
Chapter 9
Multilabel Software

Abstract Multilabel classification and other learning from multilabeled data tasks
are relatively recent, with barely a decade of history behind them. When compared
against binary and multiclass learning, the range of available datasets, frameworks,
and other software tools is significantly more scarce. The goal of this last chapter
is to provide the reader with the proper insight to take advantage of these software
tools. A brief overview of them is offered in Sect. 9.1. Section9.2 discusses the
different multilabel file formats, enumerates the data repositories the MLDs can be
downloaded from, and describes how to automate some tasks with the mldr.datasets
R package. How to perform exploratory data analysis of MLDs is the main topic
of Sect. 9.3. Then, the process to conduct experiments with multilabel data using
different tools is outlined in Sect. 9.4.

9.1 Overview

Despite the software shortage aforementioned above, currently there are some mul-
tilabel data repositories, as well as two frameworks for algorithm developers and at
least one exploratory data tool. By using them, tasks such as downloading, citing and
partitioning datasets, multilabel data exploration, and conducting experiments with
existent MLC algorithms will be at your fingertips.

The present chapter has been structured into three main sections. The first one
describes the tools needed to work with multilabel data. This includes details about
MLDs file formats, data repositories MLDs can be obtained from, and how most
of these tasks can be accomplished by means of a specific software tool, the
mldr.datasets R package.

How to perform exploratory analysis of multilabel data is the topic the second
section is dedicated to. To do so, two specific programs are depicted, the R mldr
package and the Java MEKA framework. Many of the plots in this book have been
produced by the former, a tool which also provides methods to filter and transform
MLDs.

The concern of the third and final section is how to conduct multilabel experi-
ments, by means of MEKA, MULAN, and a specific Java utility developed by the

© Springer International Publishing Switzerland 2016
F. Herrera et al.,Multilabel Classification,
DOI 10.1007/978-3-319-41111-8_9

153



154 9 Multilabel Software

authors. Following these guidelines, and using the data partitions provided in this
book repository, the reader should be able to reproduce the experiments described in
previous chapters.

9.2 Working with Multilabel Data

The design of any algorithm aimed to deal with multilabeled data, whether its goal
is to induce a classification model or to apply some kind of preprocessing, has a key
requirement, it will have to be tested against someMLDs. Therefore, whatever is the
researching goal, the first stepwill usually be obtaining enoughmultilabel data. These
MLDs will have to be partitioned, and commonly some exploratory analysis would
have to be conducted on them. In addition, they have to be properly documented into
the research projects they are used, including the correct citing information.

Fortunately, nowadays there are several data repositories and software tools to
fulfill these needs. This first section provides a brief description of such resources,
along with useful references to obtain them.

9.2.1 Multilabel Data File Formats

One of the first issues that any multilabel researcher or practitioner (the user hence-
forward) has to face is the disparate set of MLDs file formats. Unlike traditional
datasets, MLDs have more than one output attribute, so that the last feature is the
class label cannot be assumed. How to communicate which ones of the features are
labels is the main origin of the several file formats, because each developer came
with a different approach to solve this obstacle.

Most MLDs are written using one of two base file formats, CSV (Comma-
Separated Values) or ARFF1 (Attribute-Relation File Format). Both are text file
formats, but the latter includes a header with data descriptors followed by the data
itself, whereas the former usually only provides the data and the header, if it is
present, only brings field names. CSV files cannot contain label information, so the
knowledge of how many labels there are, where are they located, or what are their
names will depend on an external resource. By contrast, an ARFF file can include
this information into the header.

1An ARFF file is usually divided into three sections. The first one contains the name of the
dataset after de @relation tag, the second one provides information about the attributes with
@attribute tags, and the third one, whose beginning is marked with the @data tag, contains
the actual data. It is the file format used by the popular WEKA data mining tool.
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MLDs can be downloaded from repositories (see the next section) such as
MULAN [1], MEKA [2], LibSVM [3], KEEL [4], and RUMDR [5], each one using
a different file format. The differences among multilabel file formats can be grouped
according to the following criteria:

• CSV versus ARFF: ARFF is the most usual base file format for MLDs. The
datasets available atMULAN,MEKA, and KEEL are ARFF files. On the contrary,
LibSVM chose to use the simpler CSV file format.

• Label information: In order to use an MLD, knowing how many labels there are
or which are the names of the attributes acting as labels is essential. MULAN
datasets provide the label names in a separate XML file. KEEL datasets include
in the ARFF header the set of output attributes. MEKA datasets indicate in the
header, along with the name of the relation, the number of labels.

• Label location: Although multilabel formats providing label names could locate
the attributes acting as labels at any position in the MLD, they usually put them at
the end, after all the input attributes. This is the case for MULAN and KEEL. On
the other hand, MEKA and LibSVM always arrange the labels at the beginning.
Knowing the number of labels, the location allows to get the proper attribute names
without needing to include them in the ARFF header or providing an XML file.

• Sparse versus non-sparse: There areMLDs that have thousands of input attributes
plus thousands of labels. Therefore, each data row (instance) consists of a long
sequence of values. Many of them could be zero, since labels can only take two
values and the same is also applicable to many input attributes. In these cases,
the MLD will be a large array, with thousands of columns and maybe rows, with
zeroes in most of its values. To avoid storage and memory wasting, these MLDs
are usually stored as sparse data. The rows in a sparse MLD are composed of
comma-separated pairs of values. In each pair, the first value indicates the index
of the attribute, while the second provides the actual value. In non-sparse MLDs,
each row will contain the same number of columns, having the values for each
attribute.

When some experiment is going to be conducted using a set of MLDs, the user
has to choose between converting all of them to the proper file format, suitable for
the tool to be used later to conduct the experiment, or being limited to only use those
MLDs which are already available in this file format.

9.2.2 Multilabel Data Repositories

When it comes to multilabel data gathering, there are several alternatives to choose
from. Custom MLDs can be produced for specific fields where multilabel data are
still not available. Alternately, existing MLDs produced by someone else can be
obtained from several repositories, as long as they suit the faced task needs. The
option to generate these MLDs synthetically, by means of some software tools, is
another potential choice. This section will look into the second approach.
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Multilabel data repositories provide a convenient way to obtain MLDs that other
researchers have built and used in their studies. It is an approach that allows to
compare different strategies against the same data. Nonetheless, only full datasets
are available some times. Few of these repositories also provide citation information.
Therefore, the user usually has to download the MLD, partition it, and search for the
proper bibliographic entry.

