
Chapter 1
Introduction

1.1 Motivation

Optimal operation and control of dynamic systems andprocesses has been a subject of
significant research formany years.Within the chemical process industries, operating
a process for any substantial length of time at globally optimal operating conditions
with respect to some meaningful economic-oriented performance criterion is almost
certainly impossible. Room for process operational performance improvement will
always exist.

Onemethodology for improving process performancewhile achieving operational
targets and constraints is to employ the solution of optimal control problems (OCPs)
on-line. In other words, control actions for the manipulated inputs of a process
are computed by formulating and solving on-line a dynamic optimization problem.
With the available computing power ofmodern computers, solving complex dynamic
optimization problems, which may take the form of large-scale, nonlinear, and non-
convex optimization problems, on-line is becoming an increasingly viable option.
The resulting controller designmay be capable of improving the closed-loop dynamic
and steady-state performance relative to other controller designs.

The process performance of a chemical process typically refers to the process
economics and encapsulates many objectives: profitability, efficiency, variability,
capacity, sustainability, etc. As a result of continuously changing process economics,
e.g., variable feedstock, changing energy prices, variable customer demand, process
operation objectives and strategies need to be frequently updated to account for
these changes. Traditionally, a hierarchical strategy for planning/scheduling, opti-
mization, and control has been employed in the chemical process industries. A block
diagram of the hierarchical strategy is shown in Fig. 1.1 (adapted from [1]). Although
the block diagram provides an overview of the main components, it is a simplified
view of modern planning/scheduling, optimization, and control systems employed
in the chemical process industry in the sense that each layer may be comprised of
many distributed and hierarchical computing units. The underlying design princi-
ple of the hierarchical strategy invokes time-scale separation arguments between the
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Fig. 1.1 The traditional hierarchical paradigm employed in the chemical process industries for
planning/scheduling, optimization, and control of chemical plants (adapted from [1])

execution/evolution of each layer (Fig. 1.1). In the highest level of the hierarchy,
enterprise-wide and/or plant-wide planning and scheduling decisions are made on
the order of days-months. These decisions are made on the basis of multiple oper-
ating processes even multiple operating plants, and are out-of-scope of the present
monograph.

In the next layers of the hierarchy of Fig. 1.1, economic optimization and control
of chemical processes is addressed in the multi-layer hierarchical architecture,
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e.g., [2, 3]. The upper-layer, called real-time optimization (RTO), is responsible for
process optimization. Within the RTO layer, a metric, defining the operating profit or
operating cost, is optimized with respect to an up-to-date and rigorous steady-state
process model to compute the optimal process steady-state. The computed steady-
state is sent to the feedback process control systems,which consists of the supervisory
control and regulatory control layers. The process control system steers the process
to operate at the steady-state using themanipulated inputs of the process. The process
control system must work to reject disturbances and ideally guide the trajectory of
the process dynamics along an optimal path to the steady-state.

The advanced or supervisory process control layer of Fig. 1.1 consists of con-
trol algorithms that are used to account for process constraints, coupling of process
variables and processing units, and operating performance. In the advanced process
control layer, model predictive control (MPC), a control strategy based on optimal
control concepts, has been widely implemented in the chemical process industry.
MPC uses a dynamic model of the process in an optimization problem to predict
the future evolution of the process over a finite-time horizon and to determine the
optimal input trajectory with respect to a performance index. Furthermore, MPC can
account for the process constraints and multi-variable interactions in the optimiza-
tion problem. Thus, it has the ability to optimally control constrained multiple-input
multiple-output nonlinear systems. Handling constraints and multivariate interac-
tions are the two key advantages of MPC relative other control designs.

The standard MPC approaches are the regulating and tracking formulations that
employ a quadratic performance index. Regulating MPC is used to force the process
to the (economically) optimal steady-state, while tracking MPC is used to force
the process to track a pre-specified reference trajectory. The quadratic performance
index is a measure of the predicted squared weighted error of the states and inputs
from their corresponding steady-state or target reference values. To date, there are
hundreds, if not thousands, of papers on regulating/tracking MPC addressing many
issues. A complete review of the MPC literature is beyond the scope of this book.
For reviews and books on regulating/tracking MPC for the process industries, the
interested reader is referred to [4–15].

