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Abstract. Over the years the constraint-based method has been suc-
cessfully applied to a wide range of problems in program analysis, from
invariant generation to termination and non-termination proving. Quite
often the semantics of the program under study as well as the properties
to be generated belong to difference logic, i.e., the fragment of linear
arithmetic where atoms are inequalities of the form u − v ≤ k. However,
so far constraint-based techniques have not exploited this fact: in gen-
eral, Farkas’ Lemma is used to produce the constraints over template
unknowns, which leads to non-linear SMT problems. Based on classical
results of graph theory, in this paper we propose new encodings for gen-
erating these constraints when program semantics and templates belong
to difference logic. Thanks to this approach, instead of a heavyweight
non-linear arithmetic solver, a much cheaper SMT solver for difference
logic or linear integer arithmetic can be employed for solving the result-
ing constraints. We present encouraging experimental results that show
the high impact of the proposed techniques on the performance of the
VeryMax verification system.

1 Introduction

Since Colón’s et al. seminal paper [1], the so-called constraint-based method has
been applied with success to a wide range of problems in system verification,
from invariant generation in Petri nets [2], hybrid systems [3] and programs
with arrays [4,5], to termination [6,7] and non-termination proving [8]. In most
of these applications, one is interested in generating linear properties, e.g., linear
invariants or linear ranking functions. In these cases, Farkas’ Lemma is employed
for producing the constraints over the template unknowns. As a result, a non-
linear SMT formula is obtained, for which a model has to be found. Despite the
great advances in non-linear SMT [9–11], the applicability of the approach is
still strongly conditioned by current solving technology.

A way to circumvent the bottleneck of using non-linear constraint solvers is
to exploit the fragment of logics in which the program under study is described.
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Although this has not been explored so far in the constraint-based method, other
more mature approaches for program analysis such as abstract interpretation [12]
have profited from this sort of refinements since the early days of their inception.
Indeed, there is a wide variety of non-relational and weakly-relational numerical
abstract domains which cover different subsets of linear arithmetic, but whose
complexity is lower than that of the full language [13]: intervals [14], zones [15]
and octagons [16], to name a few. Also in the model checking community, it
is common to focus on particular subclasses of linear inequalities as a means to
improve efficiency. In particular, potential constraints have been employed in the
verification of several kinds of timed and concurrent systems [17–19].

In this paper we restrict our attention to difference logic over the integers,
in which atoms are inequalities of the form u − v ≤ k, where u and v are
integer variables, and k ∈ Z. This fragment of linear arithmetic corresponds to
the aforementioned zone abstract domain in abstract interpretation, and to the
potential constraints in model checking. Our contributions in this work are:

– we propose an encoding for satisfiability and unsatisfiability of sets of inequal-
ities in difference logic including templates, which results in formulas of differ-
ence logic. This is noteworthy since current approaches to equivalent problems
in general full linear arithmetic lead to non-linear formulas.

– for the problem of, given a set of inequalities with free independent terms,
choosing an invariant subset that proves an assertion, we present two encod-
ings, one for full linear arithmetic and another specialized one for difference
logic. While the former leads to non-linear formulas, again the latter falls into
a more tractable fragment, in this case linear arithmetic.

– we present an experimental evaluation with the constraint-based verification
system VeryMax [20]. We consider the problem of proving the absence of out-
of-bounds array accesses in a benchmark suite of numerical programs, and our
results show that the expressiveness of difference logic is sufficient to succeed in
the majority of the cases, while a remarkable boost in performance is obtained
thanks to the proposed techniques.

Two closely related works are [21,22], in which invariants of slightly more
general classes than difference logic are generated following the constraint-based
method, but with different strategies for producing the constraints over tem-
plate unknowns. In [21], the authors discover octagonal invariants, i.e., of the
form ±x1 ± x2 ≤ k, as well as max-plus invariants max1≤i≤n(a0, xi + ai) ≤
max1≤i≤n(b0, xi + bi). While our approach cannot currently produce max-plus
invariants, the standard technique of adding for each variable x a copy standing
for −x [16,23] allows generating octagonal invariants too. However, the quan-
tifier elimination method in [21] is incomplete and, as a result, invariants may
be missed. Moreover, program assignments must be of the form x := ±x + K
or x := K, where K is a constant, and so unlike with our techniques the com-
mon case of assignments like x := y, where x, y are different variables, is not
allowed. As regards [22], in that paper template domains are considered, where
templates are linear inequalities with free independent term but fixed dependent



286 L. Candeago et al.

term. There the quantifier elimination procedure [24] is precise, but is not spe-
cialized for difference logic. Unfortunately, the available implementation cannot
produce difference logic invariants and so cannot be used for an experimental
comparison.