The following are among the best-known multilabel data repositories. For each
one, the file format of the MLDs is also indicated:

• MULAN: MULAN [1] is a reference multilabel software tool (it will be further
described), and its associated repository [6] is probably the most used resource by
researchers in this field. The MLDs are provided in the ARFF format. The labels
are usually located at the end of the attribute list, and each MLD is linked to an
XML file containing the label names and their hierarchical relationship if it exists.
Currently, this repository holds 27 MLDs,2 some of them with prebuilt partitions.

• MEKA: MEKA is a multilabel tool based on WEKA. As MULAN, it brings
reference implementations for several methods, as will be shown later. TheMEKA
repository [2] supplies 15 MLDs. Some of them are the same found in MULAN,
but using the MEKA file format. This is also ARFF-based, but the labels always
appear at the beginning of the attribute list. There are no separate XML file with
label names, but the number of labels in theMLD is indicated in the ARFF header,
as a parameter of the relation name.

• LibSVM: LibSVM [3] is a popular software library for SVMs. There are many
classification algorithms, including some multilabel ones, build upon LibSVM.
The associated data repository [7] includes 8 MLDs. In this case, the file format
is CSV-based instead of ARFF-based, but the attribute values are given according
to the sparse representation previously described. The labels are always put at
the beginning of each instance. There is no associated XML file nor any header
indicating the number of labels or their names.

• KEEL: Unlike MULAN and MEKA, KEEL [4] is a general-purpose data mining
application, similar to WEKA. This software tool has an extensive data repository
with different kinds of datasets, including 16 MLDs [8]. The file format is ARFF-
based, indicating in the attribute list which features act as labels.

• RUMDR: The R Universal Multilabel Dataset Repository [5] is associated with
an R package named mldr.datasets [9] (it will be portrayed in the following sub-
section). Currently, this is the most extensive multilabel data repository, providing
more than 60 MLDs. These can be directly downloaded from the repository in R
file format; thus, they are designed to be loaded fromR. The functions provided by
the package allow to export them from this native format to several ones, including
MULAN, MEKA, LibSVM, and CSV.

2The number of MLDs provided by each repository has been checked as of April 2016.
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• Extreme Classification Repository: This repository [10] only provides 9 MLDs,
all of them sharing a specific characteristic: They have a huge list of input features,
output labels, or both. There are MLDs with more than one million attributes,
aimed to test solutions for extreme multilabel classification. The file format is
a combination of CSV for label indexes, always at the beginning, and sparse
representation for input attributes, with a one-line header indicating the number
of instances, features, and labels.

These data repositories offer an immediate solution to the user which needs some
MLDs, as long as the file format is appropriate and a tool to partition the data are
at hand. However, this is not always the case. Depending on the tool being used to
conduct the experiments, the MLDs may have to be transformed to other file format
and properly partitioned. Some of these needs can be addressed by means of the
software package described below.

9.2.3 The mldr.datasets Package

When it comes to data exploration, analysis, and mining, R [11] is a very popu-
lar tool/language due to its extensive package list. One of these packages, named
mldr.datasets [9], is specifically designed to aid the user in the tasks of obtaining,
partitioning, converting, and exporting multilabel datasets. mldr.datasets is tied to
the aforementioned RUMDR repository.

The mldr.datasets is available at CRAN (Comprehensive R Archive Network),
the distributed network providing most R packages. Therefore, it can be
downloaded and installed from any up-to-date R version by simply issuing the con-
sole theinstall.packages("mldr.datasets") command.Once installed,
the package has to be loaded into memory with the usual library(mldr.
datasets) command.Thiswill bring to theRworkspace tenmedium-sizedMLDs,
along with the functions needed to access many more and to manipulate them. The
preloaded MLDs are those stored in the data folder of the RUMDR repository.

In the following, how to use the mldr.datasets to accomplish some basic tasks
over MLDs is explained, assuming the package is already installed and loaded into
memory.

9.2.3.1 Loading Available MLDs

After loading the package, the user can know which MLDs are available using the
usual data() function, passing the name of the package as parameter. These are the
MLDs brought to memory by loading the package, but there are manymore available
on the RUMDR repository. A list of these is returned by the mldrs() function, as
shown in Fig. 9.1.
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Fig. 9.1 Looking at the available MLDs in the mldr.datasets package

To load any of the available MLDs, all the user has to do is typing in the R
console its name followed by empty parentheses. The packagewill checkwhether the
requested MLD is locally available into the user’s computer, loading it into memory
if this is the case. On the contrary, the MLD will be automatically downloaded from
the RUMDR repository, stored in the local machine, and then loaded into memory,
without needing any user intervention.

9.2.3.2 Exploring Loaded MLDs

The MLDs supplied by the mldr.datasets package are mldr objects. It is the object
format defined by the mldr package, further addressed in this chapter. These objects
have several members containing data helpful to explore the MLD structure, such as
the names and frequencies of labels and labelsets and domains of input attributes.
To access any of these members, the dataset$member syntax will be used, as
depicted in Fig. 9.2.

The multilabel data are stored into the dataset member. This is a standard R
data.frame; therefore, the usual R syntax to access any of its columns and rows
is used. The measures() function returns a list of characterization metrics, such
as the number of instances, features, and labels, imbalance levels, and theoretical
complexity level.
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Fig. 9.2 The mldr objects have several members with disparate information

9.2.3.3 Obtaining Citation Information

When anMLD produced by any third party is going to be used in a new study, includ-
ing the proper citation to give the original author, the correct attribution is mandatory.
Obtaining the precise citation information is not always easy. Themldr.datasets pack-
age includes a custom version of the R’s toBibtex() function whose goal is to
provide the BibTeX entry associated with any mldr object.

The value returned by the toBibtex() function is properly formatted to copy
it to the clipboard and then pasting it in the user’s BibTeX editor. As demonstrated
in Fig. 9.3, it can also be printed to the console.

