
Chapter 5
State Estimation and EMPC

5.1 Introduction

In the previous chapters, all EMPC schemes are developed under the assumption of
state feedback. However, this assumption does not hold in many practical applica-
tions. To address this issue, in this chapter, we introduce two output feedback EMPC
schemes based on state estimation.

First, working with a class of full-state feedback linearizable nonlinear systems,
a high-gain observer-based output feedback EMPC scheme is presented. In this
scheme, a high-gain observer is used to estimate the system state using output mea-
surements and the EMPC uses the observer state estimates. Sufficient conditions
for the stability of the closed-loop system are derived using singular perturbation
arguments. A chemical process example is used to demonstrate the ability of the
high-gain observer-based EMPC to achieve time-varying operation that leads to a
superior economic performance compared to the performance achieved under steady-
state operation.

To improve the robustness of the closed-loop system especially to plant/model
mismatch and uncertainties and to reduce the sensitivity of the state observer to
measurement noise, a robust moving horizon estimation (RMHE) based output feed-
back EMPC design is subsequently presented. Bounded process and measurement
noise is considered. To achieve fast convergence of the state estimates to the actual
state (inducing an effective separation principle between the state observer and con-
troller designs), a deterministic (high-gain) observer is first applied for a small time
period with continuous output measurements to drive the estimation error to a small
value. After the initial time period, a RMHE designed based on the deterministic
observer is used to provide more accurate and smooth state estimates to the EMPC
and thus, improves the robustness of the closed-loop system to noise. In the RMHE
design, the deterministic observer is used to calculate a reference estimate and a con-
fidence region for the state estimate. The confidence region is subsequently used as
a constraint in the RMHE problem. Closed-loop stability is rigorously analyzed, and
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136 5 State Estimation and EMPC

conditions that ensure closed-loop stability are derived. Extensive simulations based
on a chemical process example illustrate the effectiveness of the second scheme.

5.1.1 System Description

We consider nonlinear systems described by the following state-space model:

ẋ(t) = f (x(t)) + g(x(t))u(t) + l(x(t))w(t)
y(t) = h(x(t)) + v(t)

(5.1)

where x(t) ∈ R
n denotes the state vector, u(t) ∈ R

p denotes the control (manipu-
lated) input vector, w(t) ∈ R

m denotes the disturbance vector, y(t) ∈ R
q denotes

the measured output vector and v(t) ∈ R
q is the measurement noise vector. The

control input vector is restricted to a nonempty convex set U ⊆ R
p such that

U := {u ∈ R
p : |u| ≤ umax} where umax is the magnitude of the input constraint.

It is assumed that the noise vectors are bounded such as w(t) ∈ W and v(t) ∈ V for
all t ≥ 0 where

W := {w ∈ R
m : |w| ≤ θw, θw > 0}

V := {v ∈ R
q : |v| ≤ θv, θv > 0}

where θw and θv are positive real numbers. Moreover, it is assumed that the output
measurement vector y of the system is continuously available at all times. It is
further assumed that f , g, l and h are sufficiently smooth functions and f (0) = 0
and h(0) = 0.

5.1.2 Stabilizability Assumption

We assume that there exists a state feedback controller u = k(x), which renders the
origin of the nominal closed-loop system asymptotically and locally exponentially
stable while satisfying the input constraints for all the states x inside a given stabil-
ity region. Using converse Lyapunov theorems, this assumption implies that there
exist class K functions αi (·), i = 1, 2, 3, 4 and a continuously differentiable Lya-
punov function V : D → R for the closed-loop system, that satisfy the following
inequalities:

α1(|x |) ≤ V (x) ≤ α2(|x |) (5.2a)

∂V (x)

∂x
( f (x) + g(x)k(x)) ≤ −α3(|x |) (5.2b)

∣
∣
∣
∣

∂V (x)

∂x

∣
∣
∣
∣
≤ α4(|x |) (5.2c)
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k(x) ∈ U (5.2d)

for all x ∈ D ⊆ R
n where D is an open neighborhood of the origin. We denote the

region Ωρ ⊆ D as the stability region of the closed-loop system under the controller
k(x). Using the smoothness assumed for f and g, and taking into account that the
manipulated input is bounded, there exists a positive constant M such that

| f (x) + g(x)u| ≤ M (5.3)

for all x ∈ Ωρ and u ∈ U. In addition, by the continuous differentiable property of the
Lyapunov function V and the smoothness of f and g, there exist positive constants
Lx , Lu , Cx , Cg′ and Cg such that

∣
∣
∣
∣

∂V (x)

∂x
f (x) − ∂V (x ′)

∂x
f (x ′)

∣
∣
∣
∣
≤ Lx |x − x ′|

∣
∣
∣
∣

∂V (x)

∂x
g(x) − ∂V (x ′)

∂x
g(x ′)

∣
∣
∣
∣
≤ Lu |x − x ′|

| f (x) − f (x ′)| ≤ Cx |x − x ′|
|g(x) − g(x ′)| ≤ Cg′ |x − x ′|
∣
∣
∣
∣

∂V (x)

∂x
g(x)

∣
∣
∣
∣
≤ Cg

(5.4)

for all x , x ′ ∈ Ωρ and u ∈ U.

5.2 High-Gain Observer-Based EMPC Scheme

To simplify the presentation but without loss of generality, we restrict our consid-
eration to single-input single-output nonlinear systems in this section. Moreover,
we consider systems without process disturbances and measurement noise. The
later assumption is relaxed in the subsequent section where robustness is explic-
itly addressed. The system in Eq.5.1 reduces to the following system:

ẋ = f (x) + g(x)u

y = h(x)
(5.5)

where u ∈ R and y ∈ R. The presented approach may be extended to multi-input
multi-output systems in a conceptually straightforward manner.

It is assumed that the system in Eq.5.5 is full-state feedback linearizable. Thus,
the relative degree of the output with respect to the input is n. Assumption 5.1 below
states this requirement.
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Assumption 5.1 There exists a set of coordinates

z =

⎡

⎢
⎢
⎢
⎣

z1
z2
...

zn

⎤

⎥
⎥
⎥
⎦

= T (x) =

⎡

⎢
⎢
⎢
⎣

h(x)
L f h(x)

...

Ln−1
f h(x)

⎤

⎥
⎥
⎥
⎦

(5.6)

such that the system of Eq.5.1 may be written as:

ż1 = z2
...

żn−1 = zn
żn = Ln

f h(T−1(z)) + LgL
n−1
f h(T−1(z))u

y = z1

where LgL
n−1
f h(x) �= 0 for all x ∈ R

n (L f h(x) and Lgh(x) denote Lie derivatives
of the function h with respect to f and g, respectively).

Using Assumption 5.1, the system of Eq.5.5 may be rewritten in the following
compact form:

ż = Az + B[Ln
f h(T−1(z)) + LgL

n−1
f h(T−1(z))u]

y = Cz

where

A =
[

0n−1 In−1

0 0Tn−1

]

, B =
[

0n−1

1

]

, C =
[

1
0n−1

]T

,

0n−1 denotes a n − 1 dimensional vector with all elements equal to zero, and In−1

denotes the n − 1 by n − 1 identity matrix.

Remark 5.1 Assumption 5.1 imposes certain practical restrictions on the applica-
bility of the method. However, this should be balanced with the nature of the
results achieved by the output feedback controller in the sense that for a suffi-
ciently large observer gain, the closed-loop system under the output feedback con-
troller approaches the closed-loop stability region and performance of the state feed-
back controller. Essentially, a nonlinear separation-principle is achieved because of
Assumption 5.1 and the use of a high-gain observer (please see Theorem 5.1). This is
an assumption imposed in most previous works that use high-gain observers for state
estimation, starting from the early work of Khalil and co-workers [1]. With respect
to practical restrictions, our example demonstrates that the method is applicable to a
class of chemical reactor models. The requirement of full state linearizability may be
relaxed to input/output linearizability where the relative degree r is smaller than the
system dimension n. For the input/output linearizability case, an additional observer
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is required to estimate the state of the inverse dynamics; please see [2] for a detailed
development of this case.

5.2.1 State Estimation via High-Gain Observer

The state estimation-basedEMPCdeveloped in this section takes advantage of a high-
gain observer [1, 3], which obtains estimates of the output derivatives up to order
n − 1 and consequently, computes estimates of the transformed state z. From the
estimated transformed state, the system state may be estimated through the inverse
transformation T−1(·). The state estimate is denoted by x̂ . Proposition 5.1 below
defines the high-gain observer equations and establishes precise conditions under
which the combination of the high-gain observer and of the controller k(x) together
with appropriate saturation functions to eliminate wrong estimates enforce asymp-
totic stability of the origin in the closed-loop system for sufficiently large observer
gain. The proof of the proposition follows from the results in [2, 4].

Proposition 5.1 Consider the nonlinear system of Eq.5.5 for which Assumption 5.5
holds. Also, assume that there exists a k(x) for which Eq.5.2 holds and it enforces
local exponential stability of the origin in the closed-loop system. Consider the
nonlinear system of Eq.5.5 under the output feedback controller

u = k(x̂) (5.7)

where
x̂ = T−1(sat (ẑ)) (5.8)

and ˙̂z = Aẑ + L(y − Cẑ) (5.9)

with

L =
[a1

ε

a2
ε2

· · · an
εn

]T
,

and the parameters ai are chosen such that the roots of

sn + a1s
n−1 + · · · + an−1s + an = 0 (5.10)

are in the open left-half of the complex plane. Then given δ, there exists ε∗ such
that if ε ∈ (0, ε∗], |ẑ(0)| ≤ zm, x(0) ∈ Ωδ with zm being the maximum of the vector
ẑ for |ẑ| ≤ βz(δz, 0) where βz is a class K L function and δz = max{|T (x)|, x ∈
Ωδ}; the origin of the closed-loop system is asymptotically stable. This stability
property implies that for ε ∈ (0, ε∗] and given some positive constant em > 0 there
exists positive real constant tb > 0 such that if x(0) ∈ Ωδ and |ẑ(0)| ≤ zm, then
|x(t) − x̂(t)| ≤ em for all t ≥ tb.
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Remark 5.2 In Proposition 5.1, the saturation function, sat (·), is used to eliminate
the peaking phenomenon associated with the high-gain observer, see for example [1].
Also, the estimated state x̂ is considered to have converged to the actual state x
when the estimation error |x − x̂ | is less than a given bound em . The time needed to
converge, is given by tb which is proportional to the observer gain 1/ε. During this
transient, the value of the Lyapunov function V (x) may increase.

