
Finding Finite Models in Multi-sorted
First-Order Logic

Giles Reger1(B), Martin Suda1, and Andrei Voronkov1,2,3

1 University of Manchester, Manchester, UK
giles.reger@manchester.ac.uk

2 Chalmers University of Technology, Gothenburg, Sweden
3 EasyChair, Manchester, UK

Abstract. This work extends the existing MACE-style finite model
finding approach to multi-sorted first-order logic. This existing app-
roach iteratively assumes increasing domain sizes and encodes the related
ground problem as a SAT problem. When moving to the multi-sorted
setting each sort may have a different domain size, leading to an explo-
sion in the search space. This paper focusses on methods to tame that
search space. The key approach adds additional information to the SAT
encoding to suggest which domains should be grown. Evaluation of an
implementation of techniques in the Vampire theorem prover shows that
they dramatically reduce the search space and that this is an effective
approach to find finite models in multi-sorted first-order logic.

1 Introduction

There have been a number of approaches looking at finding finite models for
First-Order Logic (FOL), however there has not been much work on finding
such models for Multi-Sorted FOL where symbols are given sorts. We consider
a model finding method, pioneered by MACE [12], that encodes the search as a
SAT problem. We show how this method can be modified to deal directly with
multi-sorted input, rather than translating the problem to the unsorted setting,
which is the most common current method.

There are two main motivations for this work. Firstly, many problems are
more naturally expressed in multi-sorted FOL than in unsorted FOL (although
their theoretical expressive power is equivalent). Therefore, it is useful to be able
to reason in this setting and translations from multi-sorted FOL to unsorted FOL
often make this reasoning harder. Secondly, MACE-style model finders can use
sort information to make the SAT encoding smaller. However, as we discuss
below, finding finite models of multi-sorted formulas also presents significant
challenges.

This work was supported by EPSRC grant EP/K032674/1. Martin Suda and Andrei
Voronkov were partially supported by ERC Starting Grant 2014 SYMCAR 639270.
Andrei Voronkov was also partially supported by the Wallenberg Academy Fellow-
ship 2014 - TheProSE.

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 323–341, 2016.
DOI: 10.1007/978-3-319-40970-2 20

324 G. Reger et al.

The MACE-style approach, later extended in the Paradox [5] work, involves
selecting a domain size for the finite model, grounding the first-order problem
with this domain and translating the resulting formulas into a SAT problem,
which, if satisfied, gives a finite model of the selected size. Search for a finite
model then involves considering iteratively larger domain sizes. In the multi-
sorted setting it is necessary to consider the size of each sort separately. This
can be demonstrated by the following example, which is an extension of the
much used Monkey Village example [2,4].

Example 1 (Organised Monkey Village). Imagine a village of monkeys where
each monkey owns at least two bananas. As the monkeys are well-organised,
each tree contains exactly three monkeys. Monkeys are also very friendly, so
they pair up to make sure they will always have a partner. We can represent this
problem as follows:

(∀M : monkey)(owns(M, b1(M)) ∧ owns(M, b2(M)) ∧ b1(M) �= b2(M))
(∀M1,M2 : monkey)(∀B : banana)(owns(M1, B) ∧ owns(M2, B) → M1 = M2)

(∀T : tree)(∃M1,M2,M3 : monkey)((
∧3

i=1 sits(Mi) = T) ∧ distinct(M1,M2,M3))

(∀M1,M2,M3,M4 : monkey)(∀T : tree)((
∧4

i=1 sits(Mi) = T) ⇒ ¬distinct(M1,M2,M3,M4))
(∀M : monkey)(partner(M) �= M ∧ partner(partner(M)) = M)

where the predicates owns associates monkeys with bananas, the functions b1 and
b2 witness the existence of each monkey’s minimum two bananas, the function
sits maps monkeys to the tree that they sit in, the function partner associates
a monkey with its partner, and the (meta-)predicate distinct is true if all of its
arguments are distinct.

This problem requires the domain of monkey to be exactly three times larger
than the domain of tree, the domain of banana to be at least twice as large
as the domain of monkey, and the domain of monkey to be even. The main
model finding effort then becomes searching for an assignment of domain sizes
that satisfies this problem. Here, the smallest such assignment is |tree| = 2,
|monkey| = 6, and |banana| = 12. In the general case it is necessary to try all
combinations of domain sizes. In the worst case this will mean trying a number
of assignments exponential in the number of sorts.

The techniques introduced in this paper tackle this issue by introducing a
number of ways to constrain this search space. The main contributions can be
summarised as:

1. We show how the MACE-style approach (described in Sect. 3) can be extended
to the multi-sorted setting via a novel extension of the SAT encoding (Sect. 5).
This encoding uses information from the SAT solver to guide the search
through the space of domain size assignments.

2. We use monotonic sorts introduced in [4] in a new way for the multi-sorted
case to reduce the search space further (Sect. 5.5).

3. We utilise the saturation-based approach for first-order logic to detect fur-
ther constraints on the search space introduced by injective and surjective
functions (Sect. 6).

Finding Finite Models in Multi-sorted First-Order Logic 325

4. We present an alternative to (1), a complementary search strategy, utilising
a different SAT encoding, that only needs to expand (and never shrink) the
sizes of sort domains (Sect. 8).

These ideas have been realised within the Vampire theorem prover [11] and
evaluated on problems taken from the TPTP and SMT-LIB benchmark suites.
Our experimental evaluation (Sect. 9) shows that these techniques can be used
to (i) improve finite model finding in the unsorted setting, (ii) effectively and
efficiently find finite models in the multi-sorted setting, and (iii) detect cases
where no models exist.

