one to three passes, 
maximum raw material turned into sub-micron-size and nano-sized fi bers, whereas 
after fi ve passes, most of the fi bers became nanosized fi bers. No signifi cant changes 
were observed in the fi ber morphology after passing raw material from grinder at 
higher number thus it was concluded after that fi ve passes through the grinder the 
fi brillation of pulp fi bers was roughly complete. In contrast with homogenization 
process, this grinding require only few passes to obtain plant based fi brillated 
natural polymer in micro or nano range. No. of passing usually determine the size 
or dimension of cellulose fi ber. Nevertheless pulp degradation caused by grinding 
process in terms of reduction in length might affect the strengthening and physical 
properties of PNMPs [ 117 ]. As discussed above its very diffi cult to determine the 
length and suitable analysis of related characteristics therefore they cannot be 
monitored in comprehensive manner. Several authors have attempted to evaluate the 
chain length which was based on the results obtained from the intrinsic viscosity in 
cupriethylene diamine. Pohler et al. [ 118 ] proven that microfl uidizer reduces the 
chain length more than the grinder. Couple of years before Uetani and Yano [ 115 ] 
used blender (with an ABS-BU motor, Vita Mix, and a CAC90B X-TREME 2 L 
bottle, WARING) with a well equipped tamper to produce microfi brillated cellulose. 
This equipment has effi ciency to defi brillated different wood fi ber suspensions 
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(0.1–1.5 wt%) at different stirring speeds, from 5000 to 37,000 rpm. However it’s 
diffi cult to deduce best mechanical treatment since product obtain from this blender 
is not very homogeneous, even it doesn’t acquire the capacity to transform whole 
plant based raw fi bers in to micro fi brils. It was reported that it induces less damage 
then grinder treatment but still it’s diffi cult to conclude which treatment can known 
to be the best treatment.  

   Cryocrushing 

 One rarely used and the most expensive method which cannot be scale up called as 
cryocrushing as suggested by Dufresne et al. [ 119 ]. He has crushed frozen pulp with 
liquid nitrogen [ 120 ,  121 ]. Owing supercritical nature of nitrogen, liquid nitrogen 
enter inside the cell, this penetration cause the crystallization of cell (Ice crystals 
within the cells are then formed), and eventually mechanical crushing is employed 
to breakdown the cellular wall and release wall fragments. So far this method is 
applied over many pulps and other plant material (sugar beet pulp, wheat straw and 
soy hulls, fl ax, hemp, and rutabaga fi bers and soybean stock) to yield microfi brill 
polymer with varying nano dimensions [ 120 – 122 ].  

   Electrospinning 

 In contrast to all these methods electrospinning methods can be employed to obtain 
fi brillated PNMPs process of cellulose regeneration. However this process require 
more fundamental studies are currently dedicated to this method [ 123 – 126 ].  

   Energy Consumption and New Processes 

 Above mentioned methods require mechanical treatments with high energy 
utilization. Energy consumption (70,000 kWh/t) in case of homogenizer estimated 
was initially estimated by Eriksen et al., whereas energy consumption in case of 
microfl uidizer estimated by Zimmermann et al., reaches up to 8.5 kWh [ 127 ,  128 ]. 
As discussed above in case of microfl uidizer fi brillation depends on the number of 
times raw material passes through the assembly therefore for 10 L of PBNPs pulp it 
takes about 15 min to pass through a microfl uidizer once and let there are overall 
four passes during this process then consumed energy can be calculated accordingly 
(8.5 kW, and its value increased to 14,875 kW with only three passes more). Since 
the most diffi cult thing that need further research is variation in mass during each 
pass (i.e. mass doesn’t remain ideal) so for estimating single pass energy each time 
mass should be calculated. Process become more diffi cult when pulp solution 
obtained is less homogenous. Later on various authors’ studied the factors (e.g. 
number of passes, the pressure, and the speed) that infl uence the rate of formation 
of microfi brills and fi lms, mainly the nature of material (bleached and unbleached 
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kraft hardwood pulps) on consumption of energy [ 129 ,  130 ]. These authors’ have 
done the comparative study of the energy consumption and physical properties of 
MFC produced by different processing methods, namely a homogenizer, a 
microfl uidizer, and a grinder. From this study it was deduced that, in spite of its high 
energy consumption, homogenizer resulted in MFC with the highest specifi c surface 
area and fi lms with the lowest water vapor transmission rate. Furthermore fi lms 
produced during both process (microfl uidizer and a grinder) offered better optical, 
physical, and water interaction properties. This unique features obtained from these 
processes suggested that these materials could be created with additional cost- 
effective approach for packaging purposes. Alternatively exploration of other less 
energy-consuming disintegration methods also turn into precedence in protecting 
the industrialization of MPBPs production. Presently combinations of various pre- 
treatments and mechanical methods have been employed to yield suitable 
microfi brill. Additionally in order to obtain MFC with low energy consumption or 
via a faster process, every year new equipment is being studied or developed. 
Heiskanen, Harlin, Backfolk, and Laitinen [ 131 ] has modifi ed the process and 
tested with extrusion. Later on SUNPAP (2009), Papiertechnische Stiftung (PTS) in 
Germany, developed commercial process, Cavitron ® . Recently novel fractionation 
devices have been developed to classify different MPBPs qualities [ 132 ].    

4.6.3     Pre-treatment 

 Various approaches have been employed in order to obtain fi bers that are less stiff 
and cohesive. These approached help in reducing the energy required for fi brillation. 
Among these approaches three approaches (avoiding the hydrogen bonds, adding a 
repulsive charge, reducing the DP or the amorphous link between individual 
PNMPs) are more preferred during pre-treatment. Protocols that are more favorable 
according to these considerations are: 

4.6.3.1     Enzymatic Pre-treatment 

 Enzymatic modifi cation has mainly used hydrolyzing enzymes in its modifi cation 
and one of its products is syrup be it glucose syrup or high fructose corn syrup. With 
research, there are more enzymes being identifi ed for use in modifi cation of polymer. 
Combinational treatment is employed by combining enzymatic hydrolysis with 
mechanical shearing and high pressure homogenization (105 and 170 MPa) to 
obtain PNMPs in desirable nano range. Paakko et al. [ 133 ] conducted the whole 
process by introducing the enzymatic treatment with endoglucanase between two 
refi ning steps. Step is achieved by before passing the pulp slurry through the 
microfl uidizer. Main positive point of enzymatic hydrolysis than acid hydrolysis it 
is less aggressive and allows selective hydrolysis of the non-crystalline cellulose, 
which facilitates the mechanical disintegration [ 133 ,  134 ]. Enzyme supplementation 
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promotes cell wall degradation and prevents the blockage in Z-shaped chamber of 
microfl uidizer [ 135 ]. It has been observed that in some cases more specifi c enzymatic 
treatment is required e.g. pre-treatment with C-type endoglucanase enzyme studied 
by Henriksson et al. [ 135 ], to treat some disorder in the structure in order to attack 
the cellulose and attain its conformation that encourage its desirable properties. 

