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Supervisor’s Foreword

In his thesis, Robert Lewis-Swan has investigated a variety of topics related to the
generation, characterization, and exploitation of quantum correlations and entan-
glement among ultracold atoms. Specifically, it is focused on these quantum phe-
nomena in two contexts: (i) demonstrating nonclassical correlations, e.g., violations
of a Bell inequality and the Einstein–Podolsky–Rosen (EPR) paradox, with
ensembles of ultracold atoms, and (ii) improvements in quantum technologies by
exploitation of entanglement, such as quantum-enhanced metrology. In particular,
the work presented in this thesis emphasizes the possibility to demonstrate and
characterize entanglement in realistic experiments, beyond simple “toy-models”
often discussed in the literature.

The thesis can be broken into three main sections. The first contains a pair of
important theoretical proposals to experimentally realize an atomic Hong–Ou–
Mandel (HOM) effect and a violation of a motional-state Bell inequality for the first
time. Each proposal is built around the process of atom-pair production via elastic
s-wave scattering from a pair of colliding Bose–Einstein condensates, which has
been characterized extensively in recent experimental research. Robert utilized the
quantum correlations between pairs of atoms produced via this process, in com-
bination with appropriate operational measures, to define and characterize the HOM
effect and a Bell inequality in this multimode atomic system. While his modeling
extensively incorporates the details of a realistic experimental setup, he was able to
connect the complex results to simplified models based only on knowledge of the
density–density correlations of the system, allowing important insights for labo-
ratory realizations of these quantum phenomena. The relevance of this work was
later reflected in the demonstration of the atomic HOM effect in the lab of Alain
Aspect and Chris Westbrook at the Institut d’Optique.

The second section of the thesis follows the theme of characterizing and
understanding realistic limitations of experimental schemes, by examining the
effects of thermal fluctuations in spin-changing collisions in spinor condensates,
and hence clarifying the role of these fluctuations in the possible demonstration
of the EPR paradox with massive particles. This work was in direct response to an
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earlier reported experimental measurement of the EPR criterion by Markus
Oberthaler’s experimental group at Heidelberg University. These experiments
suffered from large technical noise, which prevented a definitive observation of the
EPR paradox; Robert’s research identified at least one source of such noise—
thermal fluctuations—while also characterizing the relative robustness of various
other measures of entanglement and nonclassicality to thermal fluctuations.

The final section is focused on how quantum correlations can be exploited for
quantum technologies, specifically quantum-enhanced metrology in the first
experimental realization of an atomic SU(1,1) interferometer. This work was a
collaborative effort with the Oberthaler group, driven by Robert’s prior research on
spin-mixing in spinor condensates. Generically, the SU(1,1) quantum-enhanced
interferometer exploits the nonclassical correlations produced by a pair-production
process, combined with an unconventional nonlinear readout scheme using
time-reversal of the same process. The theoretical work presented in this thesis
particularly focuses on the implementation of such an interferometer utilizing
spin-mixing in a spinor condensate as the pair-production process, and the asso-
ciated subtleties of such a realization.

The attraction of Robert’s research on these broad topics is the relative simplicity
of the models and analysis while having direct applications to experimentally
feasible setups. This is particularly impressive given that the experiments under
consideration typically involve interacting quantum many-body systems composed
of a large number of atoms. The quality, originality, and relevance of this work is
reflected in a spate of recent publications regarding experimental demonstrations of,
e.g., the atomic Hong–Ou–Mandel effect, observation of EPR entanglement with
massive particles in the Hannover group of Carsten Klempt, and the demonstration
of an atomic SU(1,1) interferometer. This demonstrates that the work is at the
forefront of current theoretical research in ultracold atomic physics. As such, it is
only appropriate that Robert’s outstanding research is recognized by publication in
the renowned Springer Theses series and I hope it will serve as a useful resource for
those interested in the field of quantum atom optics.

Brisbane, Australia A/Prof. Karén Kheruntsyan
April 2016
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Abstract

We investigate the generation, characterization and measurement of nonclassical
correlations and entanglement in ultracold atomic gases. Specifically, we propose
new tests to demonstrate nonclassical correlations, Einstein–Podolsky–Rosen
(EPR) entanglement and Bell inequality violations, in systems involving dilute gas
Bose–Einstein condensates (BECs). We focus on the challenges of generating and
preserving these correlations in atom optics schemes with massive particles and
define appropriate operational measurements to demonstrate them experimentally.
In doing so, we characterize how measures of EPR entanglement and violations of a
Bell inequality evolve with time and scale with system size. Further, we also
investigate practical applications of nonclassical correlations and entanglement to
quantum-enhanced technology, specifically quantum metrological schemes.
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Chapter 1
Introduction and Background Physics

Quantum mechanics has time and again proven to be the most accurate scientific
model of the microscopic realm, specifically as a tool to predict the outcomes of
experimental measurements. However, since the seminal 1935 paper of Einstein,
Podolsky and Rosen (EPR) [1] fierce debate has raged between physicists over the
philosophical consequences of quantum mechanics.

In particular, there has been argument as to whether quantum mechanics can be
regarded as a complete physical theory of the microscopic reality, wherein one is
forced to accept phenomena which are in stark contrast with our everyday expe-
rience of the macroscopic world, such as entanglement, non-locality (referred to
by Einstein as “spooky-action-at-a-distance”) and the Heisenberg uncertainty prin-
ciple. Or, as EPR would have it, should we interpret these features as a smoking
gun of an incomplete theory of nature, exhibiting our ignorance of the underlying
‘true’ microscopic reality? In response, one might seek to uncover so-called ‘hid-
den variables’ to supplement the current formalism and restore a classical notion
of the universe, wherein, for instance, particles may have well-defined position and
momentum simultaneously. Physicists are divided on this issue, although many are
happy to take a third option and ‘shut up and calculate’ [2], simply regarding quantum
mechanics as a useful toolbox with which to predict measurement outcomes.

Much of the philosophical unease surrounding this issue has its roots in the stark
differences between the microscopic realm of quantum mechanics and the macro-
scopic classical world. In particular, an ongoing research question is how the classical
world emerges from the microscopic rules of quantum mechanics. Specifically, why
prevalent quantum effects such as entanglement and non-locality are not realized in
our macroscopic realm. Some answers to these big questions can be found by inves-
tigating systems at the microscopic scale, and understanding why entanglement and
non-local correlations are difficult to generate and preserve even at this scale.

To address these issues one should first begin by gaining an understanding of the
two touchstones of the philosophical and physical debate: the Einstein–Podolsky–
Rosen paradox and Bell inequalities.
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2 1 Introduction and Background Physics

1.1 The Einstein–Podolsky–Rosen Paradox

In 1935, Einstein, Podolsky and Rosen published their influential paper [1], in which
they argued that quantum mechanics as a theory was incomplete. Their conclusion
came as a consequence of their motivation to preserve what they termed local realism
in any theory of the quantumworld. They argued that any sensible theorymust uphold
locality, in the sense that for two space-like separated systems any measurement or
action on one may not affect the reality of the other. Further, EPR argued that “if,
without in any way disturbing a system, we can predict with certainty the value of a
physical quantity, then there exists an element of physical reality (sic) corresponding
to this physical quantity”.

To illustrate their argument they devised a paradoxical situation in which they
consider two particles, which we will label 1 and 2 respectively, entangled through
some interaction at the origin such that they have perfectly correlated positions
x1 − x2 = u wher u is the center-of-mass position and sum momenta, p1 + p2 = 0.
Due to these correlations, measuring the position of particle 1 enables one to infer
the exact position of particle 2, even if the particles are space-like separated and
therefore a local measurement on one particle may not influence the state of the other.
Similarly a measurement of the momentum of particle 1 allows one to infer exactly
the momentum of particle 2. Following the logic of EPR, the inferred values x2 and
p2 must be regarded as pre-existing (elements of reality) for the quantummechanical
wavefunction to be regarded as a complete description of reality. However, if this is
true then it holds that the product of uncertainties of the inferred quantities vanishes,

�2x2�
2 p2 = 0 (1.1)

for the perfectly correlated state under consideration, where �2xi = 〈x̂2i 〉 − 〈x̂i 〉2
is the variance of the measurement of x̂i and similar for p̂i . This appears to violate
the Heisenberg uncertainty principle for a pair of canonically conjugate observables,
which requires that

�2x2�
2 p2 ≥ �

2/4 (1.2)

for [x̂ j , p̂ j ] = i�. In the standard interpretation of quantum mechanics, the response
to this paradox is that it is impossible to perform simultaneous measurements of
position and momentum and thus simultaneous elements of reality for these quan-
tities may not exist. However this implies that the choice of measuring position or
momentum affects the reality of the second particle and, as a consequence, one must
accept that the theory of quantum mechanics is intrinsically non-local. Due to their
motivation to preserve local realism, EPR concluded instead that quantummechanics
must be an incomplete description of reality which must be supplemented by extra
‘hidden’ variables.

In the spirit of preserving local realism, there have been many attempts to con-
struct local hidden variable theories of quantum mechanics. Such theories attempt to
prescribe extra variables to describe the missing elements of reality in the quantum
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mechanical formalism, and thus construct what EPR would define as a complete
physical theory. A prominent example of such a theory was developed by Bohm
[3], which reproduced the results of quantum mechanics for discrete spin variables
whilst all the (canonically conjugate) spin components were able to be defined simul-
taneously. Intriguingly, however, it was later shown that this theoretical construct
preserved the ‘flaw’ of non-locality. This issue was famously investigated by John
Bell and motivated his work on Bell inequalities, which we shall discuss further in
Sect. 1.2.

A notable experimental demonstration of the EPR paradox, in the sense of sim-
ilarity to the original EPR construction with continuous variables x̂ and p̂, was
performed by Ou et al. [4]. Their demonstration followed the theoretical construct
proposed by Reid [5], and demonstrated a continuous-variable EPR paradox using
optical quadratures of the signal/idler beams produced by optical parametric down-
conversion. Reid’s formulation is an extended version of the EPR paradox for a sys-
temwith imperfect correlations, in contrast to the perfectly correlated, but unphysical
[6], EPR state. Bymeasuring non-commuting quadratures of the signal beam, X̂1 and
Ŷ1, which are analogous to position and momentum operators, one is able to infer the
value of the respective quadratures of the correlated idler beam, X̂2 and Ŷ2, within
some uncertainty�2

infX2 and�2
infY2 respectively (the form of�2

infX2 depends on the
correlation between the modes, 〈X̂1 X̂2〉, and similar for �2

infY2). A demonstration
of the EPR paradox in this formulation then corresponds to a product of inferred
quadratures, �2

infX2�
2
infY2 < 1, whereas the Heisenberg uncertainty limit for the

actual quadratures requires �2X2�
2Y2 ≥ 1 as [X̂i , Ŷi ] = 1.

Recently, attempts have been made to demonstrate the paradox with massive
particles for the first time, in particular the experiment of Gross et al. [7] which used
spin-changing collisions in a spinor Bose–Einstein condensate (BEC) to produce a
state analogous to that of Ref. [4]. Measurements of the atomic field quadratures
led to an inconclusive result, nevertheless, it was shown that the produced state was
entangled, in the sense of inseparability of the state [8].

1.2 Bell Inequalities and Local Hidden-Variable Theories

In 1964, after noticing the issue of non-locality present in Bohm’s hidden variable
theory for discrete spin variables, John Bell derived a set of conditions which any
prospective local hidden variable theory must obey [9]. Known as Bell inequalities,
they could be directly compared to the predictions of quantum mechanics.

Consider two space-like separated measurements on correlated particles with
outcomes A and B (with A, B = ±1 for simplicity), which only depend on the
measurement settings a and b respectively, which could for instance be polarization
settings of a photo-detector. Furthermore, we consider the theory to have an arbitrary
set of hidden variables, λ, whose only constraint is that they are characterized by
some probability distribution ρ(λ). We may then write the joint probability of the
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measurement outcomes as

P(A, B|a, b) =
∫

dλρ(λ)P(A|a,λ)P(B|b,λ), (1.3)

where P(Z |z,λ) is the conditional probability of a measurement result Z given the
known setting z and hidden variable λ. Locality, in terms of the EPR argument,
is present in the right-hand side of this expression by our explicit choice that the
outcomes A and B can only depend on their respective local settings a and b. It may
be shown that for a sum of these conditional probabilities

E(a, b) = P(1, 1|a, b) + P(−1,−1|a, b) − P(−1, 1|a, b) − P(1,−1|a, b),
(1.4)

there exists the inequality,

S = |E(a, b) + E(a, b′) + E(a′, b) − E(a′, b′)| ≤ 2, (1.5)

which is known as the Clauser–Horne–Shimony–Holt (CHSH) version of a Bell
inequality.

Bell was able to demonstrate that there exist certain entangled states in quantum
mechanics which violate this inequality, by up to a factor of

√
2 (corresponding

to S = 2
√
2). The existence of such entangled states thus implies that quantum

mechanics has non-local correlations which cannot be explained by any local hidden
variable theory. As a result, the central motivation and philosophical foundation of
EPR’s argument, local realism, is thus explicitly incompatible with the quantum
world.

Importantly, Bell’s result can be cast in terms of experimentally measurable quan-
tities which can be used to rule in or out a description by a local hidden variable
theory. Notable experiments demonstrating a violation of a Bell inequality were
conducted by Aspect (1982) [10], Zeilinger (1998) [11], Rarity and Tapster (1990)
[12],Wineland (2001) [13] and Sakai (2006) [14]. All of these experiments used pairs
of entangled photons, except for the experiments of Wineland and Sakai, which used
trapped ions and proton-proton pairs respectively. However, none of these experi-
ments have overcome both of the detection and locality loopholes. In the case of
the first loophole a minimum detector efficiency is required to differentiate between
quantummechanics and a local hidden variable theory (in the case of the aboveCHSH
inequality this is ∼83% [15]). The experiments of Wineland and Sakai overcame
this, however they did not also overcome the second loophole, which requires the
measurements to be space-like separated. This loophole was overcome by Zeilinger’s
experiment in 1998, in which the measurement apparatus of the respective photons
was separated by a distance of 400m and the detector settings were chosen during
the time-of-flight of the photons, although the detector efficiencies were below the
required 83% (Fig. 1.1).
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Fig. 1.1 Example of a Bell inequality test experiment. An entangled two-particle state is produced
by a source, in this case a pair of photons with entangled polarization (labeled ν1 and ν2). We
choose to perform measurements of type a and b, i.e. polarization angles of the detectors, with
outcomes A = ±1 and B = ±1 respectively. A Bell inequality places certain constraints on the
joint-detection probabilities of the measurement outcomes for a local hidden variable theory, which
quantum mechanics is shown to violate

1.3 Motivation and Scope of This Thesis

Foundational tests of physics involving the EPR paradox and Bell inequalities have
been focused primarily within the field of quantum optics. In part, this has been
driven by the relative easewithwhichmassless photons could be prepared in quantum
states useful for such tests, such as the two-mode squeezed vacuum state produced by
optical spontaneous parametric down-conversion. The motivation of this thesis is to
push these foundational tests of quantum mechanics into new regimes, in particular,
to generate and characterize non-classical correlations and entanglement between
ensembles of massive particles. Such tests will allow us to gain insight into important
research questions, such as:

• What are the appropriate mechanisms and systems to generate EPR entangle-
ment and non-local correlations in ultracold atomic gases? In particular, how
can we leverage prior knowledge gained from quantum optics to assist in identi-
fying processes which will produce useful states, such as the two-mode squeezed
vacuum state.

• Why are large-scale entanglement and non-local correlations between mas-
sive particles difficult to generate and observe? Importantly, we wish to better
understand and separate technical and fundamental limitations in the context of
experimental demonstrations of EPR entanglement and Bell inequalities.

• What are appropriate operational measures to quantify EPR entanglement,
non-classical correlations and violation of a Bell inequality in ultracold atomic
gases? Particularly, by characterizing the new and unique features of atom-optics
schemes (in comparison to quantum optics) how can we appropriately quantify
the degree of entanglement or non-classicality?

• How does EPR entanglement and violation of a Bell inequality evolve with
time and scale in system size? Specifically, what can this insight tell us about the
robustness of results derived from idealized analytic models when generalized to
realistic experimental scenarios.
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Answers to these questions can provide valuable insight and a better understanding
of the ill-defined transition between the quantum and classical realms [16], particu-
larly how mesoscopic and macroscopic physics may emerge from the microscopic
constituents. Furthermore, pushing these fundamental tests into the realm of macro-
scopic ensembles of massive particles leads to coupling to gravitational fields, which
in turn may provide insights into as yet un-established theories of quantum gravity
[17]. Particularly, design of feasible experimental schemes may provide a first step
to tests of modifications to the currently established theory of quantum mechanics,
which is incompatible with gravitational theories based on General Relativity.

A better understanding of the mechanisms which generate correlations and entan-
glement in large-scale atomic ensembles, particularly their robustness to noise, can
also have useful applications in quantum technology. In particular, demonstrations
of foundational tests may provide new ways to benchmark states for sub-shot-noise
atom interferometry and applications in quantum information science.

In pursuit of answers to these questions, we have investigated and designed new
proposals to demonstrate EPRentanglement andBell inequality violations in systems
of ultracold atomic gases. The results of this investigation are presented in this thesis,
which can be broken into five main chapters.

In the remainder of this chapterwe give an introduction to the essential physics rel-
evant to the topics discussed in this thesis. Section1.4 discusses themain systems and
processes which we use to generate and understand entanglement and non-locality in
this thesis. Specifically, we give a brief review of: (i) the general two-mode squeezed
vacuum state and its role in demonstrating EPR entanglement, non-locality and other
non-classical effects, (ii) spontaneous four-wave mixing via colliding Bose–Einstein
condensates, including a theoretical background of the process and the correlations
it generates, and (iii) spin-changing collisions in a spinor condensate, including a
derivation of the basic Hamiltonian in the single-mode approximation.

Further to this, in Sect. 1.5 we give a simple introduction to phase-space represen-
tations of quantummechanics, specifically theWigner andpositive P representations.
In particular, we focus on the derivation and implementation of these representations
with respect to numerically modelling physical systems. We also give illustrative
examples in which the representations can be applied, specifically the processes of
spontaneous four-wave mixing via colliding condensates and spin-changing colli-
sions, which are the focus of this thesis.

Chapter2 outlines a proposal to demonstrate the previously un-realized non-
classical Hong–Ou–Mandel effect with massive particles, utilizing pair-correlated
atoms produced by condensate collisions. This textbook effect of two-particle quan-
tum interference serves not only as a demonstration of underlying non-classical
correlations between the pairs of scattered atoms, but also as an important stepping-
stone for experimental demonstration of a Bell inequality due to the similarity of the
interferometric schemes we use in both.

Building on this, in Chap.3 we outline a proposal to demonstrate a violation of
a motional-state Bell inequality with massive particles via colliding condensates.
Our scheme is an atom-optics analog of the Rarity–Tapster interferometer, which

http://dx.doi.org/10.1007/978-3-319-41048-7_2
http://dx.doi.org/10.1007/978-3-319-41048-7_3
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was previously used to demonstrate a violation using pairs of momentum-entangled
photons [12]. However, key differences arise due to the multimode nature of the
collision process. We use numerical simulations, based on stochastic phase-space
methods, to calculate the necessary non-local correlations and explore the possibility
of a Bell inequality violation via condensate collisions in experimentally relevant
parameter regimes.

InChap.4we investigate a recent experimental attempt to demonstrate continuous-
variable EPR entanglement with a mesoscopic ensemble of massive particles, via
spin-changing collisions in a spinor BEC [7]. An idealised theoretical analysis
indicates that the state produced via these spin-changing collisions (the archetypal
two-mode squeezed vacuum in the simplest approximation) should exhibit EPR
entanglement, however, we investigate the possibility that the collisions are initi-
ated by thermal fluctuations. We characterize the impact of these fluctuations on the
dynamics of the system and how they may lead to the destruction of EPR entangle-
ment.

Next, in Chap.5 we investigate how the strong correlations of the two-mode
squeezed vacuum state can be applied in the context of quantum metrology. We
examine how a spinor BEC (identical to the experiment considered in Chap.4) could
be used to realize a quantum-enhanced ‘active’ atom interferometer, also known as
a SU(1, 1) interferometer. Particularly, we outline how the phase-sensitive corre-
lations between spinor components provide an ideal state for sub-shot-noise inter-
ferometry at the Heisenberg limit. Our theoretical analysis gives key results for an
example spinor condensate in a realistic experimental regime. Furthermore, we also
discuss how unique features of the atomic realization must be dealt with to realize
the archetypal SU(1, 1) scheme [18] in a spinor BEC.

Lastly, in Chap.6, building on the phase-space techniques used extensively
throughout the previous chapters, we examine the interpretation of individual phase-
space trajectories of the Wigner function as corresponding to possible outcomes of
single experimental trials. To this end, we investigate the relation between the true
(measured) particle number distribution Pn for a single-mode state and that obtained
by discretely binning the individual stochastic realisations of squared mode ampli-
tudes |α|2 of the sampledWigner distributionW (α), whichwe denote via P̃n .We find
that there is indeed a close quantitative correspondence between Pn and P̃n for a wide
range of states, justifying the broadly accepted view that, for highly occupied modes,
individual stochastic realisations of Wigner trajectories should approximately cor-
respond to outcomes of single experiments. However, we also find counterexamples
for which high mode occupation may not be sufficient for such an interpretation; we
find instead that a more relevant and sufficient requirement is the smoothness and
broadness of the Wigner function W (α) for the state of interest relative to the scale
of oscillations of the Wigner functions for the relevant Fock states.

http://dx.doi.org/10.1007/978-3-319-41048-7_4
http://dx.doi.org/10.1007/978-3-319-41048-7_5
http://dx.doi.org/10.1007/978-3-319-41048-7_4
http://dx.doi.org/10.1007/978-3-319-41048-7_6
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1.4 Background I: Physical Systems

In our study of the generation and measurement of entanglement and non-classical
correlations, we focus on two specific systems: spontaneous four-wave mixing via
colliding condensates and spin-changing collisions in spinor condensates. In the
simplest approximation, both of these pair-production process can be described by
the archetypal two-mode squeezing Hamiltonian, which produces the textbook two-
mode squeezed vacuum state prevalent in quantum optics. Such a state is known to
possess strong non-classical correlations and has been the subject of intense study
in terms of demonstrating EPR entanglement and quantum non-locality. Indeed, it is
the relation to this state which motivates us to investigate spin-changing collisions
and spontaneous four-wave mixing in the context of fundamental tests of quantum
mechanics with massive particles.

The following chapter is composed of a brief summary and review of these topics
which will form the basis of proposals in this thesis. In particular, we formally
introduce the theoretical concept of the two-mode squeezed vacuum state and outline
some essential results for the state in the context of non-classical correlations, EPR
entanglement and non-locality. Building on this, we then briefly review the processes
of spontaneous four-wave mixing and spin-changing collisions and outline their
theoretical background, which will serve as a foundation for the work of Chaps. 2–5.

1.4.1 Entanglement and Non-locality with the Two-Mode
Squeezed Vacuum State

The archetypal state which we focus upon heavily in this thesis is the two-mode
squeezed vacuum state, defined as [19]

|ϕ〉 = Ŝ(ζ)|01, 02〉, (1.6)

where the two-mode squeezing operator is defined as Ŝ(ζ) = eζ∗â1â2−ζâ†1 â
†
2 for ζ =

reiθ and âi (â
†
i ) is the annihilation (creation) operator of the mode i = 1, 2. The

squeezing operator acts on the vacuum state, denoted |01, 02〉, adding bosons pair-
wise into the modes 1 and 2.

A more useful representation of the state, in the Schrödinger picture, can be
found by applying the SU(1, 1) disentangling theorem to the squeezing operator
[19]. Arbitrarily setting θ = 0, we may then rewrite Eq. (1.6) as a sum of twin-Fock
states [6]:

|ϕ〉 =
√
1 − λ2

∞∑
n=0

λn|n, n〉, (1.7)

where λ = tanh(r). The two-mode squeezed vacuum state can be produced dynam-
ically by the Hamiltonian,

http://dx.doi.org/10.1007/978-3-319-41048-7_2
http://dx.doi.org/10.1007/978-3-319-41048-7_5
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Ĥ = i�κ
(
â1â2 − â†1 â

†
2

)
, (1.8)

where r = κt for some real gain coefficient κ. Physically, this Hamiltonian is related
to the production of bosons in pairs, populating modes â1 and â2 in a correlated
manner. A common realization in quantum optics is by the processes of spontaneous
parametric down-conversion, wherein a photon of frequency ω0 passes through a
χ(2) nonlinear medium and splits into a pair of photons of frequencies ω1 and ω2

such that ω0 = ω1 + ω2. The simplest Hamiltonian describing this optical process is
given by

ĤDC = i�g
(
â†0 â1â2 − â0â

†
1 â

†
2

)
, (1.9)

where g is the gainwhich is related to theχ(2) nonlinearity of themedium.Under usual
experimental parameters, the â0 mode (referred to commonly as the pump) is a strong
coherent field. Often, such a system is modeled by invoking the undepleted pump
approximation, wherein the loss of photons in the pump due to the down-conversion
process is negligible (in general, such that the population of the down-converted
photons does not exceed∼10% of the pump mode) and one replaces the operator by
a c-number, â0 � α0, to give the relation to the squeezing Hamiltonian of Eq. (1.8),
κ ≡ gα0, where we assume that α0 is real without loss of generality.

As discussed in Sect. 1.1, this state has proven to be pivotal in demonstrations of
non-classical correlations, entanglement and non-locality. This is not only due to its
important physical properties but also due to the prevalence of processes wherein
the underlying Hamiltonian may be reduced to Eq. (1.8). Such processes extend
beyond the area of quantum optics into many physical systems, including the field of
ultracold Bose gases. In particular, we utilize that the processes of spontaneous four-
wave mixing of matter waves and spin-changing collisions of spinor condensates
both produce, in the simplest approximation, the two-mode squeezed vacuum state
in Chaps. 2–5.

Non-classical Correlations

The simplest feature of the two-mode squeezed state one can examine are the corre-
lations between the â1 and â2 modes (commonly referred to as the signal and idler
modes). From an inspection of Eq.1.8, one expects due to the pair-wise nature of
the production process that these modes will be strongly correlated. In particular,
at the simplest level we expect that for every particle emitted into the signal mode
there must be a corresponding partner emitted into the idler mode. To characterize
these correlations in the system we introduce the second-order correlation function
of Glauber [20],

g(2)
i j = 〈: n̂i n̂ j :〉

〈n̂i 〉〈n̂ j 〉 , (1.10)

for i, j = 1, 2 where n̂i = â†i âi is the particle number operator of mode i = 1, 2 and
the colon notation indicates normal ordering of the relative creation and annihilation
operators. The simplest interpretation of g(2)

i j is that it indicates the likelihood of a

http://dx.doi.org/10.1007/978-3-319-41048-7_2
http://dx.doi.org/10.1007/978-3-319-41048-7_5
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particle being detected in mode j given that one was detected in mode i . By dividing
by the product of mean-occupations of modes i and j , one is effectively normalizing
with respect to an uncorrelated Poissonian random process. A value of g(2)

i j > 1

indicates that the modes are correlated, whilst g(2)
i j < 1 is termed as anti-correlated.

Evaluating g(2)
i j for the squeezed vacuum state we find the important results

g(2)
12 = 2 + 1

n
, (1.11)

g(2)
11 = g(2)

22 = 2, (1.12)

for n ≡ 〈n̂1〉 = 〈n̂2〉. These correlations are commonly referred to as the cross- and
auto-correlation respectively. The cross-correlation, g(2)

12 > 1 reflects the creation of
pairs of particles in opposite modes, whilst the auto-correlation is a result of bosonic
bunching analogous to the well known Hanbury–Brown–Twiss effect [21].

Correlations alone, however, are not in any sense a unique feature of quantum
mechanics. Furthermore, the process of pair production is not deeply quantum in
nature and has classical analogs. Specifically, one could construct some classical
stochastic theory [22] wherein pairs are randomly generated in the signal and idler
modes, such that the individualmodes have classically fluctuating intensities, but will
also be correlated with g(2)

12 > 1. However, the quantum nature of the correlations
emerge when we consider the classical Cauchy–Schwarz inequality [23, 24],

g(2)
12 ≤

√
g(2)
11 g(2)

22 . (1.13)

which places bounds on the relative strength of the cross-correlation with respect to
the auto-correlation of each mode. The quantum theory of the two-mode squeezed
vacuum violates this inequality for all n and thus the cross-correlation is stronger
than classically allowed. Equivalently, this excludes any classical stochastic theory
as a valid physical description of the pair-production process [22], as it will obey the
Cauchy–Schwarz inequality and thus cannot replicate correlations as strong as those
predicted by the quantum theory.

A consequence of this violation in this case is the presence of squeezing of the
number difference between the signal and idler modes. It can be shown that the two-
mode squeezed vacuum has vanishing fluctuations of the number difference, such
that

〈�2n̂−〉 = 〈�2(n̂1 − n̂2)〉 = 0. (1.14)

where 〈�2 Â〉 = 〈 Â2〉 − 〈 Â〉2 is the variance of the operator Â. Relative to the sum
population of the side modes, 〈n̂+〉 = 〈n̂1 + n̂2〉, we have that 〈�2n̂−〉 < 〈n̂+〉 and
the fluctuations are consequentially sub-Poissonian. This is an intuitively obvious
result, as there exists nomechanism in theHamiltonian of Eq. (1.8) to produce bosons
individually. In contrast, one can show that there exist strong fluctuations in the sum
population:

〈�2n̂+〉 = 〈�2(n̂1 + n̂2)〉 = 〈n̂+〉 (2 + 〈n̂+〉) , (1.15)
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which are super-Poissonian as 〈�2n̂+〉 > 〈n̂+〉. Notably, while the statistics of each
individual mode are thermal, 〈�2n̂i 〉 = 〈n̂i 〉(〈n̂i 〉 + 1) for i = 1, 2, the combined
fluctuations are stronger than one expects for a pair of un-correlated modes with
thermal statistics, which would be equal to the sum of the individual variances.

EPR Entanglement

Non-classical correlations, in the sense of a Cauchy–Schwarz violation, are a pre-
requisite to demonstrate entanglement (in terms of both simple inseparability and
the EPR paradox) and non-locality. However, the intensity–intensity correlations
investigated so far are not sufficient to demonstrate EPR entanglement, instead we
must show that there exist phase-sensitive correlations between the modes. To this
end we introduce the quadrature operators

X̂φ
j = â j e

−iφ + â†j e
iφ, (1.16)

where j = 1, 2. In shorthand, one usually denotes X̂0
j ≡ X̂ j and X̂π/2

j ≡ Ŷ j . The X̂ j

and Ŷ j quadratures are canonically conjugate operators with commutation relation
[X̂k, Ŷ j ] = 2iδk j and are the quantum optics equivalent of position x̂ and momentum
p̂ operators for particles with non-zero rest mass, as originally considered by EPR.
In practice, such operators are measured via homodyne detection, wherein the signal
or idler mode is mixed with a strong coherent field on a 50–50 beam-splitter, i.e.
a laser in the case of down-converted photons. After mixing, a measurement of the
relative number difference of the output ports of the beam-splitter is proportional to
the quadrature amplitudes.

To demonstrate EPR entanglement for the two-mode squeezed vacuum state, one
can readily follow the prescription of Reid [5] outlined in Sect. 1.1. Firstly, we can
demonstrate that there exist correlations between the quadratures,

〈X̂φ
1 X̂

ϑ
2 〉 = 2sinh(r)cosh(r)sin(φ + ϑ), (1.17)

such that for large r 
 1 the cross-correlation maximally saturates the Cauchy–
Schwarz inequality for φ + ϑ = 0, e.g.,

〈X̂1 X̂2〉 =
√

〈(X̂1)2〉〈(X̂2)2〉. (1.18)

and similarly for Ŷ1 and Ŷ2. Following the EPR argument, this strong correlation
between quadratures implies that a measurement of, e.g., X̂1 would allow one to
‘infer’ the outcome of a measurement of X̂2. The error in this inference will be
dependent on the degree of correlation between the quadratures and, using a linear
inference method, the minimum error is given by [5],

�2
inf X̂ j ≡ 〈�2 X̂ j 〉 − 〈�X̂k�X̂ j 〉

〈�2 X̂k〉
, (1.19)
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and similarly for Ŷ j . Using the commutation relations of the quadrature operators,
[X̂ j , Ŷ j ] = 2i , one can then construct the Heisenberg uncertainty relation for the
product of quadrature variances,

�2 X̂1�
2Ŷ1 ≥ 1, (1.20)

which is seemingly violated by the inferred quadrature variances in the case of r > 0,

�2
inf X̂1�

2
inf Ŷ1 = 1

cosh2(2r)
= 1

2n + 1
< 1. (1.21)

We take such a seeming violation to imply entanglement of the signal and idler mode
in the sense of the EPR paradox. In the interpretation of EPR, the inferred value (and
thus the respective uncertainty) was equivalent to the pre-existing element of reality
and thus such a violation was in contradiction with quantum mechanics. However,
in the standard interpretation of quantum mechanics, measurements of X̂2 and Ŷ2
(and thus the respective inferrance of X̂1 and Ŷ1) would need to be made in seperate
experimental trials and hence the inferred quantities would not exist simultaneously.

An important observation regarding this result is that the inequality is always
violated for n > 0 and the degree of violation increases as ∼1/2n for n 
 1.
Consequentially, one expects that for a two-mode squeezed vacuum state in an ideal
experiment it is possible to demonstrate EPR entanglement between two modes that
may be macroscopically populated.

Demonstrating Non-locality via a Bell Inequality

Further to the demonstration of EPR entanglement, one may use a pair of two-mode
squeezed vacuum states [in, e.g., modes (1, 2) and (3, 4)] to demonstrate non-locality
in the sense of a Bell inequality violation. However, unlike the previous discussion of
EPR entanglement, we demonstrate that this violation can only be demonstrated in
specific regimes. In particular, a pair of two-mode squeezed states in the weak-gain
regime can be used to form an approximation to an ideal Bell state, which violates
the inequality maximally.

We focus our discussion on the Rarity–Tapster scheme as this is the most per-
tinent to this thesis, particularly as it forms the basis to the experimental proposal
of Chap.3. The Rarity–Tapster scheme, illustrated in Fig. 1.2, utilizes a pair of two-
mode squeezed states as the input to a four-mode interferometer. This input state can
be written as a product of the two squeezed states

|�〉 = (1 − λ2)

∞∑
k,m=0

λ(k+m)|k〉1|k〉2|m〉3|m〉4. (1.22)

where λ = tanh(r) and the subscript denotes the modes i = 1, 2, 3, 4. The state
may be generated by a four-mode generalization of the squeezing Hamiltonian [Eq.
(1.8)],

http://dx.doi.org/10.1007/978-3-319-41048-7_3
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Fig. 1.2 Rarity–Tapster interferometer, with a multimode source S which produces a pair of two-
mode squeezed vacuum states. Experimentally, this interferometer can be realized by using two
pairs of photons produced by spontaneous optical parametric down-conversion [12]. After passing
through the interferometer, particles can be detected in the upper/lower paths at the output at
detectors Di for i = 1, 2, 3, 4

Ĥ = i�κ
(
â1â2 + â3â4 − â†1 â

†
2 − â†3 â

†
4

)
, (1.23)

where r = κt as previously.
By including a phase-shift (φL andφR) in the two lower arms of the interferometer

(with the phase-shifts being relative to the upper arms) andmixing the pairs of modes
from each squeezed state on separate beam-splitters, one is able to demonstrate there
exist phase-dependent intensity–intensity correlations between the different output
ports of the interferometer, corresponding to correlation measurements between the
detectors (see Fig. 1.2),

C12 = C34 = n2 + n (1 + n)

2
[1 − cos(φR − φL)] , (1.24)

C14 = C23 = n2 + n (1 + n)

2
[1 + cos(φR − φL)] , (1.25)

where
Ci j ≡ 〈n̂i n̂ j 〉, (1.26)

and n ≡ 〈â†i âi 〉 = sinh2(r) is the occupation of the individual modes i = 1, 2, 3, 4
of the squeezed states as previously defined. The CHSH-Bell quantity S can then be
constructed from these correlations and, by an appropriate choice of four pairs of
phase-settings (see Chap. 3 for further details), we find the result

S = 2
√
2
1 + n

1 + 3n
. (1.27)

As outlined in Sect. 1.1, any local hidden-variable theory is bounded by the inequality
S ≤ 2, whereas for small n → 0 we have S → 2

√
2, which is the maximal

http://dx.doi.org/10.1007/978-3-319-41048-7_3
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violation predicted by quantum mechanics. The dependence of S on occupation n is
an interesting result for the two-mode squeezed vacuum state, as it places an upper
bound of n < (

√
2−1)/(3−√

2) � 0.26 for S > 2. Thus, unlike for demonstration
of the EPR paradox, a Bell inequality violation decreases as the population of the
modes increases.

The fundamental reason for this scaling can be understood by examining the
form of the input state to the interferometer. In the weak-gain regime of the two-
mode squeezed vacuum, which corresponds to λ � r � 1 and hence an average
mode occupation in each of the four modes of n � λ2 � r2 � 1, the sum over Fock
states in Eq. (1.22) can be truncated to lowest order in λ,

|�〉 ∝ |0〉1|0〉2|0〉3|0〉4
+ λ(|1〉1|1〉2|0〉3|0〉4 + |0〉1|0〉2|1〉3|1〉4). (1.28)

Taking into account the fact that the contribution from the pure vacuum state (the first
term) does not affect the outcome of any correlation measurements, we can further
approximate this state by |�〉 ∝ α(|1〉1|1〉2|0〉3|0〉4 + |0〉1|0〉2|1〉3|1〉4), which can
be mapped to the archetypal Bell state |�+〉 = 1√

2
(|+〉L|−〉R + |−〉L|+〉R) in the

polarization or spin-1/2 Ŝz basis, where the subscript (L,R) refers to the left and right
arms of the interferometer. This ideal Bell state is known to maximally violate the
CHSH inequality with S = 2

√
2.

The scaling of the violation of the Bell inequality can thus be understood purely
in terms of contributions of higher-order Fock states to Eq. (1.22), which leads to a
breakdown of the mapping to the ideal Bell state of Eq. (3.1). This is an important
result to appreciate, as the two-mode squeezed vacuum is commonly used in the
weak-gain regime in quantum optics to produce an effective twin-photon state |ϕ〉 ∼
|1112〉, for instance in the Hong–Ou–Mandel effect, whose matter-wave analog is
studied in Chap. 2.

Overall, these results show that the two-mode squeezed vacuum is a versatile
and important state in foundational tests of quantum mechanics. Building upon this,
by mapping simple dynamical process in ultracold gases back to the fundamental
Hamiltonian ofEq. (1.8)we can identify systemswhichmaybe candidates to generate
entanglement and non-local correlations with massive particles. In this light, the
generic results we have derived for the ideal two-mode squeezed vacuum state are
fundamental to the results of Chaps. 2–5.

1.4.2 Spontaneous Four-Wave Mixing in Colliding
Bose–Einstein Condensates

Spontaneous four-wave mixing of matter waves has been a topic of strong interest
in recent years in the atom-optics community. Experimentally, pioneering work has
been performed by the group ofAspect andWestbrook. Colliding a pair ofmetastable

http://dx.doi.org/10.1007/978-3-319-41048-7_3
http://dx.doi.org/10.1007/978-3-319-41048-7_2
http://dx.doi.org/10.1007/978-3-319-41048-7_2
http://dx.doi.org/10.1007/978-3-319-41048-7_5
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Helium (4He∗) BECs, they generated a collision halo of atoms due to s-wave
scattering [25] and measured the resulting atom-atom pair correlations. In the sim-
plest approximation, the underlying processwhich generates the collision halo can be
shown to be equivalent to the squeezing Hamiltonian of Eq. (1.8) which produces the
two-mode squeezed vacuum state, albeit generalized to a multimode form. Building
upon the results of Sect. 1.4.1, we thus expect that condensates collisions should be
a promising candidate to investigate entanglement and non-locality in a system of
massive particles.

In this vein, subsequent experimental and theoretical work has enabled the mea-
surement and characterization of second-order coherence and strong correlations
between atoms occupying opposing regions of the halo [26, 27]. These correlations
were shown to violate the classical Cauchy–Schwarz inequality [28] and led to a
measurement of a sub-Poissonian number difference [29]. In the following we give a
brief review of these pioneering results, which have paved the way for foundational
tests of quantummechanics such as demonstrating the Hong–Ou–Mandel effect (see
Chap.2) and violation of a Bell inequality (see Chap. 3) in ultracold gases.

In the experiments of Aspect and Westbrook, approximately 1.5× 105 atoms are
initially held in an anisotropic magnetic trap, leading to an elongated (cigar-shaped)
BEC. Applying a Raman transition (and simultaneously turning off the trap), the
BEC is split into two counter-propagating halves with momenta k1 = −k2 and
|k1| = |k2| = k0. As the condensates spatially separate, constituent atoms of each
undergo s-wave scattering. In particular, atoms with momenta k1 and k2 may collide
and create a new pair of atoms with momenta k3 and k4 satisfying momentum
conservation such that k1 + k2 = k3 + k4 = 0 and therefore k3 = −k4. Further,
energy conservation implies that |k3| = |k4| = k0, i.e. the atoms are scattered
into two equal but opposite momentum modes situated on the surface of a sphere
of radius k0 in momentum space as illustrated in Fig. 1.3a. In typical experiments
approximately 5% of the initial condensate population is scattered into the collision
halo, which can be imaged in position-space using a micro-channel plate (MCP)
detector after ballistic time-of-flight expansion, illustrated in Fig. 1.3b. The excellent
temporal and spatial resolution of the detector allows single-atom detection and
enables experimentalists to fully re-construct the 3D momentum-space distribution
of the scattered atoms from time-of-flight and position data. A typical experimental
cross-section of the collision halo and comparison with theoretical simulations of
Ref. [26] is shown in Fig. 1.4.

