
Chapter 6
Two-Layer EMPC Systems

6.1 Introduction

As discussed in Chap. 1, in the traditional paradigm to optimization and control, a
hierarchical strategy is employed using real-time optimization (RTO) to compute
economically optimal steady-states that are subsequently sent down to a tracking
MPC layer. The trackingMPCcomputes control actions that are applied to the closed-
loop system to force the state to the optimal steady-state. RTO may periodically
update the optimal steady-state to account for time-varying factors that may shift the
optimal operating conditions and send the updated steady-state to the MPC layer.
On the other hand, EMPC merges economic optimization and control and thus,
employs a one-layer approach to optimization and control. While EMPC merges
optimization and control, the extent that EMPC takes on all the responsibilities of
RTO remains to be seen. For example, many EMPC methods are formulated using a
steady-state, which potentially could be the economically optimal steady-state. RTO
is also responsible for other tasks besides economic optimization. Therefore, onemay
envision that future optimization and control structures will maintain some aspects
of the hierarchical approach within the context of industrial applications. Moreover,
in some applications, maintaining a division between economic optimization and
control is suitable, especially for applications where there is an explicit time-scale
separation between the process/system dynamics and the update frequency or time-
scale of evolution of economic factors and/or other factors that shift optimal operating
conditions, e.g., disturbances.

In an industrial control architecture, which features a high degree of complex-
ity, a hierarchical approach to dynamic economic optimization and control may
be more applicable. Motivated by the aforementioned considerations, several two-
layer approaches to dynamic economic optimization and control are discussed in
this chapter. The upper layer, utilizing an EMPC, is used to compute economically
optimal policies and potentially, also, control actions that are applied to the closed-
loop system. The economically optimal policies are sent down to a lower layer MPC
scheme which may be a tracking MPC or an EMPC. The lower layer MPC scheme

© Springer International Publishing Switzerland 2017
M. Ellis et al., Economic Model Predictive Control,
Advances in Industrial Control, DOI 10.1007/978-3-319-41108-8_6

171

http://dx.doi.org/10.1007/978-3-319-41108-8_1


172 6 Two-Layer EMPC Systems

forces the closed-loop state to closely follow the economically optimal policy com-
puted in the upper layer EMPC.

The unifying themes of the two-layer EMPC implementations described in this
chapter are as follows. First, the upper layer EMPC may employ a long prediction
horizon. The long prediction horizon ideally prevents the EMPC from dictating
an operating policy based on myopic decision-making, which may lead to poor
closed-loop economic performance. Considering a one-layer EMPC approach with
a long horizon, the computational time and complexity of the resulting optimization
problem (thousands of decisions variables for large-scale systems) may make it
unsuitable for real-time application. Second, the upper layer dynamic economic
optimization problem, i.e., the EMPC problem, is formulated with explicit control-
oriented constraints which allow for guaranteed closed-loop stability properties. This
is a departure from other two-layer approaches to dynamic optimization and control
such as those featuring dynamic-RTO, e.g. [1–10]. Third, the upper layer is solved
infrequently in the sense that it is not solved every sampling time like a standard one-
layer EMPCmethod with a receding horizon implementation. The rate that the upper
layer EMPC is solved may be considered a tuning parameter of the optimization and
control architectures. However, the upper layer does not need to wait until the system
has reached steady-state owing to the fact that a dynamic model of the process is
used in the optimization layer.

The lower layer MPC, which may be either a tracking MPC or an EMPC, may
be formulated with a shorter prediction horizon and potentially, a smaller sampling
period if state measurement feedback is available. It is used to force the closed-loop
state to track the operating policy computed by the upper layer EMPC and to ensure
closed-loop stability and robustness. Owing to the fact that the upper layer EMPC is
solved infrequently and the lower layer MPC utilizes a shorter prediction horizon,
one of the benefits of a two-layer EMPC implementation is improved computational
efficiency compared to a one-layer EMPC method. The results of this chapter origi-
nally appeared in [11–13].

6.1.1 Notation

Given that this chapter deals with control elements arranged in a multi-layer con-
figuration, an extended amount of notation is needed to describe the control system.
To aid the reader, Table6.1 summarizes the notation used in this chapter. Some of
the notation will be made more precise in what follows. To clarify the difference
between open-loop and closed-loop trajectories, consider a time sequence: {t̄i }k+N̄

i=k
where t̄i = iΔ̄, Δ̄ > 0 is a constant and N̄ ≥ 1 is a positive integer. Given a func-
tion ū : [t̄k, t̄k+N̄ ) → U, which is right-continuous piecewise constant with constant
hold period Δ̄, the open-loop predicted state trajectory under the open-loop input
trajectory ū is the solution to the differential equation:
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Table 6.1 A summary of the notation used to describe the two-layer EMPC structure

Notation Description

ΔE Zeroth-order hold period used for the upper layer control parameterization

NE Number of zeroth-order hold periods in the upper layer EMPC prediction horizon

KE Number of hold periods, ΔE , that the upper layer EMPC is solved

t ′ Operating period length with t ′ = KEΔE

{t̂k}k≥0 Computation time sequence of upper layer with t̂k = kt ′ (k ∈ I+)
z(·|t̂k) Open-loop predicted state trajectory under an auxiliary controller computed at t̂k
v(·|t̂k) Open-loop input trajectory computed by an auxiliary controller computed at t̂k
xE (·|t̂k) Open-loop predicted state trajectory under the upper layer MPC at t̂k
uE (·|t̂k) Open-loop input trajectory computed by the upper layer MPC at t̂k
Δ Sampling period size of the lower layer

N Number of sampling periods in the lower layer MPC prediction horizon

{t j } j≥0 Sampling time sequence of lower layer with t j = jΔ ( j ∈ I+)
x̃(·|t j ) Open-loop predicted state trajectory under the lower layer MPC at t j
u(·|t j ) Open-loop input trajectory computed by the upper layer MPC at t j
x(·) Closed-loop state trajectory under the two-layer control structure

u∗(t j |t j ) Control action applied to the closed-loop system computed at t j and applied from
t j to t j+1

(xs , us) Steady-state and steady-state input pair

˙̄x(t) = f (x̄(t), ū(t), 0) (6.1)

for t ∈ [t̄k, t̄k+N̄ ) with initial condition x̄(t̄k) = x(t̄k) where x(t̄k) is a state measure-
ment of the closed-loop system at time t̄k . The open-loop predicted state and input
trajectories are denoted as x̄(·|t̄k) and ū(·|t̄k) to make clear that both of these trajecto-
ries, which are functions of time, have been computed at t̄k with a state measurement
at t̄k .

The term closed-loop system refers to the resulting sampled-data system of Eq.4.1
under an MPC scheme. The closed-loop state trajectory is the solution to:

ẋ(t) = f (x(t), k(x(t j )), w(t)) (6.2)

for t ∈ [t j , t j+1) with t j = jΔ for some Δ > 0 and j = 0, 1, . . .. The initial time is
taken to be zero. The mapping k(·) is a state feedback control law.

In the context of MPC, the state feedback control law is implicitly defined from
the solution of an optimization problem and the receding horizon implementation.
Specifically, the MPC receives a state measurement at a sampling time t j , computes
a control action, and applies it in a sample-and-hold fashion over the sample period,
i.e., from t j to t j+1. The notation u∗(t j |t j ) is used to denote the computed control
action by theMPC scheme at sampling time t j with a state measurement x(t j ). Under
an MPC scheme, the closed-loop system is written similarly to Eq.6.2 by replacing
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k(x(t j )) with u∗(t j |t j ). Finally, the notation ·∗, e.g., y∗, is used to denote that the
quantity, which may be a vector with real elements or a function defined over an
appropriate domain and range, is optimal with respect to a cost function (or cost
functional) and some constraints.

6.2 Two-Layer Control and Optimization Framework

In this section, a two-layer dynamic economic optimization and control framework
featuring EMPC in the upper layer and tracking MPC in the lower layer is discussed.
The same nonlinear dynamic model is used in each layer to avoid modeling inconsis-
tencies. Control-oriented constraints are employed in the dynamic optimization layer
to ensure closed-loop stability. A rigorous theoretical treatment of the stability prop-
erties of the closed-loop system with the control architecture is provided. Variants
and extensions of the two-layer optimization and control framework are discussed.
The two-layer optimization and control framework is applied to a chemical process
example.

6.2.1 Class of Systems

While a similar class of nonlinear systems is considered as that described by Eq.4.1,
the manipulated inputs are split into two groups; that is, the input vector is given by
u := [u1 u2]T where u1 ∈ R

m1 , u2 ∈ R
m2 , andm1 + m2 = m. Loosely speaking, the

inputs are partitioned into two groups based on their main responsibility. The input
u1 is directly responsible for economic optimization and/or has the most significant
impact on the closed-loop economic performance, while the input u2 is responsible
for maintaining closed-loop stability. In the chemical process example of Sect. 6.2.3,
the inputs are partitioned using this rationale as a basis. Additional methods may
be employed to help identify the inputs that have the most significant impact on the
economic performance such as the methods presented in [14].

With the two sets of inputs, the following state-spacemodel iswritten to emphasize
the dependence of the vector field on each group of inputs:

ẋ = f (x, u1, u2, w) (6.3)

where x ∈ X ⊆ R
n denotes the state vector, u1 ∈ U1 ⊂ R

m1 and u2 ∈ U2 ⊂ R
m2

denote the two manipulated input vectors or the two sets of manipulated inputs,
w ∈ W ⊂ R

l denotes the disturbance vector and f is assumed to be a locally Lip-
schitz vector function on X × U1 × U2 × W. The sets U1 and U2 are assumed
to be nonempty compact sets. The disturbance is assumed to be bounded, i.e.,
W := {w ∈ R

l : |w| ≤ θ} where θ > 0. The origin of the nominal unforced sys-
tem of Eq.6.3 is assumed to be an equilibrium point ( f (0, 0, 0, 0) = 0). The state
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of the system is sampled synchronously at the time instants indicated by the time
sequence {t j } j≥0 where t j = jΔ, j = 0, 1, . . . and Δ > 0 is the sampling period.

A stabilizability assumption is imposed on the system of Eq.6.3 in the sense that
the existence of a stabilizing feedback control law that renders the origin of the
system of Eq.6.3 asymptotically stable is assumed. The stabilizing feedback control
law is given by the pair:

(h1(x), h2(x)) ∈ U1 × U2 (6.4)

for all x ∈ X. While the domain of the stabilizing controller is taken to be X, it
renders the origin asymptotically stable with some region of attraction that may be
a subset of X. Applying converse Lyapunov theorems [15, 16], there exists a con-
tinuous differentiable Lyapunov function V : D → R+ that satisfies the following
inequalities:

α1(|x |) ≤ V (x) ≤ α2(|x |) (6.5a)

∂V (x)

∂x
f (x, h1(x), h2(x), 0) ≤ −α3(|x |) (6.5b)

∣
∣
∣
∣

∂V (x)

∂x

∣
∣
∣
∣
≤ α4(|x |) (6.5c)

for all x ∈ D where αi ∈ K for i = 1, 2, 3, 4 and D is an open neighborhood of the
origin. The region Ωρ ⊆ D such that Ωρ ⊆ X is the (estimated) stability region of
the closed-loop system under the stabilizing controller.

6.2.2 Formulation and Implementation

The dynamic economic optimization and control framework consists of EMPC in the
upper layer and trackingMPC in the lower layer. A block diagramof the framework is
given in Fig. 6.1. The prediction horizons of theEMPCand theMPCmaybe different.
This allows for the EMPC to be formulated with a long prediction horizon. The
number of samplingperiods in the predictionhorizonof theEMPC is denoted as NE ∈
I≥1, and that of the MPC is denoted as N ∈ I≥1. For simplicity, the sampling periods
of the upper layer EMPC and lower layerMPC are assumed to be the same (ΔE = Δ)
and Δ will be used to denote the sampling period. The two-layer framework may be
extended to the case where ΔE > Δ.

The upper layer EMPC problem is solved infrequently, i.e., not every sampling
time. Let KE ≥ I+ be the number of sampling times that the upper layer is resolved.
The time sequence {t̂k}k≥0 denotes the time steps that the upper layer EMPC is
solved. Owing to the implementation strategy, the time sequence is not necessarily
a synchronous partitioning of time. For sake of simplicity, let N ≤ NE − KE to
ensure that the upper layer EMPC problem is computed at a rate needed to ensure
that the economically optimal trajectory is defined over the prediction horizon of
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EMPC

Tracking MPC

System
ẋ = f(x, u1, u2, w)

w(t)

u∗
2(t|tj)

u∗
1,E(t|t̂k)

x∗
E(·|t̂k), u∗

1,E(·|t̂k),
u∗
2,E(·|t̂k)

x(t̂k)

x(tj)

Fig. 6.1 A block diagram of the two-layer integrated framework for dynamic economic optimiza-
tion and control with EMPC in the upper layer and tracking MPC in the lower layer. Both the upper
and lower layers compute control actions that are applied to the system

the lower layer tracking MPC. If this is not satisfied, one could employ a shrinking
horizon in the lower layer MPC. While the upper layer EMPC computes optimal
input trajectories for both sets of manipulated inputs, it sends control actions for the
manipulated input u1 to the control actuators to be applied in an open-loop fashion.
The implementation strategy is described below. The optimal operating trajectory
over the prediction horizon of the EMPC is computed by the upper layer EMPC
and sent to the lower layer tracking MPC to force the closed-loop state to track the
optimal operating trajectory. In other words, the upper layer EMPC trajectory is used
as the reference trajectory in the tracking MPC. The optimal operating trajectory is
defined below.

Definition 6.1 Let (u∗
1,E (t |t̂k), u∗

2,E (t |t̂k)), which is defined for t ∈ [t̂k, t̂k + NEΔ),
be the optimal input pair computed by the upper layer EMPC and let x(t̂k) be the
state measurement at the sampling time t̂k . The economically optimal state trajectory
x∗
E (t |t̂k) for t ∈ [t̂k, t̂k + NEΔ) of the system of Eq.6.3 is the solution of

ẋ∗
E (t) = f (x∗

E (t), u∗
1,E (τi |t̂k), u∗

2,E (τi |t̂k), 0), t ∈ [τi , τi+1) (6.6)

for i = 0, 1, . . . , NE − 1 with xE (t̂k) = x(t̂k) where τi := t̂k + iΔ.

The lower layer MPC is implemented with a receding horizon implementation,
i.e., is solved at every sampling time. The notation t j will be reserved to denote a
sampling time that the lower layer MPC problem is solved. To provide closed-loop
stability guarantees on the resulting control framework, the upper layer EMPC is
formulated as an LEMPC (Eq.4.3) and the lower layer tracking MPC is formulated
as an LMPC (Eq.2.51). The advantage of the formulation of the upper and lower
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layer controllers is that the LEMPC computes a reference trajectory that the tracking
LMPC layer may force the system to track and unreachable set-points are avoided.

An assumption is needed to ensure feasibility and stability with the resulting two-
layer framework. Owing to the fact that the upper layer EMPC is solved infrequently
and applies its computed trajectory for u1 in an open-loop fashion, an assumption is
needed to ensure that it is possible to maintain stability with the input u2 in the sense
that for any u1 ∈ U1 it possible to find a u2 ∈ U2 that ensures that the time-derivative
of the Lyapunov function is negative. This is stated in the following assumption.
Also, the assumption further clarifies how the manipulated inputs are divided into
the two input groups.

Assumption 6.1 For any fixed u1,E ∈ U1, there exists u2 ∈ U2 such that:

∂V (x)

∂x
f (x, u1,E , u2, 0) ≤ ∂V (x)

∂x
f (x, h1(x), h2(x), 0) (6.7)

for all x ∈ Ωρ .

Variations of the assumption are discussed in Sect. 6.2.2.1. This assumption is not
needed for the case that the upper layer LEMPC does not apply any control actions
to the system.

