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Abstract. Data models are a central piece in information systems, being the
relational data models very popular and extensively used. In Big Data, and due
to the characteristics of the NoSQL databases, the data modeling task is seen in
another perspective, as those databases are considered schema-free. Neverthe-
less, these databases also need data models that ensure the proper storage and
querying of the data. Considering the vast amount of relational databases and the
ever-increasing volume of data, the importance of data models in Big Data
increases. In this work, a specific set of rules is proposed for the automatic
transition between a traditional and a Big Data environment, considering two
specific objectives: the identification of a columnar data model for HBase
supporting operational needs and the identification of a tabular data model for
Hive supporting analytical needs. The obtained results show the applicability of
the proposed rules and their relevance for data modeling in Big Data
environments.
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1 Introduction

Organizations are constantly being challenged in several areas, and the challenges
emerge from the markets, stakeholders, information technologies, business needs,
among others. In what concerns information technologies, the evolution in the capacity
to collect, store and process data has started the need of developing new environments,
using different technologies, which require a redesign of the organizations’ information
systems, and their business intelligence and analytics capabilities [1].

Data models are a central piece in information systems design and development,
and their analytical capabilities, as they ensure that data needs are properly considered.
In a traditional organizational environment, the relational data models are very popular
and are defined following strict rules about the requirements these models should
consider. However, when we move to an emergent context like the one represented by
Big Data, and due to the characteristics of the NoSQL databases, the data modeling
task changes of perspective, as those databases are schema-free. This means that the
data model can change in runtime, due to the needs of data storage or analytical tasks.
The models, in this context, are designed considering the queries that need to be
answered [2]. Although schema-free, these databases do need data models that ensure
the proper storage of the data and their search with specific queries.
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If we think on the vast amount of relational databases already implemented and
foresee the need of transferring these databases to a columnar format, due to the
ever-increasing volume of data, for instance, the importance of data models in Big Data
increases. In contexts where we are expecting a fast transition from one environment to
the other, the proposal of objective rules for this transition will benefit the users and
will ensure proper data handling.

In this paper, a specific set of rules is proposed for a transition between a traditional
organizational environment and a Big Data environment, considering two specific
objectives: the identification of a columnar data model supporting operational needs
and the identification of a tabular data model supporting analytical needs, both in Big
Data contexts. While the first is suited to be implemented in a NoSQL database like
HBase, the second is the basis for the data warehouse storage of Hive.

This paper is organized as follows. Section 2 presents related work. Section 3
describes the definitions and rules proposed for the automatic transformation of models.
Section 4 uses a demonstration case to show the applicability of the proposed
approach. Section 5 concludes with some remarks and guidelines for future work.

2 Related Work

In a Big Data context, where NoSQL databases are usually used, logical data models
are schema-free, meaning that different rows in a table may have different data columns
(less rigid structures) or that the defined schema may change on runtime [3]. In
practical terms, those databases do have a data schema, but its definition follows a
different approach. Instead of reflecting the relevant entities in a particular domain and
the relationships between those entities, for instance, data schemas are defined having
into consideration the queries that need to be answered, being data replicated as many
times as needed, as long as the queries can be quickly answered. In this context, all
queries that need to be answered must be known in advance [4], which could be a
drawback if we consider analytical environments where data is available but the ana-
lytical needs depend on many different users and different contexts.

The work of [4] proposes an algorithm that automatically determines the most cost
efficient data structure for a selected subset of NoSQL data stores, where cost efficiency
is calculated based on the fees the developers need to pay in a cloud environment,
which charges users based on the size of the stored data and the queries that need to be
performed. This work uses the column-oriented data stores of Windows Azure
Table and Amazon DynamoDB. The proposed approach starts from a predefined
relational data schema and a set of queries, and performs automatic schema denor-
malization to find the optimal storage schema regarding a given query load. Also,
mappings from the original queries to the newly created schemas are provided [4]. In
this work, it is important to point out that queries must be known beforehand and that
the proposed algorithm performs heavy denormalization, not optimizing the different
number of generated data schemas.

Another work that proposes a heuristic-based approach for transforming a relational
database into a columnar database, for HBase, is [3], and includes two phases. In the
first one, three guidelines are used for transforming the relational database into the
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HBase schema. In the second one, relationships between the two schemas are
expressed and used to create a set of queries that transform the source relational data
into the target representation. In the first phase, the authors recognize that business
requirements and access/write patterns of the application are needed, and that this work
is done by application experts, not proposing a semi-automatic or automatic process for
dealing with the whole transformation.