9.2.3.4 Partitioning the MLDs

Although partitioned MLDs can be obtained from some repositories, this is not
always the case. Furthermore, the number of partitions or their proportions could be
not adequate for the user needs. Themldr.datasets package contributes two functions,
named random.kfolds() and stratified.kfolds(), whose goal is to
partition any mldr object into the number of desired parts. The difference between
these two functions relies on the approach followed to choose the instances included
in each partition. The former does it randomly, while the latter stratifies the data
trying to balance the label distribution among partitions.

Both functions need the mldr object to be partitioned as their first argument.
Additionally, they can take two more parameters specifying the number of folds, it
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Fig. 9.3 Obtaining the BibTeX entry to cite the MLD

Fig. 9.4 An MLD being partitioned using random and stratified approaches

is 5 by default, and the seed for the random generator. The result returned by these
functions is a list containing as many elements as folds have been indicated. Each
one of these elements is made up of two members, called train and test, with
the corresponding data partitions.

The example code shown in Fig. 9.4 demonstrates how to use these two functions,
as well as how to access the training partition of the first fold. The summary()
function prints a summary of characterization metrics, allowing to compare how the
different partitioning approach has influenced the obtained partition.

9.2.3.5 Converting MLDs to Other Formats

Although R is a tool from which the MLDs provided by mldr.datasets can be used
with disparate machine learning algorithms, currently software packages such as
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MULAN and MEKA are preferred, due to the large prebuilt set of MLC algorithms
they incorporate.

The file format of MLDs provided by RUMDR is the R native object format.
Nonetheless, once they have been loaded into R, it is possible to convert them
to several other file formats. For doing so, the write.mldr() function of the
mldr.datasets package has to be called.

The write.mldr() function accepts as first argument an mldr object, con-
taining the MLD to be written to a file. It is also able to deal with a list as the one
returned by the partitioning functions described above, writing each training and test
fold to a different file. This is the only mandatory parameter, and the remaining ones
take default values.

As second argument, the write.mldr() function takes a vector of strings
stating the file formats the data are going to be exported to. Valid formats are MULAN,
MEKA, KEEL, LIBSVM, and CSV. The default value is c("MULAN," "MEKA"),
being these the two most popular multilabel file formats. If the MULAN format is
chosen, the function will also write the corresponding XML file for the MLD. For
the CSV format, an additional CSV file containing a list with label names is also
created.

The third parameter has to be a boolean value, indicating if sparse representation
has to be used towrite the data. By default, it takes theFALSE value, so the non-sparse
format is chosen unless otherwise specified.

Lastly, the fourth argument sets the base filename the write.mldr() function
will use to name the written files. This filename will be followed by a set of numbers,
stating the fold and total number of folds, if the first parameter is a list of mldr
objects.

The write.mldr() function can be combined with the previously described
partitioning functions, as shown in Fig. 9.5. In this example, the yeast MLD is being
partitioned into fivefolds, and then, the resulting partitions are written in MEKA and
CSV file formats.

Fig. 9.5 Partitioning and exporting an MLD to MEKA and CSV file formats
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Since due to its link to the RUMDR repository, most of the MLDs publicly avail-
able nowadays can be downloaded and then properly cited, partitioned, and exported
to the common file formats, the mldr.datasets package can be the most convenient
way of dealing with existent MLDs.

9.2.4 Generating Synthetic MLDs

The MLDs provided in the previous repositories have been generated from real data
coming from different domains, as was explained in Chap.3. However, sometimes
having MLDs with very definite traits would be desirable, for instance while ana-
lyzing the behavior of algorithms aimed to solve a very specific problem. In order
to produce these kinds of data, an appropriate algorithm has to be designed, usually
including a mathematical method to correlate the inputs with the outputs.

In [12], such an algorithm, which offers two different approaches based on hyper-
cubes and hyperspheres, is presented. The associated synthetic dataset generator for
multilabel learning is available online, as a Web application (see Fig. 9.6). It allows
the user to choose among the two strategies for generating instances, as well as to
indicate how many features, labels, and instances the MLD will have, the noise level
to add to the data, and other handful of configuration parameters. Once all of them
have been set, the resulting dataset characteristics are shown and the file can be
downloaded.

Mldatagen is a quite generic multilabel data generator. In the multilabel litera-
ture, some authors have created their own synthetic MLDs following more ad hoc
approaches, adapted to suit specific goals. References to several of them can be found
in [13].

Multilabel datasets are scattered through a collection of data repositories using
disparate file formats. Once we know how to get these datasets and which are
the file formats they use, a software tool such as the described mldr.datasets
package is all we need to cite, partition, and export all MLDs in the proper
format for the experiments we intend to do.

9.3 Exploratory Analysis of MLDs

The Web repositories where the MLDs are downloaded from, such as the previously
mentioned MULAN and MEKA, usually also supply some basic information about
the datasets. The number of instances, input attributes, and labels, along with label
cardinality and sometimes label density, are common metadata. However, before
using these MLDs to conduct some experiments, most users will demand additional
details. Those will be generally obtained by means of exploratory analysis tasks,
including summarizing at different levels and visualizing the data.

http://dx.doi.org/10.1007/978-3-319-41111-8_3
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Fig. 9.6 The Mldatagen tool allows creating custom synthetic MLDs

As long as the structure of each multilabel file format is adequately decoded, any
generic data manipulation tool could be used to explore theMLDs. Nevertheless, this
section is focused on interactive software tools specifically built to work with multi-
label data. Two particular tools in this category are described below, MEKA and the
mldr package. Both provide some EDA (Exploratory Data Analysis) functionality.

9.3.1 MEKA

MEKA is a software tool built upon WEKA, and it brings a similar user interface to
this popular application but withmultilabel capabilities. MEKA is developed in Java;
therefore, to use it, the first requirement to meet is having the Java Runtime Envi-
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Fig. 9.7 The MEKA main
window allows the user to
open several tools. The
Explorer lets open and
explore MEKA datasets, as
well as to interactively
perform experiments with
them

ronment (JRE) installed in the system. Then, the most recent version of MEKA can
be downloaded from https://adams.cms.waikato.ac.nz/snapshots/meka. The instal-
lation process is just extracting the files of the compressed file to a folder.