The upper layer LEMPC has a similar formulation as that of Eq. 4.3 with one
modification discussed below. The upper layer LEMPC problem is given by the
following optimization problem:

min
u1,E ,u2,E∈S(Δ)

∫ t̂k+NEΔ

t̂k

le(xE (τ ), u1,E (τ ), u2,E (τ )) dτ (6.8a)

s.t. ẋE (t) = f (xE (t), u1,E (t), u2,E (t), 0) (6.8b)

xE (t̂k) = x(t̂k) (6.8c)

u1,E (t) ∈ U1, u2,E (t) ∈ U2, ∀ t ∈ [t̂k, t̂k + NEΔ) (6.8d)

V (xE (t)) ≤ ρe, ∀ t ∈ [t̂k, t̂k + NEΔ),

if V (x(t̂k)) ≤ ρe and t̂k < ts (6.8e)

∂V (xE (τi ))

∂x
f (xE (τi ), u1,E (τi ), u2,E (τi ), 0)

≤ ∂V (xE (τi ))

∂x
f (xE (τi ), h1(xE (τi )), h2(xE (τi )), 0),

i = 0, 1, . . . , NE − 1, if V (x(t̂k)) > ρe or t̂k ≥ ts (6.8f)

where τi := t̂k + iΔ. The main difference between the upper layer LEMPC formu-
lation and the LEMPC formulation of Eq. 4.3 is the mode 2 contractive constraint
(Eq. 6.8f). In the upper layer LEMPC formulation, the mode 2 contractive constraint
is imposed at each time instance of the prediction horizon. This ensures that the Lya-
punov function value decays over the prediction horizon and thus, the lower layer
LMPC attempts to force the closed-loop state along a reference trajectory that either
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converges toΩρe if t̂k < ts or converges to a neighborhood of the origin if t̂k ≥ ts . The
optimal trajectories computed by the upper layer LEMPC are denoted by x∗

E (t |t̂k),
u∗
E,1(t |t̂k), and u∗

E,2(t |t̂k) and are defined for t ∈ [t̂k, t̂k + NEΔ).
The stage cost function used in the LMPC is formulated to penalize deviations

of the state and inputs from the economically optimal trajectories. Additionally, the
LMPC is equipped with dual-mode constraints similar to that imposed in LEMPC.
The dual-mode LMPC problem is given by the following optimization problem:

min
u2∈S(Δ)

∫ t j+N

t j

lT (x̃(τ ), x∗
E (τ |t̂k), u2(τ ), u∗

2,E (τ |t̂k)) dτ (6.9a)

s.t. ˙̃x(t) = f (x̃(t), u∗
1,E (t |t̂k), u2(t), 0) (6.9b)

x̃(t j ) = x(t j ) (6.9c)

u2(t) ∈ U2, ∀ t ∈ [t j , t j+N ) (6.9d)

V (x̃(t)) ≤ ρe, ∀ t ∈ [t j , t j+N ),

if V (x(t j )) ≤ ρe and t j < ts (6.9e)

∂V (x(t j ))

∂x
f (x(t j ), u

∗
1,E (t j |t̂k), u2(t j ), 0)

≤ ∂V (x(t j ))

∂x
f (x(t j ), h1(x(t j )), h2(x(t j )), 0),

if V (x(t j )) > ρe and t j ≥ ts (6.9f)

where the stage cost of LMPC is given by:

lT (x̃, x∗
E , u2, u

∗
2,E ) = ∣

∣x̃ − x∗
E

∣
∣
2
Qc

+ ∣
∣u2 − u∗

2,E

∣
∣
2

Rc,2
(6.10)

and Qc and Rc are positive definite tuningmatrices. The constraint of Eq.6.9e defines
mode 1 operation of the LMPC and serves a similar purpose as the mode 1 constraint
of LEMPC (Eq.4.3e). Under mode 2 operation of the LMPC, which is defined when
the constraint of Eq.6.9f is active, the LMPC computes control actions to ensure
that the contractive Lyapunov-based constraint is satisfied. The optimal solution of
Eq.6.9 is denoted as u∗

2(t |t j ) for t ∈ [t j , t j+N ).
The two-layer optimization and control framework has a number of tunable para-

meters. Specifically, the tuning parameters include the weighting matrices Qc and
Rc, the prediction horizons N and NE , the number of sampling times that the upper
layer recomputes a solution KE , the subset of the stability region that the control
framework may operate the system in a time-varying fashion (Ωρe ), the sampling
period Δ and the triple (h1, h2, V ), i.e., stabilizing controller design and Lyapunov
function which are used in the Lyapunov-based constraints.

If the optimal state trajectory has been computed using mode 2 operation of the
LEMPC and the current time is less than the switching time ts , it is advantageous
from a performance perspective, to recompute a new LEMPC solution using mode
1 once the state converges to the set Ωρe . This is captured in the implementation
strategy of the two-layer optimization and control framework that is described by the
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following algorithm. Let the index l ∈ I+ be the number of sampling times since the
last time that the upper layer LEMPC problem has been solved and mk be the mode
of operation of the LEMPC used to solve the LEMPC problem at t̂k . To initialize the
algorithm, let t̂0 = 0, k = 0, and j = 0.

1. At t̂k , the upper layer LEMPC receives a state measurement x(t̂k) and set l = 0.
If x(t̂k) ∈ Ωρe and t̂k < ts , go to Step 1.1. Else, go to Step 1.2.

1.1 Themode1 constraint (Eq. 6.8e) is active and themode2 constraint (Eq. 6.8f)
is inactive. Set mk = 1 and go to Step 1.3.

1.2 Themode2 constraint (Eq. 6.8f) is active and themode1 constraint (Eq. 6.8e)
is inactive. Set mk = 2 and go to Step 1.3.

1.3 Solve the optimization problemofEq.6.8 to compute the optimal trajectories
x∗
E (t |t̂k), u∗

E,1(t |t̂k), and u∗
E,2(t |t̂k) defined for t ∈ [t̂k, t̂k + NEΔ). Send these

trajectories to the lower layer LMPC and go to Step 2.

2. At t j , the lower layer LMPC receives a state measurement x(t j ). If x(t j ) ∈ Ωρe ,
t j < ts , andmk = 2, set t̂k+1 = t j and k ← k + 1, and go to Step 1. Else if x(t j ) ∈
Ωρe and t j < ts , go to Step 2.1. Else, go to Step 2.2.

2.1 Themode1 constraint (Eq. 6.9e) is active and themode2 constraint (Eq. 6.9f)
is inactive. Go to Step 2.3.

2.2 Themode2 constraint (Eq. 6.9f) is active and themode1 constraint (Eq. 6.9e)
is inactive. Go to Step 2.3.

2.3 Solve the optimization problem of Eq.6.9 to compute the optimal input tra-
jectory u∗(t |t j ) defined for t ∈ [t j , t j+N ). Apply the input pair
(u∗

1,E (t j |t̂k), u∗
2(t j |t j )) to the system of Eq.6.3 from t j to t j+1. Go to Step 3.

3. If l + 1 = KE , set t̂k+1 = t j+1, k ← k + 1, and j ← j + 1, and go to Step 1.
Else, go to Step 2 and set l ← l + 1 and j ← j + 1.

The two-layer implementation strategy allows for computational advantages over
one-layer EMPC structures. When the LEMPC is operating in mode 1, the LEMPC
problem is only computed once every KE sampling times. The LMPC is less compu-
tationally expensive to solve than the LEMPC because the LMPC does not compute
control actions for all of the manipulated inputs. Additionally, the LMPC may use
a smaller prediction horizon than the LEMPC. Owing to these considerations, the
two-layer framework ismore computationally efficient compared to one-layer EMPC
structures.

It is important to point out the two limiting cases of the optimization and con-
trol framework. If all the inputs are in the group u2, then the control framework is
reminiscent of current two-layer frameworks where economic optimization, which
in this case is a dynamic optimization problem, and control are divided into separate
layers. If, on the other hand, all inputs are placed in the group u1 or the upper layer
LEMPC is solved every sampling time (KE = 1), then this would correspond to a
one-layer implementation of LEMPC. For the case that all inputs are in the u1 group,
the LEMPC would need to be computed every sampling time to ensure stability and
robustness of the closed-loop system.
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6.2.2.1 Variants of the Two-Layer Optimization and Control
Framework

While the stability results presented in Sect. 6.2.2.2 apply to the two-layer framework
described above, one may consider many variations to the two-layer framework
design. A few such variants are listed here.

1. The upper layer EMPC does not compute input trajectories for all inputs. For
instance, some inputs in the u2 set may have little impact on the economic perfor-
mance. For these inputs, a constant input profile, for instance, could be assumed in
the upper layer EMPC. This could further improve the computational efficiency
of the two-layer framework. The inputs that are held constant in the EMPC prob-
lem could be used as additional degrees of freedom in the lower layer MPC to
help force the closed-loop state to track the economically optimal state trajectory.

2. The lower layer MPC computes control actions for all the inputs, i.e., the upper
layer EMPC does not apply any control actions directly to the system, but rather,
is used to compute reference trajectories for the lower layer MPC. This approach
is similar to current optimization and control structures but employs dynamic
economic optimization with explicit control-oriented constraints imposed in the
optimization layer.

3. Other assumptions to ensure feasibility and stability of the two-layer framework
than Assumption 6.1 may be considered. For example, it may be possible to
consider the input u1 as a perturbation to the system and derive the explicit
stabilizing controller on the basis of the inputs u2. Specifically, if there exists an
explicit controller h2 : X → U2 and Lyapunov function that satisfies:

∂V (x)

∂x
f (x, u1, h2(x), 0) ≤ −ᾱ3(|x |) (6.11)

for all u1 ∈ U1 and x ∈ Ωρ \ B where B ⊂ Ωρ is some set containing the origin
and ᾱ(·) is a class K function, then this assumption could be used to guarantee
closed-loop stability and feasibility of the control problems. This assumption is
essentially an input-to-state stability assumption of the closed-loop system of
Eq.6.3 under the controller h2 with respect to the input u1.

4. The two-layers could use a different sampling period size. In particular, the upper
layer could use a larger sampling period than the lower layer.

5. Since the conditions that guarantee closed-loop stability presented below are
independent of the objective function of the lower layer MPC, the stage cost used
in the lower layer MPC may be readily modified. For example, one may include
rate of change penalties on the inputs and soft constraints in the stage cost function
or use the economic stage cost function. One such variant employing the latter
concept, i.e., use an EMPC in the lower layer, is presented later in this chapter
(Sect. 6.4).
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6.2.2.2 Stability Analysis

In this section, sufficient conditions are presented that guarantee that the closed-loop
system with the two-layer dynamic economic optimization and control framework
is stable in the sense that the system state remains bounded in a compact set for all
times. Two propositions are needed, which are straightforward extensions of Propo-
sitions 4.1 and 4.2, respectively. The propositions are restated here for convenience.
The first proposition provides an upper bound on the deviation of the open-loop
state trajectory, obtained using the nominal model (Eq. 6.3 with w ≡ 0), from the
closed-loop state trajectory.

Proposition 6.1 (Proposition 4.1) Consider the systems

ẋa(t) = f (xa(t), u1(t), u2(t), w(t))
ẋb(t) = f (xb(t), u1(t), u2(t), 0)

(6.12)

with initial states xa(t0) = xb(t0) ∈ Ωρ and inputs u1(t) ∈ U1 and u2(t) ∈ U2 for
t ≥ t0. If the states of the two systems aremaintained inΩρ for all t ∈ [t0, t1] (t1 > t0),
there exists a class K function αw(·) such that

|xa(t) − xb(t)| ≤ αw(t − t0), (6.13)

for all w(t) ∈ W and t ∈ [t0, t1].
The following proposition bounds the difference between the Lyapunov function

of two different states in Ωρ .

Proposition 6.2 (Proposition 4.2) Consider the Lyapunov function V (·) of the sys-
tem of Eq.6.3. There exists a quadratic function αV (·) such that:

V (x) ≤ V (x̂) + αV (
∣
∣x − x̂

∣
∣) (6.14)

for all x, x̂ ∈ Ωρ .

Theorem 6.1 provides sufficient conditions such that the two-layer dynamic eco-
nomic optimization and control framework guarantees that the state of the closed-
loop system is always bounded in Ωρ . The result is similar to that of the closed-loop
stability properties under LEMPC.

Theorem 6.1 Consider the system of Eq.6.3 in closed-loop under the two-layer
framework with the LEMPC of Eq.6.8 in the upper layer and the LMPC of Eq.6.9
in the lower layer both based on the explicit stabilizing controller that satisfies
Eqs.6.5a–6.5c. Let εw > 0, Δ > 0, NE ≥ 1, N ≥ 1 (N ≤ NE − KE), ρ > ρe >

ρmin > ρs > 0, and L ′
x , L

′
w and M are positive constants (the existence of these

constants follows from the assumptions on the system of Eq.6.3) satisfy:

ρe < ρ − αV (αw(Δ)), (6.15)

http://dx.doi.org/10.1007/978-3-319-41108-8_4
http://dx.doi.org/10.1007/978-3-319-41108-8_4
http://dx.doi.org/10.1007/978-3-319-41108-8_4
http://dx.doi.org/10.1007/978-3-319-41108-8_4
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− α3(α
−1
2 (ρs)) + L ′

x MΔ + L ′
wθ ≤ −εw/Δ , (6.16)

and
ρmin = max

s∈[0,Δ]{V (x(s)) : V (x(0)) ≤ ρs} . (6.17)

If x(0) ∈ Ωρ and Assumption 6.1 is satisfied, then the state x(t) of the closed-loop
system is always bounded inΩρ for all t ≥ 0. Moreover, if ts is finite, the closed-loop
state is ultimately bounded in Ωρmin .

Proof The proof is organized into three parts. In part 1, feasibility of the optimization
problems of Eqs. 6.8 and 6.9 is proved when the state measurement given to each
problem is inΩρ . In part 2, boundedness of the closed-loop state inΩρ is established.
Finally, (uniform) ultimate boundedness of the closed-loop state in a small state-space
set containing the origin is proved when the switching time is finite.

Part 1: When the closed-loop state is maintained in Ωρ , which will be proved in
Part 2, the sample-and-hold input trajectory obtained from the stabilizing feedback
controller is a feasible solution to the upper layer LEMPC optimization problem of
Eq.6.8. Specifically, let x̂(t) denote the solution at time t to the system:

˙̂x(t) = f (x̂(t), h1(x̂(τi )), h2(x̂(τi )), 0) (6.18)

for t ∈ [τi , τi+1) (τi := t̂k + iΔ), i = 0, 1, . . . , NE − 1with initial condition x̂(t̂k) =
x(t̂k) ∈ Ωρ . Defining the pair (û1(t), û2(t)) := (h1(x̂(τi )), h2(x̂(τi ))) for t ∈ [τi ,
τi+1), i = 0, 1, . . . , NE − 1, the input trajectory pair (û1, û2) is a feasible solution
to the LEMPC problem. Specifically, for mode 2 operation of the LEMPC, the pair
(û1, û2) meets the input constraints since it is computed from the stabilizing con-
troller, which satisfies the input constraints (Eq.6.4). Also, the mode 2 contractive
constraint of Eq.6.8f is trivially satisfied with the input pair (û1, û2). For mode 1
operation, the regionΩρe is forward invariant under the stabilizing controller applied
in a sample-and-hold fashionwhenΩρmin ⊆ Ωρe ⊂ Ωρ whereΩρmin will be explained
further in Parts 2 and 3.

If Assumption 6.1 is satisfied, the feasibility of the lower layer LMPC problem
of Eq.6.9 follows because there exists an input trajectory u1(t) for t ∈ [t j , t j+N )

that decreases the Lyapunov function by at least the rate given by the Lyapunov-
based controller at each sampling time instance along the prediction horizon. Using
similar arguments as that used for feasibility of the LEMPC, mode 2 operation of the
LMPC is feasible. Assumption 6.1 further implies that there exists a sample-and-hold
input trajectory such that Ωρe is forward invariant when Ωρmin ⊆ Ωρe ⊂ Ωρ which
guarantees that mode 1 operation of the LMPC is feasible.

Part 2: To show that the state is maintained in Ωρ when x(0) ∈ Ωρ , two cases
must be considered. The first case occurs when the state x(t j ) ∈ Ωρe and t j < ts and
the second case occurs when x(t j ) ∈ Ωρ \ Ωρe or t j ≥ ts . It is sufficient to show
that x(t) ∈ Ωρ for all t ∈ [t j , t j+1]. Through recursive application of this result,
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boundedness of the closed-loop state in Ωρ for all t ≥ 0 follows if the initial state is
in Ωρ .

Case 1: If x(t j ) ∈ Ωρe and t j < ts , the lower layer LMPC operates in mode 1 oper-
ation. Regardless if the upper layer LEMPC has been computed under mode 1 or
mode 2, there exists a control action û2(t j ) such that when applied to the model of
Eq.6.9b in a sample-and-hold fashion over one sampling period the state at the next
sampling time will be predicted to be in Ωρe (this follows from Part 1). However,
the closed-loop system of Eq.6.3 does not evolve according to the model of Eq.6.9b
owing to the forcing of the disturbance w.

Let ρe satisfy Eq.6.15. The proof proceeds by contradiction. Assume there
exists a time τ ∗ ∈ [t j , t j+1] such that V (x(τ ∗)) > ρ. Define τ1 := inf{τ ∈ [t j , t j+1] :
V (x(τ )) > ρ}. A standard continuity argument in conjunction with the fact that
V (x(t j )) ≤ ρe < ρ shows that τ1 ∈ (t j , t j+1], V (x(t)) ≤ ρ for all t ∈ [t j , τ1] with
V (x(τ1)) = ρ, and V (x(t)) > ρ for some t ∈ (τ1, t j+1]. If ρe satisfies Eq.6.15, then

ρ = V (x(τ1)) ≤ V (x̃(τ1)) + αV (αw(τ1))

≤ ρe + αV (αw(Δ)) < ρ (6.19)

where the first inequality follows fromPropositions 6.1, 6.2 and the second inequality
follows from the fact thatαV ◦ αw ∈ K and τ1 ≤ Δ. Eq. 6.19 leads to a contradiction.
Thus, x(t j+1) ∈ Ωρ if Eq. 6.15 is satisfied.

