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Rafael Peñaloza5, and Joao Marques-Silva3

1 University College Dublin, Dublin, Ireland
muhammad.arif.1@ucdconnect.ie

2 University of Oviedo, Oviedo, Spain
cmencia@gmail.com

3 University of Lisbon, Lisbon, Portugal
{aignatiev,jpms}@ciencias.ulisboa.pt

4 TU Dresden, Dresden, Germany
norbert.manthey@tu-dresden.de

5 Free University of Bozen-Bolzano, Bolzano, Italy
rafael.penaloza@unibz.it

6 ISDCT SB RAS, Irkutsk, Russia

Abstract. Description Logics (DLs) are knowledge representation and
reasoning formalisms used in many settings. Among them, the EL family
of DLs stands out due to the availability of polynomial-time inference
algorithms and its ability to represent knowledge from domains such as
medical informatics. However, the construction of an ontology is an error-
prone process which often leads to unintended inferences. This paper
presents the BEACON tool for debugging EL+ ontologies. BEACON
builds on earlier work relating minimal justifications (MinAs) of EL+

ontologies and MUSes of a Horn formula, and integrates state-of-the-art
algorithms for solving different function problems in the SAT domain.

1 Introduction

The importance of Description Logics (DLs) cannot be overstated, and impact a
growing number of fields. The EL-family of tractable DLs in particular has been
used to build large ontologies from the life sciences [34,35]. Ontology devel-
opment is an error-prone task, with potentially critical consequences in the
life sciences; thus it is important to develop automated tools to help debug-
ging large ontologies. Axiom pinpointing refers to the task of finding the pre-
cise axioms in an ontology that cause a (potentially unwanted) consequence
to follow [25]. Recent years have witnessed remarkable improvements in axiom
pinpointing technologies, including for the case of the EL family of DLs [1,2,5–
7,20,21,30,31]. Among these, the use of SAT-based methods [1,2,30] was shown
to outperform other alternative approaches very significantly. This is achieved
by reducing the problem to a propositional Horn formula, which is then analyzed
with a dedicated decision engine for Horn formulae.
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This paper describes a tool, BEACON, that builds on recent work on efficient
enumeration of Minimal Unsatisfiable Subsets (MUSes) of group Horn formulae,
which finds immediate application in axiom pinpointing of EL ontologies [2]. In
contrast to earlier work [2], which used EL+SAT [30,31] as front-end, this paper
proposes an integrated tool to perform analysis on ontologies, offering a number
of new features.

The rest of the paper is organized as follows: Sect. 2 introduces some prelim-
inaries. Section 3 describes the organization of BEACON. Experimental results
are given in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Preliminaries

2.1 The Lightweight Description Logic EL+

EL+ [4] is a light-weight DL that has been successfully used to build large
ontologies, most notably from the bio-medical domains. As with all DLs, the
main elements in EL+ are concepts. EL+ concepts are built from two disjoint
sets NC and NR of concept names and role names through the grammar rule
C :: = A | � | C � C | ∃r.C, where A ∈ NC and r ∈ NR. The knowledge
of the domain is stored in a TBox (ontology), which is a finite set of general
concept inclusions (GCIs) C � D, where C and D are EL+ concepts, and role
inclusions (RIs) r1 ◦ · · · ◦ rn � s, where n ≥ 1 and ri, s ∈ NR. We will often
use the term axiom to refer to both GCIs and RIs. As an example, Appendix
� ∃partOf.Intestine represents a GCI.

The semantics of this logic is based on interpretations, which are pairs of the
form I = (ΔI , ·I) where ΔI is a non-empty set called the domain and ·I is the
interpretation function that maps every A ∈ NC to a set AI ⊆ ΔI and every
r ∈ NR to a binary relation rI ⊆ ΔI × ΔI . The interpretation I satisfies the
GCI C � D iff CI ⊆ DI ; it satisfies the RI r1 ◦ · · · ◦ rn � s iff rI

1 ◦ · · · ◦ rI
n ⊆ sI ,

with ◦ denoting composition of binary relations. I is a model of T iff I satisfies
all its GCIs and RIs.

