
123

S P R I N G E R B R I E F S I N CO M P U T E R S C I E N C E

M.N. Murty
Rashmi Raghava

Support Vector
Machines and
Perceptrons
Learning, Optimization,
Classification, and
Application to Social
Networks

SpringerBriefs in Computer Science

Series editors

Stan Zdonik, Brown University, Providence, Rhode Island, USA
Shashi Shekhar, University of Minnesota, Minneapolis, Minnesota, USA
Jonathan Katz, University of Maryland, College Park, Maryland, USA
Xindong Wu, University of Vermont, Burlington, Vermont, USA
Lakhmi C. Jain, University of South Australia, Adelaide, South Australia, Australia
David Padua, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
Xuemin (Sherman) Shen, University of Waterloo, Waterloo, Ontario, Canada
Borko Furht, Florida Atlantic University, Boca Raton, Florida, USA
V.S. Subrahmanian, University of Maryland, College Park, Maryland, USA
Martial Hebert, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
Katsushi Ikeuchi, University of Tokyo, Tokyo, Japan
Bruno Siciliano, Università di Napoli Federico II, Napoli, Italy
Sushil Jajodia, George Mason University, Fairfax, Virginia, USA
Newton Lee, Newton Lee Laboratories, LLC, Tujunga, California, USA

More information about this series at http://www.springer.com/series/10028

http://www.springer.com/series/10028

M.N. Murty • Rashmi Raghava

Support Vector Machines
and Perceptrons
Learning, Optimization, Classification,
and Application to Social Networks

123

M.N. Murty
Department of Computer Science
and Automation

Indian Institute of Science
Bangalore, Karnataka
India

Rashmi Raghava
IBM India Private Limited
Bangalore, Karnataka
India

ISSN 2191-5768 ISSN 2191-5776 (electronic)
SpringerBriefs in Computer Science
ISBN 978-3-319-41062-3 ISBN 978-3-319-41063-0 (eBook)
DOI 10.1007/978-3-319-41063-0

Library of Congress Control Number: 2016943387

© The Author(s) 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

Overview

Support Vector Machines (SVMs) have been widely used in Classification,
Clustering and Regression. In this book, we deal primarily with classification.
Classifiers can be either linear or nonlinear. The linear classifiers typically are
learnt based on a linear discriminant function that separates the feature space into
two half-spaces, where one half-space corresponds to one of the two classes and the
other half-space corresponds to the remaining class. So, these half-space classifiers
are ideally suited to solve binary classification or two-class classification problems.
There are a variety of schemes to build multiclass classifiers based on combinations
of several binary classifiers.

Linear discriminant functions are characterized by a weight vector and a
threshold weight that is a scalar. These two are learnt from the training data. Once
these entities are obtained we can use them to classify patterns into any one of the
two classes. It is possible to extend the notion of linear discriminant functions
(LDFs) to deal with even nonlinearly separable data with the help of a suitable
mapping of the data points from the low-dimensional input space to a possibly
higher dimensional feature space.

Perceptron is an early classifier that successfully dealt with linearly separable
classes. Perceptron could be viewed as the simplest form of artificial neural net-
work. An excellent theory to characterize parallel and distributed computing was
put forth byMisky and Papert in the form of a book on perceptrons. They use logic,
geometry, and group theory to provide a computational framework for perceptrons.
This can be used to show that any computable function can be characterized as a
linear discriminant function possibly in a high-dimensional space based on min-
terms corresponding to the input Boolean variables. However, for some types of
problems one needs to use all the minterms which correspond to using an expo-
nential number of minterms that could be realized from the primitive variables.

SVMs have revolutionized the research in the areas of machine learning and
pattern recognition, specifically classification, so much that for a period of more

v

than two decades they are used as state-of-the-art classifiers. Two distinct properties
of SVMs are:

1. The problem of learning the LDF corresponding to SVM is posed as a convex
optimization problem. This is based on the intuition that the hyperplane sepa-
rating the two classes is learnt so that it corresponds to maximizing the margin
or some kind of separation between the two classes. So, they are also called as
maximum-margin classifiers.

2. Another important notion associated with SVMs is the kernel trick which per-
mits us to perform all the computations in the low-dimensional input space
rather than in a higher dimensional feature space.

These two ideas become so popular that the first one lead to the increase of
interest in the area of convex optimization, whereas the second idea was exploited to
deal with a variety of other classifiers and clustering algorithms using an appro-
priate kernel/similarity function.

The current popularity of SVMs can be attributed to excellent and popular
software packages like LIBSVM. Even though SVMs can be used in nonlinear
classification scenarios based on the kernel trick, the linear SVMs are more popular
in the real-world applications that are high-dimensional. Further learning the
parameters could be time-consuming. There is a renewal of energy, in the recent
times, to examine other linear classifiers like perceptrons. Keeping this in mind, we
have dealt with both perceptron and SVM classifiers in this book.

Audience

This book is intended for senior undergraduate and graduate students and
researchers working in machine learning, data mining, and pattern recognition.
Even though SVMs and perceptrons are popular, people find it difficult to under-
stand the underlying theory. We present material in this book so that it is accessible
to a wide variety of readers with some basic exposure to undergraduate level
mathematics. The presentation is intentionally made simpler to make the reader feel
comfortable.

Organization

This book is organized as follows:

1. Literature and Background: Chapter 1 presents literature and state-of-the-art
techniques in SVM-based classification. Further, we also discuss relevant
background required for pattern classification. We define some of the important
terms that are used in the rest of the book. Some of the concepts are explained
with the help of easy to understand examples.

vi Preface

http://dx.doi.org/10.1007/978-3-319-41063-0_1

2. Linear Discriminant Function: In Chap. 2 we introduce the notion of linear
discriminant function that forms the basis for the linear classifiers described in
the text. The role of weight vector W and the threshold b are explained in
describing linear classifiers. We also describe other linear classifiers including
the minimal distance classifier and the Naïve Bayes classifier. It also explains
how nonlinear discriminant functions could be viewed as linear discriminant
functions in higher dimensional spaces.

3. Perceptron: In Chap. 3 we describe perceptron and how it can be used for
classification. We deal with perceptron learning algorithm and explain how it
can be used to learn Boolean functions. We provide a simple proof to show how
the algorithm converges. We explain the notion of order of a perceptron that has
bearing on the computational complexity. We illustrate it on two different
classification datasets.

4. Linear SVM: In this Chap. 4, we start with the similarity between SVM and
perceptron as both of them are used for linear classification. We discuss the
difference between them in terms of the form of computation of w, the opti-
mization problem underlying each, and the kernel trick. We introduce the linear
SVM which possibly is the most popular classifier in machine learning. We
introduce the notion of maximum margin and the geometric and semantic
interpretation of the same. We explain how a binary classifier could be used in
building a multiclass classifier. We provide experimental results on two datasets.

5. Kernel Based SVM: In Chap. 5, we discuss the notion of kernel or similarity
function. We discuss how the optimization problem changes when the classes
are not linearly separable or when there are some data points on the margin. We
explain in simple terms the kernel trick and explain how it is used in classifi-
cation. We illustrate using two practical datasets.

6. Application to Social Networks: In Chap. 6 we consider social networks.
Specifically, issues related to representation of social networks using graphs;
these graphs are in turn represented as matrices or lists. We consider the problem
of community detection in social networks and link prediction. We examine
several existing schemes for link prediction including the one based on SVM
classifier. We illustrate its working based on some network datasets.

7. Conclusion: We conclude in Chap. 7 and also present potential future directions.

Bangalore, India M.N. Murty
Rashmi Raghava

Preface vii

http://dx.doi.org/10.1007/978-3-319-41063-0_2
http://dx.doi.org/10.1007/978-3-319-41063-0_3
http://dx.doi.org/10.1007/978-3-319-41063-0_4
http://dx.doi.org/10.1007/978-3-319-41063-0_5
http://dx.doi.org/10.1007/978-3-319-41063-0_6
http://dx.doi.org/10.1007/978-3-319-41063-0_7

Contents

1 Introduction . 1
1.1 Terminology . 1

1.1.1 What Is a Pattern?. 1
1.1.2 Why Pattern Representation? . 2
1.1.3 What Is Pattern Representation? 2
1.1.4 How to Represent Patterns? . 2
1.1.5 Why Represent Patterns as Vectors? 2
1.1.6 Notation. 3

1.2 Proximity Function . 3
1.2.1 Distance Function . 3
1.2.2 Similarity Function . 4
1.2.3 Relation Between Dot Product and Cosine Similarity. 5

1.3 Classification . 6
1.3.1 Class . 6
1.3.2 Representation of a Class . 6
1.3.3 Choice of G(X). 7

1.4 Classifiers. 7
1.4.1 Nearest Neighbor Classifier (NNC) 7
1.4.2 K-Nearest Neighbor Classifier (KNNC) 7
1.4.3 Minimum-Distance Classifier (MDC). 8
1.4.4 Minimum Mahalanobis Distance Classifier 9
1.4.5 Decision Tree Classifier: (DTC) 10
1.4.6 Classification Based on a Linear Discriminant

Function . 12
1.4.7 Nonlinear Discriminant Function. 12
1.4.8 Naïve Bayes Classifier: (NBC) . 13

1.5 Summary . 14
References . 14

ix

http://dx.doi.org/10.1007/978-3-319-41063-0_1
http://dx.doi.org/10.1007/978-3-319-41063-0_1
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec1
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec1
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec2
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec2
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec3
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec3
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec4
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec4
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec5
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec5
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec6
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec6
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec7
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec7
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec8
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec8
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec9
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec9
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec10
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec10
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec11
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec11
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec12
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec12
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec13
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec13
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec14
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec14
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec15
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec15
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec16
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec16
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec17
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec17
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec18
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec18
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec19
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec19
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec20
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec20
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec21
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec21
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec22
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec22
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec22
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec23
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec23
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec24
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec24
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec25
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Sec25
http://dx.doi.org/10.1007/978-3-319-41063-0_1#Bib1

2 Linear Discriminant Function . 15
2.1 Introduction . 15

2.1.1 Associated Terms . 15
2.2 Linear Classifier . 17
2.3 Linear Discriminant Function . 19

2.3.1 Decision Boundary . 19
2.3.2 Negative Half Space . 19
2.3.3 Positive Half Space . 19
2.3.4 Linear Separability . 20
2.3.5 Linear Classification Based on a Linear Discriminant

Function . 20
2.4 Example Linear Classifiers . 23

2.4.1 Minimum-Distance Classifier (MDC). 23
2.4.2 Naïve Bayes Classifier (NBC). 23
2.4.3 Nonlinear Discriminant Function. 24

References . 25

3 Perceptron . 27
3.1 Introduction . 27
3.2 Perceptron Learning Algorithm . 28

3.2.1 Learning Boolean Functions . 28
3.2.2 W Is Not Unique . 30
3.2.3 Why Should the Learning Algorithm Work?. 30
3.2.4 Convergence of the Algorithm . 31

3.3 Perceptron Optimization . 32
3.3.1 Incremental Rule. 33
3.3.2 Nonlinearly Separable Case . 33

3.4 Classification Based on Perceptrons . 34
3.4.1 Order of the Perceptron . 35
3.4.2 Permutation Invariance. 37
3.4.3 Incremental Computation . 37

3.5 Experimental Results . 38
3.6 Summary . 39
References . 40

4 Linear Support Vector Machines . 41
4.1 Introduction . 41

4.1.1 Similarity with Perceptron . 41
4.1.2 Differences Between Perceptron and SVM 42
4.1.3 Important Properties of SVM . 42

4.2 Linear SVM . 43
4.2.1 Linear Separability . 43
4.2.2 Margin. 44
4.2.3 Maximum Margin . 46
4.2.4 An Example . 47

x Contents

http://dx.doi.org/10.1007/978-3-319-41063-0_2
http://dx.doi.org/10.1007/978-3-319-41063-0_2
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec1
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec1
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec2
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec2
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec3
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec3
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec4
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec4
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec5
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec5
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec6
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec6
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec7
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec7
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec8
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec8
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec9
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec9
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec9
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec10
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec10
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec11
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec11
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec12
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec12
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec13
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Sec13
http://dx.doi.org/10.1007/978-3-319-41063-0_2#Bib1
http://dx.doi.org/10.1007/978-3-319-41063-0_3
http://dx.doi.org/10.1007/978-3-319-41063-0_3
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec1
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec1
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec2
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec2
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec3
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec3
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec4
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec4
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec5
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec5
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec6
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec6
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec7
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec7
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec8
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec8
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec9
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec9
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec10
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec10
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec11
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec11
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec12
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec12
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec13
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec13
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec14
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec14
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec15
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Sec15
http://dx.doi.org/10.1007/978-3-319-41063-0_3#Bib1
http://dx.doi.org/10.1007/978-3-319-41063-0_4
http://dx.doi.org/10.1007/978-3-319-41063-0_4
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec1
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec1
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec2
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec2
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec3
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec3
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec4
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec4
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec5
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec5
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec6
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec6
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec7
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec7
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec8
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec8
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec9
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec9

4.3 Dual Problem . 49
4.3.1 An Example . 50

4.4 Multiclass Problems. 51
4.5 Experimental Results . 52

4.5.1 Results on Multiclass Classification 52
4.6 Summary . 54
References . 56

5 Kernel-Based SVM . 57
5.1 Introduction . 57

5.1.1 What Happens if the Data Is Not Linearly Separable? 57
5.1.2 Error in Classification . 58

5.2 Soft Margin Formulation . 59
5.2.1 The Solution. 59
5.2.2 Computing b . 60
5.2.3 Difference Between the Soft and Hard Margin

Formulations . 60
5.3 Similarity Between SVM and Perceptron 60
5.4 Nonlinear Decision Boundary . 62

5.4.1 Why Transformed Space? . 63
5.4.2 Kernel Trick . 63
5.4.3 An Example . 64
5.4.4 Example Kernel Functions . 64

5.5 Success of SVM . 64
5.6 Experimental Results . 65

5.6.1 Iris Versicolour and Iris Virginica 65
5.6.2 Handwritten Digit Classification 66
5.6.3 Multiclass Classification with Varying Values

of the Parameter C . 66
5.7 Summary . 67
References . 67

6 Application to Social Networks. 69
6.1 Introduction . 69

6.1.1 What Is a Network? . 69
6.1.2 How Do We Represent It? . 69

6.2 What Is a Social Network? . 72
6.2.1 Citation Networks . 73
6.2.2 Coauthor Networks . 73
6.2.3 Customer Networks . 73
6.2.4 Homogeneous and Heterogeneous Networks. 73

6.3 Important Properties of Social Networks. 74
6.4 Characterization of Communities . 75

6.4.1 What Is a Community? . 75
6.4.2 Clustering Coefficient of a Subgraph 76

Contents xi

http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec10
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec10
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec11
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec11
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec12
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec12
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec13
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec13
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec14
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec14
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec15
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Sec15
http://dx.doi.org/10.1007/978-3-319-41063-0_4#Bib1
http://dx.doi.org/10.1007/978-3-319-41063-0_5
http://dx.doi.org/10.1007/978-3-319-41063-0_5
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec1
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec1
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec2
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec2
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec3
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec3
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec4
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec4
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec5
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec5
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec6
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec6
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec7
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec7
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec7
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec8
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec8
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec9
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec9
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec10
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec10
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec11
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec11
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec12
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec12
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec13
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec13
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec14
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec14
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec15
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec15
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec16
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec16
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec17
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec17
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec18
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec18
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec18
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec19
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Sec19
http://dx.doi.org/10.1007/978-3-319-41063-0_5#Bib1
http://dx.doi.org/10.1007/978-3-319-41063-0_6
http://dx.doi.org/10.1007/978-3-319-41063-0_6
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec1
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec1
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec2
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec2
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec3
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec3
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec4
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec4
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec5
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec5
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec6
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec6
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec7
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec7
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec8
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec8
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec9
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec9
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec10
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec10
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec11
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec11
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec12
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec12

6.5 Link Prediction . 77
6.5.1 Similarity Between a Pair of Nodes 78

6.6 Similarity Functions. 79
6.6.1 Example . 80
6.6.2 Global Similarity. 81
6.6.3 Link Prediction based on Supervised Learning 82

6.7 Summary . 83
References . 83

7 Conclusion . 85

Glossary . 89

Index . 91

xii Contents

http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec13
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec13
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec14
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec14
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec15
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec15
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec16
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec16
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec17
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec17
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec18
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec18
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec19
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Sec19
http://dx.doi.org/10.1007/978-3-319-41063-0_6#Bib1
http://dx.doi.org/10.1007/978-3-319-41063-0_7
http://dx.doi.org/10.1007/978-3-319-41063-0_7

Acronyms

CC Clustering Coefficient
DTC Decision Tree Classifier
KKT Karush Kuhn Tucker
KNNC K-Nearest Neighbor Classifier
LDF Linear Discriminant Function
MDC Minimal Distance Classifier
NBC Naïve Bayes Classifier
NNC Nearest Neighbor Classifier
SVM Support Vector Machine

xiii

Chapter 1
Introduction

Abstract Support vector machines (SVMs) have been successfully used in a variety
of data mining and machine learning applications. One of the most popular applica-
tions is pattern classification. SVMs are so well-known to the pattern classification
community that by default, researchers in this area use them as baseline classifiers
to establish the superiority of the classifier proposed by them. In this chapter, we
introduce some of the important terms associated with support vector machines and
a brief history of their evolution.

Keywords Classification · Representation · Proximity function · Classifiers

Support Vector Machine (SVM) [1, 2, 5, 6] is easily the most popular tool for pattern
classification; by classification we mean the process of assigning a class label to an
unlabeled pattern using a set of labeled patterns. In this chapter, we introduce the
notion of classification and classifiers. First we explain the related concepts/terms;
for each term we provide a working definition, any philosophical characterization,
if necessary and the notation.

1.1 Terminology

First we describe the terms that are important and used in the rest of the book.

1.1.1 What Is a Pattern?

A pattern is either a physical object or an abstract notion.
We need such a definition because in most of the practical applications, we

encounter situations where we have to classify physical objects like humans, chairs,
and a variety of other man-made objects. Further, there could be applications where
classification of abstract notions like style of writing, style of talking, style of walking,
signature, speech, iris, finger-prints of humans could form an important part of the
application.

© The Author(s) 2016
M.N. Murty and R. Raghava, Support Vector Machines and Perceptrons,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-41063-0_1

1

2 1 Introduction

1.1.2 Why Pattern Representation?

In most machine-based pattern classification applications, patterns cannot be directly
stored on the machine. For example, in order to discriminate humans from chairs, it
is not possible to store either a human or a chair directly on the machine. We need
to represent such patterns in a form amenable for machine processing and store the
representation on the machine.

1.1.3 What Is Pattern Representation?

Pattern representation is the process of generating an abstraction of the pattern which
could be stored on the machine.

For example, it is possible to represent chairs and humans based on their height
or in terms of their weight or both height and weight. So patterns are typically
represented using some scheme and the resulting representations are stored on the
machine.

1.1.4 How to Represent Patterns?

Two popular schemes for pattern representation are:

1. Vector Space representation: Here, a pattern is represented as a vector or a point
in a multidimensional space.
For example (1.2, 4.9)t might represent a chair of height 1.2 m and weight
4.9 kg.

2. Linguistic/Structural representation: In this case, a pattern is represented as a
sentence in a formal language.
For example, (color = red ∨ white) ∧ (make = leather) ∧ (shape =
sphere) ∧ (dia = 7 cm) ∧ (weight = 150 g) might represent cricket ball.

We will consider only vector representations in this book.

1.1.5 Why Represent Patterns as Vectors?

Some of the important reasons for representing patterns as vectors are:

1. vector space representations are popular in pattern classification. Classifiers based
on fuzzy sets, rough sets, statistical learning theory, decision tree classifiers all
are typically used in conjunction with patterns represented as vectors.

1.1 Terminology 3

2. Classifiers based on neural networks and support vector machines are inherently
constrained to deal only with vectors of numbers.

3. Pattern recognition algorithms that are typically based on similarity/dissimilarity
between pairs of patterns use metrics like Euclidean distance, and similarity
functions like cosine of the angle between vectors; these proximity functions are
ideally suited to deal with vectors of reals.

1.1.6 Notation

• Pattern: Even though pattern and its representation are different, it is convenient
and customary to use pattern for both.
The usage is made clear based on the context in which the term is used; on a
machine, for pattern classification, a representation of the pattern is stored, not the
pattern itself. In the following, we will be concerned only with pattern represen-
tation; however, we will call it pattern as is practiced.
We use X to represent a pattern.