Case 2: When x(t j ) ∈ Ωρ \ Ωρe or t j ≥ ts , the lower layer LMPC operates in mode
2. To cover both possibilities, consider any x(t j ) ∈ Ωρ and that mode 2 operation of
the LEMPC is active. From the constraint of Eq.6.9f and the condition of Eq.6.5b,
the computed control action at t j satisfies:

∂V (x(t j ))

∂x
f (x(t j ), u

∗
1,E (t j |t̂k), u∗

2(t j |t j ), 0)

≤ ∂V (x(t j ))

∂x
f (x(t j ), h1(x(t j )), h2(x(t j )), 0) ≤ −α3(|x(t j )|) (6.20)

where x(t j ) denotes the closed-loop state at sampling time t j . Over the sampling
period (τ ∈ [t j , t j+1)), the time derivative of the Lyapunov function of the closed-
loop system is given by:

V̇ (x(τ )) = ∂V (x(τ ))

∂x
f (x(τ ), u∗

1,E (t j |t̂k), u∗
2(t j |t j ), w(τ)) (6.21)

for τ ∈ [t j , t j+1). Adding and subtracting the first term of Eq.6.20 to/from Eq.6.21
and accounting for the bound of Eq.6.20, the time-derivative of the Lyapunov func-
tion over the sampling period is bounded by:
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V̇ (x(τ )) ≤ − α3(|x(t j )|) + ∂V (x(τ ))

∂x
f (x(τ ), u∗

1,E (t j |t̂k), u∗
2(t j |t j ), w(τ))

− ∂V (x(t j ))

∂x
f (x(t j ), u

∗
1,E (t j |t̂k), u∗

2(t j |t j ), 0) (6.22)

for all τ ∈ [t j , t j+1).
Since the sets Ωρ , U1, U2, and W are compact, the vector field f is locally

Lipschitz, and the Lyapunov function is continuously differentiable, there exist L ′
x >

0 and L ′
w > 0 such that:

∣
∣
∣
∣

∂V (x)

∂x
f (x, u1, u2, w) − ∂V (x ′)

∂x
f (x ′, u1, u2, 0)

∣
∣
∣
∣
≤ L ′

x |x − x ′| + L ′
w|w| (6.23)

for all x , x ′ ∈ Ωρ , u1 ∈ U1, u2 ∈ U2, and w ∈ W. From Eqs. 6.22 to 6.23 and the
fact that the disturbance is bounded inW = {w ∈ R

l : |w| ≤ θ}, the time-derivative
of the Lyapunov function over the sampling period may be bounded as follows:

V̇ (x(τ )) ≤ −α3(|x(t j )|) + L ′
x

∣
∣x(τ ) − x(t j )

∣
∣ + L ′

wθ (6.24)

for all τ ∈ [t j , t j+1). Again, by the fact that the sets Ωρ , U1, U2, andW are compact
and the vector field f is locally Lipschitz, there exists M > 0 such that

| f (x, u1, u2, w)| ≤ M (6.25)

for all x ∈ Ωρ , u1 ∈ U1, u2 ∈ U2, and w ∈ W. From Eq.6.25 and continuity of x(τ )

for τ ∈ [t j , t j+1), the difference between the state at τ and t j is bounded by:

∣
∣x(τ ) − x(t j )

∣
∣ ≤ MΔ (6.26)

for all τ ∈ [t j , t j+1). From Eqs. 6.24 to 6.26 and for any x(t j ) ∈ Ωρ \ Ωρs , the
inequality below follows:

V̇ (x(τ )) ≤ −α3(α
−1
2 (ρs)) + L ′

x MΔ + L ′
wθ (6.27)

for all τ ∈ [t j , t j+1) where the fact that |x | ≥ α−1
2 (ρs) for all x ∈ Ωρ \ Ωρs follows

from Eq.6.5a.
If the condition of Eq.6.16 is satisfied, there exists εw > 0 such that the following

inequality holds for x(t j ) ∈ Ωρ \ Ωρs

V̇ (x(τ )) ≤ −εw/Δ

for all τ ∈ [t j , t j+1). Integrating the bound for τ ∈ [t j , t j+1), the following two
bounds on the Lyapunov function value are obtained:
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V (x(t j+1)) ≤ V (x(t j )) − εw (6.28)

V (x(τ )) ≤ V (x(t j )), ∀ τ ∈ [t j , t j+1) (6.29)

for all x(t j ) ∈ Ωρ \ Ωρs and when mode 2 operation of the lower layer LMPC is
active.

If x(t j ) ∈ Ωρ \ Ωρe , the closed-loop state converges to Ωρe in a finite number of
sampling times without leaving the stability region Ωρ which follows by applying
Eq.6.28 recursively. If t j ≥ ts and x(t j ) ∈ Ωρ \ Ωρs , the closed-lop state converges
to Ωρs in a finite number of sampling times without leaving the stability region Ωρ

(again, by recursive application of Eq.6.28). Moreover, once the state converges to
Ωρs , it remains inside Ωρmin for all times. This statement holds by the definition of
ρmin. Therefore, from Case 1 and Case 2, the closed-loop state is bounded in Ωρ for
all t ≥ 0 when x(0) ∈ Ωρ .

Part 3: If ts is finite, the lower layer LMPC will switch to mode 2 operation only
and the closed-loop state will be ultimately bounded in Ωρmin , which follows from
Part 2.

Remark 6.1 The closed-loop stability result presented in Theorem 6.1 is bounded-
ness of the closed-loop state inside of Ωρ . Additional elements in the lower layer
MPC are usually needed to guarantee that the closed-loop state will track the ref-
erence trajectories computed in the upper layer LEMPC. Nevertheless, acceptable
tracking performance may usually be achieved in practice through a careful tuning
of the weighting matrices Qc and Rc and a sufficiently long prediction horizon in
the lower layer LMPC, which is the case in the example below.

6.2.3 Application to a Chemical Process

The two-layer framework for dynamic economic optimization and process control is
implemented on the benchmark chemical reactor example presented in Sect. 1.3.1.
Recall, the nonlinear dynamic model that describes the evolution of the reactor
(Eqs. 1.7–1.10) has four states: the vapor density in the reactor (x1), the ethylene con-
centration in the reactor (x2), the ethylene oxide concentration in the reactor (x3),
and the reactor temperature (x4) and three inputs: the volumetric flow rate of the
reactor feed, the ethylene concentration in the reactor feed, and the reactant coolant
temperature. With abuse of notation, the notation u1, u2, and u3 is used to denote the
three inputs, respectively. The reactor has an asymptotically stable steady-state:

xTs = [0.998 0.424 0.032 1.002] (6.30)

which corresponds to the steady-state input:

u1,s = 0.35, u2,s = 0.5, u3,s = 1.0 . (6.31)

http://dx.doi.org/10.1007/978-3-319-41108-8_1
http://dx.doi.org/10.1007/978-3-319-41108-8_1
http://dx.doi.org/10.1007/978-3-319-41108-8_1
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The control objective considered here is to optimize the time-averaged yield of
ethylene oxide by operating the reactor in a time-varying fashion around the stable
steady-state. Owing to the fact that closed-loop stability is not an issue for this
application, the optimization and control framework operates with mode 1 operation
only. The time-averaged yield of ethylene oxide over an operating length of t f is
given by

Y =

∫ t f

0
x3(t)x4(t)u1(t) dt

∫ t f

0
u1(t)u2(t) dt

. (6.32)

Owing to practical considerations, the average amount of ethylene that may be fed
into the process over the length of operation is fixed, which is given by the following
integral constraint:

1

t f

∫ t f

0
u1(t)u2(t)dt = u1,su2,s = 0.175 (6.33)

where u1,s and u2,s are the steady-state inlet volumetric flow rate and ethylene con-
centration, respectively. Since the average ethylene fed to the reactor is fixed, which
fixes the denominator of the yield (Eq.6.32), the economic stage cost used in the
formulation of the upper layer LEMPC is

le(x, u) = −x3x4u1 . (6.34)

In the implementation of the two-layer dynamic optimization and control frame-
work, the manipulated inputs are partitioned into two sets. The first set of manip-
ulated inputs consists of the inlet flow rate and ethylene feed concentration inputs.
As pointed out in Sect. 3.2, periodic switching of these two inputs may improve eco-
nomic performance. Additionally, these two inputs are constrained by the integral
constraint of Eq.6.33. The first set of inputs is controlled by the upper layer LEMPC,
i.e., the upper layer LEMPC computes control actions for these manipulated inputs
that are applied to the reactor. The second set of manipulated inputs consists of the
coolant temperature input that the lower layer LMPC (Eq.6.9) controls.

To characterize the region Ωρe , which is used in the two-layer framework design,
an explicit stabilizing controller is designed and a Lyapunov function is constructed.
Specifically, the explicit controller is designed as a proportional controller for the
input u3: h2(x) = K (xs,3 − x3) + us,3 with K = 0.1. A quadratic Lyapunov func-
tion is found for the closed-loop reactor under the proportional controller, which is
given by:

V (x) = (x − xs)
T P(x − xs)

where P = diag([10 0.01 10 10]). The closed-loop stability region of the reactor
under the explicit controller with the inputs u1 and u2 fixed at their steady-state

http://dx.doi.org/10.1007/978-3-319-41108-8_3
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values is taken to be a level set of the Lyapunov function where the time-derivative
of the Lyapunov function is negative definite for all points contained in the level set.
The constructed level set is subsequently taken to be Ωρe with ρe = 0.53 and in this
case, Ωρ = Ωρe .

The prediction horizon of the upper layer LEMPC and lower layer LMPC are
NE = 47 and N = 3, respectively, the sampling period is Δ = 1.0, the number of
sampling times that the upper layer LEMPC is recomputed is KE = 47, which is
the same as the prediction horizon in this case, and a shrinking horizon employed
in the lower layer LMPC when the prediction horizon extends past the time that the
upper layer optimal trajectory is defined. To ensure that the integral constraint of
Eq.6.33 is satisfied over the length of operation, the computed input trajectory of the
upper layer LEMPC must satisfy the integral constraint, i.e., it is enforced over each
operating windows of length 47 (dimensionless time). The weighting matrices of the
lower layer LMPC are Qc = P , and Rc = 0.01 which have been tuned to achieve
close tracking of the optimal trajectory. The optimization problems of upper layer
LEMPC and lower layer LMPC are solved using Ipopt [17].

In the first set of simulations, the two-layer framework is applied to the reactor
without disturbances or plant-modelmismatch. The reactor is initialized at a transient
initial condition given by:

xT0 = [0.997 1.264 0.209 1.004] .

The closed-loop state and input trajectories of the reactor under the two-layer
optimization and control framework are shown in Figs. 6.2 and 6.3, respectively.
From the state trajectories (Fig. 6.2), the lower layer LMPC is able to force the
system to track the optimal state trajectory. Recall, the sampling periods of the upper
and lower layer are the same, and the closed-loop system is not subjected to any
uncertainties or disturbances. Therefore, perfect tracking of the optimal trajectory is
expected.

As described above, a motivating factor for the design of a two-layer optimization
and control architecture is to achieve a computation benefit relative to a one-layer
EMPC approach. To compare the computational time of the two-layer framework
with a one-layer EMPC approach, a one-layer LEMPC implementation is consid-
ered. The LEMPC is implemented with mode 1 operation only and with a shrinking
prediction horizon. The shrinking horizon implementation is described as follows:
the LEMPC is initialized with a prediction horizon of 47 (dimensionless time) and
at every subsequent sampling time, the prediction horizon is decreased by one sam-
pling period. Every 47 sampling times, the prediction horizon is reset to 47. It is
important to point out that the closed-loop performance achieved under the two-
layer LEMPC and that under the one-layer LEMPC are equal owing to the fact there
is no plant-model mismatch. Also, a fixed-horizon one-layer LEMPC implementa-
tion strategy requires more computation time on average relative to the shrinking
horizon implementation.
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Fig. 6.2 The closed-loop state trajectories of the reactor under the two-layer dynamic economic
optimization and control framework (the two trajectories are overlapping)
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Fig. 6.3 The closed-loop input trajectories computed by two-layer dynamic economic optimization
and control framework (the two trajectories are overlapping)

Figure6.4 gives the computational time reduction achieved with the two-layer
optimization and control framework relative to the one-layer LEMPC implementa-
tion. For this example, the lower layer LMPC computation time is insignificant com-
pared to the computation time of the upper layer LEMPC. The two-layer framework
only solves the LEMPC optimization problem once every 47 sampling times. Every
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Fig. 6.4 The computational
time reduction of the
two-layer optimization and
control framework relative to
the one-layer
implementation of LEMPC
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47 sampling times when the upper layer LEMPC is solved and at the end of each
operating interval of length 47 when the one-layer LEMPC horizon has decreased
to a comparable length as the horizon of the lower layer LEMPC, the computational
burden of the two-layer framework compared to that of the one-layer LEMPC is
comparable, i.e., approximately a zero percent computational time improvement is
achieved (Fig. 6.4). For the other sampling times, the computationof theLMPCwhich
computes control actions for the set of manipulated inputs u2 is much better than that
compared to the one-layer LEMPC. For this case, an average of 89.4% reduction of
the computational time with the two-layer framework is achieved relative to that of
the one-layer LEMPC implementation.

In the second set of simulations, significant process noise is added to the system
states. The noise is assumed to be bounded Gaussian white noise with zero mean
and standard deviation of 0.005, 0.03, 0.01, and 0.02 and bounds given by 0.02, 0.1,
0.03, and 0.08 for the four states, respectively. To simulate the process noise, a new
random number is generated and applied to the process over each sampling period.
The results of a closed-loop simulation are shown in Figs. 6.5 and 6.6. Because of the
added process noise, the closed-loop trajectories do not perfectly track the reference
trajectories. Also, the added process noise has an effect on the closed-loop economic
performance. However, this effect was minimal in the sense that the time-averaged
yield of the closed-loop system under the two-layer framework is 10.3% with the
added process disturbance and 10.4% without the added process disturbance. Even
with the process noise, the closed-loop reactor performance is better than that at the
steady-state (the yield at steady-state is 6.4%).
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Fig. 6.5 The closed-loop state trajectories of the catalytic reactor under the two-layer dynamic
economic optimization and control framework and with process noise added to the states
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Fig. 6.6 The closed-loop input trajectories computed by two-layer dynamic economic optimization
and control framework and with process noise added to the states (the two trajectories are nearly
overlapping)
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6.3 Unifying Dynamic Optimization with Time-Varying
Economics and Control

In the previous section, a two-layer framework for dynamic optimization and con-
trol is presented. However, the framework treats the economic considerations, e.g.,
demand, energy pricing, variable feedstock quality, and product grade changes
as time-invariant. This paradigm may be effective, especially for the applications
where there is a sufficient time-scale separation between the time constants of the
process/system dynamics and the update frequency of the economic parameters.
However, including the time-variation of the economic considerations in the for-
mulation of the economic stage cost may be needed to achieve good closed-loop
performance when the time-scales are comparable. One class of examples where
there may not be such a time-scale separation is energy systems with real-time pric-
ing.

In this section, a two-layer framework for optimization and control of systems
of the form of Eq.4.1 is considered where the economic stage cost may be time-
dependent in the sense that the system of Eq.4.1 is equipped with a time-dependent
economic cost le : [0,∞) × X × U → R ((t, x, u) �→ le(t, x, u)where t is the time).
The framework design is similar to that in the previous section. Specifically, the
upper layer dynamic economic optimization problem (EMPC) is used to generate an
economically optimal state trajectory defined over a finite-time horizon. In the lower
layer, a tracking MPC is used to force the states to track the economically optimal
trajectory. However, the main differences of the two-layer approach presented in this
section compared to that of the previous section are the EMPC is formulated with an
economic stage cost that may be explicitly time-dependent, the formulations of the
layers are different, and the underlying theory and analysis are different.

Explicit constraints are used in the upper layer dynamic optimization problem to
ensure that the lower layer trackingMPCmay force the closed-loop state to track the
trajectory computed in the optimization layer. In particular, the optimization layer
is constrained to compute an optimal trajectory that is slowly time-varying. The
resulting slowly time-varying trajectory vector is denoted as xE (t) ∈ Γ ⊂ R

n for
t ≥ 0 where Γ is a compact set and the rate of change of the reference trajectory is
bounded by

|ẋE (t)| ≤ γE (6.35)

for all t ≥ 0. The deviation between the actual state trajectory and the slowly-varying
reference trajectory is defined as e := x − xE with its dynamics described by

ė = f (x, u, w) − ẋE
= f (e + xE , u, w) − ẋE
=: g(e, xE , ẋE , u, w) . (6.36)

The state e of the system of Eq.6.36 will be referred to as the deviation state in
the remainder of this section.

http://dx.doi.org/10.1007/978-3-319-41108-8_4
http://dx.doi.org/10.1007/978-3-319-41108-8_4
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Assumption 6.2 The system of Eq.6.36 has a continuously differentiable, isolated
equilibrium for each fixed xE ∈ Γ in the sense that there exists a û ∈ U for a fixed
xE ∈ Γ to make e = 0 the equilibrium of Eq.6.36 (g(0, xE , 0, û, 0) = 0).

In what follows, the upper layer EMPC computes a reference trajectory that
evolves according to the nominal system dynamics ẋE = f (xE , uE , 0) while main-
taining the state trajectory to be in the set Γ where Γ is an equilibrium manifold
in the sense that Γ = {xE ∈ X : ∃ uE ∈ U s.t. f (xE , uE , 0) = 0}. Nevertheless, the
theory applies to amore general case where the following hold: |ẋE | ≤ γE ,Γ is com-
pact and Assumption 6.2 is satisfied. One conceptually straightforward extension of
the two-layer framework is to consider steady-state optimization in the upper layer
instead of dynamic optimization. Specifically, xE could be taken as a steady-state
and varied slowly to account for the time-varying economic considerations.

6.3.1 Stabilizability Assumption

For each fixed xE ∈ Γ , there exists a Lyapunov-based controller thatmakes the origin
of the nonlinear systemgiven byEq.6.36without uncertainty (w ≡ 0) asymptotically
stable under continuous implementation. This assumption is essentially equivalent to
the assumption that the nominal systemofEq.4.1 is stabilizable at each xE ∈ Γ .More
specifically, for each fixed xE ∈ Γ , the existence of a mapping h : Ds × Γ → U and
a continuously differentiable function V : Ds × Γ → R+ is assumed that satisfies:

α1(|e|) ≤ V (e, xE ) ≤ α2(|e|), (6.37a)

∂V (e, xE )

∂e
g(e, xE , 0, h(e, xE ), 0) ≤ −α3(|e|), (6.37b)

∣
∣
∣
∣

∂V (e, xE )

∂e

∣
∣
∣
∣
≤ α4(|e|), (6.37c)

∣
∣
∣
∣

∂V (e, xE )

∂xE

∣
∣
∣
∣
≤ α5(|e|), (6.37d)

for all e ∈ Ds where αi ∈ K , i = 1, 2, 3, 4, 5, Ds is an open neighborhood of the
origin, and h is the Lyapunov-based controller. In this sense, the function V is a
Lyapunov function for each xE ∈ Γ . While the inequalities of Eqs. 6.37a–6.37c are
similar to the inequalities of standard Lyapunov functions, Eq. 6.37d is needed to
account for the time-varying nature of xE . More precisely, the special requirement
that the inequalities hold uniformly in xE is required to handle the perturbation,which
results from the fact that xE is not constant, but rather, a time-varying function.

For a fixed xE ∈ Γ ⊂ R
n , the symbol Ωρ(xE ) is a level set of the Lyapunov func-

tion, i.e., Ωρ(xE ) := {e ∈ R
n : V (e, xE ) ≤ ρ(xE )} where ρ(xE ) > 0 depends on xE .

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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The region Ωρ∗ is the intersection of stability regions Ωρ(xE ) of the closed-loop
system under the Lyapunov-based controller for all xE ∈ Γ .