2 Preliminaries

Multi-sorted First-Order Logic. We consider a multi-sorted first-order logic
with equality. A term is either a variable, a constant, or a function symbol applied
to terms. A literal is either a propositional symbol, a predicate applied to terms,
an equality of two terms, or a negation of either. Function and predicate symbols
are sorted i.e. their arguments (and the return value in the case of functions)
have a unique sort drawn from a finite set of sorts S. We only consider well-sorted
literals. There is an equality symbol per sort and equalities can only be between
terms of the same sort. Formulas may use the standard notions of quantification
and boolean connectives, but in this work we assume all formulas are clausified
using standard techniques. A clause is a disjunction of literals where all variables
are universally quantified (existentially quantified variables can be replaced by
skolem functions during clausification).
SAT Solvers. The technique we present later will make use of a black-box
SAT solver and we assume the reader is familiar with their general properties.
We assume that a SAT solver supports solving under assumptions [7,8]. This
means the SAT solver can be asked to search for a model of a set of clauses N
additionally satisfying a conjunction of assumption literals A and is able, in case
the answer is UNSAT, to provide a subset A0 ⊆ A of those assumptions which
were sufficient for the unsatisfiability proof.

3 MACE-Style Finite Model Finding in an Unsorted
Setting

We describe the finite model finding procedure in a single sorted setting. This is
a variation of the approach taken by Paradox [5]. The general idea is to create,
for each integer n ≥ 1, a SAT problem that is satisfiable if the problem has a
finite model of size n. To find a finite model we therefore iterate the approach
for domain sizes n = 1, 2, 3,

326 G. Reger et al.

3.1 DC -Models

Let S be a set of clauses. Let us fix an integer n ≥ 1. Let DC = {c1, . . . , cn}
be a set of distinct constants not occurring in S, we will call the elements of
DC domain constants. We extend the language by adding the domain constants
and say that an interpretation is a DC-interpretation, if (i) the domain of this
interpretation is DC and (ii) every domain constant ci is interpreted in it by
itself. Every model of S that is also a DC -interpretation will be called a DC-
model of S. It is not hard to argue that, if S has a model of size n, then it also
has a DC -model. We say that S is n-satisfiable if it has a model of size n.

Let C be a clause. A DC-instance of C is a ground clause obtained by replac-
ing every variable in C by a constant in DC . For example, if p(x) ∨ x = y is a
clause and n ≥ 2, then p(c1) ∨ c1 = c2 and p(c1) ∨ c1 = c1 are DC -instances,
while p(c1) ∨ c2 = c3 is not a DC -instance. A clause with k different variables
has exactly nk DC -instances.

Theorem 1. Let I be a DC-interpretation and C a clause. Then C is true in
I if and only if all DC-instances of C are true in I.

Let us denote by S∗ the set of all DC -instances of the clauses in S. Consider an
example. Let S consist of three clauses

p(b), f(a) �= b, f(f(x)) = x.

The smallest model of S has a domain of size two. Take n = 2, then DC =
{c1, c2}. By the above theorem, S has a model of size two if an only if S∗ has a
DC-model. The set S∗ consists of four ground clauses:

p(b), f(a) �= b, f(f(c1)) = c1, f(f(c2)) = c2.

Note that DC -models are somehow similar to Herbrand models used in logic
programming and resolution theorem proving, except that they are built using
(domain) constants instead of all ground terms and DC -instances instead of
ground instances.

Theorem 1 is not directly applicable to encode the existence of models of
size n as a SAT problem, because DC -instances can contain complex terms. We
will now introduce a special kind of ground atom which contains no complex
subexpressions. We call a principal term any term of the form f(d1, . . . , dm),
where m ≥ 0, f is a function symbol, which is not a domain constant, and
d1, . . . , dm are domain constants. In our example there are four principal terms:
a, b, f(c1), f(c2). A ground atom is called principal if it either has the form
p(d1, . . . , dm) where m ≥ 0, p is a predicate symbol different from equality and
d1, . . . , dm are domain constants or has the form t = d, where t is a principal
term and d a domain constant. We call a principal literal a principal atom or its
negation.

Theorem 2. Let I1, I2 be DC-interpretations. If they satisfy the same principal
atoms, then I1 coincides with I2.

Finding Finite Models in Multi-sorted First-Order Logic 327

Theorem 1 reduces n-satisfiability of S to the existence of a DC -interpretation
of the set S∗ of ground clauses. Theorem 2 shows that DC -interpretations can
be identified by the set of principal atoms true in them. What we will do next
is to introduce a propositional variable for every principal atom and reduce the
existence of a DC -model of S∗ to satisfiability of a set of clauses using only
principal literals.

3.2 The SAT Encoding

The main step in the reduction is to transform every non-ground clause C into an
equivalent clause C ′ such that DC -instances of C ′ consist (almost) only of prin-
cipal literals. We will explain what “almost” means below. This transformation
is known as flattening.
Flattening. A literal is called flat if it has one of the following forms:

1. p(x1, . . . , xm) or ¬p(x1, . . . , xm), where m ≥ 0 and p is a predicate symbol;
2. f(x1, . . . , xm) = y or f(x1, . . . , xm) �= y, where m ≥ 0 and f is a function

symbol, which is not a domain constant.
3. an equality between variables x = y.

Every DC -instance of a flat literal is either a principal literal (for the first two
cases), or an equality ci = cj between domain constants.

To flatten clauses in S, we first get rid of all inequalities between variables,
replacing every clause of the form x �= y ∨ C[x] by the equivalent clause C[y].
Then we repeatedly replace every clause C[t], where t is not a variable and t
occurs as an argument to a predicate or a function symbol, by the equivalent
clause t �= x ∨ C[x], where x is a fresh variable.

