
Chapter 8
Imbalance in Multilabel Datasets

Abstract The frequency of class labels inmany datasets is not even. On the contrary,
that a certain class appears in a large portion of the data sampleswhile other is scarcely
represented is something quite usual. This casuistic produces a problem generically
labeled as class imbalance. Due to these differences between class distributions,
a specific need arises, imbalanced learning. This chapter beings introducing the
mentioned task in Sect. 8.1. Then, the specific aspects of imbalance in the multilabel
area are discussed in Sect. 8.2. Section8.3 explains how imbalance in MLC has been
faced, enumerating a considerable set of proposals. Some of them are experimentally
evaluated in Sect. 8.4. Lastly, Sect. 8.5 summarizes the contents.

8.1 Introduction

Learning from imbalanced data is a challenge for many classification algorithms.
Since most classifiers are designed to minimize a certain global error measurement,
when they have to deal with imbalanced data, they tend to benefit the most frequent
class. Miss-classification of rare classes does not have a great impact in the global
performance assessment conducted bymost evaluationmetrics. However, depending
on the scenario, the main interest of the task could be on correctly label these rare
patterns, instead of the most common ones.

Imbalanced learning is a well-studied problem in the binary and multiclass sce-
narios [10, 13, 16, 19, 22]. The imbalance level in binary datasets is computed as
the ratio between the most frequent or majority class and the less frequent one or
minority class. It is the so-called Imbalance Ratio (IR), later adapted to work with
multiclass datasets.

The imbalanced learning task has been faced mostly following one of three
approaches:

• Data resampling: Resampling techniques are usually implemented as a pre-
processing step, thus producing a new dataset from the original one. To balance
the class distribution, it is possible to remove instances associated with the major-
ity class or to generate new samples linked to the minority class [18]. Resam-
pling methods are mostly classifier independent, so they can be seen as a general
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134 8 Imbalance in Multilabel Datasets

solution to this problem. Nonetheless, there are also some resampling proposals
for specific classifiers.

• Algorithm adaptation: This approach is classifier dependent. Its goal is tomodify
existent classification algorithms to take into account the imbalanced nature of the
data to be processed. The usual procedure is based on reinforcing the learning of
the minority class, biasing the classifier to recognize it.

• Cost-sensitive learning: Cost-sensitive classification is an approach which com-
bines the two previous techniques. The data are preprocessed to balance the class
distribution, while the learning algorithm is adapted to benefit correct classifica-
tion of samples associated with the minority class. To do so weights are associated
with the instances, and usually these weights are proportional to the size of each
class.

From these three ideas, many others have been derived, such as the combination
of data resampling and the use of ensembles of classifiers [11] as amore robust model
with certain tolerance to class imbalance.

Overall, imbalance learning is a well-known and deeply studied task in binary
classification, further extended to also cover the multiclass scenario. Imbalance in
multilabeled data increases the complexity of the problem and potential solutions,
since there are several class labels per instance. In the following, the specificities
of imbalanced MLDs, related problems, and proposed methods to tackle them are
described.

Most of the existent methods only consider the presence of one majority class
andoneminority class. Thisway, undersamplingmethods only remove samples
from one class, and analogously oversamplingmethods generate new instances
associated with one class.

8.2 Imbalanced MLD Specificities

The number of labels in an MLD can go from a few dozens to several thousands.
Only a handful of them have less than ten labels. Despite the fact that most MLDs
have a large set of labels, the average number of active labels per instance (their
cardinality) seldom is above 5. Some exceptions are cal500 (Card = 26.044) and
delicious (Card = 19.017). With such a large set of labels and low Card, that
some labels would be underrepresented while others would be much more frequent
can be deducted. As a general rule, the more labels there are in an MLD, the higher
would be the likelihood of having imbalance problems.

Another important fact, easily deducible from the ownMLDs nature, is that there
is not a single majority label and a single minority one, but several of them in each
group. This have different implications, affecting the way the imbalance level of an
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MLD can be measured or the behavior of resampling and classification methods, as
will be further detailed in the following sections of this chapter.