• Collection of Patterns: A collection of n patterns is represented by {X1,X2,

. . . ,Xn} where Xi denotes the ith pattern.
We assume that each pattern is an l-dimensional vector.

So,Xi = (xi1, xi2, . . . , xil).

1.2 Proximity Function [1, 4]

The notion of proximity is typically used in classification. This is characterized by
either a distance function or a similarity function

1.2.1 Distance Function

Distance between patterns Xi and Xj is denoted by d(Xi,Xj) and the most popular
distance measure is the Euclidean distance and it is given by

d(Xi,Xj) =
(

l∑
k=1

(xik − xjk)
2

) 1
2

A pair of patterns are closer or similar if the distance between them is smaller.

4 1 Introduction

Euclidean distance is a metric and so it satisfies, for any three patterns Xi, Xj, and
Xk , the following properties:

1. d(Xi,Xj) ≥ 0 (Nonnegativity)
2. d(Xi,Xj) = d(Xj,Xi) (Symmetry)

Symmetry is useful in reducing the storage requirements because it is sufficient
to store either d(Xi,Xj) or d(Xj,Xi), both are not required.

3. d(Xi,Xj) + d(Xj,Xk) ≥ d(Xi,Xk) (Triangle Inequality)
Triangle inequality is useful in reducing the computation time and also in estab-
lishing some useful bounds to simplify the analysis of several algorithms.

Even though metrics are useful in terms of computational requirements, they are not
essential in ranking and classification.

For example, squared Euclidean distance is not a metric; however, it is as good
as the Euclidean distance in both ranking and classification.

Example

Let X = (1, 1)t, X1 = (1, 3)t, X2 = (4, 4)t, X3 = (2, 1)t

Note that d(X,X3) = 1 < d(X,X1) = 2 < d(X,X2) = 3
√

2
Note that smaller the distance, nearer the pattern. So, the first three neighbors of

X based on Euclidean distance are X3,X1, and X2 in that order.
Similarly, the squared Euclidean distances are
d(X,X3)

2 = 1 < d(X,X1)
2 = 4 < d(X,X2)

2 = 9. So, the first three neighbors of
X based on squared distance are X3,X1, and X2 in the same order again.

Consider two more patterns,X4 = (3, 3)t, and X5 = (5, 5)t . Note that the squared
Euclidean distances are

d(X,X4)
2 = 8 = d(X4,X5)

2; however, d(X,X5)
2 = 32 > d(X,X4)

2 + d(X4,

X5)
2. So, triangle inequality is not satisfied by the squared euclidean distance.

1.2.2 Similarity Function

Cosine of the angle between vectors is the most popular similarity function. It is
defined as follows:

cos(Xi,Xj) = Xt
i Xj

|| Xi || || Xj ||
Here, the numerator characterizes the dot product or sum of the products of compo-
nents and is given by

Xt
i Xj =

l∑
k=1

xikxjk

Considering the patterns X, X1, X2, and X3 seen in the previous example again we
have

1.2 Proximity Function 5

cos(X,X2) = 1 > cos(X,X3) = 3√
10

> cos(X,X1) = 4√
20

= 2√
5
.

So, the first three neighbors of X in the order of similarity are X2, X3, and X1.
Note that X and X2 are very similar using the cosine similarity as these two

patterns have an angle of 0 degrees between them, even though they have different
magnitudes. The magnitude is emphasized by the Euclidean distance; soX andX2 are
very dissimilar. This is exploited in high-dimensional applications like text mining
and information retrieval where the cosine similarity is more popularly used.
The reason may be explained as follows:
Consider a document d; let it be represented by X. Now consider a new document
obtained by appending d to itself 3 times thus giving us 4X as the representation of
the new document.

So, for example, if X = (1, 1)t then the new document is represented by (4, 4)t .
Note that the Cosine similarity between (1, 1)t and (4, 4)t is 1 as there is no difference
between the two in terms of the semantic content.

However, in terms of Euclidean distance, d((1, 1)t, (4, 4)t) is larger than d((1, 1)t,

(2, 1)t) whereas the Cosine similarity between (1, 1)t and (2, 1)t is smaller than that
between X and (4, 4)t .

1.2.3 Relation Between Dot Product and Cosine Similarity

Consider three patterns:Xi = (1, 2)t, Xj = (4, 2)t, Xk = (2, 4)t . We give in the table
the dot product and Cosine similarity values between all the possible pairs (Table
1.1).

Note that the dot product and cosine similarity are not linked monotonically. The
dot product value is increasing from pair 1 to pair 3; however, it is not the case with
the cosine similarity.

If the patterns are normalized to be unit norm vectors, then there is no difference
between the dot product and cosine similarity. This is because

dot product(Xp,Xq) = Xt
pXq = Xt

pXq

|| Xp || || Xq || = Cosine(Xp,Xq)

This equality holds because || Xp ||=|| Xq ||= 1.

Table 1.1 Dot product and cosine similarity

Pair number Pattern pair Dot product Cosine similarity

1 (Xi,Xj) 8 0.8

2 (Xi,Xk) 10 1

3 (Xj,Xk) 16 0.8

6 1 Introduction

1.3 Classification [2, 4]

1.3.1 Class

A class is a collection/set of patterns where each pattern in the collection is associated
with the same class label.

Consider a two-class problem whereC− is the negative class andC+ is the positive
class.

1.3.2 Representation of a Class

It is possible to characterize these two classes as follows. For some function g such
that

g : Rl → R.
C− = {X|g(X) < 0} and
C+ = {X|g(X) > 0}
Note that the function g maps an l − dimensional pattern X to a real number. We can
think of more general functions, like for example the co-domain of g can be set of
complex numbers, C instead of the set of reals, R. However, the above definition,
based on reals, is adequate for our study.

1

2

x

x

−

− + +

+

Fig. 1.1 An example dataset

1.3 Classification 7

1.3.3 Choice of G(X)

It is possible to choose the form of g(X) in a variety of ways. We examine some of
them next. We illustrate these choices using five two-dimensional pattern shown in
Fig. 1.1. Note that we are considering the two classes to be represented as follows:

C− = {(1, 1)t, (2, 2)t}, C+ = {(6, 2)t, (7, 2)t, (7, 3)t}.

1.4 Classifiers

1.4.1 Nearest Neighbor Classifier (NNC)

The nearest neighbor classifier obtains the nearest neighbor, from the training data,
of the test pattern X. If the nearest neighbor is from C− then it assigns X to C−.
Similarly, X is assigned to C+ if the nearest neighbor of X is from class C+.

Consider g(X) = g−(X) − g+(X) for some X ∈ R
l. Here,

g−(X) = min
Xj∈C−

d(X,Xj)

and

g+(X) = min
Xj∈C+

d(X,Xj)

for some distance function d(−,−). We illustrate it with the example data shown in
Fig. 1.1.
Let X = (1, 2)t and let d(−,−) be the squared euclidean distance.
Note that g−(X) = 1 and g+(X) = 25
So, g(X) = −24 < 0, as a consequence, X is assigned to C−.
If we consider X = (5, 2)t , then g(X) = 9 − 1 = 8 > 0. So, X is assigned to C+.
Note that the classifier based on g(X) is the NNC for the two-class problem.

1.4.2 K-Nearest Neighbor Classifier (KNNC)

The KNNC obtains K neighbors of the test pattern X from the training data. If a
majority of these K neighbors are from C− then X is assigned to C−. Otherwise, X
is assigned to C+.

In this case, g(X) = g+(X) − g−(X) where
g−(X) = K− and g+(X) = K+ = K − K−.

8 1 Introduction

Fig. 1.2 Decision
boundaries for NNC and
KNNC

x

x

−

−

1

2

+

+ +

+

KNNC

NNC

We obtainK-nearest neighbors of X fromC−
⋃

C+. LetK− (out ofK) be the number
of neighbors identified from C− and the remaining K+ = K − K− be the neighbors
from C+.

Note that g(X) < 0 if K+ < K−.
Now consider X = (1, 2)t and K = 3. The three neighbors are
(1, 1)t, (2, 2)t, and (6, 2)t .
Then g−(X) = K− = 2 and g+(X) = K+ = 1. So, g(X) = 1 − 2 = −1 < 0.

Hence X is assigned to C−.
Similarly, if we consider X = (5, 2)t , then the three neighbors are
(6, 2)t, (7, 2)t, and (7, 3)t .
So, g−(X) = K− = 0 and g+(X) = K+ = 3. Here, g(X) = 3 − 0 = 3 > 0. So, X

is assigned to C+.
Note that the classifier based on g(X) is KNNC corresponding to the two-class

problem.
It is possible to observe that both NNC and KNNC can lead to nonlinear deci-

sion boundaries as shown in Fig. 1.2. Here, NNC gives a piecewise linear decision
boundary and the KNNC gives a nonlinear decision boundary as depicted in the
figure.

1.4.3 Minimum-Distance Classifier (MDC)

The working of MDC is as follows:
Let m− and m+ be the sample means of C− and C+ respectively. Assign the test

pattern X to C− if
d(X,m−) < d(X,m+) else assign X to C+.

Consider again g(X) = g−(X) − g+(X) for some X ∈ R
l. Here,

g−(X) = d(X,m−)

1.4 Classifiers 9

and
g+(X) = d(X,m+)

where d(−,−) is some distance function and
Sample mean of points in C− =

m− =
∑

Xj∈C− Xj

| C− |
Sample mean of points in C+ =

m+ =
∑

Xj∈C+ Xj

| C+ |
We illustrate it with the example data shown in Fig. 1.1.

Note that m− = (1.5, 1.5)t and m+ = (6.66, 2.33)t . So, if X = (1, 2)t , then using
the squared Euclidean distance for d(−,−), we have
g−(X) = 0.5 and g+(X) = 32.2; so, g(X) = −31.7 < 0. Hence, X is assigned toC−.

If we consider X = (5, 2)t , then g(X) = 12.5 − 2.9 = 9.6 > 0. Hence, X is
assigned to C+.

It is possible to show that the MDC is as good as the optimal classifier (Bayes
classifier) if the two classes C− and C+ are normally distributed with
N (μi,Σi), i = 1, 2, where the covariance matrices Σ1 and Σ2 are such that
Σ1 = Σ2 = σ 2I, I being the Identity matrix and
μ1 = m− and μ2 = m+.

It is possible to show that the sample mean mi converges to the true mean μi

asymptotically or if the number of training patterns in each class is large in number.

1.4.4 Minimum Mahalanobis Distance Classifier

Let g−(X) = (X − μ−)tΣ−1(X − μ−) and
g+(X) = (X − μ+)tΣ−1(X − μ+)

Note that g−(X) and g+(X) are squared Mahalanobis distances between X and
μ− and μ+ respectively.

The minimum Mahalanobis distance classifier assigns X to C− if g−(X) < g+(X)

else X is assigned to C+.
If the data in each class is normally distributed and we are given thatΣ1 = Σ2 = Σ

and no further structure on the covariance matrices, then the Mahalanobis distance
classifier can be shown to be optimal. It is given by
g(X) = g−(X) − g+(X) where
g−(X) = (X − μ−)tΣ−1(X − μ−) and
g+(X) = (X − μ+)tΣ−1(X − μ+)

10 1 Introduction

Note that g−(X) and g+(X) are the squared Mahalanobis distances between X and
the respective classes.

Note that an estimate of Σ can be obtained by using all the five patterns and using
the estimate for Sigma to be

Σ = 1

5

[∑
i=1

(Xi − m)(Xi − m)t]

where m is the mean of the five patterns and is given by m = (4.6, 2)t .
Note that the estimated value for Σ is

Σ =
[

5.8 −0.24
−0.24 0.4

]

So, Σ−1 is given by

Σ−1 = 4

7

[
0.4 0.24

−0.24 5.8

]

If we choose X = (1, 2)t then g(X) = 0.9 − 7.9 = −7 < 0 and so X is assigned to
C− by using all the five patterns in the estimation of Σ .

Instead if we choose X = (5, 2)t , then g(X) = 3.6 − 0.4 = 3.2 > 0 and so X is
assigned to C+.

1.4.5 Decision Tree Classifier: (DTC)

In the case of DTC, we find the best split based on the given features. The best feature
is the one which separates the patterns belonging to the two classes so that each part
is as pure as possible. Here, by purity we mean patterns are all from the same class.
For example, consider the dataset shown in Fig. 1.3. Splitting on feature X1 gives
two parts. The right side part is from class C+ (pure) and the left side part has more
patterns from C− with impurity in the form of one positive pattern. Splitting on X2

may leave us with more impurity.
Again we have g(X) = g+(X) − g−(X). Here, g+(X) and g−(X) are Boolean

functions taking a value of either 1 or 0. Each leaf node in the decision tree is
associated with one of the two class labels.

If there are m leaf nodes out of which m− are associated with class C− and
remaining are positive, then g−(X) is a disjunction of m− conjunctions and similarly
g+(X) is a disjunction of (m − m−) conjunctions where each conjunction corresponds
to a path from the root to a leaf.

In the data shown in Fig. 1.3.

1.4 Classifiers 11

x

x

−

− + +

++

1

2

1
X < 4

2
X > 2.5

Fig. 1.3 An example dataset

Fig. 1.4 Decision tree for
the data X > 4

1

YES NO

+ve X > 2.5
2

+ve

YES NO

−VE

There are six patterns and the class labels for them are:

• Negative Class: (1, 1)t, (2, 2)t

• Positive Class: (2, 3)t, (6, 2)t, (7, 2)t, (7, 3)t

The corresponding decision tree is shown in Fig. 1.4. There are three leaf nodes in
the tree; one is negative and two are positive. So, the corresponding g−(X) and g+(X)

are:

• g−(X) = (x1 ≤ 4) ∧ (x2 ≤ 2.5) and
• g+(X) = (x1 > 4) ∨ (x1 ≤ 4) ∧ (x2 > 2.5)

IfX = (1, 2)t , then g−(X) = 1 and g+(X) = 0 (assuming that a Boolean function
returns a value 0 when it is FALSE and a value 1 when it is TRUE. So, g(X) =
g+(X) − g−(X) = 0 − 1 = −1 < 0; hence X is assigned to C−.
If X = (5, 2)t , then g−(X) = 0 and g+(X) = 1. So, g(X) = 1; hence X is assigned
to C+.

12 1 Introduction

Table 1.2 Linear discriminant function

Pattern number x1 x2 g(X) = 2x1 − 2x2 − 2

1 1 1 –2

2 2 2 –2

3 6 2 6

4 7 2 8

5 7 3 6

x

x

1

2

−

−

+

+ +

+

x + 5 x −14
1 2

 = 0
2

Fig. 1.5 Linear discriminant

1.4.6 Classification Based on a Linear Discriminant
Function

Typically, we consider g(X) = WtX + w0 where W is an l-dimensional vector given
by W = (w1,w2, . . . ,wl)

t and w0 is a scalar. It is linear in both W and X.
In the case of the data shown in Fig. 1.1, let us consider W = (2,−2)t and w0 = −2.
The values of X and g(X) = 2x1 − 2x2 − 2 are shown in Table 1.2

Note that g(X) < 0 for X ∈ C− and g(X) > 0 for X ∈ C+.
If we add to this set another pattern (2, 3)t(∈ C+) as shown in Fig. 1.3, then

g(X) = 2x1 − 2x2 − 2 will not work. However, it is possible to show that g(X) =
x1 + 5x2 − 14 classifies all the six patterns correctly as shown in Fig. 1.5.

We will discuss algorithms to obtain W and w0 from the data in the later chapters.

1.4.7 Nonlinear Discriminant Function

Here g(X) is nonlinear in X. For example, consider g(X) = w1x2
1 + w2x2 + w0. For

the example data in Fig. 1.1, we show the values in Table 1.3.

1.4 Classifiers 13

Table 1.3 Nonlinear discriminant function

Pattern number x1 x2 g(X) = 7x2
1 − 16x2 − 10

1 1 1 –19

2 2 2 –14

3 6 2 210

4 7 2 301

5 7 3 285

x

x

−

−

1

2

+

+ +

+

2 1

232 x = − x + 76

Fig. 1.6 Nonlinear discriminant

Again we have g(X) < 0 for patterns in C− and g(X) > 0 for patterns in C+.
Now consider the six patterns shown in Fig. 1.3. The function 7x2

1 − 16x2 − 10 fails
to classify the pattern (2, 3)t correctly.

However, the function g(X) = x2
1 + 32x2 − 76 correctly classifies all the patterns

as shown in Fig. 1.6. We will consider learning the nonlinear discriminant function
later.

1.4.8 Naïve Bayes Classifier: (NBC)

NBC works as follows:
Assign X to C− if P(C−|X) > P(C+|X) else assign X to C+.
Here, g(X) = g−(X) − g+(X) where g−(X) = P(C−|X) and g+(X) = P(C+|X).
Using Bayes rule we have

P(C−|X) = P(X|C−)P(C−)

P(X)

P(C+|X) = P(X|C+)P(C+)

P(X)

14 1 Introduction

Further, in NBC primarily we assume class-conditional independence. So, we get

P(C−|X) =
l∏

i=1

P(xi|C−)P(C−)

and

P(C+|X) =
l∏

i=1

P(xi|C+)P(C+)

We assume P(C−) = P(C+) = 1
2 . We illustrate with the example shown in Fig. 1.1.

Note that for X = (1, 2)t , P(C−|(1, 2)t) = 1
2P(x1 = 1|C−)P(x2 = 2|C−)

= (1
2)(1

2)(1
2) = 1

8 and
P(C+|(1, 2)t) = 1

2P(x1 = 1|C+)P(x2 = 2|C+) = (1
2)(0)(0) = 0. So, (1, 2)t is

assigned to C−.
It is possible to view most of the classifiers dealing with binary classification

(two-class) problems using an appropriate g(X).
We consider classification based on linear discriminant functions [3, 4] in this

book.

1.5 Summary

In this chapter, we have introduced the terms and notation that will be used in the
rest of the book. We stressed the importance of representing patterns and collections
of patterns. We described some of the popular distance and similarity functions that
are used in machine learning.

We introduced the notion of a discriminant function that could be useful in
abstracting classifiers. We have considered several popular classifiers and have shown
how they can all be abstracted using a suitable discriminant function in each case.
Specifically, we consideredNNC,KNNC,MDC,DTC,NBC, and classification based
on linear and nonlinear discriminant functions.

References

1. Abe, S.: Support Vector Machines for Pattern Classification. Springer (2010)
2. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge Uni-

versity Press (2000)
3. Minsky, M.L., Papert, S.: Perceptrons: An Introduction To Computational Geometry. MIT Press

(1969)
4. Murphy, K.P.: Machine Learning—A Probabilistic Perspective. MIT Press (2012)
5. Vapnik, V.: The Nature of Statistical Learning Theory. Springer (2000)
6. Wang, L.: Support Vector Machines: Theory and Applications. Springer (2005)

Chapter 2
Linear Discriminant Function

Abstract Linear discriminant functions (LDFs) have been successfully used in
pattern classification. Perceptrons and Support Vector Machines (SVMs) are two
well-known members of the category of linear discriminant functions that have been
popularly used in classification. In this chapter, we introduce the notion of linear
discriminant function and some of the important properties associated with it.

Keywords Linear classifier · Decision boundary · Linear separability · Nonlinear
discriminant function · Linear discriminant function · Support vector machine ·
Perceptron

2.1 Introduction

We have seen in Introduction that a linear discriminant function g(X) can be used as
a classifier. The specific steps involved are as follows:

1. Consider a functional form for g(X).
2. Using the two-class training data, learn g(X). By learning g(X) we mean obtaining

the values of the coefficients of terms in g(X).
3. Given a test pattern Xtest , compute g(Xtest). Assign Xtest to C− if g(Xtest) < 0 else

(if g(Xtest) > 0) assign it to C+.

2.1.1 Associated Terms [1–3]

We explain the associated concepts next

• Training Dataset:

The training dataset or training set, Xtrain, is a finite set given by

Xtrain = {(X1,C1), (X2,C2), · · · , (Xn,Cn)}

© The Author(s) 2016
M.N. Murty and R. Raghava, Support Vector Machines and Perceptrons,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-41063-0_2

15

16 2 Linear Discriminant Function

where Xi is the ith pattern (representation) given by Xi = (xi1, xi2, . . . , xil) for
some finite l.
Even though it is possible to have more than two classes, we consider only two-
class (binary) classification problems in this chapter. We will examine how to
build a multiclass classifier based on a combination of binary classifiers later. So,
Associated with pattern Xi is its class label Ci where Ci ∈ {C−,C+}.

• Test Pattern:

A test pattern,Xtest or simplyX is an l-dimensional pattern which is not yet labeled.

• Classifier:

A classifier assigns a class label to a test/unlabeled pattern.