5.2.2 High-Gain Observer-Based EMPC

In this section, we consider the design of an estimation-based LEMPC for nonlinear
systems. We assume that the LEMPC is evaluated at synchronous time instants
{tk≥0} with tk = t0 + kΔ, k = 0, 1, . . . where t0 = 0 is the first time that LEMPC is
evaluated and Δ > 0 is the LEMPC sampling time.

5.2.2.1 Implementation Strategy

The high-gain observer of Eq.5.9 continuously receives output measurements and
computes estimated system states. At each sampling time tk , the LEMPC obtains the
estimated system state, which is denoted by x̂(tk), from the observer. Based on x̂(tk),
the LEMPC uses the system model of Eq.5.5 to predict the future evolution of the
system over a finite prediction horizon while minimizing an economic cost function.

The two-mode operation paradigm presented in Chap.4 is adopted in the design
of the LEMPC. From the initial time t0 up to a specific time ts the LEMPC operates
in the first operation mode to optimize the economic cost function while maintaining
the closed-loop system state in the stability region Ωρ . Without loss of generality, ts
is assumed to be a multiple of LEMPC sampling time. In the first operation mode,
a subset of the stability region, denoted by Ωρe with ρe < ρ, is defined in order to
account for the high-gain observer effect, i.e., there is a discrepancy between the
estimated state and the actual state. If the estimated state is in the region Ωρe , the
LEMPCminimizes the cost function while constraining the predicted state trajectory
to be within the regionΩρe over the prediction horizon. If the estimated state is in the
region Ωρ\Ωρe , the LEMPC computes control actions that optimize the economic
cost subject to a condition that ensures that the control actions drive the system state
to the region Ωρe . After time ts , the LEMPC operates in the second operation mode
and calculates the inputs in a way that the state of the closed-loop system is driven
to a neighborhood of the desired steady-state.

The above described implementation strategy of the LEMPCmay be summarized
as follows:

Algorithm 5.1 High-gain observer-based LEMPC implementation algorithm

1. Based on the output measurements y(t), the high-gain observer continuously
estimates the state x̂(t) (for all t ≥ t0 = 0). The LEMPC receives the estimated
state at a sampling time tk from the observer.

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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2. If tk < ts , go to Step 3. Else, go to Step 4.
3. If x̂(tk) ∈ Ωρe , go to Step 3.1. Else, go to Step 3.2.

3.1. The controller optimizes the economic cost function while constraining the
predicted state trajectory to lie within Ωρe . Go to Step 5.

3.2. The controller optimizes the economic cost function while ensuring the com-
puted control actions drive the state to the region Ωρe . Go to Step 5.

4. The controller computes control actions that drive the state to a small neighbor-
hood of the origin.

5. Go to Step 1 (k ← k + 1).

5.2.2.2 LEMPC Formulation

The LEMPC is evaluated at each sampling time to obtain the future input trajectories
based on estimated state x̂(tk) provided by the high-gain observer. Specifically, the
optimization problem of the LEMPC is as follows:

min
u∈S(Δ)

∫ tk+N

tk

le(x̃(τ ), u(τ )) dτ (5.11a)

s.t. ˙̃x(t) = f (x̃(t)) + g(x̃(t))u(t) (5.11b)

x̃(tk) = x̂(tk) (5.11c)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (5.11d)

V (x̃(t)) ≤ ρe, ∀ t ∈ [tk, tk+N ),

if V (x̂(tk)) ≤ ρe and tk < ts (5.11e)

LgV (x̂(tk))u(tk) ≤ LgV (x̂(tk))k(x̂(tk)),

if V (x̂(tk)) > ρe or tk ≥ ts (5.11f)

where x̃ is the predicted trajectory of the system with control inputs calculated by
the LEMPC. The notation used in the LEMPC of Eq.5.11 is similar to that of the
LEMPC of Eq.4.3. The constraint of Eq.5.11b is the system model used to predict
the future evolution of the system. The model is initialized with the estimated state
x̂(tk) computed by the high-gain observer. The constraint of Eq.5.11d accounts for
the inputs constraints. The constraint of Eq.5.11e is associated with the mode 1
operation of the LEMPC, which restricts the predicted system state to be in the set
Ωρe , while the constraint of Eq.5.11f is associated with the mode 2 operation of the
LEMPC. The latter constraint restricts the control input for the first sampling period
of the prediction horizon so that the amount of reduction of the Lyapunov function
value is at least at the same level as that achieved by applying the controller k(x).
The constraint of Eq.5.11f is used when x̂(tk) /∈ Ωρe or when tk ≥ ts .

The optimal solution to the optimization problem is denoted by u∗(t |tk) for t ∈
[tk, tk+N ). The control actions computed by the LEMPC that are applied to the system
are defined as follows:

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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u(t) = u∗(t |tk), ∀ t ∈ [tk, tk+1) (5.12)

which is computed at each sampling time.

5.2.3 Closed-Loop Stability Analysis

In this subsection, the closed-loop stability of the output feedback EMPC is analyzed
and a set of sufficient conditions is derived. In order to present the results, we need
the following proposition, which states the closed-loop stability properties under the
LEMPCwith full state feedback. The proposition is a slight variation of Theorem 4.1,
and therefore, its proof is omitted.

Proposition 5.2 (Theorem 4.1) Consider the system of Eq.5.5 in closed-loop under
the LEMPC of Eq.5.11 with state feedback, i.e., x̃(tk) = x(tk), based on a controller
k(·) that satisfies the conditions of Eq.5.2. Let εw > 0,Δ > 0 and ρ > ρs > 0 satisfy
the following constraint:

− α3(α
−1
2 (ρs)) + LxMΔ ≤ −εw/Δ. (5.13)

If x(0) ∈ Ωρ , then x(t) ∈ Ωρ for all t ≥ 0. Furthermore, there exists a class K L
function β and a class K function γ such that

|x(t)| ≤ β(|x(t∗)|, t − t∗) + γ (ρ∗) (5.14)

with ρ∗ = max{V (x(t + Δ)) : V (x(t)) ≤ ρs}, for all x(t∗) ∈ Bδ ⊂ Ωρ and for all
t ≥ t∗ > ts where t∗ is such that x(t∗) ∈ Bδ .

Theorem 5.1 below provides sufficient conditions such that the state estimation-
based LEMPC of Eq.5.11 with the high-gain observer of Eq.5.9 guarantees that
the state of the closed-loop system of Eq.5.5 is always bounded and is ultimately
bounded in a small region containing the origin. To this end, let:

ei = 1

εn−i
(y(i−1) − ẑi ), i = 1, . . . , n, (5.15)

eT = [e1 e2 · · · en] (5.16)

and

A∗ =

⎡

⎢
⎢
⎢
⎣

−a1 1 0 · · · 0 0
...

...
...

. . .
...

...

−an−1 0 0 · · · 0 1
−an 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎦

, b =

⎡

⎢
⎢
⎢
⎣

0
...

0
1

⎤

⎥
⎥
⎥
⎦

(5.17)

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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where y(i−1) is the (i − 1)-th derivative of the output measurement y and ẑi is the
i-th component of ẑ.

Theorem 5.1 Consider the closed-loop system of Eq.5.5 with the state estimation-
based LEMPC of Eq.5.11 based on a feedback controller k(·) that satisfies the
conditions of Eq.5.2. Let Assumption 5.1, Eqs.5.13, 5.15–5.17 hold and choose the
parameters ai (i = 1, . . . , n) such that the roots of Eq.5.10 are in the open left-half
of the complex plane. Then there exist a classK L function β, a classK function
γ , a pair of positive real numbers (δx , dx ), 0 < ρe < ρ, ε∗ > 0 and Δ∗ > 0 such
that if max{|x(0)|, |e(0)|} ≤ δx , ε ∈ (0, ε∗], Δ ∈ (0,Δ∗],

− α3(α
−1
1 (ρs)) + (MΔ + em)(Lx + Luu

max) < 0 (5.18)

and
ρe ≤ ρ − α4(α

−1
1 (ρ))M max{tb(ε),Δ} (5.19)

with tb defined in Proposition 5.1, then x(t) ∈ Ωρ for all t ≥ 0. Furthermore, for all
t ≥ t∗ > ts , the following bound holds:

|x(t)| ≤ β(|x(t∗)|, t − t∗) + γ (ρ∗) + dx . (5.20)

Proof When the control action applied to the closed-loop system of Eq.5.5 is
obtained from the state estimation-based LEMPC of Eq. 5.11, the closed-loop system
takes the following singularly perturbed form:

ẋ = f (x) + g(x)u∗(x̂)

εė = A∗e + εbLn
f h(T−1(z)) + εbLgL

n−1
f h(T−1(z))u∗(x̂)

(5.21)

where the notation u∗(x̂) is used to emphasize that the control action computed by
the state estimation-based LEMPC is a function of the estimated state.