For broad classes of nonlinear systems arising in the context of chemical process
control applications, quadratic Lyapunov functions using state deviation variables,
i.e., V (x) = (x − xs)T P(x − xs), where xs is a steady-state, have been widely used
and have been demonstrated to yield acceptable estimates of closed-loop stability
regions (see [18] and the references therein). In the example of Sect. 6.3.3, a quadratic
Lyapunov function is used where instead of a fixed equilibrium xs a time-varying
reference trajectory xE is used, i.e., at time t , the Lyapunov function is given by:
V (e(t), xE (t)) = eT (t)Pe(t) where e(t) = x(t) − xE (t).

Remark 6.2 If the equilibrium point e = 0 of the frozen system forced by an explicit
controller (ė = g(e, xE , 0, h(e, xE ), 0)) is exponentially stable uniformly in xE and
under some additional mild smoothness requirements, then there exists a Lyapunov
function satisfying Eqs. 6.37a–6.37d [15, Lemma 9.8].

Remark 6.3 The setΩρ∗ is such that for any e ∈ Ωρ∗, the ability to drive the statewith
the Lyapunov-based controller asymptotically to any fixed xE ∈ Γ is guaranteed.
This set may be estimated in the following way: first, the set Γ is chosen. Second,
the regions Ωρ(xE ) for a sufficiently large number of xE in the set Γ are estimated.
The regions Ωρ(xE ) may be estimated as the level set (ideally the largest) of V for a
fixed xE ∈ Γ where V̇ < 0 with the Lyapunov-based controller. Lastly, the stability
region Ωρ∗ may be constructed from the intersection of these computed regions. It
is important to point out that the design of the upper layer EMPC does not employ
Ωρ∗. Therefore, for practical design purposes, an explicit construction of Ωρ∗ is not
needed.

6.3.2 Two-Layer EMPC Scheme Addressing Time-Varying
Economics

In this section, the two-layer framework for dynamic economic optimization and con-
trol for handling time-varying economics is described and the stability and robustness
properties of the closed-loop system are given.

6.3.2.1 Formulation and Implementation

To address time-dependent economics, a two-layer framework is presented. The
two-layer framework for optimization and controlmay be considered an intermediate
approach between existing steady-state operation and one-layer EMPC schemes. A
block diagram of the two-layer control framework is given in Fig. 6.7. In this frame-
work, optimization and control are effectively divided into separate tasks. However,
the upper optimization layer is formulated with specific control-oriented constraints
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Fig. 6.7 A block diagram of
the dynamic economic
optimization and control
framework for handling
time-varying economics

Economic Considerations

EMPC

MPC System

x∗
E(·|t̂k) u∗

E(·|t̂k)
u∗(tj|tj)

x(t̂k)

x(tj)

Upper Layer - Dynamic
Economic Optimization

Lower Layer - Feedback Control

to ensure stability. In the upper layer, an EMPC, formulated with a time-varying eco-
nomic stage cost, computes economically optimal state and input trajectories over a
finite-time horizon. The optimal trajectories are sent down to a lower layer tracking
MPC to force the system to track the economically optimal state trajectory. For com-
putational efficiency, the EMPC optimization problem is solved infrequently, i.e., it
does not employ a standard receding horizon implementation strategy. Instead, the
operating time is partitioned into finite-time intervals of length t ′ called operating
periods. The operating period is chosen based on the time-scale of the process dynam-
ics and update frequency of the economic parameters in the economic cost function,
e.g., the update frequency of the energy price, product demand, or product transi-
tions. The length of the operating period may be considered a tuning parameter of the
control architecture. At the beginning of each operating period, the EMPC problem
is initialized with a state measurement and is solved. The lower layer tracking MPC
is solved every sampling time to maintain closed-loop stability and robustness and is
formulated with a stage cost that penalizes deviations from the optimal trajectories.
While in the lower layer anyMPC tracking controller could be used, Lyapunov-based
MPC (LMPC) is used here owing to its unique stability and robustness properties.

A summary of the implementation strategy and the notation is as follows (a
detailed algorithm is given below after the formulations of the control problems
are given). The operating time is divided into finite-time operating periods of length
t ′ = KEΔE where KE is some integer greater than or equal to one. At the begin-
ning of the operating period denoted by t̂k = kt ′ where k = 0, 1, . . ., the upper layer
EMPC,with hold periodΔE > 0 (zeroth-order control parameterization is employed
in the upper layer EMPC) and prediction horizon of TE = NEΔE where NE ∈ I+,
receives a state measurement and computes the economically optimal state and input
trajectories. The prediction horizon of the EMPC is chosen to be sufficiently large
to cover the operating period plus the transition to the next operating period, i.e.,
TE ≥ t ′ + T where T = NΔ is the prediction horizon of the lower layer LMPC,
Δ > 0 denotes the sampling period of the lower layer LMPC that is less than or
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equal to ΔE , and N ∈ I+ is the number of sampling periods in the prediction hori-
zon of the LMPC. Between t̂k and t̂k + t ′, the lower layer LMPC computes control
actions that work to force the closed-loop state to track the optimal trajectories.

The upper layer EMPC optimization problem is as follows:

min
uE∈S(ΔE )

∫ t̂k+TE

t̂k

le(τ, xE (τ ), uE (τ )) dτ (6.38a)

s.t. ẋE (t) = f (xE (t), uE (t), 0) (6.38b)

xE (t̂k) = proj
Γ

(x(t̂k)) (6.38c)

uE (t) ∈ U, ∀ t ∈ [t̂k, t̂k + TE ) (6.38d)

|ẋE (t)| ≤ γE , ∀ t ∈ [t̂k, t̂k + TE ) (6.38e)

xE (t) ∈ Γ, ∀ t ∈ [t̂k, t̂k + TE ) (6.38f)

where S(ΔE ) is the family of piecewise constant functions with period ΔE , le is the
time-dependent economic measure which defines the cost function, the state xE is
the predicted trajectory of the system with the input trajectory uE computed by the
EMPC and x(t̂k) is the state measurement obtained at time t̂k . The optimal state and
input trajectory computed by the EMPC are denoted as x∗

E (t |t̂k) and u∗
E (t |t̂k) defined

for t ∈ [t̂k, t̂k + TE ), respectively.
In the optimization problem of Eq.6.38, the constraint of Eq.6.38b is the nominal

dynamic model of the system (w ≡ 0) used to predict the future evolution under
the sample-and-hold input trajectory. The constraint of Eq. 6.38c defines the initial
condition of the optimization problemwhich is a projection of the state measurement
at t̂k onto the setΓ where the symbol projΓ (x) denotes the projection of x onto the set
Γ . The constraint of Eq.6.38d ensures that the computed input trajectory takes values
in the set of admissible inputs. The constraint of Eq.6.38f limits the rate of change of
the economically optimal state trajectory. Finally, the constraint of Eq.6.38f ensures
that the state evolution is maintained in the region Γ .

The constraint of Eq.6.38c is used to ensure that the optimization problem is
feasible. The projection operator may be any projection operator that projects the
current state x(t̂k) onto a near (ideally the nearest) point in the set Γ . In some cases,
when the sampling periods of the upper and lower layers and the bounded disturbance
are sufficiently small, it may also be sufficient to use the predicted state x∗

E (t̂k |t̂k−1)

derived from the solution of the optimization problem of Eq. 6.38 that was solved at
the beginning of the preceding operating period. Another potential option is to allow
for the initial condition xE (t̂k) be a decision variable in the optimization problem
by including another term in the objective function penalizing the deviation of the
computed initial condition from the current state x(t̂k). In this sense, the framework
offers a degree of flexibility in the selection of the projection operator.

The last two constraints of the optimization problem of Eq.6.38 are used to guar-
antee closed-loop stability under the integrated framework and to ensure that the
lower layer may force the system to track the optimal state trajectory, i.e., they
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are control-oriented constraints. This is a departure from other types of two-layer
dynamic economic optimization and control architectures featuring, for example,
dynamic real-time optimization in the upper optimization layer. Also, the constraint
imposed in the upper layer EMPC on the rate of change of the optimal trajectory
(Eq.6.38e) does pose a restriction on the feasible set of the optimization problem
of Eq.6.38 and could affect closed-loop economic performance achieved under the
resulting two-layer framework. However, allowing the optimal state trajectory to
have a large rate of change may be undesirable for many applications based on prac-
tical considerations like excessive strain on control actuators as well as the difficulty
of forcing the system to track a rapidly changing reference trajectory in the presence
of disturbances.

At the lower feedback control level, LMPC is employed to force the state to
track the economically optimal state trajectory. The LMPC is implemented with a
standard receding horizon implementation, i.e., the LMPC recomputes an updated
input trajectory synchronously every sampling time. Let {t j } j≥0 where t j = jΔ,
j = 0, 1, . . . denote the sampling time sequence of the LMPC. Also, the dynamic
model used in the LMPC is that of Eq. 6.36, which is the deviation system. The
LMPC optimization problem is given by:

min
u∈S(Δ)

∫ t j+T

t j

(

|ẽ(τ )|2Qc
+ ∣

∣u(τ ) − u∗
E (τ |t̂k)

∣
∣
2
Rc

)

dτ (6.39a)

s.t ˙̃e(t) = g(ẽ(t), x∗
E (t |t̂k), ẋ∗

E (t |t̂k), u(t), 0) (6.39b)

ẽ(t j ) = x(t j ) − x∗
E (t j |t̂k) (6.39c)

u(t) ∈ U, ∀ t ∈ [t j , t j + T ) (6.39d)

∂V (ẽ(t j ), x∗
E (t j |t̂k))

∂e
g(ẽ(t j ), x

∗
E (t j |t̂k), 0, u(t j ), 0)

≤ ∂V (ẽ(t j ), x∗
E (t j |t̂k))

∂e
g(ẽ(t j ), x

∗
E (t j |t̂k), 0, h(ẽ(t j ), xE (t j |t̂k)), 0)

(6.39e)

where S(Δ) is the family of piecewise constant functions with sampling period Δ,
N is the prediction horizon of the LMPC, ẽ is the predicted deviation between the
state trajectory predicted by the nominal model under the input trajectory computed
by the LMPC and the economically optimal state trajectory x∗

E (·|t̂k). The optimal
solution of the optimization problem of Eq.6.39 is denoted by u∗(t |t j ) defined for
t ∈ [t j , t j+N ).

In the optimization problem of Eq.6.39, the constraint of Eq.6.39b is the nominal
model of the deviation system. The constraint of Eq.6.39c is the initial condition to
the dynamic optimization problem. The constraint of Eq. 6.39d defines the control
energy available to all manipulated inputs. The constraint of Eq.6.39e ensures that
the Lyapunov function of the closed-loop system with the LMPC decreases by at
least the rate achieved by the Lyapunov-based controller. The last constraint ensures
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that the closed-loop state trajectory converges to a neighborhood of the optimal state
trajectory computed by the upper layer EMPC.

The implementation strategy of the dynamic economic optimization and control
framework is summarized by the following algorithm.

1. At t̂k , the EMPC receives a state measurement x(t̂k) and projects the current state
x(t̂k) onto the set Γ . Go to Step 2.

2. The EMPC computes the economically optimal state and input trajectories:
x∗
E (t |t̂k) and u∗

E (t |t̂k) defined for t ∈ [t̂k, t̂k + TE ). Go to Step 3.
3. For t̂k to t̂k + t ′ (one operating period), repeat:

3.1 The LMPC receives a state measurement x(t j ) and computes the deviation
of the current state from the optimal state trajectory. The error e(t j ) is used
to initialize the dynamic model of the LMPC. Go to Step 3.2.

3.2 The LMPC optimization problem is solved to compute an optimal input
trajectory u∗(t |t j ) defined for t ∈ [t j , t j + T ). Go to Step 3.3.

3.3 The control action computed for the first sampling period of the prediction
horizon is sent to the control actuators to be applied from t j to t j+1. If t j+1 >

t̂k + t ′, go to Step 4 and let j ← j + 1. Else, go to 3.1 and let j ← j + 1.

4. Go to Step 1, k ← k + 1.

6.3.2.2 Stability Analysis

In this subsection, the stability properties of the two-layer control framework with
the EMPC of Eq.6.38 in the upper layer and the LMPC of Eq.6.39 in the lower
layer when applied the system of Eq.4.1. Before these properties may be presented,
several properties are presented that are needed in the analysis. Owing to the fact that
Ωρ∗, Γ , U, and W are compact sets and f is locally Lipschitz, there exists Mx > 0
such that

| f (e + xE , u, w)| ≤ Mx (6.40)

for all e ∈ Ωρ∗, xE ∈ Γ , u ∈ U, and w ∈ W. From similar conditions and since the
rate of change of xE is bounded, there exists M > 0 such that

|g(e, xE , ẋE , u, w)| ≤ M (6.41)

for all e ∈ Ωρ∗, xE ∈ Γ , u ∈ U, w ∈ W and |ẋE | ≤ γE . In addition, since the Lya-
punov function V is continuously differentiable (in both arguments) and the fact that
f is locally Lipschitz, there exist positive constants Le, Lw, L ′

e, L
′
E , L

′′
E , L

′
w such

that

∣
∣g(e, xE , ẋE , u, w) − g(e′, xE , ẋE , u, 0)

∣
∣ ≤ Le|e − e′| + Lw|w|, (6.42)

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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∣
∣
∣
∣

∂V (e, xE )

∂e
g(e, xE , ẋE , u, w) − ∂V (e′, x ′

E )

∂e
g(e′, x ′

E , ẋ ′
E , u, 0)

∣
∣
∣
∣

≤ L ′
e|e − e′| + L ′

E |xE − x ′
E | + L ′′

E |ẋE − ẋ ′
E | + L ′

w|w|
(6.43)

for all e, e′ ∈ Ωρ∗, xE , x ′
E ∈ Γ , u ∈ U, w ∈ W, |ẋE | ≤ γE , and |ẋ ′

E | ≤ γE .
The following Lemma gives the feasibility properties of the EMPC and therefore,

by the constraint of Eq.6.38f, the optimal state trajectory x∗
E (t |t̂k) is embedded in

the set Γ for t ∈ [t̂k, t̂k+1].
Lemma 6.1 Consider the systemofEq.6.38bover the predictionhorizon. If Assump-
tion 6.2 is satisfied, the optimization problem of Eq.6.38 is feasible and there-
fore, the optimal state trajectory x∗

E (t |t̂k) for t ∈ [t̂k, t̂k + TE ] computed by applying
the optimal input trajectory u∗

E (t |t̂k) defined for t ∈ [t̂k, t̂k + TE ) takes values in
the set Γ .

Proof When the EMPC optimization problem of Eq.6.38 is solved with an initial
condition satisfying xE (t̂k) ∈ Γ (this is guaranteed through the projection procedure),
the feasibility of the optimization problem follows if Assumption 6.2 is satisfied
because maintaining the state at the initial condition along the predicted horizon
is a feasible solution to the optimization problem as it satisfies all the constraints,
i.e., there exists a constant input trajectory uE (t) = ūE ∈ U for t ∈ [t̂k, t̂k + TE )

that maintains the state trajectory at its initial condition: xE (t) = projΓ (x(t̂k)) for
t ∈ [t̂k, t̂k + TE ). Owing to the fact that the problem is feasible and imposing the
constraint of Eq.6.38f, the optimal state trajectory x∗

E (t |t̂k) is bounded in the set Γ

for t ∈ [t̂k, t̂k + TE ].
Theorem 6.2 provides sufficient conditions such that the LMPC may track the

economically optimal trajectory x∗
E . More specifically, the deviation state gets small

over time until it is bounded in a small ball containing the origin.

Theorem 6.2 Consider the system of Eq.4.1 in closed-loop under the tracking
LMPC of Eq.6.39 based on the Lyapunov-based controller that satisfies the con-
ditions of Eqs.6.37a, 6.37d with the reference trajectory x∗

E computed by the upper
layer EMPC of Eq.6.38. Let εerror > 0, μ > 0, εw > 0, Δ > 0, ΔE > 0, N ≥ 1,
NE ≥ 1, NEΔE ≥ t ′ + NΔ, and γE > 0 satisfy

μ > α−1
3

(

(L ′
x M + L ′

EγE )Δ + (L ′′
E + α5(α

−1
1 (ρ∗)))γE + L ′

wθ

θ̂

)

(6.44)

for some θ̂ ∈ (0, 1),

εerror = max
s∈[0,Δ]{|e(s)| : e(0) ∈ Bμ for all xE ∈ Γ } , (6.45)

and Bμ ⊂ Bεerror ⊂ Ωρ∗. If (x(0) − x∗
E (0)) ∈ Ωρ∗, then the deviation state of the

system of Eq.6.36 is always bounded in Ωρ∗ and therefore, also, the closed-loop

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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state trajectory x is always bounded. Furthermore, the deviation between the state
trajectory of Eq.4.1 and the economically optimal trajectory is ultimately bounded
in Bεerror .

Proof The proof consists of two parts. First, the LMPC optimization problem of
Eq.6.39 is shown to be feasible for all deviation states in Ωρ∗. Subsequently, the
deviation state is proved to be bounded inΩρ∗ and to be ultimately bounded in Bεerror .

Part 1: When the deviation state is maintained in Ωρ∗ (which will be proved in
Part 2), the feasibility of the LMPC of Eq.6.39 follows because the input trajectory
obtained from the Lyapunov-based controller is a feasible solution. Specifically,
define the trajectory v such that:

ż(t) = g(z(t), x∗
E (t |t̂k), ẋ∗

E (t |t̂k), v(t), 0)

v(t) = h(z(ti ), x
∗
E (ti |t̂k))

for t ∈ [ti , ti+1), i = j, j + 1, . . . , N − 1 where z(t j ) = e(t j ). The trajectory v is a
feasible solution to the optimization problem of Eq.6.39 since the trajectory satisfies
the input and the Lyapunov function constraints of Eq.6.39. This is guaranteed by
the closed-loop stability property of the Lyapunov-based controller.