 After the mechanical treatment with Gaulin homogenizer, these researchers 
examined non-pretreated PNMPs in contrast with enzyme-pretreated MFC, as well 
as enzyme-pretreated PNMPs. This pre-treatment with endoglucanase allows the 
disintegration of cellulosic wood fi ber pulp by enhancing its swelling in water, 
additionally this eco-friendly pretreatment present more favorable structure on the 
MFC, since it decreases the fi ber length and enhances the amount of fi ne material, 
in contrast to end product obtained from acid hydrolysis pre-treatment. It was also 
studied that pretreatment with endoglucanase appeared to be a very promising 
method for industrial applications and important for fi rst pilot production of PNMPs 
[ 134 ].   

4.6.4     Post-treatments 

 In addition to the pretreatment, post-treatments in combination with pretreatment 
are progressively carried out in order to increase the features of microfi brillated 
natural polymer. In contrast with various pre-treatment approaches utilization of 
post-treatment still remains small. Goal of these two protocols are very distinctive 
since the primary objective of pre-treatment is to decrease the energy consumption 
of PNMPs production, while the post-treatment mainly aims to improve the PNMPs 
or to incorporate new features, from the viewpoint of new probable applications. In 
order to develop PNMPs fi lms with good barrier properties, Rodionova et al. [ 136 ] 
carried out the acetylation of MFC from kraft pulp. Based on results [ 136 ], it was 
observed that hydroxyl groups replacement by acetyl groups occurs at surface of the 
PNMPs as well as amorphous regions for long reaction times. Later on it was 
studied that acetylation is an essential tool for bacterial cellulose to improve the 
optical properties of nanocomposite fi lms [ 137 ]. Nogi et al. [ 138 ] studied that 
acetylation was also used to improve the thermal properties. In order to obtain 
hydrophobic MFC, Andresen et al. [ 139 ] modifi ed the surface of MFC by means of 
silylation with chlorodimethyl isopropylsilane. It has been seen among some natural 
polymers that when the silylation conditions were too strong, PNMPs lost its 
microfi brillar structure and consequently it was concluded that with a degree of 
surface silylation (between 0.6 and 1), some natural polymer e.g. MFC could be 
dispersed into an organic solvent without losing its characteristics or properties. 
Some post-treatments among PNMPs e.g. MFC, encourage nanocomposite 
applications after their grafting with suitable coupling agents. Most of the post- 
treatments (Table  4.3 ) provide MFC with a hydrophobic character in order to 
improve its compatibility with non-polar polymers and thus play a major role in the 
elaboration of nanocomposites. However some post-treatments emerge to endow 
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microfi brillated cellulose with some new functionality. Owing to the unique features 
MFC that are attractive in different fi elds. Primary aim of this work is to reduce the 
energy consumption of MFC production so as to fulfi ll with a political agenda and 
gain market interest and second goal is to improve MFC properties in order to 
endorse a novel biomaterial with unique characteristics that can compete against the 
current non-biopolymers.

4.6.5        Dual Modifi cations 

 Recommendation for physical modifi cation is sometime preferred over chemical 
since it can be safely used as a modifi cation process in food products as it does not 
involve any chemical presence which some causes harm to biological tissue. Various 
physical methods have been employed for different plant based natural polymer 
using a combination of chemical and physical or chemical and enzymatical methods 
(Table  4.4 ).

   Owing to the diverse class of PBNPs, here in this section we have only discussed 
the starch based physical or chemical modifi cations. Deetae et al. [ 53 ] combined 
methodology (physical as well as chemical) using crosslinking with sodium trimeta-

   Table 4.3    Post-treatments among MFC   

 Coupling agents  Purpose & applications  References 

 MFC+ titanate  To enhance the adhesion between 
MFC and epoxy resin matrix 

 [ 140 ] 

 Titanate + MFC  MFC with enhanced hydrophobic 
surface property 

 [ 106 ] 

 MFC oxidation with cerium IV  MFC with a hydrophobic surface 
layer, nanoscale electronic and 
optoelectronic devices 

 [ 106 ] 

 Grafting of hexamethylene diisocyanate.  MFC with more hydrophobic 
surface layer, nanoscale electronic 
and optoelectronic devices 

 [ 106 ] 

 Succinic and maleic acids coupled to the 
MFC 

 MFC with a hydrophobic surface 
layer, nanoscale electronic and 
optoelectronic devices 

 [ 106 ] 

  N -octadecyl isocyanate onto MFC  To improve the MFC’s 
compatibility with 
polycaprolactone, using an in situ 
solvent exchange 

 [ 92 ] 

  N -octadecyl isocyanate onto MFC  To improve the MFC’s 
compatibility with 
polycaprolactone 

 [ 141 ,  142 ] 

 Grafting cellulose with octadecyldimethyl 
(3-trimethoxysilylpropyl) ammonium 
chloride (ODDMAC) 

 MFC fi lms with antibacterial 
property 

 [ 143 ] 
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phosphate and phosphorylation on rice starch, provided modifi ed rice starch with 
good freeze-thaw stability. Whole procedure was conducted in the presence of 
osmotic-pressure enhancing salts [ 53 ]. These salts caused an increase fi nal viscosity 
with a sharp decline in breakdown. It has been observed that trigger in osmotic pres-
sure enhances the activity of the crosslinking agent [ 157 ]. UV induced polymeriza-
tion is used to prepare starch-based hydrogels. During this procedure polymerization 
performed by treatment acryloylated starch with zwitterionic monomer 3-dimethyl
(methacryloyloxyethyl) ammonium propane sulfonate (DMAPS). It was observed 
that this type of polymerization induces a unique salt- tolerant swelling behavior in 
modifi ed starch [ 55 ]. Ou et al. [ 56 ] developed modifi ed starch via esterifi cation with 
ferulic acid which yielded in to starch ferulate. In contrast to native, starch ferulated 
starch exhibited higher water holding capacity, lower viscosity and much less retro-
gradation during low storage temperature [ 56 ]. Similarly Xing et al. [ 57 ] developed 
effi cient method in esterifying starch, microwave-assisted esterifi cation, to produce 
starch maleate using the dry method had a reaction effi ciency of up to 98 %. Jyothi 
et al. [ 58 ] developed effi cient method of producing succinylated cassava starch with 
microwave assistance to decrease the use of chemicals and enhance production. 
Later on it was observed that microwave and ultrasound irradiation can be employed 
for the esterifi cation of carboxymethyl cold-water-soluble potato starch with octe-
nylsuccinic anhydride which consequently shorten the esterifi cation time from a 
few hours to a few minutes. Derivates produced during this process present out-
standing emulsifying and surfactant performance properties [ 59 ]. For achieving 
more successful dual modifi cation process, Karim et al. [ 60 ] utilized native starch 
in form of corn and mung bean starch. Native starch was modifi ed by partial enzy-
matic treatment followed by hydroxypropylation with propylene oxide. Modifi ed 
starch proved to have signifi cant functional properties in contrast with hydroxypro-
pyl starch prepared with untreated native starch [ 60 ].  

