
LMHS: A SAT-IP Hybrid MaxSAT Solver

Paul Saikko, Jeremias Berg, and Matti Järvisalo(B)

Helsinki Institute for Information Technology HIIT,
Department of Computer Science, University of Helsinki, Helsinki, Finland

matti.jarvisalo@cs.helsinki.fi

Abstract. We describe LMHS, an open-source weighted partial
maximum satisfiability (MaxSAT) solver. LMHS is a hybrid SAT-IP
MaxSAT solver that implements the implicit hitting set approach to
MaxSAT. On top of the main algorithm, LMHS offers integrated pre-
processing, solution enumeration, an incremental API, and the use of a
choice of SAT and IP solvers. We describe the main features of LMHS,
and give empirical results on the influence of preprocessing and the choice
of the underlying SAT and IP solvers on the performance of LMHS.

1 Introduction

LMHS is a weighted partial maximum satisfiability (MaxSAT) solver. Weighted
partial MaxSAT is a common generalization of maximum satisfiability that
allows some clauses to be designated as mandatory and assigns weights to clauses
that may be left unsatisfied. LMHS implements the so-called implicit hitting set
approach [16,18] for weighted partial MaxSAT, and can be viewed as an inde-
pendent from-scratch re-implementation of the MaxHS solver [8–10]. On top
of the main algorithm, LMHS integrates MaxSAT preprocessing [3–6] into the
solver, and offers solution enumeration, an incremental API, as well as the use
of a choice of SAT and IP solvers. The solver entered the 2015 MaxSAT Evalua-
tion [2], where it solved the most problems (among non-portfolio solvers) in the
crafted and industrial weighed partial MaxSAT categories. This paper gives an
overview of key features of the LMHS solver as well as the effects of preprocess-
ing and the choice of the SAT and IP solvers on its performance.

2 Overview of LMHS

LMHS implements an instantiation of an implicit hitting set algorithm [16]
for weighted partial MaxSAT, following MaxHS [8–10]. Given an unsatisfiable
CNF formula F , the MaxSAT problem is to identify a minimum (minimum-cost

Work funded by Academy of Finland, grants 251170 COIN, 276412, and 284591; and
Doctoral School in Computer Science DoCS and Research Funds of the University
of Helsinki.

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 539–546, 2016.
DOI: 10.1007/978-3-319-40970-2 34

540 P. Saikko et al.

Algorithm 1. The MaxHS implicit hitting set algorithm for MaxSAT [8].
1: function MaxHS(Fh, Fs, c)
2: K ← ∅, H ← ∅
3: (sat, κ, τ) ← SolveSAT(Fh ∪ Fs)
4: while not sat do
5: K ← K ∪ {κ}
6: H ← SolveMCHS(K, c)
7: (sat, κ, τ) ← SolveSAT(Fh ∪ (Fs\H))

8: return τ

for weighted problems) set H of (soft) clauses such that F\H is satisfiable. A
connection to implicit hitting set problems comes from the unsatisfiable subsets
of clauses, or cores κ, or the formula. The set of clauses H must hit a clause from
each core κ, so an optimal MaxSAT solution can be obtained by computing a
minimum-cost hitting set (MCHS) over the set of all cores. When the set of all
cores is not known, this becomes an implicit hitting set problem.

The implicit hitting set approach for weighted partial MaxSAT, given hard
clauses Fh, soft clauses Fs, and cost function c : Fs → R

+, is described in more
detail in Algorithm 1 and Fig. 1. It uses both a SAT and an IP solver. During
the solving process it accumulates a set K of cores and stores a MCHS of K in
H. Starting with H = ∅, the algorithm tests the satisfiability of F\H using the
SAT solver. If satisfiable, the variable assignment τ returned by the SAT solver
is optimal. If unsatisfiable, a new core κ of F\H is obtained from the SAT solver
and added to K. Finally, the IP solver is used to update H to a new hitting set
by computing a MCHS of K.

