
Chapter 3
Case Studies and Metrics

Abstract Multilabel classification techniques have been applied inmany real-world
situations in the last two decades. Each one represents a different case study for
MLC, using one or more MLDs. After the general overview provided in Sect. 3.1,
this chapter begins by briefly describing in Sect. 3.2 themost usual case studies found
in the literature. As a result, a full list of available MLDs will be obtained, and the
usual characterization metrics are explained and put in use with them in Sect. 3.3.
Then, a practical use case is detailed in Sect. 3.4, running a simple MLC algorithm
over a few MLDs. Lastly, the usual performance evaluation metrics for MLC are
introduced in Sect. 3.5 and they are used to analyze the results obtained from this
experiment.

3.1 Overview

The main application fields of MLC were introduced in the previous chapter from
a global perspective. The goal in this chapter was to delve into each one of these
fields, enumerating every one of the publicly available MLDs and stating where they
come from. In addition to this basic reference information, it would be interesting
to get some general characteristics for each MLD. For doing so, most of the charac-
terization metrics described in the literature are going to be introduced, along with
their formulations and discussion about their usefulness. Several extensive tables
containing each measurement for every MLD will be provided.

In the following chapters, several dozens of MLC algorithms will be described,
and some of them will be experimentally tested. Therefore, how to conduct such
an experiment, and the way the results can be assessed to evaluate the algorithms’
performance, are fundamental aspects. Once the availableMLDs and theirmain traits
are known, a basic kNN-based MLC algorithm is introduced and it is run to process
some of these MLDs.

Multilabel predictive performance evaluation metrics have to deal with the pres-
ence of multiple outputs, taking into consideration the existence of predictions which
are partially correct or wrong. As will be expounded, these metrics can be grouped
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34 3 Case Studies and Metrics

into several categories according to distinct criteria. Then, most of the MLC eval-
uation metrics are explained along with their formulation, using them to assess the
results obtained from the previous experiments.

3.2 Case Studies

In the previous chapter, the main application fields for MLCwere portrayed. Attend-
ing to the grouping criterion then established, in this section most of the case studies
found in the specialized literature will be enumerated. Table3.1 summarizes these
case studies, giving their original references and the place they can be downloaded
from.1

Some of these case studies have associated several MLDs, whose names and
characteristics will be analyzed later. The same MLD can be available in different
formats,2 for instanceMULAN,MEKA, and KEEL, depending on the repository the
user refers to.

The following subsections cover each MLC application field. The case studies
are alphabetically enumerated inside each category conforming to the name of the
MLD or set of MLDs belonging to them.

3.2.1 Text Categorization

Categorizing text documents into one or more categories is a very usual need. It is
the task at the root of MLC. This is the reason for the existence of many datasets
associated with this use case. The case studies mentioned below have been used in a
considerable portion of the multilabel literature. Some of them have associated more
than one MLD.

• 20ng: This dataset, known as 20 Newsgroups, has its origin in the task [28] of
filtering news group messages. The dataset has become a classical problem for
testing text clustering and text-labeling algorithms. It contains over a thousand
entries for each one of 20 different news groups, making a total of almost 20 000
data instances. Some of the news groups are closely related, so some messages
were cross-posted to more than one group. The input attributes, there are more
than a thousand, are the terms extracted from all the documents. For each instance,
those terms appearing in the message are set to 1, while the others are set to 0.
This representation is known as boolean bag-of-words (BoW) model. There are

1All datasets are available at RUMDR (RUltimate Multilabel Dataset Repository) [10], fromwhich
can be downloaded and exported to several file formats.
2The differences among the main file formats, all of them derived from the ARFF format used by
WEKA, and how to use each of them, will be detailed in Chap. 9.

http://dx.doi.org/10.1007/978-3-319-41111-8_9
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Table 3.1 Case studies and their categories and references

Case study Category References Download

20ng Text [28] [33]

bibtex Text [26] [3, 43]

birds Sound [7] [43]

bookmarks Text [26] [3, 43]

cal500 Sound [44] [43]

corel Image [5, 20] [3, 43]

delicious Text [40] [3, 43]

emotions Sound [48] [3, 33, 43]

enron Text [27] [3, 33, 43]

EUR-Lex Text [30] [43]

flags Image [24] [43]

genbase Gen/Bio [19] [3, 43]

imdb Text [32] [33]

langlog Text [31] [33]

mediamill Video [35] [3, 9, 43]

medical Text [18] [3, 33, 43]

nus-wide Image [17] [43]

ohsumed Text [25] [33]

rcv1v2 Text [29] [3, 9, 43]

reuters Text [31] [33]

scene Image [6] [3, 9, 33, 43]

slashdot Text [32] [33]

stackexchange Text [15] [12]

tmc2007 Text [37] [9, 43]

yahoo Text [47] [43]

yeast Gen/Bio [21] [3, 9, 33, 43]

20 labels, corresponding to the news groups the messages have been taken from.
Only a handful of instances are assigned to more than one label.

• bibtex: Introduced in [26] as part of a tag recommendation task, it contains the
metadata for bibliographic entries. The words that presented in the papers’ title,
authors names, journal name, and publication date were taken as input attributes.
The full vocabulary consisted in 1 836 features. The data origin is Bibsonomy,3

a specialized social network where the users can share bookmarks and BibTeX
entries assigning labels to them. bibtex is the dataset generated from the data
contained in the BibTeX entries, being associated with a total of 159 different

3http://www.bibsonomy.org.

http://www.bibsonomy.org


36 3 Case Studies and Metrics

labels. The boolean BoWmodel is used to represent the documents, so all features
are binary indicating if a certain term is relevant to the document or not.

• bookmarks: This MLD comes from the same source [26] that the previous
one. In this case, the data are obtained from the bookmarks shared by the users.
Specifically, the URL of the resource, its title, date, and description are included
into the dataset. The vocabulary consisted in 2 150 different terms, used as input
features. The tags assigned to the bookmarks by the users, a total of 208, are taken
as labels. The main difference between bibtex and bookmarks is the size of
the MLD, having the latter more than ten times the number of instances that the
former.

• delicious: The authors of this dataset [40] are the same of the previous one,
and its nature is also similar to bookmarks. This time the links to Web pages
were taken from the del.icio.us4 portal. The page content for a set of popular tags
was retrieved and parsed, and the resulting vocabulary was filtered to avoid non-
frequent words. As a result, an MLDwith almost a thousand labels was generated.
The goal of the authors was proposing anMLCmethod able to deal with a so large
number of labels.

• enron: The Enron corpus is a large set of email messages, with more than half a
million entries, fromwhich a dataset for automatic folder assignment research was
generated [27]. The enron MLD is a subset of the previous dataset, with only 1
701 instances. Each one has as input features a BoW obtained from the email’s
fields, such as the subject and the body of the message. The labels correspond to
the folders in which each message was stored into by the users. A total of 53 labels
are considered.

• EUR-Lex: This case study is made up of three MLDs. The primary source is the
European Union’s database of legal documents, which includes laws, agreements,
and regulations. Each document is classified in accordance with three criteria,
EUROVOC descriptors, directory codes, and subject matters. For doing so, the
header of the document indicates which descriptors, codes, and matters are rele-
vant. Therefore, there are three multilabel tasks to accomplish. From this database,
the authors of [30] generated the eurlex-dc, eurlex-ev, and eurlex-sm
MLDs.5 Unlike in most cases, reduction techniques were not applied aiming to
obtain a limited number of labels. As a result, the eurlex-evMLD has almost
4 000 of them. The three datasets have the same instances with the same set of
5 000 input features. These contain, in the version used in [30], the TF-IDF rep-
resentation instead of BoW as the previous ones.

