
Chapter 4
Linear Support Vector Machines

Abstract Support vector machine (SVM) is the most popular classifier based on a
linear discriminant function. It is ideally suited for binary classification. It has been
studied extensively in several pattern recognition applications and in data mining.
It has become a baseline standard for classification because of excellent software
packages that have been developed systematically over the past three decades. In this
chapter, we introduce SVM-based classification and some of the essential properties
related to classification. Specifically we deal with linear SVM that is ideally suited
to deal with linearly separable classes.

Keywords Linear SVM ·Perceptron and SVM ·Maximum margin ·Dual problem ·
Binary classifier · Multiclass classification

4.1 Introduction

Support vector machine (SVM) [1–5] can be used as a binary classifier based on a
linear discriminant function. In this sense it resembles the perceptron.

4.1.1 Similarity with Perceptron

1. Both perceptron and SVM can be seen as employing the linear discriminant
function of the form Wt X + b.

2. In the case of perceptron, if the classes are linearly separable then it is possible
to get more than one W as shown in Fig. 3.1. In theory, there could be infinite
solutions or W vectors. In the case of SVM, we constrain the W to be a globally
optimal solution of a well-formulated optimization problem. So, W is unique.

3. If there is no linear discriminant in the input space or in the given variables, then
it is possible to get a linear discriminant in a high-dimensional space. We have
seen that in the case of boolean functions, we can transform any function into a
linear form in the space of all possible minterms.
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42 4 Linear Support Vector Machines

4. For example, xor(x1, x2) is not linear in (x1, x2). However, it is linear in
(x1, x2, x1x2) as examined in the previous chapter.

5. Let X = (x1, x2)
t be a two-dimensional vector and let φ : R2 → R

5 given by
φ(X) = (1, x1, x2, x2

1 , x2
2 , x1x2). Then

g(X) = a0 + a1x1 + a2x2 + a3x2
1 + a4x2

2 + a5x1x2 is a quadratic function in R,
the input space, and
g(φ(X)) = a0 + a1x1 + a2x2 + a3x2

1 + a4x2
2 + a5x1x2 is a linear function in the

5-dimensional φ(X) space, called the feature space.
6. SVM and perceptron are linear classifiers.
7. Both SVM and perceptron are inherently binary classifiers. They can be extended

to deal with multiclass classification using similar techniques which we will
discuss later.

4.1.2 Differences Between Perceptron and SVM

1. W Vector:
Perceptron can converge to different W vectors based on the order in which the
training patterns are processed.
However, SVM will produce the same W .

2. Optimization:
Perceptron criterion function, J (W ). has value 0 if all the training patterns are
classified correctly by W . In other words, Wt Xi > 0 for all i . So, multiple solu-
tions, or W vectors could exist that lead to the same error.
It is possible to show, on the contrary, that the SVM criterion function will result
in the same W vector. Here, the W vector corresponds to the decision boundary
that maximizes separation between the two classes.

4.1.3 Important Properties of SVM [1–5]

1. Maximizing the separation between classes is based on a well-behaved optimiza-
tion problem. In the linearly separable case, it is possible to obtain the globally
optimal W .

2. It can learn nonlinear boundaries in the input space by mapping from the input
space to a high-dimensional feature space and learning a linear boundary in the
feature space; such a linear boundary corresponds to a nonlinear boundary in the
input space.

3. It employs a suitable similarity function in the input space and avoids making
expensive computations in the high-dimensional feature space.

4. It combines the training data points to obtain W and use the W for classification.
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In its simplest form, the SVM can be used to classify patterns belonging to two
classes that are linearly separable.

4.2 Linear SVM [1, 5]

Given the training set {X1, X2, . . . , Xn}, Xi ∈ R
l , i = 1, 2, . . . , n

Let the two classes be linearly separable. This means there is a W ∈ R
l and

a b ∈ R satisfying

1. Wt Xi + b > 0 ∀i with yi = 1
2. Wt X j + b < 0 ∀ j with y j = −1

We can put these two sets of inequalities together to write
3. yk(Wt Xk + b) > 0 ∀k with 1 ≤ k ≤ n.
4. Note that the decision boundary is given by Wt X + b = 0. There could be infi-

nitely many possible separating hyperplanes unless we constrain the selection.

