
Chapter 7
EMPC Systems: Computational Efficiency
and Real-Time Implementation

7.1 Introduction

While the two-layer EMPC structures of Chap. 6 were shown to successfully reduce
the on-line computation time relative to that required for a centralized, one-layer
EMPC scheme, EMPC optimization problems typically found within the context of
chemical processes are nonlinear andnon-convexbecause a nonlinear dynamicmodel
is embedded in the optimization problem. Although many advances have been made
in solving such problems and modern computers may efficiently perform complex
calculations, it is possible that computation delay will occur that may approach
or exceed the sampling time. If the computational delay is significant relative to the
sampling period, closed-loop performance degradation and/or closed-loop instability
may occur.

In this chapter, three EMPCdesignmethodologies are presented to further address
computational efficiency. In the first section, a composite control structure featuring
EMPC is designed for systemswith explicit two-time-scale dynamic behavior.Owing
to the fact that the class of dynamic models describing such systems are typically
stiff, a sufficiently small time step is required for forward numerical integration with
explicit methods, which subsequently affects the computation time required to solve
the EMPC problem. On the other hand, the composite control structure allows for
larger time steps because it avoids the use of the stiff dynamicmodel embedded in the
MPC problems of the composite control structure. In the second section, distributed
EMPC (DEMPC), which computes the control actions by solving a series of dis-
tributed EMPC problems, is considered. Specifically, an application study whereby
several DEMPC schemes are applied to a benchmark chemical process example is
presented to evaluate the ability of the resulting DEMPC schemes to reduce the com-
putation time relative to a centralized EMPC system. The closed-loop performance
under DEMPC is compared with that achieved under a centralized EMPC approach.
In the third section, a real-time implementation strategy for Lyapunov-based EMPC
(LEMPC) is presented which addresses potentially unknown and time-varying
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computational time for control action calculation. Closed-loop stability under the
real-time LEMPC strategy is rigorously analyzed.

7.2 Economic Model Predictive Control of Nonlinear
Singularly Perturbed Systems

The development of optimal process control, automation, and management method-
ologies while addressing time-scale multiplicity due to the strong coupling of slow
and fast phenomena occurring at different time-scales is an important issue in the
context of chemical process control. For multiple-time-scale systems, closed-loop
stability as well as controller design are usually addressed through explicit separation
of fast and slow states in a standard singular perturbation setting [1–3] or by taking
advantage of change of coordinates for two-time-scale systems in nonstandard sin-
gularly perturbed form [4]. In our previous work, we developed methods for slow
time-scale (tracking) MPC as well as composite fast-slow (tracking) MPC for non-
linear singularly perturbed systems [5, 6]. In this section, these ideas are extended
to EMPC of nonlinear singularly perturbed systems.

Specifically, in this section, an EMPCmethod for a broad class of nonlinear singu-
larly perturbed systems is presentedwhereby a “fast” Lyapunov-basedMPC (LMPC)
using a standard tracking quadratic cost is employed to stabilize the fast closed-loop
dynamics at their equilibrium slowmanifold while a “slow” Lyapunov-based EMPC
(LEMPC) is utilized for the slow dynamics to address economic performance con-
siderations. Multi-rate sampling of the states is considered involving fast-sampling
of the fast states and slow-sampling of the slow states. The states are subsequently
used in the fast and slowMPC systems, respectively. Closed-loop stability of the con-
trol scheme is addressed through singular perturbation theory. The control method
is demonstrated through a chemical process example which exhibits two-time-scale
behavior.

7.2.1 Class of Nonlinear Singularly Perturbed Systems

Nonlinear singularly perturbed systems in standard formare considered in this section
with the following state-space description:

ẋ = f (x, z, us,w, ε), (7.1a)

εż = g(x, z, u f ,w, ε), (7.1b)

where x ∈ R
nx and z ∈ R

nz denote the state vectors, us ∈ Us ⊂ R
ms and u f ∈ U f ⊂

R
m f are the control (manipulated) inputs, w ∈ R

l denotes the vector of process
disturbances, and ε > 0 is a small positive parameter. The sets Us and U f are
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assumed to be compact sets. The disturbance vector is assumed to be an absolutely
continuous function of time and bounded in a sense that there exists a θ > 0 such
that |w(t)| ≤ θ for all t ≥ 0. To this end, let W = {w ∈ R

l : |w| ≤ θ}.
Owing to the multiplication of the small parameter ε with ż in Eq.7.1, there

exists a time-scale separation in the two systems of differential equations of Eq.7.1.
Moreover, the systemofEq.7.1 is said to be in singularly perturbed form.Through the
rest of the section, x and z will be referred to as the slow and fast states, respectively.
Furthermore, the vector functions f and g are assumed to be sufficiently smooth
on R

nx × R
nz × Us × W × [0, ε̄) and R

nx × R
nz × U f × W × [0, ε̄), respectively,

for some ε̄ > 0. The origin is assumed to be an equilibrium point of the unforced
nominal system; that is, system of Eq.7.1 with us = 0, u f = 0, and w ≡ 0 possesses
an equilibrium point at (x, z) = (0, 0).

The fast states are sampled synchronously and are available at time instants indi-
cated by the time sequence {tk f }k f ≥0 with tk f = t0 + k f Δ f , k f = 0, 1, . . . where
t0 is the initial time and Δ f > 0 is the measurement sampling period of the fast
states. Similarly, the slow states are sampled synchronously and are available at time
instants indicated by the time sequence {tks }ks≥0 with tks = t0 + ksΔs , ks = 0, 1, . . .
where Δs > 0 (Δs > Δ f ) is the measurement sampling period of the slow states.
The initial time is taken to be zero, i.e., t0 = 0. With respect to the control problem
formulation, the controls u f and us , which are responsible for the fast and slow
dynamics, are computed every Δ f and Δs , respectively. For the sake of simplicity,
Δs/Δ f is assumed to be a positive integer.

7.2.2 Two-Time-Scale Decomposition

The explicit separation of slow and fast states in the system of Eq.7.1 allows for
decomposing the system into two separate reduced-order systems evolving in differ-
ent time-scales. To proceedwith such a two-time-scale decomposition and to simplify
the notation of the subsequent development, the issue of controlling the fast dynamics
is addressed first. Similar to [5], a “fast” model predictive controller will be designed
that renders the fast dynamics asymptotically stable in a sense to be made precise
in Assumption 7.2. Moreover, u f does not modify the open-loop equilibrium slow
manifold for the fast dynamics. By setting ε = 0, the dimension of the state-space
of the system of Eq.7.1 reduces from nx + nz to nx because the differential equation
of Eq.7.1b degenerates into an algebraic equation. The following model is obtained
that describes the slow dynamics with u f = 0:

˙̄x = f (x̄, z̄, us,w, 0) (7.2a)

0 = g(x̄, z̄, 0,w, 0) (7.2b)

where the bar notation in x̄ and z̄ is used to indicate that these variables have been
obtained by setting ε = 0.
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Systems of the form of Eq.7.1 satisfying the following assumption are said to be
in standard singularly perturbed form, e.g. [1].

Assumption 7.1 The equation g(x̄, z̄, 0,w, 0) = 0 possesses a unique isolated root

z̄ = g̃(x̄,w) (7.3)

where g̃ : Rnx ×R
l → R

nz and its partial derivatives ∂ g̃/∂ x̄ , ∂ g̃/∂w are sufficiently
smooth and |∂ g̃/∂w| ≤ Lg̃ .

Assumption 7.1 ensures that the system of Eq.7.1 has an isolated equilibrium
manifold for the fast dynamics. While on this manifold, z̄ may be expressed in terms
of x̄ andw using an algebraic expression. It should be emphasized that g(x̄, z̄, 0,w, 0)
is, in this case, independent of the expression of the “fast” input, u f . Assumption 7.1
does not pose any significant limitations in practical applications, and it is a nec-
essary one in the singular perturbation framework to construct a well-defined slow
subsystem. Utilizing z̄ = g̃(x̄,w), the system of Eq.7.2may be re-written as follows:

˙̄x = f (x̄, g̃(x̄,w), us,w, 0) =: fs(x̄, us,w). (7.4)

The system of Eq.7.4 is referred to as the slow subsystem or the reduced system.
Introducing the fast time-scale τ = t/ε and the deviation variable y = z−g̃(x,w),

i.e., the deviation of the fast state from the equilibrium manifold, the nonlinear
singularly perturbed system of Eq.7.1 may be written in the (x, y) coordinates with
respect to the fast time-scale as follows:

dx

dτ
= ε f (x, y + g̃(x,w), us,w, ε)

dy

dτ
= g(x, y + g̃(x,w), u f ,w, ε)

− ε

(
∂ g̃

∂x
f (x, y + g̃(x,w), u f ,w, ε) + ∂ g̃

∂w
ẇ

) (7.5)

Setting ε = 0, the following fast subsystem is obtained:

d ȳ

dτ
= g(x, ȳ + g̃(x,w), u f ,w, 0) (7.6)

where the notation ȳ is again used to indicate that its dynamics have been derived by
setting ε = 0. In the system of Eq.7.6, x and w are considered to be “frozen” to their
initial values in the fast time-scale since their change in this time-scale is of order ε.

Remark 7.1 The difference between y and ȳ is: y is the deviation between the sin-
gularly perturbed system state z (Eq. 7.1 with ε > 0) and the solution to the alge-
braic equation g(x, z̄, 0,w, 0) = 0 for x ∈ R

nx and w ∈ W, which is denoted
as z̄ = g̃(x,w). The variable ȳ is used to denote the solution to the fast sub-
system obtained from Eq.7.6 where x and w are frozen to their initial values
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and ε = 0; the initial condition of the ODE of Eq.7.6 at some time t0 ≥ 0 is
ȳ(t0) = y(t0) = z(t0) − g̃(x(t0),w(t0)).

7.2.3 Stabilizability Assumption

A stabilizability assumption is imposed on the slow subsystem in the sense that the
existence of a Lyapunov-based locally Lipschitz feedback controller us = hs(x̄) is
assumed which, under continuous implementation, renders the origin of the nominal
closed-loop slow subsystem of Eq.7.4 asymptotically stable while satisfying the
input constraints for all the states x̄ inside a given stability region. Using converse
Lyapunov theorems [7–9], this assumption implies that there exists a continuously
differentiable Lyapunov function Vs : Ds → R+ for the nominal closed-loop slow
subsystem that satisfy the following inequalities:

αs1(|x̄ |) ≤ Vs(x̄) ≤ αs2(|x̄ |) (7.7a)

∂Vs(x̄)

∂ x̄
fs(x̄, hs(x̄), 0) ≤ −αs3(|x̄ |) (7.7b)∣∣∣∣∂Vs(x̄)

∂ x̄

∣∣∣∣ ≤ αs4(|x̄ |) (7.7c)

hs(x̄) ∈ Us (7.7d)

for all x̄ ∈ Ds ⊆ R
nx where Ds is an open neighborhood of the origin and the

functions αsi (·), i = 1, 2, 3, 4 are classK functions. The region Ωρs ⊂ Ds denotes
the stability region of the closed-loop slow subsystem under the Lyapunov-based
controller hs(x̄).

Similarly, a stabilizability assumption is placed on the fast subsystem.

Assumption 7.2 There exists a feedback controller u f = p(x)ȳ ∈ U f where p(x)
is a sufficiently smooth vector function in x , such that the origin of the closed-loop
fast subsystem:

d ȳ

dτ
= g(x, ȳ + g̃(x,w), p(x)ȳ,w, 0) (7.8)

is globally asymptotically stable, uniformly in x ∈ R
nx and w ∈ W, in the sense that

there exists a class K L function βy such that for any ȳ(0) ∈ R
nz :

|ȳ(τ )| ≤ βy(|ȳ(0)|, τ ) (7.9)

for τ ≥ 0.

This assumption implies that there exist functions α fi (·), i = 1, 2, 3 of classK
and a continuously differentiable Lyapunov function V f (ȳ) for the nominal closed-
loop fast subsystem which satisfy the following inequalities:
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α f1(|ȳ|) ≤ V f (ȳ) ≤ α f2(|ȳ|)
∂V f (ȳ)

∂ ȳ
g(x, ȳ + g̃(x, 0), p(x)ȳ, 0, 0) ≤ −α f3(|ȳ|)

p(x)ȳ ∈ U f

(7.10)

for all ȳ ∈ D f ⊆ R
nz and x ∈ Ds where D f is an open neighborhood of the origin.

The region Ωρ f ⊆ D f is used to denote the stability region of the closed-loop fast
subsystem under the nonlinear controller p(x)ȳ.

Remark 7.2 The sets Ωρs and Ωρ f denote the stability regions for the closed-loop
slow and fast subsystems under the controllers us = hs(x̄) and u f = p(x)ȳ, respec-
tively, in the sense that the closed-loop states of the fast and slow subsystems, starting
in Ωρs and Ωρ f , remain in these sets thereafter. Regarding the construction of Ωρs ,
we have estimated it through the following procedure: V̇s(x̄) is evaluated for different
values of x̄ while hs(x̄) is applied to the nominal system subject to the input con-
straint hs(x̄) ∈ Us . Then, we estimated Ωρs as the largest level set of the Lyapunov
function Vs(x̄) where V̇s(x̄) < 0. The region Ωρ f may be estimated in a similar
fashion using the fast subsystem and the controller p(x)ȳ.

7.2.4 LEMPC of Nonlinear Singularly Perturbed Systems

In this section, the design of a composite control structure featuring an EMPC for
nonlinear singularly perturbed systems is presented. In the control structure, a track-
ing Lyapunov-basedMPC is used to stabilize the fast dynamics in a sense to be made
precise below. To control the slow dynamics, a two-mode LEMPC of Sect. 4.2 is
used to address economic considerations as well as address closed-loop stability of
the slow subsystem.

Over the time interval [0, ts), the LEMPC operates inmode 1 operation to dictate a
potentially time-varying operating policy of the slow subsystem.After ts , the LEMPC
operates in mode 2 operation to enforce convergence of the closed-loop subsystem
state to the steady-state. In operation period [0, ts), the predicted slow subsystem
state along the finite prediction horizon is constrained to be maintained in the region
Ωρe ⊂ Ωρs . If the current slow subsystem state is in the regionΩρs \Ωρe , the LEMPC
drives the slow subsystem state to the region Ωρe and once the state converges to
the set Ωρe , the LEMPC may dictate a time-varying operating policy. Under mode
2 operation of the LEMPC (t ≥ ts), LEMPC computes control actions such that the
slow subsystem state is driven to a neighborhood of the steady-state.

7.2.4.1 Implementation Strategy

The above described implementation strategy corresponding to the fast subsystem
under the fast LMPC may be described as follows:

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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1. The LMPC receives the fast subsystem state ȳ(tk f ).
2. The LMPC obtains its manipulated input trajectory which ensures that the fast

subsystem state is steered to a neighborhood of the equilibrium slow manifold of
the fast state.

3. The LMPC sends the first step value of the computed input trajectory to the
corresponding actuators.

4. Go to Step 1 (k f ← k f + 1).

Similarly, the implementation strategy corresponding to the slow subsystem under
the slow LEMPC can be described as follows:

1. The LEMPC receives x(tks ) from the sensors.
2. If tks < ts , go to Step 3. Else, go to Step 4.
3. If x(tks ) ∈ Ωρe , go to Step 3.1. Else, go to Step 3.2.

3.1. The LEMPC computes an input trajectory over a finite-time prediction hori-
zon that optimizes the economic cost function while maintains the predicted
state trajectory to be within Ωρe . Go to Step 5.