• imdb: The aim of this study [32] was to automatically classify movies into the
proper genres, i.e., drama, comedy, adventure, or musical, among others. A total
of 28 genres are considered. The input features were generated from the text
gathered from the IMDB6 database for each movie, relying in a boolean BoW

4https://delicious.com/.
5Additional information about how these MLDs were produced, including the software to do so,
can be found at http://www.ke.tu-darmstadt.de/resources/eurlex.
6http://imdb.org.

https://delicious.com/
http://www.ke.tu-darmstadt.de/resources/eurlex
http://imdb.org
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representation. These texts contained a summary of themovies’ plot, with a vocab-
ulary made up of a thousand terms. Containing more than 120 000 instances, it is
one of the largest MLDs publicly available.

• langlog: Introduced in [31], thisMLDhas been created from the posts published
into the Language Log Forum,7 a Web site for discussing language-related topics.
As many other text MLDs, this also follows the boolean BoW model, with a total
of 1 460 input features. The blog entries are categorized by 75 different labels.

• medical: The documents processed to produce this MLD are anonymized clin-
ical texts, specifically the free text where the patient symptoms are described. A
portion of the total corpus described in [18]was used to generate theMLD,with the
text transformed into a BoW per document. The labels, a total of 45, are the codes
from the International Classification of Diseases, precisely ICD-9-CM8 codes.

• ohsumed: The origin of this dataset [25] is the Medline database, a text corpus
from almost three hundred medical journals. The Ohsumed collection is a subset
of the Medline dataset compiled in the Oregon Health Science University. The
title and abstract texts of each article were processed and represented as BoW,
producing a set of thousand input features. Each document is linked to one or
more of the 23 main categories of the MeSH diseases ontology.9 These categories
are the labels appearing in the 13 929 instances that the MLD consists in.

• rcv1v2: This case study consists of five MLDs, being each one of them a subset
of the original RCV1-v2 (Reuters Corpus Volume 1 version 2). The RCV1 text
corpuswas generated from the full text of English news published byReuters along
one year, from August 20, 1996, to August 19, 1997. Version 2 of this corpus is
a corrected version introduced in [29]. Each entry was classified according to
three categories, such as topic codes, industry codes, and region codes. A total
of 101 different labels are considered. The vocabulary used as input features has
47 236 terms, represented as TF-IDF values. The full RCV1 corpus had 800 000
documents. 6 000 of them are provided in each one of the five subsets.

• reuters: Introduced in [31], it is also a subset of the RCV1 corpus. In this
case, a feature selection method has been applied, taking only 500 input attributes
instead of the more than 47 000 in rcv1v2. The goal was to work with more
representative features. At the same time, the reduced set of attributes improves
the speed of the learning process.

• slashdot: The source thisMLDwas generated from is Slashdot,10 awell-known
news portal mainly focused in technology and in science. TheMLDwas generated
[32] taking the text from the news title and summary, producing a boolean BoW
for each entry. The vocabulary has 1 079 terms. The tags used for categorize these
entries, a total of 22, act as labels.

• stackexchange: The case study faced in [15] is a tag suggestion task for ques-
tions posted in specialized forums, specifically forums from the Stack Exchange

7http://languagelog.ldc.upenn.edu/nll/.
8http://www.cdc.gov/nchs/icd/icd9cm.htm.
9https://www.nlm.nih.gov/mesh/indman/chapter_23.html.
10http://slashdot.org.

http://languagelog.ldc.upenn.edu/nll/
http://www.cdc.gov/nchs/icd/icd9cm.htm
https://www.nlm.nih.gov/mesh/indman/chapter_23.html
http://slashdot.org
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network.11 Six MLDs were generated from six different forums, devoted to topics
such as cooking, computer science, and chess. The title and body of each question
was text-mined, producing a frequency BoW. The tags assigned by the users to
their questions were used as labels. The vocabulary for each forum is specific,
being made of between 540 and 1 763 terms. These worked as input attributes.
The labels are specific as well, ranging its number from 123 to 400.

• tmc2007: This dataset bore as a result of the SIAM Text Mining Workshop12

in 2007 [37]. As many other text datasets, boolean BoW was chosen as a way of
representing the terms appearing in documents. Thosewere aviation safety reports,
in which certain problems during flights were described. The vocabulary consists
of 49 060 different words, used as input features. Each report is tagged into one
or more categories from a set of 22. These are the labels in the MLD.

• yahoo: The authors of [47] compiled for their study the Web pages referenced in
11 out of the 14 main categories of the classical Yahoo!13 Web index. Therefore,
11 MLDs are available for this case study. All of them use the boolean BoW
representation, with features obtained from the pages referenced in the index.
The number of words goes from 21 000 to 52 000, depending on the MLD. The
subcategories that the pages belong to are used as labels. The number of labels is
in the range 21–40.

3.2.2 Labeling of Multimedia Resources

Although text resources were the first ones to demand automated classificationmech-
anisms, recently the need for labeling other kind of data, such as images, sounds,
music, and video, has experimented a huge growth. By contrast with the case stud-
ies enumerated in the previous section, in which a common representation as BoW
(whether they contain boolean values, frequencies, or TF-IDF values) is used, the
following ones resort to disparate embodiments.

• birds: This MLD emerges from the case study described in [7], where the prob-
lem of identifying multiple birds species from acoustic recordings is tackled. The
researchers used hundreds of sound snippets, recorded in nature at times of day
with high bird activity. Between 1 and 5 different species appear in each snippet.
The audio was processed with a 2D time-frequency segmentation approach, aim-
ing to separate syllables overlapping in time. As a result, a set of features with
the statistic profile of each segment is produced. Since a sound can be made up of
several segments, the produced dataset is a multiinstance multilabel dataset.

• cal500: Tagging music tracks with semantic concepts is the task faced in [44],
from which the cal500 MLD is derived. The researchers took five hundred

11http://stackexchange.com/.
12http://web.eecs.utk.edu/events/tmw07/.
13http://web.archive.org/web/19970517033654/http://www9.yahoo.com/.

http://stackexchange.com/
http://web.eecs.utk.edu/events/tmw07/
http://web.archive.org/web/19970517033654/http://www9.yahoo.com/
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songs, from unique singers, and defined a vocabulary aimed to define aspects such
as the emotions produced by the song, the instruments and vocal qualities, and
music genre. These concepts, a total of 174, are used as labels. Each music track
is assigned at least 3 of them and the average is above 26, which is a quite high
number in the multilabel context. The input features were generated by sound
segmentation techniques. A distinctiveness of this MLD is that no two instances
are assigned the same combination of labels.

• corel: The original Corel dataset was used in two different case studies [5, 20] by
the same authors, fromwhich severalMLDs have been obtained. The Corel dataset
has thousands of images categorized into several groups. In addition, each picture
is assigned a set of words describing its content. These pictures were segmented by
the authors using the normalized cuts method, generating a set of blobs associated
with one or more words. The input features, 500 in total, are the vectors resulting
from the segmentation process. In [20] (corel5k), 5 000 instances were taken
and there are 374 labels, since a minimum of occurrences was not established.
The posterior study in [5] (corel16k) used 138 111 instances grouped into 10
subsets. A minimum of occurrences for each label was set, limiting its number to
153–174 depending on the subset.

• emotions: The origin of this dataset is the study conducted in [48], whose
goal is to automatically identify the emotions produced by different songs. A
hundred songs from each one of seven music styles were taken as input. The
authors used the software tool described in [46] to extract from each record a set
of rhythmic features and another one with timbre features. The union of these
sets, after a process of feature selection, is used as input attributes. The songs were
labeled by three experts, using the sixmain emotions of the Tellegen-Watson-Clark
abstract emotional model. Only those songs where the assigned labels coincide
were retained, reducing the number of instances from the original 700 to 593.