Part 2: At t̂k , the EMPC computes an optimal trajectory x∗
E (·|t̂k) for the LMPC

to track for one operating period. The computed trajectory is such that x∗
E (t |t̂k)

and |ẋ∗
E (t |t̂k)| ≤ γE for all t ∈ [t̂k, t̂k+1] (Lemma 6.1). For simplicity of notation, let

xE (τ ) = x∗
E (τ |t̂k), ẋE (τ ) = ẋ∗

E (τ |t̂k),
∂V (τ )

∂e
:= ∂V (e(τ ), xE (τ ))

∂e
, and

∂V (τ )

∂xE
:= ∂V (e(τ ), xE (τ ))

∂xE
(6.46)

for any τ ∈ [t j , t j+1). At any sampling time t j ∈ [t̂k, t̂k + t ′) of the LMPC, consider
e(t j ) ∈ Ωρ∗ (recursive arguments will be applied to show this is always the case
when e(0) ∈ Ωρ∗). The computed control action at t j satisfies:

∂V (t j )

∂e
g(e(t j ), xE (t j ), 0, u

∗(t j |t j ), 0) ≤ ∂V (t j )

∂e
g(e(t j ), xE (t j ), 0, h(e(t j ), xE (t j )), 0)

≤ −α3(|e(t j )|) (6.47)

for all e(t j ) ∈ Ωρ∗. For all τ ∈ [t j , t j+1), the time derivative of the Lyapunov function
is given by:

V̇ (e(τ ), xE (τ )) = ∂V (τ )

∂e
ė(τ ) + ∂V (τ )

∂xE
ẋE (τ ) . (6.48)

Adding and subtracting the left-hand term of Eq.6.47 and from the bound of
Eq.6.47, the time-derivative of the Lyapunov function may be upper bounded as
follows:

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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V̇ (e(τ ), xE (τ )) ≤ −α3(|e(t j )|) + ∂V (τ )

∂e
g(e(τ ), xE (τ ), ẋE (τ ), u∗(t j |t j ), w(τ))

− ∂V (t j )

∂e
g(e(t j ), xE (t j ), 0, u

∗(t j |t j ), 0) + ∂V (τ )

∂xE
ẋE (τ ) (6.49)

for all τ ∈ [t j , t j+1). From Eq.6.43, the time derivative of the Lyapunov function
(Eq.6.49) may be further upper bounded:

V̇ (e(τ ), xE (τ )) ≤ −α3(|e(t j )|) + L ′
x |e(τ ) − e(t j )| + L ′

E |xE (τ ) − xE (t j )|
+ L ′′

E |ẋE (τ )| + L ′
w|w(τ)| + α5(|e(τ )|)|ẋE (τ )|

≤ −α3(|e(t j )|) + L ′
x |e(τ ) − e(t j )| + L ′

E |xE (τ ) − xE (t j )|
+ (L ′′

E + α5(|e(τ )|))γE + L ′
wθ (6.50)

for all e(t j ) ∈ Ωρ∗ and τ ∈ [t j , t j+1) where the second inequality follows from the
fact that |ẋE (τ )| ≤ γE and w(τ) ∈ W.

Taking into account Eq.6.41 and the fact that |ẋE (τ )| ≤ γE and the continuity of
e and xE , the following bounds may be derived for all τ ∈ [t j , t j+1):

∣
∣e(τ ) − e(t j )

∣
∣ ≤ MΔ , (6.51)

∣
∣xE (τ ) − xE (t j )

∣
∣ ≤ γEΔ . (6.52)

From Eqs. 6.50–6.52, the following inequality is obtained:

V̇ (e(τ ), xE (τ )) ≤ −α3(|e(t j )|) + (L ′
x M + L ′

EγE )Δ

+ (L ′′
E + α5(|e(τ )|))γE + L ′

wθ (6.53)

for all τ ∈ [t j , t j+1).
If Δ, γE and θ are sufficiently small such that there exist θ̂ ∈ (0, 1) and (μ, εerror)

satisfying Eqs. 6.44, 6.45 with Bμ ⊂ Bεerror ⊂ Ωρ∗, the following bound on the time-
derivative of the Lyapunov function follows:

V̇ (e(τ ), xE (τ )) ≤ −(1 − θ̂ )α3(|e(t j )|) (6.54)

for all τ ∈ [t j , t j+1) and e(t j ) ∈ Ωρ∗ \ Bμ. Integrating this bound on t ∈ [t j , t j+1),
one obtains that:

V (e(t j+1), xE (t j+1)) ≤ V (e(t j ), xE (t j )) − (1 − θ̂ )Δα3(|e(t j )|) (6.55)

V (e(t), xE (t)) ≤ V (e(t j ), xE (t j )) ∀ t ∈ [t j , t j+1) (6.56)

for all e(t j ) ∈ Ωρ∗ \ Bμ. Using the above inequalities recursively, it may be proved
that if e(t j ) ∈ Ωρ∗ \ Bμ, the deviation between the actual state trajectory and the
economic optimal trajectory converges to Bμ in a finite number of sampling times
without going outside the set Ωρ∗. Since the deviation state is always embedded in



6.3 Unifying Dynamic Optimization with Time-Varying Economics and Control 201

the setΩρ∗ and from Lemma 6.1, the economically optimal state trajectory is always
embedded in the set Γ , the boundedness of the closed-loop state trajectory of Eq.4.1
under the lower layer LMPC follows because Ωρ∗ and Γ are compact sets.

To summarize, if e(t j ) ∈ Ωρ∗ \ Bμ, then

V (e(t j+1), xE (t j+1)) < V (e(t j ), xE (t j )) . (6.57)

Furthermore, the deviation between the state trajectory and the economic optimal
trajectory is ultimately bounded in Bεerror where satisfies Eq.6.45 and Bμ ⊂ Bεerror ⊂
Ωρ∗. This statement holds because if the deviation state comes out of the ball Bμ,
the deviation state is maintained within the ball Bεerror owing to Eq.6.45. Once the
deviation comes out of the ball Bμ, the Lyapunov function becomes decreasing.

Notes and remarks on results:

• Three factors influences the time-derivative of the Lyapunov functionwhen e(t j ) ∈
Ωρ∗ \ Bμ as observed inEq.6.53: the samplingperiodof the lower layerLMPC, the
bound on the disturbance, and the bound on the rate of change of the economically
optimal trajectory. While the bound on the disturbance is a property of the system,
two of the other properties may be used to achieve a desired level of tracking:
the sampling period of the lower level control loop and the rate of change of the
economically optimal tracking trajectory.

• Theorem 6.2 clarifies how the parameter γE arises and why it is needed in the
formulation of the EMPC of Eq.6.38.

• No guarantee is made that the closed-loop economic performance with the two-
layer framework is better compared to the performance using a steady-state model
in the upper layer. In some cases, it may be the case that closed-loop performance
is the same or possibly better using a steady-state model in the upper layer EMPC.
In this case, the stability result presented here may be extended to the case where
the optimal steady-state varies sufficiently slow.

6.3.3 Application to a Chemical Process Example

Consider awell-mixed, non-isothermal continuous stirred tank reactor (CSTR)where
an elementary (first-order) reaction takes place of the form A → B. The feed to the
reactor consists of pure A at volumetric flow rate F , temperature T0 + ΔT0 andmolar
concentration CA0 + ΔCA0 where ΔT0 and ΔCA0 are disturbances. A jacket around
the reactor is used to provide/remove heat to the reactor. The dynamic equations
describing the behavior of the system, obtained throughmaterial and energy balances
under standard modeling assumptions, are given below:

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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Table 6.2 Process parameters of the CSTR of Eq.6.58

F 5.0m3h−1 ΔH −1.2 × 104 kJ kmol−1

VR 1.0m3 k0 3.0 × 107 h−1

T0 300K E 5.0 × 104 kJ kmol−1

R 8.314kJ kmol−1 K−1 ρL 1000kgm−3

Cp 0.231 kJ kg−1 K−1

dT

dt
= F

VR
(T0 + ΔT0 − T ) − ΔHk0

ρLCp
e

−E
RT CA + Q

ρLCpVR
(6.58a)

dCA

dt
= F

VR
(CA0 + ΔCA0 − CA) − k0e

−E
RT CA (6.58b)

where CA is the concentration of the reactant A in the reactor, T is the reactor
temperature, Q is the rate of heat input/removal, VR is the reactor volume,ΔH is the
heat of the reaction, k0 and E are the pre-exponential constant and activation energy
of the reaction, respectively, Cp and ρL denote the heat capacity and the density of
the fluid in the reactor, respectively. The values of the process parameters are given
in Table6.2. The state vector is x = [T CA]T and the manipulated inputs are the heat
rate u1 = Q where u1 ∈ [−2, 2] × 105 kJ h−1 and the inlet reactant concentration
u2 = CA0 where u2 ∈ [0.5, 8.0] kmolm−3. The feed disturbances are simulated as
bounded Gaussian white noise with zero mean, variances 20K2 and 0.1 kmol2 m−6,
and bounds given by |ΔT0| ≤ 15K and |ΔCA0| ≤ 1.0 kmolm−3.

The control objective is to force the system to track the economically optimal
time-varying operating trajectories computed by the upper layer EMPC. The set Γ

is defined as

Γ := {x ∈ R
2 : 340 ≤ x1 ≤ 390K, 0.5 ≤ x2 ≤ 3.0 kmolm−3} . (6.59)

In this example, the time-varying economic stage cost penalizes energy consump-
tion, credits conversion of the reactant to the product, and penalizes the deviation of
temperature from 365.0K and is given by:

le(t, x, u) = p1(t)u
2
1 − p2(t)

(u2 − x2)

u2
+ p3(t)(x1 − 365.0K)2 (6.60)

where p1, p2, and p3 are the potentially time-varying weighting factors. The last
term in the economic stage cost is used to prevent the system from operating on the
boundary of Γ for long periods of time. The magnitudes of the economic weighting
factors have been chosen so that all terms in the economic cost have the same order of
magnitude. For this example, p1 and p3 are chosen to be time-varying and p2 = 10
is constant. The time-varying weight p1(t), over four hours of operation, is given by
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p1(t) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1.0 × 10−7, t < 1.0 h

5.0 × 10−8, 1.0 h ≤ t < 2.0 h

1.0 × 10−8, 2.0 h ≤ t < 3.0 h

5.0 × 10−8, 3.0 h ≤ t ≤ 4.0 h

and is used to model the time-varying energy cost. The time-varying weight p3(t) is
given by

p3(t) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1.0 × 10−2, t < 1.0 h

7.5 × 10−3, 1.0 h ≤ t < 2.0 h

5.0 × 10−3, 2.0 h ≤ t < 3.0 h

7.5 × 10−3, 3.0 h ≤ t ≤ 4.0 h

The rationale for varying p3 is to allow the CSTR be operated over a larger
temperature range when the energy cost decreases and thus, take advantage of the
decreased energy cost.

The upper layer EMPC is implemented with a sampling period of ΔE = 36s and
prediction horizon of NE = 60 sampling periods. It is solved every 0.50 h, i.e., the
operating period is chosen to be t ′ = 0.50 h. The prediction horizon and operating
period are chosen to account for the update frequency of the economic weighting
parameters. It is found that defining and imposing a rate of change constraint in the
upper layer EMPC, i.e., defining the parameter γE , is not needed for this particu-
lar example because the closed-loop system under the lower layer LMPC is able
to achieve acceptable tracking performance without imposing a rate of change con-
straint in the upper layer EMPC. The projection operator is such that it projects the
current state to the closest boundary of Γ if the current state is outside the set Γ ,
e.g., if x = [400K 2.0 kmolm−3]T , then projΓ (x) = [390K 2.0 kmolm−3]T .

To design the lower layer LMPC, a Lyapunov-based controller is designed for the
CSTR, which is essentially two proportional controllers that account for the input
constraints. Specifically, the two proportional controllers are given by:

−K1(x1 − x∗
E,1) + us,1,

−K2(x2 − x∗
E,2) + us,2

(6.61)

where K1 = 8000, K2 = 0.01, and us is the steady-state input corresponding to the
steady-state x∗

E , i.e., the input vector that makes the right-hand side of Eqs. 6.58a,
6.58b equal to zero with the state vector x∗

E . The resulting Lyapunov-based controller
design for theCSTR is derived by accounting for the input constraints in the controller
design of Eq.6.61 aswell as for the fact that us may bewritten as a function of xE , i.e.,
the resulting Lyapunov-based controller is a mapping h that maps the pair (e, xE )

to h(e, xE ) ∈ U. A quadratic Lyapunov function of the form V (e, xE ) = eT Pe is
constructed for the closed-loop system under the Lyapunov-based controller with

P =
[

10 1
1 100

]

. (6.62)
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TheLMPC is implementedwith a sampling timeΔ = 36s, prediction horizon N = 5,
andweightingmatrices ofQc = P and Rc = diag

[

10−7 10
]

. Thepredictionhorizon
andweightingmatrices of the lower layer LMPC are tuned to achieve a close tracking
of the optimal state trajectory.

With the nonlinear system of Eqs. 6.58a–6.58b, the Lyapunov-based controller,
and the Lyapunov function, the stability regions of the closed-system under the
Lyapunov-based controller may be estimated for a sufficiently large number of points
in Γ . This procedure is carried out as follows: fix xE ∈ Γ and compute a level set
of the Lyapunov function where V̇ < 0 for all points contained in the level set. The
intersection of all these level sets is taken to be an estimate of the closed-loop stability
region Ωρ∗ of the CSTR under the Lyapunov-based controller. In this example, Ωρ∗
is estimated to be ρ∗ = 110. Through the Lyapunov-based constraint on the LMPC
of (Eq.6.39e), the closed-loop system with the two-layer framework inherits the
stability region Ωρ∗ .

To simulate the closed-loop system, explicit Euler method with integration step
0.36s is used to integrate theODEs and the open source interior point solver Ipopt [17]
is used to solve the optimization problems. Three sets of closed-loop simulations
are completed. In the first set of closed-loop simulations, the stability properties
of the closed-loop system under the two-layer dynamic economic optimization and
control framework are demonstrated. Second, time-varying operation with the two-
layer dynamic economic optimization and control framework is analyzed. Third, the
closed-loop economic performance of the CSTR under the two-layer framework is
compared to the CSTR under a conventional approach to optimization and control.

To demonstrate the closed-loop stability properties of the proposed two-layer
framework, the CSTR is initialized at x0 = [400K, 0.1 kmolm−3] which is outside
of Γ , but inside the stability region Ωρ∗. The projection operator of the upper layer
EMPC projects the initial state onto the state xE,0 = [390K, 0.5 kmolm−3] ∈ Γ

to use as an initial condition to the upper layer EMPC problem of Eq.6.38. The
evolution of the closed-loop system under the two-layer framework and with the
inlet temperature and reactant concentration disturbance is shown in Figs. 6.8 and
6.9. From Fig. 6.9, the deviation of the actual closed-loop state and the economically
optimal state is always maintained inside Ωρ∗. Moreover, the deviation becomes
small over time until it is ultimately bounded in a small ball.

Two simulations of the closed-loop systemwithout the feed disturbances added are
shown in Figs. 6.10 and 6.11 with two different initial conditions to analyze the time-
varying operation with the two-layer dynamic economic optimization and process
control framework. The initial state in Fig. 6.10 is x0 = [400K, 3.0 kmolm−3]T ,
while the initial state in Fig. 6.11 is x0 = [320K, 3.0 kmolm−3]T . The closed-loop
evolution of the two cases is initially different. For the CSTR starting at the larger
temperature, heat should be removed from the reactor and the minimum amount of
reactant material should be supplied to the reactor to decrease the temperature of the
reactor. In contrast, when the CSTR is initialized at the smaller temperature, heat
should be supplied to the reactor and reactant material should be fed to the reactor
to increase the reactor temperature. After a sufficiently long length of operation, the
effect of the initial condition diminishes and the closed-loop evolution of the two
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Fig. 6.8 The closed-loop
state and input trajectories of
Eqs. 6.58a, 6.58b under the
two-layer optimization and
control framework with the
feed disturbances and
starting from 400K and
0.1 kmolm−3
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Fig. 6.9 The closed-loop
state trajectory of Eqs. 6.58a,
6.58b under the two-layer
optimization and control
framework with the feed
disturbances and starting
from 400K and
0.1 kmolm−3 shown in
deviation state-space
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cases becomes similar. For both of these cases, the reactor is operated in a time-
varying fashion, i.e., never converges to a steady-state.

To compare the closed-loop economic performance under the dynamic economic
optimization and control framework and under a conventional approach to optimiza-
tion and control, the total economic cost over the length of operation is defined as

JE =
M−1
∑

j=0

(

p1(t j )Q
2(t j ) + p2

CA(t j )

CA0(t j )
+ p3(t j )(T (t j ) − 365)2

)

(6.63)

where t0 is the initial timeof the simulation and tM = 4.0 h is the endof the simulation.
The conventional approach to optimization and control uses a steady-state economic
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Fig. 6.10 The closed-loop
system states and inputs of
Eqs. 6.58a, 6.58b without the
feed disturbances and
starting from 400K and
3.0kmolm−3
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Fig. 6.11 The closed-loop
system states and inputs of
Eqs. 6.58a, 6.58b without the
feed disturbances and
starting from 320K and
3.0 kmolm−3
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optimization problem to compute the optimal steady-states with respect to the time-
varying economic costweights. The optimal steady-states are used in a trackingMPC,
which in this case is an LMPC, to force the CSTR states to the optimal steady-states.
The optimal (time-varying) steady-state from steady-state economic optimization is

x∗
s (t) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

[370.0K, 2.576 kmolm−3]T , t < 1.0 h

[371.7K, 2.447 kmolm−3]T , 1.0 h ≤ t < 2.0 h

[375.2K, 2.205 kmolm−3]T , 2.0 h ≤ t < 3.0 h

[371.7K, 2.447 kmolm−3]T , 3.0 h ≤ t ≤ 4.0 h
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with the corresponding steady-state input of

u∗
s (t) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

[0.0 kJ h−1, 3.923 kmolm−3]T , t < 1.0 h

[−0.5 kJ h−1, 3.827 kmolm−3]T , 1.0 h ≤ t < 2.0 h

[0.0 kJ h−1, 3.653 kmolm−3]T , 2.0 h ≤ t < 3.0 h

[−0.5 kJ h−1, 3.827 kmolm−3]T , 3.0 h ≤ t ≤ 4.0 h

An LMPC is implemented to drive the system to the time-varying optimal steady-
state, which is formulated as follows:

min
u∈S(Δ)

∫ t j+N

t j

(∣
∣x̃(τ ) − x∗

s (τ )
∣
∣
Qc

+ ∣
∣u(τ ) − u∗

s (τ )
∣
∣
Rc

)

dτ

s.t. ˙̃x(t) = f (x̃(t), u(t), 0),

x̃(t j ) = x(t j ),

− 2 × 105 ≤ u1(t) ≤ 2 × 105, ∀ t ∈ [t j , t j+N ),

0.5 ≤ u2(t) ≤ 8, ∀ t ∈ [t j , t j+N ),

∂V (x(t j ))

∂x
f (x(t j ), u(t j ), 0)

≤ ∂V (x(t j ))

∂x
f (x(t j ), h(x(t j ), x

∗
s (t j )), 0)

(6.64)

where the Lyapunov function, the Lyapunov-based controller, theweightingmatrices
Rc and Qc, the sampling period Δ, and the prediction horizon N are all the same as
the ones used in the tracking LMPC scheme.

