
Chapter 2
Proposal for Demonstrating
the Hong–Ou–Mandel Effect
with Matter Waves

Two-particle interference is a quintessential effect of quantum mechanics which
is perhaps most beautifully demonstrated by the Hong–Ou–Mandel effect. In this
phenomenon, the probability amplitudes of two indistinguishable photons entering
opposing inputs of a beam-splitter interfere destructively, in a manner which is not
describable by any classical theory. When realized with photons prepared in the
two-mode squeezed vacuum state [1], this two-particle interference also serves as
a demonstration of the strong non-classical correlations between the modes, in par-
ticular a violation of the Cauchy–Schwarz inequality. This elegant effect is thus
intrinsically related to a violation of a Bell inequality, as both phenomena rely on
underlying non-classical features of the quantum state.

In this chapter we outline a proposal to demonstrate the effect with massive par-
ticles, utilizing pairs of atoms produced by spontaneous four-wave mixing via col-
liding condensates, which, as demonstrated in Sect. 1.4.2, reduces in the simplest
model to the same two-mode squeezed vacuum state. However, unlike the two-mode
quantum optics scheme, the multimode nature of the collision halo motivates us to
formulate a new measurement protocol to quantify the effect in the atomic case.
An experimental demonstration of the effect has a two-fold impact for future tests
of a Bell inequality in this system. Firstly, the interferometric scheme required for
the Hong–Ou–Mandel effect, comprising of a series of laser-induced Bragg pulses
(the atom-optics analogs of mirrors and beam-splitters), is strongly related to the
Rarity–Tapster setup employed in Chap.3 and thus acts as a stepping-stone for any
experimental proposal involving atom-optics mirrors and beam-splitters. Secondly,
as discussed above, a true demonstration of the effect requires an interference vis-
ibility of more than 50% (relative to the background level of distinguishable paths
through the beam-splitter) which is equivalent to a violation of the classical Cauchy–
Schwarz inequality. Such non-classical correlations are a pre-requisite for a violation
of a Bell inequality.
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The remainder of this chapter is adapted from the published article: ‘Proposal for
demonstrating the Hong–Ou–Mandel effect with matter waves’ [R.J. Lewis-Swan
and K.V. Kheruntsyan, Nature Comm. 5, 3752 (2013)]. The supplementary informa-
tion of this article can be found in Appendix C.

2.1 Introduction

Since its first demonstration, the Hong–Ou–Mandel (HOM) effect [1] has become
a textbook example of quantum mechanical two-particle interference using pairs of
indistinguishable photons. When two such photons enter a 50:50 beam splitter, with
one photon in each input port, they both preferentially exit from the same output
port, even though each photon individually had a 50:50 chance of exiting through
either output port. The HOM effect was first demonstrated using optical parametric
down-conversion [1]; the same setup, but with an addition of linear polarisers, was
subsequently used to demonstrate a violation of a Bell inequality [2] which is of
fundamental importance to validating someof the foundational principles of quantum
mechanics such as quantum nonlocality and long-distance entanglement.

The HOM effect is a result of destructive quantum interference in a (bosonic)
twin-photon state, which leads to a characteristic dip in the photon coincidence
counts at two photodetectors placed at the output ports of a beam splitter. The
destructive interference occurs between two indistinguishable paths corresponding
to the photons being both reflected from, or both transmitted through, the beam
splitter. Apart from being of fundamental importance to quantum physics, the HOM
effect underlies the basic entanglingmechanism in linear optical quantum computing
[3], in which a twin-photon state |1, 1〉 is converted into a quantum superposition
1√
2
(|2, 0〉− |0, 2〉)—the simplest example of the elusive ‘NOON’ state [4]. Whereas

the HOM effect with (massless) photons has been extensively studied in quantum
optics (see [5, 6] and references therein), two-particle quantum interference with
massive particles remains largely unexplored. A matter wave demonstration of the
HOM effect would be a major advance in experimental quantum physics, enabling
an expansion of foundational tests of quantummechanics into previously unexplored
regimes.

