
Nadia Creignou
Daniel Le Berre (Eds.)

 123

LN
CS

 9
71

0

19th International Conference
Bordeaux, France, July 5–8, 2016
Proceedings

Theory and Applications
of Satisfiability Testing –
SAT 2016

Lecture Notes in Computer Science 9710

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Nadia Creignou • Daniel Le Berre (Eds.)

Theory and Applications
of Satisfiability Testing –

SAT 2016
19th International Conference
Bordeaux, France, July 5–8, 2016
Proceedings

123

Editors
Nadia Creignou
Aix-Marseille Université
Marseille
France

Daniel Le Berre
Université d’Artois
Lens
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-40969-6 ISBN 978-3-319-40970-2 (eBook)
DOI 10.1007/978-3-319-40970-2

Library of Congress Control Number: 2016941614

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the papers presented at the 19th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2016) held during July 5–8,
2016, in Bordeaux, France. SAT 2016 was hosted by the Computer Science Laboratory
of Bordeaux (LaBRI).

The International Conference on Theory and Applications of Satisfiability Testing
(SAT) is the premier annual meeting for researchers focusing on the theory and
applications of the propositional satisfiability problem, broadly construed. Aside from
plain propositional satisfiability, the scope of the meeting includes Boolean opti-
mization (including MaxSAT and pseudo-Boolean (PB) constraints), quantified Boo-
lean formulas (QBF), satisfiability modulo theories (SMT), and constraint
programming (CP) for problems with clear connections to Boolean-level reasoning.
Many hard combinatorial problems can be tackled using SAT-based techniques,
including problems that arise in formal verification, artificial intelligence, operations
research, computational biology, cryptology, data mining, machine learning, mathe-
matics, etc. Indeed, the theoretical and practical advances in SAT research over the past
20 years have contributed to making SAT technology an indispensable tool in a variety
of domains.

SAT 2016 welcomed scientific contributions addressing different aspects of SAT
interpreted in a broad sense, including (but not restricted to) theoretical advances
(including exact algorithms, proof complexity, and other complexity issues), practical
search algorithms, knowledge compilation, implementation-level details of SAT sol-
vers and SAT-based systems, problem encodings and reformulations, applications
(including both novel applications domains and improvements to existing approaches),
as well as case studies and reports on findings based on rigorous experimentation.

A total of 70 papers were submitted this year distributed into 48 long papers, 13
short papers, and nine tool papers. The papers were reviewed by the Program Com-
mittee (33 members), with the help of 65 additional reviewers. Only one regular paper
was found by the Program Committee to be out of the scope for the conference. Each
of the remaining submissions was reviewed by at least three different reviewers.
A rebuttal period allowed the authors to provide a feedback to the reviewers. After that,
the discussion among the Program Committee took place. External reviewers sup-
porting the Program Committee were also invited to participate directly in the dis-
cussions for the papers they reviewed. This year, the authors received a meta-review,
summarizing the discussion that occurred after the rebuttal and the reasons of the final
recommendation. The final recommendation was to accept 31 submissions (22 long,
four short, and five tool papers) and to accept conditionally five additional papers. The
latter (four long and one short) eventually satisfied the conditions for acceptance.

In addition to presentations on the accepted papers, the scientific program of SAT
2016 included three invited talks:

– Phokion Kolaitis (University of California Santa Cruz, IBM, USA) “Coping with
Inconsistent Databases: Semantics, Algorithms, and Complexity”

– David Monniaux (VERIMAG University of Grenoble, CNRS, France) “Satisfia-
bility Testing, a Disruptive Technology in Program Verification”

– Torsten Schaub (University of Potsdam, Germany, EurAI sponsored) “From SAT to
ASP and Back!?”

As in previous years, SAT 2016 hosted various associated events, including four
workshops on July 4:

– 6th International Workshop on the Cross-Fertilization Between CSP and SAT
(CSPSAT 2016) organized by Yael Ben-Haim, Valentin Mayer-Eichberger, and
Yehuda Naveh

– “Graph Structure and Satisfiability Testing” organized by Simone Bova and Stefan
Mengel

– 7th Pragmatics of SAT International Workshop (PoS 2016) organized by Olivier
Roussel and Allen Van Gelder

– 4th International Workshop on Quantified Boolean Formulas (QBF 2016) organized
by Florian Lonsing and Martina Seidl

There were also four competitive events, which ran before the conference and whose
results were disclosed during the conference:

– MAXSAT evaluation organized by Josep Argelich, Chu Min Li, Felip Manyà and
Jordi Planes

– PB competition organized by Olivier Roussel
– QBF evaluation organized by Luca Pulina
– SAT competition organized by Marijn Heule, Matti Jarvisalo, and Tomas Baylo

Moreover, this year a full day of tutorials — “How to Solve My Problem with
SAT?” — was organized right after the conference, on July 9.

March 2016 was a terrible month for the SAT community. On March 12, Helmut
Veith, our esteemed colleague from TU Vienna, passed away at the age of 45. His work
on counter example guided abstraction refinement is widely used in the SAT com-
munity, especially in recent years to tackle QBF problems: A specific session on that
topic was organized during the conference. On March 13, Hilary Putnam, one of the
authors of the seminal “Davis and Putnam” procedure, central in current SAT research,
passed away at the age of 90. The first session on SAT solving was dedicated to his
memory. Our thoughts are with their families during this difficult time.

We would like to thank everyone who contributed to making SAT 2016 a success.
First and foremost we would like to thank the members of the Program Committee and
the additional reviewers for their careful and thorough work, without which it would
not have been possible for us to put together such an outstanding conference. We also
wish to thank all the authors who submitted their work for our consideration. We thank
the SAT Association chair Armin Biere, vice chair John Franco, and treasurer Hans
Kleine Büning for their help and advice in organizational matters. The EasyChair
conference systems provided invaluable assistance in coordinating the submission and
review process, in organizing the program, as well as in the assembly of these

VI Preface

proceedings. We also thank the local organization team for their efforts with practical
aspects of local organization.

Finally, we gratefully thank the University of Bordeaux, Bordeaux INP, the Com-
puter Science Laboratory of Bordeaux (LaBRI), the GIS Albatros (Bordeaux), the
CNRS, the Laboratory of Fundamental Computer Science of Marseilles (LIF), the Lens
Computer Science Research Laboratory (CRIL), the European Association for Artifical
Intelligence (EurAI), the SAT association, the French-Speaking Constraints Associa-
tion (AFPC), Intel, RATP and Safe-River for financial and organizational support for
SAT 2016.

April 2016 Daniel Le Berre
Nadia Creignou

Preface VII

Organization

Program Committee

Fahiem Bacchus University of Toronto, Canada
Yael Ben-Haim IBM Research, Israel
Olaf Beyersdorff University of Leeds, UK
Armin Biere Johannes Kepler University, Austria
Nikolaj Bjorner Microsoft Research, USA
Maria Luisa Bonet Universitat Politecnica de Catalunya, Spain
Sam Buss UCSD, USA
Nadia Creignou Aix-Marseille Université, LIF-CNRS, France
Uwe Egly TU Wien, Austria
John Franco University of Cincinnati, USA
Djamal Habet Aix-Marseille Université, LSIS-CNRS, France
Marijn Heule The University of Texas at Austin, USA
Holger Hoos University of British Columbia, Canada
Frank Hutter University of Freiburg, Germany
Mikolas Janota Microsoft Research, UK
Matti Järvisalo University of Helsinki, Finland
Hans Kleine Büning University of Paderborn, Germany
Daniel Le Berre Université d’Artois, CRIL-CNRS, France
Ines Lynce INESC-ID/IST, University of Lisbon, Portugal
Marco Maratea DIBRIS, University of Genoa, Italy
Joao Marques-Silva Faculty of Science, University of Lisbon, Portugal
Stefan Mengel CRIL-CNRS, France
Alexander Nadel Intel, Israel
Nina Narodytska Samsung Research America, USA
Jakob Nordström KTH Royal Institute of Technology, Sweden
Albert Oliveras Technical University of Catalonia, Spain
Roberto Sebastiani DISI, University of Trento, Italy
Martina Seidl Johannes Kepler University Linz, Austria
Yuping Shen Institute of Logic and Cognition, Sun Yat-sen University,

China
Laurent Simon Labri, Bordeaux Institute of Technology, France
Takehide Soh Information Science and Technology Center,

Kobe University, Japan
Stefan Szeider TU Wien, Austria
Allen Van Gelder University of California, Santa Cruz, USA

Additional Reviewers

Abramé, André
Aleksandrowicz, Gadi
Audemard, Gilles
Banbara, Mutsunori
Baud-Berthier, Guillaume
Bayless, Sam
Berkholz, Christoph
Blinkhorn, Joshua
Bofill, Miquel
Bonacina, Ilario
Cameron, Chris
Cao, Weiwei
Chew, Leroy
de Rezende, Susanna F.
Demri, Stéphane
Dodaro, Carmine
Eggensperger, Katharina
Elffers, Jan
Falkner, Stefan
Feng, Shiguang
Fichte, Johannes Klaus
Fröhlich, Andreas
Galesi, Nicola
Ganesh, Vijay
Gange, Graeme
Gaspers, Serge
Griggio, Alberto
Guthmann, Ofer
Hermo, Montserrat
Hinde, Luke
Ibanez-Garcia, Yazmin Angelica
Ignatiev, Alexey
Ivrii, Alexander

Kolaitis, Phokion
Kotthoff, Lars
Kovásznai, Gergely
Lauria, Massimo
Lettmann, Theodor
Lindauer, Marius
Lonsing, Florian
Malod, Guillaume
Manquinho, Vasco
Marquis, Pierre
Martins, Ruben
Meel, Kuldeep S.
Miksa, Mladen
Nabeshima, Hidetomo
Naveh, Yehuda
Neves, Miguel
Oetsch, Johannes
Panagiotou, Konstantinos
Pich, Ján
Prcovic, Nicolas
Preiner, Mathias
Rozier, Kristin Yvonne
Ryvchin, Vadim
Slivovsky, Friedrich
Strichman, Ofer
Trentin, Patrick
Tveretina, Olga
Vinyals, Marc
Wang, Lingli
Widl, Magdalena
Wintersteiger, Christoph M.
Yue, Weiya

X Organization

Invited Talks

Coping with Inconsistent Databases:
Semantics, Algorithms, and Complexity

Phokion G. Kolaitis1,2

1 University of California Santa Cruz, Santa Cruz, USA
2 IBM Research – Almaden, San Jose, USA

kolaitis@cs.ucsc.edu

Abstract. Managing inconsistency in databases is a long-standing challenge.
The framework of database repairs provides a principled approach towards
coping with inconsistency in databases. Intuitively, a repair of an inconsistent
database is a consistent database that differs from the given inconsistent database
in a minimal way. Repair checking and consistent query answering are two
fundamental algorithmic problems arising in this context. The first of these two
problems asks whether, given two databases, one is a repair of the other. The
second asks whether, a query is true on every repair of a given inconsistent
database.

The aim of this talk is to give an overview of a body of results in this area
with emphasis on the computational complexity of repair checking and con-
sistent query answering, including the quest for dichotomy theorems. In addition
to presenting open problems, the last part of the talk will include a discussion
of the potential use of solvers in developing practical systems for consistent
query answering.

Keywords: Inconsistent databases � Database dependencies � Database repairs �
Consistent query answering � Computational complexity

References

1. Afrati, F.N., Kolaitis, P.G.: Repair checking in inconsistent databases: algorithms and com-
plexity. In: 12th International Conference on Database Theory. ICDT 2009, St. Petersburg,
Russia, March 23–25, 2009, Proceedings, pp. 31–41 (2009)

2. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent databases.
In: Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, May 31 – June 2, 1999, Philadelphia, Pennsylvania, USA,
pp. 68–79 (1999)

3. Arming, S., Pichler, R., Sallinger, E.: Complexity of repair checking and consistent query
answering. In: 19th International Conference on Database Theory. ICDT 2016, Bordeaux,
France, March 15–18, 2016, pp. 21:1–21:18 (2016)

4. Bertossi, L.E.: Database Repairing and Consistent Query Answering. Synthesis Lectures on
Data Management. Morgan & Claypool Publishers (2011)

5. ten Cate, B., Fontaine, G., Kolaitis, P.G.: On the data complexity of consistent query
answering. Theory Comput. Syst. 57(4), 843–891 (2015)

6. ten Cate, B., Halpert, R.L., Kolaitis, P.G.: Exchange-repairs: managing inconsistency in data
exchange. In: Kontchakov, R., Mugnier, M.L. (eds.) RR 2014. LNCS, vol. 8741, pp. 140–
156. Springer, Switzerland (2014)

7. ten Cate, B., Halpert, R.L., Kolaitis, P.G.: Practical query answering in data exchange under
inconsistency-tolerant semantics. In: Proceedings of the 19th International Conference on
Extending Database Technology. EDBT 2016, Bordeaux, France, March 15–16, 2016,
pp. 233–244 (2016)

8. Chomicki, J.: Consistent query answering: five easy pieces. In: 11th International Conference
on Database Theory - ICDT 2007, Barcelona, Spain, January 10–12, 2007, Proceedings,
pp. 1–17 (2007)

9. Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple deletions.
Inf. Comput. 197(1–2), 90–121 (2005)

10. Chomicki, J., Marcinkowski, J.: Staworko, S.: Hippo: a system for computing consistent
answers to a class of SQL queries. In: Advances in Database Technology - EDBT 2004, 9th
International Conference on Extending Database Technology, Heraklion, Crete, Greece,
March 14–18, 2004, Proceedings, pp. 841–844 (2004)

11. Fagin, R., Kimelfeld, B., Kolaitis, P.G.: Dichotomies in the complexity of preferred repairs.
In: Proceedings of the 34th ACM Symposium on Principles of Database Systems. PODS
2015, Melbourne, Victoria, Australia, May 31 – June 4, 2015, pp. 3–15 (2015)

12. Fontaine, G.: Why is it hard to obtain a dichotomy for consistent query answering? ACM
Trans. Comput. Log. 16(1), 7:1–7:24 (2015)

13. Fuxman, A., Fazli, E., Miller, R.J.: ConQuer: Efficient management of inconsistent data-
bases. In: Proceedings of the ACM SIGMOD International Conference on Management of
Data, Baltimore, Maryland, USA, June 14–16, 2005, pp. 155–166 (2005)

14. Fuxman, A., Fuxman, D., Miller, R.J.: ConQuer: a system for efficient querying over
inconsistent databases. In: Proceedings of the 31st International Conference on Very Large
Data Bases, Trondheim, Norway, August 30 – September 2, 2005, pp. 1354–1357 (2005)

15. Kolaitis, P.G., Pema, E.: A dichotomy in the complexity of consistent query answering for
queries with two atoms. Inf. Process. Lett. 112(3), 77–85 (2012)

16. Kolaitis, P.G., Pema, E., Tan, W.: Efficient querying of inconsistent databases with binary
integer programming. PVLDB 6(6), 397–408 (2013)

17. Koutris, P., Wijsen, J.: The data complexity of consistent query answering for self-join-free
conjunctive queries under primary key constraints. In: Proceedings of the 34th ACM
Symposium on Principles of Database Systems. PODS 2015, Melbourne, Victoria, Australia,
May 31 – June 4, 2015, pp. 17–29 (2015)

18. Marileo, M.C., Bertossi, L.E.: The consistency extractor system: answer set programs for
consistent query answering in databases. Data Knowl. Eng. 69(6), 545–572 (2010)

19. Staworko, S., Chomicki, J., Marcinkowski, J.: Prioritized repairing and consistent query
answering in relational databases. Ann. Math. Artif. Intell. 64(2–3), 209–246 (2012)

20. Wijsen, J.: Certain conjunctive query answering in first-order logic. ACM Trans. Database
Syst. 37(2), 9 (2012)

21. Wijsen, J.: A survey of the data complexity of consistent query answering under key con-
straints. In: 8th International Symposium on Foundations of Information and Knowledge
Systems. FoIKS 2014, Bordeaux, France, March 3–7, 2014. Proceedings, pp. 62–78 (2014)

XIV P.G. Kolaitis

From SAT to ASP and Back!?

Torsten Schaub1,2

1 University of Potsdam, Potsdam, Germany
2 INRIA Rennes, Rennes, France

torsten@cs.uni-potsdam.de

Answer Set Programming (ASP; [1–4]) provides an approach to declarative problem
solving that combines a rich yet simple modeling language with effective Boolean
constraint solving capacities. This makes ASP a model, ground, and solve paradigm, in
which a problem is expressed as a set of first-order rules, which are subsequently turned
into a propositional format by systematically replacing all variables, before finally the
models of the resulting propositional rules are computed. ASP is particularly suited for
modeling problems in the area of Knowledge Representation and Reasoning involving
incomplete, inconsistent, and changing information due to its nonmonotonic semantic
foundations. As such, it offers, in addition to satisfiability testing, various reasoning
modes, including different forms of model enumeration, intersection or unioning, as
well as multi-objective optimization. From a formal perspective, ASP allows for
solving all search problems in NP (and NPNP) in a uniform way, that is, by separating
problem encodings and instances. Hence, ASP is well-suited for solving hard combi-
natorial search (and optimization) problems. Interesting applications of ASP include
decision support systems for NASA shuttle controllers [5], industrial team-building [6],
music composition [7], natural language processing [8], package configuration [9],
phylogeneticics [10], robotics [11, 12], systems biology [13–15], timetabling [16], and
many more. The versatility of ASP is nicely reflected by the ASP solver clasp [17],
winning first places at various solver competitions, including ASP, MISC, PB, and
SAT. In fact, clasp is at the heart of the open source platform potassco.-
sourceforge.net. Potassco stands for the “Potsdam Answer Set Solving Col-
lection” [18] and has seen more than 145000 downloads world-wide since its inception
at the end of 2008.

The talk will start with a gentle introduction to ASP, while focusing on the com-
monalities and differences to SAT. It will discuss the different semantic foundations
and describe the impact of a modelling language along with off-the-shelf grounding
systems. Finally, it will highlight some resulting techniques, like meta-programming,
preference handling, heuristic constructs, and theory reasoning.

References

1. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski,
R., Bowen, K. (eds.) Proceedings of the Fifth International Conference and Symposium of
Logic Programming. ICLP1988, pp. 1070–1080. MIT Press (1988)

2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press (2003)

3. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set solving in practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool
Publishers (2012)

4. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent
Agents: The Answer-Set Programming Approach. Cambridge University Press (2014)

5. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-prolog decision
support system for the space shuttle. In: Ramakrishnan, I. (ed.) PADL 2001. LNCS, vol.
1990, pp. 169–183. Springer, Berlin (2001)

6. Grasso, G., Iiritano, S., Leone, N., Lio, V., Ricca, F., Scalise, F.: An ASP-based system for
team-building in the Gioia-Tauro seaport. In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS,
vol. 5937, pp. 40–42. Springer, Berlin (2010)

7. Boenn, G., Brain, M., de Vos, M., Fitch, J.: Automatic composition of melodic and harmonic
music by answer set programming. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008.
LNCS, vol. 5366, pp. 160–174. Springer, Berlin (2008)

8. Schwitter, R.: The jobs puzzle: taking on the challenge via controlled natural language
processing. Theory Pract. Logic Program. 13(4–5), 487–501 (2013)

9. Gebser, M., Kaminski, R., Schaub, T.: aspcud: A Linux package configuration tool based on
answer set programming. In: Drescher, C., Lynce, I., Treinen, R., (eds.) Proceedings of the
Second International Workshop on Logics for Component Configuration. LoCoCo 2011.
Electronic Proceedings in Theoretical Computer Science (EPTCS), vol. 65, pp. 12–25 (2011)

10. Brooks, D., Erdem, E., Erdogan, S., Minett, J., Ringe, D.: Inferring phylogenetic trees using
answer set programming. J. Autom. Reason. 39(4), 471–511 (2007)

11. Chen, X., Ji, J., Jiang, J., Jin, G., Wang, F., Xie, J.: Developing high-level cognitive
functions for service robots. In: van der Hoek, W., Kaminka, G., Lespérance, Y., Luck, M.,
Sen, S. (eds.) Proceedings of the Ninth International Conference on Autonomous Agents and
Multiagent Systems. AAMAS 2010, IFAAMAS, pp. 989–996 (2010)

12. Erdem, E., Haspalamutgil, K., Palaz, C., Patoglu, V., Uras, T.: Combining high-level causal
reasoning with low-level geometric reasoning and motion planning for robotic manipulation.
In: Proceedings of the IEEE International Conference on Robotics and Automation. ICRA
2011, pp. 4575–4581. IEEE (2011)

13. Erdem, E., Türe, F.: Efficient haplotype inference with answer set programming. In: Fox, D.,
Gomes, C. (eds.) Proceedings of the Twenty-Third National Conference on Artificial
Intelligence. AAAI 2008, pp. 436–441. AAAI Press (2008)

14. Gebser, M., Schaub, T., Thiele, S., Veber, P.: Detecting inconsistencies in large biological
networks with answer set programming. Theory Pract. Logic Program. 11(2–3), 323–360
(2011)

15. Gebser, M., Guziolowski, C., Ivanchev, M., Schaub, T., Siegel, A., Thiele, S., Veber, P.:
Repair and prediction (under inconsistency) in large biological networks with answer set
programming. In: Lin, F., Sattler, U. (eds.) Proceedings of the Twelfth International Con-
ference on Principles of Knowledge Representation and Reasoning. KR 2010, pp.497–507.
AAAI Press (2010)

16. Banbara, M., Soh, T., Tamura, N., Inoue, K., Schaub, T.: Answer set programming as a
modeling language for course timetabling. Theory Pract. Logic Program. 13(4–5), 783–798
(2013)

17. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from theory to
practice. Artif. Intell. 187–188, 52–89 (2012)

18. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider, M.:
Potassco: the Potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)

XVI T. Schaub

Satisfiability Testing, a Disruptive Technology
in Program Verification?

David Monniaux1,2

1 Université Grenoble Alpes, VERIMAG, 38000 Grenoble, France
2 CNRS, Verimag, 38000 Grenoble, France

David.Monniaux@imag.fr

Abstract. In the 2000s, progress in satisfiability testing shook automated and
assisted program verification. The advent of efficient satisfiability modulo theory
(SMT) solvers allowed new approaches: efficient testing and symbolic execu-
tion, new methods for generating inductive invariants, and more automated
assisted proof.

Program verification consists in proving properties of software, be them safety
(“whatever the program execution, some property is always satisfied”) or liveness
(“some action will always eventually happen”). Improvements in satisfiability testing
have allowed exciting combinations of exact decision procedures [12], often based on
Boolean satisfiability [2], with existing approaches.

1 Program Verification Before SMT

Traditionally, program verification (i) either relied heavily on the user tediously pro-
viding inductive invariants, ranking functions as well as proofs (ii) either simplified the
problems through abstractions that sometimes were sufficient to prove the property,
sometimes were not. Excessively coarse abstractions (e.g. one single interval of vari-
ation per program variable per location) could sometimes be refined by explicit par-
titioning [16], but its cost is exponential and thus it must be quickly limited.

Program verification was most often, and still is, considered too costly in human
and algorithmic terms, and thus in most practical cases, it was replaced by testing, with
test cases chosen by hand or through test case generation techniques. Fuzzing is a kind
of testing where variant of input files or protocol exchanges are randomly modified so
as to trigger bugs in parsers, which could be exploited as security vulnerabilities.

Both program verification and testing were transformed by the advent of a dis-
ruptive technology: satisfiability modulo theory (SMT), that is, efficient algorithms for
checking that a first-order logic formula over a given theory is satisfiable — e.g.
(x < y ∨ x ≥ y + 3) ∧ (x ≥ 0 ∧ x + y ≤ 5) is a first-order formula over linear real or
integer arithmetic.

The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement
nr. 306595 “STATOR”.

2 Testing

In bounded model checking [1], the program is unrolled up to a finite depth, and a first-
order formula is generated, whose solutions are the program traces that violate the
desired property before the given depth. In symbolic execution, sequences of program
statements are translated into a first-order formula, and the feasibility of tests into new
branches is checked by satisfiability testing; this approach has been successfully
applied to fuzzing, that is, searching for inputs that trigger security violations in file or
protocol parsers [8]. If symbolic execution is too costly, certain unknowns may be
chosen to have concrete values, while others are left symbolic, leading to concolic
execution.

3 Automatic Verification

Bounded model checking and symbolic execution cannot prove the safety of programs,
except in the rare case where there is a small constant bound on execution lengths.
Inductive invariant inference was also greatly transformed by the advent of satisfiability
modulo theory solvers. First, inference approaches designed to operate over a control-
flow graph and produce an invariant per control location were modified to traverse
loop-free program fragments (large blocks) encoded into first order formulas, whose
satisfiability is checked by SMT [7, 15]. Second, counterexample-guided abstraction
refinement approaches mine proofs of unreachability of errors through finite unrollings
for arguments that could become inductive, in particular by extraction of Craig
interpolants [14].

Research in SMT solving has strived to extend the class of formulas handled by
solvers [12]: from quantifier-free linear real arithmetic, solved by a combination of
constraint-driven clause learning (CDCL) SAT-solving [13] and exact-precision
simplex algorithm [5], and uninterpreted functions, solvers were extended to linear
integer arithmetic, nonlinear (polynomial) arithmetic, arrays, bitvector arithmetic,
character strings, data structures, and quantified formulas. Some of these combinations
are undecidable or have high lower bounds on their worst-case complexity [6], yet this
is not considered a major hindrance; practical efficiency is paramount.

4 Assisted Verification

In assisted proof, using tools such as Coq or Isabelle, the user traditionally has to
provide detailed arguments why the claimed theorem is true. Automation is tradi-
tionally limited. When the theorem, or a part of it, fits within a class decidable by SMT,
it is tempting to check it using SMT . It may however be unwise to blindly trust a SMT
solver, a complex piece of software likely to have bugs; and some assistants require all

XVIII D. Monniaux

proofs to be broken down into basic steps checked by a proof checker. It is therefore
desirable that the solver provides an independently checkable proof witness; one
challenge is to keep the witness small enough to be manageable while keeping the
checker small [3, 11].

5 Challenges

Most extant SMT solvers are based on the DPLL(T) framework: a combination of a
CDCL SAT solver and a decision procedure for conjunctions. This framework has
known weaknesses: for instance, some industrially relevant families of formulas induce
exponential behavior [9]. There have been multiple proposals for solvers based on
other approaches [4, 10], but they are less mature. Quantifiers are still often difficult to
handle. Verification approaches based on Craig interpolation are often brittle; more
generally, reliance on random number generators sometimes results in unpredictable
behavior. Better collaboration between verification and SAT experts is needed to
overcome these challenges.

References

1. Biere, A.: Bounded model checking. In: Biere et al. [2], vol. 185, pp. 455–481 (2009)
2. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,

Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)
3. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann, M.,

Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer, Berlin (2010)
4. Brain, M., D’Silva, V., Griggio, A., Haller, L., Kroening, D.: Deciding floating-point logic

with abstract conflict driven clause learning. Formal Methods Syst. Des. 45(2), 213–245
(2014)

5. Dutertre, B., de Moura, L.M.: Integrating simplex with DPLL(T). Sri-csl-06-01, SRI Inter-
national, Computer Science Laboratory (2006)

6. Fischer, M.J., Rabin, M.O.: Super-exponential complexity of presburger arithmetic. In:
Karp, R. (ed.) Complexity of Computation. SIAM–AMS Proceedings, pp. 27–42, no. 7.
American Mathematical Society (1974). citeseer.ist.psu.edu/fischer74superexponential.html

7. Gawlitza, T., Monniaux, D.: Invariant generation through strategy iteration in succinctly
represented control flow graphs. Logical Methods in Computer Science (2012)

8. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: Whitebox fuzzing for security testing.
Queue 10(1), 20:20–20:27 (2012)

9. Henry, J., Asavoae, M., Monniaux, D., Maiza, C.: How to compute worst-case execution
time by optimization modulo theory and a clever encoding of program semantics. In: Zhang,
Y., Kulkarni, P. (eds.) Languages, Compilers, Tools and Theory for Embedded Systems
(LCTES), pp. 43–52. ACM (2014)

10. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: IJCAR (2012)
11. Keller, C.: Extended resolution as certificates for propositional logic. In: Blanchette, J.C.,

Urban, J. (eds.) Proof Exchange for Theorem Proving (PxTP). EPiC Series, vol. 14, pp. 96–
109. EasyChair (2013). http://www.easychair.org/publications/?page=117514525

Satisfiability Testing, a Disruptive Technology in Program Verification? XIX

http://citeseer.ist.psu.edu/fischer74superexponential.html
http://www.easychair.org/publications/?page=117514525

12. Kroening, D., Strichman, O.: Decision Procedures. Springer (2008)
13. Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:

Biere et al. [2], vol. 185, pp. 131–153 (2009)
14. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) CAV

2006. LNCS, vol. 4144, pp. 123–136. Springer, Berlin (2006)
15. Monniaux, D., Gonnord, L.: Using bounded model checking to focus fixpoint iterations. In:

Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 369–385. Springer, Berlin (2011)
16. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans. Program.

Lang. Syst. 29(5) (2007)

XX D. Monniaux

Contents

Complexity

Parameterized Compilation Lower Bounds for Restricted CNF-Formulas 3
Stefan Mengel

Satisfiability via Smooth Pictures . 13
Mateus de Oliveira Oliveira

Solution-Graphs of Boolean Formulas and Isomorphism 29
Patrick Scharpfenecker and Jacobo Torán

Strong Backdoors for Default Logic . 45
Johannes K. Fichte, Arne Meier, and Irina Schindler

The Normalized Autocorrelation Length of Random Max r-Sat Converges
in Probability to ð1� 1=2rÞ=r . 60

Daniel Berend and Yochai Twitto

Tight Upper Bound on Splitting by Linear Combinations
for Pigeonhole Principle. 77

Vsevolod Oparin

Satisfiability Solving

Extreme Cases in SAT Problems. 87
Gilles Audemard and Laurent Simon

Improved Static Symmetry Breaking for SAT. 104
Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker

Learning Rate Based Branching Heuristic for SAT Solvers. 123
Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki

On the Hardness of SAT with Community Structure 141
Nathan Mull, Daniel J. Fremont, and Sanjit A. Seshia

Trade-offs Between Time and Memory in a Tighter Model
of CDCL SAT Solvers. 160

Jan Elffers, Jan Johannsen, Massimo Lauria, Thomas Magnard,
Jakob Nordström, and Marc Vinyals

http://dx.doi.org/10.1007/978-3-319-40970-2_1
http://dx.doi.org/10.1007/978-3-319-40970-2_2
http://dx.doi.org/10.1007/978-3-319-40970-2_3
http://dx.doi.org/10.1007/978-3-319-40970-2_4
http://dx.doi.org/10.1007/978-3-319-40970-2_5
http://dx.doi.org/10.1007/978-3-319-40970-2_5
http://dx.doi.org/10.1007/978-3-319-40970-2_5
http://dx.doi.org/10.1007/978-3-319-40970-2_6
http://dx.doi.org/10.1007/978-3-319-40970-2_6
http://dx.doi.org/10.1007/978-3-319-40970-2_7
http://dx.doi.org/10.1007/978-3-319-40970-2_8
http://dx.doi.org/10.1007/978-3-319-40970-2_9
http://dx.doi.org/10.1007/978-3-319-40970-2_10
http://dx.doi.org/10.1007/978-3-319-40970-2_11
http://dx.doi.org/10.1007/978-3-319-40970-2_11

Satisfiability Applications

A SAT Approach to Branchwidth . 179
Neha Lodha, Sebastian Ordyniak, and Stefan Szeider

Computing Maximum Unavoidable Subgraphs Using SAT Solvers 196
C.K. Cuong and M.J.H. Heule

Heuristic NPN Classification for Large Functions Using AIGs
and LEXSAT . 212

Mathias Soeken, Alan Mishchenko, Ana Petkovska, Baruch Sterin,
Paolo Ienne, Robert K. Brayton, and Giovanni De Micheli

Solving and Verifying the Boolean Pythagorean Triples Problem
via Cube-and-Conquer . 228

Marijn J.H. Heule, Oliver Kullmann, and Victor W. Marek

Satisfiability Modulo Theory

Deciding Bit-Vector Formulas with mcSAT . 249
Aleksandar Zeljić, Christoph M. Wintersteiger, and Philipp Rümmer

Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams . . . 267
Martin Jonáš and Jan Strejček

Speeding up the Constraint-Based Method in Difference Logic 284
Lorenzo Candeago, Daniel Larraz, Albert Oliveras,
Enric Rodríguez-Carbonell, and Albert Rubio

Synthesis of Domain Specific CNF Encoders for Bit-Vector Solvers 302
Jeevana Priya Inala, Rohit Singh, and Armando Solar-Lezama

Beyond SAT

Finding Finite Models in Multi-sorted First-Order Logic 323
Giles Reger, Martin Suda, and Andrei Voronkov

MCS Extraction with Sublinear Oracle Queries . 342
Carlos Mencía, Alexey Ignatiev, Alessandro Previti,
and Joao Marques-Silva

Predicate Elimination for Preprocessing in First-Order Theorem Proving 361
Zurab Khasidashvili and Konstantin Korovin

XXII Contents

http://dx.doi.org/10.1007/978-3-319-40970-2_12
http://dx.doi.org/10.1007/978-3-319-40970-2_13
http://dx.doi.org/10.1007/978-3-319-40970-2_14
http://dx.doi.org/10.1007/978-3-319-40970-2_14
http://dx.doi.org/10.1007/978-3-319-40970-2_15
http://dx.doi.org/10.1007/978-3-319-40970-2_15
http://dx.doi.org/10.1007/978-3-319-40970-2_16
http://dx.doi.org/10.1007/978-3-319-40970-2_17
http://dx.doi.org/10.1007/978-3-319-40970-2_18
http://dx.doi.org/10.1007/978-3-319-40970-2_19
http://dx.doi.org/10.1007/978-3-319-40970-2_20
http://dx.doi.org/10.1007/978-3-319-40970-2_21
http://dx.doi.org/10.1007/978-3-319-40970-2_22

Quantified Boolean Formula

Incremental Determinization . 375
Markus N. Rabe and Sanjit A. Seshia

Non-prenex QBF Solving Using Abstraction . 393
Leander Tentrup

On Q-Resolution and CDCL QBF Solving . 402
Mikoláš Janota

On Stronger Calculi for QBFs . 419
Uwe Egly

Q-Resolution with Generalized Axioms . 435
Florian Lonsing, Uwe Egly, and Martina Seidl

2QBF: Challenges and Solutions . 453
Valeriy Balabanov, Jie-Hong Roland Jiang, Christoph Scholl,
Alan Mishchenko, and Robert K. Brayton

Dependency QBF

Dependency Schemes for DQBF. 473
Ralf Wimmer, Christoph Scholl, Karina Wimmer, and Bernd Becker

Lifting QBF Resolution Calculi to DQBF . 490
Olaf Beyersdorff, Leroy Chew, Renate A. Schmidt, and Martin Suda

Long Distance Q-Resolution with Dependency Schemes 500
Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider

Tools

BEACON: An Efficient SAT-Based Tool for Debugging ELþ Ontologies . . . 521
M. Fareed Arif, Carlos Mencía, Alexey Ignatiev, Norbert Manthey,
Rafael Peñaloza, and Joao Marques-Silva

HordeQBF: A Modular and Massively Parallel QBF Solver 531
Tomáš Balyo and Florian Lonsing

LMHS: A SAT-IP Hybrid MaxSAT Solver . 539
Paul Saikko, Jeremias Berg, and Matti Järvisalo

OpenSMT2: An SMT Solver for Multi-core and Cloud Computing 547
Antti E.J. Hyvärinen, Matteo Marescotti, Leonardo Alt,
and Natasha Sharygina

Contents XXIII

http://dx.doi.org/10.1007/978-3-319-40970-2_23
http://dx.doi.org/10.1007/978-3-319-40970-2_24
http://dx.doi.org/10.1007/978-3-319-40970-2_25
http://dx.doi.org/10.1007/978-3-319-40970-2_26
http://dx.doi.org/10.1007/978-3-319-40970-2_27
http://dx.doi.org/10.1007/978-3-319-40970-2_28
http://dx.doi.org/10.1007/978-3-319-40970-2_29
http://dx.doi.org/10.1007/978-3-319-40970-2_30
http://dx.doi.org/10.1007/978-3-319-40970-2_31
http://dx.doi.org/10.1007/978-3-319-40970-2_32
http://dx.doi.org/10.1007/978-3-319-40970-2_32
http://dx.doi.org/10.1007/978-3-319-40970-2_33
http://dx.doi.org/10.1007/978-3-319-40970-2_34
http://dx.doi.org/10.1007/978-3-319-40970-2_35

SpyBug: Automated Bug Detection in the Configuration Space
of SAT Solvers. 554

Norbert Manthey and Marius Lindauer

Author Index . 563

XXIV Contents

http://dx.doi.org/10.1007/978-3-319-40970-2_36
http://dx.doi.org/10.1007/978-3-319-40970-2_36

Complexity

Parameterized Compilation Lower Bounds
for Restricted CNF-Formulas

Stefan Mengel(B)

CNRS, CRIL UMR 8188, Lens, France
mengel@cril.fr

Abstract. We show unconditional parameterized lower bounds in the
area of knowledge compilation, more specifically on the size of circuits in
decomposable negation normal form (DNNF) that encode CNF-formulas
restricted by several graph width measures. In particular, we show that

– there are CNF formulas of size n and modular incidence treewidth
k whose smallest DNNF-encoding has size nΩ(k), and

– there are CNF formulas of size n and incidence neighborhood diver-

sity k whose smallest DNNF-encoding has size nΩ(
√

k).
These results complement recent upper bounds for compiling CNF into
DNNF and strengthen—quantitatively and qualitatively—known condi-
tional lower bounds for cliquewidth. Moreover, they show that, unlike
for many graph problems, the parameters considered here behave signif-
icantly differently from treewidth.

1 Introduction

Knowledge compilation is a preprocessing regime that aims to translate or “com-
pile” knowledge bases, generally encoded as CNF formulas, into different repre-
sentations more convenient for a task at hand. The idea is that many queries
one would like to answer on the knowledge base, say clause entailment queries,
are intractable in CNF encoding, but tractable for other representations. When
there are many queries on the same knowledge base, as for example in product
configuration, it makes sense to invest into a costly preprocessing to change the
representation once in order to then speed up the queries and thus amortize the
time spent on the preprocessing.

One critical question when following this approach is the choice of the rep-
resentation that the knowledge is encoded into. In general, there is a trade-off
between the usefulness of a representation (which queries does it support effi-
ciently?) and succinctness (what is the size of the encoded knowledge base?). This
trade-off has been studied systematically [8], leading to a fine understanding of
the different representations. In particular, circuits in decomposable negation
normal form (short DNNF) [6] have been identified as a representation that is
more succinct than nearly all other representations while still allowing useful
queries. Consequently, DNNFs play a central role in knowledge compilation.

This paper should be seen as complementing the findings of [1]: In that paper,
algorithms compiling CNF formulas with restricted underlying graph structure
c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 3–12, 2016.
DOI: 10.1007/978-3-319-40970-2 1

4 S. Mengel

were presented, showing that popular graph width measures like treewidth and
cliquewidth can be used in knowledge compilation. More specifically, every CNF
formula of incidence treewidth k and size n can be compiled into a DNNF of size
2O(k)n. Moreover, if k is the incidence cliquewidth, the size bound on the encoding
becomes nO(k). As has long been observed, 2O(k)n is of course far preferable to
nO(k) for nontrivial sizes of n—in fact, this is the main premise of the field of
parameterized complexity theory, see e.g. [13]. Consequently, the results of [1]
leave open the question if the algorithm for clique-width based compilation of
CNF formulas can be improved.

In fact, the paper [1] already gives a partial answer to this question, proving
that there is no compilation algorithm achieving fixed-parameter compilability,
i.e., a size bound of f(k)p(|F |) for a function f and a polynomial p. But unfortu-
nately this result is based on the plausible but rather non-standard complexity
assumption that not all problem in W[1] have FPT-size circuits. The result of
this paper is that this assumption is not necessary. We prove a lower bound of
|F |Ω(k) for formulas of modular incidence treewidth k where modular treewidth
is a restriction of cliquewidth proposed in [19]. It follows that the result in [1]
is essentially tight. Moreover, we show a lower bound of |F |Ω(

√
k) for formulas

of neighborhood diversity k [16]. This intuitively shows that all graph width
measures that are stable under adding modules, i.e., adding a new vertex that
has exactly the same neighborhood as an existing vertex, behave qualitatively
worse than treewidth for compilation into DNNFs.

Related work. Parameterized knowledge compilation was first introduced by
Chen [4] and has seen some recent renewed interest, see e.g. [5,9] for work on
conditional lower bounds. Unconditional lower bounds based on treewidth can
e.g. be found in [20,21], but they are only for different versions of branching
programs that are known to be less succinct than DNNF. Moreover, these lower
bounds fail for DNNFs as witnessed by the upper bounds of [1].

There is a long line of research using graph and hypergraph width measures
for problems related to propositional satisfiability, see e.g. the extensive discus-
sion in [3]. The paper [18] gave the first parameterized lower bounds on SAT
with respect to graph width measures, in particular cliquewidth. This result was
later improved to modular treewidth to complement an upper bound for model
counting [19] and very recently to neighborhood diversity [10], a width mea-
sure introduced in [16]. We remark that the latter result could be turned into a
conditional parameterized lower bound similar to that in [1] discussed above.

Our lower bounds strongly rely on the framework for DNNF lower bounds
proposed in [2] and communication theory lower bounds from [12], for more
details see Sect. 3.

2 Preliminaries

In the scope of this paper, a linear code C is the solution of a system of linear
equations Ax̄ = 0 over the boolean field F2. The matrix A is called the parity-

Parameterized Compilation Lower Bounds for Restricted CNF-Formulas 5

check matrix of C. The characteristic function fC is the boolean function that,
given a boolean string e, evaluates to 1 if and only if e is in C.

We use the notation [n] := {1, . . . , n} and [n1, n2] := {n1, n1 + 1, . . . , n2}
to denote integer intervals. We use standard notations from graph theory and
assume the reader to have a basic background in in the area [11]. By N(v) we
denote the open neighborhood of a vertex in a graph.

We say that two vertices u, v in a graph G = (V,E) have the same neigh-
borhood type if and only if N(u) \ {v} = N(v) \ {u}. It can be shown that
having the same neighborhood type is an equivalence relation on V [16]. The
neighborhood diversity of G is defined to be the number of equivalence classes
of V with respect to neighborhood types.

A generalization of neighborhood diversity is modular treewidth which is
defined as follows: From a graph G we construct a new graph G′ by contracting
all vertices sharing a neighborhood type, i.e., from every equivalence class we
delete all vertices but one. The modular treewidth of G is then defined to be the
treewidth of G′1. Modular pathwith is defined in the obvious analogous way.

We assume basic familiarity with propositional logic and in particular CNF
formulas. We define the size of a CNF formula to be the overall number of
occurrences of literals, i.e., the sum of the sizes of the clauses where the size of
a clause is the number of literals in the clause. The incidence graph of a CNF
formula F has as vertices the variables and clauses of F and an edge between
every clause and the vertices contained in it. The projection of an assignment
a : X → {0, 1} to a set Z is the restriction of a to the variable set Z. This
definition generalizes to sets of assignments in the obvious way. Moreover, the
projection of a boolean function f on X to Z is defined as the boolean function
on Z whose satisfying assignments are those of f projected to Z. For the width
measures introduced above, we define the with of a formula to be that of its
incidence graph.

3 Statement of the Main Results and Preparation of the
Proof

We now state our main results. The first theorem shows that modular pathwith—
and thus also more general parameters like cliquewidth and modular treewidth—
do not allow fixed-parameter compilation to DNNF.

Theorem 1. For every k and for every n big enough there is a CNF formula F
of size at most n and modular pathwidth k such that any DNNF computing the
same function as F must have size nΩ(k).

We also show lower bounds for neighborhood diversity that are nearly as
strong as those for modular pathwidth.
1 Note that the definition in [19] differs from the one we give here, but can easily be

seen to be equivalent for bipartite graphs and thus incidence graphs of CNF formulas.
We keep our definition to be more consistent with the definition of neighborhood
diversity.

6 S. Mengel

Theorem 2. For every k and for every n big enough there is a CNF formula F
of size polynomial in n and with neighborhood diversity k such that any DNNF
computing the same function as F must have size nΩ(

√
k).

At this point, the attentive reader may be a little concerned because we
promise to prove lower bounds for DNNF which we have not even defined in
the preliminaries. In fact, it is the main strength of the approach in [2] that
the definition and properties of DNNF are not necessary to show our lower
bounds, because we can reduce showing lower bounds on DNNF to a problem in
communication complexity. Since we will not use any properties of DNNF, we
have decided to leave out the definition for space reasons and refer to e.g. [8].
Here we will only use the following result.

Theorem 3 [2]. Let f be a function computed by a DNNF of size s. Then f
has a multi-partition rectangle cover of size s.

Now the reader might be a little puzzled about what multi-partition rectangle
covers of a function are. Since we will also only use them as a black box in our
proofs and do not rely on any of their properties, we have opted to leave out
their definition and refer to [12]

We will use a powerful theorem which follows directly from the results in [12].

Theorem 4 [12]. For every n′ ∈ N and every m′ ≤ n′/32 there is a linear code
C with a m′ × n′ parity check matrix such that every multi-partition rectangle
cover of the characteristic function fC has size at least 1

42m′
.

4 Accepting Codes by CNF Formulas

In this section we will construct CNF formulas to accept linear codes. We will
first start with a naive encoding that will turn out to be of unbounded modular
treewidth and thus not directly helpful to us. We will then show how to change
the encoding in such a way that the modular treewidth and even the neighbor-
hood diversity are small and the size of the resulting CNF is small enough to
show meaningful lower bounds for encodings in DNNF with Theorem 4.

4.1 The Naive Approach

In this subsection, we show how we can check m linear equations on variables
x1, . . . , xn efficiently by CNF. The idea is to simply consider one variable after
the other and remember the parity for the equations at hand. To this end, fix an
m×n matrix A = (aij). We denote the resulting equations of the system Ax̄ = 0
by E1, . . . , Em. For each equation Ei we introduce variables zij for j ∈ [n] which
intuitively remembers the parity of Ei up to seeing the variable xj .