In practice, every soft clause Ci ∈ Fs is augmented with a unique auxiliary
variable ai so that if ai = 1, then Ci need not be satisfied, i.e., creating the clause
Ci ∨ ai. Arbitrary sets of soft clauses can then be excluded from the formula by
assuming ai = 1 for the corresponding auxiliary variables in a SAT solver call.
To obtain a MCHS of K, the IP solver minimizes

∑
Ci∈Fs

ai · c(Ci) subject to
the constraint

∑
Ci∈κ ai ≥ 1 for each core κ ∈ K, enforcing that each core in K

is hit.
Besides the features elaborated on in Sect. 3, some design choices differen-

tiate LMHS from the MaxHS solver of Davies and Bacchus (http://maxhs.
org). LMHS never enforces the equivalence ¬ai ↔ Ci of auxiliary variables and
clauses explicitly in CNF. Instead, the value of each ai is fixed via the assump-
tions interface for every SAT solver call, which ensure that ¬ai ↔ Ci implicitly
holds. In terms of heuristic optimizations, by default LMHS finds a maximal
disjoint set of cores on each iteration and uses a greedy hitting set algorithm in
place of an IP solver call whenever possible. At each iteration, the greedy hitting
set algorithm is used in place of an IP solver call as long as this results in an
unsatisfiable formula (i.e., a core is produced). When the greedy method does
not yield a core, the IP solver is used to compute a minimum-cost hitting set.
The 2015 MaxSAT Evaluation versions LMHS-I and LMHS-C differ slightly in
this regard: LMHS-I did not use the greedy algorithm, while LMHS-C finds a set

http://maxhs.org
http://maxhs.org

LMHS: A SAT-IP Hybrid MaxSAT Solver 541

Fig. 1. Information flow in the implicit hitting set approach to MaxSAT

of possibly overlapping cores at each iteration. Furthermore, as a consequence
of the integration of SAT-based preprocessing, auxiliary variables may not be
limited to a single unique ai per soft clause.

3 Features

Here we give an overview of the main features offered by LMHS on top of the
main algorithm it implements.
Integrated Preprocessing. The use of SAT preprocessing techniques for
MaxSAT [4] is integrated into LMHS using the Coprocessor 2.0 SAT preproces-
sor [17]. Many SAT preprocessing techniques, such as bounded variable elimina-
tion [11], are not sound for MaxSAT on their own [4]. However, they can be made
sound by introducing a layer of auxiliary variables (labels) and forbidding their
removal during preprocessing [3,4]. Concretely, a new variable li is introduced
for each soft clause Ci prior to applying preprocessing. The original soft clause
replaced by a hard clause (Ci ∨ li) with the restriction that the variable li may
not be eliminated from the formula. After preprocessing, soft clauses (¬li) with
the weights of the original clauses Ci are added to the formula.

Efficient integration of SAT-based preprocessing in LMHS is enabled by
the observation that the MaxHS algorithm is sound even in cases where an
assumption variable is shared between clauses or a clause contains more than one
assumption variable [5]. This allows LMHS to re-use the variables li introduced
by preprocessing in place of the auxiliary variables ai, avoiding the introduction
of a new layer of assumption variables for SAT-based core extraction within the
main algorithm.

Following [6], we further avoid the addition of unnecessary auxiliary variables
in LMHS by detecting variables in the original instance which can be reused
already in the preprocessing phase. Any literal l ∈ {x,¬x} which occurs only

542 P. Saikko et al.

Algorithm 2. Enumeration of optimal solutions.
1: function Enumerate(Fh, Fs, c)
2: K ← ∅,H ← ∅
3: while true do
4: while true do
5: (sat, κ, τ) ← SolveSAT(Fh ∪ (Fs\H))
6: if not sat then
7: K ← K ∪ {κ}
8: H ← SolveMCHS(K, c)
9: else break

10: if opt is undefined then opt ← cost(τ)

11: if cost(τ) > opt then break
12: else
13: yield τ
14: Fh ← Fh ∪ {∨τ(x)=1 ¬x ∨∨τ(x)=0 x

}

in a single unit soft clause (¬l) and some hard clauses (C1 ∨ l), . . . , (Cn ∨ l) of
the input instance is detected by simple pattern matching and re-used by the
preprocessor and thereafter by the main algorithm. Such variables are introduced
by, e.g., a straightforward encoding of group constraints [13].
Solution Enumeration. LMHS offers command-line options for enumerating
MaxSAT solutions. The solver can enumerate the k best solutions or all optimal
solutions. Enumeration can be based on variable assignments or satisfied clauses.
In the latter case, only solutions which satisfy a unique set of soft clauses are
considered. Solution enumeration in LMHS is implemented as Algorithm 2. The
MaxHS algorithm is enclosed within the loop on Line 3. When the first solution
is found, Line 10 records its cost as the optimal cost. On subsequent optimal
solutions, Line 14 adds a single clause which forbids the latest obtained optimal
solution. The termination condition on Line 11 is met when all optimal solutions
have been found.