Our example clauses can be flattened as follows:

p(y) ∨ b �= y, f(y1) = y2 ∨ a �= y1 ∨ b �= y2, f(y) = x ∨ f(x) �= y

DC -Instances. We can now produce the DC -instances of each flattened clause
C[x1, . . . , xk]. For our running example (with n = 2) this produces the following
ten DC -instances:

p(c1) ∨ b �= c1 f(c1) = c1 ∨ a �= c1 ∨ b �= c1 f(c1) = c1 ∨ f(c1) �= c1
p(c2) ∨ b �= c2 f(c1) = c2 ∨ a �= c1 ∨ b �= c2 f(c1) = c2 ∨ f(c2) �= c1

f(c2) = c2 ∨ a �= c2 ∨ b �= c2 f(c2) = c2 ∨ f(c2) �= c2
f(c2) = c1 ∨ a �= c2 ∨ b �= c1 f(c2) = c1 ∨ f(c1) �= c2

Note that all literals are principal. If we treat principal atoms as propositional
variables, the two leftmost clauses can be satisfied by making b �= c1 and b �= c2
both true, but this violates the assumption that b should equal one of the domain
constants. Additionally, the two rightmost topmost clauses can be satisfied by
making f(c1) = c1 and f(c1) = c2 true but this violates the assumption that f
is a function. We would like to prevent both situations. To do this we introduce
additional definitions.

328 G. Reger et al.

Functionality Definitions. For each principal term p and distinct domain
constants d1, d2 we produce the following clause

p �= d1 ∨ p �= d2,

These clauses are satisfied by every DC -interpretation and guarantee that all
function symbols are interpreted as (partial) functions.

For our running example we introduce four new definitions:

a �= c1 ∨ a �= c2, b �= c1 ∨ b �= c2, f(c1) �= c1 ∨ f(c1) �= c2, f(c2) �= c1 ∨ f(c2) �= c2

Totality Definitions. For each principal term p we produce the following clause

p = c1 ∨ . . . ∨ p = cn

These clauses are satisfied by every DC -interpretation of size n and guarantee,
together with functionality axioms, that all function symbols are interpreted as
total functions.

For our running example we introduce four new definitions:

a = c1 ∨ a = c2, b = c1 ∨ b = c2, f(c1) = c1 ∨ f(c1) = c2, f(c2) = c1 ∨ f(c2) = c2

The resulting SAT clauses have a model, meaning that the original clauses have
a finite model with a domain of size 2, which can be extracted from the SAT
encoding.
Equalities Between Variables. Flattening can result in equalities between
variables, that is, clauses of the form C ∨ x = y. DC -instances of such clauses
can have, in addition to principal literals, equalities between domain constants
d1 = d2, which are not principal literals. Since we only want to deal with prin-
cipal literals, we will get rid of such equalities in an obvious way: delete clauses
containing tautologies d = d and delete from clauses literals d1 = d2, where d1
are distinct d2 domain constants.

The following theorem underpins the SAT-based finite model building
method:

Theorem 3. Let S be a set of flat clauses and S′ be the set of clauses obtained
from S∗ by removing equalities between domain constants as described above and
adding all functionality and totality definitions. Then (i) all literals in S′ are
principal and (ii) S is n-satisfiable if and only if S′ is propositionally satisfiable.

Incrementality. In [5] the authors describe a method for incremental finite
model finding which advocates keeping (parts of) the contents of the SAT solver
when increasing n. However, in previous experiments we discovered that the
technique of variable and clause elimination [6] is useful at reducing the size
of the SAT problem. As this is not compatible with incremental solving, our
general approach is non-incremental.

Finding Finite Models in Multi-sorted First-Order Logic 329

3.3 Reducing the Number of Variables

The number of instances produced is exponential in the number of variables in
a flattened clause. We describe two approaches that aim to reduce this number.
Definition Introduction. This reduces the size of clauses produced by flat-
tening. Complex ground subterms are removed from clauses by introducing def-
initions. For example, a clause p(f(a, b), g(f(a, b))) becomes p(e1, e2) and we
introduce the definition clauses e1 = f(a, b) and e2 = g(e1), where e1, e2 are new
constants. One can also introduce definitions for non-ground subterms.
Clause Splitting. Clauses with k variables are split into subclauses having less
than k variables each. New predicate symbols applied to the shared variables are
then added to join the subclauses. For example, the clause p(x, y) ∨ q(y, z) with
three variables is replaced by the two clauses p(x, y) ∨ s(y) and ¬s(y) ∨ q(y, z)
where s is a new predicate symbol. These new clauses have two variables each.
For large domain sizes splitting can drastically reduce the size of the resulting
propositional problem. This was first used for finite model finding by Gandalf
[17] and later in Eground [14] for EPR problems.

3.4 Symmetry Breaking

The SAT problem produced above can contain many symmetries. For example,
every permutation of DC applied to a DC -model will give a DC -model, and
there are n! such permutations. We can (partially) break these symmetries as
follows. Firstly, if the input contains constants a1, . . . , al we can add the clauses

ai �= cm ∨ a1 = cm−1 ∨ . . . ∨ ai−1 = cm−1

for 1 < i ≤ l and 1 < m ≤ n, where we have arbitrarily ordered the constants
and captured the constraint that if the i-th constant is equal to a domain element
then some earlier constant must be equal to the next smallest domain element.
Secondly, we can tell the SAT solver about this order on constants by adding
the clauses

ai = c1 ∨ . . . ∨ ai = ci

for i ≤ min(m,n), which captures the constraint that the i-th constant must be
equal to one of the first i-th domain elements. If 1 < m < n then we can also
use principal terms other than constants in the second case, but not in the first.