• flags: This MLD is considered as a toy dataset, since it only has 194 instances
with a set of 19 inputs features and 7 labels. The original version can be found
in the UCI repository.14 In [24] several of its attributes, the ones indicating which
colors appear in the flag or if it contains a certain image or text, were defined as
labels. The remainder attributes, including the zone and land mass the country
belongs to, its area, religion, population, etc., are established as input features.

• mediamill: It was introduced in [35] as a challenge for video indexing. The data
consist of a collection of video sequences, taken from the TREC Video Retrieval
Evaluation,15 fromwhich a set of 120 features have been extracted. This set of fea-
tures is the concatenation of several similarity histograms extracted from the pixels
of each frame. The goal was to discover what semantic concepts are associated
with each entry, among a set of 101 different labels. Some of these concepts refer
to environments, such as road, mountain, sky, or urban, others to physical objects,
such as flag, tree, and aircraft. A visual representation of these 101 concepts can
be fond in [35].

14https://archive.ics.uci.edu/ml/datasets/Flags.
15http://www-nlpir.nist.gov/projects/trecvid/.

https://archive.ics.uci.edu/ml/datasets/Flags
http://www-nlpir.nist.gov/projects/trecvid/
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• nus-wide: The famous Flickr16 social network, in which millions of users pub-
lish their photographs every day, is the origin for the NUS-WIDE dataset, created
by NUS’s Lab for Media Search. Each image was segmented extracting color his-
togram, correlation histogram, edge direction, textures, etc. The resulting MLD
has 269 648 instances, and two versions of the MLD with different features repre-
sentation are available. The first one, known as nus-wide-BoW, used clustering
to produce a 500 dimensional vector of visual words (real values). The second one,
named nus-wide-VLAD, the vectors have 128 dimensions and are encoded as
cVLAD+ features [36] (real values). In both, each instance has an initial attribute
containing the name of the file where the image was stored into. Each image was
manually annotated using a 81 items vocabulary, with terms such as animal, house,
statue, and garden. These are the labels of the MLD.

• scene: This MLD is also related to image labeling, specifically to scene classifi-
cation. The set of pictures was taken from theCorel dataset and some personal ones
by the authors [6] were also included. TheMLD ismade up of 400 pictures for each
main concept, beach, sunset, field, fall foliage, mountain, and urban. Therefore,
six non-exclusive labels are considered. The images are transformed to the CIE
Luv color space, known for being perceptually uniform, and latter segmented into
49 blocks, computing for each one of them values such as the mean and variance.
The result is a vector of 294 real-value features in each instance.

3.2.3 Genetics/Biology

This is the area with less publicly available datasets, which is not surprising due to
its complexity. There are two MLDs, one focused in predicting the class of proteins
and another one for classifying genes in line with their functional expression.

• genbase: The authors of [19] produced thisMLD compiling information for 662
different proteins. The Prosite access number17 was used to identify the 1 185motif
patterns and profiles used as input features. All of them are nominal, taking only
the YES or NO values. This way the motifs and profiles present in each protein are
indicated. 27 different protein classes are considered, being each protein associated
with one or more of them. The PDOC protein class identifiers are used as label
names. Something to be taken into account while using this MLD is the presence
of one additional feature, the first one, that uniquely identifies each instance.

• yeast: In this case [21], the goal was to predict the functional expression for a
set of genes. The input features for each gene come from microarray expression
data, with a 103 real values vector per instance. A subset of 14 functional classes,
whose origin is the Comprehensive Yeast Genome Database,18 are selected and

16https://www.flickr.com/.
17http://prosite.expasy.org/prosite.html.
18http://www.ncbi.nlm.nih.gov/pubmed/15608217.

https://www.flickr.com/
http://prosite.expasy.org/prosite.html
http://www.ncbi.nlm.nih.gov/pubmed/15608217
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used as labels. Since each gene can express more than one function at once, in fact
this is the usual situation, the result is a dataset with multilabel nature.

3.2.4 Synthetic MLDs

Even though there are a quite large collection of MLDs publicly available, in some
situations it can be desirable to work with datasets that have certain characteristics.
For instance, if we were designing an algorithm to deal with noisy data it would be
interesting to test it with MLDs having different noise levels. This is a trait that could
be modeled by generating custom synthetic datasets.

Despite the aforementioned need, which has been demanded by several authors
in some papers, there is a lack of tools to produce synthetic MLDs when compared
with utilities with the same aim for traditional classification. In most cases, internal
programs are used to generate these artificial datasets, and only the characteristics of
the data are explained. Fortunately, there are some exceptions, such as theMldatagen
program19 described in [38].

Since they are created by a program, an a priori limit in the number of MLDs that
can be created does not exist. They can hold any number of instances, attributes, and
labels but, unlike the enumerated in the previous sections, they do not represent any
real situation.

3.3 MLD Characteristics

Before attempting to build a classification model to solve a specific problem, it is
important to analyze the main characteristics of the data available to accomplish this
task. Understanding the inner traits of the data usually will allow the selection of
the best algorithm, parameters, etc. Revealing these traits is the aim of the specific
characterization metrics for MLDs defined in the literature.

In the following subsections, many of the available characterization metrics are
defined, providing their mathematical expressions, and detailing their usefulness.
Many of them will be further applied to the MLDs associated with the previous case
studies, and certain facts will be discussed. The nomenclature stated in Sect. 2.2 will
be used in all equations.

19http://sites.labic.icmc.usp.br/mldatagen/.

http://dx.doi.org/10.1007/978-3-319-41111-8_2
http://sites.labic.icmc.usp.br/mldatagen/
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3.3.1 Basic Metrics

The main difference between traditional and multilabel classification comes from
the fact that in the latter each instance is associated with a set of labels. This is the
reason behind the first specific metrics designed for MLDs, whose purpose is to
assess the multilabelness of the data, in other words determining the extent at which
the samples in the dataset have more than one label.

An obvious way to calculate such a measure consists in counting the number of
labels relevant to every instance in the dataset, then averaging the sum to know the
mean number of labels per instance. This simple metric was introduced in [39] as
label cardinality or simply Card (3.1).

Card (D) = 1

n

n∑

i=1

|Yi| (3.1)

In this context, n denotes the number of instances in theMLDD, Yi the labelset of
the ith instance, and k the total number of labels considered in D. The higher is the
Card level, the larger is the number of active labels per instance. As a consequence,
MLDswith lowCard values, near 1.0,woulddenote thatmost of its samples haveonly
one relevant label. Therefore, it would be a dataset with little multilabelness nature.
On the opposite side, high Card values state that the data are truly multilabeled. As
a general rule, high Card values are linked to MLDs which have large sets of labels,
yet the contrary is not always true.

SinceCard is ametric influenced by the size of the set of labels used by eachMLD,
and it is expressed using the number of labels as measurement unit, a normalized
version (3.2) was also proposed. By dividing Card by the number of labels in the
MLD, a dimensionless metric, known as label density (Dens), is obtained. Usually,
a high Dens value indicates that the labels in the MLD are well represented in each
instance. By contrast, low Dens values denote more dispersion, with only a small
subset of the labels present in most instances.

Dens (D) = 1

k

1

n

n∑

i=1

|Yi| (3.2)

Another way of assessing the multilabelness of a dataset would be by means of
the Pmin metric (3.3) introduced in [45]. This is simply the percentage of instances
in the MLD with only one active label. Intuitively, a high Pmin value would denote
that a large proportion of instances are single labeled.

Pmin (D) =
∑

y′∈Y/|y′|=1

|y′|
n

(3.3)
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Subsets of the labels in the set L appear in the instances of D forming labelsets.
Theoretically 2k different labelsets could exists, but in practice the number of unique
(distinct) labelsets is limited by the number of instances in D. Thus, the number of
unique combinations is limited by the expressionmin(n, 2k). The effective number of
distinct labelsets in anMLD is an indicator of the uniformity in the labels distribution
among the samples. The higher the number is, the more irregularly the labels appear
in the data instances. The number of distinct labelsets is also known as label diversity
(Div), and it can also be normalized dividing it by the number of instances.