The work of [5] recognizes that the design of big data warehouses differs con-
siderable from traditional data warehouses, as their schema should be based on novel
logical models that allow more flexibility than the relational model does. The authors
propose a design methodology for the representation of a multidimensional schema at
the logical level based on the key-value model. The proposed methodology is con-
sidered hybrid as integrates a data-driven approach design, using data repositories as
main source of information, and a requirements-driven approach design, using infor-
mation of the decision makers. In this case, the needs of decision makers are inves-
tigated, requiring additional information, besides input data models.

3 Data Schemas in Big Data Environments

With the advent of Big Data, the ability to collect, process and store data increases in a
context where NoSQL databases are schema-free, allowing the storage of huge
amounts of data without many concerns about the data structure. Those concerns
emerge later on a schema-on-read approach, in which data is parsed, formatted and
cleaned at runtime. Although having fewer concerns at the beginning of the collection
phase, this adds several tasks latter when there is the need to develop specific appli-
cations to analyze the data. At some point, these schema-free repositories need to be
transformed into some structured data model that allows data analysis by the users.

Considering that in a Big Data context there is the need to add structure to the data
when analytical tasks need to be performed, this paper proposes a transformation
process that leverages data modeling capabilities to the Big Data environment. The
advantage of the proposed approach is that it considers all the business needs expressed
in the operational data model that supports on-line transaction processing (OLTP) and
uses that information for identifying useful data schemas in Big Data when analytical
capabilities are needed. In this paper, a relational data model is used to automatically
identify the appropriate data models in a NoSQL context, using the columnar data
model of HBase and the tabular data model of Hive, here for a Big Data Warehouse
context (BDW). In an operational context, those columnar data models allow data
analysis in a real-time fashion, while the BDW allows analytical processes that run in a
periodic fashion.

3.1 From an Operational Data Model to a Columnar Model

A column-oriented database in a NoSQL context is constituted by a set of tables
defined row by row, but organized by groups of columns usually named column-
families. This organization is followed by HBase and makes a vertical partitioning of
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the data. Each column-family may contain a variable number of columns and allows
the lack of some columns between different rows of a same table [6]. Given this
context, following are presented definitions and rules to formalize the transformation of
a Relational Data Model to a Columnar Data Model.

Definition 1. A Relational Data Model, RDM = (E,A,R), includes a set of entities
E = {E'E? ... E"}, the corresponding attributes, A = {A' A% ... A"}, where A! is
the set of attributes for entity E', A' = {A};A} .../ Al}, and a set of relationships
among entities R = {R}(c,|ca), Ry (colca), - R (colca)}, where R express a rela-
tionship between E™ and E' of cardinality c, in the origin entity E” and ¢, in the
destination entity E'. Cardinalities can be of type 1 : n, m : nor 1 : 1, with the optional
0 when needed.

Definition 2. A Columnar Data Model, CDM = (T, CF), includes a set of tables
T = {T',T?,...,T"}, where each table integrates a key and a set of column-families,
as T' = {keyi ,CF',...,CF ’”} Each column-family integrates a set of columns rep-

resenting the atomic values to be stored, CF/ = {le, . C]k}

Rule CDM.1. Identification of Column-Families. The identification of column-
families of a CDM follows a two-step approach:

Rule CDM.1.1. Identification of Descriptive Column-Families. Each entity only
receiving cardinalities of 1 (¢, =1 and ¢; = 1) in the RDM corresponds to a
descriptive column-family in the CDM, as this entity is used to complement the
description of other entities (entity usually derived from the normal forms). The
attributes of a descriptive column-family are constituted by the set of non-key attributes
(excluding primary or foreign keys) present in the corresponding entities in the RDM.

Rule CDM.1.2. Identification of Analytical Column-Families. All entities present in
the RDM and not identified by Rule CDM.1.1 as descriptive column-families, give
origin to analytical column-families integrating the indicators or measures that can be
analyzed considering the several descriptive column-families, as long as those entities
have attributes of the relationships they are representing, which means that besides keys
(primary or foreign), these entities need to integrate other attributes. The attributes of
analytical column-families are constituted by the set of non-key attributes (excluding
primary or foreign keys) present in the corresponding entities in the RDM.