3.5 Determining Unsatisfiability

If it is possible to detect the maximum domain size then it is possible to show
there is no model for a formula if all domain sizes up to, and including, this
maximum size have been explored. There are two straightforward ways to detect
maximum domain sizes. Firstly, we can look for axioms such as (∀x)(x = a∨x =
b) and (∀x)(∀y)(∀z)(x = y ∨ x = z ∨ z = y). Both indicate that the problem has
a maximum domain size of 2. Secondly, we can look for so-called EPR problems
that only use constant function symbols, in this case, the domain size is bounded
by the number of constants.

330 G. Reger et al.

4 Previous Work in the Multi-sorted Setting

We review previous work related to finite model finding for multi-sorted FOL.
Translating Sorts Away. One approach to dealing with multi-sorted FOL is
to translate the sorts away. We discuss two well-known translations, see [2] for
further discussions of such translations.

Sort Predicates. One can guard the use of sorted variables by a sort predicate
that indicates whether a variable is of that sort. This predicate can be set to
false in a model for all constants not of the appropriate sort. For example, the
last formula in the Organised Monkey Village problem can be rewritten using
the sort predicate isMonkey.

(∀M)(isMonkey(M) → partner(M) �= M ∧ partner(partner(M)) = M)

One also needs to add additional axioms that say that sorts are non-empty and
that functions return the expected sort. For the monkey sort we need to add

(∃M)(isMonkey(M)) (∀M)(isMonkey(partner(M))).

Sort Functions or Tags. One can tag all values of a sort using a sort function
for that sort. The idea is that in a model the function can map all constants (of
any sort) to a constant of the given sort. For example, the last formula from the
Organised Monkey Village problem can be rewritten using fm as a sort function
for monkey :

(∀M)(fm(partner(fm(M))) �= fm(M) ∧ fm(partner(fm(partner(fm(M))))) = fm(M))

The authors of [2] suggest conditions that allow certain sort predicates and
functions to be omitted. However, their arguments relate to resolution proofs
and do not apply here.
Sorting it Out with Monotonicity. In [4] Claessen et al. introduce a
monotonicity analysis and show how it can help translate multi-sorted formu-
las to unsorted ones by only applying the above translations to non-monotonic
sorts. A sort τ is monotonic for a multi-sorted FOL formula φ if for any model
of φ one can add an element to the domain of τ to produce another model of
φ. For example, in the Organised Monkey Village example the banana sort is
monotonic as we can add more bananas once we have enough. However, monkey
and tree are not monotonic as increasing either requires more trees, monkeys
and bananas.

In [4] they observe that if there is no positive equality between elements of
a sort then a new domain constant can be added and made to behave like an
existing domain constant and there is no way to detect this i.e. positive equalities
are required to bound a sort. They refine this notion further by noting that a
positive equality can be guarded by a predicate, if that predicate can be forced
to be true for all new domain elements. They introduce a calculus and associated
SAT encoding capturing these ideas that can be used to detect monotonic sorts,
which we use in our work.

Finding Finite Models in Multi-sorted First-Order Logic 331

Using a Theory of Sort Cardinalities. In the single-sorted setting there is
a family of techniques called SEM-style after the SEM model finder [18] based
on constraint satisfaction methods. There exists a technique in this direction
for the multi-sorted setting implemented in the CVC4 SMT solver [13]. The
idea behind this approach is to introduce a theory of sort cardinality constraints
and to incorporate this theory into the standard SMT solver structure. Briefly,
this approach introduces cardinality constraints (upper bounds) for sorts and
searches for a set of constraints that is consistent with the axioms. To check
a cardinality constraint k for sort s, a congruence relation is built for s-terms
and an attempt made to merge congruence classes so that there are at most k.
Cardinality constraints are then increased if found to be inconsistent. Quantified
formulas are then instantiated with representative constants from the equivalence
classes.

5 A Framework for the Multi-sorted Setting

In this section we introduce our framework able to build models of multi-sorted
formulas directly, in contrast to translating the sorts away. The key challenge is
dealing with a large and growing search space of domain sizes.

5.1 Using Sorts in the SAT Encoding

The SAT encoding in Sect. 3 can be updated to become sort-aware. First, instead
of the domain size n we use finite domain sizes ns for every sort s. Second,
instead of considering DC = {c1, . . . , cn}, we consider domains for each sort
DC s = {c1, . . . , cns

}. We can now define n as a function (called domain size
assignment) mapping each sort s to ns and likewise, define DC as the function
mapping each sort s to DC s. After that we can speak about DC -models and
n-satisfiability in the multi-sorted case.

All the definitions for the one-sorted case are modified to respect sorts. This
means, in particular, that in a DC -instance of a clause a variable of a sort
s can only be replaced by a domain constant in DC s. For example, for the
Organised Monkey Village problem (see page 324) we could consider the domain
size assignment n such that ntree = 1, nmonkey = 2 and nbanana = 2. The first
formula in this description can be split into three clauses, the first of which would
be flattened as owns(M,x)∨b1(M) �= x, which would have the two DC -instances
owns(c1, c1) ∨ b1(c1) �= c1 and owns(c1, c2) ∨ b1(c1) �= c2. We can use c1 for both
monkeys and bananas here as monkeys and bananas are never compared. For
this reason we can also break symmetries on a per-sort basis.

Once we have updated the SAT encoding, finite model finding can then pro-
ceed as before where we construct the SAT problem for the current domain size
assignment, check for satisfiability, and then either return a model or repeat the
process with an updated domain size assignment. The problem then becomes
how to generate the next domain size assignment to try.

332 G. Reger et al.

5.2 A Search Strategy

We will view the search space of domain size assignments as an infinite directed
graph whose nodes are domain size assignments and the children of an assign-
ment are all the nodes that have exactly one domain size that is one larger.
Thus, the number of children of every node is the number of sorts. A child of a
node n having a larger domain size than n for a sort s is called the s-child of n.
The s-descendant relation is the transitive closure of the s-child relation.