The way in which multilabel classification is faced can make worse the imbalance
problem. Transformation techniques such as BR sometimes produce extreme imbal-
ance levels. The binary dataset corresponding to a minority class will only have a
few instances representing it, while all the others will belong to the opposite class.
On the other hand, the LP transformation has to deal with rare label combinations,
those in which the scarce minority labels appear, on their own or jointly with some
of the majority ones. All the BR- and LP-based methods will face similar problems.

8.2.1 How to Measure the Imbalance Level

The metrics related to imbalance measurement for MLDs were provided in Chap. 3
(see Sect. 3.3.2). Since there are multiple labels, this trait cannot be easily reduced
to a single value. For that reason, a triplet of metrics was proposed in the study
conducted in [5]:

• IRLbl: It is independently computed for each label. The value of this metric will
be 1 for the most frequent label and higher for all others. The larger is the IRLbl
the less frequent is the assessed label in the MLD.

• MeanIR: By averaging the IRLbl for all labels in a MLD, itsMeanIR is obtained.
This value typically will be above 1. The higher is the MeanIR, the more imbal-
anced labels there are in the MLD.

• CVIR: The MeanIR is intended to give a measurement on the amount of imbal-
anced labels in the MLD, but it is also influenced by extreme values. A few very
high-imbalanced labels can produce a high MeanIR, the same that a lot of less
imbalanced labels. The CVIR is an indicator of the situation being assessed. Large
CVIR values would denote high variances in IRLbl.

Besides the use of specific characterizationmetrics, such as the ones just described,
one of the best approaches to analyze label imbalance in MLDs is to visually explore
the data. In Fig. 8.1, the relative frequencies for the ten most frequent labels (left
side) and the ten least frequent ones (right side) in a dozenMLDs have been plotted.1

As can be observed, the difference between frequent and rare labels is huge. Even
among the most frequent labels, there are significant disparities, with one or two
labels having much more presence than the others. This pattern is common to many
MLDs. Therefore, the imbalance problem is almost intrinsically linked to multilabel
data.

1The frequency (Y-axis) scale is individually adjusted to show better the relevance of labels in each
MLD, instead of being common to all plots.

http://dx.doi.org/10.1007/978-3-319-41111-8_3
http://dx.doi.org/10.1007/978-3-319-41111-8_3
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Fig. 8.1 Ten most frequent and ten least frequent labels in some datasets

8.2.2 Concurrence Among Imbalanced Labels

Looking at the graphical representations on Fig. 8.1, as well as to the imbalance levels
reported in the tables onChap. 3, it seems legitimate to think that applying resampling
methods, as in traditional classification, the labels distribution on the MLDs could

http://dx.doi.org/10.1007/978-3-319-41111-8_3
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be balanced. However, MLDs have a specific characteristic which is not present on
traditional datasets. As we are already aware, each data sample is associated with
several outputs, and some of them can be minority labels while others are majority
ones.

Due to this peculiarity, entitled as concurrence among imbalanced labels in [3],
resampling methods could be not as effective as they should. In the same paper, a
specific metric to assess this casuistic, named SCUMBLE, is proposed. It was defined
in Sect. 3.3.3.Aswas demonstrated in this study,MLDswith large SCUMBLE values,
that is with a high concurrence between minority and majority labels, usually do not
benefit from resampling techniques as much as MLDs without this problem.

Visualizing the concurrence among imbalanced labels is not easy, since most
MLDs have too many labels to show them at once along with their interactions.

Fig. 8.2 Concurrence among imbalance labels in four MLDs

http://dx.doi.org/10.1007/978-3-319-41111-8_3
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Nonetheless, it is possible to limit the number of labels to show, choosing those with
higher dependencies, producing plots such as the ones shown2 in Fig. 8.2.

Each arc in the external circumference represents a label. The arc’s amplitude is
proportional to the frequency of the label, so small arcs are associated with minority
labels, and analogously large arcs indicate majority labels. The width of the bands
connecting arcs denote the number of samples in which each label pair appears
together.

Multilabel imbalance-aware methods able to take into account label concur-
rence could potentially produce better results than those that do not consider
this information. A further section details such a method developed by the
authors, called REMEDIAL.