2 Background

Programs, Invariants and Safety. Let us fix a set of (integer) program vari-
ables X = {x1, . . . , xn}, and denote by F(X ) the formulas consisting of conjunc-
tions of linear inequalities1 over the variables X . Let L be the set of program
locations, which contains a set L0 of initial locations. Program transitions T
are tuples (�S , τ, �T ), where �S and �T ∈ L represent the source and target loca-
tions respectively, and τ ∈ F(X ∪ X ′) describes the transition relation. Here
X ′ = {x′

1, . . . , x
′
n} represent the values of the variables after the transition.2 A

transition is initial if its source location is initial. The set of initial transitions is
denoted by T0. A program is a pair P = (L, T ), which can be viewed as a directed
graph where the locations L are the nodes, and each transition (�S , τ, �T ) from
T leads to an edge in the graph from �S to �T labelled by τ .

A state s = (�,x) consists of a location � ∈ L and a valuation x : X → Z.
A state is initial if its location is initial. We denote a computation step with
transition t = (�S , τ, �T ) by (�S ,x) →t (�T ,x′) when the valuations x, x′ satisfy
the transition relation τ of t. We use →P if we do not care about the executed
transition, and →∗

P to denote the transitive-reflexive closure of →P . We say that
a state s is reachable if there exists an initial state s0 such that s0 →∗

P s.
An assertion (�, ϕ) is a pair of a location � ∈ L and a formula ϕ with free

variables X . A program is safe with respect to the assertion (�, ϕ) if for every
reachable state (�,x), we have that x |= ϕ holds.

A map I : L → F(X ) is an invariant if for every � ∈ L, the program is
safe with respect to (�, I(�)). An important class of invariants are inductive
invariants. A map I is an inductive invariant if the following two conditions
hold:

Initiation: For (�S , τ, �T ) ∈ T0: τ |= I(�T )′

Consecution: For (�S , τ, �T ) ∈ T − T0: I(�S) ∧ τ |= I(�T )′

If only the condition Consecution is fulfilled, the map I is called a conditional
inductive invariant.

One of the key problems in program analysis is to determine whether a
program is safe with respect to a given assertion (�, ϕ). This is typically proved
by computing an (inductive) invariant I such that the following condition holds:

Safety: I(�) |= ϕ
In this case we say that the invariant I proves the assertion (�, ϕ).

Finally, we say a transition t = (�S , τ, �T ) is disabled if it can never be
executed, i.e., if for any reachable state (�S ,x), there does not exist any x′ such
that (x,x′) satisfies τ . One can prove this by computing an invariant I such

1 Note that equalities can be considered as conjunctions of inequalities.
2 For ϕ ∈ F(X ), the formula ϕ′ ∈F(X ′) is the version of ϕ using primed variables.
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that I(�S) |= ¬τ . Disabled transitions allow one to simplify the program under
analysis, since they can be soundly removed from the program. In general, if I is
an invariant map, then any transition t = (�S , τ, �T ) can be soundly strengthened
by replacing the transition relation τ by I(�S) ∧ τ .
Constraint-Based Invariant Generation. Invariants can be generated using
the constraint-based (also called template-based) method [1]. The idea is to con-
sider templates for candidate invariant properties. These templates involve both
the program variables as well as fresh template variables whose values have to be
determined to ensure invariance. To this end, conditions Initiation and Conse-
cution are enforced by means of constraints. Any solution to these constraints
yields an invariant. If templates represent linear inequalities, Farkas’ Lemma [25]
is used to express the constraints in terms of the template variables:

Theorem 1 (Farkas’ Lemma). Let S be a system of linear inequalities Ax ≤
b (A ∈ R

m×n, b ∈ R
m) over real variables x. Then S has no solution iff there

is λ ∈ R
m (called the multipliers) such that λ ≥ 0, λT A = 0 and λT b ≤ −1.

In general, an SMT formula over non-linear arithmetic is obtained. By assign-
ing weights to the different conditions, invariant generation can be cast as an
optimization problem in the Max-SMT framework [7,8,20].

Example 1 Consider the program in Fig. 1, with the state variables n, x0, i:

τ0 : n − x0 ≥ 1, x0 = x0, n = n, i = x0

τ1 : i ≤ n − 2, x0 = x0, n = n, i = i

τ2 : x0 = x0, n = n, i = i + 1

τ3 : i ≥ n − 1, x0 = x0, n = n, i = i
0 1

2

3
τ0

τ1 τ2

τ3

Fig. 1. Program with a single initial location �0.

Let us take the following 3 templates expressing general linear inequalities, one
for each non-initial location:

Tj := c0j x0 + c1j n + c2j i ≤ dj for all j = 1 . . . 3 .