A search strategy will explore this graph node by node in such a way that
a node is always visited before its children. For each node n that we visit, we
can either check n-satisfiability or ignore this node. To decide whether a node
can be ignored, we will maintain a set of constraints. Abstractly, a constraint
is a predicate on domain size assignments and nodes that do not satisfy the
current set of constraints will be ignored. Concretely, we will use a language
of (boolean combinations of) arithmetical comparison literals such as |s| < b,
|s| ≤ b, . . . to represent the constraints. Here b stands for a concrete integer and
|s| is a symbolic placeholder variable for the “intended size” of the domain of
sort s. The semantics of the this representation is the obvious one.

We will work with a queue Q of nodes and a set C of constraints. Initially, Q
consists of a single node assigning 1 to all sorts and C is empty. We then repeat
the following steps:

1. If Q is empty, return “unsatisfiable”.
2. Remove the node q from the front of Q. Do nothing if q was visited before at

this step. Otherwise, continue with the following steps.
3. If q satisfies all constraints in C, perform finite model finding for q, terminating

if a model is found. In variations of this algorithm considered later, we can
add some constraints to C at this step: these constraints will be obtained by
analyzing the proof of q-unsatisfiability.

4. Add to Q all children of q.

We will now introduce an important notion helping us to prevent exploring
large parts of the search space. A constraint is said to have the s-beam property
at a node n, if all s-descendants of n violate this constraint. For example, the
constraint |s| < 3 has the s-beam property at any node q having qs = 2. We can
generalize this notion to more than one sort.

With this notion we can improve step 4 of the algorithm as follows:

4.′ If there is a constraint in C having an s-beam property at the s-child n of q,
if n violates this constraint, add to Q all children of q apart from n.

For example, if we have the constraint |s| < 3 and qs = 2, this constraint will
prevent us from considering the s-child n of q having ns = 3.

As a small refinement, we introduce a heuristic for deciding which node in the
queue to consider next, rather than processing them in the first-in-first-out order.
The idea is to estimate how difficult a domain size assignment is to check and to
prioritise exploration of the easier parts of the search space. Under this variation,

Finding Finite Models in Multi-sorted First-Order Logic 333

Q is a priority queue ordered by some size measure of the corresponding SAT
encoding (in the experiment, we measured size in the number of clauses). This
setup is complete, as long as this size grows strictly from a parent to its child
(which is trivially satisfied for number of clauses).

5.3 Encoding the Search Problem

We now show how an extension of the SAT encoding can be used to produce con-
straints and therefore indicate areas of the search space that should be avoided.
This is done by marking certain clauses of the encoding with certain special vari-
ables and using the mechanism for solving under assumptions to detect which of
these clauses were actually used in the unsatisfiability proof. We will design the
names of these special marking variables in such a way that the detected set of
used assumptions will immediately correspond to a (disjunctive) constraint.

Let us assume we are encoding for the domain size assignment n. For each
sort s we introduce two new propositional variables “|s| > ns” and “|s| < ns”,
which can be understood as stating that the intended size of the domain of s
should be larger, respectively smaller, than current ns. The marking of clauses
is now done as follows.

The totality definition for each principal term p becomes

p = c1 ∨ . . . ∨ p = cns
∨ “|s| > ns”

i.e. either the principal term equals one of the domain constants or the domain
is currently too small. DC -instances can be similarly updated. Let C be a DC -
instance and let sorts(C) be the set of sorts of variables occurring in C. We
replace C by

C ∨ ∨
s∈sorts(C) “|s| < ns”

i.e. either the DC -instance holds or the domain is too large.
We then attempt to solve the updated SAT problem under the assumptions

A =
∧

s∈S(¬“|s| > ns”) ∧ (¬“|s| < ns”)

tree

monkey

1 2 3

1

2

3

4

5

6

7

1

2

3

4 5-7

8

9-17

banana

monkey

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

1

2

3
4-5

6 7

8

9 10 11 12 13 14 15 16 17 18

Fig. 1. Finding a finite model for the Organised Monkey Village problem.

334 G. Reger et al.

i.e. we assume that we are using the correct domain sizes. These added assump-
tions ensure that the logical meaning of the updated encoding is exactly the
same as before. However, in the unsatisfiable case the solver now returns a sub-
set A0 ⊆ A of the assumptions that were sufficient to establish unsatisfiability.
Equivalently, ¬A0 is a conflict clause over the marking variables implied by the
encoded problem. This clause can now be understood as the newly derived con-
straint. We just need to interpret the marking variables in their “unquoted”
form, i.e., as arithmetic comparison literals.

The argument why this interpretation is correct is best done with the set A0,
which contains the marking variables negated. It consists of two main observa-
tions:

1. If A0 contains ¬“|s| > ns”, the unsatisfiability relies on a totality clause for
the sort s. Because a totality clause gets logically stronger when the domain
size is decreased, essentially the same unsatisfiability proof could be repeated
for the domain size |s| smaller or equal to the current ns (given the other
conditions from A0).

2. If A0 contains ¬“|s| < ns”, the unsatisfiability relies on a DC -instance with
a variable of sort s. Because we only add more instances of a clause if a
domain size is increased, the same unsatisfiability proof would also work for
the domain size |s| greater or equal to the current ns.

Thus at least one of the (atomic) constraints represented by the literals in A0

must be violated by a domain size assignment, if we want to have a chance of
finding a model.