In addition to the software itself, the MEKA compressed file also includes a PDF
document with a tutorial and some example data files. Two scripts, one for Windows
(run.bat) and another one for UNIX-based systems run.sh, aimed to ease the
launch of the software are provided as well.

LaunchingMEKA through the proper scriptwill open the program’smainwindow
(see Fig. 9.7). The options in the Tools menu run the essential MEKA tools. Some
of them are depicted below.

9.3.1.1 The ARFF Viewer

MEKA includes a viewer able to open any ARFF file, enumerating its attributes,
including the labels, and the values assigned to them. Once a dataset has been loaded,
its content is shown in a grid like the one in Fig. 9.8. The Properties option in the File

Fig. 9.8 The MEKA ARFF viewer allows viewing and editing any ARFF dataset contents

https://adams.cms.waikato.ac.nz/snapshots/meka
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menu will report the number of instances, attributes, and classes. This is a generic
ARFF tool, so it is not aware of the multilabel nature of the data.

Actually, this tool is also an editor, since the values can be changed, instances
and attributes can be removed, and the order of the data samples can be modified.
Any change will be lost unless the data in memory are saved, usually with a different
filename.

9.3.1.2 Attribute Exploration

The other exploration tool embedded in MEKA is the MEKA Explorer, accessi-
ble through the Tool→Explorer option in the main window. This tool is aimed to
interactively test preprocessing and classification algorithms, but it also has some
exploration capabilities.

After loading anMLD, the Preprocess page will show two lists containing all the
attributes in the dataset (see Fig. 9.9). At the top of the left list, there is a summary
with the number of instances and attributes. If the MLD has been loaded from a file
in MEKA format, the program will automatically detect which attributes are labels.
These will be highlighted in bold and always will be at the beginning in both lists.
LoadingMLDs from other ARFF-based file formats is allowed, but the program will
be not able to identify the labels. The user has to mark them in the right list and then

Fig. 9.9 The Preprocess page allows to explore the attributes and labels in the MLD
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Fig. 9.10 Pairwise scatter plots for the attributes in the MLD

click the Use class attributes. By selecting any attribute in the left list, a summary
of its domain will be displayed below the right list.

The Visualize page in this tool provides a matrix of scatter plots (see Fig. 9.10),
each one showing the relationship between a pair of attributes. The controls at the
bottom can be used to configure these plots, change their size, sample the instances
appearing in them, etc. By clicking any of the plots, a bigger version will be opened
in a separate window, with additional controls to customize it. The plot can be saved
to a file.

Basically, these are all the exploratory analysis functions offered by MEKA. As
can be seen, they are mostly applicable to both traditional and multilabel datasets.
There is a lack of information about how the labels are distributed and correlated,
which labelsets and other specific multilabel measurements exist.

9.3.2 The mldr Package

Unlike MEKA, which can be considered as a general-purpose multilabel software,
the R mldr [14] package has been precisely developed as a multilabel exploratory
analysis tool. This package is also available at CRAN, like the previously described
mldr.datasets package, so it can be installed in the same way. There are not
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dependencies between the two packages. That means that mldr can be used without
installing mldr.datasets and vice versa. Nonetheless, mldr can take advantage of hav-
ing all the MLDs included in the mldr.datasets package, as well as their functions to
partition and export them.

The mldr package is able to load MLDs from MULAN and MEKA file formats,
as well as to generate new MLDs on the fly from data synthetically generated or
providedby theuser in adata.frame. Thepackagedefines a custom representation
for multilabel data. The MLDs are R S3 objects with mldr class. This is the same
representation used by the MLDs in the mldr.datasets package, and hence, these
datasets are compatible with mldr.

Inside the mldr package, a plethora of characterization metrics are computed,
alongwith a set of functions aimed to ease the analysis of multilabel data. In addition,
the package provides a Web-based user interface to speed up exploratory tasks,
including specific graphic representations of the data.

In this section, the procedures to accomplish different exploratory duties using
the mldr package are explained. It is assumed the user has installed the package, by
issuing the install.packages("mldr") command at the R console, and it is
loaded into memory, by typing the library(mldr) command.

9.3.2.1 Loading and Creating MLDs

After loading the mldr package, three mldr objects will be already available. These
correspond to the birds, emotions, and genbaseMLDs. If the mldr.datasets is
also loaded, all the MLDs provided by it will be accessible as well. To load any other
MLD, assuming it is stored in an ARFF file using the MEKA or MULAN formats,
the mldr() function has to be called. The only mandatory argument is the filename
without extension. The function will assume the MLD is in MULAN file format
and the existence of an XML file with the same name. Additional parameters can
be supplied to change this default behavior, stating the XML filename, the number,
indexes, or names of the attributes acting as labels if there are not an XML file
available nor this information is provided in the ARFF header, etc.

The mldr() function always checks whether the mldr.datasets package is
installed in the system. If this is the case, the function entrusts the loading of theMLD
to the proper mldr.datasets function. To avoid this functionality, forcing the loading
from a local file, the force_read_from_file parameter has to be included in
the call to mldr(), assigning it the TRUE value.

In Fig. 9.11, a use case of the mldr() function is shown. In this example, the
name of the XMLfile does not coincide with the ARFF filename, so it is explicitly set
by means of the xml_file parameter. Once the MLD has been loaded, the object
can be queried to obtain some dataset traits as demonstrated.

Furthermore, new MLDs can be created from any existing data, whether it is
from a real domain or produced by any formula. This functionality, provided by
the mldr_from_dataframe() function, allows creating synthetic MLDs. This
function needs as inputs a data.frame containing all the features, a vector stating
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Fig. 9.11 Loading an MLD from an external ARFF file

Fig. 9.12 New MLDs can be generated on the fly from any formula

which ones of them will be labels, and optionally a name to assign to the new MLD.
The result, as is shown in Fig. 9.12, is an mldr object that can be used as any other
MLD.

9.3.2.2 Querying Data Characterization Metrics

Independently of the origin of the MLD’s data, all mldr objects have the same
structure and can be processed with the same set of functions. Many of these are
aimed to compute and provide several characterization metrics. The supplied metrics
can be grouped into four categories:
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Fig. 9.13 A large set of traits are computed for each MLD

• Basic traits: The number of instances, number of input attributes, number of output
labels, and number of labelsets are in this group. All of them can be queried with
the syntax mldrobject$measures$num.XXX. The summary() function
also returns this information.