3.2. The LEMPC computes an input trajectory that forces the state closer to the
region Ωρe . Go to Step 5.

4. The LEMPC computes an input trajectory that drives the slow subsystem state to
a small neighborhood of the origin.

5. The LEMPC sends the first step value of the computed input trajectory to the
corresponding actuators.

6. Go to Step 1 (ks ← ks + 1).

7.2.4.2 Fast LMPC Formulation

Referring to the fast subsystem of Eq.7.6, the fast LMPC at sampling time tk f is
formulated as follows

min
u f ∈S(Δ f )

∫ tk f +N f Δ f

tk f

[ỹT (τ̂ )Q f ỹ(τ̂ ) + uT
f (τ̂ )R f u f (τ̂ )] d τ̂ (7.11a)

s.t.
d ỹ(τ̂ )

d τ̂
= g(x(tks ), ỹ(τ̂ ) + g̃(x(tks ), 0), u f (τ̂ ), 0, 0) (7.11b)

ỹ(tk f ) = ȳ(tk f ) (7.11c)

u f (τ̂ ) ∈ U f , ∀ τ̂ ∈ [tk f , tk f + N f Δ f ) (7.11d)

∂V f (ȳ(tk f ))

∂ ȳ
g(x(tks ), ȳ(tk f ) + g̃(x(tks ), 0), u f (tk f ), 0, 0)

≤ ∂V f (ȳ(tk f ))

∂ ȳ
g(x(tks ), ȳ(tk f ) + g̃(x(tks ), 0), p(x(tks ))ȳ(tk f ), 0, 0)

(7.11e)
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where S(Δ f ) is the family of piece-wise constant functionswith sampling periodΔ f ,
N f is the prediction horizon of LMPC, Q f and R f are positive definite weighting
matrices that penalize the deviation of the fast subsystem state and manipulated
input from their corresponding values at the equilibrium slow manifold, ȳ(tk f ) is
the fast subsystem state measurement obtained at tk f , ỹ denotes the predicted fast
subsystem state trajectory of the nominal fast subsystem model of Eq.7.11b over the
prediction horizon. The input trajectory is subject to the manipulated input constraint
of Eq.7.11d. The constraint of Eq.7.11e indicates that the amount of reduction in
the value of the Lyapunov function when the manipulated input u f computed by the
LMPC of Eq.7.11 is applied is at least the amount of reduction when the Lyapunov-
based controller p(x)y is applied in a sample-and-hold fashion. Since the LMPC
of Eq.7.11 obtains the manipulated input trajectory u f every Δ f , x(tks ) is the last
available measurement of the slow process state, i.e., tks ≤ tk f . The optimal solution
to this optimization problem is defined by u∗

f (τ̂ |tk f ) for all τ̂ ∈ [tk f , tk f +N f Δ f ) and
the manipulated input of the closed-loop fast subsystem under the LMPC of Eq.7.11
is defined as follows:

u f (t) = u∗
f (t |tk f ), ∀ t ∈ [tk f , tk f + Δ f ). (7.12)

To analyze the closed-loop stability of the fast subsystem under the fast LMPC, a
few properties are needed. By continuity, the smoothness property assumed for the
vector function g(·) and taking into account that the manipulated input u f and the
disturbance w are bounded in compact sets, there exists a positive constant M f such
that

|g(x, ȳ + g̃(x,w), u f ,w, 0)| ≤ M f (7.13)

for all ȳ ∈ Ωρ f , u f ∈ U f , x ∈ Ωρs and w ∈ W. Furthermore, by the continuous
differentiable property of the Lyapunov function V f (·) and the smoothness property
assumed for the vector function g(·), there exist positive constants L ȳ and Lw f such
that

∣∣∣∣∂V f (ȳ)

∂ ȳ
g(x, ȳ, u f ,w, 0) − ∂V f (ȳ′)

∂ ȳ
g(x, ȳ′, u f ,w, 0)

∣∣∣∣ ≤ L ȳ|ȳ − ȳ′|
∣∣∣∣∂V f (ȳ)

∂ ȳ
g(x, ȳ, u f ,w, 0) − ∂V f (ȳ)

∂ ȳ
g(x, ȳ, u f ,w′, 0)

∣∣∣∣ ≤ Lw f |w − w′|
(7.14)

for all ȳ, ȳ′ ∈ Ωρ f , u f ∈ U f , and w, w′ ∈ W.
Proposition 7.1 characterizes the closed-loop stability properties of the LMPC of

Eq.7.11. The analysis is similar to that of the LMPC presented in [10].

Proposition 7.1 Consider the fast subsystem of Eq.7.6 in closed-loop under the
LMPCof Eq.7.11 based on the feedback controller p(x)y that satisfies the conditions
of Eq.7.10. Let εw f > 0, Δ f > 0 and ρ f > ρ

f
s > 0, θ > 0 satisfy:

− α f3(α
−1
f2

(ρ f
s )) + L ȳM f Δ f + (L ȳ Lg̃ + Lw f )θ ≤ −εw f /Δ f . (7.15)
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Then, there exists a class K L function βy and a class K function γy such that if
ȳ(0) ∈ Ωρ f , then ȳ(t) ∈ Ωρ f for all t ≥ 0 and

|ȳ(t)| ≤ βy

(
|ȳ(0)|, t

ε

)
+ γy(ρ

∗
f ) (7.16)

with ρ∗
f = maxs∈[0,Δ f ]{V f (ȳ(s)) : V f (ȳ(0)) ≤ ρ

f
s }, uniformly in x ∈ Ωρs and

w ∈ W.

Proof The time derivative of the Lyapunov function along the state trajectory ȳ(t)
of fast subsystem of Eq.7.6 for t ∈ [tk f , tk f + Δ f ) is written as follows:

V̇ f (ȳ(t)) = ∂V f (ȳ(t))

∂ ȳ
g(x(tks ), ȳ(t) + g̃(x(tks ),w), u∗

f (tk f |tk f ),w, 0). (7.17)

Adding and subtracting the term:

∂V f (ȳ(tk f ))

∂ ȳ
g(x(tks ), ȳ(tk f ) + g̃(x(tks ), 0), u

∗
f (tk f |tk f ), 0, 0)

to the right-hand-side of Eq.7.17 and taking Eq.7.10 into account, we obtain the
following inequality:

V̇ f (ȳ(t)) ≤ −α f3(|ȳ(tk f )|) + ∂V f (ȳ(t))

∂ ȳ
g(x(tks ), ȳ(t) + g̃(x(tks ),w), u∗

f (tk f |tk f ),w, 0)

− ∂V f (ȳ(tk f ))

∂ ȳ
g(x(tks ), ȳ(tk f ) + g̃(x(tks ), 0), u

∗
f (tk f |tk f ), 0, 0) (7.18)

for t ∈ [tk f , tk f +Δ f ). From Eq.7.14, Assumption 7.1 and the inequality of Eq.7.18,
the following inequality is obtained for all ȳ(tk f ) ∈ Ωρ f \Ω

ρ
f
s
:

V̇ f (ȳ(t)) ≤ −α f3(α
−1
f2

(ρ f
s )) + L ȳ|ȳ(t) − ȳ(tk f )| + (L ȳ Lg̃ + Lw f )θ. (7.19)

for t ∈ [tk f , tk f + Δ f ). Taking into account Eq.7.13 and the continuity of ȳ(t), the
following bound can be written for all t ∈ [tk f , tk f + Δ f ), |ȳ(t) − ȳ(tk f )| ≤ M f Δ f .
Using this expression, the following bound is obtained on the time derivative of the
Lyapunov function for t ∈ [tk f , tk f + Δ f ):

V̇ f (ȳ(t)) ≤ −α f3(α
−1
f2

(ρ f
s )) + L ȳM f Δ f + (L ȳ Lg̃ + Lw f )θ.

for all ȳ(tk f ) ∈ Ωρ f \Ω
ρ

f
s
. If the condition of Eq.7.15 is satisfied, then

V̇ f (ȳ(t)) ≤ −εw f /Δ f , ∀ t ∈ [tk f , tk f + Δ f )
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for ȳ(tk f ) ∈ Ωρ f \Ω
ρ

f
s
. Integrating this bound over t ∈ [tk f , tk f +Δ f ), the following

is obtained:

V f (ȳ(tk f + Δ f )) ≤ V f (ȳ(tk f )) − εw f (7.20a)

V f (ȳ(t)) ≤ V f (ȳ(tk f )), ∀ t ∈ [tk f , tk f + Δ f ) (7.20b)

for all ȳ(tk f ) ∈ Ωρ f \Ω
ρ

f
s
. Using Eq.7.20 recursively, it can be proved that, if x(tk f ) ∈

Ωρ f \Ω
ρ

f
s
, the state converges to Ω

ρ
f
s
in a finite number of sampling times without

leaving the stability region. Once the state converges toΩ
ρ

f
s

⊆ Ωρ∗
f
, it remains inside

Ωρ∗
f
for all times. This statement holds because of the definition of ρ∗

f . This proves
that the closed-loop system under the fast LMPC design is ultimately bounded in
Ωρ∗

f
. Thus, due to the continuity of the Lyapunov function V f (·), it can be concluded

that there exists a class K L function βy and a class K function γy such that if
ȳ(0) ∈ Ωρ f , then ȳ(t) ∈ Ωρ f for all t ≥ 0 and

|ȳ(t)| ≤ βy

(
|ȳ(0)|, t

ε

)
+ γy(ρ

∗
f ). (7.21)

Remark 7.3 The purpose of the fast LMPC scheme is to stabilize the fast subsystem
dynamics while economic considerations are addressed through the slow LEMPC.
Depending on the application and certain optimality specifications, the fast LMPC
is desired in processes where the fast time-scale is large enough to warrant the use of
MPC to achieve optimal performance compared to explicit fast feedback controllers
that achieve fast stabilizability without necessarily achieving optimal performance.
However, when the fast time-scale is short, an explicit feedback controller may be
needed to ensure sufficiently fast computation of the “fast” control action; please see
the example section. Additionally, since the closed-loop stability analysis does not
require certain conditions on the stage cost of the LMPC, i.e., the stage cost does not
need to be a quadratic stage cost, one can readily use an economic stage cost in the
fast LMPC formulation.

7.2.4.3 Slow LEMPC Formulation

Referring to the slow subsystem of Eq.7.4, the slow LEMPC at sampling time tks is
formulated as follows

max
us∈S(Δs )

∫ tks +NsΔs

tks

le(x̃(τ̃ ), us(τ̃ )) d τ̃ (7.22a)

s.t.
dx̃(τ̃ )

d τ̃
= fs(x̃(τ̃ ), us(τ̃ ), 0) (7.22b)

us(τ̃ ) ∈ Us, ∀ τ̃ ∈ [tks , tks + NsΔs) (7.22c)

x̃(tks ) = x̄(tks ) (7.22d)
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Vs(x̃(τ̃ )) ≤ ρe, ∀ τ̃ ∈ [tks , tks + NsΔs), if tks ≤ ts and Vs(x̄(tks )) ≤ ρe

(7.22e)

∂Vs(x̄(tks ))

∂ x̄
fs(x̄(tks ), us(tks ), 0) ≤ ∂Vs(x̄(tks ))

∂ x̄
fs(x̄(tks ), hs(x̄(tks )), 0),

if tks > ts or Vs(x(tks )) > ρe (7.22f)

where S(Δs) is the family of piece-wise constant functions with sampling period
Δs , Ns is the prediction horizon of LEMPC and le(·) denotes an economic stage
cost function. The symbol x̃ denotes the predicted slow subsystem state trajectory
obtained by utilizing the nominal slow subsystem model of Eq. 7.22b initialized
by the state feedback of Eq.7.22d. For mode one operation which corresponds to
sampling times tks ≤ ts , the constraint of Eq.7.22e maintains the predicted slow state
withinΩρe if Vs(x(tks )) ≤ ρe. If Vs(x(tks )) > ρe or the LEMPC operates under mode
two, the constraint of Eq.7.22f ensures that the amount of reduction in the value of
the Lyapunov function Vs(·)when us computed by the LEMPCof Eq.7.22 is applied,
is at least at the level when the feedback controller hs(·) is applied in a sample-and-
hold fashion. The optimal solution to the optimization problem of Eq.7.22 is defined
by u∗

s (τ̃ |tks ) for τ̃ ∈ [tks , tks + NsΔs) and the manipulated input of the closed-loop
slow subsystem under the LEMPC of Eq.7.22 is defined as follows:

us(t) = u∗
s (t |tks ), ∀ t ∈ [tks , tks + Δs). (7.23)

Next, the stability properties of the slow subsystem under the slow LEMPC is
analyzed. By continuity, the smoothness property assumed for the vector field fs(·)
and taking into account that the manipulated input us and the disturbance w are
bounded in compact sets, there exists a positive constant Ms such that

| fs(x̄, us,w)| ≤ Ms (7.24)

for all x̄ ∈ Ωρs , us ∈ Us , and w ∈ W. In addition, by the continuous differentiable
property of the Lyapunov function Vs(·) and the smoothness property assumed for
the vector field fs(·), there exist positive constants Lx̄ and Lws such that

∣∣∣∣∂Vs(x̄)

∂ x̄
fs(x̄, us,w) − ∂Vs(x̄ ′)

∂ x̄
fs(x̄

′, us,w)

∣∣∣∣ ≤ Lx̄ |x̄ − x̄ ′| (7.25a)
∣∣∣∣∂Vs(x̄)

∂ x̄
fs(x̄, us,w) − ∂Vs(x̄)

∂ x̄
fs(x̄, us,w

′)
∣∣∣∣ ≤ Lws |w − w′| (7.25b)

for all x̄, x̄ ′ ∈ Ωρs , us ∈ Us , and w,w′ ∈ W. Also, by the smoothness property
assumed for the vector function f (x, z, us,w, ε), there exist positive constants Lz ,
Lε, Lx , L̄ z , L̄ε, and L̄w such that

∣∣ f (x, z, us,w, ε) − f (x, z′, us,w, ε′)
∣∣ ≤ Lz|z − z′| + Lε|ε − ε′| (7.26)
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∣∣∣∣∂Vs(x)∂ x̄
f (x, z, us ,w, ε) − ∂Vs(x ′)

∂ x̄
f (x ′, z′, us ,w′, ε′)

∣∣∣∣ ≤ Lx |x − x ′| + L̄ z |z − z′|
+ L̄ε|ε − ε′| + L̄w|w − w′|

(7.27)

for all x , x ′ ∈ Ωρs , z − g̃(x,w), z′ − g̃(x,w′) ∈ Ωρ f , u f ∈ U f , and w, w′ ∈ W.
Proposition 7.2 characterizes the closed-loop stability properties of the LEMPC

of Eq.7.11.

Proposition 7.2 (Theorem 4.1) Consider the slow subsystem of Eq.7.4 under the
LEMPC design of Eqs.7.22 based on a controller hs(·) that satisfies the conditions
of Eq.7.7. Let εws > 0, Δs > 0, ρs > ρe > 0 and ρs > ρs

s > 0 satisfy

ρe ≤ ρs − fV ( fW (Δs)) (7.28)

where
fV (s) = αs4(α

−1
s1 (ρs))s + Mvs

2 (7.29)

with Mv being a positive constant and

fW (s) = Lwsθ

Lx̄
(eLx̄ s − 1) (7.30)

and
− αs3(α

−1
s2 (ρs

s )) + Lx̄MsΔs + Lwsθ ≤ −εws

Δs
. (7.31)

If x̄(0) ∈ Ωρs , ρs
s < ρe, ρ∗

s < ρs and Ns ≥ 1 then the state x̄(t) of the closed-loop
slow subsystem is always bounded in Ωρs . Furthermore, there exists a class K L
function βx and a class K function γx such that

|x̄(t)| ≤ βx (|x̄(t∗)|, t − t∗) + γx (ρ
∗
s ) (7.32)

with ρ∗
s = maxs∈[0,Δs ]{Vs(x̄(s)) : Vs(x̄(0)) ≤ ρs

s }, for all x̄(t∗) ∈ Bδ ⊂ Ωρs and for
t ≥ t∗ > ts where t∗ is chosen such that x̄(t∗) ∈ Bδ and Bδ = {x ∈ R

nx : |x | ≤ δ}.
The proof includes similar steps as the proof of Proposition 7.1. For the specific
details, refer to Theorem 4.1.