4.2.1 Linear Separability

We can study the implication of linear separability as follows:

• Let the training set be {(X1,−1), (X2,−1), . . . , (Xn− ,−1), (Xn−+1,+1),

. . . , (Xn,+1)}
• Note that Wt X j + b′ = −ε j , where ε j > 0, ∀ j with y j = −1

Similarly, Wt Xi + b′ = εi , where εi > 0, ∀i with yi = 1

• So, we have Wt X j + b′ ≤ −ε− where− ε− = max − ε j

j
and

• We have Wt Xi + b′ ≥ ε+ whereε+ = min εi
i

.

• From these two sets of inequalities, we get
Wt Xi + b ≤ − ε ∀i with yi = −1 and
Wt X j + b ≥ ε ∀ j with y j = 1
where ε = ε++ε−

2 and b = b′ − ε+−ε−
2• By dividing the two inequalities by ε both sides, we get

Wt
n Xi + bn ≤ − 1 ∀i with yi = −1 and

Wt
n X j + bn ≥ 1 ∀ j with y j = 1

where Wn = (w1
ε

, w2
ε

, . . . , wl
ε
)t and bn = b

ε• Instead of using Wn and bn , we use W and b, respectively, for the sake of brevity.
So, we get the following inequalities
Wt Xi + b ≤ −1 ∀Xi such that yi = −1 and
Wt Xi + b ≥ 1 ∀Xi such that yi = 1

• Equivalently, we have
yi (Wt Xi + b) ≥ 1, ∀i (because yi ∈ {−1,+1})
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• Note that a pattern Xi with yi = 1 will either lie on the hyperplane Wt Xi + b = 1
or it is in the positive side satisfying Wt Xi + b > 1.
Similarly, a pattern Xi with yi = − 1 will either fall on the hyperplane Wt Xi +
b = −1 or it is in the negative side satisfying Wt Xi + b < −1.
So, there is no Xi such that −1 < Wt Xi + b < 1 when the classes are linearly
separable.

• The hyperplanes Wt Xi + b = 1 and Wt Xi + b = −1 are called support planes.
• The set of training vectors that fall on these support planes can be support vectors.
• When the classes are linearly separable, we can suitably scale W and b to obtain

the support planes to satisfy Wt Xi + b = 1 and Wt Xi + b = −1.
• There is no pattern Xi falling between the two support planes. Further, the two

support planes are parallel to each other as shown in Fig. 2.4.

4.2.2 Margin

The distance between the two planes is called the Margin. It is possible to show
that the margin is a function of W . Training the SVM consists of learning a W that
maximizes the margin. So, margin is important in theory.

Consider the point X shown in Fig. 4.1. Let XProj be the projection of X onto the
hyperplane characterized by g(X) = 0. Let d be the normal distance between X and
the hyperplane, or the distance between X and XProj, as shown in the figure.

• It is possible to write X in terms of XProj and d as
X = XProj + d W

||W || because d is the magnitude and the direction is same as that

of W . The unit vector in the direction of W is W
||W || .

W  

g(X) > 0

g(X) < 0

g(X) = 0

X
d

Proj
X

Fig. 4.1 Distance between a point and a hyperplane
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X1

X
2

W.X  + b = −1

W.X  + b = 1

W.X  + b = 0

X

1/

X

+

−

|| W || Each

Fig. 4.2 Margin of the SVM

• Observe that
g(X) = Wt X + b = Wt (XProj + d W

||W || ) + b = Wt XProj + b + d WtW
||W || ⇒

g(X) = 0 + d WtW
||W || = d WtW

||W || because Wt XProj + b = 0 as XProj is on g(X) = 0.

• g(X) = d WtW
||W || ⇒ g(X) = d || W || .

So, d = g(X)

||W || .
• Hence, the distance between X and the hyperplane g(X) = 0 is given by d = g(X)

||W || .
This result is useful in quantifying the margin.