The regulatory control layer is composed of mostly single-input single-output
control loops like proportional-integral-derivative (PID) control loops that work to
implement the control actions computed by the supervisory control layer; that is, it
ensures that the control actuators achieve the control action requested by the MPC
layer. Often, the dynamics of the regulatory control layer and control actuators are
neglected in the dynamicmodel used in theMPC layer owing to time-scale separation
arguments.

As previously mentioned, the overall control architecture of Fig. 1.1 invokes intu-
itive time-scale separation arguments between the various layers. For instance, RTO
is executed at a rate of hours-days, while the feedback control layers compute control
actions for the process at a rate of seconds-minutes-hours [1]. Though this paradigm
has been successful, we are witnessing the growing need for dynamic market-driven
operations which include more efficient and nimble process operation [16–19]. To
enable next-generation or “Smart” operations/manufacturing, novel control method-
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ologies capable of handling dynamic economic optimization of process operations
should be designed and investigated. More specifically, there is a need to develop
theory, algorithms, and implementation strategies to tightly integrate the layers of
Fig. 1.1. The benefits of suchworkmayusher in a newera of dynamic (off steady-state
and demand and market-driven) process operations.

In an attempt to integrate economic process optimization and process control as
well as realize the possible process performance improvement achieved by consis-
tently dynamic, transient, or time-varying operation, i.e., not forcing the process to
operate at a pre-specified steady-state, economic MPC (EMPC) has been proposed
which incorporates a general cost function or performance index in its formulation.
The cost function may be a direct or indirect reflection of the process economics.
However, a by-product of this modification is that EMPC may operate a system in a
possibly time-varying fashion to optimize the process economics andmay not operate
the system at a specified steady-state or target. The notion of time-varying operation
will be carefully analyzed throughout this monograph. The rigorous design of EMPC
systems that operate large-scale processes in a dynamically optimal fashion while
maintaining safe and stable operation of the closed-loop process system is challeng-
ing as traditional notions of stability, e.g., asymptotic stability of a steady-state, may
not apply to the closed-loop system/process under EMPC.While the concept of using
general cost function in MPC has been suggested numerous times in the literature,
e.g., [20–23], closed-loop stability and performance under EMPC has only recently
been considered and rigorously proved for various EMPC formulations [24–27].

1.2 Tracking Versus Economic Model Predictive Control:
A High-Level Overview

A high-level overview of the key differences between tracking and economicMPC is
provided. Amathematical discussion of tracking and economicMPC, which requires
a formal definition of notation and preliminary results, is delayed until the subsequent
chapters. Also, the term tracking MPC is used throughout this monograph to refer to
both regulating MPC or MPC formulated to force the process to operate at a given
steady-state and tracking MPC or MPC formulated to force the process track a given
reference trajectory. Model predictive control, whether tracking or economic, is a
feedback controlmethodologywhere the control actions that are applied to the closed-
loop process/system are computed by repeatedly solving a nonlinear constrained
optimization problem on-line. The main components of MPC are:

1. A mathematical model of the process/system to predict the future evolution of
the process/system over a time interval called the prediction horizon.

2. A performance index or cost functional that maps the process/system (state and
input) trajectories over the prediction horizon to a real number that is a measure
of the tracking or economic performance. The cost functional is the objective
function of the optimization problem.
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3. Constraints on the process/system including restrictions on the control inputs,
system states and other considerations, e.g., stability and performance constraints.

4. A receding horizon implementation (described further below).

To make the optimization problem of MPC a finite-dimensional one, the prediction
horizon of MPC is typically selected to be finite and the input trajectory over the pre-
diction horizon, which is the decision of the optimization problem, is parameterized
by a finite number of variables.

