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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technology
transfer in control engineering. The rapid development of control technology has an
impact on all areas of the control discipline. New theory, new controllers, actuators,
sensors, new industrial processes, computer methods, new applications, new design
philosophies…, new challenges. Much of this development work resides in
industrial reports, feasibility study papers, and reports of advanced collaborative
projects. The series offers an opportunity for researchers to present an extended
exposition of such new work in all aspects of industrial control for wider and rapid
dissemination.

The model predictive control (MPC) design philosophy may be used for a
low-level loop controller, replacing regulating loop control systems based on the
proportional integral differential (PID) controllers. It also has the flexibility to work
at a higher level as a tracking control supervisor to follow a reference trajectory by
providing the reference inputs to low-level loop controllers, typically of the PID
variety. These types of industrial formulations for MPC usually involve a quadratic
cost functional, a (linear) dynamic process model, and a set of physical system
constraints on inputs and outputs. This class of MPC problems has the advantage of
being readily numerically solvable and implemented in real time. Clearly these loop
controller and reference-tracking uses of MPC fit very nicely with the lower
level/supervisory-level architectures of the traditional process control hierarchy
based on process function and sampling-time-separation arguments.

Since this paradigm has met with considerable success in the process industries,
the obvious question to ask is where next with industrial developments of MPC.
The academic control community has certainly been busy extending the theory of
MPC into the field of nonlinear predictive control. Indeed, our sister series
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Advanced Textbooks in Control and Signal Processing was recently fortunate to
publish Model Predictive Control by Basil Kouvaritakis and Mark Cannon (ISBN
978-1-319-24851-6, 2016) in this growing field of nonlinear MPC.

However, an alternative and pragmatic way forward is to follow the example of
researchers Matthew Ellis, Jinfeng Liu, and Panagiotis D. Christofides and look
again at the process trends and requirements of industry. These researchers are
mainly involved with the chemical process industries and what they find is an
increasing focus on “dynamic market-driven operations which include more effi-
cient and nimble operations”. Their solution is a new re-formulation and
re-interpretation of the MPC method termed economic model predictive control
(EMPC) that is reported in this Advances in Industrial Control monograph,
Economic Model Predictive Control: Theory, Formulations and Chemical Process
Applications.

Their aim is to exploit the ever-increasing power of computing technology to
enhance the traditional control hierarchy by extending and re-interpreting the MPC
method in several respects. This approach may be applied to an upper-level control
more concerned with management functions and scheduling, or to an intermediate
level involving the multivariable loop controls. The cost functional is selected to
capture some of the economic objectives of the process. The dynamic process
model is extended to represent both economic and physical variables in the process.
The physical process constraint set remains largely unchanged in interpretation and
formulation, but a new set of “economic” process constraints is appended to the
MPC problem description. The resulting formulation involves nonlinear mathe-
matical representations and constrained nonlinear system optimization.

The researchers put their ideas and solutions to a test with a set of applications
from the chemical process industries and there are three challenges in this work:

i. how to capture mathematically the “economic dimension” of a process in the
construction of the cost functional, the process model, and the constraints;

ii. how to provide an EMPC control theory to guarantee essential control prop-
erties such as closed-loop stability; and

iii. how to develop the numerical computational algorithms that will allow the
application of the desired control actions in real-time operation.

The EMPC method is a challenge for control theory analysis, and the resulting
nonlinear optimization problems are difficult to solve and implement. The mono-
graph presents new results in these areas that are original to the authors and they
demonstrate their results with detailed chemical process simulation examples. The
success of MPC in the process industries has been largely due to the economic
benefits provided using linear system and quadratic cost problems. However,
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further improvements will require more accurate nonlinear plant models and cost
measures which this text explores. The Advances in Industrial Control monograph
series was originally created for the promotion of new methods for industrial
applications. The level of originality and the new research results presented in this
monograph meet this series’ aim and make an excellent contribution to Advances in
Industrial Control.

Michael J. Grimble
Michael A. Johnson

Industrial Control Centre
University of Strathclyde
Glasgow, Scotland, UK
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Preface

Traditionally, economic optimization and control of chemical processes have been
addressed with a hierarchical approach. In the upper layer, a static economic
optimization problem is solved to compute an optimal process steady state. The
optimal steady state is sent down to the lower feedback control layer to force the
process to operate at the optimal steady state. In the context of the lower feedback
control layer, model predictive control (MPC) has become a ubiquitous advanced
control methodology used in the chemical process industry owing to its ability to
control multiple input, multiple output process/systems while accounting for con-
straints and performance criteria. Recent pressure to make chemical processes
operate more efficiently, cost effectively, and reliably has motivated process control
researchers to analyze a more general MPC framework that merges economic
optimization with process control. In particular, economic MPC (EMPC), which
incorporates an economically motivated stage cost function in its formulation, has
attracted significant attention and research over the last 10 years. The rigorous
design of EMPC systems that operate processes in an economically optimal fashion
while maintaining stability of the closed-loop system is challenging as traditional
notions of stability may not apply to the closed-loop system under EMPC.

This book covers several rigorous methods for the design of EMPC systems for
chemical processes, which are typically described by nonlinear dynamic models.
The book opens with a brief introduction and motivation of EMPC and a back-
ground on nonlinear systems, control and optimization. An overview of the various
EMPC methods proposed in the literature is provided. Subsequently, an EMPC
scheme designed via Lyapunov-based techniques, which is the main focus of this
book, is described in detail with rigorous analysis provided on its feasibility,
closed-loop stability and performance properties. Next, the design of
state-estimation-based EMPC schemes is considered for nonlinear systems. Then,
several two-layer EMPC frameworks are presented that address computational
efficiency and industrially relevant control designs. The book closes with additional
EMPC designs that address computational efficiency and real-time implementation.
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Throughout the book, the EMPC methods are applied to chemical process examples
to demonstrate their effectiveness and performance.

The book requires some knowledge of nonlinear systems and nonlinear control
theory. Because EMPC requires the repeated solution of a nonlinear optimization
problem, a basic knowledge of nonlinear optimization/programming may be helpful
in understanding the concepts. This book is intended for researchers, graduate
students, and process control engineers.

We would like to acknowledge Dr. Mohsen Heidarinejad, Dr. Xianzhong Chen,
Dr. Liangfeng Lao, Helen Durand, Tim Anderson, Dawson Tu, and Anas Alanqar
all at UCLA who have contributed substantially to the research efforts and results
included in this book. We would like to thank them for their hard work and
contributions. We would also like to thank our many other collaborators and col-
leagues who contributed in some way to this project.

In particular, we would like to thank our colleagues at UCLA and the University
of Alberta, and the United States National Science Foundation and the Department
of Energy for financial support. Finally, we would like to express our deepest
gratitude to our families for their dedication, encouragement, patience, and support
over the course of this project. We dedicate this book to them.

Los Angeles, CA, USA Matthew Ellis
Edmonton, AB, Canada Jinfeng Liu
Los Angeles, CA, USA Panagiotis D. Christofides
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Chapter 1
Introduction

1.1 Motivation

Optimal operation and control of dynamic systems andprocesses has been a subject of
significant research formany years.Within the chemical process industries, operating
a process for any substantial length of time at globally optimal operating conditions
with respect to some meaningful economic-oriented performance criterion is almost
certainly impossible. Room for process operational performance improvement will
always exist.

Onemethodology for improving process performancewhile achieving operational
targets and constraints is to employ the solution of optimal control problems (OCPs)
on-line. In other words, control actions for the manipulated inputs of a process
are computed by formulating and solving on-line a dynamic optimization problem.
With the available computing power ofmodern computers, solving complex dynamic
optimization problems, which may take the form of large-scale, nonlinear, and non-
convex optimization problems, on-line is becoming an increasingly viable option.
The resulting controller designmay be capable of improving the closed-loop dynamic
and steady-state performance relative to other controller designs.

The process performance of a chemical process typically refers to the process
economics and encapsulates many objectives: profitability, efficiency, variability,
capacity, sustainability, etc. As a result of continuously changing process economics,
e.g., variable feedstock, changing energy prices, variable customer demand, process
operation objectives and strategies need to be frequently updated to account for
these changes. Traditionally, a hierarchical strategy for planning/scheduling, opti-
mization, and control has been employed in the chemical process industries. A block
diagram of the hierarchical strategy is shown in Fig. 1.1 (adapted from [1]). Although
the block diagram provides an overview of the main components, it is a simplified
view of modern planning/scheduling, optimization, and control systems employed
in the chemical process industry in the sense that each layer may be comprised of
many distributed and hierarchical computing units. The underlying design princi-
ple of the hierarchical strategy invokes time-scale separation arguments between the
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Fig. 1.1 The traditional hierarchical paradigm employed in the chemical process industries for
planning/scheduling, optimization, and control of chemical plants (adapted from [1])

execution/evolution of each layer (Fig. 1.1). In the highest level of the hierarchy,
enterprise-wide and/or plant-wide planning and scheduling decisions are made on
the order of days-months. These decisions are made on the basis of multiple oper-
ating processes even multiple operating plants, and are out-of-scope of the present
monograph.

In the next layers of the hierarchy of Fig. 1.1, economic optimization and control
of chemical processes is addressed in the multi-layer hierarchical architecture,
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e.g., [2, 3]. The upper-layer, called real-time optimization (RTO), is responsible for
process optimization. Within the RTO layer, a metric, defining the operating profit or
operating cost, is optimized with respect to an up-to-date and rigorous steady-state
process model to compute the optimal process steady-state. The computed steady-
state is sent to the feedback process control systems,which consists of the supervisory
control and regulatory control layers. The process control system steers the process
to operate at the steady-state using themanipulated inputs of the process. The process
control system must work to reject disturbances and ideally guide the trajectory of
the process dynamics along an optimal path to the steady-state.

The advanced or supervisory process control layer of Fig. 1.1 consists of con-
trol algorithms that are used to account for process constraints, coupling of process
variables and processing units, and operating performance. In the advanced process
control layer, model predictive control (MPC), a control strategy based on optimal
control concepts, has been widely implemented in the chemical process industry.
MPC uses a dynamic model of the process in an optimization problem to predict
the future evolution of the process over a finite-time horizon and to determine the
optimal input trajectory with respect to a performance index. Furthermore, MPC can
account for the process constraints and multi-variable interactions in the optimiza-
tion problem. Thus, it has the ability to optimally control constrained multiple-input
multiple-output nonlinear systems. Handling constraints and multivariate interac-
tions are the two key advantages of MPC relative other control designs.

The standard MPC approaches are the regulating and tracking formulations that
employ a quadratic performance index. Regulating MPC is used to force the process
to the (economically) optimal steady-state, while tracking MPC is used to force
the process to track a pre-specified reference trajectory. The quadratic performance
index is a measure of the predicted squared weighted error of the states and inputs
from their corresponding steady-state or target reference values. To date, there are
hundreds, if not thousands, of papers on regulating/tracking MPC addressing many
issues. A complete review of the MPC literature is beyond the scope of this book.
For reviews and books on regulating/tracking MPC for the process industries, the
interested reader is referred to [4–15].

The regulatory control layer is composed of mostly single-input single-output
control loops like proportional-integral-derivative (PID) control loops that work to
implement the control actions computed by the supervisory control layer; that is, it
ensures that the control actuators achieve the control action requested by the MPC
layer. Often, the dynamics of the regulatory control layer and control actuators are
neglected in the dynamicmodel used in theMPC layer owing to time-scale separation
arguments.

As previously mentioned, the overall control architecture of Fig. 1.1 invokes intu-
itive time-scale separation arguments between the various layers. For instance, RTO
is executed at a rate of hours-days, while the feedback control layers compute control
actions for the process at a rate of seconds-minutes-hours [1]. Though this paradigm
has been successful, we are witnessing the growing need for dynamic market-driven
operations which include more efficient and nimble process operation [16–19]. To
enable next-generation or “Smart” operations/manufacturing, novel control method-
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ologies capable of handling dynamic economic optimization of process operations
should be designed and investigated. More specifically, there is a need to develop
theory, algorithms, and implementation strategies to tightly integrate the layers of
Fig. 1.1. The benefits of suchworkmayusher in a newera of dynamic (off steady-state
and demand and market-driven) process operations.

In an attempt to integrate economic process optimization and process control as
well as realize the possible process performance improvement achieved by consis-
tently dynamic, transient, or time-varying operation, i.e., not forcing the process to
operate at a pre-specified steady-state, economic MPC (EMPC) has been proposed
which incorporates a general cost function or performance index in its formulation.
The cost function may be a direct or indirect reflection of the process economics.
However, a by-product of this modification is that EMPC may operate a system in a
possibly time-varying fashion to optimize the process economics andmay not operate
the system at a specified steady-state or target. The notion of time-varying operation
will be carefully analyzed throughout this monograph. The rigorous design of EMPC
systems that operate large-scale processes in a dynamically optimal fashion while
maintaining safe and stable operation of the closed-loop process system is challeng-
ing as traditional notions of stability, e.g., asymptotic stability of a steady-state, may
not apply to the closed-loop system/process under EMPC.While the concept of using
general cost function in MPC has been suggested numerous times in the literature,
e.g., [20–23], closed-loop stability and performance under EMPC has only recently
been considered and rigorously proved for various EMPC formulations [24–27].

1.2 Tracking Versus Economic Model Predictive Control:
A High-Level Overview

A high-level overview of the key differences between tracking and economicMPC is
provided. Amathematical discussion of tracking and economicMPC, which requires
a formal definition of notation and preliminary results, is delayed until the subsequent
chapters. Also, the term tracking MPC is used throughout this monograph to refer to
both regulating MPC or MPC formulated to force the process to operate at a given
steady-state and tracking MPC or MPC formulated to force the process track a given
reference trajectory. Model predictive control, whether tracking or economic, is a
feedback controlmethodologywhere the control actions that are applied to the closed-
loop process/system are computed by repeatedly solving a nonlinear constrained
optimization problem on-line. The main components of MPC are:

1. A mathematical model of the process/system to predict the future evolution of
the process/system over a time interval called the prediction horizon.

2. A performance index or cost functional that maps the process/system (state and
input) trajectories over the prediction horizon to a real number that is a measure
of the tracking or economic performance. The cost functional is the objective
function of the optimization problem.
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3. Constraints on the process/system including restrictions on the control inputs,
system states and other considerations, e.g., stability and performance constraints.

4. A receding horizon implementation (described further below).

To make the optimization problem of MPC a finite-dimensional one, the prediction
horizon of MPC is typically selected to be finite and the input trajectory over the pre-
diction horizon, which is the decision of the optimization problem, is parameterized
by a finite number of variables.

The receding horizon implementation is the strategy that involves repeatedly solv-
ing the optimization problem on-line to compute the control actions. Specifically,
real-time (continuous-time) is partitioned into discrete time steps called sampling
times where the time between two consecutive sampling times is called the sampling
period. At each sampling time, the MPC optimization problem is initialized with a
state measurement or estimate. The MPC optimization problem is solved to com-
pute the optimal input trajectory over the prediction horizon. The control action(s)
computed over the first sampling period of the prediction horizon is/are applied
to the closed-loop process/system. At the next sampling time, the MPC problem
is resolved after receiving an updated state measurement/estimate. The algorithm
is repeated over the length of operation. The receding horizon implementation is
important because it introduces feedback to compensate for disturbances, modeling
errors, and other forms of uncertainty. Moreover, the receding horizon implementa-
tion allows for a better approximation of the solution of the corresponding infinite-
horizon optimal control problem, i.e., the MPC problem in the limit as the prediction
horizon tends to infinity. The infinite-horizon solution, assuming the solution exists,
arguably gives the best solution as chemical processes are typically operated over
long periods of time without a natural termination or shutdown time.

Tracking MPC optimization problem takes the following general form:

Optimize: Tracking cost functional
Subject to: Dynamic model initialized with state measurement/estimate

State/input constraints
Stability constraints

(1.1)

while economic MPC problem takes the following general form:

Optimize: Economic cost functional
Subject to: Dynamic model initialized with state measurement/estimate

State/input constraints
Economic-oriented constraints
Stability constraints

(1.2)

The main difference between trackingMPC of Eq.1.1 and economic MPC of Eq.1.2
is that the trackingMPC problem is formulated with a tracking cost functional, while
the economic MPC problem is formulated with an economic cost functional. The
tracking cost functional usually uses a quadratic stage cost that penalizes the deviation
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of state and inputs from their corresponding steady-state, target, or reference values.
However, the EMPC cost functional may potentially use any general stage cost that
reflects the process/system economics. Since the idea of EMPC is to compute con-
trol actions that directly account for the economic performance, economic-oriented
constraints may also be added. For example, the economic-oriented constraints may
limit the average amount of raw material that may be fed to the process/system or
may ensure that the total production of the desired product over a specified length of
operation meets demand.

1.3 Chemical Processes and Time-Varying Operation

In this section, a few chemical process examples that will be used to study the
closed-loop properties of EMPC are presented to motivate the need for unsteady-
state process operation to improve economic performance. As discussed in the intro-
duction, steady-state operation is typically adopted in chemical process industries.
In this operating paradigm, the control system is used to force a chemical process
to a pre-specified steady-state and maintain operation at this steady-state thereafter
until the desired operating steady-state is changed. However, steady-state operation
may not necessarily be the best operation strategy with respect to the process eco-
nomics. In fact, the chemical process control literature is rich with chemical process
examples that demonstrate performance improvement with respect to specific cost
metrics with dynamic process operation. In particular, many studies have analyzed
the economic benefit of periodically operated reactors, e.g., [28–47], and the numer-
ous references therein. To help identify systems that achieve a performance benefit
from periodic operation, several techniques have been proposed including frequency
response techniques and the application of the maximum principle [28, 36, 48–51].
Periodic control strategies have also been developed for several applications, for
instance, [35, 39, 42–44].

While the periodic operating strategies listed above do demonstrate economic per-
formance improvement, in the case of forced periodic operation, i.e., periodic oper-
ation induced by periodic switching of manipulated inputs, the periodic operating
policies described in many previous works have been identified through a low-order
control parameterization, e.g., a bang-bang input profile and in an open-loop fash-
ion.Owing to recent advances in dynamic optimization (numerical solution strategies
or direct methods), it is possible that these chemical process examples previously
considered in the context of periodic operation may achieve further economic per-
formance improvement under EMPC. Moreover, EMPC may systematically deter-
mine, in real-time, the optimal operating strategy based on the current economic
factors while meeting operating constraints. When accounting for time-varying eco-
nomic factors, e.g., real-time energy pricing, and time-varying disturbance, it is
certainly possible that more complex operating strategies beyond steady-state and
periodic operation are economically optimal. DevelopingEMPC schemes that dictate
such complex operating strategies, which are generally referred to as time-varying
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operating strategies, has motivated much of the work contained in this book. Two
chemical process examples that benefit from time-varying operation are provided
below.

1.3.1 Catalytic Oxidation of Ethylene

Consider a benchmark chemical reactor example depicted in Fig. 1.2 that has previ-
ously studied in the context of forced periodic operation [38, 39]. Within the reactor,
ethylene oxide (C2H4O) is produced from the catalytic oxidation of ethylene with
air. Ethylene oxide is an important rawmaterial within the chemical industry because
it is used for the synthesis of ethylene glycol which is subsequently used to produce
many materials. The reactor is modeled as a non-isothermal continuous stirred-tank
reactor (CSTR) with a coolant jacket to remove heat from the reactor. Two combus-
tion reactions occur that consume both the reactant and the product, respectively.
The reactions are given by

C2H4 + 1

2
O2

r1→ C2H4O

C2H4 + 3O2
r2→ 2CO2 + 2H2O

C2H4O + 5

2
O2

r3→ 2CO2 + 2H2O

where ri , i = 1, 2, 3 is the reaction rate of the i th reaction, and the reaction rate
expressions are

Fig. 1.2 Diagram of the
catalytic reactor that
produces ethylene oxide
from ethylene
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r1 = k1 exp

(−E1

RT

)
P0.5
E (1.3)

r2 = k2 exp

(−E2

RT

)
P0.25
E (1.4)

r3 = k3 exp

(−E3

RT

)
P0.5
EO (1.5)

where ki and Ei , i = 1, 2, 3 are the reaction rate constant and activation energy for
the i th reaction, respectively, T is the temperature, R is the gas constant, and Pj is the
partial pressure of the j th component in the reactor ( j = E, EO denotes ethylene
and ethylene oxide, respectively). The reaction rate expressions are from [52] where
catalytic oxidation of ethylene using an unmodified, commercial catalyst was studied
over the temperature range 523–573K. To model the gaseous mixture within the
reactor, ideal gas is assumed and the concentration of the j th component within the
reactor, denoted by C j , is

C j = Pj

RT
. (1.6)

A model describing the dynamic behavior of the reactor is derived through first
principles under standard modeling assumptions, e.g., ideal gas and constant heat
capacity. The dimensionless states are

x1 = ρ/ρref, x2 = CE/Cref, x3 = CEO/Cref, x4 = T/Tref

where ρ/ρref is the dimensionless vapor density in the reactor, CE/Cref is the dimen-
sionless ethylene concentration in the reactor, CEO/Cref is the dimensionless eth-
ylene oxide concentration in the reactor, and T/Tref is the dimensionless reactor
temperature. The manipulated inputs are

u1 = Q f /Qref, u2 = CE, f /Cref, u3 = Tc/Tref

where Q f /Qref is the dimensionless volumetric flow rate of the feed, CE, f /Cref is
the dimensionless ethylene concentration of the feed, and Tc/Tref is the dimension-
less coolant temperature. The model of the reactor is given by the following set of
nonlinear ordinary differential equations:
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dx1
dt

= u1(1 − x1x4) (1.7)

dx2
dt

= u1(u2 − x2x4) − A1r̄1(x2, x4) − A2r̄2(x2, x4) (1.8)

dx3
dt

= −u1x3x4 + A1r̄1(x2, x4) − A3r̄3(x3, x4) (1.9)

dx4
dt

= u1
x1

(1 − x4) + B1

x1
r̄1(x2, x4) + B2

x1
r̄2(x2, x4)

+ B3

x1
r̄3(x3, x4) − B4

x1
(x4 − u3) (1.10)

where

r̄1(x2, x4) = exp(γ1/x4)(x2x4)
1/2 (1.11)

r̄2(x2, x4) = exp(γ2/x4)(x2x4)
1/4 (1.12)

r̄3(x3, x4) = exp(γ3/x4)(x3x4)
1/2 (1.13)

and the parameters are given in Table1.1 from [38, 39]. The admissible input values
is considered to be bounded in the following sets:

u1 ∈ [0.0704, 0.7042],
u2 ∈ [0.2465, 2.4648],
u3 ∈ [0.6, 1.1].

Following [38], the profitability of the reactor is assumed to scale with the yield of
ethylene oxide. Therefore, to optimize the profitability or economics of the reactor,
one seeks to maximize the time-averaged yield of ethylene oxide. The time-averaged
yield of ethylene oxide over an operating time t f is given by

Table 1.1 Dimensionless process model parameters of the ethylene oxidation reactor model

Parameter Value Parameter Value

A1 92.80 B3 2170.57

A2 12.66 B4 7.02

A3 2412.71 γ1 –8.13

B1 7.32 γ2 –7.12

B2 10.39 γ3 –11.07

The parameters are from [38]
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Y =
1

t f

∫ t f

0
x3(τ )x4(τ )u1(τ ) dτ

1

t f

∫ t f

0
u1(τ )u2(τ ) dτ

. (1.14)

Since two combustion reactions occur in the reactor that consume both the desired
product and the reactant, the yield is a measure of the amount of ethylene oxide
leaving the reactor relative to the amount of ethylene fed into the reactor and thus, a
good measure for the economic performance of the reactor.

For practical reasons, one may want to optimize the yield while also ensuring
that the time-averaged amount of ethylene that is fed to the reactor be fixed, i.e.,
determine the method to distribute a constant time-averaged amount of ethylene to
the reactor that maximizes the yield. Limiting the time-averaged amount of ethylene
that may be fed to the reactor is described by the following constraint:

1

t f

∫ t f

0
u1(τ )u2(τ ) dτ = ṀE (1.15)

where ṀE is a given time-averaged dimensionless molar flow rate of ethylene that
may be fed to the reactor. If u1,minu2,min < ṀE < u1,maxu2,max, the constraint of
Eq.1.15 prevents one from simply considering feeding in the minimum or maximum
flow rate of ethylene to the reactor for all time. Within the context of EMPC, the
constraint of Eq.1.15 gives rise to a class of economically motivated constraints
which take the form of integral or average constraints. In stark contrast to traditional
or conventional control methodologies, e.g., proportional-integral-derivative control
or tracking MPC, economically motivated constraints may be directly incorporated
intoEMPC.Aspreviouslymentioned this example has beenpreviously studiedwithin
the context of periodic operation, e.g., [38], and closed-loop operation of this reactor
under EMPC is considered in later chapters.

1.3.2 Continuously-Stirred Tank Reactor with Second-Order
Reaction

A well-known chemical engineering example that demonstrates performance
improvement through time-varying operation is a continuously stirred tank
reactor (CSTR) where a second-order reaction occurs. Specifically, consider a
non-isothermal CSTR where an elementary second-order reaction takes place that
converts the reactant A to the desired product B like that depicted in Fig. 1.3. The
reactant is fed to the reactor through a feedstock stream with concentration CA0,
volumetric flow rate F , and temperature T0. The CSTR contents are assumed to be
spatially uniform, i.e., the contents are well-mixed. Also, the CSTR is assumed to
have a static liquid hold-up. A jacket provides/removes heat to/from the reactor at a
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Fig. 1.3 Diagram of a CSTR where a second-order reaction occurs that produces a desired product
B from a reactant A

heat rate Q. Applying first principles and standard modeling assumptions, e.g., con-
stant fluid density and heat capacity, which are denoted by ρR and Cp, respectively
and Arrhenius rate dependence of the reaction rate on temperature, the following
system of ordinary differential equations (ODEs) may be obtained that describes the
evolution of the CSTR reactant concentration and temperature:

dCA

dt̄
= F

VR
(CA0 − CA(t̄)) − k0e

−E/RT (t̄)(CA(t̄))
2 (1.16a)

dT

dt̄
= F

VR
(T0 − T (t̄)) − (−ΔH)k0

ρRCp
e−E/RT (t̄)(CA(t̄))

2 + Q

ρRCpVR
(1.16b)

where t̄ is the time, CA denotes the concentration of A in the reactor, T denotes the
temperature of the reactor contents, VR is the volume of the liquid hold-up in the
reactor, k0 is the rate constant, E is the reaction activation energy,ΔH is the enthalpy
of reaction, and R is gas constant.

The ODEs of Eq.1.16 may be written in dimensionless form by defining
t = t̄ F/VR , x1 = CA/Cref , x2 = RT/E , u = CA0/Cref , A1 = Cref VRk0/F ,
A2 = ΔHRCref A1/(ECpρ), x20 = RT0/E + RQ/(CpρEF) where Cref is a ref-
erence concentration. The resulting dynamic equations in dimensionless form is:
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Table 1.2 Process parameters of the CSTR

k0C2
re f 8.46 × 106 A1 1.69 × 106

x20 0.050 A2 1.41 × 104

dx1
dt

= −x1 − A1e
−1/x2x21 + u (1.17a)

dx2
dt

= −x2 + A2e
−1/x2x21 + x20 (1.17b)

where x1 is the dimensionless reactant concentration, x2 is the dimensionless tem-
perature, and A1, A2 and x20 are constant parameters. The values of the parameters
are given in Table1.2. The input, which is the dimensionless reactant concentration
in the reactor inlet, is bounded: u ∈ [umin, umax ] = [0.5, 7.5]. For this example, the
production rate of the desired product is assumed to reflect the operating profit of
the reactor, which is given by the following function:

le(x, u) = k0C
2
re f e

−1/x2x21 . (1.18)

Determining the optimal input profile that maximizes the production rate subject
to the constraint on the admissible input values is trivial: feed in themaximumamount
of material for all time, i.e., set u to umax for all time. A more interesting problem
that may lead to a non-trivial solution is to determine the optimal input profile that
maximizes the production rate subject to a constraint on the time-averaged amount
of material that may fed to the reactor. In the latter problem, a more economical
viewpoint is adopted and the problem seeks to determine the optimal method to
distribute the material to the reactor. Therefore, the CSTR is assumed to be subject
to an input average constraint (dynamic constraint) given by:

1

t f

∫ t f

0
u(t) dt = uavg (1.19)

where t f is the length of operation. For this process (Eq. 1.17), performance metric
(Eq.1.18), and average constraint (Eq. 1.19), forced periodic operation induced by
bang-bang type actuation has been shown to improve the average production owing to
the second-order dependence of the reaction rate on reactant concentration, e.g., [29–
32].

An analysis may be completed to rigorously show that the economic performance,
i.e., the average production rate of the product, may be improved by using a time-
varying operating strategy (in particular, periodic operation) compared to operating
the reactor at steady-state. To show this rigorously, we require some more technical
concepts, e.g., the Hamiltonian function, adjoint variables, Pontryagin’s maximum
principal [53]. Nevertheless, these concepts are not needed later in the book. An
auxiliary state is defined for the average constraint:
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x3(t) := 1

t f

∫ t

0

(
u(t) − uavg

)
dt (1.20)

which has dynamics:
dx3(t)

dt
= 1

t f
(u(t) − uavg). (1.21)

The non-isothermal CSTR with the stage cost (Eq. 1.18) is a member of a special
class of nonlinear systems:

ẋ = f̄ (x) + Bu (1.22)

where ẋ denotes the time derivative of x , B ∈ R
n×m is a constant matrix and f̄ :

R
n → R

n is a differentiable vector function.Additionally, the stage cost only depends
on the states:

le(x, u) = l̄e(x) (1.23)

where l̄e : Rn → R is a differentiable function. The Hamiltonian function of the
system of Eq.1.22 and cost of Eq.1.23 is

H(x, u, λ) = l̄e(x) + λT f̄ (x) + λT Bu (1.24)

where λ is the adjoint variable vector that satisfies

λ̇(t) = −Hx (x(t), u(t), λ(t)) (1.25)

where Hx denotes the partial derivative of H with respect to x . From Pontryagin’s
maximumprinciple [53], a necessary condition can be derived for the optimal control,
i.e., the control that maximizes the Hamiltonian:

u∗
i (t) =

{
ui,max, if bTi λ(t) > 0

ui,min, if bTi λ(t) < 0
(1.26)

where bi is the i-th column of B. For this class of systems and stage costs, if some
time-varying operating policy is the optimal operating strategy, then the operating
policy is a bang-bang input policy of Eq.1.26.

Although the analysis above significantly reduces the space of possible optimal
input trajectories, it still yields an infinite space of input trajectories. Thus, consider
the following periodic bang-bang input trajectory over one period:

u(t) =
{
umax if t < τ/2

umin else
(1.27)

where τ is the period and t ∈ [0, τ ). The input trajectory of Eq.1.27 satisfies the
average constraint of Eq.1.19 over each period (in this regard, the length of operation,
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t f , is assumed to be a multiple of τ ). For the system of Eq.1.17 with the input
trajectory of Eq.1.27, there exists a periodic state trajectory for some τ > 0, i.e., it
has the property x(t) = x(t + τ) for all t .

In this example, uavg is taken to be 4.0. The CSTR has an optimal steady-state
xTs = [1.182 0.073] which corresponds to the steady-state input that satisfies the
average input constraint (us = uavg) with a production rate of 14.03. Indeed, the
periodic solution of the system of Eq.1.17 with the input of Eq.1.27 achieves better
economic performance compared to the economic performance at steady-state for
some τ . Moreover, the economic performance depends on the period which is shown
in Fig. 1.4. Over the range of periods considered (0.5 to 2.4), the period τ = 1.20
yields the best performance (Fig. 1.4). The periodic solution with the input period
of τ = 1.20 has an average cost of J̄e = 15.20 which is 8.30 percent better than
the performance at the optimal steady-state. Periods greater than 1.96 achieve worse
performance compared to that at steady-state. The state, input, and BTλ = bT1 λ =
λ1 + λ3/τ trajectories are given in Fig. 1.5 over one period. From Fig. 1.5, the input
trajectory satisfies the necessary condition of Eq.1.26. From these results, time-
varying operation is better than steady-state operation from an economical point
of view for this example. If the average constraint of Eq. 1.19 was not imposed,
the optimal operating strategy would be steady-state operation at the steady-state
corresponding to the input umax. The average constraint plays a crucial role for this
particular example.

As pointed out, the above analysis only considers economic performance. If the
periodic solution depicted in Fig. 1.5 is indeed optimal or some other bang-bang
policy is the best operating strategy, feedback control is needed to force the sys-
tem state from an initial state to the optimal time-varying solution. Moreover, the
control problem becomes more complex when one considers disturbances, plant-
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e

τ

Fig. 1.4 Average economic performance J̄e as a function of the period length τ
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Fig. 1.5 State, input, and λ1 + λ3/τ trajectories of the CSTR under the bang-bang input policy
with period τ = 1.20

model mismatch and other forms of uncertainty, implementability of the computed
input trajectory, i.e., bang-bang control may not be implementable in practice, and
time-varying economic objectives and constraints. The example furthermotivates the
inquiry and theoretical developments in the context of EMPC systems that dictate
time-varying operating policies.

1.4 Objectives and Organization of the Book

This book considers theoretical analysis of closed-loop stability and performance
under EMPC, issues related to computational efficiency of EMPC, and chemical
process applications controlled by EMPC. Specifically, the objectives of this book
are summarized as follows:

1. To develop economic model predictive control methods that address infinite-time
and finite-time closed-loop economic performance and time-varying economic
considerations.

2. To develop two-layer dynamic economic process optimization and feedback con-
trol frameworks that incorporate EMPCwith other control strategies allowing for
computational efficiency.

3. To develop rigorous output feedback-based EMPC schemes with guaranteed
closed-loop stability properties.

4. To address real-time computation of EMPC.
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The book is organized as follows. In Chap.2, a formal definition of the notation
is provided. Some definitions and preliminary results on stability and stabilization
of nonlinear systems and on tracking MPC are given. The chapter closes with a brief
review of nonlinear constrained optimization and solution strategies for dynamic
optimization.

InChap.3, a brief overviewofEMPCmethods is provided. In particular, the role of
constraints imposed in the optimization problemof EMPC for feasibility, closed-loop
stability, and closed-loop performance is explained. Three main types of constraints
are considered including terminal equality constraints, terminal region constraints,
and constraints designed via Lyapunov-based techniques. EMPC is applied to a
benchmark chemical process example to illustrate the effectiveness of time-varying
operation to improve closed-loop economic performance compared to steady-state
operation and to an open-loop periodic operating policy.

In Chap.4, a complete discussion of Lyapunov-based EMPC (LEMPC), which
was first presented in [27], is given that includes closed-loop stability and robustness
properties. LEMPC designs that address closed-loop performance and time-varying
economic stage cost function are also addressed in this chapter. The methods are
applied to two chemical process examples.

In Chap.5, output feedback-based EMPC schemes are presented. To provide
EMPC with an estimate of the system state from a measurement of the output, a
high-gain observer and moving horizon estimation (MHE) are both considered for
state estimation. Conditions under which closed-loop stability under the two result-
ing state estimation-based EMPC schemes are derived. The state estimation-based
EMPC schemes are applied to a chemical process example.

In Chap.6, several two-layer approaches to dynamic economic optimization and
control are developed and discussed. The upper layer, utilizing an EMPC, is used to
compute economically optimal policies and potentially, also, control actions that are
applied to the closed-loop system. The economically optimal policies are sent down
to a lower layer MPC scheme which may be a trackingMPC or an EMPC. The lower
layer MPC scheme forces the closed-loop state to closely follow the economically
optimal policy computed in the upper layer EMPC. The methodologies are applied
to several chemical process examples to demonstrate their effectiveness.

In Chap.7, issues relating to computational efficiency and real-time implemen-
tation of EMPC are addressed. First, a composite control structure featuring EMPC
is developed for nonlinear two-time-scale systems. The resulting control strategy
addresses computational efficiency because it is a distributed control strategy and it
has certain numerical advantages explained further in the chapter. Next, an alterna-
tive to solving for the control actions for all available inputs in a single optimization
problem is discussed. Specifically, several (smaller) optimization problems may for-
mulated and solved to compute the control actions that are applied to the closed-loop
system. Owing to the fact that the optimization problems are solved amongst sev-
eral distributed processors, the resulting strategy is a distributed EMPC (DEMPC)
implementation. In this chapter, an application study of DEMPC is presented. Two
DEMPCapproaches are considered and evaluatedwith respect to a centralizedEMPC
implementation. Finally, to address guaranteed closed-loop stability in the presence

http://dx.doi.org/10.1007/978-3-319-41108-8_2
http://dx.doi.org/10.1007/978-3-319-41108-8_3
http://dx.doi.org/10.1007/978-3-319-41108-8_4
http://dx.doi.org/10.1007/978-3-319-41108-8_5
http://dx.doi.org/10.1007/978-3-319-41108-8_6
http://dx.doi.org/10.1007/978-3-319-41108-8_7
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of computational delay, an implementation strategy is developed which features a
triggered evaluation of the LEMPC optimization problem to compute an input trajec-
tory over a finite-time prediction horizon in advance. Closed-loop stability under the
real-time LEMPC strategy is analyzed and specific stability conditions are derived.
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Chapter 2
Background on Nonlinear Systems,
Control, and Optimization

This chapter provides a brief review of several concepts that are used throughout
this book. The first section presents the notation. In the second section, stability of
nonlinear systems is discussed followed by a brief overview of stabilization (control)
of nonlinear systems. For a more detailed and complete overview of stability and
control of nonlinear systems, the reader is referred to, for example, the classical
textbooks [1, 2]. In the last section, a review of nonlinear and dynamic optimization
concepts is presented.

2.1 Notation

The set of real numbers is denoted by R, while the set of integers is denoted by
I. The symbol R≥0 (I≥0) is used to denote positive reals (integers), and R

n is an
n-dimensional real (Euclidean) space. The variable t where t ∈ R will typically
be reserved for time and thus, the notation x(t) ∈ R

n represents a time-dependent
vector. The symbol | · | denotes the Euclidean norm of a vector, i.e., |x | = √

xT x
where x ∈ R

n and xT denotes the transpose of x , and | · |2Q denotes the square of
a weighted Euclidean norm of a vector, i.e., |x |2Q = xT Qx where Q is a weighting
positive definitematrix. A square diagonalmatrixwith diagonal elements equal to the
elements of a vector v and off-diagonal elements equal to zero is written as diag(v).
An infinite sequence is denoted by {tk}k≥0, while a finite sequence is written as {ti }Ni=0
which describes the sequence: t0, t1, …, tN−1, tN .

With regard to functions, a function, V : R
n → R≥0, is said to be positive

definite with respect to x̄ ∈ R
n if V (x) > 0 for all x ∈ R

n except for x̄ when
V (x̄) = 0. When a function is positive definite with respect to the origin (x̄ = 0),
the function may be referred to as positive definite, and the distinction that it is
positive definite with respect to the origin is omitted. A function, V : Rn → R≤0, is
negative definite (with respect to the origin) if −V is positive definite. A continuous
function α : [0, a) → R≥0 is said to be of class K if it is strictly increasing and
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α(0) = 0, and it is of class K∞ if it is of class K , a = ∞, and α(r) → ∞
as r → ∞, i.e., it is radially unbounded. A function β : [0, a) × R≥0 → R≥0

is said to be of class-K L if, for each fixed t , the mapping β(s, t) is of class-
K with respect to s and for each fixed s, the mapping β(s, t) is non-increasing
with respect to t and β(s, t) → 0 as t → ∞. The family of piecewise constant,
right-continuous functions with period Δ is denoted as S(Δ). With a slight abuse of
notation, we will say u(·) ∈ S(Δ) (or simply, u ∈ S(Δ)) when the vector-valued
function u : [0, NΔ) → R

m , u : t �→ u(t), may be described by

u(t) = ūi , for t ∈ [iΔ, (i + 1)Δ)

for i = 0, 1, . . . , N − 1 where Δ > 0 is the period and ūi ∈ R
m ; the appropriate

domain of the function u will be implied by the context. The floor and ceiling func-
tions, denoted as 	a
 and �a� for a scalar a ∈ R, respectively, are the largest integer
not greater than a and the smallest integer not less than a, respectively.

The set Ωr is a level set, also referred to as a level surface or sub-level set in other
contexts, of a scalar-valued positive definite function: Ωr := {x ∈ R

n : V (x) ≤ r}
where r > 0. A ball of radius R > 0 is given by BR := {x ∈ R

n : |x | ≤ R}. The
notation B \ A denotes the relative complement of the set A in B, i.e., B \ A = {x ∈
B : x /∈ A}. Finally, for algorithms, the notation j ← j + 1 is used to denote that at
the next time step or at the next iteration, the index j is incremented by one.

2.2 Stability of Nonlinear Systems

First, unforced nonlinear systems are considered to present some definitions and
stability properties. Specifically, consider the following class of time-invariant non-
linear systems, which is described by the following system of first-order nonlinear
ordinary differential equations (ODEs):

ẋ = f (x) (2.1)

where x ∈ D ⊂ R
n , f : D → R

n is a locally Lipschitz map from a domain D ⊂ R
n

toRn . The vector x describes the current state of the system. Thus, x is referred to as
the state vector, and the space Rn is referred to as state-space. The initial condition
of system of Eq.2.1 is given by x0 ∈ D, i.e., x(t0) = x0 where t0 ∈ R is the initial
time.

The solution of Eq.2.1 starting from x0 at time t0, is denoted as x(t, x0, t0) for
t ∈ [t0, t1] with x(t0, x0, t0) = x0 and where t1 > t0 is the maximal time that the
solution exists. The initial time may be taken to be zero with no loss of generality.
The solution of Eq.2.1 is also referred to as the state trajectory, and with slight abuse
of notation, the notation of the solution of Eq.2.1 at time t ≥ t0 may be abbreviated
to x(t). Two ofmost fundamental properties of the system of Eq.2.1 are the existence
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and uniqueness of a solution to the system of Eq.2.1 for a given initial condition. If
it can be shown that every solution lies in some compact set X ⊂ D for all t ≥ t0,
then a unique solution is guaranteed for all t ≥ t0, e.g., [2].

Owing to the fact that the vector field, f , of Eq.2.1 is nonlinear, the system may
possess multiple isolated equilibrium points. Without loss of generality, the origin
x = 0 is taken to be an equilibriumpoint of the system of Eq.2.1, i.e., f (0) = 0. If the
origin is not the equilibrium point of interest, deviation variables may be introduced
such that the origin of the shifted coordinate system is the equilibrium point. For
example, consider the system ẋ = f (x) with an equilibrium xs �= 0 ( f (xs) = 0).
Defining a shifted state z := x − xs , the system may be rewritten in the following
coordinates:

ż = f (z + xs) =: g(z) (2.2)

where the equilibrium point of the shifted system is z = 0 and g(0) = 0.
Within the context of the system of Eq.2.1, stability of solutions is considered. In

particular, the stability of the solution x ≡ 0 is considered using Lyapunov stability
concepts. The origin of Eq.2.1 is

• stable if, for each ε > 0, there is δ(ε) > 0 such that

|x(0)| < δ ⇒ |x(t)| < ε,∀ t ≥ 0 (2.3)

• unstable if it is not stable
• locally asymptotically stable if it is stable and δ may be chosen such that

|x(0)| < δ ⇒ lim
t→∞ |x(t)| = 0 (2.4)

• globally asymptotically stable if it is stable and |x(t)| → 0 as t → 0 for all
x(0) ∈ R

n

• locally exponentially stable if there exist positive real constants δ, c, and λ such
that all solutions of Eq.2.1 with |x(0)| ≤ δ satisfy the inequality:

|x(t)| ≤ c|x(0)|e−λt ∀ t ≥ 0 (2.5)

• globally exponentially stable if there exist positive real constants c, and λ such
that all solutions of Eq.2.1 satisfy the inequality:

|x(t)| ≤ c|x(0)|e−λt ∀ t ≥ 0 (2.6)

for all x(0) ∈ R
n .

Since the system of Eq.2.1 is time-invariant, the stability properties above are
uniform; that is, they do not depend on the initial time. The stability definitions may
be written in equivalent forms using so-called comparison functions.

The stability definitions are restated using comparison functions.
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Lemma 2.1 ([2, Lemma 4.5]) The equilibrium point x = 0 of Eq.2.1 is

• stable if and only if there exist α ∈ K and a positive constant c, such that

|x(t)| ≤ α(|x(0)|) (2.7)

for all t ≥ 0 and |x(0)| < c.
• locally asymptotically stable if and only if there exist β ∈ K L and a positive
constant c such that

|x(t)| ≤ β(|x(0)|, t) (2.8)

for all t ≥ 0 and |x(0)| < c.
• globally asymptotically stable if and only if there exist β ∈ K L such that

|x(t)| ≤ β(|x(0)|, t) (2.9)

for all t ≥ 0 and x(0) ∈ R
n.

When the origin is asymptotically stable, the state-space set of initial conditions
where the solution to Eq.2.1 will asymptotically converge to the origin is of interest.
This gives rise to the notion of the domain of attraction, which is the set D = {x0 ∈
R

n : limt→∞ x(t, t0, x0) = 0}.
Aweaker notion of stability than asymptotic and exponential stability of the origin

is boundedness of the solution. Specifically, the solutions of Eq.2.1 are

• bounded if there exists a positive constant c and for every a ∈ (0, c), there is
β(a) > 0 such that

|x(0)| ≤ a ⇒ |x(t)| ≤ β,∀ t ≥ 0 (2.10)

• ultimately bounded with ultimate bound b if there exist positive constants b and c
and for every a ∈ (0, c) there is T (a, b) ≥ 0 such that

|x(0)| ≤ a ⇒ |x(t)| ≤ b, ∀ t ≥ t0 + T (2.11)

For practical systems, global stability properties are often not relevant owing to
system constraints. Therefore, we extend the stability concepts to the case where
the state of Eq.2.1 is constrained to be in the set X̃ ⊂ R

n . We need the following
definition to state the stability properties of the constrained system of Eq.2.1.

Definition 2.1 A set M is said to be positively invariant set with respect to the
system of Eq.2.1 if

x(0) ∈ M ⇒ x(t) ∈ M, ∀ t ≥ 0

We will also use the term forward invariant set to refer to a positively invariant
set. Consider a set X ⊆ X̃ to be an positively invariant set for the system of Eq.2.1
that contains the origin in its interior. Then, the origin is, e.g., [3]:
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• stable in X if, for each ε > 0, there is δ(ε) > 0 such that Bδ ⊆ X and

|x(0)| < δ ⇒ |x(t)| < ε,∀ t ≥ 0 (2.12)

• locally attractive in X if there exists a η > 0 such that x ∈ Bη ⊆ X implies
|x(t)| → 0 as t → ∞

• attractive in X if |x(t)| → 0 as t → ∞ for all x(0) ∈ X

• locally asymptotically stable in X if it is stable and locally attractive
• asymptotically stable in X if it is stable and attractive
• locally exponentially stable in X if there exist η > 0, c > 0, and γ > 0 such that

|x(t)| ≤ c|x(0)|e−λt ∀ t ≥ 0 (2.13)

for all x(0) ∈ Bη ⊆ X

• exponentially stable with a region of attraction X if there exist c > 0, and γ > 0
such that

|x(t)| ≤ c|x(0)|e−λt ∀ t ≥ 0 (2.14)

for all x(0) ∈ X.

2.2.1 Lyapunov’s Direct Method

For nonlinear systems, stability of the equilibrium points may be characterized in the
sense of Lyapunov’s direct method. Lyapunov’s direct second method uses a scalar-
valued positive definite function whose time-derivative is negative (semi-)definite
along the state trajectory.

Theorem 2.1 (Lyapunov Stability Theorem, c.f. [2, Theorem 4.1]) Let x = 0 be
an equilibrium point for Eq.2.1 and D ⊂ R

n be a domain containing the origin
(x = 0). Let V : D → R be a continuously differentiable positive definite function
such that

V̇ (x) ≤ 0 (2.15)

for all x ∈ D. Then, x = 0 is stable. If

V̇ (x) < 0 (2.16)

for all x ∈ D \ {0}, then x = 0 is asymptotically stable.

A continuously differentiable positive definition function V as in Theorem 2.1 is
called a Lyapunov function. The time-derivative of V along the state trajectory x is
given by:

V̇ (x) = ∂V (x)

∂x
ẋ = ∂V (x)

∂x
f (x). (2.17)
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Theorem 2.1 is a sufficient condition for stability and asymptotic stability of
the origin. Various converse Lyapunov theorems show that the conditions of Theo-
rem 2.1 are also necessary (under a few additional mild conditions), see, for example,
[2, 4–8].

Lyapunov’s direct method has an intuitive interpretation by regarding the Lya-
punov function as an abstract notion of the total energy of a given system. Specif-
ically, consider any x on the level or Lyapunov surface V (x) = c, which is the
boundary of the set Ωc = {x ∈ R

n : V (x) ≤ c} ⊂ D. When V̇ (x) < 0 for all
x ∈ D, the state trajectory evolves from the boundary of Ωc to the interior of Ωc.
Over time, the level surface that state trajectory evolves along shrinks to the origin
owing to the fact that V̇ (x) < 0 for all x ∈ D. In other words, the energy of the
system decays with time when V̇ < 0. If, instead, V̇ (x) ≤ 0 for all x ∈ D, this
implies that the state trajectory evolves inside the set Ωc ⊂ D without coming out,
and the energy over time may only stay the same or decrease (it cannot increase).
This in turn means that a trajectory starting from the boundary of Ωc will stay in
the set Ωc for all time without coming out. In this case, the conclusion that may be
made is the origin is stable since the trajectory is contained inside any ball, Bε, by
requiring that the initial state x0 to lie inside a Lyapunov surface contained in that
ball.

2.2.2 LaSalle’s Invariance Principle

LaSalle’s invariance principle allows for making stronger conclusions about the
behavior of solution of Eq.2.1 when V̇ (x) ≤ 0 for all x ∈ D.

LaSalle’s invariance principle states that any state starting in any compact forward
invariant subset of D will converge to the largest invariant set where V̇ (x) = 0.

Theorem 2.2 (LaSalle, c.f. [2, Theorem 4.4]) Let Ω ⊂ D be a compact set that
is positively invariant with respect to Eq.2.1. Let V : D → R be a continuously
differentiable function such that V̇ (x) ≤ 0 in Ω . Let E := {x ∈ Ω : V̇ (x) = 0}
and M be the largest invariant set in E. Then every solution in Ω approaches M as
t → ∞.

A consequence of LaSalle’s invariance principle, one may show asymptotic sta-
bility of the origin when M = {0}, i.e., when M is the set containing the point x = 0.
This result is stated in the following corollary.

Corollary 2.1 (c.f. [2, Corollary 4.1]) Let V : D → R be a continuously differ-
entiable positive definite function on a domain D containing the origin x = 0,
which is an equilibrium point of Eq.2.1, such that V̇ (x) ≤ 0 for all x ∈ D. Let
S = {x ∈ D : V̇ (x) = 0} and suppose that no solution can stay identically in S,
other than the trivial solution x ≡ 0. Then, the origin is asymptotically stable.
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2.3 Stabilization of Nonlinear Systems

Consider, now, the class of forced nonlinear systems described by the following
system of nonlinear ordinary differential equations:

ẋ = f (x, u,w) (2.18)

where x ∈ D ⊆ R
n is the state, u ∈ U ⊂ R

m is the manipulated (control) input,
and w ∈ R

l is a disturbance. The set of admissible input values U is assumed to be
compact, and the disturbance vector is bounded in the set W := {w ∈ R

l : |w| ≤ θ}
where θ > 0 bounds the norm of the disturbance vector. Throughout this book, the
disturbances vector as in Eq.2.18 taken to be unknown and un-modeled forcing of
the system. Disturbance models, e.g., integrating disturbance models, may readily
be incorporated into the model of Eq.2.18 through augmenting the state vector.
However, a complete and thorough discussion of disturbance modeling is beyond the
scope of this book and is not considered further. The vector function f is assumed
to be locally Lipschitz on D × U × W. Without loss of generality, the origin of the
unforced nominal system is assumed to be the equilibrium point of the system of
Eq.2.18, i.e., f (0, 0, 0) = 0.

Regarding existence and uniqueness of solutions of the system of Eq.2.18, first
it is important to point out that the input and disturbance trajectories are often not
continuous functions of time. In the deterministic framework that we consider, the
input and disturbance trajectories require a degree of continuity, and the disturbance
may not rigorously be treated as noise. A standing assumption throughout the book
is that the disturbance trajectory poses enough continuity to ensure existence of
the solution of Eq.2.18 almost everywhere. In practice such assumption poses little
restrictions. For a more complete discussion of conditions that guarantee existence
and uniqueness of a solution the interested reader is referred to [9].

2.3.1 Control Lyapunov Functions

The concept of control Lyapunov functions is described, which is utilized in many
Lyapunov-based control design techniques. For simplicity of presentation, the case
of a system with a single input is presented. Nonetheless, this concept extends to
systems with multiple inputs. Thus, consider the following single-input system of
the form:

ẋ = f (x, u) (2.19)

where x ∈ R
n , u ∈ R, and f (0, 0) = 0. The control objective considered is to design

a feedback control law h : D → U that renders the origin of the closed-loop systems
given by:

ẋ = f (x, h(x)) (2.20)
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globally asymptotically stable.
One potential approach may be to pick a function V : Rn → R≥0 as a Lyapunov

function candidate, and find a control law that guarantees that the time-derivative of
the Lyapunov function candidate along the solutions of the closed-loop system of
Eq.2.20 satisfy:

∂V (x)

∂x
f (x, h(x)) ≤ −W (x) (2.21)

for all x ∈ R
n where W : D → R is a positive definite function. It may be possible

to find a stabilizing control law but Eq.2.21 may fail to be satisfied for all x ∈ R
n

because of a poor choice of functions V and W . Therefore, picking a control law
that satisfies Eq.2.21 is a difficult task in general. A system for which a good choice
of the functions V and W exist is said to possess a control Lyapunov function.

Definition 2.2 A control Lyapunov function (CLF) for the system of Eq.2.19 is a
smooth positive definite radially unbounded function V : Rn → R≥0 that satisfies:

inf
u∈R

{
∂V (x)

∂x
f (x, u)

}
< 0, ∀ x �= 0. (2.22)

Equation2.22 is necessary and sufficient for the existence of a control law satis-
fying Eq.2.21 [10]. Also, it may be shown that the existence of a CLF is equivalent
to global asymptotic stabilizability.

For control-affine systems of the form:

ẋ = f (x) + g(x)u, (2.23)

where f : Rn → R
n , g : Rn → R

n , and f (0) = 0. Using the Lie derivative notation:

L f V (x) := ∂V (x)

∂x
f (x),

LgV (x) := ∂V (x)

∂x
g(x),

the CLF condition of Eq.2.21 is given by:

L f V (x) + LgV (x)u ≤ −W (x) (2.24)

for all x ∈ R
n . Note that Eq.2.24 may be satisfied only if:

LgV (x) = 0 ⇒ L f V (x) < 0, ∀ x �= 0 (2.25)

If V is a CLF for the system of Eq.2.23, then one choice of stabilizing control
law is given by Sontag’s formula [11]:
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h(x) =

⎧⎪⎨
⎪⎩

− L f V (x) + √
(L f V (x))2 + (LgV (x))4

(LgV (x))2
LgV (x), LgV (x) �= 0

0, LgV (x) = 0
(2.26)

In this case, the positive definite function, W is given by:

W (x) =
√

(L f V (x))2 + (LgV (x))4 > 0, x �= 0 (2.27)

While the construction of CLFs is difficult for the general class of nonlinear sys-
tems of Eq.2.19, systematic methods exist for several important classes of nonlinear
systems that allow for the construction of CLFs.

2.3.2 Stabilization of Nonlinear Sampled-Data Systems

In the subsequent chapters, EMPC methods are considered. The Lyapunov-based
EMPC methods that are presented take advantage of an explicit stabilizing feedback
controller. The explicit controller satisfies the following assumption.

Assumption 2.1 There exists a feedback controller h(x) ∈ U with h(0) = 0 that
renders the origin of the closed-loop system of Eq.2.18 with u = h(x) and w ≡ 0
asymptotically stable for all x ∈ D0 where D0 is an open neighborhood of the origin.

There are several methods to design an explicit feedback control law, h : D → U,
that renders the origin of Eq.2.18 asymptotically stable. Specifically, methodologies
for (explicit) feedback control design for nonlinear systems include employing lin-
ear feedback control techniques, Lyapunov-based control techniques, and geometric
control methods, e.g., [12–16].

Applying converse theorems [2, 4], Assumption 2.1 implies that there exists a
continuously differentiable Lyapunov function, V : D → R

n , for the closed-loop
system of Eq.2.18 with u = h(x) ∈ U andw ≡ 0 such that the following inequalities
hold:

α1(|x |) ≤ V (x) ≤ α2(|x |), (2.28a)

∂V (x)

∂x
f (x, h(x), 0) ≤ −α3(|x |), (2.28b)

∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ α4(|x |) (2.28c)

for all x ∈ D where D is an open neighborhood of the origin and αi , i = 1, 2, 3, 4
are functions of class K . A level set of the Lyapunov function Ωρ , which defines
a subset of D (ideally the largest subset contained in D), is taken to be the stability
region of the closed-loop system under the controller h(x). Standard techniques



30 2 Background on Nonlinear Systems, Control, and Optimization

exist for designing a stabilizing control law for various classes of continuous-time
nonlinear systems (see, for instance, [1, 2, 13, 15–17] as well as the references
contained therein).

While there are no generalmethods for constructing Lyapunov functions for broad
classes of nonlinear systems with constraints, there exists some general methods
for constructing Lyapunov functions for certain classes of systems, e.g., Zubov’s
method [18] and the sum of squares decomposition [19].Within the context of chem-
ical process control, quadratic Lyapunov functions have been widely used and have
been demonstrated to be effective for estimating the region of attraction of a given
equilibrium point of a system (see, for example, the numerous examples in [16] as
well as the examples of the subsequent chapters of this book).

The explicit controller poses a degree of robustness to disturbances/uncertainty in
the sense that when w �≡ 0, the controller will force the closed-loop state to a small
neighborhood of the origin if the bound on the disturbance, θ , is sufficiently small.
Moreover, owing to the fact that digital computers are often used in the implementa-
tion of controllers, we must also consider the closed-loop stability properties of the
controller h(x) applied in a sample-and-hold fashion. When the feedback controller
h(x) is applied in a sample-and-hold fashion, the resulting closed-loop system is a
nonlinear sampled-data system given by:

ẋ(t) = f (x(t), h(x(tk)),w(t)) (2.29)

for t ∈ [tk, tk+1), tk = kΔ, k = 0, 1, . . ., and Δ > 0 is the sampling period.
Regarding the disturbance in Eq.2.29, in many applications, it is sufficient to take
w to be constant over the sampling periods. This is essentially what is done when
considering a discrete-time model for a sampled-data system.

Applying standard results on sampled-data systems, e.g., [20–24], it can be shown
that when the bound on the disturbances and the sampling period are both sufficiently
small the origin is practically stable for all initial conditions inΩρ . More specifically,
the state trajectory of Eq.2.29 starting inΩρ will remain bounded inΩρ and converge
to a small compact set containing the origin where it will be maintained thereafter
when the bound on the disturbance and the sampling period are sufficiently small.
It is important to emphasize that asymptotic stability of the origin of Eq.2.29 is
typically not achieved unless additional conditions hold.

To achieve asymptotic stability of the origin of sampled-data system of Eq.2.29,
a stronger assumption is required. The following assumption and result are stated
generally in the sense that no restrictions are placed on the state and input.

Assumption 2.2 There exists a locally Lipschitz feedback controller u = h(x)
with h(0) = 0 such that the vector field of the closed-loop system f (x, h(x), 0) is
continuously differentiable on R

n . Furthermore, the origin of the nominal closed-
loop system of Eq.2.18 (w ≡ 0) under the controller h(x) implemented continuously
is locally exponentially stable and globally asymptotically stable.

The following theorem characterizes the type of stability achieved when the con-
troller h(x) is applied in a sample-and-hold fashion with a sufficiently small hold
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period. The result below extends to a more general setting where asynchronous sam-
pling is considered; see, [25] for this more general version of the following result.

Theorem 2.3 If Assumption 2.2 holds, then given R > 0, there exist Δ∗ > 0 and
M, σ > 0 such that for Δ ∈ (0,Δ∗) the nominal closed-loop sampled-data system
of Eq.2.29 with arbitrary initial condition x(0) = x0 ∈ BR satisfies the estimate:

|x(t)| ≤ M exp(−σ t)|x0| (2.30)

for all t ≥ 0.

Proof By virtue of Proposition 4.4 of [26], there exists a C1 positive definite and
radially unbounded function V : Rn → R≥0, constants μ, ε > 0 and a symmetric,
positive definite matrix P ∈ R

n×n for the nominal closed-loop system of Eq.2.18
under the controller h(x) implemented continuously such that

∂V (x)

∂x
f (x, h(x), 0) ≤ −μ|x |2, for all x ∈ R

n, (2.31)

V (x) = xT Px, for all x ∈ R
n with |x | ≤ ε. (2.32)

Let R > 0 and define ρ̂ := max{V (x) : x ∈ BR}. By virtue of Eq.2.32 and the
compactness of Ωρ̂ , there exist constants c1, c2 > 0 and c4 > 0 such that:

c1|x |2 ≤ V (x) ≤ c2|x |2, (2.33)

∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ c4|x | (2.34)

for all x ∈ Ωρ̂ . Since f and h are locally Lipschitz mappings with f (0, 0, 0) = 0
and h(0) = 0, there exist constants L , M > 0 such that:

| f (x, h(z), 0) − f (x, h(x), 0)| ≤ L|x − z|, (2.35)

| f (x, h(z), 0)| ≤ M |x | + M |z| (2.36)

for all x, z ∈ Ωρ̂ . Let Δ∗ > 0 be sufficiently small so that the following inequality
holds:

c4L
2MΔ∗ exp(MΔ∗)

1 − 2MΔ∗ exp(MΔ∗)
< μ (2.37)

In order to prove of estimate of Eq.2.30, it suffices to show that for every initial
condition x(0) ∈ Ωρ̂ and for every integer k ≥ 0 it holds that:

∂V (x(t))

∂x
f (x(t), h(x(tk)), 0) ≤ −q

2
|x(t)|2, (2.38)
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for all t ∈ [tk, tk+1) where

q := μ − c4L
2MΔ∗ exp(MΔ∗)

1 − 2MΔ∗ exp(MΔ∗)
> 0. (2.39)

Using Eqs. 2.33 and 2.38, local exponential stability can be established. The proof of
Eq.2.38 is given below for k = 0 and t ∈ [0, t1). For every other interval, the proof
is similar.

If x(0) = 0, thenEq.2.38 trivially holds (since x(t) = 0 for t ∈ [0, t1)). Therefore,
consider the case when x(0) �= 0. The proof is made by contradiction. Suppose that
there exists t ∈ [0, t1) with

∂V (x(t))

∂x
f (x(t), h(x(0)), 0) > −q

2
|x(t)|2.

The case that x(t) is not defined for some t ∈ [0, t1) is also covered by this assump-
tion. Define

a := inf

{
t ∈ [0, t1) : ∂V (x(t))

∂x
f (x(t), h(x(0)), 0) > −q

2
|x(t)|2

}
.

A standard continuity argument in conjunction with the fact that

∂V (x(0))

∂x
f (x(0), h(x(0)), 0) ≤ −μ|x(0)|2 < −q

2
|x(0)|2

shows that a ∈ (0, t1) and that

∂V (x(t))

∂x
f (x(t), h(x(0)), 0) ≤ −q

2
|x(t)|2

for all t ∈ [0, a] with (∂V (x(a))/∂x) f (x(a), h(x(0)), 0) = − q
2 |x(a)|2. Moreover,

for all t ∈ [0, a] the inequality of Eq.2.38 implies that V (x(t)) ≤ V (x(0)) ≤ ρ̂.
Therefore, x(t) ∈ Ωρ̂ for all t ∈ [0, a]. Using inequalities Eqs. 2.31, 2.34, 2.35, we
obtain:

∂V (x(t))

∂x
f (x(t), h(x(0)), 0) ≤ −μ|x(t)|2 + c4L|x(t)||x(t) − x(0)| (2.40)

for all t ∈ [0, a]. Using Eq.2.36 and since a ≤ t1 ≤ Δ∗, a bound on the difference
between x(t) and x(0) is obtained:

|x(t) − x(0)| ≤ 2MΔ∗|x(0)| + M
∫ t

0
|x(τ ) − x(0)| dτ (2.41)
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for all t ∈ [0, a]. Applying the Gronwall-Bellman lemma to Eq.2.41, we obtain:

|x(t) − x(0)| ≤ 2MΔ∗ exp(MΔ∗)|x(0)| (2.42)

for all t ∈ [0, a]. Using Eq.2.42, the triangle inequality and the fact that

2MΔ∗ exp(MΔ∗) < 1

which is implied by Eq.2.37, we get for all t ∈ [0, a]:

|x(t) − x(0)| ≤ 2MΔ∗ exp(MΔ∗)
1 − 2MΔ∗ exp(MΔ∗)

|x(t)|. (2.43)

Thus, using Eqs. 2.40, 2.43 and the fact that

q := μ − c4L
2MΔ∗ exp(MΔ∗)

1 − 2MΔ∗ exp(MΔ∗)
> 0

we get for all t ∈ [0, a]:
∂V (x(t))

∂x
f (x(t), h(x(0)), 0) ≤ −q|x(t)|2. (2.44)

Consequently, we must have:

∂V (x(a))

∂x
f (x(a), h(x(0)), 0) ≤ −q|x(a)|2 ≤ −q

2
|x(a)|2. (2.45)

Since (∂V (x(a))/∂x) f (x(a), h(x(0)), 0) = − q
2 |x(a)|2, we get x(a) = 0. However,

this contradicts Eq.2.42 (since Eq.2.42 in conjunction with the fact that

2MΔ∗ exp(MΔ∗) < 1

implies that |x(a) − x(0)| < |x(0)|), which completes the proof.

Explicit feedback controllers that may be designed to satisfy Assumption 2.2
include, for example, feedback linearizing controller and some Lyapunov-based con-
trollers [2, 15]. Owing to the input constraints, it may not be possible to design a
controller h(x) that achieves global asymptotic stability of the origin. In this case,
we must modify the assumption which is considered in the following corollary.

Corollary 2.2 Suppose there exists a locally Lipschitz feedback controller u = h(x)
with h(0) = 0 for the system of Eq.2.18 that renders the origin of the nominal
closed-loop system under continuous implementation of the controller h(x) locally
exponentially stable. More specifically, there exist constants ρ > 0, ci > 0, i =
1, 2, 3, 4 and a continuously differentiable Lyapunov function V : Rn → R+ such
that the following inequalities hold:
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c1 |x |2 ≤ V (x) ≤ c2 |x |2 , (2.46a)

∂V (x)

∂x
f (x, h(x), 0) ≤ −c3 |x |2 , (2.46b)

∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ c4 |x | , (2.46c)

for all x ∈ Ωρ . There exists Δ∗ > 0 and M, σ > 0 such that for all Δ ∈ (0,Δ∗)
the estimate of Eq.2.30 holds for the nominal closed-loop sampled-data system of
Eq.2.29 with arbitrary initial condition x(0) ∈ Ωρ .

Proof The proof follows along the same lines of Theorem 2.3 and shows that V is
a Lyapunov function for the closed-loop sampled-data system and takes advantage
of the compactness of the set Ωρ to establish an exponentially decaying estimate for
the state trajectory of the closed-loop sample-data system for any initial condition
x(0) ∈ Ωρ .

Remark 2.1 Sufficient conditions such that there exists a function V satisfying the
inequalities of Eq. 2.46 are when x = 0 is a locally exponentially stable (LES)
equilibrium point for the closed-loop system ẋ = f (x, h(x), 0) and the mapping
f (x, h(x), 0) is continuously differentiable on Rn . Indeed, by Lemma 8.1 in [2] the
region of attraction A of x = 0 is an open, connected, invariant set. Let r > 0 be such
that the set S = {x ∈ R

n : |x | ≤ r} is contained in the region of attraction A. Then
LES and compactness of S imply that an exponential bound holds for the solutions of
the closed-loop system ẋ = f (x, h(x), 0)with initial conditions x(0) ∈ S. It follows
from Theorem 4.14 in [2] that there exists a Lyapunov function V for the closed-loop
system ẋ = f (x, h(x), 0) that satisfies inequalities of Eq. 2.46 for certain constants
c1, c2, c3, c4 > 0 and for all x ∈ int(S) (int(S) denotes the interior of S). Let R < r
be an arbitrary positive number and define V (x) = V (Proj(x)) for all x ∈ R

n , where
Proj(x) denotes the projection on the closed ball of radius R centered at x = 0. Then
all inequalities of Eq. 2.46 hold with arbitrary ρ < c1R2.

2.3.3 Tracking Model Predictive Control

Designing an explicit feedback control such as one that satisfies Assumption 2.1 to
stabilize the origin of the system of Eq.2.18 has many advantages such as it may be
shown to possess robustness to disturbances and sample-and-hold or discrete-time
implementation. However, the most significant drawback of such an approach to
controller design is that performance considerations and system constraints are not
explicitly handled in a general framework. For example, consider that the system of
Eq.2.18 is subject to the following constraint:

(x(t), u(t)) ∈ Z (2.47)
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for all t ≥ 0 where Z is assumed to be compact, which accounts, for example, state,
input, and other process constraints. One such mathematical framework that allows
for one to explicitly account for these considerations is optimization. This is the
framework employed in model predictive control.

Tracking model predictive control (MPC), also referred to as receding horizon
control, is an on-line optimization-based control technique that optimizes a perfor-
mance index or cost function over a prediction horizon by taking advantage of a
dynamic nominal process model, i.e., Eq. 2.18 with w ≡ 0, while accounting for
system/process constraints, e.g., [27–32]. The main objective of tracking MPC is
to steer the system to and maintain operation thereafter at the economically opti-
mal steady-state or the economically optimal trajectory computed in an upper-layer
optimization problem (real-time optimization). To manage the trade-off between
the speed of response of the closed-loop system and the amount of control energy
required to generate the response, MPC is typically formulated with a quadratic
objective function which penalizes the deviations of the state and inputs from their
corresponding optimal steady-state or reference values over the prediction horizon.
Within this book, the term tracking MPC will refer to both regulation MPC or MPC
that forces a system to steady-state and tracking MPC or MPC that forces a system
track a reference trajectory.

The trackingMPC problem is given by the following dynamic optimization prob-
lem:

min
u∈S(Δ)

∫ tk+N

tk

lT (x̃(τ ), u(τ )) dτ (2.48a)

s.t. ˙̃x(t) = f (x̃(t), u(t), 0) (2.48b)

x̃(tk) = x(tk) (2.48c)

(x(t), u(t)) ∈ Z, ∀ t ∈ [tk, tk+N ) (2.48d)

where
lT (x, u) = |x |2Qc

+ |u|2Rc
(2.49)

and Qc is a positive semidefinite matrix and Rc is a positive definite matrix that
manage the trade-off between the speed of response and the cost of control action.
Given that the cost function is positive definite with respect to the origin, which is
the steady-state of the system of Eq.2.18, the global minimum of the cost function
occurs at the optimal steady-state. The stage cost function of Eq.2.49 may be readily
extended to be positive definite with respect to a reference trajectory. The state
trajectory x̃ is the predicted evolution of the state using the nominal dynamic model
(w ≡ 0) of Eq.2.18 under the piecewise constant input profile computed by theMPC.
The initial condition on the dynamic model are given in Eq.2.48c which are obtained
at each sampling period through a measurement. The constraints of Eq.2.48d are the
system/process constraints, e.g., input and state constraints.

MPC is the resulting control law when the problem of Eq.2.48 computes the
control action applied to the system in a receding horizon fashion. Specifically,
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at the sampling time tk , the problem of Eq.2.48 is initialized with a state feedback
measurement and the problem is solved. The optimal input trajectory, i.e., the optimal
solution, is denoted by u∗(t |tk) and defined for t ∈ [tk, tk+N ). A brief overview of
methods for solving such dynamic optimization problems of the form of Eq.2.48 is
given in Sect. 2.4.4. The (constant) input trajectory u∗(t |tk) defined for t ∈ [tk, tk+1),
whichmay be denoted by u∗(tk |tk), is send to the control actuators to be implemented
on the system for t ∈ [tk, tk+1). At tk+1, the problem is re-initialized with an updated
measurement and the problem of Eq.2.48 is re-solved by shifting the horizon one
sampling period into the future. Thus, the resulting input trajectory under MPC is
given by:

u(t) = u∗(tk |tk), ∀ t ∈ [tk, tk+1). (2.50)

When the prediction horizon N is finite, it is well-known that the MPC scheme
of Eq.2.48 may not be stabilizing, e.g., [29]. To handle guaranteed stabilization of
the closed-loop system when N is finite, various constraints and variations to the
cost function may be made to guarantee stability such as using a sufficiently long
prediction horizon, incorporating terminal constraints and/or a terminal cost in the
optimization problem, or the use of contractive constraints (see, for example, [29],
and the references therein).

2.3.4 Tracking Lyapunov-Based MPC

To address stability of the closed-loop system with tracking model predictive control
(MPC) and recursive feasibility, one tracking MPC technique unites the stability
and robustness properties of the Lyapunov-based controller, i.e., a control law that
satisfies Assumption 2.1, with the optimal control properties of model predictive
control (MPC) [21, 33–35]. The resulting tracking MPC is called Lyapunov-based
MPC (LMPC) and is characterized by the following optimization problem:

min
u∈S(Δ)

∫ tk+N

tk

lT (x̃(τ ), u(τ )) dτ (2.51a)

s.t. ˙̃x(t) = f (x̃(t), u(t), 0) (2.51b)

x̃(tk) = x(tk) (2.51c)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (2.51d)

∂V (x(tk))

∂x
f (x(tk), u(tk), 0) ≤ ∂V (x(tk))

∂x
f (x(tk), h(x(tk)), 0) (2.51e)

where x̃ is the predicted state trajectory over the prediction horizonwith the computed
input trajectory by the LMPC, and N > 0 is the number of sampling periods in the
finite prediction horizon. The constraint of Eq. 2.51d is the input constraint, while
the constraint of Eq.2.51e is a contractive constraint for guaranteed stability that is
explained further below.
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Fig. 2.1 A state-space
illustration of a closed-loop
state trajectory under LMPC

Ωρ

Ωρs

Ωρmin

xs

x(t0)

Specifically, the constraint of Eq.2.51e ensures that the LMPC computes a control
action for the first sampling period that decreases the Lyapunov function by at least
the rate achieved by the Lyapunov-based controller at tk . The Lyapunov-based con-
straint of Eq.2.51e is a contractive constraint and ensures that the Lyapunov function
decays until the closed-loop state converges to a small neighborhood of steady-state.
Moreover, from the Lyapunov-based constraint, the LMPC inherits the closed-loop
stability and robustness properties and the stability regionΩρ of the Lyapunov-based
controller in the sense that for any initial condition x(0) ∈ Ωρ , the closed-loop sys-
tem state is guaranteed to converge to a small neighborhood of the origin and the
optimization problem of Eq.2.51 is guaranteed to be feasible.

Figure2.1 gives an illustration of the closed-loop state trajectory under LMPC.
The state trajectory starts in Ωρ \ Ωρs whereby in this region the Lyapunov function
is guaranteed to decay with time. Once the state trajectory converges to Ωρs , the
Lyapunov function is no longer guaranteed to decay owing to the sampling-and-hold
implementation of LMPC and the effect of persistent disturbances. However, the
state will be maintained in a small forward invariant set Ωρmin ⊃ Ωρs when the the
sampling period and the bound on the disturbance are sufficiently small.

2.4 Brief Review of Nonlinear and Dynamic Optimization

Although this book does not directly deal with developing nonlinear and dynamic
optimization techniques, a brief review of nonlinear optimization (also commonly
referred to as nonlinear programming) and dynamic optimization/optimal control
concepts is provided in this section. The presentation is meant to demonstrate to the
reader how onemay approach obtaining a solution to dynamic optimization problems
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which is required to understand the concepts presented in the subsequent chapters.
This section includes definitions, optimality conditions, nonlinear optimization solu-
tion techniques, and practical dynamic optimization strategies. For a comprehensive
and detailed presentation on optimization methods, the reader is referred to one of
the many textbooks on the topic, e.g., [36–40]. For more details relating to dynamic
optimization or optimal control, see, for instance, [37, 41–43].

2.4.1 Notation

For a vector x ∈ R
n , x ≥ 0 means component-wise inequality, i.e., xi ≥ 0, i =

1, . . . , n. The transpose of a vector or matrix is denoted (·)T , e.g., the transpose
of x ∈ R

n is denoted xT . The gradient (n-dimensional vector) of a differentiable
scalar-valued function f : Rn → R evaluated at x ∈ R

n is denoted as

∇ f (x) :=
[
∂ f (x)

∂x1

∂ f (x)

∂x2
· · · ∂ f (x)

∂xn

]T

.

When a scalar-valued differentiable function has multiple arguments, for example,
f : Rnx × R

ny → R, f : (x, y) �→ f (x, y), the notation ∇x f (x, y) may be used
to denote the gradient of f with respect to x . For a vector-valued differentiable
function g : Rn → R

m , the gradient matrix is an n ×m matrix whose i th column is
the gradient vector ∇gi (x) (i = 1, . . . ,m):

∇g(x) := [∇g1(x) · · · ∇gm(x)
]
,

while the Jacobian of g is

∂g(x)

∂x
:=

⎡
⎢⎢⎢⎢⎣

∂g1(x)

∂x1
· · · ∂g1(x)

∂xn
...

. . .
...

∂gm(x)

∂x1
· · · ∂gm(x)

∂xn

⎤
⎥⎥⎥⎥⎦ .

With the definitions above, the gradient matrix is the transpose of the Jacobian:

∇g(x)T = ∂g(x)

∂x
.

TheHessianmatrix of a scalar-valued differentiable function f : Rn → R is denoted
as
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∇xx f (x) =

⎡
⎢⎢⎢⎢⎢⎣

∂2 f (x)

∂x21
· · · ∂2 f (x)

∂x1∂xn
...

. . .
...

∂2 f (x)

∂xn∂x1
· · · ∂2 f (x)

∂x2n

⎤
⎥⎥⎥⎥⎥⎦

.