To make a fair comparison, the same realization of the feed disturbances was
applied to each closed-loop system simulation pair. The total economic cost val-
ues of several closed-loop simulations starting from different initial conditions and
with and without the feed disturbances are given in Table6.3. From the results of
Table6.3, substantial closed-loop economic performance is achieved under the two-
layer framework than under the optimal steady-state tracking LMPC of Eq.6.64. The
largest economic cost improvement occurs when the CSTR is initialized at higher
temperature.When theCSTR starts from a lower temperature, the amount of heat that
needs to be supplied to the reactor initially is less than the amount of heat that needs
to be initially removed when the CSTR starts at a higher temperature as explained
above and demonstrated in Figs. 6.10 and 6.11. Thus, when the CSTR starts from a
higher temperature, better closed-loop performance is achieved because less energy
is required to be supplied/removed from the reactor.
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Table 6.3 Comparison of the total economic cost, given by Eq.6.63, of the closed-loop system
with and without the feed disturbances for four hours of operation

Initial conditions Total economic cost

T (0) K CA(0)
kmolm−3

Steady-
state
optimiza-
tion
without
distur-
bance

Two-layer
Frame-
work
without
Distur-
bance

Cost
decrease
(%)

Steady-
state
optimiza-
tion with
distur-
bance

Two-layer
frame-
work with
distur-
bance

Cost
decrease
(%)

400.0 3.0 21970.5 14531.1 51.2 21642.4 14130.7 53.2

380.0 3.0 5235.4 3409.5 53.6 5060.1 3037.9 66.6

360.0 3.0 4261.8 3308.6 28.8 4083.2 2997.1 36.2

340.0 3.0 13732.2 10997.3 24.9 13554.9 10882.3 24.6

320.0 3.0 23719.4 19315.9 22.8 23729.1 19210.3 23.5

400.0 2.5 18546.8 10062.1 84.3 18283.4 9691.4 88.7

380.0 2.5 4558.7 3163.3 44.1 4387.2 2811.9 56.0

360.0 2.5 4496.4 3335.6 34.8 4322.7 3030.3 42.6

340.0 2.5 14078.3 11034.4 27.6 13910.2 10928.8 27.3

320.0 2.5 24052.2 19293.4 24.7 24002.2 19193.8 25.1

400.0 2.0 14831.5 6774.0 118.9 14682.4 6412.6 129.0

380.0 2.0 4073.2 3085.1 32.0 3905.0 2739.8 42.5

360.0 2.0 4765.4 3431.2 38.9 4596.4 3139.3 46.4

340.0 2.0 14395.5 11162.3 29.0 14236.8 11068.2 28.6

320.0 2.0 24202.7 19241.2 25.8 24223.5 19146.7 26.5

400.0 0.1 8146.1 4360.5 86.8 7999.4 4025.7 98.7

6.4 Addressing Closed-Loop Performance

An important theoretical consideration is the closed-loop performance of systems
under EMPC because EMPC is formulated with a finite prediction horizon. The
achievable closed-loop economic performance may strongly depend on the predic-
tion horizon length. To address guaranteed closed-loop economic performance while
formulating a computationally efficient control structure, a two-layer EMPC struc-
ture is presented in this section. In contrast to the two-layer EMPC methodologies
presented in the previous sections, EMPC schemes are used in both layers of the two-
layer EMPC structure to ensure economic performance improvement over a tracking
controller, e.g., tracking MPC.

Each layer is formulated as an LEMPC scheme. The core idea of the two-layer
LEMPC implementation is to solve the upper layer LEMPC infrequently (not every
sampling period) while employing a long prediction horizon. Then, the solution gen-
erated by the upper layer LEMPC is subsequently used in the formulation of a lower
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layer LEMPC. The lower layer LEMPC is formulated with a shorter prediction hori-
zon and smaller sampling time than the upper layer LEMPC and computes control
actions that are applied to the closed-loop system. The control actions of the lower
layer LEMPC are constrained to maintain the state near the economically optimal
trajectories computed in the upper layer. For guaranteed performance improvement
with the two-layer LEMPC implementation scheme, both layers are formulated with
explicit performance-based constraints computed by taking advantage of the avail-
ability of an auxiliary stabilizing controller. The performance-based constraints, i.e.,
terminal constraints, are similar to that presented in Sect. 4.4, and guarantee that both
the finite-time and infinite-time closed-loop economic performance under the two-
layer LEMPC scheme are at least as good as that under the stabilizing controller.
The use of the two-layer control implementation allows for the control architec-
ture to be computationally efficient. The two-layer LEMPC structure is applied to
a chemical process example to demonstrate the closed-loop performance, stability,
and robustness properties of the two-layer LEMPC structure.

6.4.1 Class of Systems

In this section, nominally operated systems are considered, i.e., the system of Eq.4.1
with w ≡ 0. Specifically, the class of continuous-time nonlinear systems considered
is described by the following state-space form:

ẋ = f (x, u) (6.65)

where the state vector is x ∈ X ⊆ R
n and the input vector is u ∈ U ⊂ R

m . The vector
function f : X × U → X is a locally Lipschitz vector function onX × U. The set of
admissible inputs U is assumed to be a compact set, and the state is synchronously
sampled at time instances jΔ with j = 0, 1, 2, . . . where Δ > 0 is the sampling
period. As before, the initial time is taken to be zero, and the notation t will be used
for the continuous-time, while the time sequence {t j } j≥0 is the discrete sampling
time sequence which is a synchronous partitioning of R+ with t j = jΔ.

A time-invariant economic measure le : X × U → R is assumed for the system
of Eq.6.3 that describes the real-time system economics. The economic measure is
assumed to be continuous on X × U. The optimal steady-state x∗

s and steady-state
input u∗

s pair with respect to the economic cost function is computed as follows:

(x∗
s , u

∗
s ) = argmin

xs∈X,us∈U
{le(xs, us) : f (xs, us) = 0} .

The existence of a minimizing pair where the minimum is attained. For the sake of
simplicity, the optimal steady-state pair is assumed to be unique and to be (x∗

s , u
∗
s ) =

(0, 0).

http://dx.doi.org/10.1007/978-3-319-41108-8_4
http://dx.doi.org/10.1007/978-3-319-41108-8_4
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6.4.2 Stabilizability Assumption

A stronger stabilizability-like assumption than the assumption imposed in previous
sections and chapters is needed here (stated in Assumption 6.3). In this section, the
existence of a stabilizing controller that renders the origin of the closed-loop system
exponentially stable under continuous implementation is assumed whereas, previ-
ously, the existence of a stabilizing controller is assumed that renders the closed-loop
system only asymptotically stable under continuous implementation. The stronger
assumption is needed to ensure that the stabilizing controller renders the origin of
the closed-loop system exponentially (and therefore, asymptotically) stable under
sample-and-hold implementation. This will be required to consider infinite-time
closed-loop economic performance. Specifically, asymptotic convergence to the ori-
gin and not just convergence to a neighborhood of the steady-state (practical stability
of the origin) will be required.

Assumption 6.3 There exists a locally Lipschitz feedback controller h : X → U

with h(0) = 0 for the system of Eq.6.65 that renders the origin of the closed-loop
system under continuous implementation of the controller locally exponentially sta-
ble. More specifically, there exist constants ρ > 0, ci > 0, i = 1, 2, 3, 4 and a con-
tinuously differentiable Lyapunov function V : X → R+ such that the following
inequalities hold:

c1 |x |2 ≤ V (x) ≤ c2 |x |2 , (6.66a)

∂V (x)

∂x
f (x, h(x)) ≤ −c3 |x |2 , (6.66b)

∣
∣
∣
∣

∂V (x)

∂x

∣
∣
∣
∣
≤ c4 |x | , (6.66c)

for all x ∈ Ωρ ⊆ X.

Explicit feedback controllers that may be designed to satisfy Assumption 6.3 are,
for example, feedback linearizing controller and some Lyapunov-based controllers,
e.g., [15, 19]. The origin of the closed-loop system of Eq.6.65 under the feedback
controller, h(x), implemented in a zeroth-order sample-and-hold fashion with a suf-
ficiently small sampling period Δ > 0, i.e., the controller is applied as an emulation
controller may be shown to be exponentially stable (Corollary 2.2). Moreover, the
proof of Corollary 2.2 shows that V is a Lyapunov function for the closed-loop
sampled-data system in the sense that there exists a constant ĉ3 > 0 such that

∂V (x(t))

∂x
f (x(t), h(x(t j ))) ≤ −ĉ3 |x(t)|2 (6.67)

for all t ∈ [t j , t j+1) and integers j ≥ 0 where x(t) is the solution of Eq.6.65 at time
t starting from x(t j ) ∈ Ωρ and with the input u(t) = h(x(t j )) for t ∈ [t j , t j+1). The
stability region of the closed-loop system under the controller is defined as Ωρ ⊆ X .

http://dx.doi.org/10.1007/978-3-319-41108-8_2
http://dx.doi.org/10.1007/978-3-319-41108-8_2
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6.4.3 Two-Layer EMPC Structure

A detailed description of the two-layer LEMPC structure is provided which includes
descriptions of the implementation strategy, the formulations of the upper and lower
layer LEMPC schemes, and the provable stability and performance properties.

6.4.3.1 Implementation Strategy

The objective of the two-layer LEMPC design is to ensure that both the finite-time
and infinite-time closed-loop economic performance of the resulting closed-loop
system will be at least as good the closed-loop performance under a stabilizing
controller. To address this objective, performance-based constraints are employed
in the formulation of the upper and lower layer LEMPC that have been computed
from the stabilizing controller. The stabilizing controller may be any controller that
satisfies Assumption 6.3. For example, the stabilizing controller may be an explicit
controller that satisfies Assumption 6.3 or an LMPC scheme, which is equipped
with a contractive Lyapunov constraint designed using an explicit controller that
satisfies Assumption 6.3. The formulation of such an LMPC scheme is provided
below. However, it is important to point out that the amount of computation required
to solve the LMPC is generally greater than that required for an explicit controller.
The stabilizing controllerwill be referred as the auxiliary controller for the remainder.

A block diagram of the two-layer LEMPC is given in Fig. 6.12. In the upper layer,
an LEMPC is used to optimize dynamic operation over a long horizonwhile account-
ing for the performance-based constraints generated from the auxiliary controller.
Both the auxiliary controller and the upper layer LEMPC compute their input trajec-
tories at the beginning of some operating window, and thus, the auxiliary controller
and upper layer LEMPC are computed once each operating window for computa-
tional efficiency. In the lower layer, an LEMPC, using a shorter prediction horizon

Fig. 6.12 Block diagram of
the two-layer EMPC
structure addressing
closed-loop performance and
computational efficiency

Upper Layer
LEMPC

Lower Layer
LEMPC

System
ẋ = f(x, u)

Auxiliary
Controller

z(t̂k+1|t̂k)

x∗
E(tj+Nj |t̂k)

u∗(tj |tj)x(tj)

x(t̂k)x(t̂k)
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and a smaller sampling period than the upper layer LEMPC, computes control inputs
that are applied to the process. Terminal constraints that have been generated from
the upper layer LEMPC optimal solution are used to ensure that the lower layer
LEMPC guides the system along the optimal solution computed in the upper layer
since it uses a shorter prediction horizon and a smaller sampling period. In this man-
ner, the lower layer LEMPC is used to ensure robustness of the closed-loop system
(recomputes its optimal trajectory every sampling period to incorporate feedback).
The lower layer LEMPC may also provide additional economic cost improvement
over the upper layer LEMPC solution owing to the use of a smaller sampling time.

To maintain consistency of the notation, the operating window is denoted as t ′
and is equal to NEΔE where NE ∈ I+ is the number of hold periods in the prediction
horizon of the upper layer LEMPC and ΔE > 0 is the hold period of the piecewise
constant input trajectory computed in the upper layer (here, KE = NE ). The time
sequence {t̂k}k≥0 denotes the discrete time steps that the upper layer computes a
solution to its control problem where t̂k = kt ′ and k = 0, 1, . . ..

At the beginning of each operating window, the upper layer control problems
are solved in a sequential manner: first, the auxiliary controller is solved to obtain
its corresponding open-loop predicted state and input trajectories over the operating
window and second, the upper layer LEMPC is solved to obtain its corresponding
open-loop predicted state and input trajectories over the operation window. Specifi-
cally, the auxiliary controller computes the open-loop input trajectory that it would
apply to the system over the time t̂k to t̂k+1 = (k + 1)t ′ along with the open-loop
state trajectory If the auxiliary controller is an explicit controller, then the open-loop
state trajectory is computed by recursively solving:

ż(t) = f (z(t), h(z(τi ))) (6.68)

for t ∈ [τi , τi+1), i = 0, 1, . . . , NE − 1 where τi := t̂k + iΔE , z(t̂k) = x(t̂k) is the
initial condition, and x(t̂k) is a state measurement obtained at t̂k . If, instead, the
auxiliary controller is an LMPC, then the open-loop state trajectory may be obtained
directly from the solution of the optimization problem. The open-loop state and
input trajectories under the auxiliary controller are denoted as z(t |t̂k) and v(t |t̂k) for
t ∈ [t̂k, t̂k+1) = [kt ′, kt ′ + NEΔE ), respectively. The terminal state of the open-loop
state trajectory, z(t̂k+1|t̂k), is then sent to the upper level LEMPC.

The upper layer LEMPC subsequently uses z(t̂k+1|t̂k) as a terminal equality con-
straint in the optimization problem. In this framework, no restrictions are placed on
the type of operation achieved under the two-layer framework, i.e., it could be steady-
state operation or somemore general time-varying operating behavior. Therefore, the
upper level LEMPC is an LEMPC (Sect. 4.2) equipped with mode 1 operation only.
If steady-state operation is desirable, one could formulate the upper level LEMPC
with a mode 2 constraint similar to that of Eq. 6.8f to ensure that the optimal steady-
state is asymptotically stable under the two-layer LEMPC. However, the mode 2
constraint of LEMPC is not discussed further. After receiving z(t̂k+1|t̂k) from the
auxiliary controller and a state measurement at t̂k , the upper layer LEMPC is solved

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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to compute its optimal state and input trajectories over the operating window, which
are denoted as x∗

E (t |t̂k) and u∗
E (t |t̂k) for t ∈ [t̂k, t̂k+1), respectively.

The upper layer hold period is divided into N̄ subintervals of length Δ (Δ =
ΔE/N̄ where N̄ is a positive integer). The subintervals define the sampling period of
the lower layer LEMPC and correspond to the sampling time sequence {t j } j≥0. The
lower layer LEMPC recomputes its optimal input trajectory employing a shrink-
ing horizon. Namely, at the beginning of each hold period of the upper layer, the
lower layer is initialized with a prediction horizon N j = N̄ . The lower layer LEMPC
receives a statemeasurement, denoted as x(t j ), as well as x∗

E (t j+N j |t̂k) from the upper
layer LEMPC. Using x∗

E (t j+N j |t̂k) as a terminal equality constraint in the lower layer
LEMPC, the lower layer LEMPC is solved. The optimal input trajectory computed
by the lower layer LEMPC is denoted as u∗(t |t j ), t ∈ [t j , t j+N j ). At the subsequent
sampling period of the lower layer LEMPC, the prediction horizon decreases by one
(N j+1 = N j − 1). If decreasing the horizon results in the horizon being set to zero,
the prediction horizon is reset to N̄ = ΔE/Δ. This happens at the beginning of the
next hold period of the upper layer LEMPC.

The implementation strategy is summarized below and an illustration of the
closed-loop system is given in Fig. 6.13. The lower layer LMPC is initialized with
a prediction horizon of N0 = N̄ = ΔE/Δ. To initialize the algorithm, let k = 0 and
j = 0.

1. Upper layer: At t̂k , the auxiliary controller and the upper layer LEMPC are
initialized with the state measurement x(t̂k). Go to Step 1.1.

1.1 The auxiliary controller computes its optimal input trajectory denoted as
v(t |t̂k) defined for t ∈ [t̂k, t̂k+1) and corresponding state trajectory denoted
as z(t |t̂k) defined for t ∈ [t̂k, t̂k+1). The terminal state z(t̂k+1|t̂k) is sent to the
upper layer LEMPC. Go to Step 1.2.

x∗
s

Ωρ

x(0)

z(t′|0)

z(2t′|t′)

Fig. 6.13 A state-space illustration of the evolution of the closed-loop system (solid line) in the
stability region Ωρ over two operating periods. The open-loop predicted state trajectory under the
auxiliary controller is also given (dashed line). At the beginning of each operating window, the
closed-loop state converges to the open-loop state under the auxiliary controller
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1.2 The upper layer LEMPC receives z(t̂k+1|t̂k) from the auxiliary controller
and computes its optimal input trajectory u∗

E (t |t̂k) defined for t ∈ [t̂k, t̂k+1)

and state trajectory x∗
E (t |t̂k) defined for t ∈ [t̂k, t̂k+1). Go to Step 2.