Furthermore, the frequency of each labelset appears in the MLD may be also
an interesting information. Even though the total number of distinct labelsets is not
high, if many of them only appear once, associated with one instance, this could
lead to some difficulties during the learning process. In addition, the analysis of the
labelsets provides information related to dependencies among labels.

Besides the previous ones, in [11] other standard statistical metrics, such as the
coefficient of variation, kurtosis, and skewness, are used to characterize how
the labels in anMLD are distributed. The joint use of all these metrics can help
in gaining insight into this problem.

3.3.2 Imbalance Metrics

The presence of class imbalance in a dataset is a challenge for most learning algo-
rithms. This problem will be analyzed in Chap. 8 in the context of MLC. As will be
seen, mostMLDs suffer from label imbalance. This means that some labels are much
more frequent than others, and it is being an aspect interesting to appraise due to its
impact in classification results. Three different metrics to assess label imbalance are
proposed in [14], named IRLlbl (3.4), MaxIR (3.5) and MeanIR (3.6). In (3.4), the
operator [[expr]] denotes de Iverson bracket. It will return 1 if the expression inside
is true or 0 otherwise.

IRLbl(l) =
max
l′∈L

(∑n

i=1
[[l′ ∈ Yi]]

)

∑n
i=1 [[l ∈ Yi]] . (3.4)

With the IRLbl metric, it is possible to know the imbalance level of one specific
label. This is computed as the proportion between the number of appearances of the
most common label and the considered label. Therefore, for the most common label
IRLbl = 1. For least frequent labels, the level always will be greater than 1. The
higher the IRLbl, the rarer is the label presence in the MLD. The goal of the MaxIR
metric was obtaining the maximum imbalance ratio. In other words, the proportion
of the most common label against the most rare one.

http://dx.doi.org/10.1007/978-3-319-41111-8_8
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MaxIR = max
l∈L

(IRLbl(l)) (3.5)

MeanIR = 1

k

∑

l∈L
IRLbl(l). (3.6)

Usually a global assessment of the imbalance in the MLD is desired. This metric,
named MeanIR, is calculated by averaging the IRLbl of all labels. Despite the use-
fulness of this metric by itself, some dispersion measure, such as standard deviation
or coefficient of variation, should also be included. A highMeanIR could be due to a
relatively high IRLbl for several labels, but also by cause of extreme imbalance levels
for only some labels. In this context, the CVIR (3.7) metric provides the additional
information needed to know the cause.

CVIR = IRLblσ

MeanIR
, IRLblσ =

√
1

k − 1

∑

l∈L
(IRLbl (l) − MeanIR)2 (3.7)

3.3.3 Other Metrics

Besides the already aforementioned, some other characterization metrics have been
proposed in the literature to assess specific qualities of theMLDs. In [13], the SCUM-
BLE metric is introduced as a way to measure the concurrence among very frequent
and rare labels. A score is individually computed for each instance (3.8). This score
is based on the Atkinson index [4] and the IRLbl metric introduced in the previous
section. The former is an econometric measure aimed to evaluate income inequalities
among the population. In this context, monetary quantities have been replaced by
imbalance ratios, provided by the IRLbl metric. The result is a value in the [0, 1]
range indicating if all the labels in the instance have similar frequencies in the MLD,
low values, or by the contrary there are significant differences, the result would be
a higher value. The global SCUMBLE measure (3.9) is obtained by averaging the
score for all instances in the MLD. How these metrics have been the foundation for
developing new MLC algorithms will be explained in Chap.8. As a general rule,
higher SCUMBLE values denote harder MLDs to learn from.

SCUMBLEins (i) = 1 − 1

IRLbli

(
∏

l∈L
IRLblil

)(1/k)

(3.8)

SCUMBLE (D) = 1

n

n∑

i=1

SCUMBLEins (i) (3.9)

http://dx.doi.org/10.1007/978-3-319-41111-8_8
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The TCS (3.10) metric is presented in [16] aiming to facilitate a theoretical com-
plexity indicator. It is calculated as the product of the number of input features,
number of labels, and number of different label combinations. To avoid working
with very large values, whose interpretation and comparison would be not easy, the
log function is used to adjust the scale of the previous product. The goal was to
determine which MLDs would present a harder work to the preprocessing an learn-
ing algorithms. Unlike SCUMBLE, TCS values are not upper bounded. The higher
the value, the more complex would be to process the MLD.

TCS(D) = log(f × k × |unique labelsets|) (3.10)

3.3.4 Summary of Characterization Metrics

Once themain characterizationmetrics have been defined, they can be used to analyze
the MLDs corresponding to the case studies enumerated in Sect. 3.2. Tables3.2,
3.3, and 3.4 summarize most of these metrics for the MLDs corresponding to case
studies from the text, multimedia, and genetics fields, respectively. The columns
show, from left to right,Dataset: nameof theMLD,n: number of instances, f : number
of input attributes, k: number of labels, LSet: number of distinct labelsets, Card:
label cardinality (Card),Dens: label density (Dens),MeanIR: mean imbalance ratio
(MeanIR), and SCUMBLE: imbalanced labels concurrence level (SCUMBLE).

The MLDs from text case studies clearly share a common trait, as almost all of
them have a high number of input features, in the range of thousands of them with
few exceptions. This is due to the techniques used to mining the text, which produce
large collections of words and their frequencies. Many of them also have several
hundreds of labels. This, when combined with a large number of instances, also
produces a huge amount of labelsets. It is the case with MLDs such as bookmarks
or delicious. Comparatively, the number of features, labels, and labelsets is lower
in the datasets coming from multimedia and genetics case studies.

Regarding the Card metric that indicates the mean number of labels per instance,
most MLDs are in the [1, 5] interval. Some MLDs, such as 20ng, langlog,
slashdot, yahoo-reference, birds, and scene, are only slightly above
1, meaning that most of its instances are associated with only one label. These would
be the less representative cases of what should be a multilabel scenario, since they
are closer to a multiclass one. There are a pair of extreme cases in the opposite side.
The Card values for delicious and cal500 are above 19 and 26, respectively.
These MLDs are truly multilabel, with a remarkable average number of active labels
in each instance. Halfway between the previous utmost scenarios, the remainder
MLDs present the most typical Card values, between 2 and 5 labels per instance in
average.

Dens is a metric closely related toCard. In general, most MLDs haveDens values
below 0.1. Only those with a very limited set of labels, such as emotions, flags,
or scene, or a very highCard, such as cal500, get a high label density. Therefore,



46 3 Case Studies and Metrics

Table 3.2 Main characteristics of MLDs from text classification case studies
Dataset n f k LSet Card Dens MeanIR SCUMBLE