The main reasoning problem in EL+ is to decide subsumption between con-
cepts. A concept C is subsumed by D w.r.t. T (denoted C �T D) if for every
model I of T it holds that CI ⊆ DI . Classification refers to the task of deciding
all the subsumption relations between concept names appearing in T . Rather
than merely deciding whether a subsumption relation follows from a TBox, we
are interested in understanding the causes of this consequence, and repairing it
if necessary.

Definition 1 (MinA, diagnosis). A MinA for C � D w.r.t. the TBox T is
a minimal subset (w.r.t. set inclusion) M ⊆ T such that C �M D. A diagnosis
for C � D w.r.t. T is a minimal subset (w.r.t. set inclusion) D ⊆ T such that
C 
�T \D D.

MinAs and diagnoses are closely related by minimal hitting set duality [19,29].
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Example 2. Consider the TBox Texa = {A � ∃r.A,A � Y,∃r.Y � B, Y � B}.
There are two MinAs for A � B w.r.t. Texa, namely M1 = {A � Y, Y � B},
and M2 = {A � ∃r.A,A � Y,∃r.Y � B}. The diagnoses for this subsumption
relation are {A � Y }, {A � ∃r.A, Y � B}, and {∃r.Y � B, Y � B}.

2.2 Propositional Satisfiability

We assume familiarity with propositional logic [9]. A CNF formula F is defined
over a set of Boolean variables X as a finite conjunction of clauses, where a
clause is a finite disjunction of literals and a literal is a variable or its negation.
A truth assignment is a mapping μ: X → {0, 1}. If μ satisfies F , μ is referred
to as a model of F . Horn formulae are those composed of clauses with at most
one positive literal. Satisfiability of Horn formulae is decidable in polynomial
time [12,15,24]. Given an unsatisfiable formula F , the following subsets are of
interest [19,22]:

Definition 3 (MUS, MCS). M ⊆ F is a Minimally Unsatisfiable Subset
(MUS) of F iff M is unsatisfiable and ∀c ∈ M,M \ {c} is satisfiable. C ⊆ F is
a Minimal Correction Subset (MCS) iff F\C is satisfiable and ∀c ∈ C,F\(C\{c})
is unsatisfiable.

MUSes and MCSes are related by hitting set duality [8,10,28,33]. Besides, these
concepts have been extended to formulae where clauses are partitioned into
groups [19].

Definition 4 (Group-MUS). Given an explicitly partitioned unsatisfiable
CNF formula F = G0 ∪ ... ∪ Gk, a group-MUS of F is a set of groups G ⊆
{G1, ...,Gk}, such that G0 ∪ G is unsatisfiable, and for every Gi ∈ G, G0 ∪ (G \ Gi)
is satisfiable.

3 The BEACON Tool

The main problem BEACON is aimed at is the enumeration of the MinAs and
diagnoses for a given subsumption relation w.r.t. an EL+ TBox T . BEACON
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consists of three main components: The first one classifies T and encodes this
process into a set of Horn clauses. Given a subsumption to be analyzed, the
second component creates and simplifies an unsatisfiable group Horn formula.
Finally, the third one computes group-MUSes and group-MCSes, correspond-
ing to MinAs and diagnoses resp. Figure 1 depicts the main organization of
BEACON. Each of its components is explained below.

3.1 Classification and Horn Encoding

During the classification of T , a Horn formula H is created according to the
method introduced in EL+SAT [30,31]. To this end, each axiom ai ∈ T is initially
assigned a unique selector variable s[ai]. The classification of T is done in two
phases [4,6].

First, T is normalized so that each of its axioms are of the form (i) (A1 �
... � Ak) � B (k ≥ 1), (ii) A � ∃r.B, (iii) ∃r.A � B, or (iv) r1 ◦ ... ◦ rn � s
(n ≥ 1), where A,Ai, B ∈ NC and r, ri, s ∈ NR. This process results in a TBox
TN where each axiom ai ∈ T is substituted by a set of axioms in normal form
{ai1, ..., aimi

}. At this point, the clauses s[ai] → s[aik], with 1 ≤ k ≤ mi, are
added to H.

Second, TN is saturated through the exhaustive application of the completion
rules shown in Table 1, resulting in the extended TBox T ′. Each of the rows in
Table 1 constitute a completion rule. Their application is sound and complete for
inferring subsumptions [4]. Whenever a rule r can be applied (with antecedents
ant(r)) leading to inferring an axiom ai, the Horn clause (

∧
{aj∈ant(r)} s[aj ]) →

s[ai] is added to H.
As a result, H will eventually encode all possible derivations of completion

rules inferring any axiom such that X �T Y , with X,Y ∈ NC.