7.2.4.4 Closed-Loop Stability

The closed-loop stability of the system of Eq.7.1 under the LMPC of Eq.7.11 and
LEMPC of Eq.7.22 is established in the following theorem under appropriate con-
ditions.

http://dx.doi.org/10.1007/978-3-319-41108-8_4
http://dx.doi.org/10.1007/978-3-319-41108-8_4
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Theorem 7.1 Consider the system of Eq.7.1 in closed-loop with u f and us com-
puted by the LMPC of Eq.7.11 and LEMPC of Eq.7.22 based on the Lyapunov-based
controllers p(x)y and hs(·) that satisfy the conditions of Eqs.7.7 and 7.10, respec-
tively. Let Assumptions 7.1 and 7.2 and the conditions of Propositions 7.1 and 7.2
hold and

ρe + (Ms + LzMy + Lεε)Δsαs4(α
−1
s1 (ρs)) < ρs (7.33)

and
− αs3(α

−1
s1 (ρs

s )) + d1 < 0 (7.34)

where Lz, My and d1 are positive constants to be defined in the proof. Then there
exist functions βx of classK L and γx of classK , a pair of positive real numbers
(δx , d) and ε∗ > 0 such that if

max{|x(0)|, |y(0)|, ‖w‖, ‖ẇ‖} ≤ δx

where ‖w‖ denotes ess supt≥0|w(t)| and ε ∈ (0, ε∗], then x(t) ∈ Ωρs and y(t) ∈ Ωρ f

for t ≥ 0 and
|x(t)| ≤ βx (|x(t∗)|, t − t∗) + γx (ρ

∗
s ) + d (7.35)

for all t ≥ t∗ > ts where t∗ has been defined in Proposition 7.2.

Proof When u f = u∗
f and us = u∗

s are determined by the LMPC of Eq.7.11 and
LEMPC of Eq.7.22, respectively, the closed-loop system takes the following form:

ẋ = f (x, z, u∗
s ,w, ε)

εż = g(x, z, u∗
f ,w, ε).

(7.36)

We will first compute the slow and fast closed-loop subsystems.
Setting ε = 0 in Eq.7.36 and taking advantage of the fact that u∗

f = 0 when
ε = 0, one obtains that:

dx̄

dt
= f (x̄, z̄, u∗

s ,w, 0)

0 = g(x̄, z̄, 0,w, 0).
(7.37)

Using Assumption 7.1, Eq.7.37 can be written as follows:

dx̄

dt
= f (x̄, g̃(x̄,w), u∗

s ,w, 0) = fs(x̄, u
∗
s ,w) (7.38)

Let τ = t/ε and y = z − g̃(x,w), and the closed-loop system of Eq.7.36 can be
written as:
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dx

dτ
= ε f (x, y + g̃(x,w), u∗

s ,w, ε)

dy

dτ
= g(x, y + g̃(x,w), u∗

f ,w, ε) − ε
∂ g̃

∂w
ẇ − ε

∂ g̃

∂x
f (x, y + g̃(x,w), u∗

s ,w, ε)

(7.39)
Setting ε = 0, the following closed-loop fast subsystem is obtained:

d ȳ

dτ
= g(x, ȳ + g̃(x,w), u∗

f ,w, 0) (7.40)

Now, we focus on the singularly perturbed system of Eq.7.39. Considering the
fast subsystem state y(t) of Eq.7.39 and assuming that x(t) is bounded inΩρs (which
will be proved later), it can be obtained using a Lyapunov argument that there exist
positive constants δx1 and ε1 such that if max{|x(0)|, |y(0)|, ‖w‖, ‖ẇ‖} ≤ δx1 and
ε ∈ (0, ε1], there exists a positive constant k1 such that:

|z − g̃(x,w)| = |y(t)| ≤ βy

(
δx1 ,

t

ε

)
+ γy(ρ

∗
f ) + k1 (7.41)

for all t ≥ 0. We consider t ∈ (0,Δs] and t ≥ Δs separately and prove that if the
conditions stated in Theorem 7.1 are satisfied, the boundedness of the states of the
system of Eq.7.39 is ensured. When x(0) ∈ Bδx2

⊂ Ωρe ⊂ Ωρs , where δx2 is a
positive real number, considering the closed-loop slow subsystem of Eq.7.39 state
trajectory:

ẋ(t) = f (x, y + g̃(x,w), u∗
s ,w, ε), ∀ t ∈ (0,Δs]

and considering the facts that

| f (x, z, u∗
s ,w, ε)| ≤ | fs(x, u∗

s ,w)| + | f (x, z, u∗
s ,w, ε) − fs(x, u

∗
s ,w)|,

| fs(x, u∗
s ,w)| ≤ Ms,

|y(t)| ≤ βy(δx2 , 0) + γy(ρ
∗
f ) + k1 < My

where My is a positive constant such that

| f (x, z, u∗
s ,w, ε) − fs(x, u

∗
s ,w)| = | f (x, z, u∗

s ,w, ε) − f (x, g̃(x,w), u∗
s ,w, 0)|

≤ Lz|z − g̃(x,w)| + Lεε ≤ LzMy + Lεε

(7.42)

and

Vs(x(t)) = Vs(x(0)) +
∫ t

0
V̇s(x(s)) ds

= Vs(x(0)) +
∫ t

0

∂Vs(x(s))

∂x
ẋ(s) ds
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≤ ρe + (Ms + LzMy + Lεε)Δsαs4(α
−1
s1 (ρs)) (7.43)

Thus, there exists Δ1 and ε2 such that if Δs ∈ (0,Δ1] and ε ∈ (0, ε2], Eq. 7.33 holds
and

Vs(x(t)) < ρs, ∀ t ∈ (0,Δs] (7.44)

Picking ε3 = min{ε1, ε2} ensures that x(t) ∈ Ωρs and y(t) ∈ Ωρ f for all t ∈ [0,Δs).
For t ≥ Δs , considering Eq.7.41, there exists a positive real number M̄y such that

|y(t)| ≤ βy

(
δx2 ,

Δs

ε

)
+ γy(ρ

∗
f ) + k1 ≤ M̄y (7.45)

and we can write the time derivative of the Lyapunov function Vs(·) along the closed-
loop system state of Eq.7.1 under the LEMPC of Eq.7.22 for t ∈ [tks , tks+1) (assum-
ing without loss of generality that tks = Δs) as follows

V̇s(x(t)) = ∂Vs(x(t))

∂x
f (x(t), z(t), u∗

s (tks ),w(t), ε) (7.46)

Adding/subtracting the terms:

∂Vs(x(tks ))

∂x
fs(x(tks ), us(tks ), 0) and

∂Vs(x(t))

∂x
fs(x(t), us(tks ),w(t))

to/from the above inequality and taking advantage of Eqs. 7.7 and 7.22f and the fact
that

| f (x(t), z(t), u∗
s (tks ),w(t), ε)|

≤ | fs(x(t), u∗
s (tks ), 0)|

+ | fs(x(t), u∗
s (tks ),w(t)) − fs(x(tks ), u

∗
s (tks ), 0)|

+ | f (x(t), z(t), u∗
s (tks ),w(t), ε) − fs(x(t), u

∗
s (tks ),w(t))|

and considering

∣∣∣∣∂Vs(x(t))

∂x
fs(x, u

∗
s ,w)

∣∣∣∣ ≤ αs4(α
−1
s1 (ρs))Ms, (7.47)

∣∣∣∣∂Vs(x(t))

∂x
f (x(t), z(t), u∗

s (tks ),w(t), ε) − ∂Vs(x(t))

∂x
fs(x(t), u

∗
s (tks ),w(t))

∣∣∣∣
≤ Lz̄|z − g̃(x,w)| + L ε̄ε,

(7.48)
|z − g̃(x,w)| ≤ M̄y, (7.49)
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∣∣∣∣∂Vs(x(t))

∂x
fs(x(t), u

∗
s (tks ),w(t)) − ∂Vs(x(tks ))

∂x
fs(x(tks ), u

∗
s (tks ), 0)

∣∣∣∣
≤ Lx̄ |x(t) − x(tks )| + Lwsθ,

(7.50)

and
|x(t) − x(tks )| ≤ MsΔs, (7.51)

we can obtain
V̇s(x(t)) ≤ −αs3(α

−1
s1 (ρs

s )) + d1 (7.52)

where

d1 = αs4(α
−1
s1 (ρs))Ms + Lz̄ M̄y + L ε̄ε + Lx̄MsΔs + Lws‖w‖ (7.53)

where d1 is a positive constant. Picking δx2 , ε4 and Δ2 such that for any ε ∈ (0, ε4],
max{|x(0)|, |y(0)|, ‖w‖, ‖ẇ‖} ≤ δx2 and for all Δs ∈ (0,Δ2], Eq. 7.34 is satis-
fied, the closed-loop system state x(t) is bounded in Ωρs for all t ≥ Δs . Finally,
using similar arguments to the proof of Theorem 1 in [11], there exist a class
K L function βx and a class K function γx , positive real numbers (δx , dx ) where
δx < min{δx1 , δx2}, and 0 < ε∗ < min{ε1, ε2, ε3, ε4} and 0 < Δ∗ < min{Δ1,Δ2}
such that if max{|x(0)|, |y(0)|, ‖w‖, ‖ẇ‖} ≤ δx , ε ∈ (0, ε∗] and Δs ∈ (0,Δ∗], then,
the bound of Eq.7.35 holds for all t ≥ t∗ > ts .

Remark 7.4 It should be emphasized that in Theorem 7.1, it has been indicated that
for operation periods corresponding to LEMPC mode 1 operation, both of fast and
slow reduced order subsystem states are bounded in the invariant setsΩρ̃s andΩρ̃ f to
ensure that the actual states of the system are bounded in certain stability regions, i.e.,
Ωρs andΩρ f through restricting their corresponding initial states. On the other hand,
for operation periods corresponding to LEMPC mode 2 operation, both of system
states are asymptotically bounded in a small invariant set containing the origin.

Remark 7.5 While the present work focuses on nonlinear singularly perturbed sys-
tems and general economic stage cost functions, the results of this work are novel
and apply to the case of linear singularly perturbed systems; however, in the linear
case, the verification of the assumption that there is an isolated equilibriummanifold
for the fast dynamics (Assumption 1), the construction of the explicit control laws
for the slow and fast subsystems imposed in Sect. 2.4 and the computation of the
associated closed-loop stability regions, and the solution of the LEMPC and LMPC
optimization problems when convex economic cost functions are used simplify sig-
nificantly, given the availability of robust and efficient tools for matrix calculations
and convex optimization.

http://dx.doi.org/10.1007/978-3-319-41108-8_2
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7.2.5 Application to a Chemical Process Example

Consider awell-mixed, non-isothermal continuous stirred tank reactor (CSTR)where
an irreversible, second-order, endothermic reaction A → B takes place, where A
is the reactant and B is the desired product. The feed to the reactor consists of the
reactant A and an inert gas at flow rate F , temperature T0 and molar concentration
CA0. Due to the non-isothermal nature of the reactor, a jacket is used to provide heat to
the reactor. The dynamic equations describing the behavior of the reactor, obtained
through material and energy balances under standard modeling assumptions, are
given below:

dCA

dt
= F

VR
(CA0 − CA) − k0e

−E/RTC2
A (7.54a)

ρRCp
dT

dt
= FρRCp

VR
(T0 − T ) − ΔHk0e

−E/RTC2
A + Q

VR
(7.54b)

where CA denotes the concentration of the reactant A, T denotes the temperature
of the reactor, Q denotes the rate of heat supply to the reactor, VR represents the
volume of the reactor, ΔH , k0, and E denote the enthalpy, pre-exponential constant
and activation energy of the reaction, respectively, and Cp and ρR denote the heat
capacity and the density of the fluid in the reactor, respectively. The values of the
process parameters used in the simulations are shown in Table7.1. The processmodel
of Eq.7.54 is numerically simulated using an explicit Euler integration method with
integration step hc = 1.0 × 1.0−6 h.

The process model has one unstable steady-state in the operating range of interest.
The control objective is to optimize the process operation in a region around the
unstable steady-state (CAs , Ts) to maximize the average production rate of B through
manipulation of the concentration of A in the inlet to the reactor. The steady-state
input value associated with the steady-state point is denoted by CA0s . Defining ε =
ρRcP , the following nonlinear state-space model can be obtained

ẋ(t) = f (x(t), z(t), us(t), 0, ε)

εż(t) = g(x(t), z(t), u f (t), 0, ε)

Table 7.1 Parameter values

T0 = 300 K F = 5 m3 h−1

VR = 1.0 m3 E = 5 × 104 kJ kmol−1

k0 = 8.46 × 106 m3 kmol−1 h−1 ΔH = −19.91 kJ kmol−1

Cp = 0.02 kJ kg−1 K−1 R = 8.314 kJ kmol−1 K−1

ρR = 20 kgm−3 CAs = 1.95 kmolm−3

Ts = 401.87 K CA0s = 4 kmolm−3

Qs = 0 kJ h−1
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where x = CA−CAs and z = T−Ts are the states, us = CA0−CA0s andu f = Q−Qs

are the inputs and f and g are scalar functions. The inputs are subject to constraints as
follows: |us | ≤ 3.5 kmolm−3 and |u f | ≤ 5.0 × 105 kJ h−1. The economic measure
considered in this example is as follows:

1

tN

∫ tN

0
k0e

−E/RT (τ )C2
A(τ ) dτ (7.55)

where tN = 1.0 h is the time duration of a reactor operating period. This economic
objective function highlights the maximization of the average production rate over
a process operation period for tN = 1.0 h (of course, different, yet finite, values of
tN can be chosen). A limitation on the amount of reactant material that may be used
over the period tN is considered. Specifically, the control input trajectory of us should
satisfy the following constraint:

1

tN

∫ tN

0
us(τ ) dτ = 1.0 kmolm−3. (7.56)

This constraintmeans that the available amount of reactantmaterial over one period is
fixed. For the sake of simplicity, the constraint of Eq. 7.56 is referred for the material
constraint for the remainder.

In terms of the Lyapunov-based controllers, feedback linearization techniques
are utilized for the design of explicit controllers for the fast and slow reduced-order
subsystems subject to input constraints and quadratic Lyapunov functions Vs(x) =
x2 and V f (y) = y2 are used to compute the stability regions. Through feedback
linearization and evaluating V̇s(·) subject to the input constraint, V̇s(x) ≤ 0 when
x ∈ Ωρs and ρs = 4. Furthermore, to guarantee that CA > 0 and T ≤ 480 K, the
corresponding stability Ωρs is defined as Ωρs = {x | − 1.15 ≤ x ≤ 3.95}.

In this example, a slow LEMPC is designed to regulate the slow subsystem
state, which maximizes the average production rate of the desired product B, and a
fast feedback linearizing controller is designed to stabilize the fast subsystem state.
With respect to the fast feedback linearizing controller, the deviation variable y(t)
is defined as z(t) − z̄(t) where z̄(t) is the unique root of the algebraic equation
g(x(t), z̄(t), 0, 0, 0) = 0 given x(t). For the purpose of simulation, this unique root
has been approximated through a tenth-order polynomial. Furthermore, we assume
that the state measurements are available every Δ f = 1.0 × 1.0−6 h and the manip-
ulated input u f is obtained every Δ f such that

g(x, y + g̃(x, 0), 0, u f , 0) = −μy (7.57)

where μ = 100. Regarding the slow dynamics, the LEMPC obtains its manipulated
input trajectory us every Δs = 1.0 × 10−2 h by optimizing the objective function
of Eq.7.55 using the one dimensional slow subsystem which is independent of ε.
As a result, the slow subsystem used in the LEMPC is well conditioned and is
integrated with time step 1.0 × 10−3 h resulting in a nearly-three order of magnitude
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improvement in the computational time needed to compute the control action for us .
TheLEMPCoperates only undermode 1operation to highlight the effect of economic
optimization. Considering thematerial constraint which needs to be satisfied through
one period of process operation, a shrinking prediction horizon sequence is employed
in the LEMPC in the sense that N0, . . . , N99 where Ni = 100 − i denotes the
prediction horizon at time step i and i = 0, . . . , 99.

