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Abstract. In this study, the mechanisms of some creatures’ behaviors
collaborated in swarm are applied to the coordination of swarm robots,
especially for them to search target. Three typical biology-inspired algo-
rithms, i.e., Particle Swarm Optimization, Ant Colony Optimization and
Genetic Algorithms, are thus compared, systematically. Corresponding
tasks and mathematical models are set up. Based on the experimental
work within MATLAB, the performances of the concerned algorithms on
the difficulty of task mapping, adaptability for various terrains, as well
as convergence and stability are elaborately analyzed and verified, which
is helpful for designing real physical swarm robotic systems.
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1 Introduction

A single robot has restrictions and limitations in acquiring and processing infor-
mation, thus it is not suitable to deal with complicated works and face to the
fast changing environments. However, this situation motivated many researchers
to start the study of multi-robot system at the 1980s. Gradually, two special-
ized subjects, namely swarm robotics and swarm intelligence, were born. Under
collaboration, a swarm of robots with inferior abilities for each can fulfill some
complicated tasks that a single but superior and expensive robot cannot. As for
now, many robots such as e-Puck [1], s-bot [2] are designed and created for the
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research of swarm robots. A swarm of simple robots can be designed and manu-
factured more easily and cost less. Moreover, swarm robots also outperform on
robustness, scalability, flexibility [3]. Therefore, swarm robots are used widely.

Swarm robots demonstrate novelties on collaboration among massive robots,
which are often inspired from biologically collective behaviors. In term of
mechanisms of these collective behaviors, many swarm intelligent algorithms
have been constructed, such as, Particle Swarm Optimization/PSO [4], Ant
Colony Optimization/ACO [5], Genetic Algorithms/GAs [6], and Bacterial Forg-
ing Algorithm [7]. Having neither centralized control nor complete environment
information, swarm intelligence technology brings a new way of solving compli-
cated problems by taking the advantage of its scalability. Up to now, swarm robot-
ics research has accumulated some benchmark tasks such as aggregation, area cov-
erage, mapping, searching, navigating and locating leakages [8—10].

Different swarm intelligent algorithms have different features. However, to
the best of our knowledge, the research of a systematically comparison of these
algorithms applied to swarm robots have rarely been studied. So this study aims
to discover the differences of PSO, ACO and GAs when they are applied to
swarm robots in searching one or more targets.

Section 2 presents the task mapping models and mathematical models of the
studied algorithms as well as some improvements. In Sect. 3, it makes a quantity
of simulation in various environments containing obstacles and analyzes the per-
formance of the three concerned algorithms. Conclusions are given in Sect. 4.

2 Models

2.1 Particle Swarm Optimization

The task environment of this work is a two-dimensional space with obstacles.
The velocity of the particles in PSO are updated by
VI = wVF 4 enrf (XPS0F — XF) + eorloy (XD000 — XF) (1)

i,local

where Xf is the position of particle ¢ at kth iteration, Vik is the velocity of

particle ¢ at kth iteration. One saves X b‘;ztlf as the individual best position, and

i
best,k
i,local

are referred to as cognitive scaling and social scaling factors, r¥,, 7%, are two
independent random parameters. The position of particle ¢ is given by

is the best position among particles. Here w is an inertia weight, c1, co

XFH = XE VAL (2)

where At is a time step that usually is 1 and thus is omitted often.
Parameter w represents the inertia of the particles, and be calculated by

Wy — w
wz%X]’—l—wl. (3)

Here e is the maximum steps, j is the current step, w; = 0.4, wy = 0.9.
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The shape of obstacles in real environments is irregular. We shape obstacles
with regular boundaries, and categorize them into convex and non-convex, as
shown in Fig. 1. Considering braking and signals delay, the extended obstacle
areas are set up [11]. When one robot detects obstacles in front, it responds to
avoid obstacles by slowing down and rotating itself. This study takes 10° for
each rotation.

When updating positions, these robots with physical volume should pay
attention so as to keep a safe distance to their peers. In Fig.2, a mutual col-
lision between robot 1 and robot 2 may happen since robot 1 is entering the
warning zone of robot 2. Similar to static obstacles in practical environment,
robot 1 takes actions to avoid collision with robot 2. After several rational tries
(maximum 18 times), if the robot still can’t find a suitable collision free path, it
will stay there instead of updating for the current step. In this study, one robot
is represented by one particle.