The receding horizon implementation is the strategy that involves repeatedly solv-
ing the optimization problem on-line to compute the control actions. Specifically,
real-time (continuous-time) is partitioned into discrete time steps called sampling
times where the time between two consecutive sampling times is called the sampling
period. At each sampling time, the MPC optimization problem is initialized with a
state measurement or estimate. The MPC optimization problem is solved to com-
pute the optimal input trajectory over the prediction horizon. The control action(s)
computed over the first sampling period of the prediction horizon is/are applied
to the closed-loop process/system. At the next sampling time, the MPC problem
is resolved after receiving an updated state measurement/estimate. The algorithm
is repeated over the length of operation. The receding horizon implementation is
important because it introduces feedback to compensate for disturbances, modeling
errors, and other forms of uncertainty. Moreover, the receding horizon implementa-
tion allows for a better approximation of the solution of the corresponding infinite-
horizon optimal control problem, i.e., the MPC problem in the limit as the prediction
horizon tends to infinity. The infinite-horizon solution, assuming the solution exists,
arguably gives the best solution as chemical processes are typically operated over
long periods of time without a natural termination or shutdown time.

Tracking MPC optimization problem takes the following general form:

Optimize: Tracking cost functional
Subject to: Dynamic model initialized with state measurement/estimate

State/input constraints
Stability constraints

(1.1)

while economic MPC problem takes the following general form:

Optimize: Economic cost functional
Subject to: Dynamic model initialized with state measurement/estimate

State/input constraints
Economic-oriented constraints
Stability constraints

(1.2)

The main difference between trackingMPC of Eq.1.1 and economic MPC of Eq.1.2
is that the trackingMPC problem is formulated with a tracking cost functional, while
the economic MPC problem is formulated with an economic cost functional. The
tracking cost functional usually uses a quadratic stage cost that penalizes the deviation
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of state and inputs from their corresponding steady-state, target, or reference values.
However, the EMPC cost functional may potentially use any general stage cost that
reflects the process/system economics. Since the idea of EMPC is to compute con-
trol actions that directly account for the economic performance, economic-oriented
constraints may also be added. For example, the economic-oriented constraints may
limit the average amount of raw material that may be fed to the process/system or
may ensure that the total production of the desired product over a specified length of
operation meets demand.

1.3 Chemical Processes and Time-Varying Operation

In this section, a few chemical process examples that will be used to study the
closed-loop properties of EMPC are presented to motivate the need for unsteady-
state process operation to improve economic performance. As discussed in the intro-
duction, steady-state operation is typically adopted in chemical process industries.
In this operating paradigm, the control system is used to force a chemical process
to a pre-specified steady-state and maintain operation at this steady-state thereafter
until the desired operating steady-state is changed. However, steady-state operation
may not necessarily be the best operation strategy with respect to the process eco-
nomics. In fact, the chemical process control literature is rich with chemical process
examples that demonstrate performance improvement with respect to specific cost
metrics with dynamic process operation. In particular, many studies have analyzed
the economic benefit of periodically operated reactors, e.g., [28–47], and the numer-
ous references therein. To help identify systems that achieve a performance benefit
from periodic operation, several techniques have been proposed including frequency
response techniques and the application of the maximum principle [28, 36, 48–51].
Periodic control strategies have also been developed for several applications, for
instance, [35, 39, 42–44].

While the periodic operating strategies listed above do demonstrate economic per-
formance improvement, in the case of forced periodic operation, i.e., periodic oper-
ation induced by periodic switching of manipulated inputs, the periodic operating
policies described in many previous works have been identified through a low-order
control parameterization, e.g., a bang-bang input profile and in an open-loop fash-
ion.Owing to recent advances in dynamic optimization (numerical solution strategies
or direct methods), it is possible that these chemical process examples previously
considered in the context of periodic operation may achieve further economic per-
formance improvement under EMPC. Moreover, EMPC may systematically deter-
mine, in real-time, the optimal operating strategy based on the current economic
factors while meeting operating constraints. When accounting for time-varying eco-
nomic factors, e.g., real-time energy pricing, and time-varying disturbance, it is
certainly possible that more complex operating strategies beyond steady-state and
periodic operation are economically optimal. DevelopingEMPC schemes that dictate
such complex operating strategies, which are generally referred to as time-varying
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operating strategies, has motivated much of the work contained in this book. Two
chemical process examples that benefit from time-varying operation are provided
below.