Here we propose an experiment which can realise the HOM effect with matter
waves using a collision of two atomic Bose–Einstein condensates (BECs) (as in
Refs. [7–11]) and a sequence of laser-induced Bragg pulses. The HOM interferom-
eter uses pair-correlated atoms from the scattering halo that is generated during the
collision through the process of spontaneous four-wave mixing. The pair-correlated
atoms are being mixed with a sequence of two Bragg pulses [12, 13] in analogy
with the use of twin-photons from parametric down conversion in the optical HOM
scheme. TheHOMeffect is quantified via themeasurement of a set of atom-atom pair
correlation functions between the output ports of the interferometer. Using stochastic
quantum simulations of the collisional dynamics and the sequence of Bragg pulses,
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we predict a HOM-dip visibility of ∼69% for realistic experimental parameters.
A visibility larger than ∼50% is indicative of stronger than classical correlations
between the atoms in the scattering halo [10, 11, 14–16], which in turn renders our
system as a suitable platform for demonstrating a Bell’s inequality violation with
matter waves using a closely related Rarity–Tapster scheme [17].

2.2 Setup

The schematic diagram of the proposed experiment is shown in Fig. 2.1. A highly
elongated (along the x-axis) BEC is initially split into two equal and counterprop-
agating halves traveling with momenta ±k0 along z in the centre-of-mass frame.
Constituent atoms undergo binary elastic collisions which produce a nearly spher-
ical s-wave scattering halo of radius kr � 0.95|k0| [9] in momentum space due to
energy and momentum conservation. The elongated condensates have a disk shaped
density distribution in momentum space, shown in Fig. 2.1b on the north and south
poles of the halo. After the end of the collision (which in this geometry corresponds to
complete spatial separation of the condensates in position space) we apply two coun-
terpropagating lasers along the x-axis whose intensity and frequency are tuned to act
as a resonant Bragg π -pulse with respect to two diametrically opposing momentum
modes, k1 and k2 = −k1, situated on the equatorial plane of the halo and satisfying
|k1,2|=kr .

Previous experiments and theoretical work [7, 8, 10, 11, 18–23] have shown
the existence of strong atom-atom correlation between such diametrically opposite
modes, similar to the correlation between twin-photons in parametric down conver-

(a) (b)

Fig. 2.1 a Schematic diagram of the geometry of collision of two elongated Bose–Einstein con-
densates in position space. b Momentum space distribution of the atomic cloud showing the (disk
shaped) colliding condensates on the north and south poles of the spherical halo of scattered atoms
(see text for further details)
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sion. Applying the Bragg π -pulse to the collisional halo replicates an optical mirror
and reverses the trajectories of the scattered atoms with momenta k1 and k2, and
a finite region around them. We assume that the pulse is tuned to operate in the
so-called Bragg regime of the Kapitza–Dirac effect [13, 24] (diffraction of a matter-
wave from a standing light field), corresponding to conditions in which second- and
higher-order diffractions are suppressed. The system is then allowed to propagate
freely for a duration so that the targeted atomic wave-packets regain spatial overlap
in position space. We then apply a second Bragg pulse—a π/2-pulse—to replicate
an optical 50:50 beam-splitter, which is again targeted to couple k1 and k2, thus
realising the HOM interferometer.

The timeline of the proposed experiment is illustrated in Fig. 2.2a, whereas the
results of numerical simulations (see Methods) of the collision dynamics and the
application of Bragg pulses are shown in Fig. 2.2b–d: (b) shows the equatorial slice
of the momentum-space density distribution n(k, t) of the scattering halo at the end
of collision; (c) and (d) show the halo density after the application of the π and
π/2 pulses, respectively. The ‘banana’ shaped regions in (c) correspond to ‘kicked’
populations between the targetedmomenta around k1 and k2 in the original scattering

(a)

(b) (c) (d)