Extensive work has been carried out to theoretically and experimentally charac-
terize the process of spontaneous four-wave mixing in colliding condensates. Impor-
tantly for the results ofChaps. 2 and 3, there has been shown to be excellent qualitative
and quantitative agreement between first-principles numerical simulations and exper-
imental observations on many features of the collision halo, including variations in
the radius and thickness of the halo [31, 32] which are not encompassed by simpler
analytic models [33] (see Appendix A for further details).

http://dx.doi.org/10.1007/978-3-319-41048-7_2
http://dx.doi.org/10.1007/978-3-319-41048-7_3
http://dx.doi.org/10.1007/978-3-319-41048-7_2
http://dx.doi.org/10.1007/978-3-319-41048-7_3
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Fig. 1.3 a Schematic of the four-wave mixing scheme in momentum-space. The counter-
propagating halves of the condensate are represented by the pancakes (cigar shaped in reciprocal
space—pictured in the center) at k1,2. Constituent atoms of the two halves collide and scatter into
new modes k3 and k4 satisfying energy and momentum conservation such that k1 + k2 = k3 + k4.
These states lie on a spherical shell of radius k0 known as the collision halo. b Illustration of the
experimental detection process. Atoms are scattered from the condensate into the collision halo.
The cloud of atoms expands freely in position-space and falls onto aMCP detector. The 3Dmomen-
tum distribution can then be re-constructed from recorded time-of-flight and position data. Figure
adopted from Ref. [30]

(a) (b)

Fig. 1.4 a Typical experimental cross-section of collision halo (after averaging over experimental
trials) and b numerical simulation. The condensate is evidenced by the highly populated (white)
regions along the kx -axis (the geometry here differs to the example of Fig. 1.3) whilst the ring of
the collision halo is clearly visible. Figures are adopted from Refs. [25, 26]
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The Hamiltonian of the scattering process can be written simply as

Ĥ =
∫

d3r ψ̂†(r)
[
− �

2

2m
∇2

]
ψ̂(r) + U

2
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r), (1.29)

where U = 4π�
2a/m is the interaction strength characterized by the s-wave

scattering length a between atoms described by the creation (annihilation) field oper-
ators ψ̂† (ψ̂). The collision is dominated by the interaction term of the Hamiltonian,
however, due to the quartic nature of the Hamiltonian it is not exactly solvable. A
positive P-representation of the full field ψ(r, t) allows one to numerically model
the dynamics, however, this is usually restricted to time-scales shorter than the total
collision duration. In general, only a small fraction of the initial condensate popula-
tion is scattered into the collision halo and thus the system lends itself to an analysis
using a linearization procedure. We invoke a Bogoliubov approximation to split the
full field operator ψ̂ = ψ + δ̂ into mean-field ψ and fluctuating δ̂ components. An
effective Hamiltonian governing the dynamics of the fluctuating component can then
be found [34, 35],

Ĥeff =
∫

d3r
{
δ̂†(r, t)

[
− �

2

2m
∇2

]
δ̂(r, t) + 2U |ψ(r, t)|2 δ̂†(r, t)δ̂(r, t)

+U
[
ψ+k0(r, t)ψ−k0(r, t)δ̂

†(r, t)δ̂†(r, t)

+ψ∗
+k0

(r, t)ψ∗
−k0

(r, t)δ̂(r, t)δ̂(r, t)
]}

, (1.30)

where we have further reduced the mean-field wavefunction into the two counter-
propagating components ψ(r, t) = ψ+k0(r, t) + ψ−k0(r, t).

The bilinear form of the interaction term in the second and third lines of Eq. (1.30)
can be recognized as a generalized (multimode) form of Eq. (1.8) once rewritten
in momentum space via a Fourier transform, where the effective (inhomogeneous)
nonlinearity κ(r, t) ∝ (U/2)ψ+k0(r, t)ψ−k0(r, t) is provided by the coupling U and
the product of the mean-field amplitudes of the colliding condensates. In momentum
space, this interaction term corresponds to pair-production of atoms into modes
±k approximately situated on the spherical halo of radius k0. When the fluctuating
component δ̂ is taken to be initially in the vacuum state and considering for simplicity
a homogeneous system in a finite box (hence discretized momentum modes) where
we invoke the undepleted pump approximation such that the number of atoms in the
condensate is taken to be fixed, we expect the atom pairs scattered into the collision
halo to be well approximated by a multimode product state of two-mode squeezed
vacuum states which has the form,

|ψ4WM〉 ≡
⊗
k>0

|ψk〉, (1.31)
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for

|ψk〉 =
√
1 − λ2

k

∞∑
n=0

λn
k|n−k, nk〉, (1.32)

where λk will be determined by the nonlinearity κ(r, t) and collision duration t . As
highlighted in Sect. 1.4.1, such a state has strong correlations between output modes,
which in this case corresponds to correlations between atoms in modes ±k.

We can generalize the discrete second-order correlation g(2)
i j introduced in

Sect. 1.4.1 to the continuous momentum-space second-order correlation function

g(2)(k, k′) = 〈â†(k)â†(k′)â(k′)â(k)〉
〈â†(k)â(k)〉〈â†(k′)â(k′)〉 , (1.33)

where â†(k) [â(k)] is the Fourier transform of δ̂†(r, t) [δ̂(r, t)], or more descriptively
the creation (annihilation) operator of an atom scattered into the collision halo with
momentumk. Physically,g(2)(k, k′) canbe interpreted identically to the discrete form
g(2)
i j , corresponding to likelihood of detection of an atom with momentum k given
that another with momentum k′ has been detected. Again, a level of g(2)(k, k′) >

1 indicates an increased likelihood of this event and g(2)(k, k′) < 1 a decreased
likelihood, whilst g(2)(k, k′) = 1 indicates an uncorrelated process with respect to
random events distributed according to Poissonian statistics.

Motivated by the results for the idealized two-mode squeezed vacuum state, we
can identify two important cases of g(2)(k, k′) in the collision halo. Firstly,we identify
a ‘collinear’ (CL) correlation for k′ = k [equivalent to g(2)

11 and g(2)
22 in the simple

model of Sect. 1.4.1]. Secondly, we characterize a ‘back-to-back’ (BB) correlation
for scattered atom pairs such that k = −k [equivalent to g(2)

12 in the simple model
of Sect. 1.4.1]. To give illustrative results, we can use the simplest model of the
scattering process, corresponding to twoBECs of uniform density colliding in a finite
quantization volume (see Appendix A for details of the calculation). The correlations
between discretized momentum modes in this case reduce to

g(2)
k,k = 2, (1.34a)

g(2)
k,−k = 2 + 1

nk
, (1.34b)

where nk = 〈â†kâk〉 is the occupation of momentum mode k and we assume nk =
n−k. The collinear correlation indicates the Hanbury–Brown–Twiss (HBT) effect of
bosonic bunchingwhilst the strong back-to-back correlation is due tomomentum and
energy conservation in the s-wave scattering process. As the atoms scatter in pairs,
it is intuitive that under these constraints the detection of one atom with momentum
k will be accompanied by the detection of another atom with momentum −k from
the same scattering event.
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To demonstrate the non-classicality of these correlations, we can use the
Cauchy–Schwarz inequality in the form

g(2)
k,−k ≤

√
g(2)

k,kg
(2)
−k,−k. (1.35)

Clearly, for the simple results of Eqs. (1.34a) and (1.34b) this inequality is violated for
all nk. Such a violation was also experimentally demonstrated in Ref. [28] (although
for a slightly more generalized multimode form of the inequality). As previously
highlighted, a violation of the inequality is a pre-requisite for other non-classical
phenomena of quantum mechanics such as demonstration of the Hong–Ou–Mandel
effect and violation of a Bell inequality and thus gives strong support to the viability
of such experiments in this system.

Although for illustrative purposes we have presented simple results here using a
homogeneous BEC, experimentally one deals with inhomogeneous condensates with
a momentum and position-space density distribution of some characteristic width.
In this case, unlike the results of the ideal two-mode squeezed vacuum state, the
correlation function g(2)(k, k′) will have a finite correlation length around the peak-
values at k′ = k and k′ = −k. This can be illustrated by defining the second-order
correlation functions

g(2)
CL(k, k + ei�ki ) = 〈â†(k)â†(k + ei�ki )â(k + ei�ki )â(k)〉

〈â†(k)â(k)〉〈â†(k + ei�ki )â(k + ei�ki )〉 , (1.36)

g(2)
BB(k,−k + ei�ki ) = 〈â†(k)â†(−k + ei�ki )â(−k + ei�ki )â(k)〉

〈â†(k)â(k)〉〈â†(−k + ei�ki )â(−k + ei�ki )〉 , (1.37)

where �ki is a displacement and ei is the respective unit vector along the i =
x, y, z directions. Experimental and theoretical results [26, 34] have shown that
these functions can readily be approximated by a Gaussian form,

g(2)
CL(k, k + ei�ki ) ≡ 1 + hCL

∏
i=x,y,z

e−�ki /2σCL,i , (1.38)

g(2)
BB(k, k + ei�ki ) ≡ 1 + hBB

∏
i=x,y,z

e−�ki /2σBB,i , (1.39)

where hCL(BB) represents the height of the correlation above the background level of
unity andσCL(BB),i is the rms correlationwidth along the i = x, y, z direction. Typical
values of the correlation lengths are on the order of the rms width of the momentum
distribution of the condensate σCL(BB),i ∼ σi , with a pre-factor determined by the
initial condensate density profile (see, e.g., Refs. [26, 34] and Appendix A for exam-
ples). Experimental characterization of these length-scales have proven to be crucial
to understanding the correlations within the collision halo. Specifically, analysis of
the correlation lengths led to a realization of a multimode Cauchy–Schwarz inequal-
ity violation [28]. They will also be important parameters in demonstration of the
HOM effect and violations of a Bell inequality (see Chaps. 2 and 3 for more detail).

http://dx.doi.org/10.1007/978-3-319-41048-7_2
http://dx.doi.org/10.1007/978-3-319-41048-7_3
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1.4.3 Spinor BEC

Spinor Bose–Einstein condensates are an increasingly popular area of study in the
field of ultracold atomic gases. This popularity has been fueled by the interesting
physics which emerges due to the addition of an internal (spin) degree of freedom
to the usual spatial degrees of freedom, including the study of spin textures [36] and
symmetry breaking [37]. Beyond mean-field analysis of the ground state of these
systems there has also been extensive interest in coherent dynamics involving col-
lisions between magnetic substates of the spinor BEC. Of particular interest is the
collision process for a spin-1 (and also spin-2) condensate where two atoms in the
mF = 0 substate collide to produce a pair of atoms in themF = ±1 substate respec-
tively. As we will demonstrate, such a pair-production process can be reduced, in
the simplest approximation, to the squeezing Hamiltonian of Eq. (1.8) and thus we
expect the idealized output state of themF = ±1 pair to be in the two-mode squeezed
vacuum state. The entanglement and non-classical correlations present in this state
make spin-changing collisions an obvious candidate for fundamental tests of quan-
tum mechanics. In particular, unlike the condensate collision scheme outlined in the
previous section which involves many populatedmodes in the collision halo, we con-
sider small spinor BECs [e.g., of small atom number∼150–500, and tightly confined
by a harmonic potential] such that the spatial dynamics are frozen and we can reduce
the problem to only a few modes, corresponding to the internal degrees of freedom.
This simplification allows us to deal with mesoscopic ensembles of atoms which
provide an ideal platform for both a previously unrealized demonstration of EPR
entanglement with massive particles [38] and applications in quantum metrology.

The process of spin-changing collisions has been studied extensively theoretically
[39–42] and demonstrated in various experimental systems [43–47]. Further exper-
iments have verified the presence of entanglement between the output mF = ±1
states [38] while recent work has also focused on the reversible nature of the process
[48–50].

Here we outline the basic theoretical background of spinor BECs, in particular, we
derive the generalHamiltonianwhich governs spatial and spin dynamics in Sect. 1.4.3
before demonstrating how the system can be reduced to a squeezing Hamiltonian
for the spin degrees of freedom in Sect. 1.4.3. This theory will be built on further in
Chaps. 4 and 5, wherein we investigate the feasibility of using spin-changing colli-
sions to demonstrate EPR entanglement between mesoscopic ensembles of massive
particles and a realization an atomic SU(1, 1) interferometer.

Basic Hamiltonian of a Spinor BEC

The general Hamiltonian of a spinor BEC can be broken into two parts [51, 52],

Ĥ = Ĥ0 + Ĥint, (1.40)

http://dx.doi.org/10.1007/978-3-319-41048-7_4
http://dx.doi.org/10.1007/978-3-319-41048-7_5
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where

Ĥ0 =
∫

d3r
F∑

m=−F

ψ̂†
m(r)

[
− �

2

2M
∇2 + V (r) + m�p + |m|�q

]
ψ̂m(r), (1.41)

is the usual single-particle Hamiltonian of kinetic energy and potential terms for
a particle of mass M , as well as incorporating the linear and quadratic Zeeman
shifts and ψ̂m(r) [ψ̂†

m(r)] is the bosonic annihilation (creation) operator of the m =
−F,−F + 1, . . . , F magnetic (mF ) substate of the atomic field in the hyperfine
state F . The linear Zeeman shift is parameterized by p = gμB B/� where g is
the Landé hyperfine g-factor, μB the Bohr magneton and B the external magnetic
field. Similarly, the quadratic shift is given by q = �p2/�Ehf where �Ehf is the
hyperfine energy splitting. The formof Ĥint is non-trivial andwe follow the derivation
of Refs. [51, 52].

In this derivation we assume that the BEC is sufficiently dilute that we only need
to consider binary interactions. Collisions between atoms can then be considered as
scattering events between incoming and outgoing states characterized by total orbital
angular momentumLpair andmagnetic quantum numbermL,pair. This interaction can
be split into short and long-range components, the latter of which involves dipolar
interactions and we neglect them here for simplicity. The short-range interaction is
given by the conventional delta-potential form and is characterized by a length scale
r0, which we assume is much shorter than the de Broglie wavelength λdB 
 r0
(known as the cold-collision approximation [52]). This assumption has the conse-
quence that only the lowest-order partial waves undergo interactions, thusLpair,i = 0
where the subscript indicates i the incoming (initial) state. Next, we assume that the
interaction potential is rotationally invariant, such that the sum of the orbital L̂pair and
internal F̂pair angular momentum of the colliding pair is conserved and, furthermore,
bymaking the ‘weak-dipolar approximation’ [52] we neglect spin-orbit coupling and
thus L̂pair and F̂pair are each also separately conserved, giving Lpair,i = Lpair, f = 0
andFpair,i = Fpair, f where the subscript f indicates the final state. Finally,we neglect
hyperfine relaxation in our treatment and thus consider only collisions between atoms
in the same hyperfine state F .

Following these approximationswemaycharacterize the interactions byoccurring
in discrete spin channels, giving the general form of the interaction Hamiltonian

Ĥint =
2F∑

Fpair = 0,2,...

V̂Fpair , (1.42)

where the summation is only over evenFpair due to the symmetry of thewavefunction
and

V̂Fpair = 1

2
gFpair

∫
d3r |Fpair,Mpair〉〈Fpair,Mpair|, (1.43)
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with |Fpair,Mpair〉 a two-body state characterized by total angular momentum Fpair

and total magnetic quantum numberMpair. The coupling strength in the spin channel
is defined as gFpair = 4π�

2aFpair/M where aFpair is the s-wave scattering length.

By projecting onto single-body states we transform V̂Fpair to

V̂F = 1

2
gF
∫

d3r
F∑

M=−F
Â†
FM(r, r) ÂFM(r, r), (1.44)

where we have adopted the shorthand F = Fpair and M = Mpair for brevity. The
operator ÂFM(r, r′) is an irreducible operator which corresponds to annihilating a
pair of bosons at r and r′

ÂFM(r, r′) =
F∑

m,m ′=−F

〈FM|Fm; Fm ′〉ψ̂m(r)ψ̂m ′(r′), (1.45)

where ψ̂m(r) is the atomic field operator of the m = −F . . . F magnetic substate
and 〈FM|Fm; Fm ′〉 are Clebsch–Gordan coefficients due to the projection onto
single-body states.

For the case of F = 1, calculation of the required Clebsch–Gordan coefficients
[51] and subsequent substitution of Eq. (1.45) into Eq. (1.42) leads to the interaction
Hamiltonian in the compact form [51]

Ĥint = 1

2

∫
d3r
(
c0 : n̂2(r) : +c1 : Ŝ2(r) :

)
, (1.46)

where n̂(r) =∑F
m=−F ψ̂†

m(r)ψ̂m(r) is the particle density operator and Ŝ is the spin
density operator with components

Ŝi =
F∑

m,m ′=−F

(σi )mm ′ ψ̂†
m(r)ψ̂m ′(r), (1.47)

and σi are the spin-1 spin matrices for i = x, y, z. The coupling strengths are given
by c0 = (g0 + 2g2)/3 and c1 = (g2 − g0)/3 [51] where gFpair (Fpair = 0, 2) are the
previously defined interaction strengths in the spin channels.

Similarly, for F = 2 the interaction Hamiltonian can be written as

Ĥint = 1

2

∫
d3r c0 : n̂2(r) : +c1 : Ŝ2(r) : +c2 Â

†
00(r) Â00(r), (1.48)

where n̂(r) is defined as previously and Ŝ is defined as per Eq. (1.47) where σi are
then taken to be the spin-2 spin matrices for i = x, y, z. The coupling strengths are
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given by c0 = (3g4 + 4g2)/7 and c1 = (g4 − g2)/7 and c2 = (7g0 − 10g2 + 3g4)/7
(here Fpair = 0, 2, 4) [51].

The Single Mode Approximation

In Chaps. 4 and 5, the system under investigation is a small (generally less than
500 atoms) condensate of 87Rb atoms. We thus focus our results from the previous
section to this specific application, which allows us to make several assumptions and
simplifications. In particular, we focus on the short-time spin-changing dynamics of
a condensate initially prepared in the mF = 0 state (we will demonstrate that the
particular F state is arbitrary in this instance with respect to the Hamiltonian).

For a 87RbBEC, the relative values of the different scattering lengths in both hyper-
fine states allows us to make a number of simplifications to the form of Eqs. (1.46)
and (1.48). Firstly, for the F = 2 case it has been demonstrated that c2 � c0, c1 [53]
and thus the term proportional to c2 in Eq. (1.48) can be neglected for short times
with respect to the collisional dynamics. Further, for an initial vacuum population
in the mF = ±1,±2 states the spin-changing processes which gradually populate
the mF = ±2 states (which first require a sufficient population in the mF = ±1
states) will proceed on a much slower time-scale than those which generate atoms in
mF = ±1 [54].We can thus effectively ignore all terms involving themF = ±2 field
operators and the Hamiltonian is restricted to an effective spin-1 subspace. Under
these conditions the Hamiltonians of the F = 2 and F = 1 hyperfine levels become
functionally identical and we thus proceed by considering only Eq. (1.46).

Substituting Eq. (1.46) into Eq. (1.40) and expanding into atomic field operators
gives the Hamiltonian in the form [39]

Ĥ = ĤA + ĤS + ĤZ , (1.49)

where

ĤS =
∫

d3r
1∑

m=−1

ψ̂†
m(r)

[
− �

2

2M
∇2 + V (r)

]
ψ̂m(r)

+c0
2

∫
d3r

1∑
m,m ′=−1

ψ̂†
m(r)ψ̂†

m ′(r)ψ̂m ′(r)ψ̂m(r), (1.50)

is known as the symmetric Hamiltonian. This includes the single-particle
Hamiltonian as well as elastic (spin-preserving) collisions between the different mF

components. The asymmetric Hamiltonian is given by

ĤA = c1
2

∫
d3r
[
2ψ̂†

0(r)ψ̂
†
0(r)ψ̂1(r)ψ̂−1(r) + 2ψ̂†

1(r)ψ̂
†
−1(r)ψ̂0(r)ψ̂0(r)

+ 2ψ̂†
0(r)ψ̂

†
1(r)ψ̂1(r)ψ̂0(r) + 2ψ̂†

0(r)ψ̂
†
−1(r)ψ̂−1(r)ψ̂0(r)

+ ψ̂†
1(r)ψ̂

†
1(r)ψ̂1(r)ψ̂1(r) + ψ̂†

−1(r)ψ̂
†
−1(r)ψ̂−1(r)ψ̂−1(r)

− 2ψ̂†
1(r)ψ̂

†
−1(r)ψ̂−1(r)ψ̂1(r), (1.51)

http://dx.doi.org/10.1007/978-3-319-41048-7_4
http://dx.doi.org/10.1007/978-3-319-41048-7_5
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and includes both inelastic spin-changing collisions as well as elastic collisions.
Finally, the interaction of themF = ±1 substates with the magnetic field is described
by

ĤZ =
∫

d3r
{
�p
[
ψ̂†
1(r)ψ̂1(r) − ψ̂†

−1(r)ψ̂−1(r)
]

+ �q
[
ψ̂†
1(r)ψ̂1(r) + ψ̂†

−1(r)ψ̂−1(r)
]}

, (1.52)

where p and q are the forementioned Zeeman coefficients.
In the case that ĤS is much stronger than ĤA + ĤZ , requiring c0 
 c1, the

spatial degrees of freedom will essentially be frozen and dynamics are confined to
the internal (spin) degrees of freedom. Assuming T = 0 (i.e. kBT � �ω for a
harmonic trapping potential of frequency ω) the field operators for each substate can
be expanded in a single-spatial mode ψ̂m(r) ≡ âmφm(r), where φm(r) is the ground-
state spatial wavefunction (with respect to ĤS) and âm is the annihilation operator of
themF = m state. This approximation is true for the 87Rb systemunder consideration
as c0 
 c1 and the trapping potentials are assumed to be sufficiently tight. The spatial
wavefunction φm(r) can be found as the solution of the time-independent mean-field
Gross–Pitaevskii equation with respect to ĤS ,

μφm(r) =
[
− �

2

2M
∇2 + V (r) + c0N |φm(r)|2

]
φm(r), (1.53)

where μ is the chemical potential and N the total number of particles in the conden-
sate. The typical length scale on which the wavefunctions φm(r) of each component
differ is known as the spin healing length,

ξs = 2π�√
2Mc2ρ

, (1.54)

where ρ is the density of the trapped condensate. In the case where ξs is much larger
than the size of the condensate we may make the approximation that φm(r) ≈ φ(r).
This is known as the single mode approximation, wherein all spinor components
occupy the same spatial mode. In this case, we have ψ̂m(r) ≈ âmφ(r) where âm is
the canonical annihilation operator of a particle in the m = 0,±1 state and we may
integrate out the spatial dimensions of Eqs. (1.51) and (1.52) to give the effective
Hamiltonian for the spin dynamics in the single-mode approximation [55],

Ĥ = Ĥinel + Ĥel + ĤZ , (1.55)
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where

Ĥinel = �g
(
â†0 â

†
0 â1â−1 + â†1 â

†
−1â0â0

)
, (1.56)

Ĥel = �g
(
n̂0n̂1 + n̂0n̂−1

)
, (1.57)

ĤZ = �p(n̂1 − n̂−1) + �q(n̂1 + n̂−1). (1.58)

The coupling constant is defined as g = (c2/�)
∫
d3r|φ(r)|4 and n̂m is the particle

number operator for m = 0,±1. In our representation we have used that the total
atomnumber N̂ = â†0 â0+â†1 â1+â†−1â−1 and number difference N̂− = â†1 â1−â†−1â−1

are conserved quantities.
The inelastic Hamiltonian Ĥinel is responsible for the spin-changing collisions

within the spinor BEC, whilst Ĥel and ĤZ characterize elastic collisions and the
Zeeman shift respectively. Combined, these latter two terms act as a population
dependent shift in the energy-resonance of the spin-changing collision process. For
a spinor BEC initially populating the mF = 0 state, we can further simplify the
Hamiltonian into a two-modemodel by invoking the undepleted pump approximation
for the mF = 0 state, wherein we make the replacement â0 → α0 where |α0|2 =
〈â†0 â0〉 is the initial population of the BECwhich is assumed to be in a coherent state.
For simplicity, we arbitrarily choose α0 purely real. For the population dynamics
this approximation is valid for short times, such that the occupation of the mF = ±1
states does not exceed 10% of the initial mF = 0 population. For an initial vacuum
state in the mF = ±1 modes we can neglect the linear Zeeman shift as n̂1 − n̂2 = 0
will be a conserved quantity, and by choosing the quadratic Zeeman shift such that
q = −g|α0|2 and ĤZ compensates Ĥel (i.e. the spin-changing collisions are on
resonance) we find:

Ĥ = �gα2
0

(
â†1 â

†
−1 + â1â−1

)
, (1.59)

which, up to a physically inconsequential phase shift of the pump mode (of eiπ/4),
is the same as the squeezing Hamiltonian of Eq. (1.8) where we identify κ0 ≡ gα2

0.
Thus, the output state of the spin-changing collision process can be reduced to the
two-mode squeezed vacuum in the undepleted pump approximation.

This approximation to the two-mode squeezed vacuum state is pivotal to the work
in Chaps. 4 and 5 of this thesis. Specifically, in Chap.4, motivated by the previous
realization of the EPR paradox with massless photons prepared in this state, we
investigate the feasibility of a demonstration of the paradox with massive particles
by preparing the two-mode squeezed vacuum via spin-changing collisions in a spinor
BEC. Furthermore, in Chap.4 we use the same process to investigate a realization of
an atomic SU(1, 1) interferometer, wherein the two-mode squeezed vacuum plays a
crucial role in obtaining sensitivity at the Heisenberg limit.

http://dx.doi.org/10.1007/978-3-319-41048-7_4
http://dx.doi.org/10.1007/978-3-319-41048-7_5
http://dx.doi.org/10.1007/978-3-319-41048-7_4
http://dx.doi.org/10.1007/978-3-319-41048-7_4
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1.5 Background II: Phase-Space Methods

1.5.1 The Wigner Representation

Basic Theory

The earliest and most well-known phase-space distribution is that of the Wigner
representation, which was developed by Wigner in 1932 [56]. It is perhaps the most
strongly driven by the connection to a classical phase-space and features several, but
not all, of the properties of a classical probability distribution.

The basis of the Wigner representation is the Weyl transformation [57],

OW(x, p) = 1

2π

∫
dy eipx 〈x − y

2
|Ô(x, p)|x + y

2
〉, (1.60)

which maps the quantum operator Ô(x, p) onto the classical phase-space function
OW(x, p) where x and p are canonically conjugate position and momentum vari-
ables. Formally, one can then define the relation between the density operator ρ̂ of
the system and the corresponding Wigner phase-space distribution W (x, p) by the
Wigner transformation [57–59]

W (x, p) = 1

2π

∫
dy eipx 〈x − y

2
|ρ̂|x + y

2
〉, (1.61)

which entails a complete representation of the quantum state as a distribution over
phase-space variables.Unlike other phase-space representations, theWigner function
has the property that its marginals reflect the true probability distributions of the
conjugate variables:

P(x) =
∫

dp W (x, p), (1.62)

P(p) =
∫

dx W (x, p). (1.63)

Such a feature is consistent with a true joint-probability distribution for the phase-
space variables x and p. However, the interpretation of the Wigner function as a
probability distribution has the major flaw that it is not strictly positive for certain
quantum states, hence its definition as a quasi-probability distribution. Negativity of
the Wigner function is often cited as evidence of non-classicallity of the correspond-
ing quantum state, as the phase-space distribution has no classical analog.

A more general definition of a multimode Wigner function in the coherent state
phase-space is given by [60–62]
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W (α) = 1

π2M

∫
d2Mλ

[
M∏
n=1

exp
(
λ∗
nαn − λnα

∗
n

)]XW (α), (1.64)

where

XW (λ) = Tr

[
ρ̂

M∏
n=1

exp
(
λ∗
nân − λnâ

†
n

)]
, (1.65)

is the characteristic function of the Wigner distribution and ân (â†n) are the annihi-
lation (creation) operators of the n = 1, 2 . . . M modes. For brevity we adopt the
notation λ = (λ1, . . . ,λM) for the integration measure and α = (α1, . . . ,αM)

for the coherent state amplitudes αn (n = 1, 2, . . . , M). We interpret W (α) as a
quasi-probability distribution for the (complex-valued) amplitudes αn .

Following the interpretation of W (α) as a quasi-probability distribution, one can
calculate expectation values of quantum operators Ô via averages over the phase-
space with weighting according to W (α),

〈Ô〉W ≡ 〈OW〉 =
∫

d2Mα OW(α)W (α), (1.66)

where OW is the corresponding phase-space representation of Ô obtained by appli-
cation of the Weyl transformation [see Eq. (1.60)]. The action of the Weyl transfor-
mation on operators which can be written as a product of annihilation and creation
operators leads to the consequence that averages with respect to the Wigner distrib-
ution correspond to quantum expectation values which are symmetrically ordered:

〈 M∏
i=1

(
â†i

)mi

ânii

〉
sym

=
∫

d2α

[
M∏
i=1

(α∗
i )

mi αni
i

]
W (α). (1.67)

The simplest example of this is the calculation of the occupation of a single mode,
wherein an average over Wigner phase-space corresponds to

〈â†i âi 〉sym ≡ 1

2
〈â†i âi + âi â

†
i 〉 =

∫
d2Mα α∗

i αiW (α). (1.68)

Hence, in general onemust use the usual bosonic commutation relations [âi , â†j ] = δi j
to appropriately reorder the Wigner averages and obtain relevant normally-ordered
quantum mechanical expectation values, such as those involved in the calculation of
second-order correlation functions introduced in the earlier sections of this chapter.

Quantum Evolution Using the Wigner Representation

Beyond its use as an interpretative tool to allow a better understanding and repre-
sentation of quantum states, the Wigner representation is also a powerful tool to
model dynamical problems. In this section we will outline how the evolution of the
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quantum mechanical density operator in the Schrödinger picture, which is in gen-
eral intractable, can be mapped to a partial differential equation for the phase-space
distribution, which can in general be solved with exact or numerical methods. In
particular, we will focus on the application of this representation with respect to the
dynamics of spinor condensates, which we will use in detail in Chap.4.

For a (dissipationless) quantum system subject to unitary evolution, the dynamics
of the system are encapsulated by the vonNeumann equation for the density operator,

i
∂ρ̂

∂t
=
[
Ĥ , ρ̂
]
. (1.69)

This operator equation, in general, is not analytically tractable nor feasible to numer-
ically solve. However, by applying phase-space methods we are able to transform it
into an evolution equation for the phase-space distribution, which in general we may
solve using numerical techniques.

The basis of the technique is to use a mapping connecting the density matrix and
Wigner distribution. In particular, this can be realized by noting that the RHS of the
von Neumann equation will be composed of terms like âρ̂ and ρ̂â. Such terms can
be generated by application of differential operators on the phase-space distribution
(for further detail see, e.g., [61, 62]), to give the relevant operator mappings

âi ρ̂ →
(

αi + 1

2

∂

∂α∗
i

)
W (α), (1.70)

â†i ρ̂ →
(

α∗
i − 1

2

∂

∂αi

)
W (α), (1.71)

ρ̂âi →
(

αi − 1

2

∂

∂α∗
i

)
W (α), (1.72)

ρ̂â†i →
(

α∗
i + 1

2

∂

∂αi

)
W (α). (1.73)

For terms with multiple creation or annihilation operators, the ordering of the above
identities is inside out such that the first differential operator to act on W (α) corre-
sponds to the closest operator to ρ̂, for example

â†i âi ρ̂ →
(

α∗
i − 1

2

∂

∂αi

)(
αi + 1

2

∂

∂α∗
i

)
W (α). (1.74)

Substituting these mappings into Eq. (1.69) will convert the master equation into
an evolution equation for the phase-space distribution W (α). To illustrate this in
a concrete way, we specialize our derivation at this point to the case of a spinor
condensate in the single-mode approximation (outlined previously in Sect. 1.4.3),
which we investigate in depth in Chap. 4. The insights which arise from this example
are generically valid for any Hamiltonian which is up to quartic order in creation and
annihilation operators. The specific Hamiltonian under consideration is:

http://dx.doi.org/10.1007/978-3-319-41048-7_4
http://dx.doi.org/10.1007/978-3-319-41048-7_4
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Ĥ = Ĥinel + Ĥel + ĤZ , (1.75)

where

Ĥinel = �g
(
â†0 â

†
0 â1â−1 + â†1 â

†
−1â0â0

)
, (1.76)

Ĥel = �g
(
n̂0n̂1 + n̂0n̂−1

)
, (1.77)

ĤZ = �q(n̂1 + n̂−1). (1.78)

The coupling constant g is characterised by s-wave scattering of the atoms, whilst q
parametrizes the quadratic Zeeman shift (see Sect. 1.4.3 formore detail). Substitution
of Eq. (1.75) into the von Neumman equation [Eq. (1.69)] and application of the
operator mappings gives the result

dW (α)

dt
=
{

2∑
n=0

(
∂

∂αn
An + ∂

∂α∗
n

A∗
n

)
+ O

(
∂3

∂α3
n

)}
W (α), (1.79)

where A is the drift vector, characterised in this case by

A0 = −ig
[
2α1α2α

∗
0 + (|α1|2 + |α2|2

)
α0
]
, (1.80)

A1 = −ig
[
α2
0α

∗
2 + (|α0|2 + q/g

)
α1
]
, (1.81)

A2 = −ig
[
α2
0α

∗
1 + (|α0|2 + q/g

)
α2
]
. (1.82)

Note that in this case α2 corresponds to the mode â−1 and the phase-space variables
span α ≡ (α0,α1,α2). More generally, for a system with M modes A will be a
vector of length M . The third-order derivative terms in Eq. (1.79) arise due to the
quartic products of annihilation and creation operators in Ĥinel and Ĥel. In general,
including the case here, such terms render Eq. (1.79) intractable. To overcome this,
one invokes the ‘truncatedWigner approximation’ (TWA),wherein differential terms
of third-order and higher are explicitly neglected. This assumption is valid in gen-
eral, for systems where the average occupation is large N 
 1, or for multi-mode
systems where the total number of particles greatly exceeds the number of modes
(M) N 
 M [61, 62]. In this case, one generally uses a broad argument that the
contribution of the third-order terms is negligible, at least for short times, as they
scale as 1/N 3/2. Theoretical study has examined the applicability and robustness
of this criteria [63], however, inevitably the truncation error is difficult to quantify
without another solution method with which to benchmark.

The truncated Wigner approximation thus renders Eq. (1.79) into the form of a
classical Liouville equation [61, 62],

dW (α)

dt
=
{

2∑
n=0

(
∂

∂αn
An + ∂

∂α∗
n

A∗
n

)}
W (α), (1.83)
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which can be solved by the method of characteristics. This method reduces the
Liouville equation for the distribution function to an equivalent deterministic differ-
ential equation for the phase-space variables,

dαn

dt
= An (n = 0, 1, 2), (1.84)

with stochastic initial conditions corresponding to an appropriately sampled Wigner
distribution of the initial state. Under the forementioned approximations of a dissi-
pationless system and truncation of the higher-order terms in the evolution equa-
tion for W (α), the differential equation for αn (α∗

n) always correspond to the
Heisenberg equation of motion for ân (â†n) with replacement of the operators by their
c-number counterparts (coherent amplitudes), as can easily be seen from inspection
of Eqs. (1.80)–(1.82).

As the differential equation is deterministic in this approximation, the ‘quantum-
ness’ of the problem is encapsulated by the stochastic initial conditions of α. These
are chosen to reflect the underlyingWigner distributionof the initial state,which in the
TWAmust be strictly positive so that it can bemapped to a classical probability distri-
bution which can then be sampled [64]. For the system in question the initial Wigner
distribution is assumed to be seperable such that W (α) = W0(α0)W1(α1)W2(α2)

where Wn(αn) is the single-mode Wigner function for modes n = 0, 1, 2 and hence
the stochastic initial condition of each mode can be sampled independently.

We assume that the spinor condensate is initially prepared purely in the â0 mode
and can be modelled well by a coherent state of amplitude β0, such that W0(α0) =
2
π
exp(−2|α0 − β0|2). Following the prescription of Ref. [64] this distribution can

be sampled by choosing the initial condition α0(0) = β0 + η0/
√
2 where η0 is a

complex source of white noise such that 〈η0〉 = 0 and 〈η2
0〉 = 1.

In the investigation of Chap. 4, we consider the â±1 modes to be in one of three
initial conditions: (i) vacuum state, (ii) thermal state or (iii) coherent state. The third
of these is identical to that outlined above for the â0 mode, albeit for a different
coherent amplitude, and so we will not repeat it here. Similarly, the vacuum state can
be trivially modelled as a coherent state with nil amplitude, such that an appropriate
initial condition for the phase-space variables is αn(0) = ηn/

√
2 where n = 1, 2 and

ηn (n = 1, 2) are complex independent sources of white noise with 〈ηn〉 = 0 and
〈ηnηm〉 = δmn . Finally, the Wigner distribution for a thermal state is given by [64]

Wn(αn) = 1

π

1

n̄ + 1/2
e−|αn |2/(n̄+1/2) (1.85)

where n̄ = 〈â†n ân〉 is the average occupation and we consider n = 1, 2 here. Such a
distribution can be sampled appropriately by choosing the initial condition αn(0) =√
n̄ + 1/2ηne2πξn for n = 1, 2 where ηn is a complex source of white noise as before

and ξn is a random real variable uniformly distributed in the interval [0, 1].
We note that for a full multi-mode treatment of a spinor BEC taking into account

the spatial degrees of freedom, the initial state of the system would need to be

http://dx.doi.org/10.1007/978-3-319-41048-7_4
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fully characterised by a Bogoliubov analysis of the low-lying excitations around the
condensate [65, 66]. Furthermore, for a spinor system this Bogoliubov analysis
would also need to take into account the spinor excitations (spin waves) to fully
characterise the quantum noise [67] of the initial state. However, in this thesis we
consider spinor systems which are very well described in the single-mode approxi-
mation (see Sect. 1.4.3), and specifically the spin-healing length is negligible when
compared to the characteristic length scale of the spatial wavefunction. Under these
conditions, the TWA treatment of the quantum dynamics of the simple few-mode
model encapsulates the relevant physics on which we focus.

With appropriate choice of initial quantum noise, the evolution of the ensemble
of stochastically-seeded trajectories can then be interpreted as the evolution of the
total phase-space distribution in time. Hence, the final Wigner function can be easily
reconstructed by considering the distribution of the final ensemble of solutions α(t),
specifically by binning the values (with sufficient resolution) in the 2M-dimensional
complex space. This procedure can always be carried out as the truncated Wigner
approximation intrinsically guarantees that the non-negativity of the initial Wigner
function is preserved throughout the evolution.

The deterministic evolution combined with stochastic initial conditions tempts
an interpretation in terms of classical phase-space distributions. However, there are
several important differences that render this less useful. In particular, classically
the uncertainty in initial conditions is due to imperfect knowledge of the underlying
classical state and thus each individual trajectory [solution of α(t)] retains meaning.
In contrast, individual stochastic trajectories or equivalently points in the quantum
phase-space with simultaneously well defined Re(αn) and Im(αn) for n = 1, 2 . . . M
cannot physically exist, asRe(αn) and Im(αn) are related to incompatibleobservables
(ân+â†n)/2 and i(â

†
n−ân)/2 respectively. As a consequence of theHeisenberg uncer-

tainty principle for these observables, simultaneous values of Re(αn) and Im(αn) are
inconsistent with the standard interpretation of quantummechanics. In a similar vein,
interpreting the finite width of theWigner distribution as due to imperfect knowledge
of the underlying state would be akin to a hidden-variable interpretation, whereas this
is actually a reflection of the uncertainty in the canonically conjugate variables. We
discuss this common interpretation of the Wigner function in more detail in Chap. 6.

Symmetrically-ordered expectation values 〈∏2
i=0(â

†
i )

ni âmi
i 〉sym are trivially calcu-

lated according to Eq. (1.67), which corresponds to averaging
∏2

i=0(α
∗
i )

ni αmi
i over

the ensemble of trajectories. Neglecting truncation error, the error in expectation
values will be only due to the finite size of the ensemble and the sampling error will
scale as 1/N where N is the number of trajectories.

For the process of spin-changing collisions we are specifically interested in
normally-ordered correlation functions such as 〈n̂i 〉 and G(2)

i j = 〈: n̂i n̂ j :〉 (i, j =
0,±1 where i, j = −1 corresponds to the field α2). The population of each mode
can trivially be calculated according to

〈â†i âi 〉 ≡ 〈|αi |2〉stoch − 1

2
, (1.86)

http://dx.doi.org/10.1007/978-3-319-41048-7_6
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where the subtraction of 1/2 is a correction due to the symmetric ordering and
〈· · · 〉stoch refers to an average over phase-space trajectories. Similarly, the relevant
cross- and auto-correlations can be calculated respectively as:

G(2)
i j ≡ 〈|αi |2|α j |2〉stoch − 1

2

(〈|αi |2〉stoch + 〈|α j |2〉stoch
)+ 1

4
(for i �= j), (1.87)

G(2)
i i ≡ 〈|αi |4〉stoch − 2〈|αi |2〉stoch + 1

2
. (1.88)

In Fig. 1.5 we plot results of an example calculation using the truncated Wigner
approximation for this system. We prepare an initial coherent state in the n = 0
mode, such that the initial population is 〈â†0 â0〉 = |β0|2 = 50, whilst the sidemodes
are prepared in an initial vacuum state. The coupling coefficient is chosen to be
g = 0.05 and the quadratic Zeeman shift is q = −gN0. We calculate the mean
population of the sidemodes 〈n̂1+n̂−1〉 and the normalized second-order correlations
g(2)
i j = G(2)

i j /(〈n̂i 〉〈n̂ j 〉) using the TWA and compare these results to calculations
using the exact diagonalization method in the Fock state basis. We find excellent
agreement for short times until a small discrepancy in 〈n̂1+n̂−1〉 at the firstmaximum.
Breakdown of the TWA method is more clearly seen after t ∼ 0.3, wherein there is
a clear difference between the exact results and the TWA calculation. This deviation
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Fig. 1.5 a Mean occupation of the sidemodes 〈n̂1 + n̂−1〉 calculated using the truncated Wigner
approximation [Eqs. (1.84), dashed red line] compared to that calculated using exact diagonalization
of theHamiltonian (solid black line).bSecond-order correlation functions calculated in the truncated
Wigner approximation: g(2)

1,−1 (dashed red line) and g
(2)
1,1 = g

(2)
−1,−1 (dot-dashedmagenta line). These

are compared to results calculated using exact diagonalization (solid black and dotted blue lines
respectively). Sampling error (two standard deviations) is indicated by the shading for the TWA
results. Parameters of the calculation are discussed in the main text. In both a and b good agreement
is found for short times. Early differences in the g(2)

i j results are due to large sampling error due

to the low population of the sidemodes, which means the numerator and denominator of g(2)
i j are

both dominated by stochastic noise. Discrepancies occur near t ∼ 0.15 for calculations of the
mean population 〈n̂1 + n̂2〉, whilst a clear difference between the methods is seen in both the mean
population and second-order correlations for t � 0.3. The onset of these discrepancies is due to the
truncation error introduced by neglecting the third-order derivatives in the exact evolution equation
for W (α) [Eq. (1.79)]
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is entirely attributable to truncation error, which is introduced upon discarding third-
order derivatives and higher from the exact evolution equation forW (α) [Eq. (1.79)].