We illustrate these notions with the help of a two-dimensional dataset shown in
Fig. 2.1. We depict in the figure, a set of children and a set of adults. Each child is
depicted using C and each adult using A. In addition there are four test patterns
X1, X2, X3, and X4. Each pattern is represented by its Height and Weight.

In Fig. 2.1 three classifiers are shown, a decision tree classifier, an LDF based
classifier, and a nonlinear discriminant based classifier.

Each of the three classifiers in the figure belongs to a different category. Here,

– The Linear discriminant/classifier depicted by the thin broken line is a linear clas-
sifier. Any point X falling on the left side of the line (or g(X) < 0) is a child and

C
C

C

C
C

C

A

A

A

A
A

A

A

AA
AX

DECISION TREE

NONLINEAR DISCRIMINANT

HEIGHT

WEIGHT

LINEAR DISCRIMINANT/CLASSIFIER

w

h

X

X
X

2

1

3
4

Fig. 2.1 An example dataset

2.1 Introduction 17

a point X to the right (or g(X) > 0) is classified as adult.

– The Nonlinear discriminant shown by the curved line in the figure corresponds
to a nonlinear classifier. An X such that g(X) < 0 is assigned the label child. If
g(X) > 0, then X is assigned adult.

– The decision tree classifier depicted by the piecewise linear region in the figure is
not linear and it could be called a piecewise linear classifier. It may be described by

Adult : (HEIGHT > h) ∨ [(HEIGHT < h) ∧ (WEIGHT > w)].

Child : (HEIGHT < h) ∧ (WEIGHT < w).

In this simple case, test patterns X1 and X2 are assigned to class Adult or equiva-
lently X1 and X2 are assigned the class label Adult by all the three classifiers.

Similarly, test patternX4 is assigned the label child by all the three classifiers. How-
ever, X3 is assigned the label adult by the nonlinear discriminant-based classifier
and the other two classifiers assign X3 to class child.,

It is possible to extend these ideas to more than two-dimensional spaces. In high-
dimensional spaces,

– the linear discriminant is characterized by a hyperplane instead of a line as in the
two-dimensional case.

– the nonlinear discriminant is characterized by a manifold instead of a curve.

– the piecewise linear discriminant characterizing the decision tree classifier contin-
ues to be piecewise linear discriminant, perhaps involving a larger size conjunc-
tion. So, learning a decision tree classifier in high-dimensional spaces could be
computationally prohibitive.

However, it is possible to classify X based on the value of g(X) irrespective of the
dimensionality of X (or the value of l). This needs obtaining an appropriate g(X). In
this chapter, we will concentrate on linear classifiers.

2.2 Linear Classifier [2–4]

A linear classifier is characterized by a linear discriminant function g(X) = WtX+
b, where W = (w1,w2, . . . ,wl)

t and X = (x1, x2, . . . , xl)t . We assume without loss
of generality that W and X ∈ R

l and b ∈ R.
Note that both the components of W and X are in linear form in g(X). It is also
possible to express g(X) as

18 2 Linear Discriminant Function

g(X) = b +
l∑

i=1

wixi

If we augment X and W appropriately and convert them into l + 1 dimensional
vectors, we can have a more acceptable and simpler form for g(X). The augmented
form is given by Xa = (1, x1, . . . , xl)t and Wa = (b,w1, . . . ,wl)

t , where Xa and
Wa are augmented versions of X and W , respectively. Note that both Xa and Wa are
l + 1 dimensional vectors.
Now

g(X) = Wt
aXa = b +

l∑
i=1

wixi

If we use the augmented vectors, then g(X) satisfies the two properties of linear
systems as shown below.

• Homogeneity: For c ∈ R, g(cX) = cg(X)

g(cX) = Wt
a(cXa) = cW t

aXa = cg(X)

• Additivity: For X1 and X2 ∈ R
l, g(X1 + X2) = g(X1) + g(X2)

g(X1 + X2) = Wt
a(X1a + X2a) = Wt

aX1a + Wt
aX2a = g(X1) + g(X2).

Note that if W and X are used in their l-dimensional form, then homogeneity and
additivity are not satisfied. However, convexity is satisfied as shown below.

• Convexity: For some α ∈ [0, 1], g(αX1 + (1 − α)X2) ≤ αg(X1) + (1 − α)g(X2)

g(αX1 + (1 − α)X2) = b + Wt(αX1 + (1 − α)X2)

= αb + (1 − α)b + αWtX1 + (1 − α)WtX2

= α(b + WtX1) + (1 − α)(b + WtX2) = αg(X1) + (1 − α)g(X2)

• Classification of augmented Vectors using Wa:

We will illustrate classification of patterns using the augmented representations of
the six patterns shown in Fig. 1.3. We show the augmented patterns in Table 2.1
along with these value of Wt

aXa for Wa = (−14, 1, 5)t .

http://dx.doi.org/10.1007/978-3-319-41063-0_1

2.3 Linear Discriminant Function 19

Table 2.1 Classification of augmented patterns using Wa = (−14, 1, 5)t

Pattern number Class label 1 x1 x2 Wt
aXa

1 – 1 1 1 –8

2 – 1 2 2 –2

3 + 1 2 3 3

4 + 1 6 2 2

5 + 1 7 2 3

6 + 1 7 3 8

2.3 Linear Discriminant Function [2]

We have seen earlier in this chapter that a linear discriminant function is of the form
g(X) = WtX +b where W is a column vector of size l and b is a scalar. g(X) divides
the space of vectors into three parts. They are

2.3.1 Decision Boundary

In the case of linear discriminant functions, g(x) = WtX + b = 0 characterizes the
hyperplane (line in a two-dimensional case) or the decision boundary. The decision
boundary corresponding to g(X) (DBg) could also be viewed as

DBg = {X|g(X) = 0}

2.3.2 Negative Half Space

This may be viewed as the set of all patterns that belong to C−. Equivalently, the
negative half space corresponding to g(X) (NHSg) is the set

NHSg = {X|g(X) < 0} = C−

2.3.3 Positive Half Space

This is the set of all patterns belonging to C+. Equivalently, the positive half space
corresponding to g(X) (PHSg) is given by

PHSg = {X|g(X) > 0} = C+
Note that each of these parts is a potentially infinite set. However, the training dataset
and the collection of test patterns that one encounters are finite.

20 2 Linear Discriminant Function

Fig. 2.2 Linearly separable
dataset

X

X
X

X

X

X

O

O

O

O

O
O

X2

X
1

2.3.4 Linear Separability

Let X be a set of labeled patterns given by

X = {(X1,C1), (X2,C2), . . . , (Xn,Cn)}.
We say the set X is linearly separable if there is a W and b such that WtXi + b > 0
if Ci = C+ and WtXi + b < 0 if Ci = C− for i = 1, 2, . . . , n.

We can think of employing linear classifiers when the samples/set of patterns is
linearly separable. Consider the two-dimensional patterns shown in Fig. 2.2. They
are linearly separable. If they are linearly separable, then we can have infinite number
of LDFs associated as shown in the figure.

2.3.5 Linear Classification Based on a Linear Discriminant
Function

A linear classifier is abstracted by the corresponding ldf , g(X) = WtX + b. The
three regions associated with g(X) are important in appreciating the classifier as
shown in Fig. 2.3.

1. The decision boundary or the hyperplane associated with g(X) is the separator
between the two classes, the negative and positive classes. Any point X on the
decision boundary satisfies g(X) = 0.

If X1 and X2 are two different points on the decision boundary, then

WtX1 + b = WtX2 + b = 0 ⇒ Wt(X1 − X2) = 0.

This means W is orthogonal to (X1 − X2) or the line joining the two points X1

and X2 or the decision boundary. So, W is orthogonal to the Decision boundary.

2.3 Linear Discriminant Function 21

W

1

2

g(X) > 0

g(X) < 0

g(X) = 0

X

X

Fig. 2.3 Three regions associated with g(X) = WtX + b

This means that there is a natural association between W and the decision bound-
ary; in a sense if we specify one, the other gets fixed.

2. The Positive Half Space: Any pattern X in this region satisfies the property that
g(X) = WtX + b > 0. We can interpret it further as follows:

a. Role of b: We can appreciate the role of b by considering the value of g(X) at
the origin. Let b > 0 and X is the origin. Then g(0) = Wt0 + b = 0 + b =
b > 0. So, at the origin 0, g(0) > 0; hence the origin 0 is in the positive half
space or PHSg .

If b > 0, then the origin is in the positive half space of g(X).

Now consider the situation where b = 0. So, g(X) = WtX + b = WtX. If
X is at the origin, then g(X) = g(0) = Wt0 = 0. So, the origin satisfies the
property that g(X) = 0 and hence it is on the decision boundary.

So, if b = 0, then the origin is on the decision boundary.

b. Direction of W : Consider an LDF g(X) where b = 0. Then g(X) = WtX.
If X is in the positive half space, then g(X) = WtX > 0. We have already
seen that W is orthogonal to the decision boundary g(X) = 0. Now we will
examine whether W is oriented toward the positive half space or the negative
half space.

If b = 0 and X is in the positive half space, then g(X) = WtX > 0. Now
relate WtX with the cosine of the angle between W and X. We have

22 2 Linear Discriminant Function

cosine(W,X) = WtX
||W || ||X|| ⇒ WtX = cosine(W,X) || W || || X ||.

So, given that WtX > 0, we have cosine(W,X) || W || || X || > 0

We know that || W ||> 0 and || X ||> 0. So,

cosine(W,X) > 0.

This can happen when the angle, θ , between W and X is such that −90 <

θ < 90 which can happen when W is pointing toward the positive half space
as X is in the positive half space.

3. The Negative Half Space: Any point X in the negative half space is such that
g(X) < 0. Again if we let b = 0 and consider a pattern, X, in the negative
class, then WtX < 0. This means the angle, θ , between X and W is such that
90 < θ < −90. This also ratifies that W points toward the positive half space.

Further, note that for b < 0 andX in the negative half space, g(X) = WtX+b < 0
and evaluated at the origin, g(0) = Wt0 + b = b < 0. So, if b < 0, then the
origin is in the negative half space.

So, the roles of W and b in the LDF g(X) = WtX + b are given by

• The value of b decides the location of the origin. The origin is in thePHSg if b > 0;
it is in the NHSg if b < 0 and the origin is on the decision boundary if b = 0. It is
illustrated in Fig. 2.4

Note that there are patterns from two classes and the samples are linearly sep-
arable. There are three linear discriminant functions with different b values and
correspondingly the origin is in the negative space in one case (x1 = x2 − C1), on
the decision boundary in the second case (x1 = x2) and it is in the positive space

Fig. 2.4 Three decision
boundaries with same W

X X

O O

O O

X X X

X1

X
2

X = X

X = X + C

X = X− C 12 1

1 2

1 2 2

2.3 Linear Discriminant Function 23

in the third (x1 = x2 + C2). However, W is the same for all the three functions as
the decision boundaries are all parallel to each other.

• W is orthogonal to the decision boundary and it points toward the positive half
space of g as shown in Fig. 2.3.

2.4 Example Linear Classifiers [2]

It is possible to show that the MDC, Naïve Bayes classifier and others are linear
classifiers. Consider

2.4.1 Minimum-Distance Classifier (MDC)

In the case of MDC we assign X to C− if

|| X − m− ||2<|| X − m+ ||2 ⇒
XtX + mt−m− − 2mt−X < XtX + mt+m+ − 2mt+X.

We can simplify by canceling XtX that is common to both sides and bringing all the
terms to the left-hand side, we get

assign X to C− if (m+ − m−)tX + 1
2 (mt−m− − mt+m+) < 0.

This is the same as assigning X to C− if WtX + b < 0 where

W = (m+ − m−) and b = 1
2 (mt−m− − mt+m+).

So, MDC is a linear classifier characterized by an LDF of the form WtX + b.

2.4.2 Naïve Bayes Classifier (NBC)

In the case of NBC, we have

P(C−|X) =
l∏

i=1

P(xi|C−)P(C−)

and

P(C+|X) =
l∏

i=1

P(xi|C+)P(C+)

24 2 Linear Discriminant Function

We assign X to C− if P(C−|X) > P(C+|X) or equivalently when

l∏
i=1

P(xi|C−)P(C−) >

l∏
i=1

P(xi|C+)P(C+).

By applying logarithm both sides and rearranging terms, we have

l∑
i=1

nilog
P(xi|C−)

P(xi|c+)
+ log

P(C−)

P(C+)
> 0

where ni is the number of times the feature xi occurred in X. If X is a binary pattern,
then ni is either 1 or 0. If X is a document, then ni is the number of times term xi
occurred in X.

So, we assign X to C− if
l∑

i=1

wini + b > 0

where

wi = log P(xi|C−)

P(xi|c+)
, b = log P(C−)

P(C+)
.

So, Naïve Bayes Classifier is a linear classifier.

2.4.3 Nonlinear Discriminant Function

It is possible to view a nonlinear discriminant function as a linear discriminant
function in a higher dimensional space. For example, consider the two-dimensional
dataset of six patterns shown in Fig. 1.6.

We have seen that a nonlinear discriminant function given by x2
1 + 32x2 − 76 can

be used to classify the six patterns.

Here, X is a two-dimensional column vector given by X = (x1, x2)
t . However,

if we map it to a six-dimensional representation given by φ(X) = (1, x1, x2, x2
1, x

2
2,

x1x2)
t where

φ1(X) = 1, φ2(X) = x1, φ3(X) = x2, φ4(X) = x2
1, φ5(X) = x2

2, φ(X) = x1x2.

So, φ is a mapping from R
2 to R

6 such that

φ : (x1, x2)
t → (1, x1, x2, x2

1, x
2
2, x1x2)

t .

Then the nonlinear discriminant function x2
1 + 32x2 − 76 in R

2 is linear in R
6 cor-

responding to the φ(X) space.
If we choose W = (−76, 0, 32, 1, 0, 0) then, g(X) = Wtφ(X) which is a linear

discriminant function in φ(X).

http://dx.doi.org/10.1007/978-3-319-41063-0_1

References 25

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
2. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley (1970)
3. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press (2013)
4. Zhao, W., Chellappa, R., Nandhakumar, N.: Empirical performance analysis of linear discrimi-

nant classifiers, In: Proceedings of Computer Vision and Pattern Recognition, 25–28 June 1998,
pp. 164–169. Santa Barbara, CA, USA (1998)

Chapter 3
Perceptron

Abstract Perceptron is a well-known classifier based on a linear discriminant func-
tion. It is intrinsically a binary classifier. It has been studied extensively in its early
years and it provides an excellent platform to appreciate classification based on
Support Vector Machines. In addition, it is gaining popularity again because of its
simplicity. In this chapter, we introduce perceptron-based classification and some of
the essential properties in the context of classification.

Keywords Perceptron · Learning algorithm · Optimization · Classification · Order
of perceptron · Incremental computation

3.1 Introduction

Perceptron [1–3] is a well-known and is the first binary classifier based on the notion
of linear discriminant function. The perceptron learning algorithm learns a linear
discriminant function g(X) = Wt X + b from the training data drawn from two
classes. Specifically, it learns W and b. In order to introduce the learning algorithm,
it is convenient to consider the augmented vectors which we have seen in the previous
chapter.

Recall the augmented pattern Xa of the pattern X given by
Xa = (1, x1, x2, . . . , xl) and the corresponding weight vector Wa

Wa = (b,w1,w2, . . . ,wl).
We know that g(X) = Wt

a Xa and we assign X to class C− if g(X) < 0 and assign
X to C+ if g(X) > 0.

We assume that there is no X such that g(X) = 0 or equivalently there is no X
on the decision boundary. This assumption also means that the classes are linearly
separable.

It is convenient to consider yX where y is the class label of pattern X . Further,
we assume that
y = −1 i f X ∈ C− and
y = +1 i f X ∈ C+.

© The Author(s) 2016
M.N. Murty and R. Raghava, Support Vector Machines and Perceptrons,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-41063-0_3

27

28 3 Perceptron

Table 3.1 Classification based on g(yX) using Wa = (−14, 1, 5)t

Pattern number Class label 1 x1 x2 Wt
a yXa

1 – –1 –1 –1 8

2 – –1 –2 –2 2

3 + 1 2 3 3

4 + 1 6 2 2

5 + 1 7 2 3

6 + 1 7 3 8

We have
if X ∈ C−, then g(X) = Wt

a Xa < 0. Hence g(yX) = Wt
a yXa > 0 as y = −1.

If X ∈ C+, then g(X) = Wt
a Xa > 0. So, g(yX) = Wt

a yXa > 0 as y = +1.

So, g(yX) > 0 irrespective of whether X ∈ C− or X ∈ C+. This view simplifies
the learning algorithm. Now we consider augmented patterns shown in Table 2.1 and
show them in Table 3.1 using yXa for each Xa .

Note that the vector (−14, 1, 5)t classifies all the yXas correctly.
In the rest of this chapter we use the following notation, for the sake of brevity

and simplicity.

• We use W for Wa with the assumption that b is the first element in W
• We use X for yXa assuming that X is augmented by adding 1 as the first component

and the vector Xa is multiplied by y; we call the resulting vector X .
• We learn W from the training data.
• We use Perceptron learning algorithm for learning W .

We discuss the algorithm and its analysis next.

3.2 Perceptron Learning Algorithm [1]

1. Initialize i to be 0 and Wi to be the null vector, 0.
2. For k = 1 to n do

if Wi misclassifies Xk , that is if Wt
i Xk ≤ 0, then Wi+1 = Wi + Xk ; set i = i + 1.

3. Repeat Step 2 till the value of i does not change over an entire iteration (or epoch)
over all the n patterns.

3.2.1 Learning Boolean Functions

We can illustrate the algorithm with the help of a boolean function; we consider the
boolean or function. The truth table is shown in Table 3.2.

http://dx.doi.org/10.1007/978-3-319-41063-0_2

3.2 Perceptron Learning Algorithm 29

Table 3.2 Truth table of
inclusive OR

x1 x2 x1 ∨ x2

0 0 0

0 1 1

1 0 1

1 1 1

Table 3.3 Classification
based on vectors yXa

Pattern
number

Class label 1 x1 x2

1 –1 –1 0 0

2 1 1 0 1

3 1 1 1 0

4 1 1 1 1

We view it as a two-class problem where the output 0 is taken as indicating the
negative class and output 1 is an indicator of the positive class. After augmenting
and multiplying with the class label of y = −1 or +1, respectively, for the negative
or positive class patterns, we have the data shown in Table 3.3.

We start with W0 = (0, 0, 0)t . The stepwise updates on W are:

1. W0 misclassifies the first vector (−1, 0, 0)t as the dot product between them is 0.
So, W1 = W0 + (−1, 0, 0)t = (−1, 0, 0)t .

2. W1 misclassifies the second pattern (1, 0, 1)t as the dot product is −1 < 0. So,
W2 = W1 + (1, 0, 1)t = (0, 0, 1)t .

3. W2 misclassifies the third pattern (1, 1, 0)t ; the dot product is 0. So, W3 = W2 +
(1, 1, 0)t = (1, 1, 1)t .

4. Note that W3 classifies the fourth pattern (1, 1, 1)t correctly; the dot product is
3 > 0. Now we go through the patterns again starting from the first pattern. The
weight W3 fails to classify the first pattern (−1, 0, 0)t as the dot product is −1.
So, W4 = W3 + (−1, 0, 0)t = (0, 1, 1)t .

5. Note that W4 fails to classify the first pattern correctly even though it classifies
patterns numbered 2, 3, and 4. So, W5 = W4 + (−1, 0, 0)t = (−1, 1, 1)t .

6. W5 misclassifies the second pattern and so W6 = W5 + (1, 0, 1)t = (0, 1, 2)t .
7. W6 misclassifies the first pattern after having correctly classified patterns num-

bered 3 and 4, so W7 = W6 + (−1, 0, 0)t = (−1, 1, 2)t .
8. W7 misclassifies the third pattern; hence W8 = W7 + (1, 1, 0)t = (0, 2, 2)t .
9. W8 classifies the first pattern incorrectly. So, W9 = W8 + (−1, 0, 0)t =

(−1, 2, 2)t . Note that W9 classifies all the four patterns correctly. So, the dis-
criminant function g(X) is of the form g(X) = (−1, 2, 2)(1, x1, x2)

t . Hence the
decision boundary is of the form 2x1 + 2x2 = 1.

30 3 Perceptron

1

2

x

x

−

−

+ +(1,1)

(2,2)

(6,1) (7,1)

3 X − 3 X = 2
1 2

2 X − 3 X = 2
1 2

Fig. 3.1 Order dependence of the algorithm

3.2.2 W Is Not Unique

The W vector obtained may depend on the order in which we process the data points.
As soon as we get a W that classifies all the patterns correctly, we stop the iterations.
Consider the dataset shown in Fig. 3.1.