• Consider Fig. 4.2. We have depicted three parallel lines in the two-dimensional
space where W.X is the dot product and it is equal to Wt X . These are

1. W.X + b = −1 is the support line corresponding to the negative class.
2. W.X + b = 0 which characterizes the decision boundary between the two

classes.
3. W.X + b = 1 corresponds to the support plane of the positive class.

• Consider the point X+ on W.X + b = Wt X + b = 1. The normal distance from
X+ to the hyperplane (line in the two-dimensional case)W.X + b = 0 (g(X) = 0)

is given by
d = g(X+)

||W || ; however, g(X+) = 1 because X+ is on the line (hyperplane in higher
dimensions) g(x) = W.X + b = 1.
So, the distance d = 1

||W || .
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• Similarly for the point X− on W.X + b = −1, the normal distance to the line
W.X + b = 0 is d = 1

||W || .• So, Margin is characterized by the sum of these distances and is
Margin = 1

||W || + 1
||W || = 2

||W || .

4.2.3 Maximum Margin

We are given that the classes are linearly separable. In such a case, we have the
margin that exists between the two support planes and is given by

Margin = 2

|| W || .

The idea is to find out aW that maximizes the margin. Once we get theW ,Wt X + b =
0 gives us the corresponding decision boundary.

More precisely, the decision boundary or the optimal hyperplane is given by the
solution of the following equivalent optimization problem.

Find W ∈ R
l , b ∈ R to maximize 2

WtW subject to yi (Wt Xi + b) ≥ 1, ∀i .
Instead of maximizing 2

WtW , we can equivalently minimize WtW
2 to get

minimize 1
2W

tW
subject to yi (Wt Xi + b) ≥ 1, i = 1, 2, . . . , n

This is an optimization problem with quadratic criterion function 1
2W

tW and the
constraints are in the form of linear inequalities yi (Wt Xi + b) ≥ 1.

It is possible to transform the constrained optimization problem into an uncon-
strained optimization problem using the Lagrangian given by

L = 1

2
WtW +

n∑

i=1

αi (1 − yi (W
t Xi + b)).

The optimization problem is formulated so that the resulting form is convex ensuring
globally optimal solution. In this case, the KKT conditions are both necessary and
sufficient. These are

	WL = W +
n∑

i=1

αi (−yi )Xi = 0 ⇒ W =
n∑

i=1

αi yi Xi .

δL

δb
= 0 ⇒

n∑

i=1

αi yi = 0.

αi ≥ 0 αi (1 − yi (W
t Xi + b)) = 0; and 1 − yi (W

t Xi + b) ≤ 0, ∀i.
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The important properties of the SVM are given by

1. We are given n training patterns and the training set of patterns is
{(X1, y1), (X2, y2), . . . , (Xn, yn)}

2. The vector W is given by

W =
n∑

i=1

αi yi Xi

which means W is a sum of the training patterns which are weighted by the
corresponding αs and ys.
We will see later that we need not consider all the training patterns; there will be
a small number of patterns with the corresponding αs to be nonzero. We need to
consider them only. The other patterns will have their corresponding α values to
be 0.

3. The equation
n∑

i=1

αi yi = 0

captures the property that
n−∑

i=1

αi =
n∑

i=n−+1

αi .

The sum of the αs corresponding to the negative class is equal to that of the
positive class. this property is useful in learning W .

4. Another important property, called the complementary slackness condition, is
given by αi (1 − yi (Wt Xi + b)) = 0, ∀i .

αi > 0 ⇒ yi (W
t Xi + b) = 1

which means that if αi > 0, then the corresponding Xi is on a support plane. It is
on the positive support plane if yi = 1 else it is on the negative support plane.

4.2.4 An Example

We illustrate the learning of W , b, and αs using a two-dimensional example
shown in Fig. 4.3. We have shown two Xs, negative examples, characterized by
(2, 1)t , and (1, 3)t and a O , a positive example, given by (6, 3)t .