We encode the computations for each Ei individually: Introduce constraints

ai,1x1 = zi,1, (1)
zi,j−1 + aijxj = zij . (2)

Parameterized Compilation Lower Bounds for Restricted CNF-Formulas 7

Note that zi,n yields the parity for equation Ei which can then be checked for 0.
This yields a system whose accepted inputs projected to the xi are the code
words of the considered code. The constraints have all at most 3 variables, so
we can encode them into CNF easily.

Unfortunately, the resulting CNF can be shown to have high modular tree-
width, so it is not useful for our considerations. We will see how to reduce the
modular treewidth and the neighborhood diversity of the system without blowing
up the size of the resulting CNF-encoding too much.

4.2 Bounding Modular Treewidth

The idea for decreasing the modular treewidth is to not encode all constraints
on the parities individually but combine them into larger constraints. So fix n
and k and set m := k log(n). For each j, we will combine the constraints from
(1) and (2) for blocks of log(n) values of i into one. The resulting constraints are

R�
1(x1, z� log(n)+1,1, . . . , z(�+1) log(n),1) := {(d1, t� log(n)+1,1, . . . , t(�+1) log(n),1) |

ai,1d1 = ti,1, i = � log(n) + 1, . . . , (� + 1) log(n)}
and

R�
j(xi, z� log(n)+1,j−1, . . . , z(�+1) log(n),j−1, z� log(n)+1,j−1, . . . , z(�+1) log(n),j−1) :=

{(di, t� log(n)+1,j−1, . . . , t(�+1) log(n),j−1, t� log(n)+1,j , . . . , t(�+1) log(n),j) |
ti,j−1 + aijdj = ti,j , i = � log(n) + 1, . . . , (� + 1) log(n)}

for � = 0, . . . , k − 1.
Note that the constraints R�

j have at most 2 log(n) + 1 boolean variables,
so we can encode them into CNF of quadratic size where every clause contains
all variables of R�

j . Moreover, the R�
j encode all previous constraints from (1)

and (2), so the assignments satisfying all R�
j projected to the xi still are exactly

the code words of the code we consider. Call the resulting CNF F .

Claim. F has modular pathwidth at most 2k − 1.

Proof. Note that the clauses introduced when translating the constraint R�
j into

CNF have by construction all the same set of variables. Thus these clauses have
the same neighborhood type, and we can for modular treewidth restrict to an
instance just having one clause for each R�

j . We call the resulting vertex in the
incidence graph r�,j . Next, observe that the variables z� log(n)+i,j and z� log(n)+i′,j
for i, i′ ∈ [log(n)] appear in exactly the same clauses. Thus these variables have
the same neighborhood type as well, so we can delete all but one of them, say
z� log(n),j for � = 1, . . . , k. Call the resulting vertices in the incidence graph s�,j .

The resulting graph G = (V,E) has

V ={xj , s�,j , r�,j | j ∈ [n], � ∈ [k]}.

E ={xjr�,j | j ∈ [n], � ∈ [k]} ∪ {s�,j−1r�,j | j ∈ [2, n], � ∈ [k]}
∪ {s�,jr�,j | j ∈ [n], � ∈ [k]}

8 S. Mengel

We construct a path decomposition of G as follows: The bags are the sets

B2 :={x1r1,1, . . . , r�,1},

B3 :={s1,1, . . . , s�,1, r1,1, . . . , r�,1}
and for j = 2, . . . n

B3j−2 :={s1,j−1, . . . , s�,j−1, r1,j , . . . , r�,j},

B3j−1 :={xj , r1,j , . . . , r�,j}, and
B3j :={s1,j , . . . , s�,j , r1,j , . . . , r�,j}.

Ordering the bags Bj with respect to their index yields a path decomposition of
G of width 2k − 1.

Let us collect the results of the section into one statement.

Lemma 1. For every linear code C with a k log(n)×n parity check matrix there
is a CNF formula F in variable sets X and Z such that

– the solution set of F projected to X is exactly C,
– F has size O(kn3 log(n)2), and
– F has modular pathwidth at most 2k − 1.

Proof. It remains only to show the size bound on F . Note that we have n vari-
ables xj and kn log(n) variables zi,j . Moreover, we have kn log(n) constraints R�

i .
Each of those has 2 log(n) + 1 variables, so it can be encoded by O(n2) clauses
with O(log(n)) variables each. This yields O(kn3 log(n)) clauses with O(log(n))
variables. Consequently, the overall size of F is O(kn3 log(n)2).

4.3 Bounding Neighborhood Diversity

Fix now two positive integers N and k and let n := 32k log(N) and m := k log(N)
and consider A with these parameters as before. We want to encode the code
of A by a CNF with neighborhood diversity O(k2).

To do so, we split the variables zij into O(k2) sets of log(N)2 variables
Srs := {zij | i ∈ [r log(N)+1, (r+1) log(N)], j ∈ [s log(N)+1, (s+1) log(N)−1]}
for r ∈ [k] and s ∈ [32k]. Now create for all r ∈ [k], s ∈ [32k−1] a constraint Rrs

in the variables X := {x1, . . . , xn} ∪ Srs ∪ Sr+1,s that accepts all assignments to
its variables that satisfy all constraints from 1 and 2 whose variables are variables
of Rrs. Note that the resulting constraints cover all constraints of Sect. 4.1, so
we still accept the code defined by A after projection to X.

The problem now is that, since we have Θ(log(N)2) boolean variables in each
constraint, the resulting encoding into CNF could be superpolynomial in N and
thus to big for our purposes. This is easily repaired by the observation that fixing
the values of xi, zi,s log(N) and zi,s log(N)+1 determines the values of the other zij

in all satisfying assignments. Consequently, we can project out these variables
of the individual constraints without changing the accepted assignments to X.

Parameterized Compilation Lower Bounds for Restricted CNF-Formulas 9

Call the resulting constraints R′
rs. It is easy to see that every constraint R′

rs has
only O(log(N)) variables, so the CNF encoding in which every variable of R′

r,s

appears in every clause has polynomial size in N .
We claim that the resulting CNF F has neighborhood diversity O(k2). To

see this, note that the clauses introduced in the encoding of a fixed R′
rs all have

the same variables. It follows that the clause vertices in the incidence graph
have O(k2) neighborhood types. The variables in X all appear in all clauses,
so they are all of the same neighborhood type. Finally, the vertices in each
Srs appearing in an R′

rs all appear in the same clauses, so they have O(k2)
neighborhood types as well. This show that the incidence graph of the CNF
formula F has neighborhood diversity O(k2).

Let us again combine the results of this section into one summary statement.

Lemma 2. For every linear code C with a k log(N) × 32k log(N) parity check
matrix there is a CNF formula F in variable sets X and Z such that

– the solution set of F projected to X is exactly C,
– F has size polynomial in N and k, and
– F has neighborhood diversity O(k2).

5 Completing the Proof

We now combine the results of the previous sections to get our main results.

Proof (of Theorem 1). Let C be a linear code as in Theorem 4 with parameters
n′ = n

1
4 and m′ := log(n)k

2 = k log(n
1
4). Then by Theorem 4 we know that every

rectangle cover of the characteristic function fC has size at least 1
42m′

= nΩ(k).
Now apply Lemma 1 to C to get a CNF-formula F of size less than n and

modular pathwidth less than k. Let D be a DNNF representation of F of minimal
size s. Since DNNFs allow projection to a subset of variables without any increase
of size [6], this yields a DNNF of size s computing fC . But then by Theorem 3,
we get that s ≥ nΩ(k).

With the same proof but other parameters we get Theorem 2 from Lemma 2.

6 Connections to Model Counting and Affine Decision
Trees

In this section we discuss connections of the findings of this paper to practical
model counting. It has been shown that there is a tight connection between com-
pilation and model counting, as runs of exhaustive DPLL-based model counting
algorithms can be translated into (restricted) DNNFs [14]. Here the size of the
resulting DNNF corresponds to the runtime of the model counter. Since state
of the art solvers like Cachet [23] and sharpSAT [24] use exhaustive DPLL, the
lower bounds in this paper can be seen as lower bounds for these programs:
model counting for CNF formulas of size n and, modular treewidth will take

10 S. Mengel

time at least nΩ(k) when solved with these state-of-the-art solvers even with
perfect caching and optimal branching variable choices. Note that in the light of
the general conditional hardness result of [19] this is not surprising, but here we
get concrete and unconditional lower bounds for a large class of algorithms used
in practice. Naturally, we also directly get lower bounds for approaches that are
based on compilation into DNNF as those in [7,17], so we have lower bounds for
most practical approaches to model counting.

One further interesting aspect to observe is that, while the instances that we
consider are in a certain sense hard for practical model counting algorithms, in
fact counting their models is extremely easy. Since we just want to count the
number of solutions of a system of linear equations, basic linear algebra will do
the job. A similar reasoning translated to compilation is the background for the
definition of affine decision trees (ADT) [15], a compilation language that intu-
itively has checking an affine equation as a built-in primitive. Consequently, it
is very easy to see that ADTs allow a very succinct compilation of the CNF for-
mulas we consider in this paper. It follows, by setting the right parameters, that
there are formulas where ADTs are exponentially more succinct than DNNF.
We remark that this superior succinctness can also be observed in experiments
when compiling the formulas of Sect. 4.1 with the compiler from [15].

7 Conclusion

We have shown that parameters like cliquewidth, modular treewidth and even
neighborhood diversity behave significantly differently from treewidth for compi-
lation into DNNF by giving lower bounds complementing the results of [1]. These
unconditional lower bounds confirm conditional ones that had been known for
some time already and improve them quantitatively. Our proofs heavily relied
on the framework proposed in [2] thus witnessing the strength of this approach.
We have also discussed implications for practical model counting.

One consequence of our results is that most graph width measures that
allow dense incidence graphs for the input CNF—like modular treewidth or
cliquewidth and unlike treewidth which forces a small number of edges—do not
allow fixed-parameter compilation into DNNF. A priori, there is no reason why
many edges in the incidence graphs, which translates into many big clauses,
should necessarily make compilation hard. Thus it would be interesting to see
if there are any width measures that allow dense graphs and fixed-parameter
compilation at the same time. One width measure that might be worthwhile
analyzing is the recently defined measure sm-width [22].

Acknowledgments. The author would like to thank Florent Capelli for helpful dis-
cussions. Moreover, he thanks Jean-Marie Lagniez for helpful discussions and for exper-
iments with the compiler from [15].

Parameterized Compilation Lower Bounds for Restricted CNF-Formulas 11

References

1. Bova, S., Capelli, F., Mengel, S., Slivovsky, F.: On compiling CNFs into structured
deterministic DNNFs. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340,
pp. 199–214. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24318-4 15

2. Bova, S., Capelli, F., Mengel, S., Slivovsky, F.: Knowledge compilation meets com-
munication complexity. In: Proceedings of the 25th International Joint Conference
on Artificial Intelligence, IJCAI 2016. IJCAI/AAAI (to appear, 2016)

3. Brault-Baron, J., Capelli, F., Mengel, S.: Understanding model counting for
beta-acyclic CNF-formulas. In: Mayr, E.W., Ollinger, N. (eds.) 32nd Interna-
tional Symposium on Theoretical Aspects of Computer Science, STACS 2015,
Garching, Germany, 4–7 March 2015. LIPIcs, vol. 30, pp. 143–156. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2015)

4. Chen, H.: Parameterized compilability. In: Kaelbling, L.P., Saffiotti, A. (eds.) Pro-
ceedings of the Nineteenth International Joint Conference on Artificial Intelligence,
IJCAI 2005, Edinburgh, Scotland, UK, 30 July–5 August 2005, pp. 412–417. Pro-
fessional Book Center (2005)

5. Chen, H.: Parameter compilation. In: Husfeldt, T., Kanj, I.A. (eds.) 10th Interna-
tional Symposium on Parameterized and Exact Computation, IPEC 2015, Patras,
Greece, 16–18 September 2015. LIPIcs, vol. 43, pp. 127–137. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2015)

6. Darwiche, A.: Decomposable negation normal form. J. ACM 48(4), 608–647 (2001)
7. Darwiche, A.: New advances in compiling CNF into decomposable negation normal

form. In López de Mántaras, R., Saitta, L. (eds.) Proceedings of the 16th Eureopean
Conference on Artificial Intelligence, ECAI 2004, including Prestigious Applicants
of Intelligent Systems, PAIS 2004, Valencia, Spain, 22–27 August 2004, pp. 328–
332. IOS Press (2004)

8. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res.
(JAIR) 17, 229–264 (2002)

9. de Haan, R.: An overview of non-uniform parameterized complexity. Electron.
Colloquium Comput. Complex. (ECCC) 22, 130 (2015)

10. Dell, H., Kim, E.J., Lampis, M., Mitsou, V., Mömke, T.: Complexity and approx-
imability of parameterized MAX-CSPs. In: Husfeldt, T., Kanj, I.A. (eds.) 10th
International Symposium on Parameterized and Exact Computation, IPEC 2015,
Patras, Greece, 16–18 September 2015. LIPIcs, vol. 43, pp. 294–306. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

11. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, Heidelberg (2012)

12. Duris, P., Hromkovic, J., Jukna, S., Sauerhoff, M., Schnitger, G.: On multi-partition
communication complexity. Inf. Comput. 194(1), 49–75 (2004)

13. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Berlin (2006)

14. Huang, J., Darwiche, A.: DPLL with a trace: from SAT to knowledge compilation.
In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, IJCAI 2005, Edinburgh, Scotland, UK,
30 July–5 August 2005, pp. 156–162. Professional Book Center (2005)

15. Koriche, F., Lagniez, J.-M., Marquis, P., Thomas, S.: Compilation, knowledge com-
pilation for model counting : affine decision trees. In Rossi, R. (ed.) Proceedings
of the 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013,
Beijing, China, 3–9 August 2013. IJCAI/AAAI (2013)

http://dx.doi.org/10.1007/978-3-319-24318-4_15

12 S. Mengel

16. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. In: de Berg,
M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 549–560. Springer,
Heidelberg (2010)

17. Muise, C., McIlraith, S.A., Beck, J.C., Hsu, E.I.: Dsharp: Fast d-DNNF Compila-
tion with sharpSAT. In: Kosseim, L., Inkpen, D. (eds.) Canadian AI 2012. LNCS,
vol. 7310, pp. 356–361. Springer, Heidelberg (2012)

18. Ordyniak, S., Paulusma, D., Szeider, S.: Satisfiability of acyclic and almost acyclic
CNF formulas. Theor. Comput. Sci. 481, 85–99 (2013)

19. Paulusma, D., Slivovsky, F., Szeider, S.: Model counting for CNF formulas of
bounded modular treewidth. In: Portier, N., Wilke, T. (eds.) 30th International
Symposium on Theoretical Aspects of Computer Science, STACS 2013, Kiel,
Germany, 27 February–2 March 2013. LIPIcs, vol. 20, pp. 55–66. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2013)

20. Razgon, I.: No small nondeterministic read-once branching programs for CNFs of
bounded treewidth. In: Cygan, M., Heggernes, P. (eds.) IPEC 2014. LNCS, vol.
8894, pp. 319–331. Springer, Heidelberg (2014)

21. Razgon, I.: On OBDDs for CNFs of bounded treewidth. In: Baral, C., De Giacomo,
G., Eiter, T. (eds.) Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria,
20–24 July 2014. AAAI Press (2014)

22. Sæther, S.H., Telle, J.A.: Between treewidth and clique-width. In: Kratsch, D.,
Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 396–407. Springer, Heidelberg
(2014)

23. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining compo-
nent caching and clause learning for effective model counting. In: Proceedings of
the Seventh International Conference on Theory and Applications of Satisfiability
Testing, SAT 2004, Vancouver, BC, Canada, 10–13 May 2004

24. Thurley, M.: sharpSAT – counting models with advanced component caching and
implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
424–429. Springer, Heidelberg (2006)

Satisfiability via Smooth Pictures

Mateus de Oliveira Oliveira(B)

Institute of Mathematics - Czech Academy of Sciences,
Žitná 25, 115 67 Praha 1, Czech Republic

mateus.oliveira@math.cas.cz

Abstract. A picture over a finite alphabet Γ is a matrix whose entries
are drawn from Γ . Let π : Σ → Γ be a function between finite alphabets
Σ and Γ , and let V, H ⊆ Σ ×Σ be binary relations over Σ. Given a pic-
ture N over Γ , the picture satisfiability problem consists in determining
whether there exists a picture M over Σ such that π(Mij) = Nij , and
such that the constraints imposed by V and H on adjacent vertical and
horizontal positions of M are respectively satisfied. This problem can be
easily shown to be NP-complete. In this work we introduce the notion
of s-smooth picture. Our main result states the satisfiability problem for
s-smooth pictures can be solved in time polynomial on s and on the size
of the input picture. With each picture N , one can naturally associate
a CNF formula F (N) which is satisfiable if and only if N is satisfiable.
In our second result, we define an infinite family of unsatisfiable pictures
which intuitively encodes the pigeonhole principle. We show that this
family of pictures is polynomially smooth. In contrast we show that the
formulas which naturally arise from these pictures are hard for bounded-
depth Frege proof systems. This shows that there are families of pictures
for which our algorithm for the satisfiability for smooth pictures per-
forms exponentially better than certain classical variants of SAT solvers
based on the technique of conflict-driven clause-learning (CDCL).

Keywords: Smooth pictures · Bounded frege proof systems ·
Pigeonhole principle

1 Introduction

A picture over an alphabet Γ is a matrix whose elements are drawn from Γ . Let
π : Σ → Γ be a function between finite alphabets Σ and Γ , and let V,H ⊆
Σ × Σ be binary relations over Σ. In the picture satisfiability problem we are
given an m × n picture N over Γ , and the goal is to determine whether there
exists an m×n picture M over Σ such that the following conditions are satisfied.
First, Ni,j = π(Mi,j) for each i ∈ {1, ...,m} and j ∈ {1, ..., n}; second, each two
consecutive vertical entries of M belong to V ; and third, each two consecutive
horizontal entries of M belong to H. If such a picture M exists, we say that M is a
(π, V,H)-solution for N . Variations of the picture satisfiability problem have been
studied since the seventies in the context of pattern recognition [21,23], image

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 13–28, 2016.
DOI: 10.1007/978-3-319-40970-2 2

14 M. de Oliveira Oliveira

processing [5,21], tiling systems [14,22] and formal language theory [8,11,15,21].
In this work, we introduce the notion of s-smooth picture. Our main result states
that one can determine whether an s-smooth picture N has a (π, V,H)-solution
in time O(|Σ|e(π,V) · se(π,V) · m · n). Here, e(π, V) ≤ |Σ × Σ| is a parameter that
does not depend on the size of the picture. As an implication, we have that if F is
a family of pictures such that each m × n picture in F is poly(m,n)-smooth, then
the picture satisfiability problem for this family can be solved in polynomial time.

The pigeonhole principle states that if m pigeons are placed into m−1 holes,
then at least one hole contains two pigeons. In a influential work, Haken showed
that a family of propositional formulas Hm encoding the pigeonhole principle
requires resolution refutations of exponential size [2,9]. Following Haken’s work,
the pigeonhole principle and many of its variants have played a central hole in
propositional proof complexity theory [3,19]. In particular, it has been shown
that refutations of the formulas Hm in constant-depth proof systems must have
exponential size [12,13,18]. In our second result, we define an infinite family of
pictures Pm,m−1 encoding the pigeonhole principle. Subsequently, we show that
this family of pictures is poly(m)-smooth. This implies that our algorithm for
smooth pictures is able to detect the unsatisfiability of the pictures Pm,m−1 in
polynomial time.

For each fixed triple (π, V,H) and each picture N one can derive a natural
constant-width CNF formula F (N) which is satisfiable if and only if N has a
(π, V,H)-solution. Our third result states that the family of formulas F (Pm,m−1)
derived from the pigeonhole pictures is still hard for constant depth Frege proof
systems. The proof of this result follows by application of routine techniques
to show that small refutations of F (Pm,m−1) imply small refutations of the
formulas Hm. This last result establishes a point of comparison between our
algorithm for the satisfiability of smooth pictures, and SAT solvers based on
the technique of conflict-driven clause-learning (CDCL) [7,16]. Indeed, it has
been shown that certain variants of CDCL-based SAT solvers, such as those
introduced in [7,16], are equivalent in power to resolution-based proof systems
[1,4,10,17]. Since bounded-depth Frege is stronger than the resolution proof
system, our third result implies that the formulas F (Pm,m−1) derived from the
pigeonhole pictures are hard for such variants of CDCL SAT solvers.

The remainder of the paper is organized as follows. Next, in Sect. 2 we intro-
duce some notation and some basic results concerning leveled finite automata.
Subsequently, in Sect. 3 we formally define the picture satisfiability problem and
introduce the notion of s-smooth picture. In Sect. 4 we state and prove our main
theorem, namely, that the satisfiability problem for pictures can be solved in
time polynomial on its smoothness. In Sect. 5 we define the family of pigeonhole
pictures and show that this family is polynomially smooth. In Sect. 6 we define a
natural translation from pictures to constant-width CNF formulas, and in Sect. 7
we show that CNF formulas derived from the pigeonhole pictures according to
our translation require exponential bounded-depth Frege proofs.

Satisfiability via Smooth Pictures 15

2 Preliminaries

A leveled nondeterministic finite automaton (LNFA) over an alphabet Σ is a
triple A = (Q,Σ,R) where Q is a set of states partitioned into subsets Q0, ..., Qn

and R ⊆ ⋃n
i=1 Qi−1 × Σ × Qi is a transition relation. The states in Q0 are the

initial states of A, while Qn is the set of final states of A. For each i ∈ {0, ..., n},
we say that Qi is the i-th level of A. The size of A is defined as |A| = |Q| + |R|.
We say that a string w ∈ Σn is accepted by A if there exists a sequence of
transitions

q0
w1−→ q1

w2−→ ...
wn−→ qn

such that qi ∈ Qi for each i in {0, 1, ..., n}, and (qi−1, wi, qi) ∈ Ri for each i in
{1, ..., n}. We denote by L(A) the set of all strings accepted by A. We note that
all strings accepted by A have size n, i.e., L(A) ⊆ Σn. We say that A is a leveled
deterministic finite automaton (LDFA) if Q0 has a unique state q0, and for each
state q ∈ Q, and each symbol a ∈ Σ there exists at most one state q′ ∈ Q such
that (q, a, q′) ∈ R. Let π : Σ → Γ be a function and let w = w1w2...wn be a
string in Σ∗. We denote by π(w) = π(w1)π(w2)...π(wn) the image of w under π.

Lemma 2.1 (Synchronized Product of Automata). Let A and A′ be LNFA
over Σ accepting strings of size n. Let V ⊆ Σ × Σ be a binary relation over Σ.
Then one can construct in time |A|·|A′| an LNFA A⊗V A′ accepting the following
language over Σ × Σ.

L(A ⊗V A′) = {(w1, w
′
1)(w2, w

′
2)...(wn, w′

n) | w ∈ L(A), w′ ∈ L(A′), (wi, w
′
i) ∈ V }.

3 Pictures

An (m,n)-picture over a finite set of symbols Σ is an m × n matrix whose
entries are drawn from Σ. Let π : Σ → Γ be a function between finite sets of
symbols Σ and Γ , and let V,H ⊆ Σ × Σ be binary relations over Σ. Finally,
let N be an (m,n)-picture over Γ . We say that an (m,n)-picture M over Σ is a
(π, V,H)-solution for N if the following conditions are satisfied.

1. Ni,j = π(Mi,j) for each i ∈ {1, ...,m} and each j ∈ {1, ..., n}.
2. (Mi,j ,Mi,j+1) belongs to H for each i ∈ {1, ...,m} and j ∈ {1, ..., n − 1}.
3. (Mi,j ,Mi+1,j) belongs to V for each i ∈ {1, ...,m − 1} and j ∈ {1, ..., n}.

Intuitively, the symbols in Σ may be regarded as colored versions of symbols
in Γ . For each symbol a ∈ Γ , the set π−1(a) ⊆ Σ is the set of colored versions of
a. Thus M is a (π, V,H)-solution for N if M is a colored version of N and the
entries in M respect the vertical and horizontal constraints imposed by V and H
respectively. If N admits a (π, V,H)-solution, then we say that N is satisfiable
(with respect to (π, V,H)). Otherwise, we say that N is unsatisfiable.

Definition 3.1 (Picture Satisfiability Problem). Let π : Σ → Γ be a func-
tion and V,H ⊆ Σ × Σ be binary relations over Σ. Given an (m,n)-picture N
over Γ , is N satisfiable with respect to (π, V,H)?

16 M. de Oliveira Oliveira

3.1 Smooth Pictures

Let [n] = {1, ..., n}. We assume that the set [m] × [n] = {(i, j) | i ∈ [m], j ∈ [n]}
is endowed with a lexicographic ordering <, which sets (i, j) < (i′, j′) if either
i < i′, or i = i′ and j < j′. We write (i, j) ≤ (i′, j′) to denote that (i, j) = (i′, j′)
or (i, j) < (i′, j′). For each (i, j) ∈ [m] × [n], we let

S(m,n, i, j) = {(i′, j′) | (i′, j′) ≤ (i, j)}
be the set of all positions in [m] × [n] that are (lexicographically) smaller than
or equal to (i, j).

Let π : Σ → Γ be a function, and V,H ⊆ Σ × Σ be a binary relation over
Σ. We say that a function M : S(m,n, i, j) → Σ is an (i, j)-partial (π, V,H)-
solution for N if the following conditions are satisfied.

1. (Mi′,j′ ,Mi′,j′+1) ∈ H for each (i′, j′), (i′, j′ + 1) in S(m,n, i, j).
2. (Mi′,j′ ,Mi′+1,j′) ∈ V for each (i′, j′), (i′ + 1, j′) in S(m,n, i, j).

Note that for simplicity we write Mi,j in place of M(i, j) to designate an
entry of M . Intuitively, an (i, j)-partial (π, V,H)-solution for N is a function
that colors the positions of N up to the entry (i, j) with elements from Σ in
such a way that the vertical and horizontal constraints imposed by V and H
respectively are respected. If (i, j1) and (i, j2) are positions in S(m,n, i, j) with
j1 < j2, then we let Mi,[j1,j2] = Mi,j1 ...Mi,j2 be the string formed by all entries
at the i-th row of M between positions j1 and j2. Now let (i, j) ∈ S(m,n, i, j)
with (i, j) ≥ (1, n). The (i, j)-boundary of M is defined as follows.

∂i,j(M) =

⎧
⎨

⎩

Mi,[1,n] if j = n.

Mi,[1,j] · Mi−1,[j+1,n] ifj < n.
(1)

In other words, if j = n, then ∂(M) is the string consisting of all entries
in the i-th row of M . On the other hand, if j < n, then ∂(M) is obtained by
concatenating the string corresponding to the first j entries of row i with the
last (n − j) entries of row (i − 1). The notion of boundary of a partial solution
is illustrated in Fig. 1.

Fig. 1. An (i, j)-partial solution M where i = 3 and j = 4. The grey entries form the
boundary of M . Therefore ∂i,j(M) = cabccab.

Below, we define the (i, j)-feasibility boundary of a picture N over Γ as the
set of (i, j)-boundaries of partial solutions of N .

Satisfiability via Smooth Pictures 17

Definition 3.2 (Feasibility Boundary). Let π : Σ → Γ be a function, V,H ⊆
Σ × Σ, and N be a (m,n)-picture over Γ . The (i, j)-feasibility boundary of N
with respect to (π, V,H), denoted by ∂i,j(N,π, V,H), is defined as follows.

∂i,j(N,π, V,H) = {∂i,j(M) | M is an (i, j)-partial (π, V,H)-solution for N}.
(2)

Note that N has a (π, V,H)-solution if and only if its (m,n)-feasibility bound-
ary ∂m,n(N,π, V,H) is non-empty. Below we define the notion of smooth picture.

Definition 3.3 (Smooth Picture). Let π : Σ → Γ be a function, and V,H ⊆
Σ × Σ be binary relations over Σ. We say that an (m,n)-picture N over Γ is
s-smooth if for each (i, j) ≥ (1, n), the set ∂i,j(N,π, V,H) can be represented by
an LDFA of size at most s.

Intuitively, a picture N is smooth if each of its feasibility boundaries can be
efficiently represented. The main goal of this work is to show that the automata
representing the boundaries of feasibility of a picture N can actually be con-
structed in time polynomial on the smoothness parameter s and on the size
of N . Additionally, once these automata are constructed, one can proceed to
actually construct a solution for N if such a solution exists.

4 Satisfiability of Smooth Pictures in Polynomial Time

In this section we show that the satisfiability problem for smooth pictures can
be solved in time polynomial on the size of the picture and on its smoothness
parameter. Let π : Σ → Γ be a function and V ⊆ Σ × Σ be a binary relation
over Σ. We let e(π, V) = maxa∈Γ,b∈Σ |{c ∈ π−1(a) | (b, c) ∈ V }| be the extension
number of V . Below we state our main theorem.

Theorem 4.1 (Main Theorem). Let π : Σ → Γ be a function and V,H ⊆ Σ
be binary relations over Σ. Let N be an (m,n)-picture over Γ . There is an
algorithm that works in time O(|Σ|e(π,V) · se(π,V) · m · n) and either constructs a
(π, V,H)-solution for N , or correctly determines that no such solution exists.

Note that as an application, we have that if F is a family of pictures such
that for each (m,n)-picture N in F , N is poly(m,n)-smooth, then the picture
satisfiability problem for F can be solved in polynomial time.

We dedicate this section to the proof of Theorem 4.1. For (i, j) ≥ (1, n),
let Aij(N,π, V,H) be the LDFA with minimum number of states accepting the
set of strings ∂i,j(N,π, V,H). The next Lemma will be used in the construction
of the automaton A1,n(N,π, V,H). Note that the language accepted by this
automaton is simply the set of all colored versions of the first row of N which
satisfy constraints imposed by the horizontal relation H.

Lemma 4.2. Let π : Σ → Γ be a function, and let H ⊆ Σ × Σ be a binary
relation over Σ. Let w = w1w2...wn be a string in Γn. Then one can construct

18 M. de Oliveira Oliveira

in time O(|Σ|2 · n) an LDFA A(w,H) of size at most O(|Σ|2 · n) accepting the
following language.

L(A(w,H)) = {u ∈ Σn | π(u) = w, (ui, ui+1) ∈ H for i ∈ {1, ..., n − 1}}.

Proof. First, we construct an automaton A = (Q,Σ,R) as follows. We set Q =
Q0 ∪̇ Q1 ∪̇ ... ∪̇ Qn and R =

⋃n
i=1 Ri where Q0 = {q0}, Qi = {qi,a | a ∈ Σ} for

each i ∈ {1, ..., n}, R1 = {(q0, a, q1,a) | π(a) = w1}, and for each i ∈ {1, ..., n−1},
Ri = {(qi,a, b, qi+1,b) | (a, b) ∈ H, π(b) = wi}. Note that Q has |Σ| · n + 1 states
and at most |Σ|2 ·n transitions. Now it is straightforward to check that for each
string u ∈ Σn there exists an accepting path q0

u1−→ q1,u1

u2−→ ...
un−−→ qn,un

in
A if and only if π(u1)π(u2)...π(un) = w1w2...wn and for each i ∈ {1, ..., n − 1},
(ui, ui+1) ∈ H. Finally, we let A(w,H) = Min(A) be the minimum LDFA which
accepts the same language as A. Since A is acyclic, minimization can be per-
formed in time linear on the size of A [20]. So the overall time to construct
A(w,H) is still O(|Σ|2 · n). �

As a corollary of Lemma 4.2, the LDFA A1,n(N,π, V,H) can be constructed
in time O(|Σ|2 · n).

Corollary 4.3. Let π : Σ → Γ be a function and V,H ⊆ Σ × Σ be binary
relations over Σ. Then the LDFA A1,n(N,π, V,H) has size O(|Σ|2 · n) and can
be constructed in time O(|Σ|2 · n).

Proof. Set Ai,j(N,π, V,H) = A(w,H), where w = N1,[1,n] and A(w,H) is the
automaton of Lemma 4.2. �

For each (i, j) ∈ [m] × [n] with (i, j) < (m,n), let Suc(i, j) = (i, j + 1) if
j < n and Suc(i, j) = (i + 1, 1) if j = n. In other words, Suc(i, j) is the smallest
pair in [m] × [n] which is greater than (i, j) according to the lexicographical
ordering <. Our next step consists in showing that if (i′, j′) = Suc(i, j), then the
automaton Ai′,j′(N,π, V,H) can be constructed in time polynomial on the size
of Ai,j(N,π, V,H). Towards this construction we will need to introduce some
notation concerning leveled finite automata.

Let A = (Q,Σ,R) be a leveled finite automaton over Σ and let q be a state
in Q. The non-deterministic degree of q, denoted d(q), is defined as the maximum
number of states that can be reached from q when reading some fixed symbol
a ∈ Σ.

d(q) = max
a∈Σ

|{q′ | (q, a, q′) ∈ R}| (3)

We say that A has non-deterministic degree d if the following conditions are
satisfied.

1. All states of A have non-deterministic degree at most d.
2. All states of A of non-deterministic degree greater than one belong to the

same level.

Satisfiability via Smooth Pictures 19

The following lemma states that a leveled nondeterministic finite automaton
A of non-deterministic degree d can be transformed into a leveled deterministic
finite automaton det(A) of size at most |A|O(d) which accepts the same language
as A.

Lemma 4.4. Let A be an LNFA of non-deterministic degree d. Let det(A) be
the minimum LDFA accepting L(A). Then det(A) has size at most |A|d and can
be constructed in time O(|A|d).
Proof. Let A = (Q,Σ,R) where Q = Q0 ∪̇ Q1 ∪̇ ... ∪̇ Qn. Assume that all
states of A with non-deterministic degree greater than one belong to level Qi.
Then the sub-automaton of A induced by the states Q0 ∪̇ ... ∪̇ Qi−1 is deter-
ministic, in the sense that all of its states have non-deterministic degree at most
one. Therefore we just need to determinize the sub-automaton of A induced by
the states Qi ∪̇ ... ∪̇ Qn. This determinization process will be achieved by an
adaptation of the traditional subset construction, but with the caveat that only
subsets of states of size at most d need to be considered.

Let S ⊆ Q be a subset of states of A, and let a ∈ Σ. Then, we define
Q(S, a) = {q′ | ∃q ∈ S, (q, a, q′) ∈ R} as the set of all states reachable from
some state in S through a transition labeled with a. We note that for each
j ∈ {0, ..., n − 1}, if S ⊆ Qj then Q(S, a) ⊆ Qj+1. We note that since each state
q ∈ Qi has non-deterministic degree at most d, we have that |Q({q}, a)| ≤ d
for each symbol a ∈ Σ. Additionally, for each j ∈ {i + 1, ..., n − 1}, the non-
deterministic degree of each state in Qj is at most one. Therefore, for each
subset S ⊆ Qj , we have that |Q(S, a)| ≤ |S|. Therefore, to construct a deter-
ministic version of A we only need to consider sets of states of size at most d.
The construction is as follows. Consider the automaton A = (Q′, Σ,R′) where
Q′ = Q′

0 ∪ Q′
1 ∪ ... ∪ Q′

n and R = R1∪̇...∪̇Rn. For each j ∈ {0, ..., i} we let
Q′

j = {qj,{q} | q ∈ Qj}. In other words, Q′
j has one state qj,{q} for each state

q ∈ Qj . Now for j ∈ {i + 1, ..., n}, Q′
j = {qj,S | S ⊆ Qj , |S| ≤ d}. In other

words, Q′
j has one state qj,S for each subset of Qj of size at most d. Now for

each j ∈ {1, ..., n}, we set R′
j = {(qj−1,S , a, qj,S′) | qj−1,S ∈ Q′

j−1, qj,S′ ∈
Q′

j , S′ = Q(S, a)}. Clearly, the automaton A′ is deterministic, and has size at
most |A|d. Additionally we have that w1w2...wn is accepted by A if and only if
there exists an accepting sequence

q0,S0

w1−−→ q1,S1

w2−−→ ...
wn−−→ qn,Sn

in A′ where S0 = {q0} and for each j ∈ {0, ..., n − 1}, Sj+1 = Q(Sj , wj+1). This
implies that L(A′) = L(A). Since A′ is deterministic and acyclic, the minimum
leveled deterministic finite automaton det(A) accepting L(A) = L(A′) can be
constructed in time linear on the size of A′ [20], i.e., in time O(|A|d). �

Let (i′, j′) = Suc(i, j). The following proposition, whose proof is immedi-
ate, establishes a way of defining the boundary set ∂i′,j′(N,π, V,H) in terms of
∂i,j(N,π, V,H).

20 M. de Oliveira Oliveira

Proposition 4.5. Let π : Σ → Γ be a function, V,H ⊆ Σ × Σ be binary
relations over Σ, and N be an (m × n)-picture over Γ . Let ∂i,j(N,π, V,H) be
the set of (i, j)-boundaries of N where (i, j) < (m,n).

1. If j = n, then

∂i+1,1(N,π, V,H) = {aw2...wn | a ∈ Σ, (w1, a) ∈ V }.

2. If j < n, then

∂i,j+1(N,π, V,H) = {w1...wjawj+2...wn | a ∈ Σ, (wj , a) ∈ H, (wj+1, a) ∈ V }.

Using Proposition 4.5, we will prove the following theorem.

Theorem 4.6. Let π : Σ → Γ be a function, V,H ⊆ Σ × Σ be binary rela-
tions over Σ, and N be a (m,n)-picture over Γ . Let (i′, j′) = Suc(i, j). Then
Ai′,j′(N,π, V,H) can be constructed in time

O(|Σ|e(π,V) · |Ai,j(N,π, V,H)|e(π,V)).

Proof. Let A = Aij(N,π, V,H) = (Q,Σ,R) be the minimum LDFA accept-
ing the set of boundaries ∂ij(N,π, V,H) where Q = Q0 ∪̇ Q1 ∪̇ ... ∪̇ Qn

and R = R1 ∪̇ ... ∪̇ Rn. Now let A′ = (Q′, Σ,R′) be the LDFA obtained
from A as follows. First set Q′ = Q′

0 ∪̇ Q′
1 ∪̇ ... ∪̇ Q′

n where Q′
0 =

Q0 and Q′
i = {qa | q ∈ Qi, a ∈ Σ}. Subsequently set R′ = R1 ∪̇ ... ∪̇ Rn

where R′
1 = {(q0, a, qa) | (q0, a, q) ∈ R1} and for each i ∈ {2, ..., n},

R′
i = {(qa, b, rb) |(q, b, r) ∈ Ri, a ∈ Σ }. Then A′ is still deterministic,

and q0
w1−−→ q1

w2−−→ ...
wn−−→ qn is an accepting path in A if and only if

q0
w1−−→ qw1

1
w2−−→ ...

wn−−→ qwn
n is an accepting path in A′. In other words, A′

accepts precisely the same language as A. Note that |A′| ≤ |Σ| · |A|. Now using
A′ we will construct a non-deterministic automaton A′′ = (Q′, Σ,R′′) of non-
deterministic degree at most e(π, V) which accepts the language ∂i′,j′(N,π, V,H)
where (i′, j′) = Suc(i, j). Note that the set of states of A′′ is a copy of the set
of states of A′. Now to define the set of transitions R of A′′ we need to consider
two cases.

1. In the first case, j = n, and therefore i′ = i + 1 and j′ = 1. In this case we
set R′′

k = R′
k for each k ∈ {2, ..., n}, and

R′′
1 = {(q0, a, rb) | a ∈ π−1(Ni+1,1), (q0, b, rb) ∈ R′

1, (b, a) ∈ V }.

Therefore, we have that q0
w1−−→ qw1

1
w2−−→ qw2

2 ...
wn−−→ qwn

n is an accepting path
of A′ if and only if for each a with (w1, a) ∈ V , q0

a−→ qw1
1

w2−−→ qw2
2 ...

wn−−→ qn

is an accepting path of A′′. Stated otherwise,

L(A′′) = {aw2...wn | a ∈ Σ, (w1, a) ∈ V,w ∈ L(A′)}.

By Proposition 4.5, we have that L(A′′) = ∂i′,j′(N,π, V,H).

Satisfiability via Smooth Pictures 21

2. In the second case, j < n, and therefore i′ = i and j′ = j + 1. In this case,
we set Rk = R′

k for k
= j + 1. We define R′′
j+1 as follows.

R′′
j+1 = {(qc, a, rb) | (qc, b, rb) ∈ Rk, a ∈ π−1(Ni,j+1), (c, a) ∈ H, (b, a)∈ V }.

Then we have that q0
w1−−→ qw1

1
w2−−→ qw2

2 ...
wn−−→ qwn

n is an accepting path of A
if and only if for each a ∈ Σ with (wj , a) ∈ H and (wj+1, a) ∈ V , the path

q0
w1−−→ ...

wj−−→ q
wj

j
a−→ q

wj+1
j+1 ...

wn−−→ qwn
n

is an accepting path of A′′. In other words,

L(A′′) = {w1...wjawj+2...wn |w∈ L(A′), a∈ Σ, (wj , a) ∈ H, (wj+1, a)∈ V }.

Since L(A′) = ∂i,j(N,π, V,H), by Proposition 4.5 we have that L(A′′) =
∂i′,j′(N,π, V,H).

In both cases considered above, A′′ has as many states and transitions as A′.
Nevertheless, contrary to A′, A′′ is non-deterministic. Fortunately, the non-
deterministic degree of A′′ is upper bounded by e(π, V). This implies that by
Lemma 4.4, the minimum leveled deterministic finite automaton accepting the
same language as A′′ can be constructed in time

O(|A′′|e(π,V)) = O(|Σ|e(π,V) · |Ai,j(N,π, V,H)|e(π,V)).

�

Now, for each (i, j) ≥ (1, n) we know how to construct the automaton
Ai,j(N,π, V,H) accepting the set ∂ij(N,π, V,H). Note that since by assump-
tion, the picture N is s-smooth, we have that the collection of all automata
Ai,j(N,π, V,H) can be constructed in time O(|Σ|e(π,V) · se(π,V) · m · n). If the
last automaton Am,n(N,π, V,H) accepts the empty language, then the picture
N has no (π, V,H)-solution. On the other hand, if this language is not empty,
then we still need to construct a solution. Let Ai = Ai,n(N,π, V,H) be the
automaton accepting the boundary set ∂i,n(N,π, V,H). Let γ : Σ × Σ → Σ
be a projection which sets γ(a, b) = a for each pair (a, b) ∈ Σ × Σ. In other
words, γ erases the second coordinate of each pair (a, b) ∈ Σ × Σ. For a string
u = (a1, b1)(a2, b2)...(an, bn) ∈ (Σ × Σ)n, we let γ(u) = a1a2...an. Also, for a
string w ∈ Σn, let A(w) be the minimum LDFA that accepts w, and no other
string. We will construct a (π, V,H)-solution M for N row by row, starting from
the last row of M and finishing at the first. The construction is inductive. More
precisely, we construct a sequence wn, wn−1, ..., w1 of strings in Σn as follows.

1. Let wn be an arbitrary string in L(An).
2. For i = n − 1, ... , 1:

(a) Let wi be an arbitrary string in L(γ(Ai ⊗V A(wi+1))).
3. Set M to be the (m,n)-picture over Σ such that wi is the i-th row of M .

22 M. de Oliveira Oliveira

We note that the string wi selected from L(γ(Ai ⊗V A(wi+1))) is sim-
ply a string in the boundary ∂i,n(N,π, V,H) satisfying the property that
(wi

k, wi+1
k) ∈ V for each k ∈ {1, ..., n}. In other words, wi is vertically compat-

ible with wi+1. Additionally, since wi by definition belongs to ∂i,n(N,π, V,H)
we have that for each k ∈ {1, ..., n − 1}, (wi

k, wi
k+1) ∈ H. In other words, the

horizontal constraints imposed by the relation H are satisfied by each wi. This
shows that the picture M obtained by setting, for each i ∈ {1, ...,m}, wi as the
i-th row of M is a valid (π, V,H)-solution for N . We note that the time to select
each string wi is of the order of O(|Ai|). Therefore, the total algorithm still runs
in the time O(|Σ|e(π,V) · se(π,V) · m · n). This proves Theorem 4.1. �

5 Pigeonhole Pictures

In this section we define a family of pictures formalizing the pigeonhole principle.
We call these pictures the pigeonhole pictures. Subsequently, we will show that
this family is polynomially smooth. This implies that our algorithm for the
satisfiability of smooth pictures is able to determine whether a given element of
this family has a solution, and in the case it has, the algorithm is able to construct
it. On the other hand, we will show in Sect. 7 that CNF formulas derived from
the pigeonhole pictures require constant-depth Frege proofs of exponential size.

Our primary alphabet Γ = {⊕, ◦,} has a left symbol ⊕, used to fill all
entries of the first column of the picture, a right symbol , used to fill all
entries of the last column of the picture, and a middle symbol ◦, used to
fill all entries in between the first and last columns. Our colored alphabet is
defined as Σ = {b, g, bb, bg, gb, gg, rr}. Finally, the projection π : Σ → Γ is
such that π({bb, bg, gb, gg, rr}) = {◦}, π(b) = ⊕ and π(g) = . Intuitively, the
letters r, b, g stand for “red”, “blue” and “green” respectively. The symbols in
{bb, bg, gb, gg, rr} are called double colors. The left symbol ⊕ can only be col-
ored with b, then right symbol can only be colored with g, and the middle
symbol can be colored with any double color in {bb, bg, gb, gg, rr}. The color red
serves to indicate presence of a pigeon. The colors blue and green serve to mark
the “footprint” of a pigeon. The vertical and horizontal relations are defined as
follows:

V = { (xb, yb), (xb, rr), (rr, xg), (xg, yg) | x, y ∈ {b, g} } ∪ {(b, b), (g, g)}

H = { (bx, by), (bx, rr), (rr, gx), (gx, gy) | x, y ∈ {b, g} }
∪

{ (b, bz), (b, rr), (rr, g), (gz, g) | z ∈ {b, g} }
(4)

We define the (m,n)-pigeonhole picture, Pm,n, as the m × (n + 2) picture,
where all entries in the first column are filled with the left symbol ⊕, all entries
in the last column are filled with the right symbol , and all other entries are
filled with the middle symbol ◦.

Satisfiability via Smooth Pictures 23

Definition 5.1 (Pigeonhole Picture). The (m,n)-pigeonhole picture Pm,n is
the m × (n + 2) picture over Γ defined as follows.

Pm,n
ij =

⎧
⎨

⎩

⊕ if j = 1.
 if j = n + 2.
◦ otherwise.