Fig. 2.2 a—Timeline of the proposed experiment;b–d—the results of numerical simulations show-
ing the momentum-space density distribution n(k) of scattered atoms on the equatorial plane of the
halo. In panel (a), VL (t) denotes the depth of the lattice potential formed by the Bragg lasers, with
the first hump indicating the mirror (π ) pulse, while the second hump—the beam-splitter (π/2)
pulse (the initial source-splitting pulse that sets up the collision of condensates is not shown for
clarity). Panel (b) shows the density distribution after the collision, at t1 = 65µs; c—after the π -
pulse, centred at t2 = 75µs and having a duration of τπ = 2.5µs (rms width of Gaussian envelope);
and d—after the final π/2 pulse, with �tfree = t3 − t2 = 85µs and τπ/2 = 2.5µs (see Methods for
further details; the durations shown on the time axis are not to scale). The momentum axes kx,y in
panels (b)–(d) are normalised to the collision momentum k0 ≡ |k0| (in wave-number units), which
in our simulations was k0 = 4.7 × 106 m−1. The simulations were carried out for an initial BEC
containing a total of N = 4.7×104 atoms of metastable helium (4He∗), prepared in a harmonic trap
of frequencies (ωx , ωy , ωz)/2π = (64, 1150, 1150)Hz, and colliding with the scattering length of
a = 5.3nm; all these parameters are very close to those realised in recent experiments [9, 10]
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halo, while (d) shows the density distribution after mixing. The density modulation
in (c) is simply the result of interference between the residual and transferred atomic
populations after the π -pulse upon their recombination on the beamsplitter. The
residual population is due to the fact that the pairs of off-resonance modes in these
parts of the halo (which are coupled by the same Bragg pulses as they share the same
momentum difference 2kr as the resonant modes k1 and k2) no longer satisfy the
perfect Bragg resonance condition and therefore the population transfer during theπ -
pulse is not 100% efficient (see Supplementary Information). As these components
have unequal absolute momenta, their amplitudes accumulate a nonzero relative
phase due to phase dispersion during the free propagation. The accrued relative
phase results in interference fringes upon the recombination on the beamsplitter,
with an approximate period of �k � πm/(�kr�tfree) � 0.1|k0|.

Due to the indistinguishability of the paths of the Bragg-resonant modes k1 and
k2 through the beam-splitter and the resulting destructive quantum interference, a
measurement of coincidence counts between the atomic populations in these modes
will reveal a suppression compared to the background level. To reveal the full struc-
ture of the HOM dip, including the background level where no quantum interference
occurs, we must introduce path distinguishability between the k1 and k2 modes. One
way to achieve this, whichwould be in a direct analogywith shifting the beam splitter
in the optical HOM scheme, is to change the Bragg-pulse resonance condition from
the (k1, k2) pair to (k1, k2 + êxδk), where êx is the unit vector in the x-direction.
The approach to the background coincidence rate between the populations in the
k1 and k2 modes would then correspond to performing the same experiment for
increasingly large displacements δk. Taking into account that acquiring statistically
significant results for each δk requires repeated runs of the experiment (typically
thousands), this measurement protocol could potentially pose a significant practical
challenge due to the very large total number of experimental runs required.

2.3 Results and Discussion

To overcome this challenge, we propose an alternative measurement protocol which
can reveal the full structure of theHOMdip from just oneBragg-resonance condition,
requiring only one set of experimental runs. The protocol takes advantage of the
broadband, multimode nature of the scattering halo and the fact that the original
Bragg pulse couples not only the targeted momentum modes k1 and k2, but also
many other pairs of modes which follow distinguishable paths through the beam-
splitter. One such pair, k3 = (kx , ky, kz) = kr (cos(θ), sin(θ), 0) and k4 = −k3,
located on the halo peak, is shown in Fig. 2.3a and corresponds to a rotation by angle
θ away from k1 and k2. The modes k3 and k4 are equivalent to the original pair in
the sense of their quantum statistical properties and therefore, these modes can be
used for the measurement of the background level of coincidence counts, instead of
physically altering the paths of the k1 and k2 modes. The angle θ now serves the
role of the ‘displacement’ parameter that scans through the shape of the HOM dip.
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(a) (b) (c)

Fig. 2.3 Panel (a) shows the schematic of a set of momentum modes affected by the Bragg pulses.
The diametrically opposite vectors k1 and k2 = −k1 show the targeted modes; their amplitude is
given by the halo peak radius, kr = |k1| = |k2|, which is equal to kr = 0.95|k0| in this part of
the halo [9]. Also shown are the to-be-measured momentum components k3 and k4 corresponding
to a rotation by θ away from the targeted modes, which couple, respectively, to k6 = k3 − 2k1
and k5 = k4 + 2k1 by the same Bragg pulses. Panels (b) and (c) show a topologically equivalent
optical scheme.Aχ(2) nonlinear crystal is optically pumped to produce twin-photons via parametric
down-conversion. In (b) we depict the archetypal optical HOM setup which corresponds to the case
of θ = 0 in the atom-optics scheme. A twin-photon state in modes k1 and k2 is first selected
from a broadband source, then mixed at the beam-splitter (BS) after reflection from the mirror
(M), and photon coincidence counts are measured between the two symmetric output ports of the
interferometer. In (c) we depict the optical setup which is equivalent to θ > 0 in the atom-optics
proposal. Two twin-photon states in (k3,k4) and in (k5,k6) are selected from the broadband source;
the asymmetry of the pairs about the optical axis of the interferometer means that the correlated
photons from the respective pairs will arrive at the beam-splitter at spatially separate locations and
will mix with photons from the other pair, which introduces distinguishability between the paths
through the interferometer

A topologically equivalent optical scheme is shown in Fig. 2.3b, c, which is in turn
similar to the one analysed in Ref. [25] using a broadband source of angle-separated
pair-photons and directionally asymmetric apertures.