8.3 Facing Imbalanced Multilabel Classification

On the basis of the specific characteristics associated with imbalanced MLDs, high-
lighted in the previous section, the design of algorithms capable of dealing with this
problem is a challenge. Three main approaches have been followed in the litera-
ture, classifier adaptation, resampling methods, and ensembles of classifiers. Most
of them are portrayed in the subsections below according to the aforementioned
categorization scheme.

8.3.1 Classifier Adaptation

One way to face the imbalance problem consists in adapting the classifier to take this
aspect into consideration, for instance assigning weights to each label depending on
its frequency. Obviously, it is a solution tightly attached to the adjusted algorithm.
Although it is not a general application approach, what can be seen as a disadvantage,
the adaptation can strengthen the best point of a good classifier, something that a
preprocessing method cannot do.

Some of the multilabel classifiers adapted to deal with imbalanced MLDs pro-
posed in late years are the following:

• Min–max modular with SVM (M3-SVM): This method, proposed in [8], relies
on aMin–MaxModular network [17] to divide the originalmultilabel classification
problem into a set of simpler tasks. Several strategies are used to guarantee that the

2These plots were generated by the mldr R package, described in the following chapter.
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imbalance level in these smaller tasks is lower than in the original MLD, following
random, clustering, and PCA approaches. The simpler tasks are always binary
classification jobs, using SVM as base classifier. Therefore, the proposal can be
seen as a combination of data transformation and method adaptation techniques.

• Enrichment process for neural networks: The proposal made in [25] is an adap-
tation of the training process for neural networks. This task is divided into three
phases. The first one uses a clustering method to group similar instances and gets
a balanced representation to initialize the neural network. In the second stage, the
network is iteratively trained, as usual, while data samples are added and removed
from the training set, according to their prevalence. The final phase checks if the
enrichment process has reached the stop condition or it has to be repeated. This
way, the overall balance of the neural network used as classifier is improved.

• Imbalanced multimodal multilabel learning (IMMML): In [14], the authors
face an extremely imbalanced multilabel task, specifically the prediction of sub-
cellular localization of human proteins. Their algorithm is based on a Gaussian
process model, combined with latent functions on the feature space and covariance
matrices to obtain correlations among labels. The imbalance problem is tackled
giving each label a weighting coefficient linked to the likelihood of labels on
each sample. Therefore, it is very specific solution to a definite problem, hardly
applicable in a different context.

• Imbalanced multiinstance multilabel radial basis function neural networks
(IMIMLRBF): It was introduced in [15] as an extension to the MIMLRBF algo-
rithm [26], a multiinstance and multilabel classification algorithm based on radial
basis neural networks. The adaptation consists in two key points. Firstly, the num-
ber of units in the hidden layer, which in MIMLRBF is constant, is computed
according to the number of samples of each label. Secondly, the weights asso-
ciated with the links between the hidden and output layers are adjusted, biasing
them depending on the label frequencies.

8.3.2 Resampling Techniques

The resampling approach is based on removing samples which belong to the major-
ity label, adding samples associated with the minority label, or both actions at once.
The way the instances to be removed are selected, and the technique used to produce
new instances, usually follows one of two possible ways. The first one is the ran-
dom approach, whereas the second one is known as heuristic approach. The former
randomly chooses the data samples to delete, imposing the restriction that they have
to belong to a certain label. Analogously, new samples are produced by randomly
picking and cloning instances associated with a specific label. The latter path can be
based on disparate heuristics to search the proper instances, as well as to generate
new ones.

Therefore, resampling methods can be grouped depending on the way they try
to balance the label frequency, removing or adding samples, and the strategy to do
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so, randomly or heuristically. There are quite a few proposals based on resampling
techniques, among them:

• Undersampling for imbalanced training sets in text categorization domains:
The proposal made in [9] combines the data transformation approach, producing a
set of binary classifiers, with undersampling techniques, removing instances linked
to the majority label to balance the distribution in each binary dataset. In addition,
a decision tree is used to get the most relevant features for each label. kNN is used
as underlying binary classifier, and different k values were tested in the conducted
experimentation.