(5)

Intuitively, the rows of Pm,n correspond to pigeons, while the middle columns
correspond to holes. Pigeons are not allowed to occupy the first nor the last
columns. If M is a (π, V,H)-solution for the pigeonhole picture then the fact
that Mi,j = rr indicates that the i-th pigeon is placed at the hole represented
by column j. The fact that Mi,j = bx for some x ∈ {g, b} indicates that the i-th
pigeon is placed in some column greater than j, while the fact that Mi,j = gx for
some x ∈ {b, g} indicates that the i-th pigeon is placed in some column smaller
than j. Analogously, if Mi,j = xb for some x ∈ {b, g}, then the pigeon that is
placed at the j-th hole is greater than i, while if Mi,j = xg, then the pigeon that
is placed at the j-th hole is smaller than i.

Note also that the horizontal relation guarantees that a pigeon must occur
in each row of a satisfying assignment. This is because there is no allowed pair
(xy, x′y′) where x is blue and x′ is green. Therefore in a satisfying assignment,
any row must have at least one position colored with rr. Now for the columns
we note that if some pigeon occurs in a position (i, j) then the second color in
each entry below (i, j) must be green, while the second color of each entry above
(i, j) must be blue. Therefore no two pigeons are allowed to appear on the same
column of a satisfying assignment.

Fig. 2. (i) The pigeonhole picture P 4,4. (ii) A solution for P 4,4. (iii) The pigeonhole
picture P 5,4 is unsatisfiable. (Color figure online)

We note that if m > n, then pigeonhole picture Pm,n is unsatisfiable. The
following theorem says that the family of pigeonhole pictures is polynomially
smooth. This implies that our algorithm for the satisfiability of smooth pictures
can be used to decide the unsatisfiability of the pigeonhole pictures in polynomial
time.

Theorem 5.2. Let Pm,n be the (m,n)-pigeonhole picture. Then for each i, j ∈
{1, ..,m}×{1, ..., n+1}, the boundary ∂ij(Pm,n, π, V,H) is accepted by an LDFA
of size at most O(m · n).

Proof. LetM be a solution forPm,n. IfMi,j = y1y2 where i ∈ {2, ..., n+1}, thenwe
say that y1 is the first coordinate of Mi,j while y2 is the second coordinate of Mi,j .

24 M. de Oliveira Oliveira

We sketch the proof in the case in which j = n + 2. In other words we will show
how to construct the boundaries corresponding to full rows. The generalization for
smaller values of j is straightforward. Thus let M be an (i, n + 2) partial solution.
Then theborder ofM is simply its i-th row.SinceM is apartial solution, there exists
a unique k such that Mi,k = rr. Additionally, if k′ < k then the first coordinate
of Mi,k′ is necessarily blue, indicating that a pigeon has not occurred in that row
up to position k′. On the other hand, if k′ > k, then the first coordinate of Mi,k′ is
green, indicating that apigeonhas alreadyoccurred at row i.Now,wealso have that
precisely i pigeons must be present in M , one for each row. Therefore, there must
exist precisely i−1 entries of row i whose second coordinate is green. Indeed, for an
entryMi,k′ withk′
= k, if the second coordinate ofMi,k′ is green, thenweknowthat
a pigeon has already occurred at column k′. On the other hand, if Mi,k′ is blue then
we know that no pigeon occurred yet at column k′. It turns out that the converse
also holds. Namely, if each two consecutive entries of row i satisfy the horizontal
constraints imposed by the horizontal relation H and there exists a unique entry
which is equal to rr and precisely i − 1 entries whose second coordinate is green,
then we known that all other entries of M can be filled in such a way that it is an
(i, n + 2) solution. In other words, the strings w ∈ Σn+2 belonging to the border
of an (i, n + 2) partial solution are characterized by the following properties.

1. The first entry of w is b and the last entry is g.
2. (wk, wk+1) ∈ H for each k ∈ {1, ..., n + 1}
3. There exists a unique k such that wk = rr
4. w has precisely i − 1 entries whose second coordinate is green.

Now one can implement a leveled deterministic finite automaton with O(i ·n)
transitions and levels Q0, Q1, ..., Qn+1 which accepts a string w ∈ Σn+2 if and
only if the conditions above are satisfied. Note that the three first conditions
are immediate to verify using such an automaton. The fourth condition can be
implemented by considering that each level Qk is split into subsets of states
Qr

k for r ∈ {1, ..., i}, where the states in Qr
k indicate that from the k first read

symbols of w, r of them have the second coordinate green. �

Corollary 5.3. Let Pm,n be the pigeonhole picture. Then the algorithm devised
in the proof of Theorem 4.1 determines in time O(m4 · n4) whether Pm,n has a
(π, V,H)-solution. In case such a solution exists the algorithm constructs it.

Proof. By Theorem 5.2, Pm,n is O(m · n)-smooth. Additionally, the extension
number of (π, V) is e(π, V) = 3. Therefore from Theorem 4.6, we can construct
each automaton Ai,j(Pm,n, π, V,H) in time at most O(m3 · n3). Since there are
m · n such automata, the whole algorithm takes time at most O(m4 · n4). �

6 From Pictures to Constant Width CNF Formulas

Let π : Σ → Γ be a function, V,H ⊆ Σ × Σ be binary relations over Σ, and
M be an m × n-picture over Γ . Next we define a constant width CNF formula
F (M) that is satisfiable if and only if M is (π, V,H)-satisfiable.

Satisfiability via Smooth Pictures 25

Let Sij = π−1(Mij) be the set of colored versions of the symbol Mij . The
formula F (M) has a variable xija for each (i, j) ∈ [m] × [n], and each symbol
a ∈ Sij . Intuitively, the variable xija is true if the position (i, j) of a solution
picture is set to a. The following set of clauses specifies that in a satisfying
assignment, precisely one symbol of Sij occupies the position (i, j).

OneSymbol(M, i, j) ≡
∨

s∈Sij

xijs ∧
∧

s,s′∈Sij ,s �=s′
(xijs ∨ xijs′) (6)

The next set of clauses expresses the fact that no pair of symbols (a, a′) /∈ H
occur in consecutive horizontal positions at row i.

Horizontal(M, i) ≡
∧

(a,a′)/∈H,j∈{1,...,n−1}
(xija ∨ xi(j+1)a′) (7)

Similarly, the following set of of clauses expresses the fact that that no pair
of symbols (a, a′) /∈ V occurs in consecutive vertical positions at column j.

Vertical(M, j) ≡
∧

(a,a′)/∈V,i∈{1,...,m−1}
(xija ∨ x(i+1)ja′) (8)

Finally, we set the formula F (M) as follows.

F (M) ≡
m∧

i=1

Horizontal(M, i) ∧
n∧

j=1

Vertical(M, j)∧
∧

ij

OneSymbol(M, i, j) (9)

7 Lower Bound for Bounded Depth Frege Proofs

Let Pm,m−1 be the pigeonhole pictures as defined in Sect. 5. In this section
we will show that bounded-depth Frege refutations of the family of formulas
{F (Pm,m−1)}m∈N require exponential size. Recall that a Frege system is speci-
fied by a finite set of rules of the form

ϕ0(q1, ..., qm)
ϕ1(q1, ..., qm), ..., ϕr(q1, ..., qm) (10)

where q1, ..., qm are variables and ϕ0, ϕ1, ..., ϕr are formulas in the language ∨,
∧, ¬, 0, 1, and q1, ..., qm. The only requirement is that the rules are sound
and complete [6]. An instance of the rule is obtained by substituting particular
formulas ψ1, ..., ψm (in the language ∨, ¬, 0, 1, yij) for the variables q1, ..., qm.
A rule in which r = 0 is called an axiom scheme. The size of a formula F is
the number of symbols {∨,∧,¬} in it. The depth of a formula is the size of the
longest path from the root of F to one of its leaves. We say that a proof has
depth d if all formulas occurring in it have depth at most d.

Now consider the family of pigeonhole formulas {Hm}m∈N. For each m ∈ N,
Hm has variables yij for i ∈ {1, ...,m} and j ∈ {1, ...,m − 1} and the following
clauses.

26 M. de Oliveira Oliveira

1. (yi,1 ∨ ... ∨ yi,m−1) for each i ∈ {1, ...,m}.
2. (¬yi,j ∨ ¬yk,j) for each i, k ∈ {1, ...,m}, j ∈ {1, ...,m − 1}.

Intuitively, when set to true, the variable yi,j indicates that pigeon i sits at
hole j. Clauses of the first type specify that each pigeon has to sit in at least
one hole, clauses of the second type specify that no two distinct pigeons sit in
the same hole. Clearly, the formula Hm is unsatisfiable for each m ∈ N. The
following theorem states that Hm is hard for bounded depth Frege systems.

Theorem 7.1 ([13,18]). For each Frege proof system F there exists a constant
c such that for each d, and each sufficiently large m, every depth-d refutation of
Hm must have size at least 2mc−d

.

Now let F (Pm,m−1) be the formula derived from the pigeonhole picture
Pm,m−1. This formula has the following variables1:

xi,j,bb, xi,j,bg, xi,j,gb, xi,j,gg i ∈ {1, ...,m}, j ∈ {2, ...,m} (11)

xi,1,b, xi,m+1,g, for i ∈ {1, ...,m} (12)

We will consider a substitution of variables that transforms the formula
F (Pm,m−1) into a formula F ′ in the variables yij used by the formula Hm.
Intuitively, the variable xi,j,rr which expresses that the pigeon i is being placed
at column j in a solution for the picture Pm,m−1, is mapped to the variable
yi,j−1 which expresses that the pigeon i is placed at hole j − 1. Note that the
j-th column of a solution for the picture Pm,m−1 is the (j − 1)-th hole. The
other variables are then mapped to a conjunction of disjunctions. For instance,
the variable xi,j,bb is true in an hypothetical satisfying assignment of F (Pm,m−1)
if and only if the pigeon at row i occurs after the j-th entry of this row, and the
pigeon at column j appears after the i-th entry of this column. Analogue sub-
stitutions can be made with respect to the other variables. These substitutions
are formally specified below.

1. For i ∈ {1, ...,m}:
(a) xi,1,b → (yi,1 ∨ ... ∨ yi,m−1)
(b) xi,(m+1),g → (yi,1 ∨ ... ∨ yi,m−1)

2. For i ∈ {1, ...,m}, j ∈ {2, ...,m}
(a) xi,j,rr → yi,(j−1)

(b) xi,j,bb → (yi,j ∨ ... ∨ yi,m−1) ∧ (yi+1,j ∨ ... ∨ ym,j)
(c) xi,j,bg → (yi,j ∨ ... ∨ yi,m−1) ∧ (y1,j ∨ ... ∨ yi−1,j)
(d) xi,j,gb → (yi,1 ∨ ... ∨ yi,j−2) ∧ (yi+1,j ∨ ... ∨ ym,j)
(e) xi,j,gg → (yi,1 ∨ ... ∨ yi,j−2) ∧ (y1,j ∨ ... ∨ yi−1,j)

1 Recall that the first and last columns of the pigeonhole picture do not correspond
to holes.

Satisfiability via Smooth Pictures 27

Let F ′ be the formula that is obtained from F (Pm,m−1) by replacing its
variables according to the substitutions defined above. Then the formula F ′ has
only variables yij . Additionally, the implication Hm ⇒ F ′ can be proved by a
bounded depth Frege proof of polynomial size. Now suppose that Π is a depth-
d Frege refutation of the formula F (Pm,m−1) of size S. Then, if we replace
all variables occurring in formulas of Π according to the substitutions above,
we get a depth d + 2 Frege refutation Π ′ of the formula F ′ whose size is at
most O(m) · S. But since the implication Hm ⇒ F ′ has a Frege proof of size
poly(m), we have that Π ′ also can be used to construct a refutation of Hm of

size poly(m) ·S. Therefore by Theorem 7.1, the size of S must be at least 2mc′−d

for some constant c′ independent on m. �

Acknowledgments. This work was supported by the European Research Council,
grant number 339691, in the context of the project Feasibility, Logic and Random-
ness (FEALORA). The author thanks Pavel Pudlák and Neil Thapen for enlightening
discussions on Frege proof systems.

References

1. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the
potential of clause learning. J. Artif. Intell. Res. 22, 319–351 (2004)

2. Beame, P., Pitassi, T.: Simplified and improved resolution lower bounds. In:
Proceedings of the 37th Annual Symposium on Foundations of Computer Science,
pp. 274–282. IEEE (1996)

3. Buss, S.R., et al.: Resolution proofs of generalized pigeonhole principles. Theoret.
Comput. Sci. 62(3), 311–317 (1988)

4. Buss, S.R., Hoffmann, J., Johannsen, J.: Resolution trees with lemmas: resolution
refinements that characterize DLL algorithms with clause learning. Logical Meth.
Comput. Sci. 4, 1–18 (2008)

5. Cherubini, A., Reghizzi, S.C., Pradella, M., San, P.: Picture languages: Tiling
systems versus tile rewriting grammars. Theoret. Comput. Sci. 356(1), 90–103
(2006)

6. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
J. Symbol. Logic 44(01), 36–50 (1979)

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

8. Giammarresi, D., Restivo, A.: Recognizable picture languages. Int. J. Pattern
Recogn. Artif. Intell. 6(2&3), 241–256 (1992)

9. Haken, A.: The intractability of resolution. Theoret. Comput. Sci. 39, 297–308
(1985)

10. Hertel, P., Bacchus, F., Pitassi, T., Van Gelder, A.: Clause learning can effectively
P-simulate general propositional resolution. In: Proceedings of the 23rd National
Conference on Artificial Intelligence (AAAI 2008), pp. 283–290 (2008)

11. Kim, C., Sudborough, I.H.: The membership and equivalence problems for picture
languages. Theoret. Comput. Sci. 52(3), 177–191 (1987)

12. Kraj́ıček, J.: Lower bounds to the size of constant-depth propositional proofs. J.
Symbol. Logic 59(01), 73–86 (1994)

28 M. de Oliveira Oliveira

13. Kraj́ıček, J., Pudlák, P., Woods, A.: An exponential lower bound to the size of
bounded depth frege proofs of the pigeonhole principle. Random Struct. Algorithms
7(1), 15–39 (1995)

14. Latteux, M., Simplot, D.: Recognizable picture languages and domino tiling. The-
oret. Comput. Sci. 178(1), 275–283 (1997)

15. Maurer, H.A., Rozenberg, G., Welzl, E.: Using string languages to describe picture
languages. Inf. Control 54(3), 155–185 (1982)

16. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation
Conference, pp. 530–535. ACM (2001)

17. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as
resolution engines. Artif. Intell. 175(2), 512–525 (2011)

18. Pitassi, T., Beame, P., Impagliazzo, R.: Exponential lower bounds for the pigeon-
hole principle. Comput. Complex. 3(2), 97–140 (1993)

19. Raz, R.: Resolution lower bounds for the weak pigeonhole principle. J. ACM
(JACM) 51(2), 115–138 (2004)

20. Revuz, D.: Minimisation of acyclic deterministic automata in linear time. Theoret.
Comput. Sci. 92(1), 181–189 (1992)

21. Rosenfeld, A.: Picture Languages: Formal Models for Picture Recognition. Acad-
emic Press (2014)

22. Simplot, D.: A characterization of recognizable picture languages by tilings by
finite sets. Theoret. Comput. Sci. 218(2), 297–323 (1999)

23. Stromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and
picture languages. Comput. Graph. Image Process. 1(3), 284–307 (1972)

Solution-Graphs of Boolean Formulas
and Isomorphism

Patrick Scharpfenecker(B) and Jacobo Torán

Institute of Theoretical Computer Science, University of Ulm, Ulm, Germany
{patrick.scharpfenecker,jacobo.toran}@uni-ulm.de

Abstract. The solution graph of a Boolean formula on n variables is
the subgraph of the hypercube Hn induced by the satisfying assignments
of the formula. The structure of solution graphs has been the object of
much research in recent years since it is important for the performance of
SAT-solving procedures based on local search. Several authors have stud-
ied connectivity problems in such graphs focusing on how the structure
of the original formula might affect the complexity of the connectivity
problems in the solution graph.

In this paper we study the complexity of the isomorphism problem of
solution graphs of Boolean formulas and we investigate how this com-
plexity depends on the formula type.

We observe that for general formulas the solution graph isomorphism
problem can be solved in exponential time while in the cases of 2CNF
formulas, as well as for CPSS formulas, the problem is in the counting
complexity class C=P, a subclass of PSPACE. We also prove a strong
property on the structure of solution graphs of Horn formulas showing
that they are just unions of partial cubes.

In addition we give a PSPACE lower bound for the problem on gen-
eral Boolean functions. We prove that for 2CNF, as well as for CPSS
formulas the solution graph isomorphism problem is hard for C=P under
polynomial time many one reductions, thus matching the given upper
bound.

Keywords: Solution graph · Isomorphism · Counting · Partial cube

1 Introduction

Schaefer provided in [17] a well known dichotomy result for the complexity of the
satisfiability problem on different classes of Boolean formulas. He showed that
for formulas constructed from specific Boolean functions (now called Schaefer
functions), satisfiability is in P while for all other classes, satisfiability is NP-
complete. Surprisingly, there are no formulas of intermediate complexity.

More recently, Gopalan et al. and Schwerdtfeger [9,19] uncovered a simi-
lar behavior for connectivity problems on solution graphs of Boolean formulas.

P. Scharpfenecker—Supported by DFG grant TO 200/3-1.

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 29–44, 2016.
DOI: 10.1007/978-3-319-40970-2 3

30 P. Scharpfenecker and J. Torán

The solution graph of a Boolean formula on n variables is the subgraph of the
n-dimensional hypercube induced by all satisfying assignments. The study of
solution graphs of Boolean formulas has been the object of important research
in recent years, especially for the case of random formula instances. It has been
observed both empirically and analytically that the solution space breaks in
many small connected components as the ratio between variables and clauses in
the considered formulas approaches a critical threshold [1,15]. This phenomenon
explains the better performance on random formulas of SAT-solvers based on
message passing with decimation than those based on local search or DPLL
procedures (see e.g. [8]). The motivation behind the works of [9,19] was to
obtain new information about the connectivity properties of the solution space
for different types of Boolean formulas. Introducing some new classes of Boolean
functions, they were able to prove a dichotomy result for the st-connectivity
problem [9], as well as a trichotomy result for connectivity [19]. For different
formula classes the complexity of the connectivity problem is either in P, or
complete for coNP or for PSPACE while for st-connectivity it is either in P or
PSPACE-complete.

In this paper we look further in the solution space of Boolean formulas study-
ing the complexity of the isomorphism of their solution graphs. In other words,
we consider the following natural questions: given two Boolean formulas, how
hard is it to test if their solution graphs are isomorphic? Does the complexity of
the problem depend on the structure of the formula? Observe that isomorphism
of solution graphs is a very strong concept of equivalence between formulas,
stronger than Boolean isomorphism [2] and stronger than saying that both for-
mulas have the same number of satisfying assignments. Since the complexity
of the general graph isomorphism problem, GI, is not completely settled (see
[13]), one might expect that it would be hard to obtain a complete classifica-
tion for solution graph isomorphism. We show in fact that for different types of
Boolean formulas, the complexity of the isomorphism problem on their solution
graphs varies. We also characterize completely the complexity of the problem
for some types of Boolean formulas. For solution graphs of 2CNF formulas, iso-
morphism of a single connected component is exactly as hard as testing Graph
Isomorphism. For a collection of such components (encoded by a single 2CNF
formula), the isomorphism problem is complete for the complexity class C=P, a
complexity class defined in terms of exact counting. This means that deciding
isomorphism of the solution graphs of 2CNF formulas is exactly as hard as test-
ing if two such formulas have the same number of satisfying assignment. This
result also holds for the more general class of CPSS formulas (definitions in the
preliminaries section), showing that for this class of formulas isomorphism and
counting have the same complexity. For the upper bound we use a recent result
on the isometric dimension of partial cubes [18], the fact that GI is low for the
class C=P [12], as well as the closure of this class under universal quantification
[10]. The hardness property uses a result of Curticapean [7], where it is proven
that SamePM , the problem to decide if two given graphs have the same number
of perfect matchings is complete for C=P. We show that this problem can be

Solution-Graphs and Isomorphism 31

reduced to the verification of whether two 2CNF formulas have the same num-
ber of satisfying solutions, implying that this problem and even Iso(CPSS), the
isomorphism problem of CPSS solution graphs, are complete for C=P.

For the other types of formulas used in [9,19], built from Schaefer, safely
tight and general functions, we observe that the corresponding solution graph
isomorphism problems can be solved in EXP, thus improving the trivial NEXP
upper bound.

For classes of functions that are not safely tight, we can also improve the
C=P lower bound and show that the isomorphism problem for their solution
graphs is in fact hard for PSPACE.

Figure 1 summarizes the complexity results for isomorphism of solution
graphs for specific classes of formulas.

Fig. 1. Classification of isomorphism problems.

While we could not improve the EXP upper bound for the isomorphism of
solution graphs corresponding to Horn formulas, we prove a strong new property
for the structure of such graphs which might help to develop a non-trivial isomor-
phism algorithm. We show that the set of solutions between a locally minimal
and locally maximal solution is a partial cube. Therefore a solution graph can
be seen as taking a partial cube for every locally maximal solution and glueing
them together.

While there is no direct connection between the isomorphism problem for
solution graphs and SAT-solving methods, the study of isomorphism questions
provides new insights on the structure of solution graphs and on the number of
satisfying assignments for certain formula classes that might be useful in further
SAT-related research.

2 Preliminaries

For two words x, y ∈ {0, 1}n, Δ(x, y) denotes the Hamming-distance between
them. We associate words in {0, 1}n with subsets of [n] = {1, . . . , n} in the
standard way.

We mostly deal with undirected graphs without self-loops. For such a graph
G = (V,E) with vertex set V = [n] and edge set E ⊆ (

V
2

)
, its simplex graph

(see e.g. [4]) is defined as simplex(G) = (V ′, E′) with V ′ as the set of all cliques
(including the empty clique) in G and E′ = {{u, v} ∈ (

V ′

2

) | Δ(u, v) = 1}.

32 P. Scharpfenecker and J. Torán

So G′ = simplex(G) is the set of all cliques of G and two cliques are connected
iff they differ (considered as strings of {0, 1}n) in one element. We will only
consider the simplex graph of bipartite graphs. As these graphs have only cliques
of size at most 2, |V ′| = |V | + |E| + 1. The graph G′ contains all original nodes
V , a node u = {i, j} for every edge {i, j} ∈ G which is connected to {i} and {j}
and a new node o = ∅ which is connected to all original nodes.

Two graphs G = (V,E) and H = (V ′, E′) with V = V ′ = [n] are isomorphic
iff there is a bijection π : V → V ′ such that for all u, v ∈ V : (u, v) ∈ E ⇔
(π(u), π(v)) ∈ E′. If such a bijection exists we write G ∼= H, if not, G �∼= H.
The graph isomorphism problem (GI) is the decision problem of whether two
given graphs are isomorphic. Given a class of graphs C, Iso(C) denotes the graph
isomorphism problem on graphs in C.

The Boolean isomorphism problem consists in deciding, given two Boolean
formulas F and G on variables x1, . . . , xn, whether there is a signed permu-
tation π of the n variables such that for all x ∈ {0, 1}n, F (x1, . . . , xn) =
G(π(x1), . . . , π(xn)).

We deal with different classes of formulas. 2CNF denotes the class of formulas
in conjunctive normal form and with exactly two literals per clause. For a 2CNF
formula F (x1, . . . , xn) we define the directed implication graph I(F) = (V,E)
on nodes V = {x1, . . . , xn, x1, . . . , xn} and edges (k, l) ∈ E with k, l ∈ V iff there
is no solution to F which falsifies the clause (k → l). By replacing all variables
in a cycle with a single variable we get the reduced implication graph RI(F).
We say that a 2CNF formula F is reduced if I(F) = RI(F).

We deal mostly with standard complexity classes like P, NP, EXP and NEXP.
A class that might not be so familiar is the counting class C=P [22]. This consists
of the class of problems A for which there is a nondeterministic polynomial time
Turing machine M and a polynomial time computable function f such that for
each x ∈ {0, 1}∗, x ∈ A iff the number of accepting paths of M(x) is exactly
f(x). The standard complete problem for C=P is ExactSAT: given a Boolean
formula F and a number k, does F have exactly k satisfying assignments?

2.1 Solution Graphs of Boolean Formulas

Intuitively, a solution graph for a given Boolean formula is the induced subgraph
on all satisfying solution represented in a host graph. In this paper we only
consider induced subgraphs of the n-dimensional hypercube Hn which is the
graph with V = {0, 1}n and E = {{u, v}|Δ(u, v) = 1}.

Definition 1. Let F (x1, . . . , xn) be an arbitrary Boolean formula. Then the
solution graph GF is the subgraph of the n-dimensional hypercube Hn induced
by all satisfying solutions x of F .

Note that two satisfying solutions are connected by an edge iff their Hamming
distance is one. For a set of Boolean formulas D (for example D = 2CNF), Iso(D)
denotes the isomorphism problem on the class of solution graphs of D-formulas.

Given a graph G and two nodes u, v, d(u, v) is the length of the shortest path
between u and v in G or ∞ if there is no such path.

Solution-Graphs and Isomorphism 33

Definition 2. An induced subgraph G of Hn is a partial cube iff for all x, y ∈ G,
d(x, y) = Δ(x, y). We call such an induced subgraph “isometric”. The isometric
dimension of a graph G is the smallest n such that G embeds isometrically into
Hn.

Definition 3. A graph G = (V,E) is a median graph iff for all nodes u, v, w ∈ V
there is a unique b ∈ V which lies on the shortest paths between (u, v), (u,w)
and (v, w). Then b is called the median of u, v and w.

For any Boolean function F : {0, 1}n → {0, 1} we can represent F with
the subset of all its satisfying assignments in {0, 1}n. A Boolean function F ⊆
{0, 1}n is closed under a ternary operation
 : {0, 1}3 → {0, 1} iff ∀x, y, z ∈
F :
(x, y, z) := (
(x1, y1, z1), . . . ,
(xn, yn, zn)) ∈ F . Note that we abuse the
notation of a ternary operation to an operation on three bit-vectors by applying
the operation bitwise on the three vectors. For R a set of Boolean functions with
arbitrary arities (for example R = {(x∨y), (x⊕y), (x⊕y⊕z)}, we define SAT (R)
to be the satisfiability problem for all Boolean formulas which are conjunctions
of instantiations of functions in R. For the given example R, F (x, y, z) = (z∨y)∧
(x ⊕ y) is a formula in which every clause is an instantiation of an R-function.
Similarly, Conn(R) (stConn(R)) is the connectivity (reachability) problem, given
a conjunction F of R-functions (and s, t), is the solution graph connected (is
there a path from s to t). We mostly use F for Boolean formulas/functions and
R,S for sets of functions.

Note that r ∈ R can be an arbitrary Boolean function as for example r =
(x ⊕ y) or r = (x ∨ y ∨ z) ∧ (x ∨ z). With Hornn we define the set of all Horn-
clauses of size up to n. The ternary majority function maj : {0, 1}3 → {0, 1} is
defined as maj(a, b, c) = (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c).

In the next definitions we recall some terms introduced in [9,19].

Definition 4. A Boolean function F is

– bijunctive, iff it is closed under maj(a, b, c).
– affine, iff it is closed under a ⊕ b ⊕ c.
– Horn, iff it is closed under a ∧ b.
– dual-Horn, iff it is closed under a ∨ b.
– IHSB−, iff it is closed under a ∧ (b ∨ c).
– IHSB+, iff it is closed under a ∨ (b ∧ c).

A function has such a property componentwise, iff every connected component
in the solution graph is closed under the corresponding operation. A function F
has the additional property “safely”, iff the property still holds for every function
F ′ obtained by identification of variables1.

In the case of Horn-formulas, the usual definition (the conjunction of Horn-
clauses, clauses with at most one positive literal) implies that the represented
functions are Horn.
1 Identifying two variables corresponds to replacing one of them with the other

variable.

34 P. Scharpfenecker and J. Torán

Definition 5. A set of functions R is Schaefer (CPSS) if at least one of the
following conditions holds:

– every function in R is bijunctive.
– every function in R is Horn (and safely componentwise IHSB−).
– every function in R is dual-Horn (and safely componentwise IHSB+).
– every function in R is affine.

If we have a Boolean formula F which is built from a set R of CPSS functions
we say that F is CPSS. Clearly, every CPSS formula is Schaefer. We later use
a bigger class of functions called safely tight. This class properly contains all
Schaefer sets of functions.

Definition 6. A set R of functions is (safely) tight if at least one of the following
conditions holds:

– every function in R is (safely) componentwise bijunctive.
– every function in R is (safely) OR-free.
– every function in R is (safely) NAND-free.

A function is OR-free if we can not derive (x ∨ y) by fixing variables. Similarly,
a function is NAND-free if we can not derive (x ∨ y) by fixing variables.

3 Isomorphism for Solution Graphs

We now turn our attention to the isomorphism problem on solution graphs.
In general the solution graph of a formula can have an exponential number of
connected components and each component might be of exponential size (in the
formula size). The NP upper bound for GI translates directly into a NEXP upper
bound for the isomorphism of solution graphs.

Based on the celebrated new algorithm from Babai for Graph Isomorphism
[3] running in time nlogO(1)

, it is not hard to see that the isomorphism of solution
graphs is in EXP: for two given Boolean formulas on n variables, we can construct
explicitly their solution graphs in time O(2n) and then apply Babai’s algorithm
on them, resulting in a 2n

O(1)
algorithm. But we do not need such a strong

result, the algorithm of Luks for testing isomorphism of bounded degree graphs
[14] suffices.

Proposition 7. The problem to decide for two given Boolean formulas whether
their respective solution graphs are isomorphic is in EXP.

Proof. Luks [14] gave an algorithm for graph isomorphism with time-complexity
|V |deg(G). A solution graph embedded in the hypercube Hn has degree at most
n − 1. The running time of Luks algorithm on such graphs is bounded by 2n

2
. ��

By restricting the encoding formula, we can get better upper bounds. Theo-
rem 13 will show that the isomorphism problem for CPSS encoding formulas is
in C=P, a subclass of PSPACE. For this, we need the following two results.

Solution-Graphs and Isomorphism 35

Theorem 8 [18]. Given a CPSS function F (x1, . . . , xn), every connected com-
ponent of F is a partial cube of isometric dimension at most n.

Theorem 9 [16], Theorem 5.72. For any two finite isomorphic partial cubes
G1 and G2 on a set X, there is an automorphism of the cube H(X) that maps one
of the partial cubes onto the other. Moreover, for any isomorphism α : G1 → G2,
there is a Boolean automorphism σ : H(X) → H(X) such that σ on G1 is
exactly α.

We note that isomorphism of (explicitly given) partial cubes is already GI-
complete. The hardness follows from the observation that for any graph, its
simplex is a median graph. The other two facts we need is that median graphs
are partial cubes (see e.g. [16], Theorem 5.75), and the fact that a given pair
of graphs G,H, can be transformed in logarithmic space into a pair of bipartite
graphs G′,H ′ so that simplex(G′) ∼= simplex(H ′) iff G ∼= H.

To see this we first suppose that for two given general graphs G,H we know
that |E| �= |V |. This could easily be enforced in an isomorphism-preserving
logspace reduction. In a next step, we replace each edge (u, v) in both graphs
with the gadget (u, zu,v), (zu,v, v) where zu,v is a new vertex. This yields two new
bipartite graphs G′,H ′ which are isomorphic iff G and H were isomorphic. But
then simplex(G′) ∼= simplex(H ′) iff G ∼= H. This implies the following Lemma.

Lemma 10. Isomorphism for median graphs is GI-complete under logarithmic
space many-one reductions.

Note that it is known that median graphs can be exactly embedded as a
solution graph of a reduced 2CNF formula (see e.g. [5]). Lemma 10 gives therefore
an alternative reduction to the one given in [6] between Boolean isomorphism
for 2CNF formulas and GI. With Theorem 9 we get:

Corollary 11. The Isomorphism Problem for reduced 2CNF solution graphs is
GI-complete under logarithmic space many-one reductions.

Proof. The hardness part follows from the observation given above. By Theo-
rem 9 two partial cubes are isomorphic iff there is an automorphism of the whole
hypercube mapping one partial cube to the other. But such an automorphism
is just a Boolean automorphism of the Boolean function. For general boolean
formulas this problem is hard for NP and in Σ2 [2], but for Schaefer-formulas,
which contain 2CNF formulas, this problem can be reduced in polynomial time
to GI (see [6]) by creating a unique normal form and looking for a syntactic
isomorphism of the formulas. ��

This basically tells us that even if we look at two exponentially sized, iso-
morphic partial cubes embedded in the hypercube Hn, finding an isomorphism
is as easy as finding a Boolean isomorphism. The problem is more complex when
the solution graphs might have more than one connected component. We face
the additional problem that single connected components may not have a sin-
gle formula representing just this component. For the isomorphism of solution

36 P. Scharpfenecker and J. Torán

graphs of CPSS functions we will show an upper bound of C=P. For this we
need the following Lemma showing that the problem of testing if there is an
isomorphism between two connected components which maps a given solution
to another given solution, can be reduced to GI.

Lemma 12. The following problem is reducible to GI: given CPSS functions F
and G and two satisfying solutions s and t, decide whether there is an isomor-
phism π between the connected components containing s and t with π(s) = t.

Proof. We know by Theorem 9 that if two partial cubes are isomorphic, then
there is always a Boolean isomorphism2. One could easily guess a candidate
permutation of variables for the isomorphism. But it is not clear how to verify
that this permutation is in fact an isomorphism. To reduce this problem to GI
we would have to extract a single connected component and create a formula
which contains only this subgraph. In general, this is not possible. We use the
construction depicted in Fig. 2 to achieve such an extraction which is enough in
the case of isomorphism.

We describe this construction which basically performs a walk on the solution
graph beginning at a given node s. We use several blocks of variables. Given the
original variables x = (x1, . . . , xn), we create new blocks of variables xi and xi,j

for i ∈ {0, . . . , w} and j ∈ {1, . . . , n} (w to be fixed later), each containing n
variables. For example x0 = (x0

1, . . . , x
0
n) and x0,4 = (x0,4

1 , . . . , x0,4
n). We fix the

first block of variables x0 to s ∈ {0, 1}n. We then add n new blocks x0,1, . . . , x0,n

such that every x0,j may only differ from x0 in bit j. If x0
j = 0 we add the clause

(x0
j → x0,j

j), if x0
j = 1 we add the clause (x0

j → x0,j
j). This will not be relevant in

the first step as these clauses are obviously satisfied but this ensures that a walk
never returns to s: if we add these clauses for all later steps and for example for
the case x0

j = 0 there is an i such that xi
j = 1, then for all i′ > i, xi′

j �= 0.
All other variables have to be equivalent to the variables in the previous

block (or the previous variables could get reused in x0,j
j , except x0

j). In addition
we add for every j the clauses F (x0,j) to ensure that every following block of
x0 satisfies F . Obviously, every x0,j has distance at most 1 from x0 = s and is
a node in the solution graph. We then add a new block x1 such that x1

j = x0,j
j .

This performs all steps of the previous branching-step in parallel and we require
x1 to satisfy F .

Although all nodes visited in the branching-step have distance at most 1 from
s, the nodes described in x1 have distance

∑
j∈[n] d(x0, x0,j). Therefore x1 may

not be in the same connected component as x0. We now show that, in the case
of CPSS functions, this can never happen. Let us assume w.l.o.g. that exactly
the first k blocks have distance 1.

Claim. Let S be a CPSS function with satisfying solution x. If xi for 1 ≤ i ≤
k ≤ n is equal to x with the i-th bit flipped, x′ = x1

1, . . . , x
k
k, xk+1, . . . , xn and

x1, . . . , xk, x′ all satisfy S, then there is a path from x to x′.
2 Boolean isomorphisms are signed permutations: they may map variables to variables

and may flip variables.

Solution-Graphs and Isomorphism 37

Proof: Obviously, xi is connected to x as d(x, xi) = 1. We show by induction
on j that for all j with 1 ≤ j ≤ k, yj = x1

1, . . . , x
j
j , xk+1, . . . , xn satisfies S.

As their consecutive distances are 1 the statement follows. For j = 1 we know
that x1 = y1. Now let yj satisfy S. If S is componentwise bijunctive, then
maj(x′, yj , xj+1) = yj+1 satisfies S by its closure property. If S is not compo-
nentwise bijunctive it is Horn and componentwise IHSB- (or dual). Again the
closure property gives x′ ∧ (yj ∨ xj+1) = yj+1. �

Note that the given construction on (F, x) creates a formula F ′ such that
every satisfying solution is a walk on F of length w := n starting at x (we use
n branch and reduce blocks). Therefore, the set of all satisfying solutions to
F ′ is the set of all walks on F where every step is the traversal of a complete
subhypercube and in every step the walk may refuse to take a step and remain
at the previous node. Obviously, if there is an isomorphism π mapping the two
components onto each other such that π(x) = y, then there is an isomorphism
mapping the sets of paths onto each other. This isomorphism just has to use π
for every block and has to exchange the parallel steps according to π.

We can now reduce the Boolean isomorphism question between F ′ and G′ to
GI (again, using [6]) implementing the additional properties with graph gadgets.
We therefore force all blocks to be mapped internally in the same way and we
force the n parallel blocks to be mapped exactly as each block is mapped inter-
nally. The result are two graphs which are isomorphic iff there is an isomorphism
mapping the components rooted at x and y in F and G onto each other so that
x gets mapped to y. ��
Theorem 13. Iso(CPSS) ∈ C=P.

Proof. The proof uses the fact that GI is low for the class C=P [12]. This means
that a nondeterministic polynomial time algorithm with a C=P acceptance mech-
anism and having access to an oracle for GI, can be simulated by an algorithm
of the same kind, but without the oracle. In symbols C=PGI = C=P.

We already know that the solution graphs of CPSS functions consist of at
most an exponential number of connected components and every such component
is a partial cube. For two solution graphs F and G to be isomorphic there has
to be a bijection mapping each connected component of F onto an isomorphic
component of G.

One way to check the existence of such a bijection is by looking at each pos-
sible partial cube and counting the number of connected components isomorphic
to it in both graphs. If the numbers match for all partial cubes, the graphs are
isomorphic. Instead of checking all possible partial cubes, which would be too
many, one only has to check the ones which occur in the graphs. For x ∈ {0, 1}n
let Ax and Bx be the sets

Ax = {y ∈ {0, 1}n | F (y) = 1 ∧ Fx
∼= Fywith an isomorphism mapping x to y}

Bx = {y ∈ {0, 1}n | G(y) = 1 ∧ Fx
∼= Gywith an isomorphism mapping x to y}

The existence of an isomorphism between Fx and Fy (or Gy) mapping x to y
can be checked with a GI oracle (as proven in Lemma 12). Our algorithm checks

38 P. Scharpfenecker and J. Torán

for every x ∈ {0, 1}n satisfying F , whether ||Ax|| = ||Bx||. The same test is
performed for all x satisfying G. Both tests are successful iff the graphs are
isomorphic. Clearly the graphs are isomorphic iff both tests succeed.

This procedure shows that the problem is in the class ∀C=PGI .3 Using the
mentioned fact that GI is low for C=P, this class coincides with ∀C=P. In addi-
tion, Green showed [10] that C=P is closed under universal quantification, i.e.
∀C=P = C=P. We conclude that Iso(CPSS) ∈ C=P. ��

Fig. 2. A walk on solution graphs.

In Theorem 13 we exploited the fact that CPSS functions consist of par-
tial cubes of small isometric dimension. But for general Schaefer functions this
property does not hold. The solution graph might have an exponential isometric
dimension or the connected subgraphs might even not be partial cubes. Therefore
it seems improbable that the C=P-algorithm can be adapted for general Schaefer
solution graphs. These graphs should admit a better lower bound. Unfortunately,
we can only provide such a lower bound for the more powerful class of Boolean
functions that are not safely tight.

Theorem 14. Let S be a set of functions which is not safely tight. Then Iso(S)
is hard for PSPACE under logarithmic-space reductions.

Proof. The proof is based on the reduction from s, t-connectivity to GI from [11].
We know that the s, t-connectivity problem for functions that are not safely tight
is PSPACE-complete [9]. We give a construction of solution graphs that have

3 We use the same quantifier notation which is common for the classes in the polyno-
mial time hierarchy.

Solution-Graphs and Isomorphism 39

colored vertices as a way to distinguish some vertices. Later we show how the
formulas can be modified to produce the colors in their solution graphs. Given a
formula F built on functions from S, as well as satisfying assignments s and t,
we create two copies of GF (which is the solution graph defined by F) and color
vertex s in one of the copies with color white and with black in the second copy.
Let GF ′ be the disjoint union of the two copies. Now we consider two copies GF1

and GF2 of GF ′ . We color in GF1 one of the copies of vertex t with the grey
color while in GF2 , the second copy of t is colored grey. All other nodes have no
color. There is a path from s to t in GF iff GF1 and GF2 are not isomorphic.

This construction can easily be performed with solution graphs. Given the
formula F (x1, . . . , xn), two disjoint copies of the encoded graph are defined by
the formula

F ′(a, b, x1, . . . , xn) = (a ↔ b) ∧ F (x1, . . . , xn)

using two new variables a and b. Coloring a vertex by attaching a gadget to it
can be done with the following construction. We assume w.l.o.g. that the node
we want to color is 0n in the solution graph of an arbitrary formula G. We add
to 0n the graph Hm with m > n as neighbor. Then G′(x1, . . . , xn, y1, . . . , ym) =
G(x1, . . . , xn) ∧ ∧

i≤n,j≤m(xi → yj). The new graph can be described as the
old solution graph of G but 0n now is the minimal node of a new, complete
hypercube on m variables. Note that 0n is the only node of the original solution
graph which is part of a hypercube of dimension m. In addition, it is the only
node of the hypercube of dimension m which is connected to some of the old
nodes. This completes the reduction and shows that Iso(S) is hard for PSPACE
and therefore Iso(S) is hard for coPSPACE = PSPACE. ��

The given construction uses new clauses which are Horn and 2CNF and can
even be applied to simpler classes of formulas. The following statements use the
hardness results of [18] with the reduction in Theorem 14.

Corollary 15. Iso(2CNF) is hard for NL and Iso(Horn3) is hard for P under
logspace reductions.

Note that the resulting solution graphs in this corollary can not have more
than two connected components. The isomorphism for these 2CNF graphs is
therefore polynomial time reducible to GI.

4 Structure of Solution Graphs of Horn Formulas

While [18] showed that CPSS formulas contain only partial cubes of small iso-
metric dimension as connected components, Horn formulas may encode partial
cubes of exponential isometric dimension or graphs which are not even partial
cubes. So for the isomorphism question, things seem to get more complicated.
We give an interesting property for Horn solution graphs which suggests that
Iso(Horn) might be easier than general solution graph isomorphism.

Let dm(a, b) denote the monotone distance between a and b. So dm(a, b) < ∞
iff there is a strictly monotone increasing path from a to b or vice versa.

40 P. Scharpfenecker and J. Torán

In [9] it is shown that in OR-free formulas there is a unique minimal satisfy-
ing assignment in every connected component. As Horn-formulas are OR-free,
given an assignment y satisfying a Horn-formula F , the connected component
of y contains a unique minimal satisfying assignment. For the next result we
will assume w.l.o.g. that this minimal satisfying assignment in the connected
component of y is 0n. If this is not true, we could modify F setting all vari-
ables to 1 which are 1 in y and get a formula F ′ on less variables where 0n

′
is

the required minimal satisfying assignment. The resulting formula satisfies this
property and still contains the connected component corresponding to y in F .
With [y]F := {a ∈ {0, 1}n | dm(a, y) < ∞} we denote the set of all nodes a lying
between 0n and y for which there is a monotone increasing path from a to y.

Theorem 16. For every solution y to a Horn-formula F , [y]F is a partial cube.

Proof. Let a, b ∈ [y]F be two arbitrary nodes. We show that d(a, b) = Δ(a, b).
In case the two monotone increasing paths a = a1, . . . , ak = y from a to y
and b = b1, . . . , bl = y from b to y are already of total length Δ(a, b), then we
are done. Otherwise, suppose that there is at least one variable xi which gets
increased to 1 in both paths. The positions in the path where such variables
are increased may differ. Every variable can be classified as either not changed
in any of the paths, changed in only one path (and therefore contributing to
Δ(a, b), or changed in both paths. We can now construct the shorter path from
a1 ∧ y = a1 over a1 ∧ bl−1 and a1 ∧ b1 = a ∧ b = b1 ∧ a1 back to b1 ∧ a2 and
b1 ∧ ak = b1. Figure 3 illustrates in the first row the original path and in the
second row the new path.

Fig. 3. Original and shorted paths from a1 to b1 over y = bl = ak.

Note that all these nodes are in GF as Horn-formulas are closed under conjunc-
tion and the overall sum of nodes in this sequence is the same as in the original
path. But as the first half is the conjunction of a1 with every node in the second
half, every variable which gets increased in both halves (0 in a1) will lead to two
identical consecutive nodes in the first half. By symmetry, the same happens in
the new second half. This path is now two nodes shorter for every variable which
was changed in both paths. All remaining flips are still present. ��

Figure 4 gives a minimal example (with repeated y node in the middle) which
illustrates how an increasing/decreasing path can be transformed to a shortest
path of the same length as the Hamming distance between the source and target
nodes. The original path has length 6 with one common variable in both halves
while the shortcut has length 4, which is optimal.

Solution-Graphs and Isomorphism 41

Fig. 4. Finding shortcuts in Horn solution graphs.

This result shows that Horn solution graphs encode for every locally maximal
solution y a partial cube [y]F and every intersection of two such partial cubes
[y]F ∩ [y′]F = [z]F is also a partial cube. We point out that a similar statement
holds for dual-Horn-formulas.

5 Iso(2CNF) and the number of perfect matchings

We showed in Theorem 13 that Iso(2CNF) ∈ C=P. In this section we show that
Iso(2CNF) is also hard for C=P. For this we will consider several reductions
involving the following decision problems:

Same2SAT : Given two 2CNF-formulas F and F ′, does the number of satis-
fying assignments for F and F ′ coincide?

SamePM : Given two graphs, does the number of perfect matchings in each
of the graphs coincide?