2.2 Ant Colony Optimization

Here, the robot is assumed as a circular with radius R and searches in a two-
dimensional space which is divided into an M x N(M = N = 10) grid, see
Fig.3. All grids have the unit length §, and consist of barrier grids and free
grids. Barrier grids can be used to complement the irregular boundary of the
environment area as well, besides of indicating obstacles. One obstacle occupies
one or more grids. If some part of the obstacle is not enough to fill a grid, it will
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be considered as a complete grid. According to [12], if a robot stands at node 1,
its next node j is governed by

argmax{Tias(t)n'ﬁ (t)}7 ERS A7q S qo

Jj= P = ' )(,else ) (4)

where ¢ ~ (0,1) is an random variable, gg is a constant ranges from 0 to 1,
s is one element of A which contains all candidate nodes for node 4, 77(%),

77? <(t) represent the pheromone concentration and the heuristic information,
respectively, from node 4 to node s in which 7%(¢) and 775 4(t) are corresponding
coefficients. Here argmax{r{fs(t)nf <(t)} means the corresponding node s reach

the maximum of Tﬁs(t)nf 4(t), P; 5 is the probability that node s is selected as
the next position for node i. When the robot is trapped into a valley (see node
3 in Fig.3), it sets the node 3 as a barrier grid, and goes back to the previous
node.
The heuristic information is calculated according to a heuristic algorithm
summarized by
Ni,s = D/ds,G ’ (5)

where D is the weight coefficient and ds ¢ indicates the distance between the
node s and target node G. After one iteration, the pheromone concentration
needs to be updated by

Tij(t4+1) = (1 — @)1 5(t) + ATy 5, (6)
Aryj = Aty (7)
=1

where 7; ; represents the pheromone concentration on the path from node ¢ to
node j before updating, ¢ refers to the pheromone evaporation factor, and m
is the robot number, Ar; ; is the pheromone that robot k leaves on the path
from node ¢ to j, Ar; ; is the sum of pheromone of all robots at current iteration
which is a constant @ in this study.

Each robot selects the next node from the four directly adjacent grids. There-
fore, the path is composed by a series of perpendicular segments. An optimized
path will be obtained when the redundant nodes are deleted, see Fig. 4.

2.3 Genetic Algorithms

Genetic algorithms are applied to solve robot path planning in this section via
using the grids map model as same as for ACO. One chromosome represents
one path and the genetic information on which is the coordinate values of path
nodes. All these path nodes form the complete path.
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A geometric obstacle avoiding method is proposed in [13] by inserting some
nodes along the direction perpendicular to the connection line of two nodes. The
inserted nodes should be on the same side. This study proposes a new method
for judging if the later node is on the same side with the formers. In Fig. 5, since
the path from node A to node B collides to one obstacle, node C' is inserted
firstly, which is in the free area and on the line perpendicular to the connection
between node A and node B. After this, node D rather than node F, is inserted

—_— — — — —_— =
since the sign of AD - DC' is same to that of AC' - CB, and the sign of AF - FB
is in opposite to AC - CB. Finally, a free path A — D — C — B is generated.

To prevent the optimal path from destroying in GA operation, the selec-
tion operator endowed with elitist strategy is considered. This study uses the
crossover of finding an intersection point(node) of two parent paths, then
exchange mutually all of the rest path nodes after this node. And one-point
mutation is adopted, which randomly choose one node on the original path,
then replace it with another node which is near to the original one and locates
in a free grid. The insert mode of genetic operator is chosen as that those out-
standing individuals are added into parent population to generate a new one.

3 Simulation and Comparison

Parameter settings of the three algorithms are listed in Table 1. The simulation
environment is set as 10mx10m. All of these parameters for each algorithm are
carefully selected to fit the current condition and make each algorithm currently
optimized.

3.1 Comparison of Environmental Adaptability

The terrains are usually very complex in practical environment, thus the envi-
ronment adaptability of robot has significant influence on the accomplishment
of tasks. This study sets up three kinds of environments to test the concerned
algorithms.

(1) Comparison in the environment with convex obstacles
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Table 1. Parameters list for experiments

Types | Parameters Values

PSO | maximal velocity (m/s) 0.1
safety distance between robots (m) 0.3
safety distance between robot and obstacle (m) | 0.2
inertial parameter (w) 04-0.9
individual weight (c1) 1.0
neighbor weight (c2) 1.0

ACO | pheromone increment factor 0.001
pheromone evaporation factor 0.1
probability selection parameter (qo) 0.8
pheromone concentration weight («) 1
heuristic information weight () 1

GAs | selection probability 0.9
cross probability 0.7
mutation probability 0.3
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(a) The beginning of the run

The first environment contains only convex obstacles, see Figs. 6, 7, 8, and 9.
The target is purposely placed at location (9.5,9.5). The initial position and
velocity of PSO are randomly generated, while for GA and ACO the initial points
are set at the location (0.5,0.5), which are far away to the target. Figure 6 shows
a running progress with 20 particles based on PSO. At the very beginning, the
particles are randomly distributed. With the progress of iteration, all particles
gather near to the target and keep a certain distance from each. Figure 8 shows
the trajectory of 3 particles (robots), and obviously indicates that all robots
have successfully avoided the static obstacles based on PSO. Figure 7 shows the
result based on ACO, in which “()” and “5/” represent the start point and the
target, respectively. It is obvious that the path in Fig. 7(b) is more smooth than