• Label distribution data: Metrics such as label cardinality, label density, and
the frequency of each individual label are available through the measures and
labels members, as demonstrated in Fig. 9.13.

• Label relationship metrics: The relationships among the labels in the dataset
can be inspected through metrics such as the total number of unique labelsets
(measures$num.labelsets) in the MLD, the number of single labelsets
(measures$num.single.labelsets), and analyzing the values for the
global and by label SCUMBLE measures (measures$scumble and labels
$SCUMBLE).

• Metrics related to label imbalance: The individual imbalance level for each label
is provided by the labels$IRLblmember. The average imbalance level for the
MLD can be obtained through the measures$meanIR member.

Additional information about the MLD is provided in the members of the mldr
object such as labelsets (signature and counter of each labelset in the MLD),
attributes (name and domain of each attribute), and measures$tcs (the
theoretical complexity score of the MLD). All of them are properly documented in
the electronic help included in the package.
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yeast − Labels per instance histogram
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Fig. 9.14 Number of labels per instance histogram

9.3.2.3 mldr Custom Plots

The mldr package delivers a custom plot() function for mldr objects, able to
produce seven specific plots from the data contained in those objects. The arguments
to this function are usually two, the mldr object to analyze and the type parameter
specifyingwhat type of plot is desired. Some kinds of visualizations accept additional
parameters, for instance to restrict the set of plotted labels.

Three of the custom plots are histograms designed to depict how labels and
labelsets are distributed among the instances. The one shown in Fig. 9.14 is pro-
duced by the plot(yeast, type = "CH") call, showing the distribution of
label cardinality among the instances. The yeast dataset has aCard value of 4.223.
That most instances have four labels can be observed in this plot.

Two more of the available types, "LB" and "LSB," are bar plots depicting how
many instances each label and labelset appear. This way, the differences between
frequencies of labels and labelsets can be explored. For instance, Fig. 9.15 shows
that there are two majority labels (Class12 and Class13) and several minority
labels (Class14 and Class9 to Class11).

Another kind of plot is denoted as "AT." It is a regular pie chart showing the
proportion of each type of features, continuous, nominal, and labels. The seventh
visualization option is the one generated by default when the type argument is
not provided. It is a circular plot like the one described in Chap. 8 (see Fig. 9.16),
illustrating how the labels interact among them. This kind of plot, as well as those
presenting label frequencies, accepts the optional parameters labelCount and
labelIndices, whose goal is to restrict the set of drawn labels. All plot types
also take other optional arguments, such as title to set the title of the plot and col
to set the color, or the standard graphical parameters usually given to R functions
such as barplot() and hist().

http://dx.doi.org/10.1007/978-3-319-41111-8_8
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Fig. 9.15 The differences among label frequencies are easily inferred in this bar plot

9.3.2.4 Automated Reports

The mldr package includes some functions able to generate reports by means of
automated analysis of the label measurements. The functions in charge of producing
these reports only need the mldr object to be analyzed as argument. The resulting
report is printed to the console.

With the labelInteractions() function, an analysis of which labels are in
minority and how they interact with others is generated. The reported result includes
the indexes of the minority labels, at the beginning, and for each one of them the
list of labels they have interactions with, along with the number of samples in which
they appear together (see Fig. 9.17).

The second report is produced by the concurrenceReport() function. As its
name suggests, the report analyzes the concurrence among labels, but in a more elab-
orated way than the labelInteractions() function. As is shown in Fig. 9.18,
the report includes the global SCUMBLE measurement and its CV, as well as SCUM-
BLE values for each individual label. For each minority label, a list of the labels it
interacts with is also provided, including label names and indexes, the number of
times they appear together, and their respective SCUMBLE values.

The information given by these functions can be useful in different scenarios. For
instance, the indexes of minority labels and the labels they interact with would be
convenient to customize the interaction plot previously described.
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Fig. 9.16 Label interactions in the yeast MLD

9.3.2.5 The mldr User Interface

All the exploratory functions in themldr package are accessible through the command
line, so that R scripts can be written to perform reproducible analysis procedures.
However, all the functionality already described is also reachable through the inte-
grated GUI. To open it, the user has to enter the mldrGUI() sentence. The GUI
will be launched inside the default Web browser, consisting of several sections.

Just after the GUI has been launched, the main section is shown and the first MLD
available in the working environment is selected. The name of the active MLD is
always shown at the top of the GUI. A panel in this section (see Fig. 9.19) allows the
user to choose from the loaded MLDs, as well as to load any others from their files.
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Fig. 9.17 Report about how minority labels interact with other labels

Fig. 9.18 Report about concurrence of labels in the MLD

A visual summary of the selected MLD is provided at the right, in the same section,
including plots that show the proportion of each kind of attributes and how labels
and labelsets are distributed. These plots can be saved for further use, for instance
including them in any study.
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Fig. 9.19 Main page of mldr’s GUI

The tabs located at the top of the user interface, below the selectedMLDname, are
the doors to the otherGUI sections. TheLabels andLabelsets pages are quite similar.
Both provide a table with names and frequencies, as well as the associated bar plot.
The labels table includes additional data, such as the feature index, imbalance levels,
and concurrence levels. These tables can be sorted and filtered, and their content can
be printed and exported, as is shown in Fig. 9.20.

In the Attributes page, the domain of each input attribute is summarized. The
frequency of each value is computed for nominal attributes, while for numeric ones,
some statistical measures are computed (see Fig. 9.21).

By opening the Concurrence section, the user can access a concurrence analysis
report, along with a customizable circular plot. The labels presented in it can be inter-



9.3 Exploratory Analysis of MLDs 175

Fig. 9.20 Table with all the labelsets and their frequencies and the corresponding plot

Fig. 9.21 The Attributes page provides a summary of each attribute domain
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Fig. 9.22 The concurrence report along with the customizable interaction plot

actively selected, updating the visualization until the desired result is achieved. The
report is based on the concurrence and imbalance metrics, indicating which minority
labels have high interactions and which labels interact with others (Fig. 9.22).