Curticapean [7] showed recently that SamePM is C=P-complete. In a series
of reductions, Valiant [20,21] proved that the (functional) problem of computing
the permanent can be Turing reduced to computing the number of satisfying
assignments of a 2CNF formula. This reduction queries a polynomial number of
#SAT instances and uses the answers (which are numbers of polynomial length)
in a Chinese-remainder fashion to compute the original number of perfect match-
ings. This argument does not work in the context of many-one reductions and
decision problems. We take ideas from these reductions to show that SamePM
is many-one reducible to Same2SAT and to Iso(2CNF).

Theorem 17. SamePM is polynomial time many one reducible to Same2SAT .

Proof. Valiant [21] gave a way to Turing reduce the problem of counting perfect
matchings to the problem of counting satisfying assignments of a 2CNF formula
by counting all matchings as an intermediate step.

Reducing the number of matchings (perfect or not) of a given graph B to
the number of satisfying solutions of a formula is easy. We define a variable xe

for each edge e in B and for each pair of edges e, e′ with a common vertex we
create a clause (xe ∨ xe′). If FB is the conjunction of all these clauses, the set of
satisfying assignments for FB coincides with the set of matchings in B.

The number of perfect matchings of a graph B with n vertices can be com-
puted from the number of all matchings in B and some derived graphs Bk. For
this, let bi be the number of matchings with exactly i unmatched nodes. Then
b0 is the number of perfect matchings that we want to compute, while bn−2 is
the number of edges in B. Let us define a modification Bk of B (1 ≤ k ≤ n)
consisting of a copy of B and for every node u in B, k otherwise isolated nodes

42 P. Scharpfenecker and J. Torán

u1, . . . , uk with a single edge connecting each of them to u. Now each matching
in B can be extended in Bk by matching each non-matched node of B to one
of its k new neighbors. Each original matching of B with i unmatched nodes
corresponds to (k + 1)i matchings in Bk. The total number of matchings ck in
Bk is

∑n
i=0 bi · (k + 1)i. The following equation system describes the relation

between matchings in Bk graphs and in B.
⎛

⎜
⎜
⎜
⎝

1 1 1 · · · 1
1 2 4 · · · 2n
...

...
...

. . .
...

1 (n + 1) (n + 1)2 · · · (n + 1)n

⎞

⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎜
⎝

b0
b1
...

bn

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

c0
c1
...

cn

⎞

⎟
⎟
⎟
⎠

The (n + 1) × (n + 1) matrix V is a Vandermonde-matrix and can therefore be
inverted in polynomial time. The c coefficients are numbers of matchings, that
can be reduced to numbers of satisfying assignments of 2CNF formulas. The
first entry of V −1 × (c0, . . . , cn)T is b0, the number of perfect matchings in B
that we want to compute. Given V −1 and 2CNF formulas F0, . . . , Fn having
respectively c0, . . . , cn satisfying assignments (the formulas can be created from
B0, . . . , Bn with the aforementioned reduction), b0 can be computed as the sum
and difference of ci’s multiplied by coefficients defined by V −1.

If we are given two graphs B1 and B2, on n vertices by doing the same
construction we get two sets of coefficients (c1 and c2) and the number of perfect
matchings in B1 and B2 coincide iff the following statement holds:

(V −1
1,1 , . . . , V −1

1,n+1) × (c10, . . . , c
1
n)T = (V −1

1,1 , . . . , V −1
1,n+1) × (c20, . . . , c

2
n)T

The c coefficients in the equation can be expressed as numbers of solutions
of 2CNF formulas, while the other numbers are rational numbers. Inverting
the Vandermonde matrix leads to rational numbers of length at most polyno-
mial in n. Therefore, using an appropriate factor, we can multiply both sides of
this equation by the same factor and reduce every rational number to an inte-
ger of polynomial length. This equation can be transformed so that both sides
contain only additions and multiplications of positive numbers. These can be
implemented as numbers of satisfying assignments of 2CNF formulas using the
following gadgets. Note that input formulas are all anti-monotone and there-
fore have the satisfying solution 0n and we maintain this solution through all
constructions.

Multiplying the number of satisfying assignments of 2CNF-formulas can be
achieved by the conjunction of both formulas (with disjoint sets of variables).

The sum of the solution sets is again a conjunction of both formulas (with
disjoint sets of variables) with the following modification: For two fixed satisfying
assignments 0n of F and 0m of F ′, we add the clauses

∧
i∈[n],j∈[m](xi → yj). So

for every solution v′ �= 0n in F , the variables of F ′ get fixed to 0m. By symmetry
the same holds for all v′ �= 0m satisfying F ′. This corresponds to the disjoint
union of the solution sets except for 0n+m which occurs only once. So we add
a new variable b and add the clauses

∧
i∈[n](xi → b) ∧ ∧

j∈[m](yj → b) in the

Solution-Graphs and Isomorphism 43

same way as before. This duplicates 0n+m as b is allowed to be 1 or 0 but if we
deviate from this assignment, we fix b to 0. The number of satisfying solutions
is therefore the sum of F and F ′ and 0n+m+1 is still a satisfying solution.

For encoding the coefficients of the inverse Vandermonde matrix we need a
way to transform a positive integer k into a 2CNF-formula G with exactly k
satisfying solutions. This can be achieved by looking at the binary encoding of
k = (k1, . . . , kl)2. For every i with ki = 1 we create the 2CNF formula Gi =∧

j∈[i](xi∨xi) on i variables and take the sum of all these formulas (as described
before) where every formula has its own set of variables and contains 0i as
satisfying solution. This new formula G has exactly k satisfying solutions.

We form for both sides of the equation 2CNF-formulas implementing these
computations, and get two formulas F, F ′ that have the same number of satisfying
assignments iff B1 and B2 have the same number of perfect matchings. ��
Theorem 18. Same2SAT is polynomial time many-one reducible to Iso(2CNF).

Proof. Two formulas having only isolated satisfying assignments have the same
number of solutions iff their solution graphs are isomorphic. A formula F can
be transformed into another one F ′ with the same number of solutions but
having only isolated satisfying assignments. This can be done by duplicating
each occurring variable x with a new variable x′ and adding the restriction
(x ↔ x′). The Hamming distance between two solutions in F ′ is then at least
two. ��

These reductions plus Theorem 13 imply:

Corollary 19. Same2SAT and Iso(2CNF) are C=P-complete.

Corollary 20. Iso(Horn) and Iso(safely tight) are hard for C=P.

This last result follows from the observation that all constructed 2CNF for-
mulas, those for counting matchings, as well as those for multiplication and
summation constructions are also Horn.

References

1. Achlioptas, D., Coja-Oghlan, A., Ricci-Tersenghi, F.: On the solution-space geome-
try of random constraint satisfaction problems. Random Struct. Algorithms 38(3),
251–268 (2011)

2. Agrawal, M., Thierauf, T.: The Boolean isomorphism problem. In: Proceedings of
37th Conference on Foundations of Computer Science, pp. 422–430. IEEE Com-
puter Society Press (1996)

3. Babai, L.: Graph isomorphism in quasipolynomial time. In: Proceedings of 48th
Annual Symposium on the Theory of Computing, STOC (2016)

4. Bandelt, H.-J., van de Vel, M.: Embedding topological median algebras in products
of dendrons. Proc. London Math. Soc. 3(58), 439–453 (1989)

5. Bandelt, H.J., Chepoi, V.: Metric graph theory and geometry: a survey. Contemp.
Math. 453, 49–86 (2008)

44 P. Scharpfenecker and J. Torán

6. Böhler, E., Hemaspaandra, E., Reith, S., Vollmer, H.: Equivalence and isomorphism
for boolean constraint satisfaction. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL
2002. LNCS, vol. 2471, pp. 412–426. Springer, Heidelberg (2002)

7. Curticapean, R.: Parity separation: a scientifically proven method for permanent
weight loss. arXiv preprint. arXiv:1511.07480 (2015)

8. Gableske, O.: SAT Solving with Message Passing. Ph.D. thesis, University of Ulm
(2016)

9. Gopalan, P., Kolaitis, P.G., Maneva, E., Papadimitriou, C.H.: The connectivity of
boolean satisfiability: computational and structural dichotomies. SIAM J. Comput.
38(6), 2330–2355 (2009)

10. Green, F.: On the power of deterministic reductions to C=P. Math. Syst. Theor.
26(2), 215–233 (1993)

11. Jenner, B., Köbler, J., McKenzie, P., Torán, J.: Completeness results for graph
isomorphism. J. Comput. Syst. Sci. 66(3), 549–566 (2003)

12. Köbler, J., Schöning, U., Torán, J.: Graph isomorphism is low for PP. Comput.
Complex. 2(4), 301–330 (1992)

13. Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem: its Struc-
tural Complexity. Birkhauser, Boston (1993)

14. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial
time. J. Comput. Syst. Sci. 25(1), 42–65 (1982)

15. Mézard, M., Mora, T., Zecchina, R.: Clustering of solutions in the random satisfi-
ability problem. Phys. Rev. Lett. 94(19), 197205 (2005)

16. Ovchinnikov, S.: Graphs and Cubes. Universitext. Springer, New York (2011)
17. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the

Tenth Annual ACM Symposium on Theory of Computing - STOC 1978, pp. 216–
226. ACM Press, New York (1978)

18. Scharpfenecker, P.: On the structure of solution-graphs for boolean formulas. In:
Kosowski, A., Walukiewicz, I. (eds.) FCT 2015. LNCS, vol. 9210, pp. 118–130.
Springer, Heidelberg (2015)

19. Schwerdtfeger, K.W.: A computational trichotomy for connectivity of boolean sat-
isfiability. JSAT 8(3/4), 173–195 (2014)

20. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci.
8(2), 189–201 (1979)

21. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8, 410–421 (1979)

22. Wagner, K.W.: The complexity of combinatorial problems with succinct input
representation. Acta Informatica 23(3), 325–356 (1986)

http://arxiv.org/abs/1511.07480
http://arXiv.org/abs/1511.07480

Strong Backdoors for Default Logic

Johannes K. Fichte1(B), Arne Meier2, and Irina Schindler2

1 Technische Universität Wien, Wien, Austria
jfichte@dbai.tuwien.ac.at

2 Leibniz Universität Hannover, Hannover, Germany
{meier,schindler}@thi.uni-hannover.de

Abstract. In this paper, we introduce a notion of backdoors to Reiter’s
propositional default logic and study structural properties of it. Also
we consider the problems of backdoor detection (parameterised by the
solution size) as well as backdoor evaluation (parameterised by the size
of the given backdoor), for various kinds of target classes (cnf, horn,
krom, monotone, positive-unit). We show that backdoor detection is
fixed-parameter tractable for the considered target classes, and backdoor
evaluation is either fixed-parameter tractable, in para-ΔP

2 , or in para-NP,
depending on the target class.

1 Introduction

In the area of non-monotonic logic one aims to find formalisms that model
human-sense reasoning. It turned out that this kind of reasoning is quite differ-
ent from classical deductive reasoning as in the classical approach the addition
of information always leads to an increase of derivable knowledge. Yet, intu-
itively, human-sense reasoning does not work in that way: the addition of further
facts might violate previous assumptions and can therefore significantly decrease
the amount of derivable conclusions. Hence, in contrast to the classical process
the behaviour of human-sense reasoning is non-monotonic. In the 1980s, several
kinds of formalisms have been introduced, most notably, circumscription [26],
default logic [33], autoepistemic logic [29], and non-monotonic logic [27]. A good
overview of this field is given by Marek and Truszczynśki [25].

In this paper, we focus on Reiter’s default logic (DL), which has been intro-
duced in 1980 [33] and is one of the most fundamental formalism to model
human-sense reasoning. DL extends the usual logical derivations by rules of
default assumptions (default rules). Informally, default rules follow the format
“in the absence of contrary information, assume . . .”. Technically, these pat-
terns are taken up in triples of formulas α:β

γ , which express “if prerequisite α
can be deduced and justification β is never violated then assume conclusion γ”.
Default rules can be used to enrich calculi of different kinds of logics. Here, we
consider a variant of propositional formulas, namely, formulas in conjunctive
normal form (cnf). A key concept of DL is that an application of default rules
must not lead to an inconsistency if conflicting rules are present, instead such

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 45–59, 2016.
DOI: 10.1007/978-3-319-40970-2 4

46 J.K. Fichte et al.

rules should be avoided if possible. This concept results in the notion of sta-
ble extensions, which can be seen as a maximally consistent view of an agent
with respect to his knowledge base together in combination with its set of default
rules. The corresponding decision problem, i.e., the extension existence problem,
then asks whether a given default theory has a consistent stable extension, and is
the problem of our interest. The computationally hard part of this problem lies
in the detection of the order and “applicability” of default rules, which is a quite
challenging task as witnessed by its Σp

2 -completeness. In 1992, Gottlob showed
that many important decision problems, beyond the extension existence prob-
lem, of non-monotonic logics are complete for the second level of the polynomial
hierarchy [21] and thus are of high intractability.

A prominent approach to understand the intractability of a problem is to use
the framework of parameterised complexity, which was introduced by Downey
and Fellows [10,11]. The main idea of parameterised complexity is to fix a cer-
tain structural property (the parameter) of a problem instance and to consider
the computational complexity of the problem in dependency of the parame-
ter. Then ideally, the complexity drops and the problem becomes solvable in
polynomial time when the parameter is fixed. Such problems are called fixed-
parameter tractable and the corresponding parameterised complexity class, which
contains all fixed-parameter tractable problems, is called FPT. For instance, for
the propositional satisfiability problem (Sat) one (näıve) parameter is the num-
ber of variables of the given formula. Then, for a given formula ϕ of size n and k
variables its satisfiability can be decided in time O(n ·2k), i.e., polynomial (even
linear) runtime in n if k is assumed to be fixed.

The invention of new parameters can be quite challenging, however, Sat has
so far been considered under many different parameters [4,30,35,40]. A concept
that provides a parameter and has been widely used in theoretical investigations
of propositional satisfiability are backdoors [20,24,41]. The size of a backdoor
can be seen as a parameter with which one tries to exploit a small distance
of a formula from being tractable. More detailed, given a class F of formulas
and a formula ϕ, a subset B of its variables is a strong F-backdoor if the for-
mula ϕ under every truth assignment over B yields a formula that belongs to the
class F . Using backdoors usually consists of two phases: (i) finding a backdoor
(backdoor detection) and (ii) using the backdoor to solve the problem (back-
door evaluation). If F is a class where Sat is tractable and backdoor detection
is fixed-parameter tractable for this class, like the class of all Horn or Krom
formulas, we can immediately conclude that Sat is fixed-parameter tractable
when parameterised by the size of a smallest strong F-backdoor.

Related Work. Backdoors for propositional satisfiability have been introduced
by Williams, Gomes, and Selman [41,42]. The concept of backdoors has recently
been lifted to some non-monotonic formalisms as abduction [32], answer set
programming [16,17], and argumentation [12]. Beyond the classification of Got-
tlob [21], the complexity of fragments, in the sense of Post’s lattice, has been
considered by Beyersdorff et al. extensively for default logic [1], and for autoepis-
temic logic by Creignou et al. [8]. Also parameterised analyses of non-monotonic

Strong Backdoors for Default Logic 47

logics in the spirit of Courcelle’s theorem [6,7] have recently been considered
by Meier et al. [28]. Further, Gottlob et al. studied treewidth as a parameter
for various non-monotonic logics [22] and also considered a more CSP focused
non-monotonic context within the parameterised complexity setting [23].

Contribution. In this paper, we introduce a notion of backdoors to propositional
default logic and study structural properties therein. Then we investigate the
parameterised complexity of the problems of backdoor detection (parameterised
by the solution size) and evaluation (parameterised by the size of the given back-
door), with respect to the most important classes of CNF formulas, e.g., cnf,
krom, horn, monotone, and positive-unit. Informally, given a formula ϕ
and an integer k, the detection problem asks whether there exists a backdoor of
size k for ϕ. Backdoor evaluation then exploits the distance k for a target for-
mula class to solve the problem for the starting formula class with a “simpler”
complexity. Our classification shows that detection is fixed-parameter tractable
for all considered target classes. However, for backdoor evaluation starting at
cnf the parameterised complexity depends, as expected, on the target class: the
parameterised complexity then varies between para-Δp

2 (monotone), para-NP
(krom,horn), and FPT (positive-unit).

2 Preliminaries

We assume familiarity with standard notions in computational complexity, the
complexity classes P and NP as well as the polynomial hierarchy. For more
detailed information, we refer to other standard sources [11,19,31].

Parameterised Complexity. We follow the notion by Flum and Grohe [18]. A
parameterised (decision) problem L is a subset of Σ∗ × N for some finite alpha-
bet Σ. Let C be a classical complexity class, then para-C consists of all para-
meterised problems L ⊆ Σ∗ × N, for which there exists an alphabet Σ′, a com-
putable function f : N → Σ′∗, and a (classical) problem L′ ⊆ Σ∗ × Σ′∗ such
that (i) L′ ∈ C, and (ii) for all instances (x, k) ∈ Σ∗ ×N of L we have (x, k) ∈ L
if and only if (x, f(k)) ∈ L′. For the complexity class P, we write FPT instead
of para-P. We call a problem in FPT fixed-parameter tractable and the runtime
f(k) · |x|O(1) also fpt-time. Additionally, the parameterised counterparts of NP
and Δp

2 = PNP, which are denoted by para-NP and para-Δp
2 , are relevant in this

paper.

Propositional Logic. Next, we provide some notions from propositional logic. We
consider a finite set of propositional variables and use the symbols � and ⊥ in
the standard way. A literal is a variable x (positive literal) or its negation ¬x
(negative literal). A clause is a finite set of literals, interpreted as the disjunction
of these literals. A propositional formula in conjunctive normal form (CNF) is
a finite set of clauses, interpreted as the conjunction of its clauses. We denote
the class of all CNF formulas by cnf. A clause is Horn if it contains at most

48 J.K. Fichte et al.

one positive literal, Krom if it contains two literals, monotone if it contains only
positive literals, and positive-unit if it contains at most one positive literal. We
say that a CNF formula has a certain property if all its clauses have the property.
We consider several classes of formulas in this paper. Table 1 gives an overview
on these classes and defines clause forms for these classes.

Table 1. Considered normal forms. In the last row, �+i denote positive, and �−
i negative

literals; and n and m are integers such that n, m ≥ 0.

Class Clause description Clause forms

cnf no restrictions {�+1 , . . . , �+n , �−
1 , . . . , �−

m)

horn at most one positive literal {�+, �−
1 , . . . , �−

n }, {�−
1 , . . . , �−

m}
krom binary clauses {�+1 , �+2 }, {�+, �−}, {�−

1 , �−
2 }

monotone no negation, just positive literals {�+1 , . . . , �+n }
positive-unit only positive unit clauses {�+}

A formula ϕ′ is a subformula of a cnf formula ϕ (in symbols ϕ′ ⊆ ϕ) if
for each clause C ′ ∈ ϕ′ there is some clause C ∈ ϕ such that C ′ ⊆ C. We call
a class F of cnf formulas clause-induced if whenever F ∈ F , all subformulas
F ′ ⊆ F belong to F . Note that all considered target classes in this paper are
clause-induced.

Given a formula ϕ ∈ cnf, and a subset X ⊆ Vars(ϕ), then a (truth) assign-
ment is a mapping θ : X → {0, 1}. The truth (evaluation) of propositional for-
mulas is defined in the standard way, in particular, θ(⊥) = 0 and θ(�) = 1. We
extend θ to literals by setting θ(¬x) = 1 − θ(x) for x ∈ X. By A(X) we denote
the set of all assignments θ : X → {0, 1}. For simplicity of presentation, we
sometimes identify the set of all assignments by its corresponding literals, i.e.,
A(X) = { {	1, . . . , 	|X|} | x ∈ X, 	i ∈ {x,¬x} }. We write ϕ[θ] for the reduct of
ϕ where every literal 	 ∈ X is replaced by � if θ() = 1, then all clauses that
contain a literal 	 with θ() = 1 are removed and from the remaining clauses
all literals 	′ with θ(′) = 0 are removed. We say θ satisfies ϕ if ϕ[θ] ≡ �, ϕ is
satisfiable if there exists an assignment that satisfies ϕ, and ϕ is tautological if all
assignments θ ∈ A(X) satisfy ϕ. Let ϕ,ψ ∈ cnf and X = Vars(ϕ)∪Vars(ψ). We
write ϕ |= ψ if and only if for all assignments θ ∈ A(X) it holds that all assign-
ments θ that satisfy ϕ also satisfy ψ. Further, we define the deductive closure
of ϕ as Th(ϕ) := {ψ ∈ cnf | ϕ |= ψ }.

Note that any assignment θ : Vars(ϕ) → {0, 1} can also be represented by
the CNF formula

∧
θ(x)=1 x ∧ ∧

θ(x)=0 ¬x. Therefore, we often write θ |= ϕ if
ϕ[θ] ≡ � holds.

We denote with Sat(F) the problem, given a propositional formula ϕ ∈ F
asking whether ϕ is satisfiable. The problem Taut(F) is defined over a given
formula ϕ ∈ F asking whether ϕ tautological.

Strong Backdoors for Default Logic 49

2.1 Default Logic

We follow notions by Reiter [33] and define a default rule δ as a triple α:β
γ ; α is

called the prerequisite, β is called the justification, and γ is called the conclusion;
we set prereq(δ) := α, just(δ) := β, and concl(δ) := γ. If F is a class of formulas,
then α:β

γ is an F-default rule if α, β, γ ∈ F . An F-default theory 〈W,D〉 consists
of a set of propositional formulas W ⊆ F and a set D of F-default rules. We
sometimes call W the knowledge base of 〈W,D〉. Whenever we do not explicitly
state the class F , we assume it to be cnf.

Definition 1 (Fixed point semantics, [33]). Let 〈W,D〉 be a default theory
and E be a set of formulas. Then Γ (E) is the smallest set of formulas such
that: (1) W ⊆ Γ (E), (2) Γ (E) = Th(Γ (E)), and (3) for each α:β

γ ∈ D with
α ∈ Γ (E) and ¬β /∈ E, it holds that γ ∈ Γ (E). E is a stable extension of
〈W,D〉, if E = Γ (E). An extension is inconsistent if it contains ⊥, otherwise it
is called consistent.

A definition of stable extensions beyond fixed point semantics, which has
been introduced by Reiter [33] as well, uses the principle of a stage construction.

Proposition 2 (Stage construction, [33]). Let 〈W,D〉 be a default theory
and E be a set of formulas. Then define E0 := W and

Ei+1 := Th(Ei) ∪
{

γ

∣
∣
∣
∣
∣

α : β

γ
∈ D,α ∈ Ei and ¬β /∈ E

}

.

E is a stable extension of 〈W,D〉 if and only if E =
⋃

i∈N
Ei. The set

G =

{
α : β

γ
∈ D

∣
∣
∣
∣
∣
α ∈ E ∧ ¬β /∈ E

}

is called the set of generating defaults. If E is a stable extension of 〈W,D〉, then
E = Th(W ∪ { concl(δ) | δ ∈ G }).

Example 3. Let W = ∅, W ′ = {x}, D1 = {x:y
¬y , ¬x:y

¬y }, and D2 = {x:z
¬y , x:y

¬z }. The
default theory 〈W,D1〉 has only the stable extension Th(W). The default theory
〈{x},D1〉 has no stable extension. The default theory 〈{x},D2〉 has the stable
extensions Th({x,¬y}) and Th({x,¬z}).

The following example illustrates that a default theory might contain “con-
tradicting” default rules that cannot be avoided in the process of determining
extension existence. Informally, such default rules prohibit stable extensions.
Note that there are also less obvious situations where “chains” of such default
rules interact with each other.

Example 4. Consider W ′ and D2 from Example 3 and let D′
2 = D2 ∪ {�:β

¬β } for
some formula β. The default theory 〈W ′,D′

2〉 has no stable extension Th(W)
unless W ∪ {¬y} |= ¬β or W ∪ {¬z} |= ¬β.

50 J.K. Fichte et al.

Technically, the definition of stable extensions allows inconsistent stable
extensions. However, Marek and Truszczyński showed that inconsistent exten-
sions only occur if the set W is already inconsistent where 〈W,D〉 is the theory
of interest [25, Corollary 3.60]. An immediate consequence of this result explains
the interplay between consistency and stability of extensions more subtle: (i) if
W is consistent, then every stable extension of 〈W,D〉 is consistent, and (ii) if
W is inconsistent, then 〈W,D〉 has a stable extension. In Case (ii) the stable
extension consists of all formulas L. Hence, it makes sense to consider only con-
sistent stable extensions as the relevant ones. Moreover, we refer by SE(〈W,D〉)
to the set of all consistent stable extensions of 〈W,D〉.

A main computational problem for DL is the extension existence problem,
defined as follows where F is a class of propositional formulas: The extension
existence problem, Ext(F), asks, given an F-default theory 〈W,D〉, whether
〈W,D〉 has a consistent stable extension.

The following proposition summarises relevant results for the extension exis-
tence problem for certain classes of formulas.

Proposition 5. (1) Ext(cnf) is Σp
2 -complete [21], (2) Ext(horn) is NP-

complete [38,39], and (3) Ext(positive-unit) ∈ P [1].

2.2 The Implication Problem

The implication problem is an important (sub-)problem when reasoning with
default theories. In the following, we first formally introduce the implication
problem for classes of propositional formulas, and then state its (classical) com-
putational complexity for the classes horn and krom.

The implication problem Imp(F) asks, given a set Φ of F-formulas and a
formula ψ ∈ F , whether Φ |= ψ holds.

Beyersdorff et al. [1] have considered all Boolean fragments of Imp(F) and
completely classified its computational complexity concerning the framework of
Post’s lattice. However, Post’s lattice talks only about restrictions on allowed
Boolean functions. Since several subclasses of cnf, like horn or krom, use
the Boolean functions “∧”,”¬”, and “∨”, such classes are unrestricted from the
perspective of Post’s lattice. Still, efficient algorithms are known for such classes
from propositional satisfiability. The next results state a similar behaviour for
the implication problem. The proof can be found in an extended version [15].

Lemma 6. Imp(krom) ∈ P.

Similar to the proof of Lemma 6 one can show the same complexity for the
implication problem of horn formulas. However, its complexity is already known
from the work by Stillman [38].

Proposition 7 ([38, Lemma 2.3]). Imp(horn) ∈ P.

Strong Backdoors for Default Logic 51

3 Strong Backdoors

In this section, we lift the concept of backdoors to the world of default logic. First,
we review backdoors from the propositional setting [41,42], where a backdoor is
a subset of the variables of a given formula. Formally, for a class F of formulas
and a formula ϕ, a strong F-backdoor is a set B of variables such that for all
assignments θ ∈ A(B), it holds that ϕ[θ] ∈ F .

Backdoors in propositional satisfiability follow the binary character of truth
assignments. Each variable of a given formula is considered to be either true
or false. However, reasoning in default logic has a ternary character. When we
consider consistent stable extensions of a given default theory then one of the
following three cases holds for some formula ϕ with respect to an extension E:
(i) ϕ is contained in E, (ii) the negation ¬ϕ is contained in E, or (iii) neither ϕ
nor ¬ϕ is contained in E (e.g., for the theory 〈{x},D2〉, from Example 3, neither
b nor ¬b is contained in any of the two stable extensions, and b is a variable).
Since we need to weave this trichotomous point of view into a backdoor definition
for default logic, the original definition of backdoors cannot immediately be
transferred (from the SAT setting) to the scene of default logic. The first step
is a notion of extended literals and reducts. The latter step can be seen as a
generalisation of assignment functions to our setting.

Definition 8 (Extended literals and reducts). An extended literal is a
literal or a fresh variable xε. For convenience, we further define ∼ 	 = x if
	 = ¬x and ∼	 = ¬x if 	 = x. Given a formula ϕ and an extended literal 	, then
the reduct ρ�(ϕ) is obtained from ϕ such that

1. if 	 is a literal: then all clauses of ϕ that contain 	 are deleted and all literals ∼	
are deleted from all clauses of ϕ,

2. if 	 = xε: then all occurrences of literals ¬x, x are deleted from all clauses of ϕ.

Let 〈W,D〉 be a default theory and 	 be an extended literal, then

ρ�(W,D) :=
(

ρ�(W),
{

ρ�(α) : ρx(β)
ρ�(γ) ∧ yi

∣
∣
∣
∣ δi =

α : β

γ
∈ D

})

,

where yi is a fresh variable, and ρ�(W) is
⋃

ω∈W ρ�(ω).

Later (in the proof of Lemma 15), we will see why we need the yis.

Example 9. Given the default theory 〈W,D〉 = {{x}, { x:y
¬y∨x}} we will exemplify

the notion of reductions for x, ¬x, and xε. An application of Definition 8 leads
to ρx(W,D) = 〈{�}, {�:y

y1
}〉, ρ¬x(W,D) = 〈{⊥}, { ⊥:y

¬y∧y1
}〉 = ρxε

(W,D).

In the next step, we incorporate the notion of extended literals into sets of
assignments. Therefore, we introduce threefold assignment sets. Let X be a set
of variables, then we define

T(X) := {{a1, . . . , a|X|} | x ∈ X and ai ∈ {x,¬x, xε}}.

52 J.K. Fichte et al.

Technically, A(X) � T(X) holds. However, T(X) additionally contains vari-
ables xε that will behave as “don’t care” variables encompassing the trichoto-
mous reasoning approach explained above. For Y ∈ T(X) the reduct ρY (W,D)
is the consecutive application of all ρy(·) for y ∈ Y to 〈W,D〉. Observe that the
order in which we apply the reducts to 〈W,D〉 is not important.

The following proposition ensures that the addition of the yis from Defin-
ition 8 does not influence negatively our reasoning process, i.e., implication of
formulas is invariant under adding conjuncts of fresh variables to the premise.

Proposition 10. Let ϕ,ψ ∈ cnf be two formulas and y /∈ Vars(ϕ) ∪ Vars(ψ).
Then ϕ |= ψ if and only if ϕ ∧ y |= ψ.

Now we show that implication for cnf formulas that do not contain tau-
tological clauses is invariant under the application of “deletion reducts” ρxε

(·).
The proof of the following results can be found in an extended version [15].

Lemma 11. Let ψ,ϕ ∈ cnf be two formulas that do not contain tautological
clauses. If ψ |= ϕ, then ρxε

(ψ) |= ρxε
(ϕ) for every variable x ∈ Vars(ϕ)∪Vars(ψ).

The next lemma shows that implication for cnf formulas is invariant under
the application of reducts over A, i.e., the usual assignments.

Lemma 12. Let ψ,ϕ be two cnf formulas, and X ⊆ Vars(ψ) ∪ Vars(ϕ). If
ψ |= ϕ, then ρY (ψ) |= ρY (ϕ) holds for every set Y ∈ A(X).

We denote by BD-Imp(cnf → F) the parameterised version of the prob-
lem Imp(cnf) where additionally a strong F-backdoor is given and the parame-
ter is the size of the strong F-backdoor.

Corollary 13. Given a class F ∈ {positive-unit,horn,krom} of CNF for-
mulas. Then BD-Imp(cnf → F) ∈ FPT.

A combination of Lemmas 11 and 12 now yields a generalisation for CNF
formulas that do not contain tautological clauses. Note that the crucial difference
is the use of T instead of A in the claim of the result.

Corollary 14. Let ψ,ϕ be two cnf formulas that do not contain tautological
clauses, and X ⊆ Vars(E) ∪ Vars(ϕ) be a set of variables. If ψ |= ϕ then for
every set Y ∈ T(X) it holds ρY (ψ) |= ρY (ϕ).

The following lemma is an important cornerstone for the upcoming section. It
intuitively states that we do not loose any stable extensions under the application
of reducts. Before we can start with the lemma we need to introduce a bit of
notion. For a set D = {δ1, . . . , δn} of default rules and a set E of formulas we
define y-concl(D,E) := {concl(δi) | 1 ≤ i ≤ n, δi ∈ D,E |= yi}, that is, the
set of conclusions of default rules δi such that yi is implied by all formulas in E.
Further, for a set X of variables, we will extend the notion for SE(·) as follows:

SE(〈W,D〉 ,X) :=
⋃

Y ∈T(X)

{Th(W ∪ y-concl(D,E)) | E ∈ SE(ρY (W,D))}.

Strong Backdoors for Default Logic 53

Lemma 15. Let 〈W,D〉 be a cnf default theory with formulas that do not con-
tain tautological clauses, and X be a set of variables from Vars(W,D). Then,
SE(〈W,D〉) ⊆ SE(〈W,D〉 ,X).

Proof. Let 〈W,D〉 be the given default theory, X ⊆ Vars(W,D), and E ∈
SE(〈W,D〉) be a consistent stable extension of 〈W,D〉.

Now suppose for contradiction that E /∈ SE(〈W,D〉 ,X). Further, let G be the
set of generating defaults of E by Proposition 2, and w.l.o.g. let G := {δ1, . . . , δk}
also denote the order in which these defaults are applied. Thus it holds that
E = Th(W ∪ {concl(δ) | δ ∈ G}). Hence, W |= prereq(δ1) holds and further fix
a Y ∈ T(X) which agrees with E on the implied literals from Vars(W,D), i.e.,
x ∈ Y if E |= x for x ∈ Vars(W,D), ¬x ∈ Y if |= ¬x, and xε ∈ Y otherwise.
Then, by Corollary 14 we know that also

∧
ω∈W ρY (ω) |= ρY (prereq(δ1)) is true.

Furthermore, we get that
∧

ω∈W

ρY (ω) ∧
∧

1≤j≤i

ρY (concl(δj)) |= ρY (prereq(δi+1))

holds for i < k. Thus, by definition of ρY (W,D), the reducts of the knowledge
base W and the derived conclusions together trivially imply the yis, i.e., it holds
that ∧

ω∈W

ρY (ω) ∧
∧

1≤i≤k

ρY (concl(δi)) |=
∧

1≤i≤k

yi.

As neither E |= prereq(δ) holds for some δ ∈ D \ G, nor E ∪ {concl(δ) | δ ∈
G} |= δ′ is true for some δ′ ∈ D \G, E is a consistent set, and Y agrees with E
on the implied variables from Vars(W,D), we get that no further default rule δ
is triggered by ρY (W) or ρY (W ∪ {concl(δ) | δ ∈ D \ G}).

Further, it holds that no justification is violated as E |= ¬β for some
β ∈ ⋃

δ∈G just(δ) would imply that ρY (E) |= ¬ρY (β) also holds by Corollary 14.
Thus, eventually E′ = Th(ρY (W) ∪ {ρY (concl(δ)) | δ ∈ G}) is a stable exten-
sion with respect to ρY (W,D). But, the set of conclusions of G coincides with
y-concl(D,E′) therefore

E = Th(W ∪ {concl(δ) | δ ∈ G})
= Th(W ∪ y-concl(D,E′)) ∈ SE(〈W,D〉 ,X)

holds, which contradicts our assumption. Thus, the lemma applies. ��
We have seen that it is important to disallow tautological clauses. However,

the detection of this kind of clauses is possible in polynomial time. Therefore,
we assume in the following that a given theory contains no tautological clauses.
This is not a very weak restriction as (i) ϕ∧C ≡ ϕ for any tautological clause C,
and (ii) C ≡ � for any tautological clause C.

The following example illustrates how reducts maintain existence of stable
extensions.

54 J.K. Fichte et al.

Example 16. The default theory 〈W,D〉 = {{x}, { x:y
¬y∨x}} has the exten-

sion E := Th(x,¬y ∨ x) and yields the following cases for the set B =
{x}: ρx(W,D) = 〈{�}, {�:y

y1
}〉, yields SE(ρx(W,D)) = {Th(y1)}, and, both,

ρ¬x(W,D) and ρxε
(W,D) yield an empty set of stable extensions. Thus, with

y-concl(D,Th(y1)) = {¬y ∨ x} we get Th({¬y ∨ x} ∪ {x}), which is equivalent
to the extension E of 〈W,D〉.

Now, we are in the position to present a definition of strong backdoors for
default logic.

Definition 17 (Strong Backdoors for Default Logic). Given a cnf default
theory 〈W,D〉, a set B ⊆ Vars(W,D) of variables, and a class F of formulas.
We say that B is a strong F-backdoor if for each Y ∈ T(B) the reduct ρY (W,D)
is an F-default theory.

4 Backdoor Evaluation

In this section, we investigate the evaluation of strong backdoors for the extension
existence problem in default logic with respect to different classes of CNF for-
mulas. Formally, the problem of strong backdoor evaluation EvalExt(F → F ′)
for extension existence is defined as follows. Given an F-default theory 〈W,D〉
and a strong F ′-backdoor B ⊆ Vars(W) ∪ Vars(D), asking does 〈W,D〉 have a
stable extension?

First, we study the complexity of the “extension checking problem”, which
is a main task we need to accomplish when using backdoors as our approach
following Lemma 15 yields only “stable extension candidates”. Formally, given
a default theory 〈W,D〉 and a finite set Φ of formulas, the problem EC asks
whether Th(Φ) ∈ SE(〈W,D〉) holds.

Rosati [34] classified the extension checking problem as complete for the com-
plexity class ΘP

2 = Δp
2 [log], which allows only logarithmic many oracle questions

to an NP oracle. We will later see that a simpler version suffices for our complex-
ity analysis. Therefore, we state in Algorithm 1 an adaption of Rosatis algorithm
[34, Figure 1] to our notation showing containment (only) in Δp

2 .

Proposition 18 ([34, Figure 1, Theorem 4]). EC ∈ Δp
2 .

In a way, extension checking can be compared to model checking in logic. In
default logic the complexity of the extension existence problem Ext is twofold:
using the approach of Proposition 2 (i) one has to non-deterministically guess
the set (and ordering) of the generating defaults, and (ii) one has to verify
whether the generating defaults lead to an extension. For (ii), one needs to
answer quadratic many implication questions. Hence, the problem is in NPNP.
Thus, a straightforward approach for EC omits the non-determinism in (i) and
achieves the result in PNP.

Strong Backdoors for Default Logic 55

Algorithm 1. Extension checking algorithm [34, Theorem 4]
Input: Set E of formulas and a default theory 〈W, D〉
Output: True if and only if E is a stable extension of 〈W, D〉

1 D′ := ∅
2 forall the α:β

γ
∈ D do // (1) Classify unviolated justifications.

3 if E �|= ¬β then D′ := D′ ∪ {α:
γ

}
// (2) Compute extension candidate of justification-free theory.

4 E′ := W
5 while E′ did change in the last iteration do
6 forall the α:

γ
∈ D′ do

7 if E′ |= α then E′ := E′ ∧ γ

// (3) Does the candidate match the extension?

8 if E |= E′ and E′ |= E then return true else return false

Theorem 19. EvalExt(cnf → horn) ∈ para-NP.

Proof. Let 〈W,D〉 be a given cnf default theory and B ⊆ Vars(W,D) be the
given backdoor. In order to evaluate the backdoor we have to consider the
|T(X)| = 3|B| many different reducts to horn default theories. For each of them
we have to non-deterministically guess a set of generating defaults G. Then, we
use Algorithm 1 to verify whether W ∧ ∧

g∈G g is a stable extension (extensions
can be represented by generating defaults; see Proposition 2). Imp(horn) ∈ P by
Proposition 7. Hence, stable extension checking is in P for horn formulas. Then,
after finding an extension E with respect to the reduct default theory ρY (W,D),
we need to compute the corresponding extension E′ with respect to the original
default theory. Here we just need to verify simple implication questions of the
form E |= yi for 1 ≤ i ≤ |D|. Next, we need to verify whether E′ is a valid
extension for 〈W,D〉 using Algorithm 1. Note that Corollary 13 shows that the
implication problem of propositional horn formulas parameterised by the size of
the backdoor is in FPT, hence we can compute the implication questions inline.
As the length of the used formulas is bounded by the input size and the relevant
parameter is the same as for the input this step runs in fpt-time. Together this
yields a para-NP algorithm. ��

The following corollary summarises the results for the remaining classes.
Detailed proofs can be found in an extended version [15].

Corollary 20. 1. EvalExt(cnf → monotone) ∈ para-Δp
2 ,

2. EvalExt(cnf → krom) ∈ para-NP, and
3. EvalExt(cnf → positive-unit) ∈ FPT.

5 Backdoor Detection

In this section, we study the problem of finding backdoors, formalised in terms of
the following parameterised problem. The problem BdDetect(cnf → F) asks,

56 J.K. Fichte et al.

given a cnf default theory T and an integer k, parameterised by k, if T has
a strong F-backdoor of size at most k. If the target class F ′ is clause-induced,
we can use a decision algorithm for BdDetect(F → F ′) to find the backdoor
using self-reduction [11,37]. The proof can be found in an extended version [15].

Lemma 21. Let F be a clause-induced class of cnf formulas. If BdDetect
(cnf → F) is fixed-parameter tractable, then also computing a strong F-backdoor
of size at most k of a given default theory T is fixed-parameter tractable (for
parameter k).

The following theorem provides interesting target classes, where we can deter-
mining backdoors in fpt-time.

Theorem 22. Let C ∈ {horn, positive-unit, krom, monotone}, then the
problem BdDetect(cnf → C) ∈ FPT.

Proof. Let 〈W,D〉 be a cnf default theory and F := W ∪ { prereq(δ),
just(δ), concl(δ) | δ ∈ D }. Since each class C ∈ {horn, positive-unit, krom,
monotone} is clause-induced and then obviously ρZ(ϕ) ⊆ ρY (ϕ) holds for any
Z ∈ T(X), we have to consider only the case Y = {xε | x ∈ X } to construct a
strong C-backdoor of 〈W,D〉.

Case C = monotone: A cnf formula ϕ is monotone if every literal appears
only positively in any clause C ∈ ϕ where ϕ ∈ F. We can trivially construct a
smallest strong monotone-backdoor by taking all negative literals of clauses in
formulas of F in linear time. Hence, the claim holds.

For C ∈ {horn,positive-unit,krom} we follow known constructions from
the propositional setting [35]. Therefore, we consider certain (hyper-)graph rep-
resentations of the given theory and establish that a set B ⊆ Vars(F) is a strong
C-backdoor of 〈W,D〉 if and only if B is a d- hitting set of the respective (hyper-)
graph representation of 〈W,D〉, where d depends on the class of formulas, i.e.,
d = 2 for horn and positive-unit and d = 3 for krom. A 2- hitting set
(vertex cover) of a graph G = (V,E) is a set S ⊆ V such that for every
edge uv ∈ E we have {u, v}∩S �= ∅. A 3-hitting set of a hypergraph H = (V,E),
where f.a. E ∈ E it holds |E| ≤ 3, is a set S ⊆ V such that for every hyper-
edge E ∈ E we have E∩S �= ∅. Then, a vertex cover of size at most k, if it exists,
can be found in time O(1.2738k + kn) [5] and a 3-hitting set of size at most k, if
it exists, can be found in time O(2.179k + n3) [14], which gives us then a strong
C-backdoor of 〈W,D〉. It remains to define the specific graph representations and
to establish the connection to strong C-backdoors.

Definition of the various (hyper-)graphs: For C = horn we define a graph G+
T

on the set of variables of F, where two distinct variables x and y are joined by
an edge if there is a formula ϕ ∈ F and some clause C ∈ ϕ with x, y ∈ C. For
C = positive-unit we define a graph GT on the set of variables of F, where
two distinct variables x and y are joined by an edge if there is a formula ϕ ∈ F
and some clause C ∈ ϕ with lx, ly ∈ C where lx ∈ {x,¬x} and ly ∈ {y,¬y}. For
C = krom we define a hypergraph HT on the variables Vars(F) where distinct
variables x, y, z are joined by a hyperedge if there is a formula ϕ ∈ F and some

Strong Backdoors for Default Logic 57

clause C ∈ ϕ with {x, y, z} ⊆ Vars(C). The correctness proof is shown in the
report [15]. ��

Now, we can use Theorem 22 to strengthen the results of Theorem 19 and
Corollary 20 by dropping the assumption that the backdoor is given.

Corollary 23. The problem EvalExt(cnf → C) parameterised by the size
of a smallest strong C-backdoor of the given theory is (1) in para-Δp

2 if C =
monotone, (2) in para-NP if C ∈ {horn,krom}, and (3) in FPT if C=
positive-unit.

6 Conclusion

We have introduced a notion of strong backdoors for propositional default logic.
In particular, we investigated on the parameterised decision problems backdoor
detection and backdoor evaluation. We have established that backdoor detection
for the classes cnf, horn, krom, monotone, and positive-unit are fixed-
parameter tractable whereas for evaluation the classification is more complex.
If cnf is the starting class and horn or krom is the target class, then back-
door evaluation is in para-NP. If monotone is the target class, then backdoor
evaluation is in para-Δp

2 , which thus can be solved by an fpt-algorithm that
can query a SAT solver multiple times [9]. For positive-unit as target class
backdoor evaluation is fixed-parameter tractable.

An interesting task for future research is to consider the remaining Schaefer
classes [36], e.g., dual-Horn, 1- and 0-valid, as well as the classes renamable-
Horn and QHorn [2,3], and to investigate whether we can generalise the concept
of Theorem 19. We have established for backdoor evaluation the upper bounds
para-NP and para-Δp

2 , respectively. We think that it would also be interesting to
establish corresponding lower bounds. Finally, a direct application of quantified
Boolean formulas in the context of propositional default logic, for instance, via
the work of Egly et al. [13] or exploiting backdoors similar to results by Fichte
and Szeider [16], might yield new insights.

Acknowledgements. The first author gratefully acknowledges support by the Aus-
trian Science Fund (FWF), Grant Y698. He is also affiliated with the Institute of
Computer Science and Computational Science at University of Potsdam, Germany.
The second and third author gratefully acknowledge support by the German Research
Foundation (DFG), Grant ME 4279/1-1. The authors thank Jonni Virtema for point-
ing out Lemma 6 and Sebastian Ordyniak for discussions on Lemma 11. The authors
acknowledge the helpful comments of the anonymous reviewers.