3.2 Generation of Group Horn Formulae

After classifying T , some axioms C � D may be included in T ′ for which a justi-
fication or diagnosis may be required. Each of these queries will result in a group
Horn formula defined as: HG = {G0,G1, ...,G|T |}, where G0 = H ∪ {(¬s[C�D])}
and for each axiom ai (i > 0) in the original TBox T , group Gi = {(s[ai])} is
defined with a single unit clause. HG is unsatisfiable and, as shown in [1,2], its

Table 1. EL+ completion rules

Preconditions Inferred axiom

A � Ai, 1 ≤ i ≤ n A1 � .... � An � B A � B

A � A1 A1 � ∃r.B A � ∃r.B

A � ∃r.B, B � B1 ∃r.B1 � B2 A � B2

Ai−1 � ∃ri.Ai, 1 ≤ i ≤ n r1 ◦ ... ◦ rn � r A0 � ∃r.An
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Algorithm 1. eMUS [26] / MARCO [18]
Input: F a CNF formula
Output: Reports the set of MUSes (and MCSes) of F

1 〈I,Q〉 ← 〈{pi | ci ∈ F}, ∅〉 // Variable pi picks clause ci
2 while true do
3 (st, P ) ← MaximalModel(Q)
4 if not st then return
5 F ′ ← {ci | pi ∈ P} // Pick selected clauses

6 if not SAT(F ′) then
7 M ← ComputeMUS(F ′)
8 ReportMUS(M)
9 b ← {¬pi | ci ∈ M} // Negative clause blocking the MUS

10 else
11 ReportMCS(F \ F ′)
12 b ← {pi | pi ∈ I \ P} // Positive clause blocking the MCS

13 Q ← Q ∪ {b}

group-MUSes correspond to the MinAs for C �T D. Equivalently, due to the
hitting set duality for MinAs/diagnoses, which also holds for MUSes/MCSes,
group-MCSes of HG correspond to diagnoses for C �T D.

BEACON simplifies HG with the techniques introduced in [30,31], which
often reduce the formulas to a great extent.

3.3 Computation of Group-MUSes/Group-MCSes

For enumerating group-MUSes and group-MCSes of the formula HG defined
above, BEACON integrates the state-of-the-art HgMUS enumerator [2].
HgMUS exploits hitting set dualization between (group) MCSes and
(group) MUSes and, hence, it shares ideas also explored in MaxHS [11],
EMUS/MARCO [17,26], among others. As shown in Algorithm 1, these methods
rely on a two (SAT) solvers approach. Formula Q is defined over a set of selector
variables corresponding to clauses in F , and it is used to enumerate subsets of F .
Iteratively, the algorithm computes a maximal model P of Q and tests whether
the subformula F ′ ⊆ F containing the clauses associated to P is satisfiable. If
it is, F \ F ′ is an MCS of F . Otherwise, F ′ is reduced to an MUS. MCSes and
MUSes are blocked adding clauses to Q.

HgMUS shares the main organization of Algorithm 1, with F = G0 and Q
defined over selector variables for groups Gi of HG, with i > 0. It also includes
some specific features. First, it uses the Horn satisfiability algorithhm LTUR [24].
Besides, it integrates a dedicated insertion-based MUS extractor as well as an
efficient algorithm for computing maximal models based on a reduction to com-
puting MCSes [23].
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3.4 BEACON’s Additional Specific Features

Besides computing MinAs/diagnoses, BEACON offers additional functionalities.

Diagnosing Multiple Subsumption Relations at a Time. After classifying
T , there could be several unintended subsumption relations Ci �T Di that
need to be removed. BEACON allows for diagnosing this multiple unintended
inferences at the same time. By adding the unit clauses (¬s[Ci�Di]) to G0 in HG,
each computed group-MCS corresponds to a diagnosis that would eliminate all
the indicated subsumption relations.