5.4 An Example

Let us consider the Organised Monkey Village example (page 2). Running the
initial search strategy on this problem requires checking 2,661 different domain
sort assignments. Using the encoding described above means that only 18 assign-
ments are tried. The search carried out by our approach is illustrated in Fig. 1.
We give two projections of the 3-dimensional search space and the arrows show
the parts of the search space ruled out by s-beam constraints. On each step the
constraints rule out all but one neighbour, meaning that we take a direct path
to the solution through the search space.

5.5 Using Monotonicity

In our framework we can use the notion of monotonicity (see Sect. 4) in two
ways.

– Collapsing Monotonic Sorts. All monotonic sorts can be collapsed into a single
sort as this sort can grow to the size of the largest monotonic sort. It is never
safe to collapse a monotonic sort into a non-monotonic one as the monotonic
sort may depend on the non-monotonic one. For example, whilst banana is
a monotonic sort it must always be twice as large as the non-monotonic sort
monkey.

Finding Finite Models in Multi-sorted First-Order Logic 335

– Refining the Search Encoding. If a sort s is monotonic then if no model exists
for domain size ns then no model can exist where ns is smaller. We reflect
this in our encoding by not marking DC -instances with marking variables for
monotonic sorts. This leads to a derivation of potentially stronger constraints.

6 Detecting Constraints Between Sorts

In this section we discuss how properties of functions between sorts can be used
to further constrain the domain size search space. Consider the following set of
formulas

distinct(a1, a2, a3, a4, a5) (∀x : s1)(f(x) �= b)
(∀x, y : s1)(f(x) = f(y) → x = y) (∀x, y : s2)(g(x) = g(y) → x = y)

where ai are constants of sort s1, b is a constant of sort s2, f : s1 → s2, and
g : s2 → s3. The previous approach would try increasing the size of each sort by
1, discovering that one sort must grow at each step. However, we can see from
the bottom two formulas that f and g are injective and therefore that |s1| ≤
|s2| ≤ |s3|, furthermore, the second formula tells us that f is non-surjective and
therefore that |s1| < |s2|. Using these constraints we can immediately discount
9 of the 15 domain size assignments considered without them.

To find constraints between the sizes of sorts s1 and s2 we look for four cases:

1. If a function f : s1 → s2 is injective, then |s1| ≤ |s2|.
2. If a function f : s1 → s2 is injective and non-surjective, then |s1| < |s2|.
3. If a function f : s1 → s2 is surjective, then |s1| ≥ |s2|.
4. If a function f : s1 → s2 is surjective and non-injective, then |s1| > |s2|.
These constraints can be added to the constraints used in the search described
in Sect. 5.

Our method for detecting bounds was inspired by Infinox [3], a method for
showing no finite model can exist for unsorted FOL formulas if there is a strict
bound within a sort. We detect bounds by attempting to prove properties of
functions between sorts. For a unary function f : s1 → s2 occurring in the
problem we can simply make a claim such as

(∀x : s1)(∀y : s2)(f(x) = f(y) → x = y) ∧ (∃y : s2)(∀x : s1)(f(x) �= y)

for each case (this is case (2) above), and then ask whether this claim follows
from the axioms of the input problem. For non-unary functions it is necessary
to existentially quantify over one of the arguments, details of how to do this can
be found in [3].

To check each claim C we could use standard techniques to check A |= C
where A are the input axioms. Any black box solver could be used for this.
However, doing this on a per-claim basis is inefficient and we implement an
optimisation of Vampire’s saturation loop to establish multiple claims in a single
proof attempt. Recall that the saturation loop will search for consequences of

336 G. Reger et al.

its input. Therefore, we saturate A ∪ {Ci → li} where li is a fresh propositional
symbol labelling claim Ci. If the unit li is derived then we can conclude that the
claim Ci is a consequence of A. This approach was inspired by the consequence
elimination mode of Vampire [9] (see this work for technical details).

7 Getting More Sorts

Previously we have seen how sort information can be used to reduce the size
of the SAT encoding by only growing the domain sizes of sorts that need to be
grown. In this section we recall a technique first described in [4] for inferring
new sorts and explain how these new sorts can be useful.
Inferring Subsorts. Consider the Organised Monkey Village example. The
monkey sort can be split into three separate subsorts as there are three parts
(assigning bananas to monkeys, assigning monkeys to trees and assigning mon-
keys to their partners) where the signatures do not overlap. Abstractly, we can
use different monkeys in these different places as they do not interact – later
we will see why this is useful. To infer such subsorts we can use the standard
union-find method on positions in the signature.
Using Inferred Subsorts. Claessen et al. [4] describe two uses for inferred
subsorts:
–Removing Instances. If a subsort τ is monotonic and all function symbols with
the return sort τ are constants, then we can bound the subsort by the number
of constants. It is easy to argue that any ground clauses (instances, totality or
functionality) for a domain constant larger than the bound of the subsort can be
omitted as they will necessarily be equivalent to an existing clause. This helps
reduce the size of the SAT encoding.
–Symmetry breaking. For the same reasons that symmetry breaking can occur
per sort, symmetry breaking can now occur per inferred subsort. This is safe
due to the above observation that values for different subsorts will never be
compared.
Making Subsorts Proper Sorts. Proper sorts and inferred subsorts are
treated differently as we only grow the sizes of proper sorts. If an inferred subsort
is not bounded as described above then it is forced to grow to the same size as
its parent sort. To understand why this can be problematic consider the FOL
formula

distinct(a1, . . . , a50) ∧ (∀x)(f(f(f(f(f(f(f(f(f(f(x)))))))))) �= x)

which has an overall finite model size of 50. Establishing this finite model requires
a SAT problem consisting of 1,187,577 clauses. However, there are two subsorts:
that of the constants a1 to a50 and that of f . The second subsort is monotonic
and does not need to grow beyond size 3. If this had been declared as a separate
sort then the required SAT encoding would only consist of 125,236 clauses.