   Table 4.4    Physical methods 
reported for starch 
modifi cations  

 Treatments  References 

 Corona electrical discharges  [ 144 ] 
 Deep freezing  [ 145 ,  146 ] 
 Instantaneous controlled pressure 
drop (DIC) process 

 [ 147 ,  148 ] 

 Iterated syneresis  [ 149 ] 
 Mechanical activation-with stirring 
ball mill 

 [ 150 ] 

 Micronization in vacuum ball mill  [ 151 ] 
 Multiple deep freezing and thawing  [ 146 ] 
 Osmotic-pressure treatment  [ 152 ] 
 Pulsed electric fi elds treatment  [ 153 ] 
 Superheated starch  [ 154 ] 
 Thermally inhibited treatment 
(dry heating) 

 [ 151 ,  155 ,  156 ] 
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4.6.6     Ozonation 

 In addition to above mentioned methods various other methods such as ozonation 
have been developed with more development in polymeric sciences and its allied 
fi elds. This process carries extra oxygen atom therefore act as powerful oxidant and 
can be applied for process of ozonation. According to previous reports this process 
enhances the carboxyl and carbonyl contents and concentration keep on increasing 
with time of exposure to ozone. In contrast hypochlorite oxidation process where 
large amount of salts are produced this powerful oxidant (ozone) is a clean and 
leaves no residues behind unlike [ 61 ]. 

 Chan et al. [ 62 ] observed that there was a difference in the rate of starch oxidation 
among starches from various sources. An and King [ 63 ] found that starch those are 
produced in the presence of amino acids were more suitable alternatives in contrast 
to highly chemically oxidized starch and found useful as thickening agents. 

 As mentioned above physical modifi cations are safer for processing of food 
products since it does not involve any chemical presence. Owing to the diversity of 
plant based polymers, here in this section we have only discuss starch based modi-
fi cation. Some new strategies developed in physical modifi cation for PBNPs are 
highlighted in Table  4.4 . Pukkahuta et al. [ 152 ] utilized “Osmotic-pressure treat-
ment” (OPT) in the presence of high salt solutions to obtain a uniform starch sus-
pension and heat distribution. After treatment with the gelatinization temperatures 
potato-starch treated changed from a B to a A type. A uniform heat distribution is 
an advantage of this method in contrast to heat-moisture treatment which helps in 
production of modifi ed starch at large scale. Similarly Szymonska et al. [ 145 ] 
reported the deep freezing and thawing of moistened starch to increase the crystal-
linity of the granules, however Szymonska et al. [ 146 ] also reported that multiple 
deep freezing and thawing caused an irreversible disruption of the crystalline 
order. Process of deep freezing and thawing was repeated until the moisture con-
tent in the solid phase was less than 20 %. It was observed that most of the starch 
showed conversion towards B-type X-ray diffraction pattern suggesting a disrup-
tion of the crystalline property [ 149 ]. Since there is no involvement of any type of 
chemicals therefore there is no concern for the effect on the environment and safety 
issues to be addressed. Process called as iterated syneresis was similar to multiple 
deep freezing and thawing. Other physical modifi cation including instantaneous 
controlled pressure drop and DIC lead to increase in gelatinization transition tem-
peratures and enzymatic hydrolysis while gelatinization enthalpy decreased after 
treatment. During this procedure saturated steam at a fi xed pressure and predeter-
mined time was injected before it drops towards vacuum to pursue the short pres-
surization. Other mechanical actions such as collision, friction, impingement, 
shear, etc can also be employed to modify the crystalline structures and properties 
of the starch granule. This process is called as mechanical activation or microniza-
tion. During this process large particle breakdown to form smaller particles how-
ever the tiny particles agglomerate and form large particles, resulting in to the 
decrease in gelatinization temperature and viscosity of the treated sample [ 150 , 
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 151 ]. Han et al. [ 153 ] reported the pulsed electric fi eld (PEF) technology (non-
thermal food preservation method) to study the effect of the treatment on starch. 
They have observed that starch molecules rearranged and destructed resulting in to 
the constant decrease in gelatinization properties, viscosity and crystallinity. 
Nemtanu and Minea [ 144 ] also reported that with increase of exposure time to 
corona electrical discharges, solubility, gel consistency and clarity of starches 
decreased. Dehydration of starch is done to achieve thermal inhibition which is 
carried out (a) by dehydrating starch until it becomes anhydrous, (b) treating it to 
a temperature of hundred degree Celsius for a period of time. The effect of heating 
can also be increased by an alkaline condition. Chiu et al. [ 155 ] suggested that 
pastes obtained from theses starches had increased resistance to viscosity break-
down and a non-cohesive texture. Ionic gums such as sodium alginate, CMC and 
xanthan act as crosslinking agents to form graft copolymers through ester forma-
tion. Such type of gums induced thermal inhibition [ 156 ]. Production of spreadable 
particle gels with spherulite morphology and creamlike texture upon cooling can 
be obtained by heating a starch solution to a temperature between 180 and 220° to 
form superheated starches. It was observed that in contrast with native starch dry 
superheated starches when mix with cold water gives immediate gel-like texture 
[ 154 ]. Two processes fl uidized bed heating and extrusion heating were applied 
over on amaranth starch-rich fraction. Treatment with fl uidized bed heating lead to 
some loss in crystallinity but granule integrity was preserved whereas extrusion 
heating caused a high degree of granule disruption and almost complete loss of 
crystallinity [ 158 ].   