2.4.2 Definitions and Optimality Conditions

Consider the following nonlinear constrained optimization problem:

min
x∈Rn

f (x)

s.t. g(x) ≤ 0
h(x) = 0

(2.52)

where x ∈ R
n is the decision variable or the unknown variable to be determined

that minimizes the objective function ( f : Rn → R) while satisfying the inequality
constraints (g : R

n → R
ng ) and the equality constraints (h : R

n → R
nh ). The

objective function is also referred to as the cost function or cost functional in the
context of dynamic optimization problems. Here and elsewhere in the book, the
usage of the notation “min” in Eq.2.52 is more aligned with that typically found in
the engineering literature, that is, it refers to the greatest lower bound or infimum
of f (x) over X. Nevertheless, in the application studies contained in this book, the
optimization problems are formulated in a manner that guarantee that they may be
numerically solved in the sense that f ∗ = inf x∈X f (x)whereX = {x ∈ R

n : g(x) ≤
0, h(x) = 0} is non-empty, f ∗ is finite, and there exists a vector x∗ ∈ X where the
minimum is attained. The issue of the existence of a minimizing vector will not be
treated in depth.

The functions f , g, and h are assumed to be continuously differentiable. A vector
x ∈ R

n is said to be a feasible point if g(x) ≤ 0 and h(x) = 0. The set of all feasible
points or the feasible set to the problem of Eq.2.52 is the setX ⊆ R

n . For the problem
of Eq.2.52 to be meaningful, the feasible set must be non-empty. Otherwise, the
problem of Eq.2.52 is said to be infeasible. Feasibility of the optimization problems
formulated in this book will be carefully examined which is a crucial property for
control purposes. A vector x∗ ∈ X is said to be a local minimum if there exists ε > 0
such that f (x∗) ≤ f (x) for all x ∈ X with |x − x∗| < ε. A vector x∗ ∈ X is said to
be a global minimum if f (x∗) ≤ f (x) for all x ∈ X. A local or global minimum is
called a strict minimum if the inequalities are strict for all x �= x∗. For a given local
or global minimum x∗ ∈ X, f (x∗) is called the local or global optimal objective
function value or optimal value.

In subsequent chapters, non-convex dynamic nonlinear optimization problems
will be considered. It is sufficient, for purposes of this book, to understand a non-
convex optimization problem as one possibly having multiple local minima. For



40 2 Background on Nonlinear Systems, Control, and Optimization

non-convex problems, most general nonlinear optimization solvers are capable of
computing a local solution to the problem. Generally, no guarantee can be made that
the computed local solution is or is not a global solution without further analysis.
To ensure that a global solution is returned, one needs to employ more advanced
techniques that are typically more computationally expensive, (see, for example, [44,
45] on global optimization techniques). Owing to this consideration, local minima
will be of interest in this book. Also, in the subsequent chapters, the term optimal
solution may be used to refer to a local minimum of an optimization problem, and
the explicit distinction that the minimum is a local minimum may be omitted.

While minimization problems are treated here, maximization problems, e.g.,
maxx∈X f (x) may readily be converted into a minimization problem by minimiz-
ing the negative of the objective function, e.g., minx∈X − f (x). The optimal solution
of each optimization problem are the same, and the optimal objective function value
of the maximization problem is equal to the negative of the optimal value of the
minimization problem. Thus, there is no loss of generality by considering only min-
imization problems.

To present general necessary and sufficient optimality conditions for optimality,
some regularity conditions or constraint qualifications must be satisfied. First, the
active set is defined. For a feasible vector x ∈ X, the index set of active inequality
constraints is defined as A (x) := { j ∈ {1, . . . , ng} : g j (x) = 0}. For all j /∈
A (x) \ {1, . . . , ng}, the j th inequality constraint is said to be inactive at x , i.e.,
g j (x) < 0. Since the equality constraints are always active, the active set includes all
the active inequality constraints and all equality constraints. The linear independence
constraint qualification (LICQ) holds at x ∈ X if the gradients of all active constraints
are linearly independent at x , that is, the vectors ∇g j (x), j ∈ A (x) and ∇hi (x),
i = 1, . . . , nh are linearly independent.

The Lagrangian function of the problem of Eq.2.52 is given by

L (x, λ, ν) = f (x) + λT g(x) + νT h(x) (2.53)

where λ ∈ R
ng and ν ∈ R

nh are the Lagrange multipliers. Necessary and sufficient
optimality conditions have been derived for the problem of Eq.2.52. These condi-
tions are not only fundamental to the theory of optimization, but also, allow for the
development of computational algorithms that are capable of computing solutions to
the optimization problem of Eq.2.52. The Karush-Kuhn-Tucker (KKT) optimality
conditions [46, 47] are first-order necessary conditions for a (local) solution to the
problem of Eq.2.52.

Theorem 2.4 (KKT Conditions, e.g., [36, Proposition 3.3.1]) Let x∗ ∈ R
n be a

local minimum of the problem of Eq.2.52 and the LICQ holds at x∗. Then there exist
unique λ∗ ∈ R

ng and ν∗ ∈ R
nh such that:

∇xL (x∗, λ∗, ν∗) = 0 (2.54a)

g(x∗) ≤ 0 (2.54b)

h(x∗) = 0 (2.54c)
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λ∗ ≥ 0 (2.54d)

λ∗
i gi (x

∗) = 0, i = 1, . . . , nh (2.54e)

If in addition f , h, and g are twice continuously differentiable, then

yT∇xxL (x∗, λ∗, ν∗)y ≥ 0, (2.55)

for all y ∈ R
n such that

∇hi (x
∗)T y = 0,∀ i = 1, . . . , nh,

∇g j (x
∗)T y = 0,∀ j ∈ A (x∗).

(2.56)

As pointed out in Theorem 2.4, LICQ at a local minimum x∗ guarantees existence
of Lagrange multipliers. It can be shown that the multipliers are unique as well if
the KKT conditions are satisfied and the LICQ holds at x∗. Any triple (x∗, λ∗, ν∗)
satisfying the KKT conditions is said to be a KKT point. The KKT conditions mean:
the gradient of the Lagrangian with respect to the decision variable must vanish
at the KKT point, the primal problem, i.e., Eq. 2.52, must be feasible at a KKT
point, the dual problem (not discussed here) must be feasible at the KKT point,
and complementarity or complementary slackness, i.e., the condition of Eq.2.54e,
must hold at the KKT point. Since the KKT conditions are necessary conditions, not
all KKT points are local minimums. Often second-order necessary conditions are
included with the KKT conditions, which is the condition of Eq. 2.55. The second-
order necessary conditions mean that it is necessary for a local minimum that the
Hessian of the Lagrangian must be positive semidefinite in all feasible directions.
If the Hessian of the Lagrangian is shown to be positive definite for a KKT point
and strict complementarity or strict complementary slackness holds, i.e., λ∗ > 0 if
gi (x∗) = 0 and λ∗

i = 0 if gi (x∗) < 0, it can be concluded that the KKT point is
a local minimum. This is stated in the following second order sufficient optimality
conditions.

Theorem 2.5 (Second Order Optimality Conditions, e.g., [36, Proposition 3.3.2])
Let the triple (x∗, λ∗, ν∗) be a KKT point that also satisfies:

yT∇xxL (x∗, λ∗, ν∗)y > 0 (2.57)

for all y ∈ R
n such that

∇hi (x
∗)T y = 0, ∀ i = 1, . . . , nh, (2.58)

∇g j (x
∗)T y = 0, ∀ j ∈ A (x∗), (2.59)

λ j > 0, j ∈ A (x∗). (2.60)

Then x∗ is a strict local minimum of Eq.2.52.
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Numerous variants of the optimality conditions and constraint qualifications given
above exist (see, for example, [36]).

2.4.3 Nonlinear Optimization Solution Strategies

The KKT conditions form a set of nonlinear equations and many computation meth-
ods for solving for a local minimum of Eq.2.52 seek to find a solution to the KKT
conditions. However, the inequality constraints and the complementary slackness
condition, which poses a non-differentiability in the equations, must be handled care-
fully, and one cannot simply solve the KKT conditions directly in general. Owing
to the fact that these conditions form a set of nonlinear equations, the most widely
adapted method employed to solve the KKT conditions is Newton’s method. More
precisely, variants of Newton’s method are typically used. From a high level perspec-
tive, most nonlinear optimization solvers utilize the user-supplied input information
shown in Fig. 2.2 to compute a solution to an optimization problem. The input infor-
mation includes the functions and their corresponding derivatives. TheHessian of the
Lagrangian may also be supplied to the solver. However, in some algorithms such as
quasi-Newtonmethods, the Hessian is approximated in the algorithm. In this section,
a basic review of Newton’s method is given along with the basic concepts of two
widely employed solution techniques for solving nonlinear optimization problems.
The twomethods include sequential quadratic programming (SQP) and interior point
(IP) methods.

2.4.3.1 Newton’s Method

The core of most nonlinear optimization solution strategies relies on some variant
of Newton’s method to solve a set of nonlinear algebraic equations. The standard
Newton method is presented to facilitate the discussion of SQP and IP methods for

Nonlinear
Optimization Solver

min
x

f(x)

s.t. g(x) ≤ 0
h(x) = 0

Objective function: f

Constraints: g, h

Derivatives:
∇f , ∇g, ∇h

Hessian of
Lagrangrian: ∇xxL

Optimal solution: x∗

Optimal objective
function value: f(x∗)

Constraint values:
g(x∗), h(x∗)

Solver Statistics/
Information

Fig. 2.2 Typical inputs and outputs of a nonlinear optimization solver
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solving nonlinear optimization problems. However, it is important to emphasize that
key modifications are made to ensure computational efficiency, robustness, etc. To
review Newton’s method, consider the following nonlinear algebraic equation:

F(y) = 0 (2.61)

where F : Rny → R
ny is a vector-valued differentiable function.

Newton’s method is an iterative algorithm that is initialized with a starting guess
y0 ∈ R

ny . At each iteration, the following system of linear equations, which is a
linearized version of Eq.2.61 around the iterate yk ∈ R

ny , is solved:

∂F(yk)

∂y
dk = −F(yk) (2.62)

where k denotes the iteration number and dk ∈ R
ny is the unknown variable. At the

next iteration, i.e., the (k + 1)th iteration, the iterate is updated as follows:

yk+1 = yk + dk . (2.63)

From the update formula of Eq.2.63, the variable dk can be interpreted as a descent
direction of Newton’s method. One of the most advantageous properties of Newton’s
method is that it has a locally quadratic convergence rate meaning for an initial guess
y0 that is sufficiently close to the solution of Eq.2.61, Newton’smethodwill converge
at a quadratic rate.

To demonstrate applying Newton’s method to solving an optimization problem,
consider the following unconstrained problem:

min
x∈Rn

f (x) (2.64)

where f is a twice differentiable scalar-valued function. The necessary conditions
for optimality at a point x∗ ∈ R

n are

∇ f (x∗) = 0, (2.65a)

∇2 f (x∗) ≥ 0. (2.65b)

Applying Newton’s method to solve the nonlinear equations, we have the following
update:

xk+1 = xk − ∇xx f (xk)
−1∇ f (xk). (2.66)

Owing to the fact that the Hessian, i.e., ∇xx f in the unconstrained case or ∇xxL
in the constrained case, may be expensive to compute, quasi-Newton methods have
been designed to approximate the Hessian; see, for example, [40]. Let Hk > 0 be
the approximation of the Hessian at iteration k. Then, the update takes form of:
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xk+1 = xk − H−1
k ∇ f (xk). (2.67)

The fundamental requirement for the convergence of Newton’s method algorithm
is that the initial guess supplied to the algorithm be sufficiently close to the solution.
Globalization strategies are used to allow for convergence to a solution from initial
guesses that are not close to the solution.Numerous numerical nonlinear optimization
solvers have been developed that are equipped with various globalization strategies.
Globalization strategies are briefly discussed here (see, [36, 37, 40], for the details),
and they include algorithm monitoring strategies to decide if a computed iterate
update is acceptable and modification strategies to modify the iterate updates.

In the first category, merit functions and filter methods are used as a measure
of the progress of the algorithm. This adds logic to the algorithm to decide if the
step/update is acceptable (loosely speaking, defining the step as dk in Eq.2.63).
Merit functions are scalar-valued functions that are typically chosen to have the
same local minimum as the nonlinear optimization problem. At each iteration, the
step is accepted if the update yields a decrease in the merit function. Otherwise,
the step is rejected. However, merit functions may lead to rejecting pure Newton
steps near the optimum and thus, slow down the convergence of the algorithm. As
an alternative, filter methods treat making the objective function as small as possible
and reducing the constraint violations as equal goals. In a filter method, a filter keeps
track of previous iterates with the best objective function value and amount of the
constraint violation. A step is accepted if the update yields a better objective function
value or smaller constraint violation. If the update yields a step that is such that one of
the previous iterates have a better objective function value and constraint violation,
the step is rejected.

In the second category, strategies are used to modify the step or update of the
iterates. Line search methods take potentially shortened steps if necessary. In other
words, line search methods add a dampening factor α in the update formula. The
update formula for the iterates is given by:

yk+1 = yk + αdk (2.68)

whereα ∈ (0, 1] is selected by the line searchmethod. On the other hand, trust region
methods recognize that Newton’s method utilizes a linearization of the nonlinear
function. The resulting linearization is only valid in a neighborhood of the current
iterate. Thus, it restricts selection of the step dk in a small region of the current iterate
yk .

2.4.3.2 Sequential Quadratic Programming

One of the two main solution strategies of nonlinear constrained optimization is to
consider successive linearization of the KKT conditions (Eq. 2.54). It turns out that
the linearized KKT conditions are the KKT conditions for the following quadratic
program (QP) (for a complete derivation one may refer to [37]):
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min
dx

∇ f (xk)dx + 1

2
dT
x Hkdx

s.t. g(xk) + ∇g(xk)
T dx ≤ 0

h(xk) + ∇h(xk)
T dx = 0

(2.69)

where Hk is either the exact or an approximation of the Hessian of the Lagrangian
evaluated at iteration k, i.e., ∇xxL (xk, λk, νk). If Hk is positive semidefinite, the
problem of Eq.2.69, which is a quadratic program (QP), is convex and efficient
methods exist that can readily solve the quadratic program to global optimality. This
approach to solving a nonlinear optimization problem is referred to as sequential
quadratic programming. Many primal-dual methods used to solve each QP work to
find a KKT point of the KKT conditions of Eq.2.69. The KKT conditions are given
by:

Hkdx + ∇ f (xk) + ∇g(xk)dλ + ∇h(xk)dν = 0

g(xk) + ∇g(xk)
T dx ≤ 0

h(xk) + ∇h(xk)
T dx = 0

dλ ≥ 0[
g(xk) + ∇g(xk)

T dx
]
i dλ,i = 0, i = 1, . . . , ng

(2.70)

With dx , dν , and dλ, the primal and dual iterates, i.e., xk , λk , and νk , are updated.
Using this type of the solution strategy, the active set is automatically discovered
once the algorithm converges. Under strict complementarity, the solutions of the QP
subproblems converge to a local solution to the nonlinear optimization problem once
the iterates xk are in the neighborhood of x∗, e.g. [37].

2.4.3.3 Interior Point Methods

The second widely used class of numerical nonlinear optimization solvers is based
on interior point methods. In a number of applications in this book, an open-source
interior-point solver, called Ipopt [48], is applied to solve theMPC(EMPC)problems.
One interpretation of interior point methods is that the inequality constraints are
replacedby the barrier function. Thebarrier function has the property that the function
becomes very large in value as one of the constraint values goes to zero, i.e., if
the barrier function is denoted as B, then B(x) → ∞ if gi (x) → 0 for some
i ∈ {1, . . . , ng}. One widely used barrier function is the logarithmic function:

B(x) = −
ng∑
i=1

ln(−gi (x)). (2.71)

The resulting optimization problem is obtained:
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min
x

f (x) − τ

nh∑
i=1

log(−gi (x))

s.t. g(x) = 0

(2.72)

where τ > 0 is a parameter. In particular, to solve the original nonlinear optimization
problem for a local solution, a sequence of modified problems of the form of Eq.2.72
are solved for a given parameter τ > 0. Under certain conditions, it may be shown
that the solution of the original nonlinear optimization problem is the same as the
one of the modified problem when the parameter τ approaches zero, e.g., [37, 40].

Another interpretation of interior point methods is that they replace the non-
smooth complementary slackness condition of the KKT conditions (Eq.2.54e) by a
smooth approximation. Specifically, the smooth approximation of the KKT condi-
tions is given by:

∇ f (x) + ∇g(x)λ + ∇h(x)ν = 0 (2.73a)

h(x) = 0 (2.73b)

λi gi (x) + τ = 0, i = 1, . . . , ng (2.73c)

where τ > 0 is a smoothing parameter. From the last condition, λi = −τ/gi (x),
i = 1, . . . , ng , and thus, the modified KKT conditions of Eq. 2.73 are the KKT
conditions of the modified nonlinear optimization problem of Eq.2.72.

2.4.4 Dynamic Optimization

The specific class of optimization problems that will be of interest in this book
is dynamic optimization problems. In particular, the EMPC methods presented in
subsequent chapters require the repeated solution of a dynamic optimization problem
to compute control actions to apply to a dynamic system. Dynamic optimization or
optimal control problems are optimization problems that have a dynamic model
embedded in the problem. At this point, the literature on dynamic optimization is
vast and impossible to summarize in this brief overview. For general references on
theoretical and applied optimal control, the interested reader is referred to one of
the many texts on the subject, for example, [41, 49–52]. Important early results that
helped shape the foundations of optimal control include optimal control based on the
Hamilton-Jacobi-Bellman equation and dynamic programming [53], Pontryagin’s
maximum principle [54], and the linear quadratic regulator [55].

In this section, direct methods are considered, which are the most commonly
employed solution technique for dynamic optimization problem in practical appli-
cations. Direct methods first discretize a continuous-time dynamic model and then,
use a nonlinear optimization solver to solve the resulting nonlinear optimization
problem. Besides direct methods other methods exist including dynamic program-
ming [53] and solving the Hamilton-Jacobi-Bellman partial differential equations,



2.4 Brief Review of Nonlinear and Dynamic Optimization 47

and indirect methods, which optimize first and then, discretize. The latter methods
include setting up the so-called Euler-Lagrange differential equations and applying
Pontyragin’s Maximum Principle [54], which is a necessary condition, to solve for
the optimal control. For a comprehensive review on dynamic optimization with a
particular focus on the application of solutions method to moving/receding hori-
zon problems within the context of chemical processes, the reader is referred to the
review [42].

Consider the following nonlinear dynamic system:

ẋ = f (x, u), x(t0) = x0 (2.74)

where x ∈ X ⊆ R
n is the state vector, u ∈ U ⊂ R

m is the input vector, and
f : X × U → X. For simplicity, the sets X and U are assumed to be compact sets
and the vector field f is assumed to satisfy enough smoothness assumptions so that a
unique solution to Eq.2.74 exists over the interval [t0, t f ]with an initial condition x0
and piecewise continuous input function u : [t0, t f ] → U. The smoothness properties
will also be needed to solve the resulting optimization problems below. The solution
is denoted as x(·, x0, u(·)), i.e., x(t, x0, u(·)) denotes the solution at t ∈ [t0, t f ] and
x(t0, x0, u(·)) = x0.

Since the purpose of this section is to highlight the various computational
approaches to solving dynamic optimization problems, a simple dynamic optimiza-
tion problem is considered.Nevertheless,more complex problemsmay be considered
while utilizing the presented techniques, e.g., problems with algebraic constraints
like path or end-point constraints. Specifically, consider a dynamic optimization
problems in Mayer form:

min
x(·),u(·)

φ(x(t f ))

s.t. ẋ(t) = f (x(t), u(t)), x(t0) = x0
x(t) ∈ X, u(t) ∈ U,∀ t ∈ [t0, t f ]

(2.75)

where x0 ∈ X denotes the initial condition, which also could be a decision variable
in the optimization problem. For simplicity, the initial condition will be assumed to
be fixed in the remainder of this chapter. The set constraints are assumed to take the
form of inequality constraints, i.e., of the form hx (x) ≤ 0 where X = {x ∈ R

n :
hx (x) ≤ 0} and similarly, for the input constraint with hu(u) ≤ 0. The existence of
minimizing trajectories for the problem of Eq. 2.75 is assumed; for conditions that
guarantee existence of a solution, the interested reader is referred to [56, 57].

It is important to point out that if one seeks the solution to a dynamic optimization
problem that optimizes an objective function of the form, i.e., Bolza form:

J (x0, u(·)) =
∫ t f

t0

l(x(t), u(t)) dt + V f (x(t f )), (2.76)
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one could readily convert this type problem into Mayer form by defining the state
vector as:

x̄ :=
[
x
φ̄

]
(2.77)

with dynamics:

˙̄x =
[
f (x, u)

l(x, u)

]
. (2.78)

Then, the Mayer term is given by φ(x̄(t f )) := φ̄(t f ) + V (x(t f )).
The major difference between the optimization problem of Eq.2.52 and the opti-

mization problem of Eq.2.75 is the presence of the dynamic model embedded in the
optimization problem. To avoid an infinite dimensional optimization problem, the
control function u(·) must be parameterized by a finite set of parameters, which is
referred to as control vector parameterization. The most widely used control vector
parameterization is zeroth-order hold, i.e., the input trajectory is assumed to take the
form of:

u(t) = ūi (2.79)

for t ∈ [τi , τi+1) where ūi ∈ U, τi := iΔ + t0 for i = 0, . . . , N − 1, τN = t f , and
Δ > 0 is the hold period. In what follows, the family of (possibly vector-valued)
functions that take the form of Eq.2.79 is generally denoted in this book by S(Δ)

where Δ > 0 is the hold period. For the remainder of this chapter, zeroth order hold
control vector parameterization is assumed for simplicity.

Given that the dynamic model embedded in the problem of Eq.2.75 may be non-
linear, an analytic solution is often difficult to obtain for a given initial condition
and input trajectory. Therefore, some numerical method that obtains the solution
of the dynamic model is required to solve the optimization problem. The choice of
numerical solution techniques used to solve the optimization problem substantially
influences the computational efficiency and therefore, is an important implementation
consideration. From a nonlinear optimization point of view, dynamic optimization
problems typically have a high degree of sparsity and therefore, using sparsity-
exploiting nonlinear optimization solvers may also be an important implementation
constraint. On the other hand, from a numerical integration standpoint, the most
computationally expensive part tends to lie in solving the dynamic model. In partic-
ular, computing sensitivity information of the dynamic model tends to be the most
computationally expensive step. Therefore, selecting the numerical solver is critical
for the success of the solution technique. Below three solution techniques are briefly
described.

2.4.4.1 Single Shooting Approach

With a given input trajectory and initial condition, the dynamicmodel of Eq. 2.74may
be solved forward in time using an ODE solver, i.e., numerical integration method,
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Nonlinear
Optimization

Solver

ODE Solver

u(k)x(k)

Fig. 2.3 In a single shooting approach, the input trajectory is computed by the nonlinear solver at
each iteration. The input trajectory is passed to an ODE solver to compute the corresponding state
trajectory, and the corresponding sensitivity information

to obtain the solution over the time interval [t0, t f ]. In this respect, the solution to
the dynamic model is a function of the input trajectory and of the initial condition.
After the solution to the dynamic model is obtained from the ODE solver, the input
trajectory may be updated using a nonlinear optimization solver. These concepts are
used in the design of a solution strategy to the optimization problem of Eq.2.75,
which is the single shooting approach.

A block diagram of the methodology is given in Fig. 2.3. At each iteration, the
model is first solved over the interval to obtain x (k)(t, x0, u(k)(·)) for t ∈ [t0, t f ]where
the notation x (k) and u(k) denote the state and input trajectory at the kth iteration of the
nonlinear solver. With x (k) and u(k), the objective value, the state and input constraint
values, and the sensitivity information (first and second-order derivatives) of the
problem of Eq.2.75 are computed and the nonlinear optimization solver computes
the updated input trajectory for the next iteration. The algorithm repeats until the
solver converges to a local optimal input trajectory.

For the sake of simplicity, the input trajectory is assumed to be the only decision
variable of the dynamic optimization problem and piecewise constant input trajectory
is assumed. The resulting formulation of the optimization is given by:

min
ū0,...,ūN−1

φ(x(t f , x0, u(·)))
s.t. u(t) = ūi , ∀ t ∈ [τi , τi+1), i ∈ I0:N−1

hu(ūi ) = 0, ∀ i ∈ I0:N−1

hx (x(τ j , x0, u(·))) ≤ 0, ∀ j ∈ I0:Nx

(2.80)

where τ j ∈ [t0, t f ] for j = 0, . . . , Nx denotes the time grid that the state constraints
are imposed with τ0 = t0 and τNx = t f . In many cases, taking the time grids used
for the control parameterizations and for imposing the state constraints to be equal
yields acceptable results.

As a first-pass implementation, one may employ a finite-difference method to
approximate sensitivity information of the problem of Eq.2.80. However, this tends
to be inefficient, result in large numerical error, and yield unreliable performance,
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e.g., [37]. Instead, onemay obtain exact first-order sensitivity information fromdirect
sensitivity, adjoint sensitivity, or automatic (algorithmic) differentiation, e.g., [37,
41]. While methods exist that are capable of computing the exact Hessian of the
Lagrangian of the problem of Eq.2.80, efficient methods for obtaining an approxi-
mation of the Hessian have been developed such as the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm. Moreover, the BFGS method tends to yield good com-
putational performance; see, for example, [36, 40].

The key advantages of the single shooting approach to solving a dynamic opti-
mization problem relative to the other two approaches described below are that the
method tends to be the easiest to implement and the dynamic model is satisfied (up to
numerical precision) at each iteration of the solution method. However, the single
shootingmethod tend to be substantially slower than the multiple shooting and collo-
cation approaches described below. Also, the input trajectory being computed by the
nonlinear optimization solver at each iteration of the solutionmethod is an open-loop
one, i.e., the input trajectory is first specified by the optimization solver and then,
the dynamic equations are solved forward in time with the given open-loop input
trajectory. Therefore, solving dynamic optimization problems with a single shoot-
ing method when the dynamic model is open-loop unstable may result in numerical
problems like unbounded solutions being computed or convergence failure.

2.4.4.2 Multiple Shooting Approach

The multiple shooting method [58] serves as an alternative to a single shooting
method. Instead of solving for the solution of the dynamic model over the entire time
interval [t0, t f ], the time interval may be divided into subintervals and the dynamic
model may be initialized and solved within each of these subintervals. For simplicity
of the presentation, the time horizon [t0, t f ] is divided into N intervals of constant
size Δ > 0, referred to as nodes. While the node intervals are taken to be equally
spaced and equal to the hold period of the controls, neither assumption is required
for implementation. Let τi := iΔ + t0 for i = 0, . . . , N . At the beginning of the
i th subinterval, the dynamic model is initialized with an initial condition denoted by
si ∈ X, which is determined by the optimization solver, and the solution, x(t, si , ūi )
defined for t ∈ [τi , τi+1] where ūi denotes the constant input applied over the i th
subinterval, is computed by employing a numerical integration method. To ensure
that the dynamic model is satisfied over the entire time interval, a constraint is
imposed in the optimization problem to ensure that the initial condition specified for
the i th subinterval is equal to x(τi , si−1, ūi−1). In other words, the solutions of each
subinterval are pieced together by imposing a constraint in the optimization problem
to obtain the solution over the entire interval [t0, t f ].

The resulting optimization problem for the multiple shooting approach is given
by:
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min
s0,...,sN ,

ū0,...,ūN−1

φ(sN ) (2.81a)

s.t. s0 − x0 = 0 (2.81b)

x(τi+1, si , ūi ) − si+1 = 0, ∀ i ∈ I0:N−1 (2.81c)

hu(ūi ) = 0, ∀ i ∈ I0:N−1 (2.81d)

hx(si ) ≤ 0, ∀ i ∈ I1:N (2.81e)

where the constraint of Eq.2.81b ensures that the initial condition for the first subin-
terval is equal to x0 and the constraint of Eq.2.81c ensures that the solution value
at τi+1 is equal to the initial condition specified for the (i + 1)th subinterval. The
constraints of Eqs. 2.81d–2.81e are the input and state constraints, respectively. The
state constraint of Eq.2.81e may readily be extended so that it is imposed over a
different time grid like that of the problem of Eq.2.80.

The multiple shooting method has advantages over a single shooting method in
that, loosely speaking, the open-loop instabilities and nonlinearities are distributed
amongst the nodes of the time grid. Since solving the dynamic model and the cor-
responding sensitivity information of the dynamic equations is typically the most
computationally expensive task when solving dynamic optimization problems, the
multiple shootingmethod offers a clear way to parallelize the one of themost compu-
tationally expensive calculation. Additionally, the problem presents a high-degree of
sparsity which may be exploited. Therefore, although the problem of Eq.2.81 clearly
has more decision variables than the problem of Eq.2.80, the problem of Eq.2.81
tends to be more computationally efficient than a single shooting approach owing
to the aforementioned reasons. The main disadvantage of the method are that the
iterates of the method do not necessarily satisfy the dynamic model in the sense each
iterate may not satisfy the constraint of Eq.2.81c.

2.4.4.3 Orthogonal Collocation Approach

The third technique to solve the optimization problemofEq.2.75 is to employ orthog-
onal collocation to obtain the solution to the dynamic model of Eq.2.74 [59, 60].
Orthogonal collocation approximates the solution of a system of the form of Eq.2.74
with an interpolating polynomial, e.g., Lagrange polynomials. The coefficients of the
polynomial are adjusted such that the interpolating polynomial satisfies the dynamic
equation at the collocation points, which are points along the time horizon chosen
on the basis of a quadrature rule.

Similar to the multiple shooting approach, the time interval [t0, t f ] is divided
into N subintervals of length Δ > 0. Again, for simplicity of presentation, the
subintervals are assumed to be of equal length and constant, i.e., may not be adjusted
by the optimization solver. The method extends to the more general case when the
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subintervals are not of equal length andmay be a decision variable of the optimization
problem; please see, for example, [37] and the references therein. Let τi = t0 +
iΔ, i = 0, 1, . . . , N , and the interval [τi , τi+1] is the i th subinterval. Within the
interval [τi , τi+1], nc collocation points are chosen. Let pi (t, ci ) be an interpolating
polynomial defined for the i th subinterval, i.e., t ∈ [τi , τi+1], that is parameterized by
a coefficient vector ci and τ

j
i denotes the j th collocation point in the i th subinterval

where j = 1, 2, . . . , nc. The solution of Eq.2.74, obtained through collocation, is
computed by solving the following equations:

pi (τi , ci ) = si (2.82a)

ṗi (τ
j
i , ci ) = f (pi (τ

j
i , ci ), ūi ), ∀ j ∈ I1:nc . (2.82b)

The optimization problem solved through the collocation approach is given by:

min
s0,...,sN

ū0,...,ūN−1

c0,...,cN−1

φ(sN ) (2.83a)

s.t. s0 − x0 = 0 (2.83b)

pi (τi , ci ) − si = 0, ∀ i ∈ I0:(N−1) (2.83c)

ṗi (τi, j , ci ) − f (pi (τi, j , ci ), ūi ) = 0, ∀ j ∈ I1:nc , ∀ i ∈ I0:(N−1)

(2.83d)

pi (τi+1, ci ) − si+1 = 0, ∀ i ∈ I0:N−1 (2.83e)

hu(ūi ) = 0, ∀ i ∈ I0:N−1 (2.83f)

hx (si ) ≤ 0, ∀ i ∈ I1:N (2.83g)

where the decision variables of the optimization problem are states values at the
nodes, si for i = 0, . . . , N , the input trajectory parameterization vectors, ūk for
k = 0, 1, . . . , N − 1, and the coefficients of the interpolating polynomial, ci for
i = 0, 1, . . . , (N − 1).

Owing to the similarities in the structures of the problems of Eqs. 2.81 and 2.83,
the orthogonal collocation approach has similar advantages and disadvantages to the
ones of the multiple shooting approach. Since the solution to the dynamic model is
approximated as a polynomial, analytic computation of the sensitivity information
is perhaps easier to obtain than the shooting method approaches because the latter
may use a general ODE solver.Within the context of solving the problem of Eq.2.83,
the use of a sparsity exploiting optimization solver is critical because the resulting
optimization problem is large-scale with a high degree of sparsity.
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23. Nešić D, Teel AR (2001) Sampled-data control of nonlinear systems: an overview of recent
results. In: Moheimani SOR (ed) Perspectives in robust control, vol 268., Lecture Notes in
Control and Information Sciences. Springer, London, pp 221–239
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Chapter 3
Brief Overview of EMPC Methods
and Some Preliminary Results

This chapter contains a brief background on EMPC methods. The background on
EMPC methods is meant to provide context to the EMPC design methodologies of
the subsequent chapters. However, it is not meant to be comprehensive and rigorous.
For a more comprehensive and rigorous review, please refer to the reviews [1, 2]
as well as [3], which primarily focuses on the role of constraints in various EMPC
formulations.

3.1 Background on EMPC Methods

A brief overview of EMPC methods is provided in this section.

3.1.1 Class of Nonlinear Systems

The class of systems considered is described by the system of nonlinear ordinary
differential equations (ODEs):

ẋ = f (x, u,w) (3.1)

where x ∈ X ⊂ R
n denotes the state vector, u ∈ U ⊂ R

m denotes the manipulated
(control) input vector, and w ∈ W ⊂ R

l denotes the disturbance vector. The set of
admissible input values U is assumed to be compact, and the disturbance vector is
restricted to take values in the set W := {w ∈ R

l : |w| ≤ θ} where θ > 0 bounds
the norm of the disturbance vector. The vector function f : X × U × W → X is
locally Lipschitz on X×U×W. A state measurement is synchronously sampled at
sampling instances denoted by the sequence {tk}k≥0 where tk := kΔ, k ∈ I≥0, and
Δ > 0 is the sampling period (the initial time is taken to be zero). The assumption
of state feedback is standard owing to the fact that the separation principle does not
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generally hold for nonlinear systems. Nevertheless, some rigorous output feedback
implementations of EMPC exist, e.g., [4–6] and the design of such EMPC systems
is also discussed in Chap.5.

The system of Eq.3.1 is equipped with a function le : X × U → R that is con-
tinuous over its domain, which reflects the process/system economics. The function
le(·) is used as a stage cost in a model predictive control (MPC) framework and is
referred to as the economic stage cost.

Additionally, the system of Eq.3.1 may be subject to constraints other than the
input and state constraints. Collecting all the constraints including the input, state,
and additional constraints, the constraints may be written generally as:

(x, u) ∈ Z (3.2)

where Z is assumed to be compact. Economic considerations may motivate the need
for dynamic constraints such as the average constraints of Eqs. 1.15 and 1.19 of the
two examples of Chap.1. These constraints may be readily incorporated into the
EMPC by augmenting the state dynamic equations.

An optimal (minimizing) steady-state pair (x∗
s , u

∗
s ) with respect to the economic

stage cost is assumed to exist and to be unique. Specifically, the economically optimal
steady-state and steady-state input pair is:

(x∗
s , u

∗
s ) = argmin

(xs ,us )∈Z
{le(xs, us) : f (xs, us, 0) = 0} . (3.3)

If theminimizing pair is not unique, let (x∗
s , u

∗
s ) denote one of theminimizing steady-

state pairs.
As pointed out in Sect. 2.3.3, MPC schemes are typically implemented by solving

an optimization problem at discrete-time steps. Zeroth-order hold is usually used for
control vector parameterization. Under these conditions, the resulting closed-loop
system under MPC is a nonlinear sampled-data system given by:

ẋ(t) = f (x(t), κ(x(tk)),w(t)) (3.4)

for t ∈ [tk, tk+1), tk = kΔ, k = 0, 1, . . ., Δ > 0 is the sampling period, and κ(·) is
the implicit control law resulting from EMPC. Discrete-time versions of Eq.3.4 are
often considered for designing EMPC methods whereby w is taken to be constant
over a sampling period. The discrete-time version of Eq.3.4 is written with slight
abuse of notation as:

x(k + 1) = fd(x(k), u(k),w(k)) (3.5)

where k denotes the kth time step, i.e., it represents tk in real-time, and fd is assumed
to be continuous over its domain. In practice, approximate discrete-time models
are often used because the exact discrete-time model of Eq.3.4 may be difficult to
obtain. Also, the nonlinear continuous-time model must be solved using a numerical
ODE solver. Nevertheless, this usually works well in practice, and the numerical

http://dx.doi.org/10.1007/978-3-319-41108-8_5
http://dx.doi.org/10.1007/978-3-319-41108-8_1
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error associated with the approximate discrete-time model may be made small with
the precision of modern computers. The interested reader is referred to, for exam-
ple, [7] for conditions under which stability is guaranteedwhen using an approximate
discrete-time model in controller design for sampled-data systems.

3.1.2 EMPC Methods

Economic model predictive control is an MPC method that uses the economic stage
cost in its formulation. The EMPC problem, with a finite-time prediction horizon,
may be broadly characterized by the following optimal control problem (OCP):

min
u∈S(Δ)

∫ tk+N

tk

le(x̃(t), u(t)) dt + V f (x̃(tk+N )) (3.6a)

s.t. ˙̃x(t) = f (x̃(t), u(t), 0) (3.6b)

x̃(tk) = x(tk) (3.6c)

(x̃(t), u(t)) ∈ Z, ∀ t ∈ [tk, tk+N ) (3.6d)

x̃(tk+N ) ∈ X f (3.6e)

where the decision variable of the optimization problem is the piecewise constant
input trajectory over the prediction horizon, i.e., the time interval [tk, tk+N ) (zeroth-
order hold is assumed), and x̃ denotes the predicted state trajectory over the prediction
horizon.With slight abuse of notation, the discrete-timeversionof theEMPCproblem
is:

min
u

N−1∑
j=k

le(x̃( j), u( j)) + V f (x̃( j + N )) (3.7a)

s.t. x̃( j + 1) = fd(x̃( j), u( j), 0) (3.7b)

x̃(k) = x(tk) (3.7c)

(x̃( j), u( j)) ∈ Z, j = k, k + 1, . . . , k + N − 1 (3.7d)

x̃(k + N ) ∈ X f (3.7e)

where u = {u(k), u(k+1), . . . , u(k+N −1)} is the decision variable, x̃ denotes the
predicted state sequence, and N is the number of sampling times in the prediction
horizon.

The cost functional of Eq.3.6a (Eq.3.7a) consists of the economic stage cost with
a terminal cost/penalty V f : X f → R. The nominal dynamic model of Eq.3.6b
(Eq.3.7b) is used to predict the future evolution of the system and is initialized with
a state measurement of Eq.3.6c (Eq.3.7c). When available, disturbance estimates or
predictions may be incorporated in the model to provide a better prediction of the
system evolution. The constraint of Eq. 3.6d (Eq.3.7d) represents the process/system
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constraints. Finally, the constraint ofEq.3.6e (Eq.3.7e) is a terminal constraint,which
enforces that the predicted state at the end of horizon be contained in a terminal set,
X f . The assumptions on the terminal cost and set for EMPC methods that employ
these are presented below.

Regarding solving the optimal control problem of EMPC, higher-order control
parameterizations may also be considered. As previously mentioned, the model of
Eq.3.6b is solved and the cost functional is evaluated using a numerical integrator.
Also, the constraint of Eq. 3.6d is typically imposed at several points along the pre-
diction horizon, e.g., at the sampling times of the horizon. For formulating a solvable
optimization problem with modern nonlinear optimization solvers, the functions f
(or fd ) and le usually need to satisfy additional smoothness assumptions. With these
implementation details and additional assumptions, the resulting optimization prob-
lem is finite dimensional and a local minima may be computed.

EMPC is typically implemented with a receding horizon implementation to bet-
ter approximate the infinite-horizon solution and to ensure robustness of the control
solution to disturbances and open-loop instabilities. At a sampling time tk , the EMPC
receives a state measurement, which is used to initialize the model of Eq. 3.6b. The
OCP of Eq.3.6 is solved on-line for a (local) optimal piecewise input trajectory,
denoted by u∗(t |tk) for t ∈ [tk, tk+N ) or u∗( j |k) for j = k, k + 1, . . . , k + N − 1
in discrete-time. The control action computed for the first sampling period of the
prediction horizon, u∗(tk |tk) (u∗(k|k)), is sent to the control actuators to be imple-
mented over the sampling period from tk to tk+1. At the next sampling time, the
OCP of Eq.3.6 is re-solved after receiving a new measurement and by shifting the
prediction horizon into the future by one sampling period.

EMPC, which consists of the on-line solution of the OCP of Eq.3.6 along with
a receding horizon implementation, results in an implicit state feedback law u(t) =
κ(x(tk)) for t ∈ [tk, tk+1) (or similarly u(k) = κ(x(k)) in discrete-time). From a
theoretical perspective, three fundamental issues are considered and addressed with
respect to EMPC.The first consideration is the feasibility of the optimization problem
(both initial and recursive feasibility are considered). Second, if Eq.3.6 is recursively
feasible, it is important to consider the stability properties of the closed-loop system
under EMPC. In general, one may not expect that EMPC will force the state to
a desired steady-state. The last theoretical consideration is closed-loop economic
performance under EMPC.

Within the context of EMPC, closed-loop performance typically means the aver-
age closed-loop economic performance. Over a finite-time operating interval of
length t f , the average performance is defined by the following index:

J̄e := 1

t f

∫ t f

0
le(x(t), u(t)) dt (3.8)

where x and u are the closed-loop state and input trajectories, respectively, and over
an infinite-time operating interval, the infinite-time (asymptotic) average economic
performance is given by:
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J̄e,∞ := lim sup
t f →∞

1

t f

∫ t f

0
le(x(t), u(t)) dt . (3.9)

It is straightforward to extend these definitions to discrete-time systems.
For several reasons explored throughout this book such as model nonlinearities,

non-convexity of the stage cost, and average constraints, it may be optimal with
respect to the economic stage cost to operate the system in a complex or time-varying
fashion. That is, the optimal operating strategy may not be steady-state operation.
While the instantaneous stage cost under EMPC at any time may be better or worse
than the stage cost at the economically optimal steady-state and steady-state input
pair, the average economic performance under the time-varying operating policy
dictated by EMPC over the length of operation may be better than that achieved by
operation at the economically optimal steady-state.

The notion of optimal steady-state operation is made precise. To maintain con-
sistency with the literature, the definitions of optimal steady-state operation and
suboptimal off steady-state operation is presented here for discrete-time systems. As
in [8], for a bounded signal v : I≥0 → R

nv , the set of asymptotic averages is given by:

Av[v] :=
{
v̄ ∈ R

nv : ∃tn → ∞ : lim
n→∞

∑tn−1
k=0 v(k)

tn
= v̄

}
. (3.10)

Definition 3.1 ([8]) The system of Eq.3.5 with w ≡ 0 is optimally operated at
steady-state with respect to the stage cost le(x, u), if for any solution satisfying
(x(k), u(k)) ∈ Z for all k ∈ I≥0, the following holds:

Av[le(x, u)] ⊆ [le(x∗
s , u

∗
s ),∞) (3.11)

If, in addition, Av[le(x, u)] ⊆ (le(x∗
s , u

∗
s ),∞) or lim infk→∞ |x(k) − x∗

s | = 0, then
the system of Eq.3.5 is sub-optimally operated off steady-state.

In some of the examples considered in this book, the system being considered is not
optimally operated at steady-state.

Regarding closed-loop stability under EMPC, one may easily construct examples
of systems and stage costs of the form described above where the resulting closed-
loop system is unstable without additional assumptions and conditions. Theoretical
investigations on EMPC that do not incorporate additional stability and terminal
constraints exist including the work of [9–11]. These EMPC methods require that
the resulting EMPCs have a sufficiently long horizon as well as certain controllability
assumptions and turnpike conditions be satisfied to guarantee closed-loop stability
and performance properties.

Moreover, even though EMPC optimizes the process/system economics, it does
so over a finite-time prediction horizon. Over long periods of operation, no conclu-
sion, in general, may be made on closed-loop performance under EMPC (without
additional constraints or conditions). For provable results on feasibility, closed-loop
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stability, and closed-loop performance under EMPC, typically, additional stability
and/or performance constraints are added to the formulation of EMPC. These for-
mulations are discussed in the subsequent sections.

To address closed-loop stability, one may consider employing an infinite-horizon
in the EMPC. This may be a more appropriate prediction horizon because many
chemical processes are continuously operated over long periods of time (practically
infinite time). At least intuitively, the resulting control law will provide some form
of closed-loop stability assuming the existence of a solution to the infinite-horizon
EMPC as well as the ability to solve for a solution on-line. However, it is usually
difficult to solve an OCP with an infinite-horizon. To overcome this problem, two
approaches include: (1) approximating the infinite-horizon with a sufficiently long
finite-time horizon and (2) dividing the infinite-horizon into a finite-time horizon and
estimating the infinite-horizon tail through an auxiliary control law orwithmodeling-
based techniques, e.g., [12–20]. Although some of these EMPC schemes may be
computationally tractable, the use of constraints typically enables shorter prediction
horizons, which may reduce the on-line computation relative to those that require
sufficiently long horizons. Thus, only EMPC systems formulated with constraints
to provide guaranteed closed-loop properties are considered in the remainder of this
chapter.

3.1.2.1 EMPC with an Equality Terminal Constraint

Much of the recent theoretical work on EMPC investigates the extension of stabiliz-
ing elements used in tracking MPC to EMPC such as adding a terminal constraint
and/or terminal cost (see, for instance, [21] for more details on the use of terminal
constraints and/or a terminal cost within the context of tracking MPC). Numerous
EMPC formulations and theoretical developments which include a terminal con-
straint and/or terminal cost have been proposed and studied, e.g., [1, 8, 13, 14,
22–39]. There are two main types of EMPC with terminal constraints: (1) EMPC
with an equality terminal constraint, and (2) EMPCwith a terminal region constraint.
In this subsection, the former type of EMPC is considered which is an EMPC that is
described by the following optimization problem:

min
u∈S(Δ)

∫ tk+N

tk

le(x̃(t), u(t)) dt (3.12a)

s.t. ˙̃x(t) = f (x̃(t), u(t), 0) (3.12b)

x̃(tk) = x(tk) (3.12c)

(x̃(t), u(t)) ∈ Z, ∀ t ∈ [tk, tk+N ) (3.12d)

x̃(tN ) = x∗
s (3.12e)

where the constraint of Eq.3.12e forces that the predicted state trajectory to converge
to the optimal steady-state at the end of the finite-time horizon. In this formulation,
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X f = {x∗
s } and V f ≡ 0. The formulation of the EMPC in discrete-time is analogous

to that of Eq.3.7 with V f ≡ 0 and X f = {x∗
s }. For EMPC with an equality terminal

constraint, the terminal cost is often omitted as it is not required for stability and
performance guarantees.

Feasibility. EMPC with a terminal equality constraint is (initially) feasible for
any initial state in XN ∈ R

n which denotes the feasible region of EMPC of Eq.3.12.
The feasible region is also the domain of attraction of the closed-loop system, and it
depends on the prediction horizon. An explicit characterization of XN is difficult in
general. Recursive feasibility, i.e., feasibility at each subsequent sampling time, of
EMPC with an equality terminal constraint is guaranteed for the nominally operated
system (w ≡ 0) for any initial state x(0) ∈ XN . This follows from the fact that
a feasible solution to the EMPC may be constructed from the solution obtained at
the previous sampling time. Namely, u(t) = u∗(t |tk−1) for t ∈ [tk, tk+N−1) and
u(t) = u∗

s for t ∈ [tk+N−1, tk+N ) is a feasible solution for the EMPC at tk because it
satisfies the constraints and the terminal constraint of Eq.3.12e. However, recursive
feasibility is harder to show, in general, when w 
≡ 0.

Closed-Loop Stability. With respect to closed-loop stability, a weak notion of
stability follows from the EMPC with terminal constraint formulation. If the initial
state is in the feasible region, the closed-loop state trajectory remains contained in
the feasible region under nominal operation. For stronger stability properties, e.g.,
asymptotic stability of x∗

s , additional assumptions on the closed-loop system must
be satisfied. To discuss this issue, nonlinear discrete-time systems are considered.
Discrete-time systems are considered here to maintain consistency with the literature
on the topic. Nonetheless, some of these conditions and results have been extended
to continuous-time systems, e.g., [40]. One condition that leads to stronger stability
properties is the notion of dissipativity which has been extended to EMPC. Dis-
sipativity was originally presented in [41] for continuous-time systems and then,
extended to discrete-time systems [42]. It is worth pointing out that the notion of the
available storage with respect to a supply rate function is a useful tool with which
the dissipativity of a system can be assessed [41, 42].

Definition 3.2 ([8]) The system of Eq.3.5 is strictly dissipative with respect to a
supply rate s : X × U → R if there exist a storage function λ : X → R, which is
assumed to be continuous over its domain, and a positive definite function β : X →
R≥0 such that

λ( fd(x, u, 0)) − λ(x) ≤ −β(x) + s(x, u) (3.13)

for all (x, u) ∈ Z.

If the system of Eq.3.5 is strictly dissipative with a supply rate:

s(x, u) = le(x, u) − le(x
∗
s , u

∗
s ) (3.14)

then, the optimal steady-state is asymptotically stable for the closed-loop system
under EMPCwith an equality terminal constraint [8].Moreover, a Lyapunov function
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for the closed-loop system was derived using the cost functional of the so-called
rotated cost function [8]:

L(x, u) := le(x, u) + λ(x) − λ( fd(x, u, 0)) . (3.15)

The idea of using the rotated cost function to construct a Lyapunov function for
the closed-loop system was originally proposed in [14]. However, it relied on strong
duality of the steady-state optimization problem, which is a stronger assumption than
strict dissipativity.

Closed-loop Performance.Utilizing the optimal input trajectory at tk (or time step
k in discrete-time) as a feasible solution to the EMPC at the next sampling period,
one may upper bound the difference between the cost functional value at the next
sampling time and at the current sampling time under nominal operation. The optimal
input trajectory in discrete-time is denoted u∗( j |k) for j = k, k+1, . . . , k+N−1,
and the optimal cost functional value at time step k is denoted:

L∗
e(x(k)) =

k+N−1∑
j=k

le(x
∗( j |k), u∗( j |k)) , (3.16)

where u∗(·|k) is the optimal input sequence (trajectory), x∗(·|k) is the corresponding
state sequence starting at x(k), and x(k) denotes the closed-loop state at time step
k. Using the bound on the difference between the two consecutive cost functional
values, the closed-loop average economic performance may be bounded:

1

T

T−1∑
k=0

le(x(k), u
∗(k|k)) ≤ le(x

∗
s , u

∗
s ) + L∗

e(x(0)) − L∗
e(x(T ))

T
(3.17)

where x(k) is the closed-loop state at time step k, and T ∈ i≥0 is the length of
operation. From Eq.3.17, the effect of the second term of the right-hand side dis-
sipates with longer (but finite) operation. For infinite-time, the average economic
performance is bounded by:

lim sup
T→∞

1

T

T−1∑
k=0

le(x(k), u
∗(k|k)) ≤ le(x

∗
s , u

∗
s ) , (3.18)

that is, the asymptotic average performance is no worse than that at the steady-state
pair (x∗

s , u
∗
s ) [8].

The EMPC of Eq.3.12 requires that the predicted state converge to steady-state at
the end of the prediction horizon. This may restrict the feasible region. An interest-
ing extension to the terminal equality constraint employing a generalized (equality)
terminal constraint with an appropriately designed terminal cost [31, 34]. The gen-
eralized terminal constraint replaces the constraint of Eq. 3.12e with the following
constraint:
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f (x̃(tk+N ), u(tk+N−1)) = 0 (3.19)

which allows for the predicted terminal state be forced to any admissible steady-state.
The resulting EMPC equipped with an appropriately designed terminal cost shares
many of the same properties, but clearly, a larger feasible region than the EMPC of
Eq.3.12 [31, 34].

If the dynamic constraints are imposed on the system taking the form of aver-
age constraints, [8, 37] provide methodologies for EMPC with an equality terminal
constraint to ensure that the average constraint is satisfied asymptotically and over
finite-time operating horizons, respectively. Also, the use of a periodic terminal
equality constraint has been considered in [8, 39].

3.1.2.2 EMPC with a Terminal Region Constraint

As previously pointed out, EMPC of Eq.3.12 requires that the initial state be suf-
ficiently close to the steady-state such that it is possible to reach the steady-state
in N sampling times. This type of constraint may limit the feasible region [25].
Numerically computing a solution that satisfies such a constraint exactly may also
be challenging. Therefore, terminal region constraints may be employed in EMPC.

One such method is a terminal region constraint designed via an auxiliary local
control law. The terminal region is designed to be a forward invariant set for the
nonlinear system under the local control law. The local control law can, for instance,
be designed on the basis of the linearization of the system around the optimal steady-
state. The terminal region is denoted as X f and the resulting EMPC is given by the
following problem:

min
u∈S(Δ)

∫ tk+N

tk

le(x̃(t), u(t)) dt + V f (x̃(tk+N )) (3.20a)

s.t. ˙̃x(t) = f (x̃(t), u(t), 0) (3.20b)

x̃(tk) = x(tk) (3.20c)

(x̃(t), u(t)) ∈ Z, ∀ t ∈ [tk, tk+N ) (3.20d)

x̃(tN ) ∈ X f (3.20e)

where Eq.3.20e is the terminal region constraint. The discrete-time version of the
problem takes the same form as Eq.3.7. In general, for closed-loop stability and
performance, the terminal cost is such that V f 
≡ 0.

In [25], a procedure to design a local control law, a terminal region constraint,
and a terminal cost for EMPC satisfying the assumption below was proposed:

Assumption 3.1 There exist a compact terminal region X f ⊂ R
n , containing the

point x∗
s in its interior, and control law hL : X f → U, such that for the discrete-time

system of Eq.3.5:



66 3 Brief Overview of EMPC Methods and Some Preliminary Results

V f ( fd(x, hL(x), 0)) ≤ V f (x) − le(x, hL(x)) + le(x
∗
s , u

∗
s ) (3.21)

for all x ∈ X f .

Feasibility. For nominal operation, if the EMPC with a terminal region is initially
feasible, the EMPC will be recursively feasible. This may be shown by using similar
recursive arguments as those used in showing the feasibility of the EMPC with the
equality terminal constraint. If u∗(t |tk−1) for t ∈ [tk−1, tk+N−1) is the optimal input
trajectory at tk−1, then at tk , a feasible solution is u(t) = u∗(t |tk−1) for t ∈ [tk, tk+N−1)

and u(t) = hL(x̃(tk+N−1)) for t ∈ [tk+N−1, tk+N ) where x̃(tk+N−1) is the predicted
state at tk+N−1. For recursive feasibility when w 
≡ 0, one EMPC methodology
designed with a terminal region constraint was presented in [43].

Closed-Loop Stability. The closed-loop stability properties of EMPC with a ter-
minal constraint designed to satisfy Assumption 3.1 is similar to those of EMPCwith
an equality terminal constraint. For nominal operation, the closed-loop state trajec-
tory will stay in the feasible region. If the system of Eq.3.5 is strictly dissipative
with supply rate of Eq.3.14, the steady-state is asymptotically stable under EMPC
with a terminal region constraint [25]; see, also, [40] which extends these results to
continuous-time systems.

Closed-loop Performance. If the local control law, terminal cost, and terminal
region are designed such that Assumption 3.1 is satisfied, the bound on asymptotic
average performance of Eq.3.18 holds [25]. For finite-time, a similar bound to the
bound of Eq.3.17 may be derived for the closed-loop system under EMPC with a
terminal cost and a terminal region constraint.

The notion of a generalized terminal constraint has also been extended to terminal
region constraints for EMPC in [44].

3.1.2.3 EMPC Designed with Lyapunov-Based Techniques

The feasible region of EMPC with a terminal region constraint, while larger than
the feasible region of EMPC with an equality terminal constraint, depends on the
prediction horizon length. Moreover, the feasible region of both EMPC formula-
tions is difficult to characterize. As an alternative to overcome these challenges, one
may consider designing an explicit nonlinear control law for the nonlinear system of
Eq.3.1 and constructing a Lyapunov function for the resulting closed-loop system
consisting of the system of Eq.3.1 under the explicit control law.With the control law
and Lyapunov function, a region constraint may be designed to be imposed within
EMPC. Because the control law and Lyapunov function are derived for the nonlinear
system of Eq.3.1, they can be used to provide an estimate of the region of attraction of
the nonlinear system. The resulting EMPC is the so-called Lyapunov-based EMPC
(LEMPC) [4, 45–50]. LEMPC is discussed in-depth in Chap.4. However, it is impor-
tant to point out that LEMPC is a dual-mode control strategy. Under the first mode
of operation, the LEMPC may dictate a time-varying operating policy to optimize
the economics within the region derived using the nonlinear control law. If steady-
state operation is desired, the second mode of operation, defined by a contractive

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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Fig. 3.1 An illustration of
possible open-loop predicted
trajectories under EMPC
formulated with a terminal
constraint (dotted), under
EMPC formulated with a
terminal region constraint
(dashed), and under LEMPC
(solid)

Ωρe

Xf

xs

x(t0)

constraint, is used to ensure that the closed-loop state trajectory converges to a small
neighborhood of the steady-state. In contrast to the aforementioned EMPCmethods,
no dissipativity requirement is needed to accomplish steady-state operation.

3.1.2.4 Comparison of the Open-Loop Predicted State Trajectory

TheEMPC formulations of Eqs. 3.12 and 3.20, and theLEMPC (described in detail in
the next chapter) may result in different open-loop predicted state trajectories which
are illustrated in Fig. 3.1 (Ωρe denotes the region constraint in LEMPC). Nonethe-
less, if the prediction horizon is sufficiently long, the closed-loop behavior of the
system under the various EMPC formulations would (intuitively) be expected to be
similar because for a long prediction horizon, the EMPC solution starts to closely
approximate the infinite horizon solution and the effect on the closed-loop behavior
of the terminal conditions of the open-loop predicted trajectory is less significant
than the corresponding effect for shorter prediction horizons.

3.2 Application of EMPC to a Chemical Process Example

Tomotivate the use of EMPC over conventional control methods that enforce steady-
state operation as well as periodic operation, EMPC is applied to the benchmark
example of Sect. 1.3.1. The reactor has an asymptotically stable steady-state:

xTs = [0.998 0.424 0.032 1.002] (3.22)

which corresponds to the steady-state input:

us,1 = 0.35, us,2 = 0.5 (3.23)

http://dx.doi.org/10.1007/978-3-319-41108-8_1
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where throughout this study the coolant temperature is fixed to its nominal value of
us,3 = 1.0. The control objective considered here is to optimize the time-averaged
yield of ethylene oxide by operating the reactor in a time-varying fashion around
the stable steady-state. Owing to practical considerations, the average amount of
ethylene that may be fed into the reactor over the length of operation is constrained
to be equal to that when uniformly distributing the reactant material to the reactor.
Mathematically, this constraint is given by the following integral constraint:

1

t f

∫ t f

0
u1(t)u2(t) dt = us,1us,2 = 0.175 (3.24)

where us,1 and us,2 are the steady-state inlet volumetric flow rate and ethylene con-
centration, respectively. Since the average ethylene fed to the reactor is fixed, which
fixes the denominator of the yield, the economic stage cost used in the formulation
of the EMPC is given by:

le(x, u) = −x3x4u1 . (3.25)

For the periodic operating policy, a similar periodic operating strategy as that
proposed in [51] which varies the inlet feed flow rate and feed concentration in an
open-loop periodic fashion as shown in Fig. 3.2. The parameters used for the periodic
control strategy are τ = 46.8, a1 = 0.073, a2 = 0.500, a3 = 0.514, and a4 = 0.941,
which are similar parameters to the ones used in [51]. It is important to note that the
periodic control strategy of Fig. 3.2 with the aforementioned parameters satisfies the
integral constraint of Eq. 3.24.

To compare steady-state operation and periodic operating strategy with the oper-
ating policy achieved under EMPC, an EMPC is designed for the reactor systemwith
a sampling period of Δ = 0.1. To enforce that the integral constraint of Eq. 3.24 be
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Fig. 3.2 Design of the open-loop periodic operation strategy over one period τ
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satisfied over each operating window of length τ = 46.8, the EMPC is formulated
with a shrinking horizon, i.e., at t = 0, the horizon is set to N0 = 468. At the next
sampling time (t = 0.1), the horizon is decreased by one (N1 = 467). At subse-
quent sampling times, the prediction horizon is similarly decreased by one sampling
period. At t = 46.8, the horizon is reset to N468 = 468. For simplicity of notation,
let j be the number of operating windows of length τ = 46.8 that have elapsed and
the EMPC considered in this example is given by the following formulation:

min
u∈S(Δ)

−
∫ ( j+1)τ

tk

x̃3(t)x̃4(t)u1(t) dt (3.26a)

s.t. ˙̃x(t) = f (x̃(t), u(t), 0) (3.26b)

x̃(tk) = x(tk) (3.26c)

u1(t) ∈ [0.0704, 0.7042], ∀ [tk, ( j + 1)τ ) (3.26d)

u2(t) ∈ [0.2465, 2.4648], ∀ [tk, ( j + 1)τ ) (3.26e)

1

τ

∫ ( j+1)τ

tk

u1(t)u2(t) dt = 0.175 − 1

τ

∫ tk

jτ
u∗
1(t)u

∗
2(t) dt (3.26f)

where u∗
1(t) and u∗

2(t) denotes the inputs applied to the system over the time jτ to
tk and ( j + 1)τ denotes the end of the operating window.

The catalytic reactor system is initialized at

xT0 = [0.997 1.264 0.209 1.004] (3.27)

which corresponds to an initial state on the stable limit cycle that the process with
the periodic strategy follows. Simulations are carried out with the periodic operating
strategy and the EMPC of Eq.3.26 over 10 operating windows. The evolution of the
reactor for both cases is given in Fig. 3.3 with the open-loop periodic operation and
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Fig. 3.3 The open-loop reactor a state trajectories and b input trajectories with the periodic oper-
ating strategy resulting from open-loop manipulation of the inputs as shown in Fig. 3.2
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Fig. 3.4 The closed-loop reactor a state trajectories and b input trajectories with EMPC of Eq.3.26

Fig. 3.5 State-space
evolution in the x2 − x3
phase plane of the reactor
system under the EMPC of
Eq.3.26 and with the
periodic operating strategy
resulting from open-loop
manipulation of the inputs as
shown in Fig. 3.2
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Fig. 3.4 under EMPC. The state-space evolution of the two strategies are shown in the
x2 − x3 phase plane in Fig. 3.5. From these figures, the system with the two operating
strategies approaches different periodic trajectories. Under EMPC, the time-averaged
yield over the entire time interval of the simulation is 9.97% compared to 7.93%
with the periodic operation. If the reactor is initialized with the same initial point
and the material is instead distributed uniformly over the length of operation, the
average yield is 6.63%. On the other hand, initializing the system at the steady-
state and maintain the system at steady-state thereafter achieves a yield of 6.41%.
Therefore, operation under EMPC has a clear performance benefit relative to steady-
state operation and the open-loop periodic operating strategy.



References 71

References

1. Rawlings JB, Angeli D, Bates CN (2012) Fundamentals of economic model predictive control.
In: Proceedings of the 51st IEEE conference on decision and control, Maui, Hawaii, pp 3851–
3861

2. Ellis M, Durand H, Christofides PD (2014) A tutorial review of economic model predictive
control methods. J Process Control 24:1156–1178

3. Ellis M, Durand H, Christofides PD (2016) Elucidation of the role of constraints in economic
model predictive control. Annu Rev Control 41:208–217

4. Heidarinejad M, Liu J, Christofides PD (2012) State-estimation-based economic model pre-
dictive control of nonlinear systems. Syst Control Lett 61:926–935

5. EllisM, Zhang J, Liu J, Christofides PD (2014) Robust moving horizon estimation based output
feedback economic model predictive control. Syst Control Lett 68:101–109

6. Zhang J, Liu S, Liu J (2014) Economic model predictive control with triggered evaluations:
state and output feedback. J Process Control 24:1197–1206

7. Nešić D, Teel AR, Kokotović PV (1999) Sufficient conditions for stabilization of sampled-data
nonlinear systems via discrete-time approximations. Syst Control Lett 38:259–270

8. Angeli D, Amrit R, Rawlings JB (2012) On average performance and stability of economic
model predictive control. IEEE Tran Autom Control 57:1615–1626

9. Grüne L (2013) Economic receding horizon control without terminal constraints. Automatica
49:725–734

10. Grüne L, Stieler M (2014) Asymptotic stability and transient optimality of economic MPC
without terminal conditions. J Process Control 24:1187–1196

11. Faulwasser T, Korda M, Jones CN, Bonvin D (2014) Turnpike and dissipativity properties in
dynamic real-time optimization and economic MPC. In: Proceedings of the 53rd IEEE annual
conference on decision and control, Los Angeles, CA, pp 2734–2739

12. Würth L, Rawlings JB, Marquardt W (2007) Economic dynamic real-time optimization and
nonlinear model-predictive control on the infinite horizon. In: Proceedings of the 7th IFAC
international symposium on advanced control of chemical processes, Istanbul, Turkey, pp
219–224

13. Huang R, Harinath E, Biegler LT (2011) Lyapunov stability of economically oriented NMPC
for cyclic processes. J Process Control 21:501–509

14. Diehl M, Amrit R, Rawlings JB (2011) A Lyapunov function for economic optimizing model
predictive control. IEEE Trans Autom Control 56:703–707

15. Huang R, Biegler LT, Harinath E (2012) Robust stability of economically oriented infinite
horizon NMPC that include cyclic processes. J Process Control 22:51–59

16. Mendoza-Serrano DI, Chmielewski DJ (2012) HVAC control using infinite-horizon economic
MPC. In: Proceedings of the 51st IEEE conference on decision and control. Maui, Hawaii, pp
6963–6968

17. Mendoza-Serrano DI, Chmielewski DJ (2013) Demand response for chemical manufacturing
using economic MPC. In: Proceedings of the American control conference, Washington, D.C.,
pp 6655–6660

18. Omell BP, Chmielewski DJ (2013) IGCC power plant dispatch using infinite-horizon economic
model predictive control. Ind Eng Chem Res 52:3151–3164

19. Würth L, Wolf IJ, Marquardt W (2013) On the numerical solution of discounted economic
NMPC on infinite horizons. In: Proceedings of the 10th IFAC international symposium on
dynamics and control of process systems, Bombay, Mumbai, India, pp 209–214

20. Würth L, Marquardt W (2014) Infinite-horizon continuous-time NMPC via time transforma-
tion. IEEE Trans Autom Control 59:2543–2548

21. MayneDQ,Rawlings JB, RaoCV, Scokaert POM(2000)Constrainedmodel predictive control:
stability and optimality. Automatica 36:789–814

22. Rawlings JB, Bonné D, Jørgensen JB, Venkat AN, Jørgensen SB (2008) Unreachable setpoints
in model predictive control. IEEE Trans Autom Control 53:2209–2215



72 3 Brief Overview of EMPC Methods and Some Preliminary Results

23. Rawlings JB, Amrit R (2009) Optimizing process economic performance using model predic-
tive control. In:Magni L, RaimondoDM,Allgöwer F (eds) Nonlinear model predictive control,
vol 384, Lecture notes in control and information sciences. Springer, Berlin, pp 119–138

24. Ferramosca A, Rawlings JB, Limon D, Camacho EF (2010) Economic MPC for a changing
economic criterion. In: Proceedings of the 49th IEEE conference on decision and control,
Atlanta, GA, pp 6131–6136

25. Amrit R, Rawlings JB, Angeli D (2011) Economic optimization using model predictive control
with a terminal cost. Annu Rev Control 35:178–186

26. Lee J,AngeliD (2011)Cooperative distributedmodel predictive control for linear plants subject
to convex economic objectives. In: Proceedings of the 50th IEEE conference on decision and
control and European control conference, Orlando, FL, pp 3434–3439

27. Müller MA, Allgöwer F (2012) Robustness of steady-state optimality in economic model
predictive control. In: Proceedings of the 51st IEEE conference on decision and control, Maui,
Hawaii, pp 1011–1016

28. Driessen PAA,HermansRM, van denBosch PPJ (2012)Distributed economicmodel predictive
control of networks in competitive environments. In: Proceedings of the 51st IEEE conference
on decision and control, Maui, HI, pp 266–271

29. Lee J, Angeli D (2012) Distributed cooperative nonlinear economic MPC. In: Proceedings of
the 20th international symposiumonmathematical theory of networks and systems,Melbourne,
Australia

30. Amrit R, Rawlings JB, Biegler LT (2013) Optimizing process economics online using model
predictive control. Comput Chem Eng 58:334–343

31. Fagiano L, Teel AR (2013) Generalized terminal state constraint for model predictive control.
Automatica 49:2622–2631

32. GopalakrishnanA,Biegler LT (2013) Economic nonlinearmodel predictive control for periodic
optimal operation of gas pipeline networks. Comput Chem Eng 52:90–99

33. Hovgaard TG, Boyd S, Larsen LFS, Jørgensen JB (2013) Nonconvex model predictive control
for commercial refrigeration. Int J Control 86:1349–1366

34. Müller MA, Angeli D, Allgöwer F (2013) Economic model predictive control with self-tuning
terminal cost. Eur J Control 19:408–416

35. Müller MA, Angeli D, Allgöwer F (2013) On convergence of averagely constrained economic
MPC and necessity of dissipativity for optimal steady-state operation. In: Proceedings of the
American control conference, Washington, D.C., pp 3147–3152

36. Baldea M, Touretzky CR (2013) Nonlinear model predictive control of energy-integrated
process systems. Syst Control Lett 62:723–731

37. Müller MA, Angeli D, Allgöwer F (2014) Transient average constraints in economic model
predictive control. Automatica 50:2943–2950

38. Wolf IJ, Muñoz DA, Marquardt W (2014) Consistent hierarchical economic NMPC for a class
of hybrid systems using neighboring-extremal updates. J Process Control 24:389–398

39. Zanon M, Gros S, Diehl M (2013) A Lyapunov function for periodic economic optimizing
model predictive control. In: Proceedings of the 52nd IEEE conference on decision and control,
Florence, Italy, pp 5107–5112

40. Alessandretti A, Aguiar A, Jones C (2014) An economic model predictive control scheme with
terminal penalty for continuous-time systems. In: Proceedings of the 53rd IEEE conference on
decision and control, Los Angeles, CA, pp 2728–2733

41. Willems JC (1972) Dissipative dynamical systems part I: general theory. Arch Ration Mech
Anal 45:321–351

42. Byrnes CI, Lin W (1994) Losslessness, feedback equivalence, and the global stabilization of
discrete-time nonlinear systems. IEEE Trans Autom Control 39:83–98

43. Bayer FA, Müller MA, Allgöwer F (2014) Tube-based robust economic model predictive
control. J Process Control 24:1237–1246

44. Müller MA, Angeli D, Allgöwer F (2014) On the performance of economic model predictive
control with self-tuning terminal cost. J Process Control 24:1179–1186



References 73

45. HeidarinejadM, Liu J, Christofides PD (2012) Economic model predictive control of nonlinear
process systems using Lyapunov techniques. AIChE J 58:855–870

46. ChenX,HeidarinejadM,Liu J, Christofides PD (2012)Distributed economicMPC: application
to a nonlinear chemical process network. J Process Control 22:689–699

47. HeidarinejadM,Liu J,ChristofidesPD(2013)Algorithms for improvedfixed-timeperformance
of Lyapunov-based economic model predictive control of nonlinear systems. J Process Control
23:404–414

48. Heidarinejad M, Liu J, Christofides PD (2013) Economic model predictive control of switched
nonlinear systems. Syst Control Lett 62:77–84

49. Ellis M, Heidarinejad M, Christofides PD (2013) Economic model predictive control of non-
linear singularly perturbed systems. J Process Control 23:743–754

50. EllisM,Christofides PD (2014)Economicmodel predictive controlwith time-varying objective
function for nonlinear process systems. AIChE J 60:507–519
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Chapter 4
Lyapunov-Based EMPC: Closed-Loop
Stability, Robustness, and Performance

4.1 Introduction

Within chemical process industries, many chemical processes are safety critical, and
maintaining safe and stable operation is the highest priority of a control system.
Given that EMPC may operate a process/system in a consistently dynamic fashion
to optimize the economics, maintaining the closed-loop state trajectory in a well-
defined state-space region, where a degree of robustness to uncertainty is achieved,
is one method to achieve safe and stable operation under EMPC. This objective is the
main motivating factor in designing Lyapunov-based EMPC (LEMPC). LEMPC is a
dual-mode control strategy that allows for time-varying operation while maintaining
the closed-loop state in a compact state-space set. If it is desirable to force the closed-
loop state to a steady-state at any point over the length of operation, the second mode
of operation of the LEMPC may be used and will steer the closed-loop state to a
small neighborhood of the steady-state.

In this chapter, several LEMPC designs are developed. The LEMPC designs,
which are capable of optimizing closed-loop performance with respect to general
economic considerations for nonlinear systems, address recursive feasibility of the
optimization problem at each sampling time, closed-loop stability, and closed-loop
performance. The fundamental design concept employed in the LEMPC designs is
based on uniting receding horizon control with explicit Lyapunov-based nonlinear
controller design techniques. These techniques allow for an explicit characterization
of the stability region of the closed-loop system. Other considerations including
asynchronous and delayed sampling and time-varying economic stage cost functions
are also addressed in this chapter.

In all cases considered, sufficient conditions are derived such that the closed-loop
nonlinear system under the LEMPC designs possess a specific form of closed-loop
stability and robustness to be made precise in what follows. A critical property of
the sufficient conditions derived for closed-loop stability is that they do not rely on
solving the LEMPC problem to optimality at each sampling time, i.e., suboptimal
solutions also stabilize the closed-loop system. In other words, feasibility of the
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solution returned by the LEMPC and not optimality implies closed-loop stability
under LEMPC. This is a property initially investigated within the context of track-
ing MPC [1]. Owing to the LEMPC design methodology, a feasible solution to the
LEMPCmay always be readily computed. Terminal constraint design for LEMPC is
also addressed. The terminal constraint imposed in the LEMPC problem allows for
guaranteed finite-time and infinite-time closed-loop economic performance improve-
ment over a stabilizing controller. The LEMPCmethodologies are applied to chemi-
cal process examples to demonstrate, evaluate, and analyze the closed-loop properties
of the systems controlled by LEMPC. Also, the closed-loop properties are compared
to traditional/conventional approaches to optimization and control, i.e., steady-state
optimization and tracking MPC.

4.2 Lyapunov-Based EMPC Design and Implementation

4.2.1 Class of Nonlinear Systems

The class of nonlinear systems considered is described by the following state-space
model:

ẋ = f (x, u,w) (4.1)

where x ∈ X ⊂ R
n denotes the state vector, u ∈ U ⊂ R

m denotes the control (manip-
ulated) input vector, and w ∈ W ⊂ R

l denotes the disturbance vector. The control
inputs are restricted to a nonempty compact set U. The disturbance is bounded, i.e.,
W := {w ∈ R

l : |w| ≤ θ} where θ > 0 bounds the norm of the disturbance vector.
The vector field f is assumed to be a locallyLipschitz vector function onX × U × W.
Without loss of generality, the origin is an equilibrium point of the unforced nominal
system, i.e., f (0, 0, 0) = 0, and the initial time is taken to be zero, i.e., t0 = 0. State
measurements of the system are assumed to be available synchronously at sampling
times denoted by the time sequence {tk}k≥0 where tk = kΔ, k = 0, 1, . . . andΔ > 0 is
the sampling period. Robustness of the controlled system under LEMPCwith respect
to asynchronous and delayed state measurements will be considered in Sect. 4.3.2.
To describe the system economics, e.g., operating profit or operating cost, the system
of Eq.4.1 is equipped with a time-invariant cost function le : X × U → R which is
a measure of the instantaneous system economics. The function le is referred to as
the economic cost function and is continuous on X × U.

4.2.2 Stabilizability Assumption

The existence of an explicit controller h : X → U, which renders the origin of the
nominal closed-loop system asymptotically stable, is assumed. This assumption is
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a stabilizability assumption for the nonlinear system of Eq.4.1 and is similar to
the assumption that the pair (A, B) is stabilizable in the case of linear systems.
Throughout the monograph, the explicit controller may be referred to as the stabiliz-
ing controller or the Lyapunov-based controller. When convenient, the notation h(x)
may be used when referring to the explicit controller. However, this notation refers
to the controller itself, which is a mapping from X to U. Even though the explicit
controller is referred to as the Lyapunov-based controller, it may be designed using
any controller design techniques and not just Lyapunov-based techniques.

Applying converse Lyapunov theorems, e.g., [2–7], the stabilizability assumption
implies that there exists a continuously differentiable Lyapunov function V : D → R

for the nominal closed-loop system, i.e., ẋ = f (x, h(x), 0), that satisfies the inequal-
ities:

α1(|x |) ≤ V (x) ≤ α2(|x |) (4.2a)

∂V (x)

∂x
f (x, h(x), 0) ≤ −α3(|x |) (4.2b)

∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ α4(|x |) (4.2c)

for all x ∈ D ⊂ R
n where αi ∈ K for i = 1, 2, 3, 4 and D is an open neighborhood

of the origin. The regionΩρ ⊂ D such that alsoΩρ ⊆ X is called the stability region
of the closed-loop system under the Lyapunov-based controller, and is an estimate
of the region of attraction of the nonlinear system of Eq.4.1. Since the stability
region depends on the explicit controller, the choice and design of the controller
plays a significant role in the estimated region of attraction. The case that the set X
represents explicit hard state constraints is discussed further in Sect. 4.2.5.

4.2.3 LEMPC Formulation

In the LEMPC design, the LEMPC optimizes the economic cost function, which is
used as the stage cost in the EMPC. Lyapunov-based MPC techniques, e.g., [8–10],
are employed in the EMPC design to take advantage of the stability properties of
the Lyapunov-based controller. The LEMPC is equipped with two operation modes.
Under the first operation mode, the LEMPC optimizes the economic cost function
while maintaining the system state within the stability region Ωρ . The LEMPC may
dictate a general time-varying operating policy under the first operation mode. Under
the second operation mode, the LEMPC optimizes the economic cost function while
ensuring that the computed control action for the closed-loop system forces the state
along a path that causes the Lyapunov function value to decay. The first and second
operation mode of the LEMPC will be referred to as mode 1 and mode 2 operation
of the LEMPC, respectively, and are defined by specific Lyapunov-based constraints
imposed in the LEMPC optimization problem.
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To enforce convergence of the closed-loop state to the steady-state (if desirable),
the LEMPC is formulated with a switching time ts . From the initial time to time ts ,
the LEMPC may dictate a time-varying operating policy to optimize the economics
while maintaining the closed-loop state inΩρ . After the time ts , the LEMPC operates
exclusively in the second operation mode and calculates the inputs in a way that the
state of the closed-loop system is steered to a neighborhood of the steady-state. For
the sake of simplicity, the switching time ts is an integer multiple of the sampling
period (Δ) of the LEMPC. This assumption poses little practical restrictions.