References

1. Beyersdorff, O., Meier, A., Thomas, M., Vollmer, H.: The complexity of reasoning
for fragments of default logic. J. Logic Comput. 22(3), 587–604 (2012)

2. Boros, E., Crama, Y., Hammer, P.L.: Polynomial-time inference of all valid impli-
cations for horn and related formulae. Ann. Math. Artif. Intell. 1(1–4), 21–32
(1990)

58 J.K. Fichte et al.

3. Boros, E., Hammer, P.L., Sun, X.: Recognition of q-Horn formulae in linear time.
Discrete Appl. Math. 55(1), 1–13 (1994)

4. Chen, J., Chor, B., Fellows, M.R., Huang, X., Juedes, D.W., Kanji, I.A., Xia, G.:
Tight lower bounds for certain parameterized NP-hard problems. Inf. Comput.
201(2), 216–231 (2005)

5. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor.
Comput. Sci. 411(40–42), 3736–3756 (2010)

6. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: van Leeuwen,
J. (ed.) Handbook of Theoretical Computer Science. Volume Formal Models and
Semantics, pp. 193–242. Elsevier Science Publishers, North-Holland (1990)

7. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-order Logic: A
Language Theoretic Approach. Cambridge University Press, Cambridge (2012)

8. Creignou, N., Meier, A., Thomas, M., Vollmer, H.: The complexity of reasoning for
fragments of autoepistemic logic. ACM Trans. Comput. Logic 13(2), 1–22 (2012)

9. de Haan, R., Szeider, S.: Fixed-parameter tractable reductions to SAT. In: Sinz,
C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 85–102. Springer, Heidelberg
(2014)

10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, New York (1999)

11. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, London (2013)

12. Dvořák, W., Ordyniak, S., Szeider, S.: Augmenting tractable fragments of abstract
argumentation. Artif. Intell. 186, 157–173 (2012)

13. Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving advanced reasoning tasks
using quantified boolean formulas. In: Kautz, H., Porter, B. (eds.) Proceedings of
the 17th Conference on Artificial Intelligence (AAAI 2000), Austin, TX, USA, pp.
417–422. The AAAI Press, July 2000

14. Fernau, H.: A top-down approach to search-trees: improved algorithmics for 3-
hitting set. Algorithmica 57(1), 97–118 (2010)

15. Fichte, J., Meier, A., Schindler, I.: Strong Backdoors for Default Logic. Technical
report. CoRR: abs/1483200, arXiv (2016)

16. Fichte, J.K., Szeider, S.: Backdoors to normality for disjunctive logic programs.
ACM Trans. Comput. Logic 17(1), 7 (2015)

17. Fichte, J.K., Szeider, S.: Backdoors to tractable answer-set programming. Artif.
Intell. 220, 64–103 (2015)

18. Flum, J., Grohe, M.: Describing parameterized complexity classes. Inf. Comput.
187(2), 291–319 (2003)

19. Flum, J., Grohe, M.: Parameterized Complexity Theory. Theoretical Computer
Science, vol. 14. Springer, Heidelberg (2006)

20. Gaspers, S., Szeider, S.: Backdoors to satisfaction. In: Bodlaender, H.L., Downey,
R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol. 7370, pp.
287–317. Springer, Heidelberg (2012)

21. Gottlob, G.: Complexity results for nonmonotonic logics. J. Logic Comput. 2(3),
397–425 (1992)

22. Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of
knowledge representation and reasoning. Artif. Intell. 174(1), 105–132 (2010)

23. Gottlob, G., Scarcello, F., Sideri, M.: Fixed-parameter complexity in AI and non-
monotonic reasoning. Artif. Intell. 138(1–2), 55–86 (2002)

24. Gottlob, G., Szeider, S.: Fixed-parameter algorithms for artificial intelligence, con-
straint satisfaction, and database problems. Comput. J. 51(3), 303–325 (2006).
Survey paper

Strong Backdoors for Default Logic 59

25. Marek, V.W., Truszczyński, M.: Nonmonotonic Logic: Context-Dependent Rea-
soning. Artificial Intelligence. Springer, Heidelberg (1993)

26. McCarthy, J.: Circumscription – a form of non-monotonic reasoning. Artif. Intell.
13, 27–39 (1980)

27. McDermott, D., Doyle, J.: Non-montonic logic I. Artif. Intell. 13, 41–72 (1980)
28. Meier, A., Schindler, I., Schmidt, J., Thomas, M., Vollmer, H.: On the parame-

terized complexity of non-monotonic logics. Arch. Math. Logic 54(5–6), 685–710
(2015)

29. Moore, R.C.: Semantical considerations on modal logic. Artif. Intell. 25, 75–94
(1985)

30. Ordyniak, S., Paulusma, D., Szeider, S.: Satisfiability of acyclic and almost acyclic
CNF formulas. Theor. Comput. Sci. 481, 85–99 (2013)

31. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
32. Pfandler, A., Rümmele, S., Szeider, S.: Backdoors to abduction. In: Rossi, F. (ed.)

Proceedings of the 23rd International Joint Conference on Artificial Intelligence
(IJCAI 2013), Beijing, China, pp. 1046–1052. The AAAI Press, August 2013

33. Reiter, R.: A logic for default reasoning. Artif. Intell. 13, 81–132 (1980)
34. Rosati, R.: Model checking for nonmonotonic logics: algorithms and complexity. In:

Dean, T. (ed.) Proceedings of the 16th International Joint Conference on Artificial
Intelligence (ICJAI 1999), Stockholm, Sweden. The AAAI Press, July 1999

35. Samer, M., Szeider, S.: Fixed-parameter tractability. In: Biere, A., Heule, M., van
Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, pp. 425–454. IOS Press,
Amsterdam (2009)

36. Schaefer, T.J.: The complexity of satisfiability problems. In: Lipton, R.J.,
Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.) Proceedings of
the 10th Annual ACM Symposium on Theory of Computing (STOC 1978), San
Diego, CA, USA, pp. 216–226. Association for Computing Machinery, New York
(1978)

37. Schnorr, C.-P.: On self-transformable combinatorial problems. In: König, H., Korte,
B., Ritter, K. (eds.) Mathematical Programming at Oberwolfach. Mathematical
Programming Studies, vol. 14, pp. 225–243. Springer, Heidelberg (1981)

38. Stillman, J.P.: It’s not my default: the complexity of membership problems in
restricted propositional default logics. In: Dietterich, T., Swartout, W. (eds.) Pro-
ceedings of the 8th National Conference on Artificial Intelligence (AAAI 1990),
Boston, MA, USA, vol. 1, pp. 571–578. The AAAI Press, July 1990

39. Stillman, J.P.: The complexity of horn theories with normal unary defaults. In:
Proceedings of the 8th Canadian Artificial Intelligence Conference (AI 1990) (1990)

40. Szeider, S.: On fixed-parameter tractable parameterizations of SAT. In:
Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202.
Springer, Heidelberg (2004)

41. Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity.
In: Gottlob, G., Walsh, T. (eds.) Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico, pp. 1173–
1178. Morgan Kaufmann, August 2003

42. Williams, R., Gomes, C., Selman, B.: On the connections between backdoors,
restarts, and heavy-tailedness in combinatorial search. In: Informal Proceedings
of the 6th International Conference on Theory and Applications of Satisfiability
Testing (SAT 2003), Portofino, Italy, pp. 222–230, May 2003

The Normalized Autocorrelation Length
of Random Max r-Sat Converges
in Probability to (1 − 1/2r)/r

Daniel Berend and Yochai Twitto(B)

Ben-Gurion University, Beer Sheva 84105, Israel
{berend,twittoy}@cs.bgu.ac.il

Abstract. In this paper we show that the so-called normalized auto-
correlation length of random Max r-Sat converges in probability to
(1 − 1/2r)/r, where r is the number of literals in a clause. We also
show that the correlation between the numbers of clauses satisfied by a
random pair of assignments of distance d = cn, 0 ≤ c ≤ 1, converges
in probability to ((1 − c)r − 1/2r)/(1 − 1/2r). The former quantity is of
interest in the area of landscape analysis as a way to better understand
problems and assess their hardness for local search heuristics. In [34],
it has been shown that it may be calculated in polynomial time for any
instance, and its mean value over all instances was discussed. Our results
are based on a study of the variance of the number of clauses satisfied
by a random assignment, and the covariance of the numbers of clauses
satisfied by a random pair of assignments of an arbitrary distance. As
part of this study, closed-form formulas for the expected value and vari-
ance of the latter two quantities are provided. Note that all results are
relevant to random r-Sat as well.

Keywords: Combinatorial optimization · Max Sat · Fitness
landscapes · Autocorrelation length · Local search

1 Introduction

In the Maximum Satisfiability (Max Sat) problem, we are given a multiset of
clauses over some boolean variables. Each clause is a disjunction of literals (a
variable or its negation) over different variables. We seek a truth (true/false)
assignment for the variables, maximizing the number of satisfied (made true)
clauses. In the Max r-Sat problem, each clause is restricted to consist of at most r
literals. Here we restrict our attention to instances with clauses consisting of
exactly r literals each. This restricted problem is also known as Max Er-Sat.

Let n be the number of variables. Denote the variables by v1, v2, . . . , vn. The
number of clauses is denoted by m, and the clauses by C1, C2, . . . , Cm. We denote
the clause-to-variable ratio by α = m/n. We use the terms “positive variable”
and “negative variable” to refer to a variable and to its negation, respectively.

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 60–76, 2016.
DOI: 10.1007/978-3-319-40970-2 5

The Normalized Autocorrelation Length of Random Max r-Sat 61

Whenever we find it convenient, we consider the truth values true and false
as binary 1 and 0, respectively.

As Max r-Sat (for r ≥ 2) is NP-hard [7, pp. 455–456], large-sized instances
cannot be exactly solved in an efficient manner (unless P = NP), and one must
resort to approximation algorithms and heuristics. Numerous methods have been
suggested for solving Max r-Sat, e.g. [5,9,10,15,22,24,28,31,32], and an annual
competition of solvers has been held since 2006 [6]. Satisfiability related questions
attracted a lot of attention from the scientific community. As an example, one
may consider the well-studied satisfiability threshold question [1,13,14,16,18,
26]. For a comprehensive overview of the whole domain of satisfiability we refer
to [8].

Using Walsh analysis [20], an efficient way of calculating moments of the
number of satisfied clauses of a given instance of Max r-Sat was suggested in [21].
Simulation results for the variance and higher moments of the number of clauses
satisfied by a random assignment over the ensemble of all instances were provided
as well. We provide closed-form formula, asymptotics, and convergence proof for
the variance.

An interesting study of Max 3-Sat is provided in [29]. The authors claimed
that many instances share similar statistical properties and provided empirical
evidence for it. Simulation results on the autocorrelation of a random walk on
the assignments space were provided for several instances, as well as extrapola-
tion for the typical instance. Finally, a novel heuristic was introduced, ALGH,
which exploits long-range correlations found in the problem’s landscape. This
heuristic outperformed GSAT [32] and WSAT [31]. A slightly better version of
this heuristic, based on clustering instead of averaging, is provided in another
paper [30] of the same authors. This version turned out to outperform all the
heuristics implemented at that time in the Sat solver framework UBCSAT [35].
Our convergence in probability proofs mathematically validate their simulative
results regarding similarity for several statistical properties, including the long-
range correlation they used for their heuristics.

In [23], the authors analyze how the way random instances are generated
affects the autocorrelation and fitness-distance correlation. These quantities are
considered fundamental to understanding the hardness of instances for local
search algorithms. They raised the question of similarity of the landscape of
different instances. In [3], the autocorrelation coefficient of several problems was
calculated, and problem hardness was classified accordingly. We contribute one
more result for this classification.

Elaboration on correlations and on the way of harnessing them to design well-
performing local search heuristics and memetic algorithms is provided in [27].
The importance of selecting an appropriate neighborhood operator for produc-
ing the smoothest possible landscape was emphasized. For some landscapes,
the autocorrelation length is shown to be associated with the average distance
between local optima. This may be used to facilitate the design of operators that
lead memetic algorithms out of the basin of attraction of a local optimum they
reached.

62 D. Berend and Y. Twitto

In [34], it is shown how to use Walsh decomposition [20] to efficiently calcu-
late the exact autocorrelation function and autocorrelation length of any given
instance of Max r-Sat. Furthermore, this decomposition is used to approximate
the expectation of these quantities over the ensemble of all instances. The approx-
imation is based on mean-field approximation [36] under some assumption on the
statistical fluctuation of the approximated quantity. Formulas for these expecta-
tions are provided only in terms of Walsh coefficients, and thus give less insight
as to their actual values. We substantially improve the result regarding the auto-
correlation length, by showing its normalized version converges in probability to
an explicit constant.

This paper deals with the variance of the number of clauses satisfied by a
random assignment, and the covariance of the numbers of clauses satisfied by a
random pair of assignments at an arbitrary distance. We obtain explicit formulas
for the expected value and the variance of these quantities. Asymptotics of these
expressions are provided as well. From the asymptotics we conclude that the
variance of the number of clauses satisfied by a random assignment is usually
quite close to the expected value of this variance. Based on these results, we
show that the correlation between the numbers of clauses satisfied by a random
pair of assignments of distance d = cn, 0 ≤ c ≤ 1, converges in probability to
((1 − c)r − 1/2r)/(1 − 1/2r). Our main result is that the so-called normalized
autocorrelation length [19] of (random) Max r-Sat converges in probability to
(1 − 1/2r)/r.

The latter quantity, which is closely related to the ruggedness of landscapes,
is of interest in the area of landscape analysis [3,4,11,17,23,25,34]. It is fun-
damental to the theory and design of local search heuristics [12,27]. According
to the autocorrelation length conjecture [33], in many landscapes, the number
of local optima can be estimated using an expression based on this quantity.
Our result reveals the normalized autocorrelation length of (random) Max r-
Sat, improving a former result [34] that expressed it only in terms of Walsh
coefficients [20].

In Sect. 2 we present our main results, and in Sect. 3 the proofs. Some elabo-
ration and discussion are provided in Sect. 4. All our results immediately apply
to random r-Sat, as both random Max r-Sat and random r-Sat deal with the
same collection of random instances – the collection of random r-CNF formulas.
We choose to present our results in the context of Max r-Sat, and to omit the
prefix “random”, assuming this is the default when not mentioned otherwise.

2 Main Results

Throughout the paper we deal with three probability spaces. The first consists
of all instances with m clauses of length r over n variables. As any r of the
variables may appear in a clause, and each may be positive or negative, the
number of instances is

((
n
r

)
2r

)m. All instances are equally likely, namely each
has a probability of 1/

((
n
r

)
2r

)m. The second probability space consists of all 2n

equally likely truth assignments. The third consists of all the 2n
(
n
d

)
equally likely

The Normalized Autocorrelation Length of Random Max r-Sat 63

pairs of truth assignments of distance d. The distance between two assignments
is the so-called Hamming distance, i.e., the number of variables they assign
differently.

We use the subscripts I, A, and d to specify that a certain quantity is associ-
ated with the first, second, or third probability space, respectively. We use I, a,
and (a, b) to denote a random instance, a random assignment, and a random pair
of assignments at distance d from each other, respectively. Let the random vari-
able S(I, a) (R(I, a), resp.) be the number of clauses of I satisfied (unsatisfied,
resp.) by the assignment a.

For a given instance I, let ρ(d) = Corrd(S(I, a), S(I, b)) be the correlation
(coefficient) between the numbers of clauses satisfied by a random pair of assign-
ments at distance d from each other. The autocorrelation length [19], given by
l = −1/ ln(|ρ(1)|), is a one-number summary of the ruggedness of the landscape
of the instance. The higher its value, the smoother is the landscape. The normal-
ized autocorrelation length is simply l/n. A slightly different quantity for summa-
rizing ruggedness is the autocorrelation coefficient [2], defined by ξ = 1/(1−ρ(1)).
Similarly, the normalized autocorrelation coefficient is ξ/n. These two measures,
l/n and ξ/n, are asymptotically the same. I.e., their quotient approaches 1 as n
grows larger. We arbitrarily choose to work with the latter.

This quantity converges in probability to a constant independent of the
clause-to-variable ratio α = m/n, as stated in our main theorem, which improves
the result of [34]. There, this quantity is provided only in terms of Walsh coeffi-
cients [20], along with a mean-field approximation [36]. In our results regarding
convergence in probability, here and afterward, the random variables are always
defined on I. Namely, they are defined on the probability space consisting of all
(equally likely) instances with m clauses of length r over n variables.

Theorem 1. For Max r-Sat:

ξ

n

P−−−−→
n→∞

1 − 1/2r

r
.

To prove Theorem 1, we will first formulate and prove two more theorems.
Besides being building blocks for the proof of the main theorem, each of these is
of independent interest. The first summarizes our results regarding the variance
of the number of clauses satisfied by a random assignment. In the provided
asymptotics, we assume that n → ∞, m = αn for some constant α > 0, and r
is constant.

Theorem 2. For Max r-Sat, the expected value and the variance (over all
instances) of the variance of the number of clauses satisfied by a random assign-
ment are given by:

EI(VA(S(I, a))) =
m

2r

(

1 − 1
2r

)

, (2.A)

64 D. Berend and Y. Twitto

VI(VA(S(I, a))) =
2m(m − 1)

24r

(
r∑

t=0

(
r
t

)(
n−r
r−t

)

(
n
r

) · 2t − 1

)

(2.B.1)

=
α2r2

24r−1
n + O(1). (2.B.2)

In particular,

VA(S(I, a))
n

P−−−−→
n→∞

α

2r

(

1 − 1
2r

)

. (2.C)

The second theorem generalizes the results further, and summarizes our
results regarding the covariance of the numbers of clauses satisfied by a ran-
dom pair of assignments at an arbitrary distance from each other. Here, in the
asymptotics we also assume that d = cn, 0 ≤ c ≤ 1.

Theorem 3. For Max r-Sat, the expected value and the variance (over all
instances) of the covariance of the numbers of clauses satisfied by a random
pair of assignments of distance d are given by:

EI(Covd(S(I, a), S(I, b))) =
m

2r

((
n−r
d

)

(
n
d

) − 1
2r

)

(3.A.1)

=
α

2r

(

(1 − c)r − 1
2r

)

n + O(1), (3.A.2)

VI(Covd(S(I, a), S(I, b)))

=
2m(m − 1)

24r

(
r∑

t=0

((
r
t

)(
n−r
r−t

)

(
n
r

) · 2t ·
t∑

s=0

(
t
s

)(
n−t
d−s

)

(
n
d

) ·
(
n−t
d−s

)

(
n
d

)

)

− 1

)

(3.B.1)

=
α2r2(2c − 1)2

24r−1
n + O(1). (3.B.2)

In particular,

Covd(S(I, a), S(I, b))
n

P−−−−→
n→∞

α

2r

(

(1 − c)r − 1
2r

)

. (3.C)

Finally, notice that (2.C) and (3.C) together lead immediately to the follow-
ing corollary regarding the convergence in probability of the correlation of the
numbers of clauses satisfied by a random pair of assignments at an arbitrary
distance from each other.

Corollary 1. For Max r-Sat:

ρ(d) P−−−−→
n→∞

(1 − c)r − 1/2r

1 − 1/2r
.

The Normalized Autocorrelation Length of Random Max r-Sat 65

3 Proofs

Theorem 2 follows immediately from Theorem 3, by applying the latter with
d = 0. We provide the proof of Theorem 3, and then the proof of Theorem 1,
which rely heavily on the former theorems.

Proof (Theorem 3). As R(I, a) = m − S(I, a), we may work with the covariance
of the numbers of unsatisfied clauses, instead of that of the numbers of satisfied
clauses. Define the following random variable:

Ri(I, a) =

{
1, the assignment a does not satisfy the clause Ci,

0, otherwise.

We start with a single clause. For the sake of readability we write Ri(a)
instead of Ri(I, a).

Covd(Ri(a), Ri(b)) = Ed(Ri(a) · Ri(b)) − Ed(Ri(a)) · Ed(Ri(b))
= Pd(Ri(a) = Ri(b) = 1) − Pd(Ri(a) = 1) · Pd(Ri(b) = 1)

= Pd(Ri(a) = 1) · Pd(Ri(b) = 1 |Ri(a) = 1) − 1
22r

=
1
2r

((
n−r
d

)

(
n
d

) − 1
2r

)

.

Next, we calculate the covariance for any specific instance. Again, we use the
shorthand R(a) instead of R(I, a).

Covd(R(a), R(b)) = Covd

⎛

⎝
m∑

i=1

Ri(a),
m∑

j=1

Rj(b)

⎞

⎠

=
m∑

i=1

m∑

j=1

Covd(Ri(a), Rj(b))

=
m∑

i=1

Covd(Ri(a), Ri(b)) + 2
∑

1≤i<j≤m

Covd(Ri(a), Rj(b))

=
m

2r

((
n−r
d

)

(
n
d

) − 1
2r

)

+ 2
∑

1≤i<j≤m

Covd(Ri(a), Rj(b)).

(1)

For 1 ≤ i < j ≤ m we have:

EI(Covd(Ri(a), Rj(b)))
= EI(Ed(Ri(a) · Rj(b))) − EI(Ed(Ri(a)) · Ed(Rj(b)))

= Ed(EI(Ri(a) · Rj(b))) − 1
22r

= Ed(EI(Ri(a)) · EI(Rj(b))) − 1
22r

= 0.

(2)

66 D. Berend and Y. Twitto

Here, the penultimate transition stems from the fact that, for a given pair of
assignments a, b, the variables Ri(a), Rj(b) are independent, as their associated
clauses are selected uniformly at random and with repetitions from all possible
clauses. Overall, the second addend on the right-hand side of (1) vanishes, which
proves (3.A.1). The asymptotics provided in (3.A.2) is immediate.

Now, let us prove (3.B.1). We have:

VI(Covd(R(a), R(b))) = VI

⎛

⎝m

2r

((
n−r
d

)

(
n
d

) − 1
2r

)

+ 2
∑

1≤i<j≤m

Covd(Ri(a), Rj(b))

⎞

⎠

= 4
∑

1≤i<j≤m

VI(Covd(Ri(a), Rj(b)))

+ 8
∑

1≤i<j≤m
1≤k<l≤m

(i<k)∨(i=k∧j<l)

CovI(Covd(Ri(a), Rj(b)),Covd(Rk(a), Rl(b)))

= 4g + 8
∑

1≤i<j≤m
1≤k<l≤m

(i<k)∨(i=k∧j<l)

hijkl

= 4g + 8h.

Next, we calculate g as follows:

g =
∑

1≤i<j≤m

VI(Covd(Ri(a), Rj(b)))

=
∑

1≤i<j≤m

(
EI

(
Cov2

d (Ri(a), Rj(b))
) − E2

I (Covd (Ri(a), Rj(b)))
)

=
∑

1≤i<j≤m

(
EI

(
(Ed(Ri(a) · Rj(b)) − Ed(Ri(a)) · Ed(Rj(b)))

2
)

− 0
)

// by (2)

=
∑

1≤i<j≤m

EI

((

Ed(Ri(a) · Rj(b)) − 1
22r

)2
)

=
∑

1≤i<j≤m

EI

(

E2
d(Ri(a) · Rj(b)) − Ed(Ri(a) · Rj(b))

22r−1
+

1
24r

)

=
∑

1≤i<j≤m

(

EI
(
E2

d(Ri(a) · Rj(b))
) − EI(Ed(Ri(a) · Rj(b)))

22r−1
+

1
24r

)

=
∑

1≤i<j≤m

(

EI
(
E2

d(Ri(a) · Rj(b))
) − 1

22r22r−1
+

1
24r

)

// as done in (2)

=
∑

1≤i<j≤m

(

EI
(
P 2
d (Ri(a) = Rj(b) = 1)

) − 1
24r

)

.

To continue the calculation, we consider the clauses Ci and Cj . We denote
by t the number of variables shared by Ci and Cj . Let s be the number of

The Normalized Autocorrelation Length of Random Max r-Sat 67

variables, out of the t common ones, whose sign (as literals) is different in the
two clauses. The remaining t − s shared variables have the same sign in the two
clauses.

The probability that Ci and Cj share exactly t variables, from which exactly s
are of different sign, is (

r
t

)(
n−r
r−t

)

(
n
r

) ·
(
t
s

)

2t
.

Given t and s, we have

Pd(Ri(a) = Rj(b) = 1)) =
1
2r

·
(
n−t
d−s

)

(
n
d

) · 1
2r−t

.

Thus,

EI
(
P 2
d (Ri(a) = Rj(b) = 1)

)
=

r∑

t=0

t∑

s=0

(
r
t

)(
n−r
r−t

)

(
n
r

) ·
(
t
s

)

2t
·
(

2t

22r
·
(
n−t
d−s

)

(
n
d

)

)2

=
1

24r

r∑

t=0

((
r
t

)(
n−r
r−t

)

(
n
r

) · 2t ·
t∑

s=0

(
t
s

)(
n−t
d−s

)

(
n
d

) ·
(
n−t
d−s

)

(
n
d

)

)

.

Plugging the last expression into the expression for g, we arrive at the final form
of g:

g =
m(m − 1)

2
· 1
24r

·
(

r∑

t=0

((
r
t

)(
n−r
n−t

)

(
n
r

) · 2t ·
t∑

s=0

(
t
s

)(
n−t
d−s

)

(
n
d

) ·
(
n−t
d−s

)

(
n
d

)

)

− 1

)

.

The expression for 4g is exactly the right-hand side of (3.B.1), so to conclude
the proof it suffices to show that h = 0. In fact, we will see that every single
term hijkl in the sum appearing in the expression for h vanishes. Let us expand
this term.

hijkl = CovI (Covd (Ri(a), Rj(b)) ,Covd (Rk(a), Rl(b)))

= CovI

(

Ed (Ri(a) · Rj(b)) − 1
22r

, Ed (Rk(a) · Rl(b)) − 1
22r

)

= CovI (Pd(Ri(a) = Rj(b) = 1), Pd(Rk(a) = Rl(b) = 1)) .

To prove that hijkl = 0, we will show that Pd(Ri(a) = Rj(b) = 1) and
Pd(Rk(a) = Rl(b) = 1) are independent. Observe that the addends in the sum
can be classified to two categories: addends for which |{i, j, k, l}| = 4, and those
for which |{i, j, k, l}| = 3. Either way, we have

Pd(Ri(a) = Rj(b) = 1) =
2T1

22r
·
(
n−T1
d−S1

)

(
n
d

) ,

Pd(Rk(a) = Rl(b) = 1) =
2T2

22r
·
(
n−T2
d−S2

)

(
n
d

) ,

68 D. Berend and Y. Twitto

where T1 is the number of variables shared by Ci and Cj , S1 is the number
of common variables whose sign (as literals) is different in Ci and Cj , and T2

and S2 are defined similarly with respect to Ck and Cl.
The variables T1 and S1 are determined solely by the way Cj selected in

relation to Ci. Similarly, T2 and S2 are determined solely by the way Cl selected
in relation to Ck. This holds even if, for example, i = k. Thus, the variables
(T1, S1), and the variables (T2, S2), are independent. Consequently, Pd(Ri(a) =
Rj(b) = 1) and Pd(Rk(a) = Rl(b) = 1) are independent as well. This means that
hijkl = 0, which proves (3.B.1).

Regarding (3.B.2), a routine calculation shows that, regardless the value of
0 ≤ c ≤ 1, the sum appearing in (3.B.1) is

1 +
r2(2c − 1)2

n
+ O

(
1
n2

)

.

Plugging this approximation into (3.B.1), and using the fact that m = αn, we
arrive at (3.B.2).

Finally, to prove (3.C), denote Xn = Covd(R(a), R(b))/n. It suffices to show
that the expected value of Xn converges to the right-hand side of (3.C), and
that its variance converges to 0. Those two convergences follow from (3.A.2) and
(3.B.2) directly:

EI(Xn) =
1
n

· EI(Covd(R(a), R(b)))

=
α

2r

(

(1 − c)r − 1
2r

)

+ O

(
1
n

)

,

VI(Xn) =
1
n2

· VI(Covd(R(a), R(b)))

=
α2r2(2c − 1)2

24r−1
· 1
n

+ O

(
1
n2

)

.

This proves (3.C), which concludes the proof of the theorem.

Proof (Theorem 1). Denote

Yn = VA(R(a))/n,

Zn = VA(R(a)) − Cov1(R(a), R(b)).

By (2.C), the random variable Yn converges in probability to α(1 − 1/2r)/2r.
In the following, we will show that Zn converges in probability to αr/2r. As
ξ/n = Yn/Zn, this will imply the theorem. To this end, it suffices to show that

EI(Zn) −−−−→
n→∞

αr

2r
, (3)

VI(Zn) −−−−→
n→∞ 0. (4)

The Normalized Autocorrelation Length of Random Max r-Sat 69

Using (2.A) and (3.A.1), we get:

EI(Zn) = EI(VA(R(a))) − EI(Cov1(R(a), R(b)))

=
m

2r

(

1 − 1
2r

)

− m

2r

((
n−r
1

)

(
n
1

) − 1
2r

)

=
αn

2r
· r

n
=

αr

2r
.

To prove (4), denote:

g = VA(R(a)) · Cov1(R(a), R(b)).

Then:

VI(Zn) = VI(VA(R(a))) + VI(Cov1(R(a), R(b)))
− 2CovI(VA(R(a)),Cov1(R(a), R(b)))

= VI(VA(R(a))) + VI(Cov1(R(a), R(b)))
− 2EI(g) + 2EI(VA(R(a)))EI(Cov1(R(a), R(b))).

(5)

Theorems 2 and 3 provide an explicit form for each of the terms on the right-hand
side, with the exception of EI(g).

By (1),

VA(R(a)) =
m

2r

(

1 − 1
2r

)

+ 2
∑

1≤i<j≤m

Cov0(Ri(a), Rj(b)),

and

Cov1(R(a), R(b)) =
m

2r

(

1 − 1
2r

− r

n

)

+ 2
∑

1≤k<l≤m

Cov1(Rk(a), Rl(b)).

Thus,

EI(g) = EI(VA(R(a)) · Cov1(R(a), R(b)))

=
m2

22r

(

1 − 1
2r

)(

1 − 1
2r

− r

n

)

+
m

2r

(

1 − 1
2r

− r

n

)

· 2
∑

1≤i<j≤m

EI(Cov0(Ri(a), Rj(b)))

+
m

2r

(

1 − 1
2r

)

· 2
∑

1≤k<l≤m

EI(Cov1(Rk(a), Rl(b)))

+ 4
∑

1≤i<j≤m
1≤k<l≤m

EI(Cov0(Ri(a), Rj(b)) · Cov1(Rk(a), Rl(b))).

(6)

By (2), the second and third addends on the right-hand side of (6) both
vanish. Moreover, following an argument similar to that applied to hijkl in the

70 D. Berend and Y. Twitto

proof of Theorem 3, we conclude that Cov0(Ri(a), Rj(b)) and Cov1(Rk(a), Rl(b))
are independent whenever 3 ≤ |{i, j, k, l}| ≤ 4. Thus, the last sum on the right-
hand side of (6) reduces to the sum over terms with i = k and j = l. Applying
those insights to EI(g), we arrive at:

EI(g) =
m2

22r

(

1 − 1
2r

)(

1 − 1
2r

− r

n

)

+ 4
∑

1≤i<j≤m

EI(Cov0(Ri(a), Rj(b)) · Cov1(Ri(a), Rj(b))).
(7)

Now, let us convert the expectation appearing in the last expression to a
simpler form, which will allow us to calculate it directly:

EI(Cov0(Ri(a), Rj(b)) · Cov1(Ri(a), Rj(b)))

= EI((E0(Ri(a)Rj(b)) − 1/22r) · (E1(Ri(a)Rj(b)) − 1/22r))
= EI(E0(Ri(a)Rj(b)) · E1(Ri(a)Rj(b)))

− EI(E0(Ri(a)Rj(b)))/22r − EI(E1(Ri(a)Rj(b)))/22r + 1/24r

= EI(E0(Ri(a)Rj(b)) · E1(Ri(a)Rj(b)))

− 1/24r − 1/24r + 1/24r // as done in (2)

= EI(P0(Ri(a) = Rj(b) = 1) · P1(Ri(a) = Rj(b) = 1)) − 1/24r.

As in the proof of Theorem 3, we now consider the clauses Ci and Cj . We
denote by t the number of variables shared by Ci and Cj . Let s be the number
of variables, out of the t common ones, whose sign (as literals) is different in the
two clauses. The remaining t − s shared variables have the same sign in the two
clauses. A direct calculation, as in that proof, with d = 0 and d = 1, yields:

EI(P0(Ri(a) = Rj(b) = 1) · P1(Ri(a) = Rj(b) = 1))

=
r∑

t=0

t∑

s=0

(
r
t

)(
n−r
r−t

)

(
n
r

) ·
(
t
s

)

2t
·
(
n−t
−s

)

22r−t
·

(
n−t
1−s

)

22r−tn

=
1

24r

r∑

t=0

(
r
t

)(
n−r
r−t

)

(
n
r

) · 2t ·
(

1 − t

n

)

.

The last equality follows by a routine simplification, after observing that the
terms for which s > 0 vanish. Plugging these values into (7), we arrive at the
final form of EI(g):

EI(g) =
m2

22r

(

1 − 1
2r

)(

1 − 1
2r

− r

n

)

+
2m(m − 1)

24r

(
r∑

t=0

(
r
t

)(
n−r
r−t

)

(
n
r

) · 2t ·
(

1 − t

n

)

− 1

)

.

The Normalized Autocorrelation Length of Random Max r-Sat 71

Now that we have an explicit form for all the terms on the right-hand side
of (5), we can obtain an explicit expression for V (Zn), which after a routine
simplification turns out to be:

VI(Zn) =
2m(m − 1)

24r
· 1
n2

·
r∑

t=0

(
r
t

)(
n−r
r−t

)

(
n
r

) · 2t · t(t + 1).

Recall that m = αn for some α > 0. Thus, the product of the two factors
outside the sum (in the last expression) is Θ(1). The leading addend in the sum
is obtained for t = 1, and it is Θ(1/n). Thus, we conclude that VI(Zn) = Θ(1/n),
which completes the proof.

4 Discussion

In this paper we have provided some results characterizing the ensemble of all
(equally likely) r-CNF formulas. These results apply to both random Max r-Sat
and random r-Sat. Along the paper we chose to present them in the context of
random Max r-Sat instances.

In this section we discuss how our results directly apply and characterize
random Max r-Sat instances by giving some examples and interpretations of our
results. We give some general motivation and implications of our results in the
context of local search and landscape theory. Finally, we elaborate on the results
of [34], compare them with ours, and clarify our relative contribution.

Consider, for example, the variance of the number of clauses satisfied by
a random assignment, explored in Theorem 2. Let ε > 0, and consider the
proportion of instances for which the absolute difference between VA(S(I, a))/n
and α(1 − 1/2r)/2r exceeds ε. By (2.C), this proportion tends to 0 as n grows,
which gives a very accurate understanding of this variance over the ensemble
of all (equally likely) instances. Similar statements can be made regarding the
covariance, correlation coefficient, and normalized autocorrelation length, using
the results in Theorem 3, Corollary 1, and Theorem 1, respectively.

Formulas (2.B.1) and (2.B.2), as well as (3.B.1) and (3.B.2), give closed
expressions and clear asymptotics for useful quantities, usually simulated or
approximated (e.g., [21,29,30]).

In the local search community, and especially among researchers in the area
of landscape analysis, it is a common belief that the ruggedness of the landscape
of an instance is one of the main factors for its hardness. The commonly used
measures to summarize ruggedness are the autocorrelation length (or alterna-
tively the autocorrelation coefficient) and the fitness-distance correlation. These
measures are believed to assess the hardness of combinatorial optimization prob-
lems for local search heuristics. These beliefs have been empirically confirmed in
various studies [2–4], and a work aiming at better understanding the landscape
of combinatorial optimization problems and classifying their hardness for local
search is continuously conducted [11,12,23,25,29,30,33,34].

72 D. Berend and Y. Twitto

Our results provide insights on the structure of the landscapes of instances
of Max r-Sat, and their similarity. They are also a step toward a richer classi-
fication of hardness of combinatorial optimization problems, in the context of
local search. We provide a simple expression for the autocorrelation length of
Max r-Sat, and other interesting statistical measures for this problem as well.
Results in a similar vein, regarding the autocorrelation length of problems like
TSP, QAP, GC, GBP, etc., are summarized in [3, Table 1].

In several problems, the autocorrelation length has been calculated with
respect to various neighborhood operators, and a clear suggestion for the design-
ers of local search heuristics came out: use the neighborhood operator with
the largest autocorrelation length [2,4,27]. Such operators induce smoother
landscape, which leads to better performance of local search heuristics. Some
researchers even suggest performing amendments to the problem in a way that
leads to an equivalent problem with a larger autocorrelation length [3]. Our
result regarding the autocorrelation length may serve as a baseline for assessing
the relevance of any future neighborhood operator or amendment for Max r-Sat.

In many heuristics, after a local optimum is reached, the whole search is
repeated from a different, randomly selected starting point. This is a simple,
clean way to restart. Yet, as the heuristic may have already yielded a quite
good assignment, one may prompt for further exploration of the landscape in
the vicinity of this assignment. In such cases, one may want to perform a jump
from the local optimum that is not too large, so as to stay in the vicinity of the
local optimum. On the other hand, a too small jump would fall in the basin of
attraction of the local optimum, which will lead to the same local optimum again.
To this end, the autocorrelation length may provide assisting information, as it
hints on the average distance between local optima [27]. The specific formulation
of using it to calculate the size of the jump is a subject for further research.

Research efforts to formulate the autocorrelation length of Max r-Sat done in
the last decades culminated in [34]. In both our paper and [34], there is interest in
the correlation between the number of clauses satisfied by a random assignment,
and an assignment obtained from it due to some random changes. In our paper,
we measure the change according to the Hamming distance between the two
assignments. In [34], one starts from the initial assignment, makes a number of
random steps (bit flips), and then compares the initial assignment with the final
one. If the distance in the first version, and the number of steps in the second,
are the same, then we may expect to be closer to the initial assignment in the
second version, as some of the steps may well bring us closer to it. However, as
the autocorrelation length only depends on two assignments at a distance of 1
from one another, the two versions are equivalent in this respect.

The first result of [34] is that the exact autocorrelation length of any instance
can be computed in polynomial time. The computation starts by noticing that
the space of real-valued functions on the space of all assignments has a very
simple basis. The space of all assignments is clearly equivalent to the discrete
n-dimensional cube. It is of size 2n, and thus the space of real-valued functions
on it is a 2n-dimensional linear space. The basis with which [34] works is that of

The Normalized Autocorrelation Length of Random Max r-Sat 73

Walsh functions. We will not define the basis here. Suffice it to say that the basis
consists of the functions ψi, where i goes over all binary vectors of length n. An
especially convenient property of this basis is that it is orthonormal. Also, while
the basis is of exponential size, the fitness function for any instance of Max r-Sat,
which gives the number of clauses satisfied by any assignment, involves only a
linear number of ψi’s (as a function of the number of clauses). The key to the
algorithm is the fact that one can write the fitness function f explicitly in the
form

f(x) =
∑

i

wiψi(x),

where the summation is over a set of size O(m) and the weights wi can be cal-
culated explicitly. Moreover, the ψi’s are the eignefunctions of the matrix which
gives the connection between the value of the fitness function at an assignment
and at a random neighbor of that assignment.

Now denote, for each integer p between 1 and r:

W (p) =
∑

〈i,i〉
w2

i /
∑

i

w2
i .

Using these notations, one can give a formula for the following version of the
correlation ρ(d). Recall that ρ(d) is the correlation (coefficient) between the num-
bers of clauses satisfied by a random pair of assignments at Hamming distance d
from each other. In [34], instead of changing the initial random assignment for d
of the variables, there is some prescribed number of 1-variable changes. The cor-
relation (coefficient) between the numbers of clauses satisfied by a pair of random
assignments, the second of which is obtained from the first by a sequence of s
random changes of a single variable, is denoted by r(s). Note that for a single
change, there is no difference between the two versions: r(1) = ρ(1). In [34,
Prop.1] it is shown that

r(s) =
∑

p
=0

W (p)(1 − 2p/n)s.

From this, the autocorrelation length is immediately found for any instance.
Next, [34] continues to estimate the mean value of r(s). To this end, we start

by finding the mean value of each w2
i . Let p = 〈i, i〉 and put:

π′ =
(

r

p

)

/

(
n

p

)

.

It is shown that the mean of w2
i is

2n

4r

m∑

z=−m

z2bz,

where

bz =
∑

z1,z2≥0
z1−z2=z

m!(π′/2)z1+z2(1 − π′)m−(z1+z2)

z1!z2!(m − (z1 + z2))!
.

74 D. Berend and Y. Twitto

This enables one to calculate, for each value of the parameters, the mean value
of any w2

i or sum of several ones. Assuming that the average of the quotient may
be approximated by the quotient of the averages, one can estimate the average
value of r(1).

In our approach, we: (i) find an explicit expression that approximates r(1),
and thereby an expression approximating the normalized autocorrelation length,
and (ii) prove rigorously that the normalized autocorrelation length converges
in probability to the latter expression as the number of variables grows.

Finally, we note that the nature of industrial instances, for example, is subtly
different from random ones. Their underlying probability model, if any, is differ-
ent, and they should be addressed separately. We hope our work will encourage
a concise analysis of modeled practical instances ensembles.

Acknowledgment. The work of the second author was partially supported by the
Lynne and William Frankel Center for Computer Science.

References

1. Achlioptas, D., Peres, Y.: The threshold for random k-SAT is 2klog2 − O(k). J.
Am. Math. Soc. 17(4), 947–973 (2004)

2. Angel, E., Zissimopoulos, V.: Autocorrelation coefficient for the graph bipartition-
ing problem. Theoret. Comput. Sci. 191(1), 229–243 (1998)

3. Angel, E., Zissimopoulos, V.: On the classification of NP-complete problems in
terms of their correlation coefficient. Discrete Appl. Math. 99(1), 261–277 (2000)

4. Angel, E., Zissimopoulos, V.: On the landscape ruggedness of the quadratic assign-
ment problem. Theor. Comput. Sci. 263(1), 159–172 (2001)

5. Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell.
196, 77–105 (2013)

6. Argelich, J., Li, C.M., Manyá, F., Planes, J.: MaxSat Evaluations. http://www.
maxsat.udl.cat/

7. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties, 2nd edn. Springer-Verlag (2003)

8. Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability, vol. 185. IOS
press, Amsterdam (2009)

9. de Boer, P.-T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the
cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)

10. Chen, R., Santhanam, R.: Improved algorithms for sparse MAX-SAT and MAX-
k-CSP. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 33–45.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-24318-4 4

11. Chicano, F., Luque, G., Alba, E.: Autocorrelation measures for the quadratic
assignment problem. Appl. Math. Lett. 25(4), 698–705 (2012)

12. Chicano, F., Luque, G., Alba, E.: Problem understanding through landscape the-
ory. In: Proceedings of the 15th Annual Conference Companion on Genetic and
Evolutionary Computation, pp. 1055–1062. ACM (2013)

13. Chvátal, V., Reed, B.: Mick gets some (the odds are on his side) [satisfiability]. In:
Proceedings of the 33rd Annual Symposium on Foundations of Computer Science,
pp. 620–627. IEEE (1992)

http://www.maxsat.udl.cat/
http://www.maxsat.udl.cat/
http://dx.doi.org/10.1007/978-3-319-24318-4_4

The Normalized Autocorrelation Length of Random Max r-Sat 75

14. Coja-Oghlan, A.: The asymptotic k-sat threshold. In: Proceedings of the 46th
Annual ACM Symposium on Theory of Computing, pp. 804–813. ACM (2014)

15. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT
instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Hei-
delberg (2011)

16. Ding, J., Sly, A., Sun, N.: Proof of the satisfiability conjecture for large k. arXiv
preprint (2014). arXiv:1411.0650

17. Fontana, W., Stadler, P.F., Bornberg-Bauer, E.G., Griesmacher, T., Hofacker, I.L.,
Tacker, M., Tarazona, P., Weinberger, E.D., Schuster, P.: RNA folding and com-
binatory landscapes. Phy. Rev. E 47(3), 2083–2099 (1993)

18. Friedgut, E., Bourgain, J.: Sharp thresholds of graph properties, and the k-sat
problem. J. Am. Math. Soc. 12(4), 1017–1054 (1999)

19. Garćıa-Pelayo, R., Stadler, P.F.: Correlation length, isotropy and meta-stable
states. Physica D Nonlinear Phenom. 107(2), 240–254 (1997)

20. Goldberg, D.E.: Genetic Algorithms and Walsh Functions: A Gentle Introduc-
tion. Clearinghouse for Genetic Algorithms, Department of Mechanical Engineer-
ing, University of Alabama (1988)

21. Heckendorn, R.B., Rana, S., Whitley, D.: Polynomial time summary statistics for
a generalization of MAXSAT. In: Proceedings of the 11th Annual Conference on
Genetic and Evolutionary Computation, pp. 281–288. Morgan Kaufmann (1999)

22. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSAT: An efficientWeighted Max-SAT
solver. J. Artif. Intell. Res. (JAIR) 31, 1–32 (2008)

23. H. Hoos, H., Smyth, K., Stützle, T.: Search space features underlying the perfor-
mance of stochastic local search algorithms for MAX-SAT. In: Yao, X., et al. (eds.)
PPSN 2004. LNCS, vol. 3242, pp. 51–60. Springer, Heidelberg (2004)

24. Luo, C., Cai, S., Wu, W., Jie, Z., Su, K.-W.: CCLS: An efficient local search
algorithm for weighted maximum satisfiability. IEEE Trans. Comput. 64(7), 1830–
1843 (2014)

25. Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness
landscapes and some possible ways forward. Inf. Sci. 241, 148–163 (2013)

26. Mertens, S., Mézard, M., Zecchina, R.: Threshold values of random k-SAT from
the cavity method. Random Struct. Algorithms 28(3), 340–373 (2006)

27. Merz, P., Freisleben, B.: Fitness landscapes and memetic algorithm design. In:
Corne, D., Dorigo, M., Glover, F., Dasgupta, D., Moscato, P., Poli, R., Price, K.V.
(eds.) New Ideas in Optimization, pp. 245–260. McGraw-Hill, New York (1999)

28. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT
resolution. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, pp. 2717–2723. AAAI Press (2014)

29. Prügel-Bennett, A., Tayarani-Najaran, M.-H.: Maximum satisfiability: Anatomy of
the fitness landscape for a hard combinatorial optimization problem. IEEE Trans.
Evol. Comput. 16(3), 319–338 (2012)

30. Qasem, M., Prügel-Bennett, A.: Learning the large-scale structure of the MAX-
SAT landscape using populations. IEEE Trans. Evol. Comput. 14(4), 518–529
(2010)

31. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing.
Cliques Coloring Satisfiability Second DIMACS Implement. Chall. 26, 521–532
(1993)

32. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfi-
ability problems. In: Proceedings of the Tenth National Conference on Artificial
Intelligence, pp. 440–446. AAAI Press (1992)

http://arxiv.org/abs/1411.0650
http://arXiv.org/abs/1411.0650

76 D. Berend and Y. Twitto

33. Stadler, P.: Fitness landscapes. In: Lässig, M., Valleriani, A. (eds.) Biological Evo-
lution and Statistical Physics, pp. 183–204. Springer, Heidelberg (2002)

34. Sutton, A.M., Whitley, L.D., Howe, A.E.: A polynomial time computation of the
exact correlation structure of k-satisfiability landscapes. In: Proceedings of the
11th Annual Conference on Genetic and Evolutionary Computation, pp. 365–372.
ACM (2009)

35. Tompkins, D.A.D., Hoos, H.H.: UBCSAT: An implementation and experimenta-
tion environment for SLS algorithms for SAT and MAX-SAT. In: Hoos, H.H.,
Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 306–320. Springer, Heidel-
berg (2005)

36. Williams, C.P., Hogg, T.: Exploiting the deep structure of constraint problems.
Artif. Intell. 70(1), 73–117 (1994)

Tight Upper Bound on Splitting by Linear
Combinations for Pigeonhole Principle

Vsevolod Oparin1,2(B)

1 St. Petersburg Academic University, 8/3 Khlopina, St.Petersburg 194021, Russia
2 Steklov Institute of Mathematics at St. Petersburg,

27 Fontanka, St.Petersburg 191023, Russia
oparin.vsevolod@gmail.com

Abstract. The usual DPLL algorithm uses splittings (branchings) on
single Boolean variables. We consider an extension to allow splitting on
linear combinations mod 2, which yields a search tree called a linear
splitting tree. We prove that the pigeonhole principle has linear splitting
trees of size 2O(n). This is near-optimal since Itsykson and Sokolov [1]
proved a 2Ω(n) lower bound. It improves on the size 2Θ(n log n) for splitting
on single variables; thus the pigeonhole principle has a gap between linear
splitting and the usual splitting on single variables. This is of particular
interest since the pigeonhole principle is not based on linear constraints.
We further prove that the perfect matching principle has splitting trees
of size 2O(n).