20ng 19 300 1 006 20 55 1.029 0.051 1.007 0.000

bibtex 7 395 1 836 159 2 856 2.402 0.015 12.498 0.094

bookmarks 87 856 2 150 208 18 716 2.028 0.010 12.308 0.060

delicious 16 105 500 983 15 806 19.017 0.019 71.052 0.532

enron 1 702 1 001 53 753 3.378 0.064 73.953 0.303

eurlex-dc 19 348 5 000 412 1 615 1.292 0.003 268.930 0.048

eurlex-ev 19 348 5 000 3 993 16 467 5.310 0.001 396.636 0.420

eurlex-sm 19 348 5 000 201 2 504 2.213 0.011 536.976 0.182

imdb 120 919 1 001 28 4 503 2.000 0.071 25.124 0.108

langlog 1 460 1 004 75 304 1.180 0.016 39.267 0.051

medical 978 1 449 45 94 1.245 0.028 89.501 0.047

ohsumed 13 929 1 002 23 1 147 1.663 0.072 7.869 0.069

rcv1subset1 6 000 47 236 101 1 028 2.880 0.029 54.492 0.224

rcv1subset2 6 000 47 236 101 954 2.634 0.026 45.514 0.209

rcv1subset3 6 000 47 236 101 939 2.614 0.026 68.333 0.208

rcv1subset4 6 000 47 229 101 816 2.484 0.025 89.371 0.216

rcv1subset5 6 000 47 235 101 946 2.642 0.026 69.682 0.238

reuters 6 000 500 103 811 1.462 0.014 51.980 0.052

slashdot 3 782 1 079 22 156 1.181 0.054 17.693 0.013

stackex-chemistry 6 961 540 175 3 032 2.109 0.012 56.878 0.187

stackex-chess 1 675 585 227 1 078 2.411 0.011 85.790 0.262

stackex-coffee 225 1 763 123 174 1.987 0.016 27.241 0.169

stackex-cooking 10 491 577 400 6 386 2.225 0.006 37.858 0.193

stackex-cs 9 270 635 274 4 749 2.556 0.009 85.002 0.272

stackex-philosophy 3 971 842 233 2 249 2.272 0.010 68.753 0.233

tmc2007 28 596 49 060 22 1 341 2.158 0.098 15.157 0.175

tmc2007-500 28 596 500 22 1 172 2.220 0.101 17.134 0.193

yahoo-arts 74 840 23 146 26 599 1.654 0.064 94.738 0.059

yahoo-business 11 214 21 924 30 233 1.599 0.053 880.178 0.125

yahoo-computers 12 444 34 096 33 428 1.507 0.046 176.695 0.097

yahoo-education 12 030 27 534 33 511 1.463 0.044 168.114 0.042

yahoo-entertainment 12 730 32 001 21 337 1.414 0.067 64.417 0.039

yahoo-health 9 205 30 605 32 335 1.644 0.051 653.531 0.092

yahoo-recreation 12 828 30 324 22 530 1.429 0.065 12.203 0.030

yahoo-reference 8 027 39 679 33 275 1.174 0.036 461.863 0.049

yahoo-science 6 428 37 187 40 457 1.450 0.036 52.632 0.058

yahoo-social 12 111 52 350 39 361 1.279 0.033 257.704 0.049

yahoo-society 14 512 31 802 27 1 054 1.670 0.062 302.068 0.096
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Table 3.3 Main characteristics of MLDs from multimedia resources classification case studies

Dataset n f k LSet Card Dens MeanIR SCUMBLE

birds 645 260 19 133 1.014 0.053 5.407 0.033

cal500 502 68 174 502 26.044 0.150 20.578 0.337

corel5k 5 000 499 374 3 175 3.522 0.009 189.568 0.394

corel16k001 13 766 500 153 4 803 2.859 0.019 34.155 0.273

corel16k002 13 761 500 164 4 868 2.882 0.018 37.678 0.288

corel16k003 13 760 500 154 4 812 2.829 0.018 37.058 0.285

corel16k004 13 837 500 162 4 860 2.842 0.018 35.899 0.277

corel16k005 13 847 500 160 5 034 2.858 0.018 34.936 0.285

corel16k006 13 859 500 162 5 009 2.885 0.018 33.398 0.290

corel16k007 13 915 500 174 5 158 2.886 0.017 37.715 0.282

corel16k008 13 864 500 168 4 956 2.883 0.017 36.200 0.289

corel16k009 13 884 500 173 5 175 2.930 0.017 36.446 0.298

corel16k010 13 618 500 144 4 692 2.815 0.020 32.998 0.279

emotions 593 72 6 27 1.868 0.311 1.478 0.011

flags 194 19 7 54 3.392 0.485 2.255 0.061

mediamill 43 907 120 101 6 555 4.376 0.043 256.405 0.355

nus-wide-BoW 269 648 501 81 18 430 1.869 0.023 95.119 0.171

nus-wide-VLAD 269 648 129 81 18 430 1.869 0.023 95.119 0.171

scene 2 407 294 6 15 1.074 0.179 1.254 0.000

Table 3.4 Main characteristics of MLDs from genetics/proteomics classification case studies

Dataset n f k LSet Card Dens MeanIR SCUMBLE

genbase 662 1 186 27 32 1.252 0.046 37.315 0.029

yeast 2 417 103 14 198 4.237 0.303 7.197 0.104

this value is useful to know how sparse are the labelsets in the MLD. Higher Dens
values will denote labelsets with more active labels than the lower ones.

As can be stated by glancing at the column with theMeanIR values, most MLDs
show noteworthy imbalance levels. The mean proportion between the frequency
of labels are higher to 1:100 in many cases, with some drastic occasions such as
eurlex-sm, yahoo-health, or yahoo-business, whose MeanIR is above
500. There is only a handful ofMLDs that could be considered as balanced, including
20ng,emotions,flags and scene. How this remarkably high imbalance levels
can influence the learning methods, and how this difficulty has been faced in the
literature, will be the main topics in Chap.8.

The right-most column in these three tables shows the SCUMBLE value for each
MLD. Attending to what was stated in [13], values well above 0.1 in this metric
designate MLDs in which a significant proportion of rare labels jointly appear with
very frequent ones, in the same instances. As can be seen, this is the case for many

http://dx.doi.org/10.1007/978-3-319-41111-8_8
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Table 3.5 MLDs sorted according to their theoretical complexity score

Rank Dataset TCS f k LSet

1 flags 8.879 19 7 54

2 emotions 9.364 72 6 27

3 scene 10.183 294 6 15

4 yeast 12.562 103 14 198

5 birds 13.395 260 19 133

6 genbase 13.840 1 186 27 32

7 20ng 13.917 1 006 20 55

8 slashdot 15.125 1 079 22 156

9 cal500 15.597 68 174 502

10 medical 15.629 1 449 45 94

11 tmc2007-500 16.372 500 22 1 172

12 langlog 16.946 1 004 75 304

13 ohsumed 17.090 1 002 23 1 147

14 stackex-coffee 17.446 1 763 123 174

15 enron 17.503 1 001 53 753

16 reuters 17.548 500 103 811

17 mediamill 18.191 120 101 6 555

18 imdb 18.653 1 001 28 4 503

19 stackex-chess 18.779 585 227 1 078

20 yahoo-business 18.848 21 924 30 233

21 nuswide-VLDA 19.076 129 81 18 430

22 yahoo-entertainment 19.238 32 001 21 337

23 stackex-chemistry 19.473 540 175 3 032

24 yahoo-health 19.609 30 605 32 335

25 corel16k010 19.638 500 144 4 692

26 yahoo-recreation 19.684 30 324 22 530

27 yahoo-reference 19.702 39 679 33 275

28 yahoo-arts 19.703 23 146 26 599

29 corel16k001 19.722 500 153 4 803

30 corel16k003 19.730 500 154 4 812

31 corel16k004 19.791 500 162 4 860

32 corel16k002 19.805 500 164 4 868

33 corel16k005 19.814 500 160 5 034

34 corel16k006 19.821 500 162 5 009

35 corel16k008 19.847 500 168 4 956

36 stackex-philosophy 19.905 842 233 2 249

37 corel16k009 19.919 500 173 5 175

38 corel16k007 19.922 500 174 5 158

39 yahoo-education 19.956 27 534 33 511

(continued)
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Table 3.5 (continued)

Rank Dataset TCS f k LSet

40 yahoo-computers 19.993 34 096 33 428

41 corel5k 20.200 499 374 3 175

42 yahoo-science 20.337 37 187 40 457

43 yahoo-social 20.418 52 350 39 361

44 nuswide-BoW 20.433 501 81 18 430

45 stackex-cs 20.532 635 274 4 749

46 bibtex 20.541 1 836 159 2 856

47 yahoo-society 20.623 31 802 27 1 054

48 tmc2007 21.093 49 060 22 1 341

49 stackex-cooking 21.111 577 400 6 386

50 eurlex-sm 21.646 5 000 201 2 504

51 eurlex-dc 21.925 5 000 412 1 615

52 rcv1subset4 22.082 47 229 101 816

53 rcv1subset3 22.223 47 236 101 939

54 rcv1subset5 22.230 47 235 101 946

55 rcv1subset2 22.239 47 236 101 954

56 rcv1subset1 22.313 47 236 101 1 028

57 delicious 22.773 500 983 15 806

58 bookmarks 22.848 2 150 208 18 716

59 eurlex-ev 26.519 5 000 3 993 16 467

of the MLDs shown in the previous tables. Some of them, such as the MLDs coming
from the Corel image database, enron and delicious, stand out with SCUMBLE
values as high as 0.532. This means that those MLDs would be specially harder for
preprocessing and learning algorithms.