By imposing that these templates yield an invariant, we obtain the conditions
(for simplicity, no assertion and thus no Safety condition is considered here):

Initiation: τ0 |= T ′
1, i.e., τ0 ∧ ¬T ′

1 unsatisfiable
Consecution: T1 ∧ τ1 |= T ′

2, i.e., T1 ∧ τ1 ∧ ¬T ′
2 unsatisfiable

T2 ∧ τ2 |= T ′
1, i.e., T2 ∧ τ2 ∧ ¬T ′

1 unsatisfiable
T1 ∧ τ3 |= T ′

3, i.e., T1 ∧ τ3 ∧ ¬T ′
3 unsatisfiable .
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By fleshing out the transition relations, expanding the templates and simplifying,
these four formulas are equivalent to

(1) x0 − n ≤ −1 ∧ −(c01 + c21) x0 − c11 n ≤ −d1 − 1
(2) c01 x0 + c11 n + c21 i ≤ d1 ∧ i − n ≤ −2 ∧ −c02 x0 − c12 n − c22 i ≤ −d2 − 1
(3) c02 x0 + c12 n + c22 i ≤ d2 ∧ ∧ − c01 x0 − c11 n − c21 i ≤ −d1 − 1 + c21
(4) c01 x0 + c11 n + c21 i ≤ d1 ∧ n − i ≤ 1 ∧ −c03 x0 − c13 n − c23 i ≤ −d3 − 1

respectively. Now Farkas’ Lemma is applied to express unsatisfiability. Namely,
for (1) we consider non-negative multipliers λ11, λ12 such that the linear com-
bination that consists in multiplying the first inequality by λ11 and the second
inequality by λ12 results in a trivially false inequality. For that, we need the
coefficients of x0 to cancel out, i.e., λ11 −λ12(c01 + c21) = 0, and the same for n,
i.e., −λ11 − λ12c11 = 0. With respect to the independent term, we force that it
is smaller than or equal to −1, i.e., −λ11 +λ12(−d1 − 1) ≤ −1, which will create
a trivially false inequality. All in all, we get the non-linear formula

∃λ11λ12

(
λ11, λ12 ≥ 0 ∧

λ11 − λ12(c01 + c21) = −λ11 − λ12c11 = 0 ∧
−λ11 + λ12(−d1 − 1) ≤ −1

) (1)

Similar constraints are obtained for (2)-(4). 	


Difference Logic and Graph Theory. Given variables u and v and a numeric
constant k, henceforth we will refer to an inequality of the form u − v ≤ k as
a difference inequality. The fragment of (quantifier-free) first-order logic where
atoms are difference inequalities is called difference logic.

Sets (conjunctions) of difference inequalities, also called difference systems,
have long been studied in the literature (e.g., in [26], where they are referred
to as simple temporal problems, STP’s). For instance, they can be repre-
sented as graphs as follows. Given a difference system S defined over variables
v1, v2, . . . , vn, we consider the weighted graph G with vertices (v1, v2, . . . , vn)
and an edge vi

k→ vj for each inequality vi − vj ≤ k ∈ S. This graph is called
the constraint graph of S.

It is well-known that a constraint graph has interesting properties as regards
to the solutions of the corresponding difference system [27]:

Theorem 2 Let S be a difference system, and G its constraint graph. Then S
has no solution iff G has a negative cycle.

This result is a particular case of Farkas’ Lemma. It essentially ensures that,
for difference systems, the multipliers of Farkas’ Lemma are either 1 or 0 (the
difference inequality belongs to the negative cycle or it does not, respectively).

One of the most important practical consequences of Theorem 2 is that any
algorithm that is able to detect negative cycles in weighted graphs (such as, for
instance, Bellman-Ford, or Floyd-Warshall [27]) can be used to determine the
existence of solutions to a difference system.
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Theorem 2 can be extended to allow also bound inequalities, i.e., inequalities
of the form v ≤ k or v ≥ k, where v is a variable and k is a numeric constant:
Given a system S that includes difference inequalities as well as bound inequali-
ties, a fresh variable v0 is introduced. Then a new system S∗ is defined, which is
like S but where each inequality of the form vi ≤ k in S is replaced by vi−v0 ≤ k,
and each vi ≥ k, or equivalently −vi ≤ −k, is replaced by v0 − vi ≤ −k. It is not
difficult to prove that S has a solution iff S∗ has one.

3 Proving Safety of Difference Programs

In this paper we will focus on difference programs, that is, programs whose
transition relations are conjunctions of difference inequalities.

Although this may seem rather restrictive, in fact more general programs can
be cast into this form: for any program with difference as well as bound inequal-
ities in the transition relations, there exists an equivalent difference program,
as it is well-known in the literature [15]. The trick consists in introducing an
artificial variable x0, which intuitively is always zero, and then transform bound
inequalities into difference inequalities by adding x0 with the appropriate sign.
Thus, e.g., n ≥ 1 is transformed into n−x0 ≥ 1. Moreover, the equation x′

0 = x0

has to be added to all transitions. For example, after this transformation the
program in Fig. 2 leads to that in Fig. 1.

τ̃0 : n ≥ 1, n = n, i = 0
τ̃1 : i ≤ n − 2, n = n, i = i

τ̃2 : n = n, i = i + 1

τ̃3 : i ≥ n − 1, n = n, i = i
0 1

2

3
τ̃0

τ̃1 τ̃2

τ̃3

Fig. 2. Program with difference and bound inequalities in the transition relations.