1 Introduction

Splitting is a well known method for solving NP-hard problems. In the case of the
satisfiability problem for a Boolean CNF formula, the highly successful DPLL
algorithms are based on splitting [2,3]. DPLL works in the following way to
search for satisfying assignments for a CNF formula φ. The algorithm chooses a
variable x and a first value α to substitute. The algorithm substitutes x = α and
runs recursively on the simplified formula φ|x=α. If this does not succeed, it tries
φ|x=1⊕α. If there is no success again, the algorithm returns FAIL. Otherwise, it
returns a satisfying assignment.

There is extensive research on hard examples for DPLL algorithms. It is well
known that systems of linear equations mod 2, such as the Tseitin tautologies,
are hard for DPLL and resolution [1,4–6]. However, they can be quickly solved by
splitting on linear combinations mod 2. Thus it is natural to consider generalizing
DPLL to use linear splitting.

A linear splitting algorithm maintains a system of linear equations over F2.
Initially, the system is empty. Instead of choosing a single variable, the algorithm
chooses a linear form

∑
i αi · xi and a first value β. The algorithm adds the

equation
∑

i αi ·xi = β to the system and runs itself recursively. The second call
runs with the equation

∑
i αi · xi = 1 + β.

Research is partially supported by the Government of the Russian Federation under
Grant 14.Z50.31.0030.

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 77–84, 2016.
DOI: 10.1007/978-3-319-40970-2 6

78 V. Oparin

On every step of the recursion the algorithm checks three conditions before
splitting again.

– If the system is inconsistent, the algorithm backtracks. This condition can be
checked in polynomial time by Gaussian elimination.

– If the system violates any single clause, the algorithm backtracks. The system
violates a clause C = l1 ∨ l2 ∨ · · · ∨ lk, if for every i ∈ [k] the system plus
the equation li = 1 is inconsistent. All clauses can be checked in polynomial
time.

– If the system has exactly one solution, the algorithm returns a satisfying
assignment. This is also can be checked by Gaussian elimination.

Otherwise, the algorithm selects a linear form for the next splitting. The entire
execution tree is a binary tree called a linear splitting tree.

Several prior works combine linear substitutions and splitting. For example,
the recent algorithm of Seto and Tamaki [7] solves the satisfiability problem for
an arbitrary formula of linear size c ·n in 2(1−μc)·n steps using splitting by linear
forms. Kulikov and Demenkov [8] use a formula which is non-trivial up to the
linear number of linear substitutions to show a lower bound of 3n − o(n) for the
circuit complexity over the full binary basis.

Itsykson and Sokolov [1] provide a family of hard formulas for linear splitting.
In particular, they prove that the pigeonhole principle, where m pigeons fly to
n holes, has no linear splitting tree of size less than 2Ω(n). On the other hand, it
is known that splitting by single Boolean variables gives a tree of size 2O(n log n)

and this bound is tight [9]. So it is natural to ask whether the bound for the
pigeonhole principle with linear splitting is tight.

We answer this by showing that the pigeonhole principle has a linear splitting
tree of size 2O(n). The pigeonhole principle is not based on linear constraints, so
this gap between splitting by single variables and by linear forms is interesting.

We also consider the perfect matching principle built on arbitrary graphs.
Any graph of odd cardinality has a polynomial-size splitting tree [1], but nothing
is known about graphs of even cardinality. For an arbitrary n, we prove a 2O(n)

upper bound on splitting trees for graphs on n vertices.

2 Preliminaries

We will use the following notation: [n] = {1, 2, . . . , n}. Let X = {x1, . . . , xn}
be a set of variables that take values from F2. A linear form is a polynomial∑n

i=1 αi · xi over F2.
Consider a binary tree T with edges labeled by linear equalities. For every

vertex v of T we denote by ΦT
v the system of all equalities that are written along

the path from the root to vertex v.
A linear splitting tree for a CNF formula ϕ is a binary tree T with the

following properties. Every internal node is labeled by a linear form that depends
on variables from ϕ. For every internal node labeled by a linear form f , one of

Tight Upper Bound on Splitting by Linear Combinations 79

the incident edges going to the children is labeled by f = 0, and the other one
is labeled by f = 1.

For every leaf v of the tree exactly one of the following conditions holds: (1)
The system ΦT

v has no solution. We call such leaf degenerate. (2) The system
ΦT

v is satisfiable but violates a clause C of the formula ϕ. We say that such leaf
violates clause C. (3) The system ΦT

v has exactly one solution and the solution
satisfies the formula ϕ. We call such leaf satisfying.

A linear splitting tree may be viewed as a tree of recursive calls for the
algorithm solving SAT for the CNF formula ϕ. The algorithm maintains a system
of linear equations Φ and starts with a given formula ϕ and Φ = True. Given a
formula ϕ and a system of linear equations Φ, the algorithm looks for a satisfying
assignment of ϕ ∧ Φ. At every step the algorithm chooses a linear form f and a
value α ∈ F2 and makes two recursive calls: on the input (ϕ,Φ ∧ (f = α)) and
on the input (ϕ,Φ ∧ (f = 1 + α)).

The algorithm backtracks in one of the three cases: (1) The system Φ has no
solution; (2) The system Φ contradicts a clause C of the formula ϕ. (A system Ψ
contradicts a clause (l1 ∨ l2 ∨ · · · ∨ lk) iff for all i ∈ [k] the system Ψ ∧ (li = 1) is
unsatisfiable.) (3) The system Φ has a unique solution that satisfies ϕ. All three
cases can be checked in polynomial time.

Note that if it is enough to find merely one satisfying assignment, the algo-
rithm may stop at the first satisfying leaf. In the case of unsatisfiable formulas,
the algorithm must traverse the whole splitting tree.

Proposition 1 [1]. For every linear splitting tree T for a formula ϕ it is possible
to construct a splitting tree without degenerate leaves. The number of vertices in
the new tree is at most the number of vertices in T .

3 Upper Bound for the Pigeonhole Principle

Let we have m pigeons and n holes. Every pigeon should fly to at least one hole.
The pigeonhole principle states that if m > n, there exists a hole with at least
two pigeons inside.

We encode the reverse statement into an unsatisfiable CNF formula. For
i ∈ [m] and j ∈ [n] let xi,j be a variable such that the i-th pigeon flies to the
j-th hole iff xi,j = 1.

We encode the fact that the i-th pigeon flies somewhere by the clause
∨

j∈[n]

xi,j .

Also we encode, that the j-th hole accepts at most one pigeon by the set of
clauses

¬xi1,j ∨ ¬xi2,j

for every i1 �= i2 ∈ [m]
We denote the conjunction of all these clauses by PHPm

n . Obviously, the
formula PHPm

n is unsatisfiable if m > n.

80 V. Oparin

Theorem 1. For all m > n there exists a linear splitting tree for PHPm
n of size

2O(n).

Proof. The formula PHPn+1
n is a subformula of PHPm

n . So it is enough to build
a tree for PHPn+1

n only.
We construct the tree by induction on n. The base n = 1 is trivial.
For n > 1, we reduce PHPn+1

n to multiple copies of PHPn/2+1
n/2 . This is done

by building a linear splitting tree T of size 2O(n). Every leaf of T either will
violate one of the clauses or will correspond to an instance of PHPn/2+1

n/2 . (The

second kind of leaves will become the root of a tree for PHPn/2+1
n/2 .)

The logarithm LG(n) of the size of the whole splitting tree for PHPn+1
n can

be expressed by the inequality

LG(n) ≤ log(2O(n) · 2LG(�n/2�)) = O(n) + LG(�n/2�).

Hence LG(n) = O(n). So the size of the tree is 2O(n).
We split the pigeons into two almost equal parts L = [1, �(n + 1)/2�] and

R = [�(n + 1)/2� + 1, n + 1]. We refer to these parts as “left” and “right”,
respectively. For every hole j we define two linear forms:

LEFT(j) =
⊕

i∈L xi,j ,
RIGHT(j) =

⊕
i∈R xi,j .

The tree T starts with a full binary tree TQ of height 2n. Every branch in TQ

queries the values LEFT(j) and RIGHT(j) for every hole j. So TQ has 22n leaves.
T will be defined from TQ by replacing each leaf � of TQ with a polynomial-size
subtree T�. In each T�, all but possibly one of its leaves will be labeled by violated
clauses (see Fig. 1).

Fix a leaf � of tree TQ. For each hole j, we have fixed values of LEFT(j) and
RIGHT(j). There are four cases.

1. LEFT(j) = 1, RIGHT(j) = 1.
2. LEFT(j) = 0, RIGHT(j) = 1.
3. LEFT(j) = 1, RIGHT(j) = 0.
4. LEFT(j) = 0, RIGHT(j) = 0.

1. If Case 1 holds for any hole j, the splitting tree T� has size O(n2) and finds a
violated clause. T� can be described as a tree of recursive calls of the following
algorithm. First, we go through all pigeons in the left part and split by xi,j

for i ∈ L. Once xi,j = 1 is found, we go through the pigeons of the right
part and do the same until we find xi′,j = 1. Both variables exist since
LEFT(j) = RIGHT(j) = 1. Once two non-zero variables are found, we return
a violated clause.
Otherwise, we form T� by chaining together splitting trees Tj , one for each
hole j. Tj is formed depending on which of the Cases 2–4 holds.

Tight Upper Bound on Splitting by Linear Combinations 81

2. Suppose Case 2 holds, so LEFT(j) = 0. The leaves of the tree Tj either will
violate an injectivity clause for hole j or will ensure that no left pigeon flies
to hole j. The tree Tj has the following structure. For every left pigeon i we
split by the variable xi,j . If xi,j = 1, we can find a violated clause. Since
LEFT(j) = 0, there must be another xi′,j = 1 for i′ ∈ L. We split by xi′,j for
every pigeon i′ ∈ L\{i} and find a violated clause.
Otherwise, the values for all left pigeons i ∈ L are zero. In this case, we come
to a leaf at which we know no left pigeon flies to the j-th hole.

3. Suppose Case 3 holds, so RIGHT(j) = 0. The tree Tj is formed dually as
above, and each leaf of Tj either will violate an injectivity clause for hole j
or will ensure that no right pigeon flies to hole j.

4. Suppose Case 4 holds, so both LEFT(j) = 0 and RIGHT(j) = 0. Tj is formed
as in the previous two cases, but now we split on xi,j for all pigeons i. Each
leaf of Tj either will violate an injectivity clause or will ensure that no pigeon
flies to hole j.

TQ

polynomial-size trees

PHPm1
�n/2� PHPm2

�n/2� PHPm3
�n/2� PHPm4

�n/2�

T

Fig. 1. Tree structure for PHPm
n . The small polynomial-size trees contain trees Tj

chained together.

By design every tree Tj has exactly one leaf not labeled by a violated clause.
We call such a leaf free. We connect all trees Tj each to the next one using free
leaves, forming a chain of trees. The chain of trees forms the tree T� and has size
O(n3). We attach chain T� to the leaf �.

The last tree in the chain has exactly one free leaf. At this leaf if any hole
j has LEFT(j) = 0, then no pigeon flies there from the left part L. Likewise,
if any hole j has RIGHT(j) = 0, then no pigeon flies there from the right part
R. We separate holes into two disjoint parts: the first part has the holes j with
LEFT(j) = 1, the second part has the holes j with RIGHT(j) = 1. The pigeons
in L can fly only to the first part, the pigeons in R can fly only to the second
part.

We show that at least one part of holes is less than the number of pigeons
that fly there. Let hl and hr be the number of holes with LEFT(j) = 1 and
RIGHT(j) = 1, respectively. We prove that either hl < |L| or hr < |R| by
contradiction. Suppose hl ≥ |L| and hr ≥ |R|. Since the sets of holes of the
subformulas are distinct, hl + hr ≤ n.

82 V. Oparin

So
n ≥ hl + hr ≥ |L| + |R| = n + 1,

which is impossible.
Since L and R are less than
n/2�, we can take a set of holes and pigeons

that form a formula PHP
n/2+1
n/2 and attach a tree for this formula to the free

leaf of the chain (see Fig. 1).

4 Upper Bound on the Perfect Matching Principle

In terms of CNF encoding, the perfect matching principle is similar to the pigeon-
hole principle. The formula PMPG, built on an arbitrary graph G = 〈V,E〉,
encodes that every vertex has exactly one edge, taken into the matching. For-
mally, we provide a variable xe for each edge e ∈ E. For every vertex v we encode
that there exists at least one edge taken into the matching:

∨

u∈V :(u,v)∈E

x(u,v).

Also for every pair of edges (u, v) and (w, v) with a common endpoint v we
encode, that they can not be both taken into the matching:

¬x(u,v) ∨ ¬x(w,v).

The formula PMPG is the conjunction of all these clauses. Obviously, if the graph
G has no perfect matching, the formula is unsatisfiable.

Itsykson and Sokolov proved the following proposition.

Proposition 2 [1]. Let G be a graph on an odd number of vertices. Then the
formula PMPG has a splitting tree of a polynomial size.

Using Theorem 1 and Proposition 2, we prove the following theorem. Note
that n can be even.

Theorem 2. Let G = 〈V,E〉 be a graph on n vertices, which has no perfect
matching. Then the formula PMPG has a splitting tree of the size 2O(n).

Proof. We use Tutte’s criterion to prove the theorem.

Criterion 1 (Tutte, 1947). A graph G has a perfect matching iff for any set
S ⊆ V the following statement holds: o(G − S) ≤ |S|, where G − S denotes
the graph G without vertices of the set S and o(G − S) denotes the number of
connected components with odd cardinality in the obtained graph.

We reduce the problem to the pigeonhole principle. Suppose the graph G
has no perfect matching. Let S ⊆ V be a set such that |S| < o(G − S).

Tight Upper Bound on Splitting by Linear Combinations 83

Let v1, v2, · · · , vn be the vertices of the set S and C1, C2, · · · , Cm be the odd-
cardinality connected components of the graph G − S. For every vertex vj and
connected component Ci we introduce a variable

yi,j =
⊕

(u,vj)∈E,u∈Cj

xu,vj
.

By the criterion m > n. Let us construct a formula PHPm
n , built on y’s, and

build a splitting tree Ty of size 2O(n) as it was done in Theorem 1. Every node
in the tree Ty has a linear form on y’s.

We build a tree Tx using the structure of Ty. We expand all y’s into the xor
of x’s. At some nodes of Tx we may have empty linear forms: no edge connects
a vertex of S and a connected component of G − S. In this case, one of the
outgoing edges is labeled by the equation 0 = 1. We truncate the corresponding
subtree since the system becomes inconsistent.

We replace all leaves of Ty by polynomial-size trees that finds violated clauses
of PMPG. Fix a leaf � of Ty labeled by a clause C�. We replace corresponding
leaf of Tx by a tree T�. The structure of T� depends on clause C�. There are two
possible cases.

1. Clause C� is of type ¬yi1,j∨¬yi2,j . Then there exist two connected components
Ci1 and Ci2 and vertex vj ∈ S s.t. yi1,j = 1 and yi2,j = 1.

2. Clause C� is of type
∨

j yi,j . Then there exists connected component Ci s.t.
yi,j = 0 for every vertex vj ∈ S.

1. We have at least two edges in the matching coming to the vertex vj . Tree T�

corresponds to the recursive tree of the following algorithm that finds these edges.
Check every edge e between vj and Ci1 . Once the edge e1 with xe1 = 1 is found,
switch to the second component Ci2 and repeat the search. Once the second edge
e2 with xe2 = 1 is found, return falsified clause ¬xe1 ∨ ¬xe2 . Both edges exist
since yi1,j =

⊕
(u,vj)∈E,u∈Ci1

x(u,vj) = 1 and yi2,j =
⊕

(u,vj)∈E,u∈Ci2
x(u,vj) = 1.

Tree T� has size O(n2).
2. We have yi,j = 0 for every vj ∈ S. It means that either xu,v = 0 for every

u ∈ Ci and v ∈ S or there are at least two x(u,vj) = 1 for a fixed vertex vj .
First, we ensure that the variables xu,v = 0. Tree T� begins with a splitting

tree Ti that corresponds to the following algorithm. The algorithm goes through
all variables xe for all edges between S and Ci. Once, the algorithm finds x(u,vj) =
1 for a vertex vj , it starts to look for the second x(u′,vj) = 1 for all u′ ∈ Ci\{u}.
There must exist such a variable since yi,j =

⊕
(u,vj)∈E,u∈Ci

x(u,vj) = 0. Once
the variable is found, the algorithm returns a violated clause.

If all variables are zero, we end up at a free leaf of Ti where Ci has no outgoing
edge taken into the matching. We consider Ci as a graph of the odd-cardinality
and use Proposition 2 to get a polynomial-size splitting tree TCi

. We attach TCi

to the free leaf of tree Ti forming T�.

84 V. Oparin

5 Open Question

Tight bounds on splitting trees for perfect matching is still an open question.
Itsykson and Sokolov provided polynomial-size splitting trees for graphs on odd
number of vertices. We have just proved, that formula built on an arbitrary
graph has a splitting tree of size 2O(n). It is an interesting question if the formula
PMPG has exponential lower bounds for arbitrary graphs or even such case can
be solved with polynomial-size splitting trees.

Acknowledgements. The work is performed according to the Russian Government
Program of Competitive Growth of Kazan Federal University. The author is grateful
to Dmitry Itsykson for fruitful discussions and to Sam Buss for valuable advices that
improve readability of the paper.

References

1. Itsykson, D., Sokolov, D.: Lower bounds for splittings by linear combinations. In:
Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS,
vol. 8635, pp. 372–383. Springer, Heidelberg (2014)

2. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5, 394–397 (1962)

3. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7, 201–215 (1960)

4. Tseitin, G.S.: On the complexity of derivation in the propositional calculus. Zapiski
nauchnykh seminarov LOMI 8, 234–259 (1968). English translation of this volume:
Consultants Bureau, N.Y., 1970, pp. 115–125

5. Urquhart, A.: Hard examples for resolution. JACM 34(1), 209–219 (1987)
6. Alekhnovich, M., Hirsch, E.A., Itsykson, D.: Exponential lower bounds for the run-

ning time of DPLL algorithms on satisfiable formulas. J. Autom. Reasoning 35(1–3),
51–72 (2005)

7. Seto, K., Tamaki, S.: A satisfiability algorithm and average-case hardness for for-
mulas over the full binary basis. In: 2012 IEEE 27th Annual Conference on Com-
putational Complexity (CCC), pp. 107–116, June 2012

8. Demenkov, E., Kulikov, A.S.: An elementary proof of a 3n-o(n) lower bound on the
circuit complexity of affine dispersers. In: Murlak, F., Sankowski, P. (eds.) MFCS
2011. LNCS, vol. 6907, pp. 256–265. Springer, Heidelberg (2011)

9. Dantchev, S., Riis, S.: Tree resolution proofs of the weak pigeon-hole principle. In:
16th Annual IEEE Conference on Computational Complexity, pp. 69–75 (2001)

Satisfiability Solving

Extreme Cases in SAT Problems

Gilles Audemard1 and Laurent Simon2(B)

1 CRIL, Artois University, Arras, France
audemard@cril.fr

2 LaBRI, University Bordeaux, Bordeaux, France
lsimon@labri.fr

Abstract. With the increasing performance of SAT solvers, a lot of dis-
tinct problems, coming from very disparate fields, are added to the pool
of Application problems, regularly used to rank solvers. These problems
are also widely used to measure the positive impact of any new idea.
We show in this paper that many of them have extreme behaviors that
any SAT solvers must cope with. We show that, by adding a few, sim-
ple, human-readable, indicators, we can let Glucose choose between
four strategies to show important improvements on the set of the hard-
est problems from all the competitions between 2002 and 2013 included.
Moreover, once the SAT solver has been specialized, we show that a
new restart polarity policy can improve even more the results. Without
the first specialization step mentioned above, this new and effective pol-
icy would have been jugged inefficient. Our final Glucose is capable of
solving 20 % more problems than the original one, while speeding up also
UNSAT answers.

1 Introduction

In the late 90’s, benchmarks used for SAT solvers evaluations were often gathered
under the same pool of problems. With the introduction of CDCL solvers [11,
17,18] a few years later (and their specialized data structure for huge problems)
appeared the need to partition them into random problems, “hand crafted”
problems (designed to give solvers a hard time) and “industrial” problems. It
was clear that techniques developed in each category had to be fundamentally
distinct [7,10,13]. And so, the first SAT competition (in 2002) proposed to use
this partitioning to award solvers in a satisfying way [6]. This high-granularity
partitioning remains a standard in the community.

However, with the increasing interest in SAT technologies, a number of new
problems were reduced to SAT, coming from distinct areas (e.g. biology, cryp-
tography, graph problems, factorization, hardware/software verifications,...). All
non random, non handcrafted problems were considered under the same pool of
“Application” problems [5], even if the pool offer a high discrepancy in problems
structures. This would not be problematic if the practical SAT field was not so
much driven by empirical results: any new idea must be validated by an increas-
ing number of solved instances. Moreover, each competition or race takes place

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 87–103, 2016.
DOI: 10.1007/978-3-319-40970-2 7

88 G. Audemard and L. Simon

every year, with its own benchmarks selection rules. And thus, a new idea can
be very appealing one year, and uninteresting one year before or one year after,
depending on the selected problems.

In this paper, we show that the initial partitioning into “applications” prob-
lems can be counter-productive. It is partially based on our experience with
Glucose [2–4] and in the last developments of SAT solvers [8,9,19,23] where a
number of different techniques are embedded into single core SAT engines. With-
out any benchmark specialization technique, we were almost unable to improve
Glucose performances on the whole set of distinct problems. In most of the
cases, what was gained on one side was lost on the other. Moreover, once we
were able to specialize Glucose for only 4 typical use cases, we were able to
develop an additional technique to increase its performances. In total, by mixing
the two new techniques presented in this paper, we were able to solve 20 % more
problems on all the hardest problems found in the literature from 2002 to 2013,
included, which is a one-year unseen improvement in the history of Glucose.

The contributions of this paper are twofold. Firstly, we show that a lot of
series of problems found in the last competitions show unusual SAT engine
regimes. We ran Glucose on a large number of difficult benchmarks and gath-
ered many data during the search, such as the number of decisions between
each conflict, the depth when a conflict occurs, the number of glue clauses
learnt... We show that many families of benchmarks (benchmarks from the
same generator/problem encodings) exhibit extreme behaviors, sometimes well
beyond any initial guess. By focusing on only 3 extreme cases, we were able to
adapt Glucose search parameters and techniques. Secondly, once adaptation
is included in the general Glucose engine, it opens rooms for further improve-
ments: the second contribution of this paper is a specialized phase cache mecha-
nism [21] used only when restarting. This new phase cache scheme is motivated
by a number of experimentations showing that the phase can be partitioned into
two forces (one for SAT and one for UNSAT), casting new lights on a funda-
mental mechanism of CDCL SAT solvers. What is striking in our results is that
this mechanism seems uninteresting on the original Glucose solver but shows
a clear improvement on the new adaptative Glucose.

In the first part of the paper, we show, Sect. 2 that a number of problems have
extreme behaviors. We also introduce Glucose adaptation policy in this section.
In the Sect. 3, we present the new phase cache scheme, motivated by empirical
evidences studying the role of the phase on SAT problems. The Sect. 4 presents
the empirical evaluations of the new techniques proposed in this paper, pointing
out that different benchmarks selections can be misleading. Before concluding,
Sect. 6, we discuss our results Sect. 5 in front of recent trends in SAT solving.

2 SAT Benchmarks: On Dealing with Many Extreme
Cases

As we will show in this section, the set of benchmarks we consider in SAT contests
is full of outliers. These special problems are not exceptions by themselves. They

Extreme Cases in SAT Problems 89

belong to particular series of outliers. It was already pointed out in [5] that
problems can be partitioned into buckets, depending on their origin. However,
these buckets were proposed w.r.t. the origin of problems (crypto, hardware
verification, . . .) and not with respect to the solver’s behavior on them. These
series of outliers may be problematic: a simple serie containing many benchmarks
can completely change the results of a contest, or, more importantly, give a
wrong feedback of a new idea to be tested against traditional testbeds. This will
be discussed in detail Sect. 5.

In order to properly detect outliers, we gathered all industrial/application
instances from all previous known competitions from 2002 to 2013, included and
done our best to remove duplicate problems. We obtained a first set of 2,632
problems. In the first part of this paper, we kept only problems not solved in
100,000 conflicts, after preprocessing (we used Minisat Satelite build-in pre-
processing) and gathered a set of statistics at this point. Using preprocessing
allowed to solve many problems by itself but we think that CDCL solvers are
typically launched on pre-processed SAT formulas and thus we need to study
their behavior on simplified formulas. We obtained a set of 1,164 not trivial prob-
lems to study (66 % of the original problems are trivially solved). The current
section is based on the study of these 1,164 problems1.

2.1 Outliers Everywhere

In the following, we report the distribution of some characteristic measures we
chose as witnesses of the underlying mechanisms operating during the SAT solver
run. These measures are the number of decisions levels, the number of decisions
between two conflicts, the number of successive conflicts, the number of non
binary glue clauses and the number of unit propagations performed during the
search.

Decision Levels. The first indicator we propose to observe is the decision level
at which conflicts are found. We averaged them for each of the 1164 formulas
(after 100,000 conflicts) and reported the distribution of these values Fig. 1.
10 % of problems have conflicts occurring with more than 400 decisions and
10 % with less than 30. Clearly enough, we cannot expect a CDCL solver to
have the same behavior on these two kinds of problems. We rather could expect
that a technique developed for one extreme will not work for the other (and
vice-versa). For instance, it is questionable to systematically use Clause Learning
when decision levels are smaller than a few dozens. More interestingly, most of the
outliers are in fact families of problems: the set of benchmarks with the highest
decision levels are hwmcc12miters (from competition 2013), li-test4 (2003), 9dlx-
vliw (2004). With the lowest decision levels, we find families longmult (2008),
desgen-gss (2009), kummling-grosmann-ctl (2013), traffic (2011), eq.atree.braun
(2007). It is very interesting to notice that some hard problems may exhibit an
1 The list of problems with additional informations are available at http://www.labri.

fr/perso/lsimon/sat16.

http://www.labri.fr/perso/lsimon/sat16
http://www.labri.fr/perso/lsimon/sat16

90 G. Audemard and L. Simon

Fig. 1. Average Decision Levels at which conflicts were reached (over all the problems
taking more than 100,000 conflicts to solve). Note that the Y-axis is a log axis.

average number of decision of less than 20 levels, showing a more “combinatoric”
structure.

Number of Decisions per Conflicts. Another very simple measure is the
total number of decisions made during the first 100,000 conflicts. This measure
approximates the number of decisions made between two successive conflicts
(if we forget about restarts). A large number should identifies problems where
conflicts are somehow far away from each others. Figure 2 plots the distribution
of these values. It is striking to notice that if half of the benchmarks have less
than 3 decisions per conflicts to make, 10 % of the benchmarks have more than
20 decisions between two successive conflicts, which is surprisingly large. Also, a
large number of problems have only one decision per conflict, on average. Clearly
enough, this shows a large discrepancy in the intrinsic structure of problems. Let
us notice here that this measure may be a little bit biased at the start of the
search, where a lot of decisions are based on uninitialized heuristics values.

Let us focus on families of outliers instances. The sets of instances bivium
(2013), hitag (2013), par32 (2002), desgen-gss (2009) have less than 1.1 decisions
per conflicts on average. Those benchmarks have a clear “combinatoric” behav-
ior, which is consistent with their origin. In any cases, we cannot expect the
conflict analysis to give very good insights in terms of backjump information.
At the opposite, we find the hwmcc12miters (2013), li-test4 (2003), 9dlx-vliw
(2004) with 30 to 3000 decisions between conflicts, which is really above any
expectation.

Number of Successive Conflicts. Figure 3 reports the number of successive
conflicts, i.e. conflict directly occurring after another conflict, without decision.
A high number of successive conflicts may point out problems on which res-
olution/FUIP is not powerful enough to analyze conflicts. This figure is less

Extreme Cases in SAT Problems 91

Fig. 2. Average Number of Decisions per conflicts over all the problems taking more
than 100,000 conflicts to solve (total number of decisions divided by 100,000). The
Y-axis is a log axis.

Fig. 3. A successive conflict is a conflict directly occurring after another conflict, with-
out decision. The Y-axis is a log axis.

pathological than the first two ones we reported above but the 10 first and 10
last percents clearly exhibit extreme behaviors. The low values for this number
are all the nossum-sha1 (2013) problems (around 30,000), followed by the very
hard MD5 (2014) problems (around 32,000). At the opposite, the highest vales
are typically observed for vmpc (2006) and bio-rpcl-xits (2009). Beside the 20 %
of outliers we identified here, it was surprising to see that, for all problems, at
least 30 % of conflicts are obtained without further decision2, which is a lot.

2 This observation was originally pointed out by Lakhdar Säıs (CRIL, Lens) during
one of the National ANR-Funded project “UNLOC” in 2010.

92 G. Audemard and L. Simon

Fig. 4. Number of Non-binary Glues Clauses. The Y-axis is a log axis.

Non-binary Glue Clauses. Glue clauses are one of the key ingredients of
Glucose. However, some problems have a lot of binary learnt clauses (that are
trivially also glue clauses). Measuring the number of non binary glue clauses may
give additional hints on the structure of the problem. Moreover, the strategy of
Glucose forces the solver to keep all glue clauses forever, whereas for a typical
CDCL solver, only binary clauses are kept forever. Thus, we could expect prob-
lems with a lot of non binary glue clauses to be well suited for Glucose. Figure 4
reports the cumulative distribution of this measure. The Homer (2002), stable
(2014), ndhf-xits (2009) have 0 pure glue clauses in the first 100,000 conflicts.
The bivium (2013) have no more than 128 pure glue clauses and the hitag (2013)
at most 280 (those two families of problems are typically hard for Glucose).
We can also report a lot of kummling-grosmann-ctl (2013) and carseq-pb (2013)
ones. At the opposite, the ibm-SAT-dat-k (2002–2012) problems have a very
large number of true glue clauses (around 20,000). We typically find here BMC
problems from the industry (goldberg-bmc). Note that ibm-SAT-dat-k problems
are also the problems that produced the more binary clauses. Interestingly, the
goldberg-bmc2-cnt10 problem (2002) produced 45,122 glue clauses (with 15,926
binary clauses). It’s almost half of the learnt clauses that are glues.

Unit Propagations. A well known measure for the performance of SAT solvers
is their ability to handle unit propagations. However, what we report here is
the high discrepancy of this number, depending on series of problems. Figure 5
reports the distribution of the number of propagations done during the first
100,000 conflicts. Here again, many discrepancies can be reported. The smallest
values are from Homer (2002), stable (2014), aes (2011). The largest values
are for atco (2014), arcfour (2013), hwmcc12miters (2013), ibm-sat-dat, ACG
(2009) and gss (2009). On these extreme values we have mores than 10,000
propagations per conflicts, which is, once again, beyond any initial guess we
could have. To solve this kind of problems, we should probably use a more

Extreme Cases in SAT Problems 93

Fig. 5. Total Unit Propagations fired during the first 100,000 conflicts to solve. The
Y-axis is a log axis.

sophisticated preprocessing, taking into account equivalences between literals
for instance, or use failed literal probings [25].

2.2 A Few Other Measures

We report Table 1 a selection of other measures we tested, to emphasize that
on most of mesures we tried extreme behaviors can be observed. BJ means
Backjump level (number of decision levels cancelled after conflict analysis), DL
is the decision level depth, where conflict occurred, LBD is the average LBD
value of learnt clauses, Size their size, BR the number of Glucose blocked
restart, FUIPisDEC is the percentage of conflicts where the FUIP literal was
the last decision. As we can read on the table, a number of these measures have
impressive skewness and kurtosis values, which typically witnesses the existence
of extreme values.

Table 1. Summary of some other measures performed on the 1,164 instances.

Measure BJ DL LBD Size BR FUIPisDec

Min 1.05 10.81 4.17 5.28 0 24%

Max 3154.9 8559.46 83.81 3395.46 1730 91%

Median 3.3 86.69 10.45 25.51 298.5 61%

Mean 24.57 218.29 14.28 74.02 344.54 63%

St. Dev. 194.73 623.29 11.61 242.35 339.80 12%

Skewness 12.69 8.98 3.20 9.01 1.51 0.34

Kurtosis 174.34 99.02 14.70 100.68 6.04 2.33

94 G. Audemard and L. Simon

2.3 Synthesis: Choosing the Proper Strategy

We showed above the high discrepancy of CDCL behaviors on so called “Applica-
tion” benchmarks. It may not be realistic, or even counter-productive, to expect
a general CDCL approach to be efficient on all problems with the same parame-
ters/techniques. We thus decided to focus the tuning of Glucose on each set
of extreme problems, independently. Once we identified sets of typical outliers,
we tried an important set of parameters and methods on each set, separatly. We
report here the final configuration that showed the best results.

Low Decision Levels. For this kind of problem, Chanseok [19] strategies have
were the best ones. We thus kept all the clauses until LBD 4 and used his
reduction strategies. In this strategy, all clauses with LBD<4 are kept and only
a few clauses are kept at each reduction, based on their activity in conflict
analysis (original Minisat strategy). By using this, we were able to solve 20
(over 30) Bivium/Hitag additional problems (the original Glucose was only
able to solve 1 of these problems).

Let us point out here the differences between our approach and the one
proposed in [19]. First, we don’t focus on the SAT vs UNSAT supposed status of
the formula. Second, we don’t launch 2 separate method on the same instance.
The original method in [19] alternates between 2 regimes. Here, we finally have
only one strategy, once decided.

Successive Conflicts. If this number is low, this is typically nossum and MD5
problems. In this case, it has been also reported [19] that a Luby restart [15] and
a very high VSIDS value (0.999 instead of 0.95) is efficient. We were not able to
solve any addition MD5 benchmarks (they are all very hard) but our parameters
allowed to solve 43 nossum instead of 18 in the original Glucose (+25 benchs).

If this number is high, then we experimented a set of parameters to target
VMPC problems. Those cryptographic problems are very hard to solve. We
generated a set of easier problems to experiment with. On our set, we add a few
additional options. We implemented a strategy in the idea of minisat-blbd
where restarting is considered as a way to diversify the search, by forcing the
first descent after a restart to be randomized. This method only seems to give
good results on this last set of problems.

Pure Glue Clauses. On the set of ibm problems, identified by a very high
number of pure glue clauses, we observed that a very low VSIDS constant of
0.91 is the best choice. The reason for this is still unknown.

3 Playing with the Phase

The phase saving mechanism is one of the essential components of SAT solvers
[21], especially when used with very fast restarts. However, there are still open

Extreme Cases in SAT Problems 95

questions about it. is the phase trying to search for a model (SAT) or a contra-
diction (UNSAT)? The phase is updated during conflict analysis (which would
suggest memorizing where contradictions occurred) but also during the back-
jump (which would suggest memorizing unharmful assignments, i.e. independant
ones). In the seminal paper [21] the ability of the phase to memorize partial solu-
tions of independant problems was pointed out, suggesting that the phase was
more a witness of partial solution found so far.

In this section, we investigate the question of an optimized phase caching
scheme. As we will show, all our attempts to use the phase to help searching
for a model (SAT) failed. However, we were able to specialize this simple cache
scheme for UNSAT search. In any cases, we think our experimental results will
cast a clearer view of the phase mechanisms.

3.1 A Phase for SAT, a Phase for UNSAT

The phase is a very simple cache scheme to choose a literal polarity when branch-
ing. When branching, the phase is only responsible for the polarity of the chosen
variable. If finding the good phase for SAT instances is as hard as solving it,
for UNSAT problems, finding a good phase is not as intuitive. We propose to
split the phase updates into two typical cases: (1) when the assignments were
responsible for a conflict and (2) when they were independent of the conflict.
The case (1) occurs during conflict analysis, on the last decision level, only on
variables seen during conflict analysis. All other assignments made at the last
decision level, not seen during conflict analysis, are variables propagated but not
implied in the conflict. Those last assignments can be considered as unharmful
and belong to case (2). The other set of unharmful assignments are the variables
assigned at a decision level between the last decision level and the backjump level
(strictly). Those variables were conflict independent. Let’s write phaseUNSAT the
specialized phase for the cases (1) and phaseSAT the phase for cases (2). We
will call polarity the standard phase cache scheme (phase updated at every
unassignment).

As an example, we illustrate the above 2 cases Fig. 6. We represent a formula,
and a sequence of decisions/propagations leading to a conflict (level 4). Conflict
analysis involves variables x9, x13, x7 from last decision level and x3 and x8 that
belong to the asserting clause. All these literals update their phaseUNSAT to
their respecting values when backjumping. Conversely, literals x10, x12 from last
decision level and x2, x11 are unassigned after backjumping and do not partici-
pate to conflict analysis. Those variables update their phaseSAT. All the above
variables update their polarity when backjumping. A last note: we also refined
our phaseSAT/phaseUNSAT updates to take into account the frequent restarts.
Obviously, when restarting, we don’t have any information about the harmful-
ness of any assignment. Thus, when restarting, no phaseSAT or phaseUNSAT

updates are performed (which is not the case for polarity).

96 G. Audemard and L. Simon

c1 = x1 ∨ x4

c2 = x1 ∨ x3 ∨ x8

c3 = x1 ∨ x8 ∨ x12

c4 = x2 ∨ x11

c5 = x3 ∨ x7 ∨ x13

c6 = x3 ∨ x7 ∨ x13 ∨ x9

c7 = x8 ∨ x7 ∨ x9

c8 = x7 ∨ x10

c9 = x7 ∨ x1 ∨ x12

DL 1 x1 x1, x4[c1]

DL 2 x3 x3, x8[c2], x12[c3]

DL 3 x2 x2, x11[c4]

DL 4 x7 x7, x13[c5], x10[c8], x12[c9], x9[c6], x9[c7]

Resolution Steps:
β1 = res(x9, φ7, c6) = x3 ∨ x8 ∨ x7 ∨ x13

β = res(x13, β1, c5) = x7 ∨ x3 ∨ x8

Fig. 6. Sequence of decisions (decision literals are in circle nodes) followed by propa-
gations (in rectangle). Each clause reason of a propagation is in brackets. A conflict
occurs at decision level 4. Resolutions steps are also displayed. The backjump level is
equal to 2. The asserting literal is x7.

3.2 Comparing Phase Cache Values with the Final Models

We computed the phaseSAT/phaseUNSAT values for 573 hard problems (see
Sect. 4 for a description of those benchmarks) with a timeout of 10,000s. We
only obtained 123 SAT answers to be analyzed. For each of them, we compare
the final solution with the two above caching schemes. On Fig. 7 we report for
each formula, the number of phaseSAT values agreeing with the solution versus
the number of phaseUNSAT values also agreeing with the solution (points below
the line y = x). We also report the number of phaseSAT values that disagree
with the solution versus the number of phaseUNSAT values that disagree with
the solution (points above the line (y = x). It is striking to notice how clear
this figure is. The phaseSAT is always much more close to the solution than the
phaseUNSAT. Moreover, the phaseUNSAT much more disagrees with the solution
than the phaseSAT.

Let us notice here that some values for the phaseSAT/phaseUNSAT arrays
may not be initialized (if a variable is never seen during conflict analysis, its
phaseUNSAT value will be unknown). In this experiment, we only count values
for initialized values. Thus, phaseUNSAT values are the last polarity of a vari-
able seen during conflict analysis (if seen), and we may have counted much less
initialized values in phaseUNSAT than in phaseSAT (or vice-versa). This could
give the wrong feeling that one array is closer to the solution that the other (by
considering many more values). This is why we had to report the two scatter
plots Fig. 7 (one scatter plot cannot be deduced from the other one).

Extreme Cases in SAT Problems 97

Fig. 7. Comparison of the number of assignments in the final solution that
agree/disagree with phaseSAT or phaseUNSAT

3.3 A First Attempt for SAT. . . that Failed

We played with the phaseSAT polarity in order to improve Glucose perfor-
mances on SAT instances. We implemented the following two techniques:

– During the first descent after a restart, assign decision variables with respect
to the phaseSAT polarity: try to first get closer to a solution.

– Use the phaseSAT polarity when Glucose decides to postpone a restart,
when approaching a full assignment [4]: the number of decision levels is
suddenly increasing, meaning that a solution may be found, and may be
using a more SAT-related polarity would help to complete the current partial
assignment.

These two techniques were unsatisfactory. The number of solved instances
was approximatively the same for both of them. Of course, on some satisfiable
instances the gain was substantial, but as it is often the case, what was gain
on one side, was lost on the other. However, it is important to notice that this
technique did not change the overall performances of Glucose on unsatisfiable
instances.

3.4 Refining the Phase for UNSAT, When Restarting

We first tried to replace the polarity scheme by the phaseUNSAT polarity
only. The results were clearly bad, showing that keeping the phaseSAT polarity
was important. However, the phaseUNSAT has a clear meaning: it indicates
where conflicts are. Thus, we only used this polarity during the first descent
after a restart, in the hope to reach conflicts even faster. The results were, this
time, clearly good. We report the detailed results of this new technique in the
next section (Sect. 4). As we will see in the following, however, results are highly
dependent of the selection of considered problems and, more intriguibly, the time
out.

98 G. Audemard and L. Simon

4 Experimentations

In this section we compare different combinations of Glucose, with and
without the adaptive tuning (denoted by A), and, with and without the
phaseUNSAT scheme (denoted by P). We add in this experiment the last ver-
sions of lingeling that participate to previous SAT competitions. Our results
may look a little bit disparate (we report results on 3 sets of benchmarks, with
different timeouts) but, as we will explain in the later, we had to deal with
surprising results that needed further investigations. Before starting to analyze
the results, let us note the lingeling-baq version we used is the Machine
Learning version, using auto-tuning and learning on the set of problems we used
(see Sect. 5).

Fig. 8. Comparing several versions of Glucose and lingeling on the set of 573
hard instances for Glucose. The table provides the number of SAT/UNSAT instances
solved, right part gives the classical cactus plot. Time limit is set to 3,000 s.

The first experiments is done on a subset of formulas coming from compe-
titions 2002 to 2013 included. Here, we selected 573 problems among the 2,632
ones and took only ones that cannot be solved in less than one minute with
Glucose-Syrup working on 12 cores3. Our goal here is to have hard, but not
so hard problems, suitable for exhaustive testing on a cluster of CPUs. We sim-
ply wanted to limit the number of short jobs requests. We limited the CPU
time to 3,000 s in this first experiment, which should be largely sufficient for our
purposes. Figure 8 shows the results. If we start to compare Glucose with and
without the phaseUNSAT scheme, we can see approximatively the same results.
Conversely, the adaptive tuning of Glucose seems promising, it can solve more
satisfiable and unsatisfiable instances than the classical version of Glucose.
When both components (A+P) are activated, we obtain an even stronger solver,
which is able to solve 43 more instances than the basic version of Glucose. It
3 More informations on this set of problems available at http://www.labri.fr/perso/

lsimon/sat16.

http://www.labri.fr/perso/lsimon/sat16
http://www.labri.fr/perso/lsimon/sat16

Extreme Cases in SAT Problems 99

is however surprising to see that the UNSAT phase component seems inefficient.
We do not have yet a satisfactory explanation for this.

The comparison with lingeling is also surprizing. The last version is
amazingly powerful on unsatisfiable instances, but performances fall down on
satisfiable ones. This last version uses an adaptive tuning trained on SAT’2014
benchmarks, which contains problems we used too in this experiment. It may be
possible that the adaptive behavior fails to classify satisfiable instances. On this
set of benchmarks, our last version of Glucose solves the most instances.

Fig. 9. Comparing several versions of Glucose and lingeling on SAT 2014 appli-
cation benchmarks. The table provides the number of SAT/UNSAT instances solved,
right part gives the classical cactus plot. Time limit is set to 10,000 s.

We were surprized by the very good results of our last version of Glucose
in comparison to lingeling-baq, especially because this version of lingeling
was trained using Machine Learning. We thus decided to investigate this. The
first thing to investigate is the increasing of the time out. The second thing was
of course to change the set of problems we considered.

Let us now focus on SAT 2014 competition benchmarks with a 10,000 s time
out, reported Fig. 9. Here again, playing with the phase seems useless without the
adaptive strategy of Glucose. However, the adaptive strategy always produces
strong results which is a very good result: our adaptative strategy was based on
benchmarks from 2002 to 2013, and it pays for this new set of problems.