LEMPC is an EMPC scheme that uses the Lyapunov-based controller to design
two regions of operation where closed-loop stability of the system of Eq.4.1 under
the LEMPC and recursive feasibility of the optimization problem are guaranteed for
operation in the presence of bounded disturbances. The formulation of the LEMPC
optimization is:

min
u∈S(Δ)

∫ tk+N

tk

le(x̃(τ ), u(τ )) dτ (4.3a)

s.t. ˙̃x(t) = f (x̃(t), u(t), 0) (4.3b)

x̃(tk) = x(tk) (4.3c)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (4.3d)

V (x̃(t)) ≤ ρe, ∀ t ∈ [tk, tk+N )

if V (x(tk)) ≤ ρe and tk < ts (4.3e)

∂V (x(tk))

∂x
f (x(tk), u(tk), 0) ≤ ∂V (x(tk))

∂x
f (x(tk), h(x(tk)), 0)

if V (x(tk)) > ρe or tk ≥ ts (4.3f)

where the decision variable of the optimization problem is the piecewise constant
input trajectory over the prediction horizon and N < ∞ denotes the number of sam-
pling periods in the prediction horizon. The notation x̃ is used to denote the predicted
(open-loop) state trajectory.While zeroth-order hold is assumed, higher-order control
vector parameterization may also be employed. Moreover, the theoretical analysis
may also apply to the case that a higher-order parameterization is usedbecause zeroth-
order hold may, for some control parameterizations, be a conservative approximation
of the higher-order control vector parameterization method.

TheLEMPCdynamic optimization problemofEq.4.3minimizes a cost functional
(Eq. 4.3a) consisting of the economic cost function; that is, le is used as the stage
cost in the LEMPC. The nominal system model is the constraint of Eq.4.3b and is
used to predict the evolution of the system under the computed input trajectory over
the prediction horizon. The dynamic model is initialized with a state measurement
obtained at the current sampling period (Eq.4.3c). The constraint of Eq.4.3d limits
the computed control actions to be in the set of the available control actions.

Mode 1 operation of the LEMPC is defined by the constraint of Eq.4.3e and is
active when the current state is inside a predefined subset of the stability region
Ωρe ⊂ Ωρ and tk < ts . Since an economic performance benefit may be realized
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when operating the system of Eq.4.1 in a consistently dynamic fashion compared
to operating the system at the economically optimal steady-state, i.e., a steady-state
that minimizes the economic stage cost amongst all of the admissible steady-states,
mode 1 is used to allow the LEMPC to enforce a potentially dynamic or transient
operating policy. The setΩρe is designed such that if the current state x(tk) ∈ Ωρe and
the predicted state at the next sampling time x̃(tk+1) ∈ Ωρe , then the actual (closed-
loop) state at the next sampling time, which may be forced away from Ωρe by a
bounded disturbance/uncertainty, will be in Ωρ . The maximum size of Ωρe depends
on the bound on the disturbance and sampling period size; please refer to Eq.4.21
of Sect. 4.3.1.

To maintain boundedness of the closed-loop state within a well-defined state-
space set, the second mode is used, which is defined by the constraint of Eq.4.3f.
This constraint forces the computed control action by the LEMPC to decrease the
Lyapunov function by at least the decay rate achieved by the Lyapunov-based con-
troller. Owing to the properties of the Lyapunov-based controller implemented in
a sample-and-hold fashion with a sufficiently small sampling period, the Lyapunov
function value under the LEMPC operating in mode 2 will decrease over the sam-
pling period when the constraint of Eq.4.3f is active and when the state at tk is
outside a small compact set containing the steady-state (this set is defined as Ωρs

in Theorem 4.1). If steady-state operation is desired, i.e., enforcing the closed-loop
state to a neighborhood of the steady-state, selecting the switching time to be finite
will guarantee that LEMPC forces the state to converge to a small forward invariant
set containing the steady-state.

The two tuning parameters of LEMPC, besides the user-defined economic cost
function, are the switching time ts and the setΩρe . If ts = 0, the LEMPC will always
operate in mode 2. This may be desirable if steady-state operation is expected and/or
if it is the best operating strategy. If ts → ∞, the LEMPCmay dictate a time-varying
operating policy over the entire length of operation. An intermediate choice for the
switching time (ts ∈ (0,∞)) may be used to balance the trade-off between achieving
better economic performance through time-varying operation and excessive control
actuator wear required to enforce the time-varying operating policy. The other tuning
parameter of LEMPC is ρe which does not need to be chosen so thatΩρe is the largest
subset of Ωρ such that the state at the next sampling time is guaranteed to be in Ωρ

under mode 1 operation of the LEMPC. A larger setΩρe may allow for better closed-
loop economic performance. On the other hand, a smaller set Ωρe may allow for
more robustness to uncertainty.

Remark 4.1 As pointed out in Sect. 2.4.4, it is beyond the scope of this book to
thoroughly discuss conditions that guarantee the existence of a solution to general
optimal control problems. For mode 2 of the LEMPC, one may require that the state
trajectory be constrained to be contained inΩρ for all t ∈ [tk, tk+N ). Then, it suffices
to point out that owing to standard continuity arguments, the compactness of Ωρ ,
Ωρe , andU, and the ability to show the existence of a feasible solution to conclude that
a solution to Eq.4.3 exists in either operation mode of the LEMPC. The interested

http://dx.doi.org/10.1007/978-3-319-41108-8_2
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reader is referred to, for example, [11, 12] for a more thorough discussion on the
existence of a solution to optimal control problems.

Remark 4.2 While the stage cost function is assumed to be continuous on its domain
and the vector function f is assumed to be locally Lipschitz on its domain, stronger
smoothness assumptions are typically needed to solve the resulting nonlinear opti-
mization problem with standard methods. Also, it is not possible to numerically
impose the constraint of Eq.4.3e for all t ∈ [tk, tk+N ). One relaxation of the con-
straint is impose the constraint at each sampling time of the prediction horizon. This
methodology has demonstrated to yield acceptable results for several examples con-
tained in this book. Imposing the state constraint in this manner and owing to the
zeroth-order hold control parameterization ensures that the optimization problem of
Eq.4.3 is a finite-dimensional one.

4.2.4 Implementation Strategy

The LEMPC is implemented in a receding horizon fashion. At each sampling time,
the LEMPC receives a state measurement x(tk), solves the optimization problem of
Eq.4.3, and sends the control action for the first sampling period of the prediction
horizon to be implemented by the control actuators from tk to tk+1. At the next
sampling time, the LEMPC receives a state measurement x(tk+1) and solves the
optimization problem again by rolling the horizon one sampling period into the
future. The optimal input trajectory computed by the LEMPC at a given sampling
time tk is denoted as u∗(t |tk) and is defined for t ∈ [tk, tk+N ). The control action that
is sent at time tk to the control actuators to be applied over the sampling period from
tk to tk+1 is denoted as u∗(tk |tk). The receding horizon fashion implementation of the
dual-mode LEMPC is stated formally in the following algorithm:

1. At a sampling time tk , the controller receives the state measurement x(tk). Go to
Step 2.

2. If tk < ts , go to Step 3. Else, go to Step 3.2.
3. If x(tk) ∈ Ωρe , go to Step 3.1. Else, go to Step 3.2.

3.1. Mode 1 operation of the LEMPC is active, i.e., Eq. 4.3e is imposed in the
optimization problem and Eq.4.3f is inactive. Go to Step 4.

3.2. Mode 2 operation of the LEMPC is active, i.e., Eq. 4.3f is imposed in the
optimization problem and Eq.4.3e is inactive. Go to Step 4.

4. The LEMPC of Eq.4.3 is solved to compute an optimal input trajectory u∗(t |tk)
for t ∈ [tk, tk+N ) and sends the control action u∗(tk |tk) computed for the first
sampling period of the prediction horizon to be applied to the closed-loop system
over the sampling period (from tk to tk+1). Go to Step 5.

5. Go to Step 1 (k ← k + 1).
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Fig. 4.1 An illustration of
the state-space evolution of a
system under LEMPC. The
red trajectory represents the
state trajectory under mode 1
operation of the LEMPC,
and the blue trajectory
represents the state trajectory
under mode 2 operation

Ωρe

Ωρ

xs

x(t0)

x(ts)

The notation k ← k + 1 used in Step 5 of the algorithm means that k is set to
k + 1 for the next time through the algorithm loop. In other words, k is set to k + 1
before returning to Step 1.

An illustration of the possible evolution of a system under LEMPC is shown in
Fig. 4.1. At the initial time, t0, the state is outside Ωρe . The contractive constraint
of Eq.4.3f is active to steer the state to Ωρe . Once the state is in Ωρe , the LEMPC
computes control actions using mode 1 operation, i.e., the constraint of Eq.4.3e is
active. Under this mode of operation, the LEMPC dictates a time-varying operating
policy. After ts , the contractive constraint (Eq. 4.3f) is imposed at all subsequent
sampling times to ensure that the closed-loop state trajectory converges to a small
neighborhood of the steady-state.

4.2.5 Satisfying State Constraints

While it may not appear that hard state constraints are included in the LEMPC
problem of Eq.4.3, hard constraints may be accounted for through the design of Ωρ ,
which extends the ideas of imposing state constraints from (tracking) Lyapunov-
based MPC [8]. Specifically, define the set Φu as the set in state-space that includes
all the states where V̇ < 0 under the Lyapunov-based controller h(x). Since the
Lyapunov-based controller accounts for the input constraints, the setΦu also accounts
for the inputs constraints.
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Fig. 4.2 An illustration of
the various state-space sets
described for enforcing state
constraints with LEMPC.
The case when X ⊂ Φu is
depicted in this illustration

Φu

Ωu

X

Ωx,u

First, consider the case where Φu ⊆ X (X is the state constraint set). This means
that any initial state starting in the region X \ Φu will satisfy the state constraint.
However, the time-derivative of the Lyapunov function may be positive and thus, it
may not be possible to stabilize the closed-loop system under the Lyapunov-based
controller starting from such initial conditions. Therefore, the stability region used
in the formulation of the LEMPC for this case is Ωρ = Ωx,u = {x ∈ R

n : V (x) ≤
ρx,u} where ρx,u is chosen such that Ωx,u ⊆ Φu because there exists a feasible input
trajectory that maintains the state in Ωx,u for all initial conditions in Ωx,u while
satisfying both the state and input constraints. The notation ρx,u denotes that both
state and input constraints are accounted for in the design of the region Ωx,u .

Now, consider the case where X ⊂ Φu . This case is depicted in Fig. 4.2. For any
initial state starting outside X, the state constraint will be violated from the onset.
Also, for any initial state in the set X, it is not possible, in general, to guarantee that
the set X is forward invariant because there may exist a stabilizing state trajectory,
i.e., a trajectory where V̇ < 0 along this trajectory, that goes outside of the set X
before it enters back into the set X to converge to the origin. For the case with hard
constraints, define the set Ωρ as Ωρ = Ωx,u = {x ∈ R

n : V (x) ≤ ρx,u} where ρx,u

is such that Ωx,u ⊆ X. Since Φu cannot be computed in practice, the set Ωu :=
{x ∈ R

n : V (x) ≤ ρu} where ρu is such that V̇ < 0 for all states in Ωu under the
Lyapunov-based controller h(x) which accounts for the input constraint only may
be used. An illustration of the set definitions is provided in Fig. 4.2.

On the other hand, consider the case that it is desirable to impose the state con-
straints as soft constraints. This may potentially allow for a larger region (Ωρ) at the
expense that the state constraints may not be satisfied for all time. If Φu ⊂ X, Ωρ

is constructed such that Ωρ ⊂ X, and the state constraint is always satisfied for any
initial conditions inΩρ . From a closed-loop stability stand-point, it is not desirable to
increase the size of the setΩρ because theremaybe states outside ofΩρ where V̇ > 0.
Therefore, consider the more interesting case thatX ⊂ Φu . If the state constraints are
imposed as soft constraints, then one could potentially take Ωρ = Ωu ⊆ Φu where
X ⊂ Ωρ . For any initial state in Ωρ , the amount of time that the state constraint
(imposed as a soft constraint) will be violated is finite. This statement holds because
for any state inΩρ \ X, V̇ < 0 and therefore, the state trajectory evolves along a path
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where the Lyapunov function value decays over time. Eventually, the state trajectory
will converge to a level set Ωρ ′ in finite-time that is contained in X (assuming that
the contractive constraint of the LEMPC is active when x(tk) ∈ Ωρ \ X).

The following example illustrates the above methodology to satisfy hard state
constraints.

Example 4.1 Consider the scalar system:

ẋ = x + u (4.4)

which has an open-loop unstable steady-state at the origin. If the system was subject
to the following constraints on the state and input: x ∈ X = [−2, 2] and u ∈ U =
[−1, 1]. For any initial state x0 /∈ [−1, 1], the state will diverge, i.e., some initial
states that initially satisfy the state constraint will not continue satisfying the state
constraints over the length of operation. Following the approach detailed above,
the nonlinear control law u = −sat(Kx) where sat(·) is the saturation function and
K > 1 is a tuning parameter renders the origin of Eq.4.4 locally exponentially stable
while satisfying the input constraints. The quadratic function:

V (x) = x2 (4.5)

is a Lyapunov function for the closed-loop system. Moreover, the stability region
accounting for the input constraints, i.e., region where V̇ < 0, is Ωu = {x ∈ R :
V (x) ≤ ρu} where ρu is chosen such that ρu < 1. Since Ωu ⊂ X, Ωρ may be taken
to be Ωu . If, instead, X = [−0.9, 0.9], then X ⊂ Ωu and Ωρ may be taken to be
{x ∈ R : V (x) ≤ 0.81}, i.e., Ωρ = X. In either situation, one may verify that for any
initial state in Ωρ , the closed-loop state trajectory will remain bounded in Ωρ and
converge exponentially to the origin without violating the state constraints. If one
were to apply the LEMPC of Eq.4.3 to the system of Eq.4.4 designed based on
the nonlinear control law, the Lyapunov function of Eq.4.5, and the region Ωρ , the
closed-loop state trajectory for all initial conditions in Ωρ is guaranteed to satisfy
the state constraint for all times.

4.2.6 Extensions and Variants of LEMPC

A few extensions and variants of the LEMPC formulation of Eq. 4.3 and implemen-
tations are discussed below.

• For closed-loop economic performance reasons, terminal conditions, e.g., a ter-
minal constraint or a terminal cost, may be added to the problem of Eq.4.3 which
is discussed in Sect. 4.4. Also, it is possible to design such terminal conditions by
taking advantage of the availability of the explicit controller.

• For all t < ts , the LEMPC may dictate a time-varying operating policy. If the
LEMPC enforces that the closed-loop state trajectory evolves along a path close
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to the boundary of Ωρe , it is possible that the LEMPC continuously switches
between mode 1 and mode 2 operation. The successive switching between mode
1 and mode 2 could lead to undesirable closed-loop behavior such as performance
deterioration. For these cases, various modifications could be made to LEMPC to
avoid this behavior. Owing to the fact that the economic cost is user-defined, one
could add penalization terms to the stage cost of the LEMPC that penalize the
closeness of the predicted state to the boundary of Ωρe . Then, the LEMPC will
ideally maintain the closed-loop state in the interior of Ωρe preventing the state
from coming out of Ωρe .

• For closed-loop stability, the constraint x̃(t) ∈ Ωρe (Eq. 4.3e) only needs to hold
for all t ∈ [tk, tk+1) under mode 1 operation, i.e., the predicted state at the next
sampling time must be contained in Ωρe . However, the constraint of Eq.4.3e is
included for all t ∈ [tk, tk+N ) for two reasons. First, it ensures that the predicted
state trajectory remains in a compact set. Second, it allows the LEMPC to optimize
the input trajectory with respect to (ideally) a better prediction of the closed-loop
behavior (recall that the closed-loop state must remain in Ωρ and under mode 1
operation, it is desirable to maintain the closed-loop state in the interior of Ωρe to
avoid continuous switching between mode 1 and mode 2 operation). Nonetheless,
for practical implementation, one may consider imposing the constraint at a few
time instances along the prediction horizon, which will decrease the number of
constraints relative to imposing the constraint at every sampling time instance, for
example.

• For mode 2 operation, one may need to enforce a similar constraint as the mode
1 constraint to maintain the predicted state in Ωρ , i.e., to enforce x̃(t) ∈ Ωρ for
t ∈ [tk, tk+N ). This ensures that the predicted state trajectory is maintained in a
compact set, which guarantees existence and uniqueness of the solution of the
dynamic model of Eq.4.3b as well as prevents numerical problems when large (in
a norm sense) state trajectories are computed. This issue is particularly relevant
when the prediction horizon is long.

• The LEMPC may be modified to handle potentially asynchronous and delayed
measurements; see Sect. 4.3.2.

• For certain applications, one may consider driving some of the states of the system
to certain set-points and allowing the other states to evolve in a time-varying
manner to optimize the economics. For the LEMPC design of Eq.4.3, this means
that part of the system is operated in the first operation mode and part of the system
in the second operation mode simultaneously. This is considered in the example
of Sect. 4.3.3.

• With the formulated constraints of theLEMPCofEq.4.3, the optimization problem
is always feasible in the sense that there exists an input trajectory that satisfies
the constraints for all x(tk) ∈ Ωρ . To force the closed-loop state to converge to
Ωρ when x(tk) /∈ Ωρ , one could employ the contractive constraint of Eq.4.3f in
an attempt to decrease the Lyapunov function value or use a constraint, e.g., a
terminal constraint, to enforce that the predicted state converges to Ωρ . However,
no guarantee may be made that the state will converge to Ωρ starting from outside
Ωρ in either case. In the former case, in general, thismaynot result in awell-defined
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problem. If it is well-defined, it may not be possible to decrease the Lyapunov
function value for initial states outside of Ωρ . In the latter case, feasibility of the
resulting problem is not guaranteed.

4.3 Closed-Loop Stability and Robustness Under LEMPC

Closed-loop stability robustness of the closed-loop system of Eq.4.1 under the
LEMPC of Eq.4.3. Both synchronous (ideal) sampling and asynchronous and
delayed sampling are considered. Also, LEMPC is applied to a chemical process
example to demonstrate the closed-loop stability and robustness properties.

To complete the closed-loop stability analysis, a few properties of the system of
Eq.4.1 are needed in the analysis. Owing to the fact that f is locally Lipschitz on
X × U × W and the sets Ωρ , U, andW are compact, there exists a positive constant
M such that

| f (x, u,w)| ≤ M (4.6)

for all x ∈ Ωρ , u ∈ U and w ∈ W. By the continuous differentiable property of the
Lyapunov function V and the Lipschitz property assumed for the vector field f , there
exist positive constants Lx , Lw, L ′

x and L ′
w such that

| f (x, u,w) − f (x ′, u, 0)| ≤ Lx |x − x ′| + Lw|w|, (4.7)

∣∣∣∣∂V (x)

∂x
f (x, u,w) − ∂V (x ′)

∂x
f (x ′, u, 0)

∣∣∣∣ ≤ L ′
x |x − x ′| + L ′

w|w| (4.8)

for all x , x ′ ∈ Ωρ , u ∈ U, and w ∈ W.

4.3.1 Synchronous Measurement Sampling

The stability properties of the LEMPC of Eq.4.3 for the system of Eq.4.1 is analyzed
under ideal sampling. In order to proceed, preliminary results are presented. First, for
a bounded disturbance, the difference between the state of Eq.4.1 and the nominal
state of Eq.4.1 (the system of Eq.4.1 with w ≡ 0) may be bounded, which is stated
in the following proposition.

Proposition 4.1 Consider the systems

ẋ(t) = f (x(t), u(t),w(t)) , (4.9)

˙̂x(t) = f (x̂(t), u(t), 0) . (4.10)
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Let x(t) and x̂(t) be the solutions of Eqs.4.9 and 4.10, respectively, for t ∈ [t0, t f ]
(t f > t0) with initial states x(t0) = x̂(t0) ∈ Ωρ and input trajectory u(t) ∈ U for all
t ∈ [t0, t f ] where u(·) is piecewise constant in t . The system of Eq.4.9 is also forced
by some disturbance w(t) ∈ W for all t ∈ [t0, t f ]. If x(t) ∈ Ωρ and x̂(t) ∈ Ωρ for
all t ∈ [t0, t f ], then there exists a function fw ∈ K such that

|x(t) − x̂(t)| ≤ fw(t − t0) (4.11)

for all t ∈ [t0, t f ].
Proof Consider the difference between the solutions of Eqs. 4.9 and 4.10, which are
denoted as x(t) and x̂(t), respectively, and let e := x − x̂ . From Eq.4.7 and the fact
thatw(t) ∈ W for all t ∈ [t0, t f ], the time-derivative of emay be bounded as follows:

|ė(t)| = ∣∣ f (x(t), u(t),w(t)) − f (x̂(t), u(t), 0)
∣∣ (4.12)

≤ Lx |x(t) − x̂(t)| + Lw|w(t)| (4.13)

≤ Lx |e(t)| + Lwθ (4.14)

for t ∈ [t0, t f ]. Integrating the above bound with respect to time and noting that
e(0) = x(0) − x̂(0) = 0, the following bound on the error is obtained:

|e(t)| ≤ fw(t − t0) := Lwθ

Lx
(eLx (t−t0) − 1) (4.15)

for all t ∈ [t0, t f ] when x(t), x̂(t) ∈ Ωρ , u(t) ∈ U, and w(t) ∈ W for all t ∈ [t0, t f ].
It is straightforward to show that fw ∈ K which completes the proof.

Proposition 4.2 bounds the difference between the Lyapunov function values
evaluated at two points in Ωρ .

Proposition 4.2 Consider the Lyapunov function V that satisfies Eq.4.2. There
exists a quadratic function fV such that

V (x2) − V (x1) ≤ fV (|x2 − x1|) (4.16)

for all x1, x2 ∈ Ωρ .

Proof Since the Lyapunov function is continuously differentiable and bounded on
compact sets, there exists a positive constant MV > 0 such that:

V (x2) ≤ V (x1) +
∣∣∣∣∂V (x1)

∂x

∣∣∣∣ |x2 − x1| + MV |x2 − x1|2 (4.17)
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for all x1, x2 ∈ Ωρ . From Eq.4.2, the partial derivative of V may be bounded as
follows: ∣∣∣∣∂V (x1)

∂x

∣∣∣∣ ≤ α4(α
−1
1 (ρ)) (4.18)

for all x1 ∈ Ωρ . From Eqs. 4.17 and 4.18, the existence of a quadratic function fV (·)
that bounds the Lyapunov function values for any two points in Ωρ follows:

V (x2) ≤ V (x1) + fV (|x2 − x1|) (4.19)

where
fV (s) := α4(α

−1
1 (ρ))s + MV s

2 . (4.20)

Theorem 4.1 provides sufficient conditions that guarantee that the state of the
closed-loop system of Eq.4.1 under the LEMPC of Eq.4.3 is always bounded in Ωρ

and is ultimately bounded in a small region containing the origin.

Theorem 4.1 Consider the system of Eq.4.1 in closed-loop under the LEMPC
design of Eq.4.3 based on the Lyapunov-based controller that satisfies the conditions
of Eq.4.2. Let Δ > 0, N ≥ 1, εw > 0, and ρ > ρe ≥ ρmin > ρs > 0 satisfy

ρe < ρ − fV ( fw(Δ)), (4.21)

− α3(α
−1
2 (ρs)) + L ′

x MΔ + L ′
wθ ≤ −εw/Δ, (4.22)

and
ρmin = max

s∈[0,Δ]{V (x(s)) : V (x(0)) ≤ ρs}. (4.23)

If x(0) ∈ Ωρ , then the state x(t) of the closed-loop system of Eq.4.1 is always
bounded in Ωρ for all t ≥ 0 and is ultimately bounded in Ωρmin if ts is finite.

Proof The proof is organized into three parts. In Part 1, feasibility of the LEMPC
optimization problem of Eq.4.3 is proved when the state measurement at a specific
sampling time is in Ωρ . In Part 2, boundedness of the closed-loop state in Ωρ is
established. In Part 3, ultimate boundedness of the closed-loop state in a small state-
space set containing the origin is proved when the switching time is finite.

Part 1: The sample-and-hold input trajectory obtained from the Lyapunov-based
controller is a feasible solution to the LEMPC optimization problem of Eq.4.3 when
x(tk) ∈ Ωρ . Let x̂(t)denote the solution at time t to the nominal sampled-data system:

˙̂x(t) = f (x̂(t), h(x̂(τi )), 0) (4.24)

for t ∈ [τi , τi+1) (τi := tk + iΔ), i = 0, 1, . . . , N − 1 with initial condition x̂(tk) =
x(tk) ∈ Ωρ . Define û as the resulting input trajectory of Eq. 4.24 defined over the
interval [tk, tk+N ). The input trajectory û is a feasible solution to theLEMPCproblem.
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The input trajectory meets the input constraints by the formulation of the Lyapunov-
based controller. For mode 2 operation, the mode 2 contractive constraint of Eq.4.3f
is trivially satisfied with this feasible input trajectory. For mode 1 operation, the
region Ωρe is forward invariant under the Lyapunov-based controller applied in a
sample-and-hold fashion when Ωρmin ⊆ Ωρe ⊂ Ωρ where Ωρmin will be explained
further in Part 3.

Part 2: To show that the state is maintained in Ωρ when x(0) ∈ Ωρ , mode 1
and mode 2 operation of the LEMPC must be each considered. To show the desired
result, it is sufficient to show that if the state at any arbitrary sampling time is such that
x(tk) ∈ Ωρ , then the state at the next sampling time is in Ωρ , i.e., x(tk+1) ∈ Ωρ and
the closed-loop state does not come out of Ωρ over the sampling period. Recursive
application of this result, proves that the closed-loop state is always bounded in Ωρ

for all t ≥ 0 when x(0) ∈ Ωρ .
Case 1: If x(tk) ∈ Ωρe and tk < ts , the LEMPC operates under mode 1 operation.

From Part 1, the LEMPC is feasible. Moreover, from the formulation of the LEMPC,
the LEMPC computes a control action such that x̃(t) ∈ Ωρe for all t ∈ [tk, tk+1).
Owing to the effect of the bounded disturbances, the closed-loop state does not
evolve according to the model of Eq.4.3b. Nevertheless, if Eq.4.21 is satisfied, the
state at the next sampling time will be contained in Ωρ .

To show this result, let ρe satisfy Eq.4.21. The proof proceeds by contradiction.
Assume there exists a time τ ∗ ∈ [tk, tk+1) such that V (x(τ ∗)) > ρ. The case that x(t)
is not defined for some t ∈ [tk, tk+1) is also covered by this assumption. Define τ1 :=
inf{τ ∈ [tk, tk+1) : V (x(τ )) > ρ}. A standard continuity argument in conjunction
with the fact that V (x(tk)) ≤ ρe < ρ shows that τ1 ∈ (tk, tk+1), V (x(t)) ≤ ρ for
all t ∈ [tk, τ1] with V (x(τ1)) = ρ, and V (x(t)) > ρ for some t ∈ (τ1, tk+1). If ρe

satisfies Eq.4.21, then

ρ = V (x(τ1)) ≤ V (x̃(τ1)) + fV ( fw(τ1))

≤ ρe + fV ( fw(Δ)) < ρ (4.25)

where the first inequality follows from Propositions 4.1 and 4.2 and the second
inequality follows from the fact that fV ◦ fw ∈ K and τ1 ≤ Δ. Equation4.25 is a
contradiction. Thus, x(t) ∈ Ωρ for all t ∈ [tk, tk+1) if Eq. 4.21 is satisfied.

Case 2: Now, consider that the LEMPC under mode 2 operation at an arbitrary
sampling time tk . If x(tk) ∈ Ωρ , the LEMPC is feasible (Part 1). The LEMPC com-
putes a control action that satisfies

∂V (x(tk))

∂x
f (x(tk), u

∗(tk |tk), 0) ≤ ∂V (x(tk))

∂x
f (x(tk), h(x(tk)), 0)

≤ −α3(|x(tk)|) (4.26)

for all x(tk) ∈ Ωρ where the inequality follows from Eq.4.2b. Consider the time-
derivative of the Lyapunov function for τ ∈ [tk, tk+1)
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V̇ (x(τ )) = ∂V (x(τ ))

∂x
f (x(τ ), u∗(tk |tk),w(τ ))

≤ −α3(|x(tk)|) + ∂V (x(τ ))

∂x
f (x(τ ), u∗(tk |tk),w(τ ))

− ∂V (x(tk))

∂x
f (x(tk), u

∗(tk |tk), 0) (4.27)

for τ ∈ [tk, tk+1)where the inequality follows by adding and subtracting the left-hand
side of Eq.4.26 and accounting for the bound of Eq.4.26. Owing to the Lipschitz
bound of Eq.4.8, Eq.4.27 may be upper bounded by:

V̇ (x(τ )) ≤ −α3(|x(tk)|) + L ′
x |x(τ ) − x(tk)| + L ′

w|w(τ )|
≤ −α3(|x(tk)|) + L ′

x |x(τ ) − x(tk)| + L ′
wθ (4.28)

for τ ∈ [tk, tk+1) where the second inequality follows from the fact that w(t) ∈ W =
{w̄ ∈ R

l : |w̄| ≤ θ} for all t ≥ 0. Taking into account Eq.4.6, the continuity of x and
the fact that u∗(tk |tk) ∈ U and w(τ ) ∈ W, the norm of the difference between the
state at τ ∈ [tk, tk+1) and the state at tk scales with Δ. More specifically, the bound
of:

|x(τ ) − x(tk)| ≤ MΔ (4.29)

for τ ∈ [tk, tk+1) follows from Eq.4.6. From Eqs. 4.28 and 4.29, the inequality fol-
lows:

V̇ (x(τ )) ≤ −α3(|x(tk)|) + L ′
x MΔ + L ′

wθ (4.30)

for τ ∈ [tk, tk+1).
For any x(tk) ∈ Ωρ \ Ωρs , it can be obtained that

V̇ (x(τ )) ≤ −α3(α
−1
2 (ρs)) + L ′

x MΔ + L ′
wθ. (4.31)

for τ ∈ [tk, tk+1) follows from Eqs. 4.2a and 4.30. If the condition of Eq.4.22 is
satisfied, i.e., Δ > 0 and θ > 0 are sufficiently small, then there exists εw > 0 such
that the following inequality holds for any x(tk) ∈ Ωρ \ Ωρs :

V̇ (x(τ )) ≤ −εw/Δ (4.32)

for τ ∈ [tk, tk+1). Integrating the bound of Eq.4.33 for τ ∈ [tk, tk+1), one obtains that
the following is satisfied:

V (x(tk+1)) ≤ V (x(tk)) − εw

V (x(t)) ≤ V (x(tk)) ∀ t ∈ [tk, tk+1)
(4.33)

for all x(tk) ∈ Ωρ \ Ωρs .
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If x(tk) ∈ Ωρ \ Ωρe where Ωρe ⊇ Ωρmin (where ρmin is defined in Eq.4.23), then
using Eq.4.33 recursively, it follows that the state converges toΩρe in a finite number
of sampling times without coming out of Ωρ . If x(tk) ∈ Ωρ \ Ωρs and tk ≥ ts , then
again, by recursive application of Eq.4.33, x(t) ∈ Ωρ for all t ∈ [tk, tk+1). If x(tk) ∈
Ωρs , the state at the next sampling time will be bounded in Ωρmin if ρmin is defined
according to Eq.4.23. Thus, if x(tk) ∈ Ωρ , then x(τ ) ∈ Ωρ for all τ ∈ [tk, tk+1)

under the LEMPC when the conditions of Eq.4.21–4.23 are satisfied. Using this
result recursively, x(t) ∈ Ωρ for all t ≥ 0 when x(0) ∈ Ωρ .

Part 3: If ts is finite and Eq.4.23 is satisfied with ρ > ρmin > ρs > 0, the closed-
loop state is ultimately bounded inΩρmin owing to the definition ofρmin. In detail, from
Part 2, if x(tk) ∈ Ωρ \ Ωρs and tk ≥ ts , then V (x(tk+1)) < V (x(tk)) until the state
converges toΩρs , which occurs in finite time. Once the closed-loop state converges to
Ωρmin , it remains inside Ωρmin ⊂ Ωρ for all times, which follows from the definition
of ρmin. This proves that the closed-loop system under the LEMPC of Eq.4.3 is
ultimately bounded in Ωρmin when ts is finite.

A few notes and remarks on the results on closed-loop stability and robustness
under LEMPC are in order:

• The set Ωρ is an invariant set for the nominal closed-loop system and is also
an invariant set for the closed-loop system subject to bounded disturbances w,
i.e., |w| ≤ θ , under piecewise constant control action implementation when the
conditions stated in Theorem 4.1 are satisfied. This may be interpreted as follows:
V̇ is negative everywhere in Ωρ but the origin when there are no disturbances and
the control actions are updated continuously. For sufficiently small disturbances
and sampling period, i.e., θ and Δ are sufficiently small, V̇ of the closed-loop
system will continue to be negative for all x ∈ Ωρ \ Ωρs where Ωρs is a small set
containing the origin.

• Solving the dynamic model of Eq.4.3b requires a numerical integration method.
Therefore, numerical and discretization error will result. Owing to the fact that
the error of many numerical integration methods may be bounded by a bound that
depends on the integration step size, one may consider the numerical error as a
source of bounded disturbance. The integration step size may be selected to be
small. i.e., much smaller than the sampling period, to decrease the discretization
error. Thus, the stability results remain valid when the discretization error may be
bounded with a sufficiently small bound.

• For any state x(tk) ∈ Ωρ , the LEMPC is feasible where a feasible solution may be
readily computed from the Lyapunov-based controller.Moreover, feasibility of the
LEMPC, and not optimality of the LEMPC solution, implies closed-loop stability.
Both of these issues are important owing to practical computational considerations.
While solving the LEMPC to optimality may result in substantial computational
time, one could force early termination of the optimization solver and closed-
loop stability is still guaranteed (assuming the returned solution is feasible). If the
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returned solution is infeasible or at sampling times where the computation time
required to solve the LEMPC is significant relative to the sampling period, the
control action computed from the Lyapunov-based controller may be applied to
the system.

4.3.2 Asynchronous and Delayed Sampling

The design of LEMPC for systems subject to asynchronous and delayed measure-
ments is considered. Specifically, the state of the system of Eq.4.1 is assumed to
be available at asynchronous time instants. The time instances that a state measure-
ment is available are denoted by the time sequence {ta}a≥0. The sequence {ta}a≥0 is a
random increasing sequence and the interval between two consecutive time instants
is not fixed. Moreover, the measurements may also be subject to delays. To model
delays in measurements, an auxiliary variable da is introduced to indicate the delay
corresponding to themeasurement received at time ta , i.e., at time ta , themeasurement
x(ta − da) is received.

To study the stability properties in a deterministic framework, two assumptions
are made on the time between two successive sampling times and the magnitude of
the measurement delay. Specifically, there exist an upper bound Tm on the interval
between two successive measurements, i.e., supa≥0{ta+1 − ta} ≤ Tm , and an upper
bound D on the delays, i.e., da ≤ D for all a ≥ 0. Both of these assumptions are
reasonable from a process control perspective. Because the delays are time-varying,
it is possible that at a time instant ta , the controller may receive ameasurement x(ta −
da) which does not provide new information, i.e., ta − da < ta−1 − da−1. Thus, the
maximum amount of time the systemmight operate in open-loop following ta is D +
Tm − da . This upper bound will be used in the formulation of LEMPC for systems
subject to asynchronous and delayed measurements. The reader may refer to [13]
for more discussion on the modeling of asynchronous and delayed measurements.

4.3.2.1 LEMPC Formulation and Implementation

At a sampling time ta , the MPC is evaluated to obtain the optimal input trajectories
based on the received system state value x(ta − da). The optimization problem of
the LEMPC for systems subject to asynchronous and delayed measurements at ta is
as follows:

min
u∈S(Δ)

∫ ta+NΔ

ta

le(x̃(τ ), u(τ )) dτ (4.34a)

s.t. ˙̃x(t) = f (x̃(t), u(t), 0) (4.34b)

x̃(ta − da) = x(ta − da) (4.34c)

u(t) = u∗(t), ∀ t ∈ [ta − da, ta) (4.34d)
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u(t) ∈ U, ∀ t ∈ [ta, ta + NΔ) (4.34e)

V (x̃(t)) ≤ ρ̂, ∀ t ∈ [ta, ta + NΔ),

if V (x(tk)) ≤ ρ̂ and tk < ts (4.34f)

˙̂x(t) = f (x̂(t), h(x̂(ta + iΔ)), 0),

∀ t ∈ [ta + iΔ, ta + (i + 1)Δ), i = 0, . . . , N − 1 (4.34g)

x̂(ta) = x̃(ta) (4.34h)

V (x̃(t)) ≤ V (x̂(t)), ∀ t ∈ [ta, ta + NDaΔ),

if V (x(tk)) > ρ̂ or ta ≥ ts, (4.34i)

where x̃ is the predicted state trajectory with the input trajectory calculated by
the LEMPC, u∗(t) is the closed-loop input trajectory applied to the system for
t ∈ [ta − da, ta), x̂ denotes the predicted state trajectory of the system under the
Lyapunov-based controller implemented in a sample-and-hold fashion and is com-
puted via the constraints of Eqs. 4.34g and 4.34h, and NDa is the smallest integer
that satisfies Tm + D − da ≤ NDaΔ. The integer NDa depends on the current delay
da , and thus, it may have different values at different time instants. The components
of the LEMPC of Eq.4.34 are explained further below. The optimal solution to the
optimization problem is denoted by ua,∗(t |ta), which is defined for t ∈ [ta, ta + NΔ).

Two calculations are performed in the problem of Eq.4.34. The first calculation
is the estimation of the current state at time ta . This calculation involves solving
the dynamic model of Eq.4.34b for t ∈ [ta − da, ta) with the initial condition of
Eq.4.34c provided by the state measurement received at ta and with input trajectory
of Eq.4.34d, which are the (closed-loop) input values that have been applied to the
system from ta − da to ta .

Based on the estimate of the current system state, the LEMPC optimization prob-
lem is solved to determine the optimal input trajectory that will be applied until the
next measurement is received and the LEMPC is resolved. Thus, the second calcula-
tion is to evaluate the optimal input trajectory based on x̃(ta), which is the estimate
of the current state computed by the first calculation. The computed input trajectory
must satisfy the input constraint of Eq.4.34e and the stability constraints of Eqs. 4.34f
and 4.34i, which serve a similar purpose as the two Lyapunov-based constraints of
the LEMPC of Eq.4.3.

From the initial time to the switching time ts , the LEMPC may dictate a time-
varying operating policy while ensuring that the closed-loop state trajectory is main-
tained in Ωρ much like the LEMPC of Eq.4.3. To account for the asynchronous
and delayed measurement as well as the disturbance, a subset of the stability region,
denoted as Ωρ̂ with ρ̂ < ρ, is defined. When a delayed measurement is received
at a sampling time, the current state is estimated. If the estimated current state is
in the region Ωρ̂ , the LEMPC optimizes the cost function within the region Ωρ̂ ; if
the estimated current state is in the region Ωρ/Ωρ̂ , the LEMPC, uses the second
Lyapunov-based constraint, to compute control actions that drive the state to the
region Ωρ̂ . The relation between ρ and ρ̂ will be characterized in Eq.4.40 in The-
orem 4.2 below. After the switching time ts (if ts is finite), the LEMPC is operated
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exclusively in the second operation mode to calculate the inputs in a way that the
Lyapunov function of the system continuously decreases to steer the state of the
system to a neighborhood of the origin.

The control actions applied to the closed-loop system that have been computed
by the LEMPC of Eq.4.34 for systems subject to asynchronous and delayed mea-
surements are defined as follows:

u(t) = ua,∗(t |ta) , (4.35)

for all t ∈ [ta, ta+i ) and all ta such that ta − da > maxl<a tl − dl and for a given ta ,
the variable i denotes the smaller integer that satisfies ta+i − da+i > ta − da . In other
words, the input trajectory applied to the closed-loop system for ta to ta+i is the input
trajectory of the LEMPC computed at sampling time ta . The time ta+i denotes the
next sampling time that a measurement is received providing new information about
the system in the sense that ta+i + da+i > ta − da .

The implementation strategy of the LEMPC of Eq.4.34 for systems subject to
asynchronous and delayed measurements may be summarized as follows:

1. At the sampling time ta , the controller receives a delayed state measurement,
x(ta − da), and estimates the current state, x̃(ta). Go to Step 2.

2. If ta < ts , go to Step 3. Else, go to Step 3.2.
3. If x̃(ta) ∈ Ωρ̂ , go to Step 3.1. Else, go to Step 3.2.

3.1. Mode 1 operation of the LEMPC is active, i.e., Eq. 4.34f is imposed in the
optimization problem and Eq.4.34i is inactive. Go to Step 4.

3.2. Mode 2 operation of the LEMPC is active, i.e., Eq. 4.34i is imposed in the
optimization problem and Eq.4.34f is inactive. Go to Step 4.

4. The LEMPCof Eq.4.34 is solved to compute an optimal input trajectory u∗,a(t |ta)
for t ∈ [ta, ta + NΔ) and implements the input trajectory u∗,a(t |ta) on the system
from ta to ta+i . Go to Step 5.

5. Go to Step 1 (a ← a + 1).

4.3.2.2 Stability Analysis

The stability properties of the LEMPC of Eq.4.34 in the presence of asynchronous
and delayed measurements are considered. In order to proceed, the following propo-
sition is needed. The proof uses similar arguments as the proof of Theorem 4.1.

Proposition 4.3 Consider the nominal sampled trajectory x̂(t) of the system of
Eq.4.1 in closed-loop under the Lyapunov-based controller, which satisfies the con-
ditions of Eq.4.2, obtained by solving recursively

˙̂x(t) = f (x̂(t), h(x̂(tk)), 0) (4.36)
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for t ∈ [tk, tk+1) where tk = kΔ, k = 0, 1, . . .. Let Δ > 0, εs > 0 and ρ > ρs > 0
satisfy

− α3
(
α−1
2 (ρs)

) + L ′
x MΔ ≤ −εs/Δ. (4.37)

Then, if x̂(0) ∈ Ωρ and ρmin < ρ where ρmin is defined in Eq.4.23, the following
inequality holds

V (x̂(t)) ≤ V (x̂(tk)), ∀ t ∈ [tk, tk+1), (4.38)

V (x̂(tk)) ≤ max{V (x̂(t0)) − kεs, ρmin}. (4.39)

Proposition 4.3 ensures that the state will be ultimately bounded in Ωρmin if the
nominal system is controlled by the Lyapunov-based controller h(x) implemented in
a sample-and-hold fashion and with an initial condition inΩρ . Theorem 4.2 provides
sufficient conditions under which the LEMPC of Eq.4.34 guarantees that the closed-
loop system state is always bounded in Ωρ and is ultimately bounded in a small
region containing the origin.

Theorem 4.2 Consider the system of Eq.4.1 in closed-loop under the LEMPC
design of Eq.4.34 based on the Lyapunov-based controller that satisfies the condition
of Eq.4.2. Let εs > 0, Δ > 0, ρ > ρ̂ > 0 and ρ > ρs > 0 satisfy the condition of
Eq.4.37 and satisfy

ρ̂ ≤ ρ − fV ( fw(NΔ)) (4.40)

and
− NRεs + fV ( fw(NDΔ)) + fV ( fw(D)) < 0 (4.41)

where ND is the smallest integer satisfying NDΔ ≥ Tm + D and NR is the small-
est integer satisfying NRΔ ≥ Tm. If N ≥ ND, ρ̂ ≥ ρs , x(0) ∈ Ωρ , d0 = 0, then the
closed-loop state x(t) of the system of Eq.4.1 is always bounded in Ωρ for t ≥ 0.
Moreover, if ts is finite, the closed-loop state is ultimately bounded in Ωρa ⊂ Ωρ

where
ρa = ρmin + fV ( fW (NDΔ)) + fV ( fW (D)). (4.42)

Proof When the state is maintained in the stability region Ωρ , the feasibility of the
optimization problem of Eq.4.34 may be proved following the same arguments as
in Part 1 of the proof of Theorem 4.1. The remainder of the proof is divided into
two parts focusing on proving that the closed-loop state is always bounded in Ωρ for
t < ts (Part 1) and is ultimately bounded inΩρa if ts is finite (Part 2). In the proof, the
worst case scenario from a feedback control point-of-view is considered in the sense
that if the state measurement x(ta − da) is received at ta , then the next asynchronous
measurement containing new information is received at ta+i with ta+i = ta + Tm and
Tm = NΔ. The results may then be generalized to the case that ta+i ≤ ta + NΔ.

Part 1: Consider t < ts and two cases need to be considered: if x̃(ta) ∈ Ωρ̂ , then
x(ta+i ) ∈ Ωρ ; and if x̃(ta) ∈ Ωρ \ Ωρ̂ , then V (x(ta+i )) < V (x(ta)).
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When the estimated current state at the sampling time ta satisfies x̃(ta) ∈ Ωρ̂ , from
the constraint of Eq.4.34f, the predicted state at the next sampling time, x̃(ta+i ), is
in Ωρ̂ . Applying the similar arguments as that used in Part 2 (Case 1) of the proof of
Theorem 4.1, one may show that x(t) ∈ Ωρ for all t ∈ [ta, ta+i ) and x(ta+i ) ∈ Ωρ

when the condition of Eq.4.40 is satisfied.
When the estimated current state at the sampling time ta satisfies x̃(ta) ∈ Ωρ \ Ωρ̂ ,

the computed input trajectory is such that the constraint of Eq.4.34i is satisfied.
Again, applying the same contradiction argument as that used in Part 2 (Case 1) of
the proof of Theorem 4.1, one may show that when Eq.4.41 is satisfied the closed-
loop state will be maintained in Ωρ for all t ∈ [ta, ta+i ) (this essentially requires that
the amount of time in open-loop be sufficiently small). Moreover, one may show that
the Lyapunov function value will decay for all x(tk) ∈ Ωρ \ Ωρ̂ .

Specifically, consider any x̃(ta) ∈ Ωρ/Ωρ̂ . From the constraint of Eq.4.34i
imposed on the computed input trajectory, the predicted state trajectory satisfies:

V (x̃(t)) ≤ V (x̂(t)) (4.43)

for t ∈ [ta, ta + NDaΔ). By Proposition 4.1 and taking into account that ρ̂ > ρs , the
nominal sampled trajectory of Eq.4.34g satisfies:

V (x̂(ta+i )) ≤ max{V (x̂(ta)) − NDaεs, ρmin}. (4.44)

By Propositions 4.2 and 4.3, the difference between the Lyapunov function value of
the (actual) closed-loop state and the estimated state at ta may be bounded by:

V (x(ta)) ≤ V (x̃(ta)) + fV ( fw(da)) = V (x̂(ta)) + fV ( fw(da)) (4.45)

where the equality follows because x̃(ta) = x̂(ta). For t ∈ [ta − da, ta+i ), the differ-
ence between the Lyapunov function value with respect to the predicted (estimated)
state and the value with respect to the (actual) closed-loop state may be bounded by:

V (x̃(ta+i )) ≤ V (x(ta+i )) + fV ( fw(NDΔ)) (4.46)

which again follows Propositions 4.2 and 4.3 (again, this requires that x(t) ∈ Ωρ for
all t ∈ [ta − da, ta+i )). From the inequalities of Eqs. 4.44–4.46, one obtains that:

V (x(ta+i )) ≤ max{V (x(ta)) − NDaεs, ρmin} + fV ( fw(da)) + fV ( fw(NDΔ)).

(4.47)
Note that in the derivation of the inequality of Eq.4.47, NDΔ ≥ Tm + D − da for
all da .

To prove that the Lyapunov function is decreasing between ta and ta+i , the fol-
lowing inequality must hold

NDaεs > fV ( fw(NDΔ)) + fV ( fw(da)) (4.48)
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for all possible da ≤ D. It is important to point out that fV (·) and fw(·) are strictly
increasing functions of their arguments, NDa is a decreasing function of the delay
da and if da = D then NDa = NR . If the condition of Eq.4.41 is satisfied, then the
condition of Eq.4.48 holds for all possible da and there exist εw > 0 such that the
following inequality holds

V (x(ta+i )) ≤ max{V (x(ta)) − εw, ρa} (4.49)

which implies that if x(ta) ∈ Ωρ/Ωρ̂ , then V (x(ta+i )) < V (x(ta)). This also implies
that the state converges to Ωρ̂ in a finite number of sampling times without leaving
the stability region.

Part 2: Consider t ≥ ts . Following similar steps as in Part 1, the condition of
Eq.4.49 may be derived. Using this condition recursively, it is proved that, if x(0) ∈
Ωρ , then the closed-loop trajectory of the system of Eq. 4.1 under the LEMPC of
Eq.4.34 stay in Ωρ and satisfy

lim sup
t→∞

V (x(t)) ≤ ρa . (4.50)

This proves the results stated in Theorem 4.2.

4.3.3 Application to a Chemical Process Example

Consider a well-mixed, non-isothermal continuous stirred-tank reactor (CSTR)
where an irreversible second-order exothermic reaction A → B takes place. A is
the reactant and B is the desired product. The feed to the reactor consists of A in an
inert solvent at flow rate F , temperature T0 and molar concentration CA0. A jacket
is used to provide/remove heat to the reactor. The dynamic equations describing
the behavior of the system, obtained through material and energy balances under
standard modeling assumptions, are given below:

dCA

dt
= F

VR
(CA0 − CA) − k0e

−E/RTC2
A (4.51a)

dT

dt
= F

VR
(T0 − T ) − ΔH

ρLCp
k0e

−E/RTC2
A + Q

ρLCpVR
(4.51b)

where CA denotes the concentration of the reactant A, T denotes the temperature of
the reactor, Q denotes the rate of heat input/removal, VR represents the volume of the
reactor, ΔH , k0, and E denote the enthalpy, pre-exponential constant and activation
energy of the reaction, respectively and Cp and ρL denote the heat capacity and the
density of the fluid in the reactor, respectively. The values of the process parameters
used in the simulations are given in Table4.1. The process model of Eq.4.51 is
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Table 4.1 CSTR parameter values

T0 300K F 5.0m3h−1

VR 1.0m3 E 5.0 × 104 kJ kmol−1

k0 8.46 × 106 m3kmol−1h−1 ΔH −1.15 × 104 kJ kmol−1

Cp 0.231 kJ kg−1K−1 R 8.314 kJ kmol−1K−1

ρL 1000 kgm−3

numerically simulated using an explicit Euler integration method with integration
step hc = 1.0 × 10−3 h.

The CSTR has two manipulated inputs. One of the inputs is the concentra-
tion of A in the inlet to the reactor, CA0, and the other manipulated input is the
external heat input/removal, Q. The input vector is given by uT = [CA0 Q], and
the admissible input values are as follows: u1 = CA0 ∈ [0.5, 7.5] kmolm−3 and
u2 = Q ∈ [−50.0, 50.0]MJ h−1. The CSTR, described by the equations of Eq. 4.51,
has an open-loop asymptotically stable steady-state within the operating range
of interest given by CAs = 1.18 kmolm−3 and Ts = 440.9K with corresponding
steady-state input values of CA0 = 4.0 kmolm−3 and Qs = 0MJh−1. The steady-
state and the steady-state input are denoted by xTs = [CAs Ts] and uT

s = [CA0s Qs],
respectively. The control objective is to regulate the process in a region around the
steady-state to maximize the production rate of B. To accomplish the desired objec-
tive, the economic cost function considered in this example is:

le(x, u) = −k0e
−E/RTC2

A (4.52)

which is equal to the negative of the instantaneous production rate of B, i.e., the
production rate should be maximized. Also, there is limitation on the amount of
reactant material which may be used over the length of operation t f . Specifically, the
input trajectory of u1 should satisfy the following time-averaged constraint:

1

t f

∫ t f

0
u1(t) dt = CA0,avg = CA0s (4.53)

where t f denotes the length of operation.
One method to ensure that the average constraint of Eq.4.53 is satisfied over

the entire length of operation is to divide the length of operation into equal-sized
operating periods and to construct constraints that are imposed in the EMPC problem
to ensure that the average constraint is satisfied over each consecutive operating
period. This may be accomplished by using an inventory balance that accounts for
the total amount of input energy available over each operating period compared to
the total amount of input energy already used in the operating period. The main
advantages of enforcing the average constraint in this fashion are that (1) only a
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limited number of constraints are required to be added to the EMPC, and (2) it
ensures that the average constraint is satisfied over the length of operation.

To explain this type of input average constraint implementation, consider a general
input average constraint given by:

1

τM

∫ τM

0
u(t) dt = uavg (4.54)

where τM is the operating period length that the average input constraint is imposed,
i.e., M = τM/Δ is the number of sampling periods in the operating period, and uavg
is the average input constraint value. Let τ j denote the j th sampling time of the
current operating period where τ0 and τM denote the beginning and ending (time)
of the current operating period, respectively. The constraint of Eq. 4.54 is enforced
as follows: if the prediction horizon covers the entire operating period, then the
average constraint may be enforced directly by imposing the following constraint in
the EMPC problem:

M−1∑
i= j

u(τi ) = Muavg −
j−1∑
i=0

u∗(τi |τi ) . (4.55)

where u∗(τi |τi ) denotes the input computed and applied at sampling time τi ∈
[τ0, τ j ). The integral of Eq.4.54 may be converted to a sum in Eq.4.55 because
the input trajectory is piecewise constant.

If the prediction horizon does not cover the entire operating period, then the
remainingpart of the operatingperiodnot covered in thepredictionhorizon from τ j+N

to τM should be accounted for in the constraints to ensure feasibility at subsequent
sampling times. Namely, at a sampling period τ j ∈ [τ0, τM), the following must be
satisfied:

Muavg −
j+N∑
i= j

u(τi ) −
j−1∑
i=0

u∗(τi |τi ) ≤ max{M − N − j, 0}umax , (4.56a)

Muavg −
j+N∑
i= j

u(τi ) −
j−1∑
i=0

u∗(τi |τi ) ≥ max{M − N − j, 0}umin (4.56b)

where umin and umax denote the minimum and maximum admissible input value.
Equation4.56 means that the difference between the total available input energy
(Muavg) and the total input energy used from the beginning of the operating period
through the end of the prediction horizon must be less/greater than or equal to the
total input energy if the maximum/minimum allowable input was applied over the
remaining part of the operating period from τk+N to τM , which is the part of the
operating period not covered in the prediction horizon.



4.3 Closed-Loop Stability and Robustness Under LEMPC 99

If the prediction horizon extends over multiple consecutive operating periods, a
combination of the constraints of Eqs. 4.55 and 4.56 may be employed. Let Nop =
�( j + N )/M� denote the number of operating periods covered in the prediction
horizon. For the first operating period in the horizon, the constraint is given by:

M−1∑
i= j

u(τi ) +
j−1∑
i=0

u∗(τi |τi ) = Muavg . (4.57)

If Nop > 2, then, the following set of constraints is imposed:

(l+1)M−1∑
i=lM

u(τi ) = Muavg, ∀ l ∈ {1, 2, . . . , Nop − 2} . (4.58)

For the last operating period covered in the horizon, the following constraint is used:

Muavg −
( j+N )−(Nop−1)M∑

j=(Nop−1)M

u(τ j ) ≤ max{NopM − N − j, 0}umax , (4.59a)

Muavg −
( j+N )−(Nop−1)M∑

j=(Nop−1)M

u(τ j ) ≥ max{NopM − N − j, 0}umin . (4.59b)

The index j is reset to zero at the beginning of each operating period. In the imple-
mentation of input average constraints, it may be sufficient, in terms of acceptable
closed-loop behavior, to impose the input average constraint over one or two oper-
ating periods if the horizon covers multiple operating periods.

An LEMPC is designed and applied to the CSTR model of Eq.4.51. Since the
economic cost does not penalize the use of control energy, the optimal operating
strategy with respect to the economic cost of Eq.4.52 is to operate with themaximum
allowable heat rate supplied to the reactor for all time. However, this may lead
to a large temperature operating range which may be impractical or undesirable.
Therefore, a modified control objective is considered for more practical closed-loop
operation of the CSTR under EMPC. The modified control objective is to maximize
the reaction rate while feeding a fixed time-averaged amount of the reactant A to the
process and while forcing and maintaining operation to/at a set-point temperature of
Ts . Additionally, the temperature of the reactor contents must be maintained below
the maximum allowable temperature T ≤ Tmax = 470.0K, which is treated as a hard
constraint and thus, X = {x ∈ R

2 : x2 ≤ 470.0}.
A stabilizing state feedback controller, i.e., Lyapunov-based controller, is designed

for the CSTR. The first input CA0 in the stabilizing controller is fixed to the average
inlet concentration to satisfy the average input constraint of Eq.4.53. The second
input Q is designed via feedback linearization techniques while accounting for the
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input constraint. The gain of the feedback linearizing controller is γ = 1.4 (see [14]
for more details regarding the controller design). A quadratic Lyapunov function is
considered of the form V (x) = x̄ T P x̄ where x̄ is the deviation of the states from their
corresponding steady-state values and P is the following positive definite matrix:

P =
[
250 5
5 0.2

]
. (4.60)

The stability region of the CSTR under the Lyapunov-based controller is character-
ized by taking it to be a level set of the Lyapunov function where the time-derivative
of the Lyapunov function along the closed-loop state trajectories is negative and is
denoted as Ωu = {x ∈ R

2 : V (x) ≤ ρu} where ρu = 138. However, X ⊂ Ωu which
is shown in Fig. 4.3. Thus, the set Ωρ where ρ = 84.76 is defined to account for the
state constraint.

BoundedGaussian process noise is added to theCSTRwith a standard deviation of
σ = [0.3, 5.0]T andbound θ = [1.0, 20.0]T . A randomnoise vector is generated and
applied additively to the right-hand side of the ODEs of Eq.4.51 over the sampling
period (Δ = 0.01 h) and the bounds are given for each element of the noise vector
(|wi | ≤ θi for i = 1, 2). Through extensive closed-loop simulations of the CSTR
under the Lyapunov-based controller and under the LEMPC (described below) and
with many realizations of the process noise, the set Ωρe is determined to be ρe =
59.325.

The first differential equation of Eq.4.51 (CA) is input-to-state-stable (ISS) with
respect to T . Therefore, a contractive Lyapunov-based constraint may be applied
to the LEMPC to ensure that the temperature converges to a neighborhood of the
optimal steady-state temperature value. Namely, a Lyapunov function for the tem-
perature ordinary differential equation (ODE) of Eq.4.51b is defined and is given
by: VT (T ) := (T − Ts)2. The LEMPC formulation is given by:

min
u∈S(Δ)

−
∫ tk+N

tk

k0e
−E/RT̃ (τ )C̃2

A(τ ) dτ (4.61a)

s.t. ˙̃CA(t) = F

V
(u1(t) − C̃A(t)) − k0e

−E/RT̃ (t)C̃2
A(t) (4.61b)

˙̃T (t) = F

V
(T0 − T̃ (t)) − ΔHk0

ρLCp
e−E/RT̃ (t)C̃2

A(t) + u2(t)

ρLCpVR
(4.61c)

C̃A(tk) = CA(tk), T̃ (tk) = T (tk) (4.61d)

u1(t) ∈ [0.5, 7.5] kmolm−3, ∀ t ∈ [tk, tk+N ) (4.61e)

u2(t) ∈ [−50.0, 50.0]MJ h−1, ∀ t ∈ [tk, tk+N ) (4.61f)
M−1∑
i= j

u1(τi ) +
j−1∑
i=0

u∗
1(τi |τi ) = MCA0s (4.61g)
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MCA0s −
j+N−M∑
j=M

u1(τ j ) ≤ max{2M − N − j, 0}u1,max (4.61h)

MCA0s −
j+N−M∑
j=M

u1(τ j ) ≥ max{2M − N − j, 0}u1,min (4.61i)

T̃ (t) ≤ Tmax (4.61j)

V (x̃(t)) ≤ ρe, ∀ t ∈ [tk, tk+N ) (4.61k)

∂VT (T (tk))

∂T
f2(x̃(tk), u(tk), 0) ≤ ∂VT (T (tk))

∂T
f2(x̃(tk), h(x̃(tk)), 0)

(4.61l)

where f2(·) is the right-hand side of the ODE of Eq.4.51b. The CSTR is initialized
at many states distributed throughout state-space including some cases where the
initial state is outside Ωu . The LEMPC described above is applied to the CSTR with
an operating period over which to enforce the average input constraint of M = 20
(τM = 0.2 h) and a prediction horizon of N = 20.

Several simulations of 50.0 h length of operation are completed. In all cases, the
LEMPC is able to force the system to Ωρ and maintain operation inside Ωρ without
violating the state constraint. The closed-loop state trajectories over the first 1.0 h
are shown in Fig. 4.3 for one initial condition starting inside Ωρ and one starting
outside Ωu . From Fig. 4.3, the LEMPC forces the temperature to a neighborhood of
the temperature set-point where it maintains the temperature thereafter. The reactant

T
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Fig. 4.3 Two closed-loop state trajectories under the LEMPC in state-space
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Table 4.2 Average economic cost over several simulations under the LEMPC, the Lyapunov-based
controller applied in a sample-and-hold fashion, and the constant input equal to us
J̄E under LEMPC J̄E under k(x) J̄E under us

14.17 14.10 14.09

14.18 14.11 14.09

14.17 14.10 14.08

14.17 14.09 14.06

14.18 14.10 14.10

14.17 14.09 14.08

14.18 14.09 14.10

14.18 14.08 14.08

14.19 14.08 14.10

14.18 14.07 14.07

14.18 14.11 14.11

14.18 14.08 14.07

14.17 14.06 0.36∗

14.19 14.06 14.10

For the case denoted with a “∗”, the system under the constant input us settled at a different steady-
state, i.e., not xs

concentration trajectory varies with time and never settles at a steady-state owing to
a periodic-like forcing of the inlet concentration.

The CSTR was simulated with the same realization of the process noise and same
initial condition under the Lyapunov-based controller applied in a sample-and-hold
fashion and under a constant input equal to the steady-state input. To evaluate the
average economic cost under LEMPC and under the other two control strategies, the
following index is defined:

J̄e := 1

t f

∫ t f

0
le(x(t), u(t)) dt (4.62)

where x and u denote the closed-loop state and input trajectories. The average eco-
nomic cost over each of these simulations is reported in Table4.2. Owing to the
fact that the simulations are performed over many operating periods, the average
closed-loop performance index is essentially a measure of the asymptotic average
performance. The transient performance is also discussed below. From these results,
an average of 0.6% closed-loop performance benefit is observed with the LEMPC
over the Lyapunov-based controller and the constant input u∗

s . It is important to
note that for one of the simulations that was initialized outside Ωu the CSTR under
the constant input u∗

s settled on an offsetting steady-state which is denoted with an
asterisk in Table4.2.
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Fig. 4.4 The closed-loop state and input trajectories of the CSTR under the LEMPC of Eq.4.61
for two initial conditions (solid and dashed trajectories) and the steady-state is the dashed-dotted
line

Figure4.4 gives the state and input trajectories of the CSTR under the LEMPC of
Eq.4.61 for two initial conditions: (0.6 kmolm−3, 430.0K), referred to as the low
temperature initial condition, and (0.8 kmolm−3, 460.0K), referred to as the high
temperature initial condition. One of the most interesting results of these simulations
is the asymmetric responses about the temperature set-point dictated by the LEMPC.
For the low temperature initial condition, the heat rate input computed by the LEMPC
is initially at the maximum admissible value to force the temperature to the set-point
as fast as possible. This behavior is desirable with respect to the economic cost
because the production rate is monotonically increasing with temperature. On the
other hand, for the high temperature initial condition, the rate at which the computed
input trajectory of the LEMPC forces the temperature to the set-point is much slower
rate than that of the case with the lower initial temperature. Again, this type of
behavior is desirable owing to the fact that the production rate of B is greater at
higher temperature.

To quantify the difference in the transient closed-loop performance under LEMPC
relative to the transient closed-loop performance achieved under the Lyapunov-based
controller and under the constant input equal to us , the closed-loop economic perfor-
mance over the first operating period is used, i.e., the index J̄e with t f = 0.2 h. The
performance benefit under the LEMPC relative to that achieved under the Lyapunov-
based controller and under the constant input is 12.15% and 20.79%, respectively,
and a clear advantage on transient performance is realized under LEMPC.Moreover,
the asymmetric response dictated by the LEMPC is a unique property of EMPC that
addresses a potential drawback of tracking MPC methodologies. In particular, the
stage cost of tracking MPC typically penalize positive and negative deviation from
the set-point equally even though from an economic stand-point this may not be
appropriate.
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4.4 Closed-Loop Performance Under LEMPC

Owing to the availability of the explicit stabilizing (Lyapunov-based) controller, the
corresponding Lyapunov function, and the stability region used to design LEMPC, a
terminal equality constraint may be readily designed for the LEMPC problem. The
terminal equality constraint allows for guaranteed closed-loop performance proper-
ties, while maintaining the unique recursive feasibility property of LEMPC. Nom-
inally operated systems are considered, i.e., the system of Eq.4.1 with w ≡ 0 and
with slight abuse of notation, the nominally operated system will be written as

ẋ = f (x, u) (4.63)

where x ∈ X and u ∈ U. The system of Eq.4.63 satisfies all of the relevant assump-
tions as the system of Eq.4.1.

An economic cost le : X × U → R is assumed for the system of Eq.4.63 which
is continuous on X × U. The existence of a steady-state and steady-state input pair,
denoted as (x∗

s , u
∗
s ), that minimizes the economic cost in the sense that the minimum

of le is attained at the pair (x∗
s , u

∗
s ) is assumed. For simplicity, the minimizing pair

is assumed to be unique. With these assumptions, the minimizing steady-state pair
is given by:

(x∗
s , u

∗
s ) = argmin

xs∈X,us∈U
{le(xs, us) : f (xs, us) = 0} .

Without loss of generality, the minimizing pair will be taken to be the origin of
Eq.4.63, i.e., f (0, 0) = 0.

4.4.1 Stabilizability Assumption

A terminal equality constraint imposed in the LEMPC optimization problem will
be computed at each sampling time based on the solution of the sampled-data sys-
tem consisting of the continuous-time system of Eq.4.63 with an explicit controller
applied in a sample-and-hold fashion.To consider infinite-time closed-loop economic
performance (to be made precise below), a stronger assumption is considered on the
explicit controller (Lyapunov-based controller). A relaxation of the assumption is
discussed in a remark below.

Assumption 4.1 There exists a locally Lipschitz feedback controller h : X → U

with h(0) = 0 for the system of Eq.4.1 that renders the origin of the closed-loop
system under continuous implementation of the controller locally exponentially sta-
ble. More specifically, there exist constants ρ > 0, ci > 0, i = 1, 2, 3, 4 and a con-
tinuously differentiable Lyapunov function V : X → R+ such that the following
inequalities hold:

c1 |x |2 ≤ V (x) ≤ c2 |x |2 , (4.64a)
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∂V (x)

∂x
f (x, h(x)) ≤ −c3 |x |2 , (4.64b)

∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ c4 |x | , (4.64c)

for all x ∈ Ωρ ⊆ X.

When the controller of Assumption 4.1 is applied in a sample-and-hold (zeroth-
order hold) fashion, i.e., the controller is an emulation controller, the resulting closed-
loop system is a sampled-data system. To distinguish from the state and input trajec-
tories of the system under the emulation controller and the state and input trajectories
of the closed-loop system under LEMPC, z and v will be used for the former, and x
and u∗ will be used for the latter, respectively. The sampled-data system consisting
of the system of Eq.4.63 under the sample-and-hold implementation of the explicit
controller is given by:

ż(t) = f (z(t), v(t))

v(t) = h(z(tk))
(4.65)

for t ∈ [tk, tk+1) where tk = kΔ and k = 0, 1, . . . with initial condition z(0) = z0 ∈
Ωρ . From Corollary 2.2, the origin of the closed-loop system of Eq.4.65 is expo-
nentially stable under sufficiently fast sampling, i.e., the sampling period, Δ, is
sufficiently small. Moreover, from the proof of Corollary 2.2, V is a Lyapunov func-
tion for the closed-loop sampled-data system in the sense that there exists a constant
ĉ3 > 0 such that

∂V (z(t))

∂z
f (z(t), h(z(tk))) ≤ −ĉ3 |z(t)|2 (4.66)

for all t ∈ [tk, tk+1) and integers k ≥ 0 where z(t) is the solution of Eq.4.65 at time
t with initial condition z(0) = x(0) ∈ Ωρ where x(0) denotes a state measurement
of the system of Eq.4.63 at the initial time.

4.4.2 Formulation and Implementation of the LEMPC
with a Terminal Equality Constraint

The solution of Eq.4.65 may be leveraged in the design of a terminal equality con-
straint. Specifically, the system of Eq.4.65 is initialized with a state measurement of
the system of Eq.4.63 at t = 0. Using forward simulation of the system of Eq.4.65,
the state may be computed at tk+N . The computed state is then used as a terminal
constraint in LEMPC in the sense that the predicted state of the LEMPC must con-
verge to the state of Eq.4.65, i.e., x̃(tk+N ) = z(tk+N ). Using this design principle,
the formulation of the LEMPC with a terminal equality constraint formulated based
on z is given by the problem:

http://dx.doi.org/10.1007/978-3-319-41108-8_2
http://dx.doi.org/10.1007/978-3-319-41108-8_2
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min
u∈S(Δ)

∫ tk+N

tk

le(x̃(τ ), u(τ )) dτ (4.67a)

s.t. ˙̃x(t) = f (x̃(t), u(t)) (4.67b)

x̃(tk) = x(tk) (4.67c)

x̃(tk+N ) = z(tk+N ) (4.67d)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (4.67e)

V (x̃(t)) ≤ ρe, ∀ t ∈ [tk, tk+N )

if V (x(tk)) ≤ ρe and tk < ts (4.67f)

∂V (x(tk))

∂x
f (x(tk), u(tk)) ≤ ∂V (x(tk))

∂x
f (x(tk), h(x(tk)))

if V (x(tk)) > ρe or tk ≥ ts (4.67g)

where all the components of the LEMPCoptimization problemof Eq.4.67 are similar
to that of the problem of Eq.4.3 except for the additional constraint of Eq.4.67d. The
terminal constraint of Eq. 4.67d enforces that the computed input trajectory steers the
predicted state trajectory to the state z(tk+N ) at the end of the prediction horizon. The
terminal constraint of Eq. 4.67d differs from traditional terminal equality constraints
in the sense that it is not necessarily a steady-state. However, it is important to note
that the terminal constraint in the LEMPC of Eq.4.67 exponentially converges to the
steady-state owing to the stability properties of the explicit controller.

The implementation of the LEMPC of Eq.4.67 is similar to that of the LEMPC of
Eq.4.3.Before the optimization problemofEq.4.67 is solved, the terminal constraint,
z(tk+N ), is computed by recursively solving the system of Eq.4.65 over tk+N−1 to
tk+N and is initialized with z(tk+N−1), which corresponds to the terminal constraint
at the previous sampling time. At the initial time (t = 0), z(tN ) is computed by
first initializing the system of Eq.4.65 with x(0) and recursively solving this system
from the initial time to tN = NΔ. For added robustness, especially to numerical
and discretization error, one may reinitialize the system of Eq.4.65 with a state
measurement at each sampling time, i.e., initialize the system of Eq.4.65 with x(tk)
and use forward simulation to compute z(tk+N ). However, in the nominal scenario
considered here, numerical error is not considered.

4.4.3 Closed-Loop Performance and Stability Analysis

The closed-loop stability properties of the LEMPC follows from the results of the
previous section and are stated in the following corollary.

Corollary 4.1 Let the conditions of Theorem 4.1 be satisfied. If x(0) ∈ Ωρ , then the
closed-loop state trajectory of the system of Eq.4.63 under the LEMPC of Eq.4.67
based on the Lyapunov-based controller that satisfies Eq.4.2 is always bounded in
Ωρ for all t ≥ 0. Moreover, the LEMPC problem of Eq.4.67 is recursively feasible.
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Proof If similar conditions are satisfied as that of Theorem 4.1 and the LEMPC
problem of Eq.4.67 is feasible, it follows from Theorem 4.1 that the closed-loop
state is bounded in Ωρ . Initial feasibility at t = 0 follows from the fact that the
sample-and-hold input trajectory used to compute the terminal constraint, z(tN ), is
a feasible solution to the optimization problem because (1) it forces the predicted
state to the terminal constraint, (2) satisfies the input constraint, (3) maintains the
state inΩρe if x(0) ∈ Ωρe or trivially satisfies the contractive constraint of Eq.4.67g.
For the subsequent sampling time (t = Δ), the piecewise defined input trajectory
consisting of u∗(t |0) for t ∈ [Δ, NΔ) and u(t) = h(z(tN )) for t ∈ [NΔ, (N + 1)Δ)

is a feasible solution to the optimization problem at t = Δ. Applying this result
recursively for all future sampling times, recursive feasibility follows.

Finite-time and infinite-time economic performance is considered. The analysis
follows closely that of [15], which analyzes closed-loop performance of EMPC
formulated with an equality terminal constraint equal to x∗

s . Let J
∗
e (x(tk)) denote

the optimal value of Eq.4.67a at time tk given the state measurement x(tk). The
first result gives the finite-time average performance under the LEMPC of Eq.4.67.
Without loss of generality, take le(x, u) ≥ 0 for all x ∈ Ωρ and u ∈ U.

Theorem 4.3 Consider the system of Eq.4.65 under the LEMPC of Eq.4.67 based
on the Lyapunov-based controller that satisfies Eq.4.2. For any strictly positive finite
integer, T , the closed-loop average economic performance is bounded by:

∫ TΔ

0
le(x(t), u

∗(t)) dt ≤
∫ (T+N )Δ

0
le(z(t), v(t)) dt (4.68)

where x and u∗ denote the closed-loop state and input trajectories and z and v denote
the resulting state and input trajectories of the system of Eq.4.65.

Proof Let u∗(t |tk) for t ∈ [tk, tk+N ) be the optimal input trajectory of Eq.4.67 at
tk . The piecewise defined input trajectory consisting of u∗(t |tk) for t ∈ [tk+1, tk+N )

and u(t) = h(z(tk+N )) for t ∈ [tk+N , tk+N+1) is a feasible solution to the optimization
problemat the next sampling time (tk+1).Utilizing the feasible solution to the problem
of Eq.4.67 at tk+1, the difference between the optimal value of Eq.4.67a at any two
successive sampling times may be bounded as follows:

J ∗
e (x(tk+1)) − J ∗

e (x(tk))

≤
∫ tk+N+1

tk+N

le(z(t), h(z(tk+N ))) dt −
∫ tk+1

tk

le(x(t), u
∗(tk |tk)) dt . (4.69)
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Let T be any strictly positive integer. Summing the difference of the optimal value
of Eq.4.67a at two subsequent sampling times, the sum may be lower bounded by:

T−1∑
k=0

[
J ∗
e (x(tk+1)) − J ∗

e (x(tk))
] = J ∗

e (x(TΔ)) − J ∗
e (x(0))

≥ −J ∗
e (x(0)) (4.70)

where the inequality follows from the fact that le(x, u) ≥ 0 for all x ∈ Ωρ and u ∈ U.
At the initial time, the optimal value of Eq.4.67a may be bounded by the cost under
the explicit controller over the prediction horizon:

J ∗
e (x(0)) ≤

∫ tN

0
le(z(t), v(t)) dt . (4.71)

Moreover, the left-hand side of Eq.4.70 may be upper bounded as follows:

T−1∑
k=0

[
J ∗
e (x(tk+1)) − J ∗

e (x(tk))
]

≤
T−1∑
k=0

(∫ tk+N+1

tk+N

le(z(t), h(z(tk+N ))) dt −
∫ tk+1

tk

le(x(t), u
∗(tk |tk)) dt

)

=
∫ (T+N )Δ

tN

le(z(t), v(t)) dt −
∫ TΔ

0
le(x(t), u

∗(t)) dt (4.72)

which follows from Eq.4.69. From Eqs. 4.70 and 4.72, the closed-loop economic
performance over the initial time to TΔ is noworse than the closed-loop performance
under the explicit control from initial time to (T + N )Δ:

∫ TΔ

0
le(x(t), u

∗(t)) dt ≤ J ∗
e (x(0)) +

∫ TΔ+NΔ

tN

le(z(t), v(t)) dt

≤
∫ (T+N )Δ

0
le(z(t), v(t)) dt (4.73)

where the second inequality follows fromEq.4.71. This proves the bound of Eq.4.68.

The upper limit of integration of the right-hand side of Eq. 4.68, i.e., (T + N )Δ,
arises from the fact that a fixed prediction horizon is used in the LEMPC of Eq. 4.67.
If, instead,TΔ represents thefinal operating timeof a given system, one could employ
a shrinking horizon from (T − N )Δ to TΔ in the LEMPC and the upper limit of
integration of the right-hand side of Eq.4.68 would be TΔ. Also, as a consequence
of the performance bound of Eq.4.68, the average finite-time economic performance
may be bounded as follows:
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1

TΔ

∫ TΔ

0
le(x(t), u

∗(t)) dt

≤ 1

TΔ

∫ TΔ

0
le(z(t), v(t)) dt + 1

TΔ

∫ (T+N )Δ

TΔ

le(z(t), v(t)) dt (4.74)

for any integer T > 0 (and for the fixed horizon case). From the right-hand side of
Eq.4.74, the second term of the right-hand side is less significant as T gets large.

To consider asymptotic average closed-loop economic performance of the system
under theLEMPCofEq.4.67, the asymptotic average closed-loopperformance under
the explicit controller needs to be considered. Because the state and input trajectory
asymptotically converge to (x∗

s , u
∗
s ), it is straightforward to show that the asymptotic

average economic performance under the explicit controller is no worse than the
economic cost at the optimal steady-state pair, which is stated in the lemma below.

Lemma 4.1 The asymptotic average economic cost of the system of Eq.4.65 under
the Lyapunov-based controller that satisfies Assumption 4.1 for any initial condition
z(0) ∈ Ωρ is

lim
T→∞

1

TΔ

∫ TΔ

0
le(z(t), v(t)) dt = le(x

∗
s , u

∗
s ) (4.75)

whereΔ ∈ (0,Δ∗) (Δ∗ > 0 is defined according toCorollary 2.2) and z and v denote
the state and input trajectories of the system of Eq.4.65.