The problem we consider in this section is, given a location � and a difference
inequality ϕ, to prove that the program under consideration is safe with respect
to the assertion (�, ϕ). As the following theorem states, proving safety of a dif-
ference program is in general undecidable, and therefore we cannot hope for a
sound and complete terminating algorithm that solves the problem:

Theorem 3 Given a difference program P, a location � ∈ L and a difference
inequality ϕ, the problem of deciding whether P is safe with respect to the asser-
tion (�, ϕ) is undecidable.
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3.1 Specialization of the Constraint-Based Method

Here we attempt to prove difference programs safe by finding invariants con-
sisting of difference inequalities with a specialization of the constraint-based
method.3 Let us first illustrate the gist of our technique with an example.

Example 2 Again let us consider the program in Fig. 1 and assign a template to
each non-initial location: Tj := c0j x0 + c1j n + c2j i ≤ dj for all j = 1 . . . 3 .
This program is a difference program. Let us also consider the assignment
c0,j = 0, c1,j = −1, c2,j = 1 for all j = 1 . . . 3, d1 = d3 = −1, d2 = −2,
which instantiates the templates as follows:

T1 ≡ i − n ≤ −1 T2 ≡ i − n ≤ −2 T3 ≡ i − n ≤ −1,

and check that they are invariant. Since the above inequalities belong to differ-
ence logic, we can use Theorem 2 to check that indeed the formulas τ0 ∧ ¬T ′

1,
T1 ∧ τ1 ∧ ¬T ′

2, T2 ∧ τ2 ∧ ¬T ′
1 and T1 ∧ τ3 ∧ ¬T ′

3 are unsatisfiable, as required
by the Initiation and Consecution conditions. By the theorem, the unsatisfi-
ability of each of these formulas is equivalent to the existence of a negative cycle
in the corresponding graph. In Fig. 3 some of these graphs are shown for the
particular solution considered here, and the respective negative cycles are high-
lighted. Solving the Initiation and Consecution constraints over the template
coefficients can thus be seen as adding new weighted edges to the graphs of the
transition relations so that, in the end, all graphs have a negative cycle. Note
this must be done consistently for all Initiation and Consecution constraints,
so that, e.g., the edge of ¬T ′

1 is the same in τ0 ∧ ¬T ′
1 and in T2 ∧ τ2 ∧ ¬T ′

1.

In what follows, we assume we have associated to each non-initial location �
a template invariant T� of the form

c0,� x0 + c1,� x1 + . . . + cn,� xn ≤ d�

where the ci,� and the d� are template unknowns.4 For obvious reasons we will
refer to the ci,� as left-hand side variables, whereas the d� are called right-hand
side variables (LHS and RHS variables, respectively). Here we focus on differ-
ence inequalities, and therefore the domain of LHS variables is {+1, 0,−1}, while
the domain of RHS variables is Z.

We propose to find appropriate values for the RHS and LHS variables fol-
lowing an eager approach: we encode all required constraints obtained from the
Initiation, Consecution and Safety conditions into a single SMT formula,
and then use an off-the-shelf SMT solver to solve the resulting problem. As will
be seen next, in our particular case the atoms in the SMT formula will be either

3 Here a simplified procedure for proving an assertion is described in order to highlight
the key contribution of this work, that is, how to circumvent non-linearities.

4 When the generated invariants consisting of a single inequality do not prove the
assertion, as indicated in Section 2 the procedure can be iterated by strengthening the
transitions, thereby allowing the synthesis of invariant conjunctions of inequalities.
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n

n

x0

x0

i

i

0

0

0

−1
0

0

0

0

(a)

n

n

x0

x0

i

i

0

0

0

−2

0

0

−1

1

(b)

Fig. 3. Graphs for the formulas τ0 ∧ ¬T ′
1 (a) and T2 ∧ τ2 ∧ ¬T ′

1 (b). The edges cor-
responding to the templates (or their negation) are dashed. The edges forming the
negative cycles are highlighted with thicker lines.

Boolean variables or bound inequalities or difference inequalities. By virtue of
the results reviewed in Sect. 2, the generated formula can be handled with an
SMT solver of difference logic, for which efficient implementations are available.

The formula that expresses the constraints over template variables (LHS and
RHS variables) is a conjunction of the following ingredients.

Membership to Difference Logic. First of all, we have to express that all templates
are difference inequalities. To that end, for each LHS variable ci we introduce
two auxiliary Boolean variables: c+i and c−

i . Intuitively, c+i will be true iff ci is
assigned to +1, and c−

i will be true iff ci is assigned to −1. If both c+i and c−
i are

false, then ci is 0. We need to enforce: (i) that the c+i and c−
i cannot be true at the

same time, (ii) that exactly one of the ci in each template is +1 (i.e., exactly one
of the c+i is true), and (iii) exactly one is −1 (i.e., exactly one of the c−

i is true).
The constraints resulting from (ii) and (iii), which are of the form

∑m
j=1 bj = 1,

are encoded with a clause
∨m

j=1 bj that imposes
∑m

j=1 bj ≥ 1, together with
additional clauses that express

∑m
j=1 bj ≤ 1 using one of the available encodings

in the literature (e.g., quadratic, logarithmic [28] or ladder [29]).