Overall, the exploratory functions and GUI of the mldr package supply the user
with an extensive range of useful information. In addition, the GUI allows customiz-
ing the tables and plots, and then exporting them, easing the process of documenting
any report or study.

9.3.2.6 Other mldr Functions

In addition to the exploratory analysis functionality, the mldr package also offers the
user functions to transform and filter the MLDs, as well as to evaluate the predictive
performance from the outputs obtained by any classifier. Some of these functions are
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Fig. 9.23 Filtering data instances and joining two subsets

implemented as operators, preserving the natural syntax used in the R language to
accomplish similar operations.

By means of the == and + operators, two mldr objects can be compared and
combined. TwoMLDs are equal as long as they have the same structure and content.
To join twoMLDs, they have to be structurally identical. With the [],3 the instances
in the MLD can be filtered according to any valid expression. An example on how
to use the latter operator to get the samples in which a certain label appears is shown
in Fig. 9.23. The result returned by the operator is also an mldr object; thus, it can
be used as any other mldr dataset. The same is applicable to the + operator.

The basic BR and LP multilabel data transformations can be applied to any mldr
object through the mldr_transform() function. The only arguments needed
are the MLD to transform and the type parameter indicating which transformation
to apply. The valid values are "BR" and "LP." Optionally, a third parameter can
be given stating the labels to use. This way, the transformation can be limited to
a subset of labels. The value returned by this function will depend on the kind of
transformation requested. ForBR, itwill be a listwith asmanydata.frame objects
as labels, each containing a binary dataset. For LP, only a data.frame is produced
as output.

As is shown in Fig. 9.24, a column named classLabel is introduced in the
data.frame instead of the original labels. This way, the resulting data.frame
can be used with any of the binary or multiclass classifiers available in R, using
classLabel as the class to predict.

Although themldr package does not provide anymultilabel classifier, a function to
evaluate predictions obtained by any other means is supplied. This function, named
mldr_evaluate(), takes two arguments, the mldr object with the instances

3The [] operator defined in the mldr package is designed to work with mldr objects only. The
standard [] R operator can be used over the mldr$dataset member to manipulate the raw
multilabel data.
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Fig. 9.24 The mldr package provides a function to perform the usual BR and LP transformations

being assessed and the predictions obtained for them. The function returns a list
containing about twenty performance metrics (see Fig. 9.25), along with an object
containing all the data needed to plot the ROC curve. The example shown in Fig. 9.25
generates random predictions for all the labels in the yeast dataset and then evaluates
the performance. As expected, the accuracy of this random classifier is around 50%.

Fig. 9.25 If a set of predictions is available, the performance of the classifier can be assessed
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Exploratory analysis is a fundamental step to understand the data we are work-
ing on, providing the necessary knowledge to decide which preprocessing and
learning methods should be applied. MEKA offers a GUI with some gen-
eral tools, based on the popular WEKA. On the other hand, the mldr package
delivers a plethora of specific multilabel metrics, plots, and reports, along with
several functions to manipulate these kinds of data.

9.4 Conducting Multilabel Experiments

Once the user has learned what the structure of their MLDs is, how labels are distrib-
uted and correlated, etc., it is time to conduct some experiments using the multilabel
data. This goal can imply applying some preprocessing method to the data, train a
classifier using it, obtain predictions for the test set, and eventually evaluate these
predictions to assess the performance.

Several software tools andpackages for different languages are available to accom-
plish these tasks.However, there are two applications that stand out among everything
else, MEKA and MULAN. Both have been developed by experts on the multilabel
field, and they provide reference implementations for a large variety of MLC algo-
rithms.

In this final section, how to use MEKA and MULAN to run simple multilabel
experiments is explained. Although the former tool can be used from the command
line, it is supplied with a GUI which eases the user’s work. On the contrary, the
latter only is accessible programmatically, as will be later shown. Furthermore, both
software packages have been programmed in Java language, so that the latest JRE
installed in the system is assumed.

9.4.1 MEKA

The MEKA user interface was previously introduced. Specifically, the tool known
as MEKA Explorer was used to make some exploratory analysis on the data. This
section starts from this earlier knowledge, firstly describing how to conduct interac-
tive experiments and then designing more complex ones.

9.4.1.1 Running Experiments Interactively

The Classify page on this application allows the user to choose among an extensive
list of classifiers, training them with the loaded MLD and evaluating them following
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Fig. 9.26 The MEKA Explorer allows the user to run any classifier interactively

several validation strategies. The first step is to load the MLD of interest. Then, by
means of the Choose button in the Classify page, the classifier is selected, setting
its parameters as desired. The drop-down list in the Evaluation section configures
the validation scheme.

Once the experiment has been configured, it will be run by clicking the Start
button. As soon as it finishes displaying a summary of results, as is shown in Fig. 9.26.
Each experiment execution is independently stored in the History list, so the user
can compare the results produced in each case.

The pop-up menu associated with the items in theHistory list can be used to save
the obtained results, delete the experiment, copy its parameters, and show several
performance evaluation plots. This menu appears opened in Fig. 9.26. By selecting
the Show ROC option, a new window like the one shown in Fig. 9.27 is opened. It
contains several pages, one per label, each one with the ROC plot.

Overall, the MEKA Explorer offers the user with a very simple way to run indi-
vidual experiments. However, they are limited to using one MLC algorithm over one
MLD.
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Fig. 9.27 The ROC curve for the selected experiment is shown in a window in its own

9.4.1.2 Designing Complex Experiments

Though running individual MLC algorithms with one MLD can be useful many
times, for instance while analyzing the algorithm behavior, a real multilabel experi-
mentation usually implies applying several methods to a group ofMLDs. TheMEKA
Experimenter, another tool accessible from theMEKAmain window, better suits this
kind of job. As the MEKA Explorer, the Experimenter user interface also consists of
several pages. The first one is where the user will design the experiment, fulfilling
the following steps:

1. Adding the MLC algorithms to be used to the left list. The buttons at the right of
this list allow the user to add and remove methods, configure them, and change
the order they will be run.

2. Adding the MLDs which the algorithms will be applied to the right list. The
buttons at the right of this list are similar to the previous ones.

3. Configuring how many times the experiment will be run, as well as how the
results will be evaluated. For instance, in Fig. 9.28, a configuration with 10-fold
cross-validation and 10 repetitions has been established.