Proof Recall, the economic stage cost function le is continuous on the compact set
Ωρ × U and z(t) ∈ Ωρ and v(t) ∈ U for all t ≥ 0. Thus, the integral:

1

TΔ

∫ TΔ

0
le(z(t), v(t)) dt < ∞ (4.76)

for any integer T > 0. Since z(t) and v(t) exponentially converge to the optimal
steady-state pair (x∗

s , u
∗
s ) as t → ∞, the limit of the integral of Eq.4.76 as T tends

to infinity exists and is equal to le(x∗
s , u

∗
s ). To prove the limit, it is sufficient to show

that for any ε > 0, there exists a T ∗ such that for T > T ∗, the following holds:

∣∣∣∣ 1

TΔ

∫ TΔ

0
le(z(t), v(t)) dt − le(x

∗
s , u

∗
s )

∣∣∣∣ < ε (4.77)

To simplify the presentation, define I (T1, T2) as the following integral:

I (T1, T2) :=
∫ T2Δ

T1Δ
le(z(t), v(t)) dt (4.78)

where the arguments of I are integers representing the integers of the lower and
upper limits of integration, respectively. Since z(t) and v(t) converge to x∗

s and u∗
s

as t tends to infinity, respectively, le(x(t), v(t)) → le(x∗
s , u

∗
s ) as t tends to infinity.

http://dx.doi.org/10.1007/978-3-319-41108-8_2
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Furthermore, z(t) ∈ Ωρ and v(t) ∈ U for all t ≥ 0, so for every ε > 0, there exists
an integer T̃ > 0 such that

|le(z(t), v(t)) − le(x
∗
s , u

∗
s )| < ε/2 (4.79)

for t ≥ T̃Δ. For any T > T̃ ,

|I (0, T ) − TΔle(x
∗
s , u

∗
s )| = |I (0, T̃ ) + I (T̃ , T ) − TΔle(x

∗
s , u

∗
s )|

≤
∫ T̃Δ

0
|le(z(t), v(t)) − le(x

∗
s , u

∗
s )| dt

+
∫ TΔ

T̃Δ

|le(z(t), v(t)) − le(x
∗
s , u

∗
s )| dt

≤ T̃ M̃ + (T − T̃ )ε/2 (4.80)

where
M̃ := sup

t∈[0,T̃Δ]

{|le(z(t), v(t)) − le(x
∗
s , u

∗
s )|

}
.

For any T > T ∗ = 2T̃ (M̃ − ε/2)/ε (which implies (M̃ − ε/2)T̃ /T < ε/2), the fol-
lowing inequality is satisfied:

|I (0, T )/T − le(x
∗
s , u

∗
s )| ≤ T̃ M̃/T + (1 − T̃ /T )ε/2

= (M̃ − ε/2)T̃ /T + ε/2 < ε (4.81)

which proves the limit of Eq.4.75.

With Lemma 4.1, the asymptotic average closed-loop economic performance
under the LEMPC is no worse than the closed-loop performance at the economically
optimal steady-state.

Theorem 4.4 Consider the system of Eq.4.65 under the LEMPC of Eq.4.67 based
on the Lyapunov-based controller that satisfies Assumption 4.1. Let Δ ∈ (0,Δ∗)
(Δ∗ > 0 is defined according to Corollary 2.2). The closed-loop asymptotic average
economic performance is no worse than the economic cost at steady-state, i.e., the
following bound holds:

lim sup
T→∞

1

TΔ

∫ TΔ

0
le(x(t), u

∗(t)) dt ≤ le(x
∗
s , u

∗
s ) (4.82)

Proof From Theorem 4.3, for any T > 0:

1

TΔ

∫ TΔ

0
le(x(t), u

∗(t)) dt ≤ 1

TΔ

∫ (T+N )Δ

0
le(z(t), v(t)) dt . (4.83)

http://dx.doi.org/10.1007/978-3-319-41108-8_2
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As T increases, both sides of the inequality of Eq.4.83 remain finite owing to the
fact that le is continuous and the state and input trajectories are bounded in compact
sets. The limit of the right-hand side as T → ∞ is equal to le(x∗

s , u
∗
s ) (Lemma 4.1).

Therefore, one may readily obtain that:

lim sup
T→∞

1

TΔ

∫ TΔ

0
le(x(t), u

∗(t)) dt ≤ le(x
∗
s , u

∗
s ) (4.84)

which proves the desired result.

While the finite-time performance results of Theorem 4.3 require that the explicit
Lyapunov-based controller be designed such that Eq.4.2 is satisfied, the infinite-
time average performance results of Theorem 4.4 require that the Lyapunov-based
controller satisfies the stronger assumption (Assumption 4.1), which is required to
obtain the performance bound of Eq.4.82. A Lyapunov-based controller that satisfies
Eq.4.2 when implemented in a sample-and-hold fashion with a sufficiently small
sampling period will force the state to a small compact set containing the steady-
state.When theLEMPCofEq.4.67 is designedwith aLyapunov-based controller that
only satisfiesEq.4.2, aweaker result on the asymptotic average economic closed-loop
performance is obtained. Namely, the closed-loop asymptotic average performance
may be bounded as follows:

lim sup
T→∞

1

TΔ

∫ TΔ

0
le(x(t), u

∗(t)) dt ≤ max
x,z∈Ωρmin

le(x, h(z)) (4.85)

whereΩρmin is defined as in Theorem 4.1. Note that the size of setΩρmin may be made
arbitrarily small by making the sampling period arbitrarily small.

Remark 4.3 For systemswith average constraints e.g., like that imposed in the exam-
ple of Sect. 4.3.3, the average constraint design methodologies for asymptotic aver-
age constraints [15] and for transient average constraints [16], which were presented
for EMPC with a terminal equality constraint equal to x∗

s , may be extended to the
LEMPC of Eq.4.67 when the average constraint is satisfied under the explicit con-
troller. The methods of [15, 16] go beyond imposing the average constraint over
successive operating periods, which is the method employed in Sect. 4.3.3.

Remark 4.4 The performance results of this section hold for any prediction horizon
size even when N = 1. The use of a short horizon may be computationally advan-
tageous for real-time application. Also, owing to the fact that the terminal equality
constraint of Eq.4.67d may be a point in the state-space away from the steady-state,
it is expected that the feasible region of the LEMPC of Eq.4.67 would be larger
than the feasible region of EMPC with a terminal equality constraint equal to the
steady-state for most cases especially when a short prediction horizon is used in the
EMPC formulation.
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4.5 LEMPC with a Time-Varying Stage Cost

One of the unique advantages of EMPC relative to other control methodologies is the
integration of economic objectives directly within a control framework. For stability
purposes, most of the EMPC schemes use a steady-state to impose constraints in the
EMPC optimization problem to ensure closed-loop stability in their formulations,
e.g., the EMPC formulated with a terminal constraint described in Chap. 3 and the
Lyapunov-based constraints of Eqs. 4.3e and 4.3f used in theLEMPCofEq.4.3.Also,
these EMPC schemes have been formulated with time-invariant economic cost func-
tions. However, when the time-scale or update frequency of time-varying economic
considerations arising from, for example, variable energy pricing or product demand
changes is comparable to the time-scale of the process/system dynamics, it may be
desirable to formulate the EMPC scheme with a time-dependent cost function.

In this section, an LEMPC scheme is developed that may accommodate an explic-
itly time-varying economic cost function. First, the formulation of the LEMPC
scheme is presented. Second, closed-loop stability, in the sense of boundedness of the
closed-loop state, is proven through a theoretical treatment of the LEMPC scheme.
The LEMPC scheme is applied to a chemical process example to demonstrate that the
LEMPC with time-varying economic cost achieves closed-loop stability and results
in improved closed-loop economic performance over a conventional approach to
optimization and control.

4.5.1 Class of Economic Costs and Stabilizability Assumption

Consider the class of systemsdescribedby the systemofEq.4.1with all of the relevant
assumptions. Instead of the time-invariant economic cost, the system of Eq.4.1 is
assumed to be equippedwith a time-dependent economic cost function,which has the
following form le(t, x, u) (the function le maps time and the state and input vectors
to a scalar that is a measure of the economics, i.e., le : [0,∞) × X × U → R). No
restriction on the form of the cost function is required for stability. However, some
limitations to the cost function that may be considered must be made to solve the
optimization problem. From a practical point-of-view,many of the cost functions that
would be used to describe the economics of a system may be piecewise continuous
functions of time and continuous with respect to the state and input vectors.

In a traditional or conventional approach, if the economics change results in a
change in the optimal operating steady-state, the optimal steady-state is updated
and the updated optimal steady-state is sent down to a feedback controller, e.g.,
tracking MPC, to force the system to operate at the updated optimal steady-state.
To account for the various potential operating steady-states, the existence of a set of
steady-states for the system of Eq.4.1, which is denoted as Γ = {xs ∈ R

n : ∃ us ∈
U s.t. f (xs, us, 0) = 0} ⊂ X, is assumed for the system of Eq.4.1. An additional
assumption is made on the set Γ to ensure that the acceptable operating region is

http://dx.doi.org/10.1007/978-3-319-41108-8_3
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non-empty which is stated below. For a given system, the equilibrium manifold Γ

may be taken as the set of admissible operating steady-states, i.e., the set of possible
operating points under the conventional approach to optimization and control.

As in the case for the LEMPC formulated with a time-invariant economic stage
cost, a stabilizability assumption is needed. For each xs ∈ Γ , the existence of a
Lyapunov-based controller that renders xs of the nominal system of Eq.4.1 asymptot-
ically stable under continuous implementation is assumed. For simplicity of notation,
the notation h(x; xs) where xs is a parameter which is used to denote the Lyapunov-
based controller with respect to xs ∈ Γ , i.e., the control law h(x; xs) renders the
steady-state xs asymptotically stable for the nominally operated closed-loop system.
Also, for two points in Γ , e.g., xs,1, xs,2 ∈ Γ , no relationship is assumed between the
two controllers h(x; xs,1) and h(x; xs,2) other than the former renders the steady-state
xs,1 asymptotically stable and the latter renders the steady-state xs,2 asymptotically
stable. Thus, the two controllers may be designed utilizing different techniques.

Using converse theorems, the existence of Lyapunov functions V (·; xs) for all
xs ∈ Γ follows from the stabilizability assumption. The Lyapunov functions satisfy
the following conditions:

α1(|x − xs |; xs) ≤ V (x; xs) ≤ α2(|x − xs |; xs) (4.86a)

∂V (x; xs)
∂x

f (x, h(x; xs), 0) ≤ −α3(|x − xs |; xs) (4.86b)

∣∣∣∣∂V (x; xs)
∂x

∣∣∣∣ ≤ α4(|x − xs |; xs) (4.86c)

for x ∈ D(xs) and each xs ∈ Γ where αi (·; xs), i = 1, 2, 3, 4 are class K function
and D(xs) is an open neighborhood of xs . Owing to the fact that there exists a
Lyapunov function for each xs , different classK functions exist for each Lyapunov
function. This is captured by the parameterization of the functions αi , i = 1, 2, 3, 4,
and αi (·; xs) denotes the i th classK function for the Lyapunov function with respect
to the steady-state xs .

For each xs ∈ Γ , the stability region Ωρ(xs ) may be characterized for the closed-
loop system of Eq.4.1 with the Lyapunov-based controller h(x; xs). The symbol
Ωρ(xs ) where xs ∈ Γ ⊂ R

n is a fixed parameter denotes a level set of the Lyapunov
function with respect to xs , i.e., Ωρ(xs ) = {x ∈ R

n : V (x; xs) ≤ ρ(xs)} where ρ(xs)
depends on xs . The union of the stability regions is denoted as X = ⋃

xs∈Γ Ωρ(xs )

and it is assumed to be a non-empty, compact, and connected set.

4.5.2 The Union of the Stability Regions

A simple demonstration of the construction of the set X is provided to embellish
the concept of the union set X . The stability region of a closed-loop system under
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an explicit stabilizing control law may be estimated for a steady-state in Γ through
the off-line computation described below. After the stability regions of sufficiently
many steady-states in Γ are computed, the union of these sets may be described
algebraically through various mathematical techniques, e.g., curve fitting and convex
optimization techniques. The basic algorithm is

1. For j = 1 to J (if Γ consists of an infinite number of points, J is a sufficiently
large positive integer).

1.1 Select a steady-state, xs, j , in the set Γ .
1.2 Partition the state-space near xs, j into I discrete points (I is a sufficiently

large positive integer).
1.3 Initialize ρ(xs, j ) := ∞.
1.4 For i = 1 to I :
1.4.1 Compute V̇ (xi ; xs, j ) where xi denotes the i discrete point from the

partitioning of the state-space. If V̇ (xi ; xs, j ) ≥ 0, go to Step 1.4.2. Else,
go to Step 1.4.3.

1.4.2 If V (xi ; xs, j ) < ρ(xs, j ), set ρ(xs, j ) := V (xi ; xs, j ). Go to Step 1.4.3.
1.4.3 If i + 1 ≤ I , go to Step 1.4.1 and i ← i + 1. Else, go to Step 2.

2. Save ρ(xs, j ) (if necessary, reduce ρ(xs, j ) such that the set Ωρ(xs, j ) only includes
points where the time-derivative of the Lyapunov function is negative).

3. If j + 1 ≤ J , go to Step 1 and j ← j + 1. Else, go to Step 4.
4. Approximate the union set with analytic algebraic expressions (constraints) using

appropriate techniques.

If Γ consists of a finite number of points, then J could be taken as the number of
points in Γ . If the number of points in Γ is large or infinite, J could be a sufficiently
large integer. From a practical stand-point, these numbers need to be small enough
such that this type of calculationmay be implemented. Figure4.5 gives an illustration
of the construction of X using this procedure. The following example provides a
tractable illustration of the construction of X for a scalar system.

Example 4.2 Consider the nonlinear scalar system described by

ẋ = x − 2x2 + xu (4.87)

with admissible inputs in the set U = [−100, 100] and with the set of admissible
operating steady-states defined as Γ = {xs ∈ [−25, 25]}. The steady-states in Γ are
open-loop unstable. For any xs ∈ Γ , the system of Eq.4.87 may be written in the
following input-affine form:

˙̄x = f (x̄) + g(x̄)ū (4.88)

where x̄ = x − xs and ū = u − us . Consider a quadratic Lyapunov function of the
form:

V (x; xs) = 1

2
(x − xs)

2 (4.89)
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Ωρ(xs,1)

Ωρ(xs,2)

Ωρ(xs,3)

Ωρ(xs,4)

X Γ

Fig. 4.5 An illustration of the construction of the stability regionX . The shaded region corresponds
to the set X

for the closed system of Eq.4.87 under the following Lyapunov-based feedback
control law [17]:

ĥ(x; xs) =

⎧⎪⎨
⎪⎩

− L f V + √
L f V 2 + LgV 4

LgV
if LgV �= 0

0 if LgV = 0
(4.90)

for a xs ∈ Γ where L f V and LgV are the Lie derivatives of the function V with
respect to f and g, respectively (these functions are similarly parameterized for
each xs). To account for the bound on the available control energy, the controller is
formulated as

h(x; xs) = 100 sat

(
ĥ(x; xs)
100

)
(4.91)

where sat(·) denotes the standard saturation function.
For this particular case, the stability region of the system of Eq.4.87 with the

stabilizing controller of Eq.4.91 for the minimum and maximum steady-state in
the set Γ are used to approximate the set X . For the steady-state xs,1 = −25
with corresponding steady-state input us,1 = −51, the largest level set of the Lya-
punov function where the Lyapunov function is decreasing along the state trajectory
with respect to the steady-state xs,1 is Ωρ(xs,1) = {x ∈ R : V (x;−25) ≤ 300.25},
i.e., ρ(xs,1) = 300.25. For the steady-state xs,2 = 25 and us,2 = 49, the level set
is Ωρ(xs,2) = {x ∈ R : V (x, 25) ≤ 2775.49}, i.e., ρ(xs,2) = 2775.49. Therefore, the
union of the stability region is described as X = {x ∈ [−49.5, 99.5]}.
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4.5.3 Formulation of LEMPC with Time-Varying Economic
Cost

The formulation of the LEMPCwith the time-varying economic stage cost is given in
this subsection. First, the overall methodology of employing the setX in the design
of the LEMPC is described. As a consequence of the construction method used for
X , any state inX is in a stability region of at least one steady-state. This means that
there exists an input trajectory that satisfies the input constraint and that maintains
operation in X . The ability to maintain the state in X is guaranteed because the
input trajectory obtained from the Lyapunov-based controller with respect to the
steady-state xs such that the current state x(tk) ∈ Ωρ(xs ) will maintain the state in
Ωρ(xs ) ⊂ X . The stability properties ofX make it an attractive choice to use in the
formulation of a LEMPC. Namely, use X to formulate a region constraint that is
imposed in the optimization problem of EMPC to ensure thatX is an invariant set.

In any practical setting, the closed-loop system is subjected to disturbances and
uncertainties causing the closed-loop state trajectory to deviate from the predicted
(open-loop) nominal trajectory. Enforcing that the predicted state to be in X is not
sufficient for maintaining the closed-loop state trajectory inX because disturbances
may force the state out ofX . To makeX an invariant set, a subset ofX is defined
and is denoted as X̂ . The set X̂ is designed such that any state starting in X̂ , which
may be forced outside of X̂ by the disturbances, will be maintained in X over the
sampling period when the computed control action is such that the predicted state is
maintained in X̂ .

Any state x(tk) ∈ X \ X̂ where x(tk) denotes a measurement of the state at
sampling time tk may be forced back into the set X̂ . This statement holds as a result
of the method used to construct X̂ andX . Specifically, a steady-state x̂s ∈ Γ may
be found such that x(tk) ∈ Ωρ(x̂s ). Then, a contractive Lyapunov-based constraint
like that of Eq.4.3f is imposed in the formulation of the LEMPC to ensure that the
computed control action decreases the Lyapunov function by at least the rate given
by the Lyapunov-based controller. This guarantees that the closed-loop state will
converge to X̂ in finite-time. Here, X̂ and X are analogous to Ωρe and Ωρ in the
LEMPC design of Eq.4.3 with a time-invariant economic cost.

Given the overview and purposes of the sets X and X̂ , the sets Γ , X , and
X̂ are summarized. First, the set Γ is the set of points in state-space that satisfies
the steady-state model equation for some us ∈ U, i.e., f (xs, us, 0) = 0. Second,X ,
which is the union of the stability regions Ωρ(xs ) constructed for each steady-state
in Γ , is assumed to be a non-empty, compact, and connected set. Third, the set X̂
is assumed to be a non-empty, compact, and connected set with X̂ ⊂ X , and it is
further clarified in Sect. 4.5.5.

Using the sets Γ , X , and X̂ , the LEMPC formulation with an explicitly time-
varying cost is given by the following optimization problem:
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min
u∈S(Δ)

∫ tk+N

tk

le(τ, x̃(τ ), u(τ )) dτ (4.92a)

s.t. ˙̃x(t) = f (x̃(t), u(t), 0) (4.92b)

x̃(tk) = x(tk) (4.92c)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (4.92d)

x̃(t) ∈ X̂ , ∀ t ∈ [tk, tk+N ) if x(tk) ∈ X̂ (4.92e)

x̃(t) ∈ X , ∀ t ∈ [tk, tk+N ) if x(tk) ∈ X \ X̂ (4.92f)

∂V (x(tk); x̂s)
∂x

f (x(tk), u(tk), 0) ≤ ∂V (x(tk); x̂s)
∂x

f (x(tk), h(x(tk); x̂s), 0)
if x(tk) /∈ X̂ , x(tk) ∈ Ωρ(x̂s ) with x̂s ∈ Γ (4.92g)

where all of the notation used is similar to that used in the LEMPC formulation of
Eq.4.3. The optimal solution of this optimization problem is denoted as u∗(t |tk) and
it is defined for t ∈ [tk, tk+N ). The control action computed for the first sampling
period of the prediction horizon is denoted as u∗(tk |tk). In the optimization problem
of Eq.4.92, Eq.4.92a defines the time-dependent economic cost functional to be
minimized over the prediction horizon. The constraint of Eq. 4.92b is the nominal
model of the systemofEq.4.1which is used to predict the evolution of the systemwith
input trajectory u(t) computed by the LEMPC. The dynamicmodel is initializedwith
a measurement of the current state (Eq.4.92c). The constraint of Eq.4.92d restricts
the input trajectory take values within the admissible input set.

Similar to the LEMPC design of Eq.4.3, the LEMPC of Eq.4.92 is a dual-mode
controller. The constraint of Eq.4.92e defines mode 1 operation of the LEMPC and
is active when the state at the current sampling time x(tk) ∈ X̂ . It enforces that the
predicted state trajectory be maintained in X̂ . The constraint of Eq.4.92g defines
mode 2 operation of the LEMPC and is active when the state is outside X̂ . It is
used to force the state back into the X̂ which is guaranteed for any x(tk) ∈ X . The
constraint of Eq.4.92f is active when x(tk) ∈ X \ X̂ and ensures the predicted state
be contained in the set X . Although Eq.4.92f is not needed for stability, it is used
to ensure that the LEMPC optimizes the input trajectory with knowledge that the
state must be contained in X , and potentially improves the closed-loop economic
performance when the LEMPC is operating under mode 2 operation compared to
not imposing such a constraint.

Figure4.6 illustrates the sets and different operation modes of the closed-loop
system under the LEMPC of Eq.4.92. Over the first sampling period, the LEMPC,
operating in mode 1, computes a control action that maintains the predicted state
x̃(tk+1) inside X̂ . However, the closed-loop state at the next sampling time x(tk+1)

is driven outside of X̂ by disturbances. The LEMPC, operating in mode 2, ensures
that the computed control action decreases the Lyapunov function based on the
steady-state x̂s over the next sampling period to force the state back into X̂ .
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Fig. 4.6 The illustration
gives the state evolution
under the LEMPC of
Eq.4.92 with a time-varying
economic stage cost over two
sampling periods

X

X̂

Γ

x(tk)

x̃(tk+1)

x(tk+1)x(tk+2)

x̂s

Ωρ(x̂s)

Ωρe(x̂s)

4.5.4 Implementation Strategy

The LEMPC of Eq.4.92 is implemented in a receding horizon fashion. The optimiza-
tion problem is repeatedly solved every sampling time after receiving state feedback
from the system. The implementation strategy may be summarized as follows:

1. At sampling time tk , the LEMPC receives a state measurement x(tk) from the
sensors.

2. If x(tk) ∈ X̂ , go to Step 2.1. Else, go to Step 2.2.

2.1 LEMPC operates in mode 1: the constraint of Eq.4.92e is active and the
constraints of Eqs. 4.92f and 4.92g are inactive, go to Step 3.

2.2 Find x̂s ∈ Γ such that x(tk) ∈ Ωρ(x̂s ), go to Step 2.3.
2.3 LEMPC operates in mode 2: the constraint of Eq.4.92e is inactive and the

constraints of Eqs. 4.92f and 4.92g are active, go to Step 3.

3. The LEMPC computes the optimal input trajectory u∗(t |tk) for t ∈ [tk, tk+N ), go
to Step 4.

4. The LEMPC sends the control action, u∗(tk |tk), computed for the first sampling
period of the prediction horizon to the control actuators to apply to the system in
a sample-and-hold fashion from tk to tk+1. Go to Step 5.

5. Set k ← k + 1. Go to Step 1.
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4.5.5 Stability Analysis

In this subsection, Theorem 4.5 provides sufficient conditions for closed-loop sta-
bility in the sense of boundedness of the closed-loop system state inside the set X
under the LEMPC of Eq.4.92 for any initial condition x(0) ∈ X . It follows the ideas
of the analysis of Sect. 4.3. The assumption on the set X̂ that is needed to ensure
closed-loop stability is given below.

Assumption 4.2 Let X̂ ⊂ X be a non-empty, compact, and connected set such that
if x(0) ∈ X̂ and the constant control û ∈ U is such that x̃(t) ∈ X̂ for all t ∈ [0,Δ]
where x̃(t) is the solution to

˙̃x(t) = f (x̃(t), û, 0) (4.93)

for t ∈ [0,Δ] and x̃(0) = x(0), then x(Δ) ∈ X where x(Δ) denotes the closed-loop
state of Eq.4.3 under the constant control û.

Assumption 4.2 is satisfied for the case that instead of using the mode 1 constraint
of Eq.4.92e, the constraint x̃(t) ∈ Ωρe(xs ) for t ∈ [tk, tk+N )whereΩρe(xs ) is designed
according to a similar condition as in Eq.4.21 for some xs ∈ Γ such that x(tk) ∈
Ωρe(xs ). For this case, X̂ may be constructed by taking the union of sets Ωρe(xs ) for
all xs ∈ Γ where Ωρe(xs ) is similar to the set Ωρe (for each xs ∈ Γ ) in the LEMPC of
Eq.4.3. Nevertheless, Assumption 4.2 is needed to cover the more general case with
the mode 1 constraint of Eq.4.92e.

To avoid introducing convoluted notation, the sufficient conditions of the Theorem
are stated as similar conditions as Eqs. 4.22 and 4.23 must hold for each xs ∈ Γ . This
means that there exists positive constants: ρ, ρmin, ρs , L ′

x , L
′
w, M , and εw that satisfy

similar conditions for each xs ∈ Γ . Moreover, all of these parameters depend on xs .

Theorem 4.5 Consider the system of Eq.4.1 in closed-loop under the LEMPC
design of Eq.5 based on the set of controllers that satisfy the conditions of Eq.4.86
for each xs ∈ Γ . Let εw(xs) > 0, Δ > 0, ρ(xs) > ρe(xs) ≥ ρmin(xs) > ρs(xs) > 0
for all xs ∈ Γ satisfy a similar condition as Eq.4.22 for each xs ∈ Γ and let
X = ∪xs∈Γ Ωρ(xs ) be a non-empty, compact, and connected set and X̂ satisfy
Assumption 4.2. If x(0) ∈ X and N ≥ 1, then the state x(t) of the closed-loop
system is always bounded in X for all t ≥ 0.

Proof The proof of Theorem 4.5 consists of the following parts: first, the feasibility
of the optimization problem of Eq.4.92 is proven for any state x(tk) ∈ X . Second,
boundedness of the closed-loop state trajectory x(t) ∈ X for all t ≥ 0 is proven for
any initial state starting inX .

Part 1: Owing to the construction of X , any state x(tk) ∈ X is in the stability
region Ωρ(xs ) of the Lyapunov-based controller designed for some steady-state xs ∈
Γ . This implies that there exists an input trajectory that is a feasible solution because
the input trajectory obtained from theLyapunov-based controller is a feasible solution
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to the optimization of Eq.4.92 as it satisfies the constraints (refer to Theorem 4.1,
Part 1 on how this input trajectory is obtained). The latter claim is guaranteed by the
closed-loop stability properties of the Lyapunov-based controller (h(·; xs)).

Part 2: If x(tk) ∈ X \ X̂ , then the LEMPC of Eq.4.92 operates in mode 2. Since
x(tk) ∈ X , a steady-state x̂s ∈ Γ may be found such that the current state x(tk) ∈
Ωρ(x̂s ). Utilizing the Lyapunov-based controller h(·; x̂s), the LEMPC computes a
control action that satisfies the constraint of Eq. 4.92g:

∂V (x(tk); x̂s)
∂x

f (x(tk), u
∗(tk |tk), 0) ≤ ∂V (x(tk); x̂s)

∂x
f (x(tk), h(x(tk); x̂s), 0)

(4.94)
for some x̂s ∈ Γ where u∗(tk |tk) is the optimal control action computed by the
LEMPC to be applied in a sample-and-hold fashion to the system of Eq.4.1 for
t ∈ [tk, tk+1). From Eq.4.86b, the term in the right-hand side of the inequality of
Eq.4.94 may be upper bounded by a class K function as follows:

∂V (x(tk), x̂s)

∂x
f (x(tk), u

∗(tk), 0) ≤ −α3(|x(tk) − x̂s |; x̂s) (4.95)

for all x(tk) ∈ X and for some x̂s ∈ Γ . Following similar steps as that used in The-
orem 4.5, Part 2, one may show that the Lyapunov function value, i.e., the Lyapunov
function for the steady-state x̂s , will decay over the sampling period when a similar
condition to Eq.4.22 is satisfied for each xs ∈ Γ .

If x(tk) ∈ X̂ , then x(tk+1) ∈ X owing to the construction of X̂ , i.e., if Assump-
tion 4.2 is satisfied. If x(tk) ∈ X \ X̂ , then x(tk+1) ∈ X because the state is forced
to a smaller level set of the Lyapunov function with respect to the steady-state x̂s ∈ Γ

over the sampling period. Both of these results together imply that x(tk+1) ∈ X for
all x(tk) under the LEMPC of Eq.4.92. Using this result recursively, the closed-loop
state is always bounded inX when the initial state is inX .

Remark 4.5 TheLEMPCof Eq.4.92 does not have a switching time like the LEMPC
of Eq.4.3 whereby the mode 2 constraint is exclusively imposed after the switch-
ing time to enforce the closed-loop state to a specific steady-state. To ensure there
exists a feasible path from any state inX to the desired operating steady-state more
conditions are needed. The interested reader may refer to [18] that provides some
conditions that accomplish such a goal. Additionally, no guarantees are made that
the closed-loop state will converge to X̂ when the state is in X \ X̂ owing to the
fact that the mode 2 constraint could be formulated with respect to a different steady-
state at each sampling time. However, enforcing convergence to X̂ may be readily
accomplished through implementation by enforcing a mode 2 constraint formulated
with respect to the same steady-state at each sampling time until the state converges
to X̂ .
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4.5.6 Application to a Chemical Process Example

Consider a non-isothermal CSTR where three parallel reactions take place. The
reactions are elementary irreversible exothermic reactions of the form: A → B, A →
C , and A → D. The desired product is B; while, C and D are byproducts. The feed
of the reactor consists of the reactant A in an inert solvent and does not contain any of
the products. Using first principles and standard modeling assumptions, a nonlinear
dynamic model of the process is obtained:

dCA

dt
= F

VR
(CA0 − CA) −

3∑
i=1

k0,i e
−Ei /RTCA (4.96a)

dT

dt
= F

VR
(T0 − T ) − 1

ρLCp

3∑
i=1

ΔHik0,i e
−Ei /RTCA + Q

ρLCpVR
(4.96b)

where CA is the concentration of the reactant A, T is the temperature of the reactor,
Q is the rate of heat supplied or removed from the reactor, CA0 and T0 are the reactor
feed reactant concentration and temperature, respectively, F is a constant volumetric
flow rate through the reactor, VR is the constant liquid hold-up in the reactor, ΔHi ,
k0,i , and Ei , i = 1, 2, 3 denote the enthalpy changes, pre-exponential constants and
activation energies of the three reactions, respectively, and Cp and ρL denote the
heat capacity and the density of the fluid in the reactor. The process parameters are
given in Table4.3. TheCSTRhas twomanipulated inputs: the inlet concentrationCA0

with available control energy 0.5 kmolm−3 ≤ CA0 ≤ 7.5 kmolm−3 and the heat rate
to/from the vessel Q with available control energy −1.0 × 105 kJ h−1 ≤ Q ≤ 1.0 ×
105 kJ h−1. The state vector is xT = [CA T ] and the input vector is uT = [CA0 Q].

4.5.6.1 Stability Region Construction

Supplying or removing significant amount of thermal energy to/from the reactor
(nonzero Q) is considered to be undesirable from an economic perspective. There-
fore, the setX is constructed considering steady-states with a steady-state reactant
inlet concentration ofCA0s ∈ [2.0, 6.0] kmolm−3 and no heat rate supplied/removed
from the reactor, i.e., Qs = 0.0 kJ h−1. The corresponding steady-states in the desired
operating range forma set denoted asΓ of admissible operating steady-states. Several
of these steady-states have been verified to be open-loop unstable, i.e., the eigen-
values of the linearization around the steady-states corresponding to the minimum
and maximum steady-state inlet concentrations are λ1,min = −1.00, λ2,min = 2.73
and λ1,max = −1.00, λ2,max = 2.10, respectively. The set Γ covers approximately a
temperature range of 50K.
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Table 4.3 CSTR process parameters

Feedstock volumetric flow rate F = 5.0m3h−1

Feedstock temperature T0 = 300K

Reactor volume VR = 5.0m3

Pre-exponential factor for reaction 1 k01 = 6.0 × 105 h−1

Pre-exponential factor for reaction 2 k02 = 6.0 × 105 h−1

Pre-exponential factor for reaction 3 k03 = 6.0 × 105 h−1

Reaction enthalpy change for reaction 1 ΔH1 = −5.0 × 104 kJ kmol−1

Reaction enthalpy change for reaction 2 ΔH2 = −5.2 × 104 kJ kmol−1

Reaction enthalpy change for reaction 3 ΔH3 = −5.4 × 104 kJ kmol−1

Activation energy for reaction 1 E1 = 5.0 × 104 kJ kmol−1

Activation energy for reaction 2 E2 = 7.53 × 104 kJ kmol−1

Activation energy for reaction 3 E3 = 7.53 × 104 kJ kmol−1

Heat capacity Cp = 0.231 kgm−3

Density ρL = 1000 kJ kg−1K−1

Gas constant R = 8.314 kJ kmol−1K−1

A set of two proportional controllers with saturation to account for the input
constraints is used in the design of the Lyapunov-based controller:

h(x; xs) =

⎡
⎢⎢⎣
3.5 sat

(
K1(xs,1 − x1) + u1,s − 4.0

3.5

)
+ 4.0

105 sat

(
K2(xs,2 − x2) + u2,s

105

)
⎤
⎥⎥⎦ (4.97)

where K1 = 10 and K2 = 8000 are the gains of each proportional controller. The
proportional controller gains have been tuned to give the largest estimate of the
stability region for a given steady-state. A quadratic Lyapunov function of the form:

V (x; xs) = (x − xs)
T P(x − xs) (4.98)

where P is a positive definite matrix is used to estimate the stability regions of many
steady-states in the setΓ , i.e., the stability region for a given steady-state inΓ is taken
to be a level set of the Lyapunov function where the Lyapunov function is decreasing
along the state trajectory. To estimate X , the procedure outlined in Sect. 4.5.2 is
employed. To obtain the largest estimate of the region X , several P matrices were
used. The results of this procedure are shown in Fig. 4.7. The union of these regions
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Fig. 4.7 The construction of the set X for the CSTR of Eq.4.96

X was approximated with two quadratic polynomial inequalities and three linear
state inequalities given by:

1.26x21 − 19.84x1 + 467.66 − x2 ≥ 0
2.36x21 − 26.72x1 + 428.26 − x2 ≤ 0

0.4 ≤ x1 ≤ 7.4
x2 ≤ 434.5

(4.99)

which will be used in the formulation of the LEMPC to ensure that the state tra-
jectories are maintained inside X (note that x2 is lower bounded by the second
inequality).

4.5.6.2 Closed-Loop Simulation Results

The control objective of this chemical process example is to operate the CSTR in an
economically optimal manner while accounting for changing economic factors and
maintaining the system operation inside a bounded set. For this chemical process
example, the economic measure being considered is

le(t, x, u) = A1(t)u
2
2 + A2(t)u1 − A3r1(x) + A4(x2 − 395)2 (4.100)

where r1(x) is the reaction rate of the first reaction that produces the desired product:

r1(x) = k01e
−E1/Rx2x1 . (4.101)
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The economic measure of Eq.4.100 penalizes energy usage/removal, penalizes reac-
tant material consumption, credits the production rate of the desired product, and
penalizes the deviation of the operating temperature from the median operating tem-
perature. The fourth term of the economic cost is used to prevent the LEMPC from
operating the CSTR at the boundary of the allowable operating range for long periods
of time which is considered undesirable from a practical perspective. In this fashion,
the economic cost consists of terms that are associated with the operating cost/profit
(economic terms) as well as terms that ensure that the LEMPC operates the CSTR
in a practical and safe fashion.

For this study, the weights A1 and A2 are considered to vary with time; while,
A3 = 278 and A4 = 0.4 are constants over the 5.0 h simulated operation of the CSTR
under the LEMPC. The weight A1 is equal to 4.0 × 10−6 for t = 0.0–4.0 h and
5.0 × 10−6 for 4.0–5.0 h, and the time-dependent weight A2 is given by the following
piecewise constant relationship:

A2(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

333 0.0 h ≤ t < 1.0 h

167 1.0 h ≤ t < 2.0 h

83 2.0 h ≤ t < 3.0 h

17 3.0 h ≤ t < 4.0 h

167 4.0 h ≤ t < 5.0 h

(4.102)

Since the economic cost is considered to account for more than just the operating
cost/profit of the CSTR, the weights may be considered to account for more than
the price of a particular resource. For instance, the variation of the weight A2 may
be caused by supply and/or demand changes of the reactant A. While these weights
may come from a higher level information technology system, careful tuning of these
weights is critical to achieve both practical operation with LEMPC and economically
optimal (with respect to the actual operating cost) operation. For this particular study,
the economic cost has been chosen to vary on a time-scale comparable to the one of
the process dynamics.

In the first set of simulations, nominal operation (w ≡ 0) is considered to under-
stand the operation of the CSTR under the LEMPC operating in mode 1 only. The
formulation of the LEMPCwith explicitly time-varying cost function used to accom-
plish the desired control objective is

min
u∈S(Δ)

∫ tk+N

tk

le(τ, x̃(τ ), u(τ )) dτ

s.t. ˙̃x(t) = f (x̃(t), u(t), 0)

x̃(tk) = x(tk)

u(t) ∈ U, ∀ t ∈ [tk, tk+N )

1.26x̃21 (t) − 19.84x̃1(t) + 467.66 − x̃2(t) ≥ 0, ∀ t ∈ [tk, tk+N ) (4.103)

2.36x̃21 (t) − 26.72x̃1(t) + 428.26 − x̃2(t) ≤ 0, ∀ t ∈ [tk, tk+N )
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0.4 ≤ x̃1(t) ≤ 7.4, ∀ t ∈ [tk, tk+N )

x̃2(t) ≤ 434.5, ∀ t ∈ [tk, tk+N )

where the economic measure le is given in Eq.4.100. Since no disturbances or uncer-
tainties are present, the set X̂ is taken to be X (X̂ = X ). The sampling period
and the prediction horizon of the LEMPC is Δ = 0.1 h and N = 10, respectively.
These parameters have been chosen through extensive simulations such that the total
prediction horizon is sufficiently long to yield good economic performance of the
closed-loop system. To solve the LEMPC optimization problem at each sampling
period, the open-source interior point solver Ipopt [19] was used. A fourth-order
Runge-Kutta method with integration step of 5.0 × 10−4 h was used to numerically
solve the nonlinear ODEs of Eq.4.96. To assess the total economic performance
of each simulation, the total economic measure over the simulated operation of the
CSTR is defined as

M−1∑
j=0

[
A1(t j )u

2
2(t j ) + A2(t j )u1(t j ) − A3r1(x(t j )) + A4(x2(t j ) − 395)2

]
(4.104)

where M is the number of integration steps over the entire simulated time t f and t j
denotes an integration time step.

Since the exact future values of the cost weights may not be known exactly in a
practical setting, two caseswere simulated: (1) theLEMPCofEq. 4.103 is formulated
with a perfect forecast of time-varying economic weights and (2) the LEMPC of
Eq.4.103 is formulated with constant A1 and A2 (no forecasting). The two cases are
denoted as LEMPC-1 and LEMPC-2, respectively. For LEMPC-2, the previously
obtained weights A1 and A2 are used in the optimization problem until the LEMPC
receives new weight values which are obtained at the time instance in which the
weights change.

The CSTR is initialized at the initial condition of CA(0) = 2.0 kmolm−3 and
T (0) = 410.0K. The results of two simulations are shown in Figs. 4.8 and 4.9 under
LEMPC-1 and LEMPC-2, respectively. The total economic cost of the CSTR under
LEMPC-1 is 2.37 × 104; while, the economic cost of the CSTR under LEMPC-2
is 2.91 × 104. The key factor that contributes to the performance degradation of the
second simulation (as depicted in Figs. 4.8 and 4.9) may be observed in the input
trajectories that the two LEMPC schemes compute. For the LEMPC-1 simulation,
the LEMPC knows that the cost of the reactant material decreases at the beginning
of each of the first four hours of operation so it waits to utilize this resource until
the beginning of each of these hours when the price is less than in the previous hour.
For the LEMPC-2 simulation, the LEMPC uses the minimum amount of reactant
material at the beginning of each of these four hours. Also, the cost of the thermal
energy Q increases over the last hour of the simulated operation. In the first case, the
LEMPC utilizes the thermal energy before the price increases to increase the reactor
temperature, and then, uses less energy thereafter. In the second case, the LEMPC
supplies heat to the reactor when the cost of thermal energy has already increased.
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Fig. 4.8 The states and
inputs of the nominally
operated CSTR under
LEMPC-1 (mode 1 operation
only) initialized at
CA(0) = 2.0 kmolm−3 and
T (0) = 410.0K
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Fig. 4.9 The states and
inputs of the nominally
operated CSTR under
LEMPC-2 (mode 1 operation
only) initialized at
CA(0) = 2.0 kmolm−3 and
T (0) = 410.0K
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Comparing the evolution of the states in both cases, the regions of operation in
state-space between the two cases are similar.

Over the course of both of the simulations, the LEMPC schemes operate theCSTR
in a time-varying (transient) fashion. If the economic weights become fixed or if a
significant time-scale separation between economic cost change and the process
dynamics existed, steady-state operation would become optimal for this particu-
lar economic cost and nonlinear model. Also, the LEMPC in this example is not
formulated with any periodic, average, or integral input constraints, and is not for-
mulated with any stabilizing constraints to enforce convergence to the economically
optimal steady-state. Therefore, the reason for the time-varying operation is due to
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Fig. 4.10 The states and
inputs of the CSTR under the
LEMPC of Eq.4.103 (mode
1 operation only) when the
economic cost weights are
constant with time (solid
line) with the economically
optimal steady-state (dashed
line)
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the economic cost changing with time on a time-scale comparable to the process
dynamics. To demonstrate this point, Fig. 4.10 shows the state and input trajecto-
ries under LEMPC of Eq.4.103 (mode 1 operation of the controller only) where the
economic cost weights are constant with time. Recalling the LEMPC does not have
any constraints that enforce convergence to the steady-state, the CSTR under the
LEMPC with a prediction horizon of N = 10 settles on an offsetting steady-state
from the economically optimal steady-state, i.e., the steady-state in Γ that optimizes
the economic cost.

To assess the economic performance of the CSTR under the LEMPC, a compar-
ison between the CSTR under the LEMPC and under a conventional approach to
optimization and control, i.e., steady-state optimization with trackingMPC, was car-
ried out. The CSTR is simulated under a Lyapunov-basedMPC (LMPC), formulated
with a quadratic cost, where the LMPCworks to drive the system to the economically
optimal steady-state which is the minimizer of

min
(xs ,us )

le(t, xs, us)

s.t. f (xs, us, 0) = 0

us ∈ U, xs ∈ Γ (4.105)

for a fixed t . The optimal steady-state at a given time t is denoted as x∗
s (t) and the

optimal steady-state with time for the economic weights is given in Table4.4.
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Table 4.4 The optimal steady-state variation with respect to the time-varying economic weights

t C∗
A,s T ∗

s C∗
A0,s Q∗

s

0.0 h ≤ t < 1.0 h 1.77 414.1 2.30 591.5

1.0 h ≤ t < 2.0 h 2.12 407.5 2.61 300.9

2.0 h ≤ t < 3.0 h 2.40 402.9 2.87 151.2

3.0 h ≤ t < 4.0 h 2.75 398.1 3.20 −80.0

4.0 h ≤ t < 5.0 h 2.12 407.5 2.61 240.6

The formulation of LMPC is as follows:

min
u∈S(Δ)

∫ tk+N

tk

(∣∣x̃(τ ) − x∗
s (τ )

∣∣
Qc

+ ∣∣u(τ ) − u∗
s (τ )

∣∣
Rc

)
dτ

s.t. ˙̃x(t) = f (x̃(t), u(t), 0)

x̃(tk) = x(tk)

u(t) ∈ U, ∀ t ∈ [tk, tk+N )

∂V (x(tk); x∗
s (tk))

∂x
f (x(tk), u(tk), 0)

≤ ∂V (x(tk); x∗
s (tk))

∂x
f (x(tk), h(x(tk); x∗

s (tk)), 0) (4.106)

where the cost function is a quadratic cost function that penalizes the deviation
of states and inputs from the optimal (time-varying) steady-state. The sampling
period and prediction horizon of the LMPC are chosen to be the same as the
ones of the LEMPC. The weighting matrices are Qc = diag([2788.0, 0.6]) and
Rc = diag([27.8, 5.0 × 10−7]). A quadratic Lyapunov function of the form given
in Eq.4.98 with a positive definite matrix P = diag([280.0, 9.0]) is considered. The
Lyapunov-based controller used in the formulation of the Lyapunov-based constraint
is a set of proportional controllers (P-controllers) like that of Eq.4.97 with gains
K1 = 1 and K2 = 6000. The P-controllers have been tuned less aggressively com-
pared to the P-controllers used in the construction of the set X to allow the LMPC
more freedom in the optimization of the control action.

The CSTR is initialized at several states in state-space and is simulated with
three control strategies: (1) LEMPC-1, (2) LEMPC-2, and (3) LMPC. The total
economic cost of each simulation is given in Table4.5. The operating trajectories of
a simulation under LMPC are also given in Fig. 4.11 to demonstrate the differences in
achievable trajectories with the conventional MPC formulation working to track the
economically optimal steady-state. Clearly, the operating trajectories of the LEMPC
cannot be obtained by a tracking MPC, regardless of the tuning of the weighting
matrices. From the results of Table4.5, the economic performance of the system
under both of the LEMPC schemes is better than the performance under the tracking
LMPC.
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Table 4.5 The total economic cost of the closed-loop reactor over several simulationswith different
initial states

Initial state Total economic cost (×105) and performance improvement

x1(0) x2(0) LMPC LEMPC-1 Improvement (%) LEMPC-2 Improvement (%)

2.0 410.0 0.908 0.237 73.9 0.291 68.0

2.0 425.0 2.325 0.456 80.4 0.507 78.2

4.0 370.0 4.274 1.234 71.1 1.075 74.8

4.0 395.0 2.744 0.152 94.4 0.192 93.0

5.0 370.0 4.164 0.634 84.8 0.643 84.6

6.0 360.0 5.370 1.375 74.4 1.225 77.2

The performance improvement is relative to the economic performance under LMPC

Fig. 4.11 The states and
inputs of the CSTR under the
LMPC of Eq.4.106 used to
track the economically
optimal steady-state (dashed
line)

0.0 1.0 2.0 3.0 4.0 5.0
1.5

2.0

2.5

3.0

C
A

[k
m

ol
/m

3 ]

0.0 1.0 2.0 3.0 4.0 5.0
395.0
400.0
405.0
410.0
415.0
420.0

T [K
]

0.0 1.0 2.0 3.0 4.0 5.0
0.0
1.0
2.0
3.0
4.0
5.0

C
A

0
[k

m
ol

/m
3 ]

0.0 1.0 2.0 3.0 4.0 5.0
−4.0
−2.0

0.0
2.0
4.0
6.0

Q
×

10
4

[k
J/

h]

t [h]

For two of the initial conditions, the economic performance was better with
LEMPC-2 compared to LEMPC-1 (Table4.5). The closed-loop evolution of the
CSTR with the two LEMPC schemes for one of these simulations is shown in
Figs. 4.12 and 4.13. This is a result of not having a sufficiently long prediction
horizon for these two initial conditions. More specifically, this behavior is caused by
initializing the CSTR far away from the economically optimal region to operate the
process. For this prediction horizon (N = 10), the LEMPC cannot simulate enough
of the future evolution of the process to recognize that there is an economically bet-
ter region to operate the process. As a result, the state is maintained away from this
optimal region at the beginning of both simulations. For the LEMPC-2 simulation,
the maximum allowable amount of reactant concentration is fed to the process from
0.0 to 1.8 h. This causes the rates of the three reactions to increase. Since the heat
rate supplied/removed from the reactor is penalized in the cost and the LEMPC does
not know that the price of the reactant material will decrease at 2.0 h, Q and CA0

decrease up to about 2.0h to maintain stability. This decrease in Q andCA0 decreases
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Fig. 4.12 The states and
inputs of the nominally
operated CSTR under
LEMPC-1 initialized at
CA(0) = 4.0 kmolm−3

and T (0) = 370.0K
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Fig. 4.13 The states and
inputs of the nominally
operated CSTR under
LEMPC-2 initialized at
CA(0) = 4.0 kmolm−3

and T (0) = 370.0K
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the reactant concentration in the reactor while increasing the temperature bringing
the states closer to the economically optimal region of operation. The LEMPC is
then able to observe the economically optimal region of operation along its predic-
tion horizon. Thus, it forces the states to this region. For LEMPC-1, the LEMPC
knows that the reactant price will decrease at the beginning of each of the first four
hours. Therefore, it maintains feeding the maximum allowable reactant material to
maximize the reaction rate of the first reaction, and it supplies less heat to the reactor
compared to LEMPC-2. As a result of this behavior, process operation is maintained
far enough away from the optimal region of operation.

To assess the stability and robustness properties of the LEMPC of Eq.4.92, the
size where the LEMPC is able to operate the system in a time-varying manner to
optimize the process economic cost is reduced and the two-mode control strategy



4.5 LEMPC with a Time-Varying Stage Cost 131

is employed. Process noise is added to the closed-loop system and is modeled as
bounded Gaussian white noise on the inlet reactant concentration and inlet temper-
ature which has zero mean and the following standard deviation and bound: 0.5
and 1.0 kmolm−3, respectively, for the inlet concentration noise and 3.0 and 10.0K,
respectively, for the inlet temperature noise. To simulate the noise, a new random
number is generated and used to add noise in the process model over each integration
step. The region X̂ is approximated through the following constraints:

Fig. 4.14 The states and
inputs of the CSTR under the
two-mode LEMPC with
added process noise;
evolution with respect to
time
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Fig. 4.15 The states and
inputs of the CSTR under the
two-mode LEMPC with
added process noise;
state-space plot
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1.20x21 − 19.17x1 + 460.61 − x2 ≥ 0
2.59x21 − 29.14x1 + 438.36 − x2 ≤ 0

0.7 ≤ x1 ≤ 7.1

x2 ≤ 431.5

(4.107)

which has been estimated through extensive simulations with the given process
model, economic cost, and process noise as the region whereby closed-loop sta-
bility may be maintained. The results of a closed-loop simulation of the CSTR are
displayed in Figs. 4.14 and 4.15. The LEMPC does maintain the process inside the
region X for the duration of the simulation as observed in Figs. 4.14 and 4.15.

4.6 Conclusions

In this chapter, various LEMPC designs were developed, which are capable of opti-
mizing closed-loop performance with respect to general economic considerations for
nonlinear systems. Numerous issues arising in the context of chemical process con-
trol were considered including closed-loop stability, robustness, closed-loop perfor-
mance, asynchronous and delayed sampling, and explicitly time-varying economic
cost functions. The formulations of the LEMPC schemes were provided as well as
rigorous theoretical treatments of the schemeswere carried out. Closed-loop stability,
in the sense of boundedness of the closed-loop state, under the LEMPC designs was
proven. Additionally, when desirable, the LEMPC designs may be used to enforce
convergence of the closed-loop state to steady-state. Under a specific terminal con-
straint design, the closed-loop system under the resulting LEMPC schemewas shown
to achieve at least as good closed-loop performance as that achieved under an explicit
stabilizing controller. Demonstrations of the effectiveness of the LEMPC schemes
on chemical process examples were also provided. Moreover, the closed-loop prop-
erties of these examples under the LEMPC schemes were compared with respect to
existing approaches to optimization and control. In all cases considered, the closed-
loop economic performance under the LEMPC designs was better relative to the
conventional approaches.
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Chapter 5
State Estimation and EMPC

5.1 Introduction

In the previous chapters, all EMPC schemes are developed under the assumption of
state feedback. However, this assumption does not hold in many practical applica-
tions. To address this issue, in this chapter, we introduce two output feedback EMPC
schemes based on state estimation.

First, working with a class of full-state feedback linearizable nonlinear systems,
a high-gain observer-based output feedback EMPC scheme is presented. In this
scheme, a high-gain observer is used to estimate the system state using output mea-
surements and the EMPC uses the observer state estimates. Sufficient conditions
for the stability of the closed-loop system are derived using singular perturbation
arguments. A chemical process example is used to demonstrate the ability of the
high-gain observer-based EMPC to achieve time-varying operation that leads to a
superior economic performance compared to the performance achieved under steady-
state operation.

To improve the robustness of the closed-loop system especially to plant/model
mismatch and uncertainties and to reduce the sensitivity of the state observer to
measurement noise, a robust moving horizon estimation (RMHE) based output feed-
back EMPC design is subsequently presented. Bounded process and measurement
noise is considered. To achieve fast convergence of the state estimates to the actual
state (inducing an effective separation principle between the state observer and con-
troller designs), a deterministic (high-gain) observer is first applied for a small time
period with continuous output measurements to drive the estimation error to a small
value. After the initial time period, a RMHE designed based on the deterministic
observer is used to provide more accurate and smooth state estimates to the EMPC
and thus, improves the robustness of the closed-loop system to noise. In the RMHE
design, the deterministic observer is used to calculate a reference estimate and a con-
fidence region for the state estimate. The confidence region is subsequently used as
a constraint in the RMHE problem. Closed-loop stability is rigorously analyzed, and

© Springer International Publishing Switzerland 2017
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conditions that ensure closed-loop stability are derived. Extensive simulations based
on a chemical process example illustrate the effectiveness of the second scheme.

5.1.1 System Description

We consider nonlinear systems described by the following state-space model:

ẋ(t) = f (x(t)) + g(x(t))u(t) + l(x(t))w(t)
y(t) = h(x(t)) + v(t)

(5.1)

where x(t) ∈ R
n denotes the state vector, u(t) ∈ R

p denotes the control (manipu-
lated) input vector, w(t) ∈ R

m denotes the disturbance vector, y(t) ∈ R
q denotes

the measured output vector and v(t) ∈ R
q is the measurement noise vector. The

control input vector is restricted to a nonempty convex set U ⊆ R
p such that

U := {u ∈ R
p : |u| ≤ umax} where umax is the magnitude of the input constraint.

It is assumed that the noise vectors are bounded such as w(t) ∈ W and v(t) ∈ V for
all t ≥ 0 where

W := {w ∈ R
m : |w| ≤ θw, θw > 0}

V := {v ∈ R
q : |v| ≤ θv, θv > 0}

where θw and θv are positive real numbers. Moreover, it is assumed that the output
measurement vector y of the system is continuously available at all times. It is
further assumed that f , g, l and h are sufficiently smooth functions and f (0) = 0
and h(0) = 0.

5.1.2 Stabilizability Assumption

We assume that there exists a state feedback controller u = k(x), which renders the
origin of the nominal closed-loop system asymptotically and locally exponentially
stable while satisfying the input constraints for all the states x inside a given stabil-
ity region. Using converse Lyapunov theorems, this assumption implies that there
exist class K functions αi (·), i = 1, 2, 3, 4 and a continuously differentiable Lya-
punov function V : D → R for the closed-loop system, that satisfy the following
inequalities:

α1(|x |) ≤ V (x) ≤ α2(|x |) (5.2a)

∂V (x)

∂x
( f (x) + g(x)k(x)) ≤ −α3(|x |) (5.2b)

∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ α4(|x |) (5.2c)



5.1 Introduction 137

k(x) ∈ U (5.2d)

for all x ∈ D ⊆ R
n where D is an open neighborhood of the origin. We denote the

region Ωρ ⊆ D as the stability region of the closed-loop system under the controller
k(x). Using the smoothness assumed for f and g, and taking into account that the
manipulated input is bounded, there exists a positive constant M such that

| f (x) + g(x)u| ≤ M (5.3)

for all x ∈ Ωρ and u ∈ U. In addition, by the continuous differentiable property of the
Lyapunov function V and the smoothness of f and g, there exist positive constants
Lx , Lu , Cx , Cg′ and Cg such that

∣∣∣∣∂V (x)

∂x
f (x) − ∂V (x ′)

∂x
f (x ′)

∣∣∣∣ ≤ Lx |x − x ′|
∣∣∣∣∂V (x)

∂x
g(x) − ∂V (x ′)

∂x
g(x ′)

∣∣∣∣ ≤ Lu |x − x ′|
| f (x) − f (x ′)| ≤ Cx |x − x ′|
|g(x) − g(x ′)| ≤ Cg′ |x − x ′|∣∣∣∣∂V (x)

∂x
g(x)

∣∣∣∣ ≤ Cg

(5.4)

for all x , x ′ ∈ Ωρ and u ∈ U.

5.2 High-Gain Observer-Based EMPC Scheme

To simplify the presentation but without loss of generality, we restrict our consid-
eration to single-input single-output nonlinear systems in this section. Moreover,
we consider systems without process disturbances and measurement noise. The
later assumption is relaxed in the subsequent section where robustness is explic-
itly addressed. The system in Eq.5.1 reduces to the following system:

ẋ = f (x) + g(x)u

y = h(x)
(5.5)

where u ∈ R and y ∈ R. The presented approach may be extended to multi-input
multi-output systems in a conceptually straightforward manner.

It is assumed that the system in Eq.5.5 is full-state feedback linearizable. Thus,
the relative degree of the output with respect to the input is n. Assumption 5.1 below
states this requirement.
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Assumption 5.1 There exists a set of coordinates

z =

⎡
⎢⎢⎢⎣
z1
z2
...

zn

⎤
⎥⎥⎥⎦ = T (x) =

⎡
⎢⎢⎢⎣

h(x)
L f h(x)

...

Ln−1
f h(x)

⎤
⎥⎥⎥⎦ (5.6)

such that the system of Eq.5.1 may be written as:

ż1 = z2
...

żn−1 = zn
żn = Ln

f h(T−1(z)) + LgL
n−1
f h(T−1(z))u

y = z1

where LgL
n−1
f h(x) �= 0 for all x ∈ R

n (L f h(x) and Lgh(x) denote Lie derivatives
of the function h with respect to f and g, respectively).

Using Assumption 5.1, the system of Eq.5.5 may be rewritten in the following
compact form:

ż = Az + B[Ln
f h(T−1(z)) + LgL

n−1
f h(T−1(z))u]

y = Cz

where

A =
[
0n−1 In−1

0 0Tn−1

]
, B =

[
0n−1

1

]
, C =

[
1

0n−1

]T

,

0n−1 denotes a n − 1 dimensional vector with all elements equal to zero, and In−1

denotes the n − 1 by n − 1 identity matrix.

Remark 5.1 Assumption 5.1 imposes certain practical restrictions on the applica-
bility of the method. However, this should be balanced with the nature of the
results achieved by the output feedback controller in the sense that for a suffi-
ciently large observer gain, the closed-loop system under the output feedback con-
troller approaches the closed-loop stability region and performance of the state feed-
back controller. Essentially, a nonlinear separation-principle is achieved because of
Assumption 5.1 and the use of a high-gain observer (please see Theorem 5.1). This is
an assumption imposed in most previous works that use high-gain observers for state
estimation, starting from the early work of Khalil and co-workers [1]. With respect
to practical restrictions, our example demonstrates that the method is applicable to a
class of chemical reactor models. The requirement of full state linearizability may be
relaxed to input/output linearizability where the relative degree r is smaller than the
system dimension n. For the input/output linearizability case, an additional observer
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is required to estimate the state of the inverse dynamics; please see [2] for a detailed
development of this case.

5.2.1 State Estimation via High-Gain Observer

The state estimation-basedEMPCdeveloped in this section takes advantage of a high-
gain observer [1, 3], which obtains estimates of the output derivatives up to order
n − 1 and consequently, computes estimates of the transformed state z. From the
estimated transformed state, the system state may be estimated through the inverse
transformation T−1(·). The state estimate is denoted by x̂ . Proposition 5.1 below
defines the high-gain observer equations and establishes precise conditions under
which the combination of the high-gain observer and of the controller k(x) together
with appropriate saturation functions to eliminate wrong estimates enforce asymp-
totic stability of the origin in the closed-loop system for sufficiently large observer
gain. The proof of the proposition follows from the results in [2, 4].

Proposition 5.1 Consider the nonlinear system of Eq.5.5 for which Assumption 5.5
holds. Also, assume that there exists a k(x) for which Eq.5.2 holds and it enforces
local exponential stability of the origin in the closed-loop system. Consider the
nonlinear system of Eq.5.5 under the output feedback controller

u = k(x̂) (5.7)

where
x̂ = T−1(sat (ẑ)) (5.8)

and ˙̂z = Aẑ + L(y − Cẑ) (5.9)

with

L =
[a1

ε

a2
ε2

· · · an
εn

]T
,

and the parameters ai are chosen such that the roots of

sn + a1s
n−1 + · · · + an−1s + an = 0 (5.10)

are in the open left-half of the complex plane. Then given δ, there exists ε∗ such
that if ε ∈ (0, ε∗], |ẑ(0)| ≤ zm, x(0) ∈ Ωδ with zm being the maximum of the vector
ẑ for |ẑ| ≤ βz(δz, 0) where βz is a class K L function and δz = max{|T (x)|, x ∈
Ωδ}; the origin of the closed-loop system is asymptotically stable. This stability
property implies that for ε ∈ (0, ε∗] and given some positive constant em > 0 there
exists positive real constant tb > 0 such that if x(0) ∈ Ωδ and |ẑ(0)| ≤ zm, then
|x(t) − x̂(t)| ≤ em for all t ≥ tb.
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Remark 5.2 In Proposition 5.1, the saturation function, sat (·), is used to eliminate
the peaking phenomenon associated with the high-gain observer, see for example [1].
Also, the estimated state x̂ is considered to have converged to the actual state x
when the estimation error |x − x̂ | is less than a given bound em . The time needed to
converge, is given by tb which is proportional to the observer gain 1/ε. During this
transient, the value of the Lyapunov function V (x) may increase.

5.2.2 High-Gain Observer-Based EMPC

In this section, we consider the design of an estimation-based LEMPC for nonlinear
systems. We assume that the LEMPC is evaluated at synchronous time instants
{tk≥0} with tk = t0 + kΔ, k = 0, 1, . . . where t0 = 0 is the first time that LEMPC is
evaluated and Δ > 0 is the LEMPC sampling time.

5.2.2.1 Implementation Strategy

The high-gain observer of Eq.5.9 continuously receives output measurements and
computes estimated system states. At each sampling time tk , the LEMPC obtains the
estimated system state, which is denoted by x̂(tk), from the observer. Based on x̂(tk),
the LEMPC uses the system model of Eq.5.5 to predict the future evolution of the
system over a finite prediction horizon while minimizing an economic cost function.

The two-mode operation paradigm presented in Chap.4 is adopted in the design
of the LEMPC. From the initial time t0 up to a specific time ts the LEMPC operates
in the first operation mode to optimize the economic cost function while maintaining
the closed-loop system state in the stability region Ωρ . Without loss of generality, ts
is assumed to be a multiple of LEMPC sampling time. In the first operation mode,
a subset of the stability region, denoted by Ωρe with ρe < ρ, is defined in order to
account for the high-gain observer effect, i.e., there is a discrepancy between the
estimated state and the actual state. If the estimated state is in the region Ωρe , the
LEMPCminimizes the cost function while constraining the predicted state trajectory
to be within the regionΩρe over the prediction horizon. If the estimated state is in the
region Ωρ\Ωρe , the LEMPC computes control actions that optimize the economic
cost subject to a condition that ensures that the control actions drive the system state
to the region Ωρe . After time ts , the LEMPC operates in the second operation mode
and calculates the inputs in a way that the state of the closed-loop system is driven
to a neighborhood of the desired steady-state.

The above described implementation strategy of the LEMPCmay be summarized
as follows:

Algorithm 5.1 High-gain observer-based LEMPC implementation algorithm

1. Based on the output measurements y(t), the high-gain observer continuously
estimates the state x̂(t) (for all t ≥ t0 = 0). The LEMPC receives the estimated
state at a sampling time tk from the observer.

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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2. If tk < ts , go to Step 3. Else, go to Step 4.
3. If x̂(tk) ∈ Ωρe , go to Step 3.1. Else, go to Step 3.2.

3.1. The controller optimizes the economic cost function while constraining the
predicted state trajectory to lie within Ωρe . Go to Step 5.

3.2. The controller optimizes the economic cost function while ensuring the com-
puted control actions drive the state to the region Ωρe . Go to Step 5.

4. The controller computes control actions that drive the state to a small neighbor-
hood of the origin.

5. Go to Step 1 (k ← k + 1).

5.2.2.2 LEMPC Formulation

The LEMPC is evaluated at each sampling time to obtain the future input trajectories
based on estimated state x̂(tk) provided by the high-gain observer. Specifically, the
optimization problem of the LEMPC is as follows:

min
u∈S(Δ)

∫ tk+N

tk

le(x̃(τ ), u(τ )) dτ (5.11a)

s.t. ˙̃x(t) = f (x̃(t)) + g(x̃(t))u(t) (5.11b)

x̃(tk) = x̂(tk) (5.11c)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (5.11d)

V (x̃(t)) ≤ ρe, ∀ t ∈ [tk, tk+N ),

if V (x̂(tk)) ≤ ρe and tk < ts (5.11e)

LgV (x̂(tk))u(tk) ≤ LgV (x̂(tk))k(x̂(tk)),

if V (x̂(tk)) > ρe or tk ≥ ts (5.11f)

where x̃ is the predicted trajectory of the system with control inputs calculated by
the LEMPC. The notation used in the LEMPC of Eq.5.11 is similar to that of the
LEMPC of Eq.4.3. The constraint of Eq.5.11b is the system model used to predict
the future evolution of the system. The model is initialized with the estimated state
x̂(tk) computed by the high-gain observer. The constraint of Eq.5.11d accounts for
the inputs constraints. The constraint of Eq.5.11e is associated with the mode 1
operation of the LEMPC, which restricts the predicted system state to be in the set
Ωρe , while the constraint of Eq.5.11f is associated with the mode 2 operation of the
LEMPC. The latter constraint restricts the control input for the first sampling period
of the prediction horizon so that the amount of reduction of the Lyapunov function
value is at least at the same level as that achieved by applying the controller k(x).
The constraint of Eq.5.11f is used when x̂(tk) /∈ Ωρe or when tk ≥ ts .

The optimal solution to the optimization problem is denoted by u∗(t |tk) for t ∈
[tk, tk+N ). The control actions computed by the LEMPC that are applied to the system
are defined as follows:

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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u(t) = u∗(t |tk), ∀ t ∈ [tk, tk+1) (5.12)

which is computed at each sampling time.

5.2.3 Closed-Loop Stability Analysis

In this subsection, the closed-loop stability of the output feedback EMPC is analyzed
and a set of sufficient conditions is derived. In order to present the results, we need
the following proposition, which states the closed-loop stability properties under the
LEMPCwith full state feedback. The proposition is a slight variation of Theorem 4.1,
and therefore, its proof is omitted.

Proposition 5.2 (Theorem 4.1) Consider the system of Eq.5.5 in closed-loop under
the LEMPC of Eq.5.11 with state feedback, i.e., x̃(tk) = x(tk), based on a controller
k(·) that satisfies the conditions of Eq.5.2. Let εw > 0,Δ > 0 and ρ > ρs > 0 satisfy
the following constraint:

− α3(α
−1
2 (ρs)) + LxMΔ ≤ −εw/Δ. (5.13)

If x(0) ∈ Ωρ , then x(t) ∈ Ωρ for all t ≥ 0. Furthermore, there exists a class K L
function β and a class K function γ such that

|x(t)| ≤ β(|x(t∗)|, t − t∗) + γ (ρ∗) (5.14)

with ρ∗ = max{V (x(t + Δ)) : V (x(t)) ≤ ρs}, for all x(t∗) ∈ Bδ ⊂ Ωρ and for all
t ≥ t∗ > ts where t∗ is such that x(t∗) ∈ Bδ .

Theorem 5.1 below provides sufficient conditions such that the state estimation-
based LEMPC of Eq.5.11 with the high-gain observer of Eq.5.9 guarantees that
the state of the closed-loop system of Eq.5.5 is always bounded and is ultimately
bounded in a small region containing the origin. To this end, let:

ei = 1

εn−i
(y(i−1) − ẑi ), i = 1, . . . , n, (5.15)

eT = [e1 e2 · · · en] (5.16)

and

A∗ =

⎡
⎢⎢⎢⎣

−a1 1 0 · · · 0 0
...

...
...

. . .
...

...

−an−1 0 0 · · · 0 1
−an 0 0 · · · 0 0

⎤
⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎣
0
...

0
1

⎤
⎥⎥⎥⎦ (5.17)

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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where y(i−1) is the (i − 1)-th derivative of the output measurement y and ẑi is the
i-th component of ẑ.

Theorem 5.1 Consider the closed-loop system of Eq.5.5 with the state estimation-
based LEMPC of Eq.5.11 based on a feedback controller k(·) that satisfies the
conditions of Eq.5.2. Let Assumption 5.1, Eqs.5.13, 5.15–5.17 hold and choose the
parameters ai (i = 1, . . . , n) such that the roots of Eq.5.10 are in the open left-half
of the complex plane. Then there exist a classK L function β, a classK function
γ , a pair of positive real numbers (δx , dx ), 0 < ρe < ρ, ε∗ > 0 and Δ∗ > 0 such
that if max{|x(0)|, |e(0)|} ≤ δx , ε ∈ (0, ε∗], Δ ∈ (0,Δ∗],

− α3(α
−1
1 (ρs)) + (MΔ + em)(Lx + Luu

max) < 0 (5.18)

and
ρe ≤ ρ − α4(α

−1
1 (ρ))M max{tb(ε),Δ} (5.19)

with tb defined in Proposition 5.1, then x(t) ∈ Ωρ for all t ≥ 0. Furthermore, for all
t ≥ t∗ > ts , the following bound holds:

|x(t)| ≤ β(|x(t∗)|, t − t∗) + γ (ρ∗) + dx . (5.20)

Proof When the control action applied to the closed-loop system of Eq.5.5 is
obtained from the state estimation-based LEMPC of Eq. 5.11, the closed-loop system
takes the following singularly perturbed form:

ẋ = f (x) + g(x)u∗(x̂)

εė = A∗e + εbLn
f h(T−1(z)) + εbLgL

n−1
f h(T−1(z))u∗(x̂)

(5.21)

where the notation u∗(x̂) is used to emphasize that the control action computed by
the state estimation-based LEMPC is a function of the estimated state.

First, we compute the reduced-order slow and fast closed-loop subsystems related
toEq.5.21 and prove the closed-loop stability of the slow and fast subsystems. Setting
ε = 0 in Eq.5.21, we obtain the corresponding slow subsystem as follows:

ẋ = f (x) + g(x)u∗(x̂) (5.22a)

A∗e = 0 (5.22b)

Taking into account the fact that A∗ is non-singular and e = [0 0 · · · 0]T is the
unique solution of Eq.5.22b, we may obtain ẑi = y(i−1), i = 1, . . . , n and x(t) =
x̂(t). This means that the closed-loop slow subsystem is reduced to the one studied
in Proposition 5.2 under state feedback. According to Proposition 5.2, if x(0) ∈
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Bδ ⊂ Ωρ , then x(t) ∈ Ωρ for all t ≥ 0 and for all t ≥ t∗ > ts , the following bound
holds:

|x(t)| ≤ β(|x(t∗)|, t − t∗) + γ (ρ∗) (5.23)

where ρ∗ and t∗ have been defined in Proposition 5.2.
Introducing the fast time scale τ̄ = t/ε and setting ε = 0, the closed-loop fast

subsystem may be represented as follows:

de

d τ̄
= A∗e . (5.24)

Since A∗ is Hurwitz, the closed-loop fast subsystem is also stable.Moreover, there
exist ke ≥ 1 and ae > 0 such that:

|e(τ̄ )| ≤ ke|e(0)|e−ae τ̄ (5.25)

for all τ̄ ≥ 0.
Next, we consider t ∈ (0,max{Δ, tb}] and t ≥ max{Δ, tb} separately and prove

that if conditions stated in Theorem 1 are satisfied, boundedness of the state is
ensured. Note that tb decreases as ε decreases. When x(0) ∈ Bδx ⊂ Ωρe ⊂ Ωρ , and
δx < δ, considering the closed-loop system state trajectory:

ẋ(t) = f (x(t)) + g(x(t))u∗(x̂(0))

for t ∈ (0,max{Δ, tb}] and using Eqs. 5.2 and 5.3, we obtain that for all t ∈
(0,max{Δ, tb}]:

V (x(t)) = V (x(0)) +
∫ t

0
V̇ (x(τ ))dτ

= V (x(0)) +
∫ t

0

∂V (x(τ ))

∂x
ẋ(τ )dτ

≤ ρe + M max{Δ, tb(ε)}α4(α
−1
1 (ρ))

(5.26)

Since tb decreases as ε decreases, there exist Δ1 and ε1 such that if Δ ∈ (0,Δ1] and
ε ∈ (0, ε1], Eq. 5.19 holds and thus,

V (x(t)) < ρ (5.27)

for all t ∈ (0,max{Δ, tb}].
For t ≥ max{Δ, tb}, we have that |x(t) − x̂(t)| ≤ em (this follows from Propo-

sition 1 and em decreases as ε decreases), and we may write the time derivative of
the Lyapunov function along the closed-loop system state of Eq. 5.5 under the state
estimation-based LEMPC of Eqs. 5.11f, 5.9 and 5.11 for all t ∈ [tk, tk+1) (assuming
without loss of generality that tk = max{Δ, tb}) as follows
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V̇ (x(t)) = ∂V (x(t))

∂x
( f (x(t)) + g(x(t))u∗(x̂(tk))) . (5.28)

Adding and subtracting the term ∂V (x̂(tk))/∂x( f (x̂(tk)) + g(x̂(tk))u∗(x̂(tk))) to/
from the above inequality and from Eqs. 5.2 and 5.11f, we obtain

V̇ (x(t)) ≤ −α3(α
−1
1 (ρs))

+∂V (x)

∂x

(
f (x(t)) − f (x̂(tk)) + (g(x(t)) − g(x̂(tk))u

∗(x̂(tk)))
)
(5.29)

Using the smoothness properties of V, f, g and Eq.5.4, we may obtain

V̇ (x(t)) ≤ −α3(α
−1
1 (ρs)) + (Lx + Luu

max)|x(t) − x̂(tk)| (5.30)

From the triangle inequality, Eq. 5.3, and the fact that the estimation error is bounded
by em for t ≥ max{Δ, tb},

|x(t) − x̂(tk)| ≤ |x(t) − x(tk)| + |x(tk) − x̂(tk)| ≤ MΔ + em

for x(t), x(tk), x̂(tk) ∈ Ωρ where |x(tk) − x̂(tk)| ≤ em . Thus,

V̇ (x(t)) ≤ −α3(α
−1
1 (ρs)) + (Lx + Luu

max)(MΔ + em) (5.31)

Picking ε2 and Δ2 such that for all ε ∈ (0, ε2] and for all Δ ∈ (0,Δ2], Eq. 5.18 is
satisfied, the closed-loop system state x(t) is bounded in Ωρ , for all t ≥ max{Δ, tb}.
Finally, using similar arguments to the proof of Theorem 1 in [5], we have that there
exist class K L function β, positive real numbers (δx , dx ) (note that the existence
of δx < δ such that |x(0)| ≤ δx follows from the smoothness of V ), and 0 < ε∗ <

min{ε1, ε2} and 0 < Δ∗ < min{Δ1,Δ2} such that if max{|x(0)|, |e(0)|} ≤ δx , ε ∈
(0, ε∗] and Δ ∈ (0,Δ∗], then, the bound of Eq.5.20 holds for all t ≥ 0.

Remark 5.3 Under the state feedbackLEMPC, the closed-loop systemstate is always
bounded inΩρ for bothmode 1 andmode 2 operation; however, formode 2 operation,
after time t∗ the closed-loop system state enters the ball Bδ , and the closed-loop
system state may be bounded by Eq.5.23. On the other hand, in state estimation-
based LEMPC, the closed-loop system state is always bounded in Ωρ , if the initial
system state belongs in Bδx ⊂ Ωρe ⊂ Ωρ .

Remark 5.4 The major motivation for taking advantage of the nonlinear controller
k(x) arises from the need for formulating an a priori feasible economicMPCproblem
for a well-defined set of initial conditions. The control action of k(x) is always a
feasible candidate for the LEMPC design (even though the LEMPC via optimization
is free to choose a different control action) and the LEMPC may take advantage of
k(x) to characterize its own corresponding stability region. In addition, the closed-
loop system state is always bounded in the invariant stability region of k(x).
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5.2.4 Application to a Chemical Process Example

Consider awell-mixed, non-isothermal continuous stirred tank reactor (CSTR)where
an irreversible, second-order, endothermic reaction A → B takes place, where A is
the reactant and B is the desired product. The feedstock of the reactor consists
of the reactant A in an inert solvent with flow rate F , temperature T0 and molar
concentration CA0. Due to the non-isothermal nature of the reactor, a jacket is used
to provide heat to the reactor. The dynamic equations describing the behavior of
the reactor, obtained through material and energy balances under standard modeling
assumptions, are given below:

dCA

dt
= F

VL
(CA0 − CA) − k0e

−E/RTC2
A (5.32a)

dT

dt
= F

VL
(T0 − T ) + −ΔH

ρLCp
k0e

−E/RTC2
A + Qs

ρLCpVL
(5.32b)

where CA denotes the concentration of the reactant A, T denotes the temperature of
the reactor, Qs denotes the steady-state rate of heat supply to the reactor, VL repre-
sents the volume of the reactor, ΔH , k0, and E denote the enthalpy, pre-exponential
constant and activation energy of the reaction, respectively, andCp and ρL denote the
heat capacity and the density of the fluid in the reactor, respectively. The values of the
process parameters used in the simulations are given in Table5.1. The process model
of Eq.5.32 is numerically simulated using an explicit Euler integration method with
integration step hc = 1.0 × 10−3 h.

The process model has one stable steady-state in the operating range of interest.
The control objective is to economically optimize the process in a region around the
stable steady-state (CAs , Ts) to maximize the average production rate of B through
manipulation of the concentration of A in the inlet to the reactor, CA0. The steady-
stateCA0 value associatedwith the steady-state point is denoted byCA0s . The process
model of Eq.5.32 belongs to the following class of nonlinear systems:

ẋ(t) = f (x(t)) + g(x(t))u(t)

Table 5.1 CSTR model parameter values

T0 = 300 K F = 5.0 m3 h−1

VL = 1.0 m3 E = 5.0 × 103 kJ kmol−1

k0 = 13.93 m3 kmol−1 h−1 ΔH = 1.15 × 104 kJ kmol−1

Cp = 0.231 kJ kg−1K−1 R = 8.314 kJ kmol−1K−1

ρL = 1000 kg m−3 CAs = 2.0 kmolm−3

Ts = 350 K CA0s = 4.0 kmol m−3

Qs = 1.73 × 105 kJ h−1
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where xT = [x1 x2] = [CA − CAs T − Ts] is the state, u = CA0 − CA0s is the input,
f = [ f1 f2]T and gi = [gi1 gi2]T (i = 1, 2) are vector functions. The input is sub-
ject to constraint as follows: |u| ≤ 3.5 kmolm−3. There is an economic measure
considered in this example as follows:

1

t f

∫ t f

0
k0e

−E/RT (τ )C2
A(τ ) dτ (5.33)

where t f is the time duration of the reactor operation. The economic objective func-
tion of Eq.5.33 describes the average production rate over the entire process oper-
ation. We also consider that there is a limitation on the amount of reactant material
which may be used over a specific period tp = 1.0 h. Specifically, u = CA0 − CA0s

should satisfy the following constraint:

1

tp

∫ tp

0
u(τ ) dτ = 1.0 kmolm−3. (5.34)

It should be emphasized that due to the second-order dependence of the reaction
rate on the reactant concentration, the production rate may be improved through
switching between the upper and lower bounds of the manipulated input, as opposed
to steady-state operation via uniform in time distribution of the reactant in the feed;
refer to the discussion contained in Sect. 1.3.2 for further explanation of this point.