Computing Smallest MinAs. Alternatively to enumerating all the possible
MinAs, one may want to compute only those of the minimum possible size. To
enable this functionality, BEACON integrates a state-of-the-art solver for the
smallest MUS problem (SMUS) called Forqes [14]. The decision version of the
SMUS problem is known to be ΣP

2 -complete (e.g. see [13,16]). As HgMUS,
Forqes is based on the hitting set dualization between (group) MUSes and
(group) MCSes. The tool iteratively computes minimum hitting sets of a set
of MCSes of a formula detected so far. While these minimum hitting sets are
satisfiable, they are grown into an MSS, whose complement is an MCS which
is added to the set of MCSes. The process terminates when an unsatisfiable
minimum hitting set is identified, representing a smallest MUS of the formula.

4 Experimental Results

This section reports a summary of results that illustrates the performance of
BEACON1 w.r.t. other EL+ axiom pinpointing tools in the literature. It also
provides information on its capability of computing diagnoses and enumerating
smallest MinAs.

The experiments were run on a Linux cluster (2 Ghz) with a limit of
3600 s and 4Gbyte, considering 500 subsumption relations from five well-known
EL+ bio-medical ontologies: GALEN [27] (FULL-GALEN and NOT-GALEN),
Gene [3], NCI [32] and SNOMED-CT [34]. The experiments use Horn formulae
encoded by EL+SAT [30,31] applying the reduction techniques that BEACON
incorporates by default. These formulae are fed to BEACON’s engines, namely
HgMUS and Forqes.

The results reported focus on HgMUS and Forqes. Due to lack of space,
running times for classifying the ontologies and formula reduction are not
reported. Classification is done in polynomial time once for each ontology, so
it is amortized among all queries for the ontology. Formula reduction usually
takes very short time. Detailed results are available with the distribution of
BEACON, including an analysis on the size of the Horn formulae and the reduc-
tions achieved.

1 Available at http://logos.ucd.ie/web/doku.php?id=beacon-tool.

http://logos.ucd.ie/web/doku.php?id=beacon-tool
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Fig. 2. Plots comparing BEACON to EL+SAT, SATPin and JUST

Axiom Pinpointing. BEACON shows significant improvements over the exist-
ing tools EL+SAT [30,31], SATPin [21], EL2MCS [1], CEL [5] and Just [20].
BEACON often achieves remarkable reductions in the running times, and
exhibits a clear superiority in enumerating MinAs for 19 very hard instances
that cannot be solved by a time limit of 3600 s. This is illustrated in Fig. 2. The
cactus plot shows the number of MinAs reported over time. BEACON computes
much more MinAs faster than other tools. The scatter plot compares BEACON
with Just regarding the running times on a subset of the instances Just can
cope with. BEACON shows a significant performance gap. Similar results have
been observed for EL2MCS and CEL [2].

Computing Diagnoses. For all solved instances (481 out of 500), BEACON
enumerates all diagnoses, where its number ranges from 2 to 565409. Interest-
ingly, for the 19 aborted instances, the number of reported diagnoses ranges
from 1011164 to 1972324. These numbers illustrate the efficiency of BEACON
at computing diagnoses, and explain the difficulty of these aborted instances.
Of the other tools, only EL2MCS reports diagnoses, which, for hard instances,
computes around 33 % fewer diagnoses.

Computing Smallest MinAs. The last experiments consider the 19 instances
for which BEACON is unable to enumerate all MinAs. Notably, BEACON is very
efficient at computing the smallest MinAs using Forqes. In all cases, each set
of smallest MinAs is computed in negligible time (less than 0.1 s). The sizes of
the smallest MinAs range from 5 to 13 axioms, and their number ranges from 1
to 7.

5 Conclusions

This paper describes BEACON, an axiom pinpointing tool for the EL-family
of DLs. BEACON integrates HgMUS [2], a group MUS enumerator for
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propositional Horn formulae, with a dedicated front-end, interfacing a target
ontology, and generating group Horn formulae for HgMUS. Besides enumer-
ating MinAs (and associated diagnoses), BEACON enables the simultaneous
diagnosis of multiple inferences, and the computation of the smallest MinA (or
smallest MUS [14]). The experimental results indicate that the computation of
the smallest MinA is very efficient in practice, in addition to the already known
top performance of HgMUS.

Acknowledgement. This work was funded in part by SFI grant BEACON (09/IN.1/-
I2618), by DFG grant DFG HO 1294/11-1, and by Spanish grant TIN2013-46511-C2-
2-P. The contribution of the researchers associated with the SFI grant BEACON is
also acknowledged.

References
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