4.7     Genetic/Biotechnology Modifi cation 

 Development in genetic engineering allows genetic modifi cation of various natural 
plant based polymers probably by targeting the enzymes of the biosynthetic path-
ways of the respective NPBPs. Owing to the diverse classifi cation of PBNPs, here in 
this section we have only discussed starch which can present the better ideology/
platform for the modifi cation of others. Current development in genetic engineering 
science allows transgene technology to produce genetically modifi ed starches which 
can prevent the environmentally harmful post-harvest chemical or enzymatic modi-
fi cation [ 159 ]. It was observed that activity of these enzymes plays an important role 
in affecting the functionality, reactivity and applicability in non food and food appli-
cations of these modifi ed starches. Traditional plant-breeding techniques or modern 
biotechnology can be applied to accomplish genetic modifi cation in a more success-
ful way [ 160 ]. Some of the key modifi cations of starches that have been done geneti-
cally are mentioned below. For alteration of specifi c structural motifs in potato 
starch, repression of starch phosphorylating enzyme R1 was used in the of potato 
starch [ 161 ]. Similarly modifi cation for potato cell lines was achieved by treatment 
with an  Escherichia coli  glg B encoding a glycogen branching enzyme [ 162 ]. Starch 
obtained after this treatment contains higher amount of short amylopectin chains 
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with lower content of phosphate which can be used to give hard and adhesive gels. 
Alike to potato cell line total cassava root biomass can be treated with ADP-glucose 
pyrophosphorylase for enhancing the total cassava root biomass by 2.6 fold [ 163 ]. 
Modifi cation of starch was also investigated when a full length cDNAs encoding a 
second starch branching enzyme isoform was isolated and an antisense starch branch-
ing enzyme A RNA was produced on transgenic potato plants. During this study 
complete reduction in starch branching enzyme A was observed. The average chain 
length of amylopectin was greater in modifi ed starch and it was observed that the 
composition and structure of the potato starch was completely altered. Additionally 
higher levels of phosphorous were also reported [ 164 ]. Similarly Safford et al. [ 165 ] 
reported the same study by the modifi cation of starch obtained from potato (showed 
altered amylopectin branch patterns). Verhoeven et al. [ 166 ] explored the tree muta-
genised grains of the diploid oat (Avena strigosa): mutants lam-1, lam-2 and sga-1. It 
was investigated that two mutagens (lam-1 and lam-2) lacked in GBSS activity and 
amylose component thus endow mutations of the waxy type [ 166 ].  

4.8     Applications of Plant Based Polysaccharides 

 Plant based polysaccharides are having various established applications in 
biomedical, tissue engineering, pharmaceutical sciences and other areas. Our 
current concern is to cover plant based natural polymers and their nanotechnologi-
cal applications in different fi eld. Table  4.5  covered various modifi cations of natural 
polymers and its nanotechnological application in different drug delivery systems.

4.8.1       Cellulose 

 In 1838 French chemist Anselme Payen discovered cellulose by isolating it from 
plant matter and determined its chemical formula. Cellulose is a linear unbranched 
organic polysaccharide with the molecular formula (C 6 H 10 O 5 )n, consisting of 
β(1 → 4) linked  D -glucose units from several hundred to over ten thousand (Fig.  4.3 ). 
Among all plant cell wall polysaccharides e.g. hemicelluloses, pectin, cellulose 
forms a vital structural component in higher plants and corresponds to the most 
abundant organic polymer [ 359 ,  360 ]. Linearly arranged various parallel cellulose 
molecules form crystalline microfi brils which are mechanically strong and highly 
resistant to enzymatic attack and are aligned with each other to provide structure to 
the cell wall. This organic polysaccharide is insoluble in water and indigestible by 
the human body [ 361 ,  362 ], however digested by herbivores and termites. Fibrous 
materials (such as wood and cotton) derived cellulose such as wood and cotton, can 
be mechanically treated (disintegrated) to produce powdered cellulose. This 
powdered form has been used in the pharmaceutical industry as fi ller in tablets. 
Treatment of high quality powdered cellulose with hydrochloric acid produces 
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microcrystalline cellulose. Microcrystalline cellulose is preferred over powdered 
cellulose because it is more free-fl owing containing non-fi brous particles and there-
fore used in the pharmaceutical industry as a diluent/binder in tablets for both the 
granulation and direct compression processes [ 363 ]. Derivatization of cellulose can 
be achieved by replacing/modifying open hydroxyl moieties on the  D -glucopyra-
nose units of the cellulose polymer to give a variety of derivatives (Fig.  4.5 ). This 
process involves various physical/chemical modifi cation which are fi xed according 
to post and pre treatment procedures during which chief chemical reactions such as 
etherifi cation, esterifi cation, cross-linking or graft copolymerization are conducted. 
Esterifi cation results in derivatives which include cellulose nitrate, cellulose acetate 
and cellulose acetate phthalate whereas etherifi cation yields derivatives such as 
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hydroxyl-propyl-methylcellulose and carboxyl-methyl-cellulose. These all chemi-
cal products have outstanding application in membrane controlled release systems 
or monolithic matrix systems such as fi lm or enteric coating and the use of semi-
permeable membranes in osmotic pump delivery systems. Partly O-methylated and 
O-(2-hydroxypropylated) cellulose ether derivative known as hydroxypropylmeth-
ylcellulose has been extensively studied as an excipient in controlled release drug 
delivery systems due to its gel forming ability. These derivatives are having wide 
use and applications in monolithic matrix systems. Various reports and investiga-
tions have proven their potential to sustain the release of medicaments and most of 
these derivatives have been employed for this purpose [ 364 ].

4.8.2          Hemicellulose 

 A hemicellulose is a heteropolymer (matrix polysaccharides), such as arabinoxylans, 
consisting xyloglycans, xylans, mannans and glucomannans, and β-(1 → 3, 
1 → 4)-glucans (Fig.  4.4 ) [ 365 ]. 

4.8.2.1     Arabinoxylans 

 These polysaccharides are bound to the surface of cellulose microfi brils which 
themselves do not form micro fi brils can be extracted from the plant cell wall with 
the aid of strong alkali. In contrast with cellulose (crystalline, unbranched strong, 
and resistant to hydrolysis), hemicellulose has a random, amorphous structure with 
little strength. Unlike cellulose, hemicelluloses have β-(1 → 4)-linked backbones 
with an equatorial confi guration, consists of shorter chains—500–3000 sugar units. 
In addition, hemicellulose is a branched polymer, while cellulose is unbranched. 
Though the xyloglycans have alike backbone as cellulose, they contain xylose 
branches on 3 out of every 4 glucose monomers, while the β-1,4-linked  D -xylan 
backbone of arabinoxylan contains arabinose branches [ 366 ].  

4.8.2.2     Glucomannans 

 Glucomannan is mainly a straight-chain hydrocolloidal polysaccharide of the 
mannan family, consisting of β-1,4 linked  D -mannose and  D -glucose monomers 
(with acetyl side branches on some of the backbone units), with about 8 % branching 
through β-(1 → 6)-glucosyl linkages. The component sugars are β-(1 → 4)-linked 
 D -mannose and  D -glucose in a ratio of 1.6:1, but the mannose:glucose ratio may 
differ depending on the source [ 367 ]. The acetyl groups contribute to its solubility 
and swelling capacity of the glucomannans and enhance the solubility of the 
glucomannans by supporting glucomannans in making a soluble natural 
polysaccharide with the highest viscosity and water-holding capacity. It is diversely 
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present very in nature and specifi cally derived from tubers, softwoods, roots and 
plant bulbs. Glucomannan is called as konjac Glucomannan as it is the most com-
monly used type of Glucomannan which is extracted from the tubers of 
 Amorphophallus konjac  (Ulmaceae) and act as a potential excipient in controlled 
release drug delivery devices in combination with other polymers or by modifying 
its chemical structure. As mentioned, it is a very promising polysaccharide for 
incorporation into drug delivery systems. According to previous investigation 
konjacglucomannan and xanthan in combination effi ciently slow down drug release 
by stabilization of the gel phase of the tablets. Stabilization is achieved by a network 
of intermolecular hydrogen bonds between the two polymers [ 368 ].   