On these set of benchmarks, around 210 have normal behaviors and around
40 were solved before the limit of 100,000 conflicts. Then, the adjustment is done
on a small set of benchmarks. Twenty of them have very low decision levels, and
Glucose adjusts its strategy in consequence (see Sect. 2.3). For thirty instances,
the tuning was due to low successive conflicts and for 6 of them, to the high
number of successive conflicts. Finally, none of the benchmarks exhibit a large
number of non binary glue clauses. Nevertheless, the adaptive tuning allows to
solve 12 more instances than the original version.

There is however a negative point to discuss: the activation of both compo-
nents (P and A) does not seem as effective as what we observed on the first

100 G. Audemard and L. Simon

set of benchmarks, with a small time out. Then, our first promising results are
a little counteracted here and, once again, we may just speculate some expla-
nation (see below). This is however partly due to the time limit, since with a
cutoff of 3,000 s, Glucose-A solves 217 instances and Glucose-A+P, 220. Of
course, our first set of benchmarks contains many different families of instances
and may be some of them are not represented here. It is quite visible that the
adaptive tuning of lingeling was adjusted on this set of benchmarks leading
to a very robust solver. But, here again, the results of lingeling on satisfiable
instances are not as impressive as on unsatisfiable ones (Fig. 10).

Fig. 10. Comparing several versions of Glucose and lingeling on SAT 2015 appli-
cation benchmarks. Table provides the number of SAT/UNSAT instances solved, right
part gives the classical cactus plot. Time limit is set to 10,000 s.

The last set of benchmarks comes from the SAT-RACE 2015, used with
a 10,000s cutoff. Results are quite comparable with the above one: the adap-
tive framework allows to solve few more instances and the combination of both
components seems, one more time, useless. Here again, the lack of diversity of
benchmarks may explain it but, more importantly, as reported by the shape of
the cactus plot, our strategy A+P pays for small time out. Our guess is that
by intensificating the search on UNSAT, our solver may be more greedy on
the search for an UNSAT proof. However, the learning mechanism could also
“repair” the phase s.t. after a while it reduce the differences between the two
approaches.

The tuning of lingeling provides less spectacular results than for the 2014
SAT competition one. Classification does not help so much the basis solver in
term of solved instances, but, it is much more faster with it. However, we still
experiment an important gain on small time outs (less than 3,000 s).

5 Discussion

Portfolio approaches exploit the fact that different solvers are better at solving
different kinds of problems. The exist for CSP (Constraint Satisfaction Prob-

Extreme Cases in SAT Problems 101

lems) [1,20], SAT [16,24] or either ASP (Answer Set Programming) [12]. After
an intensive offline training phase, these solvers use Machine Learning techniques
to choose the best solver to launch. Recently, most of the progresses observed
in the SAT field were partially due to benchmarks adaptations. For instance,
inprocessing techniques [14], uses a number of different techniques that can be
turned off on the fly if proved inadequate. Moreover, the recent success of [9]
is certainly due to solver specialization for different typical cases (however, this
last solver was not made publicly available by the author). More importantly,
in the SAT RACE 2015, at least two other solvers used benchmark recogni-
tion/adaptation. The first one is lingeling solver [8]. This version uses a k-
nearest neighbor (KNN) algorithm to classify a given benchmark (based on the
number of variables/clauses) inside one of the buckets instances of the SAT Com-
petition 2014. If the classifier agrees, then parameters are tuned in order to try
to use the best strategy with respect to the given bucket. The other solver that
used tuning mechanism is CryptoMinisat [23]. This solver also used machine
learning techniques [22] to choose, after 160,000 conflicts, one among the 13
different setup of the solver. The training phase was done on benchmarks from
previous competitions (2009, 2011, 2013).

Our work is related to these approaches but our final goal is distinct, written
in a more long-term view of SAT solver developments. We try to understand the
different SAT solver regimes and try to extract only human understandable ones.
By comparison, we use five measures to separate benchmarks in families, where
SatZilla uses more than fifty ones. Once those extreme cases were identified,
we proposed to work on each “bucket” of instance. We tried to propose new
techniques, designed to fit the observed behaviors (not all tried techniques are
reported in this paper but, for instance, we tried a number of specialized branch-
ing heuristics when we observed a small number of FUIP decision variables, as
reported Table 1, without success). This is not the same thing as trying as many
parameters as possible, blindly. A portfolio approach in the late 90’s will not have
found a parameter to change any DPLL solvers into a CDCL one. Moreover, our
approach is guided by the willing of understanding benchmarks characteristics.
Even if Machine Learning can outputs a decision tree for parameter tuning, we
think it is much more simple and understandable to talk about problems with
low decision levels, or large number of successive conflicts. We even think that
adapting CDCL solvers for this special case is an important direction for future
research.

6 Conclusion

It is very hard to find consistent ranking of solvers on different set of bench-
marks, even when considering only well established set of benchmarks used in
different SAT competition and SAT races. This is very problematic since, in the
SAT community, experimental evidences are often required for any new idea. In
this paper, we showed that a better partitioning of benchmarks is required. We
showed that the set of “application” problems is full of outliers, that must be

102 G. Audemard and L. Simon

specially targeted: more than just adapting current methods by playing on para-
meters, we need to develop new ideas to solve them efficiently. We thus propose
to use a partition method based on SAT solver regimes rather than the origin of
problems. We think that problems that, for instance, need less than 30 decisions
before conflicts should be attacked with the same, new, methods, whatever they
initially represent.

Based on the above observations, we proposed a very simple version of
Glucose, using only 3 special additional regimes that are human understand-
able. This version of Glucose (called adapt) is really strong on a set of hard
problems containing all the problems found in the literature from 2002 to 2013.
We also showed how efficient it is in the last sets of benchmarks (2015 in partic-
ular). Moreover, we were able to add a new phase policy on top of this version of
Glucose, which is very efficient on the hardest benchmarks from 2002 to 2013.
On this exhaustive set of interesting problems, our new version of Glucose is
capable of solving 20 % more problems, which is a one year unseen improvement
of Glucose.

Acknowledgments. Computer time was provided (1) the MCIA (Mésocentre de
Calcul Intensif Aquitain) of the Univ. of Bordeaux and of the Univ. of Pau and des Pays
de l’Adour and (2) the CRIL (Univ. d’Artois). The authors were partially supported
by the ANR-2016 “SATAS” ANR-15-CE40-0017 National French Project.

References

1. Amadini, R., Gabbrielli, M., Mauro, J.: Sunny: a lazy portfolio approach for con-
straint solving. arXiv preprint arXiv:1311.3353 (2013)

2. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Proceedings of IJCAI, pp. 399–404 (2009)

3. Audemard, G., Simon, L.: Glucose 2.1: Aggressive, but reactive, clause database
management, dynamic restarts (system description). In: Pragmatics of SAT 2012
(POS 2012), dans le cadre de SAT 2012, June 2012

4. Audemard, G., Simon, L.: Refining restarts strategies for SAT and UNSAT. In:
Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 118–126. Springer, Heidelberg
(2012)

5. Belov, A., Heule, M.J., Diepold, D., Järvisalo, M.: The application and the hard
combinatorial benchmarks in sat competition 2014. SAT COMPETITION 2014,
p. 81 (2014)

6. Le Berre, D., Simon, L.: The essentials of the SAT 2003 competition. In:
Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 452–467.
Springer, Heidelberg (2004)

7. Biere, A.: (p)lingeling. http://fmv.jku.at/lingeling
8. Biere, A.: Lingeling and friends entering the sat race 2015 (2015)
9. Chen, J.: Minisat bcd and abcdsat: Solvers based on blocked clause decomposition.

In: SAT RACE 2015 solvers description (2015)
10. Dubois, O., Dequen, G.: A backbone-search heuristic for efficient solving of hard

3-sat formulae. In: Proceedings of the Seventeenth International Joint Conference
on Artificial Intelligence, IJCAI, pp. 248–253 (2001)

http://arxiv.org/abs/1311.3353
http://arXiv.org/abs/1311.3353
http://fmv.jku.at/lingeling

Extreme Cases in SAT Problems 103

11. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

12. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M.T., Ziller, S.:
A portfolio solver for answer set programming: preliminary report. In: Delgrande,
J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 352–357. Springer,
Heidelberg (2011)

13. Heule, M., van Maaren, H.: March dl: Adding adaptive heuristics and a new
branching strategy. JSAT 2(1–4), 47–59 (2006)

14. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer, Hei-
delberg (2012)

15. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
In: Proceedings of ISTCS, pp. 128–133 (1993)

16. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm portfolios
based on cost-sensitive hierarchical clustering. In: Proceedings of the 23rd Inter-
national Joint Conference on Artificial Intelligence (IJCAI) (2013)

17. Marques-Silva, J., Sakallah, K.: GRASP - a new search algorithm for satisfiability.
In: ICCAD 1996, pp. 220–227 (1996)

18. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient SAT solver. In: Proceedings of DAC, pp. 530–535 (2001)

19. Chanseok, O.: Patching minisat to deliver performance of modern sat solvers (2015)
20. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-

based reasoning in an algorithm portfolio for constraint solving. In: Irish Confer-
ence on Artificial Intelligence and Cognitive Science, pp. 210–216 (2008)

21. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-
isfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 294–299. Springer, Heidelberg (2007)

22. Ross Quinlan, J.: C4. 5: programs for machine learning. Elsevier (2014)
23. Soos, M., Lindauer, M.: The cryptominisat-4.4 set of solvers at the sat race 2015

(2015)
24. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Satzilla: Portfolio-based algorithm

selection for sat. J. Artif. Intell. Res. 32, 565–606 (2008)
25. LeBerre, D.: Exploiting the real power of unit propagation lookahead. In: Proceed-

ings of SAT (2001)

Improved Static Symmetry Breaking for SAT

Jo Devriendt1(B), Bart Bogaerts1,2, Maurice Bruynooghe1,
and Marc Denecker1

1 KU Leuven – University of Leuven, Celestijnenlaan 300A, Leuven, Belgium
{jo.devriendt,bart.bogaerts,maurice.bruynooghe,

marc.denecker}@cs.kuleuven.be
2 Helsinki Institute for Information Technology HIIT,

Department of Computer Science, Aalto University, 00076 Aalto, Finland

Abstract. An effective SAT preprocessing technique is the construc-
tion of symmetry breaking formulas: auxiliary clauses that guide a SAT
solver away from needless exploration of symmetric subproblems. How-
ever, during the past decade, state-of-the-art SAT solvers rarely incorpo-
rated symmetry breaking. This suggests that the reduction of the search
space does not outweigh the overhead incurred by detecting symme-
try and constructing symmetry breaking formulas. We investigate three
methods to construct more effective symmetry breaking formulas. The
first method simply improves the encoding of symmetry breaking formu-
las. The second detects special symmetry subgroups, for which complete
symmetry breaking formulas exist. The third infers binary symmetry
breaking clauses for a symmetry group as a whole rather than longer
clauses for individual symmetries. We implement these methods in a
symmetry breaking preprocessor, and verify their effectiveness on both
hand-picked problems as well as the 2014 SAT competition benchmark
set. Our experiments indicate that our symmetry breaking preproces-
sor improves the current state-of-the-art in static symmetry breaking for
SAT and has a sufficiently low overhead to improve the performance of
modern SAT solvers on hard combinatorial instances.

1 Introduction

Hard combinatorial problems often exhibit symmetry. Eliminating symmetry
potentially boosts solver performance as it prevents a solver from needlessly
exploring isomorphic parts of a search space. One common method to elimi-
nate symmetries is to add symmetry breaking formulas to the problem speci-
fication [1,6], which is called static symmetry breaking. For the Boolean satis-
fiability problem (SAT), the state-of-the-art tool Shatter [3] implements this
technique; it functions as a preprocessor that can be used with any SAT solver.
Dynamic symmetry breaking, on the other hand, interferes in the search process
by adding symmetric versions of learned clauses [8,23] or by avoiding symmetric
choices [21].

Symmetry properties of a SAT problem are typically detected by first con-
verting the problem to a colored graph such that the graph’s automorphism
c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 104–122, 2016.
DOI: 10.1007/978-3-319-40970-2 8

Improved Static Symmetry Breaking for SAT 105

group corresponds to a symmetry group of the SAT problem. Subsequently, this
automorphism group is detected by tools such as Nauty [19], Saucy [15] or
Bliss [14].

Static symmetry breaking proceeds by adding formulas that exclude symmet-
ric assignments. A symmetry breaking formula is sound if it preserves at least
one assignment from each class of symmetric assignments and complete if it pre-
serves at most one assignment from each class. One sound symmetry breaking
constraint is the lex-leader constraint, which holds exactly for those assignments
lexicographically smaller than their symmetric image [6]. The conjunction of lex-
leader constraints for every symmetry in a symmetry group constitutes a com-
plete symmetry breaking constraint for that group. However, symmetry groups
tend to be too large to enforce lex-leader for each symmetry. Instead, partial
symmetry breaking adds lex-leader constraints only for a set of generators of the
group [18]. While effective for many symmetric problems, the pruning power of
partial symmetry breaking depends heavily on the chosen set of generators and
whether or not compositions of these generators are eliminated as well [16].

In this paper, we present BreakID,1 a symmetry breaking preprocessor for
SAT that follows in Shatter’s footsteps. BreakID sports several improvements
compared to Shatter, ranging from small “hacks” to avoid known problems,
as well as novel ideas to exploit a symmetry group’s structure. Three of these
improvements are investigated in-depth in this paper. Firstly, we evaluate a com-
pact CNF encoding of the lex-leader constraint. Secondly, we show how to detect
row interchangeability symmetry subgroups, for which a small set of generators
exists such that their lex-leader constraints do break the subgroup completely.
Thirdly, we show how to generate binary symmetry breaking clauses not based on
individual generators, but on algebraic properties of the entire symmetry group.
A common theme in the second and third improvement is to simultaneously
adjust the set of generators and the variable ordering, both needed to construct
lex-leader constraints.

We evaluate the proposed symmetry breaking improvements individually,
and verify the effectiveness of both Shatter and BreakID on 2014’s SAT
competition instances. From our experiments, we conclude that (i) more com-
pact CNF encodings have a small impact on runtime and memory consumption,
(ii) row-interchangeability detection improves performance on several problems,
(iii) group-based binary symmetry breaking clauses are effective for a particular
class of problems, (iv) BreakID outperforms Shatter on most benchmarks,
and (v) symmetry breaking leads to significant performance gains on the hard
combinatorial instances of 2014’s SAT competition.

After some preliminaries in Sect. 2, we present the improvements in Sects. 3, 4
and 5 respectively. Section 6 describes how these ideas are combined in BreakID
and Sect. 7 contains the experimental evaluation. We conclude in Sect. 8.

1 Pronounced “Break it!”.

106 J. Devriendt et al.

2 Preliminaries

Satisfiability problem. Let Σ be a set of Boolean variables and B = {t, f} the set
of Boolean values. For each x ∈ Σ, there exist two literals; the positive literal
denoted by x and the negative literal denoted by ¬x. The set of all literals over
Σ is denoted Σ. A clause is a finite disjunction of literals, and a formula is a
finite conjunction of clauses (as usual, we assume formulas are in conjunctive
normal form (CNF)). An assignment α is a mapping Σ → B. We extend α to
literals as α(¬x) = ¬α(x), where ¬t = f and ¬f = t. An assignment satisfies
a formula iff at least one literal from each clause is mapped to t by α. The
Boolean Satisfiability (SAT) problem consists of deciding whether there exists
an assignment that satisfies a propositional formula.

Group theoretical concepts. A permutation is a bijection from a set to itself. We
write permutations in cycle notation: (abc)(de) is the permutation that maps a
to b, b to c, c to a, swaps d with e, and maps all other elements to themselves.
A swap is a non-trivial permutation that is its own inverse. Permutations form
algebraic groups under the composition relation (◦). A set of permutations P
is a set of generators for a permutation group Π if each permutation in Π is
a composition of permutations from P . The group Grp(P) is the permutation
group generated by all compositions of permutations in P . The orbit OrbΠ(x)
of an element x under a permutation group Π is the set {π(x) | π ∈ Π}. The
support Supp(π) of a permutation π is the set of elements {x | π(x) �= x}. The
support Supp(Π) of a permutation group Π is the union of the supports of
permutations in Π. A group Π stabilizes an element x if x �∈ Supp(Π). The
stabilizer subgroup StabΠ(x) of a permutation group Π for an element x is the
group {π ∈ Π | π(x) = x}, or equivalently, the largest subgroup of Π that
stabilizes x.

Symmetry in SAT. Let π be a permutation of Σ. We extend π to clauses:
π(l1 ∨ . . . ∨ ln) = π(l1) ∨ . . . ∨ π(ln); to formulas: π(c1 ∧ . . . ∧ cn) = π(c1) ∧
. . . ∧ π(cn); to assignments: π(α)(l) = α(π(l)). A symmetry of a formula φ is a
permutation π of Σ that commutes with negation (i.e., π(¬l) = ¬π(l)) and that
preserves satisfaction to φ (i.e., π(α) satisfies φ iff α satisfies φ). A permutation of
literals π that commutes with negation and for which π(φ) = φ is a syntactical
symmetry of φ. Typically, only syntactical symmetry is exploited, since this
type of symmetry can be detected with relative ease. The practical techniques
presented in this paper are no exception, though all presented theorems hold for
non-syntactical symmetry as well.

Symmetry breaking. Symmetry breaking aims at eliminating symmetry, either
by statically posting symmetry breaking constraints that invalidate symmetric
assignments, or by altering the search space dynamically to avoid symmetric
search paths. A (static) symmetry breaking formula for SAT is presented in
Sect. 3. If Π is a symmetry group, then a symmetry breaking formula ψ is sound
if for each assignment α there exists at least one symmetry π ∈ Π such that

Improved Static Symmetry Breaking for SAT 107

π(α) satisfies ψ; ψ is complete if for each assignment α there exists at most one
symmetry π ∈ Π such that π(α) satisfies ψ [27].

3 Compact CNF Encodings of the Lex-Leader Constraint

A classic approach to static symmetry breaking is to construct lex-leader con-
straints.

Definition 1 (Lex-leader constraint [6]). Let φ be a formula over Σ, π a
symmetry of φ, �x an order on Σ and �α the lexicographic order induced by
�x on the set of Σ-assignments. A formula LLπ over Σ′ ⊇ Σ is a lex-leader
constraint for π if for each Σ-assignment α, there exists a Σ′-extension of α
that satisfies LLπ iff α �α π(α).

In other words, each assignment whose symmetric image under π is smaller,
is eliminated by LLπ. It is easy to see that the conjunction of LLπ for all π
in some Π ′ ⊆ Π is a sound (but not necessarily complete) symmetry breaking
constraint for Π.

An efficient encoding of the lex-leader constraint LLπ as a conjunction of
clauses is given by Aloul et al. [1], where each variable in Supp(π) leads to 2
clauses of size 3 and 2 clauses of size 4. Below, we give a derivation of a more
compact encoding of LLπ as a conjunction of 3 clauses of size 3 for each variable
in Supp(π), which is more compact and hence reduces the overhead introduced
by posting it. A similar encoding is presented by Sakallah [22] but has not been
experimentally evaluated before.

Theorem 1 (Compact encoding of lex-leader constraint). Let π be a
symmetry, let Supp(π) = {x1, . . . , xn} be ordered such that xi �x xj iff i ≤ j
and let {y0, . . . , yn−1} be a set of auxiliary variables disjoint from Supp(π). The
following set of clauses is a lex-leader constraint for π:

y0 yj ∨ ¬yj−1 ∨ ¬xj 1 ≤ j < n
¬yi−1 ∨ ¬xi ∨ π(xi) 1 ≤ i ≤ n yj ∨ ¬yj−1 ∨ π(xj) 1 ≤ j < n

Proof. Crawford et al. proposed the following lex-leader constraint [6]:

∀i : (∀j < i : xj ⇔ π(xj)) ⇒ ¬xi ∨ π(xi) (1)

Assuming f < t, this constraint expresses that the value of a variable xi must
be less than or equal to the value of π(xi) if for all smaller variables xj , xj has
the same value as π(xj). As such, it encodes a valid lex-leader constraint.

Aloul et al. [1] noticed that the antecedent (∀j < i : xj ⇔ π(xj)) is recursively
reified by introducing auxiliary variables yj :

yj ⇔ (yj−1 ∧ (xj ⇔ π(xj))) (2)

108 J. Devriendt et al.

where the base case y0 is fixed to be true. In essence, yj holds iff xk and π(xk)
have the same truth value for 1 ≤ k ≤ j. Eq. (1) then translates to:

y0 (3)
yj ⇔ (yj−1 ∧ (xj ⇔ π(xj))) 1 ≤ j < n (4)
yi−1 ⇒ ¬xi ∨ π(xi) 1 ≤ i ≤ n (5)

Note that by (5), if yj−1 holds, then ¬xj ∨ π(xj) holds. Hence, yj−1 ∧ (xj ⇔
π(xj)) simplifies to yj−1 ∧ (xj ∨ ¬π(xj)), and (4) simplifies to:

yj ⇔ (yj−1 ∧ (xj ∨ ¬π(xj))) 1 ≤ j < n (4’)

Lastly, we observe that yj only occurs negatively in formula (5). Thus, only
one implication in the definition of yj (4′) is needed to enforce (5). Relaxing the
constraints when yj must be false leads to:

yj ⇐ (yj−1 ∧ (xj ∨ ¬π(xj))) 1 ≤ j < n (4”)

Working out the implications and applying distributivity of ∧ and ∨ in
Eq. (3, 4′′, 5) leads to the CNF formula in this theorem and hence, concludes
our proof. ��

The relaxation introduced by step (4′′) does not weaken the symmetry break-
ing capacity of our encoding, as it only weakens the constraints on auxiliary
variables not permuted by any original symmetry. However, (4′′) still represents
weaker constraints than (4′). In Sect. 7 we give experimental results that compare
the presented compact encoding with an “unrelaxed” clausal encoding based on
(4′), having an extra binary and ternary clause. It turns out that the relaxation
of (4′′) leads to slightly less overhead.

Note that the condition yj is satisfied in fewer assignments as j increases, so
the marginal effect of posting the above constraints decreases as j increases. Still,
the marginal cost is stable at three clauses and one auxiliary variable regardless
of j. Because of this, the size of lex-leader constraints is often limited by putting
an upper bound k on the number of auxiliary variables to be introduced [2],
resulting in a shorter lex-leader constraint LLk

π. BreakID also employs this
limit on the size of its lex-leader constraints, by default posting a conservative
LL50

π for each generator symmetry π.

4 Exploiting Row Interchangeability

An important type of symmetry is row interchangeability, which is present when
a subset of variables can be structured as a two-dimensional matrix such that
each permutation of the rows induces a symmetry. This form of symmetry is
common; often it stems from an interchangeable set of objects in the original
problem domain, with each row of variables expressing certain properties of
one particular object. Examples are intercheangeability of pigeons or holes in a

Improved Static Symmetry Breaking for SAT 109

pigeonhole problem, interchangeability of nurses in a nurse scheduling problem,
fleets of interchangeable trucks in a delivery system etc. Exploiting this type of
matrix symmetry with adjusted symmetry breaking techniques can significantly
improve SAT performance [8,17]. In this section, we present a novel way of
automatically dealing with row interchangeability in SAT.

Example 1 (Row interchangeability in graph coloring). Let φ be a CNF formula
expressing the graph coloring constraint that two directly connected vertices can-
not have the same color. Let Σ = {x11, . . . , xnm} be the set of variables, with
intended interpretation that xij holds iff vertex j has color i. Given the nature of
the graph coloring problem, all colors are interchangeable, so each color permu-
tation ρ induces a symmetry πρ of φ. More formally, the color interchangeability
symmetry group consists of all symmetries

πρ : Σ → Σ : xij �→ xρ(i)j ,¬xij �→ ¬xρ(i)j

If we structure Σ as a matrix where xij occurs on row i and column j, then
each permutation of rows corresponds to a permutation of colors, and hence a
symmetry.

Definition 2 (Row interchangeability in SAT [8]). A variable matrix M
is a bijection M : Ro × Co → Σ′ from two sets of indices Ro and Co to a set of
variables Σ′ ⊆ Σ. We refer to M(r, c) as xrc. The r’th row of M is the sequence
of variables [xr1, . . . , xrm], the c’th column is the sequence [x1c, . . . , xnc]. A for-
mula φ exhibits row interchangeability symmetry if there exists a variable matrix
M such that for each permutation ρ : Ro → Ro

πM
ρ : Σ

′ → Σ
′
: xrc �→ xρ(r)c,¬xrc �→ ¬xρ(r)c

is a symmetry of φ. The row interchangeability symmetry group of a matrix M
is denoted as RM .

A useful property of row interchangeability is that it is broken completely by
only a linearly sized symmetry breaking formula [10,25].

Theorem 2 (Complete symmetry breaking for row interchangeabil-
ity [8]). Let φ be a formula and RM a row interchangeability symmetry group
of φ with Ro = {1, . . . , n} and Co = {1, . . . , m}. If the total variable order �x

on Σ satisfies xij �x xi′j′ iff i < i′ or (i = i′ and j ≤ j′), then the conjunction
of lex-leader constraints for πM

(k k+1) with 1 ≤ k < n breaks MR completely.

In words, Theorem 2 guarantees that for a natural ordering of the variable
matrix, the lex-leader constraints for the swap of each two subsequent rows form
a complete symmetry breaking formula for row interchangeability. The condi-
tion that the order “matches” the variable matrix is important: the theorem no
longer holds without it.

If we are able to detect that a formula exhibits row interchangeability, we can
break it completely by choosing the right order and posting the right lex-leader

110 J. Devriendt et al.

constraints. In practice, symmetry detection tools for SAT only present us with
a set of generators for the symmetry group, which contains no information on
the structure of this group. The challenge is to derive row interchangeability
subgroups from these generators.

4.1 Row Interchangeability Detection Algorithm

Given a set of generators P for a symmetry group Π of a formula φ, the task at
hand is to detect a variable matrix M that represents a row interchangeability
subgroup RM ⊆ Π. We present an algorithm that is sound, but incomplete in
the sense that it does not guarantee that all row interchangeability subgroups
present are detected.

The first step is to find an initial row interchangeable variable matrix M
consisting of three rows. This is done by selecting two swap symmetries π1 and
π2 that represent two swaps of three rows. More formally, suppose π1 and π2 are
such that (with r = Supp(π1) ∩ Supp(π2)) the following three conditions hold
(i) π1 = π−1

1 and π2 = π−1
2 , (ii) r, π1(r) and π2(r) are pairwise disjoint, and

(iii) Supp(π1) = r ∪ π1(r) and Supp(π2) = r ∪ π2(r). In this case, r, π1(r) and
π2(r) form three rows of a row interchangeable variable matrix, and π1 and π2

are swaps of those rows.
If, after inspecting all pairs of swaps in P , no initial three-rowed matrix

is found, the algorithm stops, in which case we do not know whether a row
interchangeability subgroup exists. However, our experiments indicate that for
many problems, an initial three-rowed matrix can be derived from a detected
set of generator symmetries.

The second step maximally extends the initial variable matrix M with new
rows. The idea is that for each symmetry π ∈ P and each row r of M , π(r) is
a candidate row to add to M . This is the case if π(r)’s literals are disjoint from
M ’s literals and swapping π(r) with r is a syntactical symmetry of φ.

Pseudocode is given in Algorithm 1. This algorithm terminates since both
P and the number of rows in any row interchangeability matrix are finite. The
algorithm is sound: each time a row is added, it is interchangeable with at least
one previously added row and hence, by induction, with all rows in M . If k is the
largest support size of a symmetry in P , then finding an initial row interchange-
able matrix based on two row swap symmetries in P takes O(|P |2k) time. With
an optimized implementation that avoids duplicate combinations of generators
and rows, extending the initial matrix with extra interchangeable rows has a
complexity of O(|P ||Ro||φ|k), with Ro the set of row indices of M . Algorithm 1
then has a complexity of O(|P |2k + |P ||Ro||φ|k).

As mentioned before, the algorithm is not complete: it might not be possible
to construct an initial matrix, or even given an initial matrix, there is no guar-
antee to detect all possible row extensions, as only the set of generators instead
of the whole symmetry group is used to calculate a new candidate row.

It is straightforward to extend Algorithm1 to detect multiple row inter-
changeability subgroups. After detecting a first row interchangeability subgroup
RM , remove any generators from P that also belong to RM . This can be done by

Improved Static Symmetry Breaking for SAT 111

input : P , φ
output: M

1 identify two swaps π1, π2 ∈ P that induce an initial variable matrix M with 3
rows;

2 repeat
3 foreach permutation π in P do
4 foreach row r in M do
5 if π(r) is disjoint from M and swapping r and π(r) is a symmetry

of φ then
6 add π(r) as a new row to M ;
7 end

8 end

9 end

10 until no extra rows are added to M ;
11 return M ;

Algorithm 1. Row interchangeability detection

standard algebraic group membership tests, which are efficient for interchange-
ability groups [24]. Then, repeat Algorithm 1 with the reduced set of generator
symmetries until no more row interchangeability subgroups are detected.

Example 2 (Example 1 continued.). Let ϕ and the xij be as in Example 1. Sup-
pose we have five colors and three vertices. Vertex 1 is connected to vertex 2 and
3; vertices 2 and 3 are not connected. This problem has a symmetry group Π
induced by the interchangeability of the colors and by a swap on vertex 2 and
3. A set of generators for Π is {π(12), π(23), π(34), π(45), ν23}, where π(ij) is the
symmetry that swaps colors i and j (as in the previous example), and ν23 is the
symmetry obtained by swapping vertices 2 and 3, i.e.,2

ν23 = (x12 x13)(x22 x23)(x32 x33)(x42 x43)(x52 x53)

For these generators, it is obvious that the swaps π(ij) generate a row inter-
changeability symmetry group. However, a symmetry detection tool might return
the alternative set of symmetry generators P = {π(12), π(23), σ1, σ2, ν23} with

σ1 = π(35) ◦ π(13) = (x11 x31 x51)(x12 x32 x52)(x13 x33 x53)
σ2 = π(34) ◦ ν23 = (x12 x13)(x22 x23)(x31 x41)(x32 x43)(x42 x33)(x52 x53)

The challenge is to detect the color interchangeability subgroup starting from
P .

The first step of Algorithm 1 searches for two swaps in P that combine to a
3-rowed variable matrix. π(12) and π(23) fit the bill, resulting in a variable matrix
M with rows:

[x11, x12, x13] [x21, x22, x23] [x31, x32, x33]

2 We omit negative literals from the cycle notation, noting that a symmetry always
commutes with negation.

112 J. Devriendt et al.

Applying σ1 on the third row results in:

[x51, x52, x53]

which after a syntactical check on φ is confirmed to be a new row to add to M .
Unfortunately, the missing row [x41, x42, x42] is not derivable by applying any

generator in P on rows in M , so the algorithm terminates.

The failure of detecting the missing row in Example 2 stems from the fact
that the generators σ1 and σ2 are obtained by complex combinations of sym-
metries in the interchangeability subgroup and the symmetry ν23. This inspires
a small extension of Algorithm 1. As soon as the algorithm reaches a fixpoint,
we call the original symmetry detection tool to search for a set of generators of
the subgroup that stabilizes all but one rows of the matrix M found so far. This
results in “simpler” generators that do not permute the literals of the excluded
rows. Tests on CNF instances show that this simple extension, although giv-
ing no theoretical guarantees, often manages to find new generators that, when
applied on the current set of rows, construct new rows. After detecting row stabi-
lizing symmetries, Algorithm 1 resumes from line 2, aiming to extend the matrix
further by applying the extended set of generators. This process ends when even
the new generators can no longer derive new rows.

Example 3 (Example 2 continued.). The only symmetry of the problem that
stabilizes the variables {x11, x12, x13, x21, x22, x23, x31, x32, x33} is π(45), which
has the missing row [x41, x42, x42] as image of the fifth row.

The matrix, which now contains all variables, allows one to completely break
the color interchangeability. The symmetry between vertices 2 and 3 is not
expressed in the matrix, but can still be broken by a lex-leader constraint, as
described in Sect. 6.

5 Generating Binary Symmetry Breaking Clauses

Partial symmetry breaking, where lex-leader constraints are posted only for a
set of generators of a symmetry group Π, is motivated by the infeasibility of
posting lex-leader constraints for all symmetries in Π. An alternative we explore
here is to post only a very short lex-leader constraint, namely LL1

π, but do this
for a large number of π ∈ Π. As already mentioned in Sect. 3, the first parts of
the lex-leader constraint breaks comparatively more symmetry than later parts,
so in that sense, posting LL1

π is the most cost-effective way of breaking π.
Note that LL1

π is equivalent to the binary clause ¬x ∨ π(x) where x is the
smallest variable in Supp(π) according to �x. To construct as many of these
binary clauses as possible without enumerating the whole symmetry group Π,
we use a greedy approach that starts from the generators of Π and exploits the
freedom to choose the variable order �x as well as the fact that one can easily
compute the orbit of a literal in Π.

Improved Static Symmetry Breaking for SAT 113

Theorem 3 (Binary symmetry breaking clauses). Let Π be a non-trivial
symmetry group of φ, �x an ordering of Σ, and x∗ the �x-smallest variable in
Supp(Π). For each x ∈ OrbΠ(x∗), the binary clause ¬x∗ ∨ x is entailed by LLπ

for some π ∈ Π.

Proof. If x = x∗, the theorem is trivially true. If x �= x∗, there exists a π ∈ Π
with π(x∗) = x since x ∈ OrbΠ(x∗). Since x∗ is the smallest variable in Supp(Π),
it is also the smallest in Supp(π). Theorem 1 shows that y0 and ¬y0∨¬x∗∨π(x∗)
are two clauses in LLπ. Resolution on y0 leads to ¬x∗ ∨π(x∗), where π(x∗) = x.

Theorem 3 allows to construct small lex-leader clauses for Π without enumer-
ating individual members of Π; it suffices to compute the orbit of the smallest
variable in Supp(Π) to derive a set of binary symmetry breaking clauses. The-
orem 3 holds for all symmetry groups, so also for any subgroup Π ′ of Π. In
particular, if Π ′ stabilizes the smallest variable in Supp(Π), applying Theorem
3 to Π ′ results in different clauses than applying it to Π, as Π ′ has a different
smallest variable in its support.

Example 4. Let P = {(ab)(cdef)} and Π = Grp(P) = {(ab)(cdef), (ab)(cfed),
(ce)(df)}.3 With order a�x b�x c�x d �x e�x f , a is the �x-smallest variable of
Supp(Π). Theorem 3 guarantees that ¬a ∨ b is a consequence of the lex-leader
constraints for Π. Let Π ′ = StabΠ(a) = {(ce)(df)}, then c is the �x-smallest
variable of Supp(Π ′), hence also ¬c ∨ e is entailed by the lex-leader constraints
for Π.

If we assume a different order �′
x, different binary clauses are obtained. For

instance, let c be the �′
x-smallest variable of Supp(Π). Then Theorem 3 allows

us to post the clauses ¬c ∨ d,¬c ∨ e and ¬c ∨ f as symmetry breaking clauses.
The stabilizer subgroup StabΠ(c) is empty, so no further binary clauses can be
derived for this order.

A stabilizer chain is a sequence of stabilizer subgroups starting with the full
group Π and ending with the trivial group containing only the identity, where
each next subgroup in the chain stabilizes an extra element. Given a variable
order �x, applying Theorem 3 to each subgroup in a stabilizer chain stabilizing
literals according to �x for a symmetry group Π, is equivalent to constructing
all LL1

π for π ∈ Π under �x [13]. This stabilizer chain idea was also used by
Puget to efficiently break all-different constraints in a constraint programming
context [20].

However, as shown by Example 4, the variable order influences the number
of binary symmetry clauses derivable by a stabilizer chain of Π. We present an
algorithm that, given a set of generator symmetries P for symmetry group Π,
decides a total order on a subset of variables, and constructs binary symme-
try breaking clauses for those variables based on a simultaneously constructed
sequence of subgroups stabilizing those variables. The constructed sequence of
subgroups stabilizing the literals is no actual stabilizer chain, as each of the sub-
groups equals Grp(P ′) for some subset P ′ ⊆ P . The advantage of this approach
3 We again omit negative literals in cycle notation.

114 J. Devriendt et al.

input : P
output: LLbin,Ord

1 initialize Q = P and initialize Ord as an empty list;
2 while Q �= ∅ do
3 O is a largest orbit of Grp(Q);
4 x∗ is a variable in O for which {π ∈ Q | π(x∗) �= x∗)} is minimal;
5 add x∗ to Ord as last variable;
6 foreach x ∈ O do

7 add ¬x∗ ∨ x to LLbin;
8 end
9 Q = {π ∈ Q | π(x∗) = x∗};

10 end

11 return LLbin, Ord;
Algorithm 2. Binary symmetry breaking clause generation

is simplicity of the algorithm and low computational complexity, although it
would be interesting future work to compute an actual stabilizer chain using for
instance the Schreier-Sims algorithm [24].

In detail, our algorithm starts with an empty variable order Ord and a copy
Q of the given set of generators P . It iteratively chooses a suitable variable
x∗ as next in the variable order, constructs binary clauses based on Grp(Q),
and removes any permutations π ∈ Q for which x ∈ Supp(π). As a result, at
each iteration, Grp(Q) stabilizes all variables in Ord except the last variable x∗,
allowing the construction of binary symmetry breaking clauses ¬x∗ ∨ x for each
x ∈ OrbGrp(Q)(x∗), as per Theorem 3.

A suitable next variable x∗ is one that induces a high number of binary sym-
metry breaking clauses, but removes few symmetries from Q so that the following
iterations of the algorithm still have a reasonably sized symmetry group to work
with. One way to satisfy these requirements is to pick x∗ such that OrbGrp(Q)(x∗)
is maximal, and {π ∈ Q | π(x∗) �= x∗)} is minimal compared to other literals of
x∗’s orbit.

Pseudocode is given in Algorithm 2. This algorithm terminates, as while
Q �= ∅, x∗ belongs to a largest orbit of Grp(Q), so x∗ �= π(x∗) for at least
one π ∈ Q. As a result, Q shrinks in size during each iteration, eventually
becoming the empty set. The complexity of Algorithm 2 is dominated by finding
the largest orbit of Grp(Q), which is O(|Q||Σ|), resulting in a total complexity
of O(|P |2|Σ|).

Worst case, O(|Supp(Π)|2) binary clauses are constructed by Algorithm 2.
In particular, if some subgroup Π ′ of Π represents an interchangeable set of
n variables, n(n − 1)/2 binary clauses are derived. However, in this case Π ′

also represents a row interchangeability symmetry group, which is completely
broken by techniques from Sect. 4. Performing row interchangeability detection
and breaking before binary clause generation can avoid quadratic sets of binary
clauses. Section 6 shows this is indeed the order by which BreakID performs
its symmetry breaking.

Improved Static Symmetry Breaking for SAT 115

6 Putting it all Together as BreakID

This section describes how the improvements presented in the previous section
combine with eachother and with standard symmetry breaking techniques in the
symmetry breaking preprocessor BreakID.

BreakID has been around since 2013, when a preliminary version obtained
the gold medal in the hard combinatorial sat+unsat track of 2013’s SAT com-
petition [5]. This early version incorporated all of Shatter’s symmetry break-
ing techniques and used a primitive row interchangeability detection algorithm
that enumerated symmetries to detect as many row swap symmetries as possi-
ble [8]. We developed BreakID2 in 2015, using the ideas presented in this paper.
BreakID2 entered the main track of 2015’s SAT race in combination with Glu-
cose 4.0, placing 10th, ahead of all other Glucose variants. The experiments
in the next section are run with a slightly updated version – BreakID2.1–
which has more usability features and reduced memory overhead. For the remain-
der of this paper, we use BreakID to refer to the particular implementation
BreakID2.1. BreakID’s source code is published online [7].

6.1 BreakID’s High Level Algorithm

Preprocessing a formula φ by symmetry breaking in BreakID starts with remov-
ing duplicate clauses and duplicate literals in clauses from φ, as Saucy cannot
handle duplicate edges. Then, a call to Saucy constructs an initial generator
set P of the syntactical symmetry group of φ.

Thirdly, BreakID detects row interchangeability subgroups RM of Grp(P)
by Algorithm 1. The program incorporates the variables of the support of all RM

in a global variable order Ord such that the conjunction of LLπM
ρ

under Ord for
all subsequent row swaps πM

ρ forms a complete symmetry breaking formula for
RM .4 After adding the complete symmetry breaking formula of each RM to an
initial set of symmetry breaking clauses ψ, we also remove all symmetries in P
that belong to some RM , since these symmetries are broken completely already.

Next, using the pruned P , binary clauses for Grp(P) are constructed by
Algorithm 2, which simultaneously decides a set of variables to be smallest under
Ord.5

Finally, Ord is supplemented with missing variables until it is total, and
limited lex-leader constraints LL50

π are constructed for each π left in P . These
lex-leader constraints incorporate two extra refinements also used by Shatter;
one for phase-shifted variables and one for the largest variable in a symmetry
cycle [1].

Algorithm 3 gives pseudocode for BreakID’s high-level routine described
above.
4 In case two detected row interchangeability matrices overlap, it is not always possible

to choose the order on the variables so that both are broken completely. In this case,
one of the row interchangeability groups will only be broken partially.

5 A small adaptation to Algorithm 2 ensures BreakID only selects smallest variables
that are not permuted by a previously detected row interchangeability group.

116 J. Devriendt et al.

input : φ
output: ψ

1 remove duplicate clauses from φ and duplicate literals from clauses in φ;
2 run Saucy to detect a set of symmetry generators P ;
3 initialize ψ as the empty formula and Ord as an empty sequence of ordered

variables;
4 detect row interchangeability subgroups RM ;
5 foreach row interchangeability RM subgroup of Grp(P) do
6 remove P ∩ RM from P ;
7 add complete symmetry breaking clauses for RM to ψ;
8 add Supp(RM) to the back of Ord accordingly;

9 end
10 add binary clauses for Grp(P) to ψ, add corresponding variables to the front

of Ord;
11 add missing variables to the middle of Ord;
12 foreach π ∈ P do
13 add LL50

π to ψ, utilizing Shatter’s optimizations;
14 end
15 return ψ;

Algorithm 3. Symmetry breaking by BreakID

7 Experiments

In this section, we verify the effectiveness of the proposed techniques separately,
and investigate the feasibility of using BreakID in the application and hard-
combinatorial track of 2014’s SAT competition We use eight benchmark sets:

– app14: the application track of 2014’s SAT competition (300 instances)
– app14sym: subset of app14 for which Saucy detected symmetry (164

instances)
– hard14: the hard-combinatorial track of 2014’s SAT competition (300

instances)
– hard14sym: subset of hard14 for which Saucy detected symmetry (159

instances)
– hole: 8 unsatisfiable pigeonhole instances
– urquhart: 6 unsatisfiable Urquhart instances
– channel: 10 unsatisfiable channel routing instances
– color: 10 unsatisfiable graph coloring instances

Pigeonhole and Urquhart problems are provably hard for purely resolution-based
SAT solvers, in the sense that even for very small instances astronomical running
time is needed to decide satisfiability of the problem [12,26]. The employed
channel routing and graph coloring instances are highly symmetric, exhibiting
strong row interchangeability. They are taken from SymChaff’s benchmark
set [21]. The graph coloring instances were also used in 2005 and 2007’s SAT
competitions.

As SAT-solver, we use Glucose 4.0 [4], which is based on MiniSAT [9].
We include the symmetry breaking preprocessor Shatter [3] bundled with

Improved Static Symmetry Breaking for SAT 117

Saucy 3.0 [15] in our experiments. The resources available to each experiment
were 10GB of memory and 3600 s on an Intel(R) Xeon(R) E3-1225 cpu. The
operating system was Ubuntu 14.04 with Linux kernel 3.13. Unless noted other-
wise, all results include any preprocessing step, such as deduplicating the input
CNF, symmetry detection by Saucy and symmetry breaking clause generation
by Shatter or BreakID. Detailed experimental results are available online [7].

7.1 Compact Symmetry Breaking Clauses

We first investigate the influence of the compact lex-leader encoding presented in
Sect. 3. The experiment consists of running BreakID with the standard encod-
ing used in Shatter (four clauses for each variable in a symmetry’s support),
with BreakID’s default compact encoding (three clauses), and with an unre-
laxed encoding that does not relax the constraints on the auxiliary variables (five
clauses). To focus on the difference between the encodings, in this experiment,
BreakID does not exploit row interchangeability, does not generate binary
clauses, and does not limit the size of the lex-leader formulas. The benchmark
sets employed are app14sym, hard14sym, hole, urquhart, channel and color. The
results are presented in Table 1.

Table 1. Number of solved instances for standard, unrelaxed and compact lex-leader
encoding, as well as average runtime and memory consumption of Glucose (excluding
BreakID’s preprocessing) for solved instances.

app14sym hard14sym hole urquhart channel color

avg mem avg time solved avg mem avg time solved solved solved solved solved

standard 334MB 597.6 s 113 323MB 662.9 s 106 4 3 2 3

unrelaxed 349MB 611.1 s 113 336MB 708.8 s 107 4 3 2 3

compact 329MB 589.6 s 112 305MB 638.0 s 108 4 3 2 3

The theoretical advantage of having a more compact encoding is not trans-
lated into a significant increase in the number of solved instances. We do observe
average runtime and memory consumption correlating with the size of the encod-
ing, being lowest for the compact encoding and highest for the unrelaxed encod-
ing. We conclude that none of the clausal encodings strongly outperforms the
others. That said, the compact encoding enjoys a small runtime and memory
advantage over both other encodings.

7.2 Row Interchangeability and Binary Clauses

To assess the influence of exploiting row interchangeability and binary clauses,
we set up an experiment with four versions of BreakID:

– BreakID(): without both row interchangeability and binary clauses
– BreakID(r): with row interchangeability and without binary clauses

118 J. Devriendt et al.

– BreakID(b): without row interchangeability and with binary clauses
– BreakID(r,b): with both row interchangeability and binary clauses

Each of these versions uses the compact encoding, and limits the lex-leader
formulas to 50 auxiliary variables, symmetries used to completely break row
interchangeability excepted. The results are summarized in Table 2.

Table 2. Number of solved instances for BreakID configurations with and without
(r)ow-interchangeability and (b)inary clauses. Also includes average number of corre-
sponding symmetry breaking clauses introduced.