It is only safe to treat an inferred subsort as a proper sort if we can translate
any resulting model into one where elements of the inferred subsort belong to
the original sort. This is possible when (i) the inferred subsort is monotonic, and

Finding Finite Models in Multi-sorted First-Order Logic 337

(ii) the size of the inferred subsort is not larger than the size of its parent sort.
To ensure (ii) we add constraints to the search strategy in the same way as for
sort bounds detected previously.

8 An Alternative Growing Search

The previous search strategy considers each domain size assignment separately
(we therefore refer to it as a pointwise encoding). However, we can modify the
encoding so that it captures the current assignment and all smaller ones at the
same time. Thus we no longer talk of a domain size but rather of a domain
size upper bound, as the parameter of the encoding. These bounds never need
to shrink and thus grow monotonically for each sort. We call this encoding a
contour encoding as we can think of it drawing a contour around the explored
part and growing this outwards.

This alternative encoding works as follows. For each sort s with domain
size bound ns we introduce ns propositional variables bounds(1) to bounds(ns).
Then instead of single totality constraint for each principal term p we introduce
all totality constraints for domain sizes up to ns guarded by the appropriate
bound i.e.

p = c1 ∨ bounds(1), . . . , p = c1 ∨ . . . ∨ p = cns
∨ bounds(ns)

We guard DC -instances of clauses with negations of these guards in the following
way. For each sort s let smax be the index of the largest domain constant in this
instance used to replace a variable of sort s. Then if smax is defined, i.e. there
is at least one such variable, and smax > 1 we guard the instance with a literal
¬bounds(smax −1). For example, given a function symbol f : s1 → s2, a constant
b : s2, and a flattened clause f(x) �= y∨b �= y, its DC -instance f(c3) �= c1∨b �= c1
would be guarded as f(c3) �= c1 ∨ b �= c1 ∨ ¬bounds1(2).

In this encoding the SAT solver can satisfy the clauses for a domain size
smaller than ns i.e. if it can satisfy a stricter totality constraint then it can effec-
tively ignore some of the instances. As a further variation, if a sort is monotonic
then we do not need to consider the possibility that a sort is smaller than its
current bound. Therefore, we only need the largest totality constraint and do
not need constraints on instances.

In a similar way as before, we solve the problem under the assumptions that
the sort sizes are big enough i.e.

A =
∧

s∈S ¬bounds(ns).

If this is shown unsatisfiable the subset of assumptions A0 will suggest the sorts
that could be grown; growing a sort not mentioned in A0 would allow the same
proof of unsatisfiability to be produced. If A0 is empty, the SAT-solver has
shown that the given first-order formula is unsatisfiable. Otherwise, we can either
arbitrarily select a sort to grow out of the ones mentioned in A0. This approach
is significantly different from the previous approach as now we only consider one

338 G. Reger et al.

Table 1. Experimental results for unsorted problems.

Vampire

CVC4 Paradox iProver Ignore Use Expand

FOF+CNF: sat 1181 1444 1348 1421 1463 1503

FOF+CNF: unsat - - 1337 1400 1604 1628

next domain size assignment. However, the SAT problems may be considerably
harder to solve as the SAT solver is now considering a much larger set of models.
In essence, each new SAT problem contains all the previous ones as sub-problems.

Finally, if the SAT problem is satisfiable then the actual size of a sort s is
given by its smallest totality constraint that is “enabled”; more precisely, by the
smallest i such that bounds(i) is false in the computed model.

9 Experimental Evaluation

In this section we evaluate the different techniques for finite model finding in
multi-sorted FOL described in this paper and compare our approach to other
tools.
Experimental Setup. We considered two sets of problems. From the TPTP
[16] library (version 6.3.0) we took unsorted problems in the FOF or CNF format.
From the SMT-LIB library [1] we took problems from the UF (Uninterpreted
Functions) logic. Experiments were run on the StarExec cluster [15], whose nodes
are equipped with Intel Xeon 2.4 GHz processors and 128 GB of memory. For
each experiment we will report the number of problems solved with the time
limit of 60 s.

On satisfiable problems we compare our implementation with version 3.0 of
Paradox [5] and version 1.4 of CVC4 [13]; Paradox does not establish unsatis-
fiability and CVC4 runs more than a finite model finding approach, making a
comparison on unsatisfiable problems difficult. On the TPTP problems, we also
compare to version 2.0 of iProver [10]. The techniques described in this paper
were implemented in Vampire.
Adding Sorts to Unsorted Problems. Our first experiment considers the
effect of sort inference on unsorted problems. We consider three settings: (i)
inferred subsorts are ignored, (ii) inferred subsorts are used to reduce the prob-
lem size and break symmetries only, and (iii) inferred subsorts are expanded to
proper sorts where possible. Table 1 presents the results. This shows that sort
information can be used to solve more problems. For satisfiable problems the
best Vampire strategy solves more problems than CVC4, Paradox or iProver.
For both satisfiable and unsatisfiable problems, expanding subsorts into proper
sorts and treating the problems as multi-sorted problems helps solve the most
problems. We note that 4 problems found unsatisfiable using this approach could
not be solved by any other technique in Vampire, this is significant as Vampire
is one of the best theorem provers available for such problems.

Finding Finite Models in Multi-sorted First-Order Logic 339

Table 2. Experimental results for translations from multi-sorted to unsorted.

Sort Predicates Sort Functions

Plain Monotonicity Subsorts Both Plain Monotonicity Subsorts Both

UF: sat 813 810 872 874 710 771 834 873

UF: unsat 101 112 221 232 67 67 171 171

Table 3. Experimental results for multi-sorted problems.