First, we compute the reduced-order slow and fast closed-loop subsystems related
toEq.5.21 and prove the closed-loop stability of the slow and fast subsystems. Setting
ε = 0 in Eq.5.21, we obtain the corresponding slow subsystem as follows:

ẋ = f (x) + g(x)u∗(x̂) (5.22a)

A∗e = 0 (5.22b)

Taking into account the fact that A∗ is non-singular and e = [0 0 · · · 0]T is the
unique solution of Eq.5.22b, we may obtain ẑi = y(i−1), i = 1, . . . , n and x(t) =
x̂(t). This means that the closed-loop slow subsystem is reduced to the one studied
in Proposition 5.2 under state feedback. According to Proposition 5.2, if x(0) ∈
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Bδ ⊂ Ωρ , then x(t) ∈ Ωρ for all t ≥ 0 and for all t ≥ t∗ > ts , the following bound
holds:

|x(t)| ≤ β(|x(t∗)|, t − t∗) + γ (ρ∗) (5.23)

where ρ∗ and t∗ have been defined in Proposition 5.2.
Introducing the fast time scale τ̄ = t/ε and setting ε = 0, the closed-loop fast

subsystem may be represented as follows:

de

d τ̄
= A∗e . (5.24)

Since A∗ is Hurwitz, the closed-loop fast subsystem is also stable.Moreover, there
exist ke ≥ 1 and ae > 0 such that:

|e(τ̄ )| ≤ ke|e(0)|e−ae τ̄ (5.25)

for all τ̄ ≥ 0.
Next, we consider t ∈ (0,max{Δ, tb}] and t ≥ max{Δ, tb} separately and prove

that if conditions stated in Theorem 1 are satisfied, boundedness of the state is
ensured. Note that tb decreases as ε decreases. When x(0) ∈ Bδx ⊂ Ωρe ⊂ Ωρ , and
δx < δ, considering the closed-loop system state trajectory:

ẋ(t) = f (x(t)) + g(x(t))u∗(x̂(0))

for t ∈ (0,max{Δ, tb}] and using Eqs. 5.2 and 5.3, we obtain that for all t ∈
(0,max{Δ, tb}]:

V (x(t)) = V (x(0)) +
∫ t

0
V̇ (x(τ ))dτ

= V (x(0)) +
∫ t

0

∂V (x(τ ))

∂x
ẋ(τ )dτ

≤ ρe + M max{Δ, tb(ε)}α4(α
−1
1 (ρ))

(5.26)

Since tb decreases as ε decreases, there exist Δ1 and ε1 such that if Δ ∈ (0,Δ1] and
ε ∈ (0, ε1], Eq. 5.19 holds and thus,

V (x(t)) < ρ (5.27)

for all t ∈ (0,max{Δ, tb}].
For t ≥ max{Δ, tb}, we have that |x(t) − x̂(t)| ≤ em (this follows from Propo-

sition 1 and em decreases as ε decreases), and we may write the time derivative of
the Lyapunov function along the closed-loop system state of Eq. 5.5 under the state
estimation-based LEMPC of Eqs. 5.11f, 5.9 and 5.11 for all t ∈ [tk, tk+1) (assuming
without loss of generality that tk = max{Δ, tb}) as follows
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V̇ (x(t)) = ∂V (x(t))

∂x
( f (x(t)) + g(x(t))u∗(x̂(tk))) . (5.28)

Adding and subtracting the term ∂V (x̂(tk))/∂x( f (x̂(tk)) + g(x̂(tk))u∗(x̂(tk))) to/
from the above inequality and from Eqs. 5.2 and 5.11f, we obtain

V̇ (x(t)) ≤ −α3(α
−1
1 (ρs))

+∂V (x)

∂x

(

f (x(t)) − f (x̂(tk)) + (g(x(t)) − g(x̂(tk))u
∗(x̂(tk)))

)

(5.29)
Using the smoothness properties of V, f, g and Eq.5.4, we may obtain

V̇ (x(t)) ≤ −α3(α
−1
1 (ρs)) + (Lx + Luu

max)|x(t) − x̂(tk)| (5.30)

From the triangle inequality, Eq. 5.3, and the fact that the estimation error is bounded
by em for t ≥ max{Δ, tb},

|x(t) − x̂(tk)| ≤ |x(t) − x(tk)| + |x(tk) − x̂(tk)| ≤ MΔ + em

for x(t), x(tk), x̂(tk) ∈ Ωρ where |x(tk) − x̂(tk)| ≤ em . Thus,

V̇ (x(t)) ≤ −α3(α
−1
1 (ρs)) + (Lx + Luu

max)(MΔ + em) (5.31)

Picking ε2 and Δ2 such that for all ε ∈ (0, ε2] and for all Δ ∈ (0,Δ2], Eq. 5.18 is
satisfied, the closed-loop system state x(t) is bounded in Ωρ , for all t ≥ max{Δ, tb}.
Finally, using similar arguments to the proof of Theorem 1 in [5], we have that there
exist class K L function β, positive real numbers (δx , dx ) (note that the existence
of δx < δ such that |x(0)| ≤ δx follows from the smoothness of V ), and 0 < ε∗ <

min{ε1, ε2} and 0 < Δ∗ < min{Δ1,Δ2} such that if max{|x(0)|, |e(0)|} ≤ δx , ε ∈
(0, ε∗] and Δ ∈ (0,Δ∗], then, the bound of Eq.5.20 holds for all t ≥ 0.

Remark 5.3 Under the state feedbackLEMPC, the closed-loop systemstate is always
bounded inΩρ for bothmode 1 andmode 2 operation; however, formode 2 operation,
after time t∗ the closed-loop system state enters the ball Bδ , and the closed-loop
system state may be bounded by Eq.5.23. On the other hand, in state estimation-
based LEMPC, the closed-loop system state is always bounded in Ωρ , if the initial
system state belongs in Bδx ⊂ Ωρe ⊂ Ωρ .

Remark 5.4 The major motivation for taking advantage of the nonlinear controller
k(x) arises from the need for formulating an a priori feasible economicMPCproblem
for a well-defined set of initial conditions. The control action of k(x) is always a
feasible candidate for the LEMPC design (even though the LEMPC via optimization
is free to choose a different control action) and the LEMPC may take advantage of
k(x) to characterize its own corresponding stability region. In addition, the closed-
loop system state is always bounded in the invariant stability region of k(x).
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5.2.4 Application to a Chemical Process Example

Consider awell-mixed, non-isothermal continuous stirred tank reactor (CSTR)where
an irreversible, second-order, endothermic reaction A → B takes place, where A is
the reactant and B is the desired product. The feedstock of the reactor consists
of the reactant A in an inert solvent with flow rate F , temperature T0 and molar
concentration CA0. Due to the non-isothermal nature of the reactor, a jacket is used
to provide heat to the reactor. The dynamic equations describing the behavior of
the reactor, obtained through material and energy balances under standard modeling
assumptions, are given below:

dCA

dt
= F

VL
(CA0 − CA) − k0e

−E/RTC2
A (5.32a)

dT

dt
= F

VL
(T0 − T ) + −ΔH

ρLCp
k0e

−E/RTC2
A + Qs

ρLCpVL
(5.32b)

where CA denotes the concentration of the reactant A, T denotes the temperature of
the reactor, Qs denotes the steady-state rate of heat supply to the reactor, VL repre-
sents the volume of the reactor, ΔH , k0, and E denote the enthalpy, pre-exponential
constant and activation energy of the reaction, respectively, andCp and ρL denote the
heat capacity and the density of the fluid in the reactor, respectively. The values of the
process parameters used in the simulations are given in Table5.1. The process model
of Eq.5.32 is numerically simulated using an explicit Euler integration method with
integration step hc = 1.0 × 10−3 h.

The process model has one stable steady-state in the operating range of interest.
The control objective is to economically optimize the process in a region around the
stable steady-state (CAs , Ts) to maximize the average production rate of B through
manipulation of the concentration of A in the inlet to the reactor, CA0. The steady-
stateCA0 value associatedwith the steady-state point is denoted byCA0s . The process
model of Eq.5.32 belongs to the following class of nonlinear systems:

ẋ(t) = f (x(t)) + g(x(t))u(t)

Table 5.1 CSTR model parameter values

T0 = 300 K F = 5.0 m3 h−1

VL = 1.0 m3 E = 5.0 × 103 kJ kmol−1

k0 = 13.93 m3 kmol−1 h−1 ΔH = 1.15 × 104 kJ kmol−1

Cp = 0.231 kJ kg−1K−1 R = 8.314 kJ kmol−1K−1

ρL = 1000 kg m−3 CAs = 2.0 kmolm−3

Ts = 350 K CA0s = 4.0 kmol m−3

Qs = 1.73 × 105 kJ h−1
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where xT = [x1 x2] = [CA − CAs T − Ts] is the state, u = CA0 − CA0s is the input,
f = [ f1 f2]T and gi = [gi1 gi2]T (i = 1, 2) are vector functions. The input is sub-
ject to constraint as follows: |u| ≤ 3.5 kmolm−3. There is an economic measure
considered in this example as follows:

1

t f

∫ t f

0
k0e

−E/RT (τ )C2
A(τ ) dτ (5.33)

where t f is the time duration of the reactor operation. The economic objective func-
tion of Eq.5.33 describes the average production rate over the entire process oper-
ation. We also consider that there is a limitation on the amount of reactant material
which may be used over a specific period tp = 1.0 h. Specifically, u = CA0 − CA0s

should satisfy the following constraint:

1

tp

∫ tp

0
u(τ ) dτ = 1.0 kmolm−3. (5.34)

It should be emphasized that due to the second-order dependence of the reaction
rate on the reactant concentration, the production rate may be improved through
switching between the upper and lower bounds of the manipulated input, as opposed
to steady-state operation via uniform in time distribution of the reactant in the feed;
refer to the discussion contained in Sect. 1.3.2 for further explanation of this point.

In this section, we will design a state estimation-based LEMPC to manipulate
the CA0 subject to the material constraint. In the first set of simulations, we assume
that state feedback information is available at synchronous time instants while in the
second set of simulations, we take advantage of a high-gain observer to estimate the
reactant concentration from temperature measurements.