1.3.1 Catalytic Oxidation of Ethylene

Consider a benchmark chemical reactor example depicted in Fig. 1.2 that has previ-
ously studied in the context of forced periodic operation [38, 39]. Within the reactor,
ethylene oxide (C2H4O) is produced from the catalytic oxidation of ethylene with
air. Ethylene oxide is an important rawmaterial within the chemical industry because
it is used for the synthesis of ethylene glycol which is subsequently used to produce
many materials. The reactor is modeled as a non-isothermal continuous stirred-tank
reactor (CSTR) with a coolant jacket to remove heat from the reactor. Two combus-
tion reactions occur that consume both the reactant and the product, respectively.
The reactions are given by

C2H4 + 1

2
O2

r1→ C2H4O

C2H4 + 3O2
r2→ 2CO2 + 2H2O

C2H4O + 5

2
O2

r3→ 2CO2 + 2H2O

where ri , i = 1, 2, 3 is the reaction rate of the i th reaction, and the reaction rate
expressions are

Fig. 1.2 Diagram of the
catalytic reactor that
produces ethylene oxide
from ethylene
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r1 = k1 exp

(−E1

RT

)
P0.5
E (1.3)

r2 = k2 exp

(−E2

RT

)
P0.25
E (1.4)

r3 = k3 exp

(−E3

RT

)
P0.5
EO (1.5)

where ki and Ei , i = 1, 2, 3 are the reaction rate constant and activation energy for
the i th reaction, respectively, T is the temperature, R is the gas constant, and Pj is the
partial pressure of the j th component in the reactor ( j = E, EO denotes ethylene
and ethylene oxide, respectively). The reaction rate expressions are from [52] where
catalytic oxidation of ethylene using an unmodified, commercial catalyst was studied
over the temperature range 523–573K. To model the gaseous mixture within the
reactor, ideal gas is assumed and the concentration of the j th component within the
reactor, denoted by C j , is

C j = Pj

RT
. (1.6)

A model describing the dynamic behavior of the reactor is derived through first
principles under standard modeling assumptions, e.g., ideal gas and constant heat
capacity. The dimensionless states are

x1 = ρ/ρref, x2 = CE/Cref, x3 = CEO/Cref, x4 = T/Tref

where ρ/ρref is the dimensionless vapor density in the reactor, CE/Cref is the dimen-
sionless ethylene concentration in the reactor, CEO/Cref is the dimensionless eth-
ylene oxide concentration in the reactor, and T/Tref is the dimensionless reactor
temperature. The manipulated inputs are

u1 = Q f /Qref, u2 = CE, f /Cref, u3 = Tc/Tref

where Q f /Qref is the dimensionless volumetric flow rate of the feed, CE, f /Cref is
the dimensionless ethylene concentration of the feed, and Tc/Tref is the dimension-
less coolant temperature. The model of the reactor is given by the following set of
nonlinear ordinary differential equations:



1.3 Chemical Processes and Time-Varying Operation 9

dx1
dt

= u1(1 − x1x4) (1.7)

dx2
dt

= u1(u2 − x2x4) − A1r̄1(x2, x4) − A2r̄2(x2, x4) (1.8)

dx3
dt

= −u1x3x4 + A1r̄1(x2, x4) − A3r̄3(x3, x4) (1.9)

dx4
dt

= u1
x1

(1 − x4) + B1

x1
r̄1(x2, x4) + B2

x1
r̄2(x2, x4)

+ B3

x1
r̄3(x3, x4) − B4

x1
(x4 − u3) (1.10)

where

r̄1(x2, x4) = exp(γ1/x4)(x2x4)
1/2 (1.11)

r̄2(x2, x4) = exp(γ2/x4)(x2x4)
1/4 (1.12)

r̄3(x3, x4) = exp(γ3/x4)(x3x4)
1/2 (1.13)

and the parameters are given in Table1.1 from [38, 39]. The admissible input values
is considered to be bounded in the following sets:

u1 ∈ [0.0704, 0.7042],
u2 ∈ [0.2465, 2.4648],
u3 ∈ [0.6, 1.1].