In the proposed protocol, detection (after the final Bragg pulse) of atom coinci-
dences at the pair of originally correlated momenta k3 and k4 corresponds to both
paths being separately reflected on the beamsplitter (see Fig. 2.3c). Apart from this
outcome,weneed to take into account the coincidences between the respectiveBragg-
partner momenta, k6 and k5 (separated, respectively, from k3 and k4 by the same
difference 2kr as k1 from k2). Coincidences at k6 and k5 correspond to atoms of the
originally correlated momenta k3 and k4 being both transmitted through the beam
splitter (see Fig. 2.3c). Finally, in order to take into account all possible channels
contributing to coincidence counts between the two arms of the interferometer, we
need to measure coincidences between k3 and k6, as well as between k4 and k5. This
ensures that the total detected flux at the output ports of the beam splitter matches
the total input flux. In addition to this, we normalise the bare coincidence counts to
the product of single-detector count rates, i.e., the product of the average number of
atoms in the two output arms of the interferometer. We use the normalised correla-
tion function as the total population in the four relevant modes varies as the angle
θ is increased, implying that the raw coincidence rates are not a suitable quantity to
compare at different angles.
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With this measurement protocol in mind, we quantify the HOM effect using
the normalised second-order correlation function g(2)

RL(t)=〈:N̂R(t)N̂L(t):〉/〈N̂R(t)〉
〈N̂L(t)〉 after the π/2-pulse concludes at t = t4. Here, 〈N̂R〉 ≡ 〈N̂3〉+ 〈N̂5〉 and
〈N̂L〉≡〈N̂4〉+〈N̂6〉 correspond to the number of atoms detected, respectively, on the
two (right and left) output ports of the beam splitter, with the detection bins centred
around the four momenta of interest ki (i =3, 4, 5, and 6), for any given angle θ [see
Fig. 2.2e]. More specifically, N̂i (t)=∫

V(ki )
d3k n̂ (k, t) is the atom number operator

in the integration volume V(ki ) centred around ki , where n̂(k, t) = â†(k, t)â(k, t) is
the momentum-space density operator, with â†(k, t) and â(k, t) the corresponding
creation and annihilation operators (the Fourier components of the field operators
δ̂†(r, t) and δ̂(r, t), see Methods). The double-colon notation in 〈: N̂R(t)N̂L(t) :〉
indicates normal ordering of the creation and annihilation operators.

The integrated form of the second-order correlation function, which quantifies the
correlations in terms of atom number coincidences in detection bins of certain size
rather than in terms of local density-density correlations, accounts for limitations in
the experimental detector resolution, in addition to improving the signal-to-noise ratio
which is typically lowdue to the relatively lowdensity of the scattering halo; in typical
condensate collision experiments and in our simulations, the low density translates
to a typical halo-mode occupation of ∼0.1. We choose V(ki ) to be a rectangular box
with dimensions corresponding to the rmswidth of the initial momentum distribution
of the trapped condensate, which is a reasonable approximation to the mode (or
coherence) volume in the scattering halo [8, 22].

The second-order correlation function g(2)
RL(t4), quantifying the HOM effect as a

function of the path-distinquishability angle θ , is shown in Fig. 2.4. For θ =0, where
k3(4) =k1(2), we observe maximum suppression of coincidence counts relative to the
background level due to the indistinguishability of the paths. As we increase |θ | > 0,

Fig. 2.4 Normalised atom-atom correlation function g(2)
RL(t4) between the two arms of the inter-

ferometer, characterising the HOM effect as a function of the path-distinguishability angle θ . Error
bars denote sampling error from∼30,000 stochastic simulations (see Methods). The atom counting
bins are rectangular boxes with sides δkx = 0.01k0 and δky,z = 0.19k0 which approximate the
widths of the momentum distribution of the initial trapped BEC
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we no longermix k3 and k4 as a pair and their paths through the beam-splitter become
distinguishable; the path interference is lost, and we observe an increase in the mag-
nitude of the correlation function to the background level. We quantify the visibility
of the HOM dip via V =1−min{g(2)