There are four patterns. They are from two classes as shown below:
Negative class: (1, 1)t , (2, 2)t

Positive Class: (6, 1)t , (7, 1)t

The augmented patterns after multiplying with y are:
Negative class: X1 = (−1,−1,−1)t , X2 = (−1,−2,−2)t

Positive class: X3 = (1, 6, 1)t , X4 = (1, 7, 1)t

• If we use the patterns in the given order, that is X1, X2, X3, and X4, then
W0 = (0, 0, 0)t and the algorithm stops at W4 = (−2, 2,−3)t . So, the decision
boundary is 2x1 − 3x2 = 2 and is depicted using a broken line.

• If we use the order, X4, X3, X1, and X2, then we get W4 = (−2, 3,−3)t

starting with W0 = (0, 0, 0)t and W4 correctly classifies all the four patterns; here
the decision boundary is 3x1 − 3x2 = 2.

3.2.3 Why Should the Learning Algorithm Work?

• Algebraic Argument:
If Wi has misclassified Xk , then Wt

i Xk ≤ 0. Note that
Wt

i+1Xk = (Wi + Xk)
t Xk = Wt

i Xk + Xt
k Xk

3.2 Perceptron Learning Algorithm 31

x

x
2

1

W

W

P

PN

N

P

1

2

3

i

i+1

DBi

DBi+1

1

2

Fig. 3.2 Geometric support for the update of Wi

So, Wt
i+1Xk > Wt

i Xk because Xt
k Xk = || Xk ||2> 0 as squared euclidean norm is

positive.
As a consequence Wi+1 is better suited to classify Xk than Wi and Wt

i+1Xk can be
positive even if Wi Xk is not.

• Geometric Argument:
We illustrate how Wi is updated when a pattern is misclassified by it. Consider the
two-dimensional dataset shown in Fig. 3.2.
We have Wi and the corresponding decision boundary DBi as shown in the figure.
Clearly Wi misclassifies P3 and Wi+1 is obtained by adding P3 to Wi by parallel-
ogram completion as shown in the figure.
Note that Wi+1 (indicated by the broken line) correctly classifies P3. Also note the
corresponding decision boundary DBi+1 that is orthogonal to Wi+1.

3.2.4 Convergence of the Algorithm

It is possible to show that the perceptron learning algorithm converges to a correct
weight vector in a finite number of iterations if the classes are linearly separable.
The proof goes as follows:

32 3 Perceptron

• Let {X1, X2, . . . , Xn} be the set of patterns obtained after augmentation and mul-
tiplication with the respective class label, -1 or +1. Let W be the correct weight
vector with unit norm. That is, Wt Xi > 0, for all i and || W || = 1.

• W1 = 0. Let the first pattern misclassified by W1 be X1.
So, W2 = W1 + X1.

• If for some k, Xk is misclassified by Wk , then Wk+1 = Wk + Xk .
• So, Wk+1 = W1 + X1 + X2 + · · · + Xk; W1 = 0.

By ignoring W0 and taking the dot product with W on both the sides, we have
WtWk+1 = Wt (X1 + X2 + · · · + Xk) > kα where

α = min Wt Xi

Xi

Note that α > 0 because Wt Xi > 0, for all Xi because W classifies all the n
training patterns correctly.

• Observe that Wt
k+1Wk+1 = (Wk + Xk)t (Wk + Xk)

= || Wk ||2 + || Xk ||2 +2Wt
k X

k

• So, Wt
k+1Wk+1 ≤|| Wk ||2 + || Xk ||2 as Wt

k X
k ≤ 0.

• ⇒ Wt
k+1Wk+1 ≤|| Wk−1 ||2 + || Xk−1 ||2 + || Xk ||2

•
≤|| W1 ||2 +

k∑
i=1

|| Xi ||2

• Noting that W1 = 0, we have

Wt
k+1Wk+1 = || Wk+1 ||2< kβ where β = max || Xi ||2

Xi

• Let θ be the angle between Wk+1 and W (note that || W || = 1). So, we have
• 1 ≥ cosθ = WtWk+1

||W || ||Wk+1|| = WtWk+1

||Wk+1|| > kα√
kβ

⇒ kα√
kβ

< 1 ⇒ k <
β

α2

• Note that both α and β are finite and positive. So, k is finite and the algorithm
has finite and deterministic convergence.

• However, α → 0 ⇒ k → ∞ and α → 0 when one of the patterns is close to
being orthogonal to W .

• So, perceptron learning algorithm converges to a correct W within a finite
number of iterations, k, over the data if the classes are linearly separable.
However, the value of k may increase if a pattern is very closely located to the
decision boundary or more appropriately it is very close to being orthogonal to W .

3.3 Perceptron Optimization

We can view perceptron as minimizing a cost function J (W) associated with the
patterns of the form yXa and we call them X as mentioned earlier in the current
chapter.

3.3 Perceptron Optimization 33

• Specifically, J (W) may be specified based on the patterns Xs, misclassified by
W . It is

J (W) = −
∑

j :Wt X j≤0

Wt X j

• Note that J (W) is nonnegative as it is based on the patterns misclassified by W ;
every X j misclassified by W is such that Wt X j ≤ 0.

• If a W classifies all the X j s correctly, then J (W) = 0.
• So, learning optimalW corresponds to obtaining the rightW that minimizes J (W).
• A simple approach based on the well-known gradient descent approach will be

adequate here.

J (W) = −

∑
j :Wt X j≤0

X j

• So, Wk+1 is obtained from Wk using the gradient descent approach by subtracting
the negative of the gradient from Wk . That is

•
Wk+1 = Wk − η
 J (Wk) = Wk + η

∑
j :Wt X j≤0

X j

• This is the so-called batch update rule as it adds to Wk all the patterns X j s that
are misclassified by Wk to get Wk+1.

3.3.1 Incremental Rule

A variant of the batch update rule is obtained by letting η = 1 and consider the first
pattern, X j that is misclassified by Wk . Let us call such an X j by Xk .

So, the incremental rule with a fixed step size (η = 1) is given by Wk+1 = Wk+Xk

where Xk is the first pattern misclassified by Wk . Note that this is precisely the
step we followed in the perceptron learning algorithm for which we have seen the
convergence.

3.3.2 Nonlinearly Separable Case

An important observation is that the perceptron learning algorithm can be used to
learn a nonlinear discriminant provided the form of the nonlinear function is known.

• For example, consider the one-dimensional two-class dataset shown in Table 3.4
• Let the form of the discriminant function be a + bx + cx2. This can be viewed

as a function of the form Wtφ(X) where W = (a, b, c)t and φ(x) = (x, x2); so
φa(x) = (1, x, x2). Using the form of φa(x) and class label y, the data can be
shown as in Table 3.5 after augmenting and multiplying with the class label.

34 3 Perceptron

Table 3.4 Linear
discriminant function

Pattern number x Class label

1 1 +
2 –1 +
3 2 +
4 –2 +
5 3 −
6 4 −
7 –3 −
8 –4 −

Table 3.5 Data augmented
and multiplied by the class
label value

Pattern
number

1 φ1(x) = x φ2(x) = x2

1 1 1 1

2 1 –1 1

3 1 2 4

4 1 –2 4

5 –1 –3 –9

6 –1 –4 –16

7 –1 3 –9

8 –1 4 –16

• We start withW0 = (0, 0, 0)t and go through the perceptron learning algorithm. We
get the vector (11, 0,−2)t that classifies all the eight patterns correctly (Wt X > 0).
The decision boundary is given by 11 − 2x2 = 0 or equivalently, x2 = 11

2 .
• So, perceptron learning algorithm can be used to find the weight vector W even

when the original problem is nonlinear. We need to transform it into a high-
dimensional space (φ space) appropriately.

• In the above example, the one-dimensional value x is mapped to a two-dimensional
vector in the φ space, where φ1(x) = x and φ2(x) = x2.

3.4 Classification Based on Perceptrons [2]

Perceptron can be used as a binary classifier based on learning the weight vector W .
It is such that

• If g(X) is linear in X , then we can use the form g(X) = Wt X . We can augment
W and X appropriately to take care of b in Wt X + b implicitly.

• If g(X) is nonlinear in X , then we can use g(X) = Wtφ(X) by transforming the
discriminant function that is nonlinear in X into a function that is linear in φ(X).

3.4 Classification Based on Perceptrons 35

There are a couple of important properties of the W vector obtained using the per-
ceptron learning algorithm.

1. Weight Vector and the Training Patterns: We have observed earlier that

Wk+1 = X1 + X2 + · · · + Xk =
k∑

i=1

Xi

This means that the final weight vector may be viewed as a sum of the training
patterns that were misclassified at various steps.

2. Weight Vector and Feature Selection: It is easy to observe that value of wi

indicates the importance of the i th feature.
For example, consider the vector W = (0.01,−34, 0, 17.5)t . It indicates that the
second and the fourth features are important in that order and and the third feature
can be ignored. Also the first feature can almost be ignored.

These properties of W are shared by all the classifiers based on linear discriminants
including SVMs and perceptrons.

3.4.1 Order of the Perceptron

An important characterization of perceptron is its order. Intuitively, it signifies the
inherent computational need. We can explain it in detail as follows:

• Exclusive OR (xor)
It is well known that xor(x1, x2) is not linear in x1 and x2. It is possible to
have a linear representation in a high-dimensional space involving φ1(X) = x1,

φ2(X) = x2, and φ3(X) = x1x2

Specifically, xor(x1, x2) = x1 + x2 − 2x1x2. The truth table is shown in Table 3.6.

• Odd Parity Predicate of size 3
Consider the predicate x1 + x2 + x3 is odd. It can be represented as a linear
discriminant functionin the φ space where φ(X) is given by:
φ(X) = (x1, x2, x3, x1x2, x2x3, x1x3, x1x2x3)

t . Let g(X) = x1+x2+x3−2x1x2−
2x2x3 − 2x1x3 + 4x1x2x3. The truth table of the odd parity predicate is given in
Table 3.7.

Table 3.6 Truth table of Exclusive OR

x1 x2 xor(x1, x2) x1 + x2 − 2x1x2

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 0

36 3 Perceptron

Table 3.7 Truth table of the odd parity predicate

x1 x2 x3 odd pari ty(X) g(X)

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 0

1 0 0 1 1

1 0 1 0 0

1 0 1 0 0

1 1 1 1 1

• The common features of xor and odd pari ty predicates are:

1. Both are nonlinear in the input features; xor is nonlinear in x1 and x2; and
odd pari ty is nonlinear in x1, x2, and x3.

2. In both the cases the corresponding linear representations are in higher dimen-
sional spaces involving the minterms of the respective input features.

3. Note that xor(x1, x2) involves x1, x2, and x1x2, all the three minterms. Sim-
ilarly, odd pari ty(x1, x2, x3) employs x1, x2, x3, x1x2, x2x3, x1x3, x1x2x3, all
the seven minterms.

4. If there are l boolean input variables x1, x2, · · · , xl , then the total number of
minterms is (

l
1

)
+

(
l
2

)
+ · · · +

(
l
l

)
= 2l − 1

5. Another property is that all the minterms of the same size have the same coef-
ficient. For example, in odd pari ty(x1, x2, x3), x1, x2, and x3 each has a
coefficient 1, x1x2, x2x3, and x1x3 have a coefficient −2 each, and x1x2x3 has
a coefficient 4.

• The support of a minterm is its size. For example, the support of x1 or x2 is 1;
support of x2x3 is 2; and the support of x1x2x3 is 3.

• We can use support to define the order of the predicate.
The order of a predicate is the smallest number k for which we can find a set of
features (φs), possibly in a higher dimensional space where every φ has a support
less than or equal to k.
For example, the order of xor(x1, x2) is 2 and that of odd pari ty(x1, x2, x3) is 3.
If a binary image has l pixels, with black pixel having value 1 and white pixel with
value 0, then the predicate the image has at least one black pixel is
x1 + x2 + · · · + xl > 0. So, the order of this predicate is 1. Note that this repre-
sentation involves x1 to xl where each feature has a support of 1.

3.4 Classification Based on Perceptrons 37

3.4.2 Permutation Invariance

Some predicates are invariant to permutations. For example, xor(x1, x2) is the same
as xor(x2, x1). Similarly odd pari ty(x1, x2, x3) and the image having at least one
black pixel are all permutation invariant.
However, a black pixel occurs before any white pixel is not permutation invariant.

• Positive Normal Form:
It is possible to represent any boolean function in terms of minterms only. Such a
representation is called the positive normal form.
For example, xor(x1, x2) = x1 x̄2 + x̄1x2. We can replace x̄ by 1 − x , to get
xor(x1, x2) = x1(1 − x2) + (1 − x1)x2 = x1 + x2 − 2x1x2

• Coefficients of Minterms:
It is possible to show that a permutation invariant predicate can be represented
in a linear form using only minterms, where minterms of the same size (or same
support) have the same coefficient.
We have seen this property earlier with respect to xor and odd pari ty. Similarly,
the predicate the image has at least one black pixel has a simpler representation
where only minterms of size 1 are used and the coefficient is 1 for all these
minterms. So, there is no nonlinearity here.

3.4.3 Incremental Computation

Some of the boolean functions have simpler (or linear) and others have complex (or
nonlinear) representations. The associated properties are

• Incremental:
If we consider an image of l pixels, then the predicate the image has at least one
black pixel can be incrementally computed. The corresponding g(X) is

g(X) = x1 + x2 + · · · + xl .

It is possible to represent a larger image with l + p pixels using
h1(X) = x1 + x2 + · · · + xl and
h2(X) = xl+1 + xl+2 + · · · + xl+p

g(X) = h1(X) + h2(X).

Such a formulation permits both incremental updation and also a suitable divide-
and-conquer approach for efficient computation. If required, g(X) could be com-
puted based on h1(X), h2(X), . . . , and hm(X) using
g(X) = h1(X) + h2(X) + · · · + hm(X).

38 3 Perceptron

• Non-incremental:
However, predicates like odd parity and xor are nonlinear and cannot be computed
incrementally as the order of such perceptrons increases with the increase in the
size of X .
Predicates like odd parity involve usage of all the minterms and so are highly
nonlinear. So, it is very difficult to extend the computation incrementally and/or
using a divide-and-conquer approach.

3.5 Experimental Results

We illustrate the working of Perceptron using the Iris dataset. This dataset has the
following characteristics:

• There are five features associated with each of data points/flowers.
• The first feature is Sepal Length of the flower in centimeters.
• The second feature is Sepal Width of the flower in centimeters.
• The third feature is Petal Length of the flower in centimeters.
• The fourth feature is Petal Width of the flower in centimeters.
• The fifth feature associated with each flower is a dependent feature; it can assume

one of three class labels from the Iris family of flowers. The class labels are Setosa,
Versicolour, and Virginica.

So there are three classes and each class is represented by a collection of 50 flow-
ers that are characterized by the five-dimensional vectors as specified before. It is a
popularly used dataset and it is well known that Setosa and Versicolour are linearly
separable in the four-dimensional feature space corresponding to the first four fea-
tures. Similarly, the pair Setosa and Virginica are also linearly separable. However,
Versicolour and Virginia are not linearly separable. In this chapter, we considered
the linearly separable pair of Setosa and Versicolour for our experiments.

We have used 60 patterns out of 100 for training and the remaining 40 patterns
for testing. Using the training data, we have learnt the augmented weight vector
(1, 1.2999, 4.1,−5.2,−2.1999)t . We have classified the test patterns using this
weight vector and found that all of them are correctly classified; so, the accuracy
of the perceptron classifier is 100 %.

• Reduced Dimensional Space
In order to test the behavior of the perceptron classifier, we have conducted exper-
iments using a subset of two features at a time. So, there are six possibilities. We
use i j to represent that features i and j (i �= j) are used in the experiment. We
provide the corresponding results in Table 3.8 based on the patterns from Setosa
and Versicolour.

3.5 Experimental Results 39

Table 3.8 Results of the perceptron classifier using two features at a time

Experiment number Features Weight vector Testing accuracy (%)

1 1 and 2 (2,−5.9, 9.2)t 97.5

2 1 and 3 (2, 3.4,−9.1)t 100

3 1 and 4 (2, 0.5,−5.6)t 100

4 2 and 3 (1, 4.1,−5.2)t 100

5 2 and 4 (0, 0.3,−1.2)t 100

6 3 and 4 (2,−0.5,−0.8)t 100

Table 3.9 Results of the perceptron classifier on the handwritten digits

Part number Rows Testing accuracy (%)

1 1–4 Not linearly separable

2 5–8 99.85

3 9–12 99.55

4 13–16 99.55

• Handwritten Digits
In this experiment, we have considered handwritten digits. A collection of 1000
handwritten 0s and 1000 handwritten 1s are collected. This data is divided into 667
for training and 333 for test in each class; the two classes are 0 and 1. Each pattern
is a matrix of 16 rows and 12 columns. We divide each pattern, both training and
test, into four parts. Each part consists of four rows (4 × 12 = 48 pixels). The first
part consists of rows 1–4; the second part has rows 5–8; rows 9–12 are in the third
part; and the fourth part has rows 13–16. Results obtained are shown in Table 3.9.

3.6 Summary

1. Perceptron is an important classifier based on linear discriminant functions.
2. The linear discriminant function is of the form g(X) = Wt X and W can be

learnt using the perceptron learning algorithm.
3. If the function is nonlinear in the input variables, then we can map X to a high-

dimensional space (φ(X)).
4. A nonlinear function in X can be represented as a linear function in φ(X) such

that g(X) = Wtφ(X). W can be learnt using the perceptron learning algorithm
here also.

5. The perceptron learning algorithm can be used to get the correct W when the
classes are linearly separable in X (input space) or in φ(X) (a high-dimensional)
space.

6. Even subsets of features might be adequate to learn the classifier.

40 3 Perceptron

7. Any boolean function could be represented as a linear discriminant in the space
of the minterms or in its positive normal form.

8. It is possible to show that the perceptron learning algorithm converges in a finite
number of iterations to a correct W .

9. However, W obtained could be different for different runs with different process-
ing orders.

10. It is possible to show that the perceptron criterion function is minimized to get
a W that classifies all the patterns correctly.

11. The W vector is obtained in an iterative manner by adding the previous weight
vector to a pattern misclassified by it. W is a sum of the training data points that
are misclassified by earlier weight vectors.

12. The most important property of perceptrons is the order of the perceptron. It
characterizes the computational difficulty associated with the perceptron.

References

1. Minsky, M.L., Papert, S.: Perceptrons: An Introduction to Computational Geometry, MIT Press
(1988)

2. Nielsen, M.: Neural Networks and Deep Learning, Online Book (2016)
3. Chaudhuri, S., Tewari, A.: Perceptron like algorithms for online learning to rank,

arXiv:1508.00842 (2015)

http://arxiv.org/abs/1508.00842

Chapter 4
Linear Support Vector Machines

Abstract Support vector machine (SVM) is the most popular classifier based on a
linear discriminant function. It is ideally suited for binary classification. It has been
studied extensively in several pattern recognition applications and in data mining.
It has become a baseline standard for classification because of excellent software
packages that have been developed systematically over the past three decades. In this
chapter, we introduce SVM-based classification and some of the essential properties
related to classification. Specifically we deal with linear SVM that is ideally suited
to deal with linearly separable classes.

Keywords Linear SVM ·Perceptron and SVM ·Maximum margin ·Dual problem ·
Binary classifier · Multiclass classification

4.1 Introduction

Support vector machine (SVM) [1–5] can be used as a binary classifier based on a
linear discriminant function. In this sense it resembles the perceptron.

4.1.1 Similarity with Perceptron

1. Both perceptron and SVM can be seen as employing the linear discriminant
function of the form Wt X + b.

2. In the case of perceptron, if the classes are linearly separable then it is possible
to get more than one W as shown in Fig. 3.1. In theory, there could be infinite
solutions or W vectors. In the case of SVM, we constrain the W to be a globally
optimal solution of a well-formulated optimization problem. So, W is unique.

3. If there is no linear discriminant in the input space or in the given variables, then
it is possible to get a linear discriminant in a high-dimensional space. We have
seen that in the case of boolean functions, we can transform any function into a
linear form in the space of all possible minterms.

© The Author(s) 2016
M.N. Murty and R. Raghava, Support Vector Machines and Perceptrons,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-41063-0_4

41

http://dx.doi.org/10.1007/978-3-319-41063-0_3

42 4 Linear Support Vector Machines

4. For example, xor(x1, x2) is not linear in (x1, x2). However, it is linear in
(x1, x2, x1x2) as examined in the previous chapter.

5. Let X = (x1, x2)
t be a two-dimensional vector and let φ : R2 → R

5 given by
φ(X) = (1, x1, x2, x2

1 , x2
2 , x1x2). Then

g(X) = a0 + a1x1 + a2x2 + a3x2
1 + a4x2

2 + a5x1x2 is a quadratic function in R,
the input space, and
g(φ(X)) = a0 + a1x1 + a2x2 + a3x2

1 + a4x2
2 + a5x1x2 is a linear function in the

5-dimensional φ(X) space, called the feature space.
6. SVM and perceptron are linear classifiers.
7. Both SVM and perceptron are inherently binary classifiers. They can be extended

to deal with multiclass classification using similar techniques which we will
discuss later.