To enumerate unique solutions in terms of satisfied clauses, the refinement of
F on Line 14 is replaced by adding the constraint

∑
Ci∈H ai−

∑
Ci∈Fs\H ai < |H|

to the hitting set IP, followed by a re-computation of the hitting set. A fixed
number of best solutions can be found by modifying the condition of Line 11 to
only break after enough solutions have been found. An application of the solution
enumeration interface—and the incremental API described next—is presented
in [19], where LMHS is used for MaxSAT to deriving cutting planes in an IP-
based approach to learning optimal Bayesian network structures.
Incremental API. LMHS also implements a more general type of incremen-
tality. Through a C or C++ API, the working formula can be incrementally
extended with arbitrary clauses and the solver subsequently incrementally used
for finding optimal solutions to the altered formula without starting search from
scratch. In terms of Algorithm 2, operations performed through the API in effect
replace Line 14. An overview of the interface follows.

LMHS: A SAT-IP Hybrid MaxSAT Solver 543

– reset Resets the internal state of LMHS, allowing a new instance to be
started.

– initialize Initializes LMHS and its components. Three variants of this
method are offered. An instance can be initialized from a file, from clauses
in memory, or as an empty instance to be built using the API.

– getNewVariable Requests a new variable from the internal SAT solver.
– addHardClause Adds a hard clause to the working MaxSAT instance.
– addSoftClause Adds a soft clause to the working MaxSAT instance. This

automatically internally creates a blocking (auxiliary) variable for the clause.
This variable is returned by the function in case the user wishes to make use
of it. As a rule, the blocking variable created will always have a larger index
number than the last variable created with getNewVariable.

– addCoreConstraint If a subset of soft clauses is known to be unsatisfiable,
it can be explicitly added to the set of cores, expressed using the blocking
variables of the soft clauses.

– forbidLastModel Internally creates a SAT constraint forbidding the previ-
ously found variable assignment.

– forbidLastSolution Internally creates an IP constraint forbidding the pre-
viously found set of satisfied soft clauses.

– getOptimalSolution Optimally solves the current MaxSAT instance.

Choice of SAT and IP Solvers. A lightweight interface between LMHS and
its SAT solver component allows for flexibility in the choice of solver. Any solver
which provides an assumption-based incremental interface can be integrated into
LMHS by implementing a small interface class and making minor modifications
to the build process. Interfaces for two such solvers, MiniSat 2.2 [12] and the
inprocessing [15] SAT solver Lingeling [7], are included in the current release
of LMHS. Similarly, LMHS was also designed to allow for the use of different
IP solvers. Currently LMHS includes interfaces to the state-of-the-art commer-
cial IP solver IBM CPLEX [14] and the open-source non-commercial IP solver
SCIP [1].
Input Format. In addition to adhering to the DIMACS WCNF input format
for weighted partial MaxSAT, LMHS also supports the use of floats (without
preprocessing) in the input WCNF, i.e., MaxSAT with cost functions associating
real-valued non-negative weights to clauses. Within the solver, the costs are
handled by the IP solver.

4 Performance Overview

This section examines some interesting aspects of the performance of LMHS.
We evaluate the solver on the complete set of 2209 crafted and industrial
partial and weighted partial benchmarks of the 2015 MaxSAT Evaluation [2].
The experiments were run on machines with 32-GB memory and Intel Xeon
E5540 processors under Ubuntu Linux 12.04. A per-instance time limit of 1800
seconds (30 min) was enforced. Figure 2 is a plot of the number of instances

544 P. Saikko et al.

Fig. 2. Effect of integrated preprocessing on LMHS on 2015 MaxSAT evaluation
instances.

Fig. 3. A comparison of SAT (right) and IP (left) solver components within LMHS.

solved at different per-instance timeouts, showing the impact of integrating pre-
processing into the solver by reusing auxiliary variables. It shows an interest-
ing effect, in that the ordinary application of MaxSAT preprocessing to the
instance (LMHS+pre) degrades solver performance compared to no preprocess-
ing (LMHS), but the tighter integration of preprocessing by reusing variables
(LMHS+pre+reuse) produces a clear improvement. While the reasons for this
effect are not entirely clear at present, we suspect it to be at least in part due to
the larger search space resulting from the added auxiliary variables. The extra
layer of variables can also be detrimental in terms of potential additional con-
straints available for the IP solver; see [5, Example 1].