RL(t4)}/max{g(2)
RL(t4)}, where min{g(2)

RL(t4)} occurs
for θ =0 and max{g(2)

RL(t4)} for sufficiently large θ such that momenta k5,6 lie outside
the scattering halo. Due to the oscillatory nature of the wings (see below) we take
max{g(2)

RL(t4)} to correspond to the mean of g(2)
RL(t4) for θ � π/8. Using this defin-

ition we measure a visibility of V � 0.69 ± 0.09, where the uncertainty of ±0.09
corresponds to taking into account the full fluctuations of g(2)

RL(t4) about the mean
in the wings rather than fitting the oscillations (see Supplementary Information).
The visibility larger than 0.5 is consistent with the nonclassical effect of violation
of Cauchy–Schwarz inequality with matter waves, observed recently in condensate
collision experiments [11]. The exact relationship between the visibility and the
Cauchy–Schwarz inequality is discussed further in the Supplementary Information,
as are simple (approximate) analytic estimates of the magnitude of the HOM dip
visibility.

The broadband, multimode nature of the scattering halo implies that the range
of the path-length difference over which the HOM effect can be observed is deter-
mined by the spectral width of the density profile of the scattering halo. Therefore
the width of the HOM dip is related to the width of the halo density. This is similar to
the situation analysed in Ref. [25] using pair-photons from a broadband parametric
down-converter. The angular width of theHOMdip extracted fromFig. 2.4 is approx-
imately wHOM �0.61 radians, which is indeed close to the width (full width at half
maximum) of the scattering halo in the relevant direction, whalo �0.69 radians (see
also Supplementary Information for simple analytic estimates). The samemultimode
nature of the scattering halo contributes to the oscillatory behaviour in the wings of
the HOM dip profile: here we mix halo modes with unequal absolute momenta and
the resulting phase dispersion from free-propagation leads to oscillations similar to
those observed with two-color photons [25].

We emphasise that the input state in our matter-wave HOM interferometer is
subtly different from the idealised twin-Fock state |1, 1〉 used in the simplest analytic
descriptions of the optical HOM effect. This idealised state stems from treating the
process of spontaneous optical parametric down-conversion (SPDC) in the weak-
gain regime. We illustrate this approximation by considering a two-mode toy model
of the process, which in the undepleted pump approximation is described by the
Hamiltonian Ĥ = �g(â†

1 â†
2 + h.c.) that produces perfectly correlated photons in the

â1 and â2 modes,where g > 0 is a gain coefficient related to the quadratic nonlinearity
of the medium and the amplitude of the coherent pump beam. (In the context of
condensate collisions, the coupling g corresponds to g = Uρ0(0)/� at the same level
of ‘undepleted pump’ approximation [8, 22]; see Methods for the definitions of U
and ρ0.) The full output state of the SPDC process in the Schrödinger picture is
given by |ψ〉 = √

1 − α2
∑∞

n=0 αn|n, n〉, where α = tanh(gt) and t is the interaction
time [26]. In the weak-gain regime, corresponding to α � gt 
 1, this state is well
approximated by |ψ〉 ∝ |0, 0〉 + α|1, 1〉, i.e., by truncating the expansion of |ψ〉
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and neglecting the contribution of the |2, 2〉 and higher-n components. This regime
corresponds to mode populations being much smaller than one, 〈n̂〉 = 〈â†

1(2)â1(2)〉 =
sinh2(gt) � (gt)2 � α2 
 1. The truncated state itself is qualitatively identical to
the idealised state |1, 1〉 as an input to the HOM interferometer: both result in a HOM
dipminimumof ḡ(2)

RL = 0 and ḡ(2)
RL � 1/2〈n̂〉 in thewings,with the resultingmaximum

visibility of V = 1. If, on the other hand, the contribution of the |2, 2〉 and higher-n
components is not negligible (which is the case, for example, of 〈n̂〉 � 0.1) then the
raw coincidence counts at the HOM dip and the respective normalised correlation
function no longer equal to zero; in fact, the full SPDC state for arbitrary α < 1 leads
to a HOM dip minimum of ḡ(2)

RL = 1 and ḡ(2)
RL = 2 + 1/2〈n̂〉 in the wings, which in

turn results in a reduced visibility of V = 1 − 1/(2 + 1/2〈n̂〉).
The process of four-wave mixing of matter-waves gives rise to an output state

analogous to the above SPDC state for each pair of correlated modes (see, e.g., [8,
22] and Supplementary Information). Indeed, the fraction of atoms converted from
the source BEC to all scattering modes is typically less than 5%, which justifies
the use of the undepleted pump approximation. The typical occupation numbers of
the scattered modes are, however, beyond the extreme of a very weak gain. In our
simulations, the mode occupation on the scattering halo is on the order of 0.1 and
therefore, even in the simplified analytical treatment of the process, the output state
of any given pair of correlated modes cannot be approximated by the truncated state
|0, 0〉 + α|1, 1〉 or indeed the idealised twin-Fock state |1, 1〉.