Algorithm 1 LP-RUS algorithm’s pseudo-code.
Inputs: <Dataset> D, <Percentage> P
Outputs: Preprocessed dataset

1: samplesT oDelete ← |D|/100 ∗ P � P% size reduction
2: � Group samples according to their labelsets
3: for i = 1 → |labelsets| do
4: labelSet Bagi ←samplesWithLabelset(i)
5: end for
6: � Calculate the average number of samples per labelset

7: meanSize ← 1/|labelsets| ∗
|labelsets|∑

i=1
|labelSet Bagi |

8: � Obtain majority labels bags
9: for each labelSet Bagi in labelSet Bag do
10: if |labelSet Bagi | > meanSize then
11: maj Bagi ← labelSet Bagi
12: end if
13: end for
14: meanRed ← samplesT oDelete/|maj Bag|
15: maj Bag ← SortFromSmallestToLargest(maj Bag)
16: � Calculate # of instances to delete and remove them
17: for each maj Bagi in maj Bag do
18: r Bagi ← min(|maj Bagi | − meanSize,meanRed)
19: remainder ← meanRed − r Bagi
20: distributeAmongBags j>i (remainder)
21: for n = 1 → r Bagi do
22: x ← random(1, |maj Bagi |)
23: deleteSample(maj Bagi , x)
24: end for
25: end for

• LP-based resampling (LP-ROS/LP-RUS): In [2], two resampling methods,
named LP-ROS (Label Powerset Random Oversampling) and LP-RUS (Label
Powerset Random Undersampling), are presented. As their names suggest, they
do not evaluate the frequency of individual labels, but of full labelsets. LP-RUS
removes instances from the most frequent labelsets, whereas LP-ROS clones sam-
ples associated with the least frequent ones. The pseudo-code for the LP-RUS
algorithm is shown in Algorithm 1. As can be seen, the algorithm takes as input
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the percentage of samples to remove from the MLD. After computing the average
number of samples sharing each labelset, a set of majority bags are produced. The
number of instances to delete is distributed among these majority bags, randomly
picking the data samples to remove. The LP-ROS algorithm works in a very sim-
ilar fashion, but obtaining bags with minority labelsets and adding to them clones
of samples randomly retrieved from them. These are simple techniques, and they
consider the presence of several majority and minority combinations, instead of
only one as most resampling methods assume.

Algorithm 2ML-ROS algorithm’s pseudo-code.
Inputs: <Dataset> D, <Percentage> P
Outputs: Preprocessed dataset

1: samplesT oClone ← |D|/100 ∗ P � P% size increment
2: L ← labelsInDataset(D) � Obtain the full set of labels
3: MeanIR ← calculateMeanIR(D, L)
4: for each label in L do � Bags of minority labels samples
5: IRLbllabel ← calculateIRperLabel(D, label)
6: if IRLbllabel >MeanIR then
7: minBagi++ ← Baglabel
8: end if
9: end for
10: while samplesT oClone > 0 do � Instances cloning loop
11: � Clone a random sample from each minority bag
12: for each minBagi in minBag do
13: x ← random(1, |minBagi |)
14: cloneSample(minBagi , x)
15: if IRLblminBagi <=MeanIR then
16: minBag → minBagi � Exclude from cloning
17: end if
18: - -samplesT oClone
19: end for
20: end while

• Random resampling by label (ML-ROS/ML-RUS): As in the previous study,
two resampling methods are also introduced in [5], one for oversampling and
another one for undersampling. Both evaluate the individual imbalance level per
label, deleting instances linked to the majority labels (ML-RUS) or cloning those
associated with the minority ones (ML-ROS). The imbalance level is assessed by
means of the IRLbl and MeanIR metrics defined in [2]. The removing/cloning
process is iterative, and it reassess the imbalance levels in each iteration aiming to
achieve the best balance for all labels. ML-ROS increases the number of instances
in a given percentage, by cloning those with minority labels, while ML-RUS
does the opposite by removing majority labels. The pseudo-code for ML-ROS
is provided in Algorithm 2. Once the number of clones to produce is computed,
the IRLbl and MeanIR are used to get a bag with the instances in which each
minority label appears. The clones will be generated from these bags, following
the iterative approach aforementioned.Anew sample is created fromeachminority
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bag, reassessing their condition of minority bags in each cycle. This way, the best
possible balance for each group is set as goal. The ML-RUS algorithm behavior is
quite similar, but it gets bags with majority labels and iteratively removes samples
from them.