Beyond calculation of correlation functions, it is also possible to evaluate the
particle number distribution of the system via the overlap formula [59],

Pn1,n2...nM =
∫

d2Mα W (α)

M∏
i=1

W|ni 〉(αi ), (1.89)

where

W|ni 〉(αi ) = 2

π
(−1)ni e−2|αi |2Lni (4|αi |2), (1.90)

is the Wigner function of the Fock state |ni 〉 and Lni (x) is the ni -th order Laguerre
polynomial. It is easy to see that Eq. (1.89) is operationally equivalent to evaluating
the average of 〈∏M

i=1 W|ni 〉(αi )〉stoch over the ensemble of trajectories. Such a compu-
tation is in general non-trivial for highly occupied states or those with a sufficiently
broad number distribution as it requires evaluation of high-order Laguerre polyno-
mials with large arguments. Usually, computational techniques such as quadruple
precision will be required to overcome numerical issues for ni � 256.

In Chap.6 we outline another operational method which can be implemented
to calculate an approximation to Pn1,n2...nM under certain conditions. Specifically,
focusing on the single-mode case Pn , we outline how by assuming that individual
stochastic trajectories can be regarded as faithful representations of experimental
trials—a point which is touched upon earlier in this subsection—one is motivated
to bin the occupation of individual stochastic trajectories n j ≡ |α j |2 − 1/2, where
the subscript j denotes the trajectory index, into a probability distribution P̃n which
can then be compared to Pn . We demonstrate in Chap. 6 that there is indeed a close
quantitative correspondence between Pn and P̃n for a wide range of states, which
indicates that P̃n is a simple computational alternative in practice.

1.5.2 The Positive-P Representation

Basic Theory

Another class of phase-space distributions are given by the P-representations. In
contrast to the Wigner function, which has the drawback of being negative in cer-
tain cases, the P functions have the favourable property that the distribution func-
tion is strictly positive. In general, the familiy of P representations are defined
as an expansion of the density matrix over the off-diagonal coherent state basis
[61, 62, 68]

ρ̂ =
∫

�̂(α,β)P(α,β)dμ(α,β), (1.91)

http://dx.doi.org/10.1007/978-3-319-41048-7_6
http://dx.doi.org/10.1007/978-3-319-41048-7_6
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where dμ(α,β) is the integration measure which defines the particular
P-representation and we define

�̂(α,β) = |α〉〈β∗|
〈β∗|α〉 (1.92)

as the off-diagonal coherent state projection operator. The coherent amplitudeswhich
span the phase-space are defined via the vector notation α = (α1,α2, . . . ,αM) and
β = (β1,β2, . . . ,βM) where M is the number of modes in the system.

In the simplest case, where dμ(α,β) = d2Mαd2Mβδ(M)(α − β) one recovers
the well-known (diagonal) Glauber–Sudershan P-representation. However, the non-
negativity of this distribution comes at the cost that it is not necessarily well defined
for all density matrices. In particular, for some states the distribution function is more
singular than a δ-function [68].

A solution to this problem was found by Drummond and Gardiner [68], where at
the cost of effectively doubling the phase-space with dμ(α,β) = d2Mαd2Mβ, they
were able to define a strictly non-negative distribution function which is well defined
for any state, known as the positive-P representation. In contrast to the Wigner
representation where one makes the effective correspondence âi ↔ αi and â

†
i ↔ α∗

i
for i = 1 . . . M , in the doubled phase-space of the positive-P representation we
associate âi ↔ αi and â

†
i ↔ βi where we emphasize that αi and βi are independent

variables which are not related by complex conjugation.
Similar to the Wigner distribution, expectation values of quantum operators may

be obtained by appropriate averaging of the phase-space variables with respect to
the weighting of the P(α,β) function. In the case of the positive-P representation,
these averages correspond to normally-ordered products of annihilation and creation
operators

〈
:

M∏
i=1

(â†i )
ni âmi

i :
〉

=
∫

d2αd2β

[
M∏
i=1

βmi
i αni

i

]
P(α,β), (1.93)

where the colon notation indicates normal ordering (i.e. all creation operators are to
the left of all annihilation operators).

Quantum Evolution Using the Positive-P Representation

Having appropriately defined the positive-P distribution we will show in this section
how the phase-space representation can be used to solve the dynamics of the quan-
tum mechanical problems. Identically to the Wigner representation, the basis of the
method is to map the intractable master equation for the density operator to a par-
tial differential equation for the evolution of P(α,β) – a Fokker-Planck equation –
which can be mapped to a set of stochastic differential equations and solved numer-
ically. In particular, we will focus on the application of this method to the topic of
spontaneous four-wave mixing in colliding condensates, which forms the basis of
Chaps. 2 and 3.

http://dx.doi.org/10.1007/978-3-319-41048-7_2
http://dx.doi.org/10.1007/978-3-319-41048-7_3
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The evolution of the density operator can be rewritten in terms of the positive-P
representation [61, 62, 69],

∂ρ̂

∂t
=
∫

�̂(α,β)
∂P(α,β)

∂t
d2αd2β, (1.94)

and thus using the (dissipationless) von Neumann equation for the density operator
[Eq. (1.69)] we have [61, 62, 69],

∫
�̂(α,β)

∂P(α,β)

∂t
d2αd2β =

∫ [
Ĥ , �̂(α,β)

]
P(α,β)d2αd2β, (1.95)

Similar to the derivation for the Wigner representation of Sect. 1.5.1, the rele-
vant mappings between the creation and annihilation operators and the phase-space
variables for the positive-P representations can be written in terms of the projection
operator [61, 62, 70]:

âi�̂(α,β) → αi�̂(α,β), (1.96)

â†i �̂(α,β) →
(

βi + ∂

∂αi

)
�̂(α,β), (1.97)

�̂(α,β)âi →
(

αi − ∂

∂βi

)
�̂(α,β), (1.98)

�̂(α,β)â†i → βi�̂(α,β). (1.99)

Substitution of these mappings into Eq. (1.95) and integration by parts to shift the
differential operators onto P(α,β)will lead to a generalized Fokker-Planck equation
for the phase-space distribution. Restricting our consideration toHamiltonianswhich
are no higher than quartic in creation and annihilation operators, the form of the
equation will be an actual Fokker-Planck equation, with no higher than second-order
derivative terms,

d

dt
P(α) =

⎡
⎣∑

i

∂

∂αi
Ai + 1

2

∑
i, j

∂2

∂αi∂α j
Di j

⎤
⎦ P(α), (1.100)

where A is the drift vector of length 2M , D the diffusion matrix of dimensions
2M × 2M and we have used the vector notation α ≡ (α1,α2, . . . ,αM ,β1, . . . ,βM)

for simplicity. Due to the nature of the positive-P representation the diffusion matrix
D is guaranteed to be positive-definite [61, 70], implying Eq. (1.100) is always a valid
Fokker-Planck equation. We make the important observation that for this derivation
to be valid, we assume that when integrating by parts the boundary terms of the
distribution P(α,β) vanish (in particular this requires that the tails of the phase-
space distribution decay exponentially). This assumption plays an important role in
the practical application of the distribution to quantum mechanical problems and we
will discuss consequences of this assumption in further detail later in this section.
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The Fokker-Planck equation for P(α) [Eq. (1.100)] can be solved by mapping
the equation to a set of Îto stochastic differential equations, such that:

dα j

dt
= −A j +

∑
k

B j kξk(t). (1.101)

Here B is a 2M × N matrix which is defined as the (non-unique) decomposition of
the diffusion matrix D = BBT and ξ(t) is a vector ofN independent, real Gaussian
white noise terms with 〈ξ j (t)〉 = 0 and 〈ξ j (t)ξk(t ′)〉 = δ jkδ(t − t ′) where j, k =
1, 2 . . .N . These Îto equationsmay also be converted intoStratonovich form [61, 62],
to which the usual rules of differential calculus apply, simplifying their integration
with standard numerical methods (see, e.g., Ref. [71]).

For illustration, we show how this method can be implemented to the problem
of colliding condensates. In this thesis we use the positive-P formalism to calculate
correlation functions for a system of ∼105 particles on a spatial lattice of ∼107

modes. Such a problem is clearly beyond exact techniques due to the enormous
Hilbert space, however, the positive-P representation allows us tomap the intractable
master equation to a Fokker-Planck equation which can be solved using stochastic
techniques.

The Hamiltonian describing the process is:

Ĥ =
∫

d3r
{
ψ̂†(r)

[
− �

2

2m
∇2

]
ψ̂(r) + U

2
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)

}
, (1.102)

where U = 4π�
2a/m is the interaction strength characterized by the s-wave scat-

tering length a between atoms (of mass m) described by the bosonic creation (anni-
hilation) field operators ψ̂† (ψ̂). In order for the assumed delta-function form of the
interaction potentialU (r − r′) = Uδ(3)(r − r′) to be valid, one must impose a finite
momentum cutoff kmax such that |kmax| 
 1/a [72]. For discrete lattice models,
which we will discuss below, this can be physically ensured by choosing an appro-
priate lattice spacing in position space when the continuous system is discretized.
Enforcing this momentum cutoff then ensures the interaction strength U is given
by the formula above and does not require explicit renormalization to avoid UV
divergences [72].

To solve this problem in the positive-P representationwe are required to discretize
the continuous Hamiltonian of Eq. (1.102) onto a three-dimensional spatial lattice,
such that appropriate creation and annihilation operators can be defined, which can
then be mapped to the phase-space variables. We characterise the lattice points by
the vector i = (ix , iy, iz) where ix = 1, 2 . . . Nx and similarly for iy and iz , with
spatial co-ordinates r i = (ix�x, iy�y, iz�z) where �x is the lattice spacing in
the x direction and similarly for y and z. For simplicity we choose the lattice to
have Nx = Ny = Nz = N points along each dimension of total lengths Lx =
N�x , Ly = N�y and Lz = N�z, such that there are N 3 lattice points (modes)
in total (for completeness we note this is not the case in Chaps. 2 and 3, however,

http://dx.doi.org/10.1007/978-3-319-41048-7_2
http://dx.doi.org/10.1007/978-3-319-41048-7_3
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the following results are trivially generalized). Subsequently, we can define new
bosonic annihilation operators on the lattice âi ≡ (�x�y�z)1/2ψ̂(r i ) such that
[âi , â†j ] = δi j . The discretized Hamiltonian can then be written as [69, 73]

Ĥ =
∑
i, j

�ωi j â
†
i â j + �U

∑
i

â†i â
†
i âi âi , (1.103)

where

U = U

2�
�x�y�z, (1.104)

is the discretized coupling constant and [69]

ωi j = �

2mN 3

∑
k

|k|2eik · (r i−r j ), (1.105)

is a linear coupling between sites. This last term arises due to the discretization of
the spatial derivative in the kinetic energy term via a Fourier transform to momentum
space. The summation over plane-wave momentum modes is defined such that k =
(kx , ky, kz)where for N odd ki = (−kmax

i ,−kmax
i +�ki , . . . , kmax

i ) for�ki = 2π/Li

and kmax
i = (N − 1)�ki/2 (i = x, y, z) for periodic boundary conditions. Similarly,

for N even we have ki = (−kmax
i ,−kmax

i + �ki , . . . , kmax
i − �ki ) (i = x, y, z). As

discussed previously, for the implicitly assumed δ-function form of the interaction
potential to be valid we require that kmax

i is chosen such that a 
 1/kmax
i . In terms

of the lattice spacing in position space, this requirement is equivalent to choosing N
such that �x,�y,�z 
 a.

Evaluation of the von Neumann equation [Eq. (1.95)] with respect to the dis-
cretized Hamiltonian Ĥ [Eq. (1.103)], substitution of the mappings of Eqs. (1.96)–
(1.99) into the ensuing master equations, and integration by parts leads to a
Fokker-Planck equation of the form of Eq. (1.100). This equation is solved by map-
ping to a set of coupled Îto stochastic differential equations, which in this instance
have the form:

dα j

dt
= −i

[∑
l

(
ω j lαl

)+ 2Uα2
jβ j + √

2iUα jξ1, j (t)

]
, (1.106)

dβ j

dt
= i

[∑
l

(
ω j lβl

)+ 2Uβ2
jα j + √

2iUβ jξ2, j (t)

]
, (1.107)

where ξk, j (t) (k = 1, 2 and j = 1, 2 . . . M) are independent sources of real Gaussian
noise with 〈ξk j (t)〉 = 0 and 〈ξk j (t)ξml(t ′)〉 = δkmδ j lδ(t − t ′).

We can define less unwieldy stochastic fields by the relation�(r) ≡ �x�y�zαri
and �̃(r) ≡ �x�y�zβri . Then, by taking �x → 0 and similarly for �y and �z
we can recover stochastic equations for the continuous fields �(r, t) and �̃(r, t),
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d�(r, t)
dt

= i
�

2m
∇2�(r, t) − i

U

�
�(r, t)2�̃(r, t) +

√
−i

U

�
�(r, t)ξ1(r, t), (1.108)

d�̃(r, t)
dt

= −i
�

2m
∇2�̃(r, t) + i

U

�
�̃(r, t)2�(r, t) +

√
i
U

�
�̃(r, t)ξ2(r, t), (1.109)

where ξ j (r, t) ( j = 1, 2) is a source of real Gaussian noise with 〈ξ j (r, t)〉 = 0 and
〈ξ j (r, t)ξk(r′, t ′)〉 = δ jkδ

(3)(r − r′)δ(t − t ′).
The Stratonovich form of these stochastic equations (which are equivalent to the

Îto form in this example up to a physically irrelevant global phase) may be easily
simulated on a computer via standard numerical techniques. Similar to the Wigner
representation, the initial condition for the fields �(r, 0) and �̃(r, 0) is stochasti-
cally sampled by mapping the underlying P distribution to a classical probability
distribution. For the example of spontaneous four-wave mixing of matter waves, we
treat the initial unsplit condensate as a coherent state, which in the P representation
corresponds to a delta function. Consequently, in contrast to the Wigner function
example, we find that for this case there is no stochastic noise in the initial condi-
tion and we have�(r, 0) = �̃(r, 0) = √

ρ(r, 0)/2eik0 · r +√
ρ(r, 0)/2e−ik0 · r where

ρ(r, 0) is the density profile of the initial (unsplit) condensate (whose coherent ampli-
tude we take to be real without loss of generality) and ±k0 are the momenta of the
two counter-propagating halves of the split condensate.

In the positive-P representation, normally-ordered quantum mechanical expecta-
tion values of ψ̂ and ψ̂† can be calculated by stochastic averages of the corresponding
fields ψ and ψ̃ respectively,

〈(
ψ̂†
)n

ψ̂m
〉
= 〈�̃n�m〉stoch. (1.110)

Whilst it may appear at this point that the positive-P representation has overcome
the problems suffered by the Wigner representation, namely truncation error and
negativity of the initial distribution, there are different issues which we must address
for the positive-P representation. Specifically, when the von Neumman equation for
the density operator is mapped to a Fokker-Planck equation for the P distribution we
assume that the boundary terms (which arise during the integration by parts) vanish
and then the mapping is exact. For systems which are only quadratic in creation
and annihilation operators, this condition is trivially satisfied as the boundary terms
do not exist [70, 74]. However, for more general systems non-negligible boundary
terms may in practice arise after some simulation time. Fortunately, the existence of
such terms is usually accompanied by easily identifiable numerical signatures such
as a sudden increase in sampling errror (due to divergent trajectories) and spiking of
trajectorieswhich are both in general a consequence of the development of power-law
tails in the probability distribution [75].

In the case of colliding condensates, an empirical estimate of the time at which
boundary terms may appear is given by [25, 74]

tsim = 5m�x�y�z

8π�a[ρ(0, 0)]2/3 (1.111)
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which for the parameters investigated in Chaps. 2 and 3 is of the same order of
magnitude as the collision duration (typically ∼50–100µs).

To overcome this issue and simulate the collision for the full duration one can con-
sider implementing a linearization of the positive-P equations around some appro-
priate mean-field solution. Specifically, we consider �(r, t) ≡ ψ(r, t) + δ(r, t)
and �̃(r, t) ≡ ψ(r, t)∗ + δ̃(r, t) where δ(r, t) and δ̃(r, t) are the lowest order
perturbations to the mean-field solution ψ(r, t) ≡ 〈ψ̂(r, t)〉 = 〈�(r, t)〉stoch
[ψ(r, t)∗ ≡ 〈ψ̂†(r, t)〉 = 〈�̃(r, t)〉stoch] of Eqs. (1.108) and (1.109). In partic-
ular, ψ(r, t) describes the split source condensates which obey the deterministic
Gross–Pitaevskii equation and are treated in the undepleted pump approximation (see
Sect. 1.4.2 for further details). The incoherent stochastic fields δ(r, t) and δ̃(r, t),
which satisfy 〈δ(r, t)〉 = 〈δ̃(r, t)〉 = 0, describe the atoms scattered into the colli-
sion halo. Note that here we have also implicitly used the property that �(r, t) and
�̃(r, t) are related by conjugation only when taking the average of the stochastic
fields.

Equations of motion for the fluctuating operators and mean-field components can
be found by substitution of �(r, t) ≡ ψ(r, t) + δ(r, t) and ˜�(r, t) ≡ ψ(r, t)∗ +
δ̃(r, t) back into Eqs. (1.108) and (1.109). Themean-field componentψ(r, t) evolves
according to [31, 76]:

dψ(r, t)
dt

= i
�

2m
∇2ψ(r, t) − i

U

�
|ψ(r, t)|2ψ(r, t), (1.112)

which corresponds to the standard time-dependent Gross–Pitaevskii equation. Sim-
ilarly, we identify that, to lowest order, the fluctuating fields are described by:

dδ(r, t)
dt

= i
�

2m
∇2δ(r, t) − 2i

U

�
|ψ(r, t)|2[δ̃(r, t)]∗ +

√
−i

U

�
ψ(r, t)ξ1(r, t), (1.113)

d δ̃(r, t)
dt

= −i
�

2m
∇2δ̃(r, t) + 2i

U

�
|ψ(r, t)|2[δ(r, t)]∗ +

√
i
U

�
ψ(r, t)∗ξ2(r, t), (1.114)

The initial condition for the mean-field component is taken to be the same as for
�(r, 0) previously, ψ(r, t) = √

ρ(r, 0)/2eik0 · r + √
ρ(r, 0)/2e−ik0 · r, whereas the

fluctuating component describes an initial vacuum state with δ(r, t) = δ̃(r, t) = 0
[64]. From inspection of these linearized equations for the stochastic fields we can
see that rather than the highly unstable multiplicative noise in the full positive-P
treatment [Eqs. (1.108) and (1.109)], the noise is now only additive and thus we may
naively expect more stable stochastic trajectories.

These equations can be equivalently derived by considering a Bogoliubov approx-
imation for the full quantum field operator, ψ̂(r, t) = ψ(r, t) + δ̂, as outlined
in Sect. 1.4.2, where again the mean-field term ψ(r, t) ≡ 〈ψ̂(r, t)〉 describes the
counter-propagating source condensates treated in the undepleted pump approxima-
tion, and δ̂ the atoms scattered into the collision halo. From inspection of Eqs. (1.113)
and (1.114) an effective Hamiltonian describing the process is is given by:

http://dx.doi.org/10.1007/978-3-319-41048-7_2
http://dx.doi.org/10.1007/978-3-319-41048-7_3
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Ĥeff =
∫

d3r
{
δ̂†(r, t)

[
− �

2

2m
∇2

]
δ̂(r, t) + 2U |ψ(r, t)|2 δ̂†(r, t)δ̂(r, t)

+ U
[
ψ+k0(r, t)ψ−k0(r, t)δ̂

†(r, t)δ̂†(r, t)

+ψ∗
+k0

(r, t)ψ∗
−k0

(r, t)δ̂(r, t)δ̂(r, t)
]}

, (1.115)

where the mean-field term ψ(r, t) = ψ+k0(r, t) + ψ−k0(r, t) is split further into the
two counter-propagating condensates with momenta ±k0 which are treated in the
undepleted pump approximation. The quadratic nature of the effective Hamiltonian
Ĥeff means that the boundary terms of the P distribution are guaranteed to vanish [61,
74] and thus the stochastic equations for the fields δ(r, t) and δ̃(r, t) [corresponding
to δ̂(r, t) and δ̂†(r, t) respectively] will be stable in this sense. Hence, rather than a
limited useful simulation duration, the stochastic Bogoliubov method is effectively
limited by the validity of treating the source condensate in the undepleted pump
approximation. This approximation is generally valid as long as the total number of
scattered atoms is less than ∼10% of the original source condensate population.
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35. Ziń, P., Chwedeńczuk, J., Trippenbach, M.: Elastic scattering losses from colliding Bose-

Einstein condensates. Phys. Rev. A 73, 033602 (2006)
36. Ohmi, T., Machida, K.: Bose-Einstein condensation with internal degrees of freedom in alkali

atom gases. J. Phys. Soc. Jpn. 67, 1822–1825 (1998)
37. Saito, H., Kawaguchi, Y., Ueda, M.: Breaking of chiral symmetry and spontaneous rotation in

a spinor Bose-Einstein condensate. Phys. Rev. Lett. 96, 065302 (2006)
38. Gross, C., et al.: Squeezing and entanglement in a Bose-Einstein condensate. Nature 480,

219–223 (2011)
39. Law, C.K., Pu, H., Bigelow, N.P.: Quantum spins mixing in spinor Bose-Einstein condensates.

Phys. Rev. Lett. 81, 5257–5261 (1998)
40. Zhang,W., Zhou,D.L., Chang,M.-S., Chapman,M.S., You, L.: Coherent spinmixing dynamics

in a spin-1 atomic condensate. Phys. Rev. A 72, 013602 (2005)
41. Zhang, W., You, L.: An effective quasi-one-dimensional description of a spin-1 atomic con-

densate. Phys. Rev. A 71, 025603 (2005)
42. Pu, H., Law, C.K., Raghavan, S., Eberly, J.H., Bigelow, N.P.: Spin-mixing dynamics of a spinor

Bose-Einstein condensate. Phys. Rev. A 60, 1463–1470 (1999)

http://arxiv.org/abs/quant-ph/0306072


42 1 Introduction and Background Physics

43. Chang, M.-S., et al.: Observation of spinor dynamics in optically trapped 87Rb Bose-Einstein
condensates. Phys. Rev. Lett. 92, 140403 (2004)

44. Chang, M.-S., Qin, Q., Zhang, W., You, L., Chapman, M.S.: Coherent spinor dynamics in a
spin-1 Bose condensate. Nat. Phys. 1, 111–116 (2005)

45. Kronjäger, J., et al.: Evolution of a spinor condensate: Coherent dynamics, dephasing, and
revivals. Phys. Rev. A 72, 063619 (2005)

46. Klempt, C., et al.: Multiresonant spinor dynamics in a Bose-Einstein condensate. Phys. Rev.
Lett. 103, 195302 (2009)

47. Klempt, C., et al.: Parametric amplification of vacuum fluctuations in a spinor condensate.
Phys. Rev. Lett. 104, 195303 (2010)

48. Hoang, T.M., et al.: Dynamic stabilization of a quantum many-body spin system. Phys. Rev.
Lett. 111, 090403 (2013)

49. Oberthaler, M.K., Linnemann, D.: Private Communication (2015)
50. Linnemann, D., Lewis-Swan, R.J., Strobel, H., Mussel, W., Kheruntstyan, K.V., Oberthaler,

M.K.: Quantum-enhanced sensing based on time reversal of non-linear dynamics (2016).
arXiv:1602.07505

51. Kawaguchi, Y., Ueda, M.: Spinor Bose-Einstein condensates. Phys. Rep. 520, 253–381 (2012)
52. Stamper-Kurn, D.M., Ueda, M.: Spinor Bose gases: Symmetries, magnetism, and quantum

dynamics. Rev. Mod. Phys. 85, 1191–1244 (2013)
53. Widera, A., et al.: Precision measurement of spin-dependent interaction strengths for spin-1

and spin-2 87 rb atoms. New J. Phys. 8, 152 (2006)
54. Schmaljohann, H., et al.: Dynamics of F = 2 spinor Bose-Einstein condensates. Phys. Rev.

Lett. 92, 040402 (2004)
55. Lewis-Swan,R.J.,Kheruntsyan,K.V.: Sensitivity to thermal noise of atomicEinstein-Podolsky-

Rosen entanglement. Phys. Rev. A 87, 063635 (2013)
56. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759

(1932)
57. Polkovnikov,A.: Phase space representation of quantumdynamics. Ann. Phys. 325, 1790–1852

(2010)
58. Schleich, W.P.: Quantum Optics in Phase Space. Wiley, Berlin (2011)
59. Leonhardt, U.: Essential Quantum Optics. Cambridge University Press, Cambridge (2010)
60. Opanchuk, B.: Quasiprobability methods in quantum interferometry of ultracold matter. Ph.D.

thesis, Swinburne University of Technology (2014)
61. Gardiner, C.W.: Handbook of Stochastic Methods, vol. 4. Springer, Berlin (1985)
62. Gardiner, C. & Zoller, P. Quantum noise, vol. 56 (Springer Science & Business Media, 2004)
63. Sinatra, A., Lobo, C., Castin, Y.: The truncated Wigner method for Bose-condensed gases:

limits of validity and applications. J. Phys. B 35, 3599 (2002)
64. Olsen, M.K., Bradley, A.S.: Numerical representation of quantum states in the positive-P and

Wigner representations. Opt. Comm. 282, 3924–3929 (2009)
65. Ruostekoski, J. & Martin, A. Truncated wigner method for bose gases. In Gardiner, S.A.,

Proukakis, N., Davis, M.J. & Szymanska, M. (eds.) Quantum gases: Finite temperature and
non-equilibrium dynamics (World Scientific, 2013)

66. Isella, L., Ruostekoski, J.: Nonadiabatic dynamics of a bose-einstein condensate in an optical
lattice. Phys. Rev. A 72, 011601 (2005)

67. Barnett, R., Polkovnikov, A., Vengalattore, M.: Prethermalization in quenched spinor conden-
sates. Phys. Rev. A 84, 023606 (2011)

68. Drummond, P., Gardiner, C.: Generalised P-representations in quantum optics. J. Phys. A 13,
2353 (1980)

69. Vaughan, T.G.: The quantumdynamics of dilute gasBEC formation.Master’s thesis, University
of Queensland (2001)

70. Gardiner, C., Drummond, P.: Ten years of the positive P-representation. In: Inguva, R. (ed.)
Recent Developments in Quantum Optics, pp. 77–86. Springer, Berlin (1993)

71. Dennis, G.R., Hope, J.J., Johnsson, M.T.: Xmds2: Fast, scalable simulation of coupled sto-
chastic partial differential equations. Comput. Phys. Commun. 184, 201–208 (2013)

http://arxiv.org/abs/1602.07505


References 43
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Chapter 2
Proposal for Demonstrating
the Hong–Ou–Mandel Effect
with Matter Waves

Two-particle interference is a quintessential effect of quantum mechanics which
is perhaps most beautifully demonstrated by the Hong–Ou–Mandel effect. In this
phenomenon, the probability amplitudes of two indistinguishable photons entering
opposing inputs of a beam-splitter interfere destructively, in a manner which is not
describable by any classical theory. When realized with photons prepared in the
two-mode squeezed vacuum state [1], this two-particle interference also serves as
a demonstration of the strong non-classical correlations between the modes, in par-
ticular a violation of the Cauchy–Schwarz inequality. This elegant effect is thus
intrinsically related to a violation of a Bell inequality, as both phenomena rely on
underlying non-classical features of the quantum state.

In this chapter we outline a proposal to demonstrate the effect with massive par-
ticles, utilizing pairs of atoms produced by spontaneous four-wave mixing via col-
liding condensates, which, as demonstrated in Sect. 1.4.2, reduces in the simplest
model to the same two-mode squeezed vacuum state. However, unlike the two-mode
quantum optics scheme, the multimode nature of the collision halo motivates us to
formulate a new measurement protocol to quantify the effect in the atomic case.
An experimental demonstration of the effect has a two-fold impact for future tests
of a Bell inequality in this system. Firstly, the interferometric scheme required for
the Hong–Ou–Mandel effect, comprising of a series of laser-induced Bragg pulses
(the atom-optics analogs of mirrors and beam-splitters), is strongly related to the
Rarity–Tapster setup employed in Chap.3 and thus acts as a stepping-stone for any
experimental proposal involving atom-optics mirrors and beam-splitters. Secondly,
as discussed above, a true demonstration of the effect requires an interference vis-
ibility of more than 50% (relative to the background level of distinguishable paths
through the beam-splitter) which is equivalent to a violation of the classical Cauchy–
Schwarz inequality. Such non-classical correlations are a pre-requisite for a violation
of a Bell inequality.
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46 2 Proposal for Demonstrating the Hong–Ou–Mandel Effect with Matter Waves

The remainder of this chapter is adapted from the published article: ‘Proposal for
demonstrating the Hong–Ou–Mandel effect with matter waves’ [R.J. Lewis-Swan
and K.V. Kheruntsyan, Nature Comm. 5, 3752 (2013)]. The supplementary informa-
tion of this article can be found in Appendix C.

2.1 Introduction

Since its first demonstration, the Hong–Ou–Mandel (HOM) effect [1] has become
a textbook example of quantum mechanical two-particle interference using pairs of
indistinguishable photons. When two such photons enter a 50:50 beam splitter, with
one photon in each input port, they both preferentially exit from the same output
port, even though each photon individually had a 50:50 chance of exiting through
either output port. The HOM effect was first demonstrated using optical parametric
down-conversion [1]; the same setup, but with an addition of linear polarisers, was
subsequently used to demonstrate a violation of a Bell inequality [2] which is of
fundamental importance to validating someof the foundational principles of quantum
mechanics such as quantum nonlocality and long-distance entanglement.

The HOM effect is a result of destructive quantum interference in a (bosonic)
twin-photon state, which leads to a characteristic dip in the photon coincidence
counts at two photodetectors placed at the output ports of a beam splitter. The
destructive interference occurs between two indistinguishable paths corresponding
to the photons being both reflected from, or both transmitted through, the beam
splitter. Apart from being of fundamental importance to quantum physics, the HOM
effect underlies the basic entanglingmechanism in linear optical quantum computing
[3], in which a twin-photon state |1, 1〉 is converted into a quantum superposition
1√
2
(|2, 0〉− |0, 2〉)—the simplest example of the elusive ‘NOON’ state [4]. Whereas

the HOM effect with (massless) photons has been extensively studied in quantum
optics (see [5, 6] and references therein), two-particle quantum interference with
massive particles remains largely unexplored. A matter wave demonstration of the
HOM effect would be a major advance in experimental quantum physics, enabling
an expansion of foundational tests of quantummechanics into previously unexplored
regimes.

Here we propose an experiment which can realise the HOM effect with matter
waves using a collision of two atomic Bose–Einstein condensates (BECs) (as in
Refs. [7–11]) and a sequence of laser-induced Bragg pulses. The HOM interferom-
eter uses pair-correlated atoms from the scattering halo that is generated during the
collision through the process of spontaneous four-wave mixing. The pair-correlated
atoms are being mixed with a sequence of two Bragg pulses [12, 13] in analogy
with the use of twin-photons from parametric down conversion in the optical HOM
scheme. TheHOMeffect is quantified via themeasurement of a set of atom-atom pair
correlation functions between the output ports of the interferometer. Using stochastic
quantum simulations of the collisional dynamics and the sequence of Bragg pulses,
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we predict a HOM-dip visibility of ∼69% for realistic experimental parameters.
A visibility larger than ∼50% is indicative of stronger than classical correlations
between the atoms in the scattering halo [10, 11, 14–16], which in turn renders our
system as a suitable platform for demonstrating a Bell’s inequality violation with
matter waves using a closely related Rarity–Tapster scheme [17].

2.2 Setup

The schematic diagram of the proposed experiment is shown in Fig. 2.1. A highly
elongated (along the x-axis) BEC is initially split into two equal and counterprop-
agating halves traveling with momenta ±k0 along z in the centre-of-mass frame.
Constituent atoms undergo binary elastic collisions which produce a nearly spher-
ical s-wave scattering halo of radius kr � 0.95|k0| [9] in momentum space due to
energy and momentum conservation. The elongated condensates have a disk shaped
density distribution in momentum space, shown in Fig. 2.1b on the north and south
poles of the halo. After the end of the collision (which in this geometry corresponds to
complete spatial separation of the condensates in position space) we apply two coun-
terpropagating lasers along the x-axis whose intensity and frequency are tuned to act
as a resonant Bragg π -pulse with respect to two diametrically opposing momentum
modes, k1 and k2 = −k1, situated on the equatorial plane of the halo and satisfying
|k1,2|=kr .

Previous experiments and theoretical work [7, 8, 10, 11, 18–23] have shown
the existence of strong atom-atom correlation between such diametrically opposite
modes, similar to the correlation between twin-photons in parametric down conver-

(a) (b)

Fig. 2.1 a Schematic diagram of the geometry of collision of two elongated Bose–Einstein con-
densates in position space. b Momentum space distribution of the atomic cloud showing the (disk
shaped) colliding condensates on the north and south poles of the spherical halo of scattered atoms
(see text for further details)
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sion. Applying the Bragg π -pulse to the collisional halo replicates an optical mirror
and reverses the trajectories of the scattered atoms with momenta k1 and k2, and
a finite region around them. We assume that the pulse is tuned to operate in the
so-called Bragg regime of the Kapitza–Dirac effect [13, 24] (diffraction of a matter-
wave from a standing light field), corresponding to conditions in which second- and
higher-order diffractions are suppressed. The system is then allowed to propagate
freely for a duration so that the targeted atomic wave-packets regain spatial overlap
in position space. We then apply a second Bragg pulse—a π/2-pulse—to replicate
an optical 50:50 beam-splitter, which is again targeted to couple k1 and k2, thus
realising the HOM interferometer.

The timeline of the proposed experiment is illustrated in Fig. 2.2a, whereas the
results of numerical simulations (see Methods) of the collision dynamics and the
application of Bragg pulses are shown in Fig. 2.2b–d: (b) shows the equatorial slice
of the momentum-space density distribution n(k, t) of the scattering halo at the end
of collision; (c) and (d) show the halo density after the application of the π and
π/2 pulses, respectively. The ‘banana’ shaped regions in (c) correspond to ‘kicked’
populations between the targetedmomenta around k1 and k2 in the original scattering

(a)

(b) (c) (d)

Fig. 2.2 a—Timeline of the proposed experiment;b–d—the results of numerical simulations show-
ing the momentum-space density distribution n(k) of scattered atoms on the equatorial plane of the
halo. In panel (a), VL (t) denotes the depth of the lattice potential formed by the Bragg lasers, with
the first hump indicating the mirror (π ) pulse, while the second hump—the beam-splitter (π/2)
pulse (the initial source-splitting pulse that sets up the collision of condensates is not shown for
clarity). Panel (b) shows the density distribution after the collision, at t1 = 65µs; c—after the π -
pulse, centred at t2 = 75µs and having a duration of τπ = 2.5µs (rms width of Gaussian envelope);
and d—after the final π/2 pulse, with �tfree = t3 − t2 = 85µs and τπ/2 = 2.5µs (see Methods for
further details; the durations shown on the time axis are not to scale). The momentum axes kx,y in
panels (b)–(d) are normalised to the collision momentum k0 ≡ |k0| (in wave-number units), which
in our simulations was k0 = 4.7 × 106 m−1. The simulations were carried out for an initial BEC
containing a total of N = 4.7×104 atoms of metastable helium (4He∗), prepared in a harmonic trap
of frequencies (ωx , ωy , ωz)/2π = (64, 1150, 1150)Hz, and colliding with the scattering length of
a = 5.3nm; all these parameters are very close to those realised in recent experiments [9, 10]
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halo, while (d) shows the density distribution after mixing. The density modulation
in (c) is simply the result of interference between the residual and transferred atomic
populations after the π -pulse upon their recombination on the beamsplitter. The
residual population is due to the fact that the pairs of off-resonance modes in these
parts of the halo (which are coupled by the same Bragg pulses as they share the same
momentum difference 2kr as the resonant modes k1 and k2) no longer satisfy the
perfect Bragg resonance condition and therefore the population transfer during theπ -
pulse is not 100% efficient (see Supplementary Information). As these components
have unequal absolute momenta, their amplitudes accumulate a nonzero relative
phase due to phase dispersion during the free propagation. The accrued relative
phase results in interference fringes upon the recombination on the beamsplitter,
with an approximate period of �k � πm/(�kr�tfree) � 0.1|k0|.

Due to the indistinguishability of the paths of the Bragg-resonant modes k1 and
k2 through the beam-splitter and the resulting destructive quantum interference, a
measurement of coincidence counts between the atomic populations in these modes
will reveal a suppression compared to the background level. To reveal the full struc-
ture of the HOM dip, including the background level where no quantum interference
occurs, we must introduce path distinguishability between the k1 and k2 modes. One
way to achieve this, whichwould be in a direct analogywith shifting the beam splitter
in the optical HOM scheme, is to change the Bragg-pulse resonance condition from
the (k1, k2) pair to (k1, k2 + êxδk), where êx is the unit vector in the x-direction.
The approach to the background coincidence rate between the populations in the
k1 and k2 modes would then correspond to performing the same experiment for
increasingly large displacements δk. Taking into account that acquiring statistically
significant results for each δk requires repeated runs of the experiment (typically
thousands), this measurement protocol could potentially pose a significant practical
challenge due to the very large total number of experimental runs required.

2.3 Results and Discussion

To overcome this challenge, we propose an alternative measurement protocol which
can reveal the full structure of theHOMdip from just oneBragg-resonance condition,
requiring only one set of experimental runs. The protocol takes advantage of the
broadband, multimode nature of the scattering halo and the fact that the original
Bragg pulse couples not only the targeted momentum modes k1 and k2, but also
many other pairs of modes which follow distinguishable paths through the beam-
splitter. One such pair, k3 = (kx , ky, kz) = kr (cos(θ), sin(θ), 0) and k4 = −k3,
located on the halo peak, is shown in Fig. 2.3a and corresponds to a rotation by angle
θ away from k1 and k2. The modes k3 and k4 are equivalent to the original pair in
the sense of their quantum statistical properties and therefore, these modes can be
used for the measurement of the background level of coincidence counts, instead of
physically altering the paths of the k1 and k2 modes. The angle θ now serves the
role of the ‘displacement’ parameter that scans through the shape of the HOM dip.
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(a) (b) (c)

Fig. 2.3 Panel (a) shows the schematic of a set of momentum modes affected by the Bragg pulses.
The diametrically opposite vectors k1 and k2 = −k1 show the targeted modes; their amplitude is
given by the halo peak radius, kr = |k1| = |k2|, which is equal to kr = 0.95|k0| in this part of
the halo [9]. Also shown are the to-be-measured momentum components k3 and k4 corresponding
to a rotation by θ away from the targeted modes, which couple, respectively, to k6 = k3 − 2k1
and k5 = k4 + 2k1 by the same Bragg pulses. Panels (b) and (c) show a topologically equivalent
optical scheme.Aχ(2) nonlinear crystal is optically pumped to produce twin-photons via parametric
down-conversion. In (b) we depict the archetypal optical HOM setup which corresponds to the case
of θ = 0 in the atom-optics scheme. A twin-photon state in modes k1 and k2 is first selected
from a broadband source, then mixed at the beam-splitter (BS) after reflection from the mirror
(M), and photon coincidence counts are measured between the two symmetric output ports of the
interferometer. In (c) we depict the optical setup which is equivalent to θ > 0 in the atom-optics
proposal. Two twin-photon states in (k3,k4) and in (k5,k6) are selected from the broadband source;
the asymmetry of the pairs about the optical axis of the interferometer means that the correlated
photons from the respective pairs will arrive at the beam-splitter at spatially separate locations and
will mix with photons from the other pair, which introduces distinguishability between the paths
through the interferometer

A topologically equivalent optical scheme is shown in Fig. 2.3b, c, which is in turn
similar to the one analysed in Ref. [25] using a broadband source of angle-separated
pair-photons and directionally asymmetric apertures.