4.8.3     Starches 

 Starch or amylum (Fig.  4.6 ) is a storage and structural polysaccharide consisting of 
a large number of glucose units joined together by glycosidic bonds, chiefl y present 
in plants as energy source. Various sources of starches have been used for 
pharmaceutical purpose such as maize ( Zea mays ), rice ( Oryza sativa) , wheat 
( Triticum aestivum ), and potato (S olanum tuberosum ) [ 369 ]. Generally starch 
present in two forms modifi ed and native starch. Starch whether in the native or 
modifi ed form has been used as one of the key pharmaceutical excipients in 
pharmaceutical tablet and capsule formulations. Modifi ed Starch is evaluated as 
pregelatinized starch product in directly compressible controlled-release matrix 
systems which can be prepared by enzymatic degradation of potato starch followed 
by precipitation (retrogradation), fi ltration and washing with ethanol whereas native 
starch may not be suitable in controlled release drug delivery systems due to 
substantial swelling and rapid enzymatic degradation resulting in too fast release of 
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  Fig. 4.6    Chemical structure of starch, with ( a ) amylose and ( b ) amylopectin       
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many drugs. Owing to this derivatives of native starch that are more resistant to 
enzymatic degradation as well as crosslinking and formation of co-polymers. 
Moreover most of them serve various functions such as binder, aiding drug delivery, 
bulking or disintegrant. Currently starch based micro-capsulated delivery systems 
can be used to deliver proteins or peptidic drugs orally [ 369 ]. Recently starch was 
modifi ed using interfacial cross-linking agent, terephthaloyl chloride, to form 
starch/bovine serum albumin mixed walled microcapsules. During this procedure 
native or amino-protected aprotinin was loaded in microcapsules by supplementing 
protease inhibitors in the aqueous phase. This procedure was performed with the 
help of cross linking agent. Modifi ed starch in form of microcapsules showed 
protective effect for bovine serum albumin. It was observed that acetylation of 
starch signifi cantly reduces its swelling and enzymatic degradation [ 370 ]. According 
to previous fi ndings, acetylation of potato starch considerably delay drug release 
compared to that of natural potato starch fi lm. During the investigation on Amylose- 
rich maize starch (Hylon VII™) for tablet fi lm coating it was observed that the 
temperature of the coating pan did not infl uence the roughness of the coated tablet 
at low spray rates, whereas at high spray rates increases the temperatures, resulted 
in to the smooth fi lms. This was resulted in to the rapid dissolution rate Hylon VII™ 
coated tablets in an acid medium (releasing 75 % of the drug). Various other reports 
on the amylose and native starches as fi lm forming agent were explored [ 371 – 375 ]. 
In another work ethyl-cellulose was employed with amylase in combination to 
generate aqueous and non-aqueous based coatings for colon drug delivery has been 
reported [ 376 ].

4.8.4        Pectin 

 Pectin (Fig.  4.7 ) is the purifi ed non-starch, linear polysaccharides extracted from the 
plant cell walls especially by acid hydrolysis from the inner portion of the rind of 
citrus peels i.e.  Citrus Simon  or  Citrus Aurantium , (Rutaceae). This water soluble 
linear galacturonic acid polysaccharide mainly composed of α-1,4-linked 
Dgalacturonic acid residues interrupted by 1,2-linked  L -rhamnose residues with a 
few hundred to about one thousand building blocks per molecule, equivalent to an 
average molecular weight of about 50,000 to about 1,80,000 [ 377 ]. since galacturonic 
acid polysaccharides contains different neutral sugars such as arabinose, rhamnose, 
xylose, glucose, and galactose, therefore composition of pectin varies according to 
the botanical source, e.g. pectin from citrus contains lower amount of neutral sugars 
and has a lesser molecular size in comparison to the pectin obtained from apples 
[ 378 ,  379 ]. Owing to its water solubility, this polysaccharide is not able to protect 
its drug load effi ciently for the period of its passage from the stomach and small 
intestine [ 377 ]. Against this pH variable  in vivo  environment, drug core should be 
protected with signifi cant thickness or layers of polymer, thus the whole center of 
attention was inclined to the progress of low water soluble pectin derivatives which 
get degraded by the colonic micro fl ora. Derivatization or modifi cation of pectin 
reduces their solubility e.g. calcium derivatives of pectin were found to reduce the 
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solubility by forming an eggbox confi guration. Ethyl-cellulose was also examined 
as a coating material for colon-specifi c drug delivery. This combination was devel-
oped to overcome the drawback of high solubility of pectin and provide colon spe-
cifi c degradation properties of pectin with the protective properties of the water 
insoluble ethyl cellulose [ 380 ]. Pectin based hydrogels widely investigated used as 
controlled-release matrix tablets. Pectin in form of high-methoxy-pectin showed 
their potential in controlled-release matrix formulations and the drug release from 
compressed pectin based matrix tablets can be modifi ed by altering the concentration 
and nature of pectin in the matrix tablets. It was observed pectinic acid (degree of 
methoxylation 4 %) with retarded solubility was suitable as an excipient for 
pelletisation by extrusion/spheronisation. According to previous work presence of 
20 % pectinic acid in formulations is suitable for the formation of approximately all 
spherical beads which were mechanically stable and showed drug release at 
physiological pH 6.8 [ 381 ]. Pectin based micro particulate polymeric delivery 
systems have been investigated as a possible approach to improve the low 
bioavailability characteristics [ 382 ]. Spray dried pectin microspheres of piroxicam 
showed a considerable improvement of piroxicam bioavailability when compared 
with marketed piroxicameye drops. Modifi cation of pectin such as amidated pectin 
was investigated to mask the bitter taste of chloroquine when orally administered 
[ 383 ]. Study showed potential applications of pectin-chloroquine patch matrix for 
the transdermal delivery of chloroquine. Similarly calcium pectinate nanoparticles 
were prepared to deliver insulin in colon [ 384 ]. Additionally pectin gel formulations 
has wide application in cosmetics for the prolonged release of cosmetic compounds 
such as citronellal responsible for the fragrance and proved as promising materials 
for controlled fragrance release [ 385 ].