4.1.2 Differences Between Perceptron and SVM

1. W Vector:
Perceptron can converge to different W vectors based on the order in which the
training patterns are processed.
However, SVM will produce the same W .

2. Optimization:
Perceptron criterion function, J (W). has value 0 if all the training patterns are
classified correctly by W . In other words, Wt Xi > 0 for all i . So, multiple solu-
tions, or W vectors could exist that lead to the same error.
It is possible to show, on the contrary, that the SVM criterion function will result
in the same W vector. Here, the W vector corresponds to the decision boundary
that maximizes separation between the two classes.

4.1.3 Important Properties of SVM [1–5]

1. Maximizing the separation between classes is based on a well-behaved optimiza-
tion problem. In the linearly separable case, it is possible to obtain the globally
optimal W .

2. It can learn nonlinear boundaries in the input space by mapping from the input
space to a high-dimensional feature space and learning a linear boundary in the
feature space; such a linear boundary corresponds to a nonlinear boundary in the
input space.

3. It employs a suitable similarity function in the input space and avoids making
expensive computations in the high-dimensional feature space.

4. It combines the training data points to obtain W and use the W for classification.

4.1 Introduction 43

In its simplest form, the SVM can be used to classify patterns belonging to two
classes that are linearly separable.

4.2 Linear SVM [1, 5]

Given the training set {X1, X2, . . . , Xn}, Xi ∈ R
l , i = 1, 2, . . . , n

Let the two classes be linearly separable. This means there is a W ∈ R
l and

a b ∈ R satisfying

1. Wt Xi + b > 0 ∀i with yi = 1
2. Wt X j + b < 0 ∀ j with y j = −1

We can put these two sets of inequalities together to write
3. yk(Wt Xk + b) > 0 ∀k with 1 ≤ k ≤ n.
4. Note that the decision boundary is given by Wt X + b = 0. There could be infi-

nitely many possible separating hyperplanes unless we constrain the selection.

4.2.1 Linear Separability

We can study the implication of linear separability as follows:

• Let the training set be {(X1,−1), (X2,−1), . . . , (Xn− ,−1), (Xn−+1,+1),

. . . , (Xn,+1)}
• Note that Wt X j + b′ = −ε j , where ε j > 0, ∀ j with y j = −1

Similarly, Wt Xi + b′ = εi , where εi > 0, ∀i with yi = 1

• So, we have Wt X j + b′ ≤ −ε− where− ε− = max − ε j

j
and

• We have Wt Xi + b′ ≥ ε+ whereε+ = min εi
i

.

• From these two sets of inequalities, we get
Wt Xi + b ≤ − ε ∀i with yi = −1 and
Wt X j + b ≥ ε ∀ j with y j = 1
where ε = ε++ε−

2 and b = b′ − ε+−ε−
2• By dividing the two inequalities by ε both sides, we get

Wt
n Xi + bn ≤ − 1 ∀i with yi = −1 and

Wt
n X j + bn ≥ 1 ∀ j with y j = 1

where Wn = (w1
ε

, w2
ε

, . . . , wl
ε
)t and bn = b

ε• Instead of using Wn and bn , we use W and b, respectively, for the sake of brevity.
So, we get the following inequalities
Wt Xi + b ≤ −1 ∀Xi such that yi = −1 and
Wt Xi + b ≥ 1 ∀Xi such that yi = 1

• Equivalently, we have
yi (Wt Xi + b) ≥ 1, ∀i (because yi ∈ {−1,+1})

44 4 Linear Support Vector Machines

• Note that a pattern Xi with yi = 1 will either lie on the hyperplane Wt Xi + b = 1
or it is in the positive side satisfying Wt Xi + b > 1.
Similarly, a pattern Xi with yi = − 1 will either fall on the hyperplane Wt Xi +
b = −1 or it is in the negative side satisfying Wt Xi + b < −1.
So, there is no Xi such that −1 < Wt Xi + b < 1 when the classes are linearly
separable.

• The hyperplanes Wt Xi + b = 1 and Wt Xi + b = −1 are called support planes.
• The set of training vectors that fall on these support planes can be support vectors.
• When the classes are linearly separable, we can suitably scale W and b to obtain

the support planes to satisfy Wt Xi + b = 1 and Wt Xi + b = −1.
• There is no pattern Xi falling between the two support planes. Further, the two

support planes are parallel to each other as shown in Fig. 2.4.

4.2.2 Margin

The distance between the two planes is called the Margin. It is possible to show
that the margin is a function of W . Training the SVM consists of learning a W that
maximizes the margin. So, margin is important in theory.

Consider the point X shown in Fig. 4.1. Let XProj be the projection of X onto the
hyperplane characterized by g(X) = 0. Let d be the normal distance between X and
the hyperplane, or the distance between X and XProj, as shown in the figure.

• It is possible to write X in terms of XProj and d as
X = XProj + d W

||W || because d is the magnitude and the direction is same as that

of W . The unit vector in the direction of W is W
||W || .

W

g(X) > 0

g(X) < 0

g(X) = 0

X
d

Proj
X

Fig. 4.1 Distance between a point and a hyperplane

http://dx.doi.org/10.1007/978-3-319-41063-0_2

4.2 Linear SVM 45

X1

X
2

W.X + b = −1

W.X + b = 1

W.X + b = 0

X

1/

X

+

−

|| W || Each

Fig. 4.2 Margin of the SVM

• Observe that
g(X) = Wt X + b = Wt (XProj + d W

||W ||) + b = Wt XProj + b + d WtW
||W || ⇒

g(X) = 0 + d WtW
||W || = d WtW

||W || because Wt XProj + b = 0 as XProj is on g(X) = 0.

• g(X) = d WtW
||W || ⇒ g(X) = d || W || .

So, d = g(X)

||W || .
• Hence, the distance between X and the hyperplane g(X) = 0 is given by d = g(X)

||W || .
This result is useful in quantifying the margin.

• Consider Fig. 4.2. We have depicted three parallel lines in the two-dimensional
space where W.X is the dot product and it is equal to Wt X . These are

1. W.X + b = −1 is the support line corresponding to the negative class.
2. W.X + b = 0 which characterizes the decision boundary between the two

classes.
3. W.X + b = 1 corresponds to the support plane of the positive class.

• Consider the point X+ on W.X + b = Wt X + b = 1. The normal distance from
X+ to the hyperplane (line in the two-dimensional case)W.X + b = 0 (g(X) = 0)

is given by
d = g(X+)

||W || ; however, g(X+) = 1 because X+ is on the line (hyperplane in higher
dimensions) g(x) = W.X + b = 1.
So, the distance d = 1

||W || .

46 4 Linear Support Vector Machines

• Similarly for the point X− on W.X + b = −1, the normal distance to the line
W.X + b = 0 is d = 1

||W || .• So, Margin is characterized by the sum of these distances and is
Margin = 1

||W || + 1
||W || = 2

||W || .

4.2.3 Maximum Margin

We are given that the classes are linearly separable. In such a case, we have the
margin that exists between the two support planes and is given by

Margin = 2

|| W || .

The idea is to find out aW that maximizes the margin. Once we get theW ,Wt X + b =
0 gives us the corresponding decision boundary.

More precisely, the decision boundary or the optimal hyperplane is given by the
solution of the following equivalent optimization problem.

Find W ∈ R
l , b ∈ R to maximize 2

WtW subject to yi (Wt Xi + b) ≥ 1, ∀i .
Instead of maximizing 2

WtW , we can equivalently minimize WtW
2 to get

minimize 1
2W

tW
subject to yi (Wt Xi + b) ≥ 1, i = 1, 2, . . . , n

This is an optimization problem with quadratic criterion function 1
2W

tW and the
constraints are in the form of linear inequalities yi (Wt Xi + b) ≥ 1.

It is possible to transform the constrained optimization problem into an uncon-
strained optimization problem using the Lagrangian given by

L = 1

2
WtW +

n∑
i=1

αi (1 − yi (W
t Xi + b)).

The optimization problem is formulated so that the resulting form is convex ensuring
globally optimal solution. In this case, the KKT conditions are both necessary and
sufficient. These are

	WL = W +
n∑

i=1

αi (−yi)Xi = 0 ⇒ W =
n∑

i=1

αi yi Xi .

δL

δb
= 0 ⇒

n∑
i=1

αi yi = 0.

αi ≥ 0 αi (1 − yi (W
t Xi + b)) = 0; and 1 − yi (W

t Xi + b) ≤ 0, ∀i.

4.2 Linear SVM 47

The important properties of the SVM are given by

1. We are given n training patterns and the training set of patterns is
{(X1, y1), (X2, y2), . . . , (Xn, yn)}

2. The vector W is given by

W =
n∑

i=1

αi yi Xi

which means W is a sum of the training patterns which are weighted by the
corresponding αs and ys.
We will see later that we need not consider all the training patterns; there will be
a small number of patterns with the corresponding αs to be nonzero. We need to
consider them only. The other patterns will have their corresponding α values to
be 0.

3. The equation
n∑

i=1

αi yi = 0

captures the property that
n−∑
i=1

αi =
n∑

i=n−+1

αi .

The sum of the αs corresponding to the negative class is equal to that of the
positive class. this property is useful in learning W .

4. Another important property, called the complementary slackness condition, is
given by αi (1 − yi (Wt Xi + b)) = 0, ∀i .

αi > 0 ⇒ yi (W
t Xi + b) = 1

which means that if αi > 0, then the corresponding Xi is on a support plane. It is
on the positive support plane if yi = 1 else it is on the negative support plane.

4.2.4 An Example

We illustrate the learning of W , b, and αs using a two-dimensional example
shown in Fig. 4.3. We have shown two Xs, negative examples, characterized by
(2, 1)t , and (1, 3)t and a O , a positive example, given by (6, 3)t .

48 4 Linear Support Vector Machines

Fig. 4.3 Learning W and b
from training data

X1

X
2

X

X

O

W.X + b = 1
W.X + b = 0

W.X + b = −1

• (2, 1)t and (1, 3)t are on the line Wt X + b = −1. So, we have

2w1 + w2 + b = −1

and

w1 + 3w2 + b = −1.

• Similarly, (6, 3)t is on the line Wt X + b = 1. So, we get

6w1 + 3w2 + b = 1.

• Solving the three equations, we get w1 = 2
5 , w2 = 1

5 , and b = −2.
• Note that (4, 2)t is on the boundary as Wt (4, 2)t + b = (2

5 , 1
5)(4, 2)t − 2 = 0.

Similarly, (7, 1)t is in the positive class and (2, 0)t is in the negative class.
• Further, ∑

i

αi yi = 0 ⇒ −α1 − α2 + α3 = 0 ⇒ α3 = α1 + α2.

• Also

W = (
2

5
,

1

5
)t = −α1(1, 3)t − α2(2, 1)t + α3(6, 3)t ⇒

α1 = 0; α2 = α3 = 1

10
.

Note that α1 = 0. So, it is possible that αs corresponding to some of the patterns on
the support planes could be 0.

4.3 Dual Problem 49

4.3 Dual Problem

If we substitute

W =
n∑

i=1

αi yi Xi

in the Lagrangian L , we have

L = 1

2

n∑
i=1

αi yi X
t
i

n∑
j=1

α j y j X j +
n∑

i=1

αi

⎛
⎝1 − yi (

n∑
j=1

α j y j X
t
j Xi + b)

⎞
⎠

By simplifying further, we get

L =
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiα j yi y j X
t
i X j + b

n∑
i=1

αi yi

By noting that
n∑

i=1

αi yi = 0,

we get

L =
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiα j yi y j X
t
i X j

This is the dual problem and it is in terms of αs only. We use LD for the dual and
it is

LD(α) =
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiα j yi y j X
t
i X j

such that αi ≥ 0, ∀i and
n∑

i=1

αi yi = 0

1. This is a convex optimization problem. It is possible to obtain α vector corre-
sponding to the global optimum.

2. The vector W = ∑n
i=1 αi yi Xi . So, optimization is over R

n irrespective of the
dimension of Xi .

3. Many of the αi are 0. Support Vectors (SVs) are the Xi s corresponding to the
nonzero αi s.

4. Let, S = {Xi |αi > 0} be the set of SVs.

50 4 Linear Support Vector Machines

a. By complementary slackness condition, Xi ∈ S ⇒ αi > 0 ⇒
yi (Wt Xi + b) = 1 ⇒.
Xi is the closest to the decision boundary.

b. We have W = ∑
i αi yi Xi = ∑

Xi∈S αi yi Xi .
Optimal W is a linear combination of the support vectors.

c. b = y j − Wt X j , where j is such that α j > 0.
d. Thus, both W and b are determined by α j , j = 1, 2, . . . , n.
e. We can solve the dual optimization problem to obtain the optimal values of

αi s. We can use the αs to get optimal values of both W and b.
f. Typically we would like to classify a new pattern Z based on the sign of

Wt X + b.
Equivalently, by using W = ∑

i αi yi Xi , we can classify a pattern Z based
on the sign of b + ∑

Xi∈S αi yi X t
i Z . We do not need to use W explicitly.

4.3.1 An Example

Let us consider the example data shown in Fig. 4.4. There are five points. These are

• Negative Class: (2, 0)t , (2, 1)t , (1, 3)t

• Positive Class: (6, 3)t , (8, 2)t

We have seen earlier that W = (2
5 , 1

5)t and b = −2 for the patterns (2, 1)t , (1, 3)t ,

(6, 3)t , first two from the negative class and the third from the positive class.
The α values are α1 = 0, α2 = α3 = 1

10 .
The remaining two patterns are such that the corresponding αs are 0.

1. (2, 0)t is from class −1. Based on the complementary slackness condition, we
have α(1 − y(Wt X + b)) = 0. Here, y = −1, W = (2

5 , 1
5)t , X = (2, 0)t , and

b = −2. So, α = 0 because 1 − y(Wt X + b) = − 1
5
= 0.

Fig. 4.4 α values

X1

X
2

X

X

O

W.X + b = 1
W.X + b = 0

W.X + b = −1

X

O

1

2

4.3 Dual Problem 51

2. (8, 2)t is from class +1. Here, α = 0 because 1 − y(Wt X + b) = − 3
5 .

3. So, the SVs are X1 = (2, 1)t , O2 = (6, 3)t and both have the same α value of
1

10 . The α values corresponding to the other three patterns are 0.
4. The points which are not support vectors or equivalently points with zero α value

are indicated using a rectangular box around them in Fig. 4.4.

4.4 Multiclass Problems [2]

Classifiers like perceptron and SVM are based on linear discriminants and are ideally
suited for two-class problems or binary classification problems. So, when the training
data is from C (> 2) classes, then we need to build a multiclass classifier from a
collection of binary classifiers. Some of the well-known possibilities are

1. Consider a pair of classes at a time; there are C(C−1)

2 such pairs. Learn a linear
discriminant function for each pair of classes.
Consider Fig. 4.5.

These decisions are combined to arrive at the class label among the three classes
C1, C2, and C3. Note that there are three binary classifiers as shown in the figure.
A problem is the ambiguous region marked in the middle. It is difficult to classify
a point in this region.

2. For class Ci let the complementary region be

C̄i =
C⋃

j=1, j
=i

C j

Learn a linear discriminant function to classify to Ci or C̄i for each i . Combine
these binary classifiers to classify a pattern.

Fig. 4.5 Multiclass
classification

C

C

C

C

3

2

2

1

C1 3C

Ambiguous

52 4 Linear Support Vector Machines

Fig. 4.6 Multiclass
classification

C

1

C
C

2

1

2

C

Ambiguous

Consider Fig. 4.6.

Note that even in this case, there is a region that is ambiguous as shown in the
figure.

4.5 Experimental Results

Here, we considered Iris Setosa and Iris Versicolour classes which are linearly sepa-
rable. We used the two features sepal length and petal length in building and testing
the classifiers. We have used 60 patterns for training and the remaining 40 for testing.
Both the perceptron and linear SVM classifiers have given us 100 % accuracy on the
test data set. The weight vectors learnt are given in Table 4.1. Here, Wp is the weight
vector learnt using Perceptron and Ws is the weight vector obtained using SVM.

4.5.1 Results on Multiclass Classification

SVM and Perceptron are inherently two-class classifiers. We use the traditional way
of one-against-rest method to perform multiclass classification.Weka, a popular suite
of machine learning software is used in realizing this.

We consider two well-known machine learning data sets: Iris and Pendigits. The
number of instances, attributes, and the results are listed below. The data set is split

Table 4.1 Directions of Wp and Ws

Wp Ws Cosine (Wp,Ws)

(2, 3.4,−9.1)t (−1, 0.9827,−1.96)t 0.80

4.5 Experimental Results 53

Table 4.2 Results on iris dataset with three classes

No of training training
patterns

No of test test patterns Number of correctly
classified patterns

Accuracy (Percentage)

75 75 71 94.67

83 67 63 94.03

90 60 57 95

99 51 49 96.08

105 45 43 95.56

110 40 38 95

113 37 35 94.60

117 33 32 96.67

120 30 29 96.67

into train and test sets, and fed into the multiclass classifier of Weka. Several iterations
are carried out with different train-test percentage splits. Finally the Mean and the
Standard Deviation are calculated. Also, we have provided the results for multiclass
classifier using a tenfold cross validation.

We give below the details of our experiments.

1. Iris Dataset
Number of Classes = 3
Number of Data Points = 150
Number of features = 5
Out of the 5 features, 4 of them are sepal length, sepal width, petal length, and
petal width. The fifth feature is a dependent feature; it is the class label which can
assume one of three values corresponding to the 3 classes, Setosa, Versicolour,
and Viriginica. We give the results in Table 4.2.
By using tenfold cross validation, we obtained an accuracy of 96 %.

2. Pendigits Dataset
Number of Classes = 10
Number of Data Points = 10992
Number of Features = 17
Out of the 17 features, the 17th feature is the class label assuming one of 10 values
corresponding the digit that is represented by 16 features. We have used Weka
software that is described in the book by Witten, Frank and Hall, the details of
which are provided in the references. We give results in Table 4.3.
Using tenfold cross validation, we could classify with an accuracy of 93.52 %

54 4 Linear Support Vector Machines

Table 4.3 Results on pendigit dataset with ten classes

No of training training
patterns

No of test test patterns Number of correctly
classified patterns

Accuracy (Percentage)

5496 5496 5145 93.61

5946 4946 4644 93.90

6695 4397 4124 93.79

7255 3737 3499 93.63

7694 3298 3101 94.02

8244 2748 2579 93.85

8574 2418 2270 93.88

8794 2198 2065 93.95

4.6 Summary

Classification based on SVMs is popular and is being used in a variety of applications.
It is good to understand why it works and also its shortcomings. Some of the important
features are

1. Both SVM and perceptron are linear classifiers.
2. It is possible to view the linear classifier to have the form Wt X + b. The training

patterns are used to learn W and b.
3. In both the SVM and perceptron, the W vector may be viewed as a linear com-

bination of the training patterns.

a. In perceptron the iterations converge to a Wk+1, a correct weight vector, and
it is

Wk+1 =
k∑

i=1

Xi ,

where Xk is misclassified by Wk .
b. In SVM, the weight vector W is given by

W =
∑
Xi∈S

αi yi Xi ,

where only support vectors matter.

4. Consider the data shown in Fig. 4.7.

Here, there are two points each from the two classes as given by

a. Negative Class: X1 = (1, 1)t , X2 = (1, 6)t

4.6 Summary 55

Fig. 4.7 Different support
vector Sets X

X

+

+_

_

2

1

SD

.

P 1

P
2

b. Positive Class: X3 = (5, 1)t , X4 = (5, 6)t i

The W and b vectors given by Perceptron and SVM can be obtained as follows:

a. If we use the order X1, X2, X3, X4, to compute the augmented W using
the perceptron learning algorithm, we get W = (5,−3)t andb = −3, the
corresponding decision is indicated using P1 in the figure.

b. If we use the order X3, X4, X2, X1, we get W = (12,−9)t , and b = −4
and we show the corresponding decision boundary using P2 in the figure.

c. Using the SVM, we get two possible support vector sets. They are
• The support vectors are X1 = (1, 1)t and X3 = (5, 1)t . Because of

∑
i αi

yi = 0, we get
−α1 + α3 = 0 ⇒ α1 = α3 = α. So,
W = α[(5, 1)t − (1, 1)t] = (4α, 0).
Also, because (1, 1)t is on the negative support line, we get
w1 + w2 + b = −1.
Similarly, for (5, 1)t which is on the positive support line, we have
5w1 + w2 + b = 1.
From these two equations, we getw1 = 1

2 andw2 = 0. So,W = (4α, 0)t =
(1

2 , 0)t ⇒ α = 1
8 .

From these, we get b = − 3
2 . So, the decision boundary, SD, is character-

ized by x1
2 − 3

2 = 0 as shown in the figure.
• The other possibility is to have X2 = (1, 6)t and X4 = (5, 6)t . Here also

we get W = (1
2 , 0)t and b = − 3

2 . Again the decision boundary is given
by SD. In both the cases, W is orthogonal to SD.