48 4 Linear Support Vector Machines

Fig. 4.3 Learning W and b
from training data

X1

X
2

X

X

O

W.X  + b = 1
W.X  + b = 0

W.X  + b = −1

• (2, 1)t and (1, 3)t are on the line Wt X + b = −1. So, we have

2w1 + w2 + b = −1

and

w1 + 3w2 + b = −1.

• Similarly, (6, 3)t is on the line Wt X + b = 1. So, we get

6w1 + 3w2 + b = 1.

• Solving the three equations, we get w1 = 2
5 , w2 = 1

5 , and b = −2.
• Note that (4, 2)t is on the boundary as Wt (4, 2)t + b = ( 2

5 , 1
5 )(4, 2)t − 2 = 0.

Similarly, (7, 1)t is in the positive class and (2, 0)t is in the negative class.
• Further, ∑

i

αi yi = 0 ⇒ −α1 − α2 + α3 = 0 ⇒ α3 = α1 + α2.

• Also

W = (
2

5
,

1

5
)t = −α1(1, 3)t − α2(2, 1)t + α3(6, 3)t ⇒

α1 = 0; α2 = α3 = 1

10
.

Note that α1 = 0. So, it is possible that αs corresponding to some of the patterns on
the support planes could be 0.
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4.3 Dual Problem

If we substitute

W =
n∑

i=1

αi yi Xi

in the Lagrangian L , we have

L = 1

2

n∑

i=1

αi yi X
t
i

n∑

j=1

α j y j X j +
n∑

i=1

αi

⎛

⎝1 − yi (
n∑

j=1

α j y j X
t
j Xi + b)

⎞

⎠

By simplifying further, we get

L =
n∑

i=1

αi − 1

2

n∑

i=1

n∑

j=1

αiα j yi y j X
t
i X j + b

n∑

i=1

αi yi

By noting that
n∑

i=1

αi yi = 0,

we get

L =
n∑

i=1

αi − 1

2

n∑

i=1

n∑

j=1

αiα j yi y j X
t
i X j

This is the dual problem and it is in terms of αs only. We use LD for the dual and
it is

LD(α) =
n∑

i=1

αi − 1

2

n∑

i=1

n∑

j=1

αiα j yi y j X
t
i X j

such that αi ≥ 0, ∀i and
n∑

i=1

αi yi = 0

1. This is a convex optimization problem. It is possible to obtain α vector corre-
sponding to the global optimum.

2. The vector W = ∑n
i=1 αi yi Xi . So, optimization is over R

n irrespective of the
dimension of Xi .

3. Many of the αi are 0. Support Vectors (SVs) are the Xi s corresponding to the
nonzero αi s.

4. Let, S = {Xi |αi > 0} be the set of SVs.
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a. By complementary slackness condition, Xi ∈ S ⇒ αi > 0 ⇒
yi (Wt Xi + b) = 1 ⇒.
Xi is the closest to the decision boundary.

b. We have W = ∑
i αi yi Xi = ∑

Xi∈S αi yi Xi .
Optimal W is a linear combination of the support vectors.

c. b = y j − Wt X j , where j is such that α j > 0.
d. Thus, both W and b are determined by α j , j = 1, 2, . . . , n.
e. We can solve the dual optimization problem to obtain the optimal values of

αi s. We can use the αs to get optimal values of both W and b.
f. Typically we would like to classify a new pattern Z based on the sign of

Wt X + b.
Equivalently, by using W = ∑

i αi yi Xi , we can classify a pattern Z based
on the sign of b + ∑

Xi∈S αi yi X t
i Z . We do not need to use W explicitly.

4.3.1 An Example

Let us consider the example data shown in Fig. 4.4. There are five points. These are

• Negative Class: (2, 0)t , (2, 1)t , (1, 3)t

• Positive Class: (6, 3)t , (8, 2)t

We have seen earlier that W = ( 2
5 , 1

5 )t and b = −2 for the patterns (2, 1)t , (1, 3)t ,

(6, 3)t , first two from the negative class and the third from the positive class.
The α values are α1 = 0, α2 = α3 = 1

10 .
The remaining two patterns are such that the corresponding αs are 0.