• A case study with the SMOTE algorithm: The authors of the study published
in [12] stated the imbalance problem in MLC, and proposed to face it using the
original SMOTE (Synthetic Minority Over-sampling Technique) algorithm [18].
SMOTE was designed to produce synthetic instances of the minority class for
binary datasets. In [12], three ways to feed SMOTEwith multilabel data are tested,
all of them considering one minority label only. The first path is similar to BR,
giving to SMOTE all the instances in which the minority label appears to obtain
synthetic samples from them and their neighbors. The second approach is quite
limited, since only considers instances having the minority label alone, without
any other labels. The third way, which probed to be the most effective, grouped
the minority label instances according to the combinations of labels in which it
appeared.

Algorithm 3MLeNN algorithm pseudo-code.
Inputs: <Dataset> D, <Threshold> HT, <NumNeighbors> NN
Outputs: Preprocessed dataset

1: for each sample in D do
2: for each label in get Labelset (D) do
3: if IRLbl(label) >MeanIR then
4: Jump to next sample � Preserve instance with minority labels
5: end if
6: end for
7: numDifferences ← 0
8: for each neighbor in nearestNeighbors(sample, NN) do
9: if adjustedHammingDist(sample, neighbor) > HT then
10: numDifferences ← numDifferences+1
11: end if
12: end for
13: if numDifferences≥NN/2 then
14: markForRemoving(sample)
15: end if
16: end for
17: deleteAllMarkedSamples(D)

• Multilabel edited nearest neighbor (MLeNN): MLeNN is an heuristic under-
sampling algorithm. The method is proposed in [4], and it is build upon the well-
known ENN (Edited Nearest-Neighbor) rule [21], foundation of a simple data
cleaning procedure. It compares the class of each instance against the one of its
NNs, usually its three NNs. Those samples whose class differs from the class of
two or more NNs are marked for removing. The algorithm, presented in [4] and
whose pseudo-code is shown in Algorithm 3, adapts the ENN rule to the MLC
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field introducing two key ideas, a principle to chose the samples acting as candi-
dates to be removed and a comparison operator to determine when the labelsets
of two instances are considered to be different. Only the instances which do not
contain any minority label are used as candidates, instead of all the samples as in
the original ENN implementation. Regarding how the classes of these instances
are compared, a metric based on the Hamming distance among labelsets, but only
taking into account active labels, is defined.

Algorithm 4MLSMOTE algorithm’s pseudo-code.
Inputs:

D � Dataset to oversample
k � Number of nearest neighbors

1: L ← labelsInDataset(D) � Full set of labels
2: MeanIR ← calculateMeanIR(D, L)
3: for each label in L do
4: IRLbllabel ← calculateIRperLabel(D, label)
5: if IRLbllabel >MeanIR then
6: � Bags of minority labels samples
7: minBag ← getAllInstancesOfLabel(label)
8: for each sample in minBag do
9: distances ← calcDistance(sample, minBag)
10: sortSmallerToLargest(distances)
11: � Neighbor set selection
12: neighbors ← getHeadItems(distances, k)
13: refNeigh ← getRandNeighbor(neighbors)
14: � Feature set and labelset generation
15: synthSmpl ← newSample(sample,
16: refNeigh, neighbors)
17: D = D + synthSmpl
18: end for
19: end if
20: end for

• Multilabel SMOTE (MLSMOTE): This is another MLC oversampling method
based on the SMOTE algorithm. However MLSMOTE, the proposal introduced
in [6], is a full adaptation of the original algorithm toward the use of MLDs,
instead of a procedure to use the unchanged SMOTE method with multilabel data
as proposed in [12]. MLSMOTE considers several minority labels, instead of only
one, taking the samples in which these labels appear as seeds to generate new
data instances. To do so, firstly their nearest neighbors are found and the input
features are obtained by interpolation techniques. Thus, the new instances are
synthetic rather than mere clones of existing samples. Three approaches are tested
to produce the synthetic labelsets associated with the new samples. Two of them
rely on set operations among the labelsets of the NNs, computing the union or the
intersection of active labels. The third one, eventually the one that produced better
results, generates a ranking of labels in the NNs, keeping those present on half or
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more of the neighbors. As can be seen in Algorithm 4, corresponding to the main
body of the MLSMOTE algorithm, the method relies on the IRLbl and MeanIR
measurements to extract a collection of minority bags, each one corresponding to
a label. Then, the k-nearest neighbors are retrieved. One of them will be used to
reference instance to produce the synthetic features, while the labels on all of them
(see Algorithm 5) serve to generate the synthetic labelset.