4.8.5        Inulin 

 Inulin (Fig.  4.8 ) is a naturally occurring storage polysaccharide obtained from 
Dehlia,  Inula Helenium  (Compositae),  Saussurea lappa  (Compositae) or chicory 
roots, Dendelion,  Taraxacum offi cinale  (Compositae). Burdock root,  Cichonium 
intybus  (Compositae) [ 386 ]. This polysaccharide contains mixture of oligomers and 
belongs to the group of gluco-fructans, widely present in plants such as artichoke, 
garlic, onion, and chicory. As far as structural features are concerned inulin 
molecules contain from two to more than 60 fructose molecules linked by β-2,1- 
bonds. According to previous investigation inulin is not digested properly in the 
upper gastrointestinal tract, however this polysaccharide hydrolyzed by colonic 
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microfl ora [ 387 ,  388 ]. For delivering drug or any other therapeutic substance in 
gastric and intestinal fl uids, inulin with a high degree of polymerization was used in 
combination with Eudragit ®  RS (that could withstand break down by the gastric and 
intestinal fl uids) to prepare biodegradable colon-specifi c fi lms [ 387 ]. In an alike 
study it was reported that using the combination of two different grades of Eudragit ®  
RS and Eudragit ®  RL when mixed with inulin showed better swelling and permeation 
properties in colonic medium rather than other gastrointestinal media [ 389 ]. Earlier 
investigation on inulin based hydrogels for colon-specifi c drug delivery systems 
proven that methylated inulin hydrogels exhibit comparatively high rate of water 
uptake and anomalous dynamic swelling behavior pH sensitive hydrogel by UV 
irradiation were investigated by derivatization of inulin with methacrylic anhydride 
and succinic anhydride [ 388 ]. This pH sensitive hydrogel system exhibit exhibited 
a reduced swelling and low chemical degradation in acidic medium. However it 
shows good swelling and degradation properties in simulated intestinal fl uid espe-
cially in the presence of its specifi c enzyme called inulinase [ 295 ].

4.8.6        Rosin 

 Rosin (Fig.  4.9 ) also called colophony or Greek pitch ( Pix græca ), is a low molecular 
weight (400 Da) natural polymer obtained from the oleoresin of various  Pinus sp.  
by heating fresh liquid resin to vaporize the volatile liquid terpene components. It 
contains abietic and pimaric acids and exhibit excellent fi lm-forming properties. 
According to recent report, Rosin and its derivatives investigated as potential 
biopolymer for various pharmaceutical applications such as fi lm-forming and 
coating properties, matrix materials in the tablets for sustained and controlled 
release and microencapsulation [ 390 ]. Recent report explored its improved drug 
release properties matrix tablets and pellets [ 391 ] when its synthesized by a reaction 
with polyethylene glycol 200 and maleic anhydride. This work lead to the 
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development of potential derivatives which can be suitable for sustain release of the 
tablets. Similarly high polymerization of rosin fi lms showed excellent potential as 
coating materials for the development of sustained release dosage forms [ 392 ]. 
Various investigations on rosin derivatives (glycerol ester of maleic rosin) and their 
fi lm forming and coating properties established their potential as potential coating 
materials for pharmaceutical products as well as in sustained release drug delivery 
systems. It was observed that rosin concentration has profound effect on the release 
of the hydrocortisone from rosin based nanoparticles which has demonstrated its 
potential as effective nanoparticulate drug delivery systems [ 209 ].

4.8.7        Plant Based Gums 

 Plant has its own established mechanism to secrete viscous, sticky fl uid exudate 
gums in order to seal-off infected sections of the plant and prevent loss of moisture 
due to physical injury or fungal attack [ 393 ]. These exudates have their own unique 
property to convert in to brittle, translucent, glassy, hard mass. This property recently 
explored as a potential tool in retaining various drugs and other therapeutic 
candidates for their sustained, controlled or specifi ed release from the desired 
dosage forms. There are various types of gums (mentioned below) secreted by 
plants currently investigated for their pharmaceutical applications. 

4.8.7.1     Gum Arabic 

 Acacia gum or gum Arabic is the dried gummy exudation obtained from the  Acacia 
arabica  (Leguminosae) and other related African species of acacia [ 241 ,  394 ]. The 
gum has been recognized as a branched molecule of 1, 3-linked β- D -galactopyranosyl 
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units. It is an acidic polysaccharide containing  D -galactose,  L -arabinose,  L -rhamnose, 
and  D -glucuronic acid and is mainly used in oral and topical pharmaceutical 
formulations as a suspending and emulsifying agent. Previous study has explored 
gum Arabic as a matrix microencapsulating agent for the enzyme, endoglucanase 
[ 394 ], shown the slow release endoglucanase from the formulation. Gum Arabic 
was used as an osmotic suspending and expanding agent to prepare a monolithic 
osmotic tablet system. The optimum system delivered the water-insoluble drug, 
naproxen, at a rate of approximately zero order for up to 12 h at a pH of 6.8.58 
Sustained release of ferrous sulphate was achieved for 7 h by preparing gum Arabic 
pellets. An increase in the amount of gum Arabic in the pellets decreased the rate of 
release.  

4.8.7.2     Tragacanth Gum 

 This gum is obtained from the branches of  Astragalus gummifer  (Leguminosae). 22 
and anionic carbohydrate which consists of two major fractions: tragacanthin 
(water-soluble) and bassorin (water-swellable) [ 395 ]. Tragacanthic acid is composed 
of  D -galacturonic acid,  D -xylose,  L -fructose,  D -galactose, and other sugars. It’s very 
diffi cult to understand the clear physical or chemical relationship between 
tragacanthin and bassorin since both fractions can be easily separated. As far as the 
chemical nature and composition are concerned bassorin and tragacanthin differ 
mainly in terms of their uronic acid and methoxyl content [ 396 ]. It has been 
demonstrated that bassorin is a complex structure of polymethoxylated acids and on 
demethoxylation, perhaps yields tragacanthin [ 397 ]. Tragacanth when employed as 
the carrier in the formulation of 1- and 3-layer matrices produced suitable release 
prolongation either alone or in combination with other polymers. It has been 
suggested that supplementation of tragacanth in aqueous media results in the 
improvement of rheological behavior at very low concentration, thus considered as 
potential as a suspending agent, stabilizer, and emulsifi er [ 398 ]. Only few reports 
have been explored on the functional properties of gum tragacanth and its application 
in various fi elds. Recent investigation has demonstrated the fl ow behavior of Iranian 
gum tragacanth at different concentration dispersions, showed that all of the gum 
dispersions had shear-thinning natures and exhibit signifi cant physicochemical 
properties [ 399 ].  