In the proposed protocol, detection (after the final Bragg pulse) of atom coinci-
dences at the pair of originally correlated momenta k3 and k4 corresponds to both
paths being separately reflected on the beamsplitter (see Fig. 2.3c). Apart from this
outcome,weneed to take into account the coincidences between the respectiveBragg-
partner momenta, k6 and k5 (separated, respectively, from k3 and k4 by the same
difference 2kr as k1 from k2). Coincidences at k6 and k5 correspond to atoms of the
originally correlated momenta k3 and k4 being both transmitted through the beam
splitter (see Fig. 2.3c). Finally, in order to take into account all possible channels
contributing to coincidence counts between the two arms of the interferometer, we
need to measure coincidences between k3 and k6, as well as between k4 and k5. This
ensures that the total detected flux at the output ports of the beam splitter matches
the total input flux. In addition to this, we normalise the bare coincidence counts to
the product of single-detector count rates, i.e., the product of the average number of
atoms in the two output arms of the interferometer. We use the normalised correla-
tion function as the total population in the four relevant modes varies as the angle
θ is increased, implying that the raw coincidence rates are not a suitable quantity to
compare at different angles.
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With this measurement protocol in mind, we quantify the HOM effect using
the normalised second-order correlation function g(2)

RL(t)=〈:N̂R(t)N̂L(t):〉/〈N̂R(t)〉
〈N̂L(t)〉 after the π/2-pulse concludes at t = t4. Here, 〈N̂R〉 ≡ 〈N̂3〉+ 〈N̂5〉 and
〈N̂L〉≡〈N̂4〉+〈N̂6〉 correspond to the number of atoms detected, respectively, on the
two (right and left) output ports of the beam splitter, with the detection bins centred
around the four momenta of interest ki (i =3, 4, 5, and 6), for any given angle θ [see
Fig. 2.2e]. More specifically, N̂i (t)=∫

V(ki )
d3k n̂ (k, t) is the atom number operator

in the integration volume V(ki ) centred around ki , where n̂(k, t) = â†(k, t)â(k, t) is
the momentum-space density operator, with â†(k, t) and â(k, t) the corresponding
creation and annihilation operators (the Fourier components of the field operators
δ̂†(r, t) and δ̂(r, t), see Methods). The double-colon notation in 〈: N̂R(t)N̂L(t) :〉
indicates normal ordering of the creation and annihilation operators.

The integrated form of the second-order correlation function, which quantifies the
correlations in terms of atom number coincidences in detection bins of certain size
rather than in terms of local density-density correlations, accounts for limitations in
the experimental detector resolution, in addition to improving the signal-to-noise ratio
which is typically lowdue to the relatively lowdensity of the scattering halo; in typical
condensate collision experiments and in our simulations, the low density translates
to a typical halo-mode occupation of ∼0.1. We choose V(ki ) to be a rectangular box
with dimensions corresponding to the rmswidth of the initial momentum distribution
of the trapped condensate, which is a reasonable approximation to the mode (or
coherence) volume in the scattering halo [8, 22].

The second-order correlation function g(2)
RL(t4), quantifying the HOM effect as a

function of the path-distinquishability angle θ , is shown in Fig. 2.4. For θ =0, where
k3(4) =k1(2), we observe maximum suppression of coincidence counts relative to the
background level due to the indistinguishability of the paths. As we increase |θ | > 0,

Fig. 2.4 Normalised atom-atom correlation function g(2)
RL(t4) between the two arms of the inter-

ferometer, characterising the HOM effect as a function of the path-distinguishability angle θ . Error
bars denote sampling error from∼30,000 stochastic simulations (see Methods). The atom counting
bins are rectangular boxes with sides δkx = 0.01k0 and δky,z = 0.19k0 which approximate the
widths of the momentum distribution of the initial trapped BEC
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we no longermix k3 and k4 as a pair and their paths through the beam-splitter become
distinguishable; the path interference is lost, and we observe an increase in the mag-
nitude of the correlation function to the background level. We quantify the visibility
of the HOM dip via V =1−min{g(2)

RL(t4)}/max{g(2)
RL(t4)}, where min{g(2)

RL(t4)} occurs
for θ =0 and max{g(2)

RL(t4)} for sufficiently large θ such that momenta k5,6 lie outside
the scattering halo. Due to the oscillatory nature of the wings (see below) we take
max{g(2)

RL(t4)} to correspond to the mean of g(2)
RL(t4) for θ � π/8. Using this defin-

ition we measure a visibility of V � 0.69 ± 0.09, where the uncertainty of ±0.09
corresponds to taking into account the full fluctuations of g(2)

RL(t4) about the mean
in the wings rather than fitting the oscillations (see Supplementary Information).
The visibility larger than 0.5 is consistent with the nonclassical effect of violation
of Cauchy–Schwarz inequality with matter waves, observed recently in condensate
collision experiments [11]. The exact relationship between the visibility and the
Cauchy–Schwarz inequality is discussed further in the Supplementary Information,
as are simple (approximate) analytic estimates of the magnitude of the HOM dip
visibility.

The broadband, multimode nature of the scattering halo implies that the range
of the path-length difference over which the HOM effect can be observed is deter-
mined by the spectral width of the density profile of the scattering halo. Therefore
the width of the HOM dip is related to the width of the halo density. This is similar to
the situation analysed in Ref. [25] using pair-photons from a broadband parametric
down-converter. The angular width of theHOMdip extracted fromFig. 2.4 is approx-
imately wHOM �0.61 radians, which is indeed close to the width (full width at half
maximum) of the scattering halo in the relevant direction, whalo �0.69 radians (see
also Supplementary Information for simple analytic estimates). The samemultimode
nature of the scattering halo contributes to the oscillatory behaviour in the wings of
the HOM dip profile: here we mix halo modes with unequal absolute momenta and
the resulting phase dispersion from free-propagation leads to oscillations similar to
those observed with two-color photons [25].

We emphasise that the input state in our matter-wave HOM interferometer is
subtly different from the idealised twin-Fock state |1, 1〉 used in the simplest analytic
descriptions of the optical HOM effect. This idealised state stems from treating the
process of spontaneous optical parametric down-conversion (SPDC) in the weak-
gain regime. We illustrate this approximation by considering a two-mode toy model
of the process, which in the undepleted pump approximation is described by the
Hamiltonian Ĥ = �g(â†

1 â†
2 + h.c.) that produces perfectly correlated photons in the

â1 and â2 modes,where g > 0 is a gain coefficient related to the quadratic nonlinearity
of the medium and the amplitude of the coherent pump beam. (In the context of
condensate collisions, the coupling g corresponds to g = Uρ0(0)/� at the same level
of ‘undepleted pump’ approximation [8, 22]; see Methods for the definitions of U
and ρ0.) The full output state of the SPDC process in the Schrödinger picture is
given by |ψ〉 = √

1 − α2
∑∞

n=0 αn|n, n〉, where α = tanh(gt) and t is the interaction
time [26]. In the weak-gain regime, corresponding to α � gt 
 1, this state is well
approximated by |ψ〉 ∝ |0, 0〉 + α|1, 1〉, i.e., by truncating the expansion of |ψ〉
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and neglecting the contribution of the |2, 2〉 and higher-n components. This regime
corresponds to mode populations being much smaller than one, 〈n̂〉 = 〈â†

1(2)â1(2)〉 =
sinh2(gt) � (gt)2 � α2 
 1. The truncated state itself is qualitatively identical to
the idealised state |1, 1〉 as an input to the HOM interferometer: both result in a HOM
dipminimumof ḡ(2)

RL = 0 and ḡ(2)
RL � 1/2〈n̂〉 in thewings,with the resultingmaximum

visibility of V = 1. If, on the other hand, the contribution of the |2, 2〉 and higher-n
components is not negligible (which is the case, for example, of 〈n̂〉 � 0.1) then the
raw coincidence counts at the HOM dip and the respective normalised correlation
function no longer equal to zero; in fact, the full SPDC state for arbitrary α < 1 leads
to a HOM dip minimum of ḡ(2)

RL = 1 and ḡ(2)
RL = 2 + 1/2〈n̂〉 in the wings, which in

turn results in a reduced visibility of V = 1 − 1/(2 + 1/2〈n̂〉).
The process of four-wave mixing of matter-waves gives rise to an output state

analogous to the above SPDC state for each pair of correlated modes (see, e.g., [8,
22] and Supplementary Information). Indeed, the fraction of atoms converted from
the source BEC to all scattering modes is typically less than 5%, which justifies
the use of the undepleted pump approximation. The typical occupation numbers of
the scattered modes are, however, beyond the extreme of a very weak gain. In our
simulations, the mode occupation on the scattering halo is on the order of 0.1 and
therefore, even in the simplified analytical treatment of the process, the output state
of any given pair of correlated modes cannot be approximated by the truncated state
|0, 0〉 + α|1, 1〉 or indeed the idealised twin-Fock state |1, 1〉.

At the basic level, our proposal only relies on the existence of the aforementioned
pair-correlations between scattered atoms,with the strength of the correlations affect-
ing the visibility of the HOM dip. For a sufficiently homogeneous source BEC [22,
27], the correlations and thus the visibility V effectively depend only on the aver-
age mode population 〈n̂〉 in the scattering halo, with a scaling of V on 〈n̂〉 given
by V = 1 − 1/(2 + 1/2〈n̂〉) by our analytic model. Dependence of 〈n̂〉 on system
parameters such as the total number of atoms in the initial BEC, trap frequencies,
and collision duration is well understood both theoretically and experimentally [8–
11], and each can be sufficiently controlled such that a suitable mode population of
〈n̂〉 � 1 can, in principle, be targeted. There lies, however, a need for optimisation:
very small populations are preferred for higher visibility, but they inevitably lead
to a low signal-to-noise, hence requiring a potentially very large number of exper-
imental runs for acquiring statistically significant data. Large occupations, on the
other hand, lead to higher signal-to-noise, but also to a degradation of the visibil-
ity towards the nonclassical threshold of V = 0.5. The mode population of ∼0.1
resulting from our numerical simulations appears to be a reasonable compromise;
following the scaling of the visibilitywith 〈n̂〉 predicted by the simple analyticmodel,
it appears that one could safely increase the population to∼0.2 before a nonclassical
threshold is reached to within a typical uncertainty of ∼13% (as per quoted value of
V � 0.69 ± 0.09) obtained through our simulations.

The proposal is also robust to other experimental considerations such as the imple-
mentation of the Bragg pulses; e.g., one may use square Bragg pulses rather than
Gaussians. Furthermore, experimental control of the Bragg pulses is sufficiently
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accurate to avoid any degradation of the dip visibility. Modifying the relative timing
of the π and π/2 pulses by few percent in our simulations does not explicitly affect
the dip visibility, rather only the period of the oscillations in the wings of g(2)

RL(t4).
This may lead to a systematic change in the calculated dip visibility, however, this
is overwhelmed by the uncertainty of 13% which accounts for the fluctuations of
g(2)
RL(t4) about the mean.
Importantly, we expect that the fundamentally new aspects of the matter-wave

setup, namely themultimode nature of the scattering halo and the differences from the
archetypical HOM input state of |1, 1〉, as well as the specific measurement protocol
we have proposed for dealing with these new aspects, are broadly applicable to
other related matter-wave setups that generate pair-correlated atoms. These include
molecular dissociation [19], an elongated BEC in a parametrically shaken trap [14],
or degenerate four-wave mixing in an optical lattice [28, 29]. In the present work,
we focus on condensate collisions only due to the accurate characterisation, both
experimental and theoretical, of the atom-atom correlations, including in a variety
of collision geometries [7–11].

2.4 Conclusion

In summary, we have shown that an atom-optics analogue of the Hong–Ou–Mandel
effect can be realised using colliding condensates and a sequence of Bragg pulses.
The HOM dip visibility greater than 50% implies that the atom-atom correlations
in this process cannot be described by classical stochastic random variables. Gen-
eration and detection of such quantum correlations in matter waves can serve as
precursors to stronger tests of quantum mechanics such as those implied by a Bell
inequality violation and the Einstein–Podolsky–Rosen paradox [30]. In particular,
the experimental demonstration of the atom-optics HOM effect would serve as a
suitable starting point to experimentally demonstrate a violation of a Bell inequality
using an atom-optics adaptation of the Rarity–Tapster setup [17]. In this setup, one
would tune the Bragg pulses as to realise two separate HOM-interferometer arms,
enabling to mix two angle-resolved pairs of momentum modes from the collisional
halo, such as (k,q) and (−k,−q), which would then form the basis of a Bell state
|�〉 = 1√

2
(|k,−k〉 + |q,−q〉) [31].
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Chapter 3
Proposal for a Motional-State Bell Inequality
Test with Ultracold Atoms

In Sect. 1.4.2 and Chap. 2 we outlined how, in the simplest approximation, the process
of spontaneous four-wave mixing via condensate collisions produces a multi-mode
analog of the two-mode squeezed vacuum state. Such a state exhibits non-classical
correlations, which, when combined with an appropriate measurement scheme, can
be used to demonstrate a violation of a Bell inequality. In this chapter, we propose such
a demonstration by realization of an atom-optics analog of a Rarity–Tapster interfer-
ometer, which was previously used in quantum optics to demonstrate a successful
violation using momentum-entangled photons [1]. Our investigation is focused on
the feasibility of such a demonstration in realistic experimental regimes and responds
to many of the key research questions of this thesis, such as how the violation depends
on various experimental parameters and the robustness of simple ‘toy-model’ results.
In particular, we illustrate that while the idealized results outlined in Sect. 1.4.1 for
the simple two-mode squeezed vacuum are a reasonably valid estimate, understand-
ing the influence of generic differences between the atom-optics and quantum optics
schemes, such as the multi-mode collision halo and the use of Bragg pulses (the atom-
optics equivalent of optical beam-splitters and mirrors), prove crucial in realizing a
violation in realistic systems.

The remainder of this chapter was originally published as: ‘Proposal for a
motional-state Bell inequality test with ultracold atoms’ [R.J. Lewis-Swan and
K.V. Kheruntsyan, Phys. Rev. A 91, 052114 (2015)]. Supplementary material for
the paper can be found in Appendix D.

3.1 Introduction

Bell inequalities [2, 3] have arguably been regarded as “the most profound discov-
ery in science” [4]. They provide a fundamental distinction between local hidden-
variable (LHV) descriptions of physical reality and the description based on quan-
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tum mechanics wherein the concept of nonlocal entanglement is a fundamental
ingredient. Violations of Bell inequalities, which reject all LHV theories and attest
for the validity of quantum mechanics, have been demonstrated in numerous experi-
ments with massless photons [1, 5–8], but in only a handful of experiments involving
massive particles [9, 10]. In addition, all massive particle experiments have so far
been restricted to exploiting entanglement between internal (spin) degrees of free-
dom, but never between external (motional) degrees of freedom such as translational
momentum. Here, we propose and simulate a matter-wave experiment which, for
the first time, can demonstrate a Bell inequality violation for pairs of momentum-
entangled ultracold atoms produced in a collision [11–14] of two Bose-Einstein
condensates. In such a motional-state Bell inequality test, particle masses become
directly relevant, thus enabling extensions of fundamental tests of quantum mechan-
ics into regimes which may involve couplings to gravitational fields and hence find
connections to theories of gravitational decoherence [15]. This is important in view
of future possible tests of quantum mechanics or its modifications (which currently
go beyond established theories) in an attempt to resolve the current incompatibility
of quantum mechanics and the theory of gravity.

The original Bell inequality was formulated by John Bell [2, 3] in response to
Einstein, Podolsky, and Rosen’s (EPR) argument [16, 17] that, under the premises
of local realism, quantum mechanics appears to be incomplete and hence must
be supplemented by hidden variables in order to explain the ‘spooky-action-at-a-
distance’ due to entanglement between space-like separated particles. The first con-
clusive experimental demonstrations of Bell inequality violations with photons were
reported in the early 1980 s through to 1990s [1, 6–8] and used sources of pair-
correlated photons, such as from a radiative cascade or parametric down-conversion.
It took almost another two decades before the first massive-particle Bell violations
emerged, utilising pairs of trapped ions [9] or proton pairs from the radiative decay
of metastable 2He [10]. These experiments all relied on entanglement between the
internal degrees of freedom—either the photon polarizations or the particle spins,
with the notable exception of the Rarity–Tapster experiment [1] which explored
entanglement between photons momenta (see also [18]).

In recent years, there has been an increasing number of experiments, particularly
in the field of ultracold atoms [19–21] and opto-mechanics [22], generating and
quantifying various forms of massive-particle entanglement [23–25]. However, these
should be distinguished from experiments designed to rule out LHV theories via a
Bell inequality violation—the most stringent test of quantum mechanics. Ultracold
atoms, nevertheless, provide a promising platform for extending these experiments
towards Bell inequality tests [26–29], due to their high degree of isolation from
the environment and the existing high degree of control over system parameters,
including the internal and external degrees of freedom.

Our proposal for a motional-state Bell inequality uses pair-correlated atoms from
colliding Bose-Einstein condensates (BECs) and in this respect represents an ultimate
successor to recent experiments demonstrating sub-Poissonian relative atom number
statistics, violation of the classical Cauchy–Schwartz inequality [13, 14], atomic
Hong–Ou–Mandel effect [30, 31], and a recent theoretical proposal for demonstrating
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the EPR paradox [32] using the same collision process. A closely related process
of dissociation of diatomic molecules has been recently proposed in Ref. [26] for
demonstrating a Bell violation based on energy-time entanglement; the same process
of molecular dissociation was previously discussed in Ref. [33] in the context of the
EPR paradox for atomic quadrature measurements.

3.2 Proposed Atomic Rarity–Tapster Setup

The schematic diagram of the proposed experiment is shown in Fig. 3.1. A highly
elongated (along the x-axis) BEC is initially split into two counterpropagating halves
with momenta ±k0 along z in the centre-of-mass frame [11, 12]. Constituent atoms
of the condensate undergo binary elastic s-wave scattering and populate a nearly
spherical scattering halo (of radius kr � 0.95|k0|) of pair-correlated atoms [12] via
the process of spontaneous four-wave mixing. Previous experiments and theory [11–
14, 34] have shown the existence of strong atom-atom correlation between pairs
of diametrically opposite momentum modes, such as (p,−p) and (q,−q) (shown

(a) (b)

Fig. 3.1 Schematic diagram of the collision geometry and the proposed adaptation of the Rarity–
Tapster scheme. a The two condensates in position space, counter-propagating along the z-axis
with mean momenta ±k0, are shown in the left, upper corner; the same condensates in momentum
space (or after a time-of-flight expansion) have a pancake shape and are shown on the north and
south poles of the spherical halo of scattered atoms. The counter-propagating (along y) Bragg lasers
are tuned to couple and transfer the population between two pairs of momentum modes, such as
the pair (p,q) and (−q,−p), indicated on the equatorial plane of the scattering halo. A similar
quartet of modes (not shown for clarity), coupled by the same Bragg lasers, can be identified on
any other plane obtained by rotating the equatorial plane by an angle θ around the y-axis; together,
all these quartets of modes form two opposing rings shown in red. b The Rarity–Tapster scheme
for implementing the π and π/2 Bragg pulses on pairs of momentum modes emanating from the
source (S) and the arrangement of two independent relative phase setting φL and φR (respectively,
between p and q, and between −p and −q) imposed in the left and the right arms of the setup.
After being mixed by the final π/2 pulse, the output modes are detected by four atom detectors Di
(i = 1, 2, 3, 4) and different coincidence counts Cij are measured for calculating the CHSH-Bell
parameter S
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in Fig. 3.1 on the equatorial plane of the scattering halo), similar to the correlation
between twin-photons in parametric down-conversion [1, 7, 8]. After the end of
the collision, we apply two separate Bragg pulses (π and π/2) tuned to couple
uncorrelated atoms from each respective pair, namely (p,q) and (−p,−q). The Bragg
pulses replicate the atom optics analogs of a mirror and a beam splitter (see Fig. 3.1b),
thus realising the two interferometer arms of the Rarity-Tapster optical setup [1] (see
also Ref. [35] which proposes the same scheme for implementing phase-sensitive
measurements with ultracold atoms). A variable phase shift is additionally applied
before the beam-splitter (π/2) pulse to the two lower arms of the interferometer,
corresponding to a relative phase shift of φL between −p and −q, and φR = φL + φ
between q and p. This replicates the polariser angle setting or relative phase settings
in the optical Bell tests of Refs. [1, 6], and can be realised by means of introducing
a relative phase φL between the two counterpropagating Bragg lasers that realise the
π-pulse, combined with an additional relative phase shift φ between the left and the
right arms of the interferometer, implemented by, e.g., the well-established technique
of optical phase imprinting [36, 37].

In the low-gain regime of atomic four-wave mixing (see below), this process
approximately realises a prototypical Bell state of the form

|�〉 = 1√
2
(|1p, 1−p〉 + |1q, 1−q〉), (3.1)

which corresponds to a pair of atoms in a quantum superposition of belonging to
either the momentum modes p and −p, or q and −q. By measuring appropriate
second-order correlation functions using atom-atom coincidences between certain
pairs of atom detectors Di (i = 1, 2, 3, 4), for a chosen set of applied phases φL

and φR, one can construct (see below) the CHSH-Bell parameter S for the Clauser–
Horne–Shimony–Holt (CHSH) version of the Bell inequality [6, 38]. The choice of
phase settings φR and φL gives rise to non-locality in the vein of the original EPR
paradox as atom-atom coincidences are intrinsically dependent on both phase set-
tings, analogous to choosing polarization directions in archetypal optics experiments
[5, 6]. Indeed, the Rarity–Tapster interferometric scheme can be mapped to a spin-
1/2 or polarization-entangled system [5], wherein choosing the phases φL and φR

directly controls the polarization basis in which each measurement is made.
Apart from coupling two pairs of momentum modes, (p,q) and (−q,−p), shown

on the equatorial plane of Fig. 3.1a, the Bragg pulses couple many other pairs of
scattering modes that have the same wave-vector difference of 2kL ≡ |p − q| =
|(−p) − (−q)|. Quartets of such modes, forming independent Bell states, can be
identified on any other plane obtained from the equatorial plane by rotating it by
an angle θ around the y-axis. Atom-atom coincidences between these modes can
therefore be used as independent measurements for evaluating the respective CHSH-
Bell parameter S. Averaging over many coincidence counts obtained in this way on
a single scattering halo (in addition to averaging over many experimental runs) can
be used to increase the signal-to-noise ratio and ultimately help the acquisition of a
statistically significant result for S.
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3.3 Simple Toy Model

Before presenting the results of our simulations, we make a brief diversion to discuss
an important difference between the ideal prototype Bell state of the form of Eq. (3.1)
and that which corresponds to the output of the simplest model of four-mode optical
parametric down-conversion, to which our system can be reduced to in its most rudi-
mentary approximation (see Refs. [34, 39, 40] and Appendix D). The Hamiltonian
describing this process [41, 42] can be written as Ĥ = �g(â†

1â
†
2 + â†

3â
†
4 +h.c.), where

g > 0 is a gain coefficient, related in our context to the density ρ0 of the initial source
condensate (assumed uniform) and the s-wave interaction strength U = 4π�

2a/m
through g = Uρ0/� [34, 39], where a is the s-wave scattering length. The output
state of this model (for an initial vacuum state for all four modes) in the Schrödinger
picture can be written in terms of an expansion in the Fock-state basis as [30, 43]

|�〉 = (1 − α2)

∞∑
k,m=0

α(k+m)|k〉1|k〉2|m〉3|m〉4, (3.2)

where α = tanh(gt) and t is the collision duration. In the weak-gain regime, which
corresponds to α � gt and hence an average mode occupation in each of the four
modes (〈â†

i âi〉 ≡ n = sinh2(gt), i = 1, 2, 3, 4) of n � α2 = (gt)2 � 1, the sum
over Fock states can be truncated to lowest order in α to

|�〉 ∝ |0〉1|0〉2|0〉3|0〉4

+ α(|1〉1|1〉2|0〉3|0〉4 + |0〉1|0〉2|1〉3|1〉4). (3.3)

Taking into account the fact that the contribution from the pure vacuum state
(the first term) does not affect the outcome of any correlation (coincidence) mea-
surements (except for reducing the absolute data acquisition rate through multi-
ple experimental realizations), we can further approximate this state by |�〉 ∝
α(|1〉1|1〉2|0〉3|0〉4 + |0〉1|0〉2|1〉3|1〉4). Equation (3.1) corresponds to this state in
a shorthand notation. Such a state can itself be mapped to the archetypical Bell state
|�+〉 = 1√

2
(|+〉L|−〉R + |−〉L|+〉R) in the polarisation or spin-1/2 Ŝz basis, where

the subscript (L, R) refers to the left and right arms of the interferometer and + (−)
refer to the upper (lower) paths, in terms of the diagram of Fig. 3.1b of the main text.

This ideal Bell state gives a maximal value of S = 2
√

2 (for a definition of the
CHSH-Bell parameter S, see Sect. 3.4) and hence a maximal Bell violation (S >

2) by definition. However, in general, when using spontaneous parametric down-
conversion as a suitable source of pair correlated particles, one must keep in mind
the contribution from the higher-order Fock states (whose relative weight is very
small for n � 1, implying that the contribution of events that produce, e.g., two or
more photons in each of the correlated modes is extremely unlikely), leading to a
breakdown of the mapping of the full state Eq. (3.2) to Eq. (3.1) and thus a reduction
in S from the maximum value of 2

√
2 to
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S = 2
√

2
1 + n

1 + 3n
. (3.4)

This expression corresponds, in fact, to the full output state, Eq. (3.2), without any
truncation of higher-order Fock states, and hence is valid for arbitrary n; it follows
(see Appendix D) from the maximally valued anomalous moment |m|2 ≡ |〈â1â2〉|2 =
|〈â3â4〉|2 = n(n + 1), which is the case for this simple parametric down-conversion
model [39, 40], where n = sinh2(gt).

Equation (3.4) is an insightful result from the simplest analytic treatment as it
shows the scaling of S with the mode population: for n � 1 we indeed obtain a
nearly maximal Bell violation, S � 2

√
2 whilst we find an upper bound of n = ncr =

(
√

2 − 1)/(3 − √
2) � 0.26 beyond which the violation is no longer observed as

S ≤ 2 for n ≥ ncr. We thus conclude that, for a large Bell violation, it is necessary to
work in the low-gain, low mode-occupation regime of n � 1, which has, however,
a practical inconvenience of requiring a large number of repeated experimental runs
for achieving statistically significant data acquisition rate.

3.4 Stochastic Bogoliubov Simulations: Results
and Discussion

To simulate the generation and detection of Bell states via the proposed scheme
we use the stochastic Bogoliubov approach in the positive P-representation [12, 44],
in which the scattered atoms are described by a small fluctuating component δ̂(r, t)
in the expansion of the full field operator �̂(r, t) = ψ0(r, t)+ δ̂(r, t), where ψ0(r, t)
is the mean-field component describing the source condensate assumed to be in a
coherent state of total average number N , initially in the ground state of the confining
trap potential. This approach has previously been used to accurately model a number
of condensate collision experiments, including the measurement and characterisa-
tion of atom-atom correlations via sub-Poissonian relative number statistics [13],
violation of the classical Cauchy–Schwarz inequality [14], and more recently in a
theoretical proposal for demonstrating an atomic Hong–Ou–Mandel effect [30]. The
positive P-representation has also been used in Ref. [45] for direct probabilistic sam-
pling of an idealised, polarisation-entangled Bell state to show how a Bell inequality
violation can be simulated using the respective phase-space distribution function.
Complementary to Ref. [45], we do not assume any pre-existing Bell state in our
analysis, but adopt an operational approach of calculating a set of pair-correlation
functions Cij that define the CHSH-Bell parameter S, after real-time simulations of
the collision dynamics and the application of Bragg pulses. (For the most recent
formulation of the stochastic positive-P equations that we simulate, including the
application of the lattice potential imposed by the Bragg lasers, see the Methods
section of Ref. [30].)
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The CHSH-Bell parameter S corresponding to our measurement protocol,
performed for four pairs of phase settings, is defined as [1, 38]

S = |E(φL,φR) − E(φL,φ
′
R) + E(φ′

L,φR) + E(φ′
L,φ

′
R)|, (3.5)

where

E(φL,φR) ≡ C14 + C23 − C12 − C34

C14 + C23 + C12 + C34

∣∣∣∣
φL,φR

. (3.6)

Here, the correlation functions Cij are given by Cij = 〈N̂iN̂j〉, where the operator
N̂i(t)=

∫
V(ki)

d3k n̂(k, t) corresponds to the number of atoms detected in a detection
bin with dimensions �kd (d = x, y, z) and volume V(ki) = ∏

d �kd , centered
around the targeted momenta ki (i= 1, 2, 3, 4); the set of momenta {k1,k2,k3,k4}
correspond, respectively, to {p,−p,q,−q} used in the diagram of Fig. 3.1, while
n̂(k, t) = â†(k, t)â(k, t) is the momentum-space density, with â(k, t) being the
Fourier component of the field operator δ̂(r, t) describing the scattered atoms. The
CHSH-Bell inequality states that any LHV theory satisfies an upper bound given by
S ≤ 2, irrespective of the phase settings φL, φR, φ′

L, and φ′
R.

The results of our numerical simulations of the collision dynamics and ensuing
Bragg pulses are shown in Figs. 3.2 and 3.3. Figure 3.2 illustrates the momentum

Fig. 3.2 Illustration of typical results for the collisional halo in momentum space from the stochastic
Bogoliubov approach in the positive-P representation. Shown here are three orthogonal slices (cuts
through the origin) of the 3D momentum distribution n(k) at the end of the collision; the satu-
rated (white) regions of the colour map correspond to the high-density colliding condensates. The
central figure is a discretised scatter plot of the 3D data (shown only for illustrational purposes
and comparison with Fig. 3.1), in which the dots (pixels) represent random samples of the average,
but still fluctuating within the sampling error, density distribution binned into pixels whose colour
coding scales with the atom number in the bin (only four color grades were used for clarity). For
quantitative details of the same data on the equatorial plane, see Fig. 3.3
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(a) (b) (c) (d)

Fig. 3.3 Momentum distribution n(k) of scattered atoms on the equatorial plane of the halo and the
correlation coefficient E. Panel a shows the momentum distribution after the collision, at t1 =65µs;
b—after the π-pulse chosen here to be a Gaussian, centred at t2 =79 µs and having a duration (rms
width) of τπ =3.5µs; and c—after the final π/2 pulse, centered at t3 =139µs and having a duration
of τπ/2 = 3.5 µs. The momentum axes kx,y are normalised to the collision momentum k0 ≡ |k0|
(in wave-number units), which in our simulations is k0 = 4.7×106 m−1. The plotted results are
for an initial BEC containing a total average number of N =1.9×104 atoms of metastable helium
(4He∗) prepared in a harmonic trap of frequencies (ωx,ωy,ωz)/2π = (64, 1150, 1150) Hz and
colliding with the scattering length of a = 5.3 nm; all these parameters are very close to those
realised in recent experiments [12–14]. The optimal timing of the final Bragg pulse differs slightly
for condensates with differentN ; in particular, t3 ranged from 135.5 to 139µs for the data in Fig. 3.4
(see Appendix D). The data is averaged over ∼30,000 stochastic trajectories on a spatial lattice
of 722 × 192 × 168 points. Panel d shows the correlation coefficient E(φL,φR) as a function of
φ≡φL−φR, for the same detection bin sizes as in Fig. 3.4, blue circles. The data points are from
numerical simulations (error bars of two standard deviations, representing sampling errors from
360 stochastic runs, are within the marker size), including averaging over ∼370 quartets of distinct
detection volumes on the two opposing rings of the scattering halo shown in Fig. 3.1, while the
solid line is from the Gaussian-fit model, Eq. (3.7). A maximum amplitude of E0 >1/

√
2 (outside

the shaded region) corresponds to a correlation strength that can lead to a Bell inequality violation,
given the underlying sinusoidal behaviour

space density distribution of the collisional halo, while Fig. 3.3 focuses on the quan-
titative results on the equatorial plane, for: (a) at the end of the collision; (b) after the
application of the pi pulse, and (c) after the π/2 puls. The upper and lower semicir-
cles in (b) correspond to Bragg-kicked populations between the targeted momenta
around p and q, and between −q and −p, while (c) shows the final distribution after
mixing. The density modulation in (c) (in parts of the halo lying outside the vicinity
of the targeted momentum modes, where the transfer of population during the π pulse
is not 100% efficient) is simply the result of interference between the residual and
transferred atomic populations upon their recombination on the beamsplitter [30].

We next use the stochastic Bogoliubov simulations to calculate the atom-atom
correlations Cij, for the optimal choice of phase angles φL =0, φ′

L =π/2, φR =π/4,
and φ′

R=3π/4 [1]. The dependence of the resulting correlation coefficient E on the
relative phase φ≡φL−φR is shown in Fig. 3.3d; it displays a sinusoidal dependence
E0 cos φ which can also be predicted from a simple Gaussian-fit analytic model (see
Appendix D):
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E (φL,φR) = h
∏

d αd

h
∏

d αd + 2
∏

d(λd)2
cos (φL − φR) . (3.7)

In this model, Cij is expressed in terms of the density-density correlation function
G(2)(k,k′, t1) = 〈â†(k, t1)â†(k′, t1)â(k′, t1)â(k, t1)〉 after the collision as Cij =∫
V(ki)

d3k
∫
V(kj)

d3k′G(2)(k,k′, t1), and we use the fact that G(2)(k,k′, t1) itself is
typically well approximated [11, 14, 46] by a Gaussian function of the form
G(2)(k,k′, t1)=n̄2(1 + h

∏
d exp[−(kd + k′

d)
2/2σ2

d]), where we have assumed that
the density of scattered atoms is approximately constant over the integration volume
and is given by n̄. Thus, in Eq. (3.7), h is the height (above the background level of
n̄2) of the pair correlation G(2)(k,k′, t1), σd is the rms width, λd ≡ �kd/2σd is the

relative bin size, and αd ≡ (e−2λ2
d − 1) + √

2πλd erf
(√

2λd

)
. The particular form

of E in Eq. (3.7) is obtained from this model by assuming the subsequent ‘mirror’
and ‘beam-splitter’ mix the coupled modes exactly. The visibility of the correlation
coefficient E bounds the maximum attainable violation of the CHSH-Bell inequality
for a specific set of phase settings, with a lower-limit of E0 = 1/

√
2 required for

S > 2, and a maximum value of E0 = 1 corresponding to S = 2
√

2.
The results of calculations of the CHSH-Bell parameter S are shown in Fig. 3.4,

where we explore its dependence on the strength of atom-atom correlations and the
detection bin size. The dependence on the correlation strength, for a fixed collision
velocity and trap frequencies, reflects essentially the dependence on the peak density
of the initial BEC, which itself depends on the total average number of atoms loaded
in the trap [34]. The results of stochastic simulations in Fig. 3.4b are plotted alongside
the predictions of the Gaussian-fit analytic model, which from Eq. (3.7) gives

S = 2
√

2
h

∏
d αd

h
∏

d αd + 2
∏

d(λd)2
. (3.8)

As we see, the analytic prediction agrees reasonably well with the numerical results,
both showing that strong Bell violations are favoured for: (i) smaller condensates,
leading to lower mode population in the scattering halo and thus higher correlation
strength, and (ii) smaller bin sizes, for which the strength of atom number correlations
does not get diluted due to the finite detection resolution. The discrepancies between
the numerical and analytic results are due the fact that the analytic model assumes
uniform halo density across the integration bin and perfect Bragg pulses, both in terms
of the intended transfer efficiency and its insensitivity to the momentum offsets within
the integration bin, whereas the numerical simulations are performed with realistic
Bragg pulses acting on the actual inhomogeneous scattering halo. Nevertheless, an
important conclusion that we reach here is that the Bell violation in our scheme can
tolerate experimentally relevant imperfections that are often ignored in oversimplified
models.

The general form of Eq. (3.8) displays similar behaviour to that obtained in the
simple model of four-mode parametric down-conversion, Eq. (3.4). As previously, it
gives a simple and insightful picture in terms of the dependence of the expected value
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Fig. 3.4 CHSH-Bell parameter S as a function of the correlation strength h (see text); the value of h
can be controlled by varying the total average atom number N in the initial BEC. For the data points
shown here,N was varied between 1.9×104 (largest h) and 7.4×104 (smallest h). The two sets of data
correspond to two different detection bin sizes: (�kx,�ky,�kz)=(0.052, 0.53, 0.47)µm−1—blue
circles, and (0.12, 1.24, 1.10) µm−1—red squares. The vertical error bars on data points indicate
the stochastic sampling errors; the horizontal error bars are the sampling errors on the value of h.
Each individual data point is a result of averaging over approximately 2000 stochastic trajectories
simulated on a computational lattice of 722 × 192 × 168 points, which were run on Intel E5-2660
Xeon CPUs taking a total of ∼15 hours on a 128-core cluster, or ∼2000 CPU hours. The results
are compared to the analytic predictions (solid lines) of Eq. (3.8); uncertainty (shaded regions) is
due to the uncertainty in determining σd . The inset shows the explicit dependence of S on �kx (in
units of 2σx = 0.068 µm−1), for fixed (�ky,�kz) = (0.77σy, 0.89σz) = (0.53, 0.47) µm−1 and
N = 1.9 × 104 (h � 27). For a typical time-of-flight expansion time of texp∼300 ms, which maps
the atomic momentum distribution into position space density distribution, and which is when the
atoms are experimentally detected, these detection bin sizes convert to position space distances of
(�x,�y,�z) � (0.32, 2.5, 2.2) mm (where we have taken λx = 1 for definitiveness), which are
several times larger than the three orthogonal resolutions of multichannel plate detectors used in
4He∗ experiments [14, 47]

of S on just a few parameters at the end of the collision—the correlation widths, the
correlation height and the detection bin size. As we see from the comparison of the
predictions of Eq. (3.8) to the actual numerical results in Fig. 3.4, the agreement is
remarkable for such a simple analytic result. The scaling with the halo mode occu-
pation, as that in Eq. (3.4), is no longer explicit, but it now emerges most simply
through the detection bin size, wherein a smaller bin size gives a smaller average
number of detected atoms and hence larger values of S as seen in the inset of Fig. 3.4.
Similarly, such a scaling emerges through the height of the correlation h: the cor-
relation is typically stronger for four-wave mixing regimes that produce collisional
halo of smaller density or smaller bin occupation (for a fixed bin size), leading to
larger values of S. In the four-mode down-conversion model, where the relevant
normalized pair-correlation function is given by g(2)

12 = g(2)
34 = 2 + 1/n [39, 40] and

therefore h= 1+1/n, this corresponds to h � 1 which is again the regime of low
mode occupation n � 1 as we discussed previously.
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We further emphasise that the general applicability of our Gaussian-fit analytic
model and, in particular, the relatively simple result of Eq. (3.8) are not limited to
condensate collision experiments. Rather, these results can be applied to any other
ultracold atom experiment—a candidate for a Bell test—as long is it produces two
pair-correlated ‘scattering’ modes that can be approximated by Gaussian correlation
functions and subsequently subjected to ‘mirror’ and ‘beam-splitter’ pulses as to
realise an atomic Tapster interferometer.

3.5 Conclusions

In summary, we have shown that condensate collisions are a promising platform for
testing motional-state Bell inequalities with massive particles. We predict a CHSH-
Bell inequality violation (S > 2) for a range of parameters well within currently
accessible experimental regimes.

Our numerical simulations take into account a range of physically important
processes beyond the common analysis of oversimplified toy models. Importantly
this includes: (i) the multimode nature of the colliding Bose-Einstein condensates
and subsequent scattering halo; (ii) the spatial expansion and separation of the source
condensates during the collision and hence during the pair production process (for
comparison, the ‘pump mode’ in the optical down-conversion case remains practi-
cally unchanged in the required weak-gain regime); and (iii) the fact that the atomic
‘mirror’ and ‘beam-splitter’ Bragg pulses act, in fact, as momentum kicks (transla-
tions) rather than as actual (optical) reflections. By modelling the real-time applica-
tion of the Bragg pulses, without assuming ideal π- and π/2-pulses (100 % and 50 %
transfer respectively), we implicitly allow for small amounts of losses (hence deco-
herence) into higher-order Bragg scattering modes. We also take into account the
nontrivial effects of phase dispersion, absent in photonic experiments, by optimising
the timing and application of the Bragg pulses in the interferometer. Remarkably,
many of these effects can also be captured via the semi-analytic Gaussian-fit model
of Eqs. (3.7) and (3.8), which is found to be both qualitatively and quantitatively
rather accurate.

Such detailed quantitative analysis is important for a theoretical proposal to be
relevant to possible experimental demonstrations of a Bell inequality violation. This
is further supported by our analysis in terms of finite detector resolution and the
utilization of multiple quartets of modes in our calculations: increasing the rate of
data acquisition is crucial for experiments with ultracold atoms which typically have
relatively slow duty cycles of the order of half a minute (for comparison, the repetition
rates of a pump laser in modern optical parametric down-conversion experiments can
reach tens of MHz).

A laboratory demonstration of such a violation would be a major advance in
experimental quantum physics as it would lead to a better understanding of massive
particle entanglement involving motional states. Apart from extending foundational
tests of quantum mechanics into new regimes, such experiments can potentially
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lead to an opening of a new experimental agenda, such as testing the theories of
decoherence due to coupling to gravitational fields [15] and answering questions
that are relevant to the understanding of the interplay between quantum theory and
gravity and their possible unification.
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Chapter 4
Sensitivity to Thermal Noise of Atomic
Einstein–Podolsky–Rosen Entanglement

A notable demonstration of the Einstein–Podoslky–Rosen paradox was the quantum
optics experiment of Ou et. al. [1]. This experiment used massless photons in a
two-mode squeezed vacuum state produced by the process of spontaneous optical
parametric down-conversion to demonstrate the paradox for optical quadratures,
which are the closest equivalent to the original continuous variables of momentum
and position used by EPR in their thought experiment. An obvious generalization
of this experiment to the regime of massive particles would be via spin-changing
collisions in a spinor condensate,which, in the simplestmodel, also produces the two-
mode squeezed vacuum state. Motivated by this connection, a recent experimental
demonstration of EPR entanglement in such a system was attempted by Gross et. al.
[2], however, the results proved inconclusive.

In this chapter, we seek to understand whether this ambiguous result could be
attributed to physically important sources of noise not present in analogous quantum
optics experiments, such as a small (currently undetectable) thermal seed initially
present in themF = ±1 substates. Specifically, our investigation focuses on how the
spin-changing dynamics are altered and quantifying whether EPR entanglement can
still be robustly generated. Thermal fluctuations are an important source of noise in
realistic systems, and a better understanding of its effect on fundamental phenomena
such as EPR entanglement is crucial to understanding the transition between between
the classical world and quantum mechanics.

The remainder of this chapter is adapted from the published article: ‘Sensitivity to
thermal noise of atomic Einstein-Podolsky-Rosen entanglement’ [R.J. Lewis-Swan
and K.V. Kheruntsyan, Phys. Rev. A 87, 063635 (2013)]. The supplementary infor-
mation of this article can be found in Appendix E.