In terms of the Lyapunov-based controller, we use a proportional controller (P-
controller) of the form u = −γ1x1 − γ2x2 subject to input constraintswhere γ1 = 1.6
and γ2 = 0.01 and a quadratic Lyapunov function V (x) = xT Px where

P = diag([110.11, 0.12]) ,

and ρ = 430. It should be emphasized thatΩρ has been estimated through evaluation
of V̇ when we apply the proportional controller. We assume that the full system state
x = [x1 x2]T is measured and sent to the LEMPC at synchronous time instants
tk = kΔ, k = 0, 1, . . ., with Δ = 0.01 h = 36 s in the first set of simulations. For
the output feedback LEMPC (second set of simulations), only temperature (x2) is
measured and a high-gain observer is utilized to estimate the reactant concentration
from temperature measurements.

Considering thematerial constraint which needs to be satisfied through one period
of process operation, a decreasing LEMPC horizon sequence N0, . . . , N99 where
Ni = 100 − i and i = 0, . . . , 99 is utilized at the different sampling times. At each
sampling time tk , the LEMPCwith horizon Nk takes into account the leftover amount
of reactant material and adjusts its horizon to predict future system state up to time

http://dx.doi.org/10.1007/978-3-319-41108-8_1
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tp = 1.0 h to maximize the average production rate. Since the LEMPC is evaluated
at discrete-time instants during the closed-loop simulation, the material constraint is
enforced as follows:

M−1
∑

i=0

u(ti ) = tp
Δ
1.0 kmolm−3 (5.35)

where M = 100. As LEMPC proceeds at different sampling times, the constraint is
adjusted according to the optimal manipulated input at previous sampling times.

The state feedback LEMPC formulation for the chemical process example in
question has the following form:

max
u∈S(Δ)

1

NkΔ

∫ tk+Nk

tk

[k0e−E/R(x̃2(τ )+Ts )(x̃1(τ ) + CAs)
2] dτ (5.36a)

s.t. ˙̃x(t) = f (x̃(t)) + g(x̃(t))u(t), ∀ t ∈ [tk, tk+Nk ) (5.36b)

x̃(tk) = x(tk) (5.36c)

u(t) ∈ U, ∀ t ∈ [tk, tk+Nk ) (5.36d)
k+Nk−1
∑

i=k

u(ti |tk) = ζk (5.36e)

V (x̃(t)) ≤ ρ, ∀ t ∈ [tk, tk+Nk ) (5.36f)

where x(tk) is the process state measurement at sampling time tk and the predicted
system state along the LEMPC horizon is restricted to lie within the invariant set Ωρ

through enforcement of the constraint of Eq.5.36f subject to the manipulated input
constraint of Eq.5.36d. The constraint of Eq.5.36e implies that the optimal values
of u along the prediction horizon should be chosen to satisfy the material constraint
where the explicit expression of ζk may be computed based on Eq.5.35 and the
optimal manipulated input values prior to sampling time tk . In other words, this
constraint indicates the amount of the remaining reactant material at each sampling
time. Thus, it ensures that the material constraint is enforced through one period of
process operation.

In terms of the initial guess for solving the optimization problem of Eq.5.36, at the
first sampling time we take advantage of the Lyapunov-based controller while for the
subsequent sampling times, a shifted version of the optimal solution of the previous
sampling time is utilized. The simulations were carried out using Java programming
language in aPentium3.20GHzcomputer and the optimization problemswere solved
using the open source interior point optimizer Ipopt [6]. The purpose of the following
set of simulations is to demonstrate that: (I) the LEMPC design subject to state and
output feedback restricts the system state in an invariant set; (II) the LEMPC design
maximizes the economic measure of Eq.5.36a; and (III) the LEMPC design achieves
a higher objective function value compared to steady-state operation with equal
distribution in time of the reactant material. We have also performed simulations
for the case that the constraint of Eq.5.36f is not included in the LEMPC design of
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Fig. 5.1 The stability region Ωρ and the state trajectories of the process under the LEMPC design
of Eq.5.36 with state feedback and initial state (CA(0), T (0)) = (1.3 kmolm−3, 320K) for one
period of operation with (solid line) and without (dash-dotted line) the constraint of Eq.5.36f. The
symbols ◦ and× denote the initial (t = 0.0 h) and final (t = 1.0 h) state of these closed-loop system
trajectories, respectively
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Fig. 5.2 State trajectories of the process under the LEMPC design of Eq.5.36 with state feedback
and initial state (CA(0), T (0)) = (1.3 kmolm−2, 320K) for one period of operation with (solid
line) and without (dash-dotted line) the constraint of Eq.5.36f

Eq. 5.36. In this case, the process state is not constrained to be in a specific invariant
set.

In the first set of simulations, we take the CSTR operation time t f = tp = 1.0 h.
Figures5.1, 5.2 and 5.3 illustrate the process state profile in state space (temperature
T versus concentration CA) considering the stability region Ωρ , the time evolu-
tion of process state and the manipulated input profile for the LEMPC formulation
of Eq.5.36 with and without the state constraint of Eq.5.36f, respectively. In both
cases, the initial process state is (1.3 kmolm−3, 320K). For both cases, the material
constraint is satisfied while in the unconstrained state case, there is more freedom
to compute the optimal input trajectory to maximize the average production rate. It
needs to be emphasized that the process state trajectory under the LEMPC design of
Eq.5.36 subject to the constraint of Eq. 5.36f never leaves the invariant level set Ωρ

when this constraint is enforced.
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Fig. 5.3 Manipulated input trajectory under the LEMPC design of Eq.5.36 with state feedback and
initial state (CA(0), T (0)) = (1.3 kmolm−3, 320K) for one period of operation with (solid line)
and without (dash-dotted line) the constraint of Eq.5.36f

We have also compared the time-varying operation through LEMPC of Eq.5.36 to
steady-state operation where the reactant material is uniformly distributed in the feed
to the reactor over the process operation time of 1h from a closed-loop performance
point of view. To carry out this comparison, we have computed the total cost of each
operating scenario based on an index of the following form:

J = 1

tM

M−1
∑

i=0

[k0e− E
RT (ti ) C2

A(ti )]

where t0 = 0.0 h, tM = 1.0 h and M = 100. To be consistent in comparison, both
of the simulations have been initialized from the steady-state point (2.0 kmolm−3,

350K). We find that through time-varying LEMPC operation, there is approximately
7% improvement with respect to steady-state operation. Specifically, in the case of
LEMPC operation with ρ = 430 the cost is 13.48, in the case of LEMPC operation
with ρ = ∞ (LEMPC of Eq.5.36 without the state constraint of Eq. 5.36f) the cost
is 13.55 and in the case of steady-state operation the cost is 12.66.

We have also performed closed-loop simulation with the state estimation-based
LEMPC (again, t f = tp = 1.0 h). For this set of simulation, the high-gain observer
parameters are ε = 0.01, a1 = a2 = 1, ρe = 400 and zm = 1685; the high-gain
observer is of the form of Eq.5.9 with n = 2. In this case, the LEMPC formulation at
each sampling time is initialized by the estimated system state x̂(tk)while the output
(temperature) measurement is continuously available to the high-gain observer. To
ensure that the actual system state is restricted in Ωρ , we set ρe = 400. Figures5.4,
5.5 and 5.6 illustrate the process state profile in state-space (temperature T versus
concentration CA) considering the stability region Ωρ , the time evolution of process
states and themanipulated input profile for the LEMPC formulation of Eq. 5.36 using
high-gain observer and with the state constraint of Eq.5.36f, respectively. Similar to
the state feedback case, the initial process state is (1.3 kmolm−3, 320K). Through
LEMPC implementation, the material constraint is satisfied while the closed-loop
system state is restricted inside the stability region Ωρ . The cost is 12.98 which is
greater than the one for steady-state operation (12.66).

Also, we performed a set of simulations to compare LEMPC with the Lyapunov-
based controller from an economic closed-loop performance point of view for opera-
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Fig. 5.4 The stability region Ωρ and the state trajectories of the process under the state under the
state estimation-based LEMPC and initial state (CA(0), T (0)) = (1.3 kmolm−3, 320K) for one
period of operation subject to the constraint of Eq.5.36f. The symbols ◦ and × denote the initial
(t = 0.0 h) and final (t = 1.0 h) state of this closed-loop system trajectories, respectively
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Fig. 5.5 State trajectories of the process under the state estimation-based LEMPC and initial state
(CA(0), T (0)) = (1.3 kmolm−3, 320K) for one period of operation subject to the constraint of
Eq.5.36f
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Fig. 5.6 Manipulated input trajectory under the state estimation-based LEMPC and initial state
(CA(0), T (0)) = (1.3 kmolm−3, 320K) for one period of operation subject to the constraint of
Eq.5.36f
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Fig. 5.7 The stability region Ωρ and the state trajectories of the process under the state estimation-
based LEMPC and initial state (CA(0), T (0)) = (1.3 kmolm−3, 320K) for 10h operation in mode
1, followed by 10h of operation in mode 2 and finally, 10 h of operation in mode 1. The sym-
bols ◦ and × denote the initial (t = 0.0 h) and final (t = 30.0 h) state of this closed-loop system
trajectories, respectively
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Fig. 5.8 Reactant concentration trajectory of the process under the state estimation-based LEMPC
and initial state (CA(0), T (0)) = (1.3 kmolm−3, 320K) for 10h operation in mode 1, followed by
10h of operation in mode 2 and finally, 10 h of operation in mode 1

tion over two consecutive 1h periods, i.e., t f = 2.0 h and tp = 1.0 h. To be consistent
in this comparison in the sense that both the LEMPC and the Lyapunov-based con-
troller use the same, available amount of reactant material, we start the simulation
in both cases from the same initial condition (2.44 kmolm−3, 321.96K), which cor-
responds to the steady-state of the process when the available reactant material is
uniformly distributed over each period of operation. The objective of the Lyapunov-
based controller is to keep the system state at this steady-state, while the output
feedback LEMPC leads to time-varying operation that optimizes directly the eco-
nomic cost. The corresponding economic costs for this 2-h operation are 26.50 for
the LEMPC and 25.61 for the Lyapunov-based controller.