In this section, we will design a state estimation-based LEMPC to manipulate
the CA0 subject to the material constraint. In the first set of simulations, we assume
that state feedback information is available at synchronous time instants while in the
second set of simulations, we take advantage of a high-gain observer to estimate the
reactant concentration from temperature measurements.

In terms of the Lyapunov-based controller, we use a proportional controller (P-
controller) of the form u = −γ1x1 − γ2x2 subject to input constraintswhere γ1 = 1.6
and γ2 = 0.01 and a quadratic Lyapunov function V (x) = xT Px where

P = diag([110.11, 0.12]) ,

and ρ = 430. It should be emphasized thatΩρ has been estimated through evaluation
of V̇ when we apply the proportional controller. We assume that the full system state
x = [x1 x2]T is measured and sent to the LEMPC at synchronous time instants
tk = kΔ, k = 0, 1, . . ., with Δ = 0.01 h = 36 s in the first set of simulations. For
the output feedback LEMPC (second set of simulations), only temperature (x2) is
measured and a high-gain observer is utilized to estimate the reactant concentration
from temperature measurements.

Considering thematerial constraint which needs to be satisfied through one period
of process operation, a decreasing LEMPC horizon sequence N0, . . . , N99 where
Ni = 100 − i and i = 0, . . . , 99 is utilized at the different sampling times. At each
sampling time tk , the LEMPCwith horizon Nk takes into account the leftover amount
of reactant material and adjusts its horizon to predict future system state up to time

http://dx.doi.org/10.1007/978-3-319-41108-8_1
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tp = 1.0 h to maximize the average production rate. Since the LEMPC is evaluated
at discrete-time instants during the closed-loop simulation, the material constraint is
enforced as follows:

M−1∑
i=0

u(ti ) = tp
Δ
1.0 kmolm−3 (5.35)

where M = 100. As LEMPC proceeds at different sampling times, the constraint is
adjusted according to the optimal manipulated input at previous sampling times.

The state feedback LEMPC formulation for the chemical process example in
question has the following form:

max
u∈S(Δ)

1

NkΔ

∫ tk+Nk

tk

[k0e−E/R(x̃2(τ )+Ts )(x̃1(τ ) + CAs)
2] dτ (5.36a)

s.t. ˙̃x(t) = f (x̃(t)) + g(x̃(t))u(t), ∀ t ∈ [tk, tk+Nk ) (5.36b)

x̃(tk) = x(tk) (5.36c)

u(t) ∈ U, ∀ t ∈ [tk, tk+Nk ) (5.36d)
k+Nk−1∑

i=k

u(ti |tk) = ζk (5.36e)

V (x̃(t)) ≤ ρ, ∀ t ∈ [tk, tk+Nk ) (5.36f)

where x(tk) is the process state measurement at sampling time tk and the predicted
system state along the LEMPC horizon is restricted to lie within the invariant set Ωρ

through enforcement of the constraint of Eq.5.36f subject to the manipulated input
constraint of Eq.5.36d. The constraint of Eq.5.36e implies that the optimal values
of u along the prediction horizon should be chosen to satisfy the material constraint
where the explicit expression of ζk may be computed based on Eq.5.35 and the
optimal manipulated input values prior to sampling time tk . In other words, this
constraint indicates the amount of the remaining reactant material at each sampling
time. Thus, it ensures that the material constraint is enforced through one period of
process operation.

In terms of the initial guess for solving the optimization problem of Eq.5.36, at the
first sampling time we take advantage of the Lyapunov-based controller while for the
subsequent sampling times, a shifted version of the optimal solution of the previous
sampling time is utilized. The simulations were carried out using Java programming
language in aPentium3.20GHzcomputer and the optimization problemswere solved
using the open source interior point optimizer Ipopt [6]. The purpose of the following
set of simulations is to demonstrate that: (I) the LEMPC design subject to state and
output feedback restricts the system state in an invariant set; (II) the LEMPC design
maximizes the economic measure of Eq.5.36a; and (III) the LEMPC design achieves
a higher objective function value compared to steady-state operation with equal
distribution in time of the reactant material. We have also performed simulations
for the case that the constraint of Eq.5.36f is not included in the LEMPC design of
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Fig. 5.1 The stability region Ωρ and the state trajectories of the process under the LEMPC design
of Eq.5.36 with state feedback and initial state (CA(0), T (0)) = (1.3 kmolm−3, 320K) for one
period of operation with (solid line) and without (dash-dotted line) the constraint of Eq.5.36f. The
symbols ◦ and× denote the initial (t = 0.0 h) and final (t = 1.0 h) state of these closed-loop system
trajectories, respectively
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Fig. 5.2 State trajectories of the process under the LEMPC design of Eq.5.36 with state feedback
and initial state (CA(0), T (0)) = (1.3 kmolm−2, 320K) for one period of operation with (solid
line) and without (dash-dotted line) the constraint of Eq.5.36f

Eq. 5.36. In this case, the process state is not constrained to be in a specific invariant
set.

In the first set of simulations, we take the CSTR operation time t f = tp = 1.0 h.
Figures5.1, 5.2 and 5.3 illustrate the process state profile in state space (temperature
T versus concentration CA) considering the stability region Ωρ , the time evolu-
tion of process state and the manipulated input profile for the LEMPC formulation
of Eq.5.36 with and without the state constraint of Eq.5.36f, respectively. In both
cases, the initial process state is (1.3 kmolm−3, 320K). For both cases, the material
constraint is satisfied while in the unconstrained state case, there is more freedom
to compute the optimal input trajectory to maximize the average production rate. It
needs to be emphasized that the process state trajectory under the LEMPC design of
Eq.5.36 subject to the constraint of Eq. 5.36f never leaves the invariant level set Ωρ

when this constraint is enforced.
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Fig. 5.3 Manipulated input trajectory under the LEMPC design of Eq.5.36 with state feedback and
initial state (CA(0), T (0)) = (1.3 kmolm−3, 320K) for one period of operation with (solid line)
and without (dash-dotted line) the constraint of Eq.5.36f

We have also compared the time-varying operation through LEMPC of Eq.5.36 to
steady-state operation where the reactant material is uniformly distributed in the feed
to the reactor over the process operation time of 1h from a closed-loop performance
point of view. To carry out this comparison, we have computed the total cost of each
operating scenario based on an index of the following form:

J = 1

tM

M−1∑
i=0

[k0e− E
RT (ti ) C2

A(ti )]

where t0 = 0.0 h, tM = 1.0 h and M = 100. To be consistent in comparison, both
of the simulations have been initialized from the steady-state point (2.0 kmolm−3,

350K). We find that through time-varying LEMPC operation, there is approximately
7% improvement with respect to steady-state operation. Specifically, in the case of
LEMPC operation with ρ = 430 the cost is 13.48, in the case of LEMPC operation
with ρ = ∞ (LEMPC of Eq.5.36 without the state constraint of Eq. 5.36f) the cost
is 13.55 and in the case of steady-state operation the cost is 12.66.

We have also performed closed-loop simulation with the state estimation-based
LEMPC (again, t f = tp = 1.0 h). For this set of simulation, the high-gain observer
parameters are ε = 0.01, a1 = a2 = 1, ρe = 400 and zm = 1685; the high-gain
observer is of the form of Eq.5.9 with n = 2. In this case, the LEMPC formulation at
each sampling time is initialized by the estimated system state x̂(tk)while the output
(temperature) measurement is continuously available to the high-gain observer. To
ensure that the actual system state is restricted in Ωρ , we set ρe = 400. Figures5.4,
5.5 and 5.6 illustrate the process state profile in state-space (temperature T versus
concentration CA) considering the stability region Ωρ , the time evolution of process
states and themanipulated input profile for the LEMPC formulation of Eq. 5.36 using
high-gain observer and with the state constraint of Eq.5.36f, respectively. Similar to
the state feedback case, the initial process state is (1.3 kmolm−3, 320K). Through
LEMPC implementation, the material constraint is satisfied while the closed-loop
system state is restricted inside the stability region Ωρ . The cost is 12.98 which is
greater than the one for steady-state operation (12.66).

Also, we performed a set of simulations to compare LEMPC with the Lyapunov-
based controller from an economic closed-loop performance point of view for opera-
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Fig. 5.4 The stability region Ωρ and the state trajectories of the process under the state under the
state estimation-based LEMPC and initial state (CA(0), T (0)) = (1.3 kmolm−3, 320K) for one
period of operation subject to the constraint of Eq.5.36f. The symbols ◦ and × denote the initial
(t = 0.0 h) and final (t = 1.0 h) state of this closed-loop system trajectories, respectively
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Fig. 5.5 State trajectories of the process under the state estimation-based LEMPC and initial state
(CA(0), T (0)) = (1.3 kmolm−3, 320K) for one period of operation subject to the constraint of
Eq.5.36f

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

u 
(k

m
ol

/m
3 )

Time (h)

Fig. 5.6 Manipulated input trajectory under the state estimation-based LEMPC and initial state
(CA(0), T (0)) = (1.3 kmolm−3, 320K) for one period of operation subject to the constraint of
Eq.5.36f
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Fig. 5.7 The stability region Ωρ and the state trajectories of the process under the state estimation-
based LEMPC and initial state (CA(0), T (0)) = (1.3 kmolm−3, 320K) for 10h operation in mode
1, followed by 10h of operation in mode 2 and finally, 10 h of operation in mode 1. The sym-
bols ◦ and × denote the initial (t = 0.0 h) and final (t = 30.0 h) state of this closed-loop system
trajectories, respectively
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Fig. 5.8 Reactant concentration trajectory of the process under the state estimation-based LEMPC
and initial state (CA(0), T (0)) = (1.3 kmolm−3, 320K) for 10h operation in mode 1, followed by
10h of operation in mode 2 and finally, 10 h of operation in mode 1

tion over two consecutive 1h periods, i.e., t f = 2.0 h and tp = 1.0 h. To be consistent
in this comparison in the sense that both the LEMPC and the Lyapunov-based con-
troller use the same, available amount of reactant material, we start the simulation
in both cases from the same initial condition (2.44 kmolm−3, 321.96K), which cor-
responds to the steady-state of the process when the available reactant material is
uniformly distributed over each period of operation. The objective of the Lyapunov-
based controller is to keep the system state at this steady-state, while the output
feedback LEMPC leads to time-varying operation that optimizes directly the eco-
nomic cost. The corresponding economic costs for this 2-h operation are 26.50 for
the LEMPC and 25.61 for the Lyapunov-based controller.

Furthermore, to demonstrate long-term reactor operation, i.e., t f = 30.0 h and
tp = 1.0 h,we operate the process in a time-varying fashion to optimize the economic
cost in mode 1 for the first 10h, then switch to mode 2 to drive the closed-loop state
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Fig. 5.9 Temperature trajectory of the process under the state estimation-based LEMPC and initial
state (CA(0), T (0)) = (1.3 kmolm−3, 320K) for 10h operation in mode 1, followed by 10h of
operation in mode 2 and finally, 10 h of operation in mode 1
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Fig. 5.10 Manipulated input trajectory under the state estimation-based LEMPC and initial state
(CA(0), T (0)) = (1.3 kmolm−3, 320K) for 10h operation inmode 1, followed by 10h of operation
in mode 2 and finally, 10 h of operation in mode 1

to the steady-state corresponding to u = 1.0, i.e., equal distribution with time of the
reactant material, for the next 10h, and finally, operate the process in mode 1 for the
last 10h. Figures5.7, 5.8, 5.9 and 5.10 display the results for this case, where the
closed-loop system successfully alternates between the two different types (time-
varying versus steady-state) of operation.

Finally, we performed a set of simulations to evaluate the effect of bounded mea-
surement noise. Figures5.11, 5.12 and 5.13 display the closed-loop system state and
manipulated input of the state-estimation-based LEMPC subject to bounded output
(temperature) measurement noise whose absolute value is bounded by 1.0K. As it
may be seen in Figs. 5.11, 5.12 and 5.13, the controller may tolerate the effect of
measurement noise; in this case, Ωρe was reduced to 370 to improve the robustness
margin of the controller to measurement noise. Economic closed-loop performance
in this case is 12.95.

5.3 RMHE-Based EMPC Scheme

In the previous section, a high-gain observer is used in the design of the output feed-
back EMPC without explicitly considering process and measurement noise. In order
to improve the robustness of the observer to plant-model mismatch and uncertainties
while reducing its sensitivity to measurement noise significantly, a robust moving
horizon estimation (RMHE) based output feedback LEMPC design is presented in
this section. We consider systems that may be described by Eq.5.1.
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Fig. 5.11 The stability regionΩρ and the state trajectories of the process under the state estimation-
based LEMPC and initial state (CA(0), T (0)) = (1.3 kmolm−3, 320K) for one period of operation
subject to the constraint of Eq.5.36f and bounded measurement noise. The symbols ◦ and× denote
the initial (t = 0.0 h) and final (t = 1.0 h) state of this closed-loop system trajectories, respectively
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Fig. 5.12 State trajectories of the process under the state estimation-based LEMPC and initial state
(CA(0), T (0)) = (1.3 kmolm−3, 320K) for one period of operation subject to the constraint of
Eq.5.36f and bounded measurement noise
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Fig. 5.13 Manipulated input trajectory under the state estimation-based LEMPC and initial state
(CA(0), T (0)) = (1.3 kmolm−3, 320K) for one period of operation subject to the constraint of
Eq.5.36f and bounded measurement noise
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5.3.1 Observability Assumptions

It is assumed that there exists a deterministic observer that takes the following general
form:

ż = F(ε, z, y) (5.37)

where z is the observer state, y is the output measurement vector and ε is a posi-
tive parameter. This observer together with the state feedback controller u = k(x)
of Sect. 5.1.2 form an output feedback controller: ż = F(ε, z, y), u = k(z) which
satisfies the following assumptions:

(1) there exist positive constants θ∗
w, θ

∗
v such that for each pair {θw, θv}with θw ≤ θ∗

w,
θv ≤ θ∗

v , there exist 0 < ρ1 < ρ, em0 > 0, ε∗
L > 0, ε∗

U > 0 such that if x(t0) ∈
Ωρ1 , |z(t0) − x(t0)| ≤ em0 and ε ∈ (ε∗

L , ε
∗
U ), the trajectories of the closed-loop

system are bounded in Ωρ for all t ≥ t0;
(2) and there exists e∗

m > 0 such that for each em ≥ e∗
m , there exists tb such that

|z(t) − x(t)| ≤ em for all t ≥ tb(ε).

Note that a type of observer that satisfies the above assumptions is a high-
gain observer like that presented in Sect. 5.2; see, also, [7] for results on high-gain
observers subject to measurement noise. From an estimate error convergence speed
point of view, it is desirable to pick the observer parameter ε as small as possible;
however, when the parameter ε is too small, i.e., the observer gain is too large, it will
make the observer very sensitive to measurement noise. In the observer assumptions,
a key idea is to pick the gain ε in a way that balances the estimate error convergence
speed to zero and the effect of the noise. In the remainder of this section, the estimate
given by the observer F will be denoted as z.

Remark 5.5 It is important to point out the difference between the positive constants
θ∗
w and θ∗

v and the bounds θw and θv. Specifically, the positive constants θ∗
w and θ∗

v
correspond to theoretical bounds on the noise such that the closed-loop system under
the output feedback controller: ż = F(ε, z, y), u = k(z) is maintained in Ωρ . The
constants θ∗

w and θ∗
v depend on the stability properties of a given system under the

output feedback controller. On the other hand, the bounds θw and θv correspond to the
actual bound on the process and measurement noise for a given (open-loop) system.

5.3.2 Robust MHE

The idea of RMHE was initially developed in [8] integrating deterministic observer
techniques and optimization-based estimation techniques in a unified framework. In
the RMHE, an auxiliary deterministic nonlinear observer that is able to asymptoti-
cally track the nominal system state is used to calculate a confidence region. In the
calculation of the confidence region, bounded process and measurement noise are
taken into account. The RMHE problem is constrained to ensure that it computes
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a state estimate that is within the confidence region. By this approach, the RMHE
gives bounded estimation error in the case of bounded process noise. Moreover, the
RMHE could be used together with different arrival cost approximation techniques
and was shown to compensate for the error in the arrival cost approximation [8]. The
RMHE has been applied to the design of a robust output feedback Lyapunov-based
MPC [9] and has also been extended to estimate the state of large-scale systems in
a distributed manner [10]. The RMHE scheme in [8] will be adopted in this section
to take advantage of the tunable convergence speed of the observer presented in
the previous subsection while significantly reducing its sensitivity to measurement
noise.

The RMHE is evaluated at discrete time instants denoted by the time sequence
{tk}k≥0 with tk = t0 + kΔ, k = 0, 1, . . . where t0 is the initial time. In the RMHE
scheme, the deterministic observer, which is denoted by F , will be used to calculate a
reference state estimate at each sampling time fromcontinuous outputmeasurements.
Based on the reference state estimate, the RMHE determines a confidence region for
the actual system state. The RMHE computes a state estimate within the confidence
region based on a sequence of previous output measurements, a system model, and
bounds information of the process and measurement noise. The RMHE scheme at
time instant tk is formulated as follows:

min
x̃(tk−Ne ),...,x̃(tk )

k−1∑
i=k−Ne

|w(ti )|2Q−1
m

+
k∑

i=k−Ne

|v(ti )|2R−1
m

+ V̂T (tk−Ne) (5.38a)

s.t. ˙̃x(t) = f (x̃(t)) + g(x̃(t))u(t) + l(x̃(t))w(ti ), t ∈ [ti , ti+1], (5.38b)

v(ti ) = y(ti ) − h(x̃(ti )), i = k − Ne, k − Ne + 1, . . . , k (5.38c)

w(ti ) ∈ W, i = k − Ne, k − Ne + 1, . . . , k − 1 (5.38d)

v(ti ) ∈ V, i = k − Ne, k − Ne + 1, . . . , k (5.38e)

x̃(t) ∈ Ωρ, ∀ t ∈ [tk−Ne , tk] (5.38f)

|x̃(tk) − z(tk)| ≤ κ|y(tk) − h(z(tk))| (5.38g)

where Ne is the estimation horizon, Qm and Rm are the estimated covariancematrices
of w and v respectively, V̂T (tk−Ne) denotes the arrival cost which summarizes past
information up to tk−Ne , x̃ is the predicted state x in the above optimization problem,
y(ti ) is the output measurement at ti , z(tk) is an estimate given by the observer F
based on continuous measurements of y, and κ is a positive constant which is a
design parameter.

Once the optimization problem of Eq.5.38 is solved, an optimal trajectory of the
system state, x̃∗(tk−Ne), . . ., x̃

∗(tk), is obtained. The optimal estimate of the current
system state is denoted:

x̂∗(tk) = x̃∗(tk). (5.39)
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Note that in the optimization problem of Eq.5.38, w and v are assumed to be piece-
wise constant variables with sampling time Δ to ensure that Eq.5.38 is a finite
dimensional optimization problem.

In the optimization problem of Eq.5.38, z(tk) is a reference estimate calculated by
the observer F . Based on the reference estimate and the current output measurement,
y(tk), a confidence region that contains the actual system state is constructed, i.e.,
κ|y(tk) − h(z(tk))|. The estimate of the current state provided by the RMHE is only
allowed to be optimized within the confidence region. This approach ensures that the
RMHE inherits the robustness of the observer F and gives estimates with bounded
errors.

Remark 5.6 In order to account for the effect of historical data outside the estimation
window, an arrival cost which summarizes the information of those data is included
in the cost function of an MHE optimization problem. The arrival cost plays an
important role in the performance and stability of an MHE scheme. Different meth-
ods have been developed to approximate the arrival cost including Kalman filtering
and smoothing techniques for linear systems [11], extended Kalman filtering for
nonlinear systems [12], and particle filters for constrained systems [13].

5.3.3 RMHE-Based EMPC

Without loss of generality, it is assumed that the LEMPC is evaluated at time instants
{tk}k≥0 with sampling time Δ as used in the RMHE. In the LEMPC design, we will
take advantage of both the fast convergence rate of the observer F and the robustness
of the RMHE to measurement noise.

5.3.3.1 Implementation Strategy

In the approach, the observer F is initially applied for a short period to drive the
state estimate from the observer to a small neighborhood of the actual system state.
Once the estimate has converged to a small neighborhood of the actual system state,
the RMHE takes over the estimation task and provides smoother and optimal state
estimates to the LEMPC. Without loss of generality, we assume that tb is a multiple
integer of the sampling timeΔ in the sense that tb = bΔwhere b is a strictly positive
integer. In the first b sampling periods, the observer F is applied with continuously
output measurements, i.e., the observer is continuously evaluated and provides state
estimates to the LEMPC at every sampling time. Starting from tb, the RMHE is
activated and provides an optimal estimates of the system state to the LEMPC at
every subsequent sampling time. The LEMPC evaluates its optimal input trajectory
based on either the estimates provided by the observer F or the estimates from the
RMHE.
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The two-mode operation scheme is adopted in the LEMPCdesign. From the initial
time t0 up to a time ts , the LEMPC operates in the first operation mode to minimize
the economic cost function while maintaining the closed-loop system state in the
stability region Ωρ . In this operation mode, in order to account for the uncertainties
in state estimates and process noise, a regionΩρe with ρe < ρ is used. If the estimated
state is in the regionΩρe , the LEMPC optimizes the cost function while constraining
the predicted state trajectory be within the region Ωρe ; if the estimated state is in the
region Ωρ\Ωρe , the LEMPC computes control actions such that the state is forced
to the region Ωρe . After time ts , the LEMPC operates in the second operation mode
and calculates the inputs in a way that the state of the closed-loop system is driven
to a neighborhood of the desired steady-state. The implementation strategy of the
output feedback LEMPC described above may be summarized as follows:

Algorithm 5.2 RMHE-based LEMPC implementation algorithm

1. Initialize the observer F with z(t0) and continuously execute the observer F based
on the output measurements y.

2. At a sampling time tk , if tk < tb, go to Step 2.1; otherwise, go to Step 2.2.

2.1. The LEMPC gets a sample of the estimated system state z(tk) at tk from the
observer F , and go to Step 3.

2.2. Based on the estimate z(tk) provided by the observer F and output mea-
surements at the current and previous Ne sampling instants, i.e., y(ti ) with
i = k − Ne, . . . , k, the RMHE calculates the optimal state estimate x̂∗(tk).
The estimate x̂∗(tk) is sent to the LEMPC. Go to Step 3.

3. If tk < ts and if z(tk) ∈ Ωρe (or if x̂
∗(tk) ∈ Ωρe ), go to Step 3.1. Otherwise, go to

Step 3.2.

3.1. Based on z(tk) or x̂∗(tk), the LEMPC calculates its input trajectory to min-
imize the economic cost function while ensuring that the predicted state
trajectory over the prediction horizon lies within Ωρe . The first value of the
optimal input trajectory is applied to the system. Go to Step 4.

3.2. Based on z(tk) or x̂∗(tk), the LEMPC calculates its input trajectory to drive
the system state towards the origin. The first value of the input trajectory is
applied to the system. Go to Step 4.

4. Go to Step 2 (k ← k + 1).

In the remainder, we will use x̂ to denote the state estimate used in the LEMPC.
Specifically, x̂ at time tk is defined as follows:

x̂(tk) =
{
z(tk), if tk < tb
x̂∗(tk), if tk ≥ tb

(5.40)

Remark 5.7 In the implementation Algorithm 5.2 as well as in the RMHE design
of Eq.5.38, the observer F provides state estimate to the RMHE at every sampling
time and is independently evaluated from the RMHE. To improve the quality of the



5.3 RMHE-Based EMPC Scheme 159

estimates provided by the observer F , the state of the observer F may be set to the
estimate of the RMHE at every sampling time since the estimates obtained from the
RMHE are expected to be more accurate. That is, at Step 2.2, the estimate x̂∗(tk) is
also sent to the observer F and the observer F resets its state to z(tk) = x̂∗(tk). The
state estimate z(tk+1) of the observer F at the next sampling time is computed with
continuous output measurements received over the sampling period (t ∈ [tk, tk+1])
initialized with z(tk) = x̂∗(tk).

5.3.3.2 LEMPC Design

The LEMPC is evaluated every sampling time to obtain the optimal input trajectory
based on estimated state x̂(tk) provided by the observer F or the RMHE. Specifically,
the optimization problem of the LEMPC is formulated as follows:

min
u∈S(Δ)

∫ tk+N

tk

le(x̃(τ ), u(τ )) dτ (5.41a)

s.t. ˙̃x(t) = f (x̃(t)) + g(x̃(t))u(t), t ∈ [tk, tk+N ) (5.41b)

x̃(tk) = x̂(tk) (5.41c)

u(τ ) ∈ U, ∀ t ∈ [tk, tk+N ) (5.41d)

V (x̃(t)) ≤ ρe, ∀ t ∈ [tk, tk+N ),

if tk < ts and V (x̂(tk)) ≤ ρe (5.41e)

LgV (x̂(tk))u(tk) ≤ LgV (x̂(tk))k(x̂(tk)),

if tk ≥ ts or V (x̂(tk)) > ρe (5.41f)

where N is the control prediction horizon and x̃ is the predicted trajectory of the
system with control inputs calculated by this LEMPC. The constraint of Eq. 5.41b is
the nominal systemmodel used to predict the future evolution of the system initialized
with the estimated state at tk (Eq. 5.41c). The constraint of Eq.5.41d accounts for the
input constraint. The constraint of Eq. 5.41e is active only for mode 1 operation of the
LEMPCwhich requires that the predicted state trajectory bewithin the region defined
by Ωρe . The constraint of Eq.5.41f is active for mode 2 operation of the LEMPC
as well as mode 1 operation when the estimated system state is out of Ωρe . This
constraint forces the LEMPC to generate control actions that drive the closed-loop
system state towards the origin.

The optimal solution to this optimization problem is denoted by u∗(t |tk), which is
defined for t ∈ [tk, tk+N ). Themanipulated input of the LEMPC is defined as follows:

u(t) = u∗(t |tk), ∀t ∈ [tk, tk+1). (5.42)

The control input applied to the closed-loop system from tk to tk+1 is u∗(tk |tk).
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5.3.4 Stability Analysis

The stability of LEMPC of Eq.5.41 based on state estimates obtained following
Eq.5.40 is analyzed in this subsection. A set of sufficient conditions is derived under
which the closed-loop system state trajectory is ensured to be maintained in the
region Ωρ and ultimately bounded in an invariant set.

In the remainder of this subsection, we first present two propositions and then
summarize themain results in a theorem. Proposition 5.3 characterizes the continuity
property of the Lyapunov function V . Proposition 5.4 characterizes the effects of
bounded state estimation error and process noise.

Proposition 5.3 (Proposition 4.2) Consider the Lyapunov function V of system of
Eq.5.1. There exists a quadratic function fV such that

V (x) ≤ V (x̂) + fV (|x − x̂ |) (5.43)

for all x, x̂ ∈ Ωρ with
fV (s) = α4(α

−1
1 (ρ))s + Mvs

2 (5.44)

where Mv is a positive constant.

Proposition 5.4 Consider the systems

ẋa(t) = f (xa) + g(xa)u(t) + l(xa)w(t)
ẋb(t) = f (xb) + g(xb)u(t)

(5.45)

with initial states |xa(t0) − xb(t0)| ≤ δx . If xa(t) ∈ Ωρ and xb(t) ∈ Ωρ for all t ∈
[t0, t ′], there exists a function fW (·, ·) such that

|xa(t) − xb(t)| ≤ fW (δx , t − t0) (5.46)

for all xa(t), xb(t) ∈ Ωρ and u(t) ∈ U, w(t) ∈ W for all t ∈ [t0, t ′] with:

fW (s, τ ) =
(
s + Mlθw

L f + Lgumax

)
e(L f +Lgumax)τ − Mlθw

L f + Lgumax
(5.47)

where L f , Lg, Ml are positive constants associated with functions f , g, l.

Proof Define ex = xa − xb. The time derivative of ex is given by:

ėx (t) = f (xa) + g(xa)u(t) + l(xa)w(t) − f (xb) − g(xb)u(t). (5.48)

By continuity and the smoothness property assumed for f , g, there exist positive
constants L f , Lg such that:

|ėx (t)| ≤ L f |ex (t)| + Lgu|ex (t)| + |l(xa)w(t)|, (5.49)

http://dx.doi.org/10.1007/978-3-319-41108-8_4


5.3 RMHE-Based EMPC Scheme 161

for all t ∈ [t0, t ′] provided xa(t) ∈ Ωρ and xb(t) ∈ Ωρ for all t ∈ [t0, t ′]. By the
boundedness of xa and the smoothness property assumed for l as well as the bound-
edness of u and w, there exist positive constants Ml such that:

|ėx (t)| ≤ (L f + Lgu
max)|ex (t)| + Mlθw. (5.50)

for all t ∈ [t0, t ′]. Integrating the above inequality and taking into account that
|ex (t0)| ≤ δx , the following inequality is obtained:

|ex (t)| ≤
(

δx + Mlθw

L f + Lgumax

)
e(L f +Lgumax)(t−t0) − Mlθw

L f + Lgumax
. (5.51)

This proves Proposition 5.4.

The following Theorem 5.2 summarizes the stability properties of the output
feedback LEMPC. The stability of the closed-loop system is based on the observer
F and controller k pair with F implemented continuously and k implemented in a
sample-and-hold fashion.

Theorem 5.2 Consider system of Eq.5.1 in closed loop under LEMPC of Eq.5.41
with state estimates determined following Eq.5.40 based on an observer and con-
troller pair satisfying the assumptions in Sect.5.3.1. Let θw ≤ θ∗

w, θv ≤ θ∗
v , ε ∈

(ε∗
L , ε

∗
U ) and |z(t0) − x(t0)| ≤ em0. Also, let εw > 0, Δ > 0 and ρ > ρ1 > ρe >

ρ∗ > ρs > 0 and κ ≥ 0 satisfy the following conditions:

ρe ≤ ρ − max{ fV ( fW (δx ,Δ)) + fV (δx ), M max{Δ, tb}α4(α
−1
1 (ρ))}, (5.52)

− α3(α
−1
2 (ρs)) +

(
L f
V + Lg

V u
max

)
(MΔ + δx ) + Ml

V θw ≤ −εw/Δ (5.53)

where δx = (κLh + 1)em + κθv, L
f
V , L

g
V are Lipschitz constants associated with

the Lie derivatives L f V and LgV , respectively, M is a constant that bounds the
time derivative of x, i.e., |ẋ | ≤ M, and Ml

V is a constant that bounds |LlV | for
x ∈ Ωρ . If x(t0) ∈ Ωρe , then x(t) ∈ Ωρ for all t ≥ t0 and is ultimately bounded in an
invariant set.

Proof In this proof, we consider t ∈ [t0,max{Δ, tb}) and t ≥ max{Δ, tb} separately
and prove that if the conditions stated in Proposition 5.2 are satisfied, the boundedness
of the closed-loop state is ensured. The proof consists of three parts. In Part I, we
prove that the closed-loop state trajectory is contained inΩρ for t ∈ [t0,max{Δ, tb});
in Part II, we prove that the boundedness of the closed-loop state trajectory under
the first operation mode of the LEMPC for t ≥ max{Δ, tb} when the initial state is
within Ωρe ; and in Part III, we prove that the closed-loop state trajectory is bounded
for the first operation mode when the initial state is within Ωρ\Ωρe and is ultimately
bounded in an invariant set for the second operation mode for t ≥ max{Δ, tb}.

Part I: First, we consider the case that t ∈ [t0,max{Δ, tb}). The closed-loop sys-
tem state may be described as follows:
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ẋ(t) = f (x(t)) + g(x(t))u(t) + l(x(t))w(t) (5.54)

with u(t) determined by the LEMPCwith x̂ = z. The Lyapunov function of the state
trajectory may be evaluated as follows:

V (x(t)) = V (x(t0)) +
∫ t

t0

V̇ (x(t))dτ = V (x(t0)) +
∫ t

t0

∂V (x(τ ))

∂x
ẋ(τ )dτ (5.55)

Using condition of Eq.5.2 and the boundedness of ẋ in the region of interest, if
x(t0) ∈ Ωρe ⊂ Ωρ1 ⊂ Ωρ , it may be written for all t ∈ [t0,max{Δ, tb}) that:

V (x(t)) ≤ ρe + M max{Δ, tb}α4(α
−1
1 (ρ)) (5.56)

with M a positive constant which bounds ẋ in Ωρ , i.e., |ẋ | ≤ M . If ρe is defined as
in Proposition 5.2, then

V (x(t)) < ρ, ∀ t ∈ [t0,max{Δ, tb}). (5.57)

Part II: In this part, we consider the case that t ≥ max{Δ, tb}. In this case, we
have that |x(t) − z(t)| ≤ em . We consider that the LEMPC is operated in the first
operation mode and focus on the evolution of the state trajectory from tk to tk+1.
Moreover, we consider x̃(tk) = x̂(tk) ∈ Ωρe . In this case, the LEMPC will optimize
the economic cost while keeping x̃(t) within Ωρe . We prove that if x̃(tk) ∈ Ωρe , then
x(tk+1) ∈ Ωρ and x̂(tk+1) ∈ Ωρ .

From tk to tk+1, the worst case scenario is as shown in Fig. 5.14. At time tk , the
estimate of the state x̂(tk) = x̃(tk) is on the boundary of Ωρe while the actual system
state is outside of Ωρe and on the boundary of another set Ωρ2 due to uncertainty in

Fig. 5.14 Worst case
scenario of the evolution of x̃
and x from tk to tk+1 in the
first operation mode
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x̂ . The LEMPCwill keep x̃(t) insideΩρe from tk to tk+1. However, due to the error in
x̃(tk) and the presence of process noise, the actual system state x(tk+1)may evolve to
a point on the boundary of Ωρ3 in Fig. 5.14 that is further away of Ωρe . The distance
between x̃(tk+1) and x(tk+1), is bounded. From Proposition 5.4, it may be obtained
that:

|x̃(tk+1) − x(tk+1)| ≤ fW (|x̂(tk) − x(tk)|,Δ). (5.58)

Recall that when t ≥ tb, all the estimates are provided by the RMHE. From the
design of the RMHE, it may be written that:

|x̂(tk) − z(tk)| ≤ κ|y(tk) − h(z(tk))| . (5.59)

Using the relation that |x̂ − x | ≤ |x̂ − z| + |z − x |, it may be obtained that:

|x̂(tk) − x(tk)| ≤ κ|y(tk) − h(z(tk))| + |z(tk) − x(tk)| . (5.60)

Noticing that |z(tk) − x(tk)| ≤ em and |y(tk) − h(z(tk))| = |h(x(tk)) + v(tk)
−h(z(tk))|, and using the Lipschitz property of h, the boundedness of v, the fol-
lowing inequality may be written:

|x̂(tk) − x(tk)| ≤ (κLh + 1)em + κθv. (5.61)

From Eqs. 5.58 and 5.61, it may be obtained that:

|x̃(tk+1) − x(tk+1)| ≤ fW ((κLh + 1)em + κθv,Δ). (5.62)

This implies that if x̃ is maintained in Ωρe , the actual system state x is ensured to be
within the set Ωρ2 with ρ2 = ρe + fV ( fW ((κLh + 1)em + κθv,Δ)) which may be
obtained from Proposition 5.3.

Taking into account Eq.5.61 for t = tk+1, the state estimate obtained at tk+1 could
be outside the region Ωρ2 but the distance is bounded as follows:

|x̂(tk+1) − x(tk+1)| ≤ (κLh + 1)em + κθv. (5.63)

In order to ensure that x̂(tk+1) is within Ωρ which is required for the feasibility of
LEMPC of Eq.5.41, the following inequality should be satisfied:

ρ ≥ ρe + fV ( fW ((κLh + 1)em + κθv,Δ)) + fV ((κLh + 1)em + κθv) (5.64)

which implies that ρe should be picked to satisfy the following condition:

ρe ≤ ρ − fV ( fW ((κLh + 1)em + κθv,Δ)) − fV ((κLh + 1)em + κθv). (5.65)

If ρe is defined as in Proposition 5.2, the above condition is satisfied.
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Part III: Next, we consider the case that x̂(tk) = x̃(tk) ∈ Ωρ\Ωρe in the first
operation mode or tk ≥ ts for the second operation mode. In either case, constraint
of Eq.5.41f will be active. The time derivative of the Lyapunov function may be
evaluated as follows:

V̇ (x(t)) = ∂V (x(t))

∂x
( f (x(t) + g(x(t))u(tk) + l(x(t))w(t)) (5.66)

for t ∈ [tk, tk+1). Adding and subtracting the term:

∂V (x̂(tk))

∂x
( f (x̂(tk) + g(x̂(tk))u(tk))

to/from the above equation and considering constraint Eq. 5.41f as well as condition
of Eq.5.2, it is obtained that:

V̇ (x(t)) ≤ −α3(|x̂(tk)|) + ∂V (x(t))

∂x
( f (x(t)) + g(x(t))u(tk) + l(x(t))w(t))

− ∂V (x̂(tk))

∂x
( f (x̂(tk) + g(x̂(tk))u(tk)) (5.67)

for all t ∈ [tk, tk+1). By the smooth properties of V , f , g and l, the boundedness of
x , u and w, there exist positive constants L f

V , L
g
V , M

l
V such that:

V̇ (x(t)) ≤ −α3(|x(tk)|) +
(
L f
V + Lg

V u
max

)
|x(t) − x̂(tk)| + Ml

V θw (5.68)

for all x ∈ Ωρ . Noticing that |x(t) − x̂(tk)| ≤ |x(t) − x(tk)| + |x(tk) − x̂(tk)|, it is
obtained that:

|x(t) − x̂(tk)| ≤ |x(t) − x(tk)| + (κLh + 1)em + κθv. (5.69)

By the continuity and smoothness properties of f , g, l and the boundedness of x ,
u and w, there exists a positive constant M such that |ẋ | ≤ M . From the above
inequalities, it may be obtained that:

V̇ (x(t)) ≤ −α3(α
−1
2 (ρs)) +

(
L f
V + Lg

V u
max

)
(MΔ + (κLh + 1)em + κθv)

+Ml
V θw

(5.70)
for all x ∈ Ωρ\Ωρs . If condition of Eq.5.53 is satisfied, it may be obtained from
Eq.5.70 that:

V (x(tk+1)) ≤ V (x(tk)) − εw. (5.71)

This means that the function value V (x) is decreasing in the first operation mode
if x̃(tk) = x̂(tk) is outside of Ωρe . This implies that x̂(tk) will eventually enter Ωρe .
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This also implies that in the second operation mode, V (x) decreases every sampling
time and x will eventually enter Ωρs . Once x ∈ Ωρs ⊂ Ωρ∗ , it will remain in Ωρ∗

because of the definition of ρ∗. This proves Proposition 5.2.

Remark 5.8 Part I of Theorem 5.2 essentially treats the input as a perturbation to the
system. Given that the input and the noise are bounded, a bound is derived for how
large the Lyapunov function may increase over time tb (which is small). This follows
from the fact that the initial estimation error of the deterministic observer and actual
closed-loop state are both bounded in a region containing the origin.

Remark 5.9 Parts II and III prove that if the current state x(tk) ∈ Ωρ and if the
current estimate x̂(tk) ∈ Ωρ , the actual closed-loop state and the estimated state
at the next sampling period are also within Ωρ . Since Part II considers mode 1
operation of the LEMPC, the worst case scenario is considered (Fig. 5.14). Part III
considers mode 2 operation of the LEMPC. While the theoretical developments
and corresponding bounding inequalities contained in this section are conservative,
they do provide valuable insight and guidelines for selecting the parameters of the
state feedback controller k(x), the deterministic observer, the RMHE, and the output
feedback LEMPC such that the closed-loop system of Eq.5.1 with bounded process
and measurement noise under the output feedback LEMPC of Eq.5.41 is stable.

Remark 5.10 One could potentially apply the RMHE for t0 to tb instead of using
the deterministic observer. However, it is difficult to prove closed-loop stability for
this case owing to the fact that the estimation error may not have decayed to a small
value over this time period with the RMHE, i.e., it is difficult to show that the RMHE
satisfies the observability assumptions of Sect. 5.3.1.

5.3.5 Application to a Chemical Process Example

Consider the CSTR described in Sect. 5.2.4 with the same control objective and the
same limitation on the available reactant material. To estimate the state from noisy
temperaturemeasurements, theRMHEscheme is used. Theweightingmatrices of the
RMHEare given by Qe = diag([σ 2

w1
σ 2
w2

]) and Re = σ 2
v whereσ denotes the standard

deviation of the process or measurement noise. The design parameter of the RMHE
is κ = 0.4, the sampling period is the same as the LEMPC, i.e., Δe = 0.01 h), and
the estimation horizon of the RMHE is Ne = 15. The robust constraint of the RMHE
is based on a high-gain observer as in Sect. 5.2.4. For the first 15 sampling periods,
the high-gain observer is used to provide the LEMPC with a state estimate. At each
subsequent sampling periods, the LEMPC is initialized using the state estimate from
the RMHE. To solve the optimization problems of the LEMPC and the RMHE at
each sampling period, the open-source software Ipopt [6] is used. The process model
is numerically simulated using an explicit Euler integration method with integration
step hc = 1.0 × 10−3 h. To simulate the process andmeasurement noise, new random
numbers are generated and applied over each integration step. The process noise is
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Fig. 5.15 The evolution of the closed-loop CSTR under the RMHE-based LEMPC scheme shown
in state-space (left) and as a function of time (right). The solid line is the actual closed-loop state
trajectory x(t), while, the dashed line is the estimated state x̂(t)

assumed to enter the system additively to the right-hand side of the process model
ODEs. The random numbers are generated from a zero-mean, bounded Gaussian
distribution.

Square bounds of wmax = [20.0 50.0] and vmax = 20.0 are used to bound the
process and measurement noise, respectively, and the standard deviation of the noise
terms are σw = [7.0 20.0] and σv = 7.0, respectively. The CSTR is initialized at
xT0 = [2.44 kmolm−3 320.0K], which corresponds to the steady-state. The evolu-
tion of the closed-loop CSTR under the RMHE-based LEMPC is shown in Fig. 5.15.
Initially, the estimated reactant concentration is significantly affected by themeasure-
ment noise which is expected since the state estimate is computed by the high-gain
observer over this initial time period. After the RMHE is activated, the estimated
state trajectories are nearly overlapping with the actual closed-loop state trajecto-
ries. Furthermore, the LEMPC computes a periodic-like input profile to optimize the
process economics over the 1h period of operation.

The average reaction rate over 1h period of operation is 13.59 kmol m−3. If,
instead, the CSTR was maintained at the steady-state (x0) without process and mea-
surement noise (nominal operation), the average reaction rate over this 1h operation
would be 12.80 kmol m−3. This is a 6.2% improvement in the economic cost of the
closed-loop system under the RMHE-based LEMPC with process and measurement
noise over nominal steady-state operation. We note that the economic performance
of the closed-loop system under LEMPC with full state feedback and nominal oper-
ation over 1h operation is 13.60 kmol m−3 which is a 6.3% economic performance
improvement.

To assess the estimation performance of the RMHE, another simulation is per-
formed with the same realization of the process and measurement noise and with the
high-gain observer presented in Sect. 5.2.4. The evolution of the closed-loop CSTR
under the high-gain observer state estimation-based LEMPC is shown in Fig. 5.16.
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Fig. 5.16 The evolution of the closed-loop CSTR under the state estimation-based LEMPC scheme
with the high-gain observer of Sect. 5.2.4 shown in state-space (left) and as a function of time (right).
The solid line is the actual closed-loop state trajectory x(t), while, the dashed line is the estimated
state x̂(t)

Not only does the noise impact the estimates provided by the high-gain observer
in this case, but also, it impacts the computed input profile (Fig. 5.16). Comparing
Figs. 5.15 and 5.16, the RMHE is able to provide estimates of the state within a small
neighborhood of the actual process states, while the high-gain observer is not able
to estimate the concentration as well as the RMHE. Furthermore, since the RMHE
provides better (smoother) estimates of the states, the operation of the closed-loop
system under the RMHE-based LEMPC is smoother which may be observed in the
input trajectories.

Several additional closed-loop simulationswith various bounds and standard devi-
ations on the process and measurement noise and initial conditions are performed
to further assess the estimation performance of RMHE compared to the one of the
high-gain observer of Sect. 5.2.4. An estimation performance index which is defined
as

J =
99∑
k=0

∣∣x̂(tk) − x(tk)
∣∣2
S (5.72)

is used to assess the estimation performance where the matrix S is a positive definite
weightingmatrix given by S = diag([50 1]). Thematrix S has been chosen to account
for the different numerical ranges of the concentration and temperature. In addition
to the assessment on the estimation performance, the total economic performance
index over the length of the simulation is defined as

Je = 1

100

99∑
k=0

k0e
−E/RT (tk )C2

A(tk) (5.73)
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Table 5.2 Estimation performance comparison of the closed-loop CSTR with various bounds and
standard deviation of the disturbances and noise and initial conditions under the high-gain observer
state estimation-based LEMPC and under the RMHE-based LEMPC (ordered below by increasing
bounds and standard deviation)

High-gain observer RMHE

J SSE of CA Je J SSE of CA Je

1 310.5 4.450 13.04 104.0 1.277 13.04

2 528.5 7.781 14.19 310.1 4.169 14.19

3 271.6 3.669 13.47 88.1 0.440 13.47

4 506.4 7.066 13.06 181.9 1.476 13.07

5 583.2 8.097 14.20 354.4 3.888 14.20

6 482.1 6.397 13.48 137.7 0.372 13.48

7 592.4 7.821 13.09 257.1 1.734 13.09

8 572.8 8.519 14.23 252.6 3.425 14.23

9 616.4 8.579 13.51 168.6 1.126 13.52

10 992.0 13.700 13.00 429.9 4.355 13.08

11 1079.8 14.871 14.14 888.7 12.076 14.21

12 1012.5 14.304 13.42 552.0 5.817 13.43

13 1643.6 22.606 13.02 665.3 3.523 12.99

14 1758.5 23.396 14.24 771.2 5.492 14.27

15 1591.0 21.740 13.51 561.5 1.717 13.55

The J column refers to the performance index of Eq.5.72, the “SSE of CA” column denotes the
sum of squared errors of the concentrationCA estimation, and the Je column refers to the economic
performance index of Eq.5.73

which is the time-averaged reaction rate over the simulation. From the results dis-
played in Table5.2, the RMHE consistently provides a significantly better estimates
of the state than the high-gain observer which demonstrates the robustness of the
RMHEtoprocess andmeasurement noise.However, the estimationperformancedoes
not translate into a significant closed-loop average economic performance improve-
ment of the closed-loop system with the RMHE-based LEMPC over the closed-loop
system with the high-gain observer and LEMPC. This relationship is due to the fact
that the closed-loop average economic performance over one operation period is not
strongly dependent on the initial condition of the LEMPC optimization problem,
i.e., x̂(tk), for this particular example. In other words, providing the LEMPC with
an estimate of the actual state anywhere in a neighborhood around the actual state
results in a computed input trajectory that leads to nearly the same economic cost for
the closed-loop systems. For systems that are more sensitive to the estimate of the
current state, it is expected that there would also be improved closed-loop economic
performance with the RMHE-based LEMPC in addition to improved estimation per-
formance.
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5.4 Conclusions

In this chapter, two output feedback EMPC schemes were presented. In the first
scheme, a high-gain observer-based EMPC for the class of full-state feedback lin-
earizable nonlinear systems was introduced. A high-gain observer is used to esti-
mate the nonlinear system state using output measurements and a Lyapunov-based
approach is adopted to design the EMPC that uses the observer state estimates. It
was proved, using singular perturbation arguments, that the closed-loop system is
practically stable provided the observer gain is sufficiently large.

To achieve fast convergence of the state estimate to the actual system state as well
as to improve the robustness of the estimator to measurement and process noise, a
high-gain observer and a RMHE scheme were used to estimate the system states.
In particular, the high-gain observer was first applied for a small time period with
continuous output measurements to drive the estimation error to a small value. Once
the estimation error had converged to a small neighborhood of the origin, the RMHE
was activated to provide more accurate and smoother state estimates. In the design of
the RMHE, the high-gain observer was used to provide reference estimates, which
were subsequently used to calculate confidence regions. The RMHEwas restricted to
compute state estimates that arewithin these confidence regions. The output feedback
EMPC was designed via Lyapunov techniques based on state estimates provided by
the high-gain observer and the RMHE.

The application of the two schemes to a chemical reactor demonstrated the applica-
bility and effectiveness of the schemes and the ability to dealwithmeasurement noise.
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Chapter 6
Two-Layer EMPC Systems

6.1 Introduction

As discussed in Chap. 1, in the traditional paradigm to optimization and control, a
hierarchical strategy is employed using real-time optimization (RTO) to compute
economically optimal steady-states that are subsequently sent down to a tracking
MPC layer. The trackingMPCcomputes control actions that are applied to the closed-
loop system to force the state to the optimal steady-state. RTO may periodically
update the optimal steady-state to account for time-varying factors that may shift the
optimal operating conditions and send the updated steady-state to the MPC layer.
On the other hand, EMPC merges economic optimization and control and thus,
employs a one-layer approach to optimization and control. While EMPC merges
optimization and control, the extent that EMPC takes on all the responsibilities of
RTO remains to be seen. For example, many EMPC methods are formulated using a
steady-state, which potentially could be the economically optimal steady-state. RTO
is also responsible for other tasks besides economic optimization. Therefore, onemay
envision that future optimization and control structures will maintain some aspects
of the hierarchical approach within the context of industrial applications. Moreover,
in some applications, maintaining a division between economic optimization and
control is suitable, especially for applications where there is an explicit time-scale
separation between the process/system dynamics and the update frequency or time-
scale of evolution of economic factors and/or other factors that shift optimal operating
conditions, e.g., disturbances.

In an industrial control architecture, which features a high degree of complex-
ity, a hierarchical approach to dynamic economic optimization and control may
be more applicable. Motivated by the aforementioned considerations, several two-
layer approaches to dynamic economic optimization and control are discussed in
this chapter. The upper layer, utilizing an EMPC, is used to compute economically
optimal policies and potentially, also, control actions that are applied to the closed-
loop system. The economically optimal policies are sent down to a lower layer MPC
scheme which may be a tracking MPC or an EMPC. The lower layer MPC scheme
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forces the closed-loop state to closely follow the economically optimal policy com-
puted in the upper layer EMPC.

The unifying themes of the two-layer EMPC implementations described in this
chapter are as follows. First, the upper layer EMPC may employ a long prediction
horizon. The long prediction horizon ideally prevents the EMPC from dictating
an operating policy based on myopic decision-making, which may lead to poor
closed-loop economic performance. Considering a one-layer EMPC approach with
a long horizon, the computational time and complexity of the resulting optimization
problem (thousands of decisions variables for large-scale systems) may make it
unsuitable for real-time application. Second, the upper layer dynamic economic
optimization problem, i.e., the EMPC problem, is formulated with explicit control-
oriented constraints which allow for guaranteed closed-loop stability properties. This
is a departure from other two-layer approaches to dynamic optimization and control
such as those featuring dynamic-RTO, e.g. [1–10]. Third, the upper layer is solved
infrequently in the sense that it is not solved every sampling time like a standard one-
layer EMPCmethod with a receding horizon implementation. The rate that the upper
layer EMPC is solved may be considered a tuning parameter of the optimization and
control architectures. However, the upper layer does not need to wait until the system
has reached steady-state owing to the fact that a dynamic model of the process is
used in the optimization layer.

The lower layer MPC, which may be either a tracking MPC or an EMPC, may
be formulated with a shorter prediction horizon and potentially, a smaller sampling
period if state measurement feedback is available. It is used to force the closed-loop
state to track the operating policy computed by the upper layer EMPC and to ensure
closed-loop stability and robustness. Owing to the fact that the upper layer EMPC is
solved infrequently and the lower layer MPC utilizes a shorter prediction horizon,
one of the benefits of a two-layer EMPC implementation is improved computational
efficiency compared to a one-layer EMPC method. The results of this chapter origi-
nally appeared in [11–13].

6.1.1 Notation

Given that this chapter deals with control elements arranged in a multi-layer con-
figuration, an extended amount of notation is needed to describe the control system.
To aid the reader, Table6.1 summarizes the notation used in this chapter. Some of
the notation will be made more precise in what follows. To clarify the difference
between open-loop and closed-loop trajectories, consider a time sequence: {t̄i }k+N̄

i=k
where t̄i = iΔ̄, Δ̄ > 0 is a constant and N̄ ≥ 1 is a positive integer. Given a func-
tion ū : [t̄k, t̄k+N̄ ) → U, which is right-continuous piecewise constant with constant
hold period Δ̄, the open-loop predicted state trajectory under the open-loop input
trajectory ū is the solution to the differential equation:
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Table 6.1 A summary of the notation used to describe the two-layer EMPC structure

Notation Description

ΔE Zeroth-order hold period used for the upper layer control parameterization

NE Number of zeroth-order hold periods in the upper layer EMPC prediction horizon

KE Number of hold periods, ΔE , that the upper layer EMPC is solved

t ′ Operating period length with t ′ = KEΔE

{t̂k}k≥0 Computation time sequence of upper layer with t̂k = kt ′ (k ∈ I+)
z(·|t̂k) Open-loop predicted state trajectory under an auxiliary controller computed at t̂k
v(·|t̂k) Open-loop input trajectory computed by an auxiliary controller computed at t̂k
xE (·|t̂k) Open-loop predicted state trajectory under the upper layer MPC at t̂k
uE (·|t̂k) Open-loop input trajectory computed by the upper layer MPC at t̂k
Δ Sampling period size of the lower layer

N Number of sampling periods in the lower layer MPC prediction horizon

{t j } j≥0 Sampling time sequence of lower layer with t j = jΔ ( j ∈ I+)
x̃(·|t j ) Open-loop predicted state trajectory under the lower layer MPC at t j
u(·|t j ) Open-loop input trajectory computed by the upper layer MPC at t j
x(·) Closed-loop state trajectory under the two-layer control structure

u∗(t j |t j ) Control action applied to the closed-loop system computed at t j and applied from
t j to t j+1

(xs , us) Steady-state and steady-state input pair

˙̄x(t) = f (x̄(t), ū(t), 0) (6.1)

for t ∈ [t̄k, t̄k+N̄ ) with initial condition x̄(t̄k) = x(t̄k) where x(t̄k) is a state measure-
ment of the closed-loop system at time t̄k . The open-loop predicted state and input
trajectories are denoted as x̄(·|t̄k) and ū(·|t̄k) to make clear that both of these trajecto-
ries, which are functions of time, have been computed at t̄k with a state measurement
at t̄k .

The term closed-loop system refers to the resulting sampled-data system of Eq.4.1
under an MPC scheme. The closed-loop state trajectory is the solution to:

ẋ(t) = f (x(t), k(x(t j )), w(t)) (6.2)

for t ∈ [t j , t j+1) with t j = jΔ for some Δ > 0 and j = 0, 1, . . .. The initial time is
taken to be zero. The mapping k(·) is a state feedback control law.

In the context of MPC, the state feedback control law is implicitly defined from
the solution of an optimization problem and the receding horizon implementation.
Specifically, the MPC receives a state measurement at a sampling time t j , computes
a control action, and applies it in a sample-and-hold fashion over the sample period,
i.e., from t j to t j+1. The notation u∗(t j |t j ) is used to denote the computed control
action by theMPC scheme at sampling time t j with a state measurement x(t j ). Under
an MPC scheme, the closed-loop system is written similarly to Eq.6.2 by replacing

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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k(x(t j )) with u∗(t j |t j ). Finally, the notation ·∗, e.g., y∗, is used to denote that the
quantity, which may be a vector with real elements or a function defined over an
appropriate domain and range, is optimal with respect to a cost function (or cost
functional) and some constraints.

6.2 Two-Layer Control and Optimization Framework

In this section, a two-layer dynamic economic optimization and control framework
featuring EMPC in the upper layer and tracking MPC in the lower layer is discussed.
The same nonlinear dynamic model is used in each layer to avoid modeling inconsis-
tencies. Control-oriented constraints are employed in the dynamic optimization layer
to ensure closed-loop stability. A rigorous theoretical treatment of the stability prop-
erties of the closed-loop system with the control architecture is provided. Variants
and extensions of the two-layer optimization and control framework are discussed.
The two-layer optimization and control framework is applied to a chemical process
example.

6.2.1 Class of Systems

While a similar class of nonlinear systems is considered as that described by Eq.4.1,
the manipulated inputs are split into two groups; that is, the input vector is given by
u := [u1 u2]T where u1 ∈ R

m1 , u2 ∈ R
m2 , andm1 + m2 = m. Loosely speaking, the

inputs are partitioned into two groups based on their main responsibility. The input
u1 is directly responsible for economic optimization and/or has the most significant
impact on the closed-loop economic performance, while the input u2 is responsible
for maintaining closed-loop stability. In the chemical process example of Sect. 6.2.3,
the inputs are partitioned using this rationale as a basis. Additional methods may
be employed to help identify the inputs that have the most significant impact on the
economic performance such as the methods presented in [14].

With the two sets of inputs, the following state-spacemodel iswritten to emphasize
the dependence of the vector field on each group of inputs:

ẋ = f (x, u1, u2, w) (6.3)

where x ∈ X ⊆ R
n denotes the state vector, u1 ∈ U1 ⊂ R

m1 and u2 ∈ U2 ⊂ R
m2

denote the two manipulated input vectors or the two sets of manipulated inputs,
w ∈ W ⊂ R

l denotes the disturbance vector and f is assumed to be a locally Lip-
schitz vector function on X × U1 × U2 × W. The sets U1 and U2 are assumed
to be nonempty compact sets. The disturbance is assumed to be bounded, i.e.,
W := {w ∈ R

l : |w| ≤ θ} where θ > 0. The origin of the nominal unforced sys-
tem of Eq.6.3 is assumed to be an equilibrium point ( f (0, 0, 0, 0) = 0). The state
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of the system is sampled synchronously at the time instants indicated by the time
sequence {t j } j≥0 where t j = jΔ, j = 0, 1, . . . and Δ > 0 is the sampling period.

A stabilizability assumption is imposed on the system of Eq.6.3 in the sense that
the existence of a stabilizing feedback control law that renders the origin of the
system of Eq.6.3 asymptotically stable is assumed. The stabilizing feedback control
law is given by the pair:

(h1(x), h2(x)) ∈ U1 × U2 (6.4)

for all x ∈ X. While the domain of the stabilizing controller is taken to be X, it
renders the origin asymptotically stable with some region of attraction that may be
a subset of X. Applying converse Lyapunov theorems [15, 16], there exists a con-
tinuous differentiable Lyapunov function V : D → R+ that satisfies the following
inequalities:

α1(|x |) ≤ V (x) ≤ α2(|x |) (6.5a)

∂V (x)

∂x
f (x, h1(x), h2(x), 0) ≤ −α3(|x |) (6.5b)

∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ α4(|x |) (6.5c)

for all x ∈ D where αi ∈ K for i = 1, 2, 3, 4 and D is an open neighborhood of the
origin. The region Ωρ ⊆ D such that Ωρ ⊆ X is the (estimated) stability region of
the closed-loop system under the stabilizing controller.

6.2.2 Formulation and Implementation

The dynamic economic optimization and control framework consists of EMPC in the
upper layer and trackingMPC in the lower layer. A block diagramof the framework is
given in Fig. 6.1. The prediction horizons of theEMPCand theMPCmaybe different.
This allows for the EMPC to be formulated with a long prediction horizon. The
number of samplingperiods in the predictionhorizonof theEMPC is denoted as NE ∈
I≥1, and that of the MPC is denoted as N ∈ I≥1. For simplicity, the sampling periods
of the upper layer EMPC and lower layerMPC are assumed to be the same (ΔE = Δ)
and Δ will be used to denote the sampling period. The two-layer framework may be
extended to the case where ΔE > Δ.

The upper layer EMPC problem is solved infrequently, i.e., not every sampling
time. Let KE ≥ I+ be the number of sampling times that the upper layer is resolved.
The time sequence {t̂k}k≥0 denotes the time steps that the upper layer EMPC is
solved. Owing to the implementation strategy, the time sequence is not necessarily
a synchronous partitioning of time. For sake of simplicity, let N ≤ NE − KE to
ensure that the upper layer EMPC problem is computed at a rate needed to ensure
that the economically optimal trajectory is defined over the prediction horizon of
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EMPC

Tracking MPC

System
ẋ = f(x, u1, u2, w)

w(t)

u∗
2(t|tj)

u∗
1,E(t|t̂k)

x∗
E(·|t̂k), u∗

1,E(·|t̂k),
u∗
2,E(·|t̂k)

x(t̂k)

x(tj)

Fig. 6.1 A block diagram of the two-layer integrated framework for dynamic economic optimiza-
tion and control with EMPC in the upper layer and tracking MPC in the lower layer. Both the upper
and lower layers compute control actions that are applied to the system

the lower layer tracking MPC. If this is not satisfied, one could employ a shrinking
horizon in the lower layer MPC. While the upper layer EMPC computes optimal
input trajectories for both sets of manipulated inputs, it sends control actions for the
manipulated input u1 to the control actuators to be applied in an open-loop fashion.
The implementation strategy is described below. The optimal operating trajectory
over the prediction horizon of the EMPC is computed by the upper layer EMPC
and sent to the lower layer tracking MPC to force the closed-loop state to track the
optimal operating trajectory. In other words, the upper layer EMPC trajectory is used
as the reference trajectory in the tracking MPC. The optimal operating trajectory is
defined below.

Definition 6.1 Let (u∗
1,E (t |t̂k), u∗

2,E (t |t̂k)), which is defined for t ∈ [t̂k, t̂k + NEΔ),
be the optimal input pair computed by the upper layer EMPC and let x(t̂k) be the
state measurement at the sampling time t̂k . The economically optimal state trajectory
x∗
E (t |t̂k) for t ∈ [t̂k, t̂k + NEΔ) of the system of Eq.6.3 is the solution of

ẋ∗
E (t) = f (x∗

E (t), u∗
1,E (τi |t̂k), u∗

2,E (τi |t̂k), 0), t ∈ [τi , τi+1) (6.6)

for i = 0, 1, . . . , NE − 1 with xE (t̂k) = x(t̂k) where τi := t̂k + iΔ.

The lower layer MPC is implemented with a receding horizon implementation,
i.e., is solved at every sampling time. The notation t j will be reserved to denote a
sampling time that the lower layer MPC problem is solved. To provide closed-loop
stability guarantees on the resulting control framework, the upper layer EMPC is
formulated as an LEMPC (Eq.4.3) and the lower layer tracking MPC is formulated
as an LMPC (Eq.2.51). The advantage of the formulation of the upper and lower
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layer controllers is that the LEMPC computes a reference trajectory that the tracking
LMPC layer may force the system to track and unreachable set-points are avoided.

An assumption is needed to ensure feasibility and stability with the resulting two-
layer framework. Owing to the fact that the upper layer EMPC is solved infrequently
and applies its computed trajectory for u1 in an open-loop fashion, an assumption is
needed to ensure that it is possible to maintain stability with the input u2 in the sense
that for any u1 ∈ U1 it possible to find a u2 ∈ U2 that ensures that the time-derivative
of the Lyapunov function is negative. This is stated in the following assumption.
Also, the assumption further clarifies how the manipulated inputs are divided into
the two input groups.

Assumption 6.1 For any fixed u1,E ∈ U1, there exists u2 ∈ U2 such that:

∂V (x)

∂x
f (x, u1,E , u2, 0) ≤ ∂V (x)

∂x
f (x, h1(x), h2(x), 0) (6.7)

for all x ∈ Ωρ .

Variations of the assumption are discussed in Sect. 6.2.2.1. This assumption is not
needed for the case that the upper layer LEMPC does not apply any control actions
to the system.

The upper layer LEMPC has a similar formulation as that of Eq. 4.3 with one
modification discussed below. The upper layer LEMPC problem is given by the
following optimization problem:

min
u1,E ,u2,E∈S(Δ)

∫ t̂k+NEΔ

t̂k

le(xE (τ ), u1,E (τ ), u2,E (τ )) dτ (6.8a)

s.t. ẋE (t) = f (xE (t), u1,E (t), u2,E (t), 0) (6.8b)

xE (t̂k) = x(t̂k) (6.8c)

u1,E (t) ∈ U1, u2,E (t) ∈ U2, ∀ t ∈ [t̂k, t̂k + NEΔ) (6.8d)

V (xE (t)) ≤ ρe, ∀ t ∈ [t̂k, t̂k + NEΔ),

if V (x(t̂k)) ≤ ρe and t̂k < ts (6.8e)

∂V (xE (τi ))

∂x
f (xE (τi ), u1,E (τi ), u2,E (τi ), 0)

≤ ∂V (xE (τi ))

∂x
f (xE (τi ), h1(xE (τi )), h2(xE (τi )), 0),

i = 0, 1, . . . , NE − 1, if V (x(t̂k)) > ρe or t̂k ≥ ts (6.8f)

where τi := t̂k + iΔ. The main difference between the upper layer LEMPC formu-
lation and the LEMPC formulation of Eq. 4.3 is the mode 2 contractive constraint
(Eq. 6.8f). In the upper layer LEMPC formulation, the mode 2 contractive constraint
is imposed at each time instance of the prediction horizon. This ensures that the Lya-
punov function value decays over the prediction horizon and thus, the lower layer
LMPC attempts to force the closed-loop state along a reference trajectory that either

http://dx.doi.org/10.1007/978-3-319-41108-8_4
http://dx.doi.org/10.1007/978-3-319-41108-8_4


178 6 Two-Layer EMPC Systems

converges toΩρe if t̂k < ts or converges to a neighborhood of the origin if t̂k ≥ ts . The
optimal trajectories computed by the upper layer LEMPC are denoted by x∗

E (t |t̂k),
u∗
E,1(t |t̂k), and u∗

E,2(t |t̂k) and are defined for t ∈ [t̂k, t̂k + NEΔ).
The stage cost function used in the LMPC is formulated to penalize deviations

of the state and inputs from the economically optimal trajectories. Additionally, the
LMPC is equipped with dual-mode constraints similar to that imposed in LEMPC.
The dual-mode LMPC problem is given by the following optimization problem:

min
u2∈S(Δ)

∫ t j+N

t j

lT (x̃(τ ), x∗
E (τ |t̂k), u2(τ ), u∗

2,E (τ |t̂k)) dτ (6.9a)

s.t. ˙̃x(t) = f (x̃(t), u∗
1,E (t |t̂k), u2(t), 0) (6.9b)

x̃(t j ) = x(t j ) (6.9c)

u2(t) ∈ U2, ∀ t ∈ [t j , t j+N ) (6.9d)

V (x̃(t)) ≤ ρe, ∀ t ∈ [t j , t j+N ),

if V (x(t j )) ≤ ρe and t j < ts (6.9e)

∂V (x(t j ))

∂x
f (x(t j ), u

∗
1,E (t j |t̂k), u2(t j ), 0)

≤ ∂V (x(t j ))

∂x
f (x(t j ), h1(x(t j )), h2(x(t j )), 0),

if V (x(t j )) > ρe and t j ≥ ts (6.9f)

where the stage cost of LMPC is given by:

lT (x̃, x∗
E , u2, u

∗
2,E ) = ∣∣x̃ − x∗

E

∣∣2
Qc

+ ∣∣u2 − u∗
2,E

∣∣2
Rc,2

(6.10)

and Qc and Rc are positive definite tuningmatrices. The constraint of Eq.6.9e defines
mode 1 operation of the LMPC and serves a similar purpose as the mode 1 constraint
of LEMPC (Eq.4.3e). Under mode 2 operation of the LMPC, which is defined when
the constraint of Eq.6.9f is active, the LMPC computes control actions to ensure
that the contractive Lyapunov-based constraint is satisfied. The optimal solution of
Eq.6.9 is denoted as u∗

2(t |t j ) for t ∈ [t j , t j+N ).
The two-layer optimization and control framework has a number of tunable para-

meters. Specifically, the tuning parameters include the weighting matrices Qc and
Rc, the prediction horizons N and NE , the number of sampling times that the upper
layer recomputes a solution KE , the subset of the stability region that the control
framework may operate the system in a time-varying fashion (Ωρe ), the sampling
period Δ and the triple (h1, h2, V ), i.e., stabilizing controller design and Lyapunov
function which are used in the Lyapunov-based constraints.

If the optimal state trajectory has been computed using mode 2 operation of the
LEMPC and the current time is less than the switching time ts , it is advantageous
from a performance perspective, to recompute a new LEMPC solution using mode
1 once the state converges to the set Ωρe . This is captured in the implementation
strategy of the two-layer optimization and control framework that is described by the
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following algorithm. Let the index l ∈ I+ be the number of sampling times since the
last time that the upper layer LEMPC problem has been solved and mk be the mode
of operation of the LEMPC used to solve the LEMPC problem at t̂k . To initialize the
algorithm, let t̂0 = 0, k = 0, and j = 0.

1. At t̂k , the upper layer LEMPC receives a state measurement x(t̂k) and set l = 0.
If x(t̂k) ∈ Ωρe and t̂k < ts , go to Step 1.1. Else, go to Step 1.2.

1.1 Themode1 constraint (Eq. 6.8e) is active and themode2 constraint (Eq. 6.8f)
is inactive. Set mk = 1 and go to Step 1.3.

1.2 Themode2 constraint (Eq. 6.8f) is active and themode1 constraint (Eq. 6.8e)
is inactive. Set mk = 2 and go to Step 1.3.

1.3 Solve the optimization problemofEq.6.8 to compute the optimal trajectories
x∗
E (t |t̂k), u∗

E,1(t |t̂k), and u∗
E,2(t |t̂k) defined for t ∈ [t̂k, t̂k + NEΔ). Send these

trajectories to the lower layer LMPC and go to Step 2.

2. At t j , the lower layer LMPC receives a state measurement x(t j ). If x(t j ) ∈ Ωρe ,
t j < ts , andmk = 2, set t̂k+1 = t j and k ← k + 1, and go to Step 1. Else if x(t j ) ∈
Ωρe and t j < ts , go to Step 2.1. Else, go to Step 2.2.

2.1 Themode1 constraint (Eq. 6.9e) is active and themode2 constraint (Eq. 6.9f)
is inactive. Go to Step 2.3.

2.2 Themode2 constraint (Eq. 6.9f) is active and themode1 constraint (Eq. 6.9e)
is inactive. Go to Step 2.3.

2.3 Solve the optimization problem of Eq.6.9 to compute the optimal input tra-
jectory u∗(t |t j ) defined for t ∈ [t j , t j+N ). Apply the input pair
(u∗

1,E (t j |t̂k), u∗
2(t j |t j )) to the system of Eq.6.3 from t j to t j+1. Go to Step 3.

3. If l + 1 = KE , set t̂k+1 = t j+1, k ← k + 1, and j ← j + 1, and go to Step 1.
Else, go to Step 2 and set l ← l + 1 and j ← j + 1.

The two-layer implementation strategy allows for computational advantages over
one-layer EMPC structures. When the LEMPC is operating in mode 1, the LEMPC
problem is only computed once every KE sampling times. The LMPC is less compu-
tationally expensive to solve than the LEMPC because the LMPC does not compute
control actions for all of the manipulated inputs. Additionally, the LMPC may use
a smaller prediction horizon than the LEMPC. Owing to these considerations, the
two-layer framework ismore computationally efficient compared to one-layer EMPC
structures.

It is important to point out the two limiting cases of the optimization and con-
trol framework. If all the inputs are in the group u2, then the control framework is
reminiscent of current two-layer frameworks where economic optimization, which
in this case is a dynamic optimization problem, and control are divided into separate
layers. If, on the other hand, all inputs are placed in the group u1 or the upper layer
LEMPC is solved every sampling time (KE = 1), then this would correspond to a
one-layer implementation of LEMPC. For the case that all inputs are in the u1 group,
the LEMPC would need to be computed every sampling time to ensure stability and
robustness of the closed-loop system.
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6.2.2.1 Variants of the Two-Layer Optimization and Control
Framework

While the stability results presented in Sect. 6.2.2.2 apply to the two-layer framework
described above, one may consider many variations to the two-layer framework
design. A few such variants are listed here.

1. The upper layer EMPC does not compute input trajectories for all inputs. For
instance, some inputs in the u2 set may have little impact on the economic perfor-
mance. For these inputs, a constant input profile, for instance, could be assumed in
the upper layer EMPC. This could further improve the computational efficiency
of the two-layer framework. The inputs that are held constant in the EMPC prob-
lem could be used as additional degrees of freedom in the lower layer MPC to
help force the closed-loop state to track the economically optimal state trajectory.

2. The lower layer MPC computes control actions for all the inputs, i.e., the upper
layer EMPC does not apply any control actions directly to the system, but rather,
is used to compute reference trajectories for the lower layer MPC. This approach
is similar to current optimization and control structures but employs dynamic
economic optimization with explicit control-oriented constraints imposed in the
optimization layer.

3. Other assumptions to ensure feasibility and stability of the two-layer framework
than Assumption 6.1 may be considered. For example, it may be possible to
consider the input u1 as a perturbation to the system and derive the explicit
stabilizing controller on the basis of the inputs u2. Specifically, if there exists an
explicit controller h2 : X → U2 and Lyapunov function that satisfies:

∂V (x)

∂x
f (x, u1, h2(x), 0) ≤ −ᾱ3(|x |) (6.11)

for all u1 ∈ U1 and x ∈ Ωρ \ B where B ⊂ Ωρ is some set containing the origin
and ᾱ(·) is a class K function, then this assumption could be used to guarantee
closed-loop stability and feasibility of the control problems. This assumption is
essentially an input-to-state stability assumption of the closed-loop system of
Eq.6.3 under the controller h2 with respect to the input u1.

4. The two-layers could use a different sampling period size. In particular, the upper
layer could use a larger sampling period than the lower layer.

5. Since the conditions that guarantee closed-loop stability presented below are
independent of the objective function of the lower layer MPC, the stage cost used
in the lower layer MPC may be readily modified. For example, one may include
rate of change penalties on the inputs and soft constraints in the stage cost function
or use the economic stage cost function. One such variant employing the latter
concept, i.e., use an EMPC in the lower layer, is presented later in this chapter
(Sect. 6.4).
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6.2.2.2 Stability Analysis

In this section, sufficient conditions are presented that guarantee that the closed-loop
system with the two-layer dynamic economic optimization and control framework
is stable in the sense that the system state remains bounded in a compact set for all
times. Two propositions are needed, which are straightforward extensions of Propo-
sitions 4.1 and 4.2, respectively. The propositions are restated here for convenience.
The first proposition provides an upper bound on the deviation of the open-loop
state trajectory, obtained using the nominal model (Eq. 6.3 with w ≡ 0), from the
closed-loop state trajectory.

Proposition 6.1 (Proposition 4.1) Consider the systems

ẋa(t) = f (xa(t), u1(t), u2(t), w(t))
ẋb(t) = f (xb(t), u1(t), u2(t), 0)

(6.12)

with initial states xa(t0) = xb(t0) ∈ Ωρ and inputs u1(t) ∈ U1 and u2(t) ∈ U2 for
t ≥ t0. If the states of the two systems aremaintained inΩρ for all t ∈ [t0, t1] (t1 > t0),
there exists a class K function αw(·) such that

|xa(t) − xb(t)| ≤ αw(t − t0), (6.13)

for all w(t) ∈ W and t ∈ [t0, t1].
The following proposition bounds the difference between the Lyapunov function

of two different states in Ωρ .

Proposition 6.2 (Proposition 4.2) Consider the Lyapunov function V (·) of the sys-
tem of Eq.6.3. There exists a quadratic function αV (·) such that:

V (x) ≤ V (x̂) + αV (
∣∣x − x̂

∣∣) (6.14)

for all x, x̂ ∈ Ωρ .

Theorem 6.1 provides sufficient conditions such that the two-layer dynamic eco-
nomic optimization and control framework guarantees that the state of the closed-
loop system is always bounded in Ωρ . The result is similar to that of the closed-loop
stability properties under LEMPC.

Theorem 6.1 Consider the system of Eq.6.3 in closed-loop under the two-layer
framework with the LEMPC of Eq.6.8 in the upper layer and the LMPC of Eq.6.9
in the lower layer both based on the explicit stabilizing controller that satisfies
Eqs.6.5a–6.5c. Let εw > 0, Δ > 0, NE ≥ 1, N ≥ 1 (N ≤ NE − KE), ρ > ρe >

ρmin > ρs > 0, and L ′
x , L

′
w and M are positive constants (the existence of these

constants follows from the assumptions on the system of Eq.6.3) satisfy:

ρe < ρ − αV (αw(Δ)), (6.15)

http://dx.doi.org/10.1007/978-3-319-41108-8_4
http://dx.doi.org/10.1007/978-3-319-41108-8_4
http://dx.doi.org/10.1007/978-3-319-41108-8_4
http://dx.doi.org/10.1007/978-3-319-41108-8_4
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− α3(α
−1
2 (ρs)) + L ′

x MΔ + L ′
wθ ≤ −εw/Δ , (6.16)

and
ρmin = max

s∈[0,Δ]{V (x(s)) : V (x(0)) ≤ ρs} . (6.17)

If x(0) ∈ Ωρ and Assumption 6.1 is satisfied, then the state x(t) of the closed-loop
system is always bounded inΩρ for all t ≥ 0. Moreover, if ts is finite, the closed-loop
state is ultimately bounded in Ωρmin .

Proof The proof is organized into three parts. In part 1, feasibility of the optimization
problems of Eqs. 6.8 and 6.9 is proved when the state measurement given to each
problem is inΩρ . In part 2, boundedness of the closed-loop state inΩρ is established.
Finally, (uniform) ultimate boundedness of the closed-loop state in a small state-space
set containing the origin is proved when the switching time is finite.

Part 1: When the closed-loop state is maintained in Ωρ , which will be proved in
Part 2, the sample-and-hold input trajectory obtained from the stabilizing feedback
controller is a feasible solution to the upper layer LEMPC optimization problem of
Eq.6.8. Specifically, let x̂(t) denote the solution at time t to the system:

˙̂x(t) = f (x̂(t), h1(x̂(τi )), h2(x̂(τi )), 0) (6.18)

for t ∈ [τi , τi+1) (τi := t̂k + iΔ), i = 0, 1, . . . , NE − 1with initial condition x̂(t̂k) =
x(t̂k) ∈ Ωρ . Defining the pair (û1(t), û2(t)) := (h1(x̂(τi )), h2(x̂(τi ))) for t ∈ [τi ,
τi+1), i = 0, 1, . . . , NE − 1, the input trajectory pair (û1, û2) is a feasible solution
to the LEMPC problem. Specifically, for mode 2 operation of the LEMPC, the pair
(û1, û2) meets the input constraints since it is computed from the stabilizing con-
troller, which satisfies the input constraints (Eq.6.4). Also, the mode 2 contractive
constraint of Eq.6.8f is trivially satisfied with the input pair (û1, û2). For mode 1
operation, the regionΩρe is forward invariant under the stabilizing controller applied
in a sample-and-hold fashionwhenΩρmin ⊆ Ωρe ⊂ Ωρ whereΩρmin will be explained
further in Parts 2 and 3.