Figures7.1, 7.2, 7.3, 7.4 and 7.5 illustrate closed-loop state and manipulated input
trajectories of the chemical process of Eq.7.54 under the mode one operation of the
LEMPC design of Eq.7.22 and feedback linearization of Eq.7.57 for an initial con-
dition of (CA(0), T (0)) = (3.0 kmolm−3, 400K). From these figures, the economic
cost of Eq.7.55 is optimized by dictating time-varying operation by the LEMPC
when considering the material constraint of Eq.7.56. Furthermore, u f through feed-
back linearization ensures that the fast subsystem state y(t) converges to zero. We
point out that either the open-loop or closed-loop dynamics can evolve on different
time-scales. In this example, feedback linearization is used with a gain chosen to
drive the deviation variable y to zero fast relative to the slow state CA as observed
in Fig. 7.3. Therefore, this illustrative example possesses two-time-scale behavior.

A set of simulations is performed to compare the economic closed-loop perfor-
mance of the method versus the case that the input material is fed to the reactor
uniformly in time, i.e., us(t) = 1.0 kmolm−3 for all t ∈ [0, 1.0 h]. To carry out this
comparison, the total cost of each scenario is computed based on the index of the
following form:

J = 1

tM

M−1∑
i=0

(
k0e

−E/RT (ti )C2
A(ti )

)
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Fig. 7.1 The closed-loop reactant concentration profile under the composite control structure
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Fig. 7.2 The closed-loop temperature profile under the composite control structure
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Fig. 7.3 The closed-loop profile of y = z − g̃(x, 0)
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Fig. 7.4 Themanipulated input us profile under the slow LEMPC, which optimizes the production
rate of the desired product B
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Fig. 7.5 The manipulated input u f profile under the feedback linearizing controller of Eq.7.57

where t0 = 0.0 h, ti = i0.01 h andM = 100. By comparing the performance index J
for these two cases, the LEMPC through a time-varying operation achieves a greater
cost value, i.e., larger average production rate, compared to the case that the reactant
material is fed to the reactor uniformly in time (13.12 versus 5.92, respectively).

7.3 Distributed EMPC: Evaluation of Sequential
and Iterative Architectures

It is possible that significant computation delay may result, which may affect closed-
loop stability and performance, when computing control actions for large-scale
process systems with many states and inputs. In the context of control of large-
scale nonlinear chemical process networks, an alternative is to employ a distributed
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MPC (DMPC) architecture (see, for example, the review [12] and references con-
tained therein). DMPC has the ability to control large-scale process systems subject
to input and state constraints while remaining computationally feasible to be imple-
mented on-line through a distributed implementation of the computations. Numerous
formulations, implementation strategies, and theoretical results have been developed
within the context of tracking DMPC, e.g., [13, 14]; see, also, the reviews of [12, 15]
and the references therein. In the context of distributed EMPC (DEMPC), somework
has been completed including DEMPC for linear systems [16, 17] and for nonlinear
systems [18, 19].

In this section, sequential and iterative DEMPC strategies are developed and
applied to the benchmark catalytic reactor to produce ethylene oxide from ethyl-
ene, which was first presented in Sect. 1.3.1. Recall, in Sect. 3.2, the application of
EMPC to the catalytic reactor resulted in improved average yield of ethylene oxide
compared to the yield of steady-state operation and to the yield achieved under an
open-loop optimal periodic switching of the inputs considered in [20]. Here, several
EMPC implementation strategies (centralized and distributed) are applied to the cat-
alytic reactor. A description of the DEMPC implementation strategies is provided.
Several closed-loop simulations are performed to evaluate the approaches. Two key
performance metrics are considered in the evaluation: the closed-loop economic per-
formance under the various DEMPC strategies and the on-line computation time
required to solve the EMPC optimization problems.

Regarding the implementation details of the EMPC systems below, a sampling
period of Δ = 1.0 (dimensionless time units) was used. The optimization problems
were solved using the interior point solver Ipopt [21]. To account for real-time com-
putation considerations, the solver was forced to terminate after 100 iterations and/or
after 100 seconds of computation time. The tolerance of the solver was set to 10−5.
To satisfy the constraint on the amount of ethylene that may be fed to the reactor,
this constraint was enforced over operating windows of length tp = 47, that is the
average molar flow rate of ethylene must be equal to 0.175 at the end of each oper-
ating window (refer to Sect. 1.3.1 for more details regarding this average material
constraint). A shrinking horizon approach was used within EMPC: at the beginning
of the j th operating window, the prediction horizon was set to Nk := tp/Δ and the
horizon was decreased by one at every subsequent sampling time (Nk = Nk−1 − 1
at the sampling instance tk). At the beginning of the ( j + 1)th operating window, the
prediction horizon was set to tp/Δ.

The closed-loop simulations below were programmed using C++ on a desktop
computer with an Ubuntu Linux operating system and an Intel® Core™ i7 3.4GHz
processor. To recursively solve the catalytic reactor dynamic model, the explicit
Euler method was used. A step size of 0.00001 was used to simulate the closed-loop
dynamics of the reactor, while a step size of 0.005 was used to solve the model within
the EMPC problem; both led to stable numerical integration.

http://dx.doi.org/10.1007/978-3-319-41108-8_1
http://dx.doi.org/10.1007/978-3-319-41108-8_3
http://dx.doi.org/10.1007/978-3-319-41108-8_1
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7.3.1 Centralized EMPC

For this computational study, a centralized EMPC (C-EMPC) strategy is considered
to compare against the two distributed implementation strategies. Recall, the catalytic
reactor that produces ethylene oxide from ethylene has three inputs: the inlet flow
rate, u1, the ethylene concentration in the inlet, u2, and the coolant temperature in
the reactor jacket. Also, the reactor model has the form of:

ẋ = f (x, u1, u2, u3) (7.58)

where the state vector x ∈ R
4 includes the reactor content density, x1, the reactor

ethylene concentration, x2, the reactor ethylene oxide concentration, x3, and the
reactor temperature, x4. The C-EMPC formulation with an economic stage cost
function that maximizes the yield of ethylene oxide is given by:

max
u1,u2,u3∈S(Δ)

∫ tk+NkΔ

tk

u1(τ )x̃4(τ )x̃3(τ ) dτ (7.59a)

s.t. ˙̃x(t) = f (x̃(t), u1(t), u2(t), u3(t)) (7.59b)

ui (t) ∈ Ui , ∀ t ∈ [tk, tk + NkΔ), i = 1, 2, 3 (7.59c)

1

tp

∫ tk+NkΔ

tk

u1(t)u2(t) dt

= 0.175 − 1

tp

∫ tk

t0+ j tp

u∗
1(t)u

∗
2(t) dt (7.59d)

where Ui denotes the set of admissible values of the i th input (refer to Sect. 1.3.1 for
more details) and u∗

1 and u
∗
2 denote the optimal control actions applied to the reactor

from the beginning of the current operating window to current sampling time, tk .
The EMPC problem of Eq.7.59 maximizes the yield of ethylene oxide (or more
precisely, the numerator of the yield) over the prediction horizon (Eq. 7.59a) subject
to the dynamic processmodel to predict the future behavior of the reactor (Eq.7.59b),
the inputs constraints (Eq.7.59c), and the average constraint on amount of ethylene
that may be fed to the reactor (Eq.7.59d).

Figures7.6 and 7.7 depict the closed-loop state and input trajectories under the
C-EMPC scheme over ten operating windows. Similar to the results of [22], the
C-EMPC distributes the ethylene in a non-uniform fashion with respect to time to
optimize the yield of ethylene oxide. The average yield of ethylene oxide of the
reactor under the C-EMPC is 10.22 yield of ethylene oxide of the reactor over the
same length of operation under constant steady-state input values is 6.38 and the
average yield under EMPC is 60 percent better than that achieved under steady-state
operation.

http://dx.doi.org/10.1007/978-3-319-41108-8_1
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Fig. 7.6 State trajectories
under C-EMPC
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Fig. 7.7 Input trajectories
computed by the C-EMPC
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7.3.2 Sequential DEMPC

A sequential DEMPC implementation strategy computes the control actions by
sequentially solving a series of DEMPC problems. One-way communication is used
between controllers to send the computed input trajectories from one EMPC to the
next EMPC. The next EMPC also receives the input trajectory from all other previ-
ously solved EMPCs. Once all the input trajectories are received, the EMPC is solved
utilizing this information. The resulting trajectories are then sent to the subsequent
EMPC. The process is repeated until all EMPCs are solved and the control actions
for all inputs computed by the sequential DEMPC approach are obtained.

For the catalytic reactor example, which has three inputs, a reasonable choice
of input grouping can be made as a consequence of the integral input constraint.
The inputs u1 and u2 should be computed by the same EMPC, while it is worth
investigating if the input u3 can be placed on another EMPC system. This input
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pairing will be used in all the DEMPC schemes below. The formulation of the EMPC
problem that computes control actions for u1 and u2, which is denoted as EMPC-1,
is given by

max
u1,u2∈S(Δ)

∫ tk+NkΔ

tk

u1(τ )x̃4(τ )x̃3(τ ) dτ (7.60a)

s.t. ˙̃x(t) = f (x̃(t), u1(t), u2(t), û3(t)) (7.60b)

ui (t) ∈ Ui , ∀ t ∈ [tk, tk + NkΔ), i = 1, 2 (7.60c)

1

tp

∫ tk+NkΔ

tk

u1(t)u2(t) dt

= 0.175 − 1

tp

∫ tk

t0+ j tp

u∗
1(t)u

∗
2(t) dt (7.60d)

and the formulation of the EMPC that computes control actions for u3, which is
denoted as EMPC-2 is given by:

max
u3∈S(Δ)

∫ tk+NkΔ

tk

u1(τ )x̃4(τ )x̃3(τ ) dτ (7.61a)

s.t. ˙̃x(t) = f (x̃(t), û1(t), û2(t), u3(t)) (7.61b)

u3(t) ∈ U3, ∀ t ∈ [tk, tk + NkΔ) (7.61c)

In the problems of Eqs. 7.60–7.61, the input trajectories denoted by ûi must be
provided before the problemsmay be solved. The input trajectory û3 must be assumed
if EMPC-1 is solved first. In general, the assumed input trajectory may be a constant
input trajectory, an input trajectory computed by an explicit controller, or the input
trajectory of EMPC-2 computed at the previous sampling time. Similarly, if EMPC-2
is solved first in the sequential DEMPC architecture, the input trajectories û1 and û2
must be assumed before solving EMPC-2.

7.3.2.1 Sequential DEMPC 1-2

The first configuration considered, which is referred to as the sequential DEMPC 1-2
and abbreviated to S-DEMPC 1-2, first solves the EMPC-1 problem for the optimal
input trajectories u∗

1(t |tk) and u∗
2(t |tk) for t ∈ [tk, tk+N ). Then, the EMPC-2 problem

is solved to compute the input trajectory u∗
3(t |tk) after receiving u∗

1(t |tk) and u∗
2(t |tk)

from EMPC-1. A block diagram of the resulting control architecture showing the
communication between the controllers is given in Fig. 7.8. Since the input trajectory
û3(t) for t ∈ [tk, tk+N ) has not been determined when the EMPC-1 problem is
solved, it is set to be the resulting input trajectory under a proportional-integral (PI)
controller implemented in a sample-and-hold fashion over the prediction horizon
(othermethods for the assumed profile of û3(t)within EMPC-1 could be considered).
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EMPC-1

EMPC-2

u∗
1(·|tk), u∗

2(·|tk) Process

u∗
1(tk|tk), u∗

2(tk|tk)

u∗
3(tk|tk)

x(tk)

Fig. 7.8 A block diagram of the S-DEMPC 1-2 scheme

Fig. 7.9 Closed-loop state
trajectories of the catalytic
reactor under the S-DEMPC
1-2
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The input constraints are accounted for in the computed PI input trajectory, e.g., if
the PI controller computes a control action greater than the upper bound on u3, it is
set to u3,max. For the input trajectories û1 and û2 in the EMPC-2 problem, the optimal
input trajectories computed by the EMPC-1 problem are used.

Figures7.9 and 7.10 show the closed-loop state and input trajectories under the
S-DEMPC 1-2, respectively. The trajectories are similar to those under the C-EMPC
(Figs. 7.6 and7.7). For the closed-loop simulation, the averageyieldwas10.20 (recall,
the average yield under the C-EMPC was 10.22 differences in the state trajectories
are observed fromFigs. 7.6 and 7.9, e.g., in the x1 and x4 trajectories. It is important to
note that given the nonlinear nature of the process considered, there is no guarantee,
in general, that the centralized EMPC and sequential EMPC scheme will lead to the
same or even similar optimal input trajectories.

7.3.2.2 Sequential DEMPC 2-1

Another sequential distributed implementation of EMPC-1 and EMPC-2 may be
considered by reversing the execution of EMPC-1 and EMPC-2. In this DEMPC
approach, which is shown in Fig. 7.11, EMPC-2 computes its optimal input trajectory
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Fig. 7.10 Closed-loop input trajectories computed by the S-DEMPC 1-2

EMPC-1

EMPC-2

u∗
3(·|tk) Process

u∗
1(tk|tk), u∗

2(tk|tk)

u∗
3(tk|tk)

x(tk)

Fig. 7.11 A block diagram of the S-DEMPC 1-2 scheme

u∗
3(t |tk) for t ∈ [tk, tk+N ) first. The sequential DEMPC approach is referred to as

the sequential DEMPC 2-1 (S-DEMPC 2-1). To solve EMPC-2, the trajectories
û1(t) and û2(t) for t ∈ [tk, tk+N ) are set to the input trajectories resulting from
two PI controllers implemented in sample-and-hold fashion. While the bounds on
admissible input values are accounted for in the PI input trajectories, the input average
constraint is not accounted for in the PI input trajectories. Figures7.12 and 7.13
give the closed-loop state and input trajectories under the S-DEMPC 2-1 approach.
Noticeable differences are observed between the closed-loop trajectories under the
S-DEMPC 2-1 approach and those under the C-EMPC approach (Figs. 7.6 and 7.7).

7.3.3 Iterative DEMPC

Instead of sequential computation of the distributed EMPC problems, parallel com-
putation may be employed in the sense that each problem may be solved simultane-
ously. Given the control actions are computed without the knowledge of the control
actions computed by the other distributed EMPC schemes, an iterative approach
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Fig. 7.12 Closed-loop state
trajectories of the catalytic
reactor under the S-DEMPC
2-1
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Fig. 7.13 Closed-loop input
trajectories of computed by
the S-DEMPC 2-1
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may be used to (ideally) compute control actions closer to the centralized solution.
Again, it is important to emphasize that given the nonlinearity and non-convexity
of the optimization problems, it is difficult, in general, to guarantee that an itera-
tive DEMPC strategy will converge to the centralized solution even after infinite
iterations. Moreover, there is no guarantee that the input solution computed at each
iteration improves upon the closed-loop performance over the previous iteration.

An iterative DEMPC (I-DEMPC) scheme is designed for the catalytic reactor
and a block diagram of the I-DEMPC control architecture is given in Fig. 7.14.
The computed input trajectories at each iteration of the I-DEMPC is denoted as
u∗,c
i (t |tk) for t ∈ [tk, tk+N ), i = 1, 2, 3 where c is the iteration number. At the first

iteration, the input trajectory û3(t) for t ∈ [tk, tk+N ) in EMPC-1 is initialized with
the sample-and-hold input trajectory computed from the same PI controller used in
the S-DEMPC 1-2 scheme, and similarly, the input trajectories û2(t) and û3(t) for
t ∈ [tk, tk+N ) in EMPC-2 are initialized with the input trajectories computed from
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EMPC-1

EMPC-2

u∗,c−1
1 (·|tk),

u∗,c−1
2 (·|tk) u∗,c−1

3 (·|tk) Process

u∗,f
1 (tk|tk), u∗,f

2 (tk|tk)

u∗,f
3 (tk|tk)

x(tk)

Fig. 7.14 A block diagram of the I-DEMPC scheme

Fig. 7.15 Closed-loop state
trajectories of the catalytic
reactor under the I-DEMPC
(1 iteration)

0 50 100 150 200 250 300 350 400 450
0.9

1

1.1
x

1

0 50 100 150 200 250 300 350 400 450
0

1

2

x
2

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

x
3

0 50 100 150 200 250 300 350 400 450
0.5

1

Time

x
4

the PI controllers of the S-DEMPC 2-1 scheme. The control action applied to the
reactor is denoted as u∗, f

i (tk |tk) for i = 1, 2, 3 where f is the total number of
iterations of the iterative DEMPC scheme ( f is a design parameter of the scheme).
When f = 1, the I-EMPC scheme is a decentralized DEMPC approach in the sense
that there is no communication between EMPC-1 and EMPC-2 and each problem
are solved independently of each other.