Following [38], the profitability of the reactor is assumed to scale with the yield of
ethylene oxide. Therefore, to optimize the profitability or economics of the reactor,
one seeks to maximize the time-averaged yield of ethylene oxide. The time-averaged
yield of ethylene oxide over an operating time t f is given by

Table 1.1 Dimensionless process model parameters of the ethylene oxidation reactor model

Parameter Value Parameter Value

A1 92.80 B3 2170.57

A2 12.66 B4 7.02

A3 2412.71 γ1 –8.13

B1 7.32 γ2 –7.12

B2 10.39 γ3 –11.07

The parameters are from [38]
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Y =
1

t f

∫ t f

0
x3(τ )x4(τ )u1(τ ) dτ

1

t f

∫ t f

0
u1(τ )u2(τ ) dτ

. (1.14)

Since two combustion reactions occur in the reactor that consume both the desired
product and the reactant, the yield is a measure of the amount of ethylene oxide
leaving the reactor relative to the amount of ethylene fed into the reactor and thus, a
good measure for the economic performance of the reactor.

For practical reasons, one may want to optimize the yield while also ensuring
that the time-averaged amount of ethylene that is fed to the reactor be fixed, i.e.,
determine the method to distribute a constant time-averaged amount of ethylene to
the reactor that maximizes the yield. Limiting the time-averaged amount of ethylene
that may be fed to the reactor is described by the following constraint:

1

t f

∫ t f

0
u1(τ )u2(τ ) dτ = ṀE (1.15)

where ṀE is a given time-averaged dimensionless molar flow rate of ethylene that
may be fed to the reactor. If u1,minu2,min < ṀE < u1,maxu2,max, the constraint of
Eq.1.15 prevents one from simply considering feeding in the minimum or maximum
flow rate of ethylene to the reactor for all time. Within the context of EMPC, the
constraint of Eq.1.15 gives rise to a class of economically motivated constraints
which take the form of integral or average constraints. In stark contrast to traditional
or conventional control methodologies, e.g., proportional-integral-derivative control
or tracking MPC, economically motivated constraints may be directly incorporated
intoEMPC.Aspreviouslymentioned this example has beenpreviously studiedwithin
the context of periodic operation, e.g., [38], and closed-loop operation of this reactor
under EMPC is considered in later chapters.

1.3.2 Continuously-Stirred Tank Reactor with Second-Order
Reaction

A well-known chemical engineering example that demonstrates performance
improvement through time-varying operation is a continuously stirred tank
reactor (CSTR) where a second-order reaction occurs. Specifically, consider a
non-isothermal CSTR where an elementary second-order reaction takes place that
converts the reactant A to the desired product B like that depicted in Fig. 1.3. The
reactant is fed to the reactor through a feedstock stream with concentration CA0,
volumetric flow rate F , and temperature T0. The CSTR contents are assumed to be
spatially uniform, i.e., the contents are well-mixed. Also, the CSTR is assumed to
have a static liquid hold-up. A jacket provides/removes heat to/from the reactor at a
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Fig. 1.3 Diagram of a CSTR where a second-order reaction occurs that produces a desired product
B from a reactant A

heat rate Q. Applying first principles and standard modeling assumptions, e.g., con-
stant fluid density and heat capacity, which are denoted by ρR and Cp, respectively
and Arrhenius rate dependence of the reaction rate on temperature, the following
system of ordinary differential equations (ODEs) may be obtained that describes the
evolution of the CSTR reactant concentration and temperature:

dCA

dt̄
= F

VR
(CA0 − CA(t̄)) − k0e

−E/RT (t̄)(CA(t̄))
2 (1.16a)

dT

dt̄
= F

VR
(T0 − T (t̄)) − (−ΔH)k0

ρRCp
e−E/RT (t̄)(CA(t̄))