4.8.7.3     Mucilage Gums 

 Recently various mucilage gums have been explored from seed by different 
extraction procedures such as guar gum from the ground endosperms or seeds of the 
plant  Cyamopsistetragonolobus  (Fam. Leguminosae) and locust bean gum from the 
endosperms of the hard seeds of the locust bean tree (Carob tree),  Ceratoniasiliqua  
(Fam. Caesalpiniaceae) [ 400 ]. These polysaccharides have been investigated for 
their potential role in drug delivery and other pharmaceutical applications.  
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4.8.7.4     Locust Bean Gum 

 Locust bean gum (Fig.  4.10 ) or carob gum, irregularly shaped molecule with 
branched β-1, 4- D -galactomannan units, derived from the seeds of the carob, 
 Ceratoniasiliqua  Linn (Fam. Caesalpiniaceae). For achieving full solubility with 
complete hydration and highest viscosity this neutral charged polymer requires 
heat. This feature encourages its coating strength and imparts protection to several 
drug candidates against several degradation factors  in vivo.  Colon-specifi c drug 
delivery systems based on polysaccharides using locust bean gum and chitosan was 
developed. It was observed that when these coating materials was applied over core 
tablet it endow better shielding affect by protecting the drug from being released in 
the physiological environment of stomach and small intestine. Additionally it also 
provides protection against colonic bacterial enzymatic actions with resultant drug 
release in the colon.

4.8.7.5        Guar Gum 

 Guar gum (Fig.  4.11 ), high molecular weight hydrocolloidal polysaccharide consist 
of linear chain of β- D -mannopyranosyl units linked (1 → 4) with single member α- D -
galacto-pyranosyl units occurring as side branches. This Cyamposistetragonolobus 
endosperms derived polysaccharide contains glycosidic linked galactan and mannan 
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  Fig. 4.11    Chemical structure of guar gum       
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units and shows degradation in the large intestine due the presence of microbial 
enzymes. Guar gum has high molecular weight with high apparent viscosity in solu-
tion and shows solubility in cold water with its complete swift hydration to yield 
viscous pseudo plastic solutions. However it was observed that its shear- thinning 
usually have better low-shear viscosity than other hydrocolloids. This high viscosity 
and molecular weight dependent gelling property delays the drug from its dosage 
form, and become more vulnerable against susceptible to degradation in the colonic 
environment. This galactomannan based non-ionic polysaccharide that abundantly 
present in nature and endow many signifi cant properties desirable for drug delivery 
applications. Nevertheless owing to its elevated swelling features in water, the utili-
zation of this galactomannan based polysaccharide is limited. Recently various 
physico-chemical methods have been employed to improve its property such as 
derivatiztion, grafting and network formation. Such modifi cation allows its more 
utilization for biomedical applications. Additionally this plant based natural polymer 
can be exploited in various forms such as matrix tablets, hydrogels, nano/micro par-
ticles and coatings can be exploited as potential carriers for targeted drug delivery 
[ 401 ]. One report suggested the signifi cant role of guar gum in oral controlled drug 
delivery systems for highly water-soluble metroprolol as a carrier in the form of a 
three-layer matrix tablet. During this study it was observed that three- layer guar gum 
matrix tablets provide the desirable release rate for metoprolol tartrate formulations 
with no change either in physical appearance, drug content or in dissolution pattern 
and did not show any possibility of metoprolol tartrate/guar gum interaction with the 
formulation excipients used in the study [ 402 ]. Same results were obtained in guar 
gum based three layer tablet of tri- metazidinedihydrochloride controlled release for-
mulation [ 403 ]. In another report where guar gum potential was explored as a carrier 
for colon-specifi c drug delivery in form of a novel tablet formulation for oral admin-
istration using indo-methacin as a model drug. It was observed that this galactoman-
nan based polysaccharide protects the drug from being released entirely in the 
physiological environment of stomach and small intestine. Based on these investiga-
tions it was concluded that 4 % w/v of rat caecal contents in PBS offers the best 
conditions for in vitro assessment of guar gum [ 404 ]. In one more investigation guar 
gum was modifi ed by using acrylamide grafting in which amide groups of these 
grafted copolymers were transformed into carboxylic functional groups and fi nally 
tablets were prepared by incorporating diltiazem hydrochloride. Based on in-vitro 
drug release data it was observed that that the drug release dissolution was controlled 
in case of unhydrolyzed copolymer in contrast with hydrolyzed copolymers, drug 
release was swelling-controlled at fi rst, however at later stage, it became dissolution-
controlled. This report suggested potential role of pH sensitive hydrolyzed pAAm-
 g -GG matrices for intestinal drug delivery [ 405 ].

4.8.7.6        Grewia Gum 

 Grewia genus which was formerly categorized under linden Family (Tiliaceae) or 
the Spermamanniaceae and has been now merged into the Malvaceae [ 406 ]. Its 
increasing citations in International Pharmaceutical Abstracts database, EBSCO 
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and in PubMed augment its interest on  Grewia mollis as as a potential pharmaceutical 
excipient [ 407 ]. In concern with its polysaccharide based pharmaceutical evaluation, 
the fi rst report was documented in the early 2000s [ 408 – 416 ], in which researchers 
have explored some physicochemical and rheological characteristics as well as 
water vapor permeability of the aqueous-based fi lms. During this investigation 
effect of gum derived from  Grewia mollis as, on the binding properties in sodium 
salicylate tablets [ 413 ] and its infl uence on the granulating fl uid on the release 
profi le of drug [ 414 ] were evaluated. Later on in a study researchers have observed 
that method of incorporating the gum into tablet formulation had signifi cant effect 
on tablet properties. Additionally it was discovered that introduction by activation 
with water produced improved tablet properties than when incorporate by wet 
granulation or direct compression [ 415 ]. It was observed that acidic hydrolysis of 
the gum and some chemical modifi cations showed reduced viscosity and improved 
drug release from tablets [ 416 – 418 ]. In recent work some workers have explored 
the signifi cant role of gum in binding in contrast with both untreated gum and 
gelatin in paracetamol tablet formulations [ 419 ]. It was observed that tablet 
formulations containing treated grewia gum exhibited low onset of plastic 
deformation, enhanced friability was found with increase in acid concentration and 
treatment time and decrease in crushing strength, disintegration and dissolution 
times with increase in acid concentration and treatment time was observed. Other 
researchers concluded that acid treated grewia gum, depending on the desired onset 
of action of medicament, can be used in formulation of conventional tablets 
especially if the formulation does not require sustained release [ 420 ]. With the 
advancement in analytical tools it’s now possible to characterize the natural 
polymers in much better way then the conventional technologies. Technologies such 
as gel permeation chromatography, gas chromatography, differential scanning 
calorimetry, scanning electron microscopy, thermo gravimetric analysis,  1 H and 
 13 C-NMR, solid-state nuclear magnetic resonance, Fourier transformed infrared, 
x-ray photoelectron spectroscopy, and NIR techniques have been utilized to 
characterize the gum [ 421 ,  422 ]. Based on the analysis it was observed that 
polysaccharide gum is a normally amorphous polysaccharide gum containing 
rhamnose, glucose, arabinose, galactose, and xylose as neutral sugars with an 
average molecular weight of 5925 kDa expressed as the pullulan equivalent. As far 
as its physical properties are concerned gum gradually hydrated in water. This 
dispersion swells to form a highly viscous dispersion having pseudo plastic fl ow 
behavior. Technique like centrifugation gives better molecular weights range 
between 230 and 235 kDa of gum when centrifuged successively at 4500 rpm for 
30 min. Such processes improve the aqueous solubility and useful in delivering 
more solids to the substrate when used as a fi lm coating agent [ 422 ].  