Unsatisfiability of Difference Systems. When encoding the Initiation, Conse-
cution and Safety conditions, essentially one has to impose the unsatisfiability
of a set of difference inequalities, some of which may be templates. Namely, in
Initiation and Safety one has a single template, but while in the former the
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template appears negatively, in the latter it appears positively. On the other
hand, in Consecution two templates appear, one negatively and the other pos-
itively. Here we will elaborate on this latter case, being the others simpler.

Thus, let S be a difference system over program variables X , X ′ such that

c0 x0 + . . . + cn xn ≤ d ∧ S ∧ ¬(c̃0 x′
0 + . . . + c̃n x′

n ≤ d̃)

must be unsatisfiable. Our goal is to instantiate the templates so that this is the
case. Note ¬(c̃0 x′

0+. . .+ c̃n x′
n ≤ d̃) is equivalent to −c̃0 x′

0−. . .− c̃n x′
n ≤ −d̃−1.

To ensure unsatisfiability, i.e., that a negative cycle exists, we first construct G,
the constraint graph induced by S. We then apply Floyd-Warshall algorithm in
order to compute the distances dist(y, z) for each pair of vertices y and z in G.

If for some vertex y we have dist(y, y) < 0, then S has a negative cycle
and hence the unsatisfiability requirement is fulfilled independently from the
templates. In this case, no clause needs to be added.

Otherwise S has no negative cycles, and the only possibility to construct
one is to go through the edges induced by the templates. Let us consider an
assignment such that cu = +1, cv = −1, c̃ũ = +1 and c̃ṽ = −1 (i.e. c+u , c−

v ,
c+ũ and c−

ṽ are true). In this case the instantiation of the positive template is
xu − xv ≤ d, and the instantiation of the negation of the other template is
x′

ṽ − x′
ũ ≤ −d̃ − 1. Hence, the former induces an edge from xu to xv with weight

d, while the latter induces an edge from x′
ṽ to x′

ũ with weight −d̃ − 1.
To form a negative cycle, either (i) the cycle contains only the posi-

tive template, or (ii) contains only the negative template, or (iii) contains
both. The first situation can be seen in Fig. 4(a), where it is needed that
dist(xv, xu) + d < 0. The second situation is depicted in Fig. 4(b), where we
need dist(x′

ũ, x′
ṽ)− d̃−1 < 0. Finally the third situation can be seen in Fig. 4(c),

where we need d + dist(xv, x′
ṽ) − d̃ − 1 + dist(x′

ũ, xu) < 0. Hence, we add the
following clause:

c+u ∧ c−
v ∧ c̃+ũ ∧ c̃−

ṽ =⇒ d ≤ −dist(xv, xu) − 1 ∨
−d̃ ≤ −dist(x′

ũ, x′
ṽ) ∨

d − d̃ ≤ −dist(xv, x′
ṽ) − dist(x′

ũ, xu)
(2)

Note that it might be the case that some of the paths represented in Fig. 4 do
not actually exist. For example, if xu is unreachable from xv, i.e., dist(xv, xu) =
∞, then there cannot be a negative cycle that only uses the positive template,
independently of the value we give to its RHS variable. Hence the first inequality
in the clause of Eq. 2 can be dropped.

This reasoning is applied to all vertices, namely, to all u, v, ũ, ṽ with u �= v,
ũ �= ṽ, and u, v, ũ, ṽ ∈ {0, 1, . . . , n}, adding in each case the respective clause.

Satisfiability of Difference Systems. The opposite problem to the previous one,
that is, to enforce that a difference system is satisfiable, also arises in the
constraint-based method. This is the case when, for example, one performs sev-
eral rounds of invariant generation as described above, and requires that the
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xu xv

dist(xv, xu)

d

xũ xṽ

dist(xũ, xṽ)

−d̃ − 1

(a) (b)

xu xv

xũ xṽ

dist(xũ, xu) dist(xv, xṽ)

d

−d̃ − 1

(c)

Fig. 4. The only three ways of creating a negative cycle.

newly generated invariants are not redundant with respect to the already com-
puted ones: then there must exist a witness that certifies the non-redundancy.

Hence, let S be a difference system over program variables X such that

S ∧ ¬(c0 x0 + . . . + cn xn ≤ d) ≡ S ∧ −c0 x0 − . . . − cn xn ≤ −d − 1

must be satisfiable5. By Theorem 2, this amounts to proving that no negative
cycle exists in the corresponding constraint graph. Again, we will start by con-
structing G, the constraint graph induced by S, and applying Floyd-Warshall.