If Assumption 6.1 is satisfied, the feasibility of the lower layer LMPC problem
of Eq.6.9 follows because there exists an input trajectory u1(t) for t ∈ [t j , t j+N )

that decreases the Lyapunov function by at least the rate given by the Lyapunov-
based controller at each sampling time instance along the prediction horizon. Using
similar arguments as that used for feasibility of the LEMPC, mode 2 operation of the
LMPC is feasible. Assumption 6.1 further implies that there exists a sample-and-hold
input trajectory such that Ωρe is forward invariant when Ωρmin ⊆ Ωρe ⊂ Ωρ which
guarantees that mode 1 operation of the LMPC is feasible.

Part 2: To show that the state is maintained in Ωρ when x(0) ∈ Ωρ , two cases
must be considered. The first case occurs when the state x(t j ) ∈ Ωρe and t j < ts and
the second case occurs when x(t j ) ∈ Ωρ \ Ωρe or t j ≥ ts . It is sufficient to show
that x(t) ∈ Ωρ for all t ∈ [t j , t j+1]. Through recursive application of this result,
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boundedness of the closed-loop state in Ωρ for all t ≥ 0 follows if the initial state is
in Ωρ .

Case 1: If x(t j ) ∈ Ωρe and t j < ts , the lower layer LMPC operates in mode 1 oper-
ation. Regardless if the upper layer LEMPC has been computed under mode 1 or
mode 2, there exists a control action û2(t j ) such that when applied to the model of
Eq.6.9b in a sample-and-hold fashion over one sampling period the state at the next
sampling time will be predicted to be in Ωρe (this follows from Part 1). However,
the closed-loop system of Eq.6.3 does not evolve according to the model of Eq.6.9b
owing to the forcing of the disturbance w.

Let ρe satisfy Eq.6.15. The proof proceeds by contradiction. Assume there
exists a time τ ∗ ∈ [t j , t j+1] such that V (x(τ ∗)) > ρ. Define τ1 := inf{τ ∈ [t j , t j+1] :
V (x(τ )) > ρ}. A standard continuity argument in conjunction with the fact that
V (x(t j )) ≤ ρe < ρ shows that τ1 ∈ (t j , t j+1], V (x(t)) ≤ ρ for all t ∈ [t j , τ1] with
V (x(τ1)) = ρ, and V (x(t)) > ρ for some t ∈ (τ1, t j+1]. If ρe satisfies Eq.6.15, then

ρ = V (x(τ1)) ≤ V (x̃(τ1)) + αV (αw(τ1))

≤ ρe + αV (αw(Δ)) < ρ (6.19)

where the first inequality follows fromPropositions 6.1, 6.2 and the second inequality
follows from the fact thatαV ◦ αw ∈ K and τ1 ≤ Δ. Eq. 6.19 leads to a contradiction.
Thus, x(t j+1) ∈ Ωρ if Eq. 6.15 is satisfied.

Case 2: When x(t j ) ∈ Ωρ \ Ωρe or t j ≥ ts , the lower layer LMPC operates in mode
2. To cover both possibilities, consider any x(t j ) ∈ Ωρ and that mode 2 operation of
the LEMPC is active. From the constraint of Eq.6.9f and the condition of Eq.6.5b,
the computed control action at t j satisfies:

∂V (x(t j ))

∂x
f (x(t j ), u

∗
1,E (t j |t̂k), u∗

2(t j |t j ), 0)

≤ ∂V (x(t j ))

∂x
f (x(t j ), h1(x(t j )), h2(x(t j )), 0) ≤ −α3(|x(t j )|) (6.20)

where x(t j ) denotes the closed-loop state at sampling time t j . Over the sampling
period (τ ∈ [t j , t j+1)), the time derivative of the Lyapunov function of the closed-
loop system is given by:

V̇ (x(τ )) = ∂V (x(τ ))

∂x
f (x(τ ), u∗

1,E (t j |t̂k), u∗
2(t j |t j ), w(τ)) (6.21)

for τ ∈ [t j , t j+1). Adding and subtracting the first term of Eq.6.20 to/from Eq.6.21
and accounting for the bound of Eq.6.20, the time-derivative of the Lyapunov func-
tion over the sampling period is bounded by:
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V̇ (x(τ )) ≤ − α3(|x(t j )|) + ∂V (x(τ ))

∂x
f (x(τ ), u∗

1,E (t j |t̂k), u∗
2(t j |t j ), w(τ))

− ∂V (x(t j ))

∂x
f (x(t j ), u

∗
1,E (t j |t̂k), u∗

2(t j |t j ), 0) (6.22)

for all τ ∈ [t j , t j+1).
Since the sets Ωρ , U1, U2, and W are compact, the vector field f is locally

Lipschitz, and the Lyapunov function is continuously differentiable, there exist L ′
x >

0 and L ′
w > 0 such that:

∣∣∣∣∂V (x)

∂x
f (x, u1, u2, w) − ∂V (x ′)

∂x
f (x ′, u1, u2, 0)

∣∣∣∣ ≤ L ′
x |x − x ′| + L ′

w|w| (6.23)

for all x , x ′ ∈ Ωρ , u1 ∈ U1, u2 ∈ U2, and w ∈ W. From Eqs. 6.22 to 6.23 and the
fact that the disturbance is bounded inW = {w ∈ R

l : |w| ≤ θ}, the time-derivative
of the Lyapunov function over the sampling period may be bounded as follows:

V̇ (x(τ )) ≤ −α3(|x(t j )|) + L ′
x

∣∣x(τ ) − x(t j )
∣∣ + L ′

wθ (6.24)

for all τ ∈ [t j , t j+1). Again, by the fact that the sets Ωρ , U1, U2, andW are compact
and the vector field f is locally Lipschitz, there exists M > 0 such that

| f (x, u1, u2, w)| ≤ M (6.25)

for all x ∈ Ωρ , u1 ∈ U1, u2 ∈ U2, and w ∈ W. From Eq.6.25 and continuity of x(τ )

for τ ∈ [t j , t j+1), the difference between the state at τ and t j is bounded by:

∣∣x(τ ) − x(t j )
∣∣ ≤ MΔ (6.26)

for all τ ∈ [t j , t j+1). From Eqs. 6.24 to 6.26 and for any x(t j ) ∈ Ωρ \ Ωρs , the
inequality below follows:

V̇ (x(τ )) ≤ −α3(α
−1
2 (ρs)) + L ′

x MΔ + L ′
wθ (6.27)

for all τ ∈ [t j , t j+1) where the fact that |x | ≥ α−1
2 (ρs) for all x ∈ Ωρ \ Ωρs follows

from Eq.6.5a.
If the condition of Eq.6.16 is satisfied, there exists εw > 0 such that the following

inequality holds for x(t j ) ∈ Ωρ \ Ωρs

V̇ (x(τ )) ≤ −εw/Δ

for all τ ∈ [t j , t j+1). Integrating the bound for τ ∈ [t j , t j+1), the following two
bounds on the Lyapunov function value are obtained:
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V (x(t j+1)) ≤ V (x(t j )) − εw (6.28)

V (x(τ )) ≤ V (x(t j )), ∀ τ ∈ [t j , t j+1) (6.29)

for all x(t j ) ∈ Ωρ \ Ωρs and when mode 2 operation of the lower layer LMPC is
active.

If x(t j ) ∈ Ωρ \ Ωρe , the closed-loop state converges to Ωρe in a finite number of
sampling times without leaving the stability region Ωρ which follows by applying
Eq.6.28 recursively. If t j ≥ ts and x(t j ) ∈ Ωρ \ Ωρs , the closed-lop state converges
to Ωρs in a finite number of sampling times without leaving the stability region Ωρ

(again, by recursive application of Eq.6.28). Moreover, once the state converges to
Ωρs , it remains inside Ωρmin for all times. This statement holds by the definition of
ρmin. Therefore, from Case 1 and Case 2, the closed-loop state is bounded in Ωρ for
all t ≥ 0 when x(0) ∈ Ωρ .

Part 3: If ts is finite, the lower layer LMPC will switch to mode 2 operation only
and the closed-loop state will be ultimately bounded in Ωρmin , which follows from
Part 2.

Remark 6.1 The closed-loop stability result presented in Theorem 6.1 is bounded-
ness of the closed-loop state inside of Ωρ . Additional elements in the lower layer
MPC are usually needed to guarantee that the closed-loop state will track the ref-
erence trajectories computed in the upper layer LEMPC. Nevertheless, acceptable
tracking performance may usually be achieved in practice through a careful tuning
of the weighting matrices Qc and Rc and a sufficiently long prediction horizon in
the lower layer LMPC, which is the case in the example below.

6.2.3 Application to a Chemical Process

The two-layer framework for dynamic economic optimization and process control is
implemented on the benchmark chemical reactor example presented in Sect. 1.3.1.
Recall, the nonlinear dynamic model that describes the evolution of the reactor
(Eqs. 1.7–1.10) has four states: the vapor density in the reactor (x1), the ethylene con-
centration in the reactor (x2), the ethylene oxide concentration in the reactor (x3),
and the reactor temperature (x4) and three inputs: the volumetric flow rate of the
reactor feed, the ethylene concentration in the reactor feed, and the reactant coolant
temperature. With abuse of notation, the notation u1, u2, and u3 is used to denote the
three inputs, respectively. The reactor has an asymptotically stable steady-state:

xTs = [0.998 0.424 0.032 1.002] (6.30)

which corresponds to the steady-state input:

u1,s = 0.35, u2,s = 0.5, u3,s = 1.0 . (6.31)

http://dx.doi.org/10.1007/978-3-319-41108-8_1
http://dx.doi.org/10.1007/978-3-319-41108-8_1
http://dx.doi.org/10.1007/978-3-319-41108-8_1
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The control objective considered here is to optimize the time-averaged yield of
ethylene oxide by operating the reactor in a time-varying fashion around the stable
steady-state. Owing to the fact that closed-loop stability is not an issue for this
application, the optimization and control framework operates with mode 1 operation
only. The time-averaged yield of ethylene oxide over an operating length of t f is
given by

Y =

∫ t f

0
x3(t)x4(t)u1(t) dt∫ t f

0
u1(t)u2(t) dt

. (6.32)

Owing to practical considerations, the average amount of ethylene that may be fed
into the process over the length of operation is fixed, which is given by the following
integral constraint:

1

t f

∫ t f

0
u1(t)u2(t)dt = u1,su2,s = 0.175 (6.33)

where u1,s and u2,s are the steady-state inlet volumetric flow rate and ethylene con-
centration, respectively. Since the average ethylene fed to the reactor is fixed, which
fixes the denominator of the yield (Eq.6.32), the economic stage cost used in the
formulation of the upper layer LEMPC is

le(x, u) = −x3x4u1 . (6.34)

In the implementation of the two-layer dynamic optimization and control frame-
work, the manipulated inputs are partitioned into two sets. The first set of manip-
ulated inputs consists of the inlet flow rate and ethylene feed concentration inputs.
As pointed out in Sect. 3.2, periodic switching of these two inputs may improve eco-
nomic performance. Additionally, these two inputs are constrained by the integral
constraint of Eq.6.33. The first set of inputs is controlled by the upper layer LEMPC,
i.e., the upper layer LEMPC computes control actions for these manipulated inputs
that are applied to the reactor. The second set of manipulated inputs consists of the
coolant temperature input that the lower layer LMPC (Eq.6.9) controls.

To characterize the region Ωρe , which is used in the two-layer framework design,
an explicit stabilizing controller is designed and a Lyapunov function is constructed.
Specifically, the explicit controller is designed as a proportional controller for the
input u3: h2(x) = K (xs,3 − x3) + us,3 with K = 0.1. A quadratic Lyapunov func-
tion is found for the closed-loop reactor under the proportional controller, which is
given by:

V (x) = (x − xs)
T P(x − xs)

where P = diag([10 0.01 10 10]). The closed-loop stability region of the reactor
under the explicit controller with the inputs u1 and u2 fixed at their steady-state

http://dx.doi.org/10.1007/978-3-319-41108-8_3
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values is taken to be a level set of the Lyapunov function where the time-derivative
of the Lyapunov function is negative definite for all points contained in the level set.
The constructed level set is subsequently taken to be Ωρe with ρe = 0.53 and in this
case, Ωρ = Ωρe .

The prediction horizon of the upper layer LEMPC and lower layer LMPC are
NE = 47 and N = 3, respectively, the sampling period is Δ = 1.0, the number of
sampling times that the upper layer LEMPC is recomputed is KE = 47, which is
the same as the prediction horizon in this case, and a shrinking horizon employed
in the lower layer LMPC when the prediction horizon extends past the time that the
upper layer optimal trajectory is defined. To ensure that the integral constraint of
Eq.6.33 is satisfied over the length of operation, the computed input trajectory of the
upper layer LEMPC must satisfy the integral constraint, i.e., it is enforced over each
operating windows of length 47 (dimensionless time). The weighting matrices of the
lower layer LMPC are Qc = P , and Rc = 0.01 which have been tuned to achieve
close tracking of the optimal trajectory. The optimization problems of upper layer
LEMPC and lower layer LMPC are solved using Ipopt [17].

In the first set of simulations, the two-layer framework is applied to the reactor
without disturbances or plant-modelmismatch. The reactor is initialized at a transient
initial condition given by:

xT0 = [0.997 1.264 0.209 1.004] .

The closed-loop state and input trajectories of the reactor under the two-layer
optimization and control framework are shown in Figs. 6.2 and 6.3, respectively.
From the state trajectories (Fig. 6.2), the lower layer LMPC is able to force the
system to track the optimal state trajectory. Recall, the sampling periods of the upper
and lower layer are the same, and the closed-loop system is not subjected to any
uncertainties or disturbances. Therefore, perfect tracking of the optimal trajectory is
expected.

As described above, a motivating factor for the design of a two-layer optimization
and control architecture is to achieve a computation benefit relative to a one-layer
EMPC approach. To compare the computational time of the two-layer framework
with a one-layer EMPC approach, a one-layer LEMPC implementation is consid-
ered. The LEMPC is implemented with mode 1 operation only and with a shrinking
prediction horizon. The shrinking horizon implementation is described as follows:
the LEMPC is initialized with a prediction horizon of 47 (dimensionless time) and
at every subsequent sampling time, the prediction horizon is decreased by one sam-
pling period. Every 47 sampling times, the prediction horizon is reset to 47. It is
important to point out that the closed-loop performance achieved under the two-
layer LEMPC and that under the one-layer LEMPC are equal owing to the fact there
is no plant-model mismatch. Also, a fixed-horizon one-layer LEMPC implementa-
tion strategy requires more computation time on average relative to the shrinking
horizon implementation.
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Fig. 6.2 The closed-loop state trajectories of the reactor under the two-layer dynamic economic
optimization and control framework (the two trajectories are overlapping)
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Fig. 6.3 The closed-loop input trajectories computed by two-layer dynamic economic optimization
and control framework (the two trajectories are overlapping)

Figure6.4 gives the computational time reduction achieved with the two-layer
optimization and control framework relative to the one-layer LEMPC implementa-
tion. For this example, the lower layer LMPC computation time is insignificant com-
pared to the computation time of the upper layer LEMPC. The two-layer framework
only solves the LEMPC optimization problem once every 47 sampling times. Every
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Fig. 6.4 The computational
time reduction of the
two-layer optimization and
control framework relative to
the one-layer
implementation of LEMPC
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47 sampling times when the upper layer LEMPC is solved and at the end of each
operating interval of length 47 when the one-layer LEMPC horizon has decreased
to a comparable length as the horizon of the lower layer LEMPC, the computational
burden of the two-layer framework compared to that of the one-layer LEMPC is
comparable, i.e., approximately a zero percent computational time improvement is
achieved (Fig. 6.4). For the other sampling times, the computationof theLMPCwhich
computes control actions for the set of manipulated inputs u2 is much better than that
compared to the one-layer LEMPC. For this case, an average of 89.4% reduction of
the computational time with the two-layer framework is achieved relative to that of
the one-layer LEMPC implementation.

In the second set of simulations, significant process noise is added to the system
states. The noise is assumed to be bounded Gaussian white noise with zero mean
and standard deviation of 0.005, 0.03, 0.01, and 0.02 and bounds given by 0.02, 0.1,
0.03, and 0.08 for the four states, respectively. To simulate the process noise, a new
random number is generated and applied to the process over each sampling period.
The results of a closed-loop simulation are shown in Figs. 6.5 and 6.6. Because of the
added process noise, the closed-loop trajectories do not perfectly track the reference
trajectories. Also, the added process noise has an effect on the closed-loop economic
performance. However, this effect was minimal in the sense that the time-averaged
yield of the closed-loop system under the two-layer framework is 10.3% with the
added process disturbance and 10.4% without the added process disturbance. Even
with the process noise, the closed-loop reactor performance is better than that at the
steady-state (the yield at steady-state is 6.4%).
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Fig. 6.5 The closed-loop state trajectories of the catalytic reactor under the two-layer dynamic
economic optimization and control framework and with process noise added to the states
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Fig. 6.6 The closed-loop input trajectories computed by two-layer dynamic economic optimization
and control framework and with process noise added to the states (the two trajectories are nearly
overlapping)
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6.3 Unifying Dynamic Optimization with Time-Varying
Economics and Control

In the previous section, a two-layer framework for dynamic optimization and con-
trol is presented. However, the framework treats the economic considerations, e.g.,
demand, energy pricing, variable feedstock quality, and product grade changes
as time-invariant. This paradigm may be effective, especially for the applications
where there is a sufficient time-scale separation between the time constants of the
process/system dynamics and the update frequency of the economic parameters.
However, including the time-variation of the economic considerations in the for-
mulation of the economic stage cost may be needed to achieve good closed-loop
performance when the time-scales are comparable. One class of examples where
there may not be such a time-scale separation is energy systems with real-time pric-
ing.

In this section, a two-layer framework for optimization and control of systems
of the form of Eq.4.1 is considered where the economic stage cost may be time-
dependent in the sense that the system of Eq.4.1 is equipped with a time-dependent
economic cost le : [0,∞) × X × U → R ((t, x, u) �→ le(t, x, u)where t is the time).
The framework design is similar to that in the previous section. Specifically, the
upper layer dynamic economic optimization problem (EMPC) is used to generate an
economically optimal state trajectory defined over a finite-time horizon. In the lower
layer, a tracking MPC is used to force the states to track the economically optimal
trajectory. However, the main differences of the two-layer approach presented in this
section compared to that of the previous section are the EMPC is formulated with an
economic stage cost that may be explicitly time-dependent, the formulations of the
layers are different, and the underlying theory and analysis are different.

Explicit constraints are used in the upper layer dynamic optimization problem to
ensure that the lower layer trackingMPCmay force the closed-loop state to track the
trajectory computed in the optimization layer. In particular, the optimization layer
is constrained to compute an optimal trajectory that is slowly time-varying. The
resulting slowly time-varying trajectory vector is denoted as xE (t) ∈ Γ ⊂ R

n for
t ≥ 0 where Γ is a compact set and the rate of change of the reference trajectory is
bounded by

|ẋE (t)| ≤ γE (6.35)

for all t ≥ 0. The deviation between the actual state trajectory and the slowly-varying
reference trajectory is defined as e := x − xE with its dynamics described by

ė = f (x, u, w) − ẋE
= f (e + xE , u, w) − ẋE
=: g(e, xE , ẋE , u, w) . (6.36)

The state e of the system of Eq.6.36 will be referred to as the deviation state in
the remainder of this section.

http://dx.doi.org/10.1007/978-3-319-41108-8_4
http://dx.doi.org/10.1007/978-3-319-41108-8_4
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Assumption 6.2 The system of Eq.6.36 has a continuously differentiable, isolated
equilibrium for each fixed xE ∈ Γ in the sense that there exists a û ∈ U for a fixed
xE ∈ Γ to make e = 0 the equilibrium of Eq.6.36 (g(0, xE , 0, û, 0) = 0).

In what follows, the upper layer EMPC computes a reference trajectory that
evolves according to the nominal system dynamics ẋE = f (xE , uE , 0) while main-
taining the state trajectory to be in the set Γ where Γ is an equilibrium manifold
in the sense that Γ = {xE ∈ X : ∃ uE ∈ U s.t. f (xE , uE , 0) = 0}. Nevertheless, the
theory applies to amore general case where the following hold: |ẋE | ≤ γE ,Γ is com-
pact and Assumption 6.2 is satisfied. One conceptually straightforward extension of
the two-layer framework is to consider steady-state optimization in the upper layer
instead of dynamic optimization. Specifically, xE could be taken as a steady-state
and varied slowly to account for the time-varying economic considerations.

6.3.1 Stabilizability Assumption

For each fixed xE ∈ Γ , there exists a Lyapunov-based controller thatmakes the origin
of the nonlinear systemgiven byEq.6.36without uncertainty (w ≡ 0) asymptotically
stable under continuous implementation. This assumption is essentially equivalent to
the assumption that the nominal systemofEq.4.1 is stabilizable at each xE ∈ Γ .More
specifically, for each fixed xE ∈ Γ , the existence of a mapping h : Ds × Γ → U and
a continuously differentiable function V : Ds × Γ → R+ is assumed that satisfies:

α1(|e|) ≤ V (e, xE ) ≤ α2(|e|), (6.37a)

∂V (e, xE )

∂e
g(e, xE , 0, h(e, xE ), 0) ≤ −α3(|e|), (6.37b)

∣∣∣∣∂V (e, xE )

∂e

∣∣∣∣ ≤ α4(|e|), (6.37c)

∣∣∣∣∂V (e, xE )

∂xE

∣∣∣∣ ≤ α5(|e|), (6.37d)

for all e ∈ Ds where αi ∈ K , i = 1, 2, 3, 4, 5, Ds is an open neighborhood of the
origin, and h is the Lyapunov-based controller. In this sense, the function V is a
Lyapunov function for each xE ∈ Γ . While the inequalities of Eqs. 6.37a–6.37c are
similar to the inequalities of standard Lyapunov functions, Eq. 6.37d is needed to
account for the time-varying nature of xE . More precisely, the special requirement
that the inequalities hold uniformly in xE is required to handle the perturbation,which
results from the fact that xE is not constant, but rather, a time-varying function.

For a fixed xE ∈ Γ ⊂ R
n , the symbol Ωρ(xE ) is a level set of the Lyapunov func-

tion, i.e., Ωρ(xE ) := {e ∈ R
n : V (e, xE ) ≤ ρ(xE )} where ρ(xE ) > 0 depends on xE .

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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The region Ωρ∗ is the intersection of stability regions Ωρ(xE ) of the closed-loop
system under the Lyapunov-based controller for all xE ∈ Γ .

For broad classes of nonlinear systems arising in the context of chemical process
control applications, quadratic Lyapunov functions using state deviation variables,
i.e., V (x) = (x − xs)T P(x − xs), where xs is a steady-state, have been widely used
and have been demonstrated to yield acceptable estimates of closed-loop stability
regions (see [18] and the references therein). In the example of Sect. 6.3.3, a quadratic
Lyapunov function is used where instead of a fixed equilibrium xs a time-varying
reference trajectory xE is used, i.e., at time t , the Lyapunov function is given by:
V (e(t), xE (t)) = eT (t)Pe(t) where e(t) = x(t) − xE (t).

Remark 6.2 If the equilibrium point e = 0 of the frozen system forced by an explicit
controller (ė = g(e, xE , 0, h(e, xE ), 0)) is exponentially stable uniformly in xE and
under some additional mild smoothness requirements, then there exists a Lyapunov
function satisfying Eqs. 6.37a–6.37d [15, Lemma 9.8].

Remark 6.3 The setΩρ∗ is such that for any e ∈ Ωρ∗, the ability to drive the statewith
the Lyapunov-based controller asymptotically to any fixed xE ∈ Γ is guaranteed.
This set may be estimated in the following way: first, the set Γ is chosen. Second,
the regions Ωρ(xE ) for a sufficiently large number of xE in the set Γ are estimated.
The regions Ωρ(xE ) may be estimated as the level set (ideally the largest) of V for a
fixed xE ∈ Γ where V̇ < 0 with the Lyapunov-based controller. Lastly, the stability
region Ωρ∗ may be constructed from the intersection of these computed regions. It
is important to point out that the design of the upper layer EMPC does not employ
Ωρ∗. Therefore, for practical design purposes, an explicit construction of Ωρ∗ is not
needed.

6.3.2 Two-Layer EMPC Scheme Addressing Time-Varying
Economics

In this section, the two-layer framework for dynamic economic optimization and con-
trol for handling time-varying economics is described and the stability and robustness
properties of the closed-loop system are given.

6.3.2.1 Formulation and Implementation

To address time-dependent economics, a two-layer framework is presented. The
two-layer framework for optimization and controlmay be considered an intermediate
approach between existing steady-state operation and one-layer EMPC schemes. A
block diagram of the two-layer control framework is given in Fig. 6.7. In this frame-
work, optimization and control are effectively divided into separate tasks. However,
the upper optimization layer is formulated with specific control-oriented constraints
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Fig. 6.7 A block diagram of
the dynamic economic
optimization and control
framework for handling
time-varying economics

Economic Considerations

EMPC

MPC System

x∗
E(·|t̂k) u∗

E(·|t̂k)
u∗(tj|tj)

x(t̂k)

x(tj)

Upper Layer - Dynamic
Economic Optimization

Lower Layer - Feedback Control

to ensure stability. In the upper layer, an EMPC, formulated with a time-varying eco-
nomic stage cost, computes economically optimal state and input trajectories over a
finite-time horizon. The optimal trajectories are sent down to a lower layer tracking
MPC to force the system to track the economically optimal state trajectory. For com-
putational efficiency, the EMPC optimization problem is solved infrequently, i.e., it
does not employ a standard receding horizon implementation strategy. Instead, the
operating time is partitioned into finite-time intervals of length t ′ called operating
periods. The operating period is chosen based on the time-scale of the process dynam-
ics and update frequency of the economic parameters in the economic cost function,
e.g., the update frequency of the energy price, product demand, or product transi-
tions. The length of the operating period may be considered a tuning parameter of the
control architecture. At the beginning of each operating period, the EMPC problem
is initialized with a state measurement and is solved. The lower layer tracking MPC
is solved every sampling time to maintain closed-loop stability and robustness and is
formulated with a stage cost that penalizes deviations from the optimal trajectories.
While in the lower layer anyMPC tracking controller could be used, Lyapunov-based
MPC (LMPC) is used here owing to its unique stability and robustness properties.

A summary of the implementation strategy and the notation is as follows (a
detailed algorithm is given below after the formulations of the control problems
are given). The operating time is divided into finite-time operating periods of length
t ′ = KEΔE where KE is some integer greater than or equal to one. At the begin-
ning of the operating period denoted by t̂k = kt ′ where k = 0, 1, . . ., the upper layer
EMPC,with hold periodΔE > 0 (zeroth-order control parameterization is employed
in the upper layer EMPC) and prediction horizon of TE = NEΔE where NE ∈ I+,
receives a state measurement and computes the economically optimal state and input
trajectories. The prediction horizon of the EMPC is chosen to be sufficiently large
to cover the operating period plus the transition to the next operating period, i.e.,
TE ≥ t ′ + T where T = NΔ is the prediction horizon of the lower layer LMPC,
Δ > 0 denotes the sampling period of the lower layer LMPC that is less than or
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equal to ΔE , and N ∈ I+ is the number of sampling periods in the prediction hori-
zon of the LMPC. Between t̂k and t̂k + t ′, the lower layer LMPC computes control
actions that work to force the closed-loop state to track the optimal trajectories.

The upper layer EMPC optimization problem is as follows:

min
uE∈S(ΔE )

∫ t̂k+TE

t̂k

le(τ, xE (τ ), uE (τ )) dτ (6.38a)

s.t. ẋE (t) = f (xE (t), uE (t), 0) (6.38b)

xE (t̂k) = proj
Γ

(x(t̂k)) (6.38c)

uE (t) ∈ U, ∀ t ∈ [t̂k, t̂k + TE ) (6.38d)

|ẋE (t)| ≤ γE , ∀ t ∈ [t̂k, t̂k + TE ) (6.38e)

xE (t) ∈ Γ, ∀ t ∈ [t̂k, t̂k + TE ) (6.38f)

where S(ΔE ) is the family of piecewise constant functions with period ΔE , le is the
time-dependent economic measure which defines the cost function, the state xE is
the predicted trajectory of the system with the input trajectory uE computed by the
EMPC and x(t̂k) is the state measurement obtained at time t̂k . The optimal state and
input trajectory computed by the EMPC are denoted as x∗

E (t |t̂k) and u∗
E (t |t̂k) defined

for t ∈ [t̂k, t̂k + TE ), respectively.
In the optimization problem of Eq.6.38, the constraint of Eq.6.38b is the nominal

dynamic model of the system (w ≡ 0) used to predict the future evolution under
the sample-and-hold input trajectory. The constraint of Eq. 6.38c defines the initial
condition of the optimization problemwhich is a projection of the state measurement
at t̂k onto the setΓ where the symbol projΓ (x) denotes the projection of x onto the set
Γ . The constraint of Eq.6.38d ensures that the computed input trajectory takes values
in the set of admissible inputs. The constraint of Eq.6.38f limits the rate of change of
the economically optimal state trajectory. Finally, the constraint of Eq.6.38f ensures
that the state evolution is maintained in the region Γ .

The constraint of Eq.6.38c is used to ensure that the optimization problem is
feasible. The projection operator may be any projection operator that projects the
current state x(t̂k) onto a near (ideally the nearest) point in the set Γ . In some cases,
when the sampling periods of the upper and lower layers and the bounded disturbance
are sufficiently small, it may also be sufficient to use the predicted state x∗

E (t̂k |t̂k−1)

derived from the solution of the optimization problem of Eq. 6.38 that was solved at
the beginning of the preceding operating period. Another potential option is to allow
for the initial condition xE (t̂k) be a decision variable in the optimization problem
by including another term in the objective function penalizing the deviation of the
computed initial condition from the current state x(t̂k). In this sense, the framework
offers a degree of flexibility in the selection of the projection operator.

The last two constraints of the optimization problem of Eq.6.38 are used to guar-
antee closed-loop stability under the integrated framework and to ensure that the
lower layer may force the system to track the optimal state trajectory, i.e., they
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are control-oriented constraints. This is a departure from other types of two-layer
dynamic economic optimization and control architectures featuring, for example,
dynamic real-time optimization in the upper optimization layer. Also, the constraint
imposed in the upper layer EMPC on the rate of change of the optimal trajectory
(Eq.6.38e) does pose a restriction on the feasible set of the optimization problem
of Eq.6.38 and could affect closed-loop economic performance achieved under the
resulting two-layer framework. However, allowing the optimal state trajectory to
have a large rate of change may be undesirable for many applications based on prac-
tical considerations like excessive strain on control actuators as well as the difficulty
of forcing the system to track a rapidly changing reference trajectory in the presence
of disturbances.

At the lower feedback control level, LMPC is employed to force the state to
track the economically optimal state trajectory. The LMPC is implemented with a
standard receding horizon implementation, i.e., the LMPC recomputes an updated
input trajectory synchronously every sampling time. Let {t j } j≥0 where t j = jΔ,
j = 0, 1, . . . denote the sampling time sequence of the LMPC. Also, the dynamic
model used in the LMPC is that of Eq. 6.36, which is the deviation system. The
LMPC optimization problem is given by:

min
u∈S(Δ)

∫ t j+T

t j

(
|ẽ(τ )|2Qc

+ ∣∣u(τ ) − u∗
E (τ |t̂k)

∣∣2
Rc

)
dτ (6.39a)

s.t ˙̃e(t) = g(ẽ(t), x∗
E (t |t̂k), ẋ∗

E (t |t̂k), u(t), 0) (6.39b)

ẽ(t j ) = x(t j ) − x∗
E (t j |t̂k) (6.39c)

u(t) ∈ U, ∀ t ∈ [t j , t j + T ) (6.39d)

∂V (ẽ(t j ), x∗
E (t j |t̂k))

∂e
g(ẽ(t j ), x

∗
E (t j |t̂k), 0, u(t j ), 0)

≤ ∂V (ẽ(t j ), x∗
E (t j |t̂k))

∂e
g(ẽ(t j ), x

∗
E (t j |t̂k), 0, h(ẽ(t j ), xE (t j |t̂k)), 0)

(6.39e)

where S(Δ) is the family of piecewise constant functions with sampling period Δ,
N is the prediction horizon of the LMPC, ẽ is the predicted deviation between the
state trajectory predicted by the nominal model under the input trajectory computed
by the LMPC and the economically optimal state trajectory x∗

E (·|t̂k). The optimal
solution of the optimization problem of Eq.6.39 is denoted by u∗(t |t j ) defined for
t ∈ [t j , t j+N ).

In the optimization problem of Eq.6.39, the constraint of Eq.6.39b is the nominal
model of the deviation system. The constraint of Eq.6.39c is the initial condition to
the dynamic optimization problem. The constraint of Eq. 6.39d defines the control
energy available to all manipulated inputs. The constraint of Eq.6.39e ensures that
the Lyapunov function of the closed-loop system with the LMPC decreases by at
least the rate achieved by the Lyapunov-based controller. The last constraint ensures
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that the closed-loop state trajectory converges to a neighborhood of the optimal state
trajectory computed by the upper layer EMPC.

The implementation strategy of the dynamic economic optimization and control
framework is summarized by the following algorithm.

1. At t̂k , the EMPC receives a state measurement x(t̂k) and projects the current state
x(t̂k) onto the set Γ . Go to Step 2.

2. The EMPC computes the economically optimal state and input trajectories:
x∗
E (t |t̂k) and u∗

E (t |t̂k) defined for t ∈ [t̂k, t̂k + TE ). Go to Step 3.
3. For t̂k to t̂k + t ′ (one operating period), repeat:

3.1 The LMPC receives a state measurement x(t j ) and computes the deviation
of the current state from the optimal state trajectory. The error e(t j ) is used
to initialize the dynamic model of the LMPC. Go to Step 3.2.

3.2 The LMPC optimization problem is solved to compute an optimal input
trajectory u∗(t |t j ) defined for t ∈ [t j , t j + T ). Go to Step 3.3.

3.3 The control action computed for the first sampling period of the prediction
horizon is sent to the control actuators to be applied from t j to t j+1. If t j+1 >

t̂k + t ′, go to Step 4 and let j ← j + 1. Else, go to 3.1 and let j ← j + 1.

4. Go to Step 1, k ← k + 1.

6.3.2.2 Stability Analysis

In this subsection, the stability properties of the two-layer control framework with
the EMPC of Eq.6.38 in the upper layer and the LMPC of Eq.6.39 in the lower
layer when applied the system of Eq.4.1. Before these properties may be presented,
several properties are presented that are needed in the analysis. Owing to the fact that
Ωρ∗, Γ , U, and W are compact sets and f is locally Lipschitz, there exists Mx > 0
such that

| f (e + xE , u, w)| ≤ Mx (6.40)

for all e ∈ Ωρ∗, xE ∈ Γ , u ∈ U, and w ∈ W. From similar conditions and since the
rate of change of xE is bounded, there exists M > 0 such that

|g(e, xE , ẋE , u, w)| ≤ M (6.41)

for all e ∈ Ωρ∗, xE ∈ Γ , u ∈ U, w ∈ W and |ẋE | ≤ γE . In addition, since the Lya-
punov function V is continuously differentiable (in both arguments) and the fact that
f is locally Lipschitz, there exist positive constants Le, Lw, L ′

e, L
′
E , L

′′
E , L

′
w such

that

∣∣g(e, xE , ẋE , u, w) − g(e′, xE , ẋE , u, 0)
∣∣ ≤ Le|e − e′| + Lw|w|, (6.42)

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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∣∣∣∣∂V (e, xE )

∂e
g(e, xE , ẋE , u, w) − ∂V (e′, x ′

E )

∂e
g(e′, x ′

E , ẋ ′
E , u, 0)

∣∣∣∣
≤ L ′

e|e − e′| + L ′
E |xE − x ′

E | + L ′′
E |ẋE − ẋ ′

E | + L ′
w|w|

(6.43)

for all e, e′ ∈ Ωρ∗, xE , x ′
E ∈ Γ , u ∈ U, w ∈ W, |ẋE | ≤ γE , and |ẋ ′

E | ≤ γE .
The following Lemma gives the feasibility properties of the EMPC and therefore,

by the constraint of Eq.6.38f, the optimal state trajectory x∗
E (t |t̂k) is embedded in

the set Γ for t ∈ [t̂k, t̂k+1].
Lemma 6.1 Consider the systemofEq.6.38bover the predictionhorizon. If Assump-
tion 6.2 is satisfied, the optimization problem of Eq.6.38 is feasible and there-
fore, the optimal state trajectory x∗

E (t |t̂k) for t ∈ [t̂k, t̂k + TE ] computed by applying
the optimal input trajectory u∗

E (t |t̂k) defined for t ∈ [t̂k, t̂k + TE ) takes values in
the set Γ .

Proof When the EMPC optimization problem of Eq.6.38 is solved with an initial
condition satisfying xE (t̂k) ∈ Γ (this is guaranteed through the projection procedure),
the feasibility of the optimization problem follows if Assumption 6.2 is satisfied
because maintaining the state at the initial condition along the predicted horizon
is a feasible solution to the optimization problem as it satisfies all the constraints,
i.e., there exists a constant input trajectory uE (t) = ūE ∈ U for t ∈ [t̂k, t̂k + TE )

that maintains the state trajectory at its initial condition: xE (t) = projΓ (x(t̂k)) for
t ∈ [t̂k, t̂k + TE ). Owing to the fact that the problem is feasible and imposing the
constraint of Eq.6.38f, the optimal state trajectory x∗

E (t |t̂k) is bounded in the set Γ

for t ∈ [t̂k, t̂k + TE ].
Theorem 6.2 provides sufficient conditions such that the LMPC may track the

economically optimal trajectory x∗
E . More specifically, the deviation state gets small

over time until it is bounded in a small ball containing the origin.

Theorem 6.2 Consider the system of Eq.4.1 in closed-loop under the tracking
LMPC of Eq.6.39 based on the Lyapunov-based controller that satisfies the con-
ditions of Eqs.6.37a, 6.37d with the reference trajectory x∗

E computed by the upper
layer EMPC of Eq.6.38. Let εerror > 0, μ > 0, εw > 0, Δ > 0, ΔE > 0, N ≥ 1,
NE ≥ 1, NEΔE ≥ t ′ + NΔ, and γE > 0 satisfy

μ > α−1
3

(
(L ′

x M + L ′
EγE )Δ + (L ′′

E + α5(α
−1
1 (ρ∗)))γE + L ′

wθ

θ̂

)
(6.44)

for some θ̂ ∈ (0, 1),

εerror = max
s∈[0,Δ]{|e(s)| : e(0) ∈ Bμ for all xE ∈ Γ } , (6.45)

and Bμ ⊂ Bεerror ⊂ Ωρ∗. If (x(0) − x∗
E (0)) ∈ Ωρ∗, then the deviation state of the

system of Eq.6.36 is always bounded in Ωρ∗ and therefore, also, the closed-loop

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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state trajectory x is always bounded. Furthermore, the deviation between the state
trajectory of Eq.4.1 and the economically optimal trajectory is ultimately bounded
in Bεerror .

Proof The proof consists of two parts. First, the LMPC optimization problem of
Eq.6.39 is shown to be feasible for all deviation states in Ωρ∗. Subsequently, the
deviation state is proved to be bounded inΩρ∗ and to be ultimately bounded in Bεerror .

Part 1: When the deviation state is maintained in Ωρ∗ (which will be proved in
Part 2), the feasibility of the LMPC of Eq.6.39 follows because the input trajectory
obtained from the Lyapunov-based controller is a feasible solution. Specifically,
define the trajectory v such that:

ż(t) = g(z(t), x∗
E (t |t̂k), ẋ∗

E (t |t̂k), v(t), 0)

v(t) = h(z(ti ), x
∗
E (ti |t̂k))

for t ∈ [ti , ti+1), i = j, j + 1, . . . , N − 1 where z(t j ) = e(t j ). The trajectory v is a
feasible solution to the optimization problem of Eq.6.39 since the trajectory satisfies
the input and the Lyapunov function constraints of Eq.6.39. This is guaranteed by
the closed-loop stability property of the Lyapunov-based controller.

Part 2: At t̂k , the EMPC computes an optimal trajectory x∗
E (·|t̂k) for the LMPC

to track for one operating period. The computed trajectory is such that x∗
E (t |t̂k)

and |ẋ∗
E (t |t̂k)| ≤ γE for all t ∈ [t̂k, t̂k+1] (Lemma 6.1). For simplicity of notation, let

xE (τ ) = x∗
E (τ |t̂k), ẋE (τ ) = ẋ∗

E (τ |t̂k),
∂V (τ )

∂e
:= ∂V (e(τ ), xE (τ ))

∂e
, and

∂V (τ )

∂xE
:= ∂V (e(τ ), xE (τ ))

∂xE
(6.46)

for any τ ∈ [t j , t j+1). At any sampling time t j ∈ [t̂k, t̂k + t ′) of the LMPC, consider
e(t j ) ∈ Ωρ∗ (recursive arguments will be applied to show this is always the case
when e(0) ∈ Ωρ∗). The computed control action at t j satisfies:

∂V (t j )

∂e
g(e(t j ), xE (t j ), 0, u

∗(t j |t j ), 0) ≤ ∂V (t j )

∂e
g(e(t j ), xE (t j ), 0, h(e(t j ), xE (t j )), 0)

≤ −α3(|e(t j )|) (6.47)

for all e(t j ) ∈ Ωρ∗. For all τ ∈ [t j , t j+1), the time derivative of the Lyapunov function
is given by:

V̇ (e(τ ), xE (τ )) = ∂V (τ )

∂e
ė(τ ) + ∂V (τ )

∂xE
ẋE (τ ) . (6.48)

Adding and subtracting the left-hand term of Eq.6.47 and from the bound of
Eq.6.47, the time-derivative of the Lyapunov function may be upper bounded as
follows:

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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V̇ (e(τ ), xE (τ )) ≤ −α3(|e(t j )|) + ∂V (τ )

∂e
g(e(τ ), xE (τ ), ẋE (τ ), u∗(t j |t j ), w(τ))

− ∂V (t j )

∂e
g(e(t j ), xE (t j ), 0, u

∗(t j |t j ), 0) + ∂V (τ )

∂xE
ẋE (τ ) (6.49)

for all τ ∈ [t j , t j+1). From Eq.6.43, the time derivative of the Lyapunov function
(Eq.6.49) may be further upper bounded:

V̇ (e(τ ), xE (τ )) ≤ −α3(|e(t j )|) + L ′
x |e(τ ) − e(t j )| + L ′

E |xE (τ ) − xE (t j )|
+ L ′′

E |ẋE (τ )| + L ′
w|w(τ)| + α5(|e(τ )|)|ẋE (τ )|

≤ −α3(|e(t j )|) + L ′
x |e(τ ) − e(t j )| + L ′

E |xE (τ ) − xE (t j )|
+ (L ′′

E + α5(|e(τ )|))γE + L ′
wθ (6.50)

for all e(t j ) ∈ Ωρ∗ and τ ∈ [t j , t j+1) where the second inequality follows from the
fact that |ẋE (τ )| ≤ γE and w(τ) ∈ W.

Taking into account Eq.6.41 and the fact that |ẋE (τ )| ≤ γE and the continuity of
e and xE , the following bounds may be derived for all τ ∈ [t j , t j+1):

∣∣e(τ ) − e(t j )
∣∣ ≤ MΔ , (6.51)∣∣xE (τ ) − xE (t j )
∣∣ ≤ γEΔ . (6.52)

From Eqs. 6.50–6.52, the following inequality is obtained:

V̇ (e(τ ), xE (τ )) ≤ −α3(|e(t j )|) + (L ′
x M + L ′

EγE )Δ

+ (L ′′
E + α5(|e(τ )|))γE + L ′

wθ (6.53)

for all τ ∈ [t j , t j+1).
If Δ, γE and θ are sufficiently small such that there exist θ̂ ∈ (0, 1) and (μ, εerror)

satisfying Eqs. 6.44, 6.45 with Bμ ⊂ Bεerror ⊂ Ωρ∗, the following bound on the time-
derivative of the Lyapunov function follows:

V̇ (e(τ ), xE (τ )) ≤ −(1 − θ̂ )α3(|e(t j )|) (6.54)

for all τ ∈ [t j , t j+1) and e(t j ) ∈ Ωρ∗ \ Bμ. Integrating this bound on t ∈ [t j , t j+1),
one obtains that:

V (e(t j+1), xE (t j+1)) ≤ V (e(t j ), xE (t j )) − (1 − θ̂ )Δα3(|e(t j )|) (6.55)

V (e(t), xE (t)) ≤ V (e(t j ), xE (t j )) ∀ t ∈ [t j , t j+1) (6.56)

for all e(t j ) ∈ Ωρ∗ \ Bμ. Using the above inequalities recursively, it may be proved
that if e(t j ) ∈ Ωρ∗ \ Bμ, the deviation between the actual state trajectory and the
economic optimal trajectory converges to Bμ in a finite number of sampling times
without going outside the set Ωρ∗. Since the deviation state is always embedded in
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the setΩρ∗ and from Lemma 6.1, the economically optimal state trajectory is always
embedded in the set Γ , the boundedness of the closed-loop state trajectory of Eq.4.1
under the lower layer LMPC follows because Ωρ∗ and Γ are compact sets.

To summarize, if e(t j ) ∈ Ωρ∗ \ Bμ, then

V (e(t j+1), xE (t j+1)) < V (e(t j ), xE (t j )) . (6.57)

Furthermore, the deviation between the state trajectory and the economic optimal
trajectory is ultimately bounded in Bεerror where satisfies Eq.6.45 and Bμ ⊂ Bεerror ⊂
Ωρ∗. This statement holds because if the deviation state comes out of the ball Bμ,
the deviation state is maintained within the ball Bεerror owing to Eq.6.45. Once the
deviation comes out of the ball Bμ, the Lyapunov function becomes decreasing.

Notes and remarks on results:

• Three factors influences the time-derivative of the Lyapunov functionwhen e(t j ) ∈
Ωρ∗ \ Bμ as observed inEq.6.53: the samplingperiodof the lower layerLMPC, the
bound on the disturbance, and the bound on the rate of change of the economically
optimal trajectory. While the bound on the disturbance is a property of the system,
two of the other properties may be used to achieve a desired level of tracking:
the sampling period of the lower level control loop and the rate of change of the
economically optimal tracking trajectory.

• Theorem 6.2 clarifies how the parameter γE arises and why it is needed in the
formulation of the EMPC of Eq.6.38.

• No guarantee is made that the closed-loop economic performance with the two-
layer framework is better compared to the performance using a steady-state model
in the upper layer. In some cases, it may be the case that closed-loop performance
is the same or possibly better using a steady-state model in the upper layer EMPC.
In this case, the stability result presented here may be extended to the case where
the optimal steady-state varies sufficiently slow.

6.3.3 Application to a Chemical Process Example

Consider awell-mixed, non-isothermal continuous stirred tank reactor (CSTR)where
an elementary (first-order) reaction takes place of the form A → B. The feed to the
reactor consists of pure A at volumetric flow rate F , temperature T0 + ΔT0 andmolar
concentration CA0 + ΔCA0 where ΔT0 and ΔCA0 are disturbances. A jacket around
the reactor is used to provide/remove heat to the reactor. The dynamic equations
describing the behavior of the system, obtained throughmaterial and energy balances
under standard modeling assumptions, are given below:

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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Table 6.2 Process parameters of the CSTR of Eq.6.58

F 5.0m3h−1 ΔH −1.2 × 104 kJ kmol−1

VR 1.0m3 k0 3.0 × 107 h−1

T0 300K E 5.0 × 104 kJ kmol−1

R 8.314kJ kmol−1 K−1 ρL 1000kgm−3

Cp 0.231 kJ kg−1 K−1

dT

dt
= F

VR
(T0 + ΔT0 − T ) − ΔHk0

ρLCp
e

−E
RT CA + Q

ρLCpVR
(6.58a)

dCA

dt
= F

VR
(CA0 + ΔCA0 − CA) − k0e

−E
RT CA (6.58b)

where CA is the concentration of the reactant A in the reactor, T is the reactor
temperature, Q is the rate of heat input/removal, VR is the reactor volume,ΔH is the
heat of the reaction, k0 and E are the pre-exponential constant and activation energy
of the reaction, respectively, Cp and ρL denote the heat capacity and the density of
the fluid in the reactor, respectively. The values of the process parameters are given
in Table6.2. The state vector is x = [T CA]T and the manipulated inputs are the heat
rate u1 = Q where u1 ∈ [−2, 2] × 105 kJ h−1 and the inlet reactant concentration
u2 = CA0 where u2 ∈ [0.5, 8.0] kmolm−3. The feed disturbances are simulated as
bounded Gaussian white noise with zero mean, variances 20K2 and 0.1 kmol2 m−6,
and bounds given by |ΔT0| ≤ 15K and |ΔCA0| ≤ 1.0 kmolm−3.

The control objective is to force the system to track the economically optimal
time-varying operating trajectories computed by the upper layer EMPC. The set Γ

is defined as

Γ := {x ∈ R
2 : 340 ≤ x1 ≤ 390K, 0.5 ≤ x2 ≤ 3.0 kmolm−3} . (6.59)

In this example, the time-varying economic stage cost penalizes energy consump-
tion, credits conversion of the reactant to the product, and penalizes the deviation of
temperature from 365.0K and is given by:

le(t, x, u) = p1(t)u
2
1 − p2(t)

(u2 − x2)

u2
+ p3(t)(x1 − 365.0K)2 (6.60)

where p1, p2, and p3 are the potentially time-varying weighting factors. The last
term in the economic stage cost is used to prevent the system from operating on the
boundary of Γ for long periods of time. The magnitudes of the economic weighting
factors have been chosen so that all terms in the economic cost have the same order of
magnitude. For this example, p1 and p3 are chosen to be time-varying and p2 = 10
is constant. The time-varying weight p1(t), over four hours of operation, is given by
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p1(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.0 × 10−7, t < 1.0 h

5.0 × 10−8, 1.0 h ≤ t < 2.0 h

1.0 × 10−8, 2.0 h ≤ t < 3.0 h

5.0 × 10−8, 3.0 h ≤ t ≤ 4.0 h

and is used to model the time-varying energy cost. The time-varying weight p3(t) is
given by

p3(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.0 × 10−2, t < 1.0 h

7.5 × 10−3, 1.0 h ≤ t < 2.0 h

5.0 × 10−3, 2.0 h ≤ t < 3.0 h

7.5 × 10−3, 3.0 h ≤ t ≤ 4.0 h

The rationale for varying p3 is to allow the CSTR be operated over a larger
temperature range when the energy cost decreases and thus, take advantage of the
decreased energy cost.

The upper layer EMPC is implemented with a sampling period of ΔE = 36s and
prediction horizon of NE = 60 sampling periods. It is solved every 0.50 h, i.e., the
operating period is chosen to be t ′ = 0.50 h. The prediction horizon and operating
period are chosen to account for the update frequency of the economic weighting
parameters. It is found that defining and imposing a rate of change constraint in the
upper layer EMPC, i.e., defining the parameter γE , is not needed for this particu-
lar example because the closed-loop system under the lower layer LMPC is able
to achieve acceptable tracking performance without imposing a rate of change con-
straint in the upper layer EMPC. The projection operator is such that it projects the
current state to the closest boundary of Γ if the current state is outside the set Γ ,
e.g., if x = [400K 2.0 kmolm−3]T , then projΓ (x) = [390K 2.0 kmolm−3]T .

To design the lower layer LMPC, a Lyapunov-based controller is designed for the
CSTR, which is essentially two proportional controllers that account for the input
constraints. Specifically, the two proportional controllers are given by:

−K1(x1 − x∗
E,1) + us,1,

−K2(x2 − x∗
E,2) + us,2

(6.61)

where K1 = 8000, K2 = 0.01, and us is the steady-state input corresponding to the
steady-state x∗

E , i.e., the input vector that makes the right-hand side of Eqs. 6.58a,
6.58b equal to zero with the state vector x∗

E . The resulting Lyapunov-based controller
design for theCSTR is derived by accounting for the input constraints in the controller
design of Eq.6.61 aswell as for the fact that us may bewritten as a function of xE , i.e.,
the resulting Lyapunov-based controller is a mapping h that maps the pair (e, xE )

to h(e, xE ) ∈ U. A quadratic Lyapunov function of the form V (e, xE ) = eT Pe is
constructed for the closed-loop system under the Lyapunov-based controller with

P =
[
10 1
1 100

]
. (6.62)
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TheLMPC is implementedwith a sampling timeΔ = 36s, prediction horizon N = 5,
andweightingmatrices ofQc = P and Rc = diag

[
10−7 10

]
. Thepredictionhorizon

andweightingmatrices of the lower layer LMPC are tuned to achieve a close tracking
of the optimal state trajectory.

With the nonlinear system of Eqs. 6.58a–6.58b, the Lyapunov-based controller,
and the Lyapunov function, the stability regions of the closed-system under the
Lyapunov-based controller may be estimated for a sufficiently large number of points
in Γ . This procedure is carried out as follows: fix xE ∈ Γ and compute a level set
of the Lyapunov function where V̇ < 0 for all points contained in the level set. The
intersection of all these level sets is taken to be an estimate of the closed-loop stability
region Ωρ∗ of the CSTR under the Lyapunov-based controller. In this example, Ωρ∗
is estimated to be ρ∗ = 110. Through the Lyapunov-based constraint on the LMPC
of (Eq.6.39e), the closed-loop system with the two-layer framework inherits the
stability region Ωρ∗ .

To simulate the closed-loop system, explicit Euler method with integration step
0.36s is used to integrate theODEs and the open source interior point solver Ipopt [17]
is used to solve the optimization problems. Three sets of closed-loop simulations
are completed. In the first set of closed-loop simulations, the stability properties
of the closed-loop system under the two-layer dynamic economic optimization and
control framework are demonstrated. Second, time-varying operation with the two-
layer dynamic economic optimization and control framework is analyzed. Third, the
closed-loop economic performance of the CSTR under the two-layer framework is
compared to the CSTR under a conventional approach to optimization and control.

To demonstrate the closed-loop stability properties of the proposed two-layer
framework, the CSTR is initialized at x0 = [400K, 0.1 kmolm−3] which is outside
of Γ , but inside the stability region Ωρ∗. The projection operator of the upper layer
EMPC projects the initial state onto the state xE,0 = [390K, 0.5 kmolm−3] ∈ Γ

to use as an initial condition to the upper layer EMPC problem of Eq.6.38. The
evolution of the closed-loop system under the two-layer framework and with the
inlet temperature and reactant concentration disturbance is shown in Figs. 6.8 and
6.9. From Fig. 6.9, the deviation of the actual closed-loop state and the economically
optimal state is always maintained inside Ωρ∗. Moreover, the deviation becomes
small over time until it is ultimately bounded in a small ball.

Two simulations of the closed-loop systemwithout the feed disturbances added are
shown in Figs. 6.10 and 6.11 with two different initial conditions to analyze the time-
varying operation with the two-layer dynamic economic optimization and process
control framework. The initial state in Fig. 6.10 is x0 = [400K, 3.0 kmolm−3]T ,
while the initial state in Fig. 6.11 is x0 = [320K, 3.0 kmolm−3]T . The closed-loop
evolution of the two cases is initially different. For the CSTR starting at the larger
temperature, heat should be removed from the reactor and the minimum amount of
reactant material should be supplied to the reactor to decrease the temperature of the
reactor. In contrast, when the CSTR is initialized at the smaller temperature, heat
should be supplied to the reactor and reactant material should be fed to the reactor
to increase the reactor temperature. After a sufficiently long length of operation, the
effect of the initial condition diminishes and the closed-loop evolution of the two
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Fig. 6.8 The closed-loop
state and input trajectories of
Eqs. 6.58a, 6.58b under the
two-layer optimization and
control framework with the
feed disturbances and
starting from 400K and
0.1 kmolm−3
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Fig. 6.9 The closed-loop
state trajectory of Eqs. 6.58a,
6.58b under the two-layer
optimization and control
framework with the feed
disturbances and starting
from 400K and
0.1 kmolm−3 shown in
deviation state-space
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cases becomes similar. For both of these cases, the reactor is operated in a time-
varying fashion, i.e., never converges to a steady-state.

To compare the closed-loop economic performance under the dynamic economic
optimization and control framework and under a conventional approach to optimiza-
tion and control, the total economic cost over the length of operation is defined as

JE =
M−1∑
j=0

(
p1(t j )Q

2(t j ) + p2
CA(t j )

CA0(t j )
+ p3(t j )(T (t j ) − 365)2

)
(6.63)

where t0 is the initial timeof the simulation and tM = 4.0 h is the endof the simulation.
The conventional approach to optimization and control uses a steady-state economic
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Fig. 6.10 The closed-loop
system states and inputs of
Eqs. 6.58a, 6.58b without the
feed disturbances and
starting from 400K and
3.0kmolm−3
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Fig. 6.11 The closed-loop
system states and inputs of
Eqs. 6.58a, 6.58b without the
feed disturbances and
starting from 320K and
3.0 kmolm−3
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optimization problem to compute the optimal steady-states with respect to the time-
varying economic costweights. The optimal steady-states are used in a trackingMPC,
which in this case is an LMPC, to force the CSTR states to the optimal steady-states.
The optimal (time-varying) steady-state from steady-state economic optimization is

x∗
s (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[370.0K, 2.576 kmolm−3]T , t < 1.0 h

[371.7K, 2.447 kmolm−3]T , 1.0 h ≤ t < 2.0 h

[375.2K, 2.205 kmolm−3]T , 2.0 h ≤ t < 3.0 h

[371.7K, 2.447 kmolm−3]T , 3.0 h ≤ t ≤ 4.0 h
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with the corresponding steady-state input of

u∗
s (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[0.0 kJ h−1, 3.923 kmolm−3]T , t < 1.0 h

[−0.5 kJ h−1, 3.827 kmolm−3]T , 1.0 h ≤ t < 2.0 h

[0.0 kJ h−1, 3.653 kmolm−3]T , 2.0 h ≤ t < 3.0 h

[−0.5 kJ h−1, 3.827 kmolm−3]T , 3.0 h ≤ t ≤ 4.0 h

An LMPC is implemented to drive the system to the time-varying optimal steady-
state, which is formulated as follows:

min
u∈S(Δ)

∫ t j+N

t j

(∣∣x̃(τ ) − x∗
s (τ )

∣∣
Qc

+ ∣∣u(τ ) − u∗
s (τ )

∣∣
Rc

)
dτ

s.t. ˙̃x(t) = f (x̃(t), u(t), 0),

x̃(t j ) = x(t j ),

− 2 × 105 ≤ u1(t) ≤ 2 × 105, ∀ t ∈ [t j , t j+N ),

0.5 ≤ u2(t) ≤ 8, ∀ t ∈ [t j , t j+N ),

∂V (x(t j ))

∂x
f (x(t j ), u(t j ), 0)

≤ ∂V (x(t j ))

∂x
f (x(t j ), h(x(t j ), x

∗
s (t j )), 0)

(6.64)

where the Lyapunov function, the Lyapunov-based controller, theweightingmatrices
Rc and Qc, the sampling period Δ, and the prediction horizon N are all the same as
the ones used in the tracking LMPC scheme.

To make a fair comparison, the same realization of the feed disturbances was
applied to each closed-loop system simulation pair. The total economic cost val-
ues of several closed-loop simulations starting from different initial conditions and
with and without the feed disturbances are given in Table6.3. From the results of
Table6.3, substantial closed-loop economic performance is achieved under the two-
layer framework than under the optimal steady-state tracking LMPC of Eq.6.64. The
largest economic cost improvement occurs when the CSTR is initialized at higher
temperature.When theCSTR starts from a lower temperature, the amount of heat that
needs to be supplied to the reactor initially is less than the amount of heat that needs
to be initially removed when the CSTR starts at a higher temperature as explained
above and demonstrated in Figs. 6.10 and 6.11. Thus, when the CSTR starts from a
higher temperature, better closed-loop performance is achieved because less energy
is required to be supplied/removed from the reactor.



208 6 Two-Layer EMPC Systems

Table 6.3 Comparison of the total economic cost, given by Eq.6.63, of the closed-loop system
with and without the feed disturbances for four hours of operation

Initial conditions Total economic cost

T (0) K CA(0)
kmolm−3

Steady-
state
optimiza-
tion
without
distur-
bance

Two-layer
Frame-
work
without
Distur-
bance

Cost
decrease
(%)

Steady-
state
optimiza-
tion with
distur-
bance

Two-layer
frame-
work with
distur-
bance

Cost
decrease
(%)

400.0 3.0 21970.5 14531.1 51.2 21642.4 14130.7 53.2

380.0 3.0 5235.4 3409.5 53.6 5060.1 3037.9 66.6

360.0 3.0 4261.8 3308.6 28.8 4083.2 2997.1 36.2

340.0 3.0 13732.2 10997.3 24.9 13554.9 10882.3 24.6

320.0 3.0 23719.4 19315.9 22.8 23729.1 19210.3 23.5

400.0 2.5 18546.8 10062.1 84.3 18283.4 9691.4 88.7

380.0 2.5 4558.7 3163.3 44.1 4387.2 2811.9 56.0

360.0 2.5 4496.4 3335.6 34.8 4322.7 3030.3 42.6

340.0 2.5 14078.3 11034.4 27.6 13910.2 10928.8 27.3

320.0 2.5 24052.2 19293.4 24.7 24002.2 19193.8 25.1

400.0 2.0 14831.5 6774.0 118.9 14682.4 6412.6 129.0

380.0 2.0 4073.2 3085.1 32.0 3905.0 2739.8 42.5

360.0 2.0 4765.4 3431.2 38.9 4596.4 3139.3 46.4

340.0 2.0 14395.5 11162.3 29.0 14236.8 11068.2 28.6

320.0 2.0 24202.7 19241.2 25.8 24223.5 19146.7 26.5

400.0 0.1 8146.1 4360.5 86.8 7999.4 4025.7 98.7

6.4 Addressing Closed-Loop Performance

An important theoretical consideration is the closed-loop performance of systems
under EMPC because EMPC is formulated with a finite prediction horizon. The
achievable closed-loop economic performance may strongly depend on the predic-
tion horizon length. To address guaranteed closed-loop economic performance while
formulating a computationally efficient control structure, a two-layer EMPC struc-
ture is presented in this section. In contrast to the two-layer EMPC methodologies
presented in the previous sections, EMPC schemes are used in both layers of the two-
layer EMPC structure to ensure economic performance improvement over a tracking
controller, e.g., tracking MPC.

Each layer is formulated as an LEMPC scheme. The core idea of the two-layer
LEMPC implementation is to solve the upper layer LEMPC infrequently (not every
sampling period) while employing a long prediction horizon. Then, the solution gen-
erated by the upper layer LEMPC is subsequently used in the formulation of a lower
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layer LEMPC. The lower layer LEMPC is formulated with a shorter prediction hori-
zon and smaller sampling time than the upper layer LEMPC and computes control
actions that are applied to the closed-loop system. The control actions of the lower
layer LEMPC are constrained to maintain the state near the economically optimal
trajectories computed in the upper layer. For guaranteed performance improvement
with the two-layer LEMPC implementation scheme, both layers are formulated with
explicit performance-based constraints computed by taking advantage of the avail-
ability of an auxiliary stabilizing controller. The performance-based constraints, i.e.,
terminal constraints, are similar to that presented in Sect. 4.4, and guarantee that both
the finite-time and infinite-time closed-loop economic performance under the two-
layer LEMPC scheme are at least as good as that under the stabilizing controller.
The use of the two-layer control implementation allows for the control architec-
ture to be computationally efficient. The two-layer LEMPC structure is applied to
a chemical process example to demonstrate the closed-loop performance, stability,
and robustness properties of the two-layer LEMPC structure.

6.4.1 Class of Systems

In this section, nominally operated systems are considered, i.e., the system of Eq.4.1
with w ≡ 0. Specifically, the class of continuous-time nonlinear systems considered
is described by the following state-space form:

ẋ = f (x, u) (6.65)

where the state vector is x ∈ X ⊆ R
n and the input vector is u ∈ U ⊂ R

m . The vector
function f : X × U → X is a locally Lipschitz vector function onX × U. The set of
admissible inputs U is assumed to be a compact set, and the state is synchronously
sampled at time instances jΔ with j = 0, 1, 2, . . . where Δ > 0 is the sampling
period. As before, the initial time is taken to be zero, and the notation t will be used
for the continuous-time, while the time sequence {t j } j≥0 is the discrete sampling
time sequence which is a synchronous partitioning of R+ with t j = jΔ.

A time-invariant economic measure le : X × U → R is assumed for the system
of Eq.6.3 that describes the real-time system economics. The economic measure is
assumed to be continuous on X × U. The optimal steady-state x∗

s and steady-state
input u∗

s pair with respect to the economic cost function is computed as follows:

(x∗
s , u

∗
s ) = argmin

xs∈X,us∈U
{le(xs, us) : f (xs, us) = 0} .

The existence of a minimizing pair where the minimum is attained. For the sake of
simplicity, the optimal steady-state pair is assumed to be unique and to be (x∗

s , u
∗
s ) =

(0, 0).

http://dx.doi.org/10.1007/978-3-319-41108-8_4
http://dx.doi.org/10.1007/978-3-319-41108-8_4
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6.4.2 Stabilizability Assumption

A stronger stabilizability-like assumption than the assumption imposed in previous
sections and chapters is needed here (stated in Assumption 6.3). In this section, the
existence of a stabilizing controller that renders the origin of the closed-loop system
exponentially stable under continuous implementation is assumed whereas, previ-
ously, the existence of a stabilizing controller is assumed that renders the closed-loop
system only asymptotically stable under continuous implementation. The stronger
assumption is needed to ensure that the stabilizing controller renders the origin of
the closed-loop system exponentially (and therefore, asymptotically) stable under
sample-and-hold implementation. This will be required to consider infinite-time
closed-loop economic performance. Specifically, asymptotic convergence to the ori-
gin and not just convergence to a neighborhood of the steady-state (practical stability
of the origin) will be required.

Assumption 6.3 There exists a locally Lipschitz feedback controller h : X → U

with h(0) = 0 for the system of Eq.6.65 that renders the origin of the closed-loop
system under continuous implementation of the controller locally exponentially sta-
ble. More specifically, there exist constants ρ > 0, ci > 0, i = 1, 2, 3, 4 and a con-
tinuously differentiable Lyapunov function V : X → R+ such that the following
inequalities hold:

c1 |x |2 ≤ V (x) ≤ c2 |x |2 , (6.66a)

∂V (x)

∂x
f (x, h(x)) ≤ −c3 |x |2 , (6.66b)

∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ c4 |x | , (6.66c)

for all x ∈ Ωρ ⊆ X.

Explicit feedback controllers that may be designed to satisfy Assumption 6.3 are,
for example, feedback linearizing controller and some Lyapunov-based controllers,
e.g., [15, 19]. The origin of the closed-loop system of Eq.6.65 under the feedback
controller, h(x), implemented in a zeroth-order sample-and-hold fashion with a suf-
ficiently small sampling period Δ > 0, i.e., the controller is applied as an emulation
controller may be shown to be exponentially stable (Corollary 2.2). Moreover, the
proof of Corollary 2.2 shows that V is a Lyapunov function for the closed-loop
sampled-data system in the sense that there exists a constant ĉ3 > 0 such that

∂V (x(t))

∂x
f (x(t), h(x(t j ))) ≤ −ĉ3 |x(t)|2 (6.67)

for all t ∈ [t j , t j+1) and integers j ≥ 0 where x(t) is the solution of Eq.6.65 at time
t starting from x(t j ) ∈ Ωρ and with the input u(t) = h(x(t j )) for t ∈ [t j , t j+1). The
stability region of the closed-loop system under the controller is defined as Ωρ ⊆ X .

http://dx.doi.org/10.1007/978-3-319-41108-8_2
http://dx.doi.org/10.1007/978-3-319-41108-8_2
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6.4.3 Two-Layer EMPC Structure

A detailed description of the two-layer LEMPC structure is provided which includes
descriptions of the implementation strategy, the formulations of the upper and lower
layer LEMPC schemes, and the provable stability and performance properties.

6.4.3.1 Implementation Strategy

The objective of the two-layer LEMPC design is to ensure that both the finite-time
and infinite-time closed-loop economic performance of the resulting closed-loop
system will be at least as good the closed-loop performance under a stabilizing
controller. To address this objective, performance-based constraints are employed
in the formulation of the upper and lower layer LEMPC that have been computed
from the stabilizing controller. The stabilizing controller may be any controller that
satisfies Assumption 6.3. For example, the stabilizing controller may be an explicit
controller that satisfies Assumption 6.3 or an LMPC scheme, which is equipped
with a contractive Lyapunov constraint designed using an explicit controller that
satisfies Assumption 6.3. The formulation of such an LMPC scheme is provided
below. However, it is important to point out that the amount of computation required
to solve the LMPC is generally greater than that required for an explicit controller.
The stabilizing controllerwill be referred as the auxiliary controller for the remainder.

A block diagram of the two-layer LEMPC is given in Fig. 6.12. In the upper layer,
an LEMPC is used to optimize dynamic operation over a long horizonwhile account-
ing for the performance-based constraints generated from the auxiliary controller.
Both the auxiliary controller and the upper layer LEMPC compute their input trajec-
tories at the beginning of some operating window, and thus, the auxiliary controller
and upper layer LEMPC are computed once each operating window for computa-
tional efficiency. In the lower layer, an LEMPC, using a shorter prediction horizon

Fig. 6.12 Block diagram of
the two-layer EMPC
structure addressing
closed-loop performance and
computational efficiency

Upper Layer
LEMPC

Lower Layer
LEMPC

System
ẋ = f(x, u)

Auxiliary
Controller

z(t̂k+1|t̂k)

x∗
E(tj+Nj |t̂k)

u∗(tj |tj)x(tj)

x(t̂k)x(t̂k)
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and a smaller sampling period than the upper layer LEMPC, computes control inputs
that are applied to the process. Terminal constraints that have been generated from
the upper layer LEMPC optimal solution are used to ensure that the lower layer
LEMPC guides the system along the optimal solution computed in the upper layer
since it uses a shorter prediction horizon and a smaller sampling period. In this man-
ner, the lower layer LEMPC is used to ensure robustness of the closed-loop system
(recomputes its optimal trajectory every sampling period to incorporate feedback).
The lower layer LEMPC may also provide additional economic cost improvement
over the upper layer LEMPC solution owing to the use of a smaller sampling time.

To maintain consistency of the notation, the operating window is denoted as t ′
and is equal to NEΔE where NE ∈ I+ is the number of hold periods in the prediction
horizon of the upper layer LEMPC and ΔE > 0 is the hold period of the piecewise
constant input trajectory computed in the upper layer (here, KE = NE ). The time
sequence {t̂k}k≥0 denotes the discrete time steps that the upper layer computes a
solution to its control problem where t̂k = kt ′ and k = 0, 1, . . ..

At the beginning of each operating window, the upper layer control problems
are solved in a sequential manner: first, the auxiliary controller is solved to obtain
its corresponding open-loop predicted state and input trajectories over the operating
window and second, the upper layer LEMPC is solved to obtain its corresponding
open-loop predicted state and input trajectories over the operation window. Specifi-
cally, the auxiliary controller computes the open-loop input trajectory that it would
apply to the system over the time t̂k to t̂k+1 = (k + 1)t ′ along with the open-loop
state trajectory If the auxiliary controller is an explicit controller, then the open-loop
state trajectory is computed by recursively solving:

ż(t) = f (z(t), h(z(τi ))) (6.68)

for t ∈ [τi , τi+1), i = 0, 1, . . . , NE − 1 where τi := t̂k + iΔE , z(t̂k) = x(t̂k) is the
initial condition, and x(t̂k) is a state measurement obtained at t̂k . If, instead, the
auxiliary controller is an LMPC, then the open-loop state trajectory may be obtained
directly from the solution of the optimization problem. The open-loop state and
input trajectories under the auxiliary controller are denoted as z(t |t̂k) and v(t |t̂k) for
t ∈ [t̂k, t̂k+1) = [kt ′, kt ′ + NEΔE ), respectively. The terminal state of the open-loop
state trajectory, z(t̂k+1|t̂k), is then sent to the upper level LEMPC.

The upper layer LEMPC subsequently uses z(t̂k+1|t̂k) as a terminal equality con-
straint in the optimization problem. In this framework, no restrictions are placed on
the type of operation achieved under the two-layer framework, i.e., it could be steady-
state operation or somemore general time-varying operating behavior. Therefore, the
upper level LEMPC is an LEMPC (Sect. 4.2) equipped with mode 1 operation only.
If steady-state operation is desirable, one could formulate the upper level LEMPC
with a mode 2 constraint similar to that of Eq. 6.8f to ensure that the optimal steady-
state is asymptotically stable under the two-layer LEMPC. However, the mode 2
constraint of LEMPC is not discussed further. After receiving z(t̂k+1|t̂k) from the
auxiliary controller and a state measurement at t̂k , the upper layer LEMPC is solved

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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to compute its optimal state and input trajectories over the operating window, which
are denoted as x∗

E (t |t̂k) and u∗
E (t |t̂k) for t ∈ [t̂k, t̂k+1), respectively.

The upper layer hold period is divided into N̄ subintervals of length Δ (Δ =
ΔE/N̄ where N̄ is a positive integer). The subintervals define the sampling period of
the lower layer LEMPC and correspond to the sampling time sequence {t j } j≥0. The
lower layer LEMPC recomputes its optimal input trajectory employing a shrink-
ing horizon. Namely, at the beginning of each hold period of the upper layer, the
lower layer is initialized with a prediction horizon N j = N̄ . The lower layer LEMPC
receives a statemeasurement, denoted as x(t j ), as well as x∗

E (t j+N j |t̂k) from the upper
layer LEMPC. Using x∗

E (t j+N j |t̂k) as a terminal equality constraint in the lower layer
LEMPC, the lower layer LEMPC is solved. The optimal input trajectory computed
by the lower layer LEMPC is denoted as u∗(t |t j ), t ∈ [t j , t j+N j ). At the subsequent
sampling period of the lower layer LEMPC, the prediction horizon decreases by one
(N j+1 = N j − 1). If decreasing the horizon results in the horizon being set to zero,
the prediction horizon is reset to N̄ = ΔE/Δ. This happens at the beginning of the
next hold period of the upper layer LEMPC.

The implementation strategy is summarized below and an illustration of the
closed-loop system is given in Fig. 6.13. The lower layer LMPC is initialized with
a prediction horizon of N0 = N̄ = ΔE/Δ. To initialize the algorithm, let k = 0 and
j = 0.

1. Upper layer: At t̂k , the auxiliary controller and the upper layer LEMPC are
initialized with the state measurement x(t̂k). Go to Step 1.1.

1.1 The auxiliary controller computes its optimal input trajectory denoted as
v(t |t̂k) defined for t ∈ [t̂k, t̂k+1) and corresponding state trajectory denoted
as z(t |t̂k) defined for t ∈ [t̂k, t̂k+1). The terminal state z(t̂k+1|t̂k) is sent to the
upper layer LEMPC. Go to Step 1.2.

x∗
s

Ωρ

x(0)

z(t′|0)

z(2t′|t′)

Fig. 6.13 A state-space illustration of the evolution of the closed-loop system (solid line) in the
stability region Ωρ over two operating periods. The open-loop predicted state trajectory under the
auxiliary controller is also given (dashed line). At the beginning of each operating window, the
closed-loop state converges to the open-loop state under the auxiliary controller



214 6 Two-Layer EMPC Systems

1.2 The upper layer LEMPC receives z(t̂k+1|t̂k) from the auxiliary controller
and computes its optimal input trajectory u∗

E (t |t̂k) defined for t ∈ [t̂k, t̂k+1)

and state trajectory x∗
E (t |t̂k) defined for t ∈ [t̂k, t̂k+1). Go to Step 2.

2. Lower layer: At t j , the lower layer LEMPC receives a state measurement x(t j )
and the terminal state x∗

E (t j+N j |t̂k) from the upper layer LEMPC. Go to Step 2.1.

2.1 The lower layer LEMPC computes its optimal input trajectory u∗(t |t j )
defined for t ∈ [t j , t j+N j ). Go to Step 2.2.

2.2 The control action u∗(t j |t j ), which is the computed input for the first sam-
pling period of the lower layer LEMPC prediction horizon, is applied
to the system from t j to t j+1. If N j − 1 = 0, reset N j+1 = N̄ ; else, let
N j+1 = N j − 1. If t j+1 = t̂k+1, set j ← j + 1 and k ← k + 1 and go to
Step 1. Else, set j ← j + 1 and go to Step 2.

Remark 6.4 Even though the lower layer LEMPC uses a shrinking horizon and
nominal operation is considered, recomputing the lower layer LEMPC input at every
subsequent sampling time is necessary regardless if the solution to the lower level
LEMPC is the same or not. The incorporation of feedback allows for stabiliza-
tion of open-loop unstable systems that cannot be accomplished with an open-loop
implementation and ensures the robustness of the control solution with respect to
infinitesimally small disturbances/uncertainty. For further explanation on this point,
see, for example, [20].

6.4.3.2 Formulation

The formulations of the twoLEMPCschemes are given. For convenience, the specific
formulation of the LMPC needed if the auxiliary controller is chosen to be an LMPC
scheme is given first. Specifically, the LMPC is given by the following optimization
problem:

min
v∈S(ΔE )

∫ t̂k+1

t̂k

(|z(t)|Qc + |v(t)|Rc) dt (6.69a)

s.t. ż(t) = f (z(t), v(t)) (6.69b)

z(t̂k) = x(t̂k) (6.69c)

v(t) ∈ U, ∀ t ∈ [t̂k, t̂k+1) (6.69d)

∂V (z(τi ))

∂z
f (z(τi ), v(τi )) ≤ ∂V (z(τi ))

∂z
f (z(τi ), h(x(τi )))

for i = 0, 1, . . . , NE − 1 (6.69e)

where τi := t̂k + iΔE and z is the state trajectory of the system with input trajectory
v calculated by the LMPC. The Lyapunov-based constraint of Eq.6.69e differs from
the Lyapunov-based constraint of Eq.2.51e as it is imposed at each sampling period

http://dx.doi.org/10.1007/978-3-319-41108-8_2
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along the prediction horizon of the LMPC to ensure that the state trajectory with
input computed by the LMPC converges to the steady-state. Through enforcement
of the Lyapunov-based constraint, the LMPC inherits the same stability properties
as that of the explicit controller. The optimal solution of the optimization problem
of Eq.6.69 is denoted as v∗(t |t̂k) and is defined for t ∈ [t̂k, t̂k+1). From the optimal
input trajectory, the optimal state trajectory z∗(t |t̂k), t ∈ [t̂k, t̂k+1) may be computed
for the operating window. When the LMPC is used as the auxiliary controller, the
terminal state z∗(t̂k+1|t̂k) is sent to the upper layer LEMPC.