A metric which does not appear in the previous tables is TCS. Since it provides a
score of the theoretical complexity of the MLDs, it is more useful to look at it after
sorting the MLDs by the TCS column, instead of alphabetically. The result is shown
in Table3.5. Along the mentioned score, the number of features, labels, and labelsets
are also presented. From this table, it is easy to deduct that some of the MLDs
previously described as toy datasets present the lower theoretical complexity, with
TCS values around 10. Unsurprisingly, the text MLDs appear as the most complex
ones, due to their large sets of features and labels. Remember that TCS values are
logarithmic, so a difference of only one unit implies one order of magnitude lower
or higher.
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Obviously, theMLDs could also be ordered by theirCard,MeanIR, SCUMBLE
or any other metric values, depending on which traits of the data the interest
is on. It is easy to do so using the tools described in Chap.9.

3.4 Multilabel Classification by Example

At this point, the source, nature, and main characteristics of a large set of MLDs
have been already introduced. The characterization metrics have been applied over
theMLDs, obtaining themeasures shown in the previous tables. Before going into the
study of the evaluation metrics, whose goal was to assess the predictive performance
of a classifier, some predictions would be needed. This way we could get a glimpse
of the values returned by these metrics. For this reason, this section is devoted to
demonstrate how to conduct an example of multilabel classification job.

Even though the description of MLC algorithms is the main topic of further
chapters, in the following subsection a specific algorithm is introduced to be able
to complete the task. The outputs provided by this algorithm are then evaluated by
means of different multilabel evaluation metrics.

3.4.1 The ML-kNN Algorithm

One of the simplest approaches to classification is that of kNN. Once a new data
sample is given, a kNN classifier looks for its k-nearest neighbors. For doing so, the
distance (in some f-dimensional space) between the features of the new sample and all
instances in the dataset is computed. Once the closer instances have been gathered,
their classes are used to predict the one for the new sample. Since kNN does not
create any model, only when a new sample arrives the classifier does some work, it
is usually known as a lazy [1] method. It is also frequently referred as instance-based
learning [2].

ML-kNN [49] is an adaptation of the kNN method to the multilabel scenario.
Unlike the classic kNN algorithm, ML-kNN is not so lazy. It starts by building a
limited model that consists of two pieces of information:

• The a priori probabilities for each label. These are simply the number of times each
label appears in the MLD divided by the total number of instances. A smoothing
factor is applied to avoid multiplying by zero.

• The conditional probabilities for each label, computed as the proportion of
instances with the considered label whose k-nearest neighbors, also have the same
label.

http://dx.doi.org/10.1007/978-3-319-41111-8_9
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These probabilities are independently computed for each label, facing the task
as a collection of individual binary problems. Therefore, the potential dependencies
among labels are fully dismissed by this algorithm.

After this limited training process, the classifier is able to predict the labels for
new instances. When a new sample arrives, it goes through the following steps:

• First, the k-nearest neighbors of the given sample are obtained. By default the
L2 − norm (Euclidean distance) is used to measure the similarity between the
reference instance and the samples in the MLD.

• Then, the presence of each label in the neighbors is used as evidence to compute
maximum a posteriori (MAP) probabilities from the conditional ones obtained
before.

• Lastly, the labelset of the new sample is generated from the MAP probabilities.
The probability itself is provided as a confidence level for each label, thus making
possible to also generate a label ranking.

The reference MATLAB implementation for the ML-kNN algorithm is supplied
by the author at his own Web site.20 There is also available a Java implementation in
MULAN. The latter has been used in order to conduct the experimentation described
below.

3.4.2 Experimental Configuration and Results

Five MLDs have been chosen to run the ML-kNN algorithm. Two of them are
from the text domain (enron and stackex-cs), two more from the multime-
dia field (emotions and scene), and the last one comes from the biology domain
(genbase). Attending to their TCS measure emotions and scene, ranked at
positions 2 and 3 in Table3.5, would be the easier cases. A little harder would be
genbase (6th), followed by enron (15th) and finally stackex-cs (45th) which,
theoretically, would be the most difficult MLD in this collection.

The MLDs were partitioned following a 2× 5 strategy. This means that there are
two repetitions with 5 folds, and that for each run 80% (4/5) of instances are used
for training and 20% (1/5) for testing. Therefore, a total of 10 runs are made for each
MLD. Random sampling was used to select the instances in each fold. The full set
of folds for the aforementioned five MLDs is available in the book repository [12].

From each run, a set of predictions are obtained from the classifier. These can
be assessed using many performance evaluation metrics (they will be described
in the next section), getting a set of values for each metric/fold. These values are
then averaged, obtaining the mean indicators which are usually reported in most
papers, sometimes along with their deviations. Table3.6 shows all these values,
whose interpretation will be further provided as the evaluation metrics are described.

20http://cse.seu.edu.cn/people/zhangml/Resources.htm#codes.

http://cse.seu.edu.cn/people/zhangml/Resources.htm#codes


52 3 Case Studies and Metrics

Table 3.6 Classification results produced by ML-kNN assessed with several evaluation metrics

stackex-cs emotions enron genbase scene

Accuracy ↑ 0.0540 0.5391 0.3156 0.9440 0.6667

AvgPrecision ↑ 0.3009 0.7990 0.6280 0.9860 0.8648

Coverage ↓ 77.9260 1.7715 13.2092 0.6110 0.4797

F-measure ↑ 0.5900 0.7776 0.5898 0.9776 0.9593

HammingLoss ↓ 0.0091 0.1940 0.0524 0.0048 0.0869

MacroF-measure ↑ 0.1999 0.6225 0.4284 0.9357 0.7378

MacroPrecision ↑ 0.5866 0.7279 0.5568 0.9795 0.8149

MacroRecall ↑ 0.0169 0.5981 0.0808 0.6787 0.6808

MicroAUC ↑ 0.8481 0.8565 0.9002 0.9893 0.9405

MicroF-measure ↑ 0.1065 0.6652 0.4715 0.9458 0.7331

MicroPrecision ↑ 0.6289 0.7217 0.6613 0.9934 0.8137

MicroRecall ↑ 0.0583 0.6186 0.3671 0.9031 0.6673

OneError ↓ 0.6571 0.2799 0.3070 0.0129 0.2269

Precision ↑ 0.6157 0.7182 0.6616 0.9956 0.8252

RLoss ↓ 0.1522 0.1608 0.0929 0.0072 0.0786

Recall ↑ 0.0582 0.6184 0.3654 0.9454 0.6836

SubsetAccuracy ↑ 0.0165 0.2968 0.0564 0.9132 0.6243

The arrow at the right of each metric name indicates whether lower values are better
(↓) or the opposite (↑).