For this example, no closed-loop performance benefit was observed after iter-
ating more than once through the I-DEMPC scheme. In fact, using the previous
iterate solution to compute the next iterative gave worse closed-loop performance
than applying the first computed iteration to the process. One method considered to
compensate for this problem was to use the best computed input solution over all
iterations to compute the next iteration. However, minimal closed-loop performance
benefit was observed with this method. Thus, f = 1, which corresponds to a decen-
tralized DEMPC approach, was selected for this case given that using more than one
iteration did not improve the closed-loop performance. The resulting closed-loop tra-
jectories are given in Figs. 7.15 and 7.16. The trajectories have similar characteristics
as the centralized case.
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Fig. 7.16 Closed-loop input
trajectories of computed by
the I-DEMPC (1 iteration)
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7.3.4 Evaluation of DEMPC Approaches

The average yield and average computation time required to solve the optimization
problem at each sampling time over the entire simulation were considered for all the
cases. The sequential DEMPC computation time is computed as the sum of the com-
putation time of EMPC-1 and EMPC-2 at each sampling time because the sequen-
tial DEMPC schemes are computed sequentially. The iterative DEMPC computation
time is the maximum computation time over all EMPCs at each sampling time (recall
only one iteration was used). The average yield and average computation time for all
the cases is given in Table7.2. The closed-loop performance under the centralized
EMPC, the sequential DEMPC 1-2, and the iterative DEMPC schemes was similar.
The sequential DEMPC 1-2 and iterative DEMPC resulted in approximately a 70
reduction in computation time over the centralized EMPC. The sequential DEMPC
2-1 scheme not only had the worst performance of all the strategies considered (albeit
still better than steady-state operation), but also, required a comparable amount of
time to solve the optimization problems as the centralized case, thereby implying a
strong dependence of closed-loop performance on controller calculation sequence.
DEMPC was able to yield comparable closed-loop performance while substantially
reducing the on-line computation time. This demonstrates that a distributed imple-
mentation may allow EMPC to be used on processes where centralized control is not
feasible due to the solve time.

This example illustrates another key point within the context of DEMPC. Specifi-
cally, the inclusion of integral constraint in EMPCmay be an important consideration
for input selection in DEMPC. From the sequential DEMPC results, the computed
u3 profile is impacted by the assumed input profiles ū1 and ū2 (Fig. 7.13), while u1
and u2 are not affected as much by the assumed profile ū3 (Fig. 7.10) compared to
the centralized EMPC case (Fig. 7.7). This behavior may be due to the enforcement
of the integral input constraint, and for this example, there may only be one method
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Table 7.2 The average yield
and computation time under
the EMPC strategies

Strategy Yield (%) Comp. time
(s)

Sequential DEMPC 1-2 10.20 1.039

Sequential DEMPC 2-1 9.92 2.969

Iterative DEMPC ( f = 1) 10.05 0.832

Centralized EMPC 10.22 4.244

to distribute a fixed amount of ethylene to the reactor that maximizes the yield that
is independent of u3.

7.4 Real-Time Economic Model Predictive Control
of Nonlinear Process Systems

Besides designing EMPC strategies that improves the computational efficiency such
as the use of two-layer EMPC or distributed EMPC implementations, it may also
be important to consider an EMPC implementation strategy that explicitly addresses
potential computational delay. Some of the early work addressing computational
delay within tracking MPC includes developing an implementation strategy of solv-
ing the MPC problem intermittently to account for the computational delay [23] and
predicting the future state after an assumed constant computational delay to compute
an input trajectory to be implemented after the optimization problem is solved [24,
25]. Nominal feasibility and stability has been proved for tracking MPC subject to
computational delay formulated with a positive definite stage cost (with respect to
the set-point or steady-state), a terminal cost, and a terminal region constraint [24,
25]. Another option to handle computational delay would be to force the optimiza-
tion solver to terminate after a pre-specified time to ensure that the solver returns
a solution by the time needed to ensure closed-loop stability. This concept is typi-
cally referred to as suboptimal MPC [26] because the returned solution will likely be
suboptimal. It was shown that when the returned solution of the MPC with a termi-
nal constraint is any feasible solution, the operating steady-state of the closed-loop
system is asymptotically stable [26].

More recently, more advanced strategies have been proposed. Particularly, non-
linear programming (NLP) sensitivity analysis has demonstrated to be a useful tool
to handle computational delay by splitting the MPC optimization problem into two
parts: (1) solving a computationally intensive nonlinear optimization problem which
is completed before feedback is received and (2) performing a fast on-line update of
the precomputed input trajectories using NLP sensitivities (when the active-set does
not change) after the current state measurement is obtained, e.g., [27, 28]; see, also,
the review [29]. If the active-set changes, various methods have been proposed to
cope with changing active-sets, e.g., solving a quadratic program like that proposed
in [30]. In this direction, the advanced-step MPC [28] has been proposed which
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computes the solution of the optimization problem one sampling period in advance
using a prediction of the state at the next sampling period. At the next sampling
period (when the precomputed control action will be applied), the optimal solu-
tion is updated employing NLP sensitivities after state feedback is received. The
advanced-step (tracking) MPC has been extended to handle computation spanning
multiple sampling periods [31] and to EMPC [32]. Another related approach involves
a hierarchical control structure [33, 34]. The upper layer is the full optimization prob-
lem which is solved infrequently. In the lower layer, NLP sensitivities are used to
update the control actions at each sampling period that are applied to the system. The
aforementioned schemes solve an optimization problem to (local) optimality using
a prediction of the state at the sampling time the control action is to be applied to the
system.

As another way, the so-called real-time nonlinear MPC (NMPC) scheme [35]
only takes one Newton-step of the NLP solver instead of solving the optimization
problem to optimality at each sampling period. To accomplish this, the structure of
the resulting dynamic optimization program, which is solved using a direct multiple
shooting method, is exploited to divide the program into a preparation phase and a
feedback phase. In the preparation phase, the computationally expensive calculations
are completed before feedback is received. In the feedback phase, a measurement
is received and the remaining fast computations of the Newton-step are completed
on-line to compute the control action to apply to the system. The advantage of such
a strategy is that the on-line computation after a feedback measurement is obtained
is insignificant compared to solving the optimization problem to optimality. The
disadvantage is one would expect to sacrifice at least some closed-loop performance
as a result of not solving the problem to optimality.

Clearly, the available computing power has significantly increased since the early
work on computational delay of MPC and if this trend continues, one may expect
a significant increase in computing power over the next decade. Moreover, more
efficient solution strategies for nonlinear dynamic optimization problems continue
to be developed (see, for example, the overview paper [36] and the book [37] for
results in this direction). However, the ability to guarantee that a solver will converge
within the time needed for closed-loop stability remains an open problem especially
for nonlinear, non-convex dynamic optimization problems and systems with fast
dynamics. Additionally, EMPC is generally more computationally intensive com-
pared to tracking MPC given the additional possible nonlinearities in the stage cost
of EMPC.

In this section, a real-time implementation strategy for LEMPC, referred to as
real-time LEMPC, is developed to account for possibly unknown and time-varying
computational delay. The underlying implementation strategy is inspired by event-
triggered control concepts [38] since the LEMPC is only recomputed when stability
conditions dictate that it must recompute a new input trajectory. If the precomputed
control action satisfies the stability conditions, the control action is applied to the
closed-loop system. If not, a back-up explicit controller, which has negligible com-
putation time, is used to compute the control action for the system at the current sam-
pling instance. This type of implementation strategy has the advantage of being easy
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to implement and the strategy avoids potential complications of active-set changes
because the re-computation condition is only formulated to account for closed-loop
stability considerations. Closed-loop stability under the real-time LEMPC scheme is
analyzed and specific stability conditions are derived. The real-time LEMPC scheme
is applied to an illustrative chemical process network to demonstrate closed-loop
stability under the control scheme. The example also demonstrates that real-time
LEMPC improves closed-loop economic performance compared to operation at the
economically optimal steady-state.

7.4.1 Class of Systems

The class of nonlinear systems considered has the following state-space form:

ẋ(t) = f (x(t), u(t),w(t)) (7.62)

where x(t) ∈ R
n is the state vector, u(t) ∈ U ⊂ R

m is the manipulated input vector,
U is a compact set, w(t) ∈ W ⊂ R

l is the disturbance vector, and f is a locally
Lipschitz vector function. The disturbance vector is bounded in the following set:

W := {w ∈ R
l : |w| ≤ θ} (7.63)

where θ > 0 bounds the norm of the disturbance vector. Without loss of generality,
the origin of the unforced system is assumed to be the equilibrium point of Eq. 7.62,
i.e., f (0, 0, 0) = 0.

The following stabilizability assumption further qualifies the class of systems
considered and is similar to the assumption that the pair (A, B) is stabilizable in
linear systems.

Assumption 7.3 There exists a feedback controller h(x) ∈ U with h(0) = 0 that
renders the origin of the closed-loop system of Eq.7.62 with u(t) = h(x(t)) and
w ≡ 0 asymptotically stable for all x ∈ D0 where D0 is an open neighborhood of
the origin.

Applying converse theorems [7, 9], Assumption 7.3 implies that there exists a
continuously differentiable Lyapunov function, V : D → R+, for the closed-loop
system of Eq.7.62 with u = h(x) ∈ U andw ≡ 0 such that the following inequalities
hold:

α1(|x |) ≤ V (x) ≤ α2(|x |), (7.64a)

∂V (x)

∂x
f (x, h(x), 0) ≤ −α3(|x |), (7.64b)

∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ α4(|x |) (7.64c)
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for all x ∈ D where D is an open neighborhood of the origin and αi , i = 1, 2, 3, 4
are functions of class K . A level set of the Lyapunov function Ωρ , which defines
a subset of D (ideally the largest subset contained in D), is taken to be the stability
region of the closed-loop system under the controller h(x).

Measurements of the state vector of Eq.7.62 are assumed to be available syn-
chronously at sampling instances denoted as tk := kΔ where Δ > 0 is the sampling
period and k = 0, 1, . . .. As described below, the EMPC computes sample-and-
hold control actions and thus, the resulting closed-loop system, which consists of the
continuous-time systemof Eq.7.62 under a sample-and-hold controller, is a sampled-
data system. If the controller h(x) is implemented in a sample-and-hold fashion, it
possesses a certain degree of robustness to uncertainty in the sense that the origin
of the closed-loop system is rendered practically stable when a sufficiently small
sampling period is used and the bound θ on the disturbance vector is sufficiently
small; see, for example, [10] for more discussion on this point.

7.4.2 Real-Time LEMPC Formulation

The overall objective of the real-time LEMPC is to account for the real-time compu-
tation time required to solve the optimization problem for a (local) solution. Particu-
larly, the case when the average computation time, which is denoted as t̄s , is greater
than one sampling period is considered, i.e., Ns = �t̄s/Δ� ≥ 1 where Ns is the aver-
age number of sampling periods required to solve the optimization problem. During
the time the solver is solving the optimization problem, the control actions computed
at a previous sampling period are applied to the system if there are precomputed con-
trol actions available and if the stability conditions described below are satisfied. If
no precomputed control actions are available or the stability conditions are violated,
the explicit controller h(x) is used to compute and apply control actions during the
time that the real-time LEMPC is computing. In this fashion, the LEMPC is used to
compute control actions to improve the economic performance when possible.

Specifically, when the closed-loop state is in the subset of the stability region
Ωρe ⊂ Ωρ , the control actions of the precomputed LEMPC problem may be applied
to the system. When the state is outside the subset, the explicit controller is used
because maintaining the closed-loop state in Ωρ is required for guaranteeing the
existence of a feasible input trajectory that maintains closed-loop stability (in the
sense that the closed-loop state trajectory is always bounded in Ωρ). To force the
state back to the subset of the stability region Ωρe , the Lyapunov function must
decrease over each sampling period in the presence of uncertainty. This requires
the incorporation of feedback, i.e., recomputing the control action at each sampling
period using a measurement of the current state. Owing to the computational burden
of solving the LEMPC optimization problem, it may not be possible to achieve con-
vergence of the optimization solverwithin one sampling period. Hence, the controller
h(x) is used when the state is outside of Ωρe .
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For real-time implementation, only mode 1 of the LEMPC of Eq.4.3 is used
and the LEMPC is solved infrequently (not every sampling period) which will be
made clear when the implementation strategy is discussed. The real-time LEMPC is
formulated as follows:

min
u∈S(Δ)

∫ t j+N

t j+1

le(x̃(t), u(t)) dt (7.65a)

s.t. ˙̃x(t) = f (x̃(t), u(t), 0) (7.65b)

x̃(t j ) = x(t j ) (7.65c)

u(t) = ũ(t j ), ∀ t ∈ [t j , t j+1) (7.65d)

u(t) ∈ U, ∀ t ∈ [t j+1, t j+N ) (7.65e)

V (x̃(t)) ≤ ρe, ∀ t ∈ [t j+1, t j+N ) (7.65f)

where the notation and constraints are similar to that used inLEMPCofEq. 4.3 except
for an additional constraint of Eq.7.65d. This additional constraint is used because a
predetermined control action is applied to the system over the first sampling period of
the prediction horizon. The predetermined control action is either the control action
computed by the LEMPC at a previous sampling period or the control action from
the explicit controller h(x), i.e., the input trajectory over the first sampling period
of the prediction horizon is not a degree of freedom in the optimization problem.
The LEMPC of Eq.7.65 may dictate a time-varying operating policy to optimize
the economic cost as long as the predicted evolution is maintained in the level set
Ωρe ⊂ Ωρ . The notation t j denotes the sampling time at which the LEMPC problem
is initialized with a state measurement and the solver begins solving the resulting
optimization problem. The optimal solution of the LEMPC is denoted as u∗(t |t j ) and
is defined for t ∈ [t j+1, t j+N ). Feasibility of the optimization problem is considered
in Sect. 7.4.4.However, it is important to point out that x(t j ) ∈ Ωρe and x̃(t j+1) ∈ Ωρe

owing to the real-time implementation strategy, and thus, the real-time LEMPC has
a feasible solution (refer to the proof of Theorem 7.2).