Rule CDM.2. Identification of Tables. Two types of tables are proposed for a CDM
supporting an operational system:

Rule CDM.2.1. Descriptive Tables. Descriptive tables are those tables that support
specific data management tasks in an operational system. Correspond to the
column-families identified by Rule CDM.1.1.

Rule CDM.2.2. Analytical Tables. For the identification of the set of analytical tables
there is the need of identifying the data workflows present in the RDM and, from the set
of data workflows, those that are able to represent all the data circulating in the RDM.
For identifying the data workflows of a RDM, all entities receiving only cardinalities of 1
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(used to identify the descriptive column-families by Rule CDM.1.1) start a data
workflow following the /:n relationships associated to it, and all other /:n relationships
that follows. The data workflow ends when a n:/ relationship is found, meaning that it
was possible to join a coherent piece of information that is related with each other and
that was split in the RDM by the normalization forms. All identified workflows that are
not fully contained by other workflows give origin to analytical tables.

Rule CDM.3. Integration of Column-Families into Tables. A specific table inte-
grates a key, which is a very important component of a table in a CDM, and a set of
column-families, which may vary depending on the type of table.

Rule CDM.3.1. Column-Families of Descriptive Tables. A descriptive table
includes as a column-family, the column-family derived from the corresponding entity
in the RDM (Rule CDM.1.1).

Rule CDM.3.2. Column-Families of Analytical Tables. An analytical table includes
as column-families all the descriptive and analytical column-families associated with
the entities included in the data workflow that gave origin to a specific table.

Rule CDM 4. Definition of the Tables’ Key. A table’s key should be able to assure
an adequate performance throughout read and write access patterns from the applica-
tion. The key represents a set of one or more attributes (concatenated) that have the
potential to form a natural key that properly identifies each row in the CDM. This key
must serve the applications’ get, scan and put patterns, keeping them as short as
possible, while maintaining the potential for adequate access patterns [6]. The order in
which the attributes are concatenated plays a relevant role in the design of the key,
since HBase stores keys in a sorted order [7].

To exemplify the proposed rules, let us consider a small example in which the RDM
is represented by the relational data model depicted in Fig. 1.

Customers Orders OrderProducts Products
CustomerID (PK) OrderlD (PK) OrderD (PK,FK) ProductID (PK)
CustomerName CustomerID (FK) — }<{ProductID (PK,FK) BO——FHHProductName
CustomerAge Date Quantity ProductPrice
CustomerGender Ordervalue ProductSKU
CustomerTaxNum

Fig. 1. Example of a RDM for orders

Taking into consideration the rules expressed for the transformation of a RDM into
a CDM, the obtained model is depicted in Fig. 2, where the descriptive column-
families Customerscr and Productscr (Rule CDM.1.1) are identified. By
Rule CDM.1.2, the analytical column-families Orderscr and OrderProductscr are
identified. For tables, the tables of the CDM include as descriptive tables Customery
and Productsy (Rule CDM.2.1). For analytical tables, two data workflows are identi-
fied, one starting in Customers and ending in Products, and the other starting in
Products and ending in Orders (Rule CDM.2.2). However, as these workflows overlap,
being one completely contained by the other, the contained one must be ignored.
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This leads to the identification of one analytical table, here named as Ordersy. The
integration of the column-families in the corresponding tables is achieved following
Rule CDM.3. Rule CDM.4 must form a concatenated key obtained from the available
attributes, as shown in Fig. 2. In the case of the customers’ key, as well as in other
keys, it might be needed to use the inverse of the key (with regard to the Cus-
tomerTaxNum), to avoid the creation of hot regions in the storage cluster.

Table Customers Table Products

Key Customers Key Products
CustomerAge
CustomerTaxNum ProductSKU
ProductSKU
Table Orders
Key Customers Orders OrderProducts Products
RICCRC SR CustomerGender Ordervalue
ProductSKU
e ]

Fig. 2. Resulting CDM for orders

3.2 From a Columnar Model to a Tabular Data Model

In an analytical context for decision support, it is expected that the user could ask for
aggregates based on the available data. In this work, it is proposed that the data
warehouse model in the Big Data context, using Hive, be created based on the NoSQL
columnar model (CDM). Hive [8] is a data storage mechanism in Big Data environ-
ments used as a data warehousing software that facilitates querying and managing large
datasets that are in distributed storage [9]. Having the data in a distributed file system,
Hive adds structure to the data and allows querying through the use of the HiveQL
(Hive Query Language), a SQL-like language [10].