If a negative cycle is already detected, the satisfiability requirement cannot
be met. Otherwise S has no negative cycles, and the only possibility to achieve
one is to go through the edge induced by the template. If cu = 1 and cv = −1,
then the negation of the template is xv − xu ≤ −d − 1, which induces an edge
from xv to xu with weight −d − 1. This edge is part of a negative cycle iff
dist(xu, xv) − d − 1 < 0. Since we want to avoid negative cycles, we should
enforce that d ≤ dist(xu, xv) − 1. Hence, we should add the clause:

c+u ∧ c−
v =⇒ d ≤ dist(xu, xv) − 1 .

Note that if dist(xu, xv) = ∞ the clause is trivially satisfied and can be dropped.

3.2 Experiments

To experimentally evaluate our techniques, we executed an implementation of
the encoding presented in Sect. 3.1 on a benchmark suite obtained as follows6:
5 This yields a non-linear formula if templates and S include general linear inequalities.
6 Executables, benchmarks and detailed tables with the results of all the experiments

in this paper can be found at www.cs.upc.edu/∼erodri/sat16.tgz.

www.cs.upc.edu/~erodri/sat16.tgz
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we first ran our verification system VeryMax [20] on numerical (possibly non-
difference) programs from [30], checking whether all array accesses are within
bounds. For each such check, VeryMax needs to process several safety subqueries,
which consist of a small program with an assertion to be proved. Among them, we
chose those where the program and the assertion can be expressed in difference
logic. For these queries, VeryMax requires one of the next five possible outputs:

I. An invariant at each location proving the assertion
II. An invariant at each location disabling a transition

III. A conditional invariant at each location proving the assertion
IV. An invariant at each location
V. None of the previous ones

Solving one such query using the constraint-based method generates an SMT
formula with multiple Initiation, Consecution, Safety and other conditions
(e.g. no redundant invariants are generated, conditional invariants are compat-
ible with initial transitions) that can be encoded via Farkas’ Lemma or via our
novel difference logic encoding presented in the previous section. By making
some of these conditions soft with the use of appropriate weights as in [31], we
can order the five possible outputs from most desirable (I) to least desirable (V).
For example, the optimal solution gives output (III) only if no solution exists
that gives results (II) or (I).

The resulting Max-SMT formula can be processed with an off-the-shelf Max-
SMT solver, such as Opti-Mathsat [32], Z3Opt [33] or Barcelogic [34]. Unfor-
tunately, we had to discard Opti-Mathsat because it cannot deal with non-
linearities. Between the remaining two, it was Barcelogic the one that showed
a better performance, probably due to its novel method to deal with non-
linearities [11]. Regarding the optimization part, Barcelogic implements a very
simple branch-and-bound approach as explained in [35]. Due to its better per-
formance, in what follows only experiments with Barcelogic will be reported.

Experiments were performed on an Intel i5 2.8 GHz CPU with 8 Gb of mem-
ory. For each of the 3270 generated queries and each encoding, we consider the
best solution obtained within a time limit of 5 s7. In Table 1 we can see the
output and the running time of four different encodings: Farkas (the standard
encoding based on Farkas’ Lemma), FarkasDL (the previous one additionally
restricting the templates to be difference logic), FarkasDL-λ (the previous one
additionally imposing that the λ multipliers are 0 or 1), and Diff Logic (our
novel encoding introduced in the previous section).

The experiments confirm our intuition that our specialized difference logic
encoding outperforms Farkas both in runtime and in quality of solutions. Even if
we try to improve Farkas with additional constraints that limit the search space,
as in FarkasDL and FarkasDL-λ, the differences are still dramatic. We want
to remark that in no query Farkas gave a better-quality result than Diff Logic.

More detailed results can be seen in Fig. 5, where in the scatter plots we
display the timings (in seconds, logarithmic scale) over queries whose optimal
7 This is the time limit used in VeryMax for this type of queries in previous works [20].
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Table 1. Results on the 3270 generated queries with a time limit of 5 s.

(I) (II) (III) (IV) (V)

Method Inv. prove Disable tr Cond. inv. prove Invariant Nothing Time

Farkas 215 427 330 1024 1274 4 h 11m 47 s

FarkasDL 215 526 322 1042 1165 3 h 8m 22 s

FarkasDL-λ 217 594 324 1042 1039 3 h 1m 52 s

Diff Logic 786 1044 328 1112 0 56m 20 s
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Fig. 5. Comparison of Diff Logic and FarkasDL-λ runtimes over queries whose opti-
mal solution gives invariants proving the assertion (a) or disabling a transition (b).

solution finds invariants proving the assertion (a) or disabling a transition (b).
One can see that even the best Farkas-based encoding is systematically slower
than Diff Logic. We can also observe that in lots of queries Farkas times out,
which means that the Max-SMT solver could not prove the solution to be opti-
mal. One could think this is because proving optimality is equivalent to proving
unsatisfiability, something at which Barcelogic non-linear techniques are partic-
ularly bad. However, a careful inspection of the results reveals the situation is
worse, as in more than 80 % of the queries the found solution was not optimal.