Disparate plot designs can be used to graphically represent those final values,
being bar plots and line plots among the most frequent ones. When the interest is in
comparing a group of cases, in this occasion how the classifier has performed with
each MLD in accordance with several metrics, a radar chart (also known as spider
plot) can be useful. In Figs. 3.1 and 3.2, this type of representation has been used to
show the results produced by ML-kNN. Each vertex corresponds to a metric.21 The
points belonging to anMLD are connected so that a polygon is generated. The larger
is the area of the polygon, the better is the result with a certain MLD.

Through the observation of these two plots, despite the details of each metric are
not yet known, the following facts can be deducted:

• The performance with emotions and scene, with share a very similar TCS
value, is very much alike.

• The results for he previous two MLDs are clearly better than for enron, which
has a higher TCS score.

• The worst results are in general attributable to stackex-cs, the most complex
MLD according to the TCS metric.

21The values of metrics such as HammingLoss, OneError, and RankingLoss have been comple-
mented as the difference with respect to 1, aiming to preserve the principle of assigning a larger
area to better values.
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Fig. 3.1 Classification results produced by ML-kNN (part 1)

Fig. 3.2 Classification results produced by ML-kNN (part 2)
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• The genbase results are not in line with previous appraisals, since it obtains the
best results in all measures. This could be due to the existence of an attribute,
named protein, containing a code that uniquely identifies each protein in the
MLD. This feature would allow the classifier to easily locate the closest instances,
producing a prediction that would be not so precise without that knowledge.

Overall, the previous plots seem to denote that the easier is the MLD, the better
the classifier performs. This rule, as can be seen with the exception of genbase, can
be broken depending on the MLDs specificities. Moreover, these results correspond
to one classifier only, so they must be taken cautiously.

In order to complete the judgment of these results, it would be essential to gain an
understanding of each individual evaluation metric. In the last section of this chapter,
the details regarding how the performance of classifier can be assessed are provided,
including additional discussion related to the values in Table3.6.

3.5 Assessing Classifiers Performance

The output of any multilabel classifier consists of the labelset predicted for each test
instance. When working in the traditional scenario, with only one class as output,
the prediction only can be correct or wrong. A multilabel prediction, by contrast,
can be fully correct, partially correct/wrong (at different degrees), or totally wrong.
Applying the same metrics used in traditional classification is possible, but usually
it is excessively strict. This is the reason for using specific evaluation metrics, able
to take into consideration the cases between the two extremes.

Currently, more than twenty distinct performancemetrics have been defined in the
literature, and some of them quite specific aimed to hierarchical multilabel classifi-
cation. All multilabel evaluation metrics can be grouped conforming to two criteria:

• How the prediction is computed: A measurement can be made by instance or by
label, giving as a result two different groups of metrics:

– Example-based metrics: These metrics [22, 23, 34] are calculated separately
for each instance and then averaged dividing between the number of samples.

– Label-based metrics: In contrast to the previous group, the label-based metrics
[42] are computed independently for each label before they are averaged. For
doing so, two different strategies [41] can be applied:
Macro-averaging: The metric is calculated individually for each label and
the result is averaged dividing by the number of labels (k).
Micro-averaging: The counters of hits and misses for each label are firstly
aggregated, and then the metric is computed only once.

• How the result is provided: The output produced by a multilabel classifier can
be a binary bipartition of labels or a label ranking. Some of them provide both
results.
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– Binary bipartition: A binary bipartition is a vector of 0 s and 1s indicating
which of the labels belonging to the MLD are relevant to the processed sample.
There are metrics that operate over these bipartitions, using the counters of true
positives, true negatives, false positives, and false negatives.

– Label ranking: The output is a list of labels ranked according to some relevance
measure. A binary bipartition can be obtained from a label ranking by applying a
threshold, usually given by the classifier itself. However, there are performance
metrics that work with raw rankings to compute the measurement, instead of
using counters of right and wrong predictions.

In the two following subsections, the example-based and label-based metrics
commonly used in the literature are described, providing their mathematical formu-
lation. Where applicable, each metric description is completed with a discussion of
the results produced by the experimentation with ML-kNN in the previous section.

3.5.1 Example-Based Metrics

These are the performance metrics which are firstly evaluated by each instance and
then averaged according to the number of instances considered. Therefore, the same
weight is assigned to every instance in the final score, whether they contain frequent
or rare labels.

3.5.1.1 Hamming Loss

Hamming loss is probably the most commonly used performance metric in MLC.
This is not surprising, as it is easy to calculate as can be seen in (3.11). The� operator
returns the symmetric difference between Yi, the real labelset of the ith instance, and
Zi, the predicted one. The |r| operator counts the number of 1 s in this difference, in
other words the number of miss predictions. The total number of mistakes in the n
instances is aggregated and then normalized taking into account the number of labels
and number of instances.

HammingLoss = 1

n

1

k

n∑

i=1

|Yi�Zi| (3.11)

Since the mistakes counter is divided by the number of labels, this metric will
result in different assessments for the same amount of errors when used with MLDs
having disparate labelset lengths. This is the main reason for the low HammingLoss
value of the stackex-cs when compared to emotions or scene. The former
has a large number of labels, while the others only have six. Therefore, this metric is
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an indicator of committed errors by the classifier proportional to the labelset length.
We can compare the results of emotions and scene, both have the same number
of labels, and conclude that ML-kNN has performed better with the latter (lower
value) than the former.

3.5.1.2 Accuracy

In the multilabel field, Accuracy is defined as (3.12) the proportion between the
number of correctly predicted labels and the total number of active labels, in the both
real labelset and the predicted one. The measure is computed by each instance and
then averaged, as all example-based metrics.

Accuracy = 1

n

n∑

i=1

|Yi ∩ Zi|
|Yi ∪ Zi| (3.12)

The Accuracy for genbase is very high, due to the reason previously explained.
As shown in Fig. 3.1, the values for emotions and scene are very similar again,
although with a slight advantage to the latter. The obtained Accuracy cannot be
considered as good in the case of enron, and even less with the stackex-cs
MLD. It must be remembered that this MLD had the highest TCS of the five case
studies. Therefore, that it gets the worst classification performance was within the
expected.

3.5.1.3 Precision, Recall, and F-Measure

Precision (3.13) is considered one of the more intuitive metrics to assess multilabel
predictive performance. It is calculated as the proportion between the number of
labels correctly predicted and the total number of predicted labels. Thus, it can be
interpreted as the percentage of predicted labels which are truly relevant for the
instance. This metric is usually used in conjunction with Recall (3.14) that returns
the percentage of labels correctly predicted among all truly relevant labels. That is,
the ratio of true labels is given as output by the classifier.

Precision = 1

n

n∑

i=1

|Yi ∩ Zi|
|Zi| (3.13)

Recall = 1

n

n∑

i=1

|Yi ∩ Zi|
|Yi| (3.14)

The jointly use of Precision and Recall is so common in the information retrieval
(IR) field that a metric combining them is defined. It is known as F-measure (3.15)
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and computed as the harmonic mean of the previous ones. This way a weighted
measure of how many relevant labels are predicted and how many of the predicted
labels are relevant is obtained.

F-measure = 2 ∗ Precision ∗ Recall

Precision + Recall
. (3.15)

By observing the right side of Fig. 3.1, where Precision, Recall, and F-measure
are depicted, that scene and emotions are once again very close can be stated,
though scene results are a bit better. With enron, it can be seen that Precision
has a higher value than Recall, a far greater fact in the case of stackex-cs. This
means that for these MLDs a high proportion of the labels included in the prediction
are relevant labels, but that there are many other true labels which are not predicted
by the classifier. Looking at the F-measure values, the same correlation between
the theoretical complexity (TCS value) of each MLD and classification performance
assessment can be deducted.