4. Launching the experimentation by choosing the Start options in the Execution
menu. Previously, all the configuration can be saved.
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Fig. 9.28 The MEKA Experimenter is able to run several classifiers using disparate MLDs

Once the batch of runs defined in the experimentation finishes, the obtained evalu-
ation results can be analyzed through the options in the Statistics page of the MEKA
Experimenter. An extensive set of performance metrics is provided, and they can
be viewed separately or aggregating them. For instance, it is possible to choose a
specific metric and get the average values for each algorithm and dataset. This way,
a comparative study can be easily performed.

The results produced by the experiments can be also written to a file, whether
the user is interested in raw or aggregated data. As shown in Fig. 9.29, the options
relating to exporting functions can be found in the Statistics menu.

9.4.2 MULAN

As MEKA, MULAN [1] is a multilabel software framework built on top of WEKA.
However, it does not bring the user with a GUI. All the tasks have to be accomplished
by writing Java code. Therefore, some experience with this programming language
is essential. In addition to the aforementioned JRE, to use MULAN the Java Devel-
opment Kit (JDK) is also needed. The JDK contains the compiler, among other Java
tools and utilities.



9.4 Conducting Multilabel Experiments 183

Fig. 9.29 The experimental results can be viewed in MEKA Experimenter and exported to a file

In this section, the procedures to design a multilabel experiment using MULAN
are briefly described. Additional example code can be found both in the MULAN
Web site (http://mulan.sourceforge.net) and in this book’s GitHub repository.

9.4.2.1 Obtaining MULAN

The first step of a MULAN user is obtaining the software itself. The last version
can be downloaded from http://mulan.sourceforge.net/download.html as a single
compressed file. After decompressing it, a folder named mulan will be found, con-
taining the folders and files shown in Fig. 9.30. Nearly all the folder names are
self-explanatory. The Java JAR package holding the MULAN classes is in the dist
folder, while the WEKA package needed to run MULAN is provided in the lib
folder.

9.4.2.2 Compiling a MULAN Experiment

Once MULAN is installed in the user system, to conduct any experiment a Java
source file has to be created. It will contain all the code to load the MLDs, to select
and configure the MLC algorithms to run, to evaluate the obtained results, etc. These
tasks imply using someMULAN classes; therefore, the proper dependencies have to
be imported at the beginning of the source code. Assuming the user needs to load an
MLD and wants to use the ML-kNN classifier, the following sentences will import
the corresponding classes:

http://mulan.sourceforge.net
http://mulan.sourceforge.net/download.html
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Fig. 9.30 The MULAN software packages include source code, example data files, and documen-
tation

import mulan.data.MultiLabelInstances;

import mulan.classifier.lazy.MLkNN;

The way some of these MULAN classes are used is a matter which will be fur-
ther described. Considering the code is already written and stored in a file named
MulanExperiment.java, the compilation process involves calling the Java
compiler providing the path to libraries and the aforementioned filename. The exam-
ple in Fig. 9.31 shows a GNU/Linux terminal with the command line used to com-
pile this hypothetical program. After compilation, a .class file with the compiled
version is generated. To run this program, a similar command would be used, but
changing javac for java.

Fig. 9.31 To compile a MULAN program, the paths to the mulan.jar and weka.jar files have to be
provided
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9.4.2.3 Loading Data Files

The MultiLabelInstances class is able to load a set of multilabel instances
from a file. This class constructor usually is given two parameters, the path of the
ARFF file and the path of the associated XML file. Other ways to obtain the data
are considered, for instance from existing WEKA data samples and an array stating
which ones are labels.

An initialized MultiLabelInstances object can be passed as argument to
different methods. It also offers several functions which return data traits, such as
the number of instances or labels, and label cardinality.

Assuming the user is working in the mulan folder, so a data subfolder with
some example data is available, and the code belowwill load the emotions dataset and
then print the number of instances and labels and the label cardinality. Figure9.32
shows how the program is compiled and executed.

import mulan.data.MultiLabelInstances;

public class MulanExperiment {

public static void main(String[] args)

throws Exception {

MultiLabelInstances emotions =

new MultiLabelInstances("data/emotions.arff",

"data/emotions.xml");

System.out.println(

"\nInstances:" + emotions.getNumInstances() +

"\nLabels:" + emotions.getNumLabels() +

"\nCardinality:" + emotions.getCardinality());

}

}

Fig. 9.32 The program loads the MLD and outputs some data about it to the console
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The name of the files to load could obviously be supplied in the command line,
instead of being hardwired in the Java code as in this simple example.

9.4.2.4 Configuring MLC Algorithms

Once the data are already in a MultiLabelInstances object, the next step
is to configure the MLC algorithms this object is going to be given as input.
MULAN provides a large set of classification algorithms, they are held in the
mulan.classifier namespace, and some partitioning and preprocessing meth-
ods spread out several namespaces. All of them can be easily found in the electronic
help of the program.

Many of the algorithms included in MULAN can work using default values, so
the corresponding object is created without needing any parameters. For instance, to
work with the ML-kNN algorithm (see Chap.5), all the user has to do is to create an
MLkNN object, as follows:

MLkNN kNNClassifier = new MLkNN();

To change the default values for the algorithm, a different constructor accepting
them should be called. Other classifiers, such as the ones based on transformation
methods, always need at least one parameter, specifically the base binary ormulticlass
method to be used as underlying classifier. Any classifier available as a WEKA class
can be in charge of this task.

The following sentences would create two classifier instances. The first one is
ML-kNN with 5 nearest neighbors, while the second one is a BR transformation
using the standard C4.54 algorithm as base classifier. The last sentence prints in the
standard output the basic information about the ML-kNN algorithm.

MLkNN kNNClassifier = new MLkNN(5, 1);

BinaryRelevance BRClassifier =

new BinaryRelevance(new J48());

System.out.println(

"\nkNNClassifier:" +

kNNClassifier.getTechnicalInformation().toString());

}

9.4.2.5 Training and Evaluating the Classifier

MULAN has a class named Evaluator able to take a full dataset, partition it, and
conduct a cross-validation evaluation. The method to accomplish the full procedure

4The C4.5 algorithm is implemented in WEKA by the J48 class.

http://dx.doi.org/10.1007/978-3-319-41111-8_5
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Fig. 9.33 Partial output produced by printing the information returned by crossValidate()

is crossValidate(), and it needs three parameters: the classification model, the
dataset, and the number of folds to be used.