At the basic level, our proposal only relies on the existence of the aforementioned
pair-correlations between scattered atoms,with the strength of the correlations affect-
ing the visibility of the HOM dip. For a sufficiently homogeneous source BEC [22,
27], the correlations and thus the visibility V effectively depend only on the aver-
age mode population 〈n̂〉 in the scattering halo, with a scaling of V on 〈n̂〉 given
by V = 1 − 1/(2 + 1/2〈n̂〉) by our analytic model. Dependence of 〈n̂〉 on system
parameters such as the total number of atoms in the initial BEC, trap frequencies,
and collision duration is well understood both theoretically and experimentally [8–
11], and each can be sufficiently controlled such that a suitable mode population of
〈n̂〉 � 1 can, in principle, be targeted. There lies, however, a need for optimisation:
very small populations are preferred for higher visibility, but they inevitably lead
to a low signal-to-noise, hence requiring a potentially very large number of exper-
imental runs for acquiring statistically significant data. Large occupations, on the
other hand, lead to higher signal-to-noise, but also to a degradation of the visibil-
ity towards the nonclassical threshold of V = 0.5. The mode population of ∼0.1
resulting from our numerical simulations appears to be a reasonable compromise;
following the scaling of the visibilitywith 〈n̂〉 predicted by the simple analyticmodel,
it appears that one could safely increase the population to∼0.2 before a nonclassical
threshold is reached to within a typical uncertainty of ∼13% (as per quoted value of
V � 0.69 ± 0.09) obtained through our simulations.

The proposal is also robust to other experimental considerations such as the imple-
mentation of the Bragg pulses; e.g., one may use square Bragg pulses rather than
Gaussians. Furthermore, experimental control of the Bragg pulses is sufficiently
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accurate to avoid any degradation of the dip visibility. Modifying the relative timing
of the π and π/2 pulses by few percent in our simulations does not explicitly affect
the dip visibility, rather only the period of the oscillations in the wings of g(2)

RL(t4).
This may lead to a systematic change in the calculated dip visibility, however, this
is overwhelmed by the uncertainty of 13% which accounts for the fluctuations of
g(2)
RL(t4) about the mean.
Importantly, we expect that the fundamentally new aspects of the matter-wave

setup, namely themultimode nature of the scattering halo and the differences from the
archetypical HOM input state of |1, 1〉, as well as the specific measurement protocol
we have proposed for dealing with these new aspects, are broadly applicable to
other related matter-wave setups that generate pair-correlated atoms. These include
molecular dissociation [19], an elongated BEC in a parametrically shaken trap [14],
or degenerate four-wave mixing in an optical lattice [28, 29]. In the present work,
we focus on condensate collisions only due to the accurate characterisation, both
experimental and theoretical, of the atom-atom correlations, including in a variety
of collision geometries [7–11].

2.4 Conclusion

In summary, we have shown that an atom-optics analogue of the Hong–Ou–Mandel
effect can be realised using colliding condensates and a sequence of Bragg pulses.
The HOM dip visibility greater than 50% implies that the atom-atom correlations
in this process cannot be described by classical stochastic random variables. Gen-
eration and detection of such quantum correlations in matter waves can serve as
precursors to stronger tests of quantum mechanics such as those implied by a Bell
inequality violation and the Einstein–Podolsky–Rosen paradox [30]. In particular,
the experimental demonstration of the atom-optics HOM effect would serve as a
suitable starting point to experimentally demonstrate a violation of a Bell inequality
using an atom-optics adaptation of the Rarity–Tapster setup [17]. In this setup, one
would tune the Bragg pulses as to realise two separate HOM-interferometer arms,
enabling to mix two angle-resolved pairs of momentum modes from the collisional
halo, such as (k,q) and (−k,−q), which would then form the basis of a Bell state
|�〉 = 1√

2
(|k,−k〉 + |q,−q〉) [31].
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