Even though both the Support Vector sets are different, we get the same W .
So, in the case of the SVM also we can have multiple solutions, in terms of
the SV sets. However, the W vector is the same.

5. Linear Support Vector Machine is a simple linear classifier. It is popularly used
in linearly separable cases.

56 4 Linear Support Vector Machines

6. It is also used in classifying high-dimensional datasets even if the classes are not
linearly separable. Some of the popular applications are text classification and
classification of nodes and edges in social networks.

7. Experimental results on Iris data do not show much difference between Perceptron
and Linear SVM in terms of accuracy.

References

1. Fan, R.-E., Chang, K.-W., Hsieh, C.-J, Wang, X.-R., Lin, C.-J.: LIBLINEAR: a library for large
linear classification. JMLR 9, 1871–1874 (2008)

2. Hsu, C.W., Lin, C.-J.: A comparison of methods for multiclass support vector machines. IEEE
Trans. Neural Networks 13(2), 415–425 (2002)

3. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge
University Press (2008)

4. Rifkin, R.M.: Multiclass Classification, Lecture Notes, Spring08. MIT, USA (2008)
5. Witten, I.H., Frank, E., Hall, M.A.: Data Mining, 3rd edn. Morgan Kauffmann (2011)

Chapter 5
Kernel-Based SVM

Abstract Kernel Support Vector Machine (SVM) is useful to deal with nonlinear
classification based on a linear discriminant function in a high-dimensional (kernel)
space. Linear SVM is popularly used in applications involving high-dimensional
spaces. However, in low-dimensional spaces, kernel SVM is a popular nonlinear
classifier. It employs kernel trickwhich permits us to work in the input space instead
of dealing with a potentially high-dimensional, even theoretically infinite dimen-
sional, kernel (feature) space. Also kernel trick has become so popular that it is used
in a variety of other pattern recognition and machine learning algorithms.

Keywords Kernel trick · Soft margin formulation · Kernel function · Nonlinear
decision boundary

5.1 Introduction

In the last two chapters, we have learnt the classifiers based on the assumption that
the data is linearly separable. However, we need to ask

5.1.1 What Happens if the Data Is Not Linearly Separable?
[2–4, 6]

The immediate observations are

1. There are no feasibleW and b such thatWt X + b = −1 if X is from the negative
class and Wt X + b = 1 if X belongs to the positive class.

2. There is nomargin. So, maximizing themargin does not make sense. It is possible
that a good number of practical problems fall under this category.

3. So, we cannot find the optimal hyperplane using the formulation considered in
the previous chapter when the data is not linearly separable.

4. Instead we create margin and optimize; in a sense we consider ignoring some
points to create the margin.

© The Author(s) 2016
M.N. Murty and R. Raghava, Support Vector Machines and Perceptrons,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-41063-0_5

57

58 5 Kernel-Based SVM

X1

X
2

+

+

+

− −

+

+

+

−

−
−

+

W.X + b = −1
W.X + b =0

e 1

e 2

W.X + b = 1

Fig. 5.1 Error in classification

We consider the corresponding formulation next.

5.1.2 Error in Classification

• Consider the two-dimensional data points shown in Fig. 5.1.
• A pattern X is assigned to class + if Wt X + b = W · X + b > 0. Similarly, X is
assigned to class − if Wt X + b = W · X + b < 0.

• A positive pattern is erroneously classified with an error of e1 that is greater than 1.
• A negative pattern is associated with an error of e2 (<1) as shown in the figure.
There is no misclassification here.

• We would like to minimize such errors. So, we include a term corresponding to
the sum of such errors in the criterion function. Hence, the optimization problem
boils down to

Minimize
1

2
|| W ||2 +C

n∑
i=1

ei

• There is no error in classifying Xi if ei = 0. Also ei cannot be negative. So,
ei ≥ 0 ∀i .

• Similarly, the constraints now can be relaxed as

Wt Xi + b ≥ −1 + ei , i f yi = −1 andWt Xi + b ≤ 1 − ei , i f yi = 1

Note that the introduction of error ei for the pattern Xi ∈ C+ ensures that the
corresponding constraint is satisfied. There are three possibilities:

1. The error ei = 0. In this case Xi is on the support plane (Wt Xi + b = 1) and so
is correctly classified.

5.1 Introduction 59

2. If ei < 1, thenWt Xi + b ≥ 1 − ei > 0. So, Xi will be correctly classified. How-
ever, Xi is on the margin.

3. If ei ≥ 1, then Wt Xi + b ≤ 0. So, Xi will be misclassified.

A similar analysis can be made for patterns in C−.
Note that irrespective of whether Xi ∈ C+ (yi = 1) or Xi ∈ C− (yi = −1), we
have
yi (Wt Xi + b) ≥ 1 − ei and also ei ≥ 0 ∀i .

5.2 Soft Margin Formulation [2]

Associating Lagrange variables with the constraints, we get the Lagrangian

L = 1

2
WtW + C

n∑
i=1

ei +
n∑

i=1

αi (1 − ei − yi (W
t Xi + b)) −

n∑
i=1

μi ei

where
μi is the Lagrange variable associated with the constraint ei ≥ 0 or equivalently,
−ei ≤ 0.

Similarly αi is the Lagrange variable associated with the constraint yi (Wt Xi +
b) ≥ 1 − ei or equivalently with 1 − ei − yi (Wt Xi + b) ≤ 0.

5.2.1 The Solution

1. By taking the gradient of L with respect to W and equating to 0, we get

W =
n∑

i=1

αi yi Xi

which is the same as the expression obtained in the hard margin formulation
studied in the previous chapter.

2. By differentiating L by b and equating to 0, we get

n∑
i=1

αi yi = 0.

Again this is the same as the one seen in the previous chapter.
3. δL

δei
= 0 ⇒ αi + μi = C

4. αi ≥ 0; μi ≥ 0; and ei ≥ 0 ∀i .
5. Also, αi (1 − ei − yi (Wt Xi + b)) = 0 and μi ei = 0. because of the constraints.

60 5 Kernel-Based SVM

5.2.2 Computing b

1. Consider an Xi for which αi is such that 0 < αi < C , then μi > 0 because αi +
μi = C .

2. If μi > 0, then ei = 0 as μi ei = 0 for all i .
3. Based on these values of αi and μi , we get (1 − yi (Wt Xi + b)) = 0 or

b = yi − Wt Xi as αi (1 − ei − yi (Wt Xi + b)) = 0.

5.2.3 Difference Between the Soft and Hard Margin
Formulations

1. In the soft formulation αi + μi = C and we require to ensure thatμi ≥ 0. So, we
need 0 ≤ αi ≤ C .

2. So, in the soft formulation, αi is bounded above by C .
3. However, in the hard formulation, αi is not bounded above. Recall that αi ≥ 0.
4. If we letC → ∞, then there is no difference between the two. This simply means

that we cannot tolerate any error; every ei = 0. As a consequence,

n∑
i=1

ei = 0

and so the error term

C
n∑

i=1

ei = 0.

5.3 Similarity Between SVM and Perceptron

1. In the case of Perceptron, the optimal value of W given by WP is

WP = minargW −
n∑

i=1

yi (W
t Xi + bP).

Here, the criterion function corresponds to sum of the errors and it is minimized
when none of the patterns is misclassified by WP or when the two classes are
linearly separable. Note that bP is the bias term in perceptron. So, perceptron
may be viewed as minimizing some error.

5.3 Similarity Between SVM and Perceptron 61

In the case of soft margin formulation of SVM, the criterion function is

1

2
|| WS ||2 +C

n∑
i=1

ei

where WS is the optimal weight vector corresponding to the soft margin SVM
and ei is the error corresponding to Xi . C is a hyper parameter to be specified by
the user. If C is chosen such that

n∑
i=1

ei

is larger than

1

2
|| WS ||2,

then SVM is also minimizing some error.
2. The constraints in Perceptron may be viewed as

yi (Wt
P Xi + bP) > 0

whereas for the soft margin SVM, they are
yi (Wt

S Xi + bS) ≥ 1 − ei .
If ei < 1, then the constraints have some similarity and are respectively
yi (Wt

P Xi + bP) > 0
and
yi (Wt

S Xi + bS) > 0.

3. Note that in the case of perceptron, the weight vector WP without augmentation
and multiplication with the class label value (of +1 or −1) is given by

WP =
n∑

i=1

βi yi Xi

where yi = 1 if Xi ∈ C+ and yi = −1 if Xi ∈ C−. Further, βi is a nonnegative
integer and corresponds to the number of times Xi is misclassified before the
percetron learning algorithm converges to the correct weight vector WP .
Similarly WS corresponding to the SVM with soft or hard margin is

WS =
n∑

i=1

αi yi Xi

where αi is nonnegative real number.

62 5 Kernel-Based SVM

4. In the softmargin formulation, selectionofC canbe crucial. There are applications
where the value of C could be very large. In such cases, it could be similar to the
hard margin formulation.
It could the case that some values of C might make the SVM work like the
perceptron.

5.4 Nonlinear Decision Boundary [1, 6]

So far we have considered large-margin SVM classifiers. It is possible, in some
applications, that the best linear boundary may not be adequate. In such a case, it is
useful to consider a nonlinear boundary.

One possibility is to map Xi to a higher dimensional space and obtain a linear
decision boundary in the new space.

Consider the example data shown in Fig. 5.2.
The terminology is

1. Input Space: Space of points Xi .
2. Feature Space: The space of φ(Xi) after transformation. In general, we can have

φ : R
m → R

m̂ .
3. Corresponding to the pair (Xi , yi) in the input space, we have the pair (Zi , yi) in

the feature space. Here, Zi = φ(Xi).
4. The problem boils down to finding the optimal hyperplane in the feature space

by solving the dual problem where Zt
i Z j replaces Xt

i X j .

−

−

−

−

−

−
−

−
−

−
−

−−
−

+

+

+

+

+

+

+

+
+
+

+

+

− −

−

−

−

−

−
−

−

+

+

+

+

+
+

+

+

++

+

−

−
−

−

+

+

 INPUT SPACE FEATURE SPACE

Fig. 5.2 Nonlinear decision boundary

5.4 Nonlinear Decision Boundary 63

5.4.1 Why Transformed Space?

1. A nonlinear boundary in the input space could be captured using a linear decision
boundary in the feature space.

2. If the transformation is appropriate, then it may be possible to realize a simple
linear classifier in the feature space that can capture the required nonlinearity in
the input space.

3. Typically feature space is of higher dimensionality compared to the input space.
4. Kernel trick is employed to perform the computation in the input space to obtain

the solution in the feature space.
5. It is important to note that we need not know the mapping φ explicitly; in theory,

it could be mapping a point X in the input space to the feature space that is infinite
dimensional.

5.4.2 Kernel Trick

1. Typically, a kernel function, K : Rm × R
m → R where K (Xi , X j) = φ(Xi)

tφ

(X j) is used.
2. In this setting, we have

W =
∑
Xi∈S

αi yiφ(Xi)

where S is the set of support vectors.
3. Given a test pattern X , we can classify it based onWtφ(X) + b which is given by

∑
Xi∈S

αi yiφ(Xi)
tφ(X) + b

4. Note that b is obtained by

b = yp − Wtφ(X p) = yp −
∑
Xi∈S

αi yiφ(Xi)
tφ(X p)

5. So, kernel computation involves computing dot product between vectors in the
feature space.

6. In other words, kernel computes some kind of similarity between the test pattern
and each of the support vectors in the feature space.

7. We have K (Xi , X j) = φ(Xi)
tφ(X j). So, the dot product in the feature space is

computed using the kernel computation in the input space.

64 5 Kernel-Based SVM

5.4.3 An Example

1. Let us consider using the kernel K (Xi , X j) = 1 + Xt
i X j .

2. Let Xi = (xi1, xi2, . . . , xil)t and X j = (x j1, x j2, . . . , x jl)
t .

3. K (Xi , X j) = 1 + xi1x j1 + xi2x j2 + · · · + xil x jl .

4. Consider the mapping φ(X) = (1, x1, x2, . . . , xl)t .
5. Nowφ(Xi)

tφ(X j) = 1 + xi1x j1 + xi2x j2 + · · · + xil x jl . Note that K (Xi , X j) =
φ(Xi)

tφ(X j).
6. So, we can compute K (Xi , X j) in the input space as shown in step 3. It is equiv-

alent to the computation in the feature space as shown in step 5.
7. This is a simple example dealing with a linear kernel. We can show such compu-

tational possibilities for a variety of other types of kernels also.

5.4.4 Example Kernel Functions

1. Linear Kernel: We have seen an example of this type of kernel already.
2. Polynomial Kernel:

K (Xi , X j) = (1 + Xt
i X j)

P

is a polynomial kernel of degree P .
3. Gaussian Kernel:

K (Xi , X j) = e− ||Xi−X j ||2
σ2 .

Note that the exponential function can have infinite terms in its expansion and so
the corresponding φ could be mapping an X into an infinite dimensional space.

5.5 Success of SVM [2, 5]

1. Theoretical issues:

a. The success of SVMmay be attributed, in theory, to the optimization problem
posed as a convex quadratic optimization problem. The criterion function has
a single optimum.

b. The notion ofmaximummarginmay not directly lead to an intuitively accept-
able classifier.

c. There are other theoretical results based on, for example, the Vapnik–
Chervonenkis (VC) dimension which have not been so useful in character-
izing the SVMs in a precise manner.

d. Kernel or similarity function is a powerful idea. The associated notion called
kernel trick has been exploited in a wide variety of pattern recognition tasks

5.5 Success of SVM 65

including the Nearest Neighbor classifier, K-Means algorithm, Fisher’s linear
discriminant, and Principal Component analysis.

e. Typically classifiers fail to do well in high-dimensional spaces. In order to
avoid overfitting, they require a larger number of training patterns. Here again
the kernel trick that permits us to deal with the low-dimensional input space
instead of the high-dimensional feature space.

2. Practical issues:

a. Soft margin formulation is the most practical aspect associated with SVMs.
b. In most of the high-dimensional applications including text classification lin-

ear SVMs are popularly used even when the classes are not linearly separable.
In such cases the problem is specified using the softmargin formulation; hence
tuning the value of the parameter C is important.

c. It is difficult to select the kernel function and tune the parameters associated
with the kernel, especially in high-dimensional spaces.

d. When the classes are not linearly separable, the notion of margin and max-
imizing its value are not meaningful. Margin itself does not exist when the
classes are not linearly separable.

e. Another important observation is that the support vectors are boundary pat-
terns or noisy patterns. Most of the other classifiers work using the core part
of the data. Whereas the SVM is distinct; it works using the set of support
vectors that lie on the boundaries.

f. One of the important practical issues is the tuning of the parameters to run
the SVM successfully.

g. The popularity of SVMs, in practice, could be attributed to the software pack-
ages that have been developed and used frequently by users. Notable contri-
butions, in this direction, are LIBSVM and LIBLINEAR.

5.6 Experimental Results

We have used both the Iris dataset and the Digit recognition data set in these experi-
ments. We provide the details below.

5.6.1 Iris Versicolour and Iris Virginica

We have considered the two classes that are not linearly separable in the Iris dataset.
We used the features Sepal Length and Petal length. The weight vectors are shown
in Table5.1.

We stop the iterations on the update of W of perceptron when a small number of
errors are made. The WP and WS vectors corresponding respectively to perceptron
and SVM are highly similar.

66 5 Kernel-Based SVM

Table 5.1 Results comparing
perceptron and SVM

Wp Ws Cosine (Wp,Ws)

(0, 14,−26)t (−1, 1.56,−2)t 0.92

5.6.2 Handwritten Digit Classification

Here we have used the perceptron and Kernel SVM in classifying the handwritten
digit data. We have obtained the following results:

• Perceptron: 100% accuracy
• Kernel SVM: 99.85% accuracy

5.6.3 Multiclass Classification with Varying Values
of the Parameter C

We have considered three additional benchmark datasets to study the behavior of
the soft margin SVM on multiclass problems and simultaneously testing its behavior
with changes in the parameter C . The details of the datasets considered are given in
Table5.2.

We varied the value of C between 1 and 128 in all the cases. We have used one
versus the rest classification scheme in all the three cases. Please see the lecture notes
of Rifkin that is given as a reference at the end. We have used the Weka software for
running the SVM classifier. The classification accuracies obtained using the linear
SVM are shown in Table5.3.

Some of the observations based on results shown in the Tables5.2 and 5.3 are:

1. On different datasets the SVM classifier has given different classification accu-
racies. However, the best accuracy in all the three cases is above 95%.

2. In the case of Pen digits dataset, the best accuracy is obtained at a larger value of
C . However, the dimensionality of the data is only 16. The USPS dataset has a
dimensionality of 256 followed by the DNA dataset that has a dimensionality of
180.

3. Note that as the value of C increases, the softness of the classifier decreases.
4. An important observation is that on different datasets, different C values, have

resulted in the best accuracy.

Table 5.2 Details of the benchmark datasets

Dataset Number of
classes

Number of
features

Number of
training patterns

Number of test
patterns

USPS 10 256 7291 2007

DNA 3 180 2000 1186

Pen digits 10 16 794 3498

5.7 Summary 67

Table 5.3 Classification accuracy: variation with the value of C

Value of parameter C % Accuracy (USPS) % Accuracy (DNA) % Accuracy (Pen
digits)

1 93.92 94.52 93.71

2 94.47 95.11 95.57

4 94.87 95.11 96.83

8 95.07 95.45 97.40

16 95.17 95.36 97.46

32 95.27 95.36 97.54

64 95.07 95.36 97.71

128 94.87 95.36 97.86

5.7 Summary

In this chapter, we have discussed the kernel SVM which can deal with nonlinearly
separable problems. Some of the important aspects of this classifier are

1. The kernel functions permit us to map patterns in the input space to a potentially
infinite dimensional feature space.

2. Even though the feature space is high-dimensional it is possible to exploit the
kernel properties to do the computations in the low-dimensional input space.

3. Kernel function is a kind of similarity function that considers a pair of patterns at
a time and computes the similarity between the two patterns.

4. Kernel trick is not only used in SVM-based classification, but also in a variety of
other applications.

5. Tuning the parameters when Gaussian kernels are used can be a challenge in
high-dimensional spaces.

6. The experimental results on some benchmark datasets show that the best C value
can be different for different datasets. So tuning C is a challenge in general even
while using the Linear SVM.

References

1. Asharaf, S., Murty, M.N., Shevade, S.K.: Multiclass core vector machine. In: Proceedings of
International Conference onMachine Learning, 20–24 June 2007, pp. 41–48. Corvallis, Oregon,
USA (2007)

2. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl.
Disc. 2(2), 121–167 (1998)

3. Rifkin, R.M.: Multiclass Classification, Lecture Notes, Spring08. MIT, USA (2008)
4. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press (2001)
5. Vishwanathan, S.V.N., Smola, A.J., Murty, M.N.: Simple SVM. In: Proceedings of International

Conference on Machine Learning, 21–24 August 2003, pp. 760–767. Washington, D.C., USA
(2003)

6. Witten, I.H., Frank, E., Hall, M.A.: Data Mining. Third Edition, Morgan Kauffmann (2011)

Chapter 6
Application to Social Networks

Abstract Social and information networks are playing an important role in several
applications. One of important problems here is classification of entities in the net-
works. In this chapter, we discuss several notions associated with social networks
and the role of linear classifiers.

Keywords Social network · Community detection · Link prediction · Learning ·
Similarity function · Supervised learning

6.1 Introduction

We discuss some of the issues related to representation of networks using graphs
after introducing some basic terms.

6.1.1 What Is a Network?

A network is a structure made up of a set of nodes and possible links between nodes.
To simplify the discussion, we assume that there is at most one link between any pair
of nodes. There are several applications where networks are commonly encountered
and analyzed. Some of the well-known networks are internet and electrical network.
For example, in the case of internet, a web page is a node in the network and a
hyperlink from a web page to another web page is a link.

6.1.2 How Do We Represent It?

Typically, such a network is represented by a simple graph. We illustrate it with the
help of an example network shown in Fig. 6.1.

© The Author(s) 2016
M.N. Murty and R. Raghava, Support Vector Machines and Perceptrons,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-41063-0_6

69

70 6 Application to Social Networks

Fig. 6.1 Example network

A

B

D

E

I

C F

G

H

Some of the observations are:

• There are nine nodes in the example network; they are labeled using A to I .
• Between some pairs of nodes, there is a link; for example, node pairs A,B and
G, I .

• There is no link between some pairs of nodes; for example, node pairs A,E and
H, I .

• The graph shown in Fig. 6.1 is undirected. For example, the link between A and B
may be represented either by 〈A,B〉 or 〈B,A〉. Both are same. Such a representation
conveys the notion of association between the two nodes. For example,A is a friend
of B is the same as B is a friend of A. Such relations that are symmetric can be
captured by undirected edges/links in the graph.