Algorithm 5 Function: Generation of new synthetic instances.

21: function newSample(sample, refNeigh, neighbors)
22: synthSmpl ← new Sample � New empty instance
23: � Feature set assignment
24: for each feat in synthSmpl do
25: if typeOf(feat) is numeric then
26: diff ← refNeigh.feat - sample.feat
27: offset ← diff * randInInterval(0,1)
28: value ← sample.feat + offset
29: else
30: value ← mostFreqVal(neighbors,feat)
31: end if
32: syntSmpl.feat ← value
33: end for
34: � Label set assignment
35: lblCounts ← counts(sample.labels)
36: lblCounts + ← counts(neighbors.labels)
37: labels ← lblCounts > (k+1) / 2
38: synthSmpl.labels ← labels
39: return synthSmpl

40: end function

• Resampling by decoupling highly imbalanced labels (REMEDIAL): None of
the above resamplingmethods consider the concurrence among imbalanced labels,
the problem previously described in Sect. 8.2.2. This is the differential factor of
REMEDIAL, the method presented in [1] and whose pseudo-code is shown in
Algorithm 6. It is an algorithm specifically designed to work with MLDs having
a high SCUMBLE, the metric used to assess the concurrence level. It works both
as an oversampling method and as an editing procedure. Firstly, the instances
with high SCUMBLE values, those in which minority and majority labels appear
together, are located. Then, for each sample in the previous set a new sample is
produced by preserving the original features, but containing only minority labels.
Lastly, the original sample is edited by removing these same minority labels. This
way, the samples which can make harder the learning process are decoupled. As
the authors highlight in [1], this method can be used as a previous step to apply
other resampling techniques.
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Algorithm 6 REMEDIAL algorithm.

1: function REMEDIAL(MLD D, Labels L)
2: IRLbll ← calculateIRLbl(l in L) � Calculate imbalance levels
3: IRMean ← I RLbl
4: SCUMBLEInsi ← calculateSCUMBLE(Di in D) � Calculate SCUMBLE
5: SCUMBLE ← SCUMBLEIns
6: for each instance i in D do
7: if SCUMBLEInsi > SCUMBLE then
8: D′

i ← Di � Clone the affected instance
9: Di [labelsIRLbl<=IRMean] ← 0 � Maintain minority labels
10: D′

i [labelsIRLbl>IRMean] ← 0 � Maintain majority labels
11: D ← D + D′

i
12: end if
13: end for
14: end function

The main advantage of these methods is that they are classifier independent.
They are used as a preprocessing step, even it is possible to combine them, and
they do not require a specific multilabel classifier to be used. Therefore, the
preprocessed MLDs can be later given as input to any of the MLC algorithms
described in previous chapters.

8.3.3 The Ensemble Approach

Ensemble-based techniques are quite common in theMLCfield.A significant number
of proposals have been already published, as was reported in Chap.6 devoted to
multilabel ensembles. ECC, EPS, RAkEL, and HOMER are among the most popular
MLC ensembles, an approach that also has been applied to solve the imbalance
problem.

Theoretically, each classifier in an ensemble could introduce a bias toward a
different set of labels, easing and making more effective the imbalanced learning
task. The following two proposals are headed in this direction:

• Inverse random undersampling (BR-IRUS): The method proposed in [24] is
built upon an ensemble of binary classifiers. Several of them are trained for each
label, using a subset of the original data with each one. This subset of the instances
includes all samples inwhich theminority label is present, aswell as a small portion
of the remainder samples. This way, each individual classifier faces a balanced
classification task. Joining the predictions given by the classifiers associated with
a label, a more defined boundary around the minority label space is generated. The
name of the proposal, BR-IRUS, highlights the fact of using the binary relevance
transformation.

http://dx.doi.org/10.1007/978-3-319-41111-8_6
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• Ensemble of multilabel classifiers (EML): Developed by the same authors of the
previouswork, in [23] the construction of an heterogeneous ensemble ofmultilabel
classifiers to tackle the imbalance problem is introduced. The ensemble is made
up of five classifiers. All of them are trained with the same data, but using different
algorithms. The underlying MLC classifiers chosen by the authors are RAkEL,
ECC, CLR, MLkNN, and IBLR. Several methods for joining the individual pre-
dictions are tested, along with different thresholding and weighting schemes width
adjustments made through cross-validation.