2. Lower layer: At t j , the lower layer LEMPC receives a state measurement x(t j )
and the terminal state x∗

E (t j+N j |t̂k) from the upper layer LEMPC. Go to Step 2.1.

2.1 The lower layer LEMPC computes its optimal input trajectory u∗(t |t j )
defined for t ∈ [t j , t j+N j ). Go to Step 2.2.

2.2 The control action u∗(t j |t j ), which is the computed input for the first sam-
pling period of the lower layer LEMPC prediction horizon, is applied
to the system from t j to t j+1. If N j − 1 = 0, reset N j+1 = N̄ ; else, let
N j+1 = N j − 1. If t j+1 = t̂k+1, set j ← j + 1 and k ← k + 1 and go to
Step 1. Else, set j ← j + 1 and go to Step 2.

Remark 6.4 Even though the lower layer LEMPC uses a shrinking horizon and
nominal operation is considered, recomputing the lower layer LEMPC input at every
subsequent sampling time is necessary regardless if the solution to the lower level
LEMPC is the same or not. The incorporation of feedback allows for stabiliza-
tion of open-loop unstable systems that cannot be accomplished with an open-loop
implementation and ensures the robustness of the control solution with respect to
infinitesimally small disturbances/uncertainty. For further explanation on this point,
see, for example, [20].

6.4.3.2 Formulation

The formulations of the twoLEMPCschemes are given. For convenience, the specific
formulation of the LMPC needed if the auxiliary controller is chosen to be an LMPC
scheme is given first. Specifically, the LMPC is given by the following optimization
problem:

min
v∈S(ΔE )

∫ t̂k+1

t̂k

(|z(t)|Qc + |v(t)|Rc) dt (6.69a)

s.t. ż(t) = f (z(t), v(t)) (6.69b)

z(t̂k) = x(t̂k) (6.69c)

v(t) ∈ U, ∀ t ∈ [t̂k, t̂k+1) (6.69d)

∂V (z(τi ))

∂z
f (z(τi ), v(τi )) ≤ ∂V (z(τi ))

∂z
f (z(τi ), h(x(τi )))

for i = 0, 1, . . . , NE − 1 (6.69e)

where τi := t̂k + iΔE and z is the state trajectory of the system with input trajectory
v calculated by the LMPC. The Lyapunov-based constraint of Eq.6.69e differs from
the Lyapunov-based constraint of Eq.2.51e as it is imposed at each sampling period

http://dx.doi.org/10.1007/978-3-319-41108-8_2
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along the prediction horizon of the LMPC to ensure that the state trajectory with
input computed by the LMPC converges to the steady-state. Through enforcement
of the Lyapunov-based constraint, the LMPC inherits the same stability properties
as that of the explicit controller. The optimal solution of the optimization problem
of Eq.6.69 is denoted as v∗(t |t̂k) and is defined for t ∈ [t̂k, t̂k+1). From the optimal
input trajectory, the optimal state trajectory z∗(t |t̂k), t ∈ [t̂k, t̂k+1) may be computed
for the operating window. When the LMPC is used as the auxiliary controller, the
terminal state z∗(t̂k+1|t̂k) is sent to the upper layer LEMPC.

The formulation of the upper layer LEMPC is similar to the mode 1 LEMPC for-
mulation with a terminal equality constraint computed from the auxiliary controller:

min
uE∈S(ΔE )

∫ t̂k+1

t̂k

le(xE (t), uE (t)) dt (6.70a)

s.t. ẋE (t) = f (xE (t), uE (t)) (6.70b)

xE (t̂k) = x(t̂k) (6.70c)

uE (t) ∈ U, ∀ t ∈ [t̂k, t̂k+1) (6.70d)

xE (t) ∈ Ωρ, ∀ t ∈ [t̂k, t̂k+1) (6.70e)

xE (t̂k+1) = z(t̂k+1|t̂k) (6.70f)

where xE is the predicted state trajectory with the input trajectory uE computed by
the upper layer LEMPC. To ensure the existence of an input trajectory that has at
least as good economic performance as the auxiliary LMPC input trajectory over the
entire length of operation, the terminal constraint of Eq. 6.70f based on the auxiliary
controller is used. The terminal constraint differs from traditional terminal equality
constraints because z(t̂k+1|t̂k) is not necessarily the steady-state. It does, however,
asymptotically converge to the economically optimal steady-state. The optimal solu-
tion to the optimization problem of the upper layer LEMPC is denoted as u∗

E (t |t̂k)
and is defined for t ∈ [t̂k, t̂k+1). With the optimal solution, the optimal (open-loop)
state trajectory may be computed and is denoted as x∗

E (t |t̂k), for t ∈ [t̂k, t̂k+1).
The lower layer LEMPC formulation, which uses a terminal constraint computed

from x∗
E (·|t̂k), is given by:

min
u∈S(Δ)

∫ t j+N j

t j

le(x̃(t), u(t)) dt (6.71a)

s.t. ˙̃x(t) = f (x̃(t), u(t)) (6.71b)

x̃(t j ) = x(t j ) (6.71c)

u(t) ∈ U, ∀ t ∈ [t j , t j+N j ) (6.71d)

x̃(t) ∈ Ωρ, ∀ t ∈ [t j , t j+N j ] (6.71e)

x̃(t j+N j ) = x∗
E (t j+N j |t̂k) (6.71f)
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where x̃ is the predicted state trajectory under the input trajectory u. The terminal
constraint of Eq.6.71f is computed from the upper layer LEMPC solution, and serves
the same purpose as the terminal constraint of Eq. 6.70f. The optimal solution to the
lower layer LEMPC is denoted as u∗(t |t j ) which is defined for t ∈ [t j , t j+N j ). The
control input u∗(t j |t j ) is sent to the control actuators to be applied to the system of
Eq.6.65 in a sample-and-hold fashion until the next sampling period.

Remark 6.5 When the economic stage cost does not penalize the use of control
energy, onemay consider formulating constraints in the LEMPC problems to prevent
the LEMPC from computing an input trajectory that uses excessive control energy.
In particular, one straightforward extension of the two-layer LEMPC structure is to
compute the total control energy used by the auxiliary controller over the operating
window, i.e., integral of the input trajectory v over t̂k to t̂k+1. Then, enforce that
the upper and lower layer LEMPCs compute an input trajectory that uses no more
control energy than the auxiliary controller input profile over the operating window.
This approach was employed in [21].

6.4.3.3 Closed-Loop Stability and Performance

The following proposition proves that the closed-loop system state under the two-
layer EMPC structure is always bounded in the invariant set Ωρ and the economic
performance is at least as good as the closed-loop state with the auxiliary LMPC
over each operating period.

Proposition 6.3 Consider the system of Eq.6.65 in closed-loop under the lower
layer LEMPC of Eq.6.71. Let the terminal constraint of Eq.6.71f computed from the
upper layer LEMPC of Eq.6.70, which has a terminal constraint formulated from
the auxiliary controller that satisfies Assumption 6.3. Let ΔE ∈ (0, Δ∗] where Δ∗ is
defined according to Corollary 2.2, NE ≥ 1, N̄ ≥ 1, andΔ = ΔE/N̄ . If x(t̂k) ∈ Ωρ ,
then the state remains bounded in Ωρ over the operating window with x(t̂k+1) =
z(t̂k+1|t̂k) ∈ Ωρ , the upper and lower LEMPCs remain feasible for all t ∈ [t̂k, t̂k+1),
and the following inequality holds:

∫ t̂k+1

t̂k

le(x(t), u
∗(t)) dt ≤

∫ t̂k+1

t̂k

le(z(t |t̂k), v(t |t̂k)) dt (6.72)

where x and u∗ are the closed-loop state and input trajectories and z(·|t̂k) and
v(·|t̂k) denote the open-loop predicted state and input trajectories under the auxiliary
computed at t̂k .

Proof Stability: If ΔE ∈ (0, Δ∗] and the auxiliary controller satisfies Assump-
tion 6.3, Eq.6.67 implies forward invariance of the set Ωρ under the auxiliary
controller. The terminal constraint z(t̂k+1|t̂k) computed by the auxiliary controller
is therefore in Ωρ . If the optimization problems are feasible, boundedness of the

http://dx.doi.org/10.1007/978-3-319-41108-8_2
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closed-loop state in Ωρ over the operating window follows when x(t̂k) ∈ Ωρ owing
to the fact that the constraint of Eq.6.71e is imposed in the lower layer LEMPC,
which is responsible for computing control action for the closed-loop system. Also,
the terminal constraint of Eq.6.71f imposed in the lower layer LEMPC is always in
Ωρ as a result of the constraint of Eq.6.70e imposed in the upper layer LEMPC.

Feasibility: Regarding feasibility of the upper layer LEMPC problem, the input
trajectory v(·|t̂k) obtained from the auxiliary controller is a feasible solution to the
upper layer LEMPC for any x(t̂k) ∈ Ωρ because it maintains the predicted state
inside Ωρ and forces the predicted state to the terminal constraint of Eq. 6.70f. If the
auxiliary controller is an explicit controller that satisfies Assumption 6.3, then the
input trajectory v is obtained from recursively solving Eq.6.68. On the other hand,
if the LMPC of Eq.6.69 is used as the auxiliary controller, then v is the solution to
the optimization problem of Eq.6.69.

Consider any sampling time t j ∈ [t̂k, t̂k+1) such that t j = t̂k + iΔE for some i in
the set {0, . . . , NE − 1}, i.e., consider a sampling time of the lower layer LEMPC
that corresponds to the beginning of a hold time of the upper layer. Let {t̄i }NE−1

i=0
denote the sequence of such times. The constant input trajectory u(t) = u∗

E (t j |t̂k) for
all t ∈ [t j , t j+N̄ ) where t j+N̄ = t̄i+1 = t̂k + (i + 1)ΔE is a feasible solution to the
optimization problem of Eq.6.71 because it maintains the state in Ωρ and it forces
the state to the terminal constraint of Eq.6.71f. Owing to the shrinking horizon
implementation of the lower layer LEMPC, the computed input trajectory by the
lower layer LEMPC at t j = t̄i is a feasible solution to the optimization problem at
the next sampling time (t j+1) in the sense that if u∗(t |t j ) defined for t ∈ [t j , t j +
N̄Δ) is the optimal solution at t j , then u∗(t |t j ) for t ∈ [t j+1, t j+1 + (N̄ − 1)Δ) is
a feasible solution at t j+1. Using this argument recursively until the sampling time
t̄i+1 = t̂k + (i + 1)ΔE when the horizon is reinitialized to N̄ and then, repeating the
arguments for t̄i+1, it follows that the lower layer LEMPC is feasible.

Performance: At t̄i , the lower layer LEMPC computes an optimal input trajectory
that satisfies (by optimality):

∫ t̄i+1

t̄i

le(x
∗(t |t̄i ), u∗(t |t̄i )) dt ≤

∫ t̄i+1

t̄i

le(x
∗
E (t |t̂k), u∗

E (t̄i |t̂k)) dt (6.73)

for all i ∈ {0, . . . , NE − 1} (recall, t̄i+1 = t̄i + N̄Δ). Owing to the shrinking horizon
and the principle of optimality, the closed-loop state and input trajectories are equal
to the computed open-loop state and input trajectories computed at t̄i and thus,

∫ t̄i+1

t̄i

le(x
∗(t |t̄i ), u∗(t |t̄i )) dt =

∫ t̄i+1

t̄i

le(x(t), u
∗(t)) dt (6.74)

where x∗(·|t̄i ) and u∗(·|t̄i ) denote the optimal open-loop state and input trajectories
computed at t̄i and x and u∗ are the closed-loop state and input trajectories. There-
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fore, from Eqs. 6.73–6.74, the closed-loop performance over one operating period is
bounded by:

∫ t̂k+1

t̂k

le(x(t), u
∗(t)) dt =

NE−1
∑

i=0

∫ t̄i+1

t̄i

le(x(t), u
∗(t |t̄i )) dt

≤
NE−1
∑

i=0

∫ t̄i+1

t̄i

le(x
∗
E (t |t̂k), u∗

E (t |t̂k)) dt

=
∫ t̂k+1

t̂k

le(x
∗
E (t |t̂k), u∗

E (t |t̂k)) dt . (6.75)

At t̂k , the upper layer LEMPC computes an optimal input trajectory. Owing to
optimality, the computed (open-loop) state and input trajectories of the upper layer
LEMPC satisfies:

∫ t̂k+1

t̂k

le(x
∗
E (t |t̂k), u∗

E (t |t̂k)) dt ≤
∫ t̂k+1

t̂k

le(z(t |t̂k), v(t |t̂k)) dt . (6.76)

From Eqs. 6.75–6.76, the result of Eq.6.72 follows.

The following theorem provides sufficient conditions such that the two-layer
EMPC structure maintains the closed-loop state inside the regionΩρ and the closed-
loop economic performance is at least as good as if the auxiliary LMPC was applied
to the system of Eq.6.65 over the entire length of operation which may be finite or
infinite.

Theorem 6.3 Consider the closed-loop system of Eq.6.65 under the lower layer
LEMPC of Eq.6.71. Let the terminal constraint of Eq.6.71f computed from the upper
layer LEMPC of Eq.6.70, which has a terminal constraint formulated from the aux-
iliary controller that satisfies Assumption 6.3, and let the assumptions of Proposi-
tion 6.3 hold. If x(0) ∈ Ωρ , then x(t) ∈ Ωρ for all t ≥ 0 and the following inequality
holds for finite-time operation:

∫ T

0
le(x(t), u

∗(t)) dt ≤
∫ T

0
le(z(t), v(t)) dt (6.77)

where T = K NEΔE and K is any strictly positive integer and x andu∗ are the closed-
loop state and input trajectory and z and v are the resulting state and input trajectory
from the auxiliary controller defined over the interval [0, T ] with initial condition
z(0) = x(0) ∈ Ωρ . The following inequality holds for infinite-time operation:

lim sup
K→∞

1

K NEΔE

∫ K NEΔE

0
le(x(t), u

∗(t)) dt ≤ le(x
∗
s , u

∗
s ) . (6.78)
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Proof Applying the results of Proposition 6.3 recursively over K operating periods,
recursive feasibility of the optimization problems follows, and the closed-loop state
is always bounded in Ωρ if x(0) ∈ Ωρ , and x(t̂k) = z(t̂k) for k = 1, 2, . . . , K . To
show the result of Eq.6.77, the length of operation is divided into K operating periods
and let T = K NEΔE :

∫ T

0
le(x(t), u

∗(t)) dt =
∫ t̂1

0
le(x(t), u

∗(t)) dt + · · · +
∫ t̂K

t̂K−1

le(x(t), u
∗(t)) dt

(6.79)
where t̂K = T . By Proposition 6.3, the inequality of Eq.6.72 holds over each oper-
ating window when x(t̂k) = z(t̂k) for k = 1, 2, . . . , K and thus, the inequality of
Eq.6.77 follows.

Owing to the result of Eq.6.77, the average finite-time economic cost is given by:

1

T

∫ T

0
le(x(t), u

∗(t)) dt ≤ 1

T

∫ T

0
le(z(t), v(t)) dt (6.80)

for T = K NEΔE where K is any strictly positive integer. Recall, the economic
cost function le is continuous on the compact set Ωρ × U and x(t), z(t) ∈ Ωρ and
u∗(t), v(t) ∈ U for all t ≥ 0. Thus, both integrals of Eq.6.80 are bounded for any
T > 0. Since the auxiliary controller satisfies Assumption 6.3 and Δ ∈ (0,Δ∗], z
and v asymptotically converge to the steady-state (x∗

s , u
∗
s ) (this follows from the

inequality of Eq.6.67).
Considering the limit of the right-hand side of Eq. 6.80 as T tends to infinity (or

similarly, as K tends to infinity), the limit exists and is equal to le(x∗
s , u

∗
s ) because

z and v asymptotically converge to optimal steady-state (x∗
s , u

∗
s ) while remaining

bounded for all t ≥ 0. To prove this limit, the following result is shown: given ε > 0,
there exists T ∗ > 0 such that for all T > T ∗, the following holds:

∣
∣
∣
∣

1

T

∫ T

0
le(z(t), v(t)) dt − le(x

∗
s , u

∗
s )

∣
∣
∣
∣
< ε . (6.81)

Define I (0, T ) as the following integral:

I (0, T ) :=
∫ T

0
le(z(t), v(t)) dt (6.82)

where the arguments of I represent the lower and upper limits of integration, respec-
tively. The trajectories z(t) and v(t) converge to x∗

s and u∗
s , respectively, as t tends

to infinity. Furthermore, z(t) ∈ Ωρ and v(t) ∈ U for all t ≥ 0, so for every ε > 0,
there exists a T̃ > 0 such that

|le(z∗(t), v∗(t)) − le(x
∗
s , u

∗
s )| < ε/2 (6.83)
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for t ≥ T̃ . For any T > T̃ :

∣
∣I (0, T ) − T le(x

∗
s , u

∗
s )

∣
∣ =

∣
∣
∣I (0, T̃ ) + I (T̃ , T ) − T le(x

∗
s , u

∗
s )

∣
∣
∣

≤
∫ T̃

0

∣
∣le(z(t), v(t)) − le(x

∗
s , u

∗
s )

∣
∣ dt

+
∫ T

T̃

∣
∣le(z(t), v(t)) − le(x

∗
s , u

∗
s )

∣
∣ dt

≤ T̃ M̃ + (T − T̃ )ε/2 (6.84)

where M̃ := supt∈[0,T̃ ]
{|le(z(t), v(t)) − le(x∗

s , u
∗
s )|

}

. For any T > T ∗ where T ∗ =
2T̃ (M̃ − ε/2)/ε, the following inequality is satisfied:

∣
∣I (0, T )/T − le(x

∗
s , u

∗
s )

∣
∣ ≤ (1 − T̃ /T )ε/2 + T̃ M̃/T < ε (6.85)

whichproves that the asymptotic average economic cost under the auxiliary controller
is le(x∗

s , u
∗
s ).