2 + Q

ρRCpVR
(1.16b)

where t̄ is the time, CA denotes the concentration of A in the reactor, T denotes the
temperature of the reactor contents, VR is the volume of the liquid hold-up in the
reactor, k0 is the rate constant, E is the reaction activation energy,ΔH is the enthalpy
of reaction, and R is gas constant.

The ODEs of Eq.1.16 may be written in dimensionless form by defining
t = t̄ F/VR , x1 = CA/Cref , x2 = RT/E , u = CA0/Cref , A1 = Cref VRk0/F ,
A2 = ΔHRCref A1/(ECpρ), x20 = RT0/E + RQ/(CpρEF) where Cref is a ref-
erence concentration. The resulting dynamic equations in dimensionless form is:
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Table 1.2 Process parameters of the CSTR

k0C2
re f 8.46 × 106 A1 1.69 × 106

x20 0.050 A2 1.41 × 104

dx1
dt

= −x1 − A1e
−1/x2x21 + u (1.17a)

dx2
dt

= −x2 + A2e
−1/x2x21 + x20 (1.17b)

where x1 is the dimensionless reactant concentration, x2 is the dimensionless tem-
perature, and A1, A2 and x20 are constant parameters. The values of the parameters
are given in Table1.2. The input, which is the dimensionless reactant concentration
in the reactor inlet, is bounded: u ∈ [umin, umax ] = [0.5, 7.5]. For this example, the
production rate of the desired product is assumed to reflect the operating profit of
the reactor, which is given by the following function:

le(x, u) = k0C
2
re f e

−1/x2x21 . (1.18)

Determining the optimal input profile that maximizes the production rate subject
to the constraint on the admissible input values is trivial: feed in themaximumamount
of material for all time, i.e., set u to umax for all time. A more interesting problem
that may lead to a non-trivial solution is to determine the optimal input profile that
maximizes the production rate subject to a constraint on the time-averaged amount
of material that may fed to the reactor. In the latter problem, a more economical
viewpoint is adopted and the problem seeks to determine the optimal method to
distribute the material to the reactor. Therefore, the CSTR is assumed to be subject
to an input average constraint (dynamic constraint) given by:

1

t f

∫ t f

0
u(t) dt = uavg (1.19)

where t f is the length of operation. For this process (Eq. 1.17), performance metric
(Eq.1.18), and average constraint (Eq. 1.19), forced periodic operation induced by
bang-bang type actuation has been shown to improve the average production owing to
the second-order dependence of the reaction rate on reactant concentration, e.g., [29–
32].

An analysis may be completed to rigorously show that the economic performance,
i.e., the average production rate of the product, may be improved by using a time-
varying operating strategy (in particular, periodic operation) compared to operating
the reactor at steady-state. To show this rigorously, we require some more technical
concepts, e.g., the Hamiltonian function, adjoint variables, Pontryagin’s maximum
principal [53]. Nevertheless, these concepts are not needed later in the book. An
auxiliary state is defined for the average constraint:
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x3(t) := 1

t f

∫ t

0

(
u(t) − uavg

)
dt (1.20)

which has dynamics:
dx3(t)

dt
= 1

t f
(u(t) − uavg). (1.21)

The non-isothermal CSTR with the stage cost (Eq. 1.18) is a member of a special
class of nonlinear systems:

ẋ = f̄ (x) + Bu (1.22)

where ẋ denotes the time derivative of x , B ∈ R
n×m is a constant matrix and f̄ :

R
n → R

n is a differentiable vector function.Additionally, the stage cost only depends
on the states:

le(x, u) = l̄e(x) (1.23)

where l̄e : Rn → R is a differentiable function. The Hamiltonian function of the
system of Eq.1.22 and cost of Eq.1.23 is