7.4.3 Implementation Strategy

Before the implementation strategy is presented, the following discrete-time signals
are defined to simplify the presentation of the implementation strategy. The first
signal is used to keep track of whether the solver is currently solving an LEMPC
optimization problem:

s1(k) =
{
1, solving the LEMPC

0, not solving the LEMPC
(7.66)

where k denotes the k-th sampling period, i.e., tk . The second signal keeps track if
there is a previously computed input trajectory currently stored in memory:

http://dx.doi.org/10.1007/978-3-319-41108-8_4
http://dx.doi.org/10.1007/978-3-319-41108-8_4


7.4 Real-Time Economic Model Predictive Control of Nonlinear Process Systems 267

Receive x(tk)

x(tk) ∈ Ωρe ,
s2(k) = 1,

x̂(tk+1) ∈ Ωρe

Apply u(t) =
u∗(tk|tj) for
t ∈ [tk, tk+1)

Apply u(t) =
h(x(tk)) for
t ∈ [tk, tk+1)

Yes No

Fig. 7.17 Implementation strategy for determining the control action at each sampling period. The
notation u∗(tk |t j ) is used to denote the control action to be applied over the sampling period tk to
tk+1 from the precomputed input solution of the real-time LEMPC of Eq.7.65 solved at time step t j

s2(k) =
{
1, previous input solution stored

0, no previous input solution stored
(7.67)

At each sampling period, a state measurement x(tk) is received from the sensors
and three conditions are used to determine if a precomputed control action from
LEMPC or if the control action from the explicit controller h(x) is applied to the
system. If the following three conditions are satisfied the control action applied to
the system in a sample-and-hold fashion is the precomputed control action from
the LEMPC: (1) the current state must be in Ωρe (x(tk) ∈ Ωρe ), (2) there must be a
precomputed control action available for the sampling instance tk , i.e., s2(k) = 1, and
(3) the predicted state under the precomputed control action must satisfy: x̂(tk+1) ∈
Ωρe where x̂(tk+1) denotes the predicted state. To obtain a prediction of the state at
the next sampling period, the nominal model of Eq.7.62 with w ≡ 0 is recursively
solved with the input u(t) = u∗(tk |t j ) for t ∈ [tk, tk+1) (the on-line computation time
to accomplish this step is assumed to be negligible). The control action decision at a
given sampling instance tk is summarized by the flow chart of Fig. 7.17.

A series of decisions aremade at each sampling period to determine if the LEMPC
should begin resolving, continue solving, or terminate solving the optimization prob-
lem and is illustrated in the flow chart of Fig. 7.18. The computation strategy is sum-
marized in the following algorithm. To initialize the algorithm at t0 = 0, get the state
measurement x(0) ∈ Ωρ . If x(0) ∈ Ωρe , begin solving the LEMPC problem with
k = j = 0 and x(0). Set s1(0) = 1, s2(0) = 0, and ũ(t j ) = h(x(0)). Go to Step 8.
Else, set s1(0) = s1(1) = s2(0) = s2(1) = 0 and go to Step 9.

1. Receive a measurement of the current state x(tk) from the sensors; go to Step 2.
2. If x(tk) ∈ Ωρe , then go to Step 2.1. Else, go to Step 2.2.

2.1 If s2(k) = 1, go to Step 3. Else, go to Step 6.
2.2 Terminate solver if s1(k) = 1, set s1(k + 1) = 0 and s2(k + 1) = 0, and go

to Step 9.
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x(tk), s1(k), s2(k)

x(tk) ∈ Ωρe

s2(k) = 1

s1(k) = 1

x̂(tk+1) ∈ Ωρe

s1(k) = 1

tk+Ns < tj+N

ũ(tj) := h(x(tk)) ũ(tj) := u∗(tk|tj)

Begin solving EMPC
with x(tk) and j = k

Converge
before tk+1

s2(k) = 1,
tk+1 < tj+N

s1(k + 1) = 0,
s2(k + 1) = 1

s1(k + 1) = 1,
s2(k + 1) = 1

s1(k + 1) = 1,
s2(k + 1) = 0

Terminate Solver
s1(k + 1) = 0,
s2(k + 1) = 0

Yes

No

YesNo

Yes

No

No

ũ(tj)

No

ũ(tj)

No; set s2(k) = 0

Yes
Yes

Yes; save u∗(t|tj)No

YesNo

Yes

Fig. 7.18 Computation strategy for the real-time LEMPC scheme

3. If x̂(tk+1) ∈ Ωρe , go to Step 4. Else, set s2(k) = 0 and ũ(t j ) = h(x(tk)); go to
Step 7.

4. If s1(k) = 1, go to Step 8. Else, go to Step 5.
5. If tk+Ns < t j+N , set s1(k + 1) = 0 and s2(k + 1) = 1, and go to Step 9. Else, set

ũ(t j ) = u∗(tk |t j ); go to Step 7.
6. If s1(k) = 1, go to Step 8. Else, set ũ(t j ) = h(x(tk)); go to Step 7.
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7. If the solver is currently solving a problem (s1(k) = 1), terminate the solver.
Begin solving the LEMPC problem with j = k and x(t j ) = x(tk). Go to Step 8.

8. If the solver converges before tk+1, then go to Step 8.1. Else, go to Step 8.2.

8.1 Save u∗(t |t j ) for t ∈ [tk, t j+N ). Set s1(k + 1) = 0 and s2(k + 1) = 1. Go to
Step 9.

8.2 Set s1(k + 1) = 1. If s2(k) = 1 and tk+1 < t j+N , the go to Step 8.2.1. Else,
go to Step 8.2.2.

8.2.1 Set s2(k + 1) = 1. Go to Step 9.
8.2.2 Set s2(k + 1) = 0. Go to Step 9.

9. Go to Step 1 (k ← k + 1).

In practice, Ns may be unknown or possibly time varying. If Ns is unknown, then
one may specify the number of sampling periods that the real-time LEMPC may
apply a precomputed input trajectory before it must start re-computing a new input
trajectory as a design parameter. This condition may be used instead of Step 5 of the
algorithm above. Additionally, it may be beneficial from a closed-loop performance
perspective to force the LEMPC to recompute its solution more often than prescribed
by the implementation strategy described above.

A possible input trajectory resulting under the real-time LEMPC scheme is given
in Fig. 7.19. In the illustration, the solver begins to solve an LEMPC optimization
problem at t0 and returns a solution at t5. It is assumed that the closed-loop state
is maintained in Ωρe from t0 to t5 so that the solver is not terminated. Over the
time the solver is solving, the explicit controller is applied to the system since a
precomputed LEMPC input trajectory is not available. The precomputed LEMPC
solution is applied from t5 to t13. At t10, the solver begins to solve a new LEMPC
problem. The solver returns a solution at t13. At t16, the stability conditions are

Fig. 7.19 An illustration of an example input trajectory resulting under the real-time LEMPC
scheme. The triangles are used to denote the time instances when the LEMPC begins to solve the
optimization problem, while the circles are used to denote when the solver converges to a solution.
The solid black trajectory represents the control actions computed by the LEMPCwhich are applied
to the system, the dotted trajectory represents the computed input trajectory by the LEMPC (not
applied to the system), and the solid gray trajectory is the input trajectory of the explicit controller
which is applied to the system
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not satisfied for the precomputed LEMPC input trajectory, so the explicit controller
computes a control action and applies it to the system.

7.4.4 Stability Analysis

In this section, sufficient conditions such that the closed-loop state under the real-time
LEMPC is bounded inΩρ are presented which make use of the following properties.
Since f is a locally Lipschitz vector function of its arguments and the Lyapunov
function V is a continuously differentiable function, there exist positive constants
Lx , Lw, L ′

x , and L ′
w such that the following bounds hold:

| f (xa, u,w) − f (xb, u, 0)| ≤ Lx |xa − xb| + Lw |w| (7.68)∣∣∣∣∂V (xa)

∂x
f (xa, u,w) − ∂V (xb)

∂x
f (xb, u, 0)

∣∣∣∣ ≤ L ′
x |xa − xb| + L ′

w |w| (7.69)

for all xa , xb ∈ Ωρ , u ∈ U and w ∈ W. Furthermore, there exists M > 0 such that

| f (x, u,w)| ≤ M (7.70)

for all x ∈ Ωρ , u ∈ U and w ∈ W owing to the compactness of the sets Ωρ , U, and
W and the locally Lipschitz property of the vector field.

The following proposition bounds the difference between the actual state trajec-
tory of the system of Eq.7.62 (w �≡ 0) and the nominal state trajectory (w ≡ 0).

Proposition 7.3 (Proposition 4.1) Consider the state trajectories x(t) and x̂(t)with
dynamics:

ẋ(t) = f (x(t), u(t),w(t)), (7.71)

˙̂x(t) = f (x̂(t), u(t), 0), (7.72)

input trajectory u(t) ∈ U, w(t) ∈ W, and initial condition x(0) = x̂(0) ∈ Ωρ . If
x(t), x̂(t) ∈ Ωρ for all t ∈ [0, T ] where T ≥ 0, then the difference between x(T )

and x̂(T ) is bounded by the function γe(·):
∣∣x(T ) − x̂(T )

∣∣ ≤ γe(T ) := Lwθ

Lx

(
eLx T − 1

)
. (7.73)

Owing to the compactness of the set Ωρ , the difference in Lyapunov function
values for any two points in Ωρ may be bounded by a quadratic function which is
stated in the following proposition.

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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Proposition 7.4 (Proposition 4.2) Consider the Lyapunov function V of the closed-
loop system of Eq.7.62 under the controller h(x). There exists a scalar-valued
quadratic function fV (·) such that

V (xa) ≤ V (xb) + fV (|xa − xb|) (7.74)

for all xa, xb ∈ Ωρ where

fV (s) := α4(α
−1
1 (ρ))s + βs2 (7.75)

and β is a positive constant.

Theorem7.2 provides sufficient conditions such that the real-timeLEMPC renders
the closed-loop state trajectory bounded in Ωρ for all times. The conditions such
that the closed-loop state trajectory is maintained in Ωρ are independent of the
computation time required to solve the LEMPC optimization problem. From the
perspective of closed-loop stability, computational delay of arbitrary size may be
handledwith the real-timeLEMPCmethodology. In the casewhere the computational
delay is always greater than the prediction horizon, the real-time LEMPC scheme
would return the input trajectory under the explicit controller applied in a sample-
and-hold fashion.

Theorem 7.2 Consider the system of Eq.7.62 in closed-loop under the real-time
LEMPCof Eq.7.65 based on a controller h(x) that satisfies the conditions of Eq.7.64
that is implemented according to the implementation strategy of Fig.7.17. Let εw > 0,
Δ > 0 and ρ > ρe ≥ ρmin > ρs > 0 satisfy

− α3(α
−1
2 (ρs)) + L ′

x MΔ + L ′
wθ ≤ −εw/Δ, (7.76)

ρmin = max{V (x(t + Δ) | V (x(t)) ≤ ρs}, (7.77)

and
ρe < ρ − fV (γe(Δ)). (7.78)

If x(t0) ∈ Ωρ and N ≥ 1, then the state trajectory x(t) of the closed-loop system is
always bounded in Ωρ for t ≥ t0.

Proof If the real-time LEMPC is implemented according to the implementation
strategyofFig. 7.17, the control action to be applied over the samplingperiodhas been
(pre)computed by theLEMPCor the explicit controller h(x). To prove that the closed-
loop state is bounded in Ωρ , we will show that when the control action is computed
from the explicit controller and x(tk) ∈ Ωρ , then the state at the next sampling
period will be contained in Ωρ . If the control action comes from a precomputed
LEMPC solution, we will show that if x(tk) ∈ Ωρe , then x(tk+1) ∈ Ωρ owing to
the stability conditions imposed on applying the precomputed LEMPC solution. The
proof consists of two parts. In the first part, the closed-loop properties when the

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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control action is computed by the explicit controller h(x) are analyzed. This part of
the proof is based on the proof of [10] which considers the stability properties of an
explicit controller of the form assumed for h(x) implemented in a sample-and-hold
fashion. In the second part, the closed-loop stability properties of the precomputed
control actions by the LEMPC are considered. In both cases, the closed-loop state
trajectory is shown to be maintained in Ωρ for t ≥ t0 when x(t0) ∈ Ωρ .

Part 1: First, consider the properties of the control action computed by the explicit
controller h(x) applied to the system of Eq.7.62 in a sample-and-hold fashion. Let
x(tk) ∈ Ωρ \ Ωρs for some ρs > 0 such that the conditions of Theorem 7.2 are
satisfied, i.e., Eq. 7.76. The explicit controller h(x) computes a control action that
has the following property (from condition of Eq.7.64):

∂V (x(tk))

∂x
f (x(tk), h(x(tk)), 0) ≤ −α3(|x(tk)|) ≤ −α3(α

−1
2 (ρs)) (7.79)

for any x(tk) ∈ Ωρ \ Ωρs . Over the sampling period, the time-derivative of the
Lyapunov function is:

V̇ (x(t)) = ∂V (x(tk))

∂x
f (x(tk), h(x(tk)), 0) + ∂V (x(t))

∂x
f (x(t), h(x(tk)),w(t))

− ∂V (x(tk))

∂x
f (x(tk), h(x(tk)), 0) (7.80)

for all t ∈ [tk, tk+1). From the bound on the time-derivative of Lyapunov function
of Eq.7.79, the Lipschitz bound of Eq.7.69, and the bound on the norm of the
disturbance vector, the time-derivative of the Lyapunov function is bounded for
t ∈ [tk, tk+1) as follows:

V̇ (x(t)) ≤ −α3(α
−1
2 (ρs))

+
∣∣∣∣∂V (x(t))

∂x
f (x(t), h(x(tk)),w(t)) − ∂V (x(tk))

∂x
f (x(tk), h(x(tk)), 0)

∣∣∣∣
≤ −α3(α

−1
2 (ρs)) + L ′

x |x(t) − x(tk)| + L ′
w |w(t)|

≤ −α3(α
−1
2 (ρs)) + L ′

x |x(t) − x(tk)| + L ′
wθ (7.81)

for all t ∈ [tk, tk+1). Taking into account of Eq.7.70 and the continuity of x(t), the
following bound may be written for all t ∈ [tk, tk+1):

|x(t) − x(tk)| ≤ MΔ. (7.82)

From Eqs. 7.81 and 7.82, the bound below follows:

V̇ (x(t)) ≤ −α3(α
−1
2 (ρs)) + L ′

x MΔ + L ′
wθ (7.83)
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for all t ∈ [tk, tk+1). If the condition of Eq.7.76 is satisfied, i.e.,Δ and θ is sufficiently
small, then there exists εw > 0 such that:

V̇ (x(t)) ≤ −εw/Δ (7.84)

for all t ∈ [tk, tk+1). Integrating the above bound, yields:

V (x(t)) ≤ V (x(tk)), ∀ t ∈ [tk, tk+1), (7.85)

V (x(tk+1)) ≤ V (x(tk)) − εw. (7.86)

For any state x(tk) ∈ Ωρ\Ωρs , the state at the next sampling periodwill be in a smaller
level set when the control action u(t) = h(x(tk)) is applied for t ∈ [tk, tk+1). Also,
the state will not come out of Ωρ over the sampling period owing to Eq.7.84. Once
the closed-loop state under the explicit controller h(x) implemented in a sample-and-
hold fashion has converged toΩρs , the closed-loop state trajectory will bemaintained
in Ωρmin if ρmin ≤ ρ and ρmin is defined according to Eq.7.77. Thus, the sets Ωρ and
Ωρmin are forward invariant sets under the controller h(x) and if x(tk) ∈ Ωρ , then
x(tk+1) ∈ Ωρ under the explicit controller h(x).

Part 2: In this part, the closed-loop stability properties of the input precomputed
by the LEMPC for the sampling period tk to tk+1 are considered. For clarity of
presentation, the notation x̂(t) denotes the prediction of closed-loop state at time t ,
i.e., this prediction used in the implementation strategy to determine which control
action to apply to the system, while the notation x̃(t) will be reserved to denote
the predicted state in the LEMPC of Eq.7.65. The predicted state in the LEMPC
of Eq.7.65 at t j+1, which is denoted as x̃(t j+1), satisfies x̂(t j+1) = x̃(t j+1) because
both predicted states use the nominal model with the same initial condition and same
piecewise constant input applied from t j to t j+1.