Usually, the major drawback of ensembles is their computational complexity,
since a set with several classifiers has to be trained and their predictions have to
be combined. This obstacle is more substantial in the case of EML, as the base
classifiers are ensembles by themselves. In addition, these solutions are not classifier
independent, being closer to the classifier adaptation approach than to resampling
techniques.

8.4 Multilabel Imbalanced Learning in Practice

In the previous sections, most of the published methods aimed to tackle multilabel
imbalanced learning have been portrayed. The goal in this section is to experimentally
test someof them. Fivemethods, belonging to different techniques, have been chosen,
specifically:

• Random resampling: Two algorithms based on random resampling techniques
have been applied, ML-RUS and ML-ROS. The former performs undersampling,
by removing samples associated with majority labels randomly picking them,
while the latter does the opposite, producing clones of instances linked to minority
labels.

• Heuristic resampling: This group of approaches is also represented by two meth-
ods,MLeNNandMLSMOTE.Thefirst one removes instanceswithmajority labels
following the ENN rule. The second produces synthetic instances associated with
minority labels, generating both features and labelsets from the information in the
neighborhood.

• Ensembles: The EML (ensemble-based method), just described in the previous
section, is also included in the test bed. Unlike the previous four algorithms, EML
is not a preprocessing technique but a full classifier by itself, able to face imbalance
by combining predictions coming from several classifiers with different biases.

These five methods3 have been tested using the experimental configuration
explained in the following section. Obtained results are presented and discussed
in Sect. 8.4.2.

3The implementations of these methods can be found in the links section provided in this book
repository [7], along with dataset partitions.
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Table 8.1 Basic traits of MLDs used in the experimentation

Dataset n f k Card Dens MeanIR

bibtex 7 395 1 836 159 2.402 0.015 12.498

cal500 502 68 174 26.044 0.150 20.578

corel5k 5 000 499 374 3.522 0.009 189.568

medical 978 1 449 45 1.245 0.028 89.501

tmc2007 28 596 49 060 22 2.158 0.098 15.158

8.4.1 Experimental Configuration

Four out of the five imbalance methods to be tested are preprocessing procedures.
Therefore, once they have done their work, producing the rebalanced MLD, the data
has to be given to an MLC classifier in order to obtain comparable classification
results. A basic BR transformation has been used for this duty, with the C4.5 [20]
tree induction algorithm as underlying binary classifier.

Five MLDs with disparate imbalance levels, bibtex, cal500, corel5k,
medical and tmc2007, have been included in the experimentation. Their basic
traits, including the MeanIR, are provided in Table8.1. Each MLD was partitioned
with a 2 × 5 fold cross-validation scheme, as usual. Training partitions were pre-
processed with ML-RUS, ML-ROS, MLeNN, and MLSMOTE.

Thus, five versions of each one were used, one without resampling and four more
preprocessed by each method. The original version, without resampling, was given
as input to the BR classifier to obtain a base evaluation. It was also used with EML,
which did not need an independent classifier. The preprocessed versions also served
as input to the sameBR+C4.5MLC,with exactly the same configuration parameters.

In Chap.3, the metrics designed to assess MLC algorithms performance were
introduced. Many of them, such asHamming Loss, Accuracy, Precision, Recall, and
F-measure, have been used in the experiments of previous chapters. To study the
behavior of classifiers when working with imbalanced data, as it is done here, it is
usual to rely on label-based metrics, instead of sample-based ones. In this case,
F-measure following the macro- and microaveraging strategies are the metrics
obtained to assess the results.MacroFM (Macro-F-measure) assigns the sameweight
to all labels, whileMicroFM (Micro-F-measure) is heavily influenced by the frequen-
cies of each label. Therefore, the former is usually used to assess the performance
with respect to minority labels, and the latter to obtain a more general view of the
classifier’s behavior.