H(x, u, λ) = l̄e(x) + λT f̄ (x) + λT Bu (1.24)

where λ is the adjoint variable vector that satisfies

λ̇(t) = −Hx (x(t), u(t), λ(t)) (1.25)

where Hx denotes the partial derivative of H with respect to x . From Pontryagin’s
maximumprinciple [53], a necessary condition can be derived for the optimal control,
i.e., the control that maximizes the Hamiltonian:

u∗
i (t) =

{
ui,max, if bTi λ(t) > 0

ui,min, if bTi λ(t) < 0
(1.26)

where bi is the i-th column of B. For this class of systems and stage costs, if some
time-varying operating policy is the optimal operating strategy, then the operating
policy is a bang-bang input policy of Eq.1.26.

Although the analysis above significantly reduces the space of possible optimal
input trajectories, it still yields an infinite space of input trajectories. Thus, consider
the following periodic bang-bang input trajectory over one period:

u(t) =
{
umax if t < τ/2

umin else
(1.27)

where τ is the period and t ∈ [0, τ ). The input trajectory of Eq.1.27 satisfies the
average constraint of Eq.1.19 over each period (in this regard, the length of operation,
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t f , is assumed to be a multiple of τ ). For the system of Eq.1.17 with the input
trajectory of Eq.1.27, there exists a periodic state trajectory for some τ > 0, i.e., it
has the property x(t) = x(t + τ) for all t .

In this example, uavg is taken to be 4.0. The CSTR has an optimal steady-state
xTs = [1.182 0.073] which corresponds to the steady-state input that satisfies the
average input constraint (us = uavg) with a production rate of 14.03. Indeed, the
periodic solution of the system of Eq.1.17 with the input of Eq.1.27 achieves better
economic performance compared to the economic performance at steady-state for
some τ . Moreover, the economic performance depends on the period which is shown
in Fig. 1.4. Over the range of periods considered (0.5 to 2.4), the period τ = 1.20
yields the best performance (Fig. 1.4). The periodic solution with the input period
of τ = 1.20 has an average cost of J̄e = 15.20 which is 8.30 percent better than
the performance at the optimal steady-state. Periods greater than 1.96 achieve worse
performance compared to that at steady-state. The state, input, and BTλ = bT1 λ =
λ1 + λ3/τ trajectories are given in Fig. 1.5 over one period. From Fig. 1.5, the input
trajectory satisfies the necessary condition of Eq.1.26. From these results, time-
varying operation is better than steady-state operation from an economical point
of view for this example. If the average constraint of Eq. 1.19 was not imposed,
the optimal operating strategy would be steady-state operation at the steady-state
corresponding to the input umax. The average constraint plays a crucial role for this
particular example.

As pointed out, the above analysis only considers economic performance. If the
periodic solution depicted in Fig. 1.5 is indeed optimal or some other bang-bang
policy is the best operating strategy, feedback control is needed to force the sys-
tem state from an initial state to the optimal time-varying solution. Moreover, the
control problem becomes more complex when one considers disturbances, plant-

14.85

14.90

14.95

15.00

15.05

15.10

15.15

15.20

0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60

J̄
e

τ

Fig. 1.4 Average economic performance J̄e as a function of the period length τ
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Fig. 1.5 State, input, and λ1 + λ3/τ trajectories of the CSTR under the bang-bang input policy
with period τ = 1.20

model mismatch and other forms of uncertainty, implementability of the computed
input trajectory, i.e., bang-bang control may not be implementable in practice, and
time-varying economic objectives and constraints. The example furthermotivates the
inquiry and theoretical developments in the context of EMPC systems that dictate
time-varying operating policies.

1.4 Objectives and Organization of the Book

This book considers theoretical analysis of closed-loop stability and performance
under EMPC, issues related to computational efficiency of EMPC, and chemical
process applications controlled by EMPC. Specifically, the objectives of this book
are summarized as follows:

1. To develop economic model predictive control methods that address infinite-time
and finite-time closed-loop economic performance and time-varying economic
considerations.