Assuming theproper namespaces havebeen imported and theemotionsvariable
is a MultiLabelInstances object with theMLD, the following sentence would
produce an output similar to that shown in Fig. 9.33. A 10-fold cross-validation
is performed using the ML-kNN algorithm, and average values for a large set of
evaluation metrics are returned.

System.out.println(

new Evaluator().crossValidate(

new MLkNN(), emotions, 10));

Instead of relying on an automated partitioning, training, and evaluation process,
the users can separately run each step on their own. The training and test parti-
tions, maybe generated by the functions in the mldr.datasets package previously
described, can be individually loaded from their files. The full dataset can be also
partitioned using the IterativeStratification class. In any case, two or
more MultiLabelInstances objects will be used.

The training of any MULAN classifier is accomplished by calling its build()
method. It needs only one argument, and the MultiLabelInstances objects
with the samples aimed to train the model. Once trained, the model can be evaluated
or used to get predictions for new instances. The former task is handled by the
evaluate() method of the Evaluator class, taking as input the model and the
test instances. The latter is in charge of the makePrediction() method of the
model itself. It takes a MultiLabelInstance object as input, with the instance
the prediction is aimed for.
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Table 9.1 Input parameters for the RunMLClassifier utility

Name Description Example

-path Establishes the path where the data
files are located

-path ∼/data

-dataset Indicates the root name shared by all
the dataset partitions. Training files
have to be named as
MLD-strategy-Ntra.arff,
while test files will be
MLD-strategy-Ntst.arff. The
strategy part can be any user
identifier for the partitioning strategy.
N will be a sequential partition
number. That an XML file with the
name MLD.xml file is also in the
folder is assumed

-dataset emotions-10cv

-folds Sets the number of folds to iterate.
The N part of the dataset name will
take values from 1 to the number
specified by this argument

-folds 10

-algorithm Chooses the MLC algorithm to be
used. The list of values accepted by
this parameter is shown in Table9.2

-algorithm HOMER

-debug If included, this optional parameter
will change the output produced by
the program, increasing the
information printed to the console

-debug

9.4.3 The RunMLClassifier Utility

The main drawback in using MULAN is the need to have some Java language exper-
tise. The authors of this book provide in the companion repository an utility, named
RunMLClassifier, aimed to help users lacking this competence. It is a Java
program which eases running many of the classifiers implemented in MULAN. The
source code of this program, along the specific versions of the MULAN and WEKA
libraries and a compilation script, can be found in the RunMLClassifier folder
of the repository.

To run the RunMLClassifier program, assuming the user is located in the
same directory that the .jar file is obtained once it is compiled, the following
sentence5 has to be entered at the command line. The meaning of each parameter is
detailed in Table9.1.

java -jar RunMLClassifier.jar -path P -dataset D -folds

F -algorithm A [-debug]

5Although due to the page width limit the sentence appears in the text divided into two lines, it has
to be entered as only one.
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Table 9.2 Valid values for the -algorithm parameter of the RunMLClassifier utility

Value MULAN class instantiated as classifier

BPMLL BPMLL()

BR-J48 BinaryRelevance(new J48())

BRkNN BRkNN(10)

CC-J48 ClassifierChain(new J48())

CLR CalibratedLabelRanking(new J48())

ECC-J48 EnsembleOfClassifierChains(new J48(), 10, true, false)

EPS-J48 EnsembleOfPrunedSets(80, 10, 0.2, 2,
PrunedSets.Strategy.values()[0], 2, new J48())

HOMER HOMER(new BinaryRelevance(new J48()), (numLabels < 4 ?
numLabels : 4), Method.Random)

IBLR-ML IBLR_ML()

LP-J48 LabelPowerset(new J48())

MLkNN MLkNN(10, 1.0)

PS-J48 PrunedSets(new J48(), 2,
PrunedSets.Strategy.values()[0], 2)

RAkEL-BR RAkEL(new BinaryRelevance(new J48()))

RAkEL-LP RAkEL(new LabelPowerset(new J48()))

The utility instances each classifier using default or recommended values. As can
be seen, only one classifier can be chosen to be run over the MLD partitions. The
RunMLClassifier is designed to be launched independently, maybe in parallel,
for each algorithm the user is interested in. An example run with this utility is shown
in Fig. 9.34. Without the -debug parameter, only the final line which summarizes
the average results and standard deviations would be printed.

MEKAandMULANare the twomain frameworks to conductmultilabel exper-
iments, since they provide reference implementations of many MLC methods.
The former has a GUI which eases the design of such experiments, while the
latter only can be used while writing some code. The RunMLClassiier
utility aims to make the use of MULAN more comfortable, establishing the
methods and datasets to process through command line parameters, instead of
writing and compiling a Java program.

9.5 Summarizing Comments

Learning from multilabeled data is a quite challenging task. Datasets of this kind
come in diverse file formats and are distributed among a fewWeb repositories. Once
the data files have been obtained, they have to be imported to the learning tool, some
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Fig. 9.34 The utility trains and evaluates the MLD partitions with the specified classifier

times with a preliminary conversion step. A large set of multilabel characterization
metrics exist in the literature, most of them were described in Chap.3, and dozens
of methods have been defined to preprocess and classify multilabel data, as is shown
in Chaps. 4 to 8.

In this chapter, the Web sites from which the MLDs can be downloaded, as
well as the existing file formats, have been thoroughly detailed. Tools such as the
mldr.datasets R package, along with the RUMDR repository, can automate most of
the tasks associated with MLDs, including getting, citing, partitioning, and export-
ing them to several learning software frameworks. These MLDs can be analyzed by
means of the functionality found in MEKA and the mldr R package. Both provide
EDA tools, comprehensively explained through this chapter.

The last sectionhas been focusedon theuse of tools aimedat conductingmultilabel
experiments, specifically MEKA and MULAN. Although there are a few multilabel
algorithms implemented outside of these two frameworks, currently they are themost
prominent and widely used.
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