4.1 Introduction

Entanglement has proven to be “the characteristic trait of quantum mechanics”
as first coined by Schrödinger [3]. It forms the foundations of quantum infor-
mation theory and quantum computing. Further, in interferometry entanglement
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enables measurement precision to surpass the standard quantum limit [4]. This is
particularly important in atom interferometry [5, 6] as atom flux is generally limited.
However, the most important foundational trait of entanglement comes with its role
in the Einstein-Podolsky-Rosen paradox (EPR) [7, 8]. This requires the underlying
quantum correlations to be stronger than those satisfying the simpler inseparability
criteria. The resulting EPR-entanglement criterion confronts the Heisenberg uncer-
tainty relation and puts us into the context of EPR arguments that question the
completeness of quantum mechanics and open the door to alternative descriptions
of these correlations via local hidden variable theories [9–11]. The EPR paradox for
continuous-variable quadrature observables [12] (which are analogous to the position
and momentum observables originally discussed by EPR) has been demonstrated in
optical parametric down-conversion [1] and most recently attempts have been made
to demonstrate [2] the paradox with ensembles of massive particles generated by
spin-changing collisions in a spinor Bose-Einstein condensate (BEC) [13, 14].

In this paper, we seek to provide a theoretical treatment of the recent experi-
ment by Gross et al. [2] which reported entanglement, or quantum inseparability,
of two atomic ensembles produced by spin-changing collisions in a 87Rb BEC. For
the BEC initially prepared in the (F,mF ) = (2, 0) hyperfine state, the collisions
produce correlated pairs of atoms in the mF = ±1 sublevels. The authors observed
that the resulting state was inseparable, though a measurement of a stronger EPR
entanglement criterion was inconclusive. A normalized product of inferred quadra-
ture variances of 4± 17 was reported, whereas a demonstration of the EPR paradox
requires this quantity to be less than unity [12, 15].

The short-time dynamics of the spin-mixing process, for a vacuum initial state of
themF = ±1 atoms, is similar to that of a spontaneous parametric down-conversion
in the undepleted pump approximation. This paradigmatic nonlinear optical process
is known to produce an EPR entangled twin-photon state that can seemingly vio-
late the Heisenberg uncertainty relation for inferred optical quadratures [12]. Such
a violation has previously been observed in 1992 by Ou et al. [1]. Due to the incon-
clusive nature of an analogous measurement of matter-wave quadratures in Ref. [2],
we seek to perform a theoretical analysis of spin-changing dynamics and calculate
various measures of entanglement in experimentally realistic regimes. In particu-
lar, we focus on the sensitivity of EPR entanglement to an initial population in
the mF = ±1 sublevels with thermal statistics. In the optical case this question is
argued to be irrelevant as at optical frequencies and room temperatures the ther-
mal population of the signal and idler modes is negligible, allowing us to safely
approximate them as vacuum states. However, these considerations are inapplicable
to ultracold atomic gases. This was highlighted recently by Melé-Messeguer et. al.
[16], who quantitatively predicted the possibility of non-trivial thermal activation of
themF = ±1 sublevels in a spin-1 BEC. Accordingly, when interpreting experimen-
tal results care must be taken in differentiating spin-mixing dynamics initiated by
vacuum noise from that initiated by thermal noise or a small coherent seed [17]. To
this end, our modelling of the experiment of Gross et al. [2] is more consistent with
a small thermal population in the mF = ±1 sublevels, rather than a vacuum initial
state or small coherent seed. From a broader perspective, the connection between our
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results and thewidely applicablemodel of parametric down-conversion highlights the
generally fragile nature of atomic EPR entanglement to thermal noise, demonstrating
that future experiments must be refined to overcome this problem.

4.2 The System

The experiment ofRef. [2] startswith aBECof 87Rb atoms prepared in the (F,mF ) =
(2, 0) state and trapped in a one-dimensional optical lattice. The lattice potential is
sufficiently deep to prevent tunnelling between neighbouringwells. Furthermore, due
to the relatively small number of atoms in each well, the spin-healing length is of the
order of the spatial size of the condensate in the well meaning the spatial dynamics of
the system are frozen, and hence we may treat the condensate in each well according
to the single-mode approximation [18–20]. In this approximation the field operator
ψ̂i (r) for each component i≡mF =0,±1,±2 is expanded as ψ̂i (r)=φ(r)âi , where
φ(r) is the common spatial ground state wavefunction (φi (r) ≡ φ(r)) and âi is the
respective bosonic annihilation operator.

A quadratic Zeeman shift andmicrowave dressing of themF =0 state is employed
to energetically restrict the spin-mixing dynamics to the mF =0,±1 states [2], and
so for short time durations we may map the spin-2 system to an effective spin-1
Hamiltonian [21] of the form Ĥ = Ĥinel + Ĥel + ĤZ,

Ĥinel = �g(â†0 â
†
0 â−1â1 + â†1 â

†
−1â0â0), (4.1)

Ĥel = �g(n̂0n̂1 + n̂0n̂−1) (4.2)

ĤZ = −�p
(
n̂1 − n̂−1

) − �q
(
n̂1 + n̂−1

)
(4.3)

where n̂i = â†i âi is the particle number operator and i = 0,±1 are referred to,
respectively, as the pump and signal/idler modes from herein. We have ignored terms
proportional to N̂ (N̂ − 1) in Ĥ as this is a conserved quantity and contributes only a
global phase rotation. The inelastic spin-changing collisions are described by Ĥinel,
and the remaining elastic s-wave scattering terms are grouped in Ĥel, where g is
the coupling constant associated with s-wave collisions [21]. For a spin-2 system,
the coupling is given by g = 6

14 (3g4 + 4g2)
∫
d3r |φ(r)|4, where gF = 4π�

2aF/m
describes s-wave scattering with total spin F , characterised by scattering length aF
[21]. For comparison, for an actual spin-1 system the coupling constant would be
given by g = g2−g0

3

∫
d3r |φ(r)|4, where gF = 4π�

2aF/m. In our representation of

Ĥel we have used the fact that the relative number difference, n̂1− n̂−1, is a conserved
quantity. The interaction with the magnetic field is described by ĤZ, where the linear
and quadratic Zeeman effects are parametrized, respectively, by p = gμB B0/�

and q = p2/ωHFS [22], with ωHFS/2π ≈ 6.835 GHz being the hyperfine splitting
frequency of 87Rb [23] and g is the Landé hyperfine g-factor. For our initial conditions
the relative number difference, n̂1−n̂−1, will always be zero and hencewemay ignore
the linear Zeeman effect. We may also redefine the parameter q to absorb the effects
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of microwave level dressing (used by Gross et al. [2]) and any other fixed energy
shift between the mF = 0 and mF = ±1 energy levels.

Simple analogies between the states of the signal and idlermodes in spin-changing
collisions and optical parametric down-conversion consider only Ĥinel in the unde-
pleted pump approximation, however, competing mean-field (Ĥel) and Zeeman (ĤZ)
effects lead to additional dynamics [24] due to dephasing. The full Heisenberg oper-
ator equations of motion are given by

dâ0
dτ

= −i
[
2â−1â1â

†
0 + (

n̂1 + n̂−1
)
â0

]
, (4.4)

dâ±1

dτ
= −i

[
â20 â

†
∓1 + (

n̂0 − q/g
)
â±1

]
, (4.5)

where we have introduced τ = gt as dimensionless time. We see that the phase
accrued in the â±1 modes grows ∝ (

n̂0 − q/g
)
whilst for the â0 mode the phase

grows ∝ (
n̂1 + n̂−1

)
. In the short-time undepleted pump approximation [25], this is

equivalent to a phase rotation â±1 → â±1exp[i (N0 − q/g) τ ], where N0 = 〈n̂0(0)〉
is the initial population of themF = 0 component. This rotation leads to a dynamical
phase mismatch between the spinor components that decelerates the pair-production
process [24]. To prevent phase mismatch in the short-time limit one can choose
q = gN0 in which case Eqs. (4.4) and (4.5) reduce to those of resonant down-
conversion [25].

4.3 Results and Discussion

4.3.1 Population Dynamics

We first analyze the spin-changing dynamics for the case of a vacuum initial state for
the signal/idler modes, and a coherent state |α0(0)〉 for the pump mode with initial
number of atoms N0 = |α0(0)|2. This case can be treated in a straightforwardmanner
(see, e.g., Ref. [15]) by diagonalizing the full Hamiltonian in the truncated Fock-
state basis and solving the Schrödinger equation.1 Figure4.1a shows the population
dynamics of the signal and idler modes, for different initial atom numbers N0 and
the quadratic Zeeman term tuned to the phase-matching condition q = gN0. Setting
q = 0 eliminates the Zeeman shift and we observe (grey solid line) significantly
slowed dynamics due to phase mismatch. For reference, we also mark the experi-
mental measurement time of Ref. [2], τ ′ = 0.0073, corresponding to the reported
value of the squeezing parameter r ≡ N0τ

′ 
 2 [25], evaluated for N0 = 275.

1This method can be easily implemented for modelling the pump mode being initially either in a
pure Fock state or in a coherent state. For the large values of N0 and relatively small time durations
considered in this paper, the two alternatives give very similar results; accordingly, we restrict
ourselves to presenting the results only for the coherent initial state.
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(a) (b)

Fig. 4.1 a Fractional population n±1(τ )/N0 of the signal/idler modes [where n±1(τ ) ≡
〈â†±1(τ )â±1(τ )〉] as a function of the dimensionless time τ , for vacuum initial state and differ-
ent initial number of atoms in the pump mode, N0. The quadratic Zeeman term is phase-matched
to q = gN0 in all cases, except for the grey solid line which is shown for comparison for q=0 and
N0 = 175. The vertical dotted line indicates the measurement time τ ′ = 0.0073 used in Ref. [2].
b Same as in (a) but with thermally seeded populations in the signal/idler modes (assumed to be
equal to each other), for N0 = 175. The grey dashed lines show the analytic predictions in the
undepleted pump approximation

We next analyze the case of an initial thermal seed in the signal/idler modes, with
an equal average number of atoms n̄th in both modes. To simulate the dynamics in
this case, we use the truncated Wigner method (Ref. [26] gives simple prescriptions
on how to model various initial states in the Wigner representation). Figure4.1b
illustrates that the presence of the thermal seed accelerates population growth,
however, it does not significantly effect the maximal depletion of the BEC. The
numerical results in Fig. 4.1b are compared with the analytic predictions of the sim-
ple model of parametric down-conversion in the undepleted pump approximation,
n±1(τ )=sinh2(N0τ )[1+2n̄th]+ n̄th (see Appendix E for full analytic solutions). As
expected, we find good agreement between the numerical and analytic results in the
short-time limit. We also conclude that as far as the mode populations are concerned,
the experimental measurement time τ ′ = 0.0073 is not too far from the regime of
validity of the simple analytic model, at least for n̄th �2. This conclusion, however,
cannot necessarily be carried through to other observables, such as entanglement
measures analysed below.

4.3.2 EPR Entanglement

Central to this paper is an investigation into the possible demonstration of the EPR
paradox as outlined in Ref. [2]. In the context of continuous-variable entanglement,
this is equivalent to the seeming violation of the Heisenberg uncertainty relation for
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inferred quadrature variances [12, 15]. In the normalised form this EPR entanglement
criterion can be written as

ϒ j = �2
inf X̂ j�

2
inf Ŷ j

(1 − 〈â†j â j 〉/〈b̂†j b̂ j 〉)2
< 1, (4.6)

where the optimal2 inferred quadrature variance for X̂ j (and similarly for Ŷ j ) is given
by [12]

�2
inf X̂ j = 〈(�X̂ j )

2〉 − 〈�X̂i�X̂ j 〉2
〈(�X̂i )2〉

, (4.7)

with �X̂ j ≡ X̂ j − 〈X̂ j 〉 and i, j = ±1. The generalized quadrature operators are
defined as X̂ j (θ) = (â†j b̂ j eiθ + b̂†j â j e−iθ)/〈b̂†j b̂ j 〉1/2 [15], where the operator b̂ j rep-
resents the local oscillator field required for homodyne detection of the quadratures
and we denote X̂ j = X̂ j (π/4) and Ŷ j = X̂ j (3π/2). Choosing this pair of canonically
conjugate quadratures maximises the correlation (anti-correlation) between them,
defined as C = 〈X̂i (θ)X̂ j (θ)〉/[〈X̂i (θ)

2〉〈X̂ j (θ)
2〉]1/2, thus minimizing the inferred

quadrature variance.
Our choice of generalized quadrature operators [15] varies from the standard form,

X̂ j (θ) = â j e−iθ + â†j e
iθ [25], as it does not assume a perfectly coherent, strong local

oscillator. Instead, it takes into account the fact that the local oscillator is derived,
just before the measurement time, from the partially depleted and already incoherent
pump mode [2]. When measuring these quadratures the pump mode is split into
two local oscillators by an atomic beam-splitter [15] (for instance a rf π/2 pulse),
in which the output is given by b̂±1 = (â0 ± âvac)/

√
2, where âvac represents the

vacuum entering the empty port of the beam-splitter. This is slightly different to the
method used in Ref. [2], where an atomic three-port beam-splitter is used to measure
relevant quadratures.

Phase accrued due to Ĥel+ ĤZ leads to a drifting in the phase relation between the
local oscillator and the signal/idler modes. This means that our original quadrature
choice of X̂ j (π/4) and X̂ j (3π/2) may not measure the optimal violation of the EPR
criterion. By minimizing this criterion as a function of phase the optimal choice of
quadratures becomes X̂ j (θ0(τ )) and X̂ j (θ0(τ ) + π/2), where θ0(τ ) is the optimal
local oscillator phase relative to the signal/idler modes.

In Fig. 4.2a we show the results of calculation of the phase-optimized EPR entan-
glement parameter ϒ (with ϒ−1 = ϒ1 ≡ ϒ due to the symmetry of the signal/idler
modes) for the signal/idler modes initially in a vacuum state. We see that strong
EPR entanglement (ϒ < 1) can be achieved for a large experimental time frame,

2The form of the inferred quadrature variance in Eq. (4.7) varies slightly from that used in Ref. [2],
where the inferred quadrature variances are equivalent to measurements of�2

inf X̂2 = �2(X̂1− X̂2)

and�2
inf Ŷ2 = �2(Ŷ1+ Ŷ2) [15]. This choice is different in that it does not give the optimal violation

of Eq. (4.6) [12], however, in the parameter regime we consider the difference between the choices
of inferred quadratures is not qualitatively significant.
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(a) (b)

(c) (d)

Fig. 4.2 a Evolution of the EPR entanglement parameter ϒ for the same situation as in Fig. 4.1a.
The EPR criterion corresponds to ϒ < 1 (dashed horizontal line). The inset shows the evolution
of the optimal phase angle of the local oscillator θ0(τ ) for each N0. b Evolution of ϒ for thermally
seeded signal/idler modes and N0=175. The experimental measurement time τ ′ =0.0073 is shown
in (a) and (b) as a vertical dotted line. The respective grey lines are the analytic predictions from the
undepleted pump model. c Time-optimized EPR parameter ϒmin as a function of n̄th, for different
N0. The respective grey lines are the analytic predictions from the undepleted pump model. The
grey line with squares shows ϒmin for N0=175, but assuming that the seeds are in a coherent state
(sharing initially the same phase as the pump mode) with average populations of |α±1(0)|2 = n̄th.
d Same as in (c), but as a function of N0, for three different thermal seeds n̄th

up to τ 
 0.01; more specifically, we predict suppression of the optimal EPR
entanglement of at least 90%belowunity for all relevant total atomnumbers (ranging
from 150 to 200) at τ ′ = 0.0073. Unlike the simple undepleted pump model, which
predicts ϒ = cosh−2(2N0τ ) and hence indefinite suppression of the EPR criterion
[25], EPR entanglement in the full model is eventually lost due to a combination of
back-conversion (|+1〉 + |−1〉 → |0〉 + |0〉) and the loss of coherence in the pump
mode.

Our results predict that a strong EPR violation should have been observed if
the signal and idler modes were indeed generated from an initial vacuum state.
In light of this and the large error margin of the experimental result in Ref. [2],
which thus cannot conclusively demonstrate the existence or non-existence of EPR
entanglement, we now discuss the possible presence of stray or thermally excited
atoms in the signal/idlermodes and the effects such seeding can have on entanglement
and particularly theEPRcriterion. The results of calculation of theEPRentanglement
parameterϒ for an initial thermal seed of n̄th in both modes are shown in Fig. 4.2b–d.
We find the introduction of a thermal seed reduces the strong correlation between the
signal and idlermodes, leading to an eventual loss of EPR entanglement. For an initial
number of atoms in the pump mode ranging between 150 to 200, EPR entanglement
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is lost already for n̄th 
 1. Direct experimental detection of stray atoms at such a low
population level is beyond the current resolution of absorption imaging techniques
[2]. More generally, our numerical results show that the maximum n̄th that can be
tolerated while preserving the EPR entanglement scales as (n̄th)max ∼ 0.06N 11/20

0
in the range of 100 � N0 � 400 (see Appendix E for further discussion). For
comparison, seeding the signal and idler modes with a coherent state [17] of similar
population does not have such a dramatic effect on EPR entanglement [see the grey
line with squares in Fig. 4.2c].

4.3.3 Quadrature Squeezing and Inseparability

To further highlight the high sensitivity of EPR entanglement to initial thermal noise
we contrast it with two other weaker measures of the nonclassicality of the state:
two-mode quadrature squeezing and intermode entanglement in the sense of insepa-
rability, which were the main focus of Ref. [2]. The two-mode quadrature variances
are defined as X̂± (θ) = X̂1 (θ) ± X̂−1 (θ), with �2 X̂−(θ) < 2 corresponding to
two-mode squeezing [25], i.e., suppression of fluctuations below the level dictated
by a minimum uncertainty state. We plot the results of our numerical calculations of
quadrature variances in Fig. 4.3a. From these results we observe that the measure-
ments of Ref. [2] do not agree with the amplitude of the oscillation that we find for an
initial vacuum state (solid lines) or a small coherent seed (dot-dashed line). Rather
they suggest the presence of a small thermal seed of n̄th 
 1 (dashed lines), although
for definitive differentiation of initial thermal or coherent populations further exper-
imental measurements with reduced error margins are required. Further, calculation
of the minimum of �2 X̂− [Fig. 4.3b, c] highlights that two-mode squeezing is pre-
served for thermal seed populations up to n̄th 
 1.7, which is consistent with our
interpretation of the measurements reported in Ref. [2].

Next we define the sum of single-mode quadrature variances as
∑

�2
1 =

2(�2 X̂1 +�2Ŷ1) and the sum of two-mode quadrature variances,
∑

�2
2 = �2 X̂− +

�2Ŷ+. (Following the treatment of Ref. [2] we calculate the single-mode quadrature
variances with the standard definition of quadratures, X̂ j (θ) = â j e−iθ + â†j e

iθ.)
Inseparability of the produced mF = ±1 pair-entangled state is equivalent to∑

�2
2/

∑
�2

1 < 1 [27]. Figure4.4a, b demonstrate that thismeasure of entanglement
is far less sensitive to the presence of a thermal seed in comparison to the stronger
criterion of EPR entanglement. Also, unlike the EPR criterion, this inseparability
measure does not significantly differentiate between coherent and thermal seeding.
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Fig. 4.3 a Two-mode
quadrature variances
�2 X̂± (θ) at τ ′ = 0.0073 as
functions of the local
oscillator phase angle θ − θ0,
for vacuum (solid lines) and
thermally seeded (dashed
lines) signal/idler modes;
N0 = 175 in both cases. We
also include a calculation of
�2 X̂− (θ) for comparable
coherent seed (dot-dashed
line), |α±1(0)|2 = 1, which
is almost indistinguishable
from the vacuum case. b
Time-optimized minimum of
�2 X̂−(θ0) as a function of
n̄th, for different N0. The
grey line with squares shows
�2 X̂−(θ0) for N0 = 175, but
assuming the seeds are in a
coherent state with average
populations of
|α±1(0)|2 = n̄th. c Same as
in (b), but as a function of
N0, for different n̄th

(a)

(b)

(c)

Fig. 4.4 a Time-optimized
inseparability criterion for
the quadrature entangled
state, quantified via∑

�2
2/

∑
�2

1 < 1, as a
function of n̄th, for different
N0. The grey line with
squares shows

∑
�2

2/
∑

�2
1

for N0 = 175, but assuming
the seeds are in a coherent
state with average
populations |α±1(0)|2 = n̄th.
b Same as in (a), but as a
function of N0, for different
n̄th

(a)

(b)
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4.4 Summary

In conclusion,we have demonstrated that for an initial vacuum state in the signal/idler
modes a strong suppression of the EPR criterion can be achieved in the parameter
regime of Ref. [2], most importantly including the experimental measurement time
of τ ′ = 0.0073. However, we also establish that the strength of EPR entanglement
depends crucially on the nature of the initial spin-fluctuations. Specifically, we pre-
dict that for a pump mode of initially 150 to 200 atoms, a thermal initial seed of
n̄th 
 1 is sufficient to rule out EPR entanglement. Weaker measures of entangle-
ment, such as inseparability, are still possible to observe as these are far more robust
to thermal noise. This implies that spin-changing collisionsmay still be a good source
of entanglement even in the presence of large thermal effects, even though we may
not be able to carry through the EPR arguments that confront the completeness of
quantummechanics and advocate for local hidden variable theories. Importantly, our
results suggest that the measurement of this EPR criterion can serve as a sensitive
probe of the initial state which triggers the pair production process, beyond measures
employed in Ref. [17]. This understanding of the sensitivity of EPR entanglement
to initial thermal noise will hopefully lead to refining of spin-mixing experiments
towards demonstration of the EPR paradox with massive particles. We expect our
findings to be also relevant to related proposals based on molecular dissociation [28,
29], condensate collisions [30–33], and optomechanical systems [34, 35].
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Chapter 5
An Atomic SU(1, 1) Interferometer
via Spin-Changing Collisions

In the previous chapters we have demonstrated how the two-mode squeezed vacuum
state can be realized in a variety of systems and used to test foundational concepts of
quantum mechanics such as Bell inequalities and the EPR paradox. At the centre of
these tests is the presence of strong correlations between the twomodes, particularly,
phase-sensitive correlations. Another practical application of these correlations is in
the field of quantum metrology. In particular, when the two-mode squeezed vac-
uum state is used as the input into a suitable two-mode interferometer it enables
interferometric sensitivity below the classical shot noise limit.

Here, we specifically investigate this application in the context of a SU(1, 1)
interferometer. Distinct to other interferometers which use passive elements (such
as optical beam-splitters) to probe the phase-sensitive correlations, we use the two-
mode squeezing process itself as a formof active ‘nonlinear’ beam-splitter. TheSU(1,
1) scheme can lead to benefits relative to passive interferometers, such as increased
robustness to imperfect detection [1]. Our theoretical analysis is specifically focused
on the realization of an atomic SU(1, 1) interferometer via spin-changing collisions
in a spinor BEC, motivated by the recent experimental work of Refs. [2] and [3].

5.1 Framework of a Two-Mode Interferometer

To begin, we outline the theoretical formalism of parameter estimation in the con-
text of two-mode interferometry, from which the SU(1, 1) interferometer naturally
emerges. The simplest description of a two-mode interferometer is illustrated in
Fig. 5.1. An input state, |ψin〉, is acted upon by a unitary process Û(φ1,φ2) which
imparts a phase shift dependent upon the path, defined as [4]

Û(φ1,φ2) = exp
(
iĜ1φ1 + iĜ2φ2

)
, (5.1)
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Fig. 5.1 Simplest two-mode interferometric scheme for parameter estimation of φ1 and φ2. An
arbitrary two-mode input state |ψin〉 undergoes unitary evolutionwhich imparts a phase shift on each
mode. The final state is then measured by some arbitrary process with corresponding measurement
signal Â, which is used in practice to estimate the values of the sum and difference, φ+ and φ−, of
the phase shifts

where Ĝi for i = 1, 2 is known as the generator of the phase shift in each mode.
In this chapter we will restrict our analysis to the simple case where Ĝi = n̂i and
n̂i = â†i âi is the occupation of each mode. Equation (5.2) can also be rewritten in the
form [4]

Û(φ1,φ2) ≡ Û(φ+,φ−) = exp
(
iĜ+φ+ + iĜ−φ−

)
, (5.2)

where we introduce the sum φ+ = φ1 +φ2 and difference φ− = φ1 −φ2 phases with
generators Ĝ± = n̂±/2 respectively for n̂± = n̂1 ± n̂2. After the phase shifts, the
output state, |ψout〉 = Û(φ+,φ−)|ψin〉, is measured by some detection process and a
measurement signal Â(φ+,φ−) is used to estimate the sum or differential phases.

From a purely theoretical point of view, the accuracy with which one can estimate
the phase shift is limited by the quantum Cramer-Rao bound [5, 6],

(�φ±)2 ≥ 1

F±
(5.3)

where

F± = 4
[〈∂φ±ψout|∂φ±ψout〉 − 〈∂φ±ψout|ψout〉〈ψout|∂φ±ψout〉

]
(5.4)

is the quantum Fisher information with respect to φ± [4, 7]. However, in practice
one can use the measurement signal Â(φ+,φ−) and Gaussian error propagation to
approximate the sensitivity as [6]

(�φ±)2 = 〈�2Â(φ+,φ−)〉
/ ∣∣∣∣∣

d〈Â(φ+,φ−)〉
dφ±

∣∣∣∣∣
2

. (5.5)

For an optimal choice of estimator Â(φ+,φ−), Eq. (5.5) will saturate the quantum
Cramer-Rao bound [6, 8].

Classically, the best sensitivity one can achieve is the shot-noise limit,which scales
as 1/N where N is the number of quanta used in the interferometer (often referred
to as the resource). This sensitivity is also known as the standard quantum limit
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(SQL). However, by leveraging properties of quantum states such as entanglement
and squeezing, one can show that the best sensitivity for a quantum system (utilizing
a linear phase shift) scales as 1/N2 for N � 1, known as the Heisenberg limit [8].
Achieving this limit in practice requires an appropriate choice of state, such that 1/F±
equals the Heisenberg limit, and the proper choice of measurement that saturates the
quantum Cramer-Rao bound.

5.1.1 SU(1, 1) Interferometer

Having outlined the basic framework of two-mode interferometry, one may ask
whether the strong correlations present in the two-mode squeezed vacuum state
make it suitable for sub-shot noise interferometry. Taking it as the input state to the
interferometer in Fig. 5.1, we can easily calculate the quantum Fisher information of
the state for the sum and difference phase shifts:

F+ = 〈�2(n̂1 + n̂2)〉 = ns(ns + 2), (5.6)

F− = 〈�2(n̂1 − n̂2)〉 = 0. (5.7)

where ns ≡ 〈n̂+〉 is the mean sum population of the two-mode squeezed vacuum
state entering the interferometer. One then sees that the two-mode squeezed vacuum
state provides no useful information for an estimate of φ− as 1/F− is undefined. The
optimal uncertainty in an estimate of φ+, however, is given by

(�φ+)2 = 1

ns(ns + 2)
, (5.8)

which asymptotically scales as the Heisenberg limit for ns � 1. These results are
intuitive when one considers the number and phase fluctuations of the two-mode
squeezed vacuum. As this state has strongly squeezed relative number difference
fluctuations, 〈�2(n̂1 − n̂2)〉 = 0, the relative phase of the two modes is undefined.
Consequently, the state is insensitive to the differential phase φ−. In contrast, the
sum population exhibits strong fluctuations, 〈�2(n̂1 + n̂2)〉 = ns(ns + 2), which for
the two-mode squeezed vacuum state implies that the sum phase of the two modes
should be well defined (with respect to the phase of the pump mode), explaining the
states strong sensitivity to changes in the sum phase φ+.

Whilst this result indicates the two-mode squeezed vacuum state is a useful can-
didate for interferometry, the optimal measurement which will saturate the quantum
Cramer-Rao bound is, however, not necessarily obvious in this case. For instance,
a direct measurement of the sum population n̂1 + n̂2 or the difference n̂1 − n̂2 does
not serve as a suitable interferometric signal. Following the work of Yurke et al. [9],
it can be shown that for this state the optimal measurement scheme involves first
applying another two-mode squeezing Hamiltonian and then making a measurement
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of the sum population n̂+ = n̂1 + n̂2. The sensitivity of the interferometer can then
be calculated by applying the error propagation formula [Eq. (5.5)]:

(�φ+)2 = 〈�2n̂+〉
/ ∣∣∣∣d〈n̂+〉

dφ+

∣∣∣∣
2

. (5.9)

An interferometer combining this input state and measurement scheme is known
as a SU(1, 1) interferometer and was first proposed by Yurke et al. [9]. Such an
interferometer has only recently been realized for the first time in quantum optics
[10], and an example is illustrated in Fig. 5.2a. It is composed of an initial two-
mode squeezing process, which for illustrative purposes we take to be spontaneous
parametric down-conversion of photons in a χ(2) nonlinear medium, to produce the
two-mode squeezed vacuum state. This is followed by separate linear phase shifts,
φ1 and φ2, on each mode before the photons are passed back through another χ(2)

(a)

(b)

Fig. 5.2 a Schematic outline of an optical SU(1, 1) interferometer. The ‘active’ beam-splitters
are realized by a χ(2) nonlinear medium, which is pumped by photons from a strong coherent
field to realize the archetypal two-mode squeezing Hamiltonian (see Eq. (1.8) of Sect. 1.4.1 for
details). After the nonlinear medium the effective input state is a two-mode squeezed vacuum,
which undergoes a linear phase shift dependent on the path through the interferometer. To estimate
the sum phase φ+ = φ1 + φ2 a second nonlinear medium is placed before the detectors (D1 and
D2) which measure the respective mode populations. b Equivalent realization in a spinor BEC.
The active beam-splitters are realized by spin-changing collisions (which are run from t = 0 until
t = t1), and which in the first sequence transfer pairs of atoms from themF = 0 (pump) mode to the
mF = ±1 modes (sidemodes). The linear phase shift can be realized by increasing the Zeeman shift
such that the splitting of the energy levels is �phase = qphase + gN0. This halts the spin-changing
collisions (at time t = t1) and leads to a phase accrual of φi = �phase(t2 − t1) (where the phase
is accrued from t = t1 until t = t2) in each sidemode with respect to the pump phase. Depending
on the phase relation between pump and sidemodes, the second period of spin-changing collisions
(which occurs from t = t2 until t = t3) may transfer atoms from the pump to the sidemodes or vice
versa

http://dx.doi.org/10.1007/978-3-319-41048-7_1
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nonlinear medium. Depending on the sum phase relation between the signal and
idler modes and the pump beam, the second nonlinear medium may continue down-
conversion of photons into the signal and idler modes or the reverse will occur,
wherein the photons from the signal and idler beams recombine into the pump mode
by the process of second harmonic generation. The sum population of the signal and
idler modes, which will be strongly dependent on the sum phase, is then measured
at the output ports of the interferometer. Comparing to the common Mach-Zender
interferometer, we see that the passive beam-splitter elements are replaced by theχ(2)

nonlinear mediums, which can be thought of as active ‘nonlinear’ beam-splitters.

5.2 Theoretical Analysis of an Atomic SU(1, 1)
Interferometer

A practical candidate for realization of an atomic SU(1, 1) interferometer is a spinor
BEC [1, 11, 12], in which the two-mode squeezing Hamiltonian is realized by coher-
ent spin-changing collisions. Spinor BECs are a desirable candidate for this inter-
ferometer as they present a clean, isolated system with comparatively small loss
inside the interferometer [1] and relatively simple control of the spin-changing colli-
sions. Furthermore, by preparing the system appropriately one can freeze the spatial
dynamics of condensate and isolate the relevant evolution of the system to the spin
degree of freedom.

Our theoretical analysis is motivated by an experimental setup identical to that
discussed in Chap. 4, and thus the same approximations may be made. For clarity,
we deal with a mesoscopic 87Rb condensate (containing 250–550 atoms) in a tight
trapping potential, such that we may invoke the single mode approximation. The
effective Hamiltonian governing the spin-changing collisions (which is equivalent
for F = 1 and F = 2 systems in the short time limit) is identical to that of Chap.4,
however we rewrite it here for convenience. It can be broken into the form

Ĥ = Ĥinel + Ĥel + ĤZ, (5.10)

where

Ĥinel = �g(â†0â
†
0â−1â1 + â†1â

†
−1â0â0) (5.11)

Ĥel = �g(n̂0n̂1 + n̂0n̂−1), (5.12)

ĤZ = �q
(
n̂1 + n̂−1

)
, (5.13)

are the inelastic (spin-changing) collision, elastic collision and Zeeman contributions
respectively. The coupling constant g is associatedwith s-wave collisions (seeChap.4
for more details) and we have neglected the linear Zeeman shift as n̂1 − n̂−1 is a
conserved quantity.

http://dx.doi.org/10.1007/978-3-319-41048-7_4
http://dx.doi.org/10.1007/978-3-319-41048-7_4
http://dx.doi.org/10.1007/978-3-319-41048-7_4
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Theworking principle of the atomic interferometer can be broken into three stages
[11], analogous to the optical interferometer, and is illustrated in Fig. 5.2b. Firstly, a
BEC is prepared purely in the (F,mF) = (2, 0) state at t = 0 and evolves according
to Ĥ until time t1 (≡ tevo), during which time spin-changing collisions occur and
the two-mode squeezed vacuum state is generated in the mF = ±1 sidemodes.
Next, between t1 and t2 the inelastic spin-changing collisions are halted by either:
(i) coherently transferring the BEC from the (F,mF) = (2, 0) state such that atom
pairs are no longer produced in the (F,mF) = (2,±1) sidemodes, by for example
shifting the BEC to theF = 1 hyperfine state, or (ii) increasing the quadratic Zeeman
shift between the pump and sidemodes (to the value qphase) sufficiently such that
the spin-changing process becomes far off-resonant. We assume that in either case
the inelastic spin-changing collisions characterized by Ĥinel can be neglected, such
that the system evolves according to the Hamiltonian Ĥ ′ = Ĥel + ĤZ until time
t2 = t1 + tphase and accrues a linear phase shift φ1 = φ2 = φ(tphase) in the mF =
±1 modes dependent upon the duration tphase. It is assumed that the phase of the
pump mode is fixed throughout this period as it is unaffected by the Zeeman shift.
Finally, the spin-changing collisions are restarted, by either returning the BEC to
the (F,mF) = (2, 0) state or returning the Zeeman shift to the initial value q, and
the system evolves according to Ĥ until time t3 = t2 + tevo, for a duration identical
to the first sequence. A measurement of the sum population of the mF = ±1 states
then allows the construction of the interferometric signal with which to estimate the
phase shift φ+ ≡ 2φ.

5.2.1 Ideal Solution in the Undepleted Pump Approximation

Simple analytic results can be found for the interferometer by invoking the undepleted
pump approximation, previously discussed in Sect. 1.4.3, wherein we assume that
themF = 0 mode is initially a strong coherent state of amplitude α0 = √

N0 (chosen
to be real without loss of generality) which does not change in time. We then make
the replacement â0 → α0 and the Hamiltonian simplifies to

Ĥ = �gN0

(
â†1â

†
−1 + â1â−1

)
+ � (gN0 + q)

(
n̂1 + n̂−1

)
. (5.14)

Similarly, when the spin-changing collisions are halted, the system evolves accord-
ing to:

Ĥ ′ = � (gN0 + q)
(
n̂1 + n̂−1

)
. (5.15)

The dynamics of the system can most readily be solved in the Heisenberg picture.
Evolution with respect to Ĥ is described by the Heisenberg equations of motion for
the creation operators,

dâ±1

dt
= −igN0â

†
∓1 − i(gN0 + q)â±1. (5.16)

http://dx.doi.org/10.1007/978-3-319-41048-7_1
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The pair of coupled operator equations can be exactly solved in this approximation
and written in matrix form,

[
â1(t)
â†−1(t)

]
= Uevo(t)

[
â1(0)
â†−1(0)

]
, (5.17)

where â1(0) and â
†
−1(0) are given by the initial conditions of the system.The evolution

matrix has the form

Uevo(t) =
[

αevo(t) βevo(t)
[βevo(t)]∗ [αevo(t)]∗

]
, (5.18)

for

αevo = cosh
(√

(gN0)2 − �2t
)

+ i
(gN0) + q√
(gN0)2 − �2

sinh
(√

(gN0)2 − �2t
)

(5.19)

βevo = −i
(gN0)√

(gN0)2 − �2
sinh

(√
(gN0)2 − �2t

)
, (5.20)

and � = q+ gN0. The evolution under Ĥ ′ is trivially solved in a similar manner and
can also be cast in matrix form as

[
â1(t)
â†−1(t)

]
= Uphase

[
â1(0)
â†−1(0)

]
, (5.21)

where

Uphase(t) =
[
e−iφ(t) 0
0 eiφ(t)

]
, (5.22)

and φ(t) ≡ �phaset is the phase shift accrued in the mF = ±1 modes due to the
combined quadratic Zeeman and mean-field shifts during the holding period, char-
acterized by�phase = qphase+gN0.Wenote that irrespective of how the spin-changing
collisions are halted [(i.e. by increasing the Zeeman shift or coherently transferring
the pump atoms from (F,mF) = (2, 0) to (F,mF) = (1, 0)], such that the evolution
is characterised by Ĥ ′, we choose the same quadratic Zeeman shift qphase during the
holding period from t = t2 to t = t3.

The solution of the full interferometer can then be found by solving the dynamics
for each stage individually and using the sequential solutions for â±1(t) as the initial
condition for the following period of evolution to give:

[
â1(t3)
â†−1(t3)

]
= Uevo(tevo)Uphase(tphase)Uevo(tevo)

[
â1(0)
â†−1(0)

]
. (5.23)

where t3 corresponds to the end of the interferometer [as illustrated in Fig. 5.2b].
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At the output of the interferometer one finds themean sumpopulation as a function
of φ+ = 2φ(tphase) is:

〈n̂+(φ+; t3)〉 = 2
[
λnssin(φ+/2) + γcos(φ+/2)

]2
, (5.24)

where λ = �/(gN0), γ =
√
ns

[
2 + (1 − λ2)ns

]
and

ns = 〈n̂1(t1) + n̂−1(t1)〉 = 2sinh2(
√

(gN0)2 − �2t1)/(1 − λ2), (5.25)

is the mean sum population of the mF = ±1 sidemodes prepared in the two-mode
squeezed vacuum state after the first period of spin-changing collisions. Importantly,
ns is taken to be the relevant quantitywhen defining the resource of the interferometer.

The variance of the sum population can be calculated in a similar fashion from
Eq. (5.23), giving

〈�2n̂+(φ+; t3)〉 = 〈n+(φ+; t3)〉
[
2 + 〈n+(φ+; t3)〉

]
. (5.26)

The result of Eqs. (5.27) and (5.26) can be most readily understood in the case
where q = −gN0 and the Hamiltonian Ĥ reduces entirely to the spin-changing
collisions (squeezing) component. For φ+ = π the phase-relation between the pump
and sidemodes is such that effectively the sign of the spin-changing collisions term is
reversed. Thismeans that rather than produce pairs from the pump into the sidemodes
as per |2, 0〉 → |2, 1〉 + |2,−1〉, the process is reversed |2, 1〉 + |2,−1〉 → |2, 0〉
and the second period of spin-changing collisions effectively undoes the first and
〈n̂+(π; t3)〉 = 0. Similarly, forφ+ = 0, the phase relation remains unchanged and the
production of pairs in the mF = ±1 sidemodes during the second period continues
as if no interruption had occurred, growing exponentially such that 〈n̂+(0; t3)〉 =
ns(ns + 2).

The sensitivity of the interferometer can be constructed by substitution of
Eqs. (5.24) and (5.26) into Eq. (5.9). One can show that optimal sensitivity occurs
near:

φ
opt
+ = mπ − atan

(
γ

λns

)
, (5.27)

form ∈ Z. In practice, at exactlyφ
opt
+ wefind (�φ+)2 is undefined, as from inspection

of Eq. (5.24) we see that theworking point of the interferometer is in fact a dark fringe
[i.e minima of 〈n̂+(φ+; t3)〉] wherein 〈n̂+(φ

opt
+ ; t3)〉 = 0 and 〈�2n̂+(φ

opt
+ ; t3)〉 = 0.

However, arbitrarily close to this point the sensitivity is found to limit to

(
�2φ+

)2
opt = 1

ns(ns + 2)
, (5.28)
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(a) (b)

(c)

Fig. 5.3 a Plot of sum population 〈n̂+(φ+; t3)〉 at output of interferometer for example case with
ns = 3 and q = −gN0.bVariance of sumpopulation 〈�2n̂+(φ+; t3)〉 for the same case. c Sensitivity
(�φ+)2 (blue solid line) compared to standard quantum limit (dashed grey line) and Heisenberg
limit (dot-dashed black line). The working point of the interferometer, i.e. optimal sensitivity,
corresponds to a dark fringe in the mean sum population such that 〈n̂+(φ

opt
+ ; t3)〉 = 0

which saturates the quantum Cramer-Rao bound. This implies that n̂+, combined
with the second period of squeezing, is an optimal measurement in the limit of the
undepleted pump approximation.

For illustration, we plot example results in Fig. 5.3 for Eqs. (5.24), (5.26) and
(5.28). We choose parameters similar to the experiment of Refs. [3, 11] with ns = 3
and q = −gN0.