First, feasibility of the optimization problem is considered. Owing to the for-
mulation of the LEMPC of Eq.7.65, the optimization problem is always feasible
if ρe satisfies: ρ > ρe ≥ ρmin. Recall, the input over the sampling period t j to
t j+1 is not a degree of freedom in the optimization problem. If this control action
is precomputed from a previous LEMPC solution, it must have the property that
x̂(t j+1) = x̃(t j+1) ∈ Ωρe which is imposed as a condition of the implementation
strategy of Fig. 7.17. If the control action is computed by the explicit controller, the
control action over the sampling period t j to t j+1 will maintain x̃(t j+1) ∈ Ωρe . Thus,
x̃(t j+1) ∈ Ωρe in the LEMPC of Eq.7.65. Feasibility of the optimization problem
follows from the fact that the input trajectory obtained from the explicit controller
h(x) over the prediction horizon is a feasible solution, that is u(t) = h(x̂(ti )) for
t ∈ [ti , ti+1), i = j+1, j+2, . . . , j+N −1 where x̂(t) is obtained by recursively
solving the model: ˙̂x(t) = f (x̂(t), h(x̂(ti )), 0) (7.87)

for t ∈ [ti , ti+1) and i = j + 1, j + 1 . . . , j + N − 1 with the initial condition
x̂(t j+1) = x̃(t j+1). Furthermore, the setΩρe is forward invariant under the controller
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h(x) (the proof is analogous to Part 1 where the setΩρe is used instead ofΩρ). Thus,
the LEMPC of Eq.7.65 is always feasible for any x(t j ) ∈ Ωρe .

If the LEMPC is implemented according to the implementation strategy of
Fig. 7.17, then the precomputed input for tk by the LEMPC is only used when
x(tk) ∈ Ωρe and the predicted state at the next sampling period x̂(tk+1) ∈ Ωρe .
When x(t) ∈ Ωρ for t ∈ [tk, tk+1), i.e., a sufficiently small sampling period is used,
the following bound on the Lyapunov function value at the next sampling period tk+1

may be derived from Propositions 7.3–7.4:

V (x(tk+1)) ≤ V (x̂(tk+1)) + fV (γe(Δ)). (7.88)

Since x̂(tk+1) ∈ Ωρe and if the condition of Eq.7.78 is satisfied, x(tk+1) ∈ Ωρ .
To summarize, if the control action to be applied over the sampling period tk

to tk+1 is u(tk) = h(x(tk)), the state at the next sampling period will be in Ωρ

(x(tk+1) ∈ Ωρ). If the control action to be applied over the sampling period tk to tk+1

is from a precomputed LEMPC input, the state at the next sampling period will also
be contained in Ωρ which completes the proof of boundedness of the closed-loop
state trajectory x(t) ∈ Ωρ under the real-time LEMPC for t ≥ t0.

Remark 7.6 No closed-loop performance guarantees may be made because perfor-
mance constraints, e.g., terminal constraints, are not imposed on the LEMPC and the
closed-loop performance may be adversely affected with greater computation time.
The latter point is associated with the fact that the LEMPC problem allows for the
input trajectory from t j+1 to t j+Ns , i.e., the time the solver converges, to be degrees of
freedom in the optimization problem. However, the actual closed-loop input trajec-
tory applied over this periodmay be different from that computed by theLEMPCover
the same time period. Potentially, one may also employ sensitivity-based corrections
to the precomputed control actions after receiving state feedback like that employed
in [27, 28] to improve closed-loop performance. However, active set changes must
be handled appropriately which may introduce additional on-line computation. It is
important to point out that the computed solution of the LEMPC may dictate a time-
varying operating policy to optimize the process economics. Even in the presence of
uncertainty, the closed-loop performance under the real-time LEMPC may be sub-
stantially better (with respect to the economic cost) than traditional control methods,
which is the case for the chemical process network considered in Sect. 7.4.5.

Remark 7.7 In the current section, unknown and possibly time-varying computa-
tional delay is considered for operation affected by unknown bounded disturbance.
If, instead of the computation algorithm described above, a hard cap was placed on
the solver to terminate and return a (suboptimal) solution by a certain number of
sampling times, one could account for the control actions that are applied to the sys-
tem over the computation time by setting the input trajectory in the LEMPC problem
over the specified number of sampling periods of the prediction horizon be equal to
a predetermined input trajectory. This potential strategy, however, does not account
for the fact that the solver may return a solution before the end of specified number
of sampling periods.
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Remark 7.8 From the proof of Theorem 7.2, recursive feasibility of the LEMPC in
the presence of bounded uncertainty is guaranteed if the initial state is in Ωρ . It is
difficult in general to characterize the feasible set under EMPC formulated with a
terminal constraint, i.e., the set of points where recursive feasibility is maintained in
the presence of uncertainty. Thus, it may be difficult to ensure that the closed-loop
state is maintained in the feasible set under EMPC with a terminal constraint in
the presence of uncertainty and computational delay. In this respect, LEMPC has a
unique advantage for real-time implementation compared to EMPC with a terminal
constraint in that LEMPC maintains the closed-loop state inside Ωρ where recursive
feasibility is guaranteed.

Remark 7.9 The number of times that the explicit controller is applied to the closed-
loop system may be a factor in the closed-loop economic performance. Whether the
control action is from a precomputed LEMPC problem or the explicit controller is
mainly influenced by how close the state measurement is to the boundary of Ωρe . To
decrease the number of times that the explicit controller is applied to the system, one
could potentially add penalization terms to the stage cost of the LEMPC to penalize
the closeness of the state to the boundary of Ωρe .

7.4.5 Application to a Chemical Process Network

Consider a chemical process network consisting of two continuous stirred-tank reac-
tors (CSTRs) in series followed by a flash separator shown in Fig. 7.20. In each of the
reactors, the reactant A is converted to the desired product B through an exothermic
and irreversible reaction of the form A → B. A fresh feedstock containing a dilute
solution of the reactant A in an inert solvent D is fed to each reactor. The reaction rate
is second-order in the reactant concentration. The CSTRs are denoted as CSTR-1
and CSTR-2, respectively. A flash separator, which is denoted as SEP-1, is used to
recover some unreacted A. The overhead vapor from the flash tank is condensed and
recycled back to CSTR-1. The bottom stream is the product stream of the process
network which contains the desired product B. In the separator, a negligible amount
of A is assumed to be converted to B through the reaction. The two reactors have
both heating and cooling capabilities and the rate of heat supplied to or removed
from the reactors is denoted as Q j , j = 1, 2. While the heat supplied to or removed
from the vessel contents is modeled with one variable, two different actuators may
be used in practice for supplying heat to and removing heat from each vessel. To
vaporize some contents of the separator, heat is supplied to the separator at a rate of
Q3. The liquid holdup of each vessel is assumed to be constant and the liquid density
throughout the process network is also assumed to be constant.

Applyingfirst principles, a dynamicmodel of the process networkmaybeobtained
(neglecting the dynamics of the condenser and the solvent) and is given by the fol-
lowing ordinary differential equations (ODEs) (see Table7.3 for parameter notation
and values):
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Fig. 7.20 Process flow diagram of the reactor and separator process network

Table 7.3 Process parameters of the reactor and separator process network

Symbol/Value Description Symbol/Value Description

T10 = 300K Temp.: CSTR-1 inlet k0 = 1.9 × 109 m3 kmol−1 h−1 Pre-exponential factor

T20 = 300K Temp.: CSTR-2 inlet E = 7.1 × 104 kJ kmol−1 Activation energy

F10 = 5.0m3 h−1 Flow: CSTR-1 inlet ΔH = −7.8 × 103 kJ kmol−1 Heat of reaction

F20 = 5.0m3 h−1 Flow: CSTR-2 inlet ΔHvap = 4.02 × 104 kJ kmol−1 Heat of vaporization

Fr = 2.0m3 h−1 Flow: SEP-1 vapor Cp = 0.231 kJ kg−1K−1 Heat capacity

V1 = 5.0m3 Volume: CSTR-1 R = 8.314 kJ kmol−1 K−1 Gas constant

V2 = 5.0m3 Volume: CSTR-2 ρL = 1000 kg m−3 Liquid solution density

V3 = 3.0m3 Volume: SEP-1 MWA = 18 kg kmol−1 Molecular weight: A

αA = 3.0 Relative volatility: A MWB = 18 kg kmol−1 Molecular weight: B

αB = 0.8 Relative volatility: B MWD = 40.0 kg kmol−1 Molecular weight: D

αD = 1.0 Relative volatility: D

dT1
dt

= F10

V1
T10 + Fr

V1
T3 − F1

V1
T1 − ΔHk0

ρLCp
e−E/RT1C2

A1 + Q1

ρLCpV1
(7.89a)

dCA1

dt
= F10

V1
CA10 + Fr

V1
CAr − F1

V1
CA1 − k0e

−E/RT1C2
A1 (7.89b)

dCB1

dt
= Fr

V1
CBr − F1

V1
CB1 + k0e

−E/RT1C2
A1 (7.89c)

dT2
dt

= F20

V2
T20 + F1

V2
T1 − F2

V2
T2 − ΔHk0

ρLCp
e−E/RT2C2

A2 + Q2

ρLCpV2
(7.89d)

dCA2

dt
= F20

V2
CA20 + F1

V2
CA1 − F2

V2
CA2 − k0e

−E/RT2C2
A2 (7.89e)

dCB2

dt
= F1

V2
CB1 − F2

V2
CB2 + k0e

−E/RT2C2
A2 (7.89f)
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dT3
dt

= F2

V3
(T2 − T3) − ΔHvapṀr

ρLCpV3
+ Q3

ρLCpV3
(7.89g)

dCA3

dt
= F2

V3
CA2 − Fr

V3
CAr − F3

V3
CA3 (7.89h)

dCB3

dt
= F2

V3
CB2 − Fr

V3
CBr − F3

V3
CB3 (7.89i)

where Tj denotes the temperature of the j-th vessel ( j = 1 denotes CSTR-1, j = 2
denotes CSTR-2, and j = 3 denotes SEP-1), Ci j denotes the concentration of the
i-th species (i = A, B) in the j-th vessel, and Ṁr denotes the molar flow rate of the
recycle stream.

The relative volatility of each species is assumed to be constant within the operat-
ing temperature range of the flash tank. The following algebraic equations are used
to model the composition of the recycle stream:

CD3 = (ρL − CA3MWA − CB3MWB) /MWD (7.90a)

Cir = αiρLCi3∑
j∈{A,B,D} α jC j3MWj

, i = A, B, D (7.90b)

Ṁr = Fr (CAr + CBr + CDr ) (7.90c)

whereCir is the overhead vapor concentration of the separator. Given the assumption
of constant liquid hold-up and constant liquid density, the volumetric flow rates are
given by the following equations:

F1 = Fr + F10 (7.91a)

F2 = F1 + F20 (7.91b)

F3 = F2 − Fr (7.91c)

where Fj is the volumetric flow rate of the outlet stream of the j-th vessel.
The process network has five manipulated inputs: the three heat rates Q j ,

j = 1, 2, 3 and the inlet concentration of the reactant A in the feedstock to
each reactor (CA10 and CA20). The bounds on the available control action are
Q j ∈ [−1.0, 1.0] × 105 kJ h−1 for j = 1, 2, Q3 ∈ [2.2, 2.5] × 106 kJ h−1,
and CAj0 ∈ [0.5, 7.5] kmolm−3 j = 1, 2. In addition to the input constraints, the
reactions take place within the temperature range from 370.0 to 395.0K and thus,
the reactors are to be operated within this temperature range. The separation occurs
at 390.0K.

The real-time economics of the process network are assumed to be described
by the molar flow rate of desired product B leaving the process network which is
denoted as ṀB3. The time-averaged amount of reactant that may be fed to each
reactor is constrained to an average amount of 20.0 kmol h−1 which gives rise to the
following two input average constraints:
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1

t f − t0

∫ t f

t0

Fj0CAj0(t) dt = 20.0 kmol h−1 (7.92)

for j = 1, 2 where t0 and t f are the initial and final time of the operation of the
process network. Since the inlet flow rates F10 and F20 are constant, the average input
constraint may be written in terms of the inlet concentration of A only such that the
time-averaged value of CAj0 must be equal to 4.0 kmolm−3.

The economically optimal steady-state (which is simply referred to as the optimal
steady-state for the remainder) will be used in the design of a real-time LEMPC,
i.e., the stability region for the optimal steady-state will be used in the LEMPC
formulation. Since the reaction rate is maximized at high temperature, computing the
optimal steady-state with the exact acceptable temperature operating range will give
an optimal steady-state with the greatest acceptable reactor operating temperature.
Much like current practice, the optimal steady-state is computed with a degree of
conservativeness or “back-off” introduced in the acceptable operating temperature
range, so that the reactor temperature is maintained within the acceptable operating
range over the length of operation in the presence of uncertainty and disturbances
(see [39] and the references therein, for instance, for more details on the back-off
methodology). Thus, the optimal steady-state must satisfy a restricted temperature
range of Tjs ∈ [370.0, 380.0]K for j = 1, 2. The steady-state optimization problem
is given by:

max
xs ,us

F3CB3s

s.t. f (xs, us) = 0

370.0K ≤ T1s ≤ 380.0K

370.0K ≤ T2s ≤ 380.0K

T3s = 390.0K (7.93)

−1.0 × 105 kJh−1 ≤ Q1s ≤ 1.0 × 105 kJh−1

−1.0 × 105 kJh−1 ≤ Q2s ≤ 1.0 × 105 kJh−1

2.2 × 106 kJh−1 ≤ Q3s ≤ 2.5 × 106 kJh−1

CA10s = CA20s = 4.0 kmolm−3

where f (xs, us) = 0 represents the steady-state model. The optimal steady-state
vector (omitting units) is:

x∗
s = [

T ∗
1s C

∗
A1s C

∗
B1s T

∗
2s C

∗
A2s C

∗
B2s T

∗
3s C

∗
A3s C

∗
B3s

]T
= [

380.0 2.67 2.15 380.0 2.42 2.06 390.0 1.85 2.15
]T

, (7.94)

and the optimal steady-state input vector is
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u∗
s = [

Q∗
1s Q∗

2s Q∗
3s C

∗
A10s C

∗
A20s

]T
= [−4.21 × 103 1.70 × 104 2.34 × 106 4.0 4.0

]T
. (7.95)

The optimal steady-state is open-loop unstable.
The control objective of the process network is to optimize the economics through

real-time operation while maintaining the closed-loop state trajectory inside a well-
defined state-space set. To accomplish this objective, the real-time LEMPC scheme
is applied to the process network. In stark contrast to traditional tracking control
that forces the closed-loop state to converge to the (optimal) steady-state, applying
LEMPC to the process network is not expected to achieve convergence to the opti-
mal steady-state. Instead, LEMPC may force the process network to operate in a
consistently transient manner to achieve better closed-loop performance compared
to the closed-loop performance at the optimal steady-state.

For the implementation of the LEMPC, the acceptable temperature range is not
treated as a hard constraint. Instead, the acceptable temperature range is accounted
for by imposing quadratic penalty terms in the stage cost of the LEMPC. Thus, the
stage cost used in the objective function of the LEMPC is

le(x, u) = −F3CB3 +
3∑

i=1

Qc,i (Ti − T ∗
is)

2 (7.96)

where T ∗
is , i = 1, 2, 3 are the optimal steady-state temperatures. The stage cost of

Eq.7.96 includes the economics and the quadratic penalty terms for the temperature.
The weight coefficients are Qc,1 = 0.018, Qc,2 = 0.022, and Qc,3 = 0.01 and
have been tuned such that the closed-loop temperatures are maintained near the
optimal steady-state temperature. Since no hard or soft constraints are imposed on
the temperature in the LEMPC, it is emphasized that there is no guarantee that
the temperatures are maintained within the acceptable temperature range described
above (Tj ∈ [370.0, 395.0] K for j = 1, 2 and T3 ≈ 390.0K). In this example,
small violations over a short period are considered acceptable. If maintaining the
operation within the acceptable operating temperature range is considered critical,
one may add various modifications to the LEMPC to achieve this objective such as
decreasing the size of Ωρe , adding hard or soft constraints on the temperature in the
LEMPC, or adding a contractive constraint on the temperature ODEs.