4 Finding Invariant Subsets

Another important problem that we need to solve inside VeryMax is the Invariant
Subset Selection Problem. Formally, we are given a program, an assertion (�ass, ϕ)
and, for each location � ∈ L, a set Cand(�) of m� candidate invariants

c�,1
1 x1+ · · · + c�,1

n xn ≤ d�,1

. . .

c�,m�

1 x1+ · · · + c�,m�
n xn ≤ d�,m�

where the c�,j
i are fixed integer numbers and the d�,j are integer variables. The

goal is to select, if it exists, a subset of Cand(�) for each � ∈ L, and find an
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assignment to the d�,j ’s such that (i) the chosen subsets are invariant and (ii)
the invariants chosen at �ass imply ϕ.

As in Sects. 2 and 3 we will show that, in the general case, if we use Farkas’
Lemma we obtain a non-linear formula, whereas non-linearities can be avoided
when the program, the assertion and the candidate invariants are difference logic.
In this case, the resulting formula belongs to linear arithmetic.

4.1 General Case

We can imagine the process of finding a solution as working in two stages. First
of all, we have to select a subset of the candidate invariants at each location,
together with their corresponding right-hand sides d�,j . After that, we need to
ensure that Initiation, Consecution and Assertion conditions are satisfied.
To prove these conditions, we only need to find the right Farkas’ multipliers.

More precisely, for each location � ∈ L and 1 ≤ j ≤ m�, let us consider a
Boolean variable chosen�,j that indicates whether the j-th invariant in Cand(�)
is chosen. Additionally, to each coefficient c�,j

i we will associate a fresh integer
variable ĉ�,j

i , and to each d�,j a fresh integer variable d̂�,j . The following formulas

chosen�,j =⇒
n∧

i=1

ĉ�,j
i = c�,j

i ∧ d̂�,j = d�,j (3)

¬chosen�,j =⇒
n∧

i=1

ĉ�,j
i = 0 ∧ d̂�,j = 0 (4)

constraint the shape of the invariants depending on whether they are chosen or
not. In the following, we will consider that Ĉand(�) consists of all elements of
Cand(�) where all c’s and d’s have been replaced by their respective ĉ’s and d̂’s.

Let us explain how a Consecution condition will be enforced (for Initiation
and Assertion an analogous idea applies). Let (�S , τ, �T ) be the transition to
which consecution refers. We want to enforce that Ĉand(�S) ∧ τ |= Ĉand(�T )′,
which amounts to checking, for each înv ′ ∈ Ĉand(�T )′, that Ĉand(�S)∧τ |= înv ′,
or equivalently, that Ĉand(�S)∧τ ∧¬înv ′ is unsatisfiable. The latter can be easily
encoded into a non-linear formula by using Farkas’ Lemma.

4.2 Difference Logic Case

Let us now assume that all candidate invariants, the formula in the assertion and
the input program are expressed in difference logic. The idea of the encoding is
similar. However, in Sect. 4.1 new inequalities were globally introduced standing
for the original inequalities or the trivial inequality 0 ≤ 0, depending on whether
they had been chosen or not. Instead, here we exploit the fact that in Farkas’
proofs of unsatisfiability of difference sets, multipliers are 0 or 1: for each unsat-
isfiability proof that must hold, new inequalities are locally introduced, standing
for the product of the Farkas’ multiplier with the original inequality.

As an example, let us explain how to encode a Consecution condition refer-
ring to a transition (�S , τ, �T ). The chosen�,j variables will be as before, common
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to the overall encoding. However, for each inv ∈ Cand(�T ), in order to enforce
that Cand(�S) ∧ τ |= inv ′, we will now introduce fresh ĉ’s and d̂’s and add, for
1 ≤ j ≤ m�S

, the previous formula (4) and:

(
n∧

i=1

ĉ�S ,j
i = 0 ∧ d̂�S ,j = 0) ∨ (

n∧

i=1

ĉ�S ,j
i = c�S ,j

i ∧ d̂�S ,j = d�S ,j)

The intuition is that ĉ1
�S ,jx1 + · · · + ĉn

�S ,jxn ≤ d̂�S ,j is the inequality resulting
from multiplying c�S ,j

1 x1+· · ·+c�S ,j
n xn ≤ d�S ,j by the corresponding multiplier in

Farkas’ proof of unsatisfiability of Cand(�S)∧ τ ∧¬inv ′. Similarly, let us assume
that inv is c1x1 + · · · + cnxn ≤ d, with chosen being the variable that indicates
whether we pick it or not. Then we will add the formula

(
n∧

i=1

c�
i = 0 ∧ d� = 0) ∨ (

n∧

i=1

c�
i = −ci ∧ d� = −1 − d),

which intuitively means that c�
1x1 + · · · + c�

nxn ≤ d is the inequality resulting
from multiplying ¬(c1x1 + · · ·+ cnxn ≤ d) ≡ −c1x1 −· · ·− cnxn ≤ −1−d by the
corresponding multiplier in the proof of unsatisfiability of Cand(�S) ∧ τ ∧ ¬inv ′.