1. (2, 0)t is from class −1. Based on the complementary slackness condition, we
have α(1 − y(Wt X + b)) = 0. Here, y = −1, W = ( 2

5 , 1
5 )t , X = (2, 0)t , and

b = −2. So, α = 0 because 1 − y(Wt X + b) = − 1
5 
= 0.

Fig. 4.4 α values

X1

X
2

X

X

O

W.X  + b = 1
W.X  + b = 0

W.X  + b = −1

X

O

1

2
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2. (8, 2)t is from class +1. Here, α = 0 because 1 − y(Wt X + b) = − 3
5 .

3. So, the SVs are X1 = (2, 1)t , O2 = (6, 3)t and both have the same α value of
1

10 . The α values corresponding to the other three patterns are 0.
4. The points which are not support vectors or equivalently points with zero α value

are indicated using a rectangular box around them in Fig. 4.4.

4.4 Multiclass Problems [2]

Classifiers like perceptron and SVM are based on linear discriminants and are ideally
suited for two-class problems or binary classification problems. So, when the training
data is from C (> 2) classes, then we need to build a multiclass classifier from a
collection of binary classifiers. Some of the well-known possibilities are

1. Consider a pair of classes at a time; there are C(C−1)

2 such pairs. Learn a linear
discriminant function for each pair of classes.
Consider Fig. 4.5.

These decisions are combined to arrive at the class label among the three classes
C1, C2, and C3. Note that there are three binary classifiers as shown in the figure.
A problem is the ambiguous region marked in the middle. It is difficult to classify
a point in this region.

2. For class Ci let the complementary region be

C̄i =
C⋃

j=1, j 
=i

C j

Learn a linear discriminant function to classify to Ci or C̄i for each i . Combine
these binary classifiers to classify a pattern.

Fig. 4.5 Multiclass
classification

C

C

C

C

3

2

2

1

C1 3C

Ambiguous
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Fig. 4.6 Multiclass
classification

C

1

C
C

2

1

2

C

Ambiguous

Consider Fig. 4.6.

Note that even in this case, there is a region that is ambiguous as shown in the
figure.

4.5 Experimental Results

Here, we considered Iris Setosa and Iris Versicolour classes which are linearly sepa-
rable. We used the two features sepal length and petal length in building and testing
the classifiers. We have used 60 patterns for training and the remaining 40 for testing.
Both the perceptron and linear SVM classifiers have given us 100 % accuracy on the
test data set. The weight vectors learnt are given in Table 4.1. Here, Wp is the weight
vector learnt using Perceptron and Ws is the weight vector obtained using SVM.

4.5.1 Results on Multiclass Classification

SVM and Perceptron are inherently two-class classifiers. We use the traditional way
of one-against-rest method to perform multiclass classification.Weka, a popular suite
of machine learning software is used in realizing this.

We consider two well-known machine learning data sets: Iris and Pendigits. The
number of instances, attributes, and the results are listed below. The data set is split

Table 4.1 Directions of Wp and Ws

Wp Ws Cosine (Wp,Ws )

(2, 3.4,−9.1)t (−1, 0.9827,−1.96)t 0.80
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Table 4.2 Results on iris dataset with three classes

No of training training
patterns

No of test test patterns Number of correctly
classified patterns

Accuracy (Percentage)

75 75 71 94.67

83 67 63 94.03

90 60 57 95

99 51 49 96.08

105 45 43 95.56

110 40 38 95

113 37 35 94.60

117 33 32 96.67

120 30 29 96.67

into train and test sets, and fed into the multiclass classifier of Weka. Several iterations
are carried out with different train-test percentage splits. Finally the Mean and the
Standard Deviation are calculated. Also, we have provided the results for multiclass
classifier using a tenfold cross validation.

We give below the details of our experiments.

1. Iris Dataset
Number of Classes = 3
Number of Data Points = 150
Number of features = 5
Out of the 5 features, 4 of them are sepal length, sepal width, petal length, and
petal width. The fifth feature is a dependent feature; it is the class label which can
assume one of three values corresponding to the 3 classes, Setosa, Versicolour,
and Viriginica. We give the results in Table 4.2.
By using tenfold cross validation, we obtained an accuracy of 96 %.