Furthermore, to demonstrate long-term reactor operation, i.e., t f = 30.0 h and
tp = 1.0 h,we operate the process in a time-varying fashion to optimize the economic
cost in mode 1 for the first 10h, then switch to mode 2 to drive the closed-loop state
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Fig. 5.9 Temperature trajectory of the process under the state estimation-based LEMPC and initial
state (CA(0), T (0)) = (1.3 kmolm−3, 320K) for 10h operation in mode 1, followed by 10h of
operation in mode 2 and finally, 10 h of operation in mode 1
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Fig. 5.10 Manipulated input trajectory under the state estimation-based LEMPC and initial state
(CA(0), T (0)) = (1.3 kmolm−3, 320K) for 10h operation inmode 1, followed by 10h of operation
in mode 2 and finally, 10 h of operation in mode 1

to the steady-state corresponding to u = 1.0, i.e., equal distribution with time of the
reactant material, for the next 10h, and finally, operate the process in mode 1 for the
last 10h. Figures5.7, 5.8, 5.9 and 5.10 display the results for this case, where the
closed-loop system successfully alternates between the two different types (time-
varying versus steady-state) of operation.

Finally, we performed a set of simulations to evaluate the effect of bounded mea-
surement noise. Figures5.11, 5.12 and 5.13 display the closed-loop system state and
manipulated input of the state-estimation-based LEMPC subject to bounded output
(temperature) measurement noise whose absolute value is bounded by 1.0K. As it
may be seen in Figs. 5.11, 5.12 and 5.13, the controller may tolerate the effect of
measurement noise; in this case, Ωρe was reduced to 370 to improve the robustness
margin of the controller to measurement noise. Economic closed-loop performance
in this case is 12.95.

5.3 RMHE-Based EMPC Scheme

In the previous section, a high-gain observer is used in the design of the output feed-
back EMPC without explicitly considering process and measurement noise. In order
to improve the robustness of the observer to plant-model mismatch and uncertainties
while reducing its sensitivity to measurement noise significantly, a robust moving
horizon estimation (RMHE) based output feedback LEMPC design is presented in
this section. We consider systems that may be described by Eq.5.1.
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Fig. 5.11 The stability regionΩρ and the state trajectories of the process under the state estimation-
based LEMPC and initial state (CA(0), T (0)) = (1.3 kmolm−3, 320K) for one period of operation
subject to the constraint of Eq.5.36f and bounded measurement noise. The symbols ◦ and× denote
the initial (t = 0.0 h) and final (t = 1.0 h) state of this closed-loop system trajectories, respectively
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Fig. 5.12 State trajectories of the process under the state estimation-based LEMPC and initial state
(CA(0), T (0)) = (1.3 kmolm−3, 320K) for one period of operation subject to the constraint of
Eq.5.36f and bounded measurement noise
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Fig. 5.13 Manipulated input trajectory under the state estimation-based LEMPC and initial state
(CA(0), T (0)) = (1.3 kmolm−3, 320K) for one period of operation subject to the constraint of
Eq.5.36f and bounded measurement noise
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5.3.1 Observability Assumptions

It is assumed that there exists a deterministic observer that takes the following general
form:

ż = F(ε, z, y) (5.37)

where z is the observer state, y is the output measurement vector and ε is a posi-
tive parameter. This observer together with the state feedback controller u = k(x)
of Sect. 5.1.2 form an output feedback controller: ż = F(ε, z, y), u = k(z) which
satisfies the following assumptions:

(1) there exist positive constants θ∗
w, θ

∗
v such that for each pair {θw, θv}with θw ≤ θ∗

w,
θv ≤ θ∗

v , there exist 0 < ρ1 < ρ, em0 > 0, ε∗
L > 0, ε∗

U > 0 such that if x(t0) ∈
Ωρ1 , |z(t0) − x(t0)| ≤ em0 and ε ∈ (ε∗

L , ε
∗
U ), the trajectories of the closed-loop

system are bounded in Ωρ for all t ≥ t0;
(2) and there exists e∗

m > 0 such that for each em ≥ e∗
m , there exists tb such that

|z(t) − x(t)| ≤ em for all t ≥ tb(ε).

Note that a type of observer that satisfies the above assumptions is a high-
gain observer like that presented in Sect. 5.2; see, also, [7] for results on high-gain
observers subject to measurement noise. From an estimate error convergence speed
point of view, it is desirable to pick the observer parameter ε as small as possible;
however, when the parameter ε is too small, i.e., the observer gain is too large, it will
make the observer very sensitive to measurement noise. In the observer assumptions,
a key idea is to pick the gain ε in a way that balances the estimate error convergence
speed to zero and the effect of the noise. In the remainder of this section, the estimate
given by the observer F will be denoted as z.

Remark 5.5 It is important to point out the difference between the positive constants
θ∗
w and θ∗

v and the bounds θw and θv. Specifically, the positive constants θ∗
w and θ∗

v
correspond to theoretical bounds on the noise such that the closed-loop system under
the output feedback controller: ż = F(ε, z, y), u = k(z) is maintained in Ωρ . The
constants θ∗

w and θ∗
v depend on the stability properties of a given system under the

output feedback controller. On the other hand, the bounds θw and θv correspond to the
actual bound on the process and measurement noise for a given (open-loop) system.

5.3.2 Robust MHE

The idea of RMHE was initially developed in [8] integrating deterministic observer
techniques and optimization-based estimation techniques in a unified framework. In
the RMHE, an auxiliary deterministic nonlinear observer that is able to asymptoti-
cally track the nominal system state is used to calculate a confidence region. In the
calculation of the confidence region, bounded process and measurement noise are
taken into account. The RMHE problem is constrained to ensure that it computes
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a state estimate that is within the confidence region. By this approach, the RMHE
gives bounded estimation error in the case of bounded process noise. Moreover, the
RMHE could be used together with different arrival cost approximation techniques
and was shown to compensate for the error in the arrival cost approximation [8]. The
RMHE has been applied to the design of a robust output feedback Lyapunov-based
MPC [9] and has also been extended to estimate the state of large-scale systems in
a distributed manner [10]. The RMHE scheme in [8] will be adopted in this section
to take advantage of the tunable convergence speed of the observer presented in
the previous subsection while significantly reducing its sensitivity to measurement
noise.

The RMHE is evaluated at discrete time instants denoted by the time sequence
{tk}k≥0 with tk = t0 + kΔ, k = 0, 1, . . . where t0 is the initial time. In the RMHE
scheme, the deterministic observer, which is denoted by F , will be used to calculate a
reference state estimate at each sampling time fromcontinuous outputmeasurements.
Based on the reference state estimate, the RMHE determines a confidence region for
the actual system state. The RMHE computes a state estimate within the confidence
region based on a sequence of previous output measurements, a system model, and
bounds information of the process and measurement noise. The RMHE scheme at
time instant tk is formulated as follows:

min
x̃(tk−Ne ),...,x̃(tk )

k−1
∑

i=k−Ne

|w(ti )|2Q−1
m

+
k

∑

i=k−Ne

|v(ti )|2R−1
m

+ V̂T (tk−Ne) (5.38a)

s.t. ˙̃x(t) = f (x̃(t)) + g(x̃(t))u(t) + l(x̃(t))w(ti ), t ∈ [ti , ti+1], (5.38b)

v(ti ) = y(ti ) − h(x̃(ti )), i = k − Ne, k − Ne + 1, . . . , k (5.38c)

w(ti ) ∈ W, i = k − Ne, k − Ne + 1, . . . , k − 1 (5.38d)

v(ti ) ∈ V, i = k − Ne, k − Ne + 1, . . . , k (5.38e)

x̃(t) ∈ Ωρ, ∀ t ∈ [tk−Ne , tk] (5.38f)

|x̃(tk) − z(tk)| ≤ κ|y(tk) − h(z(tk))| (5.38g)

where Ne is the estimation horizon, Qm and Rm are the estimated covariancematrices
of w and v respectively, V̂T (tk−Ne) denotes the arrival cost which summarizes past
information up to tk−Ne , x̃ is the predicted state x in the above optimization problem,
y(ti ) is the output measurement at ti , z(tk) is an estimate given by the observer F
based on continuous measurements of y, and κ is a positive constant which is a
design parameter.

Once the optimization problem of Eq.5.38 is solved, an optimal trajectory of the
system state, x̃∗(tk−Ne), . . ., x̃

∗(tk), is obtained. The optimal estimate of the current
system state is denoted:

x̂∗(tk) = x̃∗(tk). (5.39)
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Note that in the optimization problem of Eq.5.38, w and v are assumed to be piece-
wise constant variables with sampling time Δ to ensure that Eq.5.38 is a finite
dimensional optimization problem.

In the optimization problem of Eq.5.38, z(tk) is a reference estimate calculated by
the observer F . Based on the reference estimate and the current output measurement,
y(tk), a confidence region that contains the actual system state is constructed, i.e.,
κ|y(tk) − h(z(tk))|. The estimate of the current state provided by the RMHE is only
allowed to be optimized within the confidence region. This approach ensures that the
RMHE inherits the robustness of the observer F and gives estimates with bounded
errors.

Remark 5.6 In order to account for the effect of historical data outside the estimation
window, an arrival cost which summarizes the information of those data is included
in the cost function of an MHE optimization problem. The arrival cost plays an
important role in the performance and stability of an MHE scheme. Different meth-
ods have been developed to approximate the arrival cost including Kalman filtering
and smoothing techniques for linear systems [11], extended Kalman filtering for
nonlinear systems [12], and particle filters for constrained systems [13].