CVC4 Pointwise Contour Without

Default Expand Collapse Bounds Default Collapse Bounds Constraints

UF: sat 764 (8) 795 789 901 (12) 810 886 (3) 899 (1) 886 (1) 154

UF: unsat - 212 215 241 218 270 261 267 66

Removing Sorts from Sorted Problems. Next we consider the translation
techniques described in Sect. 4 applied to multi-sorted problems. Table 2 shows
the results of running variations of these translations on the multi-sorted UF
problems described above. Plain applies the translation to the whole problem,
ignoring subsorts in the result. With Monotonicity only non-monotonic sorts
are translated and with Subsorts the resulting problem is solved using inferred
subsorts. Both adds both variations.

These results show that, for these problems, sort predicates are more useful
and that the techniques of monotonicity detection and subsort inference are
useful in improving the translation and reasoning with it.
Finding Models of Multi-sorted Problems. Finally, we consider our frame-
work for reasoning with multi-sorted problems directly. Table 3 gives the results
for CVC4 and eight variations of the techniques presented in this paper (we use
only CVC4 since Paradox does not work on sorted problems). At the top level
these are split into the Pointwise and Contour encodings and a version where
no constraints were added. Then Expand refers to subsort expansion (Sect. 7),
Collapse refers to collapsing monotonic sorts together (Sect. 5.5), and Bounds
refers to sort bound extraction (Sect. 6). These results can also be compared to
Table 2 as the problems are the same.

The three main conclusions from this information are (i) overall the approach
taken in this paper is able to solve more problems than the approach taken by
CVC4, (ii) collapsing monotonic sorts is very useful, and (iii) including the search
problem as part of the SAT encoding is vital. Bracketed numbers show unique
problems solved by an approach. This shows that although CVC4 solves fewer
problems it does solve some uniquely. The contour encoding was generally more
successful, however in UF there are 15 and 19 problems that are only solvable
using the pointwise and contour encodings respectively. As a further point, we
note that the heuristic introduced on page 9 is useful, without it the default
pointwise approach solved 61 fewer problems. Finally, comparing with the results
in Table 2, we see that finding models for multi-sorted problems directly performs
better than translating the problem to an unsorted one.

340 G. Reger et al.

10 Conclusions and Further Work

We have introduced a new framework for MACE-style finite model finding for
multi-sorted first-order logic. This involved two complementary SAT encodings
that capture the search for a satisfying domain size assignment and techniques
aimed at decreasing the size of this search space. We have demonstrated exper-
imentally that these techniques are effective at improving finite model finding
in the unsorted setting and finding finite models for multi-sorted first-order for-
mulas. Further work will consider possible extensions to uninterpreted sorts and
infinite, but finitely representable, models.

References

1. Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2010). http://www.SMT-LIB.org

2. Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomor-
phic and polymorphic types. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013
(ETAPS 2013). LNCS, vol. 7795, pp. 493–507. Springer, Heidelberg (2013)

3. Claessen, K., Lillieström, A.: Automated inference of finite unsatisfiability. J.
Autom. Reasoning 47(2), 111–132 (2011)

4. Claessen, K., Lillieström, A., Smallbone, N.: Sort it out with monotonicity. In:
Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp.
207–221. Springer, Heidelberg (2011)

5. Claessen, K., Sörensson, N.: New techniques that improve MACE-style model find-
ing. In: CADE-19 Workshop: Model Computation - Principles, Algorithms and
Applications (2003)

6. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

8. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr.
Notes Theor. Comput. Sci. 89(4), 543–560 (2003)

9. Hoder, K., Kovács, L., Voronkov, A.: Case studies on invariant generation using a
saturation theorem prover. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011, Part
I. LNCS, vol. 7094, pp. 1–15. Springer, Heidelberg (2011)

10. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic
(System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)

11. Kovács, L., Voronkov, A.: First-order theorem proving and vampire. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg
(2013)

12. Mccune, W.: A Davis-Putnam Program and its Application to Finite First-Order
Model Search: Quasigroup Existence Problems. Technical report, Argonne National
Laboratory (1994)

13. Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite model finding in SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 640–655. Springer,
Heidelberg (2013)

http://www.SMT-LIB.org

Finding Finite Models in Multi-sorted First-Order Logic 341

14. Schulz, S.: A comparison of different techniques for grounding near-propositional
CNF formulae. In: Proceedings of the Fifteenth International Florida Artificial
Intelligence Research Society Conference, May 14–16, 2002, Pensacola Beach,
Florida, USA, pp. 72–76 (2002)

15. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec, a cross community logic solving
service (2012). https://www.starexec.org

16. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reasoning 43(4), 337–362 (2009)

17. Tammet, T.: Reasoning. Gandalf. J. Autom 18(2), 199–204 (1997)
18. Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: Proceedings of

the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI 95,
Montréal Québec, Canada, August 20–25 1995, vol. 2s, pp. 298–303 (1995)

https://www.starexec.org

	Finding Finite Models in Multi-sorted First-Order Logic
	1 Introduction
	2 Preliminaries
	3 MACE-Style Finite Model Finding in an Unsorted Setting
	3.1 DC-Models
	3.2 The SAT Encoding
	3.3 Reducing the Number of Variables
	3.4 Symmetry Breaking
	3.5 Determining Unsatisfiability

	4 Previous Work in the Multi-sorted Setting
	5 A Framework for the Multi-sorted Setting
	5.1 Using Sorts in the SAT Encoding
	5.2 A Search Strategy
	5.3 Encoding the Search Problem
	5.4 An Example
	5.5 Using Monotonicity

	6 Detecting Constraints Between Sorts
	7 Getting More Sorts
	8 An Alternative Growing Search
	9 Experimental Evaluation
	10 Conclusions and Further Work
	References