10

Fig. 6. The motion process of all robots

(b) The end of the run

that in Fig. 7(a). GA has also gained a collision free path, see Fig.9.
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(a) The original path (b) The optimized path

Fig. 7. Path planning result based on ACO
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Fig. 8. Trajectories of robots based on Fig. 9. Path planning based on GA
PSO

(2) Comparison in mixed-obstacle environment

In this kind of environment, there are convex and non-convex obstacles which
increase the difficulty of target searching. In Fig. 10, most of particles based on
PSO have reached the target after certain iterations, but a few of particles fail
and fall into corners, like the top-right corner in Fig. 10(b). It indicates that PSO
has limitation to handle this situation. It is even more restricted in an environ-
ment with U-shaped obstacles. Ant colony optimization also performs well in
the second environment, see Fig.11. Compared with the path with redundancy
nodes, the optimized one is better on the path length and smoothness, which
shows the necessity of removing redundant nodes. Figure 12 displays the path
planning result of GA in mixed-obstacle environment. It indicates that the geo-
metric method for obstacle avoidance has a strong generality and adaptability
to the environment with convex and non-convex obstacles.

(3) Comparison in the environment with U-shaped obstacles

Compared to the previous two types of obstacles, the U-shaped obstacle
brings a lot of difficulties for target searching. To verify the search ability of
algorithms as possible as one can, in this paper the initial point is set inside
the U-shaped area, at (4.5,4.5), and the target point is set at outside of the
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Fig. 10. The motion process of all robots based on PSO

10
(a) The original path (b) The optimized path

Fig. 11. Path planning result based on ACO
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Fig.12. Path planning of GA in Fig. 13. Path planning of GA in U-
mixed-obstacle environment shaped obstacle environment

U-shaped, at (4.5,8.5). Other conditions are same to the previous cases. As
shown in Figs. 13 and 14, GA and ACO are also feasible to the big U-shaped
obstacle. In Fig. 15, most of particles have arrived the target point, but there
are still a certain particles stuck in the U-shaped obstacle.
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Fig. 14. Path planning result based on ACO
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Fig. 15. The motion process of all robots based on PSO

3.2 Convergence Comparison of the Studied Three Algorithms

The convergence speed is one of the evaluation criteria of algorithms and affects
to the computational efficiency. As the iteration runs, the trend of the optimal
solution can reflect the convergence feature. In Fig. 16, the optimal objective
function value approach to 0 after 100 iterations, which means that the target is
found. Overall, the convergence trend of PSO is distinct and the converge speed
is fast. However, in some complex environments such as the U-shape obstacle
environment, some individuals are easily fall into local optimum. ACO has a
feature of convergence gradually, shown in Fig.17. In the first 20 iterations,
the path length varies greatly, fluctuates wildly and its convergence trend is not
obvious. After all, ACO still converges to the optimal solution at a relatively fast
rate. Genetic algorithm hardly converge to an optimum solution, see in Fig. 18,
the shortest path is irregularly changing without a tendency of convergence.
The reason is that many operations of GA have large randomness, such as the
crossover or mutation.
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3.3 Stability Comparison of the Studied Three Algorithms

Stability is another important evaluation criterion of the algorithms. Each of
three algorithms is evaluated independently with 100 runs in the three types of
environments. As one can see from Fig. 19, PSO has a good stability in three
environments, especially for the mixed-obstacle environment, which has only a
standard deviation of 6.23E-04. It shows that swarm robots based on PSO can
find stably the target from the perspective of swarm performance. The stability
of ACO in the environment with U-shaped obstacles is much better than that
in other two environments. The reason is that there are more obstacles in the
latter two environments and more various paths are produced after optimization.
Therefore, the shortest path is varying heavily. Genetic algorithm demonstrates
the instability in three environments on account of its large standard deviation
that is related to its big randomness.

4 Conclusion

In this study, PSO, ACO and GAs are applied to the swarm robots target search-
ing and path planning. Through a quantity of simulation and analysis, the per-
formances of the three algorithms are compared on adaptability, convergence
and stability.
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The results show that the convergence and stability of PSO are good in
the environment with convex obstacles. However, when it comes to non-convex
obstacles and large U-shaped obstacles, the basic PSO has difficulty in solving
this kind of problem in which particles are easily trapped at obstacles. Ant colony
algorithm has a good adaptability to the environment change in this study, but
it mainly aims at discrete space and its calculation time is longer than others.
Compared with the other two, GAs model is more complex and the quality
of initial population has a great influence on the final solution. The geometric
method for obstacle avoidance which is used in this study has advantages of
generality and good adaptability. The future work will concentrate on including
more properties of practical robots into the studied algorithms.
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