Figure 3 compares the use of the SCIP 3.0.1 IP solver to CPLEX 12.6.0 (left)
and the MiniSat 2.2 solver to Lingeling (right) as the MIP and SAT components,
respectively, in LMHS. The combination of CPLEX and MiniSat was mainly
used during the development of LMHS, so these components can be expected to
perform better in the default configuration. Figure 3 plots per-instance runtimes

LMHS: A SAT-IP Hybrid MaxSAT Solver 545

for solved instances, and clearly shows better results with CPLEX and MiniSat.
However, although SCIP and Lingeling results in worse performace overall com-
pared to CPLEX and MiniSat, there is significant number of instances which
they enable solving faster. This suggests that choosing a combination of a SAT
solver and an IP solver on a per-instance basis could result in improved perfor-
mance. Additionally, more in-depth analysis of which instances are best suited
to each solver component could yield interesting further insights.

5 Availability and Conclusions

LMHS is competitive with the current state-of-the-art in MaxSAT solvers,
recently having reached top positions in the 2015 MaxSAT Evaluation. LMHS
integrates MaxSAT preprocessing into the solver. LMHS was designed to be
flexible in allowing for integrating different SAT and IP solvers. The solver is
open source and released under the MIT license at http://www.cs.helsinki.fi/
group/coreo/lmhs/.

References

1. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Com-
put. 1(1), 1–41 (2009)

2. Argelich, J., Li, C.M., Manyá, F., Planes, J.: Max-SAT 2015: Tenth Max-SAT
Evaluation (2015). http://www.maxsat.udl.cat/15/

3. Belov, A., Järvisalo, M., Marques-Silva, J.: Formula preprocessing in MUS extrac-
tion. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 108–123. Springer, Heidelberg (2013)

4. Belov, A., Morgado, A., Marques-Silva, J.: SAT-based preprocessing for MaxSAT.
In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol.
8312, pp. 96–111. Springer, Heidelberg (2013)

5. Berg, J., Saikko, P., Järvisalo, M.: Improving the effectiveness of SAT-based pre-
processing for MaxSAT. In: Proceedings of IJCAI, pp. 239–245. AAAI Press (2015)

6. Berg, J., Saikko, P., Järvisalo, M.: Re-using auxiliary variables for MaxSAT pre-
processing. In: Proceedings of ICTAI, pp. 813–820. IEEE (2015)

7. Biere, A.: Yet another local search solver and Lingeling and friends entering the
SAT competition 2014. In: Proceedings of SAT Competition 2014, vol. B-2014-2,
pp. 39–40. Department of Computer Science Series of Publications B, University
of Helsinki (2014)

8. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT
instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer,
Heidelberg (2011)

9. Davies, J., Bacchus, F.: Exploiting the power of MIP solvers in MaxSAT. In:
Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181.
Springer, Heidelberg (2013)

10. Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT solving.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 247–262. Springer, Heidelberg
(2013)

http://www.cs.helsinki.fi/group/coreo/lmhs/
http://www.cs.helsinki.fi/group/coreo/lmhs/
http://www.maxsat.udl.cat/15/

546 P. Saikko et al.

11. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569,
pp. 61–75. Springer, Heidelberg (2005)

12. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

13. Heras, F., Morgado, A., Marques-Silva, J.: MaxSAT-based encodings for group
MaxSAT. AI Commun. 28(2), 195–214 (2015)

14. IBM ILOG: CPLEX optimizer 12.6.0 (2014). http://www-01.ibm.com/software/
commerce/optimization/cplex-optimizer/

15. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer,
Heidelberg (2012)

16. Karp, R.M.: Implicit hitting set problems and multi-genome alignment. In:
Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 151–151. Springer,
Heidelberg (2010)

17. Manthey, N.: Coprocessor 2.0 – a flexible CNF simplifier. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 436–441. Springer, Heidelberg
(2012)

18. Moreno-Centeno, E., Karp, R.M.: The implicit hitting set approach to solve com-
binatorial optimization problems with an application to multigenome alignment.
Oper. Res. 61(2), 453–468 (2013)

19. Saikko, P., Malone, B., Järvisalo, M.: MaxSAT-based cutting planes for learning
graphical models. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 347–356.
Springer, Heidelberg (2015)

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

	LMHS: A SAT-IP Hybrid MaxSAT Solver
	1 Introduction
	2 Overview of LMHS
	3 Features
	4 Performance Overview
	5 Availability and Conclusions
	References