4.8.7.7     Okra Gum 

 Okra gum is obtained from plant which is widely cultivated and grown in most 
tropical part of Nigeria known as  Abelmoschusesculentus  (Fam. Malvaceae). This 
plant is widely consumed as food in Asia and Africa and therefore considered as 
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subject of research in agriculture [ 423 ,  424 ]. Okra is popular for its viscous 
mucilaginous solution which is formed when heated and extracted in water [ 425 ]. 
This high molecular weight polysaccharide gum is reported as pharmaceutical 
excipient in various reports as a suspending [ 425 – 427 ], control release [ 428 ], fi lm 
coating [ 429 ], binder [ 430 ,  431 ], and bio-adhesive [ 432 ] agent. Okra gum is 
documented as controlled-release agent in modifi ed release matrices, in contrast 
with sodium carboxymethyl- cellulose and hydroxyl-propyl-methyl-cellulose, using 
Paracetamol as a model drug. Results showed that an okra gum matrix was useful in 
the formulation of sustained-release tablets for up to 6 h [ 428 ].  

4.8.7.8     Kyaha Gum 

 Recent report explored the relative binding effects of khaya gum obtained from 
 Khayasenegalensis  and  Khayagrandifoliola  (Fam. Meliaceae) in paracetamol tablet 
formulation were evaluated [ 433 ]. In one report mechanical properties of the tablets 
using khaya gum were assessed using the tensile strength, brittle fracture index and 
friability of the tablets while the drug release properties were evaluated by means of 
disintegration and dissolution times. It was observed that the brittle fracture index 
and friability decreased whereas tensile strength, disintegration and the dissolution 
times of tablets increased with the increase in binder concentration. It was also 
concluded that gum obtained from  K. senegalensis  produced strong tablets with 
extended disintegration and dissolution times in contrast with those obtained from 
 K. grandifoliola  gum. Based on reports it was fi nally suggested that gums obtained 
from  K. senegalensis  will be more suitable as a binding agent than  K. grandifoliola  
when high mechanical strength and slow release profi les of tablets are required.  

4.8.7.9     Moringaoleifer Gum 

  Moringaoleifera derived  gum was investigated for its physical features such as loss 
on drying, swelling index, solubility, and pH in form of gel based formulations 
using Diclofenac sodium as model. It was studied that 8.0 % mucilage gels prepared 
were found to be ideal and equivalent with a marketed preparation [ 434 ].  

4.8.7.10     Irvingiagabonensis 

 Seeds of  Irvingia gabonensis,  commonly known as ‘African mango’ or ‘bush 
mango’ contains large amount of lipids and polymeric constituents [ 423 ,  435 – 440 ] 
which are very important to pharmaceutical scientists as excipients. Mucilage 
isolated from the kernel is of great pharmaceutical signifi cance and has been used 
as binding agent in tablet formulation [ 441 ], as emulsifying and suspending agent 
[ 442 ]. Moreover the lipid has been employed in sustained release ingredient 
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[ 443 – 445 ], as suppository base [ 446 – 448 ], tableting as lubricant, microencapsula-
tion [ 449 ], and as a part of fi lm coating process [ 446 ]. Polysaccharide extraction can 
be achieved by using aqueous dispersion in petroleum ether or diethyl ether [ 450 ], 
however simultaneous extraction processes for both lipis and polysaccharide content 
has not been reported yet [ 451 ]. Irvingiagabonensis mucilage was investigated for 
use as suspending and emulsifying agent and its rheological behavior was evaluated 
against tragacanth. It was observed that formulated suspensions of Irvingia mucilage 
at all concentrations gave higher fi nal sedimentation height and sedimentation 
volume values. Furthermore it was also documented that 2.0 % w/v Irvingia 
mucilage (as an emulsifying agent) when compared against tragacanth and acacia 
gum showed stability throughout the 6 weeks of study. This observation led to 
conclusion that Irvingia mucilage presents superior properties than acacia and 
tragacanth. This performance was found to be much better, even at lower 
concentrations in the formulation of emulsions and suspensions. Iirvingia lipid 
based suppository base has also been investigated and it was observed that irvingia 
fat can be actively employed as suppository base. Furthermore the potential binding 
effects of mucilage on sustained release tablets, metronidazole tablets and as 
lubricating potential in tablet formulations have been investigated.  

4.8.7.11     Hakeagibbosa Gum 

 This water-soluble gum is obtained from Hakeagibbosa (hakea), having considerable 
muco adhesive and sustained-release properties especially for the formulation of 
buccal tablets. Hakeagibbosa gum is recently investigated in fl at-faced tablets using 
chlorpheniramine maleate as model drug [ 452 ]. It was observed that hakea coated 
tablet signifi cantly extend the in vitro release up to several hours and characterization 
results suggested the absence of chemical interactions. Additionally force of 
detachment for directly compressed and wet granulated tablets was increased as the 
amount of hakea per tablet was increased. Researchers also reported that hakea, 
might not only be employed to prolong the chlorpheniramine maleate release from 
a buccal tablet, however it also displayed excellent mucoadhesive properties. The 
underlying mechanism behind this is the slow relaxation of the hydrated hakea 
which can cause chlorpheniramine maleate release in a sustained manner.  

4.8.7.12     Psyllium Mucilage 

 Mucilage derived from Psyllium, has been investigated for its tablet binding 
properties [ 453 ]. This mucilage is derived from the seed coat of  Plantagoovata  
(Fam. Plantaginaceae) [ 454 ]. Isolation is achieved by milling of the outer layer of 
the seeds yield smooth texture mucilage. Psyllium hydrogels were investigated by 
insulin as model drug and N, N’-methylene-bis-acryl-amide as cross-linker. 
Formulation showed controlled release of the active ingredient [ 455 ].  
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4.8.7.13     Miscellaneous Gums and Mucilage 

 Various gums have been explored for pharmaceutical signifi cance such as 
 Colocassiaesculenta  [ 456 ], seeds of  Linumusitatissimum  [ 457 ], malva nut gum 
[ 458 ] and  Sterculiafoetida  gum for swelling and erosion modulator in controlled 
release matrix tablets of diltiazem hydrochloride.       
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