At this point, the CDM enables the derivation of a tabular data model that is
formally defined as follows.

Definition 3. A Tabular Data Model, TDM = (T, C), includes a set of tables T =
{T',72,...,T"}, where each table integrates a set of columns, T* = {C',...,C"},
storing the atomic values.

Rule TDM.1. Identification of Tables. All the analytical tables in a CDM give origin
to tables in the TDM, as those will include the relevant data for data analysis and
decision support.
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Rule TDM.2. Identification of Columns. The identification of columns for each table
identified by Rule TDM.1 follows a two-step approach.

Rule TDM.2.1. Identification of Descriptive Columns. The attributes that integrate
the several descriptive column-families of the CDM give origin to descriptive columns
of a table in the TDM.

Rule TDM.2.2. Identification of Analytical Columns. The attributes that integrate
the several analytical column-families of the CDM give origin to analytical columns of
a table in the TDM. As the TDM contains data that can be aggregated, the user can
adopt different aggregation functions as SUM, MIN, MAX, AVG or COUNT to
summarize the analytical columns.

Considering the example presented in previous subsection, one table is identified to
be included in the TDM (Fig. 3), Ordersy (Rule TDM.1). For Ordersy, the descriptive
attributes CustomerName, CustomerAge, CustomerGender, CustomerTaxNum, Date,
ProductName, ProductPrice and ProductSKU are identified as descriptive columns
(Rule TDM.2.1), while Quantity and OrderValue are identified as analytical columns
(Rule TDM.2.2). These analytical columns can now be manipulated in Hive, providing
different analytical perspectives with different aggregations.

Table Orders

Customer Customer Customer Customer Product Product Product Order
SKU

Name Age Gender TaxNum Date Name Price Quantity Value

Fig. 3. Resulting TDM for the orders

4 Demonstration Case

This section presents a more complete example of the model transformations proposed
in this paper, for defining the data models in a Big Data environment taking into
consideration an operational data model expressed in relational data model. The RDM
used as starting point is presented in Fig. 4, from [11]. The model integrates eight
entities, several attributes, and the relationships among the entities.

From this data model, we will start by the rules expressed in Sect. 3.1 for the
identification of a columnar NoSQL data model. The descriptive column-families
present in the diagram of Fig. 4 are Hotelscp, POIscr, Guestscr and Amenitiescr (Rule
CDM.1.1) as these entities only receive relationships with cardinality of 1. All other
entities in the model give origin to analytical column-families (Rule CDM.1.2), namely
Roomscr and Reservationscr (HotelPOIs and RoomAmenities are not identified as
column-families as they do not integrate other attributes besides keys). The attributes of
these column-families are the attributes of the corresponding entities in the RDM,
excluding the keys, either primary (PK) or foreign (FK) keys. Regarding Rule CDM..2,
the descriptive tables are Hotelsy, POIsy, Guestsy and Amenities associated with the
identified descriptive column-families (Rule CDM.2.1), while for the identification of
the analytical tables there is the need of identifying the data workflows of the RDM
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Hotels
HotelID (PK) Rooms Reservations Guests
HotelName
HotelAddress | | | RoomID (PK) RoomID (PK,FK) | | || GuestiD (PK
HotelPhone T T<] HotelID (FK) GuestID (PK,FK) P 1] GuestName
HotelCity RoomNumber StartDate GuestEmail
HotelState RoomRate EndDate GuestTaxNum
HotelTaxNum
POIs -
——— Amenities
HotelPOIs POIID (PK.FK) RoomAmenities
HotellD (PK,FK) P t PoIName | 1| AmenitylD (PK)
POIID (PK,FK) POIDescription RoomiD (PK,FK) J | AmenityName
i POICode AmenitylD (PK,FK) AmenityCode

Fig. 4. RDM for the hotel’s demonstration case (Adapted from: [11])

(Rule CDM.2.2). Starting by all entities only receiving relationships with cardinalities
of 1, Fig. 5 presents the three identified data workflows, which lead to three analytical
tables from now on named Reservationsy, RoomAmenities and HotelPOlIsr.