The encoding finishes by: (i) applying Farkas’ Lemma to enforce unsatisfia-
bility of ̂Cand(�S) ∧ τ ∧ c�

1x
′
1 + · · · + c�

nx′
n ≤ d′ as in the general case, but now

assuming that multipliers are 1, which gives a linear formula F ; and (ii) adding
the implication chosen ⇒ F to the encoding. Detailed experiments comparing
the general and the particular encoding for difference logic give similar results
to Sect. 3.2, and we omit them here due to lack of space.

A final remark is that the previous encoding can be applied to solve the
problem in Sect. 3 by exhaustively considering in Cand(�) all differences of vari-
ables. This allows finding simultaneously more than one invariant inequality per
location, in particular coinductive invariants. So the price to pay for a complete
method is moving from a difference logic to a linear arithmetic formula.

5 Experiments

The goal here is to assess to which extent a constraint-based verifier like VeryMax
can be globally improved by incorporating the novel encodings introduced in
Sects. 3.1 and 4.2 (for handling safety subqueries and invariant subset selection
problems, respectively). Note it is not uncommon that huge enhancements on
the runtime of a theorem prover (SAT or SMT solver or first-order theorem
prover) get diluted into insignificant improvements on the verifier that uses it.

We compared the original VeryMax safety prover, which uses Farkas as the
encoding methodology to find linear invariants, with a new version VeryMaxDL
where the problems described in Sects. 3 and 4 are solved using the novel encod-
ings. A time limit of 900 s was given to each problem. Table 2 summarizes the
experiments, where for each system we report the number of problems found to



298 L. Candeago et al.

Table 2. Results comparing VeryMax and VeryMaxDL.

System Yes No Only-yes Time

VeryMax 524 312 27 11 h 58 m 59 s

VeryMaxDL 516 320 19 4 h 12 m 38 s
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Fig. 6. Scatter plots comparing VeryMax and VeryMaxDL.

be safe (Yes), not found to be safe8 (No), proved safe only by this version of the
system (Only-yes) and the total runtime (including timeouts).

The results are extremely positive since the runtime is reduced to one third,
and the loss of verification power due to generating only difference logic invari-
ants, as opposed to linear invariants, is very limited. We analyzed all problems
that VeryMax could prove safe whereas VeryMaxDL could not and they all need
linear invariants outside difference logic, which means that they cannot be proved
using the techniques on which VeryMaxDL is based.

Figure 6 contains scatter plots comparing VeryMax and VeryMaxDL on all
problems, problems proved safe by VeryMaxDL, and problems not found to be
safe by VeryMaxDL. At first glance, although the difference logic version is faster,
we observe that the plots are not as clean as the ones of Sect. 3.2. This is not
surprising: if the subproblems solved via Farkas or difference logic give differ-
ent results (e.g. they disable different transitions), the overall behavior of the
verification system changes and this has an impact on the overall runtime. The
second observation is that VeryMaxDL is faster, independently of whether the
problem can be found to be safe or not. This opens the way to run both versions
in parallel, or even first run VeryMaxDL and if the program cannot be proved
safe, run VeryMax in a second attempt.

6 Conclusions and Future Work

It is well acknowledged that the current bottleneck in the effectiveness of the
constraint-based method compared to other approaches for verification is the
8 Note that this does not mean that they are unsafe.



Speeding up the Constraint-Based Method in Difference Logic 299

technology for solving non-linear constraints. In this paper we have introduced
novel encodings that, if we restrict ourselves to programs and invariants in differ-
ence logic, allow one to replace non-linear solvers by cheaper ones. Experiments
show that this yields a remarkable gain in terms of runtime at the expense of
restricting the class of programs under consideration and a certain but accept-
able loss of verification power.

As future work, we plan to extend the use of similar encodings in our verifica-
tion system VeryMax. E.g., finding simple ranking functions in (non)-termination
problems is a particularly interesting area where related ideas could be applied.
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7. Larraz, D., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Proving termination
of imperative programs using Max-SMT. In: Proceeding FMCAD 2013, pp. 218–
225. IEEE (2013)

8. Larraz, D., Nimkar, K., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Proving
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Barcelogic SMT solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 294–298. Springer, Heidelberg (2008)

35. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems.
In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer,
Heidelberg (2006)


	Speeding up the Constraint-Based Method in Difference Logic
	1 Introduction
	2 Background
	3 Proving Safety of Difference Programs
	3.1 Specialization of the Constraint-Based Method
	3.2 Experiments

	4 Finding Invariant Subsets
	4.1 General Case
	4.2 Difference Logic Case

	5 Experiments
	6 Conclusions and Future Work
	References