The formulation of the upper layer LEMPC is similar to the mode 1 LEMPC for-
mulation with a terminal equality constraint computed from the auxiliary controller:

min
uE∈S(ΔE )

∫ t̂k+1

t̂k

le(xE (t), uE (t)) dt (6.70a)

s.t. ẋE (t) = f (xE (t), uE (t)) (6.70b)

xE (t̂k) = x(t̂k) (6.70c)

uE (t) ∈ U, ∀ t ∈ [t̂k, t̂k+1) (6.70d)

xE (t) ∈ Ωρ, ∀ t ∈ [t̂k, t̂k+1) (6.70e)

xE (t̂k+1) = z(t̂k+1|t̂k) (6.70f)

where xE is the predicted state trajectory with the input trajectory uE computed by
the upper layer LEMPC. To ensure the existence of an input trajectory that has at
least as good economic performance as the auxiliary LMPC input trajectory over the
entire length of operation, the terminal constraint of Eq. 6.70f based on the auxiliary
controller is used. The terminal constraint differs from traditional terminal equality
constraints because z(t̂k+1|t̂k) is not necessarily the steady-state. It does, however,
asymptotically converge to the economically optimal steady-state. The optimal solu-
tion to the optimization problem of the upper layer LEMPC is denoted as u∗

E (t |t̂k)
and is defined for t ∈ [t̂k, t̂k+1). With the optimal solution, the optimal (open-loop)
state trajectory may be computed and is denoted as x∗

E (t |t̂k), for t ∈ [t̂k, t̂k+1).
The lower layer LEMPC formulation, which uses a terminal constraint computed

from x∗
E (·|t̂k), is given by:

min
u∈S(Δ)

∫ t j+N j

t j

le(x̃(t), u(t)) dt (6.71a)

s.t. ˙̃x(t) = f (x̃(t), u(t)) (6.71b)

x̃(t j ) = x(t j ) (6.71c)

u(t) ∈ U, ∀ t ∈ [t j , t j+N j ) (6.71d)

x̃(t) ∈ Ωρ, ∀ t ∈ [t j , t j+N j ] (6.71e)

x̃(t j+N j ) = x∗
E (t j+N j |t̂k) (6.71f)
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where x̃ is the predicted state trajectory under the input trajectory u. The terminal
constraint of Eq.6.71f is computed from the upper layer LEMPC solution, and serves
the same purpose as the terminal constraint of Eq. 6.70f. The optimal solution to the
lower layer LEMPC is denoted as u∗(t |t j ) which is defined for t ∈ [t j , t j+N j ). The
control input u∗(t j |t j ) is sent to the control actuators to be applied to the system of
Eq.6.65 in a sample-and-hold fashion until the next sampling period.

Remark 6.5 When the economic stage cost does not penalize the use of control
energy, onemay consider formulating constraints in the LEMPC problems to prevent
the LEMPC from computing an input trajectory that uses excessive control energy.
In particular, one straightforward extension of the two-layer LEMPC structure is to
compute the total control energy used by the auxiliary controller over the operating
window, i.e., integral of the input trajectory v over t̂k to t̂k+1. Then, enforce that
the upper and lower layer LEMPCs compute an input trajectory that uses no more
control energy than the auxiliary controller input profile over the operating window.
This approach was employed in [21].

6.4.3.3 Closed-Loop Stability and Performance

The following proposition proves that the closed-loop system state under the two-
layer EMPC structure is always bounded in the invariant set Ωρ and the economic
performance is at least as good as the closed-loop state with the auxiliary LMPC
over each operating period.

Proposition 6.3 Consider the system of Eq.6.65 in closed-loop under the lower
layer LEMPC of Eq.6.71. Let the terminal constraint of Eq.6.71f computed from the
upper layer LEMPC of Eq.6.70, which has a terminal constraint formulated from
the auxiliary controller that satisfies Assumption 6.3. Let ΔE ∈ (0, Δ∗] where Δ∗ is
defined according to Corollary 2.2, NE ≥ 1, N̄ ≥ 1, andΔ = ΔE/N̄ . If x(t̂k) ∈ Ωρ ,
then the state remains bounded in Ωρ over the operating window with x(t̂k+1) =
z(t̂k+1|t̂k) ∈ Ωρ , the upper and lower LEMPCs remain feasible for all t ∈ [t̂k, t̂k+1),
and the following inequality holds:

∫ t̂k+1

t̂k

le(x(t), u
∗(t)) dt ≤

∫ t̂k+1

t̂k

le(z(t |t̂k), v(t |t̂k)) dt (6.72)

where x and u∗ are the closed-loop state and input trajectories and z(·|t̂k) and
v(·|t̂k) denote the open-loop predicted state and input trajectories under the auxiliary
computed at t̂k .

Proof Stability: If ΔE ∈ (0, Δ∗] and the auxiliary controller satisfies Assump-
tion 6.3, Eq.6.67 implies forward invariance of the set Ωρ under the auxiliary
controller. The terminal constraint z(t̂k+1|t̂k) computed by the auxiliary controller
is therefore in Ωρ . If the optimization problems are feasible, boundedness of the

http://dx.doi.org/10.1007/978-3-319-41108-8_2
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closed-loop state in Ωρ over the operating window follows when x(t̂k) ∈ Ωρ owing
to the fact that the constraint of Eq.6.71e is imposed in the lower layer LEMPC,
which is responsible for computing control action for the closed-loop system. Also,
the terminal constraint of Eq.6.71f imposed in the lower layer LEMPC is always in
Ωρ as a result of the constraint of Eq.6.70e imposed in the upper layer LEMPC.

Feasibility: Regarding feasibility of the upper layer LEMPC problem, the input
trajectory v(·|t̂k) obtained from the auxiliary controller is a feasible solution to the
upper layer LEMPC for any x(t̂k) ∈ Ωρ because it maintains the predicted state
inside Ωρ and forces the predicted state to the terminal constraint of Eq. 6.70f. If the
auxiliary controller is an explicit controller that satisfies Assumption 6.3, then the
input trajectory v is obtained from recursively solving Eq.6.68. On the other hand,
if the LMPC of Eq.6.69 is used as the auxiliary controller, then v is the solution to
the optimization problem of Eq.6.69.

Consider any sampling time t j ∈ [t̂k, t̂k+1) such that t j = t̂k + iΔE for some i in
the set {0, . . . , NE − 1}, i.e., consider a sampling time of the lower layer LEMPC
that corresponds to the beginning of a hold time of the upper layer. Let {t̄i }NE−1

i=0
denote the sequence of such times. The constant input trajectory u(t) = u∗

E (t j |t̂k) for
all t ∈ [t j , t j+N̄ ) where t j+N̄ = t̄i+1 = t̂k + (i + 1)ΔE is a feasible solution to the
optimization problem of Eq.6.71 because it maintains the state in Ωρ and it forces
the state to the terminal constraint of Eq.6.71f. Owing to the shrinking horizon
implementation of the lower layer LEMPC, the computed input trajectory by the
lower layer LEMPC at t j = t̄i is a feasible solution to the optimization problem at
the next sampling time (t j+1) in the sense that if u∗(t |t j ) defined for t ∈ [t j , t j +
N̄Δ) is the optimal solution at t j , then u∗(t |t j ) for t ∈ [t j+1, t j+1 + (N̄ − 1)Δ) is
a feasible solution at t j+1. Using this argument recursively until the sampling time
t̄i+1 = t̂k + (i + 1)ΔE when the horizon is reinitialized to N̄ and then, repeating the
arguments for t̄i+1, it follows that the lower layer LEMPC is feasible.

Performance: At t̄i , the lower layer LEMPC computes an optimal input trajectory
that satisfies (by optimality):

∫ t̄i+1

t̄i

le(x
∗(t |t̄i ), u∗(t |t̄i )) dt ≤

∫ t̄i+1

t̄i

le(x
∗
E (t |t̂k), u∗

E (t̄i |t̂k)) dt (6.73)

for all i ∈ {0, . . . , NE − 1} (recall, t̄i+1 = t̄i + N̄Δ). Owing to the shrinking horizon
and the principle of optimality, the closed-loop state and input trajectories are equal
to the computed open-loop state and input trajectories computed at t̄i and thus,

∫ t̄i+1

t̄i

le(x
∗(t |t̄i ), u∗(t |t̄i )) dt =

∫ t̄i+1

t̄i

le(x(t), u
∗(t)) dt (6.74)

where x∗(·|t̄i ) and u∗(·|t̄i ) denote the optimal open-loop state and input trajectories
computed at t̄i and x and u∗ are the closed-loop state and input trajectories. There-
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fore, from Eqs. 6.73–6.74, the closed-loop performance over one operating period is
bounded by:

∫ t̂k+1

t̂k

le(x(t), u
∗(t)) dt =

NE−1∑
i=0

∫ t̄i+1

t̄i

le(x(t), u
∗(t |t̄i )) dt

≤
NE−1∑
i=0

∫ t̄i+1

t̄i

le(x
∗
E (t |t̂k), u∗

E (t |t̂k)) dt

=
∫ t̂k+1

t̂k

le(x
∗
E (t |t̂k), u∗

E (t |t̂k)) dt . (6.75)

At t̂k , the upper layer LEMPC computes an optimal input trajectory. Owing to
optimality, the computed (open-loop) state and input trajectories of the upper layer
LEMPC satisfies:

∫ t̂k+1

t̂k

le(x
∗
E (t |t̂k), u∗

E (t |t̂k)) dt ≤
∫ t̂k+1

t̂k

le(z(t |t̂k), v(t |t̂k)) dt . (6.76)

From Eqs. 6.75–6.76, the result of Eq.6.72 follows.

The following theorem provides sufficient conditions such that the two-layer
EMPC structure maintains the closed-loop state inside the regionΩρ and the closed-
loop economic performance is at least as good as if the auxiliary LMPC was applied
to the system of Eq.6.65 over the entire length of operation which may be finite or
infinite.

Theorem 6.3 Consider the closed-loop system of Eq.6.65 under the lower layer
LEMPC of Eq.6.71. Let the terminal constraint of Eq.6.71f computed from the upper
layer LEMPC of Eq.6.70, which has a terminal constraint formulated from the aux-
iliary controller that satisfies Assumption 6.3, and let the assumptions of Proposi-
tion 6.3 hold. If x(0) ∈ Ωρ , then x(t) ∈ Ωρ for all t ≥ 0 and the following inequality
holds for finite-time operation:

∫ T

0
le(x(t), u

∗(t)) dt ≤
∫ T

0
le(z(t), v(t)) dt (6.77)

where T = K NEΔE and K is any strictly positive integer and x andu∗ are the closed-
loop state and input trajectory and z and v are the resulting state and input trajectory
from the auxiliary controller defined over the interval [0, T ] with initial condition
z(0) = x(0) ∈ Ωρ . The following inequality holds for infinite-time operation:

lim sup
K→∞

1

K NEΔE

∫ K NEΔE

0
le(x(t), u

∗(t)) dt ≤ le(x
∗
s , u

∗
s ) . (6.78)
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Proof Applying the results of Proposition 6.3 recursively over K operating periods,
recursive feasibility of the optimization problems follows, and the closed-loop state
is always bounded in Ωρ if x(0) ∈ Ωρ , and x(t̂k) = z(t̂k) for k = 1, 2, . . . , K . To
show the result of Eq.6.77, the length of operation is divided into K operating periods
and let T = K NEΔE :

∫ T

0
le(x(t), u

∗(t)) dt =
∫ t̂1

0
le(x(t), u

∗(t)) dt + · · · +
∫ t̂K

t̂K−1

le(x(t), u
∗(t)) dt

(6.79)
where t̂K = T . By Proposition 6.3, the inequality of Eq.6.72 holds over each oper-
ating window when x(t̂k) = z(t̂k) for k = 1, 2, . . . , K and thus, the inequality of
Eq.6.77 follows.

Owing to the result of Eq.6.77, the average finite-time economic cost is given by:

1

T

∫ T

0
le(x(t), u

∗(t)) dt ≤ 1

T

∫ T

0
le(z(t), v(t)) dt (6.80)

for T = K NEΔE where K is any strictly positive integer. Recall, the economic
cost function le is continuous on the compact set Ωρ × U and x(t), z(t) ∈ Ωρ and
u∗(t), v(t) ∈ U for all t ≥ 0. Thus, both integrals of Eq.6.80 are bounded for any
T > 0. Since the auxiliary controller satisfies Assumption 6.3 and Δ ∈ (0,Δ∗], z
and v asymptotically converge to the steady-state (x∗

s , u
∗
s ) (this follows from the

inequality of Eq.6.67).
Considering the limit of the right-hand side of Eq. 6.80 as T tends to infinity (or

similarly, as K tends to infinity), the limit exists and is equal to le(x∗
s , u

∗
s ) because

z and v asymptotically converge to optimal steady-state (x∗
s , u

∗
s ) while remaining

bounded for all t ≥ 0. To prove this limit, the following result is shown: given ε > 0,
there exists T ∗ > 0 such that for all T > T ∗, the following holds:

∣∣∣∣ 1T
∫ T

0
le(z(t), v(t)) dt − le(x

∗
s , u

∗
s )

∣∣∣∣ < ε . (6.81)

Define I (0, T ) as the following integral:

I (0, T ) :=
∫ T

0
le(z(t), v(t)) dt (6.82)

where the arguments of I represent the lower and upper limits of integration, respec-
tively. The trajectories z(t) and v(t) converge to x∗

s and u∗
s , respectively, as t tends

to infinity. Furthermore, z(t) ∈ Ωρ and v(t) ∈ U for all t ≥ 0, so for every ε > 0,
there exists a T̃ > 0 such that

|le(z∗(t), v∗(t)) − le(x
∗
s , u

∗
s )| < ε/2 (6.83)



220 6 Two-Layer EMPC Systems

for t ≥ T̃ . For any T > T̃ :

∣∣I (0, T ) − T le(x
∗
s , u

∗
s )

∣∣ =
∣∣∣I (0, T̃ ) + I (T̃ , T ) − T le(x

∗
s , u

∗
s )

∣∣∣
≤

∫ T̃

0

∣∣le(z(t), v(t)) − le(x
∗
s , u

∗
s )

∣∣ dt

+
∫ T

T̃

∣∣le(z(t), v(t)) − le(x
∗
s , u

∗
s )

∣∣ dt

≤ T̃ M̃ + (T − T̃ )ε/2 (6.84)

where M̃ := supt∈[0,T̃ ]
{|le(z(t), v(t)) − le(x∗

s , u
∗
s )|

}
. For any T > T ∗ where T ∗ =

2T̃ (M̃ − ε/2)/ε, the following inequality is satisfied:

∣∣I (0, T )/T − le(x
∗
s , u

∗
s )

∣∣ ≤ (1 − T̃ /T )ε/2 + T̃ M̃/T < ε (6.85)

whichproves that the asymptotic average economic cost under the auxiliary controller
is le(x∗

s , u
∗
s ).

Considering the left hand side of Eq.6.80, the limit as K → ∞ may not exist
owing to the possible time-varying system operation under the proposed two-layer
LEMPC scheme. Therefore, an upper bound on the asymptotic average performance
under the LEMPC scheme is considered. Since the limit superior is equal to the limit
when the limit exists, the following is obtained:

lim sup
K→∞

1

K NEΔE

∫ K NEΔE

0
le(x(t), u

∗(t)) dt

≤ lim sup
K→∞

1

K NEΔE

∫ K NEΔE

0
le(z(t), v(t)) dt = le(x

∗
s , u

∗
s ) (6.86)

which is the desired result of Eq. 6.78.

Remark 6.6 The finite-time result of Theorem 6.3 may be extended to any T > 0
by, for instance, adjusting NE and/or ΔE in the last operating window.

6.4.4 Application to Chemical Process Example

Consider a three vessel chemical process network consisting of two continuously
stirred tank reactors (CSTRs) in series followed by a flash tank separator. The process
flow diagram of the process network is shown in Fig. 6.14. In each of the reactors,
an irreversible second-order reaction of the form A → B takes place in an inert
solvent D (A is the reactant and B is the desired product). The bottom stream of
the flash tank is the product stream of the process network. Part of the overhead
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Fig. 6.14 Process flow diagram of the reactor and separator process network

vapor stream from the flash tank is purged from the process while the remainder is
fully condensed and recycled back to the first reactor. Each of the vessels have a
heating/cooling jacket to supply/remove heat from the liquid contents of the vessel.
The following indexes are used to refer to each vessel: i = 1 denotes CSTR-1, i = 2
denotes CSTR-2, and i = 3 denotes SEP-1. The heat rate supplied/removed from the
i th vessel is Qi , i = 1, 2, 3. Furthermore, each reactor is fed with fresh feedstock
containing A in the solvent D with concentration CAi0, volumetric flow rate Fi0,
and constant temperature Ti0 where i = 1, 2. Applying first principles and standard
modeling assumptions, a dynamic model of the reactor-separator process network
may be obtained (neglecting the dynamics of the condenser) and is given by the
following ODEs (see Table6.4 for variable definitions and values):

dT1
dt

= F10

V1
(T10 − T1) + Fr − Fp

V1
(T3 − T1)

− ΔHk0
ρLCp

e−E/RT1C2
A1 + Q1

ρLCpV1
(6.87a)

dCA1

dt
= F10

V1
(CA10 − CA1) + Fr − Fp

V1
(CAr − CA1) − k0e

−E/RT1C2
A1 (6.87b)

dCB1

dt
= − F10

V1
CB1 + Fr − Fp

V1
(CBr − CB1) + k0e

−E/RT1C2
A1 (6.87c)

dT2
dt

= F20

V2
(T20 − T2) + F1

V2
(T1 − T2)

− ΔHk0
ρLCp

e−E/RT2C2
A2 + Q2

ρLCpV2
(6.87d)

dCA2

dt
= F20

V2
(CA20 − CA2) + F1

V2
(CA1 − CA2) − k0e

−E/RT2C2
A2 (6.87e)

dCB2

dt
= − F20

V2
CB2 + F1

V2
(CB1 − CB2) + k0e

−E/RT2C2
A2 (6.87f)

dT3
dt

= F2

V3
(T2 − T3) − ΔHvapFr

ρLCpV3
+ Q3

ρLCpV3
(6.87g)
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Table 6.4 Process parameters of the reactor and separator process network

Symbol/Value Description

T10 = 300K Temp.: CSTR-1 inlet

T20 = 300K Temp.: CSTR-2 inlet

F10 = 5.0m3h−1 Flow rate: CSTR-1 inlet

F20 = 5.0m3h−1 Flow rate: CSTR-2 inlet

Fr = 3.0m3h−1 Flow rate: SEP-1 vapor

Fp = 0.5m3h−1 Flow rate: purge stream

V1 = 1.5m3 Volume: CSTR-1

V2 = 1.0m3 Volume: CSTR-2

V3 = 1.0m3 Volume: SEP-1

k0 = 3.0 × 106 m3 kmol−1 h−1 Pre-exponential factor

E = 3.0 × 104 kJ kmol−1 Activation energy

ΔH = −5.0 × 103 kJ kmol−1 Heat of reaction

ΔHvap = 5.0 kJ kmol−1 Heat of vaporization

Cp = 0.231 kJ kg−1 K−1 Heat capacity

R = 8.314 kJ kmol−1 K−1 Gas constant

ρL = 1000 kgm−3 Density

αA = 5.0 Relative volatility: A

αB = 0.5 Relative volatility: B

αD = 1.0 Relative volatility: D

MWA = 18.0 kg kmol−1 Molecular weight: A

MWB = 18.0 kg kmol−1 Molecular weight: B

MWD = 40.0 kg kmol−1 Molecular weight: D

dCA3

dt
= F2

V3
CA2 − Fr

V3
CAr − F3

V3
CA3 (6.87h)

dCB3

dt
= F2

V3
CB2 − Fr

V3
CBr − F3

V3
CB3 (6.87i)

and the following algebraic equations:

K = 1

ρL

∑
i∈{A,B,D}

αiCi3MWi , (6.88a)

Cir =αiCi3/K , i = A, B, D, (6.88b)

F1 = Fr − Fp + F10, F2 = F1 + F20, (6.88c)

F3 = F2 − Fr . (6.88d)
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where Cir is the concentration of the i th component (i = A, B, D) in the flash sepa-
rator overhead, purge, and recycle streams. The state variables of the process network
include the temperatures and concentrations of A and B in each of the vessels:

xT = [
T1 CA1 CB1 T2 CA2 CB2 T3 CA3 CB3

]
.

The manipulated inputs are the heat inputs to the three vessels, Q1, Q2, and Q3,
and the concentration of A in the inlet streams, CA10 and CA20:

uT = [
Q1 Q2 Q3 CA10 CA20

]
.

The control objective is to regulate the process in an economically optimal time-
varying fashion to maximize the average amount of product B in the product stream
F3. Continuously feeding in themaximum concentration of A into each reactormaxi-
mizes the production of B owing to the second-order reaction. However, this may not
be practical from an economic stand-point. Instead, the average amount of reactant
material that may be fed to each reactor is fixed motivating the use of EMPC to con-
trol the process network. In addition, supplying/removing heat to/from the vessels is
considered undesirable. To accomplish these economic considerations, the two-layer
LEMPC structure is applied and the upper and lower layer LEMPCs are formulated
with the following economic stage cost function and constraint, respectively:

le(x, u) = −F3CB3 + p1Q
2
1 + p2Q

2
2 + p3Q

2
3 (6.89)

1

t ′

∫ t̂k+1

t̂k

(CA10 + CA20) dt = 8.0 kmolm3 (6.90)

where t ′ = 1.0 h is the operating period length and pi = 10−6, i = 1, 2, 3 are the
penalty weights for using energy. The value for the heat rate penalty has been chosen
to account for the different numerical range of the heat rate and the first term in the
economic cost (molar flow rate of B in the product stream). The economically optimal
steady-state with respect to the economic cost function of Eq.6.89 is open-loop
asymptotically stable and is the only steady-state in the operating region of interest.
An explicit characterization of Ωρ is not needed for the LEMPC implementation.

The two-layer LEMPC structure, formulated with the cost function and reactant
material constraint of Eqs. 6.89–6.90, respectively, is applied to the reactor-separator
chemical process network. To numerically integrate the dynamic model of Eq.6.87,
explicit Euler method is used with an integration step of 1.0 × 10−3 h. The auxiliary
controller is formulated as an auxiliary LMPC. The prediction horizon and sampling
period of the auxiliary LMPC and upper layer LEMPC are NE = 10 andΔE = 0.1 h,
respectively, while, the lower layer LEMPC is formulated with a prediction horizon
of N̄ = 2 and sampling period Δ = 0.05 h. Since the upper layer prediction horizon
length is one hour, the reactant material constraint is enforced over each one hour
operating period. However, the lower layer LEMPC prediction horizon does not
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cover the entire one hour operating window. Instead of using the material constraint
of Eq.6.90 directly in the lower layer LEMPC, a constraint is formulated on the
basis of the upper layer LEMPC solution. Namely, over the prediction horizon of the
lower layer LEMPC, the lower layer LEMPC solution must use the same amount
of reactant material as that of the upper layer LEMPC solution over the same time
so that the material constraint is satisfied over the operating window. To solve the
optimization problems, Ipopt [17] is used and the simulations were completed on a
desktop PC with an Intel® Core™ 2Quad 2.66GHz processor and a Linux operating
system.

6.4.4.1 Effect of Horizon Length

In the first set of simulations, the length of the prediction horizon on closed-loop
performance is considered. The closed-loop economic performance over 4.0h is
defined by the total economic cost given by:

JE =
∫ 4.0

0

(
F3CB3 − p1Q

2
1 − p2Q

2
2 − p3Q

2
3

)
dt . (6.91)

In these simulations, only the upper layer LEMPC, formulated with a terminal
constraint computed from the auxiliary LMPC, is considered. Figure6.15 depicts the
observed trend. As the prediction horizon increases, the closed-loop economic per-
formance increases, which motivates the use of a long prediction horizon in EMPC.

6.4.4.2 Effect of the Terminal Constraint

Since for any optimization problem, the addition of constraints may restrict the
feasible region of the optimization problem, a reasonable consideration is the effect
of the terminal constraint on closed-loop performance. To address this issue, consider

Fig. 6.15 The closed-loop
economic performance (JE )
with the length of prediction
horizon (NE ) for the
reactor-separator process
under the upper layer
LEMPC with a terminal
constraint computed from an
auxiliary LMPC
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the closed-loop system under the upper layer LEMPC formulated with a terminal
equality constraint computed by the auxiliary LMPC and under an LEMPC (mode
1 operation only) formulated with the economic cost of Eq. 6.89 and the material
constraint of Eq.6.90, but without terminal constraints. Both use a prediction horizon
of NE = 10 and a sampling period of Δ = 0.01 h. Figures6.16 and 6.17 display
the closed-loop state and input trajectories of the reactor-separator process network
with the upper layer LEMPC; while, Figs. 6.18 and 6.19 display the closed-loop
trajectories under LEMPC with no terminal constraints.

Fig. 6.16 Closed-loop state
trajectories of the
reactor-separator process
network with the upper layer
LEMPC formulated with a
terminal constraint computed
by the auxiliary LMPC
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Fig. 6.17 Input trajectories
of the reactor-separator
process network computed
by the upper layer LEMPC
formulated with a terminal
constraint computed by the
auxiliary LMPC
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Fig. 6.18 Closed-loop state
trajectories of the
reactor-separator process
network with an LEMPC
formulated without terminal
constraints
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Fig. 6.19 Input trajectories
of the reactor-separator
process network computed
by an LEMPC formulated
without terminal constraints
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The reactor-separator process network under the LEMPC with the terminal con-
straint evolves in a smaller operating range (370–430K) than the evolution under
the LEMPC without the terminal constraint (325– 440K). The total economic cost
with the upper layer LEMPC (based on the auxiliary LMPC) is 151.2, while the
total economic cost with LEMPC formulated without terminal constraints is 159.3.
The terminal constraint imposed in the LEMPC problem affects the achievable per-
formance. However, the key advantage of the addition of this constraint is that for
any system and any prediction horizon the closed-loop economic performance under
the two-layer LEMPC structure is guaranteed to be at least as good as a stabilizing
controller for both finite-time and infinite-time operating intervals.
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Fig. 6.20 Closed-loop state
trajectories of the
reactor-separator process
network with the two-layer
LEMPC structure
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Fig. 6.21 Input trajectories
of the reactor-separator
process network computed
by the two-layer LEMPC
structure
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6.4.4.3 Two-Layer LEMPC Structure

The two-layer LEMPC structure with a terminal constraint computed from an auxil-
iary LMPC is applied to the reactor-separator process network. Several closed-loop
simulations over a 4.0h length of operation are completed. The closed-loop state
and input trajectories of one of the simulations are shown in Figs. 6.20 and 6.21,
respectively and demonstrate time-varying operation of the process network. The
economic performance (Eq.6.91) is compared to the economic performance with
the auxiliary LMPC (Table6.5). From this comparison, an average of 10% benefit
with the two-layer LEMPC structure is realized over operation under the auxiliary
LMPC, i.e., resulting in steady-state operation.
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Table 6.5 Total economic cost and average computational time in seconds per sampling period
for several 4.0h simulations with: (a) the auxiliary LMPC, (b) the one-layer LEMPC and (c) the
two-layer LEMPC structure

Sim. LMPC One-layer EMPC Two-layer EMPC

Cost CPU time Cost CPU time Cost

1 140.1 5.68 151.5 1.10 151.1

2 150.3 4.24 153.9 1.05 153.4

3 142.0 4.65 152.4 0.98 152.0

4 130.7 6.45 152.3 1.24 151.9

5 126.0 4.67 151.9 1.11 151.5

6 140.2 4.63 151.6 1.33 151.2

7 144.6 4.60 150.6 1.08 150.2

8 138.1 5.01 152.5 1.06 152.1

Additionally, a comparison between the computational time required to solve the
two-layer LEMPC system and that of a one-layer LEMPC system is completed.
The one-layer LEMPC system consists of the upper layer LEMPC with a terminal
constraint computed from the auxiliary LMPC. In the one-layer LEMPC system,
the LEMPC applies its computed control actions directly to the process network,
and there is no lower layer LEMPC. To make the comparison consistent, the one
layer LEMPC is implemented with a prediction horizon of NE = 20 and a sampling
period of ΔE = 0.05 h, which are the same sampling period and horizon used in the
lower layer LEMPC of the two-layer LEMPC system. Since the upper and lower
layer controllers are sequentially computed, the computational time at the beginning
of each operating window is measured as the sum of the computational time to
solve the auxiliary LMPC, the upper layer LEMPC, and the lower layer LEMPC
for the two-layer LEMPC system and as the sum of the time to solve the auxiliary
LMPC and the LEMPC for the one-layer LEMPC system. From Table6.5, the one-
layer LEMPC achieves slightly better closed-loop economic performance because
the one-layer LEMPC uses a smaller sampling period than the upper layer LEMPC
in the two-layer LEMPC structure. However, the computational time required to
solve the one-layer LEMPC structure is greater than the computational time of the
two-layer LEMPC structure. The two-layer LEMPC structure is able to reduce the
computational time by about 75% on average.

6.4.4.4 Handling Disturbances

While the two-layer EMPC has been designed for nominal operation to guarantee
finite-time and infinite-time closed-loop performance as is at least as good as that
achieved under a stabilizing controller, it may be applied to the process model in
the presence of disturbances, plant/model mismatch, and other uncertainties with
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some modifications to improve recursive feasibility of the optimization problems
and to ensure greater robustness of the controller to uncertainties. For instance, if the
disturbances are relatively small, it may be sufficient to relax the terminal constraints
or treat them as soft constraints. If one were to simply relax the terminal constraints,
e.g., use a terminal region instead of a point-wise terminal constraint, it is difficult
to guarantee recursive feasibility of the optimization problem. Another potential
methodology is to treat the terminal state constraints as a soft constraint instead of
imposing them as hard constraints. For example, use a cost functional in the lower
layer LEMPC of the form:

(∫ t j+N

t j

le(x̃(t), u(t)) dt

)
+ ∣∣x̃(t j+N ) − x∗

E (t j |tk)
∣∣
Q

(6.92)

where Q is a positive definite weighting matrix. The cost functional works to opti-
mize the economic performance while ensuring the predicted evolution is near the
terminal state through the quadratic terminal cost. The resulting lower layer LEMPC
has the same stability and robustness to bounded disturbances properties as the
LEMPC (without terminal constraints), i.e., recursive feasibility and boundedness
of the closed-loop state for all initial states starting in Ωρ . While no provable per-
formance guarantees may be made on closed-loop performance in the presence of
disturbances, the closed-loop performance benefit may be evaluated through simu-
lations.

The two-layer LEMPC with the lower layer LEMPC designed with the cost
described above in Eq.6.92 and without terminal constraints is applied to the exam-
ple with significant process noise added. The noise is modeled as bounded Gaussian
white noise and is introduced additively to each model state. The closed-loop state
and input trajectories are shown in Figs. 6.22 and 6.23, respectively. The closed-loop
system performance under the two-layer LEMPC is compared to the system under
auxiliary LMPCwith the same realization of the process noise. The LMPC is formu-

Fig. 6.22 Closed-loop state
trajectories of the
reactor-separator process
network with process noise
added with the two-layer
LEMPC structure
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Fig. 6.23 Input trajectories
of the reactor-separator
process network with process
noise added computed by the
two-layer LEMPC structure
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lated with a prediction horizon of N = 2 and sampling period Δ = 0.05 h which is
the same horizon and sampling period as the lower layer LEMPC. The closed-loop
performance under the two-layer LEMPC is 2.6% better than that under the LMPC
for this particular realization of the process noise.

6.5 Conclusions

In this chapter, several computationally-efficient two-layer frameworks for integrat-
ing dynamic economic optimization and control of nonlinear systemswere presented.
In the upper layer, EMPC was employed to compute economically optimal time-
varying operating trajectories. Explicit control-oriented constraints were employed
in the upper layer EMPC. In the lower layer, an MPC scheme was used to force
the system to track the optimal time-varying trajectory computed by the upper layer
EMPC. The properties, i.e., stability, performance, and robustness, of closed-loop
systems under the two-layer EMPC methods were rigorously analyzed. The two-
layer EMPC methods were applied to chemical process examples to demonstrate
the closed-loop properties. In all the examples considered, closed-loop stability was
achieved, the closed-loop economic performance under the two-layer EMPC frame-
work was better than that achieved under conventional approaches to optimization
and control, and the total on-line computational time was better with the two-layer
EMPC methods compared to that under one-layer EMPC methods.
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Chapter 7
EMPC Systems: Computational Efficiency
and Real-Time Implementation

7.1 Introduction

While the two-layer EMPC structures of Chap. 6 were shown to successfully reduce
the on-line computation time relative to that required for a centralized, one-layer
EMPC scheme, EMPC optimization problems typically found within the context of
chemical processes are nonlinear andnon-convexbecause a nonlinear dynamicmodel
is embedded in the optimization problem. Although many advances have been made
in solving such problems and modern computers may efficiently perform complex
calculations, it is possible that computation delay will occur that may approach
or exceed the sampling time. If the computational delay is significant relative to the
sampling period, closed-loop performance degradation and/or closed-loop instability
may occur.

In this chapter, three EMPCdesignmethodologies are presented to further address
computational efficiency. In the first section, a composite control structure featuring
EMPC is designed for systemswith explicit two-time-scale dynamic behavior.Owing
to the fact that the class of dynamic models describing such systems are typically
stiff, a sufficiently small time step is required for forward numerical integration with
explicit methods, which subsequently affects the computation time required to solve
the EMPC problem. On the other hand, the composite control structure allows for
larger time steps because it avoids the use of the stiff dynamicmodel embedded in the
MPC problems of the composite control structure. In the second section, distributed
EMPC (DEMPC), which computes the control actions by solving a series of dis-
tributed EMPC problems, is considered. Specifically, an application study whereby
several DEMPC schemes are applied to a benchmark chemical process example is
presented to evaluate the ability of the resulting DEMPC schemes to reduce the com-
putation time relative to a centralized EMPC system. The closed-loop performance
under DEMPC is compared with that achieved under a centralized EMPC approach.
In the third section, a real-time implementation strategy for Lyapunov-based EMPC
(LEMPC) is presented which addresses potentially unknown and time-varying
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computational time for control action calculation. Closed-loop stability under the
real-time LEMPC strategy is rigorously analyzed.

7.2 Economic Model Predictive Control of Nonlinear
Singularly Perturbed Systems

The development of optimal process control, automation, and management method-
ologies while addressing time-scale multiplicity due to the strong coupling of slow
and fast phenomena occurring at different time-scales is an important issue in the
context of chemical process control. For multiple-time-scale systems, closed-loop
stability as well as controller design are usually addressed through explicit separation
of fast and slow states in a standard singular perturbation setting [1–3] or by taking
advantage of change of coordinates for two-time-scale systems in nonstandard sin-
gularly perturbed form [4]. In our previous work, we developed methods for slow
time-scale (tracking) MPC as well as composite fast-slow (tracking) MPC for non-
linear singularly perturbed systems [5, 6]. In this section, these ideas are extended
to EMPC of nonlinear singularly perturbed systems.

Specifically, in this section, an EMPCmethod for a broad class of nonlinear singu-
larly perturbed systems is presentedwhereby a “fast” Lyapunov-basedMPC (LMPC)
using a standard tracking quadratic cost is employed to stabilize the fast closed-loop
dynamics at their equilibrium slowmanifold while a “slow” Lyapunov-based EMPC
(LEMPC) is utilized for the slow dynamics to address economic performance con-
siderations. Multi-rate sampling of the states is considered involving fast-sampling
of the fast states and slow-sampling of the slow states. The states are subsequently
used in the fast and slowMPC systems, respectively. Closed-loop stability of the con-
trol scheme is addressed through singular perturbation theory. The control method
is demonstrated through a chemical process example which exhibits two-time-scale
behavior.

7.2.1 Class of Nonlinear Singularly Perturbed Systems

Nonlinear singularly perturbed systems in standard formare considered in this section
with the following state-space description:

ẋ = f (x, z, us,w, ε), (7.1a)

εż = g(x, z, u f ,w, ε), (7.1b)

where x ∈ R
nx and z ∈ R

nz denote the state vectors, us ∈ Us ⊂ R
ms and u f ∈ U f ⊂

R
m f are the control (manipulated) inputs, w ∈ R

l denotes the vector of process
disturbances, and ε > 0 is a small positive parameter. The sets Us and U f are
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assumed to be compact sets. The disturbance vector is assumed to be an absolutely
continuous function of time and bounded in a sense that there exists a θ > 0 such
that |w(t)| ≤ θ for all t ≥ 0. To this end, let W = {w ∈ R

l : |w| ≤ θ}.
Owing to the multiplication of the small parameter ε with ż in Eq.7.1, there

exists a time-scale separation in the two systems of differential equations of Eq.7.1.
Moreover, the systemofEq.7.1 is said to be in singularly perturbed form.Through the
rest of the section, x and z will be referred to as the slow and fast states, respectively.
Furthermore, the vector functions f and g are assumed to be sufficiently smooth
on R

nx × R
nz × Us × W × [0, ε̄) and R

nx × R
nz × U f × W × [0, ε̄), respectively,

for some ε̄ > 0. The origin is assumed to be an equilibrium point of the unforced
nominal system; that is, system of Eq.7.1 with us = 0, u f = 0, and w ≡ 0 possesses
an equilibrium point at (x, z) = (0, 0).

The fast states are sampled synchronously and are available at time instants indi-
cated by the time sequence {tk f }k f ≥0 with tk f = t0 + k f Δ f , k f = 0, 1, . . . where
t0 is the initial time and Δ f > 0 is the measurement sampling period of the fast
states. Similarly, the slow states are sampled synchronously and are available at time
instants indicated by the time sequence {tks }ks≥0 with tks = t0 + ksΔs , ks = 0, 1, . . .
where Δs > 0 (Δs > Δ f ) is the measurement sampling period of the slow states.
The initial time is taken to be zero, i.e., t0 = 0. With respect to the control problem
formulation, the controls u f and us , which are responsible for the fast and slow
dynamics, are computed every Δ f and Δs , respectively. For the sake of simplicity,
Δs/Δ f is assumed to be a positive integer.

7.2.2 Two-Time-Scale Decomposition

The explicit separation of slow and fast states in the system of Eq.7.1 allows for
decomposing the system into two separate reduced-order systems evolving in differ-
ent time-scales. To proceedwith such a two-time-scale decomposition and to simplify
the notation of the subsequent development, the issue of controlling the fast dynamics
is addressed first. Similar to [5], a “fast” model predictive controller will be designed
that renders the fast dynamics asymptotically stable in a sense to be made precise
in Assumption 7.2. Moreover, u f does not modify the open-loop equilibrium slow
manifold for the fast dynamics. By setting ε = 0, the dimension of the state-space
of the system of Eq.7.1 reduces from nx + nz to nx because the differential equation
of Eq.7.1b degenerates into an algebraic equation. The following model is obtained
that describes the slow dynamics with u f = 0:

˙̄x = f (x̄, z̄, us,w, 0) (7.2a)

0 = g(x̄, z̄, 0,w, 0) (7.2b)

where the bar notation in x̄ and z̄ is used to indicate that these variables have been
obtained by setting ε = 0.
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Systems of the form of Eq.7.1 satisfying the following assumption are said to be
in standard singularly perturbed form, e.g. [1].

Assumption 7.1 The equation g(x̄, z̄, 0,w, 0) = 0 possesses a unique isolated root

z̄ = g̃(x̄,w) (7.3)

where g̃ : Rnx ×R
l → R

nz and its partial derivatives ∂ g̃/∂ x̄ , ∂ g̃/∂w are sufficiently
smooth and |∂ g̃/∂w| ≤ Lg̃ .

Assumption 7.1 ensures that the system of Eq.7.1 has an isolated equilibrium
manifold for the fast dynamics. While on this manifold, z̄ may be expressed in terms
of x̄ andw using an algebraic expression. It should be emphasized that g(x̄, z̄, 0,w, 0)
is, in this case, independent of the expression of the “fast” input, u f . Assumption 7.1
does not pose any significant limitations in practical applications, and it is a nec-
essary one in the singular perturbation framework to construct a well-defined slow
subsystem. Utilizing z̄ = g̃(x̄,w), the system of Eq.7.2may be re-written as follows:

˙̄x = f (x̄, g̃(x̄,w), us,w, 0) =: fs(x̄, us,w). (7.4)

The system of Eq.7.4 is referred to as the slow subsystem or the reduced system.
Introducing the fast time-scale τ = t/ε and the deviation variable y = z−g̃(x,w),

i.e., the deviation of the fast state from the equilibrium manifold, the nonlinear
singularly perturbed system of Eq.7.1 may be written in the (x, y) coordinates with
respect to the fast time-scale as follows:

dx

dτ
= ε f (x, y + g̃(x,w), us,w, ε)

dy

dτ
= g(x, y + g̃(x,w), u f ,w, ε)

− ε

(
∂ g̃

∂x
f (x, y + g̃(x,w), u f ,w, ε) + ∂ g̃

∂w
ẇ

) (7.5)

Setting ε = 0, the following fast subsystem is obtained:

d ȳ

dτ
= g(x, ȳ + g̃(x,w), u f ,w, 0) (7.6)

where the notation ȳ is again used to indicate that its dynamics have been derived by
setting ε = 0. In the system of Eq.7.6, x and w are considered to be “frozen” to their
initial values in the fast time-scale since their change in this time-scale is of order ε.

Remark 7.1 The difference between y and ȳ is: y is the deviation between the sin-
gularly perturbed system state z (Eq. 7.1 with ε > 0) and the solution to the alge-
braic equation g(x, z̄, 0,w, 0) = 0 for x ∈ R

nx and w ∈ W, which is denoted
as z̄ = g̃(x,w). The variable ȳ is used to denote the solution to the fast sub-
system obtained from Eq.7.6 where x and w are frozen to their initial values



7.2 Economic Model Predictive Control of Nonlinear Singularly Perturbed Systems 237

and ε = 0; the initial condition of the ODE of Eq.7.6 at some time t0 ≥ 0 is
ȳ(t0) = y(t0) = z(t0) − g̃(x(t0),w(t0)).

7.2.3 Stabilizability Assumption

A stabilizability assumption is imposed on the slow subsystem in the sense that the
existence of a Lyapunov-based locally Lipschitz feedback controller us = hs(x̄) is
assumed which, under continuous implementation, renders the origin of the nominal
closed-loop slow subsystem of Eq.7.4 asymptotically stable while satisfying the
input constraints for all the states x̄ inside a given stability region. Using converse
Lyapunov theorems [7–9], this assumption implies that there exists a continuously
differentiable Lyapunov function Vs : Ds → R+ for the nominal closed-loop slow
subsystem that satisfy the following inequalities:

αs1(|x̄ |) ≤ Vs(x̄) ≤ αs2(|x̄ |) (7.7a)

∂Vs(x̄)

∂ x̄
fs(x̄, hs(x̄), 0) ≤ −αs3(|x̄ |) (7.7b)∣∣∣∣∂Vs(x̄)

∂ x̄

∣∣∣∣ ≤ αs4(|x̄ |) (7.7c)

hs(x̄) ∈ Us (7.7d)

for all x̄ ∈ Ds ⊆ R
nx where Ds is an open neighborhood of the origin and the

functions αsi (·), i = 1, 2, 3, 4 are classK functions. The region Ωρs ⊂ Ds denotes
the stability region of the closed-loop slow subsystem under the Lyapunov-based
controller hs(x̄).

Similarly, a stabilizability assumption is placed on the fast subsystem.

Assumption 7.2 There exists a feedback controller u f = p(x)ȳ ∈ U f where p(x)
is a sufficiently smooth vector function in x , such that the origin of the closed-loop
fast subsystem:

d ȳ

dτ
= g(x, ȳ + g̃(x,w), p(x)ȳ,w, 0) (7.8)

is globally asymptotically stable, uniformly in x ∈ R
nx and w ∈ W, in the sense that

there exists a class K L function βy such that for any ȳ(0) ∈ R
nz :

|ȳ(τ )| ≤ βy(|ȳ(0)|, τ ) (7.9)

for τ ≥ 0.

This assumption implies that there exist functions α fi (·), i = 1, 2, 3 of classK
and a continuously differentiable Lyapunov function V f (ȳ) for the nominal closed-
loop fast subsystem which satisfy the following inequalities:
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α f1(|ȳ|) ≤ V f (ȳ) ≤ α f2(|ȳ|)
∂V f (ȳ)

∂ ȳ
g(x, ȳ + g̃(x, 0), p(x)ȳ, 0, 0) ≤ −α f3(|ȳ|)

p(x)ȳ ∈ U f

(7.10)

for all ȳ ∈ D f ⊆ R
nz and x ∈ Ds where D f is an open neighborhood of the origin.

The region Ωρ f ⊆ D f is used to denote the stability region of the closed-loop fast
subsystem under the nonlinear controller p(x)ȳ.

Remark 7.2 The sets Ωρs and Ωρ f denote the stability regions for the closed-loop
slow and fast subsystems under the controllers us = hs(x̄) and u f = p(x)ȳ, respec-
tively, in the sense that the closed-loop states of the fast and slow subsystems, starting
in Ωρs and Ωρ f , remain in these sets thereafter. Regarding the construction of Ωρs ,
we have estimated it through the following procedure: V̇s(x̄) is evaluated for different
values of x̄ while hs(x̄) is applied to the nominal system subject to the input con-
straint hs(x̄) ∈ Us . Then, we estimated Ωρs as the largest level set of the Lyapunov
function Vs(x̄) where V̇s(x̄) < 0. The region Ωρ f may be estimated in a similar
fashion using the fast subsystem and the controller p(x)ȳ.

7.2.4 LEMPC of Nonlinear Singularly Perturbed Systems

In this section, the design of a composite control structure featuring an EMPC for
nonlinear singularly perturbed systems is presented. In the control structure, a track-
ing Lyapunov-basedMPC is used to stabilize the fast dynamics in a sense to be made
precise below. To control the slow dynamics, a two-mode LEMPC of Sect. 4.2 is
used to address economic considerations as well as address closed-loop stability of
the slow subsystem.

Over the time interval [0, ts), the LEMPC operates inmode 1 operation to dictate a
potentially time-varying operating policy of the slow subsystem.After ts , the LEMPC
operates in mode 2 operation to enforce convergence of the closed-loop subsystem
state to the steady-state. In operation period [0, ts), the predicted slow subsystem
state along the finite prediction horizon is constrained to be maintained in the region
Ωρe ⊂ Ωρs . If the current slow subsystem state is in the regionΩρs \Ωρe , the LEMPC
drives the slow subsystem state to the region Ωρe and once the state converges to
the set Ωρe , the LEMPC may dictate a time-varying operating policy. Under mode
2 operation of the LEMPC (t ≥ ts), LEMPC computes control actions such that the
slow subsystem state is driven to a neighborhood of the steady-state.

7.2.4.1 Implementation Strategy

The above described implementation strategy corresponding to the fast subsystem
under the fast LMPC may be described as follows:

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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1. The LMPC receives the fast subsystem state ȳ(tk f ).
2. The LMPC obtains its manipulated input trajectory which ensures that the fast

subsystem state is steered to a neighborhood of the equilibrium slow manifold of
the fast state.

3. The LMPC sends the first step value of the computed input trajectory to the
corresponding actuators.

4. Go to Step 1 (k f ← k f + 1).

Similarly, the implementation strategy corresponding to the slow subsystem under
the slow LEMPC can be described as follows:

1. The LEMPC receives x(tks ) from the sensors.
2. If tks < ts , go to Step 3. Else, go to Step 4.
3. If x(tks ) ∈ Ωρe , go to Step 3.1. Else, go to Step 3.2.

3.1. The LEMPC computes an input trajectory over a finite-time prediction hori-
zon that optimizes the economic cost function while maintains the predicted
state trajectory to be within Ωρe . Go to Step 5.

3.2. The LEMPC computes an input trajectory that forces the state closer to the
region Ωρe . Go to Step 5.

4. The LEMPC computes an input trajectory that drives the slow subsystem state to
a small neighborhood of the origin.

5. The LEMPC sends the first step value of the computed input trajectory to the
corresponding actuators.

6. Go to Step 1 (ks ← ks + 1).

7.2.4.2 Fast LMPC Formulation

Referring to the fast subsystem of Eq.7.6, the fast LMPC at sampling time tk f is
formulated as follows

min
u f ∈S(Δ f )

∫ tk f +N f Δ f

tk f

[ỹT (τ̂ )Q f ỹ(τ̂ ) + uT
f (τ̂ )R f u f (τ̂ )] d τ̂ (7.11a)

s.t.
d ỹ(τ̂ )

d τ̂
= g(x(tks ), ỹ(τ̂ ) + g̃(x(tks ), 0), u f (τ̂ ), 0, 0) (7.11b)

ỹ(tk f ) = ȳ(tk f ) (7.11c)

u f (τ̂ ) ∈ U f , ∀ τ̂ ∈ [tk f , tk f + N f Δ f ) (7.11d)

∂V f (ȳ(tk f ))

∂ ȳ
g(x(tks ), ȳ(tk f ) + g̃(x(tks ), 0), u f (tk f ), 0, 0)

≤ ∂V f (ȳ(tk f ))

∂ ȳ
g(x(tks ), ȳ(tk f ) + g̃(x(tks ), 0), p(x(tks ))ȳ(tk f ), 0, 0)

(7.11e)
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where S(Δ f ) is the family of piece-wise constant functionswith sampling periodΔ f ,
N f is the prediction horizon of LMPC, Q f and R f are positive definite weighting
matrices that penalize the deviation of the fast subsystem state and manipulated
input from their corresponding values at the equilibrium slow manifold, ȳ(tk f ) is
the fast subsystem state measurement obtained at tk f , ỹ denotes the predicted fast
subsystem state trajectory of the nominal fast subsystem model of Eq.7.11b over the
prediction horizon. The input trajectory is subject to the manipulated input constraint
of Eq.7.11d. The constraint of Eq.7.11e indicates that the amount of reduction in
the value of the Lyapunov function when the manipulated input u f computed by the
LMPC of Eq.7.11 is applied is at least the amount of reduction when the Lyapunov-
based controller p(x)y is applied in a sample-and-hold fashion. Since the LMPC
of Eq.7.11 obtains the manipulated input trajectory u f every Δ f , x(tks ) is the last
available measurement of the slow process state, i.e., tks ≤ tk f . The optimal solution
to this optimization problem is defined by u∗

f (τ̂ |tk f ) for all τ̂ ∈ [tk f , tk f +N f Δ f ) and
the manipulated input of the closed-loop fast subsystem under the LMPC of Eq.7.11
is defined as follows:

u f (t) = u∗
f (t |tk f ), ∀ t ∈ [tk f , tk f + Δ f ). (7.12)

To analyze the closed-loop stability of the fast subsystem under the fast LMPC, a
few properties are needed. By continuity, the smoothness property assumed for the
vector function g(·) and taking into account that the manipulated input u f and the
disturbance w are bounded in compact sets, there exists a positive constant M f such
that

|g(x, ȳ + g̃(x,w), u f ,w, 0)| ≤ M f (7.13)

for all ȳ ∈ Ωρ f , u f ∈ U f , x ∈ Ωρs and w ∈ W. Furthermore, by the continuous
differentiable property of the Lyapunov function V f (·) and the smoothness property
assumed for the vector function g(·), there exist positive constants L ȳ and Lw f such
that

∣∣∣∣∂V f (ȳ)

∂ ȳ
g(x, ȳ, u f ,w, 0) − ∂V f (ȳ′)

∂ ȳ
g(x, ȳ′, u f ,w, 0)

∣∣∣∣ ≤ L ȳ|ȳ − ȳ′|
∣∣∣∣∂V f (ȳ)

∂ ȳ
g(x, ȳ, u f ,w, 0) − ∂V f (ȳ)

∂ ȳ
g(x, ȳ, u f ,w′, 0)

∣∣∣∣ ≤ Lw f |w − w′|
(7.14)

for all ȳ, ȳ′ ∈ Ωρ f , u f ∈ U f , and w, w′ ∈ W.
Proposition 7.1 characterizes the closed-loop stability properties of the LMPC of

Eq.7.11. The analysis is similar to that of the LMPC presented in [10].

Proposition 7.1 Consider the fast subsystem of Eq.7.6 in closed-loop under the
LMPCof Eq.7.11 based on the feedback controller p(x)y that satisfies the conditions
of Eq.7.10. Let εw f > 0, Δ f > 0 and ρ f > ρ

f
s > 0, θ > 0 satisfy:

− α f3(α
−1
f2

(ρ f
s )) + L ȳM f Δ f + (L ȳ Lg̃ + Lw f )θ ≤ −εw f /Δ f . (7.15)
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Then, there exists a class K L function βy and a class K function γy such that if
ȳ(0) ∈ Ωρ f , then ȳ(t) ∈ Ωρ f for all t ≥ 0 and

|ȳ(t)| ≤ βy

(
|ȳ(0)|, t

ε

)
+ γy(ρ

∗
f ) (7.16)

with ρ∗
f = maxs∈[0,Δ f ]{V f (ȳ(s)) : V f (ȳ(0)) ≤ ρ

f
s }, uniformly in x ∈ Ωρs and

w ∈ W.

Proof The time derivative of the Lyapunov function along the state trajectory ȳ(t)
of fast subsystem of Eq.7.6 for t ∈ [tk f , tk f + Δ f ) is written as follows:

V̇ f (ȳ(t)) = ∂V f (ȳ(t))

∂ ȳ
g(x(tks ), ȳ(t) + g̃(x(tks ),w), u∗

f (tk f |tk f ),w, 0). (7.17)

Adding and subtracting the term:

∂V f (ȳ(tk f ))

∂ ȳ
g(x(tks ), ȳ(tk f ) + g̃(x(tks ), 0), u

∗
f (tk f |tk f ), 0, 0)

to the right-hand-side of Eq.7.17 and taking Eq.7.10 into account, we obtain the
following inequality:

V̇ f (ȳ(t)) ≤ −α f3(|ȳ(tk f )|) + ∂V f (ȳ(t))

∂ ȳ
g(x(tks ), ȳ(t) + g̃(x(tks ),w), u∗

f (tk f |tk f ),w, 0)

− ∂V f (ȳ(tk f ))

∂ ȳ
g(x(tks ), ȳ(tk f ) + g̃(x(tks ), 0), u

∗
f (tk f |tk f ), 0, 0) (7.18)

for t ∈ [tk f , tk f +Δ f ). From Eq.7.14, Assumption 7.1 and the inequality of Eq.7.18,
the following inequality is obtained for all ȳ(tk f ) ∈ Ωρ f \Ω

ρ
f
s
:

V̇ f (ȳ(t)) ≤ −α f3(α
−1
f2

(ρ f
s )) + L ȳ|ȳ(t) − ȳ(tk f )| + (L ȳ Lg̃ + Lw f )θ. (7.19)

for t ∈ [tk f , tk f + Δ f ). Taking into account Eq.7.13 and the continuity of ȳ(t), the
following bound can be written for all t ∈ [tk f , tk f + Δ f ), |ȳ(t) − ȳ(tk f )| ≤ M f Δ f .
Using this expression, the following bound is obtained on the time derivative of the
Lyapunov function for t ∈ [tk f , tk f + Δ f ):

V̇ f (ȳ(t)) ≤ −α f3(α
−1
f2

(ρ f
s )) + L ȳM f Δ f + (L ȳ Lg̃ + Lw f )θ.

for all ȳ(tk f ) ∈ Ωρ f \Ω
ρ

f
s
. If the condition of Eq.7.15 is satisfied, then

V̇ f (ȳ(t)) ≤ −εw f /Δ f , ∀ t ∈ [tk f , tk f + Δ f )
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for ȳ(tk f ) ∈ Ωρ f \Ω
ρ

f
s
. Integrating this bound over t ∈ [tk f , tk f +Δ f ), the following

is obtained:

V f (ȳ(tk f + Δ f )) ≤ V f (ȳ(tk f )) − εw f (7.20a)

V f (ȳ(t)) ≤ V f (ȳ(tk f )), ∀ t ∈ [tk f , tk f + Δ f ) (7.20b)

for all ȳ(tk f ) ∈ Ωρ f \Ω
ρ

f
s
. Using Eq.7.20 recursively, it can be proved that, if x(tk f ) ∈

Ωρ f \Ω
ρ

f
s
, the state converges to Ω

ρ
f
s
in a finite number of sampling times without

leaving the stability region. Once the state converges toΩ
ρ

f
s

⊆ Ωρ∗
f
, it remains inside

Ωρ∗
f
for all times. This statement holds because of the definition of ρ∗

f . This proves
that the closed-loop system under the fast LMPC design is ultimately bounded in
Ωρ∗

f
. Thus, due to the continuity of the Lyapunov function V f (·), it can be concluded

that there exists a class K L function βy and a class K function γy such that if
ȳ(0) ∈ Ωρ f , then ȳ(t) ∈ Ωρ f for all t ≥ 0 and

|ȳ(t)| ≤ βy

(
|ȳ(0)|, t

ε

)
+ γy(ρ

∗
f ). (7.21)

Remark 7.3 The purpose of the fast LMPC scheme is to stabilize the fast subsystem
dynamics while economic considerations are addressed through the slow LEMPC.
Depending on the application and certain optimality specifications, the fast LMPC
is desired in processes where the fast time-scale is large enough to warrant the use of
MPC to achieve optimal performance compared to explicit fast feedback controllers
that achieve fast stabilizability without necessarily achieving optimal performance.
However, when the fast time-scale is short, an explicit feedback controller may be
needed to ensure sufficiently fast computation of the “fast” control action; please see
the example section. Additionally, since the closed-loop stability analysis does not
require certain conditions on the stage cost of the LMPC, i.e., the stage cost does not
need to be a quadratic stage cost, one can readily use an economic stage cost in the
fast LMPC formulation.

7.2.4.3 Slow LEMPC Formulation

Referring to the slow subsystem of Eq.7.4, the slow LEMPC at sampling time tks is
formulated as follows

max
us∈S(Δs )

∫ tks +NsΔs

tks

le(x̃(τ̃ ), us(τ̃ )) d τ̃ (7.22a)

s.t.
dx̃(τ̃ )

d τ̃
= fs(x̃(τ̃ ), us(τ̃ ), 0) (7.22b)

us(τ̃ ) ∈ Us, ∀ τ̃ ∈ [tks , tks + NsΔs) (7.22c)

x̃(tks ) = x̄(tks ) (7.22d)
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Vs(x̃(τ̃ )) ≤ ρe, ∀ τ̃ ∈ [tks , tks + NsΔs), if tks ≤ ts and Vs(x̄(tks )) ≤ ρe

(7.22e)

∂Vs(x̄(tks ))

∂ x̄
fs(x̄(tks ), us(tks ), 0) ≤ ∂Vs(x̄(tks ))

∂ x̄
fs(x̄(tks ), hs(x̄(tks )), 0),

if tks > ts or Vs(x(tks )) > ρe (7.22f)

where S(Δs) is the family of piece-wise constant functions with sampling period
Δs , Ns is the prediction horizon of LEMPC and le(·) denotes an economic stage
cost function. The symbol x̃ denotes the predicted slow subsystem state trajectory
obtained by utilizing the nominal slow subsystem model of Eq. 7.22b initialized
by the state feedback of Eq.7.22d. For mode one operation which corresponds to
sampling times tks ≤ ts , the constraint of Eq.7.22e maintains the predicted slow state
withinΩρe if Vs(x(tks )) ≤ ρe. If Vs(x(tks )) > ρe or the LEMPC operates under mode
two, the constraint of Eq.7.22f ensures that the amount of reduction in the value of
the Lyapunov function Vs(·)when us computed by the LEMPCof Eq.7.22 is applied,
is at least at the level when the feedback controller hs(·) is applied in a sample-and-
hold fashion. The optimal solution to the optimization problem of Eq.7.22 is defined
by u∗

s (τ̃ |tks ) for τ̃ ∈ [tks , tks + NsΔs) and the manipulated input of the closed-loop
slow subsystem under the LEMPC of Eq.7.22 is defined as follows:

us(t) = u∗
s (t |tks ), ∀ t ∈ [tks , tks + Δs). (7.23)

Next, the stability properties of the slow subsystem under the slow LEMPC is
analyzed. By continuity, the smoothness property assumed for the vector field fs(·)
and taking into account that the manipulated input us and the disturbance w are
bounded in compact sets, there exists a positive constant Ms such that

| fs(x̄, us,w)| ≤ Ms (7.24)

for all x̄ ∈ Ωρs , us ∈ Us , and w ∈ W. In addition, by the continuous differentiable
property of the Lyapunov function Vs(·) and the smoothness property assumed for
the vector field fs(·), there exist positive constants Lx̄ and Lws such that

∣∣∣∣∂Vs(x̄)

∂ x̄
fs(x̄, us,w) − ∂Vs(x̄ ′)

∂ x̄
fs(x̄

′, us,w)

∣∣∣∣ ≤ Lx̄ |x̄ − x̄ ′| (7.25a)
∣∣∣∣∂Vs(x̄)

∂ x̄
fs(x̄, us,w) − ∂Vs(x̄)

∂ x̄
fs(x̄, us,w

′)
∣∣∣∣ ≤ Lws |w − w′| (7.25b)

for all x̄, x̄ ′ ∈ Ωρs , us ∈ Us , and w,w′ ∈ W. Also, by the smoothness property
assumed for the vector function f (x, z, us,w, ε), there exist positive constants Lz ,
Lε, Lx , L̄ z , L̄ε, and L̄w such that

∣∣ f (x, z, us,w, ε) − f (x, z′, us,w, ε′)
∣∣ ≤ Lz|z − z′| + Lε|ε − ε′| (7.26)
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∣∣∣∣∂Vs(x)∂ x̄
f (x, z, us ,w, ε) − ∂Vs(x ′)

∂ x̄
f (x ′, z′, us ,w′, ε′)

∣∣∣∣ ≤ Lx |x − x ′| + L̄ z |z − z′|
+ L̄ε|ε − ε′| + L̄w|w − w′|

(7.27)

for all x , x ′ ∈ Ωρs , z − g̃(x,w), z′ − g̃(x,w′) ∈ Ωρ f , u f ∈ U f , and w, w′ ∈ W.
Proposition 7.2 characterizes the closed-loop stability properties of the LEMPC

of Eq.7.11.

Proposition 7.2 (Theorem 4.1) Consider the slow subsystem of Eq.7.4 under the
LEMPC design of Eqs.7.22 based on a controller hs(·) that satisfies the conditions
of Eq.7.7. Let εws > 0, Δs > 0, ρs > ρe > 0 and ρs > ρs

s > 0 satisfy

ρe ≤ ρs − fV ( fW (Δs)) (7.28)

where
fV (s) = αs4(α

−1
s1 (ρs))s + Mvs

2 (7.29)

with Mv being a positive constant and

fW (s) = Lwsθ

Lx̄
(eLx̄ s − 1) (7.30)

and
− αs3(α

−1
s2 (ρs

s )) + Lx̄MsΔs + Lwsθ ≤ −εws

Δs
. (7.31)

If x̄(0) ∈ Ωρs , ρs
s < ρe, ρ∗

s < ρs and Ns ≥ 1 then the state x̄(t) of the closed-loop
slow subsystem is always bounded in Ωρs . Furthermore, there exists a class K L
function βx and a class K function γx such that

|x̄(t)| ≤ βx (|x̄(t∗)|, t − t∗) + γx (ρ
∗
s ) (7.32)

with ρ∗
s = maxs∈[0,Δs ]{Vs(x̄(s)) : Vs(x̄(0)) ≤ ρs

s }, for all x̄(t∗) ∈ Bδ ⊂ Ωρs and for
t ≥ t∗ > ts where t∗ is chosen such that x̄(t∗) ∈ Bδ and Bδ = {x ∈ R

nx : |x | ≤ δ}.
The proof includes similar steps as the proof of Proposition 7.1. For the specific
details, refer to Theorem 4.1.

7.2.4.4 Closed-Loop Stability

The closed-loop stability of the system of Eq.7.1 under the LMPC of Eq.7.11 and
LEMPC of Eq.7.22 is established in the following theorem under appropriate con-
ditions.

http://dx.doi.org/10.1007/978-3-319-41108-8_4
http://dx.doi.org/10.1007/978-3-319-41108-8_4
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Theorem 7.1 Consider the system of Eq.7.1 in closed-loop with u f and us com-
puted by the LMPC of Eq.7.11 and LEMPC of Eq.7.22 based on the Lyapunov-based
controllers p(x)y and hs(·) that satisfy the conditions of Eqs.7.7 and 7.10, respec-
tively. Let Assumptions 7.1 and 7.2 and the conditions of Propositions 7.1 and 7.2
hold and

ρe + (Ms + LzMy + Lεε)Δsαs4(α
−1
s1 (ρs)) < ρs (7.33)

and
− αs3(α

−1
s1 (ρs

s )) + d1 < 0 (7.34)

where Lz, My and d1 are positive constants to be defined in the proof. Then there
exist functions βx of classK L and γx of classK , a pair of positive real numbers
(δx , d) and ε∗ > 0 such that if

max{|x(0)|, |y(0)|, ‖w‖, ‖ẇ‖} ≤ δx

where ‖w‖ denotes ess supt≥0|w(t)| and ε ∈ (0, ε∗], then x(t) ∈ Ωρs and y(t) ∈ Ωρ f

for t ≥ 0 and
|x(t)| ≤ βx (|x(t∗)|, t − t∗) + γx (ρ

∗
s ) + d (7.35)

for all t ≥ t∗ > ts where t∗ has been defined in Proposition 7.2.

Proof When u f = u∗
f and us = u∗

s are determined by the LMPC of Eq.7.11 and
LEMPC of Eq.7.22, respectively, the closed-loop system takes the following form:

ẋ = f (x, z, u∗
s ,w, ε)

εż = g(x, z, u∗
f ,w, ε).

(7.36)

We will first compute the slow and fast closed-loop subsystems.
Setting ε = 0 in Eq.7.36 and taking advantage of the fact that u∗

f = 0 when
ε = 0, one obtains that:

dx̄

dt
= f (x̄, z̄, u∗

s ,w, 0)

0 = g(x̄, z̄, 0,w, 0).
(7.37)

Using Assumption 7.1, Eq.7.37 can be written as follows:

dx̄

dt
= f (x̄, g̃(x̄,w), u∗

s ,w, 0) = fs(x̄, u
∗
s ,w) (7.38)

Let τ = t/ε and y = z − g̃(x,w), and the closed-loop system of Eq.7.36 can be
written as:
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dx

dτ
= ε f (x, y + g̃(x,w), u∗

s ,w, ε)

dy

dτ
= g(x, y + g̃(x,w), u∗

f ,w, ε) − ε
∂ g̃

∂w
ẇ − ε

∂ g̃

∂x
f (x, y + g̃(x,w), u∗

s ,w, ε)

(7.39)
Setting ε = 0, the following closed-loop fast subsystem is obtained:

d ȳ

dτ
= g(x, ȳ + g̃(x,w), u∗

f ,w, 0) (7.40)

Now, we focus on the singularly perturbed system of Eq.7.39. Considering the
fast subsystem state y(t) of Eq.7.39 and assuming that x(t) is bounded inΩρs (which
will be proved later), it can be obtained using a Lyapunov argument that there exist
positive constants δx1 and ε1 such that if max{|x(0)|, |y(0)|, ‖w‖, ‖ẇ‖} ≤ δx1 and
ε ∈ (0, ε1], there exists a positive constant k1 such that:

|z − g̃(x,w)| = |y(t)| ≤ βy

(
δx1 ,

t

ε

)
+ γy(ρ

∗
f ) + k1 (7.41)

for all t ≥ 0. We consider t ∈ (0,Δs] and t ≥ Δs separately and prove that if the
conditions stated in Theorem 7.1 are satisfied, the boundedness of the states of the
system of Eq.7.39 is ensured. When x(0) ∈ Bδx2

⊂ Ωρe ⊂ Ωρs , where δx2 is a
positive real number, considering the closed-loop slow subsystem of Eq.7.39 state
trajectory:

ẋ(t) = f (x, y + g̃(x,w), u∗
s ,w, ε), ∀ t ∈ (0,Δs]

and considering the facts that

| f (x, z, u∗
s ,w, ε)| ≤ | fs(x, u∗

s ,w)| + | f (x, z, u∗
s ,w, ε) − fs(x, u

∗
s ,w)|,

| fs(x, u∗
s ,w)| ≤ Ms,

|y(t)| ≤ βy(δx2 , 0) + γy(ρ
∗
f ) + k1 < My

where My is a positive constant such that

| f (x, z, u∗
s ,w, ε) − fs(x, u

∗
s ,w)| = | f (x, z, u∗

s ,w, ε) − f (x, g̃(x,w), u∗
s ,w, 0)|

≤ Lz|z − g̃(x,w)| + Lεε ≤ LzMy + Lεε

(7.42)

and

Vs(x(t)) = Vs(x(0)) +
∫ t

0
V̇s(x(s)) ds

= Vs(x(0)) +
∫ t

0

∂Vs(x(s))

∂x
ẋ(s) ds
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≤ ρe + (Ms + LzMy + Lεε)Δsαs4(α
−1
s1 (ρs)) (7.43)

Thus, there exists Δ1 and ε2 such that if Δs ∈ (0,Δ1] and ε ∈ (0, ε2], Eq. 7.33 holds
and

Vs(x(t)) < ρs, ∀ t ∈ (0,Δs] (7.44)

Picking ε3 = min{ε1, ε2} ensures that x(t) ∈ Ωρs and y(t) ∈ Ωρ f for all t ∈ [0,Δs).
For t ≥ Δs , considering Eq.7.41, there exists a positive real number M̄y such that

|y(t)| ≤ βy

(
δx2 ,

Δs

ε

)
+ γy(ρ

∗
f ) + k1 ≤ M̄y (7.45)

and we can write the time derivative of the Lyapunov function Vs(·) along the closed-
loop system state of Eq.7.1 under the LEMPC of Eq.7.22 for t ∈ [tks , tks+1) (assum-
ing without loss of generality that tks = Δs) as follows

V̇s(x(t)) = ∂Vs(x(t))

∂x
f (x(t), z(t), u∗

s (tks ),w(t), ε) (7.46)

Adding/subtracting the terms:

∂Vs(x(tks ))

∂x
fs(x(tks ), us(tks ), 0) and

∂Vs(x(t))

∂x
fs(x(t), us(tks ),w(t))

to/from the above inequality and taking advantage of Eqs. 7.7 and 7.22f and the fact
that

| f (x(t), z(t), u∗
s (tks ),w(t), ε)|

≤ | fs(x(t), u∗
s (tks ), 0)|

+ | fs(x(t), u∗
s (tks ),w(t)) − fs(x(tks ), u

∗
s (tks ), 0)|

+ | f (x(t), z(t), u∗
s (tks ),w(t), ε) − fs(x(t), u

∗
s (tks ),w(t))|

and considering

∣∣∣∣∂Vs(x(t))

∂x
fs(x, u

∗
s ,w)

∣∣∣∣ ≤ αs4(α
−1
s1 (ρs))Ms, (7.47)

∣∣∣∣∂Vs(x(t))

∂x
f (x(t), z(t), u∗

s (tks ),w(t), ε) − ∂Vs(x(t))

∂x
fs(x(t), u

∗
s (tks ),w(t))

∣∣∣∣
≤ Lz̄|z − g̃(x,w)| + L ε̄ε,

(7.48)
|z − g̃(x,w)| ≤ M̄y, (7.49)
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∣∣∣∣∂Vs(x(t))

∂x
fs(x(t), u

∗
s (tks ),w(t)) − ∂Vs(x(tks ))

∂x
fs(x(tks ), u

∗
s (tks ), 0)

∣∣∣∣
≤ Lx̄ |x(t) − x(tks )| + Lwsθ,

(7.50)

and
|x(t) − x(tks )| ≤ MsΔs, (7.51)

we can obtain
V̇s(x(t)) ≤ −αs3(α

−1
s1 (ρs

s )) + d1 (7.52)

where

d1 = αs4(α
−1
s1 (ρs))Ms + Lz̄ M̄y + L ε̄ε + Lx̄MsΔs + Lws‖w‖ (7.53)

where d1 is a positive constant. Picking δx2 , ε4 and Δ2 such that for any ε ∈ (0, ε4],
max{|x(0)|, |y(0)|, ‖w‖, ‖ẇ‖} ≤ δx2 and for all Δs ∈ (0,Δ2], Eq. 7.34 is satis-
fied, the closed-loop system state x(t) is bounded in Ωρs for all t ≥ Δs . Finally,
using similar arguments to the proof of Theorem 1 in [11], there exist a class
K L function βx and a class K function γx , positive real numbers (δx , dx ) where
δx < min{δx1 , δx2}, and 0 < ε∗ < min{ε1, ε2, ε3, ε4} and 0 < Δ∗ < min{Δ1,Δ2}
such that if max{|x(0)|, |y(0)|, ‖w‖, ‖ẇ‖} ≤ δx , ε ∈ (0, ε∗] and Δs ∈ (0,Δ∗], then,
the bound of Eq.7.35 holds for all t ≥ t∗ > ts .

Remark 7.4 It should be emphasized that in Theorem 7.1, it has been indicated that
for operation periods corresponding to LEMPC mode 1 operation, both of fast and
slow reduced order subsystem states are bounded in the invariant setsΩρ̃s andΩρ̃ f to
ensure that the actual states of the system are bounded in certain stability regions, i.e.,
Ωρs andΩρ f through restricting their corresponding initial states. On the other hand,
for operation periods corresponding to LEMPC mode 2 operation, both of system
states are asymptotically bounded in a small invariant set containing the origin.

Remark 7.5 While the present work focuses on nonlinear singularly perturbed sys-
tems and general economic stage cost functions, the results of this work are novel
and apply to the case of linear singularly perturbed systems; however, in the linear
case, the verification of the assumption that there is an isolated equilibriummanifold
for the fast dynamics (Assumption 1), the construction of the explicit control laws
for the slow and fast subsystems imposed in Sect. 2.4 and the computation of the
associated closed-loop stability regions, and the solution of the LEMPC and LMPC
optimization problems when convex economic cost functions are used simplify sig-
nificantly, given the availability of robust and efficient tools for matrix calculations
and convex optimization.

http://dx.doi.org/10.1007/978-3-319-41108-8_2
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7.2.5 Application to a Chemical Process Example

Consider awell-mixed, non-isothermal continuous stirred tank reactor (CSTR)where
an irreversible, second-order, endothermic reaction A → B takes place, where A
is the reactant and B is the desired product. The feed to the reactor consists of the
reactant A and an inert gas at flow rate F , temperature T0 and molar concentration
CA0. Due to the non-isothermal nature of the reactor, a jacket is used to provide heat to
the reactor. The dynamic equations describing the behavior of the reactor, obtained
through material and energy balances under standard modeling assumptions, are
given below:

dCA

dt
= F

VR
(CA0 − CA) − k0e

−E/RTC2
A (7.54a)

ρRCp
dT

dt
= FρRCp

VR
(T0 − T ) − ΔHk0e

−E/RTC2
A + Q

VR
(7.54b)

where CA denotes the concentration of the reactant A, T denotes the temperature
of the reactor, Q denotes the rate of heat supply to the reactor, VR represents the
volume of the reactor, ΔH , k0, and E denote the enthalpy, pre-exponential constant
and activation energy of the reaction, respectively, and Cp and ρR denote the heat
capacity and the density of the fluid in the reactor, respectively. The values of the
process parameters used in the simulations are shown in Table7.1. The processmodel
of Eq.7.54 is numerically simulated using an explicit Euler integration method with
integration step hc = 1.0 × 1.0−6 h.

The process model has one unstable steady-state in the operating range of interest.
The control objective is to optimize the process operation in a region around the
unstable steady-state (CAs , Ts) to maximize the average production rate of B through
manipulation of the concentration of A in the inlet to the reactor. The steady-state
input value associated with the steady-state point is denoted by CA0s . Defining ε =
ρRcP , the following nonlinear state-space model can be obtained

ẋ(t) = f (x(t), z(t), us(t), 0, ε)

εż(t) = g(x(t), z(t), u f (t), 0, ε)

Table 7.1 Parameter values

T0 = 300 K F = 5 m3 h−1

VR = 1.0 m3 E = 5 × 104 kJ kmol−1

k0 = 8.46 × 106 m3 kmol−1 h−1 ΔH = −19.91 kJ kmol−1

Cp = 0.02 kJ kg−1 K−1 R = 8.314 kJ kmol−1 K−1

ρR = 20 kgm−3 CAs = 1.95 kmolm−3

Ts = 401.87 K CA0s = 4 kmolm−3

Qs = 0 kJ h−1
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where x = CA−CAs and z = T−Ts are the states, us = CA0−CA0s andu f = Q−Qs

are the inputs and f and g are scalar functions. The inputs are subject to constraints as
follows: |us | ≤ 3.5 kmolm−3 and |u f | ≤ 5.0 × 105 kJ h−1. The economic measure
considered in this example is as follows:

1

tN

∫ tN

0
k0e

−E/RT (τ )C2
A(τ ) dτ (7.55)

where tN = 1.0 h is the time duration of a reactor operating period. This economic
objective function highlights the maximization of the average production rate over
a process operation period for tN = 1.0 h (of course, different, yet finite, values of
tN can be chosen). A limitation on the amount of reactant material that may be used
over the period tN is considered. Specifically, the control input trajectory of us should
satisfy the following constraint:

1

tN

∫ tN

0
us(τ ) dτ = 1.0 kmolm−3. (7.56)

This constraintmeans that the available amount of reactantmaterial over one period is
fixed. For the sake of simplicity, the constraint of Eq. 7.56 is referred for the material
constraint for the remainder.

In terms of the Lyapunov-based controllers, feedback linearization techniques
are utilized for the design of explicit controllers for the fast and slow reduced-order
subsystems subject to input constraints and quadratic Lyapunov functions Vs(x) =
x2 and V f (y) = y2 are used to compute the stability regions. Through feedback
linearization and evaluating V̇s(·) subject to the input constraint, V̇s(x) ≤ 0 when
x ∈ Ωρs and ρs = 4. Furthermore, to guarantee that CA > 0 and T ≤ 480 K, the
corresponding stability Ωρs is defined as Ωρs = {x | − 1.15 ≤ x ≤ 3.95}.