5.3.3 RMHE-Based EMPC

Without loss of generality, it is assumed that the LEMPC is evaluated at time instants
{tk}k≥0 with sampling time Δ as used in the RMHE. In the LEMPC design, we will
take advantage of both the fast convergence rate of the observer F and the robustness
of the RMHE to measurement noise.

5.3.3.1 Implementation Strategy

In the approach, the observer F is initially applied for a short period to drive the
state estimate from the observer to a small neighborhood of the actual system state.
Once the estimate has converged to a small neighborhood of the actual system state,
the RMHE takes over the estimation task and provides smoother and optimal state
estimates to the LEMPC. Without loss of generality, we assume that tb is a multiple
integer of the sampling timeΔ in the sense that tb = bΔwhere b is a strictly positive
integer. In the first b sampling periods, the observer F is applied with continuously
output measurements, i.e., the observer is continuously evaluated and provides state
estimates to the LEMPC at every sampling time. Starting from tb, the RMHE is
activated and provides an optimal estimates of the system state to the LEMPC at
every subsequent sampling time. The LEMPC evaluates its optimal input trajectory
based on either the estimates provided by the observer F or the estimates from the
RMHE.
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The two-mode operation scheme is adopted in the LEMPCdesign. From the initial
time t0 up to a time ts , the LEMPC operates in the first operation mode to minimize
the economic cost function while maintaining the closed-loop system state in the
stability region Ωρ . In this operation mode, in order to account for the uncertainties
in state estimates and process noise, a regionΩρe with ρe < ρ is used. If the estimated
state is in the regionΩρe , the LEMPC optimizes the cost function while constraining
the predicted state trajectory be within the region Ωρe ; if the estimated state is in the
region Ωρ\Ωρe , the LEMPC computes control actions such that the state is forced
to the region Ωρe . After time ts , the LEMPC operates in the second operation mode
and calculates the inputs in a way that the state of the closed-loop system is driven
to a neighborhood of the desired steady-state. The implementation strategy of the
output feedback LEMPC described above may be summarized as follows:

Algorithm 5.2 RMHE-based LEMPC implementation algorithm

1. Initialize the observer F with z(t0) and continuously execute the observer F based
on the output measurements y.

2. At a sampling time tk , if tk < tb, go to Step 2.1; otherwise, go to Step 2.2.

2.1. The LEMPC gets a sample of the estimated system state z(tk) at tk from the
observer F , and go to Step 3.

2.2. Based on the estimate z(tk) provided by the observer F and output mea-
surements at the current and previous Ne sampling instants, i.e., y(ti ) with
i = k − Ne, . . . , k, the RMHE calculates the optimal state estimate x̂∗(tk).
The estimate x̂∗(tk) is sent to the LEMPC. Go to Step 3.

3. If tk < ts and if z(tk) ∈ Ωρe (or if x̂
∗(tk) ∈ Ωρe ), go to Step 3.1. Otherwise, go to

Step 3.2.

3.1. Based on z(tk) or x̂∗(tk), the LEMPC calculates its input trajectory to min-
imize the economic cost function while ensuring that the predicted state
trajectory over the prediction horizon lies within Ωρe . The first value of the
optimal input trajectory is applied to the system. Go to Step 4.

3.2. Based on z(tk) or x̂∗(tk), the LEMPC calculates its input trajectory to drive
the system state towards the origin. The first value of the input trajectory is
applied to the system. Go to Step 4.

4. Go to Step 2 (k ← k + 1).

In the remainder, we will use x̂ to denote the state estimate used in the LEMPC.
Specifically, x̂ at time tk is defined as follows:

x̂(tk) =
{

z(tk), if tk < tb
x̂∗(tk), if tk ≥ tb

(5.40)

Remark 5.7 In the implementation Algorithm 5.2 as well as in the RMHE design
of Eq.5.38, the observer F provides state estimate to the RMHE at every sampling
time and is independently evaluated from the RMHE. To improve the quality of the
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estimates provided by the observer F , the state of the observer F may be set to the
estimate of the RMHE at every sampling time since the estimates obtained from the
RMHE are expected to be more accurate. That is, at Step 2.2, the estimate x̂∗(tk) is
also sent to the observer F and the observer F resets its state to z(tk) = x̂∗(tk). The
state estimate z(tk+1) of the observer F at the next sampling time is computed with
continuous output measurements received over the sampling period (t ∈ [tk, tk+1])
initialized with z(tk) = x̂∗(tk).

5.3.3.2 LEMPC Design

The LEMPC is evaluated every sampling time to obtain the optimal input trajectory
based on estimated state x̂(tk) provided by the observer F or the RMHE. Specifically,
the optimization problem of the LEMPC is formulated as follows:

min
u∈S(Δ)

∫ tk+N

tk

le(x̃(τ ), u(τ )) dτ (5.41a)

s.t. ˙̃x(t) = f (x̃(t)) + g(x̃(t))u(t), t ∈ [tk, tk+N ) (5.41b)

x̃(tk) = x̂(tk) (5.41c)

u(τ ) ∈ U, ∀ t ∈ [tk, tk+N ) (5.41d)

V (x̃(t)) ≤ ρe, ∀ t ∈ [tk, tk+N ),

if tk < ts and V (x̂(tk)) ≤ ρe (5.41e)

LgV (x̂(tk))u(tk) ≤ LgV (x̂(tk))k(x̂(tk)),

if tk ≥ ts or V (x̂(tk)) > ρe (5.41f)

where N is the control prediction horizon and x̃ is the predicted trajectory of the
system with control inputs calculated by this LEMPC. The constraint of Eq. 5.41b is
the nominal systemmodel used to predict the future evolution of the system initialized
with the estimated state at tk (Eq. 5.41c). The constraint of Eq.5.41d accounts for the
input constraint. The constraint of Eq. 5.41e is active only for mode 1 operation of the
LEMPCwhich requires that the predicted state trajectory bewithin the region defined
by Ωρe . The constraint of Eq.5.41f is active for mode 2 operation of the LEMPC
as well as mode 1 operation when the estimated system state is out of Ωρe . This
constraint forces the LEMPC to generate control actions that drive the closed-loop
system state towards the origin.

The optimal solution to this optimization problem is denoted by u∗(t |tk), which is
defined for t ∈ [tk, tk+N ). Themanipulated input of the LEMPC is defined as follows:

u(t) = u∗(t |tk), ∀t ∈ [tk, tk+1). (5.42)

The control input applied to the closed-loop system from tk to tk+1 is u∗(tk |tk).
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5.3.4 Stability Analysis

The stability of LEMPC of Eq.5.41 based on state estimates obtained following
Eq.5.40 is analyzed in this subsection. A set of sufficient conditions is derived under
which the closed-loop system state trajectory is ensured to be maintained in the
region Ωρ and ultimately bounded in an invariant set.

In the remainder of this subsection, we first present two propositions and then
summarize themain results in a theorem. Proposition 5.3 characterizes the continuity
property of the Lyapunov function V . Proposition 5.4 characterizes the effects of
bounded state estimation error and process noise.

Proposition 5.3 (Proposition 4.2) Consider the Lyapunov function V of system of
Eq.5.1. There exists a quadratic function fV such that

V (x) ≤ V (x̂) + fV (|x − x̂ |) (5.43)

for all x, x̂ ∈ Ωρ with
fV (s) = α4(α

−1
1 (ρ))s + Mvs

2 (5.44)

where Mv is a positive constant.

Proposition 5.4 Consider the systems

ẋa(t) = f (xa) + g(xa)u(t) + l(xa)w(t)
ẋb(t) = f (xb) + g(xb)u(t)

(5.45)

with initial states |xa(t0) − xb(t0)| ≤ δx . If xa(t) ∈ Ωρ and xb(t) ∈ Ωρ for all t ∈
[t0, t ′], there exists a function fW (·, ·) such that

|xa(t) − xb(t)| ≤ fW (δx , t − t0) (5.46)

for all xa(t), xb(t) ∈ Ωρ and u(t) ∈ U, w(t) ∈ W for all t ∈ [t0, t ′] with:

fW (s, τ ) =
(

s + Mlθw

L f + Lgumax

)

e(L f +Lgumax)τ − Mlθw

L f + Lgumax
(5.47)

where L f , Lg, Ml are positive constants associated with functions f , g, l.

Proof Define ex = xa − xb. The time derivative of ex is given by:

ėx (t) = f (xa) + g(xa)u(t) + l(xa)w(t) − f (xb) − g(xb)u(t). (5.48)

By continuity and the smoothness property assumed for f , g, there exist positive
constants L f , Lg such that:

|ėx (t)| ≤ L f |ex (t)| + Lgu|ex (t)| + |l(xa)w(t)|, (5.49)

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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for all t ∈ [t0, t ′] provided xa(t) ∈ Ωρ and xb(t) ∈ Ωρ for all t ∈ [t0, t ′]. By the
boundedness of xa and the smoothness property assumed for l as well as the bound-
edness of u and w, there exist positive constants Ml such that:

|ėx (t)| ≤ (L f + Lgu
max)|ex (t)| + Mlθw. (5.50)

for all t ∈ [t0, t ′]. Integrating the above inequality and taking into account that
|ex (t0)| ≤ δx , the following inequality is obtained:

|ex (t)| ≤
(

δx + Mlθw

L f + Lgumax

)

e(L f +Lgumax)(t−t0) − Mlθw

L f + Lgumax
. (5.51)

This proves Proposition 5.4.

The following Theorem 5.2 summarizes the stability properties of the output
feedback LEMPC. The stability of the closed-loop system is based on the observer
F and controller k pair with F implemented continuously and k implemented in a
sample-and-hold fashion.