Hotels

Data Workflow 2 Data Workflow 3

Fig. 5. Data Workflows for the RDM

Having identified the column-families and the several tables, it is now time to
assign to each table its respective column-families. Each descriptive table integrates a
column-family derived from its corresponding entity. For the analytical tables,
Reservationsr integrates four column-families, Hotelscr, Roomscr, Reservationsr and
Guestscr, RoomAmenitiesy integrates two column-families, Roomscp and Amenitiescr,
and HotelPOlsy also integrates two column-families, Hotelscr and POIscp. Figure 6
depicts the identified CDM with the seven resulting tables.

Looking to the obtained model, and comparing it with the one presented in [11], it
was possible to see that although both models present the same number of tables,
seven, they are organized in a different way. Nevertheless, both are able to answer the
same questions. At this point, it is important to mention that there are many possible
ways to organize a columnar data schema [11]. In this paper, we presented one that was
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Table Hotels Table Reservations
Key Hotels Key Hotels Rooms Reservations Guests
HommINGres HotelAddress
HotelName +
HotelName+ HotelPhone HotelTaxNum+ HotelPhone [ RoomNumper ] [ saroae ]
HotelTaxNum GuestEmail
HotelCity ReomNUMBE HodGity oo l ow | [ cuestemail ]
StartDate loomRate ndDate
HotelState
[ toresiae ] HotelState GuestTaxNum
HotelTaxNum HotelTaxNum
Table Amenities Table POIs Table RoomAmenities
Key Amenities Key POIs Key Rooms Amenities
| 1| |
AmenityName + POIName + POIDescription Ami -
lenityCode+
A [
koo Focee Cromtne ] | [Camenvcos |
POICode
Table Guests Table HotelPOls
Key Guests Key Hotels POIs
N
Horengares
GuestName+ GuestEmail \:]
Hotel TaxNum+ POIDescription
GuestTaxNum POIName HotelCity
GuestTaxium POICode

Fig. 6. CDM for the hotel’s demonstration case

obtained through an automatic process that aims to help the users or data modelers in
this task.

After the identification of the CDM, it is possible to proceed with the rules specified
in Sect. 3.2 for the identification of a TDM. In this model, given the characteristics of
Hive as a data warehouse for Big Data contexts, Rule TDM.1 allows the identification
of the Hive tables based on the analytical tables of the CDM, which leads to the
identification of Reservationsy, RoomAmenitiesy and HotelPOlsy. By Rule TDM.2,
these tables will integrate several descriptive columns derived from the descriptive
column-families Hotelscr, POIscr, Guestscr and Amenitiescr (Rule TDM.2.1) and
analytical columns derived from the analytical column-families Roomscp and Reser-
vationscr (Rule TDM.2.2). For these analytical tables, Fig. 7 presents the obtained

Table RoomAmenities Table HotelPOIs

Room Room Amenity | Amenity Hotel Hotel Hotel Hotel Hotel Hotel POI POI POI
Number Rate Name Code Name Address Phone City State TaxNum Name |Description Code
Table Reservations

Hotel Hotel Hotel Hotel Hotel Hotel Room Room Start End Guest Guest Guest

Name Address Phone City State TaxNum Number Rate Date Date Name Email TaxNum

Fig. 7. TDM for the hotel’s demonstration case
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5 Conclusions

This paper presented a specific set of rules in a two-step approach for identifying a
columnar data model suited to be implemented in HBase, and a tabular data model
prepared to be implemented in Hive. Both consider that there are organizational con-
texts where an operational database cannot continue to be supported by a relational
database in a traditional technological environment, and that the transition for a Big
Data context is needed. In this case, this work proposes the columnar data model for
supporting operational tasks, while the tabular data model can support analytical needs
in a data warehouse environment for Big Data.

As advantages of the proposed approach we point out that the process is fully
automatic, guiding the identification of the tables of the columnar data model, as well
as their column-families, using as input the information available in a relational data
model. Moreover, a process to generate the key of these tables is also suggested, due to
the importance of the key in searching for data. Using the information of the columnar
data model, the transition for a tabular data model is also addressed in an automatic
way. Besides these, it is an integrated process that considers all the data needs
expressed in the relational data model, ensuring that the business needs that were
initially modeled are still applicable.

As future work, it is planned the application of the proposed approach to a more
complex scenario, in order to complement this work. Other data models, like the one
supported by Cassandra, should also be considered, as well as other particular orga-
nizational needs that may be expressed in the relational data model used as input of the
proposed process.
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