5.2.2 Effects of Off-Resonant Collisions

The working principle of the atomic SU(1, 1) interferometer crucially relies on the
ability to ‘switch-off’ the spin-changing collisions during the phase shift component
of the scheme [i.e. between t1 and t2 in Fig. 5.2b]. In the quantum optics realization,
wherein one utilizes optical spontaneous parametric down-conversion as in Fig. 5.2a,
the squeezing Hamiltonian is trivially stopped as the pump mode will leave the χ(2)

medium and enter free-space. As outlined in Sect. 5.2, the closest analog to this for
the atomic case is to coherently transfer the BEC from the (F,mF) = (2, 0) to
the F = 1 hyperfine state [usually directly to (F,mF) = (1, 0)], which prohibits
the spin-changing collision process transferring atoms between the mF = 0 and
mF = ±1 modes in the F = 2 hyperfine state. A second method which can be
considered is to increase the quadratic Zeeman energy shift between the pump and
sidemodes, such that the spin-changing process between mF = 0 and mF = ±1
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states is sufficiently far off-resonance that these terms in the Hamiltonian can be
completely neglected. In such a case, we make the approximation that Ĥinel can be
neglected and the system evolves according to Ĥ ′ = Ĥel + ĤZ . However, ensuring
the Zeeman shift is sufficiently large that this is a good assumption is not necessarily
a trivial task in experimental conditions. In the following, we characterize the valid-
ity of this approximation in the context of recent experimental work undertaken to
realize an atomic SU(1, 1) interferometer [3]. Furthermore, we highlight two impor-
tant consequences for the interferometric scheme when this assumption is not well
founded.

Rather than explicitly assuming that the inelastic spin-changing collision terms
can be neglected from t1 until t2, we may model the system with the full Hamiltonian
Ĥ = Ĥinel + Ĥel + ĤZ (with the Zeeman shift given by qphase) wherein we include
these terms. In this case, we can solve the dynamics of the system as previously in
the Heisenberg picture, however, in Eq. (5.23) we replace the idealized version of
Uphase [Eq. (5.22)] with

Uphase(t) =
[

αphase(t) βphase(t)
[βphase(t)]∗ [αphase(t)]∗

]
, (5.29)

where

αphase(t) = cosh
(√

(gN0)2 − �2
phaset

)

+ i
(gN0) + q√

(gN0)2 − �2
phase

sinh
(√

(gN0)2 − �2
phaset

)
, (5.30)

βphase(t) = −i
(gN0)√

(gN0)2 − �2
phase

sinh
(√

(gN0)2 − �2
phaset

)
. (5.31)

In the limit of �phase � gN0, Eq. (5.29) collapses to the ideal form of Eq. (5.22).
With this form the mean sum occupation of themF = ±1 modes after the holding

period (and before the second period of spin-changing collisions) is:

〈n̂+(t2)〉 = ns + 2sin(φ)√
λ2
phase − 1

[εsin(φ) + γcos(φ)] , (5.32)

where ε = [1 + (1 − λphaseλ)ns]/
√

λ2
phase − 1 and λphase = �phase/(gN0). The key

observation from Eq. (5.32) is that the number of atoms in the side-modes during the
accrual of the phase shift is no longer fixed, with an amplitude of oscillation given
by

√
γ2 + ε2/λ2

phase − 1. For �phase � gN0 and λphase � 1 the amplitude vanishes√
ns(ns + 2)/|λphase| → 0 as expected.
In the experiment of Ref. [3], the Zeeman shift during the holding period gives a

ratio λphase 
 1.8. We find that for the relevant atom number, ns = 3, the population
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of the sidemodes inside the interferometer is predicted to oscillate with an amplitude
of 
 2.2, which is a fluctuation of almost 75% with respect to ns.

This oscillatory atom number during the holding period presents a conceptual
issue regarding how one defines the resource of the interferometer. Consequentially,
it is difficult to define a SQL or Heisenberg limit for the interferometric scheme. In
practice, as these oscillations cannot be completely removed, to approximate the atom
number as constant a sufficient criteria would be to limit the oscillation amplitude
to less than the minimum experimental error in measuring the population. For the
experimental regime considered here this would require a two-fold increase in λphase.

A second and more fundamental issue arising from the inclusion of Ĥinel during
the phase shift is that the canonical form of Eq. (5.2) is no longer valid. In particular,
the scheme no longer corresponds to a linear phase shift where the generators are
proportional only to n̂1 and n̂−1. This is not necessarily a terminal consequence for the
scheme, as it has been shown that one can surpass the Heisenberg limit (for a linear
phase shift) of an SU(2) interferometer with, for instance, an interferometer using a
nonlinear phase shift where the generator is proportional to n̂2 [13]. However, this is
an issue as we strive for an experimental realization of the SU(1, 1) interferometer
as proposed by Yurke et al. [9], wherein the generator is given by Ĝ+ = n̂+ solely.

Experimentally, for the case of 87Rb and other atoms with multiple hyperfine
levels (i.e., F ≥ 2), we can overcome these issues by taking advantage of the atom’s
hyperfine structure and coherently transfer the BEC from the (F,mF) = (2, 0) state
to the (F,mF) = (1, 0) state to halt the spin-changing collisions. It should be noted
that in the absence of the highly occupied pump mode, other processes in the F = 2
hyperfine state, such as those involving the mF = ±2 modes, are also effectively
halted. Furthermore, in the F = 1 state, the (F = 1) coupling coefficient g′ is
sufficiently decreased such that qphase � g′N0 in this level also, implying that the
spin-changing process |1, 0〉 → |1, 1〉 + |1,−1〉 is strongly off-resonant and the
pump mode does remains at fixed occupation from t1 to t2. By freezing the spin-
changing dynamics with this transfer, the phase shift remains trivially linear and
Uphase is given exactly by Eq. (5.22).

5.3 Conclusion

Wehave demonstrated that the entanglement and phase-sensitive correlations present
in the atomic two-mode squeezed vacuum state have applications in quantummetrol-
ogy. Specifically, we demonstrate how one can construct a SU(1, 1) interferometer
where the two-mode squeezed vacuum is the optimal input state to obtain interfer-
ometric sensitivity at the Heisenberg limit. In particular, we have demonstrated that
the pair-production process of spin-changing collisions in a spinor condensate is an
excellent candidate to generate this state and realize an atomic SU(1, 1) interferom-
eter. Treating the system in the undepleted pump approximation, we have derived
generic results for the dynamics and phase sensitivity of the interferometer, which
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may also be relevant to other atom-optics systems [14]. We have also identified a key
experimental difference to the quantum optics realization. Specifically, in the atom-
optics scheme themF = ±1 states must be sufficiently detuned from the pumpmode
or isolated by transferal between hyperfine levels such that the spin-changing colli-
sions are completely halted and the archetypal SU(1, 1) scheme is properly realized.
In contrast, in an optical realization with spontaneous parametric down-conversion,
this control is trivially realized by the finite length of the χ(2) nonlinear medium.
This theoretical understanding of the atom-optics system will hopefully lead to an
experimental realization of an atomic SU(1, 1) interferometer for the first time [3].
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Chapter 6
On the Relation of the Particle Number
Distribution of Stochastic Wigner
Trajectories and Experimental Realizations

The Wigner function, or the Wigner quasi-probability distribution [1–5], has proven
to be a versatile tool in understanding quantum mechanics. Firstly, by providing a
complete representation of the quantum mechanical density operator in phase space,
theWigner function serves as the quantummoment-generating functional that allows
the calculation of quantum mechanical expectation values of operators in the spirit
of classical statistical physics. Secondly, the Wigner function has been extensively
used in the so-called truncated Wigner approximation as a calculation technique for
quantum dynamical simulations, most notably in the fields of quantum optics and
ultracold atoms [6–20]. This latter utility follows from the possibility of converting
the master equation for the quantum density operator into a generalised Fokker–
Planck equation, which itself—for dissipationless systems and after truncation of
third- and higher-order derivative terms (if any) [21]—acquires the form of a classical
Liouville equation and can be cast as an equivalent set of (stochastic) c-number
differential equations for the phase-space variables.

Despite the formal analogy of the evolution equation for theWigner function to the
Liouville equation for the classical probability distribution, the strict interpretation of
theWigner function as a true probability distribution fails as it attains negative values
for certain quantum states. Furthermore, even when the Wigner function is strictly
non-negative, its difference from a classical probability distribution stems from the
fact that it is still constrained by the quantum mechanical uncertainty principle: it is
a joint probability distribution for quantum mechanically incompatible observables
and, therefore, cannot be regarded as having direct physical significance. In the
truncatedWigner approximation, this constraint manifests itself through the fact that
even though the c-number differential equations formally coincidewith their classical
deterministic counterparts, the quantum mechanical uncertainties are mimicked via
random initial conditions that are sampled stochastically from the Wigner-function
representation of the initial density matrix.

Given this understanding and constraining ourselves to problems involving a
non-negative initial Wigner function—such that its non-negativity throughout the
ensuing dynamics is either intrinsically preserved (such as for systems described by
Hamiltonians that depend no-higher-than quadratically on creation or annihilation
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field operators) or enforced by the truncated Wigner approximation [21, 22]—we
address the question of whether and when the individual stochastic trajectories can
be thought of as a faithful representation of the outcomes of individual experimen-
tal runs.1 Even though this question has been discussed in the literature previously
[8, 10, 20, 23–28], the answer appears to be far from trivial. For example, Blakie et
al. make the remark that for highly occupied ‘classical’ states, such as those near the
critical transition to a Bose–Einstein condensate, “it is plausible that single realiza-
tions of Wigner trajectories should approximately correspond to a possible outcome
of a given experiment”. Furthermore, the question seems to be heuristically posed;
instead, we seek to address it in an operationally defined manner.

In this chapter, we investigate the connection between the outcomes of Wigner
trajectories and experimental runs by comparing the respective particle number dis-
tributions; for simplicity we focus on treating single-mode problems. Experimentally
the particle number distribution is measured by counting shots in which n quanta are
detected, for instance photons hitting a detector, and corresponds to the true particle
number distribution defined strictly via Pn = |〈n|ψ〉|2 where n = 0, 1, 2, . . ., for a
pure state |ψ〉. Similarly, for all positive Wigner functions W|ψ〉(α), where α is the
complex field amplitude, we can formally introduce an operationally well defined
binned number distribution P̃n by calculating ni = |αi|2 − 1/2, where the index i
indicates an individual trajectory (or equivalently individual samples appropriately
taken from a knownWigner function), and sorting the continuous values into discrete
bins such that P̃n is the probability to find n − 1/2 ≤ ni < n + 1/2. The subtraction
of 1/2 in the calculation of ni = |αi|2 − 1/2 can be thought of as representing the
subtraction on average of half a quantum of noise (that has been added to the initial
state to mimic quantum fluctuations), which is required in the calculation of the aver-
age mode occupation (〈n̂〉 = 〈â†â〉 ≡ 〈α∗α〉W − 1/2, where n̂ is the particle number
operator, while â† and â are the creation and annihilation operators) using theWigner
function due to its correspondence to expectation values of symmetrically ordered
operator products.

We find that the defining feature governing the interpretation of P̃n as a valid
approximation to the true Pn is the smoothness and the broadness of the Wigner
function relative to the oscillatory structure in W|n〉(α). For thermal states, this cri-
terion is in fact equivalent to high mean occupation of the mode, and therefore our
findings confirm the heuristic assertion of Blakie et al. [23] that such an interpreta-
tion is valid for highly occupied ‘classical’ states. However, we also show—using an
explicit counterexample which is for a highly squeezed coherent state (the Wigner
function of which is always positive and smooth)—that high mode occupation alone
is not always sufficient for such an interpretation and cannot be generally used to
assert the ‘classical’-like nature of themode in question. The broadness of theWigner

1We clarify our terminology here by noting that evolution of stochastic trajectories for a phase-space
variable from some initial state (defined appropriately by a corresponding initial Wigner function)
under a particular Hamiltonian, is completely equivalent to directly sampling this variable from the
known Wigner function of the final state after said evolution.
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distribution for the squeezed coherent states can, on the other hand, still serve as the
sufficient condition.

This chapter is organized such that in Sect. 6.1we demonstrate formally the under-
lying mathematical relation between Pn and P̃n in the Wigner representation and the
conditions on W|ψ〉(α) for P̃n to approximately correspond to Pn. In Sect. 6.2 we
investigate quantitatively the legitimacy of the method by applying it to the thermal
and squeezed coherent states. Finally, in Sect. 6.3 we examine under what conditions
we expect the method to fail, and how such a failure would manifest in calculations.

6.1 Formal Derivation

To formally evaluate the particle number distribution Pn of a single-mode state |ψ〉,
one may calculate the overlap of the state |ψ〉 with the Fock state |n〉, which in the
Wigner representation is given by [3]

Pn ≡ |〈ψ|n〉|2 = π

∫
d2αW|ψ〉(α)W|n〉(α), (6.1)

where W|ψ〉(α) and W|n〉(α) are the respective Wigner functions, with W|n〉(α) given
by [3]

W|n〉(α) = 2

π
(−1)ne−2|α|2Ln(4|α|2), (6.2)

where Ln(x) is the nth-order Laguerre polynomial. With knowledge of the explicit
form of W|ψ〉(α) one may then analytically or numerically evaluate the integral in
Eq. (6.1) to derive the number distribution of the state exactly. In dynamical simula-
tions one may numerically solve the integral (6.1) by first reconstructing the Wigner
functionW|ψ〉(α) itself, or by noting that theRHSofEq. (6.1) is formally equivalent to

Pn ≡ π〈W|n〉(α)〉W , (6.3)

where the subscript refers to averaging over many stochastic trajectories which pro-
vide samples of αi according to the distribution W|ψ〉(α). Such a computation is
in general non-trivial for highly occupied states or those with a sufficiently broad
number distribution as it requires evaluation of high-order Laguerre polynomials
with large arguments. Usually, computational techniques such as quadruple preci-
sion will be required to overcome numerical issues for n � 256. Our analysis of P̃n

thus has interest beyond the interpretation of individual stochastic trajectories of the
Wigner function as the underlying binning formalism overcomes such computational
issues, inherent to the exact method, and offers instead a much simpler method to
implement numerically.
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To characterize the connection of P̃n to this formal definition of Pn we can
mathematically define the binned probability distribution as

P̃n ≡
∫ n+1

n
d(|α|2) P(|α|2), (6.4)

where P(|α|2) is the probability density of sampling |α|2 from an ensemble of
stochastic trajectories. In terms of the Wigner function, this is equivalent to the
probability of sampling α from within an annulus in phase-space with inner and
outer radii of

√
n and

√
n + 1 respectively. Thus we may rewrite Eq. (6.4), using the

Heaviside step function θ(x), as

P̃n = π

∫
d2α

[
1

π
θ(|α| − √

n)θ(
√
n + 1 − |α|)

]
W|ψ〉(α). (6.5)

Comparing the result of Eq. (6.5) to Eq. (6.1) we see that the binning procedure
is mathematically equivalent to replacing W|n〉(α) by a radially symmetric boxcar
function in phase-space defined as

W̃|n〉(α) = 1

π
θ(|α| − √

n)θ(
√
n + 1 − |α|). (6.6)

This representation of the Fock state Wigner function is known as a Planck–Bohr–
Sommerfeld band [4], and is equivalent to a smearing out of the classical (Kramers)
trajectory of a Fock state in phase-space, which is a ring along |α| = √

n + 1/2. The
binning procedure as characterized by Eq. (6.5) is then similar to the area-of-overlap
formalism developed previously by Schleich [4], wherein the number distribution of
a state can be approximated by the overlap of the phase-space distributionwith a band
in phase-space, representing the number state. We point out the subtle difference that
Schleich’s formalism can account for interference between probability amplitudes,
which is equivalent to retaining negative contributions in Eq. (6.1), whereas the bin-
ning procedure rules this out as Eq. (6.5) is a sum of contributions from a strictly
non-negative Wigner function.

One can also justify the approximation of W̃|n〉(α) by a more practical argument
by noting that low-order moments of α with respect to W|n〉(α) are dominated by
contributions of the final ‘crest’ in the highly-oscillatory Wigner distribution (see
Fig. 6.1 for illustration), whilst earlier contributions effectively cancel out. Such an
approach is similar to the approximations applied by Gardiner et al. in Ref. [12],
wherein the authors observed that the Wigner function of the Fock state could be
approximated as a radially symmetric Gaussian ring,

W|n〉(α) = A e−2(|α|2−n−1/2)
2

, (6.7)

which is strictly positive (A being the normalization constant). In Refs. [29, 30]
Olsen et al. demonstrated explicitly that sampling of W|n〉(α) indeed produced all
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Fig. 6.1 Colormap plot of theWigner distribution,W|n〉(α) of the n = 7 Fock state, Eq. (6.2), where
the axis correspond to αx ≡ Re(α) and αy ≡ Im(α). The radial oscillations appear distinctly as a
series of alternating peaks (W|n〉(α) > 0) and troughs (W|n〉(α) < 0). For illustration, we overlay
the Planck–Bohr–Sommerfeld band for the equivalent state, Eq. (6.6). The inner and outer radii
(solid lines) are

√
n and

√
n + 1, which are centered around the ‘classical’ trajectory (dashed line)

which is a ring of radius
√
n + 1/2

moments 〈|α|m〉W of the exact Wigner distribution up to O(1/n2) relative to the
leading order, implying that the contribution of all but the final oscillation inW|n〉(α)

can be considered approximately negligible. In light of this, one could also regard
W̃|n〉(α), Eq. (6.6), as a further crude approximation to W|n〉(α).

Following the reasoning of Gardiner et al. [12], we thus intuitively expect the
replacement of W|n〉(α) by W̃|n〉(α) in Eq. (6.5) to only be a good approximation
when W|ψ〉(α) is a sufficiently smooth function of α. Qualitatively, this means that
we requireW|ψ〉(α) to be slowly varying on the order of the characteristic length scale
of oscillations in Wn(α), which, using the properties of the Laguerre polynomial
Ln(4|α|2), can be estimated to be ∼1/

√
n. There are two complementary properties

ofW|ψ〉(α) which achieve this outcome. Firstly, for states localized near the origin in
phase-space—such as the thermal state—one requires that the Wigner function has
a characteristic width σ 	 1. This implies that P̃n will approximate Pn well even for
small n ∼ 1. Secondly, for states of fixed width—such as the coherent or squeezed
coherent states—one requires a large coherent displacement |β| from the origin. As
the overlap between W|ψ〉(α) and W|n〉(α) will generally be greatest for n ∼ |β|2,
the length-scale of the oscillations in W|n〉(α) in the relevant regions of W|ψ〉(α)

will scale as 1/|β|. The width of W|ψ〉(α) relative to the scale of these oscillations
thus increases as |β| increases, improving the validity of replacing W|n〉(α) with
W̃|n〉(α). In the following section we illustrate these arguments both qualitatively
and quantitatively for the thermal and squeezed coherent states.
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Lastly, although this derivation has focused on the single-mode case it may be
trivially generalized to a multi-mode state and an equivalent form of P̃n1,n2,... may be
found. The same generalized conditions regarding the relative width of the Wigner
function may be applied. However, in the following section we will continue to focus
our analysis on the single-mode case as it allows us to illustrate the correspondence
between the two number distributions in a transparent manner. More specifically, we
will use two particular states to analyse the similarity between Pn and P̃n: (i) thermal
and (ii) squeezed coherent states.

6.2 Similarity of Pn and P̃n

6.2.1 Thermal State

The first state we consider is the thermal state, which is a mixed state defined by the
density matrix

ρ̂th =
∞∑
n=0

Pn|n〉〈n|, (6.8)

where the number distribution is given by [5]

Pn = n̄n

(n̄ + 1)n+1
, (6.9)

and is characterized solely by the mean occupation 〈n̂〉 = n̄.
The corresponding Wigner function is [5]

Wth(α) = 1

π(n̄ + 1/2)
exp

(
− |α|2
n̄ + 1/2

)
. (6.10)

The rms width of this distribution is then σ = √
(n̄ + 1/2)/2 and, therefore, accord-

ing to our criterion, the sufficient requirement (σ	1) for P̃n to agree well with the
physical Pn is equivalent in this case to high mean mode occupation n̄	1.

Substituting Wth(α) into Eq. (6.5) leads to

P̃n = e−n/(n̄+1/2)
[
1 − e−n/(n̄+1/2)

]
. (6.11)

Although this form of P̃n clearly differs from Pn, a keen eye will note that in fact

P̃n = 〈n〉nbin
(〈n〉bin + 1)n+1

, (6.12)
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where

〈n〉bin ≡
∞∑
n=0

nP̃n = 1

e1/(n̄+1/2) − 1
. (6.13)

Hence while both distributions may be written solely in terms of their respective
means, P̃n �= Pn explicitly as 〈n〉bin �= n̄.

As a quantitative measure of how well the binned particle number distribution
P̃n approximates the true distribution Pn, we introduce the Bhattacharyya statistical
distance, which is defined as [31]

DB = −ln[B(P, P̃)], (6.14)

where the Bhattacharyya coefficient is given by

B(P, P̃) =
∞∑
n=0

√
PnP̃n. (6.15)

For P̃n →Pn the Bhattacharyya coefficient becomes B(P, P̃)→∑∞
n=0 Pn =1 due to

the normalization condition and hence DB → 0, indicating complete overlap of the
distributions.

For the thermal state the Bhattacharyya coefficient can be calculated exactly to
give

B(P, P̃) =
[
1 − e−2/(2n̄+1)

]1/2
(n̄ + 1)1/2 − n̄1/2e−1/(2n̄+1)

, (6.16)

and thus the Bhattacharyya distance is

DB = −1

2
ln

[
1 − e−2/(2n̄+1)

]

+ ln
[√

n̄ + 1 − √
n̄e−1/(2n̄+1)

]
. (6.17)

In the limit of n̄ 	 1 we find the behaviour

DB ∝ n̄−4, (6.18)

which indicates that for large mean occupation P̃n rapidly approaches the true Pn.
To illustrate this strong correspondence between Pn and P̃n we plot a comparison
of the distributions for a thermal state with n̄ = 10 in Fig. 6.2a; as we see, even
only moderately large mean occupations, such as in this example, render the two
distributions visually identical, with a Bhattacharyya distance of DB = 6.63× 10−5.

We could recast the result of Eq. (6.18) in terms of the width of the distribution,
σ � √

n̄/2 for n̄ 	 1, as
DB ∝ σ−8. (6.19)
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Fig. 6.2 a Example of the
true particle number
distribution Pn (grey bars)
for a thermal state with
n̄ = 10, compared with the
binned number distribution
P̃n (red markers). b
Statistical distance DB
between the two
distributions, calculated from
Eq. (6.17) for a range of
mean occupations n̄, which
scales as ∝ 1/n̄4
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This strong scaling is a key result, particularly given that the statement of Blakie et al.
(quoted in the Introduction section) pertains directly to the interpretation of c-field
methods for Bose gases, for which this interpretation is applied directly to thermally
populated states above the condensate mode. As we have shown, the heuristic link
betweenWigner trajectories and individual experimental runs, thought to be plausible
for highly occupied states, can indeed be justified and quantified in terms of the
similarity of P̃n and Pn. While for a thermal state, high mean occupation is actually
equivalent to our sufficient requirement of having a broad Wigner distribution for
this interpretation to be valid, there are situations (see next section) in which high
mode occupation alone may not suffice for such an interpretation.

6.2.2 Squeezed Coherent State

The second state which we consider is the squeezed coherent state, defined as

|β, η〉 = D̂(β)Ŝ(η)|0〉, (6.20)

where D̂(β) = exp(βâ† − β∗â) is the displacement operator and the squeezing
operator is Ŝ = exp[{η∗â2 − η(â†)2}/2] where η = seiθ for s ≥ 0 [5, 32]. In Fig. 6.3
we illustrate the actions of these operators in phase-space. Firstly the squeezing
operator ‘squeezes’ the Gaussian Wigner distribution of the vacuum by an amount
e−s along an axis defined by the squeezing angle θ, whilst the perpendicular axis is
stretched by es. The displacement operator then shifts the distribution in phase space
by β = |β|eiϕ. There exist two special sub-cases of the squeezed coherent state:
(i) the coherent state |β〉 where β �= 0 and s = 0; and (ii) the squeezed vacuum state
|0, η〉 where β = 0 and s �= 0.
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Fig. 6.3 Illustration of the Wigner function for a squeezed coherent state W|β,η〉(α). The action of
the squeezing operator Ŝ(η) on the initial state |0〉 is to squeeze the vacuum state Wigner function
(a symmetric Gaussian with rms width σ = 1/2) by e−s along the αx-axis and stretch it by es

along the αy-axis, then rotate the distribution by θ/2. The subsequent action of the displacement
operator D̂(β) is to shift the distribution by β = |β|eiϕ. The relevant length scale in comparison to
the radially-directed oscillations in W|n〉(α) is the effective width σeff along the radial direction of
W|β,η〉(α)

The Wigner function of the general squeezed coherent state can be written in a
simple form [5]

W|β,η〉(γ) = 2

π
exp

(
− γ2

x

2σ2
s

− γ2
y

2σ2
a

)
, (6.21)

where

γx = (αx − βx) cos

(
θ

2

)
+ (

αy − βy
)
sin

(
θ

2

)
, (6.22)

γy = − (αx − βx) sin

(
θ

2

)
+ (

αy − βy
)
cos

(
θ

2

)
, (6.23)

for α = αx + iαy and β = βx + iβy. The rms widths along the squeezed and anti-
squeezed axes are given by σs = e−s/2 and σa = es/2, respectively. Independent
control over the parameters β and η allows us to quantitatively probe the similarity
of P̃n and Pn as a function of the width of the Wigner distribution.

The number distribution of the squeezed state is nontrivial,

Pn =
(
1
2 tanh(s)

)n
n!cosh(s) e−|β|2[1+cos(2ϕ−θ)tanh(s)]

×
∣∣∣∣∣Hn

(
β + β∗eiθtanh(s)√

2eiθtanh(s)

)∣∣∣∣∣
2

. (6.24)



104 6 On the Relation of the Particle Number Distribution of Stochastic …

withmeanoccupation 〈n̂〉 = |β|2+ sinh2(s) [32, 33]. For large coherent displacement
such that |β|2 	 e2s, this Pn can be approximated by a simple Gaussian [32]

Pn � 1√
2π〈�2n̂〉exp

[−(n − |β|2)2
2〈�2n̂〉

]
, (6.25)

whose rms width is given by σ = √〈�2n̂〉, where

〈�2n̂〉 = |β|2
[
e−2scos2

(
ϕ − θ

2

)
+ e2ssin2

(
ϕ − θ

2

)]
. (6.26)

This form demonstrates how the squeezing operator stretches or squeezes the prob-
ability distribution Pn according to the relative orientation of the squeezing and
coherent displacement. In this section, our analysis will be limited to a range of
squeezing such that the above approximation for Pn is valid. The effects of stronger
squeezing and its implications for both Pn and P̃n will be discussed in Sect. 6.3.

An analytic form of P̃n can be found by substituting Eq. (6.21) into the definition
of Eq. (6.5), however, the result is not particularly insightful. We point the interested
reader to Ref. [34] as a guide to the general form of the calculation. Instead, we
numerically evaluate P̃n by stochastically sampling W|β,η〉(α) according to the pre-
scription of Ref. [29] and binning the calculated occupation of each sample. Such
a construction is equivalent to obtaining the same state and results via a dynamical
simulation of stochastic equations (trajectories) in the Wigner representation, as the
phenomenological squeezed vacuum state can be generated from a Hamiltonian for
spontaneous parametric down-conversion (in the undepleted pump approximation)
Ĥ = i�[g∗â2 −g(â†)2], in which case the squeezing parameter η is actually given by
η ≡ gt. The subsequent coherent displacement of the squeezed state is achieved by
coupling the mode â to a classical field of amplitude ε, equivalent to evolution under
the Hamiltonian Ĥ = i�κ[ε∗â− εâ†] where κ is the coupling strength and hence the
resulting displacement is related as β ≡ κεt.

We numerically evaluate the Bhattacharyya distance as a function of coherent
displacement for some example squeezed coherent states with ϕ = 0, s = 0.4 and
squeezing angles of θ = 0 and θ = π, which are referred to as amplitude- and phase-
squeezing respectively. The results are plotted in the inset to Fig. 6.4. Also plotted
is the simple case of the coherent state for which s = 0, whilst other parameters are
kept identical. We find a generic scaling independent of s,

DB ∝ |β|−2, (6.27)

in the regime where |β|2 	 e2s and the approximate form of Eq. (6.25) is valid. This
result predicts a rapid convergence of P̃n toPn with increasing occupation 〈n̂〉 ≈ |β|2.
For |β|2 = 50 and for the three cases of squeezing, the calculated distributions P̃n

and Pn are plotted in the main panel of Fig. 6.4 and are visually indistinguishable
from each other.
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Fig. 6.4 a Example of probability distribution P̃n (red markers) for a coherent state with |β|2 = 50,
compared to Pn (grey bars). Also plotted are the distributions P̃n (markers) Pn (lines) and for a
squeezed coherent state with s = 0.4, θ = 0 (magenta circles) and θ = π (green squares). Excellent
qualitative agreement is found between the two distributions in all cases. bQuantitative comparison
of P̃n and Pn by the statistical distance DB for a coherent state (blue squares), squeezed state with
s = 0.2 and θ = 0 (green circles) and squeezed state with s = 0.2 and θ = π (magenta triangles).
We find a consistent scaling of DB ∝ 1/|β|2 for all three cases. Stochastic sampling error of one
standard deviation is not indicated but is less than 2% of calculatedDB for all data points (obtained
from approximately 109 trajectories)

Beyond the scaling with coherent displacement, we may also examine how the
absolute width of theWigner function affects the agreement of P̃n with Pn by manip-
ulation of the squeezing strength s and angle θ. The relevant length scale will be
the effective width σeff of the distribution (see Fig. 6.3) with respect to the radially
directed oscillations in W|n〉(α),

σeff =
√

σ2
s cos

2

(
ϕ − θ

2

)
+ σ2

asin
2

(
ϕ − θ

2

)
. (6.28)

We plot the dependence of the Bhattacharyya distance as a function of this parameter
in Fig. 6.5a and find it scales as

DB ∝ σ−6
eff , (6.29)

independently of coherent displacement β. This strong scaling again agrees with our
intuitive argument, indicating that P̃n rapidly approaches Pn as the Wigner function
becomes increasingly smooth on the length scale of oscillations in W|n〉(α). We note
the difference to the scaling of the thermal state is partly attributable to the difference
that the squeezed state is a minimum uncertainty state, meaning that an increase in
the width of one axis (σa) is offset by a decrease in the perpendicular axis (σs) such
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Fig. 6.5 a Behaviour of statistical distanceDB with the effective width σeff for a squeezed coherent
state with |β|2 = 50 and ϕ = 0. For σeff ≤ 1/2 we calculate DB by fixing the squeezing angle
as θ = 0 and thus σeff ≡ σs ≤ 1/2. Alternately, for σeff ≥ 1/2 we fix the squeezing angle as
θ = π and thus σeff ≡ σa ≥ 1/2. A fit DB ∝ σ−6

eff (grey line) is also plotted for comparison with
the actual stochastically sampled data (blue circles). b Variation of DB with squeezing angle θ for
a squeezed coherent state with |β|2 = 50, ϕ = 0 and s = 0.4 (green circles). The behaviour fits the
model of Eq. (6.29) (grey line) where σeff depends on the squeezing angle θ as per Eq. (6.28). For
numerically calculated data in both a and b stochastic sampling error of one standard deviation is
less than 2% of calculated value (obtained from approximately 109 trajectories)

that σaσs = 1/4 is preserved. This is in contrast to the thermal state which has a
radially symmetric rms width which increases with average occupation.

In Fig. 6.5b we also plot the Bhattacharyya distance as a function of the squeezing
angle. For a state with a purely real coherent displacement (ϕ = 0), we find DB is
minimal for phase-squeezed states (θ=π) andmaximal for amplitude squeezed states
(θ = 0). For phase-squeezing, the anti-squeezed axis of the distribution is aligned
radially, along the direction of the oscillations in W|n〉(α), and σeff is maximal. We
thus expect for this scenario that our approximation W̃|n〉(α) should be the most
valid as any oscillations will be averaged out in Eq. (6.1), leading to minimal DB.
Conversely, for amplitude squeezing the squeezed axis of the distribution is aligned
radially, minimizing σeff and thus we expect our approximation to be the least valid,
leading to a larger DB.

6.3 Breakdown of Relationship

The analysis of the previous section has demonstrated how in general, P̃n closely
replicates Pn when the relative width of the Wigner distribution W|ψ〉(α) is large
compared to the oscillation period of the Fock state Wigner function, W|n〉(α).
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However, one can also find a few simple counter-examples to demonstrate how
the correspondence breaks down when the underlying approximations are no longer
valid. In particular we demonstrate this with states that are highly-occupied, showing
that large occupation alone is not sufficient for approximating Pn by P̃n.

As an example, in Fig. 6.6 we plot Pn and P̃n for |β|2 = 20, s= 1.5 and for two
squeezing angles: (a) θ = 0 and (b) θ = π. In both cases we see a region emerges
wherein the probability of odd and evenn oscillates strongly. For amplitude squeezing
(θ=0) these oscillations arise for n� |β|2 as predicted by Schleich andWheeler [35].
In terms of the binning procedure it is clear thatW|ψ〉(α) is sufficiently elongated that
it is approximately the width of the oscillations in W|n〉(α) and multiple oscillations
become important in the calculation of Eq. (6.1) as illustrated in Fig. 6.6b. Similar
arguments apply to the case of phase squeezing (θ = π), illustrated in Fig. 6.6c, d.
In both cases, the narrowness of the Wigner distribution implies it is not valid to
approximate W|n〉(α) with W̃|n〉(α) and thus P̃n does not well approximate Pn.

Related issues arise for the squeezed vacuum state, which can be considered an
extreme case of the above examples wherein |β|2 = 0 and the Wigner distribution is
centered at the phase-space origin. The state is notable for its even-odd oscillatory
number distribution,

P2m = [tanh(s)/2]2m
(2m)!cosh(s) |H2m(0)|2, P2m+1 = 0. (6.30)

n
0 20 40 60 80 100 0 20 40 60 80 100

P
n
, P̃

n

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
(a)

(b)

αx

-5 0 5

α
y

-5

0

5

-0.2

0

0.2

n

P
n
,P̃

n

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
(c)

(d)

αx

0 5 10

α
y

-5

0

5

-0.2

0

0.2

Fig. 6.6 a Probability distribution for a squeezed coherent state with s = 1.5, θ = 0 and |β|2 = 20.
For n � |β|2 the true distribution Pn (grey bars) displays oscillations which are not replicated by P̃n

(red markers). We construct P̃n from ∼107 trajectories and stochastic sampling error is negligibly
small. b The Wigner function of the n = 25 Fock state overlaid with an ellipse representing the
2σa,s contour of W|β,η〉(α). This illustrates how the oscillations of W|n〉(α), which we ignore in
calculation of P̃n, play an important role in calculating the overlap integral [Eq. (6.1)] for n � |β|2.
c Same as a except θ = π. For this squeezing angle we see that oscillations in Pn (grey bars) emerge
for small n and are again not replicated in P̃n (red markers). d The Wigner function of the n = 5
Fock state, again overlaid with a 2σa,s contour ofW|β,η〉(α). The central dip of the Wigner function
in both b and d [W|n〉(0) = −2/π for odd n] saturates the colormap so as to allow better illustration
of the oscillations
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Again, in terms of phase-space representation of the state, this property is an effect
of the narrowness of W|0,η〉(α) combined with the negativity of the true Fock state
Wigner function W|n〉(α). Setting θ = 0 for definitiveness, the Wigner distribution
has an rms width of σs ≤ 1/2 in the αx direction, and thus it will obviously be
sufficiently narrow to probe the individual oscillations of W|n〉(α), which have a
period on the order of 1 for small n. Accordingly, the interpretation of P̃n ∼ Pn is not
valid as the replacement of W|n〉(α) by W̃|n〉(α) in Eq. (6.1) is a poor approximation.

In Fig. 6.7 we plot the Bhattacharyya distance for a broader range of squeezed
coherent states, highlighting specifically the regimes in which P̃n replicates Pn and
where this breaks down. We find for θ =π (σeff ≥ 1/2) the Bhattacharyya distance
behaves according to the power-law of Eq. (6.29) (indicated by the linear regime
on the log-log axes) until a turning point σeff ≈0.84|β|2/3, where the oscillations of
W|n〉(α) near the origin become important for small n. For θ=0 (σeff ≤1/2) the statis-
tical distanceworsens due to the narrowness of the distribution according toEq. (6.29)
(again, the linear regime) until the emergence of oscillations. The transition from the
linear relationship occurs in the vicinity σeff ≈ 1/(2|β|1/3), which agrees with that
regarding the emergence of oscillations in Pn as previously studied in Ref. [35].

When we examine the forementioned states for which our procedure does not
reproduce Pn accurately, we see that these are states for which the quantization of

σeff
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Fig. 6.7 Dependence of statistical distanceDB on the effective width σeff of the squeezed coherent
state Wigner distribution for |β|2 = 20 (blue solid line) and |β|2 = 40 (red dashed line). Without
loss of generality we arbitrarily set ϕ = 0 for all states. Identically to Fig. 6.5a we calculate
σeff ≤ 1/2 by setting θ = 0 and thus σeff ≡ σs, and similarly σeff > 1/2 by θ = π and σeff ≡ σa.
Stochastic sampling error of one standard deviation is not indicated, however, it is restricted to
less than 2% of calculated DB values. For relatively weak squeezing (|β|2 	 e2s), the power-law
scaling of Fig. 6.5a is illustrated by the linear-regime (0.4 � σeff � 1) with the logarithmic scale.
The deviation from the linear regime, indicating oscillatory structure in Pn which is not replicated
by P̃n, occurs at σeff ≈ 1/(2|β|1/3) for θ = 0, whilst there is an obvious turning point in DB at
σeff ≈ 0.84|β|2/3 for θ = π
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the field is important. The squeezed vacuum is a prime example of this, containing
only even numbers of photons. As we coherently displace this state from the ori-
gin (squeezed coherent state), the displacement becomes more important than the
squeezing and P̃n becomes more accurate. This is consistent with the fact that the
truncated or a priori positive Wigner distribution is often described as equivalent to
the classical theory of stochastic electrodynamics [36].

6.4 Conclusion

In summary, we have examined under which conditions a naive calculation of the
binned number distribution from individual (truncated) Wigner trajectories, P̃n, can
replicate closely the true particle number distribution Pn, hence justifying the inter-
pretation of these trajectories as representing individual experimental outcomes. The
sufficient requirement for this is that the Wigner function W|ψ〉(α) of the state |ψ〉
varies sufficiently smoothly on the characteristic length scale of oscillations in the
Wigner function W|n〉(α) of the Fock state |n〉. This is, of course, in addition to the
constraint that only positive Wigner functions W|ψ〉(α) are being considered, which
is the case in the truncated Wigner approximation or in model Hamiltonians that
depend no-higher-than quadratically on creation or annihilation operators.

We have provided a rigorous operational definition of this seemingly heuristic
binning procedure as one that corresponds to approximating the Wigner function
of the Fock state (which appears in the definition of Pn via an overlap integral
with the Wigner function of the state of interest) as a boxcar function in phase
space. For states localized around the phase-space origin (e.g., a thermal state), the
requirement of smoothness of theWigner function is satisfied by a broad distribution,
having a characteristic width much larger than unity. In this case, the large width
of the distribution is equivalent to having large mode occupation number. On the
other hand, for states that have large coherent displacement β (such as coherent
and squeezed coherent states with |β| 	 1), one can tolerate relatively narrow
Wigner functions as long as its width remains much larger than 1/|β|, which is the
characteristic length scale of oscillations in W|n〉(α) for the most relevant values of
n (∼|β|2). This condition is satisfied for coherent states and weakly squeezed states,
but will break down for highly squeezed states when the width of the respective
Wigner function in the narrow dimension becomes comparable to 1/|β|, even though
the mode occupation for such states can be very high. The latter case serves as a
counterexample to the view that high mode occupation alone is sufficient to interpret
individual Wigner trajectories as ‘samples’ of single experimental runs.

Although we have considered only a small subset of Wigner functions in this
article, we expect that the relationship between P̃n and Pn established on an analysis
of the width and displacement of the Wigner function will allow an easy application
to further states. Importantly, in the truncated Winger formalism the reconstruction
of an a priori unknown single-mode Wigner function from many stochastic trajec-
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tories is relatively trivial and allows one to extract the characteristic length scale of the
quasidistribution and thus, according to our criterion, justify or reject the
approximation P̃n with no knowledge of the exact Pn.
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Chapter 7
Conclusion

In this thesis, we have investigated how non-classical correlations and entanglement
between massive particles can be generated, characterized and measured in systems
of ultracold atomic gases. In particular, we have demonstrated how, in the simplest
approximation, the processes of spontaneous four-wave mixing in colliding BECs
and spin-changing collisions in spinor condensates produce the archetypal two-mode
squeezed vacuum state, which is known to show these features. Specifically, we have
outlined theoretical proposals to demonstrate non-classical correlations, EPR entan-
glement and quantum nonlocality (in the sense of a violation of a Bell inequality) in
these systems. Our analysis includes the construction of new and appropriate mea-
surement protocols to identify and quantify these phenomena, whilst also identifying
realistic parameter regimes for their experimental demonstration. Furthermore, our
detailed theoretical treatment using stochastic numerical simulations has incorpo-
rated technical and experimental effects to investigate the robustness of these effects
to practical and fundamental limitations.

In Chap.2 we have shown that an atom-optics analog of the Hong–Ou–Mandel
effect can be realized utilizing pair-correlated atoms produced via colliding Bose-
Einstein condensates and laser-induced Bragg pulses (which are the atom-optics
equivalent to optical mirrors and beam-splitters). By defining an appropriate mea-
surement protocol which takes into account the multimode nature of the scattering
halo, we have predicted a HOM dip visibility of �69% which indicates that the
atom-atom correlations produced by the collision process are stronger than classi-
cally allowed. The first atomic HOM effect in a closely related setup of four-wave
mixing in an optical lattice potential was subsequently realized in the metastable He-
lium lab in Palaiseau [1]. Whilst such a result is a pre-requisite for more fundamental
tests of quantummechanics, such as violation of a Bell inequality, the interferometric
scheme itself serves as an important stepping stone for experimental demonstrations
of such tests.