Theorem 5.2 Consider system of Eq.5.1 in closed loop under LEMPC of Eq.5.41
with state estimates determined following Eq.5.40 based on an observer and con-
troller pair satisfying the assumptions in Sect.5.3.1. Let θw ≤ θ∗

w, θv ≤ θ∗
v , ε ∈

(ε∗
L , ε

∗
U ) and |z(t0) − x(t0)| ≤ em0. Also, let εw > 0, Δ > 0 and ρ > ρ1 > ρe >

ρ∗ > ρs > 0 and κ ≥ 0 satisfy the following conditions:

ρe ≤ ρ − max{ fV ( fW (δx ,Δ)) + fV (δx ), M max{Δ, tb}α4(α
−1
1 (ρ))}, (5.52)

− α3(α
−1
2 (ρs)) +

(

L f
V + Lg

V u
max

)

(MΔ + δx ) + Ml
V θw ≤ −εw/Δ (5.53)

where δx = (κLh + 1)em + κθv, L
f
V , L

g
V are Lipschitz constants associated with

the Lie derivatives L f V and LgV , respectively, M is a constant that bounds the
time derivative of x, i.e., |ẋ | ≤ M, and Ml

V is a constant that bounds |LlV | for
x ∈ Ωρ . If x(t0) ∈ Ωρe , then x(t) ∈ Ωρ for all t ≥ t0 and is ultimately bounded in an
invariant set.

Proof In this proof, we consider t ∈ [t0,max{Δ, tb}) and t ≥ max{Δ, tb} separately
and prove that if the conditions stated in Proposition 5.2 are satisfied, the boundedness
of the closed-loop state is ensured. The proof consists of three parts. In Part I, we
prove that the closed-loop state trajectory is contained inΩρ for t ∈ [t0,max{Δ, tb});
in Part II, we prove that the boundedness of the closed-loop state trajectory under
the first operation mode of the LEMPC for t ≥ max{Δ, tb} when the initial state is
within Ωρe ; and in Part III, we prove that the closed-loop state trajectory is bounded
for the first operation mode when the initial state is within Ωρ\Ωρe and is ultimately
bounded in an invariant set for the second operation mode for t ≥ max{Δ, tb}.

Part I: First, we consider the case that t ∈ [t0,max{Δ, tb}). The closed-loop sys-
tem state may be described as follows:
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ẋ(t) = f (x(t)) + g(x(t))u(t) + l(x(t))w(t) (5.54)

with u(t) determined by the LEMPCwith x̂ = z. The Lyapunov function of the state
trajectory may be evaluated as follows:

V (x(t)) = V (x(t0)) +
∫ t

t0

V̇ (x(t))dτ = V (x(t0)) +
∫ t

t0

∂V (x(τ ))

∂x
ẋ(τ )dτ (5.55)

Using condition of Eq.5.2 and the boundedness of ẋ in the region of interest, if
x(t0) ∈ Ωρe ⊂ Ωρ1 ⊂ Ωρ , it may be written for all t ∈ [t0,max{Δ, tb}) that:

V (x(t)) ≤ ρe + M max{Δ, tb}α4(α
−1
1 (ρ)) (5.56)

with M a positive constant which bounds ẋ in Ωρ , i.e., |ẋ | ≤ M . If ρe is defined as
in Proposition 5.2, then

V (x(t)) < ρ, ∀ t ∈ [t0,max{Δ, tb}). (5.57)

Part II: In this part, we consider the case that t ≥ max{Δ, tb}. In this case, we
have that |x(t) − z(t)| ≤ em . We consider that the LEMPC is operated in the first
operation mode and focus on the evolution of the state trajectory from tk to tk+1.
Moreover, we consider x̃(tk) = x̂(tk) ∈ Ωρe . In this case, the LEMPC will optimize
the economic cost while keeping x̃(t) within Ωρe . We prove that if x̃(tk) ∈ Ωρe , then
x(tk+1) ∈ Ωρ and x̂(tk+1) ∈ Ωρ .

From tk to tk+1, the worst case scenario is as shown in Fig. 5.14. At time tk , the
estimate of the state x̂(tk) = x̃(tk) is on the boundary of Ωρe while the actual system
state is outside of Ωρe and on the boundary of another set Ωρ2 due to uncertainty in

Fig. 5.14 Worst case
scenario of the evolution of x̃
and x from tk to tk+1 in the
first operation mode
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x̂ . The LEMPCwill keep x̃(t) insideΩρe from tk to tk+1. However, due to the error in
x̃(tk) and the presence of process noise, the actual system state x(tk+1)may evolve to
a point on the boundary of Ωρ3 in Fig. 5.14 that is further away of Ωρe . The distance
between x̃(tk+1) and x(tk+1), is bounded. From Proposition 5.4, it may be obtained
that:

|x̃(tk+1) − x(tk+1)| ≤ fW (|x̂(tk) − x(tk)|,Δ). (5.58)

Recall that when t ≥ tb, all the estimates are provided by the RMHE. From the
design of the RMHE, it may be written that:

|x̂(tk) − z(tk)| ≤ κ|y(tk) − h(z(tk))| . (5.59)

Using the relation that |x̂ − x | ≤ |x̂ − z| + |z − x |, it may be obtained that:

|x̂(tk) − x(tk)| ≤ κ|y(tk) − h(z(tk))| + |z(tk) − x(tk)| . (5.60)

Noticing that |z(tk) − x(tk)| ≤ em and |y(tk) − h(z(tk))| = |h(x(tk)) + v(tk)
−h(z(tk))|, and using the Lipschitz property of h, the boundedness of v, the fol-
lowing inequality may be written:

|x̂(tk) − x(tk)| ≤ (κLh + 1)em + κθv. (5.61)

From Eqs. 5.58 and 5.61, it may be obtained that:

|x̃(tk+1) − x(tk+1)| ≤ fW ((κLh + 1)em + κθv,Δ). (5.62)

This implies that if x̃ is maintained in Ωρe , the actual system state x is ensured to be
within the set Ωρ2 with ρ2 = ρe + fV ( fW ((κLh + 1)em + κθv,Δ)) which may be
obtained from Proposition 5.3.

Taking into account Eq.5.61 for t = tk+1, the state estimate obtained at tk+1 could
be outside the region Ωρ2 but the distance is bounded as follows:

|x̂(tk+1) − x(tk+1)| ≤ (κLh + 1)em + κθv. (5.63)

In order to ensure that x̂(tk+1) is within Ωρ which is required for the feasibility of
LEMPC of Eq.5.41, the following inequality should be satisfied:

ρ ≥ ρe + fV ( fW ((κLh + 1)em + κθv,Δ)) + fV ((κLh + 1)em + κθv) (5.64)

which implies that ρe should be picked to satisfy the following condition:

ρe ≤ ρ − fV ( fW ((κLh + 1)em + κθv,Δ)) − fV ((κLh + 1)em + κθv). (5.65)

If ρe is defined as in Proposition 5.2, the above condition is satisfied.
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Part III: Next, we consider the case that x̂(tk) = x̃(tk) ∈ Ωρ\Ωρe in the first
operation mode or tk ≥ ts for the second operation mode. In either case, constraint
of Eq.5.41f will be active. The time derivative of the Lyapunov function may be
evaluated as follows:

V̇ (x(t)) = ∂V (x(t))

∂x
( f (x(t) + g(x(t))u(tk) + l(x(t))w(t)) (5.66)

for t ∈ [tk, tk+1). Adding and subtracting the term:

∂V (x̂(tk))

∂x
( f (x̂(tk) + g(x̂(tk))u(tk))

to/from the above equation and considering constraint Eq. 5.41f as well as condition
of Eq.5.2, it is obtained that:

V̇ (x(t)) ≤ −α3(|x̂(tk)|) + ∂V (x(t))

∂x
( f (x(t)) + g(x(t))u(tk) + l(x(t))w(t))

− ∂V (x̂(tk))

∂x
( f (x̂(tk) + g(x̂(tk))u(tk)) (5.67)

for all t ∈ [tk, tk+1). By the smooth properties of V , f , g and l, the boundedness of
x , u and w, there exist positive constants L f

V , L
g
V , M

l
V such that:

V̇ (x(t)) ≤ −α3(|x(tk)|) +
(

L f
V + Lg

V u
max

)

|x(t) − x̂(tk)| + Ml
V θw (5.68)

for all x ∈ Ωρ . Noticing that |x(t) − x̂(tk)| ≤ |x(t) − x(tk)| + |x(tk) − x̂(tk)|, it is
obtained that:

|x(t) − x̂(tk)| ≤ |x(t) − x(tk)| + (κLh + 1)em + κθv. (5.69)

By the continuity and smoothness properties of f , g, l and the boundedness of x ,
u and w, there exists a positive constant M such that |ẋ | ≤ M . From the above
inequalities, it may be obtained that:

V̇ (x(t)) ≤ −α3(α
−1
2 (ρs)) +

(

L f
V + Lg

V u
max

)

(MΔ + (κLh + 1)em + κθv)

+Ml
V θw

(5.70)
for all x ∈ Ωρ\Ωρs . If condition of Eq.5.53 is satisfied, it may be obtained from
Eq.5.70 that:

V (x(tk+1)) ≤ V (x(tk)) − εw. (5.71)

This means that the function value V (x) is decreasing in the first operation mode
if x̃(tk) = x̂(tk) is outside of Ωρe . This implies that x̂(tk) will eventually enter Ωρe .
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This also implies that in the second operation mode, V (x) decreases every sampling
time and x will eventually enter Ωρs . Once x ∈ Ωρs ⊂ Ωρ∗ , it will remain in Ωρ∗

because of the definition of ρ∗. This proves Proposition 5.2.

Remark 5.8 Part I of Theorem 5.2 essentially treats the input as a perturbation to the
system. Given that the input and the noise are bounded, a bound is derived for how
large the Lyapunov function may increase over time tb (which is small). This follows
from the fact that the initial estimation error of the deterministic observer and actual
closed-loop state are both bounded in a region containing the origin.