• There are three simple paths between A and E. These are

1. Path A,B,E; here B is linked to both A and E. So, B is a common neighbor of
A and E.

2. Path A,D,E; here D is linked to both A and E. So, D is a common neighbor of
A and E.

3. Path A,C,F,E; here neither C nor F are linked to both A and E. So, neither C
nor F is a common neighbor of A and E.

4. There is a notion of degree associated with each node. The degree of a node is
the number of links associated with the node. The nodes in the example graph
have the following degree profile:

• Nodes of degree 2: the nodes labeled B,C,D,F,G,H, I are of degree 2.
• Nodes of degree 3: observe that A has degree 3.
• Nodes of degree 5: node E has degree 5.

So, networks are represented using graphs. Further, graphs are popularly rep-
resented on the machine using two popular schemes. These are based on either
adjacency matrix or adjacency list.

6.1 Introduction 71

Table 6.1 Adjacency matrix for the graph in Fig. 6.1

Node
/Node

A B C D E F G H I

A 0 1 1 1 0 0 0 0 0

B 1 0 0 0 1 0 0 0 0

C 1 0 0 0 0 1 0 0 0

D 1 0 0 0 1 0 0 0 0

E 0 1 0 1 0 1 0 1 1

F 0 0 1 0 1 0 0 0 0

G 0 0 0 0 0 0 0 1 1

H 0 0 0 0 1 0 1 0 0

I 0 0 0 0 1 0 1 0 0

• Adjacency Matrix (AG):

– The adjacency matrix of a graph is a square matrix of size n × n where n is the
number of nodes in the graph.

– The ijth entry in the matrix is 1 if there is a link between nodes i and j; if there
is no link then the entry is 0.

– If the graph is undirected, then the adjacency matrix is symmetric also. The
adjacency matrix corresponding to the undirected graph in Fig. 6.1 is given in
Table 6.1.

– Number of Paths of Length 2:
The adjacency matrix AG of a graph G characterizes edges or paths of length 1.
We get paths of length 2 by considering the matrix A2

G(AG × AG). The matrix
A2
G for the example graph in Fig. 6.1 is given in Table 6.2

– Note that in A2
G the diagonal entries correspond to the degrees of the respective

nodes.

Table 6.2 Square of the adjacency matrix for the graph in Fig. 6.1

Node
/Node

A B C D E F G H I

A 3 0 0 0 2 1 0 0 0

B 0 2 1 2 0 1 0 1 1

C 0 1 2 1 1 0 0 0 0

D 0 2 1 2 0 1 0 1 1

E 2 0 1 0 5 0 2 0 0

F 1 1 0 1 0 2 0 1 1

G 0 0 0 0 2 0 2 0 0

H 0 1 0 1 0 1 0 2 2

I 0 1 0 1 0 1 0 2 2

72 6 Application to Social Networks

Table 6.3 Adjacency lists for
the graph in Fig. 6.1

Node Adjacency list

A 〈B,C,D〉
B 〈A,E〉
C 〈A,F〉
D 〈A,E〉
E 〈B,D,F,H, I〉
F 〈C,E〉
G 〈H, I〉
H 〈E,G〉
I 〈E,G〉

– Note that some entries in A2
G are 0 indicating that there are no paths of length 2

between the corresponding pair of nodes. For example, the entry for node pair
A,B is 0 meaning that there are no paths of length 2 between A and B.

– Observe that the entry for the pair A,E is 2 indicating that there are two paths of
length 2. Further this value also characterizes the number of common neighbors
between A and E.

– The number of paths of length 1 between A and F is 1. So, the number of
common neighbors between A and F is 1; the common neighbor here is node
C.

– Adjacency Lists:
In the adjacency lists representation of a graph, we represent for each node
the corresponding list of adjacent nodes. For the example graph in Fig. 6.1,
the adjacency lists are given in Table 6.3.
Adjacency lists representation offers sufficient flexibility to deal with dynamic
networks where both the nodes and edges can get added or deleted over time.
It is possible to obtain common neighbors of two nodes by considering nodes
present in the intersection of the lists corresponding to the two nodes.
However searching such sequential lists to find out whether a given edge/link
is present or not can be computationally prohibitive.
Such a list representation is popular in information retrieval.
In the current treatment we deal only with adjacency matrix representation.

6.2 What Is a Social Network? [1–4]

Ideally a social network is a network where the nodes represent humans and the
links/edges characterize interactions among humans. A typical and well-known
example of such a network is exploited by Facebook. Here, friendship is the property
characterized by a pair of nodes in the network and this property is symmetric.

6.2 What Is a Social Network 73

It is convenient to extend the notion to entities other than humans as the resulting
networks share a good number of interesting and useful properties. Some possibilities
are as following:

6.2.1 Citation Networks

Here each node represents a paper P and an edge between a pair of nodes, Pi and Pj

represents the fact that paper Pi cited paper Pj. Such a network has directed edges.
So, a directed graph is used to represent it.

6.2.2 Coauthor Networks

Here each node corresponds to an author and there will be a link between two nodes
if the corresponding authors have coauthored a paper. This can be represented by an
undirected graph as co-authorship is symmetric.

6.2.3 Customer Networks

In these networks, the nodes characterize customers and there is a link between two
customers if they have bought the same product in a departmental store.

6.2.4 Homogeneous and Heterogeneous Networks

In a homogeneous network all the nodes are of the same type. For example, a friends
network is homogeneous. All the nodes in the network are humans and there is a link
between two nodes if the corresponding people are friends.

On the other hand, in a heterogeneous network nodes could represent different
types of entities. For example, in an academic network, it is possible to have both the
authors and papers being represented by nodes. Further, the link between two authors
could be based on coauthorship (A and B are coauthors), a link between an author
and a paper could be author of (A is an author of P) relation, and a link between two
papers is cited (P cited Q). So, the edges also could be of different types based on
the types of their end vertices or nodes.

We consider analysis of only homogeneous social networks in this chapter.

74 6 Application to Social Networks

Log N(i)

1 2 4 5 63 97 8 10

Log i

Fig. 6.2 Power-law degree distribution

6.3 Important Properties of Social Networks [4]

1. Scale-Free Networks: It is observed that degree distribution follows a power law
asymptotically. Specifically, N(i), number of nodes of degree i is given by

N(i) ∝ i−α

where α is found to be in the range from 2 to 3 based on empirical studies. It is
called scale-free because the form of N(i) does not change with different scales
for i.
A plot of the log N(i) versus log i is shown in Fig. 6.2. Note that even if we scale
i by some factor c, the values on the X axis will shift by a constant, that is log(c);
this is because log(ci) = log(c) + log(i). Hence the specific form of the plot
will not change.
It means that in a given network there will be a large number of low degree
nodes and a small number of high degree nodes. This property is exploited in the
analysis of social networks.

2. The Small-World Phenomenon
It is based on the observation that between any pair of nodes there is a short path
made up of acquaintance/friendship links. This is also called as six degrees of
separation where it was observed that the median path length between a pair of
nodes is 6.
This property is useful in the analysis that involves lengths of the paths between
a pair of nodes.

3. Homophily
One of the important properties of a social network is that community structure
is manifest. So, nodes in a social network tend to form groups or clusters or more
appropriately communities such that nodes in the same community are densely
connected compared to nodes in different communities. The notion of homophily
may be interpreted as a pair of similar nodes get connected.

6.3 Important Properties of Social Networks 75

Community structure is exploited in solving other important problems associated
with social networks. This is because nodes in the same community are similar
due to homophily.

6.4 Characterization of Communities [2, 3]

It is possible to represent a social network as a graph. In an abstract sense, a graph
may be characterized using a set of nodes (V), a set of edges/links (E), and a set of
weights (W). So,

• G = {V ,E,W}, where
• V = set of nodes, {v1, v2, . . . , vn}
• E = set of edges ei,j ∈ E is the edge between vi and vj and
• W = set of weights

In a simple representation, we can have weight wi,j = 1 if there is an edge between
nodes vi and vj; if there is no edge, then wi,j = 0. This corresponds to a binary
representation that characterizes the presence or absence of an edge between pairs
of nodes. It is possible to have a more general representation where wi,j ∈ �; here
� is the set of real numbers. However, we deal with only binary representation in
the rest of the chapter. In such a case we can simplify the notation and view the
graph G as

– G = 〈V ,E〉 where
– V = set of nodes, {v1, v2, . . . , vn}
– E = set of edges present; here edge ei,j ∈ E if there is an edge between nodes vi

and vj, else ei,j /∈ E.

6.4.1 What Is a Community?

Intuitively we may say that nodes in a subset Vc of V are all in the same community
if they are all similar to each other; or equivalently every pair of nodes in Vc are
similar.

This is formally characterized using the notion of clustering coefficient, CCi,
defined as follows:

CC(vi) = 2 | Evi |
degreei (degreei − 1)

76 6 Application to Social Networks

B C

A

(a) (b)

A

B

C

D

Fig. 6.3 Community strength based on connectedness. a Well connected nodes. b Not so well
connected

• Evi is the set of edges among all pairs of neighbors of vi.
• |Evi | is the size of or number of elements in Evi .
• degreei is the degree of node vi.

We illustrate this notion using the simple graphs given in Fig. 6.3.
In Fig. 6.3a, each node is connected to every other node as shown by the triangle.

This is an example of a clique of size 3. Here, the clustering coefficient of each of
the 3 nodes is 1. For example, consider Node A. Its neighbors are B and C and there
is an edge between B and C. Note that
|EA| = 1 and degreeA = 2.

So, CC(A) = 2|EA|
degreeA (degreeA−1)

= 1.
So, different nodes have the same CC value.
If we consider Fig. 6.3b, the pair of nodes B and D are not connected. So, the

structure here is not a clique of size 4. So, clustering coefficient may not be 1 for all
the nodes in this undirected graph. The values are:

1. CC(A) = 0 as B and D are neighbors of A and there is no edge between them.
2. CC(B) = 1 as there is a link between the neighbors of B, that is A and C.
3. Similar to A, CC(C) = 0 and
4. Similar to B, CC(D) = 1.

6.4.2 Clustering Coefficient of a Subgraph

The clustering coefficient of a cluster (or a subgraph) is the average of the clustering
coefficients of all the nodes in the cluster (or the subgraph). Note that the clustering
coefficient of the graph in Fig. 6.3a is 1, whereas that of the graph in Fig. 6.3b is 0.5.

6.4 Characterization of Communities 77

It is possible to add meaningful edges/links between nodes that are not currently
connected usingLinkPrediction that takes into account the similarity between the two
end nodes of the possible link. This process increases the chances of the subgraphs
to improve their connectivity or become cliques or near cliques so that the clusters
as characterized by the clustering coefficient become more acceptable.

There are a variety of clustering algorithms that are used in detecting communities
of entities in a network. These are graph-theoretic algorithms including

• Spectral clustering algorithms
• Single-link and complete-link algorithms
• Clustering based on Influential nodes in the graph

Community detection has several applications. For example, it will help in dealing
with a community rather than individual nodes in classification based on homophily.

6.5 Link Prediction [1, 4]

Link prediction, in networks, is the process of predicting whether there will be a link
between a pair of nodes that are not linked currently.

For example, consider the graph in Fig. 6.3b. There is no link between nodes B
and D. Further, the nodes in the subgraph have a clustering coefficient of 0.5. If a
link is added between B and D, then the clustering coefficient of the graph increases
to 1.

There are several other important applications of link prediction.

• Suggesting a paper to be cited in a citation network. It is possible to use both the
structural properties like the common neighbors of the two concerned paper nodes
and also semantic properties like the common keywords between the two papers.
Networks where both the structure and semantics are used are called information
networks.

• Recommending a Supervisor: It involves recommending a supervisor B to a
student A where A and B are interested in similar research areas.

• Recommending a Collaborating Organization: This involves suggesting a
research group/university to an industry for possible collaboration.

• In heterogeneous networks, there could be several other applications like suggest-
ing a book, a paper, a university, or a job to an individual.

• All these recommendations are based on the notion of similarity between a pair of
nodes.

78 6 Application to Social Networks

6.5.1 Similarity Between a Pair of Nodes

A pair of nodes are similar to each other if they have something in common either
structurally or semantically. These are:

• Structural Similarity

1. Local similarity This type of similarity is typically based on the degree of each
node in the pair and/or the common neighbors of the two nodes. These similarity
functions are based on the structure of the network or the graph representing it.

2. Global similarity This kind of similarity is based on either the shortest path
length between the two nodes or weighted number of paths between the two
nodes. Here also we use graph structural properties.

• Semantic Similarity

In this type of similarity, we consider the content associated with the nodes in the
graph.

1. Keyword-based A paper can cite another paper if both have a set of common
keywords.

2. Fields of study In Microsoft Academic Network, each paper or author is associ-
ated with a set of Fields of study. Two researchers may coauthor a paper if they
have a good number of common fields of study.

3. Collaboration between two Organizations

It is possible to suggest an organization for possible collaboration to another
organization based on common semantic properties like keywords and fields of
study.

• Dynamic and Static Networks

If a network evolves over time (or with respect to other parameters) then we say
that the network is dynamic. In a dynamic network, the number of nodes and the
number of edges can change over time.
On the contrary, if a network does not change over time, then we call it a static
network.
Typically, most of the networks are dynamic; however, we can consider static
snapshots of the network for possible analysis. In this chapter, we consider such
static snapshots. Specifically, we assume that the set of nodes V is fixed and the
set of edges E can evolve or change. In link prediction schemes we discuss here,
we try to predict the possible additional links.

• Local Similarity

Most of the popular local measures of similarity, between a pair of nodes, need
to consider sets of neighbors of the nodes in the given undirected graph. So, we
specify the notation first. Let

6.5 Link Prediction 79

– Ne(A) = {x|A is linked with x} where Ne(A) is the set of neighbors of A.
– CN(A,B) == Ne(A) ∩ Ne(B) = set of Common Neighbors of A and B.

We rank the links/edges to be added to the graph/network based on the similarity
between the end vertices. So, we consider different ways the similarity could be
specified. We consider some of the popular local similarity functions next.

6.6 Similarity Functions [1–4]

It is possible that either the network is sparse or dense. Typically, a dense network
satisfies the power-law degree distribution, a sparse network may not satisfy. We
consider functions that work well on sparse networks/graphs first. These are:

1. Common Neighbors: The similarity function is given by

cn(A,B) = | CN(A,B) | = Number of Common Neighbors of A and B.

This captures the notion that larger the number of common friends of two people
better the possibility of the two people getting connected. It does not consider
the degrees of the common neighbor nodes.

2. Jaccard’s Coefficient: The Jaccard’s coefficient, jc, may be viewed as a nor-
malized version of cn. It is given by

jc(A,B) = | Ne(A) ∩ Ne(B) |
| Ne(A) ∪ Ne(B) | = cn(A,B)

| Ne(A) ∪ Ne(B) | .

It uses the size of the union of sets of neighbors of A and B to normalize the cn
score.

A

B

D

C E

F

G

H

Fig. 6.4 Local similarity functions

80 6 Application to Social Networks

6.6.1 Example

We illustrate these local similarity functions using the example graph shown in
Fig. 6.4.

1. Common Neighbors
cn(B,D) = | {A,C,E} | = 3
cn(A,E) = 2, cn(A,G) = 0.

2. Jaccard’s Coefficient
jc(B,D) = |{A,C,E}|

|{A,C,E}| = 1

jc(A,G) = 0

In the case of dense networks, the network satisfies power-law degree distribution.
In such a case, one can exploit the degree information of the common neighbors in
getting a better similarity value between a pair of nodes. Two popular local measures
for dense networks are

1. Adamic-Adar: Here the similarity is a weighted version of the common neighbors
where the weight is inversely proportional to the logarithm of the degree of the
common neighbor. The adamic-adar, aa similarity is defined as

aa(A,B) =
∑

vi∈CN(A,B)

1

log | Ne(vi) |

2. Resource Allocation Index
The resource allocation (ra) similarity index is a minor variant of aa where the
weight of a common neighbor is inversely proportional to the degree of the com-
mon neighbor, instead of logarithm of the degree.

We illustrate these similarity functions using the graph shown in Fig. 6.4.

1. Adamic-Adar
aa(B,D) = 1

log2 + 1
log2 + 1

log5 = 2.4

aa(A,G) = 0
2. Resource Allocation

ra(B,D) = 1
2 + 1

2 + 1
5 = 1.2

ra((A,G) = 0

Note that both aa and ra similarities give smaller weights for high degree common
neighbors and larger weights for low degree common neighbors.

6.6 Similarity Functions 81

6.6.2 Global Similarity

Global similarity between a pair of nodes will be based on a global computation.
Note that either the cn or jc value between A and G is 0 because these similarity
values are based on the local structure around the nodes in the pair. However, global
similarity could be computed between a pair of nodes that may not share any local
structure. Again, for sparse networks, the similarity is based on the degree of the end
vertices.

• Preferential Attachment: Here, the similarity pa(A,B) is given by

pa(A,B) = | Ne(A) | × | Ne(B) | .

This function prefers edges between a pair of high degree nodes; this makes sense
when the graph is sparse.

• Example in Fig. 6.4
Note that pa(A,E) = 2 × 5 = 10
pa(A,C) = pa(F,H) = 4 and pa(A,G) = 6.

In the case of dense networks, the global similarity functions exploit the distances
and/or paths between the two nodes. Two popular functions are:

1. Graph Distance: Here, the similarity, gds, between a pair of nodes A and B is
inversely proportional to the length of the shortest path between A and B.

gds(A,B) = 1

length of the shortest path(A,B)
.

2. Katz Similarity (ks): It is based on number of paths of some length l and each
such number is weighted based on a function of l. The weights are such that shorter
paths get higher weights and longer paths get smaller weights. Specifically, it is
given by

ks(A,B) =
∞∑
l=1

β l. | npathl | .

where npathl is the number of paths of length l between A and B.

We illustrate these similarity functions using the graph in Fig. 6.4.

1. gds(A,C) = 1
2 = 0.5. Note that there are two shortest paths between A and C;

one is through B and the other is via node D. Both are of length 2.
gds(A,G) = 0.33

2. ks(A,C) = 0.02 and ks(A,G) = 0.00262. Note that there are two paths of length
3; two paths of length 5, and six paths of length 4 between A and G. Further, the
value of β is assumed to be 0.1.

82 6 Application to Social Networks

Table 6.4 Link prediction
based on linear SVM

Community SVM prediction accuracy (%)

C1 85.33

C2 85

C3 67

C4 80

C5 80

• Structural and Semantic Properties for Link Prediction
It is possible to combine structure and semantics to extract features and use them
in supervised learning. A simple binary classifier that will learn two classes

– Positive class: a link exists between the pair of nodes
– Negative class: there is no link between the two nodes
– Features: both structural and semantic features. For example, in a citation net-

work
1. Structural local and global similarity values between the pair of nodes
2. Semantic keywords from the papers corresponding to the two nodes and also

from their neighboring nodes.

6.6.3 Link Prediction based on Supervised Learning

We conducted an experiment to test how link prediction can be done using SVM
classifier. The algorithm was specified by Hasan et al. details of which can be found
in the reference given at the end of the chapter.

For the sake of experimentation, we synthesized a network having 100 nodes. We
randomly formed five communities having 20 nodes each, where the density of links
is higher when compared to the rest of the network. Further, this data is divided into
train and test sets based on the edges. We choose pairs of nodes present in the train
set with no links between them, but are connected in the test set as positive patterns
and the ones which are not connected in the test set as negative patterns. We learn a
Linear SVM for predicting the links in the test set, or equivalently to build a binary
classifier and use it in classification.

We observed that the link prediction based on SVM classifier works well within
the communities rather than across communities in the network. Further, we have
different number of positive and negative patterns for each community. The commu-
nity C3 has more class imbalance. The SVM prediction accuracy results for the five
communities are given in Table 6.4.

6.7 Summary 83

6.7 Summary

1. Networks are playing an important role in several applications.
2. Friends network maintained by Facebook, Twitter network supported by Twitter

and academic network supported by Microsoft are some examples of well-studied
networks.

3. There are several properties that are satisfied by most of the networks. These
properties include power-law degree distribution, six degrees of separation on
an average between a pair of nodes, and exhibiting community structure. These
properties are useful in analyzing social networks.

4. We have examined link prediction in more detail here.
5. We have considered the role of both local and global similarity measures.
6. We have described the role of supervised learning in link prediction which can

exploit both structural and semantic properties of nodes in the network.
7. It is not only possible to analyze social networks where nodes are humans but also

other networks like citation networks and term cooccurence networks. Several
such networks can be analyzed using a set of properties that are satisfied by
networks.