We have also demonstrated, in Chap. 3, that the same process of spontaneous four-
wave mixing in colliding condensates can be utilized as a source of pair-correlated
atoms for a violation of a motional-state Bell inequality in an atom-optics analog of
the Rarity–Tapster interferometer. Our numerical simulations predict a violation of
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the CHSH-Bell inequality (S > 2) for a range of parameters well within currently
accessible experimental regimes, in reasonable agreement with the scaling of simple
toy models based on idealized two-mode squeezed vacuum states. These results take
into account physically important processes such as: the multimode nature of the
halo, spatial evolution and expansion of the source condensates and the consequential
effects on the pair-production process, and phase dispersion. Furthermore, we fully
model the real-time application of the Bragg pulses, which explicitly allows for
experimental imperfections such as loss into higher-order Bragg scattering modes
and deviations from the ideal beam-splitter and mirror models. All of these effects
are non-existent or negligible in analogous photonic experiments and not captured
by simpler toy models of the scheme. Such a detailed analysis is crucial to guide
future experiments, not only of this specific system but also related proposals [2–4].

In Chap.4 we have demonstrated that spin-changing collisions in a spinor BEC
are an ideal candidate to realize and verify EPR entanglement between massive
particles. Specifically, focusing on the recent experiment of Ref. [5], we have theo-
retically demonstrated that when spin-changing collisions are initiated via vacuum
fluctuations, a strong suppression of the EPR criterion can be achieved. However,
we demonstrate that sources of noise, such as initial thermal fluctuations (which are
usually neglected in analogous optical systems), play a crucial role in the viability
of the atom-optics scheme. Our calculations have shown that a small thermal seed
(�1 atom) initially in the mF = ±1 substates is sufficient to destroy EPR entangle-
ment in the system considered in Ref. [5] (corresponding to an initial condensate of
150–200 atoms). Complementary to this, we have also demonstrated that a more
relaxed criteria of entanglement, in terms of inseparability, is far less sensitive to the
form of the fluctuations which initiate the spin-changing collisions.

In Chap.5, we have discussed an application of the two-mode squeezed vacuum
state in the context of quantum metrology. Specifically, we have demonstrated how
the pair-production process of spin-changing collisions in a spinor condensate is an
excellent candidate to realize an atomic SU(1, 1) interferometer, which in the un-
depleted pump approximation has an interferometric sensitivity at the Heisenberg
limit. Our analysis has also highlighted a key difference between the atomic and
photonic realizations of the interferometer. Specifically, in the atom-optics scheme
themF = ±1 states must be sufficiently detuned from the pumpmode (or isolated by
transferal between hyperfine levels) such that the spin-changing collisions are com-
pletely halted and the archetypal SU(1, 1) scheme is properly realized. In contrast, in
an optical realization utilizing spontaneous parametric down-conversion, this control
is trivially realized by the finite length of the χ(2) nonlinear medium. It is hoped that
this theoretical understanding of the atom-optics system will lead to an experimental
realization of an atomic SU(1, 1) interferometer in the near future [6].

Finally, in Chap.6 we have examined under what conditions one may associate
individual stochastic trajectories of the Wigner representation with the outcomes of
individual experimental realizations. In particular, we have demonstrated that the
binned number distribution from individual stochastic Wigner trajectories, P̃n , can
replicate closely the true particle number distribution Pn , a neccesary condition for
the interpretation of these trajectories as representing individual experimental out-
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comes. By giving a rigorous definition of P̃n we have found that a sufficient require-
ment for this correspondence is that the Wigner function W|ψ〉(α) of the state |ψ〉
is strictly non-negative and varies sufficiently smoothly on the characteristic length
scale of oscillations in the Wigner function W|n〉(α) of the Fock state |n〉. In general
this conditions leads to the consequence that the state is highly occupied, agreeing
with the broadly accepted, but heuristic, view that, for highly occupied states, in-
dividual stochastic trajectories of the Wigner function correspond to outcomes of
single experiments. However, we have also shown a counterexample, wherein the
correspondence between P̃n and Pn breaks down for strongly squeezed states when
the width of the respective Wigner function in the narrow dimension becomes com-
parable to the length scale of oscillations in W|n〉(α), even though the state may be
highly occupied.
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Appendix A
Analytic Models of Condensate Collisions

The dynamics of spontaneous four-wave mixing has been the subject of intense
theoretical study in recent years. Various analytic and numerical techniques have
been used, focused on the production of scattered atom pairs [1–4]. We present
here two analytic techniques which, while subject to constraints in terms of physical
applicability, provide an excellent starting point in terms of understanding the origin
of various phenomena which arise through the collision process. Both techniques
have been presented previously in the literature [1, 3], in particular we point readers
to Ref. [3] for further details regarding the perturbative technique presented below.

A.1 Homogeneous Condensates in the Undepleted
Pump Approximation

The first analytic technique we consider is the simplest ‘toy model’ of the four-wave
mixing process. Although it may appear crude, it has proven invaluable in simple
analysis of condensate collisions and encapsulates many physical features of the full
process.

An effective Hamiltonian of the scattering process, in the Bogoliubov approxi-
mation, can be written in the form [5, 6]

Ĥeff =
∫

d3r
{
δ̂†(r, t)

[
− �

2

2m
∇2

]
δ̂(r, t) + 2U |ψ(r, t)|2 δ̂†(r, t)δ̂(r, t)

+U
[
ψ+k0(r, t)ψ−k0(r, t)δ̂

†(r, t)δ̂†(r, t)

+ψ∗
+k0(r, t)ψ

∗
−k0(r, t)δ̂(r, t)δ̂(r, t)

]}
, (A.1)

where U = 4�
2a/m is the interaction strength between atoms in the condensate

and a is the s-wave scattering length. To derive this Hamiltonian we implemented
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a Bogoliubov approximation of the wavefunction, wherein the full bosonic field
operator ψ̂ is split into mean-field and fluctuating components

ψ̂(r, t) = ψ+k0(r, t) + ψ−k0(r, t) + δ̂(r, t). (A.2)

The fluctuating component δ̂ represents the scattered atoms which populate the col-
lision halo and is treated to lowest order in perturbation theory. The initially split
condensate is represented by the two counter-propagating mean-field components,
ψ+k0 and ψ−k0 (with momenta ±k0 respectively). In this model we assume for sim-
plicity that the condensate has a uniform density profile in position space and it
is treated in the undepleted pump approximation. The wavefunctions can then be
written as

ψ±k0(r, t) =
√

ρ0

2
exp

(
±ik0 · r − i�k0

2m
t

)
, (A.3)

where ρ0 is the uniform density of the condensate and for simplicity we herein define
k0 = |k0|. The undepleted pump approximation is only valid for short times, which
in general corresponds to ensuring that the occupation of the collision halo does not
exceed 10% of the initial condensate population.

Neglecting the effective mean-field potential felt by the scattered atoms due to
the condensates, which is justified when the kinetic energy of the scattered atoms
�k20/2m is much higher than the mean-field interaction energy per particle in the
condensate, the Heisenberg equation of motion for the fluctuating field is given by

∂δ̂(r, t)
∂t

= − i�

2m
∇2δ̂(r, t) − i

U

�
ρ0exp

(
− i�k0

m
t

)
δ̂†(r, t). (A.4)

Transforming to a rotating frame ˆ̄δ(r, t) = δ̂(r, t)exp(i�k20 t/2m) and introducing the
Fourier transform pair

ˆ̄δ(r, t) = 1

L3/2

∑
k

ˆ̄akeik·r, (A.5)

ˆ̄ak = 1

L3/2

∫
d3r ˆ̄δ(r, t)e−ik·r, (A.6)

where L is the side length of the finite quantization box in position space (with
periodic boundary conditions) which is filled with the uniform source condensate,
we may rewrite Eq. (A.4) as a pair of coupled differential equations in momentum
space:

d ˆ̄ak
dt

= −i�k ˆ̄ak − ig ˆ̄a†−k, (A.7)

d ˆ̄a†−k

dt
= i�k ˆ̄a†−k + ig ˆ̄ak. (A.8)
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Here we have defined the new variables g = Uρ0/� and �k = �k2/2m − �k20/2m
for k2 ≡ |k|2. These equations can be solved exactly and we transform back to the
original frame to find

âk = αk(t)âk(0) + βk(t)â
†
−k(0), (A.9)

â†−k = β∗
k(t)âk(0) + α∗

k(t)â
†
−k(0), (A.10)

where âk is the Fourier component of the fluctuating field δ̂(r, t) and the time-
dependent coefficients are

αk(t) =
⎡
⎣cosh

(√
g2 − �2

k t

)
+ i

�k√
g2 − �2

k

sinh

(√
g2 − �2

k t

)⎤
⎦ exp

(
i
�k20
2m

t

)
,

(A.11)

βk(t) = −ig√
g2 − �2

k

sinh

(√
g2 − �2

k t

)
exp

(
i
�k20
2m

t

)
. (A.12)

The only non-zero expectation values (up to quadratic order) are then

nk(t) ≡ 〈â†k(t)âk(t)〉 = |βk(t)|2, (A.13)

mk(t) ≡ 〈âk(t)â−k(t)〉 = αk(t)βk(t). (A.14)

As the fluctuating component is initially vacuum and has Gaussian statistics we
may invoke Wick’s theorem to write any higher-order correlation function purely in
terms of nk(t) andmk(t). Importantly, applying this to the back-to-back and collinear
correlations gives the key results

g(2)
CL = g(2)

k,k = 2, (A.15)

g(2)
BB = g(2)

k,−k = 2 + 1

nk
. (A.16)

In the Gaussian approximation of Eqs. (1.38) and (1.39) this would correspond to
hCL = 1 and hBB = 1 + 1/nk, respectively.

A.2 Perturbative Approach for Inhomogeneous
Condensates in the Undepleted Pump Approximation

A limitation of the previous section was that the condensate was assumed to have a
uniform density profile in position space, and thus reciprocally a delta-function dis-
tribution in momentum space. Such an assumption leads to only collisions between
condensate atoms which have equal-but-opposite momenta. However, in realistic

http://dx.doi.org/10.1007/978-3-319-41048-7_1
http://dx.doi.org/10.1007/978-3-319-41048-7_1
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systems the initial condensate will have some finite momentum width, allowing col-
lisions to occur between particles with momenta which are not directly opposing
or of equal magnitude. Furthermore, unlike the uniform case, a collision between
condensates with a inhomogeneous spatial profile will involve a decreasing overlap
between the counter-propagating condensate wavepackets as they spatially separate.
This should present itself as a time-dependent coupling between the condensate
and scattered modes and will effect the dynamics and timescale of the scattering
process. The method which we outline below allows us to capture these physical fea-
tures. Importantly, the semi-analytic solutions which are derived are computationally
far less intensive than the stochastic Bogoliubov approach employed extensively in
Chaps. 2 and 3. In this respect they are an extremely useful tool with which to gain a
qualitative understanding of spontaneous four-wave mixing in colliding condensates
and in many cases (see, e.g., Ref. [3]) for quantitative predictions also.

As a first approximation, we assume that the initial condensate has a Gaussian
density profile in position space such that the counter-propagating mean-field wave-
functions may be written as

ψ±k0(r, t) =
√

ρ0

2
e
− x2

2σ2x
− y2

2σ2y
− z2

2σ2y e±ik0·r−i �|k0 |2
2m t . (A.17)

The assumption of a Gaussian density profile is equivalent to assuming that the
condensate is in the non-interacting ground state of a harmonic trapping potential.
Realistically, for the trapping frequencies and interaction strength considered in this
thesis the condensate density profile is better approximated by a Thomas-Fermi
parabola. However, as will become clearer in the following sections, the Gaussian
density profile allows somewhat simpler solutions of the scattering process whilst
still encapsulating all the relevant physics.

In Chaps. 2 and 3 we discuss situations wherein the initial source condensate has
an elongated (along the x direction) cigar-shaped density profile and is split radially
into condensates with momenta±k0ez respectively. For simplicity we will adopt this
splitting geometry in the following solution. It is important to note that although the
method we outline below is sufficiently general to apply to any splitting geometry,
we make approximations which are only valid for our specific splitting scheme and
thus affect the final form of the semi-analytic solutions.

Taking these approximations into account we may rewrite Eq. (A.4) in the form:

∂δ̂(r, t)
∂t

= − i�

2m
∇2δ̂(r, t) + g(r, t)δ̂†(r, t), (A.18)

where the time-varying and spatially dependent coupling to the source condensates
is given by

g(r, t) = 2Uψ+k0(r, t)ψ−k0(r, t),

= Uρ0e
−iate−bt2e

− x2

σ2x
− y2

σ2y
− z2

σ2y , (A.19)

http://dx.doi.org/10.1007/978-3-319-41048-7_2
http://dx.doi.org/10.1007/978-3-319-41048-7_3
http://dx.doi.org/10.1007/978-3-319-41048-7_2
http://dx.doi.org/10.1007/978-3-319-41048-7_3
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for a = �k20/m and b = �
2k20/m

2σ2
z . From inspection of Eq. (A.19) we see there

is a time-dependence of the overlap between the counter-propagating wavepackets
which decays as aGaussianwhilst there is an overall phase-factor due to interference.

As previously, we can Fourier transformEq. (A.18) andmoving to a rotating frame
ˆ̄a(k, t) = â(k, t)ei�l

2t/2m where â(k, t) is the momentum-space Fourier transform of
δ̂(r, t) we have the operator equation of motion

d ˆ̄a(k, t)

dt
= −i

�

∫
dq

(2π)3/2
g̃(q + k, t) ˆ̄a†(q, t)ei

�

2m (k2+q2)t, (A.20)

where

g̃(k, t) =
∫

d3r
(2π)3/2

eik·rg(r, t),

= Uρ0

23/2
σxσyσze

−iat−bt2e−∑
i k

2
i σ

2
i /4. (A.21)

is the Fourier transform of the coupling g(r, t). Substitution of this into Eq. (A.20)
leads to the Heisenberg equation of motion

d ˆ̄a(k, t)

dt
= Af (t)

∫
dq

(2π)3/2
h(k, q, t) ˆ̄a†(q, t), (A.22)

whereA = −i(Uρ0σxσyσz)/(�23/2), f (t) = e−iat−bt2 and h(k, q, t) = e
i�
2m (k2+q2)t−∑j(kj+qj)2σ2

j /4

for j = x, y, z. The form of this equation is illuminating when contrasted with that
of Eqs. (A.7) and (A.8) for the uniform condensate. The finite momentum width of
the source condensate in this approach leads to a momentum-dependent coupling to
many momentum modes rather than purely between the (k,−k) pair.

In general, and particularly for the case of a Gaussian source condensate, this
operator equation cannot be exactly solved. Instead, we adopt the approach outlined
in Ref. [3] wherein the authors use a perturbative expansion in the momentum-
space operator to derive approximate results for the expectation values n(k,k′) =
〈â†(k, t)â(k′, t)〉 and m(k,k′) = 〈â(k, t)â(k′, t)〉. The first step is to formally inte-
grate Eq. (A.22),

ˆ̄a(k, t) =
∫ t

0
dτ Af (τ )

∫
dq

(2π)3/2
h(k, q, τ ) ˆ̄a†(q, τ ). (A.23)

The formal solution of this equation is expanded in a series of perturbative solutions
ˆ̄a(k, t) = ∑

i
ˆ̄a(i)(k, t)where to lowest order we have ˆ̄a(0)(k, t) = ˆ̄a(k, 0). Using this
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initial condition we can substitute ˆ̄a(k, t) back into Eq. (A.23) and solve iteratively
to find, in the first order

ˆ̄a(1)(k, t) =
∫ t

0
dτAf (τ )

∫
dq

(2π)3/2
h(k, q, τ ) ˆ̄a†(0)(q, τ ). (A.24)

A.2.1 Population of Collision Halo

Substituting the first-order perturbative result of Eq. (A.24) into the definition of
n(k,k′) gives

n(k,k′) = 〈ˆ̄a(1)†(k, t) ˆ̄a(1)(k′, t)〉e i�
2m (k2−k′2)t . (A.25)

The calculation of this quantity is straightforward yet lengthy. We present it in detail
here as there are crucial differences to the derivation presented in Ref. [3]. These
differences stem from our treatment of a collision along the radial axis of the conden-
sates,whereasRef. [3] addressed a collision along the longitudinal axis in comparison
to earlier experimental results [7].

Using the definition of Eq. (A.24) we can rewrite Eq. (A.25) as

n(k,k′) = e
i�
2m (k2−k′2)t

∫ t

0
dτ

∫ t

0
dτ ′|A|2f ∗(τ )f (τ ′)

∫
d3q

(2π)3
h∗(k, q, τ )h(k′, q, τ ′),

= e
i�
2m (k2−k′2)t

∫ t

0
dτ

∫ t

0
dτ ′|A|2eia(τ−τ ′)−b(τ 2+τ ′2)

×
∫

d3q
(2π)3

e
−i�
2m (k2+q2)τe

i�
2m (k′2+q2)τ ′

e−∑
i(ki+qi)2σ2

i /4e−∑
i(k

′
i+qi)2σ2

i /4.

(A.26)

The momentum space integral on the RHS of this equation,

Iq =
∫

d3q
(2π)3

e
−i�
2m (k2+q2)τe

i�
2m (k′2+q2)τ ′

e−∑
i(ki+qi)2σ2

i /4e−∑
i(k

′
i+qi)2σ2

i /4, (A.27)

can be evaluated analytically. We present below a brief sketch of the solution and
without loss of generality we present only the integral over qx. Firstly we note we
must complete the square in the Gaussian exponent,

−i�

2m
(k2x + q2x)τ + i�

2m
(k′2

x + q2x)τ
′ − σ2

x

4
(kx + qx)

2 − σ2
x

4
(k′

x + qx)
2

= −Ax(qx − Bx

2A
)2 + B2

x

4Ax
+ i�

2m
(k′2

x τ ′ − k2x τ ) − σ2
x

4
(kx + k′2

x ). (A.28)



Appendix A: Analytic Models of Condensate Collisions 123

where Ai = −i�(τ ′ − τ )/2m + σ2
i /2 and Bi = −σ2

i (kx + k′
x)/2 for i = x, y, z. We

note further that

B2
x

4Ax
= σ2

x/8(kx + k′
x)

2 +
−i�
2m (τ − τ ′)

σ2
x
2 + i�

2m (τ − τ ′)

σ2
x

8
(kx + k′

x)
2, (A.29)

which implies Eq. (A.28) is equivalent to

− σ2
x

8
(kx − k′

x)
2 −

i�
2m (τ − τ ′)

σ2
x
2 + i�

2m (τ − τ ′)

σ2
x

8
(kx + k′

x)
2 + i�

2m
(k′2

x τ ′ − k2x τ ). (A.30)

Thus the momentum-space integral over qx becomes

Iqx =
∫

dqx
2π

e
i�
2m (k′2xτ ′−k2x τ )e

−Ax(qx− Bx
2Ax

)2
e−

σ2x
8 (kx−k′x)2 exp

⎡
⎣ −i�

2m (τ − τ ′)
σ2x
2 + i�

2m (τ − τ ′)
σ2x
8

(kx + k′
x)
2

⎤
⎦ ,

= e
i�
2m (k′2xτ ′−k2x τ )

2
√

πAx
e−

σ2x
8 (kx−k′x)2 exp

⎡
⎣ −i�

2m (τ − τ ′)
σ2x
2 + i�

2m (τ − τ ′)
σ2x
8

(kx + k′
x)
2

⎤
⎦ . (A.31)

Performing identical integration over the remaining dimensions we can then sub-
stitute the result for Iq into Eq. (A.26) to give

n(k, k′) = |A|2
8π3/2

e
i�
2m (k2−k′2)t e−

∑
i

σ2i
8 (ki−k′i )2

∫ t

0
dτ

∫ t

0
dτ ′eia(τ−τ ′)−b(τ2+τ ′2)e

i�
2m (k′2τ ′−k2τ )

×
∏
i

⎧⎪⎪⎨
⎪⎪⎩

1√
σ2i
2 + i�

2m (τ − τ ′)
exp

⎡
⎢⎣

−i�
2m (τ − τ ′)

σ2i
2 + i�

2m (τ − τ ′)

σ2i
8

(ki + k′
i)
2

⎤
⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

. (A.32)

To simplify the two-fold time integral we make a change of variables, u = (τ +
τ ′)/

√
2 and v = (τ − τ ′)/

√
2, such that the first-order correlation can be written in

terms of u and v as

n(k,k′) = |A|2
8π3/2

e
i�
2m (k2−k′2)te−∑

i
σ2i
8 (ki−k′

i )
2

×
∫ √

2t

0
du
∫ u

−u
dve−b(u2+v2)e

i�
2
√
2m

(k′2−k2)u− i�
2
√
2m

(k′2+k2)v+ia
√
2v

×
∏
i

⎧⎨
⎩

1√
σ2
i
2 + i�√

2m
v

exp

⎡
⎣

−i�√
2m

v

σ2
i
2 + i�√

2m
v

σ2
i

8
(ki + k′

i)
2

⎤
⎦
⎫⎬
⎭ . (A.33)

Next, by rationalizing the denominator of the exponents, Eq. (A.33) can be
expressed as
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n(k,k′) = |A|2
(2π)3/2

e
i�
2m (k2−k′2)t e

−∑
i

σ2i
8 (ki−k′

i )
2

σxσyσz

×
∫ √

2t

0
du
∫ u

−u
dve−b(u2+vy2)e

i�
2
√
2m

(k′2−k2)u− i�
2
√
2m

(k′2+k2)v+ia
√
2v

×
∏
i

⎧⎨
⎩

1√
1 + i�

√
2

mσ2
i
v
exp

⎡
⎣ −i�√

2m
v

(ki + k′
i)
2

4(1 + 2�2

m2σ4
i
v2)

⎤
⎦ (A.34)

×exp

⎡
⎣ −�

2

m2σ2
i

v2 (ki + k′
i)
2

4(1 + 2�2

m2σ4
i
v2)

⎤
⎦
⎫⎬
⎭ . (A.35)

By considering the characteristic width of e−bv2 we can assume that 2�
2

m2σ4
i
v2 	 1

and expand the exponents in a Taylor series to lowest order,

n(k,k′) = |A|2
(2π)3/2

e
i�
2m (k2−k′2)t e

−∑
i

σ2i
8 (ki−k′

i )
2

σxσyσz

×
∫ √

2t

0
du
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2
√
2m

(k′2−k2)u− i�
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√
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√
2v

×
∏
i

1√
1 + i�

√
2

mσ2
i
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[ −i�√
2m

v
(ki + k′
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2

4
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2

m2σ4
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× exp

[ −�
2

m2σ2
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v2 (ki + k′
i)
2
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2

m2σ4
i
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. (A.36)

Ignoring higher-order terms in the expansion the integral may be approximated as

n(k,k′) = |A|2
(2π)3/2

e
i�
2m (k2−k′2)t e

−∑
i

σ2i
8 (ki−k′

i )
2

σxσyσz

∫ √
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du
∫ u
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2
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2

2
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e−∑
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σ2i
8 (ki−k′

i )
2
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∫ √
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du e−bu2e
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2m
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×
√
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, (A.37)
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where

γ = −2
√
2k20 + k2 + k′2

√
2

+
∑
i

(ki + k′
i)
2

2
√
2

, (A.38)

δ = k20
σ2
z

+
∑
i

(ki + k′
i)
2

4σ2
i

. (A.39)

The final integration over u must be performed numerically as it is analytically
intractable. This is different to the result arrived at in Ref. [3], as the orientation of
their collision led to a significantly different characteristic width of the function in
the u and v variables. This allowed the final pair of integrals to decouple and be
performed exactly.

Lastly, to calculate the momentum-space population density in the collision halo
we set k′ = k in n(k,k′) to give

n(k) = |A|2e−γ2/16δ

(2π)3/2σxσyσz

√
π

δ

m

�

∫ √
2t

0
du e−bu2Re

[
erf

(
�

m

√
δu + i

γ

4
√

δ

)]
. (A.40)

A.2.2 Anomalous Moment

Similarly, substitution of the perturbative series into the definition of the anomalous
moment m(k,k′) gives to lowest order

m(k,k′) = e
i�
2m (k2+k′2)t〈 ˆ̄a(0)(k, t) ˆ̄a(1)(k′, t)〉, (A.41)

= A
∫ t

0
dτ f (τ )

∫
dq

(2π)3/2
h(k′, q, τ )〈 ˆ̄a(k, 0) ˆ̄a†(q, 0)〉. (A.42)

Using the bosonic commutation relations [ ˆ̄a(k, 0), ˆ̄a†(k′, 0)] = δ(k − k′) we can
simplify this to (for a vacuum initial condition, as is the case assumed here):

m(k,k′) = e
i�
2m (k2+k′2)t A

(2π)3/2

∫ t

0
dτe−iaτ−bτ 2

e
i�
2m (k2+k′2)τe−∑

i(ki+k′
i )
2σ2

i /4. (A.43)

Completing the square in τ and using a change of variables allows one to evaluate
the integral explicitly to arrive at the final result

m(k,k′) = A
4π

√
b
e−�2/4be−∑

i(ki+k′
i )
2σ2

i /4e
i�
2m (k2+k′2)t

[
erf

(
i�

2
√
b

)
+ erf

(√
bt − i�

2
√
b

)]
,

(A.44)
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where

� = �

m

[
k2 + k′2

2
− k20

]
. (A.45)

To benchmark the results of the perturbative method we compare the results to
both the homogeneous approach of the previous section and a full numerical simula-
tion utilizing the stochastic Bogoliubov method (for further details see Chaps. 2 and
3).We note that the results for the stochastic Bogoliubovmethod are based upon a dif-
ferent initial source condensate, whose wavefunction is found by an imaginary-time
numerical calculation. However, this difference does not change the qualitative fea-
tures which we compare between the models. To ensure the results are quantitatively
similar we fix the peak density of the imaginary-time and Gaussian solutions to be
identical and then fix the rmswidths of the Gaussian by a best-fit to the density profile
of the imaginary-time result. Similarly, the uniform condensate for the homogeneous
approach is constructed by fixing the total number of particles in the quantization
box to match the imaginary time solution, whilst the box size L is approximately
the same size as the trapped condensate. Explicitly we choose L = 2RTF where RTF

is the Thomas-Fermi radius of the condensate and is a good approximation to the
imaginary-time calculation.

In Fig.A.1we compare various properties of the scattering halo population n(k) ≡
n(k,k). In particular,we characterize the radial density profilewhich is approximated
well by the Gaussian function n(kr,φ) = np(φ)exp(−(kr − kp)2/2(δkr)2) where np
is the peak density, kp is the peak radius and δkr is the root-mean-square (rms)
width of the halo. The analytic and numerical methods employing inhomogeneous
condensates show good qualitative agreement in terms of the asymmetry of collision
halo, in particular the oscillations in halo width and peak density. These features are
partly a consequence of the anisotropy of the initial atomic cloud and are discussed
in further detail in Ref. [8]

An important physical difference to the perturbative and homogeneous techniques
is that the stochastic Bogoliubovmethod incorporates themean-field potential felt by
the scattered atoms due to the source condensates, an effect which is not included in
Eqs. (A.4) or (A.18). A consequence of excluding themean-field potential of the con-
densates is most starkly evidenced in Fig.A.1a, c, wherein we note the discrepancy
in the peak-radius of the collision halo. This result is intuitive for the perturbative
and homogeneous treatments as the requirement of energy conservation translates
to the kinetic energy of the colliding atomic pair Ei 
 �k20/m being equal to that of
the final pair, such that we expect the peak to occur at kr = k0. In contrast, in the
stochastic Bogoliubov treatment the initial energy of the colliding pair is made up
of kinetic and mean-field components. The effective mean-field potential felt by the
scattered atoms is thus increased and consequentially the scattered atoms will have
a smaller outgoing momentum than that of the ingoing pair, implying kr < k0 [2].

Although not a feature in the collision geometry we discuss here and in Chaps. 2
and 3 (split along the tight trapping direction, corresponding to the z axis here), it
is also worth noting the importance of the more complicated time-evolution of the
source condensates. According to mean-field GPE evolution, the elongated source

http://dx.doi.org/10.1007/978-3-319-41048-7_2
http://dx.doi.org/10.1007/978-3-319-41048-7_3
http://dx.doi.org/10.1007/978-3-319-41048-7_2
http://dx.doi.org/10.1007/978-3-319-41048-7_3
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(a) (b)

(c) (d)

Fig. A.1 a Average radial density profile of collision halo from stochastic Bogoliubov simulations
(red solid line), perturbative solution [Eq. (A.25), blue solid line] and homogeneous condensate
solution (black solid line) in the kx–ky cross-section. b Comparison of oscillation in peak density
of the collision halo np as a function of angle φ. c Variation of peak radius of the collision halo
kp as a function of φ. d RMS width of the collision halo δkr as a function of φ. For b–d we
compare the stochastic Bogoliubov calculation (red circles), perturbative solution (blue solid line)
and homogeneous condensate solution (black solid line) for equivalent source condensates (see
text) and collision duration (color figure online)

condensates will expand asymmetrically after the trapping potential is removed. In
earlier experimental schemes [1, 9] the collision took place along the elongated x-axis
of the condensate, involving much longer timescales before the counter-propagating
condensates spatially separated [1]. Indeed, for this geometry the relevant timescale
of the collision process is given by the reduction in peak density of the condensates
ρ(t) = |ψ(r, t)|2 as the clouds expand rapidly along the radial axes. Clearly this
feature would not be replicated by the simple approximation of ψ(r, t) given by
Eq. (A.17). However, it is possible to further adapt the perturbative technique by
using the scaling solutions for the self-similar expansion of a condensate outlined in
Ref. [10]. This leads to an improved form of the split wavepackets

ψ±k0(r, t) =
√

ρ0(t)

2
e
− x2

2σ2x
− y2

2σ2y (t)
− z2

2σ2z (t) e±ik0·r−i �|k0 |2
2m t . (A.46)



128 Appendix A: Analytic Models of Condensate Collisions

where

σy,z(t) =
√
1 + (ωy,zt)2σy,z(0), (A.47)

ρ0(t) = ρ0(0)√
(1 + (ωyt)2)(1 + (ωzt)2)

, (A.48)

and we assume the expansion along the x-axis is negligible compared to the y and
z directions. Solving the ensuing operator equations follows the same approach as
outlined above, however, we do not present any results for this in this appendix.

A.2.3 Second-Order Correlations

The back-to-back and collinear correlations can be calculated from the first-order
moments by invoking Wick’s theorem to give:

g(2)
CL(k,k′) = 1 +

[
n(k,k′)

]2
n(k)n(k′)

, (A.49)

g(2)
BB(k,k′) = 1 + |m(k,k′)|2

n(k)n(k′)
. (A.50)

where k′ 
 k and k′ 
 −k, respectively. Comparing to the Gaussian approx-
imation of Eqs. (1.38) and (1.39) we trivially recognize hCL = 1 and hBB =
|m(k,−k)|2/[n(k)n(−k)].

Although the analytic solution of g(2)
CL(k,k′) requires the remaining integral of

Eq. (A.37) to be calculated using numerical techniques, it is still possible to extract a
good estimate of the correlation width by inspection of the remainder of Eq. (A.37).
We ignore the terms within the integrand as they depend only on the sums k+k′ and
k2 + k′2 respectively, whereas the correlation width will most sensitively depend on
the difference �k = k − k′ for k′ 
 k. It is then obvious to identify the Gaussian
dependence n(k,k + �k) ∝ exp[−∑

i(�ki)2σ2
i /8] and thus we can show that this

leads to σCL = √
2/σi = 2

√
2σki where σki for ki = kx, ky, kz is the rms width of the

momentum-space wavefunction of the split condensates. This correlation width is
found to be consistentwith the analytic solution foundwhenEq. (A.37) is numerically
evaluated.

Similarly, for the back-to-back correlation we may identify the momentum-
dependentGaussian decay in Eq. (A.44) asm(k,−k+�k) ∝ exp[−∑

i(�ki)2σ2
i /4]

and thuswe associate a related back-to-back correlationwidth of σBB,i = 1/σi = 2σki .
Comparing these correlations widths we find a ratio of σCL/σBB = √

2, which is con-
sistent with previous calculations where the initial condensate is approximated as a
Gaussian [5].

http://dx.doi.org/10.1007/978-3-319-41048-7_1
http://dx.doi.org/10.1007/978-3-319-41048-7_1
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A.3 Conclusion

Theprevious sections demonstrate howmanyof the phenomena present in the sponta-
neous four-wavemixing process can be encapsulated by simplemodels. The simplest
homogeneous model is used extensively throughout Chaps. 2 and 3 as a basic ‘toy
model’ of the process. In particular, in the supplementary material of Chap. 2 (found
in Appendix C) the model is able to predict many features of the Hong–Ou–Mandel
effect such as the profile of the infamous Hong–Ou–Mandel ‘dip’. Similarly, the
perturbative approach is an essential tool for more in-depth analysis of the collision
process, without having to resort to the computationally intensive stochastic Bogoli-
ubov approach. Specifically, the analytic form of the anomalous moment allowed an
accurate treatment of the effects of phase dispersion between scattered pairs in the
collision halo, which is discussed in more detail in the supplementary material of
Chap.2 (found in Appendix D).
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Appendix B
Mean-Field Theory of Bragg Scattering

B.1 Basic Theory and Understanding

In atom optics, the role of optical mirrors and beam-splitters is taken by Bragg
pulses. They play a crucial role in allowing us to implement atomic analogs of the
Rarity–Tapster and Hong–Ou–Mandel interferometers. In their simplest form, the
behaviour of such pulses is well known [1], however, there are several key issues
which we wish to build a theoretical understanding of. Firstly, we must understand
how the choice of experimental parameters, such as laser intensity, affect the choice
of scattering regime; and secondly, we seek to investigate the effect of Bragg pulses
implemented on realistic systems of particles which have a finite spread of momen-
tum.

Bragg pulses are created by counter-propagating laser beams which form a peri-
odic optical potential. Atoms passing through this potential can be scattered, similar
to light passing through a diffraction grating in space. Fundamentally, the scatter-
ing process allows the manipulation and transfer of the atom(s) between different
momentum states. As will become clear in the following, careful control of the
intensity and applied duration of the laser beams allows one to control the portion
of atoms transferred between momentum states. Formally, this diffraction of matter-
waves is known as Kapitza-Dirac scattering [2] and can result in multiple scattering
resonances. However, for our purposes we will consider only the special case of
Bragg scattering [1], where only the initial momentum mode and another single
well-defined momentum mode are involved.

An illustration of the process is given in Fig.B.1. The periodic potential is formed
by two counter-propagating laser beamswithwave-vectorskL,1 andkL,2 respectively.
In the simplest case of a standing-wave (stationary) optical lattice we have kL,1 =
−kL,2 ≡ kL where kL is the wavevector of the lattice. If we consider an atom (in its
electronic ground state) with initial momentum k1(≡ −kL,1) and energy Eg subject
to this optical potential, it may absorb a photon from the laser with wavevector kL,1

and move to a short-lived excited state (with atomic momentum k = 0) detuned by
� from the excited state with energy Ee. Due to the presence of the second laser

© Springer International Publishing Switzerland 2016
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(a) (b)

Fig. B.1 aOptical lattice created by two counter-propagating laser beamswith wavevectors kL,1 ≡
−k1 and kL,2 ≡ −k2. Adopted from Ref. [3]. b Schematic diagram of Bragg scattering process
for a stationary Bragg pulse (k1 = −k2). An atom (initially in its electronic ground state) with
momentum k1 absorbs a photon with energy �ω1 and moves to an excited state detuned by �� from
the energy level Ee. The atom then undergoes stimulated emission and emits a photon of energy
�ω2. The net momentum change of 2kL leaves the atom in the k2 momentum mode. The quadratic
curve indicates the atomic dispersion relation E = �

2|k|2/2m. Off-resonant coupling is indicated
by δk and consequential energy mismatch δE

beam, the atom can undergo stimulated emission and emit a photon with wavevector
kL,2. The atom thus undergoes a change in momentum of kL,2 − kL,1 = 2kL, and
is transferred to a state with final momentum k2(≡ −kL,2) For a stationary lattice
(standingwave potential) it is important to note that the energy is unchanged between
the initial and final state,

δE = �|k1|2
2m

− �|k2|2
2m

= 0. (B.1)

In the following we drop the notational distinction between the photon wavevector
and atomic momenta and simply refer to k1 and k2 which are equivalent for both.

An important question is what occurs when an atom with k′
1 = k1 + δk enters the

potential. This is particularly important as one in general deals with an ensemble of
atoms such as a BECwith some finitemomentumwidth. Bymomentum conservation
one predicts themode k′

1 may couple to k′
2 = k2+δk, however, this will not conserve

energy,

δE = �|k1|2
2m

− �|k2|2
2m

�= 0. (B.2)

A simple heuristic argument can be constructed to demonstrate that such off-resonant
coupling can occur under certain conditions. This argument, based on energy-time
uncertainty, was originally presented in Ref. [2]. The uncertainty in the energy of the
interaction between the atom and the optical lattice is defined as�E, and the applied
duration of the potential �t is taken to be that required for a π- or π/2-pulse. The
energy-time uncertainty gives the relation �E�t ≥ � and thus �E ≥ �/δt. If the
energy difference between the coupledmomentum states δE is of the samemagnitude
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as the energy uncertainty �E then the modes k′
1 and k

′
2 will couple. Effectively, this

means that short pulses lead to a broad range of momentum states being coupled,
whereas long pulses are selective and only couple narrow momentum ranges.

A similar argument is used to ensure the validity of assuming the Bragg scattering
regime. By ensuring the pulse duration is sufficiently long that �E 
 �/δt 	
�|k1|2/2m the atoms are unlikely to undergo multiple absorption/emission events to
higher momentum modes due to conservation of energy. A secondary requirement
is that the strength of the optical lattice is weak compared to the recoil energy,
VL = |�|2/2� 	 �|k1|2/2m where � is the intensity of the laser beams, such that
the atoms only weakly interact with the potential [2, 3].

B.2 Analytic Solution of Bragg Pulse Transformation

The behaviour of a BEC in an optical lattice potential is given by the effective non-
interacting Hamiltonian [3]

Ĥ =
∫

d3rψ̂†(r)
[(−�

2

2m
∇2

)
+ i|�|2

2�
cos ([k2 − k1] · r + δt + θ)

]
ψ̂(r), (B.3)

where� is the Rabi frequency (determined by the laser intensity), k1,2 the respective
wavevectors of the laser beams, δ = ω1 − ω2 the difference of their frequencies, θ
their relative phase and� = Ee/�−ω1 is the detuning of the laser induced transition
from the excited state and we arbitrarily set Eg = 0.

Considering a stationary optical lattice, for which δ = 0, the Heisenberg operator
equation for ψ̂(r) is then,

dψ̂(r, t)
dt

= i�

2m
∇2ψ̂(r, t)

+ i|�|2
2�

cos ([k2 − k1] · r + θ) ψ̂(r, t). (B.4)

To solve this equation we first make the mean-field approximation ψ̂(r) → ψ(r)
and then take the Fourier transform of Eq. (B.4),

dψ(k, t)

dt
= −i�|k|2

2m
ψ(k, t) − i�eff

2

[
ieiθψ(k + 2kL, t)

− ie−iθψ(k − 2kL, t)
]
, (B.5)

where 2kL = k2 − k1 and �eff = |�|2/2� is the effective Rabi frequency. As we
are considering scattering in the Bragg regime, we consider coupling only around
the two momentum states k1 = −k2 = kL. Under this condition, Eq. (B.5) can be
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rewritten in the form of two coupled equations,

dψ(k′
1, t)

dt
= −i�|k′

1|2
2m

ψ(k′
1, t) + i

�eff

2
ψ(k′

2, t) (B.6)

dψ(k′
2, t)

dt
= −i�|k′

2|2
2m

ψ(k′
2, t) + i

�eff

2
ψ(k′

1, t) (B.7)

where k′
1 = k1+δk and k′

2 = k2+δk as previously defined and we assume θ = π/2
for definiteness.

These coupled differential equations can readily be solved to give

ψ(k′
1, t) = A(kL, δk, t)ψ(k′

1, 0) + B(kL, δk, t)ψ(k′
2, 0), (B.8)

ψ(k′
2, t) = C(kL, δk, t)ψ(k′

1, 0) + D(kL, δk, t)ψ(k′
2, 0), (B.9)

where,

A(kL, δk, t) = exp

[−i�

2m

(|kL|2 + δk2
)
t

]

×
⎡
⎣ iα√

α2 + �2
eff

sin

(
1

2

√
α2 + �2

eff t

)
+ cos

(
1

2

√
α2 + �2

eff t

)⎤
⎦ ,

(B.10)

B(kL, δk, t) = i�eff√
α2 + �2

eff

exp

[−i�

2m

(|kL|2 + δk2
)
t

]
sin

(
1

2

√
α2 + �2

eff t

)
,

(B.11)

C(kL, δk, t) = i�eff√
α2 + �2

eff

exp

[−i�

2m

(|kL|2 + δk2
)
t

]
sin

(
1

2

√
α2 + �2

eff t

)
,

(B.12)

D(kL, δk, t) = exp

[−i�

2m

(|kL|2 + δk2
)
t

]

×
⎡
⎣ −iα√

α2 + �2
eff

sin

(
1

2

√
α2 + �2

eff t

)
+ cos

(
1

2

√
α2 + �2

eff t

)⎤
⎦ ,

(B.13)

where α = 4�
2(kL · δk)2/m2. In the resonant case, δk = 0, the solutions take the

simple form
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ψ(k1, t) = exp

[−i�|kL|2
2m

t

] [
cos

(
�eff t

2

)
ψ(k1, 0) + sin

(
�eff t

2

)
ψ(k2, 0)

]
,

(B.14)

ψ(k2, t) = exp

[−i�|kL|2
2m

t

] [
sin

(
�eff t

2

)
ψ(k1, 0) + cos

(
�eff t

2

)
ψ(k2, 0)

]
.

(B.15)

By examination of Eqs. (B.14) and (B.15) we can readily associate a beam-splitter
transformation (or π/2-pulse) with �eff tπ/2 = π/2 and a mirror transformation (or
π-pulse) with �eff tπ = π.