In this example, a slow LEMPC is designed to regulate the slow subsystem
state, which maximizes the average production rate of the desired product B, and a
fast feedback linearizing controller is designed to stabilize the fast subsystem state.
With respect to the fast feedback linearizing controller, the deviation variable y(t)
is defined as z(t) − z̄(t) where z̄(t) is the unique root of the algebraic equation
g(x(t), z̄(t), 0, 0, 0) = 0 given x(t). For the purpose of simulation, this unique root
has been approximated through a tenth-order polynomial. Furthermore, we assume
that the state measurements are available every Δ f = 1.0 × 1.0−6 h and the manip-
ulated input u f is obtained every Δ f such that

g(x, y + g̃(x, 0), 0, u f , 0) = −μy (7.57)

where μ = 100. Regarding the slow dynamics, the LEMPC obtains its manipulated
input trajectory us every Δs = 1.0 × 10−2 h by optimizing the objective function
of Eq.7.55 using the one dimensional slow subsystem which is independent of ε.
As a result, the slow subsystem used in the LEMPC is well conditioned and is
integrated with time step 1.0 × 10−3 h resulting in a nearly-three order of magnitude
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improvement in the computational time needed to compute the control action for us .
TheLEMPCoperates only undermode 1operation to highlight the effect of economic
optimization. Considering thematerial constraint which needs to be satisfied through
one period of process operation, a shrinking prediction horizon sequence is employed
in the LEMPC in the sense that N0, . . . , N99 where Ni = 100 − i denotes the
prediction horizon at time step i and i = 0, . . . , 99.

Figures7.1, 7.2, 7.3, 7.4 and 7.5 illustrate closed-loop state and manipulated input
trajectories of the chemical process of Eq.7.54 under the mode one operation of the
LEMPC design of Eq.7.22 and feedback linearization of Eq.7.57 for an initial con-
dition of (CA(0), T (0)) = (3.0 kmolm−3, 400K). From these figures, the economic
cost of Eq.7.55 is optimized by dictating time-varying operation by the LEMPC
when considering the material constraint of Eq.7.56. Furthermore, u f through feed-
back linearization ensures that the fast subsystem state y(t) converges to zero. We
point out that either the open-loop or closed-loop dynamics can evolve on different
time-scales. In this example, feedback linearization is used with a gain chosen to
drive the deviation variable y to zero fast relative to the slow state CA as observed
in Fig. 7.3. Therefore, this illustrative example possesses two-time-scale behavior.

A set of simulations is performed to compare the economic closed-loop perfor-
mance of the method versus the case that the input material is fed to the reactor
uniformly in time, i.e., us(t) = 1.0 kmolm−3 for all t ∈ [0, 1.0 h]. To carry out this
comparison, the total cost of each scenario is computed based on the index of the
following form:

J = 1

tM

M−1∑
i=0

(
k0e

−E/RT (ti )C2
A(ti )

)
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Fig. 7.1 The closed-loop reactant concentration profile under the composite control structure
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Fig. 7.2 The closed-loop temperature profile under the composite control structure
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Fig. 7.3 The closed-loop profile of y = z − g̃(x, 0)
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Fig. 7.4 Themanipulated input us profile under the slow LEMPC, which optimizes the production
rate of the desired product B
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Fig. 7.5 The manipulated input u f profile under the feedback linearizing controller of Eq.7.57

where t0 = 0.0 h, ti = i0.01 h andM = 100. By comparing the performance index J
for these two cases, the LEMPC through a time-varying operation achieves a greater
cost value, i.e., larger average production rate, compared to the case that the reactant
material is fed to the reactor uniformly in time (13.12 versus 5.92, respectively).

7.3 Distributed EMPC: Evaluation of Sequential
and Iterative Architectures

It is possible that significant computation delay may result, which may affect closed-
loop stability and performance, when computing control actions for large-scale
process systems with many states and inputs. In the context of control of large-
scale nonlinear chemical process networks, an alternative is to employ a distributed
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MPC (DMPC) architecture (see, for example, the review [12] and references con-
tained therein). DMPC has the ability to control large-scale process systems subject
to input and state constraints while remaining computationally feasible to be imple-
mented on-line through a distributed implementation of the computations. Numerous
formulations, implementation strategies, and theoretical results have been developed
within the context of tracking DMPC, e.g., [13, 14]; see, also, the reviews of [12, 15]
and the references therein. In the context of distributed EMPC (DEMPC), somework
has been completed including DEMPC for linear systems [16, 17] and for nonlinear
systems [18, 19].

In this section, sequential and iterative DEMPC strategies are developed and
applied to the benchmark catalytic reactor to produce ethylene oxide from ethyl-
ene, which was first presented in Sect. 1.3.1. Recall, in Sect. 3.2, the application of
EMPC to the catalytic reactor resulted in improved average yield of ethylene oxide
compared to the yield of steady-state operation and to the yield achieved under an
open-loop optimal periodic switching of the inputs considered in [20]. Here, several
EMPC implementation strategies (centralized and distributed) are applied to the cat-
alytic reactor. A description of the DEMPC implementation strategies is provided.
Several closed-loop simulations are performed to evaluate the approaches. Two key
performance metrics are considered in the evaluation: the closed-loop economic per-
formance under the various DEMPC strategies and the on-line computation time
required to solve the EMPC optimization problems.

Regarding the implementation details of the EMPC systems below, a sampling
period of Δ = 1.0 (dimensionless time units) was used. The optimization problems
were solved using the interior point solver Ipopt [21]. To account for real-time com-
putation considerations, the solver was forced to terminate after 100 iterations and/or
after 100 seconds of computation time. The tolerance of the solver was set to 10−5.
To satisfy the constraint on the amount of ethylene that may be fed to the reactor,
this constraint was enforced over operating windows of length tp = 47, that is the
average molar flow rate of ethylene must be equal to 0.175 at the end of each oper-
ating window (refer to Sect. 1.3.1 for more details regarding this average material
constraint). A shrinking horizon approach was used within EMPC: at the beginning
of the j th operating window, the prediction horizon was set to Nk := tp/Δ and the
horizon was decreased by one at every subsequent sampling time (Nk = Nk−1 − 1
at the sampling instance tk). At the beginning of the ( j + 1)th operating window, the
prediction horizon was set to tp/Δ.

The closed-loop simulations below were programmed using C++ on a desktop
computer with an Ubuntu Linux operating system and an Intel® Core™ i7 3.4GHz
processor. To recursively solve the catalytic reactor dynamic model, the explicit
Euler method was used. A step size of 0.00001 was used to simulate the closed-loop
dynamics of the reactor, while a step size of 0.005 was used to solve the model within
the EMPC problem; both led to stable numerical integration.

http://dx.doi.org/10.1007/978-3-319-41108-8_1
http://dx.doi.org/10.1007/978-3-319-41108-8_3
http://dx.doi.org/10.1007/978-3-319-41108-8_1
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7.3.1 Centralized EMPC

For this computational study, a centralized EMPC (C-EMPC) strategy is considered
to compare against the two distributed implementation strategies. Recall, the catalytic
reactor that produces ethylene oxide from ethylene has three inputs: the inlet flow
rate, u1, the ethylene concentration in the inlet, u2, and the coolant temperature in
the reactor jacket. Also, the reactor model has the form of:

ẋ = f (x, u1, u2, u3) (7.58)

where the state vector x ∈ R
4 includes the reactor content density, x1, the reactor

ethylene concentration, x2, the reactor ethylene oxide concentration, x3, and the
reactor temperature, x4. The C-EMPC formulation with an economic stage cost
function that maximizes the yield of ethylene oxide is given by:

max
u1,u2,u3∈S(Δ)

∫ tk+NkΔ

tk

u1(τ )x̃4(τ )x̃3(τ ) dτ (7.59a)

s.t. ˙̃x(t) = f (x̃(t), u1(t), u2(t), u3(t)) (7.59b)

ui (t) ∈ Ui , ∀ t ∈ [tk, tk + NkΔ), i = 1, 2, 3 (7.59c)

1

tp

∫ tk+NkΔ

tk

u1(t)u2(t) dt

= 0.175 − 1

tp

∫ tk

t0+ j tp

u∗
1(t)u

∗
2(t) dt (7.59d)

where Ui denotes the set of admissible values of the i th input (refer to Sect. 1.3.1 for
more details) and u∗

1 and u
∗
2 denote the optimal control actions applied to the reactor

from the beginning of the current operating window to current sampling time, tk .
The EMPC problem of Eq.7.59 maximizes the yield of ethylene oxide (or more
precisely, the numerator of the yield) over the prediction horizon (Eq. 7.59a) subject
to the dynamic processmodel to predict the future behavior of the reactor (Eq.7.59b),
the inputs constraints (Eq.7.59c), and the average constraint on amount of ethylene
that may be fed to the reactor (Eq.7.59d).

Figures7.6 and 7.7 depict the closed-loop state and input trajectories under the
C-EMPC scheme over ten operating windows. Similar to the results of [22], the
C-EMPC distributes the ethylene in a non-uniform fashion with respect to time to
optimize the yield of ethylene oxide. The average yield of ethylene oxide of the
reactor under the C-EMPC is 10.22 yield of ethylene oxide of the reactor over the
same length of operation under constant steady-state input values is 6.38 and the
average yield under EMPC is 60 percent better than that achieved under steady-state
operation.

http://dx.doi.org/10.1007/978-3-319-41108-8_1


7.3 Distributed EMPC: Evaluation of Sequential and Iterative Architectures 255

Fig. 7.6 State trajectories
under C-EMPC
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Fig. 7.7 Input trajectories
computed by the C-EMPC
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7.3.2 Sequential DEMPC

A sequential DEMPC implementation strategy computes the control actions by
sequentially solving a series of DEMPC problems. One-way communication is used
between controllers to send the computed input trajectories from one EMPC to the
next EMPC. The next EMPC also receives the input trajectory from all other previ-
ously solved EMPCs. Once all the input trajectories are received, the EMPC is solved
utilizing this information. The resulting trajectories are then sent to the subsequent
EMPC. The process is repeated until all EMPCs are solved and the control actions
for all inputs computed by the sequential DEMPC approach are obtained.

For the catalytic reactor example, which has three inputs, a reasonable choice
of input grouping can be made as a consequence of the integral input constraint.
The inputs u1 and u2 should be computed by the same EMPC, while it is worth
investigating if the input u3 can be placed on another EMPC system. This input
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pairing will be used in all the DEMPC schemes below. The formulation of the EMPC
problem that computes control actions for u1 and u2, which is denoted as EMPC-1,
is given by

max
u1,u2∈S(Δ)

∫ tk+NkΔ

tk

u1(τ )x̃4(τ )x̃3(τ ) dτ (7.60a)

s.t. ˙̃x(t) = f (x̃(t), u1(t), u2(t), û3(t)) (7.60b)

ui (t) ∈ Ui , ∀ t ∈ [tk, tk + NkΔ), i = 1, 2 (7.60c)

1

tp

∫ tk+NkΔ

tk

u1(t)u2(t) dt

= 0.175 − 1

tp

∫ tk

t0+ j tp

u∗
1(t)u

∗
2(t) dt (7.60d)

and the formulation of the EMPC that computes control actions for u3, which is
denoted as EMPC-2 is given by:

max
u3∈S(Δ)

∫ tk+NkΔ

tk

u1(τ )x̃4(τ )x̃3(τ ) dτ (7.61a)

s.t. ˙̃x(t) = f (x̃(t), û1(t), û2(t), u3(t)) (7.61b)

u3(t) ∈ U3, ∀ t ∈ [tk, tk + NkΔ) (7.61c)

In the problems of Eqs. 7.60–7.61, the input trajectories denoted by ûi must be
provided before the problemsmay be solved. The input trajectory û3 must be assumed
if EMPC-1 is solved first. In general, the assumed input trajectory may be a constant
input trajectory, an input trajectory computed by an explicit controller, or the input
trajectory of EMPC-2 computed at the previous sampling time. Similarly, if EMPC-2
is solved first in the sequential DEMPC architecture, the input trajectories û1 and û2
must be assumed before solving EMPC-2.

7.3.2.1 Sequential DEMPC 1-2

The first configuration considered, which is referred to as the sequential DEMPC 1-2
and abbreviated to S-DEMPC 1-2, first solves the EMPC-1 problem for the optimal
input trajectories u∗

1(t |tk) and u∗
2(t |tk) for t ∈ [tk, tk+N ). Then, the EMPC-2 problem

is solved to compute the input trajectory u∗
3(t |tk) after receiving u∗

1(t |tk) and u∗
2(t |tk)

from EMPC-1. A block diagram of the resulting control architecture showing the
communication between the controllers is given in Fig. 7.8. Since the input trajectory
û3(t) for t ∈ [tk, tk+N ) has not been determined when the EMPC-1 problem is
solved, it is set to be the resulting input trajectory under a proportional-integral (PI)
controller implemented in a sample-and-hold fashion over the prediction horizon
(othermethods for the assumed profile of û3(t)within EMPC-1 could be considered).
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EMPC-1
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1(·|tk), u∗
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u∗
3(tk|tk)

x(tk)

Fig. 7.8 A block diagram of the S-DEMPC 1-2 scheme

Fig. 7.9 Closed-loop state
trajectories of the catalytic
reactor under the S-DEMPC
1-2
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The input constraints are accounted for in the computed PI input trajectory, e.g., if
the PI controller computes a control action greater than the upper bound on u3, it is
set to u3,max. For the input trajectories û1 and û2 in the EMPC-2 problem, the optimal
input trajectories computed by the EMPC-1 problem are used.

Figures7.9 and 7.10 show the closed-loop state and input trajectories under the
S-DEMPC 1-2, respectively. The trajectories are similar to those under the C-EMPC
(Figs. 7.6 and7.7). For the closed-loop simulation, the averageyieldwas10.20 (recall,
the average yield under the C-EMPC was 10.22 differences in the state trajectories
are observed fromFigs. 7.6 and 7.9, e.g., in the x1 and x4 trajectories. It is important to
note that given the nonlinear nature of the process considered, there is no guarantee,
in general, that the centralized EMPC and sequential EMPC scheme will lead to the
same or even similar optimal input trajectories.

7.3.2.2 Sequential DEMPC 2-1

Another sequential distributed implementation of EMPC-1 and EMPC-2 may be
considered by reversing the execution of EMPC-1 and EMPC-2. In this DEMPC
approach, which is shown in Fig. 7.11, EMPC-2 computes its optimal input trajectory
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Fig. 7.10 Closed-loop input trajectories computed by the S-DEMPC 1-2
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x(tk)

Fig. 7.11 A block diagram of the S-DEMPC 1-2 scheme

u∗
3(t |tk) for t ∈ [tk, tk+N ) first. The sequential DEMPC approach is referred to as

the sequential DEMPC 2-1 (S-DEMPC 2-1). To solve EMPC-2, the trajectories
û1(t) and û2(t) for t ∈ [tk, tk+N ) are set to the input trajectories resulting from
two PI controllers implemented in sample-and-hold fashion. While the bounds on
admissible input values are accounted for in the PI input trajectories, the input average
constraint is not accounted for in the PI input trajectories. Figures7.12 and 7.13
give the closed-loop state and input trajectories under the S-DEMPC 2-1 approach.
Noticeable differences are observed between the closed-loop trajectories under the
S-DEMPC 2-1 approach and those under the C-EMPC approach (Figs. 7.6 and 7.7).

7.3.3 Iterative DEMPC

Instead of sequential computation of the distributed EMPC problems, parallel com-
putation may be employed in the sense that each problem may be solved simultane-
ously. Given the control actions are computed without the knowledge of the control
actions computed by the other distributed EMPC schemes, an iterative approach
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Fig. 7.12 Closed-loop state
trajectories of the catalytic
reactor under the S-DEMPC
2-1
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Fig. 7.13 Closed-loop input
trajectories of computed by
the S-DEMPC 2-1
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may be used to (ideally) compute control actions closer to the centralized solution.
Again, it is important to emphasize that given the nonlinearity and non-convexity
of the optimization problems, it is difficult, in general, to guarantee that an itera-
tive DEMPC strategy will converge to the centralized solution even after infinite
iterations. Moreover, there is no guarantee that the input solution computed at each
iteration improves upon the closed-loop performance over the previous iteration.

An iterative DEMPC (I-DEMPC) scheme is designed for the catalytic reactor
and a block diagram of the I-DEMPC control architecture is given in Fig. 7.14.
The computed input trajectories at each iteration of the I-DEMPC is denoted as
u∗,c
i (t |tk) for t ∈ [tk, tk+N ), i = 1, 2, 3 where c is the iteration number. At the first

iteration, the input trajectory û3(t) for t ∈ [tk, tk+N ) in EMPC-1 is initialized with
the sample-and-hold input trajectory computed from the same PI controller used in
the S-DEMPC 1-2 scheme, and similarly, the input trajectories û2(t) and û3(t) for
t ∈ [tk, tk+N ) in EMPC-2 are initialized with the input trajectories computed from
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Fig. 7.14 A block diagram of the I-DEMPC scheme

Fig. 7.15 Closed-loop state
trajectories of the catalytic
reactor under the I-DEMPC
(1 iteration)
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the PI controllers of the S-DEMPC 2-1 scheme. The control action applied to the
reactor is denoted as u∗, f

i (tk |tk) for i = 1, 2, 3 where f is the total number of
iterations of the iterative DEMPC scheme ( f is a design parameter of the scheme).
When f = 1, the I-EMPC scheme is a decentralized DEMPC approach in the sense
that there is no communication between EMPC-1 and EMPC-2 and each problem
are solved independently of each other.

For this example, no closed-loop performance benefit was observed after iter-
ating more than once through the I-DEMPC scheme. In fact, using the previous
iterate solution to compute the next iterative gave worse closed-loop performance
than applying the first computed iteration to the process. One method considered to
compensate for this problem was to use the best computed input solution over all
iterations to compute the next iteration. However, minimal closed-loop performance
benefit was observed with this method. Thus, f = 1, which corresponds to a decen-
tralized DEMPC approach, was selected for this case given that using more than one
iteration did not improve the closed-loop performance. The resulting closed-loop tra-
jectories are given in Figs. 7.15 and 7.16. The trajectories have similar characteristics
as the centralized case.
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Fig. 7.16 Closed-loop input
trajectories of computed by
the I-DEMPC (1 iteration)
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7.3.4 Evaluation of DEMPC Approaches

The average yield and average computation time required to solve the optimization
problem at each sampling time over the entire simulation were considered for all the
cases. The sequential DEMPC computation time is computed as the sum of the com-
putation time of EMPC-1 and EMPC-2 at each sampling time because the sequen-
tial DEMPC schemes are computed sequentially. The iterative DEMPC computation
time is the maximum computation time over all EMPCs at each sampling time (recall
only one iteration was used). The average yield and average computation time for all
the cases is given in Table7.2. The closed-loop performance under the centralized
EMPC, the sequential DEMPC 1-2, and the iterative DEMPC schemes was similar.
The sequential DEMPC 1-2 and iterative DEMPC resulted in approximately a 70
reduction in computation time over the centralized EMPC. The sequential DEMPC
2-1 scheme not only had the worst performance of all the strategies considered (albeit
still better than steady-state operation), but also, required a comparable amount of
time to solve the optimization problems as the centralized case, thereby implying a
strong dependence of closed-loop performance on controller calculation sequence.
DEMPC was able to yield comparable closed-loop performance while substantially
reducing the on-line computation time. This demonstrates that a distributed imple-
mentation may allow EMPC to be used on processes where centralized control is not
feasible due to the solve time.

This example illustrates another key point within the context of DEMPC. Specifi-
cally, the inclusion of integral constraint in EMPCmay be an important consideration
for input selection in DEMPC. From the sequential DEMPC results, the computed
u3 profile is impacted by the assumed input profiles ū1 and ū2 (Fig. 7.13), while u1
and u2 are not affected as much by the assumed profile ū3 (Fig. 7.10) compared to
the centralized EMPC case (Fig. 7.7). This behavior may be due to the enforcement
of the integral input constraint, and for this example, there may only be one method
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Table 7.2 The average yield
and computation time under
the EMPC strategies

Strategy Yield (%) Comp. time
(s)

Sequential DEMPC 1-2 10.20 1.039

Sequential DEMPC 2-1 9.92 2.969

Iterative DEMPC ( f = 1) 10.05 0.832

Centralized EMPC 10.22 4.244

to distribute a fixed amount of ethylene to the reactor that maximizes the yield that
is independent of u3.

7.4 Real-Time Economic Model Predictive Control
of Nonlinear Process Systems

Besides designing EMPC strategies that improves the computational efficiency such
as the use of two-layer EMPC or distributed EMPC implementations, it may also
be important to consider an EMPC implementation strategy that explicitly addresses
potential computational delay. Some of the early work addressing computational
delay within tracking MPC includes developing an implementation strategy of solv-
ing the MPC problem intermittently to account for the computational delay [23] and
predicting the future state after an assumed constant computational delay to compute
an input trajectory to be implemented after the optimization problem is solved [24,
25]. Nominal feasibility and stability has been proved for tracking MPC subject to
computational delay formulated with a positive definite stage cost (with respect to
the set-point or steady-state), a terminal cost, and a terminal region constraint [24,
25]. Another option to handle computational delay would be to force the optimiza-
tion solver to terminate after a pre-specified time to ensure that the solver returns
a solution by the time needed to ensure closed-loop stability. This concept is typi-
cally referred to as suboptimal MPC [26] because the returned solution will likely be
suboptimal. It was shown that when the returned solution of the MPC with a termi-
nal constraint is any feasible solution, the operating steady-state of the closed-loop
system is asymptotically stable [26].

More recently, more advanced strategies have been proposed. Particularly, non-
linear programming (NLP) sensitivity analysis has demonstrated to be a useful tool
to handle computational delay by splitting the MPC optimization problem into two
parts: (1) solving a computationally intensive nonlinear optimization problem which
is completed before feedback is received and (2) performing a fast on-line update of
the precomputed input trajectories using NLP sensitivities (when the active-set does
not change) after the current state measurement is obtained, e.g., [27, 28]; see, also,
the review [29]. If the active-set changes, various methods have been proposed to
cope with changing active-sets, e.g., solving a quadratic program like that proposed
in [30]. In this direction, the advanced-step MPC [28] has been proposed which
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computes the solution of the optimization problem one sampling period in advance
using a prediction of the state at the next sampling period. At the next sampling
period (when the precomputed control action will be applied), the optimal solu-
tion is updated employing NLP sensitivities after state feedback is received. The
advanced-step (tracking) MPC has been extended to handle computation spanning
multiple sampling periods [31] and to EMPC [32]. Another related approach involves
a hierarchical control structure [33, 34]. The upper layer is the full optimization prob-
lem which is solved infrequently. In the lower layer, NLP sensitivities are used to
update the control actions at each sampling period that are applied to the system. The
aforementioned schemes solve an optimization problem to (local) optimality using
a prediction of the state at the sampling time the control action is to be applied to the
system.

As another way, the so-called real-time nonlinear MPC (NMPC) scheme [35]
only takes one Newton-step of the NLP solver instead of solving the optimization
problem to optimality at each sampling period. To accomplish this, the structure of
the resulting dynamic optimization program, which is solved using a direct multiple
shooting method, is exploited to divide the program into a preparation phase and a
feedback phase. In the preparation phase, the computationally expensive calculations
are completed before feedback is received. In the feedback phase, a measurement
is received and the remaining fast computations of the Newton-step are completed
on-line to compute the control action to apply to the system. The advantage of such
a strategy is that the on-line computation after a feedback measurement is obtained
is insignificant compared to solving the optimization problem to optimality. The
disadvantage is one would expect to sacrifice at least some closed-loop performance
as a result of not solving the problem to optimality.

Clearly, the available computing power has significantly increased since the early
work on computational delay of MPC and if this trend continues, one may expect
a significant increase in computing power over the next decade. Moreover, more
efficient solution strategies for nonlinear dynamic optimization problems continue
to be developed (see, for example, the overview paper [36] and the book [37] for
results in this direction). However, the ability to guarantee that a solver will converge
within the time needed for closed-loop stability remains an open problem especially
for nonlinear, non-convex dynamic optimization problems and systems with fast
dynamics. Additionally, EMPC is generally more computationally intensive com-
pared to tracking MPC given the additional possible nonlinearities in the stage cost
of EMPC.

In this section, a real-time implementation strategy for LEMPC, referred to as
real-time LEMPC, is developed to account for possibly unknown and time-varying
computational delay. The underlying implementation strategy is inspired by event-
triggered control concepts [38] since the LEMPC is only recomputed when stability
conditions dictate that it must recompute a new input trajectory. If the precomputed
control action satisfies the stability conditions, the control action is applied to the
closed-loop system. If not, a back-up explicit controller, which has negligible com-
putation time, is used to compute the control action for the system at the current sam-
pling instance. This type of implementation strategy has the advantage of being easy
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to implement and the strategy avoids potential complications of active-set changes
because the re-computation condition is only formulated to account for closed-loop
stability considerations. Closed-loop stability under the real-time LEMPC scheme is
analyzed and specific stability conditions are derived. The real-time LEMPC scheme
is applied to an illustrative chemical process network to demonstrate closed-loop
stability under the control scheme. The example also demonstrates that real-time
LEMPC improves closed-loop economic performance compared to operation at the
economically optimal steady-state.

7.4.1 Class of Systems

The class of nonlinear systems considered has the following state-space form:

ẋ(t) = f (x(t), u(t),w(t)) (7.62)

where x(t) ∈ R
n is the state vector, u(t) ∈ U ⊂ R

m is the manipulated input vector,
U is a compact set, w(t) ∈ W ⊂ R

l is the disturbance vector, and f is a locally
Lipschitz vector function. The disturbance vector is bounded in the following set:

W := {w ∈ R
l : |w| ≤ θ} (7.63)

where θ > 0 bounds the norm of the disturbance vector. Without loss of generality,
the origin of the unforced system is assumed to be the equilibrium point of Eq. 7.62,
i.e., f (0, 0, 0) = 0.

The following stabilizability assumption further qualifies the class of systems
considered and is similar to the assumption that the pair (A, B) is stabilizable in
linear systems.

Assumption 7.3 There exists a feedback controller h(x) ∈ U with h(0) = 0 that
renders the origin of the closed-loop system of Eq.7.62 with u(t) = h(x(t)) and
w ≡ 0 asymptotically stable for all x ∈ D0 where D0 is an open neighborhood of
the origin.

Applying converse theorems [7, 9], Assumption 7.3 implies that there exists a
continuously differentiable Lyapunov function, V : D → R+, for the closed-loop
system of Eq.7.62 with u = h(x) ∈ U andw ≡ 0 such that the following inequalities
hold:

α1(|x |) ≤ V (x) ≤ α2(|x |), (7.64a)

∂V (x)

∂x
f (x, h(x), 0) ≤ −α3(|x |), (7.64b)

∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ α4(|x |) (7.64c)
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for all x ∈ D where D is an open neighborhood of the origin and αi , i = 1, 2, 3, 4
are functions of class K . A level set of the Lyapunov function Ωρ , which defines
a subset of D (ideally the largest subset contained in D), is taken to be the stability
region of the closed-loop system under the controller h(x).

Measurements of the state vector of Eq.7.62 are assumed to be available syn-
chronously at sampling instances denoted as tk := kΔ where Δ > 0 is the sampling
period and k = 0, 1, . . .. As described below, the EMPC computes sample-and-
hold control actions and thus, the resulting closed-loop system, which consists of the
continuous-time systemof Eq.7.62 under a sample-and-hold controller, is a sampled-
data system. If the controller h(x) is implemented in a sample-and-hold fashion, it
possesses a certain degree of robustness to uncertainty in the sense that the origin
of the closed-loop system is rendered practically stable when a sufficiently small
sampling period is used and the bound θ on the disturbance vector is sufficiently
small; see, for example, [10] for more discussion on this point.

7.4.2 Real-Time LEMPC Formulation

The overall objective of the real-time LEMPC is to account for the real-time compu-
tation time required to solve the optimization problem for a (local) solution. Particu-
larly, the case when the average computation time, which is denoted as t̄s , is greater
than one sampling period is considered, i.e., Ns = �t̄s/Δ� ≥ 1 where Ns is the aver-
age number of sampling periods required to solve the optimization problem. During
the time the solver is solving the optimization problem, the control actions computed
at a previous sampling period are applied to the system if there are precomputed con-
trol actions available and if the stability conditions described below are satisfied. If
no precomputed control actions are available or the stability conditions are violated,
the explicit controller h(x) is used to compute and apply control actions during the
time that the real-time LEMPC is computing. In this fashion, the LEMPC is used to
compute control actions to improve the economic performance when possible.

Specifically, when the closed-loop state is in the subset of the stability region
Ωρe ⊂ Ωρ , the control actions of the precomputed LEMPC problem may be applied
to the system. When the state is outside the subset, the explicit controller is used
because maintaining the closed-loop state in Ωρ is required for guaranteeing the
existence of a feasible input trajectory that maintains closed-loop stability (in the
sense that the closed-loop state trajectory is always bounded in Ωρ). To force the
state back to the subset of the stability region Ωρe , the Lyapunov function must
decrease over each sampling period in the presence of uncertainty. This requires
the incorporation of feedback, i.e., recomputing the control action at each sampling
period using a measurement of the current state. Owing to the computational burden
of solving the LEMPC optimization problem, it may not be possible to achieve con-
vergence of the optimization solverwithin one sampling period. Hence, the controller
h(x) is used when the state is outside of Ωρe .
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For real-time implementation, only mode 1 of the LEMPC of Eq.4.3 is used
and the LEMPC is solved infrequently (not every sampling period) which will be
made clear when the implementation strategy is discussed. The real-time LEMPC is
formulated as follows:

min
u∈S(Δ)

∫ t j+N

t j+1

le(x̃(t), u(t)) dt (7.65a)

s.t. ˙̃x(t) = f (x̃(t), u(t), 0) (7.65b)

x̃(t j ) = x(t j ) (7.65c)

u(t) = ũ(t j ), ∀ t ∈ [t j , t j+1) (7.65d)

u(t) ∈ U, ∀ t ∈ [t j+1, t j+N ) (7.65e)

V (x̃(t)) ≤ ρe, ∀ t ∈ [t j+1, t j+N ) (7.65f)

where the notation and constraints are similar to that used inLEMPCofEq. 4.3 except
for an additional constraint of Eq.7.65d. This additional constraint is used because a
predetermined control action is applied to the system over the first sampling period of
the prediction horizon. The predetermined control action is either the control action
computed by the LEMPC at a previous sampling period or the control action from
the explicit controller h(x), i.e., the input trajectory over the first sampling period
of the prediction horizon is not a degree of freedom in the optimization problem.
The LEMPC of Eq.7.65 may dictate a time-varying operating policy to optimize
the economic cost as long as the predicted evolution is maintained in the level set
Ωρe ⊂ Ωρ . The notation t j denotes the sampling time at which the LEMPC problem
is initialized with a state measurement and the solver begins solving the resulting
optimization problem. The optimal solution of the LEMPC is denoted as u∗(t |t j ) and
is defined for t ∈ [t j+1, t j+N ). Feasibility of the optimization problem is considered
in Sect. 7.4.4.However, it is important to point out that x(t j ) ∈ Ωρe and x̃(t j+1) ∈ Ωρe

owing to the real-time implementation strategy, and thus, the real-time LEMPC has
a feasible solution (refer to the proof of Theorem 7.2).

7.4.3 Implementation Strategy

Before the implementation strategy is presented, the following discrete-time signals
are defined to simplify the presentation of the implementation strategy. The first
signal is used to keep track of whether the solver is currently solving an LEMPC
optimization problem:

s1(k) =
{
1, solving the LEMPC

0, not solving the LEMPC
(7.66)

where k denotes the k-th sampling period, i.e., tk . The second signal keeps track if
there is a previously computed input trajectory currently stored in memory:

http://dx.doi.org/10.1007/978-3-319-41108-8_4
http://dx.doi.org/10.1007/978-3-319-41108-8_4
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Receive x(tk)

x(tk) ∈ Ωρe ,
s2(k) = 1,

x̂(tk+1) ∈ Ωρe

Apply u(t) =
u∗(tk|tj) for
t ∈ [tk, tk+1)

Apply u(t) =
h(x(tk)) for
t ∈ [tk, tk+1)

Yes No

Fig. 7.17 Implementation strategy for determining the control action at each sampling period. The
notation u∗(tk |t j ) is used to denote the control action to be applied over the sampling period tk to
tk+1 from the precomputed input solution of the real-time LEMPC of Eq.7.65 solved at time step t j

s2(k) =
{
1, previous input solution stored

0, no previous input solution stored
(7.67)

At each sampling period, a state measurement x(tk) is received from the sensors
and three conditions are used to determine if a precomputed control action from
LEMPC or if the control action from the explicit controller h(x) is applied to the
system. If the following three conditions are satisfied the control action applied to
the system in a sample-and-hold fashion is the precomputed control action from
the LEMPC: (1) the current state must be in Ωρe (x(tk) ∈ Ωρe ), (2) there must be a
precomputed control action available for the sampling instance tk , i.e., s2(k) = 1, and
(3) the predicted state under the precomputed control action must satisfy: x̂(tk+1) ∈
Ωρe where x̂(tk+1) denotes the predicted state. To obtain a prediction of the state at
the next sampling period, the nominal model of Eq.7.62 with w ≡ 0 is recursively
solved with the input u(t) = u∗(tk |t j ) for t ∈ [tk, tk+1) (the on-line computation time
to accomplish this step is assumed to be negligible). The control action decision at a
given sampling instance tk is summarized by the flow chart of Fig. 7.17.

A series of decisions aremade at each sampling period to determine if the LEMPC
should begin resolving, continue solving, or terminate solving the optimization prob-
lem and is illustrated in the flow chart of Fig. 7.18. The computation strategy is sum-
marized in the following algorithm. To initialize the algorithm at t0 = 0, get the state
measurement x(0) ∈ Ωρ . If x(0) ∈ Ωρe , begin solving the LEMPC problem with
k = j = 0 and x(0). Set s1(0) = 1, s2(0) = 0, and ũ(t j ) = h(x(0)). Go to Step 8.
Else, set s1(0) = s1(1) = s2(0) = s2(1) = 0 and go to Step 9.

1. Receive a measurement of the current state x(tk) from the sensors; go to Step 2.
2. If x(tk) ∈ Ωρe , then go to Step 2.1. Else, go to Step 2.2.

2.1 If s2(k) = 1, go to Step 3. Else, go to Step 6.
2.2 Terminate solver if s1(k) = 1, set s1(k + 1) = 0 and s2(k + 1) = 0, and go

to Step 9.
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x(tk), s1(k), s2(k)

x(tk) ∈ Ωρe

s2(k) = 1

s1(k) = 1

x̂(tk+1) ∈ Ωρe

s1(k) = 1

tk+Ns < tj+N

ũ(tj) := h(x(tk)) ũ(tj) := u∗(tk|tj)

Begin solving EMPC
with x(tk) and j = k

Converge
before tk+1

s2(k) = 1,
tk+1 < tj+N

s1(k + 1) = 0,
s2(k + 1) = 1

s1(k + 1) = 1,
s2(k + 1) = 1

s1(k + 1) = 1,
s2(k + 1) = 0

Terminate Solver
s1(k + 1) = 0,
s2(k + 1) = 0

Yes

No

YesNo

Yes

No

No

ũ(tj)

No

ũ(tj)

No; set s2(k) = 0

Yes
Yes

Yes; save u∗(t|tj)No

YesNo

Yes

Fig. 7.18 Computation strategy for the real-time LEMPC scheme

3. If x̂(tk+1) ∈ Ωρe , go to Step 4. Else, set s2(k) = 0 and ũ(t j ) = h(x(tk)); go to
Step 7.

4. If s1(k) = 1, go to Step 8. Else, go to Step 5.
5. If tk+Ns < t j+N , set s1(k + 1) = 0 and s2(k + 1) = 1, and go to Step 9. Else, set

ũ(t j ) = u∗(tk |t j ); go to Step 7.
6. If s1(k) = 1, go to Step 8. Else, set ũ(t j ) = h(x(tk)); go to Step 7.
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7. If the solver is currently solving a problem (s1(k) = 1), terminate the solver.
Begin solving the LEMPC problem with j = k and x(t j ) = x(tk). Go to Step 8.

8. If the solver converges before tk+1, then go to Step 8.1. Else, go to Step 8.2.

8.1 Save u∗(t |t j ) for t ∈ [tk, t j+N ). Set s1(k + 1) = 0 and s2(k + 1) = 1. Go to
Step 9.

8.2 Set s1(k + 1) = 1. If s2(k) = 1 and tk+1 < t j+N , the go to Step 8.2.1. Else,
go to Step 8.2.2.

8.2.1 Set s2(k + 1) = 1. Go to Step 9.
8.2.2 Set s2(k + 1) = 0. Go to Step 9.

9. Go to Step 1 (k ← k + 1).

In practice, Ns may be unknown or possibly time varying. If Ns is unknown, then
one may specify the number of sampling periods that the real-time LEMPC may
apply a precomputed input trajectory before it must start re-computing a new input
trajectory as a design parameter. This condition may be used instead of Step 5 of the
algorithm above. Additionally, it may be beneficial from a closed-loop performance
perspective to force the LEMPC to recompute its solution more often than prescribed
by the implementation strategy described above.

A possible input trajectory resulting under the real-time LEMPC scheme is given
in Fig. 7.19. In the illustration, the solver begins to solve an LEMPC optimization
problem at t0 and returns a solution at t5. It is assumed that the closed-loop state
is maintained in Ωρe from t0 to t5 so that the solver is not terminated. Over the
time the solver is solving, the explicit controller is applied to the system since a
precomputed LEMPC input trajectory is not available. The precomputed LEMPC
solution is applied from t5 to t13. At t10, the solver begins to solve a new LEMPC
problem. The solver returns a solution at t13. At t16, the stability conditions are

Fig. 7.19 An illustration of an example input trajectory resulting under the real-time LEMPC
scheme. The triangles are used to denote the time instances when the LEMPC begins to solve the
optimization problem, while the circles are used to denote when the solver converges to a solution.
The solid black trajectory represents the control actions computed by the LEMPCwhich are applied
to the system, the dotted trajectory represents the computed input trajectory by the LEMPC (not
applied to the system), and the solid gray trajectory is the input trajectory of the explicit controller
which is applied to the system
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not satisfied for the precomputed LEMPC input trajectory, so the explicit controller
computes a control action and applies it to the system.

7.4.4 Stability Analysis

In this section, sufficient conditions such that the closed-loop state under the real-time
LEMPC is bounded inΩρ are presented which make use of the following properties.
Since f is a locally Lipschitz vector function of its arguments and the Lyapunov
function V is a continuously differentiable function, there exist positive constants
Lx , Lw, L ′

x , and L ′
w such that the following bounds hold:

| f (xa, u,w) − f (xb, u, 0)| ≤ Lx |xa − xb| + Lw |w| (7.68)∣∣∣∣∂V (xa)

∂x
f (xa, u,w) − ∂V (xb)

∂x
f (xb, u, 0)

∣∣∣∣ ≤ L ′
x |xa − xb| + L ′

w |w| (7.69)

for all xa , xb ∈ Ωρ , u ∈ U and w ∈ W. Furthermore, there exists M > 0 such that

| f (x, u,w)| ≤ M (7.70)

for all x ∈ Ωρ , u ∈ U and w ∈ W owing to the compactness of the sets Ωρ , U, and
W and the locally Lipschitz property of the vector field.

The following proposition bounds the difference between the actual state trajec-
tory of the system of Eq.7.62 (w �≡ 0) and the nominal state trajectory (w ≡ 0).

Proposition 7.3 (Proposition 4.1) Consider the state trajectories x(t) and x̂(t)with
dynamics:

ẋ(t) = f (x(t), u(t),w(t)), (7.71)

˙̂x(t) = f (x̂(t), u(t), 0), (7.72)

input trajectory u(t) ∈ U, w(t) ∈ W, and initial condition x(0) = x̂(0) ∈ Ωρ . If
x(t), x̂(t) ∈ Ωρ for all t ∈ [0, T ] where T ≥ 0, then the difference between x(T )

and x̂(T ) is bounded by the function γe(·):
∣∣x(T ) − x̂(T )

∣∣ ≤ γe(T ) := Lwθ

Lx

(
eLx T − 1

)
. (7.73)

Owing to the compactness of the set Ωρ , the difference in Lyapunov function
values for any two points in Ωρ may be bounded by a quadratic function which is
stated in the following proposition.

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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Proposition 7.4 (Proposition 4.2) Consider the Lyapunov function V of the closed-
loop system of Eq.7.62 under the controller h(x). There exists a scalar-valued
quadratic function fV (·) such that

V (xa) ≤ V (xb) + fV (|xa − xb|) (7.74)

for all xa, xb ∈ Ωρ where

fV (s) := α4(α
−1
1 (ρ))s + βs2 (7.75)

and β is a positive constant.

Theorem7.2 provides sufficient conditions such that the real-timeLEMPC renders
the closed-loop state trajectory bounded in Ωρ for all times. The conditions such
that the closed-loop state trajectory is maintained in Ωρ are independent of the
computation time required to solve the LEMPC optimization problem. From the
perspective of closed-loop stability, computational delay of arbitrary size may be
handledwith the real-timeLEMPCmethodology. In the casewhere the computational
delay is always greater than the prediction horizon, the real-time LEMPC scheme
would return the input trajectory under the explicit controller applied in a sample-
and-hold fashion.

Theorem 7.2 Consider the system of Eq.7.62 in closed-loop under the real-time
LEMPCof Eq.7.65 based on a controller h(x) that satisfies the conditions of Eq.7.64
that is implemented according to the implementation strategy of Fig.7.17. Let εw > 0,
Δ > 0 and ρ > ρe ≥ ρmin > ρs > 0 satisfy

− α3(α
−1
2 (ρs)) + L ′

x MΔ + L ′
wθ ≤ −εw/Δ, (7.76)

ρmin = max{V (x(t + Δ) | V (x(t)) ≤ ρs}, (7.77)

and
ρe < ρ − fV (γe(Δ)). (7.78)

If x(t0) ∈ Ωρ and N ≥ 1, then the state trajectory x(t) of the closed-loop system is
always bounded in Ωρ for t ≥ t0.

Proof If the real-time LEMPC is implemented according to the implementation
strategyofFig. 7.17, the control action to be applied over the samplingperiodhas been
(pre)computed by theLEMPCor the explicit controller h(x). To prove that the closed-
loop state is bounded in Ωρ , we will show that when the control action is computed
from the explicit controller and x(tk) ∈ Ωρ , then the state at the next sampling
period will be contained in Ωρ . If the control action comes from a precomputed
LEMPC solution, we will show that if x(tk) ∈ Ωρe , then x(tk+1) ∈ Ωρ owing to
the stability conditions imposed on applying the precomputed LEMPC solution. The
proof consists of two parts. In the first part, the closed-loop properties when the

http://dx.doi.org/10.1007/978-3-319-41108-8_4
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control action is computed by the explicit controller h(x) are analyzed. This part of
the proof is based on the proof of [10] which considers the stability properties of an
explicit controller of the form assumed for h(x) implemented in a sample-and-hold
fashion. In the second part, the closed-loop stability properties of the precomputed
control actions by the LEMPC are considered. In both cases, the closed-loop state
trajectory is shown to be maintained in Ωρ for t ≥ t0 when x(t0) ∈ Ωρ .

Part 1: First, consider the properties of the control action computed by the explicit
controller h(x) applied to the system of Eq.7.62 in a sample-and-hold fashion. Let
x(tk) ∈ Ωρ \ Ωρs for some ρs > 0 such that the conditions of Theorem 7.2 are
satisfied, i.e., Eq. 7.76. The explicit controller h(x) computes a control action that
has the following property (from condition of Eq.7.64):

∂V (x(tk))

∂x
f (x(tk), h(x(tk)), 0) ≤ −α3(|x(tk)|) ≤ −α3(α

−1
2 (ρs)) (7.79)

for any x(tk) ∈ Ωρ \ Ωρs . Over the sampling period, the time-derivative of the
Lyapunov function is:

V̇ (x(t)) = ∂V (x(tk))

∂x
f (x(tk), h(x(tk)), 0) + ∂V (x(t))

∂x
f (x(t), h(x(tk)),w(t))

− ∂V (x(tk))

∂x
f (x(tk), h(x(tk)), 0) (7.80)

for all t ∈ [tk, tk+1). From the bound on the time-derivative of Lyapunov function
of Eq.7.79, the Lipschitz bound of Eq.7.69, and the bound on the norm of the
disturbance vector, the time-derivative of the Lyapunov function is bounded for
t ∈ [tk, tk+1) as follows:

V̇ (x(t)) ≤ −α3(α
−1
2 (ρs))

+
∣∣∣∣∂V (x(t))

∂x
f (x(t), h(x(tk)),w(t)) − ∂V (x(tk))

∂x
f (x(tk), h(x(tk)), 0)

∣∣∣∣
≤ −α3(α

−1
2 (ρs)) + L ′

x |x(t) − x(tk)| + L ′
w |w(t)|

≤ −α3(α
−1
2 (ρs)) + L ′

x |x(t) − x(tk)| + L ′
wθ (7.81)

for all t ∈ [tk, tk+1). Taking into account of Eq.7.70 and the continuity of x(t), the
following bound may be written for all t ∈ [tk, tk+1):

|x(t) − x(tk)| ≤ MΔ. (7.82)

From Eqs. 7.81 and 7.82, the bound below follows:

V̇ (x(t)) ≤ −α3(α
−1
2 (ρs)) + L ′

x MΔ + L ′
wθ (7.83)
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for all t ∈ [tk, tk+1). If the condition of Eq.7.76 is satisfied, i.e.,Δ and θ is sufficiently
small, then there exists εw > 0 such that:

V̇ (x(t)) ≤ −εw/Δ (7.84)

for all t ∈ [tk, tk+1). Integrating the above bound, yields:

V (x(t)) ≤ V (x(tk)), ∀ t ∈ [tk, tk+1), (7.85)

V (x(tk+1)) ≤ V (x(tk)) − εw. (7.86)

For any state x(tk) ∈ Ωρ\Ωρs , the state at the next sampling periodwill be in a smaller
level set when the control action u(t) = h(x(tk)) is applied for t ∈ [tk, tk+1). Also,
the state will not come out of Ωρ over the sampling period owing to Eq.7.84. Once
the closed-loop state under the explicit controller h(x) implemented in a sample-and-
hold fashion has converged toΩρs , the closed-loop state trajectory will bemaintained
in Ωρmin if ρmin ≤ ρ and ρmin is defined according to Eq.7.77. Thus, the sets Ωρ and
Ωρmin are forward invariant sets under the controller h(x) and if x(tk) ∈ Ωρ , then
x(tk+1) ∈ Ωρ under the explicit controller h(x).

Part 2: In this part, the closed-loop stability properties of the input precomputed
by the LEMPC for the sampling period tk to tk+1 are considered. For clarity of
presentation, the notation x̂(t) denotes the prediction of closed-loop state at time t ,
i.e., this prediction used in the implementation strategy to determine which control
action to apply to the system, while the notation x̃(t) will be reserved to denote
the predicted state in the LEMPC of Eq.7.65. The predicted state in the LEMPC
of Eq.7.65 at t j+1, which is denoted as x̃(t j+1), satisfies x̂(t j+1) = x̃(t j+1) because
both predicted states use the nominal model with the same initial condition and same
piecewise constant input applied from t j to t j+1.

First, feasibility of the optimization problem is considered. Owing to the for-
mulation of the LEMPC of Eq.7.65, the optimization problem is always feasible
if ρe satisfies: ρ > ρe ≥ ρmin. Recall, the input over the sampling period t j to
t j+1 is not a degree of freedom in the optimization problem. If this control action
is precomputed from a previous LEMPC solution, it must have the property that
x̂(t j+1) = x̃(t j+1) ∈ Ωρe which is imposed as a condition of the implementation
strategy of Fig. 7.17. If the control action is computed by the explicit controller, the
control action over the sampling period t j to t j+1 will maintain x̃(t j+1) ∈ Ωρe . Thus,
x̃(t j+1) ∈ Ωρe in the LEMPC of Eq.7.65. Feasibility of the optimization problem
follows from the fact that the input trajectory obtained from the explicit controller
h(x) over the prediction horizon is a feasible solution, that is u(t) = h(x̂(ti )) for
t ∈ [ti , ti+1), i = j+1, j+2, . . . , j+N −1 where x̂(t) is obtained by recursively
solving the model: ˙̂x(t) = f (x̂(t), h(x̂(ti )), 0) (7.87)

for t ∈ [ti , ti+1) and i = j + 1, j + 1 . . . , j + N − 1 with the initial condition
x̂(t j+1) = x̃(t j+1). Furthermore, the setΩρe is forward invariant under the controller
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h(x) (the proof is analogous to Part 1 where the setΩρe is used instead ofΩρ). Thus,
the LEMPC of Eq.7.65 is always feasible for any x(t j ) ∈ Ωρe .

If the LEMPC is implemented according to the implementation strategy of
Fig. 7.17, then the precomputed input for tk by the LEMPC is only used when
x(tk) ∈ Ωρe and the predicted state at the next sampling period x̂(tk+1) ∈ Ωρe .
When x(t) ∈ Ωρ for t ∈ [tk, tk+1), i.e., a sufficiently small sampling period is used,
the following bound on the Lyapunov function value at the next sampling period tk+1

may be derived from Propositions 7.3–7.4:

V (x(tk+1)) ≤ V (x̂(tk+1)) + fV (γe(Δ)). (7.88)

Since x̂(tk+1) ∈ Ωρe and if the condition of Eq.7.78 is satisfied, x(tk+1) ∈ Ωρ .
To summarize, if the control action to be applied over the sampling period tk

to tk+1 is u(tk) = h(x(tk)), the state at the next sampling period will be in Ωρ

(x(tk+1) ∈ Ωρ). If the control action to be applied over the sampling period tk to tk+1

is from a precomputed LEMPC input, the state at the next sampling period will also
be contained in Ωρ which completes the proof of boundedness of the closed-loop
state trajectory x(t) ∈ Ωρ under the real-time LEMPC for t ≥ t0.

Remark 7.6 No closed-loop performance guarantees may be made because perfor-
mance constraints, e.g., terminal constraints, are not imposed on the LEMPC and the
closed-loop performance may be adversely affected with greater computation time.
The latter point is associated with the fact that the LEMPC problem allows for the
input trajectory from t j+1 to t j+Ns , i.e., the time the solver converges, to be degrees of
freedom in the optimization problem. However, the actual closed-loop input trajec-
tory applied over this periodmay be different from that computed by theLEMPCover
the same time period. Potentially, one may also employ sensitivity-based corrections
to the precomputed control actions after receiving state feedback like that employed
in [27, 28] to improve closed-loop performance. However, active set changes must
be handled appropriately which may introduce additional on-line computation. It is
important to point out that the computed solution of the LEMPC may dictate a time-
varying operating policy to optimize the process economics. Even in the presence of
uncertainty, the closed-loop performance under the real-time LEMPC may be sub-
stantially better (with respect to the economic cost) than traditional control methods,
which is the case for the chemical process network considered in Sect. 7.4.5.

Remark 7.7 In the current section, unknown and possibly time-varying computa-
tional delay is considered for operation affected by unknown bounded disturbance.
If, instead of the computation algorithm described above, a hard cap was placed on
the solver to terminate and return a (suboptimal) solution by a certain number of
sampling times, one could account for the control actions that are applied to the sys-
tem over the computation time by setting the input trajectory in the LEMPC problem
over the specified number of sampling periods of the prediction horizon be equal to
a predetermined input trajectory. This potential strategy, however, does not account
for the fact that the solver may return a solution before the end of specified number
of sampling periods.
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Remark 7.8 From the proof of Theorem 7.2, recursive feasibility of the LEMPC in
the presence of bounded uncertainty is guaranteed if the initial state is in Ωρ . It is
difficult in general to characterize the feasible set under EMPC formulated with a
terminal constraint, i.e., the set of points where recursive feasibility is maintained in
the presence of uncertainty. Thus, it may be difficult to ensure that the closed-loop
state is maintained in the feasible set under EMPC with a terminal constraint in
the presence of uncertainty and computational delay. In this respect, LEMPC has a
unique advantage for real-time implementation compared to EMPC with a terminal
constraint in that LEMPC maintains the closed-loop state inside Ωρ where recursive
feasibility is guaranteed.

Remark 7.9 The number of times that the explicit controller is applied to the closed-
loop system may be a factor in the closed-loop economic performance. Whether the
control action is from a precomputed LEMPC problem or the explicit controller is
mainly influenced by how close the state measurement is to the boundary of Ωρe . To
decrease the number of times that the explicit controller is applied to the system, one
could potentially add penalization terms to the stage cost of the LEMPC to penalize
the closeness of the state to the boundary of Ωρe .

7.4.5 Application to a Chemical Process Network

Consider a chemical process network consisting of two continuous stirred-tank reac-
tors (CSTRs) in series followed by a flash separator shown in Fig. 7.20. In each of the
reactors, the reactant A is converted to the desired product B through an exothermic
and irreversible reaction of the form A → B. A fresh feedstock containing a dilute
solution of the reactant A in an inert solvent D is fed to each reactor. The reaction rate
is second-order in the reactant concentration. The CSTRs are denoted as CSTR-1
and CSTR-2, respectively. A flash separator, which is denoted as SEP-1, is used to
recover some unreacted A. The overhead vapor from the flash tank is condensed and
recycled back to CSTR-1. The bottom stream is the product stream of the process
network which contains the desired product B. In the separator, a negligible amount
of A is assumed to be converted to B through the reaction. The two reactors have
both heating and cooling capabilities and the rate of heat supplied to or removed
from the reactors is denoted as Q j , j = 1, 2. While the heat supplied to or removed
from the vessel contents is modeled with one variable, two different actuators may
be used in practice for supplying heat to and removing heat from each vessel. To
vaporize some contents of the separator, heat is supplied to the separator at a rate of
Q3. The liquid holdup of each vessel is assumed to be constant and the liquid density
throughout the process network is also assumed to be constant.

Applyingfirst principles, a dynamicmodel of the process networkmaybeobtained
(neglecting the dynamics of the condenser and the solvent) and is given by the fol-
lowing ordinary differential equations (ODEs) (see Table7.3 for parameter notation
and values):
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Fig. 7.20 Process flow diagram of the reactor and separator process network

Table 7.3 Process parameters of the reactor and separator process network

Symbol/Value Description Symbol/Value Description

T10 = 300K Temp.: CSTR-1 inlet k0 = 1.9 × 109 m3 kmol−1 h−1 Pre-exponential factor

T20 = 300K Temp.: CSTR-2 inlet E = 7.1 × 104 kJ kmol−1 Activation energy

F10 = 5.0m3 h−1 Flow: CSTR-1 inlet ΔH = −7.8 × 103 kJ kmol−1 Heat of reaction

F20 = 5.0m3 h−1 Flow: CSTR-2 inlet ΔHvap = 4.02 × 104 kJ kmol−1 Heat of vaporization

Fr = 2.0m3 h−1 Flow: SEP-1 vapor Cp = 0.231 kJ kg−1K−1 Heat capacity

V1 = 5.0m3 Volume: CSTR-1 R = 8.314 kJ kmol−1 K−1 Gas constant

V2 = 5.0m3 Volume: CSTR-2 ρL = 1000 kg m−3 Liquid solution density

V3 = 3.0m3 Volume: SEP-1 MWA = 18 kg kmol−1 Molecular weight: A

αA = 3.0 Relative volatility: A MWB = 18 kg kmol−1 Molecular weight: B

αB = 0.8 Relative volatility: B MWD = 40.0 kg kmol−1 Molecular weight: D

αD = 1.0 Relative volatility: D

dT1
dt

= F10

V1
T10 + Fr

V1
T3 − F1

V1
T1 − ΔHk0

ρLCp
e−E/RT1C2

A1 + Q1

ρLCpV1
(7.89a)

dCA1

dt
= F10

V1
CA10 + Fr

V1
CAr − F1

V1
CA1 − k0e

−E/RT1C2
A1 (7.89b)

dCB1

dt
= Fr

V1
CBr − F1

V1
CB1 + k0e

−E/RT1C2
A1 (7.89c)

dT2
dt

= F20

V2
T20 + F1

V2
T1 − F2

V2
T2 − ΔHk0

ρLCp
e−E/RT2C2

A2 + Q2

ρLCpV2
(7.89d)

dCA2

dt
= F20

V2
CA20 + F1

V2
CA1 − F2

V2
CA2 − k0e

−E/RT2C2
A2 (7.89e)

dCB2

dt
= F1

V2
CB1 − F2

V2
CB2 + k0e

−E/RT2C2
A2 (7.89f)
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dT3
dt

= F2

V3
(T2 − T3) − ΔHvapṀr

ρLCpV3
+ Q3

ρLCpV3
(7.89g)

dCA3

dt
= F2

V3
CA2 − Fr

V3
CAr − F3

V3
CA3 (7.89h)

dCB3

dt
= F2

V3
CB2 − Fr

V3
CBr − F3

V3
CB3 (7.89i)

where Tj denotes the temperature of the j-th vessel ( j = 1 denotes CSTR-1, j = 2
denotes CSTR-2, and j = 3 denotes SEP-1), Ci j denotes the concentration of the
i-th species (i = A, B) in the j-th vessel, and Ṁr denotes the molar flow rate of the
recycle stream.

The relative volatility of each species is assumed to be constant within the operat-
ing temperature range of the flash tank. The following algebraic equations are used
to model the composition of the recycle stream:

CD3 = (ρL − CA3MWA − CB3MWB) /MWD (7.90a)

Cir = αiρLCi3∑
j∈{A,B,D} α jC j3MWj

, i = A, B, D (7.90b)

Ṁr = Fr (CAr + CBr + CDr ) (7.90c)

whereCir is the overhead vapor concentration of the separator. Given the assumption
of constant liquid hold-up and constant liquid density, the volumetric flow rates are
given by the following equations:

F1 = Fr + F10 (7.91a)

F2 = F1 + F20 (7.91b)

F3 = F2 − Fr (7.91c)

where Fj is the volumetric flow rate of the outlet stream of the j-th vessel.
The process network has five manipulated inputs: the three heat rates Q j ,

j = 1, 2, 3 and the inlet concentration of the reactant A in the feedstock to
each reactor (CA10 and CA20). The bounds on the available control action are
Q j ∈ [−1.0, 1.0] × 105 kJ h−1 for j = 1, 2, Q3 ∈ [2.2, 2.5] × 106 kJ h−1,
and CAj0 ∈ [0.5, 7.5] kmolm−3 j = 1, 2. In addition to the input constraints, the
reactions take place within the temperature range from 370.0 to 395.0K and thus,
the reactors are to be operated within this temperature range. The separation occurs
at 390.0K.

The real-time economics of the process network are assumed to be described
by the molar flow rate of desired product B leaving the process network which is
denoted as ṀB3. The time-averaged amount of reactant that may be fed to each
reactor is constrained to an average amount of 20.0 kmol h−1 which gives rise to the
following two input average constraints:
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1

t f − t0

∫ t f

t0

Fj0CAj0(t) dt = 20.0 kmol h−1 (7.92)

for j = 1, 2 where t0 and t f are the initial and final time of the operation of the
process network. Since the inlet flow rates F10 and F20 are constant, the average input
constraint may be written in terms of the inlet concentration of A only such that the
time-averaged value of CAj0 must be equal to 4.0 kmolm−3.

The economically optimal steady-state (which is simply referred to as the optimal
steady-state for the remainder) will be used in the design of a real-time LEMPC,
i.e., the stability region for the optimal steady-state will be used in the LEMPC
formulation. Since the reaction rate is maximized at high temperature, computing the
optimal steady-state with the exact acceptable temperature operating range will give
an optimal steady-state with the greatest acceptable reactor operating temperature.
Much like current practice, the optimal steady-state is computed with a degree of
conservativeness or “back-off” introduced in the acceptable operating temperature
range, so that the reactor temperature is maintained within the acceptable operating
range over the length of operation in the presence of uncertainty and disturbances
(see [39] and the references therein, for instance, for more details on the back-off
methodology). Thus, the optimal steady-state must satisfy a restricted temperature
range of Tjs ∈ [370.0, 380.0]K for j = 1, 2. The steady-state optimization problem
is given by:

max
xs ,us

F3CB3s

s.t. f (xs, us) = 0

370.0K ≤ T1s ≤ 380.0K

370.0K ≤ T2s ≤ 380.0K

T3s = 390.0K (7.93)

−1.0 × 105 kJh−1 ≤ Q1s ≤ 1.0 × 105 kJh−1

−1.0 × 105 kJh−1 ≤ Q2s ≤ 1.0 × 105 kJh−1

2.2 × 106 kJh−1 ≤ Q3s ≤ 2.5 × 106 kJh−1

CA10s = CA20s = 4.0 kmolm−3

where f (xs, us) = 0 represents the steady-state model. The optimal steady-state
vector (omitting units) is:

x∗
s = [

T ∗
1s C

∗
A1s C

∗
B1s T

∗
2s C

∗
A2s C

∗
B2s T

∗
3s C

∗
A3s C

∗
B3s

]T
= [

380.0 2.67 2.15 380.0 2.42 2.06 390.0 1.85 2.15
]T

, (7.94)

and the optimal steady-state input vector is
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u∗
s = [

Q∗
1s Q∗

2s Q∗
3s C

∗
A10s C

∗
A20s

]T
= [−4.21 × 103 1.70 × 104 2.34 × 106 4.0 4.0

]T
. (7.95)

The optimal steady-state is open-loop unstable.
The control objective of the process network is to optimize the economics through

real-time operation while maintaining the closed-loop state trajectory inside a well-
defined state-space set. To accomplish this objective, the real-time LEMPC scheme
is applied to the process network. In stark contrast to traditional tracking control
that forces the closed-loop state to converge to the (optimal) steady-state, applying
LEMPC to the process network is not expected to achieve convergence to the opti-
mal steady-state. Instead, LEMPC may force the process network to operate in a
consistently transient manner to achieve better closed-loop performance compared
to the closed-loop performance at the optimal steady-state.

For the implementation of the LEMPC, the acceptable temperature range is not
treated as a hard constraint. Instead, the acceptable temperature range is accounted
for by imposing quadratic penalty terms in the stage cost of the LEMPC. Thus, the
stage cost used in the objective function of the LEMPC is

le(x, u) = −F3CB3 +
3∑

i=1

Qc,i (Ti − T ∗
is)

2 (7.96)

where T ∗
is , i = 1, 2, 3 are the optimal steady-state temperatures. The stage cost of

Eq.7.96 includes the economics and the quadratic penalty terms for the temperature.
The weight coefficients are Qc,1 = 0.018, Qc,2 = 0.022, and Qc,3 = 0.01 and
have been tuned such that the closed-loop temperatures are maintained near the
optimal steady-state temperature. Since no hard or soft constraints are imposed on
the temperature in the LEMPC, it is emphasized that there is no guarantee that
the temperatures are maintained within the acceptable temperature range described
above (Tj ∈ [370.0, 395.0] K for j = 1, 2 and T3 ≈ 390.0K). In this example,
small violations over a short period are considered acceptable. If maintaining the
operation within the acceptable operating temperature range is considered critical,
one may add various modifications to the LEMPC to achieve this objective such as
decreasing the size of Ωρe , adding hard or soft constraints on the temperature in the
LEMPC, or adding a contractive constraint on the temperature ODEs.

An explicit stabilizing controller is designed using feedback linearization tech-
niques to make the dynamics of the temperature ODEs linear (in a state-space region
where the input constraints are satisfied) under the explicit controller. Specifically,
the temperature ODEs are input-affine in the heat rate input and have the form:

Ṫ j = f j (x) + b j Q j (7.97)

where f j (x) is a nonlinear scalar-valued function, b j is constant and j = 1, 2, 3.
The controller that makes the closed-loop temperature dynamics linear is:
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Q j = − 1

b j

(
f j (x) + K j (Tj − T ∗

js)
)

(7.98)

where K j denotes the controller gain. In this case, the controller gains are K1 = 5,
K2 = 5, and K3 = 7, respectively. The inlet concentration input values are fixed to
the average values (4.0 kmolm−3). Through extensive closed-loop simulations under
the state feedback controller, a quadratic Lyapunov function for the process network
under the feedback controller h(x) is determined. An estimate of the stability region
of the process network under the feedback controller was characterized by computing
the state-space points where V̇ < 0 and taking the stability region to be a level set of
the Lyapunov function containing only state-space points where the time-derivative
of the Lyapunov function is negative. The quadratic Lyapunov function has the form:

V (x) = (x − x∗
s )

T P(x − x∗
s ) (7.99)

where P is the following positive definite matrix:

P = diag
[
0.001 1.5 0.05 0.001 1.5 0.05 0.001 1.5 0.05

]
. (7.100)

The estimated stability region Ωρ is the level set of the Lyapunov function where
V (x) ≤ 11.0, i.e., ρ = 11.0. The subset of the stability region which defines the
mode 1 constraint of the LEMPC is ρe = 10.0 and has been determined through
extensive closed-loop simulation under LEMPC as the subset of the stability region
Ωρ where the closed-loop state under LEMPC is maintained in Ωρ .

The input average constraint is imposed over successive, finite-length operating
periods. Specifically, the average constraint must be satisfied over each operating
period tM = MΔ where M is the number of sampling periods in the operating
period. This ensures that over the entire length of operation the average constraint
will be satisfied. For this example, the operating period was chosen to be tM =
2.4 h which leads to better asymptotic average economic performance under LEMPC
(assuming no computational delay) than the asymptotic average performance at the
economically optimal steady-state.

To solve the dynamic optimization problem of the LEMPC, orthogonal collo-
cation with three Radau collocation points per sampling period is employed for
discretization of the ODEs (see, for instance, [37] for details on solving a dynamic
optimization problem using a simultaneous approach). The open-source nonlinear
optimization solver Ipopt [21] was employed owing to its ability to exploit the high
degree of sparsity of the resulting optimization problem. Analytical first and second-
order derivative information was provided to the solver. The closed-loop simulations
were coded in C++ and performed on an Intel® Core™ 2 Quad 2.66GHz processor
running anUbuntu Linux operating system. The sampling period of the LEMPCused
in the simulations below is Δ = 0.01 h. To simulate forward in time the closed-loop
process network, the fourth-order Runge-Kutta method was used with a time step of
0.0001 h.
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Fig. 7.21 The total
economic cost Je over one
operating window length of
operation (2.4 h) of the
process network under
LEMPC with the prediction
horizon length
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In the first set of simulations, nominal operation of the process network under
LEMPC implemented in a typical receding horizon fashion is considered under
ideal computation, i.e., assuming no computational delay. The closed-loop economic
performance under LEMPC is assessed using the economic performance indexwhich
is defined as:

Je =
∫ t f

0
F3CB3 dt. (7.101)

Since the LEMPC does not directly optimize the molar flow rate of product out of
the process network, the stage cost index will also be considered as a measure of the
closed-loop performance and is given by:

Le = −
∫ t f

0
le(x, u) dt. (7.102)

First, the effect of the prediction horizon on the closed-loop economic performance
over one operating period (2.4 h) is considered. The closed-loop performance index
of Eq.7.101 plotted against the prediction horizon length is given in Fig. 7.21. A
significant increase in closed-loop performance is observed initially with increasing
prediction horizon length until the closed-loop performance becomes approximately
constant. Owing to this fact, a prediction horizon of N = 200 is used in all subsequent
simulations. A simulation over many operating periods such that the effect of the
initial condition on closed-loop performance becomes negligible is performed (with
N = 200). The asymptotic average closed-loop economic performance, which is
the time-averaged economic cost after the effect of the initial condition becomes
negligible, is determined from this simulation to be 25.0 kmol h−1 (in this case, the
time-averaged production rate over each operating window becomes constant after a
sufficiently long length of operation). The optimal steady-state production rate of B
is 21.5 kmol h−1. Thus, the asymptotic production rate of the process network under
the LEMPC is 16.3% better than the production rate at the economically optimal
steady-state.
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The effect of computational delay is considered in the next set of simulations, and
two scenarios are considered: (1) the closed-loop process network under LEMPC
implemented in a typical receding horizon fashion where the control action is subject
to real-time computational delay (for the sake of simplicity, this case will be referred
to as the closed-loop process network under LEMPC for the remainder) and (2) the
closed-loop process network under the real-time LEMPC scheme (also, subject to
real-time computational delay). For the former scenario, the LEMPC begins to com-
pute a control action at each sampling instance after receiving a state measurement.
Owing to the computational delay, the control action applied to the process network
is the most up-to-date control action. For example, if it takes 0.002 h to compute
the control action at the sampling instance tk , then u(tk−1) is applied to the process
network from tk to tk + 0.002h (assuming u(tk−1) is available at tk) and applies u(tk)
to the process network from tk + 0.002 h to tk+1 = tk + Δ. For each scenario, a
12.0 h length of closed-loop operation is simulated. For the real-time LEMPC case,
the LEMPC is forced to recompute a new solution after three sampling periods have
elapsed since the last time an LEMPC solution was computed, i.e., the solver starts
computing a new solution at the beginning of the fourth sampling period.

The average computation time required to solve the LEMPC (of scenario (1))
at each sampling time was 11.2 s (31.2% of the sampling period) with a standard
deviation of 7.42 s. The maximum computation time over the simulation is 61.9s
which is almost double the sampling period. The computation time exceeds the
sampling period ten out of the 1,200 sampling periods in the simulation. Over the
course of both simulations, the closed-loop state is maintained in Ωρ . The closed-
loop trajectories under the real-time LEMPC scheme are given in Fig. 7.22 (the
closed-loop behavior under the LEMPC subject to real-time computational delay
was similar). The difference between the performance index of the two cases is less
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Fig. 7.22 The closed-loop a state and b input trajectories of the nominally operated process
network under the real-time LEMPC scheme
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Fig. 7.23 The number of times the LEMPC problem was solved (Comp.) as dictated by the real-
time implementation strategy compared to the sampling period (Δ) over the first 0.5 h of operation

than 0.5% (the performance indexes for case (1) and case (2) were 284.3 and 283.3,
respectively).

While little difference between the two cases in terms of closed-loop performance
is observed, it is important to note that an a priori guarantee on closed-loop stabil-
ity under the real-time LEMPC may be made. Also, the total on-line computation
time to solve the LEMPC over the two simulations is 3.74 and 0.94 h, respectively.
The real-time LEMPC reduces the total on-line computation requirement by 75%
compared to LEMPC implemented in a receding horizon fashion because the real-
time LEMPC does not recompute a control action at each sampling instance, while
LEMPC, implemented in a receding horizon fashion, recomputes a control action at
each sampling instance. To better illustrate this point, Fig. 7.23 shows the frequency
the LEMPC problem is solved under the real-time implementation strategy with
respect to the sampling period over the first 0.5 h of operation. Over this time, the
LEMPC optimization problem is solved at a rate of one out of every four sampling
periods. This trend continues over the remainder of the 12.0 h length of operation
and hence, the 75% reduction in total computational time.

Since the computational delay depends on many factors, e.g., model dimension,
prediction horizon, solution strategy used to solve the dynamic optimization problem,
the nonlinear optimization solver used, and computer hardware, it is also important
to consider computational delay greater than one sampling period to demonstrate
that the real-time LEMPC schememay handle computation delay of arbitrary length.
Therefore, another set of simulations is consideredwhere longer computational delay
is simulated. The computation delay is modeled as a bounded uniformly-distributed
random number and the maximum computational delay is assumed to be less than
10 sampling periods. Both the LEMPC (receding horizon implementation) and the
real-time LEMPC scheme are considered. To make the comparison as consistent as
possible, the computational delay, at the time steps the real-time LEMPC is solved,
is simulated to be the same as the computation delay to solve the LEMPC at the
same time step (recall the real-time LEMPC is not solved at each sampling period).
Given the computational delay is much greater for this set of simulations than in
the previous set of simulations, the real-time LEMPC is forced to recompute a new
solution after 15 sampling periods have elapsed since the last time it computed a
solution.

Several simulations are performed, each starting at a different initial condition,
and the performance indexes of these simulations are given in Table7.4. Applying
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Table 7.4 The performance indices of the process network under the back-up explicit controller,
under the LEMPC subject to computational delay, and under the real-time LEMPC for several
simulations

Sim. Back-up controller LEMPC Real-time LEMPC

Je Le Je Le Je Le

1 225.5 225.4 277.0 245.0 295.1 216.5

2 254.2 254.1 318.7 278.6 307.3 279.6

3 260.5 260.4 319.9 286.3 318.1 294.7

4 232.7 230.6 290.7 255.7 299.2 266.4

5 250.0 250.0 308.7 276.9 322.8 282.9
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Fig. 7.24 The closed-loop a state and b input trajectories of process network under the real-time
LEMPC scheme where the computational delay is modeled as a bounded random number

the back-up explicit controller h(x) implemented in a sample-and-hold fashion to the
chemical process network is also considered and the performance indexes of these
simulations are given in Table7.4 as well. The average improvement in economic
performance compared to the process network under the back-up controller is 26.1%
under the real-time LEMPC scheme and 23.9% under the LEMPC (implemented in
a receding horizon). Thus, a substantial economic benefit is achieved by applying
LEMPC to the process network.While the real-timeLEMPCdoes not always achieve
better performance (either measured in terms of the economic performance index
or stage cost index) compared to the performance under LEMPC, the closed-loop
trajectories between the two cases are significantly different. Figures7.24 and 7.25
give the closed-loop trajectories of simulation 2 (as labeled in Table7.4). The input
trajectory computed by the real-time LEMPC has chattering initially over the first
operating period because of the effect of the initial condition, but after the first
operating periodwhen the effect of the initial condition dissipates, the computed input
trajectory is significantly smoother. On the other hand, chattering in the input profiles
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Fig. 7.25 The closed-loop a state and b input trajectories of process network under LEMPC subject
to computational delay where the computational delay is modeled as a bounded random number
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Fig. 7.26 A discrete trajectory depicting when the control action applied to the process network
over each sampling period is from a precomputed LEMPC solution or from the back-up controller
for the closed-loop simulation of Fig. 7.24

is observed throughout the entire simulation under the LEMPC. If we compare the
performance index of operation from t = 2.4 h to t = 12.0 h (after the first operating
period) for simulation 2, the indexes are Je = 249.8 and Le = 227.9 for operation
under the real-time LEMPC and Je = 248.5 and Le = 217.4 for operation under
the LEMPC; the performance under the real-time LEMPC is better over this period
than under LEMPC.

Over the five simulations under the real-time LEMPC strategy, the explicit con-
troller was applied on average 19 out of 1200 sampling periods. For the simulation of
Fig. 7.24, a discrete trajectory showing when the control action applied to the process
network under the real-time LEMPC strategy is from a precomputed LEMPC solu-
tion or from the back-up controller is given in Fig. 7.26. For this case, the back-up
controller is used 31 out of 1200 sampling periods (2.7% of the sampling periods).
From Fig. 7.26, the back-up controller is only applied over the first operating period
and is not used in any subsequent sampling period. Thus, the source of performance
degradation for this case (Sim. 2 in Table7.4) is due to applying the explicit back-up
controller to maintain the closed-loop state in Ωρ . Again, it is emphasized that there
is no a priori guarantee that the LEMPC implemented in a receding horizon fashion
subject to computational delay may maintain the closed-loop state inside Ωρ .
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Fig. 7.27 The closed-loop a state and b input trajectories of process network under the real-time
LEMPC scheme with bounded process noise
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Fig. 7.28 The closed-loop a state and b input trajectories of process network under LEMPC subject
to computational delay with bounded process noise

In the last set of simulations, significant bounded Gaussian process noise with
zero mean is added to the model states. The standard deviations of the noise added to
the temperature and concentration states are 5.0 and 0.5, respectively and the bounds
on the noise are 2.0 and 15.0, respectively. Two closed-loop simulations over 12.0 h
length of operation are completed with the same realization of the process noise. In
the first simulation, the process network is controlled by the real-time LEMPC and
the closed-loop trajectories are given in Fig. 7.27 over the first two operating periods.
For this case, the back-up controller is applied 69 out of 1200 sampling periods (5.8%
of the sampling periods). In the second simulation, the process network is controlled
by LEMPC subject to computation delay (trajectories shown in Fig. 7.28).
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From Fig. 7.28, a significant degree of chattering and bang-bang type actuation
in the input trajectory is observed. This behavior tries to combat the effect of the
added process noise and is due to not penalizing control actions in the stage cost and
not imposing rate of change constraints on the control actions. In practice, one could
add one or both of these elements to the LEMPC if the computed input trajectory
is not implementable. On the other hand, the real-time LEMPC implements a much
smoother input trajectory (Fig. 7.27) because the precomputed input trajectory of
the real-time LEMPC has a degree of smoothness like the closed-loop trajectory
of the nominally operated process network (Fig. 7.22). If the precomputed input
trajectory satisfies the stability conditions, itwill be applied to the closed-loopprocess
network with disturbances. The closed-loop system under the real-time LEMPC has
guaranteed stability properties, but is not recomputed at each sampling period like
the receding horizon implementation of LEMPC which will try to combat the effect
of the disturbance on performance. In both cases, the state is maintained in Ωρ . The
performance indexes of the two cases are 301.6 under the real-timeLEMPCand295.5
under the LEMPC; the closed-loop performance under the real-time LEMPC scheme
is 2.0%better than applyingLEMPCwithout accounting for the computational delay.
Moreover, the back-up controller is also applied to the process network subject to the
same realization of the process noise. The economic performance index for this case
is 242.3. For operation with process noise, the economic performance improvement
over the process network under the back-up controller is 24.4% under the real-time
LEMPC strategy and 21.9% under the receding horizon LEMPC for the same initial
condition.

7.5 Conclusions

In this chapter, three EMPC designs were considered. The first section focused on
the design of economic MPC for a class of nonlinear singularly perturbed systems.
Under appropriate stabilizability assumptions, fast sampling of the fast states and
slow sampling of the slow states, the presented composite control system featur-
ing an EMPC may dictate a possible time-varying operation to address economic
considerations while guaranteeing closed-loop stability. Closed-loop stability was
addressed through singular perturbation arguments.

In the second section, an application study of several distributed EMPC strategies
was presented. Two important performance metrics were considered to assess the
EMPC strategies including the closed-loop performance and the computational time
required to solve the optimization problem(s) at each sampling time. From the closed-
loop simulation results of application study, a distributed EMPC strategywas capable
of delivering similar closed-loop performance as a centralized EMPC approachwhile
reducing the on-line computation time required to solve the optimization problems.

In the final section, a strategy for implementing Lyapunov-based economic model
predictive control (LEMPC) in real-timewith computation delaywas developed. The
implementation strategy uses a triggering condition to precompute an input trajectory
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fromLEMPCover a finite-time horizon.At each sampling period, if a certain stability
(triggering) condition is satisfied, then the precomputed control action by LEMPC is
applied to the closed-loop system. If the stability condition is violated, then a backup
explicit stabilizing controller is used to compute the control action for the sampling
period. In this fashion, the LEMPC is used when possible to optimize the economics
of the process. Conditions such that the closed-loop state under the real-time LEMPC
is always bounded in a compact set were derived.
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