Considering the left hand side of Eq.6.80, the limit as K → ∞ may not exist
owing to the possible time-varying system operation under the proposed two-layer
LEMPC scheme. Therefore, an upper bound on the asymptotic average performance
under the LEMPC scheme is considered. Since the limit superior is equal to the limit
when the limit exists, the following is obtained:

lim sup
K→∞

1

K NEΔE

∫ K NEΔE

0
le(x(t), u

∗(t)) dt

≤ lim sup
K→∞

1

K NEΔE

∫ K NEΔE

0
le(z(t), v(t)) dt = le(x

∗
s , u

∗
s ) (6.86)

which is the desired result of Eq. 6.78.

Remark 6.6 The finite-time result of Theorem 6.3 may be extended to any T > 0
by, for instance, adjusting NE and/or ΔE in the last operating window.

6.4.4 Application to Chemical Process Example

Consider a three vessel chemical process network consisting of two continuously
stirred tank reactors (CSTRs) in series followed by a flash tank separator. The process
flow diagram of the process network is shown in Fig. 6.14. In each of the reactors,
an irreversible second-order reaction of the form A → B takes place in an inert
solvent D (A is the reactant and B is the desired product). The bottom stream of
the flash tank is the product stream of the process network. Part of the overhead
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Fig. 6.14 Process flow diagram of the reactor and separator process network

vapor stream from the flash tank is purged from the process while the remainder is
fully condensed and recycled back to the first reactor. Each of the vessels have a
heating/cooling jacket to supply/remove heat from the liquid contents of the vessel.
The following indexes are used to refer to each vessel: i = 1 denotes CSTR-1, i = 2
denotes CSTR-2, and i = 3 denotes SEP-1. The heat rate supplied/removed from the
i th vessel is Qi , i = 1, 2, 3. Furthermore, each reactor is fed with fresh feedstock
containing A in the solvent D with concentration CAi0, volumetric flow rate Fi0,
and constant temperature Ti0 where i = 1, 2. Applying first principles and standard
modeling assumptions, a dynamic model of the reactor-separator process network
may be obtained (neglecting the dynamics of the condenser) and is given by the
following ODEs (see Table6.4 for variable definitions and values):

dT1
dt

= F10

V1
(T10 − T1) + Fr − Fp

V1
(T3 − T1)

− ΔHk0
ρLCp

e−E/RT1C2
A1 + Q1

ρLCpV1
(6.87a)

dCA1

dt
= F10

V1
(CA10 − CA1) + Fr − Fp

V1
(CAr − CA1) − k0e

−E/RT1C2
A1 (6.87b)

dCB1

dt
= − F10

V1
CB1 + Fr − Fp

V1
(CBr − CB1) + k0e

−E/RT1C2
A1 (6.87c)

dT2
dt

= F20

V2
(T20 − T2) + F1

V2
(T1 − T2)

− ΔHk0
ρLCp

e−E/RT2C2
A2 + Q2

ρLCpV2
(6.87d)

dCA2

dt
= F20

V2
(CA20 − CA2) + F1

V2
(CA1 − CA2) − k0e

−E/RT2C2
A2 (6.87e)

dCB2

dt
= − F20

V2
CB2 + F1

V2
(CB1 − CB2) + k0e

−E/RT2C2
A2 (6.87f)

dT3
dt

= F2

V3
(T2 − T3) − ΔHvapFr

ρLCpV3
+ Q3

ρLCpV3
(6.87g)
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Table 6.4 Process parameters of the reactor and separator process network

Symbol/Value Description

T10 = 300K Temp.: CSTR-1 inlet

T20 = 300K Temp.: CSTR-2 inlet

F10 = 5.0m3h−1 Flow rate: CSTR-1 inlet

F20 = 5.0m3h−1 Flow rate: CSTR-2 inlet

Fr = 3.0m3h−1 Flow rate: SEP-1 vapor

Fp = 0.5m3h−1 Flow rate: purge stream

V1 = 1.5m3 Volume: CSTR-1

V2 = 1.0m3 Volume: CSTR-2

V3 = 1.0m3 Volume: SEP-1

k0 = 3.0 × 106 m3 kmol−1 h−1 Pre-exponential factor

E = 3.0 × 104 kJ kmol−1 Activation energy

ΔH = −5.0 × 103 kJ kmol−1 Heat of reaction

ΔHvap = 5.0 kJ kmol−1 Heat of vaporization

Cp = 0.231 kJ kg−1 K−1 Heat capacity

R = 8.314 kJ kmol−1 K−1 Gas constant

ρL = 1000 kgm−3 Density

αA = 5.0 Relative volatility: A

αB = 0.5 Relative volatility: B

αD = 1.0 Relative volatility: D

MWA = 18.0 kg kmol−1 Molecular weight: A

MWB = 18.0 kg kmol−1 Molecular weight: B

MWD = 40.0 kg kmol−1 Molecular weight: D

dCA3

dt
= F2

V3
CA2 − Fr

V3
CAr − F3

V3
CA3 (6.87h)

dCB3

dt
= F2

V3
CB2 − Fr

V3
CBr − F3

V3
CB3 (6.87i)

and the following algebraic equations:

K = 1

ρL

∑

i∈{A,B,D}
αiCi3MWi , (6.88a)

Cir =αiCi3/K , i = A, B, D, (6.88b)

F1 = Fr − Fp + F10, F2 = F1 + F20, (6.88c)

F3 = F2 − Fr . (6.88d)
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where Cir is the concentration of the i th component (i = A, B, D) in the flash sepa-
rator overhead, purge, and recycle streams. The state variables of the process network
include the temperatures and concentrations of A and B in each of the vessels:

xT = [

T1 CA1 CB1 T2 CA2 CB2 T3 CA3 CB3
]

.

The manipulated inputs are the heat inputs to the three vessels, Q1, Q2, and Q3,
and the concentration of A in the inlet streams, CA10 and CA20:

uT = [

Q1 Q2 Q3 CA10 CA20
]

.

The control objective is to regulate the process in an economically optimal time-
varying fashion to maximize the average amount of product B in the product stream
F3. Continuously feeding in themaximum concentration of A into each reactormaxi-
mizes the production of B owing to the second-order reaction. However, this may not
be practical from an economic stand-point. Instead, the average amount of reactant
material that may be fed to each reactor is fixed motivating the use of EMPC to con-
trol the process network. In addition, supplying/removing heat to/from the vessels is
considered undesirable. To accomplish these economic considerations, the two-layer
LEMPC structure is applied and the upper and lower layer LEMPCs are formulated
with the following economic stage cost function and constraint, respectively:

le(x, u) = −F3CB3 + p1Q
2
1 + p2Q

2
2 + p3Q

2
3 (6.89)

1

t ′

∫ t̂k+1

t̂k

(CA10 + CA20) dt = 8.0 kmolm3 (6.90)

where t ′ = 1.0 h is the operating period length and pi = 10−6, i = 1, 2, 3 are the
penalty weights for using energy. The value for the heat rate penalty has been chosen
to account for the different numerical range of the heat rate and the first term in the
economic cost (molar flow rate of B in the product stream). The economically optimal
steady-state with respect to the economic cost function of Eq.6.89 is open-loop
asymptotically stable and is the only steady-state in the operating region of interest.
An explicit characterization of Ωρ is not needed for the LEMPC implementation.

The two-layer LEMPC structure, formulated with the cost function and reactant
material constraint of Eqs. 6.89–6.90, respectively, is applied to the reactor-separator
chemical process network. To numerically integrate the dynamic model of Eq.6.87,
explicit Euler method is used with an integration step of 1.0 × 10−3 h. The auxiliary
controller is formulated as an auxiliary LMPC. The prediction horizon and sampling
period of the auxiliary LMPC and upper layer LEMPC are NE = 10 andΔE = 0.1 h,
respectively, while, the lower layer LEMPC is formulated with a prediction horizon
of N̄ = 2 and sampling period Δ = 0.05 h. Since the upper layer prediction horizon
length is one hour, the reactant material constraint is enforced over each one hour
operating period. However, the lower layer LEMPC prediction horizon does not
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cover the entire one hour operating window. Instead of using the material constraint
of Eq.6.90 directly in the lower layer LEMPC, a constraint is formulated on the
basis of the upper layer LEMPC solution. Namely, over the prediction horizon of the
lower layer LEMPC, the lower layer LEMPC solution must use the same amount
of reactant material as that of the upper layer LEMPC solution over the same time
so that the material constraint is satisfied over the operating window. To solve the
optimization problems, Ipopt [17] is used and the simulations were completed on a
desktop PC with an Intel® Core™ 2Quad 2.66GHz processor and a Linux operating
system.

6.4.4.1 Effect of Horizon Length

In the first set of simulations, the length of the prediction horizon on closed-loop
performance is considered. The closed-loop economic performance over 4.0h is
defined by the total economic cost given by:

JE =
∫ 4.0

0

(

F3CB3 − p1Q
2
1 − p2Q

2
2 − p3Q

2
3

)

dt . (6.91)

In these simulations, only the upper layer LEMPC, formulated with a terminal
constraint computed from the auxiliary LMPC, is considered. Figure6.15 depicts the
observed trend. As the prediction horizon increases, the closed-loop economic per-
formance increases, which motivates the use of a long prediction horizon in EMPC.

6.4.4.2 Effect of the Terminal Constraint

Since for any optimization problem, the addition of constraints may restrict the
feasible region of the optimization problem, a reasonable consideration is the effect
of the terminal constraint on closed-loop performance. To address this issue, consider

Fig. 6.15 The closed-loop
economic performance (JE )
with the length of prediction
horizon (NE ) for the
reactor-separator process
under the upper layer
LEMPC with a terminal
constraint computed from an
auxiliary LMPC
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the closed-loop system under the upper layer LEMPC formulated with a terminal
equality constraint computed by the auxiliary LMPC and under an LEMPC (mode
1 operation only) formulated with the economic cost of Eq. 6.89 and the material
constraint of Eq.6.90, but without terminal constraints. Both use a prediction horizon
of NE = 10 and a sampling period of Δ = 0.01 h. Figures6.16 and 6.17 display
the closed-loop state and input trajectories of the reactor-separator process network
with the upper layer LEMPC; while, Figs. 6.18 and 6.19 display the closed-loop
trajectories under LEMPC with no terminal constraints.

Fig. 6.16 Closed-loop state
trajectories of the
reactor-separator process
network with the upper layer
LEMPC formulated with a
terminal constraint computed
by the auxiliary LMPC
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Fig. 6.17 Input trajectories
of the reactor-separator
process network computed
by the upper layer LEMPC
formulated with a terminal
constraint computed by the
auxiliary LMPC
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Fig. 6.18 Closed-loop state
trajectories of the
reactor-separator process
network with an LEMPC
formulated without terminal
constraints
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Fig. 6.19 Input trajectories
of the reactor-separator
process network computed
by an LEMPC formulated
without terminal constraints
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The reactor-separator process network under the LEMPC with the terminal con-
straint evolves in a smaller operating range (370–430K) than the evolution under
the LEMPC without the terminal constraint (325– 440K). The total economic cost
with the upper layer LEMPC (based on the auxiliary LMPC) is 151.2, while the
total economic cost with LEMPC formulated without terminal constraints is 159.3.
The terminal constraint imposed in the LEMPC problem affects the achievable per-
formance. However, the key advantage of the addition of this constraint is that for
any system and any prediction horizon the closed-loop economic performance under
the two-layer LEMPC structure is guaranteed to be at least as good as a stabilizing
controller for both finite-time and infinite-time operating intervals.
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Fig. 6.20 Closed-loop state
trajectories of the
reactor-separator process
network with the two-layer
LEMPC structure
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Fig. 6.21 Input trajectories
of the reactor-separator
process network computed
by the two-layer LEMPC
structure
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6.4.4.3 Two-Layer LEMPC Structure

The two-layer LEMPC structure with a terminal constraint computed from an auxil-
iary LMPC is applied to the reactor-separator process network. Several closed-loop
simulations over a 4.0h length of operation are completed. The closed-loop state
and input trajectories of one of the simulations are shown in Figs. 6.20 and 6.21,
respectively and demonstrate time-varying operation of the process network. The
economic performance (Eq.6.91) is compared to the economic performance with
the auxiliary LMPC (Table6.5). From this comparison, an average of 10% benefit
with the two-layer LEMPC structure is realized over operation under the auxiliary
LMPC, i.e., resulting in steady-state operation.
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Table 6.5 Total economic cost and average computational time in seconds per sampling period
for several 4.0h simulations with: (a) the auxiliary LMPC, (b) the one-layer LEMPC and (c) the
two-layer LEMPC structure

Sim. LMPC One-layer EMPC Two-layer EMPC

Cost CPU time Cost CPU time Cost

1 140.1 5.68 151.5 1.10 151.1

2 150.3 4.24 153.9 1.05 153.4

3 142.0 4.65 152.4 0.98 152.0

4 130.7 6.45 152.3 1.24 151.9

5 126.0 4.67 151.9 1.11 151.5

6 140.2 4.63 151.6 1.33 151.2

7 144.6 4.60 150.6 1.08 150.2

8 138.1 5.01 152.5 1.06 152.1

Additionally, a comparison between the computational time required to solve the
two-layer LEMPC system and that of a one-layer LEMPC system is completed.
The one-layer LEMPC system consists of the upper layer LEMPC with a terminal
constraint computed from the auxiliary LMPC. In the one-layer LEMPC system,
the LEMPC applies its computed control actions directly to the process network,
and there is no lower layer LEMPC. To make the comparison consistent, the one
layer LEMPC is implemented with a prediction horizon of NE = 20 and a sampling
period of ΔE = 0.05 h, which are the same sampling period and horizon used in the
lower layer LEMPC of the two-layer LEMPC system. Since the upper and lower
layer controllers are sequentially computed, the computational time at the beginning
of each operating window is measured as the sum of the computational time to
solve the auxiliary LMPC, the upper layer LEMPC, and the lower layer LEMPC
for the two-layer LEMPC system and as the sum of the time to solve the auxiliary
LMPC and the LEMPC for the one-layer LEMPC system. From Table6.5, the one-
layer LEMPC achieves slightly better closed-loop economic performance because
the one-layer LEMPC uses a smaller sampling period than the upper layer LEMPC
in the two-layer LEMPC structure. However, the computational time required to
solve the one-layer LEMPC structure is greater than the computational time of the
two-layer LEMPC structure. The two-layer LEMPC structure is able to reduce the
computational time by about 75% on average.

6.4.4.4 Handling Disturbances

While the two-layer EMPC has been designed for nominal operation to guarantee
finite-time and infinite-time closed-loop performance as is at least as good as that
achieved under a stabilizing controller, it may be applied to the process model in
the presence of disturbances, plant/model mismatch, and other uncertainties with
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some modifications to improve recursive feasibility of the optimization problems
and to ensure greater robustness of the controller to uncertainties. For instance, if the
disturbances are relatively small, it may be sufficient to relax the terminal constraints
or treat them as soft constraints. If one were to simply relax the terminal constraints,
e.g., use a terminal region instead of a point-wise terminal constraint, it is difficult
to guarantee recursive feasibility of the optimization problem. Another potential
methodology is to treat the terminal state constraints as a soft constraint instead of
imposing them as hard constraints. For example, use a cost functional in the lower
layer LEMPC of the form:

(
∫ t j+N

t j

le(x̃(t), u(t)) dt

)

+ ∣
∣x̃(t j+N ) − x∗

E (t j |tk)
∣
∣
Q

(6.92)

where Q is a positive definite weighting matrix. The cost functional works to opti-
mize the economic performance while ensuring the predicted evolution is near the
terminal state through the quadratic terminal cost. The resulting lower layer LEMPC
has the same stability and robustness to bounded disturbances properties as the
LEMPC (without terminal constraints), i.e., recursive feasibility and boundedness
of the closed-loop state for all initial states starting in Ωρ . While no provable per-
formance guarantees may be made on closed-loop performance in the presence of
disturbances, the closed-loop performance benefit may be evaluated through simu-
lations.

The two-layer LEMPC with the lower layer LEMPC designed with the cost
described above in Eq.6.92 and without terminal constraints is applied to the exam-
ple with significant process noise added. The noise is modeled as bounded Gaussian
white noise and is introduced additively to each model state. The closed-loop state
and input trajectories are shown in Figs. 6.22 and 6.23, respectively. The closed-loop
system performance under the two-layer LEMPC is compared to the system under
auxiliary LMPCwith the same realization of the process noise. The LMPC is formu-

Fig. 6.22 Closed-loop state
trajectories of the
reactor-separator process
network with process noise
added with the two-layer
LEMPC structure
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Fig. 6.23 Input trajectories
of the reactor-separator
process network with process
noise added computed by the
two-layer LEMPC structure
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lated with a prediction horizon of N = 2 and sampling period Δ = 0.05 h which is
the same horizon and sampling period as the lower layer LEMPC. The closed-loop
performance under the two-layer LEMPC is 2.6% better than that under the LMPC
for this particular realization of the process noise.

6.5 Conclusions

In this chapter, several computationally-efficient two-layer frameworks for integrat-
ing dynamic economic optimization and control of nonlinear systemswere presented.
In the upper layer, EMPC was employed to compute economically optimal time-
varying operating trajectories. Explicit control-oriented constraints were employed
in the upper layer EMPC. In the lower layer, an MPC scheme was used to force
the system to track the optimal time-varying trajectory computed by the upper layer
EMPC. The properties, i.e., stability, performance, and robustness, of closed-loop
systems under the two-layer EMPC methods were rigorously analyzed. The two-
layer EMPC methods were applied to chemical process examples to demonstrate
the closed-loop properties. In all the examples considered, closed-loop stability was
achieved, the closed-loop economic performance under the two-layer EMPC frame-
work was better than that achieved under conventional approaches to optimization
and control, and the total on-line computational time was better with the two-layer
EMPC methods compared to that under one-layer EMPC methods.
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