2. To develop two-layer dynamic economic process optimization and feedback con-
trol frameworks that incorporate EMPCwith other control strategies allowing for
computational efficiency.

3. To develop rigorous output feedback-based EMPC schemes with guaranteed
closed-loop stability properties.

4. To address real-time computation of EMPC.
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The book is organized as follows. In Chap.2, a formal definition of the notation
is provided. Some definitions and preliminary results on stability and stabilization
of nonlinear systems and on tracking MPC are given. The chapter closes with a brief
review of nonlinear constrained optimization and solution strategies for dynamic
optimization.

InChap.3, a brief overviewofEMPCmethods is provided. In particular, the role of
constraints imposed in the optimization problemof EMPC for feasibility, closed-loop
stability, and closed-loop performance is explained. Three main types of constraints
are considered including terminal equality constraints, terminal region constraints,
and constraints designed via Lyapunov-based techniques. EMPC is applied to a
benchmark chemical process example to illustrate the effectiveness of time-varying
operation to improve closed-loop economic performance compared to steady-state
operation and to an open-loop periodic operating policy.

In Chap.4, a complete discussion of Lyapunov-based EMPC (LEMPC), which
was first presented in [27], is given that includes closed-loop stability and robustness
properties. LEMPC designs that address closed-loop performance and time-varying
economic stage cost function are also addressed in this chapter. The methods are
applied to two chemical process examples.

In Chap.5, output feedback-based EMPC schemes are presented. To provide
EMPC with an estimate of the system state from a measurement of the output, a
high-gain observer and moving horizon estimation (MHE) are both considered for
state estimation. Conditions under which closed-loop stability under the two result-
ing state estimation-based EMPC schemes are derived. The state estimation-based
EMPC schemes are applied to a chemical process example.

In Chap.6, several two-layer approaches to dynamic economic optimization and
control are developed and discussed. The upper layer, utilizing an EMPC, is used to
compute economically optimal policies and potentially, also, control actions that are
applied to the closed-loop system. The economically optimal policies are sent down
to a lower layer MPC scheme which may be a trackingMPC or an EMPC. The lower
layer MPC scheme forces the closed-loop state to closely follow the economically
optimal policy computed in the upper layer EMPC. The methodologies are applied
to several chemical process examples to demonstrate their effectiveness.

In Chap.7, issues relating to computational efficiency and real-time implemen-
tation of EMPC are addressed. First, a composite control structure featuring EMPC
is developed for nonlinear two-time-scale systems. The resulting control strategy
addresses computational efficiency because it is a distributed control strategy and it
has certain numerical advantages explained further in the chapter. Next, an alterna-
tive to solving for the control actions for all available inputs in a single optimization
problem is discussed. Specifically, several (smaller) optimization problems may for-
mulated and solved to compute the control actions that are applied to the closed-loop
system. Owing to the fact that the optimization problems are solved amongst sev-
eral distributed processors, the resulting strategy is a distributed EMPC (DEMPC)
implementation. In this chapter, an application study of DEMPC is presented. Two
DEMPCapproaches are considered and evaluatedwith respect to a centralizedEMPC
implementation. Finally, to address guaranteed closed-loop stability in the presence

http://dx.doi.org/10.1007/978-3-319-41108-8_2
http://dx.doi.org/10.1007/978-3-319-41108-8_3
http://dx.doi.org/10.1007/978-3-319-41108-8_4
http://dx.doi.org/10.1007/978-3-319-41108-8_5
http://dx.doi.org/10.1007/978-3-319-41108-8_6
http://dx.doi.org/10.1007/978-3-319-41108-8_7
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of computational delay, an implementation strategy is developed which features a
triggered evaluation of the LEMPC optimization problem to compute an input trajec-
tory over a finite-time prediction horizon in advance. Closed-loop stability under the
real-time LEMPC strategy is analyzed and specific stability conditions are derived.
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