8.4.2 Classification Results

Classification results assessed with MacroFM are shown in Fig. 8.3. Each group of
bars corresponds to an MLD, with each bar depicting the performance of a method.

http://dx.doi.org/10.1007/978-3-319-41111-8_3
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Fig. 8.3 Classification results assessed with the Macro-FMeasure metric

Fig. 8.4 Classification results assessed with the Micro-FMeasure metric

The left-most bar shows the value for base results, those obtained without any special
imbalance treatment.

Analogously, Fig. 8.4 presents the results evaluatedwith theMicroFM metric. The
structure of the plot is exactly the same. To analyze these data, it would be interesting
to know inwhich cases an imbalance treatment has achieved some improvement over
the base results. Another important fact is which one of the applied methods works
better.

As can be observed in the two previous plots, undersampling methods seem
to behave worse than the oversampling ones. The exception is MLeNN with the
corel5k MLD, which achieves the best results with the two evaluation metrics.



8.4 Multilabel Imbalanced Learning in Practice 149

Table 8.2 Results assessed withMacroFM (higher is better)

Dataset Base ML-RUS MLeNN ML-ROS MLSMOTE EML

bibtex 0.3368 0.3383 0.3170 0.3288 0.3457 0.1265

cal500 0.2933 0.3029 0.2918 0.2966 0.3124 0.1291

corel5k 0.1774 0.1792 0.1966 0.1784 0.1790 0.0133

medical 0.8165 0.8117 0.7750 0.8046 0.8165 0.2770

tmc2007 0.6015 0.5878 0.5903 0.6138 0.6165 0.5122

Table 8.3 Results assessed withMicroFM (higher is better)

Dataset Base ML-RUS MLeNN ML-ROS MLSMOTE EML

bibtex 0.4021 0.4007 0.3533 0.3927 0.4097 0.2888

cal500 0.3488 0.3447 0.3478 0.3478 0.3663 0.4106

corel5k 0.1096 0.1109 0.1315 0.1135 0.1103 0.0712

medical 0.8006 0.7935 0.6149 0.7902 0.8006 0.7581

tmc2007 0.7063 0.6934 0.6947 0.7038 0.7071 0.7065

EML, the ensemble-based solution, does not produce good MacroFM results,
although with MicroFM the performance seems to be slightly better, specifically
with the cal500MLD. Regarding the oversampling methods, MLSMOTE appears
as the best performed almost always. In fact, this method accomplishes the best
results in many cases.

TheMacroFM andMicroFM rawvalues are provided inTables8.2 and8.3, respec-
tively. Values highlighted in italics denote an amelioration with respect to results
without imbalance treatment. Best values across all methods are emphasized in bold,
as usual.

From these values observation it can be stated that EML seldom reaches the
performance of the BR + C4.5 base classifier, although it achieves the bestMicroFM
result with the cal500 MLD. In comparison, MLSMOTE improves base results
always for both metrics and manages to get the best performance in seven out of
ten configurations. ML-RUS and ML-ROS produce some improvements, as well as
a few losses. Lastly, MLeNN seems to work well with the corel5k MLD, but its
behavior with the other four datasets is not as good.

Overall, it seems that advanced preprocessing techniques, such as the
MLSMOTE algorithm, are able to improve MLC results while dealing with
imbalanced MLDs.
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8.5 Summarizing Comments

Class imbalance is a very usual obstacle while learning a classification model. In this
chapter, how label imbalance is present in most MLDs, and some of the specificities,
in this field such as label concurrence among imbalanced labels, have been intro-
duced. Several metrics aimed to assess these traits have been explained, and some
specialized data visualizations have been provided.

Solutions to deal with imbalanced multilabel data can be grouped into a few cat-
egories, including preprocessing methods, algorithm adaptation, and ensembles. A
handful of proposals from each category have been described, and some of them have
been experimentally tested. According to the results obtained, the resampling tech-
niques deliver certain improvements while maintaining the benefit of being classifier
independent.
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