2. Pendigits Dataset
Number of Classes = 10
Number of Data Points = 10992
Number of Features = 17
Out of the 17 features, the 17th feature is the class label assuming one of 10 values
corresponding the digit that is represented by 16 features. We have used Weka
software that is described in the book by Witten, Frank and Hall, the details of
which are provided in the references. We give results in Table 4.3.
Using tenfold cross validation, we could classify with an accuracy of 93.52 %
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Table 4.3 Results on pendigit dataset with ten classes

No of training training
patterns

No of test test patterns Number of correctly
classified patterns

Accuracy (Percentage)

5496 5496 5145 93.61

5946 4946 4644 93.90

6695 4397 4124 93.79

7255 3737 3499 93.63

7694 3298 3101 94.02

8244 2748 2579 93.85

8574 2418 2270 93.88

8794 2198 2065 93.95

4.6 Summary

Classification based on SVMs is popular and is being used in a variety of applications.
It is good to understand why it works and also its shortcomings. Some of the important
features are

1. Both SVM and perceptron are linear classifiers.
2. It is possible to view the linear classifier to have the form Wt X + b. The training

patterns are used to learn W and b.
3. In both the SVM and perceptron, the W vector may be viewed as a linear com-

bination of the training patterns.

a. In perceptron the iterations converge to a Wk+1, a correct weight vector, and
it is

Wk+1 =
k∑

i=1

Xi ,

where Xk is misclassified by Wk .
b. In SVM, the weight vector W is given by

W =
∑

Xi∈S
αi yi Xi ,

where only support vectors matter.

4. Consider the data shown in Fig. 4.7.

Here, there are two points each from the two classes as given by

a. Negative Class: X1 = (1, 1)t , X2 = (1, 6)t
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Fig. 4.7 Different support
vector Sets X

X

+

+_

_

2

1

SD

.

P 1

P
2

b. Positive Class: X3 = (5, 1)t , X4 = (5, 6)t i

The W and b vectors given by Perceptron and SVM can be obtained as follows:

a. If we use the order X1, X2, X3, X4, to compute the augmented W using
the perceptron learning algorithm, we get W = (5,−3)t andb = −3, the
corresponding decision is indicated using P1 in the figure.

b. If we use the order X3, X4, X2, X1, we get W = (12,−9)t , and b = −4
and we show the corresponding decision boundary using P2 in the figure.

c. Using the SVM, we get two possible support vector sets. They are
• The support vectors are X1 = (1, 1)t and X3 = (5, 1)t . Because of

∑
i αi

yi = 0, we get
−α1 + α3 = 0 ⇒ α1 = α3 = α. So,
W = α[(5, 1)t − (1, 1)t ] = (4α, 0).
Also, because (1, 1)t is on the negative support line, we get
w1 + w2 + b = −1.
Similarly, for (5, 1)t which is on the positive support line, we have
5w1 + w2 + b = 1.
From these two equations, we getw1 = 1

2 andw2 = 0. So,W = (4α, 0)t =
( 1

2 , 0)t ⇒ α = 1
8 .

From these, we get b = − 3
2 . So, the decision boundary, SD, is character-

ized by x1
2 − 3

2 = 0 as shown in the figure.
• The other possibility is to have X2 = (1, 6)t and X4 = (5, 6)t . Here also

we get W = ( 1
2 , 0)t and b = − 3

2 . Again the decision boundary is given
by SD. In both the cases, W is orthogonal to SD.

Even though both the Support Vector sets are different, we get the same W .
So, in the case of the SVM also we can have multiple solutions, in terms of
the SV sets. However, the W vector is the same.

5. Linear Support Vector Machine is a simple linear classifier. It is popularly used
in linearly separable cases.
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6. It is also used in classifying high-dimensional datasets even if the classes are not
linearly separable. Some of the popular applications are text classification and
classification of nodes and edges in social networks.

7. Experimental results on Iris data do not show much difference between Perceptron
and Linear SVM in terms of accuracy.
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