An explicit stabilizing controller is designed using feedback linearization tech-
niques to make the dynamics of the temperature ODEs linear (in a state-space region
where the input constraints are satisfied) under the explicit controller. Specifically,
the temperature ODEs are input-affine in the heat rate input and have the form:

Ṫ j = f j (x) + b j Q j (7.97)

where f j (x) is a nonlinear scalar-valued function, b j is constant and j = 1, 2, 3.
The controller that makes the closed-loop temperature dynamics linear is:
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Q j = − 1

b j

(
f j (x) + K j (Tj − T ∗

js)
)

(7.98)

where K j denotes the controller gain. In this case, the controller gains are K1 = 5,
K2 = 5, and K3 = 7, respectively. The inlet concentration input values are fixed to
the average values (4.0 kmolm−3). Through extensive closed-loop simulations under
the state feedback controller, a quadratic Lyapunov function for the process network
under the feedback controller h(x) is determined. An estimate of the stability region
of the process network under the feedback controller was characterized by computing
the state-space points where V̇ < 0 and taking the stability region to be a level set of
the Lyapunov function containing only state-space points where the time-derivative
of the Lyapunov function is negative. The quadratic Lyapunov function has the form:

V (x) = (x − x∗
s )

T P(x − x∗
s ) (7.99)

where P is the following positive definite matrix:

P = diag
[
0.001 1.5 0.05 0.001 1.5 0.05 0.001 1.5 0.05

]
. (7.100)

The estimated stability region Ωρ is the level set of the Lyapunov function where
V (x) ≤ 11.0, i.e., ρ = 11.0. The subset of the stability region which defines the
mode 1 constraint of the LEMPC is ρe = 10.0 and has been determined through
extensive closed-loop simulation under LEMPC as the subset of the stability region
Ωρ where the closed-loop state under LEMPC is maintained in Ωρ .

The input average constraint is imposed over successive, finite-length operating
periods. Specifically, the average constraint must be satisfied over each operating
period tM = MΔ where M is the number of sampling periods in the operating
period. This ensures that over the entire length of operation the average constraint
will be satisfied. For this example, the operating period was chosen to be tM =
2.4 h which leads to better asymptotic average economic performance under LEMPC
(assuming no computational delay) than the asymptotic average performance at the
economically optimal steady-state.

To solve the dynamic optimization problem of the LEMPC, orthogonal collo-
cation with three Radau collocation points per sampling period is employed for
discretization of the ODEs (see, for instance, [37] for details on solving a dynamic
optimization problem using a simultaneous approach). The open-source nonlinear
optimization solver Ipopt [21] was employed owing to its ability to exploit the high
degree of sparsity of the resulting optimization problem. Analytical first and second-
order derivative information was provided to the solver. The closed-loop simulations
were coded in C++ and performed on an Intel® Core™ 2 Quad 2.66GHz processor
running anUbuntu Linux operating system. The sampling period of the LEMPCused
in the simulations below is Δ = 0.01 h. To simulate forward in time the closed-loop
process network, the fourth-order Runge-Kutta method was used with a time step of
0.0001 h.
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Fig. 7.21 The total
economic cost Je over one
operating window length of
operation (2.4 h) of the
process network under
LEMPC with the prediction
horizon length
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In the first set of simulations, nominal operation of the process network under
LEMPC implemented in a typical receding horizon fashion is considered under
ideal computation, i.e., assuming no computational delay. The closed-loop economic
performance under LEMPC is assessed using the economic performance indexwhich
is defined as:

Je =
∫ t f

0
F3CB3 dt. (7.101)

Since the LEMPC does not directly optimize the molar flow rate of product out of
the process network, the stage cost index will also be considered as a measure of the
closed-loop performance and is given by:

Le = −
∫ t f

0
le(x, u) dt. (7.102)

First, the effect of the prediction horizon on the closed-loop economic performance
over one operating period (2.4 h) is considered. The closed-loop performance index
of Eq.7.101 plotted against the prediction horizon length is given in Fig. 7.21. A
significant increase in closed-loop performance is observed initially with increasing
prediction horizon length until the closed-loop performance becomes approximately
constant. Owing to this fact, a prediction horizon of N = 200 is used in all subsequent
simulations. A simulation over many operating periods such that the effect of the
initial condition on closed-loop performance becomes negligible is performed (with
N = 200). The asymptotic average closed-loop economic performance, which is
the time-averaged economic cost after the effect of the initial condition becomes
negligible, is determined from this simulation to be 25.0 kmol h−1 (in this case, the
time-averaged production rate over each operating window becomes constant after a
sufficiently long length of operation). The optimal steady-state production rate of B
is 21.5 kmol h−1. Thus, the asymptotic production rate of the process network under
the LEMPC is 16.3% better than the production rate at the economically optimal
steady-state.



282 7 EMPC Systems: Computational Efficiency and Real-Time Implementation

The effect of computational delay is considered in the next set of simulations, and
two scenarios are considered: (1) the closed-loop process network under LEMPC
implemented in a typical receding horizon fashion where the control action is subject
to real-time computational delay (for the sake of simplicity, this case will be referred
to as the closed-loop process network under LEMPC for the remainder) and (2) the
closed-loop process network under the real-time LEMPC scheme (also, subject to
real-time computational delay). For the former scenario, the LEMPC begins to com-
pute a control action at each sampling instance after receiving a state measurement.
Owing to the computational delay, the control action applied to the process network
is the most up-to-date control action. For example, if it takes 0.002 h to compute
the control action at the sampling instance tk , then u(tk−1) is applied to the process
network from tk to tk + 0.002h (assuming u(tk−1) is available at tk) and applies u(tk)
to the process network from tk + 0.002 h to tk+1 = tk + Δ. For each scenario, a
12.0 h length of closed-loop operation is simulated. For the real-time LEMPC case,
the LEMPC is forced to recompute a new solution after three sampling periods have
elapsed since the last time an LEMPC solution was computed, i.e., the solver starts
computing a new solution at the beginning of the fourth sampling period.

The average computation time required to solve the LEMPC (of scenario (1))
at each sampling time was 11.2 s (31.2% of the sampling period) with a standard
deviation of 7.42 s. The maximum computation time over the simulation is 61.9s
which is almost double the sampling period. The computation time exceeds the
sampling period ten out of the 1,200 sampling periods in the simulation. Over the
course of both simulations, the closed-loop state is maintained in Ωρ . The closed-
loop trajectories under the real-time LEMPC scheme are given in Fig. 7.22 (the
closed-loop behavior under the LEMPC subject to real-time computational delay
was similar). The difference between the performance index of the two cases is less
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Fig. 7.22 The closed-loop a state and b input trajectories of the nominally operated process
network under the real-time LEMPC scheme
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Fig. 7.23 The number of times the LEMPC problem was solved (Comp.) as dictated by the real-
time implementation strategy compared to the sampling period (Δ) over the first 0.5 h of operation

than 0.5% (the performance indexes for case (1) and case (2) were 284.3 and 283.3,
respectively).

While little difference between the two cases in terms of closed-loop performance
is observed, it is important to note that an a priori guarantee on closed-loop stabil-
ity under the real-time LEMPC may be made. Also, the total on-line computation
time to solve the LEMPC over the two simulations is 3.74 and 0.94 h, respectively.
The real-time LEMPC reduces the total on-line computation requirement by 75%
compared to LEMPC implemented in a receding horizon fashion because the real-
time LEMPC does not recompute a control action at each sampling instance, while
LEMPC, implemented in a receding horizon fashion, recomputes a control action at
each sampling instance. To better illustrate this point, Fig. 7.23 shows the frequency
the LEMPC problem is solved under the real-time implementation strategy with
respect to the sampling period over the first 0.5 h of operation. Over this time, the
LEMPC optimization problem is solved at a rate of one out of every four sampling
periods. This trend continues over the remainder of the 12.0 h length of operation
and hence, the 75% reduction in total computational time.

Since the computational delay depends on many factors, e.g., model dimension,
prediction horizon, solution strategy used to solve the dynamic optimization problem,
the nonlinear optimization solver used, and computer hardware, it is also important
to consider computational delay greater than one sampling period to demonstrate
that the real-time LEMPC schememay handle computation delay of arbitrary length.
Therefore, another set of simulations is consideredwhere longer computational delay
is simulated. The computation delay is modeled as a bounded uniformly-distributed
random number and the maximum computational delay is assumed to be less than
10 sampling periods. Both the LEMPC (receding horizon implementation) and the
real-time LEMPC scheme are considered. To make the comparison as consistent as
possible, the computational delay, at the time steps the real-time LEMPC is solved,
is simulated to be the same as the computation delay to solve the LEMPC at the
same time step (recall the real-time LEMPC is not solved at each sampling period).
Given the computational delay is much greater for this set of simulations than in
the previous set of simulations, the real-time LEMPC is forced to recompute a new
solution after 15 sampling periods have elapsed since the last time it computed a
solution.

Several simulations are performed, each starting at a different initial condition,
and the performance indexes of these simulations are given in Table7.4. Applying
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Table 7.4 The performance indices of the process network under the back-up explicit controller,
under the LEMPC subject to computational delay, and under the real-time LEMPC for several
simulations

Sim. Back-up controller LEMPC Real-time LEMPC

Je Le Je Le Je Le

1 225.5 225.4 277.0 245.0 295.1 216.5

2 254.2 254.1 318.7 278.6 307.3 279.6

3 260.5 260.4 319.9 286.3 318.1 294.7

4 232.7 230.6 290.7 255.7 299.2 266.4

5 250.0 250.0 308.7 276.9 322.8 282.9
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Fig. 7.24 The closed-loop a state and b input trajectories of process network under the real-time
LEMPC scheme where the computational delay is modeled as a bounded random number

the back-up explicit controller h(x) implemented in a sample-and-hold fashion to the
chemical process network is also considered and the performance indexes of these
simulations are given in Table7.4 as well. The average improvement in economic
performance compared to the process network under the back-up controller is 26.1%
under the real-time LEMPC scheme and 23.9% under the LEMPC (implemented in
a receding horizon). Thus, a substantial economic benefit is achieved by applying
LEMPC to the process network.While the real-timeLEMPCdoes not always achieve
better performance (either measured in terms of the economic performance index
or stage cost index) compared to the performance under LEMPC, the closed-loop
trajectories between the two cases are significantly different. Figures7.24 and 7.25
give the closed-loop trajectories of simulation 2 (as labeled in Table7.4). The input
trajectory computed by the real-time LEMPC has chattering initially over the first
operating period because of the effect of the initial condition, but after the first
operating periodwhen the effect of the initial condition dissipates, the computed input
trajectory is significantly smoother. On the other hand, chattering in the input profiles
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Fig. 7.25 The closed-loop a state and b input trajectories of process network under LEMPC subject
to computational delay where the computational delay is modeled as a bounded random number

0.0 2.0 4.0 6.0 8.0 10.0 12.0
t

h(x)

LEMPC

Fig. 7.26 A discrete trajectory depicting when the control action applied to the process network
over each sampling period is from a precomputed LEMPC solution or from the back-up controller
for the closed-loop simulation of Fig. 7.24

is observed throughout the entire simulation under the LEMPC. If we compare the
performance index of operation from t = 2.4 h to t = 12.0 h (after the first operating
period) for simulation 2, the indexes are Je = 249.8 and Le = 227.9 for operation
under the real-time LEMPC and Je = 248.5 and Le = 217.4 for operation under
the LEMPC; the performance under the real-time LEMPC is better over this period
than under LEMPC.

Over the five simulations under the real-time LEMPC strategy, the explicit con-
troller was applied on average 19 out of 1200 sampling periods. For the simulation of
Fig. 7.24, a discrete trajectory showing when the control action applied to the process
network under the real-time LEMPC strategy is from a precomputed LEMPC solu-
tion or from the back-up controller is given in Fig. 7.26. For this case, the back-up
controller is used 31 out of 1200 sampling periods (2.7% of the sampling periods).
From Fig. 7.26, the back-up controller is only applied over the first operating period
and is not used in any subsequent sampling period. Thus, the source of performance
degradation for this case (Sim. 2 in Table7.4) is due to applying the explicit back-up
controller to maintain the closed-loop state in Ωρ . Again, it is emphasized that there
is no a priori guarantee that the LEMPC implemented in a receding horizon fashion
subject to computational delay may maintain the closed-loop state inside Ωρ .
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Fig. 7.27 The closed-loop a state and b input trajectories of process network under the real-time
LEMPC scheme with bounded process noise
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Fig. 7.28 The closed-loop a state and b input trajectories of process network under LEMPC subject
to computational delay with bounded process noise

In the last set of simulations, significant bounded Gaussian process noise with
zero mean is added to the model states. The standard deviations of the noise added to
the temperature and concentration states are 5.0 and 0.5, respectively and the bounds
on the noise are 2.0 and 15.0, respectively. Two closed-loop simulations over 12.0 h
length of operation are completed with the same realization of the process noise. In
the first simulation, the process network is controlled by the real-time LEMPC and
the closed-loop trajectories are given in Fig. 7.27 over the first two operating periods.
For this case, the back-up controller is applied 69 out of 1200 sampling periods (5.8%
of the sampling periods). In the second simulation, the process network is controlled
by LEMPC subject to computation delay (trajectories shown in Fig. 7.28).



7.4 Real-Time Economic Model Predictive Control of Nonlinear Process Systems 287

From Fig. 7.28, a significant degree of chattering and bang-bang type actuation
in the input trajectory is observed. This behavior tries to combat the effect of the
added process noise and is due to not penalizing control actions in the stage cost and
not imposing rate of change constraints on the control actions. In practice, one could
add one or both of these elements to the LEMPC if the computed input trajectory
is not implementable. On the other hand, the real-time LEMPC implements a much
smoother input trajectory (Fig. 7.27) because the precomputed input trajectory of
the real-time LEMPC has a degree of smoothness like the closed-loop trajectory
of the nominally operated process network (Fig. 7.22). If the precomputed input
trajectory satisfies the stability conditions, itwill be applied to the closed-loopprocess
network with disturbances. The closed-loop system under the real-time LEMPC has
guaranteed stability properties, but is not recomputed at each sampling period like
the receding horizon implementation of LEMPC which will try to combat the effect
of the disturbance on performance. In both cases, the state is maintained in Ωρ . The
performance indexes of the two cases are 301.6 under the real-timeLEMPCand295.5
under the LEMPC; the closed-loop performance under the real-time LEMPC scheme
is 2.0%better than applyingLEMPCwithout accounting for the computational delay.
Moreover, the back-up controller is also applied to the process network subject to the
same realization of the process noise. The economic performance index for this case
is 242.3. For operation with process noise, the economic performance improvement
over the process network under the back-up controller is 24.4% under the real-time
LEMPC strategy and 21.9% under the receding horizon LEMPC for the same initial
condition.

7.5 Conclusions

In this chapter, three EMPC designs were considered. The first section focused on
the design of economic MPC for a class of nonlinear singularly perturbed systems.
Under appropriate stabilizability assumptions, fast sampling of the fast states and
slow sampling of the slow states, the presented composite control system featur-
ing an EMPC may dictate a possible time-varying operation to address economic
considerations while guaranteeing closed-loop stability. Closed-loop stability was
addressed through singular perturbation arguments.

In the second section, an application study of several distributed EMPC strategies
was presented. Two important performance metrics were considered to assess the
EMPC strategies including the closed-loop performance and the computational time
required to solve the optimization problem(s) at each sampling time. From the closed-
loop simulation results of application study, a distributed EMPC strategywas capable
of delivering similar closed-loop performance as a centralized EMPC approachwhile
reducing the on-line computation time required to solve the optimization problems.

In the final section, a strategy for implementing Lyapunov-based economic model
predictive control (LEMPC) in real-timewith computation delaywas developed. The
implementation strategy uses a triggering condition to precompute an input trajectory
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fromLEMPCover a finite-time horizon.At each sampling period, if a certain stability
(triggering) condition is satisfied, then the precomputed control action by LEMPC is
applied to the closed-loop system. If the stability condition is violated, then a backup
explicit stabilizing controller is used to compute the control action for the sampling
period. In this fashion, the LEMPC is used when possible to optimize the economics
of the process. Conditions such that the closed-loop state under the real-time LEMPC
is always bounded in a compact set were derived.
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