Remark 5.9 Parts II and III prove that if the current state x(tk) ∈ Ωρ and if the
current estimate x̂(tk) ∈ Ωρ , the actual closed-loop state and the estimated state
at the next sampling period are also within Ωρ . Since Part II considers mode 1
operation of the LEMPC, the worst case scenario is considered (Fig. 5.14). Part III
considers mode 2 operation of the LEMPC. While the theoretical developments
and corresponding bounding inequalities contained in this section are conservative,
they do provide valuable insight and guidelines for selecting the parameters of the
state feedback controller k(x), the deterministic observer, the RMHE, and the output
feedback LEMPC such that the closed-loop system of Eq.5.1 with bounded process
and measurement noise under the output feedback LEMPC of Eq.5.41 is stable.

Remark 5.10 One could potentially apply the RMHE for t0 to tb instead of using
the deterministic observer. However, it is difficult to prove closed-loop stability for
this case owing to the fact that the estimation error may not have decayed to a small
value over this time period with the RMHE, i.e., it is difficult to show that the RMHE
satisfies the observability assumptions of Sect. 5.3.1.

5.3.5 Application to a Chemical Process Example

Consider the CSTR described in Sect. 5.2.4 with the same control objective and the
same limitation on the available reactant material. To estimate the state from noisy
temperaturemeasurements, theRMHEscheme is used. Theweightingmatrices of the
RMHEare given by Qe = diag([σ 2

w1
σ 2
w2

]) and Re = σ 2
v whereσ denotes the standard

deviation of the process or measurement noise. The design parameter of the RMHE
is κ = 0.4, the sampling period is the same as the LEMPC, i.e., Δe = 0.01 h), and
the estimation horizon of the RMHE is Ne = 15. The robust constraint of the RMHE
is based on a high-gain observer as in Sect. 5.2.4. For the first 15 sampling periods,
the high-gain observer is used to provide the LEMPC with a state estimate. At each
subsequent sampling periods, the LEMPC is initialized using the state estimate from
the RMHE. To solve the optimization problems of the LEMPC and the RMHE at
each sampling period, the open-source software Ipopt [6] is used. The process model
is numerically simulated using an explicit Euler integration method with integration
step hc = 1.0 × 10−3 h. To simulate the process andmeasurement noise, new random
numbers are generated and applied over each integration step. The process noise is
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Fig. 5.15 The evolution of the closed-loop CSTR under the RMHE-based LEMPC scheme shown
in state-space (left) and as a function of time (right). The solid line is the actual closed-loop state
trajectory x(t), while, the dashed line is the estimated state x̂(t)

assumed to enter the system additively to the right-hand side of the process model
ODEs. The random numbers are generated from a zero-mean, bounded Gaussian
distribution.

Square bounds of wmax = [20.0 50.0] and vmax = 20.0 are used to bound the
process and measurement noise, respectively, and the standard deviation of the noise
terms are σw = [7.0 20.0] and σv = 7.0, respectively. The CSTR is initialized at
xT0 = [2.44 kmolm−3 320.0K], which corresponds to the steady-state. The evolu-
tion of the closed-loop CSTR under the RMHE-based LEMPC is shown in Fig. 5.15.
Initially, the estimated reactant concentration is significantly affected by themeasure-
ment noise which is expected since the state estimate is computed by the high-gain
observer over this initial time period. After the RMHE is activated, the estimated
state trajectories are nearly overlapping with the actual closed-loop state trajecto-
ries. Furthermore, the LEMPC computes a periodic-like input profile to optimize the
process economics over the 1h period of operation.

The average reaction rate over 1h period of operation is 13.59 kmol m−3. If,
instead, the CSTR was maintained at the steady-state (x0) without process and mea-
surement noise (nominal operation), the average reaction rate over this 1h operation
would be 12.80 kmol m−3. This is a 6.2% improvement in the economic cost of the
closed-loop system under the RMHE-based LEMPC with process and measurement
noise over nominal steady-state operation. We note that the economic performance
of the closed-loop system under LEMPC with full state feedback and nominal oper-
ation over 1h operation is 13.60 kmol m−3 which is a 6.3% economic performance
improvement.

To assess the estimation performance of the RMHE, another simulation is per-
formed with the same realization of the process and measurement noise and with the
high-gain observer presented in Sect. 5.2.4. The evolution of the closed-loop CSTR
under the high-gain observer state estimation-based LEMPC is shown in Fig. 5.16.
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Fig. 5.16 The evolution of the closed-loop CSTR under the state estimation-based LEMPC scheme
with the high-gain observer of Sect. 5.2.4 shown in state-space (left) and as a function of time (right).
The solid line is the actual closed-loop state trajectory x(t), while, the dashed line is the estimated
state x̂(t)

Not only does the noise impact the estimates provided by the high-gain observer
in this case, but also, it impacts the computed input profile (Fig. 5.16). Comparing
Figs. 5.15 and 5.16, the RMHE is able to provide estimates of the state within a small
neighborhood of the actual process states, while the high-gain observer is not able
to estimate the concentration as well as the RMHE. Furthermore, since the RMHE
provides better (smoother) estimates of the states, the operation of the closed-loop
system under the RMHE-based LEMPC is smoother which may be observed in the
input trajectories.

Several additional closed-loop simulationswith various bounds and standard devi-
ations on the process and measurement noise and initial conditions are performed
to further assess the estimation performance of RMHE compared to the one of the
high-gain observer of Sect. 5.2.4. An estimation performance index which is defined
as

J =
99

∑

k=0

∣
∣x̂(tk) − x(tk)

∣
∣
2
S (5.72)

is used to assess the estimation performance where the matrix S is a positive definite
weightingmatrix given by S = diag([50 1]). Thematrix S has been chosen to account
for the different numerical ranges of the concentration and temperature. In addition
to the assessment on the estimation performance, the total economic performance
index over the length of the simulation is defined as

Je = 1

100

99
∑

k=0

k0e
−E/RT (tk )C2

A(tk) (5.73)
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Table 5.2 Estimation performance comparison of the closed-loop CSTR with various bounds and
standard deviation of the disturbances and noise and initial conditions under the high-gain observer
state estimation-based LEMPC and under the RMHE-based LEMPC (ordered below by increasing
bounds and standard deviation)

High-gain observer RMHE

J SSE of CA Je J SSE of CA Je

1 310.5 4.450 13.04 104.0 1.277 13.04

2 528.5 7.781 14.19 310.1 4.169 14.19

3 271.6 3.669 13.47 88.1 0.440 13.47

4 506.4 7.066 13.06 181.9 1.476 13.07

5 583.2 8.097 14.20 354.4 3.888 14.20

6 482.1 6.397 13.48 137.7 0.372 13.48

7 592.4 7.821 13.09 257.1 1.734 13.09

8 572.8 8.519 14.23 252.6 3.425 14.23

9 616.4 8.579 13.51 168.6 1.126 13.52

10 992.0 13.700 13.00 429.9 4.355 13.08

11 1079.8 14.871 14.14 888.7 12.076 14.21

12 1012.5 14.304 13.42 552.0 5.817 13.43

13 1643.6 22.606 13.02 665.3 3.523 12.99

14 1758.5 23.396 14.24 771.2 5.492 14.27

15 1591.0 21.740 13.51 561.5 1.717 13.55

The J column refers to the performance index of Eq.5.72, the “SSE of CA” column denotes the
sum of squared errors of the concentrationCA estimation, and the Je column refers to the economic
performance index of Eq.5.73

which is the time-averaged reaction rate over the simulation. From the results dis-
played in Table5.2, the RMHE consistently provides a significantly better estimates
of the state than the high-gain observer which demonstrates the robustness of the
RMHEtoprocess andmeasurement noise.However, the estimationperformancedoes
not translate into a significant closed-loop average economic performance improve-
ment of the closed-loop system with the RMHE-based LEMPC over the closed-loop
system with the high-gain observer and LEMPC. This relationship is due to the fact
that the closed-loop average economic performance over one operation period is not
strongly dependent on the initial condition of the LEMPC optimization problem,
i.e., x̂(tk), for this particular example. In other words, providing the LEMPC with
an estimate of the actual state anywhere in a neighborhood around the actual state
results in a computed input trajectory that leads to nearly the same economic cost for
the closed-loop systems. For systems that are more sensitive to the estimate of the
current state, it is expected that there would also be improved closed-loop economic
performance with the RMHE-based LEMPC in addition to improved estimation per-
formance.
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5.4 Conclusions

In this chapter, two output feedback EMPC schemes were presented. In the first
scheme, a high-gain observer-based EMPC for the class of full-state feedback lin-
earizable nonlinear systems was introduced. A high-gain observer is used to esti-
mate the nonlinear system state using output measurements and a Lyapunov-based
approach is adopted to design the EMPC that uses the observer state estimates. It
was proved, using singular perturbation arguments, that the closed-loop system is
practically stable provided the observer gain is sufficiently large.

To achieve fast convergence of the state estimate to the actual system state as well
as to improve the robustness of the estimator to measurement and process noise, a
high-gain observer and a RMHE scheme were used to estimate the system states.
In particular, the high-gain observer was first applied for a small time period with
continuous output measurements to drive the estimation error to a small value. Once
the estimation error had converged to a small neighborhood of the origin, the RMHE
was activated to provide more accurate and smoother state estimates. In the design of
the RMHE, the high-gain observer was used to provide reference estimates, which
were subsequently used to calculate confidence regions. The RMHEwas restricted to
compute state estimates that arewithin these confidence regions. The output feedback
EMPC was designed via Lyapunov techniques based on state estimates provided by
the high-gain observer and the RMHE.

The application of the two schemes to a chemical reactor demonstrated the applica-
bility and effectiveness of the schemes and the ability to dealwithmeasurement noise.
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