References

1. Hasan, M.A., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In:
Proceedings of SDM 06 Workshop on Counter Terrorism and Security, 20–22 April, 2006,
Bethesda, Maryland, USA (2006)

2. Leskovec, J., Rajaraman, A., Ullman, J.: Mining oF Massive Datasets, Cambridge University
Press (2014)

3. Liben-Nowell, D., Kleinberg, J.M.: The link prediction problem for social networks. In: Pro-
ceedings of CIKM, 03–08 Nov 2003, New Orleans, LA, USA, pp. 556–559 (2003)

4. Virinchi, S., Mitra, P.: Link Prediction in Social Networks: Role of Power Law Distribution.
Springer, Springer Briefs in Computer Science (2016)

Chapter 7
Conclusion

Abstract In this chapter, we conclude by looking at various properties of linear
classifiers, piecewise linear classifiers, and nonlinear classifiers.We look at the issues
of learning and optimization associated with linear classifiers.

Keywords Perceptron · SVM ·Optimization · Learning ·Kernel trick · Supervised
link prediction

In this bookwehave examined someof thewell-known linear classifiers. Specifically,
we considered classifiers based on linear discriminant functions. Some of the specific
features of the book are:

1. We have discussed three types of classifiers

a. Linear classifiers
b. Piecewise linear classifiers
c. Nonlinear classifiers.

2. We have discussed classifiers like NNC and KNNC which are inherently nonlin-
ear. We have indicated how the discriminant function framework can be used to
characterize these classifiers.

3. We have discussed on how a piecewise linear classifier like the DTC can be
characterized using discriminant functions that are based on logical expressions.

4. Also we have considered well-known linear classifiers like the MDC and the
MinimalMahalanobisDistanceClassifier that are inherently linear in a two-class
setting. They can be optimal under some conditions on the data distributions.

5. Two popularly used classifiers in text mining are SVM and NBC. We have indi-
cated the inherent linear structure of the NBC in a two-class setting.

6. It is possible to represent even nonlinear discriminant functions in the form of
linear discriminant function, possibly in a higher dimensional space. If we know
the nonlinear form explicitly, thenwe can directly convert it into a linear function
and use all possible linear classifiers.

7. We described linear discriminant functions and show how they can be used in
linear classification.

© The Author(s) 2016
M.N. Murty and R. Raghava, Support Vector Machines and Perceptrons,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-41063-0_7

85

86 7 Conclusion

8. We indicated how the weight vector W and threshold b characterize the decision
boundary between the two classes and the role of negative and positive half
spaces in binary classification.

9. Wedescribed classification usingperceptron.Wedealtwith theperceptron learn-
ing algorithm and its convergence in the linearly separable case.

10. We have justified the weight update rule using algebraic, geometric, and opti-
mization viewpoints.

11. We have indicated how the perceptronweight vector can be viewed as aweighted
combination of the training patterns. These weights are based on the class label
and the number of times a pattern is misclassified by the weight vectors in the
earlier iterations.

12. The most important theoretical foundation of perceptrons was provided byMin-
sky and Papert in their book on Perceptrons. This deals with the notion of order
of a perceptron. They say that for some simple predicates the order could be 1
and hence it is easy to compute the predicate in a distributed and/or incremental
manner. However, for predicates like the exclusive or the order keeps increasing
as we increase the number of boolean/binary variables; so computation is more
difficult. The associated theoretical notions like order of a perceptron, permu-
tation invariance, positive normal form that uses minterms are discussed in a
simple manner through suitable examples.

13. We have discussed some similarities and differences between SVMs and per-
ceptrons.

14. We explained the notions of margin, hard margin formulation, and soft margin
formulation associated with the linear SVM that maximizes the margin under
some constraints. This is a well-behaved convex optimization problem that offers
a globally optimum solution.

15. We explained how multiclass problems can be solved using a combination of
binary classifiers.

16. We discussed the kernel trick that can be exploited in dealing with nonlinear
discriminant functions using linear discriminant functions in high-dimensional
spaces.

17. The kernel trick could be used to perform computations in the low-dimensional
input space instead of a possibly infinite dimensional feature or kernel space.

18. The theory of kernel functions permits dealing with possible infinite dimen-
sional spaces which could be realized using exponential kernel functions. Such
functions will have infinite terms in their series expansions. However, the the-
ory behind perceptrons considers all possible computable functions based on
boolean representations; in such a boolean representation that is natural to a dig-
ital computer, there is no scope for infinite dimensions. In a perceptron, we may
need to use all possible minterms that could be formed using some d boolean
features and the number of such minterms will never be more than 2d .

19. We have compared the performance of perceptrons and SVMs on some practical
datasets.

7 Conclusion 87

20. We have considered the application of SVMs in link prediction in social net-
works. We briefly discussed social networks, their important properties, and
several types of techniques dealing with such networks. Specifically, we have
examined

a. Community detection and clustering coefficient
b. Link prediction using local and global similarity measures
c. The role of SVM in link prediction based on supervised learning.

Glossary

g(X) Linear Discriminant Function
μ Mean of a class
Σ Covariance Matrix
C+ Positive class
C− Negative class
W Weight vector
b Threshold weight
α Weight of support vector
L Lagrangian
Xi i th pattern
yi Class label of the i th pattern
G Graph representing a network
V Set of vertices or nodes in the graph
E Set of edges in a graph

© The Author(s) 2016
M.N. Murty and R. Raghava, Support Vector Machines and Perceptrons,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-41063-0

89

Index

A
Academic network, 73, 78, 83
Accuracy, 38, 56, 66
Adamic-Adar, 80
Additivity, 18
Adjacency list, 70, 72
Adjacency matrix, 70–72
Algebraic, 30
Algorithm, 12
Ambiguous region, 51
Application, 83
Augmented pattern, 28, 30
Augmented vector, 18, 27

B
Batch update rule, 33
Bayes classifier, 9
Bayes rule, 13
Bias, 60
Binary classification, 16, 51
Binary classification problem, 14
Binary classifier, 27, 34, 41, 42, 51, 82, 86
Binary image, 36
Binary pattern, 24
Binary representation, 75
Boolean feature, 86
Boolean function, 10, 11, 28, 37, 40, 41
Boolean representation, 86
Boundary pattern, 65

C
Change of C , 66
Citation network, 73, 77, 82, 83
Class, 6
Class-conditional independence, 14

Class imbalance, 82
Class label, 6, 10, 16, 27, 34, 51, 61, 86
Classification, 1, 4, 6, 12, 34, 42, 82, 86
Classification accuracy, 66
Classifier, 16
Clique, 76, 77
Clustering algorithm, 77
Clustering coefficient, 75–77, 87
Coauthor network, 73
Coefficient, 36, 37
Common neighbor, 70, 72, 77–80
Community, 74, 75, 82
Community detection, 77, 87
Community structure, 74, 83
Complementary slackness, 47, 50
Complete-link algorithm, 77
Computing b, 60
Conjunction, 10
Constrained optimization problem, 46
Constraint, 46, 58, 59, 61
Convergence, 31, 86
Convex optimization, 46, 49, 86
Convex quadratic optimization, 64
Convexity, 18
Cosine similarity, 4, 5
Cost function, 32
Covariance matrix, 9
Criterion function, 58, 60, 61, 64
Customer network, 73

D
Dataset, 16
Decision boundary, 19, 20, 22, 27, 29–31,

42, 43, 45, 46, 50, 55, 86
Decision tree, 10, 11
Decision tree classifier (DTC), 10, 16, 17, 85

© The Author(s) 2016
M.N. Murty and R. Raghava, Support Vector Machines and Perceptrons,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-41063-0

91

92 Index

Degree, 70, 71, 78, 79
Degree of node, 70, 76
Degree of the common neighbor, 80
Dense network, 79–81
Diagonal entry, 71
Directed edge, 73
Directed graph, 73
Direction of W , 21
Discriminant function, 14, 29, 85
Disjunction, 10
Dissimilarity function, 3
Distance function, 3
Divide-and-conquer, 37
Document, 24
Dot product, 4, 5, 29, 32, 45, 63
Dual optimization problem, 50
Dual problem, 49, 62
Dynamic network, 72, 78

E
Edge, 70, 71, 76, 79
Epoch, 28
Error in classification, 58
Estimate, 10
Euclidean distance, 3, 5
Exclusive OR (XOR), 35
Exponential function, 64
Exponential kernel function, 86

F
Feature, 82
Feature selection, 35
Feature space, 42, 62, 63, 65, 67, 86
Field of study, 78
Fisher’s linear discriminant, 65
Friends network, 72, 83

G
Gaussian kernel, 64, 67
Geometric, 31
Global optimum, 49, 86
Global similarity, 78, 81, 83, 87
Globally optimal solution, 41, 46
Globally optimal W , 42
Gradient, 59
Gradient descent, 33
Graph, 69–71, 75, 78, 79, 81
Graph distance, 81
Graph-theoretic, 77

H
Handwritten digit, 39
Handwritten digit classification, 66
Hard margin formulation, 59, 62, 86
Heterogeneous network, 73, 77
High degree node, 74
High-dimensional dataset, 56
High-dimensional feature space, 42
High-dimensional space, 17, 35, 41, 65, 67,

86
Higher Dimensional Space, 62, 85
Homogeneity, 18
Homogeneous network, 73
Homophily, 74, 77
Hyper parameter, 61
Hyperlink, 69
Hyperplane, 17, 20, 44

I
Impurity, 10
Inclusive OR, 29
Incremental, 37
Incremental rule, 33
Incremental updation, 37
Inequality, 43
Infinite dimensional space, 64, 86
Influential node, 77
Information network, 77
Information retrieval, 72
Input space, 39, 41, 42, 62, 63, 65, 67, 86
Iris dataset, 38, 52, 56, 65
Iteration, 28, 31, 54, 86

J
Jaccard’s coefficient, 79, 80

K
Katz’s similarity, 81
Kernel function, 63–65, 67, 86
Kernel space, 86
Kernel SVM, 66
Kernel trick, 63–65, 67, 86
Keyword, 77, 78
KKT conditions, 46
K-Means algorithm, 65
K-Nearest neighbor classifier (KNNC), 7, 85

L
Labeled pattern, 20
Lagrange variable, 59

Index 93

Lagrangian, 46, 49, 59
L-dimensional, 16
Leaf, 10
Leaf node, 10
Learning algorithm, 27, 28, 30
LIBLINEAR, 65
LIBSVM, 65
Linear boundary, 42, 62
Linear classification, 20, 85
Linear classifier, 16, 17, 23, 24, 42, 54, 55,

85
Linear combination, 50, 54
Linear decision boundary, 62, 63
Linear discriminant, 17, 41, 51
Linear discriminant function (LDF), 12, 15–

17, 19, 20, 22, 24, 27, 35, 39, 41, 51,
85, 86

Linear inequality, 46
Linear Kernel, 64
Linear representation, 36
Linear separability, 20, 43
Linear structure, 85
Linear SVM, 43, 55, 56, 65, 82, 86
Linear SVM classifier, 52
Linear system, 18
Linearly separable, 22, 27, 31, 38, 39, 41–44,

46, 52, 55, 57, 60, 65, 86
Linguistic, 2
Link, 69
Link prediction, 77, 78, 82, 83, 87
Local similarity, 78, 83, 87
Local similarity function, 79
Local structure, 81
Logarithm of the degree, 80
Logical expression, 85
Low degree node, 74

M
Machine learning, 14
Mahalanobis distance, 9, 85
Margin, 44, 46, 59, 65, 86
Margin of the SVM, 45
Maximizing the margin, 57
Maximum margin, 46, 64
Measure of similarity, 78
Metric, 4
Minimum distance classifier (MDC), 8, 23,

85
Minterm, 36, 38, 40, 41, 86
Multiclass classification, 42, 51, 52, 86
Multiclass classifier, 16, 51
Multiclass problem, 66

N
Naïve Bayes classifier (NBC), 13, 23, 24, 85
Near clique, 77
Nearest neighbor classifier (NNC), 7, 65, 85
Necessary and sufficient, 46
Negative class, 6, 11, 29, 30, 45, 54, 57, 82
Negative example, 47
Negative half space, 19, 22, 86
Negative pattern, 58
Negative support plane, 47
Network, 69, 70, 78, 83
Node, 69
Noisy pattern, 65
Nonlinear boundary, 42, 62, 63
Nonlinear classifier, 17, 85
Nonlinear decision boundary, 8, 62
Nonlinear discriminant, 33
Nonlinear discriminant function, 12, 16, 24,

85, 86
Nonlinearly separable, 33, 67
Nonnegativity, 4
Normal distribution, 9
Null vector, 28
Number of common neighbors, 72
Number of paths, 78, 81

O
Odd parity, 35, 36, 38
Optimal classifier, 9
Optimal hyperplane, 46, 57, 62
Optimization, 32, 42
Optimization problem, 46, 58, 64
Order, 30, 38, 42
Order dependence, 30
Order of the perceptron, 35, 40, 86
Orthogonal, 20, 31
Overfitting, 65

P
Pair of nodes, 70, 74, 82
Parallelogram, 31
Parameter tuning, 65, 67
Path, 10
Path length, 71, 74, 78
Pattern, 1, 3, 16, 27
Pattern classification, 3
Pattern recognition, 64
Pattern representation, 2
Perceptron, 27, 35, 41, 42, 51, 52, 54–56,

60–62, 65, 66, 86
Perceptron classifier, 38
Perceptron criterion function, 42

94 Index

Perceptron learning algorithm, 27, 28, 31–
35, 39, 55, 61, 86

Permutation invariance, 37, 86
Piecewise linear classifier, 17, 85
Piecewise linear decision boundary, 8
Piecewise linear discriminant, 17
Pixel, 36
Polynomial Kernel, 64
Positive class, 6, 11, 29, 30, 45, 55, 57, 82
Positive example, 47
Positive half space, 19, 21, 22, 86
Positive normal form, 37, 40, 86
Positive pattern, 10, 58
Positive support plane, 47
Power-law degree distribution, 74, 79, 80, 83
Predicate, 35, 36, 38
Preferential attachment, 81
Principal component analysis, 65
Product, 73
Proximity function, 3
Purity, 10

Q
Quadratic criterion function, 46

R
Ranking, 4, 79
Recommendation system, 77
Representation, 2
Representation of a class, 6
Representation of a graph, 72
Resource allocation index, 80
Role of b, 21
Root, 10

S
Sample mean, 8, 9
Scale-free network, 74
Semantic property, 77, 83
Semantic similarity, 78
Separating hyperplane, 43
Set of edges, 75
Set of nodes, 75
Shortest path, 81
Similarity, 77
Similarity function, 3, 4, 42, 64, 67, 78–81
Simple graph, 69, 76
Simple path, 70
Single-link algorithm, 77
Six degrees of separation, 74, 83
Small-world phenomenon, 74

Social network, 69, 72–75, 83, 87
Social network analysis, 74, 83
Soft margin formulation, 59, 61, 62, 65, 86
Soft margin SVM, 61, 66
Solution, 59
Sparse network, 79, 81
Spectral clustering, 77
Split, 10
Square matrix, 71
Squared Euclidean distance, 4, 9
Squared Mahalanobis distance, 10
Static snapshot, 78
Structural, 2
Structural and semantic features, 82
Structural and semantic properties, 82
Structural property, 77, 83
Structural similarity, 78
Subgraph, 76
Supervised learning, 82, 83, 87
Support, 36
Support plane, 44, 45, 47, 48, 58
Support vector, 44, 49–51, 54, 55, 63, 65
Support vector machine (SVM), 1, 35, 41–

43, 54, 55, 61, 62, 85–87
Support vector set, 55
SVM criterion function, 42
Symmetric, 70–73
Symmetry, 4

T
Test dataset, 82
Test pattern, 7, 8, 15–17, 19, 63
Text mining, 85
Threshold b, 86
Training data, 7, 15, 28, 42, 48, 51
Training dataset, 19, 82
Training pattern, 9, 32, 35, 42, 47, 54
Training set, 43
Training vector, 44
Transformed space, 63
Triangle inequality, 4
Truth table, 28, 35, 36
Two-class problem, 29

U
Unconstrained optimization problem, 46
Undirected, 71
Undirected graph, 70, 73, 76, 78
Unique, 30, 41
Unit norm, 32
Unlabeled pattern, 16

Index 95

V

Vapnik–Chervonenkis (VC) dimension, 64

Vector, 41

Vector space, 2

W
Web page, 69
Weight updation, 86
Weight vector, 27, 31, 35, 38, 42, 47, 52, 54,

61, 65, 86
Weighted combination, 86
Weka, 52, 53, 66

	Preface
	Overview
	Audience
	Organization

	Contents
	Acronyms
	1 Introduction
	1.1 Terminology
	1.1.1 What Is a Pattern?
	1.1.2 Why Pattern Representation?
	1.1.3 What Is Pattern Representation?
	1.1.4 How to Represent Patterns?
	1.1.5 Why Represent Patterns as Vectors?
	1.1.6 Notation

	1.2 Proximity Function 1--4
	1.2.1 Distance Function
	1.2.2 Similarity Function
	1.2.3 Relation Between Dot Product and Cosine Similarity

	1.3 Classification 2--4
	1.3.1 Class
	1.3.2 Representation of a Class
	1.3.3 Choice of G(X)

	1.4 Classifiers
	1.4.1 Nearest Neighbor Classifier (NNC)
	1.4.2 K-Nearest Neighbor Classifier (KNNC)
	1.4.3 Minimum-Distance Classifier (MDC)
	1.4.4 Minimum Mahalanobis Distance Classifier
	1.4.5 Decision Tree Classifier: (DTC)
	1.4.6 Classification Based on a Linear Discriminant Function
	1.4.7 Nonlinear Discriminant Function
	1.4.8 Naïve Bayes Classifier: (NBC)

	1.5 Summary
	References

	2 Linear Discriminant Function
	2.1 Introduction
	2.1.1 Associated Terms 1--3

	2.2 Linear Classifier [2--4]
	2.3 Linear Discriminant Function 2
	2.3.1 Decision Boundary
	2.3.2 Negative Half Space
	2.3.3 Positive Half Space
	2.3.4 Linear Separability
	2.3.5 Linear Classification Based on a Linear Discriminant Function

	2.4 Example Linear Classifiers 2
	2.4.1 Minimum-Distance Classifier (MDC)
	2.4.2 Naïve Bayes Classifier (NBC)
	2.4.3 Nonlinear Discriminant Function

	References

	3 Perceptron
	3.1 Introduction
	3.2 Perceptron Learning Algorithm [1]
	3.2.1 Learning Boolean Functions
	3.2.2 W Is Not Unique
	3.2.3 Why Should the Learning Algorithm Work?
	3.2.4 Convergence of the Algorithm

	3.3 Perceptron Optimization
	3.3.1 Incremental Rule
	3.3.2 Nonlinearly Separable Case

	3.4 Classification Based on Perceptrons 2
	3.4.1 Order of the Perceptron
	3.4.2 Permutation Invariance
	3.4.3 Incremental Computation

	3.5 Experimental Results
	3.6 Summary
	References

	4 Linear Support Vector Machines
	4.1 Introduction
	4.1.1 Similarity with Perceptron
	4.1.2 Differences Between Perceptron and SVM
	4.1.3 Important Properties of SVM 1--5

	4.2 Linear SVM 1, 5
	4.2.1 Linear Separability
	4.2.2 Margin
	4.2.3 Maximum Margin
	4.2.4 An Example

	4.3 Dual Problem
	4.3.1 An Example

	4.4 Multiclass Problems 2
	4.5 Experimental Results
	4.5.1 Results on Multiclass Classification

	4.6 Summary
	References

	5 Kernel-Based SVM
	5.1 Introduction
	5.1.1 What Happens if the Data Is Not Linearly Separable? 2--4,6
	5.1.2 Error in Classification

	5.2 Soft Margin Formulation 2
	5.2.1 The Solution
	5.2.2 Computing b
	5.2.3 Difference Between the Soft and Hard Margin Formulations

	5.3 Similarity Between SVM and Perceptron
	5.4 Nonlinear Decision Boundary 1--6
	5.4.1 Why Transformed Space?
	5.4.2 Kernel Trick
	5.4.3 An Example
	5.4.4 Example Kernel Functions

	5.5 Success of SVM 2--5
	5.6 Experimental Results
	5.6.1 Iris Versicolour and Iris Virginica
	5.6.2 Handwritten Digit Classification
	5.6.3 Multiclass Classification with Varying Values of the Parameter C

	5.7 Summary
	References

	6 Application to Social Networks
	6.1 Introduction
	6.1.1 What Is a Network?
	6.1.2 How Do We Represent It?

	6.2 What Is a Social Network? 1--4
	6.2.1 Citation Networks
	6.2.2 Coauthor Networks
	6.2.3 Customer Networks
	6.2.4 Homogeneous and Heterogeneous Networks

	6.3 Important Properties of Social Networks 4
	6.4 Characterization of Communities 2--3
	6.4.1 What Is a Community?
	6.4.2 Clustering Coefficient of a Subgraph

	6.5 Link Prediction 1--4
	6.5.1 Similarity Between a Pair of Nodes

	6.6 Similarity Functions 1--4
	6.6.1 Example
	6.6.2 Global Similarity
	6.6.3 Link Prediction based on Supervised Learning

	6.7 Summary
	References

	7 Conclusion
	Glossary
	Index