3.5.1.4 Subset Accuracy

This is possibly the most strict evaluation metric. It is also known as classification
accuracy and labelset accuracy, since full labelsets, the predicted and the real one,
are compared for full equality as can be seen in (3.16). The larger is the labelset, the
lower the likelihood that the classifier produces exactly the correct output. Therefore,
for MLDs with large sets of labels that low SubsectAccuracy values are obtained is
something usual.

SubsetAccuracy = 1

n

n∑

i=1

[[Yi = Zi]] (3.16)

Apart from the atypical case of genbase, the SubsectAccuracy for the MLDs
used in the previous experimentation reflects the problems the classifier hadwith each
one of them. While scene values are not bad, the performance with emotions
was far worse. As could be expected, due to their large sets of labels, enron and
stackex-cs show the worst results.

3.5.1.5 Ranking-Based Metrics

All the example-based metrics described above work over binary partitions of labels,
so they need a labelset as output from the classifier. By contrast, the explained here
need a ranking of labels, so a confidence degree or belonging probability of each
label is needed.



58 3 Case Studies and Metrics

In the following equations, rank(xi, l) is defined as a function that for the xi
instance and the relevant label l ∈ Y , whose position is known, returns l’s confidence
degree into the Zi prediction returned by the classifier.

The AvgPrecision (Average precision) metric (3.17) determines for each label in
an instance, the proportion of relevant labels that are ranked above it in the predicted
ranking. The goal was to know how many positions have to be checked, in average,
before a non-relevant label is found. Therefore, the larger is theAvgPrecisionmeasure
obtained, the better would be performing the classifier.

AveragePrecision = 1

n

n∑

i=1

1

|Yi|
∑

y∈Yi

|{y′|rank(xi, y′) ≤ rank(xi, y), y′ ∈ Yi}|
rank(xi, y)

(3.17)

The Coverage metric (3.18) counts the number of steps to going through the
ranking provided by the classifier until all the relevant labels are found. The lower
is the mean number of steps for the MLD, value returned by Coverage, the better is
performing the classifier. As can be shown in (3.18), this measure is not normalized,
so it is not upper bounded. As happens with other multilabel classification metrics,
Coverage is influenced for the size of the set of labels in each MLD. The larger is
this set, the higher usually is the mean number of steps to walk-through the ranking.

Coverage = 1

n

n∑

i=1

argmax
y∈Yi

〈rank(xi, y)〉 − 1 (3.18)

As the previous one, OneError (3.19) is a performance metric to minimize. The
expression which follows the summation returns 1 if the top-ranked label in the
prediction given by the classifier does not belong to the real labelset. The number of
miss predictions is accumulated and averaged. The result is the percentage of cases
in which the most confident label for the classifier is a false positive.

OneError = 1

n

n∑

i=1

[[[argmax
y∈Zi

〈rank(xi, y)〉 /∈ Yi]]]. (3.19)

The RLoss (Ranking loss) metric takes all possible combinations of relevant and
non-relevant labels for an instance and counts (3.20) how many times a non-relevant
label is ranked above a relevant one in the classifier prediction. The counting is
normalized dividing by the product of relevant and non-relevant labels in the instance
and then averaged by the number of assessed instances. The lower is the RLoss
measure, the better is performing the classifier.

RLoss = 1

n

n∑

i=1

1

|Yi|.|Yi|
|ya, yb : rank(xi, ya) > rank(xi, yb), (ya, yb) ∈ Yi × Yi|

(3.20)
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Observing the AvgPrecision in Table3.6, it can be seen that with the exception of
stackex-cs, ML-kNN performed quite well with the other four MLDs. Looking
at the Coverage row, the values for stackex-cs and enron stand out. Since
they have more labels, the number of steps to complete before getting all relevant
labels is higher. The OneError values are quite similar for emotions, scene and
enron, while for stackex-cs is much higher. This denotes that for the latter
MLD the top-ranked label was not usually relevant. Lastly, considering the RLoss
values a different scenario is observed. In this case, the worst results are obtained
from emotions, though stackex-cs is very close. Although emotions only
has six labels, there are a significant amount of predictions made by ML-kNN in
which non-relevant labels are ranked above the relevant ones.22

3.5.2 Label-based Metrics

All the performance metrics enumerated in the previous section are evaluated indi-
vidually for each instance, and then averaged dividing by the number of considered
instances. Therefore, each data sample is given the sameweight in the final result. On
the contrary, label-based metrics can be computed by means of two different aver-
aging strategies. These are usually known as macro-averaging and microaveraging.

Any of the metrics obtained from a binary partition of labels, such as Precision,
Recall or F-measure, can be also computed using these strategies. For doing so, the
generic formulas in (3.21) and (3.22) are used. EvalMet would be one of the metrics
just mentioned. In this context, TP stands for True Positives, FP for False Positives,
TN for True Negatives, and FN for False Negatives.

MacroMet = 1

k

∑

l∈L
EvalMet(TPl,FPl,TNl,FNl) (3.21)

MicroMet = EvalMet(
∑

l∈L
TPl,

∑

l∈L
FPl,

∑

l∈L
TNl,

∑

l∈L
FNl) (3.22)

In the macro-averaging approach, the metric is evaluated once per label, using the
accumulated counters for it, and then the mean is obtained dividing by the number of
labels. This way the same weight is assigned to each label, whether it is very frequent
or very rare.

22It must be taken into account thatML-kNN does not generate a real ranking of labels as prediction,
but a binary partition. The ranking is generated from the posterior probabilities calculated for each
label. With so few labels in emotions, it is possible to have many ties in these probabilities, so
the positions in the ranking could be randomly determined in some cases.



60 3 Case Studies and Metrics

On the contrary, the microaveraging strategy first adds the counters for all labels
and then computes the metric only once. Since the predictions where rare labels
appear are combined with that made for the most frequent ones, the former are
usually diluted among the latter. Therefore, the contribution of each label to the final
measure is not the same.

In addition to label-based metrics computed from binary partitions, those cal-
culated from labels rankings are also available. The area under the ROC (Receiver
Operating Characteristic) curve (AUC) can be computed according to the macro-
and (3.23) and micro- (3.24) averaging approaches

MacroAUC = 1

k

∑

l∈L

|{x′, x′′ : rank(x′, yl) ≥ rank(x′′, yl), (x′, x′′) ∈ Xl × Xl}|
|Xl|.|Xl|

,

Xl = {xi|yl ∈ Yi},Xl = {xi|yl /∈ Yi}
(3.23)

MicroAUC = |{x′, x′′, y′, y′′ : rank(x′, y′) ≥ rank(x′′, y′′), (x′, y′) ∈ S+, (x′′, y′′) ∈ S−}|
|S+|.|S−| ,

S+ = {(xi, y)|y ∈ Yi}, S− = {(xi, y)|y /∈ Yi}
(3.24)

Analyzing the results in Table3.6 corresponding to the label-based metrics,
some interesting conclusions can be drawn. The MacroF-measure for genbase is
clearly under the MicroF-measure. In the both cases, the same basic metric is used,
F-measure, but with a different averaging strategy. From this observation, it can be
deducted that one or more miss predicted rare labels exist in this MLD. By looking
at Table3.4 that genbase has a remarkable imbalance level can be confirmed, the
existence of some rare labels is a fact. On the other hand, the MicroAUC values for
all the MLDs are above the 0.8 level, which is the threshold from which usually the
results are considered as good. The values for enron, genbase, and scene even
surpass the 0.9 limit and can be regarded as excellent.

In addition to the groups of metrics already explained here, several more can be
found, in generalmuchmore specific, in the specialized literature. For instance,
there are metrics for evaluating the performance in hierarchical multilabel
classification such as Hierarchical loss [8]. It is based on Hamming loss, but
considering the level of the hierarchy where the miss predictions are made.
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