Examining the full solutions [Eqs. (B.10)–(B.13)] we see that coupling between
off-resonantmodes is equivalent to an increase of the effective Rabi frequency�′

eff ≡√
α2 + �2

eff . Hence, whilst the ‘targeted’ resonant modes may transform according
to the canonical definition of the π- and π/2-pulses, a finite shift δk (along the
direction of the Bragg vector kL) will lead to imperfect transfer (i.e., not 100–0 or
50–50 respectively) between the coupled modes. Naively, one would assume that the
solution to this issue would be to satisfy the condition �2

eff � α2 for all relevant
momenta. However, increasing �eff would also lead to increased coupling to higher
momentum modes, i.e., increasing the chance of multiple pairs of scattering events,
which would push the scattering out of the Bragg regime and hence also degrade the
efficiency of the π- and π/2-pulses.

Effects due to off-resonant coupling play a key role in Chaps. 2 and 3 and have
previously been qualitatively studied in Ref. [4] in the context of atom interferometry.

(a) (b)

Fig. B.2 a Momentum distribution n(k) of a 1D BEC as a function of Bragg pulse duration t. The
inhomogeneous transfer of population between the coupled momentummodes is clearly illustrated.
b Population of resonant [n(k1), blue squares] and off-resonant [n(k1 + δk) for δk = 0.08|kL|, red
circles] momentum states as a function of pulse duration. Excellent agreement is found between
the analytic model of Eqs. (B.8) and (B.9) [solid black lines], which only assumes the coupling is
limited to between two modes, and numerical solution of Eq. (B.4) in the mean-field approximation
(blue and red squares), which places no limit on the number of modes which couple [including
kicks to k1 + 2|k0| and k2 − 2|k0|, which are included in the simulation lattice, though not shown
in (a)]

http://dx.doi.org/10.1007/978-3-319-41048-7_2
http://dx.doi.org/10.1007/978-3-319-41048-7_3
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We illustrate the effect of coupling between off-resonant modes in Fig.B.2, where we
numerically simulate an example Bragg pulse [i.e., we take the mean-field approx-
imation of Eq. (B.4) with no further approximations] for a 1D BEC. It is clear that
while the central portion of the atomic cloud is coupled to the newmomentummode,
the edges of the distribution are not transferred efficiently as they are off-resonant.
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Appendix C
Supplementary Material for Chapter 2

C.1 Methods

To simulate the collision dynamics, we use the time-dependent stochastic
Bogoliubov approach [1, 2] used previously to accurately model a number of con-
densate collision experiments [1, 3, 4]. In this approach, the atomic field operator is
split into ψ̂ (r, t)=ψ (r, t)+δ̂ (r, t), whereψ is themean-field component describing
the source condensates and δ̂ is the fluctuating component (treated to lowest order
in perturbation theory) describing the scattered atoms. The mean-field component
evolves according to the standard time-dependent Gross–Pitaevskii (GP) equation,
where the initial state is taken in the form of ψ (r, 0) = √

ρ0 (r) /2
(
eik0z + e−ik0z

)
.

This models an instantaneous splitting at t = 0 of a zero-temperature condensate
in a coherent state into two halves which subsequently evolve in free space, where
ρ0 (r) is the particle number density of the initial (trapped) sample before splitting.

The fluctuating component is simulated using the stochastic counterpart of the
linear operator equation [1, 5], i�∂t δ̂(r, t) = H0(r, t)δ̂ + ϒ(r, t)δ̂†, in the pos-
itive P-representation with the vacuum initial state. Here H0 (r, t) = − �

2

2m∇2 +
2U|ψ (r, t) |2 + VBP(r, t) represents the kinetic energy term, an effective mean-field
potential, plus the lattice potential VBP(r, t) imposed by the Bragg pulses, whereas
ϒ (r, t) = Uψ (r, t)2 is an effective coupling responsible for the spontaneous pair-
production of scattered atoms. The interaction constantU is given byU = 4π�

2a/m,
where m is the atomic mass, and a is the s-wave scattering length.

The Bragg pulses are realised by two interfering laser beams (assumed for sim-
plicity to have a uniform intensity across the atomic cloud and zero relative phase)
that create a periodic lattice potential VBP (r, t)= 1

2VL(t)cos (2kL · r), where VL(t) is
the lattice depth and kL = 1

2 (kL,2−kL,1) is the lattice vector determined by the wave-
vectorskL,i (i=1, 2) of the two lasers, and tuned to |kL|=kr . TheBragg pulses couple
momentummodeski andkj =ki−2kL , satisfyingmomentumand energy conservation
(up to a finite width due to energy-time uncertainty [6]). The lattice depth is ramped
up (down) according to VL(t)=V0exp[−(t− t2)2/2τ 2

π ]+ 1
2V0exp[−(t− t3)2/2τ 2

π/2],
where t2(3) is the pulse centre, while τπ(π/2) is the pulse duration which governs the
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transfer of atomic population between the targeted momentum modes: a π-pulse is
defined by τπ =√

2π�/V0 and converts the entire population from one momentum
mode to the other, while a π/2-pulse is defined by τπ/2=√

π�/(
√
2V0) and converts

only half of the population.
In practice, the atom–atom correlations quantifying the HOM interference are

measured in position space after the low-density scattering halo expands ballis-
tically in free space and falls under gravity onto an atom detector. The detector
records the arrival times and positions of individual atoms, which is literally the case
for metastable helium atoms considered here [1, 3, 4, 7, 8]. The arrival times and
positions are used to reconstruct the three-dimensional velocity (momentum) distri-
bution before expansion, as well as the atom–atom coincidences for any desired pair
of momentum vectors. In our simulations and the proposed geometry of the experi-
ment, the entire system (including the Bragg pulses) maintains reflectional symmetry
about the yz-plane, with z being the vertical direction. Therefore the effect of gravity
can be completely ignored as it does not introduce any asymmetry to the momentum
distribution of the atoms and their correlations on the equatorial plane of the halo or
indeed any other plane parallel to it.

C.2 Model Hamiltonian in Undepleted Pump
Approximation

The simplest model of the collision process is for an initial homogenous condensate
of fixed density ρ0 which is treated in the undepleted pump approximation. We have
previously considered this situation in Appendix A and we direct the reader therein
for further details.

The dynamics of the scattered atoms in the collision halo are given by the solutions

âk(t) = αk(t)âk(0) + βk(t)â
†
−k(0), (C.1)

â†−k(t) = β∗
k(t)âk(0) + α∗

k(t)â
†
−k(0), (C.2)

where âk(t) (â†k(t)) are the annihilation (creation) operators corresponding to the
mode k in the collision halo and the coefficients are given by

αk(t) =
[
cosh

(√
g2 − �2

k t

)
− i�k√

g2 − �2
k

sinh

(√
g2 − �2

k t

)]
ei

�|k0 |2
2m t, (C.3)

βk(t) = −ig√
g2 − �2

k

sinh

(√
g2 − �2

k t

)
ei

�|k0 |2
2m t, (C.4)

for an effective coupling strength g ≡ Uρ0/� and �k ≡ �|k|2/2m − �|k0|2/2m
where ±k0 is the momenta of the two counter-propagating halves of the initial BEC.



Appendix C: Supplementary Material for Chapter 2 139

These solutions are physically valid in the short-time limit, corresponding in general
to less than 10% depletion of the source condensate.

In this model, atom–atom correlations in the scattering halo can be completely
characterised by

nk(t) = 〈â†k(t)âk(t)〉 = |βk(t)|2, (C.5)

mk,−k(t) = 〈âk(t)â−k(t)〉 = αk(t)βk(t), (C.6)

which are known as the normal and anomalous densities respectively.
Even though the undepleted pump approximation outlined in Appendix A and the

Bogoliubov approach used in the numerical simulations in the main text share the
same property that they both assume a constant total number of atoms in the colliding
source condensates, there is an important difference between the two approaches.
While the simple analytic solutions obtained above assume that the condensate densi-
ties remain constant aswell, theBogoliubov approach does not impose this condition.
Instead, it treats the expansion of the colliding condensates in free space as pre-
scribed by the Gross–Pitaevskii Eq. for the mean-field component. This means that
the Bogoliubov counterpart of the effective coupling g = Uρ0/� (see Appendix A
for the source of this term) whilst being spatially dependent also becomes smaller
with time as the condensate densities decrease during the expansion. Because of
this difference, the analytic results to be derived and discussed in this Supplemen-
tary section can only serve for qualitative insights into the physics behind the HOM
effect for matter waves, but they will not necessarily be in quantitative agreement
with the numerical results presented in the main text.

C.3 Width of the HOM Dip

To estimate the width of the HOM dip after the application of Bragg pulses, we
approximate the pulses as perfect mirrors and symmetric (50:50) beam-splitters over
the relevant regions of the scatteringhalo, allowingus tomodel themas a series of sim-
ple linear transformations on the creation (annihilation) operators. UsingWick’s the-
orem, we can then express the discrete-operator counterpart of the second-order cor-
relation function considered in the main text, g(2)

RL(t)=〈: n̂R(t)n̂L(t) :〉/〈n̂R(t)〉〈n̂L(t)〉
at time t4, purely in terms of the normal and anomalous densities at the end of the
collision at time t1,

g(2)
RL(t4) = 1

2
+ nk3(t1)

2 + nk5(t1)
2

(
nk3(t1) + nk5(t1)

)2 + |mk3,k4(t1)|2 + |mk5,k6(t1)|2
2
(
nk3(t1) + nk5(t1)

)2

−m∗
k3,k4(t1)mk5,k6(t1)e

iφ + h.c.

2
(
nk3(t1) + nk5(t1)

)2 , (C.7)

where φ = φ(θ) ≡ 8�|k0|2�tfree sin2(θ/2)/m and �tfree is the duration of free-
propagation after the π-pulse.
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For the HOM dip minimum at θ = 0, this simple model predicts g(2)
RL(t4) = 1,

whilst for sufficiently large θ, such that the momenta k5,6 lie outside the scattering
halo, we find g(2)

RL(t4) = 2 + 1/2nk3(t1). For intermediate values of θ, the full HOM
dip profile is described by Eq. (C.7) and is shown in Fig.C.1 by the solid (red) curve.
From the structure of Eq. (C.7), it is clear that the characteristic width of the dip will
depend strongly on the widths of the densities |mk5,k6(t1)| and nk5(t1).

For a simple analytic estimate of the dip width we further approximate the
radial profile of the halo density, Eq. (C.5), as well as of the anomalous moment,
Eq. (C.6), which are both spherically symmetric, by Gaussian functions of the form
∝ exp

[−(k − k0)2/2δk2r
]
, where k ≡ |k| and δkr is the rms width. The relevant

densities are then given by

nk3(t1) = nk4(t1)=n0, (C.8)

nk5(t1) = nk6(t1)=n0e
−|k0|2[1−√

5−4cos(θ)]2/2(δkr)2 , (C.9)

Fig. C.1 Normalised correlation function g(2)
RL(t4) between atomic populations after the π/2-pulse.

The HOM dip is realised in the simplest model [Eq. (C.7)], corresponding to a uniform BEC in the
undepleted pump approximation and perfect mirrors and a symmetric beam-splitter (full red line).
We also consider the case of off-resonant Bragg pulses (green dot-dashed line), corresponding to
the case of an asymmetric beam-splitter (see Sect. C.5). For comparison we plot the envelope fit of
Eq. (C.12) (dashed black curve), which shows reasonable agreement with the overall shape of the
dip of Eq. (C.7). For all analytic calculations, the uniform density ρ0 is chosen to match the peak
density of the source BEC used the numerical results of the main text. The collision duration (and a
matching free-propagation time), on the other hand, is chosen to be somewhat shorter (t1 = 30µs)
in order to result in a radial rms width of the scattering halo (δkr 
 0.1|k0|) that agrees with the
one obtained in pure numerical simulations. While overestimating the peak mode occupancy in the
scattering halo (nk3 (t1) = 0.45), this choice of parameters optimises the overall shape of the HOM
dip as a function of the widths of the normal and anomalous densities, nk6 (t1) and |mk5,k6 (t1)|
(color figure online)
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|mk3,k4(t1)| = m0, (C.10)

|mk5,k6(t1)| = m0e
−|k0|2[1−√

5−4cos(θ)]2/2(δkr)2 . (C.11)

Here, n0 is the peak occupancy predicted by Eq. (C.5) and m0 = √
n0(1 + n0),

where we have have used the identity |mk,−k(t)|2 = nk(t)[1+nk(t)]. To simplify our
approximation of Eq. (C.7), we impose the condition Arg [m∗

k3,k4(t1)mk5,k6(t1)e
iφ] =

0, which amounts to ignoring any phase variations of the anomalous density across
the scattering halo. Combined with Eqs. (C.9) and (C.11), this simplification allows
us to write Eq. (C.7) in the form

g(2)
RL(t4) = 1

2
+ 1 + n0

2n0
tanh2 (β(θ)) + 1

sech (β(θ)) + 1
, (C.12)

where

β(θ) ≡ |k0|2
[
1 − √

5 − 4cos(θ)
]2

2(δkr)2
. (C.13)

The second-order correlation g(2)
RL(t4), Eq. (C.12), as a function of the angle θ, has

a full width at half maximum (FWHM) with respect to unity of

wdip = 2 arccos

⎡
⎣5

4
− 1

4

⎛
⎝1 +

√
2(δkr)2β0

|k0|2

⎞
⎠

2⎤
⎦ , (C.14)

in units of radians, where

β0 ≡ log

⎛
⎜⎜⎝3 +

2

√
1 + 2

(
1 + 1

2n0

)2

1 + 1
2n0

⎞
⎟⎟⎠ . (C.15)

In Fig.C.1 we plot the envelope fit to the HOM dip profile, Eq. (C.12), as a dashed
curve, which shows reasonable agreement with the full analytic result of Eq. (C.7)
in terms of the overall shape of the dip. The discrepancies in the width of the dip are
completely attributable to our assumption that |mk5,k6(t1)| shares the same rms width
as nk5(t1), and our neglection of the phase profile Arg [m∗

k3,k4(t1)mk5,k6(t1)e
iφ]. The

oscillations in the wings of Eq. (C.7) are due to a combination of this phase profile
and oscillations in nk(t1) at the spontaneous noise level for g2 − �2

k < 0 outside the
scattering halo.

Lastly, by comparison of Eq. (C.7) to the phase-insensitive envelope fit in Fig.C.1,
it is clear that the oscillations in the wings of Eq. (C.7) are centred on a mean-value

g(2)
RL(t4) = 2 + 1/2nk3(t1). This observation justifies our definition of dip visibility
employed in the main text.
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C.4 Relation Between HOM Effect and Cauchy–Schwarz
Inequality

The quantum nature of the Hong–Ou–Mandel effect is commonly characterised by
the visibility of the HOM dip. In this section we outline the relation between this
visibility and the violationof theCauchy–Schwarz inequality,whichhas beendemon-
strated in condensate collisions in Refs. [3, 4].

The visibility of the HOM dip is defined as V = 1−min[g(2)
RL(t4)]/max[g(2)

RL(t4)],
where min[g(2)

RL(t4)] occurs for θ = 0 and max[g(2)
RL(t4)] corresponds to sufficiently

large θ such that momenta k5,6 lie outside the scattering halo. To highlight the
link to the Cauchy–Schwarz inequality we evaluate these quantities by rewriting
(C.7) in terms of the second-order correlations g(2)

k,k′(t) = 〈â†k(t)â†k′(t)âk′(t)âk(t)〉/
〈â†k(t)âk(t)〉〈â†k′(t)âk′(t)〉 at the end of the collision at time t1,

min[g(2)
RL(t4)] = 1

2
g(2)
k3k3(t1) (C.16)

max[g(2)
RL(t4)] = 1

2

[
g(2)
k3k4(t1) + g(2)

k3k3(t1)
]

(C.17)

where we use the symmetry g(2)
k3k3(t1) = g(2)

k4k4(t1).
The Cauchy–Schwarz inequality, in the context of the correlations after the colli-

sion, is given as g(2)
ki,kj (t1) ≤

√
g(2)
ki,ki(t1)g

(2)
kj,kj (t1) where we assume nki(t1) = nkj (t1).

We characterise a violation of the inequality by the quantity C = g(2)
ki,kj (t1)/√

g(2)
ki,ki(t1)g

(2)
kj,kj (t1) > 1. Using this and Eqs. (C.16) and (C.17) we may quantify

the visibility of the HOM dip as,

V = 1 − 1

1 + C
. (C.18)

A measurement of V > 0.5 corresponds strictly to C > 1 and thus a violation
of the inequality, implying the correlations between scattered atom pairs cannot be
described by classical stochastic random variables [9].

C.5 Effects of Realistic Bragg Pulses

In the qualitative description of our model and the simplified undepleted pump
description, we assume perfect π and π/2-pulses for all momentum components
which are coupled (i.e., 100% and 50% transfer of atomic populations respectively).
However, such perfect transfer only occurs for the momentum components, k1 and
k2 (corresponding to θ = 0), specifically targeted by the Bragg pulse, which satisfy
the Bragg resonance condition for momentum and energy conservation. For |θ| > 0,



Appendix C: Supplementary Material for Chapter 2 143

on the other hand, the coupled components k3(4) and k6(5) do not conserve energy and
are detuned from this resonance condition, leading to a population transfer varying
from the canonical definition of π and π/2-pulses. In this section we investigate the
quantitative effects such off-resonant coupling has on the nature of the HOM dip.

For a simple insight we model the case of square Bragg pulses where the lattice
depth is ramped on/off instantaneously, VL(t) = V0�(t− ton)[1−�(t− toff)] where
� is the Heaviside step function, and restrain coupling to momentum components
separated by a single momentum kick, ki,j where kj = ki − 2kL. A π-pulse is
defined by the duration τπ = 2π�/V0 and a π/2-pulse by τπ/2 = π�/V0. This
model can be solved analytically (see, e.g., Ref. [10]) to give the transmission and
reflection amplitudes of the pulses, and is a reasonably valid approximation to the
Gaussian Bragg pulses used in numerical simulations. To compare directly we note
that square and Gaussian Bragg pulses of the same lattice depth and of duration τ
and τ ′ respectively are related by the equivalence relation τ = √

2πτ ′.
The collision process is again treated according to the undepleted pump model

outlined in Sect.C.2; in Fig.C.1 we plot the resulting g(2)
RL(t4) for the case of realistic

Bragg pulses as a dash-dotted (green) curve. We choose τπ = τπ/2 = √
2πτ ′ where

τ ′ = 2.5 µs matches the pulse duration used in the simulations of the main text.
For small θ we find little deviation from calculations based on perfect mirror/beam-
splitter transformations [shown as the solid (red) curve]; the overall shape of the
dip is preserved, although there is a slight decrease in the FWHM. For large θ the
effects of the off-resonant coupling become larger, resulting in a decrease in period
and amplitude of the oscillations in the wings of g(2)

RL(t4). In addition, we observe the

mean value in the wings, g(2)
RL(t4), increases slightly, relative to the case of perfect

mirror/beam-splitter transformations. However, the increase is sufficiently small so
as not to affect our claim of a nonclassical visibility V > 0.5.

C.6 Impact of Realistic Bragg Pulses on Distinguishability

Beyond the quantitative changes to the structure of the HOM dip, another issue
arising from off-resonant coupling relates to the treatment of path distinguishabil-
ity in the scheme. In the archetypal optical HOM effect, perfect suppression of
correlations between opposing output ports of the interferometer occurs only for
symmetric (50:50) beam-splitters. In practice, asymmetry in the beam-splitter reflec-
tion/transmission (R/T ) amplitudes provides which-way information (path distin-
guishability), leading to a decrease in dip visibility [11]. In this section we investigate
how off-resonant coupling plays a similar role in our proposed scheme and seek to
quantify the impact it may have on the visibility of the HOM dip.

In the qualitative analysis of our model, we observe that the inhomogeneous
density of the scattering halo is pivotal to revealing the structure of the HOM dip.
When atomic populations in componentsk3 andk4 are coupled to vacuumoutside the
populated region of the scattering halo (componentsk6 andk5 respectively), the paths
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through the beam-splitter are completely distinguishable. Such coupling corresponds
to large θ, where we have demonstrated the detuning from Bragg resonance has
appreciable effects. In principle, if the detuning from perfect Bragg resonance is
sufficiently large such that our π/2-pulse corresponds to |R|2 = 1 and |T |2 = 0 (or
vice versa) for the off-resonant components, the visibility of the HOM dip would
be completely attributable to which-way information gained from the off-resonant
coupling rather than the inhomogeneous profile of the scattering halo.

To quantify the distinguishability provided by off-resonant coupling separately
to that produced by the non-uniform scattering halo, we consider an artificial
model describing the scattered atoms, wherein we remove all spatial structure from
Eqs. (C.5) and (C.6). The normal and anomalous densities are then completely
characterised by

nk(t) = n0, (C.19)

mk,−k(t) = −i
√
n0(1 + n0), (C.20)

where n0 is the average occupation of the modes, chosen to match the peak of
Eq. (C.5).We preserve the relation |mk,−k(t)|2 = nk(t)[1+nk(t)] and for definiteness
we have chosen the phase of the anomalous density to match that of Eq. (C.6) for
�k = 0. To be consistent with this choice of phase profile, we also neglect any
free-propagation effects in this calculation.

InFig.C.2weplot themaximumvisibility of theHOMdip for the case of a uniform
halo and taking into account the off-resonant coupling of both the π and π/2-pulses
(following the analytic treatment of Sect. C.5), compared to that expected for an
inhomogeneous halowith perfectmirror/beam-splitter transformations (dashed line).
As the visibility measure is sensitive to the mode occupation, we choose n0 = 0.14
to match the numerical results of the main text. We find that shorter pulse durations
limit the effects of off-resonant coupling, which is in agreement with the results of
Ref. [10] where the efficiency of transfer over a broad momentum width is found to
decrease with pulse duration. It is also clear in Fig.C.2 that the maximum visibility
due to off-resonant coupling cannot match that expected from an inhomogeneous
halo for any τ investigated. The remaining small difference between the two curves
at large τ is due to our modelling of imperfect mirrors, in addition to imperfect
beam-splitter.

For the Gaussian pulse scheme used in the main text (τ ′ = 2.5 µs) we calculate
worst-case reflection amplitudes of |Rπ|2 = 0.84 and |Rπ/2|2 = 0.43 for the π and
π/2-pulses respectively, corresponding to |θ| = π/4. The which-way information
gained from this is predicted to give a visibility of 70%, compared to 82% for an
inhomogeneous halo. This may seem large, however, it is important to note that
this only corresponds to a maximal correlation of g(2)

RL(t4) = 0.62(2 + 1/2n0) (see
Fig.C.2), whereas for an inhomogeneous scattering halo we expect an average value
of g(2)

RL(t4) = 2+1/2n0 for large |θ|. We thus conclude that, for the parameter regime
simulated, full distinguishability of the paths through the interferometer and hence
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(a)

(b)

Fig. C.2 a Visibility of the HOM dip as a function of pulse duration τπ = τπ/2 = τ . We compare
the case of a uniform scattering halo taking into account off-resonant coupling (solid blue line) with
that calculated from the full undepleted pump model (inhomogeneous scattering halo) and perfect
Bragg pulses (dashed black line). We indicate on the figure (vertical dashed line) the equivalent
pulse duration for the Gaussian pulses used in the main numerical results (τ ′ = 2.5 µs), which
leads to a maximum visibility of 70% (V = 0.70) for the case of realistic Bragg pulses, compared
to 82% for the perfect case. b The maximum obtained g(2)

RL(t4), corresponding to |θ| = π/4, for
the case of realistic (solid blue line) and perfect (dashed black line) Bragg pulses. The perfect case

corresponds to the average value g(2)
RL(t4) = 2+1/2n0. Equivalent Gaussian pulse duration is again

indicated (vertical dashed line) for reference (color figure online)

the magnitude of the dip visibility cannot be purely explained as a consequence of
off-resonant coupling, but requires the inhomogeneity of the scattering halo to be
taken into account.
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D.1 The Undepleted Pump Approximation and Relation
to the Model of Spontaneous Parametric
Down-Conversion

The simplest analytic treatment of the scheme can be made by treating the initially
split-condensate in the undepleted pump approximation [1], corresponding to short
collision durations such that the number of scattered atoms is only a small fraction
of the source condensate (generally less than 10%). An examination of this model
is given in Appendix A and we direct the reader therein for specific details. We treat
the laser-induced π and π/2 Bragg pulses, which are characterised by a momentum
kick 2kL ≡ kL,2 −kL,1 = k3 −k1 = k2 −k4 (see Appendix B for further details), as
perfect mirrors and beam splitters (i.e., simple linear transformations) applied at t2
and t4 respectively (see main text for definitions) and then invoking Wick’s theorem,
the second-order correlation function between the relevant pairs of detectors (chosen
for definiteness to be equal to t4 = t3 + 4τπ/2 in our simulations) can be written as

G(2)(k1,k2, t4) = G(2)(k3,k4, t4) = n(k1, t1)2 + |m(k1,k2, t1)|2
2

[1 − cos (φR − φL)] ,

(D.1)

G(2)(k1,k4, t4) = G(2)(k2,k3, t4) = n(k1, t1)2 + |m(k1,k2, t1)|2
2

[1 + cos (φR − φL)] ,

(D.2)

where n(k, t1) = 〈â†(k, t1)â(k, t1)〉 is the average momentum-space density of scat-
tered atoms after the collision at time t1, which is equal for the targeted modes
k1,k2,k3 and k4, and m(k,k′, t1) = 〈â(k, t1)â(k′, t1)〉 is the average anomalous
moment. Choosing φL = 0, φ′

L = π/2, φR = π/4 and φ′
R = 3π/4 to maximise the

CHSH-Bell parameter S (defined as per the main text) we find the result
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S = 2
√
2

|m(k1,k2, t1)|2
2n(k1, t1)2 + |m(k1,k2, t1)|2 . (D.3)

For a maximal violation, with S = 2
√
2, one requires the anomalous moment to

satisfy |m(k1,k2, t1)|2 � n(k1, t1)2, corresponding to strong correlations between
atoms scattered to diametrically opposite momentum modes.

The anomalous moment is maximised for the case of a homogeneous BEC
in a finite box [1, 2], where the discrete-mode counterpart of m(k,−k) satisfies
|mk,−k|2 = nk(1 + nk) [2]—just like in the simple four-mode model of parametric
down-conversion discussed in the main text, thus giving the result of Eq. (3.4), with
n = nki (i = 1, 2, 3, 4) being the average mode occupation of the scattering halo
after the collision, which are all equal in this approximation.

D.2 Gaussian-Fit Analytic Model of Correlation Functions

Beyond the simple treatment of the previous section, we can develop a more sophis-
ticated model of the CHSH-Bell parameter whilst also taking into account the finite
detector resolution of experiments [3]. We calculate integrated pair-correlation func-
tions and the ensuing CHSH-Bell parameter by using a Gaussian-fit analytic model,
similar to that used previously inRef. [4] tomodel a violation of theCauchy–Schwarz
inequality in condensate collisions. The underlying assumption of the model is that
the second-order correlation function after the collision is well approximated by
a Gaussian G(2)(k,k′, t1) = n2(1 + h

∏
d exp[−(kd + k′

d)
2/2σ2

d]) for k 
 −k′
and n = n(k) = n(k′) is the density of scattered atoms. The correlation is then
characterised by two parameters: the height, h, above the background level and the
correlation width σd .

To derive an expression for S we first consider the form of the integrated pair-
correlation functions after the application of the π/2-pulse,

Cij =〈N̂iN̂j〉=
∫
V(ki)

d3k
∫
V(kj)

d3k′G(2)
(
k,k′, t4

)
, (D.4)

where the integration bins are of dimension �kd (d = x, y, z) and volume V(ki) =∏
d �kd centered around the targeted momenta ki (i = 1, 2, 3, 4). Without loss of

generality we consider the form of the correlation C12, with the remaining pair-
correlation functions Cij being calculated in a similar manner. Treating the Bragg
pulses as idealised mirrors and beam-splitters which act instantaneously, meaning
we may set t2 = t1 and t4 = t3, we may write the generalised form of Eq. (D.1) as

http://dx.doi.org/10.1007/978-3-319-41048-7_3
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G(2)(k,k′, t4) = 1

4

{
4n(k, t2)

2 + |m(k,k′, t2)|2 + |m(k − 2kL,k′ + 2kL, t2)|2

−
[
m(k − 2kL,k′ + 2kL, t2)∗m(k,k′, t2)e−i(φL−φR)

× e−i �

2m (|k|2+|k′|2−|k−2kL |2−|k′+2kL |2)�tfree
]

−
[
m(k,k′, t2)∗m(k − 2kL,k′ + 2kL, t2)ei(φL−φR)

× ei
�

2m (|k|2+|k′|2−|k−2kL |2−|k′+2kL |2)�tfree
]}

. (D.5)

wherek ∈ V(k1) andk′ ∈ V(k2) and�tfree ≡ t3−t2 is defined as the duration of free-
propagation between the π and π/2 Bragg pulses. Having invoked Wick’s theorem
in Eq. (D.5), we may recognize that assuming the correlation function G(2)(k,k′, t1)
is a Gaussian function translates to the assumption that wemaymodel the anomalous
moment as

m
(
k,k′, t2

) ≡ n̄
√
heiθ(k,k′,t2)

∏
d

e−(kd+k′
d )

2/4σ2
d , (D.6)

where the density of scattered atoms is assumed to be approximately homogeneous
across the integration volumes and is given by the average n̄. The argument θ(k,k′, t2)
of the complex anomalous moment is dependent on the specific model chosen for
the collision, which we will elaborate upon momentarily.

Substituting Eq. (D.6) into Eq. (D.5) gives the more recognizable form

G(2)(k,k′, t2) = n̄2 + n̄2h

2

∏
d

exp[−(kd + k′
d)

2/2σ2
d]

× {
1 − cos

[
φL − φR + ϕ(k,k′)

]}
, (D.7)

where

ϕ(k,k′) = θ
(
k − 2kL,k′ + 2kL, t2

)− θ
(
k,k′, t2

)

+ �

2m

(|k|2 + |k′|2 − |k − 2kL|2 − |k′ + 2kL|2
)
�tfree. (D.8)

In comparison to the simple toy-model of Eq. (D.1) the most important new feature
of Eq. (D.7) is the addition of ϕ(k,k′), which acts as a momentum-dependent drift
in the phase settings φL and φR. As the phase settings are chosen to maximise the
CHSH-Bell parameter, this new term can thus lead to a reduction in S. Composed of
a free-propagation component and a dependence on the argument of the anomalous
moment such an effect is similar to the phase-dispersion of two-color photons in an
earlier optical experiment of Rarity and Tapster [5]
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To investigate the impact of this new term and to evaluate the integral in Eq. (D.4)
onemust know the form ofϕ(k,k′), which in turn explicitly depends on the argument
θ(k,k′, t2) of the anomalous moment. In general, this is not trivial as it requires
an analytic solution of the anomalous moment from an appropriate model for the
collision. To this end, we supplement our simple Gaussian-fit model by utilizing a
solution of the anomalousmoment based on a perturbative approach, previously used
with success inRef. [6] (albeit for a different collisiongeometry—theBECswere split
along the x-axis). Similar to the numerical treatment, this model takes into account
the evolution of the spatial overlap of the split condensate wavepackets, however, it
does not account for the spatial expansion of the condensates once released from the
initial trap.

To give a tractable form of the anomalous moment we approximate the initial
mean-field of the unsplit condensate as a Gaussian ψ0(x) = √

ρ0
∏

d e
−x2d/2σ

2
g,d with

peak density ρ0 and rms widths σg,d for d = x, y, z. The calculation of the anom-
alous moment is then straightforward and involves treating the wavefunction of the
scattered atoms with a perturbative expansion to low order. For a full derivation of
the model we refer the reader to Appendix A Ref. [6]. In our solution we may make
the approximation that the box sizes are sufficiently small such that |k− k1| 	 |k0|
and |k′ − k2| 	 |k0| and assume the condensates are completely spatially separated
before applying the π pulse, corresponding to t2/τs � 1 where τs = mσg,z/�|k0|
is the time-scale of separation. Under these limits the argument of the anomalous
moment may be written as

θ
(
k,k′, t2

) 
 − �

2m

(|k|2 + |k′|2) t2 + σg,z√
π|k0|

( |k|2 + |k′|2
2

− |k0|2
)

, (D.9)

which thus allows us to write the phase drift as

ϕ(k,k′) = [
8|kL|2 − 4kL · (k − k′)] [ �

2m
(�tfree − t2) + σg,z

2|k0|√π

]
. (D.10)

Using the form of Eq. (D.10) and noting that our Bragg pulses couple only along
the ky-axis it is straightforward to evaluate the integral of Eq. (D.4),

C12 = n̄2
∏
d

(�kd)
2 + n̄2h

2

∏
d

σdαd − n̄2h

2

(∏
d

σd

)
αxαzβycos (φL − φR) ,

(D.11)

where αd ≡ (e−2λ2
d − 1) + √

2πλderf(
√
2λd), λd ≡ �kd/2σd , and
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βy ≡ i

√
π

2

e−8A2|kL |2σ2
y

4A|kL|
[
e−i4A|kL |�kyerf

(
�ky + i4A|kL|σ2

y√
2σy

)

− ei4A|kL |�kyerf

(
�ky − i4A|kL|σ2

y√
2σy

)

+ 2cos
(
4A|kL|�ky

)
erf

(
i2

√
2A|kL|σy

) ]
, (D.12)

with A ≡ �(�tfree − t2)/2m + σg,z/2k0
√

π. One can then calculate the remaining
correlation functions Cij in a similar fashion to find the correlation coefficient

E(φL,φR)= C14 + C23 − C12 − C34

C14 + C23 + C12 + C34

∣∣∣∣
(φL,φR)

= hαxβyαz

h
∏

d αd + 2
∏

d (λd)
2 cos (φL − φR). (D.13)

The CHSH-Bell parameter is finally given by

S = 2
√
2

∣∣∣∣∣
hαxβyαz

h
∏

d αd + 2
∏

d (λd)
2

∣∣∣∣∣ . (D.14)

An important result of this model is the prediction that there exists an optimal
free-propagation duration between the π and π/2 Bragg pulses,

�tfree = t2 − mσg,z

�k0
√

π
, (D.15)

for which ϕ(k,k′) = 0 in Eq. (D.8) for all k ∈ V(k1) and k′ ∈ V(k2) and thus
the phase settings retain their original values throughout the integration bin. This
corresponds to A = 0 in Eq. (D.12) and we then find βy = αy. Equation (D.14) is
maximised under this condition and it transforms to

S = 2
√
2

h
∏

d αd

h
∏

d αd + 2
∏

d (λd)
2 , (D.16)

where the dependence on box-size is now characterised completely by the relative
quantity λd = �kd/2σd for all directions, rather than the absolute length scale �ky
as in Eq. (D.14) along the y-axis.

In Fig.D.1a we plot Eq. (D.14) as a function of �tfree and �ky for the case of an
initial BECofN = 1.9×104 atoms to illustrate the effects of the phase drift. As inputs
to the model, the correlation height h and correlation widths σd are extracted from
the numerical data at t1, whilst the rms width σg,z is chosen by fitting the numerically
calculated trapped condensate to a Gaussian. For �tfree satisfying Eq. (D.15), S
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(a) (b)

Fig. D.1 a Correlation amplitude E0 predicted by Gaussian-fit model [Eq. (D.14)] as a function
of the integration bin size �ky and the free propagation time �tfree. Calculations were performed
for an initial condensate of N = 1.9 × 104 atoms and other parameters as per the main text
with h and σd extracted from the stochastic numerical results. The central ridge corresponds to
Eq. (D.16) where the phase drift termϕ(k,k′) is eliminated. bAmplitude of the correlation function
E0 as a function of free propagation time �tfree for an integration volume (�kx,�ky,�kz) =
(0.052, 0.53, 0.47)µm−1 and simulation parameters are as per (a). The predictions of theGaussian-
fit analytic model Eq. (D.13) (grey shaded region) are compared to the numerical results from
stochastic simulations (black circles). The error bars on data points indicate the stochastic sampling
error of two standard deviations obtained from ∼800 trajectories, whilst for the analytic prediction
the uncertainty in E0 (shaded region) is due to the uncertainty in the values h and σd extracted from
the numerical simulations (color figure online)

retains the maximal violation of Eq. (D.16) with the strength only declining due
to a dilution of the correlation as the integration box-size �ky increases. However,
for �tfree away from the optimal value one sees that an increase in the box-size
leads to a rapid decrease in S due to rapid drift of the phase-settings rather than a
dilution of correlation. One can see this by noting that large �ky implies the term
8|kL|2 − 4|kL| · (k − k′) in Eq. (D.8) will take large values near the edge of the
integration volume and ϕ(k,k′) is scaled by this factor, leading to large deviations
from the optimal phase-settings. This is important as it demonstrates that for poor
experimental resolution even small perturbations away from the optimal �tfree can
lead to a quick loss of Bell violation.

FigureD.1b shows results of stochastic numerical simulations for the amplitude
of the correlation function E0, where E(φL,φR) ≡ E0cos(φL − φR), as a function
of �tfree for the same initial BEC. We compare these results to the predictions of
Eq. (D.13) to investigate the applicability of the Gaussian-fit model to a realistic
system. We find excellent agreement, not only for the maximum attained correlation
strength but also for the predicted optimal �tfree. The quantitative match to theory
also implies that the underlying model for ϕ(k,k′) is a good approximation to the
form in the numerical simulations, although this is expected to break down for larger
integration volumes where the assumptions for ϕ(k,k′) in Eq. (D.10) are no longer
satisfied.
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Fig. D.2 Optimal free
propagation time �tfree for a
range of initial BEC atom
number. Numerical results
(black circles) are compared
to the prediction of
Eq. (D.15) from the
perturbative model (dashed
line). The range of N in the
initial BECs corresponds to
those in the main text, whilst
the integration volume is the
same as Fig.D.1b

As the chosen phase angles φL and φR are shown to be unaffected in the final
form of E in Eq. (D.13), it is sufficient to numerically optimise E0 as a function
of �tfree to maximise the Bell violation. In Fig.D.2 we plot the optimal �tfree for
a variety of initial BEC atom number determined from numerical calculations and
compare these to the prediction of Eq. (D.15). Once again we find good quantitative
agreement between the numeric and analytic methods. The numerically determined
optimal �tfree here are used in the simulations of the main text to define the timing
of the application of the π/2-pulse.
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E.1 Simple Results in the Undepleted Pump Approximation

To invoke the undepleted pump approximation, we assume that the pump mode is
initially in a coherent state with an amplitude α0(0) = √

N0 (which we choose
to be real without loss of generality) and that it does not change with time. By
additionally choosing the quadratic Zeeman effect to be phase-matched (q = gN0),
we can reduce the model Hamiltonian to that of optical parametric-down conversion
[1], Ĥ = �χ(â†1â

†
−1 + h.c.), in which χ = gN0. The Heisenberg equations of motion

following from this are dâ±1/dτ = −iN0â
†
∓1, where τ = gt is a dimensionless time.

Solutions to these equations are given by

â±1(τ ) = cosh(N0τ )â±1(0) − i sinh(N0τ )â†∓1(0), (E.1)

which are physically valid in the short-time limit, generally corresponding to less
than 10% depletion of the pump mode occupation.

Considering specific initial states for the signal and idler modes, these solutions
can be used to calculate expectation values of various quantummechanical operators
and observables. For example, for a thermal initial state with an equal population in
both modes, 〈â†1(0)â1(0)〉 = 〈â†−1(0)â−1(0)〉 ≡ n̄th, the subsequent evolution of the
mode populations is given by

〈â†±1(τ )â±1(τ )〉 = sinh2(N0τ )[1 + 2n̄th] + n̄th, (E.2)

whereas the anomalous moments evolve according to

〈â±1(τ )â∓(τ )〉 = −i sinh(N0τ ) cosh(N0τ )[1 + 2n̄th]. (E.3)

Similarly, the EPR entanglement parameter is found to be given by
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ϒ ∼=
[

(1 + 2n̄th)2 + 1
N0

[(1 + 2n̄th) cosh (2N0τ ) − 1] [2 (1 + 2n̄th) cosh (2N0τ ) − 1]

(1 + 2n̄th) cosh (2N0τ ) − 1
N0

[(1 + 2n̄th) cosh (2N0τ ) − 1]2

]2
,

(E.4)

where we have assumed N0 � 1. The minimum value of this quantity (with respect
to time τ ) gives the maximal violation of the EPR criterion,

ϒmin ∼=
⎡
⎣

√
2N0√

1
2N0 − (1 + 2n̄th) − 1

2N0

[
(1 + 2n̄th)3 − (

(1 + 2n̄th)2 + 1
)√

2N0
] − 2

⎤
⎦
2

,

(E.5)

which is achieved at the optimal time

τmin = 1

2N0
arccosh

[
−1

2
(1 + 2n̄th) + 1

2

√
(1 + 2n̄th)

2 + 2N0

]
. (E.6)

From Eq. (E.5) we also determine the maximum allowable thermal population
before EPR entanglement is lost. By numerical analysis we find a maximum seed of

(n̄th)max 
 0.05N2/3
0 in the range 100 � N0 � 400.We find this compares reasonably

with the results of full numerical simulations, which predict (n̄th)max 
 0.06N11/20
0 .

Furthermore we may also calculate the minimum two-mode quadrature variance,

�2X− = 2(1 + 2n̄th)[cosh(2N0τ ) − sinh(2N0τ )], (E.7)

and the inter-mode inseparability parameter (see main text),

��2
2/��2

1 = 1 − tanh(2N0τ ). (E.8)

Despite their limited applicability and the quantitative disagreement with the
numerical results, the analytic predictions of the undepleted pump approximation
give useful insights into the qualitative aspects of differentmeasures of entanglement.
For example, to leading order, Eqs. (E.4) and (E.7) predict, respectively, quadratic
and linear growth of the EPR entanglement parameter and two-mode squeezing with
the thermal seed n̄th, whereas the inter-mode inseparability, Eq. (E.8), is insensitive to
n̄th. The predictions for EPR entanglement and two-mode squeezing are in qualitative
agreement with the numerical results discussed in the main text, whilst we find weak
linear growth with n̄th emerges for inter-mode inseparability due to depletion of
the pump. These qualitative predictions highlight the lower tolerance and higher
sensitivity of the EPR entanglement to thermal noise.
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