BreakID() BreakID(b) BreakID(r) BreakID(r,b)

solved (b) clauses solved (r) clauses solved (b) clauses (r) clauses solved

app14sym 113 37552 111 10245 114 190 10245 114

hard14sym 108 207719 105 2926 112 308 2926 110

hole 4 427 3 1627 8 0 1627 8

urquhart 3 99 6 0 3 99 0 6

channel 2 9893 2 15421 10 0 15421 10

color 3 1469 4 1481 5 656 1481 6

A first observation is that the binary clause improvement shows mixed results.
It performs very well on urquhart, allowing all instances to be solved in less than
a second, but struggles with app14sym and hard14sym instances. The main
reason is the huge amount of binary clauses derived, amounting over 5 million
on some instances. However, activating row interchangeability fixes this problem
by not allowing symmetries from row interchangeability groups to be used to
construct binary clauses.

The row interchangeability improvement is more successful, improving per-
formance on all benchmark sets except urquhart. Focusing on hole, full row
interchangeability is detected for all instances, so each instance became poly-
nomially solvable given the presence of symmetry breaking clauses. This is a
significant improvement to the preliminary version of BreakID [8]. A similar
effect is seen for channel, where activating row interchangeability allows decid-
ing all instances in less than a minute. For the benchmark set as a whole, row
interchangeability was detected in 54 % of the instances for which Saucy could
detect symmetry.

We conclude that row interchangeability exploitation is a significant improve-
ment, while binary clauses have the potential to improve performance on certain
types of problems. Furthermore, row interchangeability compensates for weak-
nesses of the binary clause approach, and the combination of the two yields the
best overall performance.

7.3 Comparison to Shatter and Performance on the 2014 SAT
Competition

This experiment compares BreakID to state-of-the-art solving configurations.
We use app14, hard14, hole, urquhart, channel and color as benchmark sets.

Improved Static Symmetry Breaking for SAT 119

We effectively run all application and hard-combinatorial instances of 2014’s
SAT competition. The solving configurations used are (with Glucose as SAT
engine):

– Glucose: pure Glucose without symmetry breaking.
– Shatter: Shatter is run after first deduplicating the input CNF.
– BreakID: compact encoding, row interchangeability and binary clauses acti-

vated.
– BreakID(100s): same as BreakID but Saucy is forced to stop detecting

symmetry after 100 s of preprocessing have elapsed.

We present the number of instances solved within resource limits, as well as
the average time needed to detect symmetry and generate symmetry breaking
clauses in Table 3.

Table 3. Number of solved instances for Glucose, Shatter, BreakID and BreakID
limiting Saucy to 100 s. Also includes average preprocessing time in seconds.

Glucose Shatter BreakID BreakID(100s)

solved pre-time solved pre-time solved pre-time solved

hole 2 0.0s 3 0.1s 8 0.1s 8

urquhart 2 0.1s 2 0.2s 6 0.2s 6

channel 2 3.2s 2 9.7s 10 9.7s 10

color 3 2.9s 2 4.1s 6 4.1s 6

app14 214 6.3s 210 74.9s 209 14.7s 211

hard14 164 159.2s 178 181.3s 183 14.8s 187

First, the two BreakID variants are the only configurations that handle
hole, urquhart and channel efficiently, as Shatter constructs lex-leader con-
straints for the wrong set of symmetry generators, and Glucose gets lost in the
symmetrical search space for non-trivial instances. A similar observation is made
for color instances, though even BreakID remains unable to solve 4 instances.

On hard14, Shatter outperforms Glucose, while both BreakID
approaches outperform Shatter. So for these instances, symmetry detection
and breaking is worth the incurred overhead. The preprocessing time needed
by Shatter is almost completely due to Saucy’s symmetry detection, which
exceeds 3600 s for 9 instances. BreakID(100s) solves this problem by limit-
ing the time consumed by Saucy to 100s, resulting in the best performance
on hard14, adding 23 solved instances compared to plain Glucose. Of course,
both BreakID approaches increase the preprocessing overhead by detecting row
interchangeability and constructing binary clauses.

As far as app14 is concerned, the benefit of a smaller search space does
not outweigh the overhead of detecting symmetry and introducing symmetry
breaking clauses.

120 J. Devriendt et al.

8 Conclusion

In this paper, we presented novel improvements to state-of-the-art symmetry
breaking for SAT. Common themes were to adapt the variable order and the set
of generator symmetries by which to construct lex-leader constraints. BreakID
implements these ideas and functions as a symmetry breaking preprocessor in the
spirit of Shatter. Our experiments with BreakID show the potential for these
techniques separately and combined. We observed that BreakID outperforms
Shatter, and is a particularly effective preprocessor for hard-combinatorial
SAT-problems.

The algorithms presented are effective, but also incomplete, e.g., not all row
interchangeability is detected, no maximal set of binary symmetry breaking
clauses is derived etc. Coupling BreakID to a computational group algebra
system such as GAP [11] has the potential to alleviate these issues.

Alternatively, it might be interesting to compare different methods of graph
automorphism detection, and investigate how hard it is to adjust their internal
search algorithms to put out more useful symmetry generators, stabilizer chains
for binary clauses, or even row interchangeability symmetry groups. Jefferson &
Petrie already started this research in a constraint programming context [13].

Acknowledgement. This research was supported by the project GOA 13/010
Research Fund KU Leuven and projects G.0489.10, G.0357.12 and G.0922.13 of FWO
(Research Foundation - Flanders). Bart Bogaerts is supported by the Finnish Center
of Excellence in Computational Inference Research (COIN) funded by the Academy of
Finland (grant #251170).

References

1. Aloul, F., Ramani, A., Markov, I., Sakallah, K.: Solving difficult SAT instances in
the presence of symmetry. In: Proceedings of the 39th Design Automation Confer-
ence, 2002, pp. 731–736 (2002)

2. Aloul, F.A., Markov, I.L., Sakallah, K.A.: Shatter: efficient symmetry-breaking for
boolean satisfiability. In: Design Automation Conference, pp. 836–839 (2003)

3. Aloul, F.A., Sakallah, K.A., Markov, I.L.: Efficient symmetry breaking for Boolean
satisfiability. IEEE Trans. Comput. 55(5), 549–558 (2006)

4. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Boutilier, C. (ed.) IJCAI, pp. 399–404 (2009)

5. Balint, A., Belov, A., Heule, M.J., Järvisalo, M.: The 2013 international SAT com-
petition (2013). satcompetition.org/2013

6. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking pred-
icates for search problems. In: Principles of Knowledge Representation and Rea-
soning, pp. 148–159. Morgan Kaufmann (1996)

7. Devriendt, J., Bogaerts, B.: BreakID, a symmetry breaking preprocessor for SAT
solvers (2015). bitbucket.org/krr/breakid

8. Devriendt, J., Bogaerts, B., Bruynooghe, M.: BreakIDGlucose: On the impor-
tance of row symmetry. In: Proceedings of the Fourth International Workshop
on the Cross-Fertilization Between CSP and SAT (CSPSAT) (2014). http://lirias.
kuleuven.be/handle/123456789/456639

http://satcompetition.org/2013
http://bitbucket.org/krr/breakid
http://lirias.kuleuven.be/handle/123456789/456639
http://lirias.kuleuven.be/handle/123456789/456639

Improved Static Symmetry Breaking for SAT 121

9. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

10. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh,
T.: Breaking row and column symmetries in matrix models. In: Van Hentenryck,
P. (ed.) CP 2002. LNCS, vol. 2470, pp. 462–477. Springer, Heidelberg (2002).
http://dx.doi.org/10.1007/3-540-46135-3 31

11. The GAP Group: GAP - Groups, Algorithms, and Programming, Version 4.7.9
(2015). www.gap-system.org

12. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308
(1985). http://www.sciencedirect.com/science/article/pii/0304397585901446.
Third Conference on Foundations of Software Technology and Theoretical Com-
puter Science

13. Jefferson, C., Petrie, K.E.: Automatic generation of constraints for partial symme-
try breaking. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 729–743. Springer,
Heidelberg (2011). http://dx.doi.org/10.1007/978-3-642-23786-7 55

14. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and
sparse graphs. In: Applegate, D., Brodal, G.S., Panario, D., Sedgewick, R. (eds.)
Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments
and the Fourth Workshop on Analytic Algorithms and Combinatorics, pp. 135–149.
SIAM (2007)

15. Katebi, H., Sakallah, K.A., Markov, I.L.: Symmetry and satisfiability: an update.
In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 113–127.
Springer, Heidelberg (2010)

16. Lee, J.H.M., Li, J.: Increasing symmetry breaking by preserving target symmetries.
In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 422–438. Springer, Heidelberg
(2012). http://dx.doi.org/10.1007/978-3-642-33558-7 32

17. Lynce, I., Marques-Silva, J.: Breaking symmetries in SAT matrix models. In:
Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 22–27.
Springer, Heidelberg (2007). http://dx.doi.org/10.1007/978-3-540-72788-0 6

18. McDonald, I., Smith, B.: Partial symmetry breaking. In: Van Hentenryck, P.
(ed.) CP 2002. LNCS, vol. 2470, pp. 431–445. Springer, Heidelberg (2002).
http://dx.doi.org/10.1007/3-540-46135-3 29

19. McKay, B.D., Piperno, A.: Practical graph isomorphism. J. Symbolic
Comput. 60, 94–112 (2014). http://www.sciencedirect.com/science/article/pii/
S0747717113001193

20. Puget, J.F.: Breaking symmetries in all-different problems. In: Proceedings of the
19th International Joint Conference on Artificial Intelligence, IJCAI 2005, pp. 272–
277 (2005)

21. Sabharwal, A.: Symchaff: exploiting symmetry in a structure-aware satisfiabil-
ity solver. Constraints 14(4), 478–505 (2009). http://dx.doi.org/10.1007/s10601-
008-9060-1

22. Sakallah, K.A.: Symmetry and satisfiability. In: Biere, A., Heule, M.J.H., van
Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, vol. 185, pp. 289–338.
IOS Press, Amsterdam (2009)

23. Schaafsma, B., Heule, M.J.H., van Maaren, H.: Dynamic symmetry breaking
by simulating Zykov contraction. In: Kullmann, O. (ed.) SAT 2009. LNCS,
vol. 5584, pp. 223–236. Springer, Heidelberg (2009).http://dx.doi.org/10.1007/
978-3-642-02777-2 22

24. Seress, Á.: Permutation Group Algorithms. Cambridge University Press (2003).
cambridgeBooksOnline. http://dx.doi.org/10.1017/CBO9780511546549

http://dx.doi.org/10.1007/3-540-46135-3_31
www.gap-system.org
http://www.sciencedirect.com/science/article/pii/0304397585901446
http://dx.doi.org/10.1007/978-3-642-23786-7_55
http://dx.doi.org/10.1007/978-3-642-33558-7_32
http://dx.doi.org/10.1007/978-3-540-72788-0_6
http://dx.doi.org/10.1007/3-540-46135-3_29
http://www.sciencedirect.com/science/article/pii/S0747717113001193
http://www.sciencedirect.com/science/article/pii/S0747717113001193
http://dx.doi.org/10.1007/s10601-008-9060-1
http://dx.doi.org/10.1007/s10601-008-9060-1
http://dx.doi.org/10.1007/978-3-642-02777-2_22
http://dx.doi.org/10.1007/978-3-642-02777-2_22
http://dx.doi.org/10.1017/CBO9780511546549

122 J. Devriendt et al.

25. Shlyakhter, I.: Generating effective symmetry-breaking predicates for search
problems. Discrete Appl. Math. 155(12), 1539–1548 (2007). http://dx.doi.org/
10.1016/j.dam.2005.10.018

26. Urquhart, A.: Hard examples for resolution. J. ACM 34(1), 209–219. http://doi.
acm.org/10.1145/7531.8928

27. Walsh, T.: Symmetry breaking constraints: Recent results. CoRR abs/1204.3348
(2012)

http://dx.doi.org/10.1016/j.dam.2005.10.018
http://dx.doi.org/10.1016/j.dam.2005.10.018
http://doi.acm.org/10.1145/7531.8928
http://doi.acm.org/10.1145/7531.8928

Learning Rate Based Branching
Heuristic for SAT Solvers

Jia Hui Liang(B), Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki

University of Waterloo, Waterloo, Canada
jliang@gsd.uwaterloo.ca

Abstract. In this paper, we propose a framework for viewing solver
branching heuristics as optimization algorithms where the objective is to
maximize the learning rate, defined as the propensity for variables to gen-
erate learnt clauses. By viewing online variable selection in SAT solvers as
an optimization problem, we can leverage a wide variety of optimization
algorithms, especially from machine learning, to design effective branch-
ing heuristics. In particular, we model the variable selection optimization
problem as an online multi-armed bandit, a special-case of reinforce-
ment learning, to learn branching variables such that the learning rate
of the solver is maximized. We develop a branching heuristic that we
call learning rate branching or LRB, based on a well-known multi-armed
bandit algorithm called exponential recency weighted average and imple-
ment it as part of MiniSat and CryptoMiniSat. We upgrade the LRB
technique with two additional novel ideas to improve the learning rate
by accounting for reason side rate and exploiting locality. The result-
ing LRB branching heuristic is shown to be faster than the VSIDS and
conflict history-based (CHB) branching heuristics on 1975 application
and hard combinatorial instances from 2009 to 2014 SAT Competitions.
We also show that CryptoMiniSat with LRB solves more instances than
the one with VSIDS. These experiments show that LRB improves on
state-of-the-art.

1 Introduction

Modern Boolean SAT solvers are a critical component of many innovative tech-
niques in security, software engineering, hardware verification, and AI such as
solver-based automated testing with symbolic execution [9], bounded model
checking [11] for software and hardware verification, and planning in AI [27]
respectively. Conflict-driven clause-learning (CDCL) SAT solvers [4,6,12,23,
24,29] in particular have made these techniques feasible as a consequence of
their surprising efficacy at solving large classes of real-world Boolean formu-
las. The development of various heuristics, notably the Variable State Inde-
pendent Decaying Sum (VSIDS) [24] branching heuristic (and its variants) and
conflict analysis techniques [23], have dramatically pushed the limits of CDCL
solver performance. The VSIDS heuristic is used in the most competitive CDCL
SAT solvers such as Glucose [4], Lingeling [6], and CryptoMiniSat [29]. Since its

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 123–140, 2016.
DOI: 10.1007/978-3-319-40970-2 9

124 J.H. Liang et al.

introduction in 2001, VSIDS has remained one of the most effective and domi-
nant branching heuristic despite intensive efforts by many researchers to replace
it [7,15,16,28]. In early 2016, we provided the first branching heuristic that is
more effective than VSIDS called the conflict history-based (CHB) branching
heuristic [19]. The branching heuristic introduced in this paper, which we refer
to as learning rate branching (LRB), significantly outperforms CHB and VSIDS.

In this paper, we introduce a general principle for designing branching heuris-
tics wherein online variable selection in SAT solvers is viewed as an optimiza-
tion problem. The objective to be maximized is called the learning rate (LR), a
numerical characterization of a variable’s propensity to generate learnt clauses.
The goal of the branching heuristic, given this perspective, is to select branching
variables that will maximize the cumulative LR during the run of the solver.
Intuitively, achieving a perfect LR of 1 implies the assigned variable is responsi-
ble for every learnt clause generated during its lifetime on the assignment trail.

We put this principle into practice in this paper. Although there are many
algorithms for solving optimization problems, we show that multi-armed ban-
dit learning (MAB) [31], a special-case of reinforcement learning, is particularly
effective in our context of selecting branching variables. In MAB, an agent selects
from a set of actions to receive a reward. The goal of the agent is to maximize the
cumulative rewards received through the selection of actions. As we will describe
in more details later, we abstract the branching heuristic as the agent, the avail-
able branching variables are abstracted as the actions, and LR is defined to be
the reward. Abstracting online variable selection as a MAB problem provides the
bridge to apply MAB algorithms from the literature directly as branching heuris-
tics. In our experiments, we show that the MAB algorithm called exponential
recency weighted average (ERWA) [31] in our abstraction surpasses the VSIDS
and CHB branching heuristics at solving the benchmarks from the 4 most recent
SAT Competitions in an apple-to-apple comparison. Additionally, we provide
two extensions to ERWA that increases its ability to maximize LR and its per-
formance as a branching heuristic. The final branching heuristic, called learning
rate branching (LRB), is shown to dramatically outperform CryptoMiniSat [29]
with VSIDS.

1.1 Contributions

Contribution I: We define a principle for designing branching heuristics, that
is, a branching heuristic should maximize the learning rate (LR). We show
that this principle yields highly competitive branching heuristics in practice.

Contribution II: We show how to abstract online variable selection in the
multi-armed bandit (MAB) framework. This abstraction provides an interface
for applying MAB algorithms directly as branching heuristics. Previously,
we developed the conflict history-based (CHB) branching heuristic [19], also
inspired by MAB. The key difference between this paper and CHB is that in
the case of CHB the rewards are known a priori, and there is no metric being
optimized. Whereas in this work, the learning rate is being maximized and

Learning Rate Based Branching Heuristic for SAT Solvers 125

is unknown a priori, which requires a bona fide machine learning algorithm
to optimize under uncertainty.

Contribution III: We use the MAB abstraction to develop a new branch-
ing heuristic called learning rate branching (LRB). The heuristic is built on
a well-known MAB algorithm called exponential recency weighted average
(ERWA). Given our domain knowledge of SAT solving, we extend ERWA
to take advantage of reason side rate and locality [20] to further maxi-
mize the learning rate objective. We show in comprehensive apple-to-apple
experiments that it outperforms the current state-of-the-art VSIDS [24] and
CHB [19] branching heuristics on 1975 instances from four recent SAT Com-
petition benchmarks from 2009 to 2014 on the application and hard combi-
natorial categories. Additionally, we show that a modified version of Cryp-
toMiniSat with LRB outperforms Glucose, and is very close to matching
Lingeling over the same set of 1975 instances.

2 Preliminaries

2.1 Simple Average and Exponential Moving Average

Given a time series of numbers 〈r1, r1, r2, ..., rn〉, the simple average is computed
as avg(〈r1, ..., rn〉) =

∑n
i=1

1
nri. Note that every ri is given the same coefficient

(also called weight) of 1
n .

In a time series however, recent data is more pertinent to the current situa-
tion than old data. For example, consider a time series of the price of a stock. The
price of the stock from yesterday is more correlated with today’s price than the
price of the stock from a year ago. The exponential moving average (EMA) [8] fol-
lows this intuition by giving the recent data higher weights than past data when
averaging. Incidentally, the same intuition is built into the multiplicative decay in
VSIDS [5,20]. The EMA is computed as emaα(〈r1, ..., rn〉) =

∑n
i=1 α(1−α)n−iri

where 0 < α < 1 is called the step-size parameter. α controls the relative
weights between recent and past data. EMA can be computed incrementally
as emaα(〈r1, ..., rn〉) = (1 − α) · emaα(〈r1, ..., rn−1〉) + αrn, and we define the
base case emaα(〈〉) = 0.

2.2 Multi-Armed Bandit (MAB)

We will explain the MAB problem [31] through a classical analogy. Consider a
gambler in a casino with n slot machines, where the objective of the gambler
is to maximize payouts received from these machines. Each slot machine has
a probability distribution describing its payouts, associating a probability with
every possible value of payout. This distribution is hidden from the gambler.
At any given point in time, the gambler can play one of the n slot machines,
and hence has n actions to choose from. The gambler picks an action, plays
the chosen slot machine, and receives a reward in terms of monetary payout by
sampling that slot machine’s payout probability distribution. The MAB problem
is to decide which actions to take that will maximize the cumulative payouts.

126 J.H. Liang et al.

If the probability distributions of the slot machines were revealed, then the
gambler would simply play the slot machine whose payout distribution has
the highest mean. This will maximize expected payouts for the gambler. Since
the probability distribution is hidden, a simple MAB algorithm called sample-
average [31] estimates the true mean of each distribution by averaging the sam-
ples of observed payouts. For example, suppose there are 2 slot machines. The
gambler plays the first and the second slot machine 4 times each, receiving the
4 payouts 〈1, 2, 3, 4〉 and 〈5, 4, 3, 2〉 respectively. Then the algorithm will esti-
mate the mean of the first and second slot machines’ payout distributions as
avg(〈1, 2, 3, 4〉) = 2.5 and avg(〈5, 4, 3, 2〉) = 3.5 respectively. Since the second
slot machine has a higher estimated mean, the choice is to play the second slot
machine. This choice is called greedy, that is, it chose the action it estimates to
be the best given extant observations. On the other hand, choosing a non-greedy
action is called exploration [31].

The sample-average algorithm is applicable if the hidden probability distri-
butions are fixed. If the distributions change over time, then the problem is
called nonstationary, and requires different algorithms. For example, suppose
a slot machine gives smaller and smaller payouts the more it has been played.
The older the observed payout, the bigger the difference between the current
probability distribution and the distribution from which the payout was sam-
pled. Hence, older observed payouts should have smaller weights. This gives rise
to the exponential recency weighted average [31] (ERWA) algorithm. Instead of
computing the simple average of the observed payouts, use EMA to give higher
weights to recent observations relative to distant observations. Continuing the
prior example, ERWA estimates the mean payout of the first and second slot
machines as emaα(〈1, 2, 3, 4〉) = 3.0625 and emaα(〈5, 4, 3, 2〉) = 2.5625 respec-
tively where α = 0.5. Therefore ERWA estimates the first slot machine to have
a higher mean, and hence the greedy action is to play the first slot machine.

2.3 Clause Learning

The defining feature of CDCL solvers is to analyze every conflict it encounters
to learn new clauses to block the same conflicts, and up to exponentially sim-
ilar conflicts, from re-occurring. The solver maintains an implication graph, a
directed acyclic graph where the vertices are assigned variables and edges record
the propagations between variables induced by Boolean constraint propagation.
A clause is falsified when all of its literals are assigned to false, and in this cir-
cumstance, the solver can no longer proceed with the current assignment. The
solver analyzes the implication graph and cuts the graph into two sides: the
conflict side and the reason side. The conflict side must contain all the variables
from the falsified clause and the reason side must contain all the decision vari-
ables. A learnt clause is generated on the variables from the reason side incident
to the cut by negating the current assignments to those variables. In practice,
the implication graph is typically cut at the first unique implication point [33].
Upon learning a clause, the solver backtracks to an earlier state where no clauses
are falsified and proceeds from there.

Learning Rate Based Branching Heuristic for SAT Solvers 127

2.4 The VSIDS Branching Heuristic

VSIDS can be seen as a ranking function that maintains a floating point num-
ber for each Boolean variable in the input formula, often called activity. The
activities are modified in two interweaving operations called the bump and the
multiplicative decay. Bump increases the activity of a variable additively by 1
whenever it appears in either a newly learnt clause or the conflict side of the
implication graph. Decay periodically decreases the activity of every variable by
multiplying all activities by the decay factor δ where 0 < δ < 1. Decay typically
occurs after every conflict. VSIDS ranks variables in decreasing order of activ-
ity, and selects the unassigned variable with the highest activity to branch on
next. This variable is called the decision variable. A separate heuristic, typically
phase-saving [26], will select the polarity to assign the decision variable.

3 Contribution I: Branching Heuristic as Learning Rate
(LR) Optimization

The branching heuristic is responsible for assigning variables through decisions
that the SAT solver makes during a run. Although most of the assignments
will eventually revert due to backtracking and restarts, the solver guarantees
progress due to the production of learnt clauses. It is well-known that branching
heuristics play a significant role in the performance of SAT solvers. To frame
branching as an optimization problem, we need a metric to quantify the degree
of contribution from an assigned variable to the progress of the solver, to serve as
an objective to maximize. Since producing learnt clauses is a direct indication of
progress, we define our metric to be the variable’s propensity to produce learnt
clauses. We will now define this formally.

Clauses are learnt via conflict analysis on the implication graph that the
solver constructs during solving. A variable v participates in generating a learnt
clause l if either v appears in l or v is resolved during the conflict analysis that
produces l (i.e., appears in the conflict side of the implication graph induced
by the cut that generates l). In other words, v is required for the learning of l
from the encountered conflict. Note that only assigned variables can participate
in generating learnt clauses. We define I as the interval of time between the
assignment of v until v transitions back to being unassigned. Let P (v, I) be the
number learnt clauses in which v participates during interval I and let L(I) be
the number of learnt clauses generated in interval I. The learning rate (LR) of
variable v at interval I is defined as P (v,I)

L(I) . For example, suppose variable v is
assigned by the branching heuristic after 100 learnt clauses are produced. It par-
ticipates in producing the 101-st and 104-th learnt clause. Then v is unassigned
after the 105-th learnt clause is produced. In this case, P (v, I) = 2 and L(I) = 5
and hence the LR of variable v is 2

5 .
The exact LR of a variable is usually unknown during branching. In the

previous example, variable v was picked by the branching heuristic after 100
learnt clauses are produced, but the LR is not known until after the 105-th learnt

128 J.H. Liang et al.

clause is produced. Therefore optimizing LR involves a degree of uncertainty,
which makes the problem well-suited for learning algorithms. In addition, the
LR of a variable changes over time due to modifications to the learnt clause
database, stored phases, and assignment trail. As such, estimating LR requires
nonstationary algorithms to deal with changes in the underlying environment.

4 Contribution II: Abstracting Online Variable Selection
as a Multi-Armed Bandit (MAB) Problem

Given n Boolean variables, we will abstract online variable selection as an n-
armed bandit optimization problem. A branching heuristic has n actions to
choose from, corresponding to branching on any of the n Boolean variables.
The expressions assigning a variable and playing an action will be used inter-
changeably. When a variable v is assigned, then v can begin to participate in
generating learnt clauses. When v becomes unassigned, the LR r is computed
and returned as the reward for playing the action v. The terms reward and LR
will be used interchangeably. The MAB algorithm uses the reward to update its
internal estimates of the action that will maximize the rewards.

The MAB algorithm is limited to picking actions corresponding to unassigned
variables, as the branching heuristic can only branch on unassigned variables.
This limitation forces some exploration, as the MAB algorithm cannot select the
same action again until the corresponding variable is unassigned due to back-
tracking or restarting. Although the branching heuristic is only assigning one
variable at a time, it indirectly assigns many other variables through propaga-
tion. We include the propagated variables, along with the branched variables, as
plays in the MAB framework. That is, branched and propagated variables will
all receive their own individual rewards corresponding to their LR, and the MAB
algorithm will use all these rewards to update its internal estimates. This also
forces some exploration since a variable ranked poorly by the MAB algorithm
can still be played through propagation.

5 Contribution III: Learning Rate Branching (LRB)
Heuristic

Given the MAB abstraction, we first use the well-known ERWA bandit algorithm
as a branching heuristic. We will upgrade ERWA with two novel extensions to
arrive at the final branching heuristic called the learning rate branching (LRB)
heuristic. We will justify these extensions experimentally through the lens of
MAB, that is, these extensions are better at maximizing the LR rewards. We
will demonstrate empirically the effectiveness of LRB at solving the benchmarks
from the 4 previous SAT Competitions.

Learning Rate Based Branching Heuristic for SAT Solvers 129

5.1 Exponential Recency Weighted Average (ERWA)

We will explain how to apply ERWA as a branching heuristic through the MAB
abstraction. First we will provide a conceptual explanation, that is easier to
comprehend. Then we will provide a complementary explanation from the imple-
mentation’s perspective, which is equivalent to the conceptual explanation, but
provides more details.

Conceptually, each variable v maintains its own time series tsv containing
the observed rewards for v. Whenever a variable v transitions from assigned to
unassigned, ERWA will calculate the LR r for v (see Sect. 3) and append the
reward r to the time series by updating tsv ← append(tsv, r). When the solver
requests the next branching variable, ERWA will select the variable v∗ where
v∗ = argmaxv∈U (emaα(tsv)) and U is the set of currently unassigned variables.

The actual implementation takes advantage of the incrementality of EMA to
avoid storing the time series ts, see Algorithm 1 for pseudocode of the imple-
mentation. Alternative to the above description, each variable v maintains a
floating point number Qv representing emaα(tsv). When v receives reward r,
then the implementation updates Qv using the incrementality of EMA, that
is, Qv ← (1 − α) · Qv + α · r (see line 24 of Algorithm 1). When the solver
requests the next branching variable, the implementation will select the variable
v∗ where v∗ = argmaxv∈UQv and U is the set of currently unassigned variables
(see line 28 of Algorithm 1). Note that Qv can be stored in a priority queue
for all unassigned variables v, hence finding the maximum will take logarithmic
time in the worst-case. The implementation is equivalent to the prior conceptual
description, but significantly more efficient in both memory and time.

For our experiments, we initialize the step-size α = 0.4. We follow the con-
vention of typical ERWA to decrease the step-size over time [31]. After each
conflict, the step-size is decreased by 10−6 until it reaches 0.06 (see line 14 in
Algorithm 1), and remains at 0.06 for the remainder of the run. This step-size
management is equivalent to the one in CHB [19] and is similar to how the
Glucose solver manages the VSIDS decay factor by increasing it over time [4].

5.2 Extension: Reason Side Rate (RSR)

Recall that LR measures the participation rate of variables in generating learnt
clauses. That is, variables with high LR are the ones that frequently appear in
the generated learnt clause and/or the conflict side of the implication graph. If
a variable appears on the reason side near the learnt clause, then these vari-
ables just missed the mark. We show that accounting for these close proximity
variables, in conjunction with the ERWA heuristic, optimizes the LR further.

More precisely, if a variable v appears in a reason clause of a variable in a
learnt clause l, but does not occur in l, then we say that v reasons in generating
the learnt clause l. We define I as the interval of time between the assignment
of v until v transitions back to being unassigned. Let A(v, I) be the number of
learnt clauses which v reasons in generating in interval I and let L(I) be the

130 J.H. Liang et al.

Algorithm 1. Pseudocode for ERWA as a branching heuristic using our MAB
abstraction for maximizing LR.
1: procedure Initialize � Called once at the start of the solver.
2: α ← 0.4 � The step-size.
3: LearntCounter ← 0 � The number of learnt clauses generated by the solver.
4: for v ∈ V ars do � V ars is the set of Boolean variables in the input CNF.
5: Qv ← 0 � The EMA estimate of v.
6: Assignedv ← 0 � When v was last assigned.
7: Participatedv ← 0 � The number of learnt clauses v participated in

generating since Assignedv.

8:
9: procedure AfterConflictAnalysis(learntClauseV ars ⊆ V ars, conflictSide ⊆ V ars) �

Called after a learnt clause is generated from
conflict analysis.

10: LearntCounter ← LearntCounter + 1
11: for v ∈ conflictSide ∪ learntClauseV ars do
12: Participatedv ← Participatedv + 1

13: if α > 0.06 then
14: α ← α − 10−6

15:
16: procedure OnAssign(v ∈ V ars) � Called when v is assigned by branching or prop-

agation.
17: Assignedv ← LearntCounter
18: Participatedv ← 0

19:
20: procedure OnUnassign(v ∈ V ars) � Called when v is unassigned by backtracking or

restart.
21: Interval ← LearntCounter − Assignedv

22: if Interval > 0 then � Interval = 0 is possible due to restarts.
23: r ← Participatedv/Interval. � r is the LR.
24: Qv = (1 − α) · Qv + α · r � Update the EMA incrementally.

25:
26: function PickBranchLit � Called when the solver requests the next branch-

ing variable.
27: U ← {v ∈ V ars | isUnassigned(v)}
28: return argmaxv∈UQv � Use a priority queue for better performance.

number of learnt clauses generated in interval I. The reason side rate (RSR) of
variable v at interval I is defined as A(v,I)

L(I) .
Recall that in ERWA, the estimates are updated incrementally as Qv ←

(1 − α) · Qv + α · r where r is the LR of v. This extension modifies the update
to Qv ← (1 − α) · Qv + α · (r + A(v,I)

L(I)) where A(v,I)
L(I) is the RSR of v (see line 20

in Algorithm 2). Note that we did not change the definition of the reward. The
extension simply encourages the algorithm to select variables with high RSR
when deciding to branch. We hypothesize that variables observed to have high
RSR are likely to have high LR as well.

5.3 Extension: Locality

Recent research shows that VSIDS exhibits locality [20], defined with respect to
the community structure of the input CNF instance [1,20,25]. Intuitively, if the
solver is currently working within a community, it is best to continue focusing on
the same community rather than exploring another. We hypothesize that high
LR variables also exhibit locality, that is, the branching heuristic can achieve
higher LR by restricting exploration.

Learning Rate Based Branching Heuristic for SAT Solvers 131

Algorithm 2. Pseudocode for ERWA as a branching heuristic with the RSR
extension. The pseudocode Algorithm1.method(...) is calling out to the code in
Algorithm 1. The procedure PickBranchLit is unchanged.
1: procedure Initialize
2: Algorithm1.Initialize()
3: for v ∈ V ars do � V ars is the set of Boolean variables in the input CNF.
4: Reasonedv ← 0 � The number of learnt clauses v reasoned in gen-

erating since Assignedv.

5:
6: procedure AfterConflictAnalysis(learntClauseV ars ⊆ V ars, conflictSide ⊆ V ars)
7: Algorithm1.AfterConflictAnalysis(learntClauseV ars, conflictSide)
8: for v ∈ (

⋃
u∈learntClauseV ars reason(u)) \ learntClauseV ars do

9: Reasonedv ← Reasonedv + 1

10:
11: procedure OnAssign(v ∈ V ars)
12: Algorithm1.OnAssign()
13: Reasonedv ← 0

14:
15: procedure OnUnassign(v ∈ V ars)
16: Interval ← LearntCounter − Assignedv

17: if Interval > 0 then � Interval = 0 is possible due to restarts.
18: r ← Participatedv/Interval. � r is the LR.
19: rsr ← Reasonedv/Interval. � rsr is the RSR.
20: Qv = (1 − α) · Qv + α · (r + rsr) � Update the EMA incrementally.

Algorithm 3. Pseudocode for ERWA as a branching heuristic with the locality
extension. AfterConflictAnalysis is the only procedure modified.
1: procedure AfterConflictAnalysis(learntClauseV ars ⊆ V ars, conflictSide ⊆ V ars)
2: Algorithm2.AfterConflictAnalysis(learntClauseV ars, conflictSide)
3: U ← {v ∈ V ars | isUnassigned(v)}
4: for v ∈ U do
5: Qv ← 0.95 × Qv .

Inspired by the VSIDS decay, this extension multiplies the Qv of every unas-
signed variable v by 0.95 after each conflict (see line 5 in Algorithm 3). Again,
we did not change the definition of the reward. The extension simply discour-
ages the algorithm from exploring inactive variables. This extension is similar to
the decay reinforcement model [13,32] where unplayed arms are penalized by a
multiplicative decay. The implementation is optimized to do the multiplications
in batch. For example, suppose variable v is unassigned for k conflicts. Rather
than executing k updates of Qv ← 0.95×Qv, the implementation simply updates
once using Qv ← 0.95k × Qv.

5.4 Putting it all Together to Obtain the Learning Rate Branching
(LRB) Heuristic

The learning rate branching (LRB) heuristic refers to ERWA in the MAB
abstraction with the RSR and locality extensions. We show that LRB is better at
optimizing LR than the other branching heuristics considered, and subsequently
has the best overall performance of the bunch.

132 J.H. Liang et al.

6 Experimental Results

In this section, we discuss the detailed and comprehensive experiments we per-
formed to evaluate LRB. First, we justify the extensions of LRB by demonstrat-
ing their performance vis-a-vis improvements in learning rate. Second, we show
that LRB outperforms the state-of-the-art VSIDS and CHB branching heuris-
tic. Third, we show that LRB achieves higher rewards/LR than VSIDS, CHB,
and LRB sans the extensions. Fourth, we show the effectiveness of LRB within
a state-of-the-art CDCL solver, namely, CryptoMiniSat [29]. To better gauge
the results of these experiments, we quote two leading SAT solver developers,
Professors Audemard and Simon [3]:

“We must also say, as a preliminary, that improving SAT solvers is often
a cruel world. To give an idea, improving a solver by solving at least ten
more instances (on a fixed set of benchmarks of a competition) is generally
showing a critical new feature. In general, the winner of a competition is
decided based on a couple of additional solved benchmarks.”

6.1 Setup

The experiments are performed by running CDCL solvers with various branching
heuristics on StarExec [30], a platform designed for evaluating logic solvers.
The StarExec platform uses the Intel Xeon CPU E5-2609 at 2.40 GHz with
10240 KB cache and 24 GB of main memory, running on Red Hat Enterprise
Linux Workstation release 6.3, and Linux kernel 2.6.32-431.1.2.el6.x86 64. The
benchmarks for the experiments consist of all the instances from the previous
4 SAT Competitions (2014, 2013, 2011, and 2009), in both the application and
hard combinatorial categories. For each instance, the solver is given 5000 seconds
of CPU time and 7.5 GB of RAM, abiding by the SAT Competition 2013 limits.

Our experiments test different branching heuristics on a base CDCL solver,
where the only modification is to the branching heuristic to give a fair apple-to-
apple comparison. Our base solver is MiniSat version 2.2.0 [12] (simp version)
with one modification to use the popular aggressive LBD-based clause deletion
proposed by the authors of the Glucose solver in 2009 [2]. Since MiniSat is a
relatively simple solver with very few features, it is ideal for our base solver
to better isolate the effects swapping branching heuristics in our experiments.
Additionally, MiniSat is the basis of many competitive solvers and aggressive
LBD-based clause deletion is almost universally implemented, hence we believe
the results of our experiments will generalize to other solver implementations.

6.2 Experiment: Efficacy of Extensions to ERWA

In this experiment, we demonstrate the effectiveness of the extensions we pro-
posed for LRB. We modified the base solver by replacing the VSIDS branching
heuristic with ERWA. We then created two additional solvers, one with the RSR
extension and another with both the RSR and locality extensions. We ran these

Learning Rate Based Branching Heuristic for SAT Solvers 133

Table 1. Comparison of our extensions on the base CDCL solver (MiniSat 2.2 with
aggressive LBD-based clause deletion). The entries show the number of instances solved
for the given solver and benchmark, the higher the better. Green is best, red is worst.

Benchmark Status ERWA ERWA+ RSR ERWA+ RSR + Locality (LRB)

2009 Application SAT 85 84 85

UNSAT 122 120 121

BOTH 207 204 206

2009 Hard Combinatorial SAT 98 99 101

UNSAT 65 68 69

BOTH 163 167 170

2011 Application SAT 105 105 103

UNSAT 98 101 98

BOTH 203 206 201

2011 Hard Combinatorial SAT 95 88 93

UNSAT 45 61 65

BOTH 140 149 158

2013 Application SAT 125 133 132

UNSAT 89 95 95

BOTH 214 228 227

2013 Hard Combinatorial SAT 113 110 116

UNSAT 97 108 110

BOTH 210 218 226

2014 Application SAT 111 108 116

UNSAT 82 77 77

BOTH 193 185 193

2014 Hard Combinatorial SAT 87 92 91

UNSAT 73 87 89

BOTH 160 179 180

TOTAL (excluding duplicates) SAT 638 632 654

UNSAT 574 619 625

BOTH 1212 1251 1279

3 solvers over the entire benchmark and report the number of instances solved
by these solvers within the time limit in Table 1. ERWA solves a total of 1212
instances, ERWA with the RSR extension solves a total of 1251 instances, and
ERWA with the RSR and locality extensions (i.e., LRB) solves a total of 1279
instances. See Fig. 1 for a cactus plot of the solving times.

6.3 Experiment: LRB vs VSIDS vs CHB

In this experiment, we compare LRB with VSIDS [24] and CHB [19]. Our base
solver is MiniSat 2.2 which already implements VSIDS. We then replaced VSIDS
in the base solver with LRB and CHB to derive 3 solvers in total, with the
only difference being the branching heuristic. We ran these 3 solvers on the
entire benchmark and present the results in Table 2. LRB solves a total of 1279
instances, VSIDS solves a total of 1179 instances, and CHB solves a total of 1235
instances. See Fig. 1 for a cactus plot of the solving times.

134 J.H. Liang et al.

Table 2. Apple-to-apple comparison between branching heuristics (LRB, CHB, and
VSIDS) in a version of MiniSat 2.2 with aggressive LBD-based clause deletion. The
entries show the number of instances in the benchmark the given branching heuristic
solves, the higher the better. Green is best, red is worst. The LRB version (we dub as
MapleSAT), outperforms the others.

Benchmark Status LRB VSIDS CHB

2009 Application SAT 85 83 89

UNSAT 121 125 119

BOTH 206 208 208

2009 Hard Combinatorial SAT 101 100 103

UNSAT 69 66 67

BOTH 170 166 170

2011 Application SAT 103 95 106

UNSAT 98 99 96

BOTH 201 194 202

2011 Hard Combinatorial SAT 93 88 102

UNSAT 65 48 47

BOTH 158 136 149

2013 Application SAT 132 127 137

UNSAT 95 86 79

BOTH 227 213 216

2013 Hard Combinatorial SAT 116 115 122

UNSAT 110 73 96

BOTH 226 188 218

2014 Application SAT 116 105 115

UNSAT 77 94 73

BOTH 193 199 188

2014 Hard Combinatorial SAT 91 91 90

UNSAT 89 59 76

BOTH 180 150 166

TOTAL (excluding duplicates) SAT 654 626 673

UNSAT 625 553 562

BOTH 1279 1179 1235

6.4 Experiment: LRB and Learning Rate

In this experiment, we measure the efficacy of the 5 branching heuristics from
Tables 1 and 2 at maximizing the LR. For each instance in the benchmark, we
solve the instance 5 times with the 5 branching heuristics implemented in the
base solver. For each branching heuristic, we track all the observed rewards (i.e.,
LR) and record the mean observed reward at the end of the run, regardless if

Learning Rate Based Branching Heuristic for SAT Solvers 135

the solver solves the instance or not. We then rank the 5 branching heuristics by
their mean observed reward for that instance. A branching heuristic gets a rank
of 1 (resp. 5) if it has the highest (resp. lowest) mean observed reward for that
instance. For each branching heuristic, we then average its ranks over the entire
benchmark and report these numbers in Table 3. The experiment shows that
LRB is the best heuristic in terms of maximizing the reward LR (corresponding
to a rank closest to 1) in almost every category. In addition, the experiment shows
that the RSR and locality extensions increase the observed rewards relative to
vanilla ERWA. Somewhat surprisingly, VSIDS and CHB on average observe
higher rewards (i.e., LR) than ERWA, despite the fact that VSIDS and CHB are
designed without LR as an explicit objective. This perhaps partly explains the
effectiveness of those two heuristics.

Table 3. The average ranking of observed rewards compared between different branch-
ing heuristics in MiniSat 2.2 with aggressive LBD-based clause deletion. The lower the
reported number, the better the heuristic is at maximizing the observed reward relative
to the others. Green is best, red is worst.

Benchmark Status LRB ERWA ERWA + RSR VSIDS CHB

2009 Application SAT 2.41 3.79 3.42 2.51 2.87

UNSAT 2.13 4.16 3.32 2.90 2.49

BOTH 2.25 4.01 3.36 2.74 2.65

2009 Hard Combinatorial SAT 2.43 3.30 3.03 3.29 2.95

UNSAT 2.18 4.18 3.48 3.22 1.94

BOTH 2.33 3.66 3.21 3.26 2.53

2011 Application SAT 2.25 3.61 3.02 2.77 3.35

UNSAT 2.14 3.82 3.22 3.49 2.33

BOTH 2.20 3.72 3.12 3.13 2.85

2011 Hard Combinatorial SAT 2.57 3.47 2.98 3.46 2.53

UNSAT 2.57 3.72 3.32 3.54 1.85

BOTH 2.57 3.56 3.11 3.49 2.27

2013 Application SAT 2.33 3.60 3.16 2.49 3.41

UNSAT 2.02 4.16 3.07 3.39 2.37

BOTH 2.19 3.85 3.12 2.89 2.95

2013 Hard Combinatorial SAT 2.51 3.57 2.91 3.03 2.98

UNSAT 1.99 3.92 2.65 4.26 2.18

BOTH 2.24 3.75 2.78 3.65 2.58

2014 Application SAT 2.27 3.68 3.21 2.50 3.35

UNSAT 2.24 4.34 3.20 2.82 2.40

BOTH 2.25 4.01 3.21 2.66 2.88

2014 Hard Combinatorial SAT 2.43 3.51 3.03 2.78 3.26

UNSAT 1.81 4.38 2.69 3.82 2.30

BOTH 2.11 3.96 2.85 3.31 2.76

TOTAL (excluding duplicates) SAT 2.45 3.53 3.10 2.72 3.20

UNSAT 2.12 4.08 3.10 3.41 2.30

BOTH 2.28 3.81 3.10 3.07 2.74

136 J.H. Liang et al.

Fig. 1. A cactus plot of the 5 branching heuristics in MiniSat 2.2 with aggressive
LBD-based clause deletion. The benchmark consists of the 4 most recent SAT Com-
petition benchmarks (2014, 2013, 2011, 2009) including both the application and hard
combinatorial categories, excluding duplicate instances. A point (x, y) on the plot is
interpretted as: y instances in the benchmark took less than x seconds to solve for the
branching heuristic. The further right and further down, the better.

6.5 Experiment: LRB vs State-of-the-Art CDCL

In this experiment, we test how LRB-enchanced CryptoMiniSat competes
against the state-of-the-art solvers CryptoMiniSat [29], Glucose [4], and Lin-
geling [6] which all implement VSIDS. We modified CryptoMiniSat 4.5.3 [29] by
replacing VSIDS with LRB, leaving everything else unmodified. We ran unmod-
ified CryptoMiniSat, Glucose, and Lingeling, along with the LRB-enchanced
CryptoMiniSat on the benchmark and report the results in Table 4. LRB
improved CryptoMiniSat on 6 of the 8 benchmarks and solves 59 more instances
overall.

7 Related Work

The Chaff solver introduced the VSIDS branching heuristic in 2001 [24].
Although many branching heuristics have been proposed [7,15–17,22,28], VSIDS
and its variants remain as the dominant branching heuristic employed in modern
CDCL SAT solvers. Carvalho and Marques-Silva used rewards based on learnt
clause length and backjump size to improve VSIDS [10]. More precisely, the bump
value of VSIDS is increased for short learnt clauses and/or long backjumps. Their
usage of rewards is unrelated to the definition of rewards in the reinforcement
learning and multi-armed bandits context. Lagoudakis and Littman used rein-
forcement learning to dynamically switch between a fixed set of 7 well-known

Learning Rate Based Branching Heuristic for SAT Solvers 137

Table 4. Apple-to-apple comparison between four state-of-art solvers: CryptoMiniSat
(CMS) with LRB heuristic, CMS with VSIDS, Glucose, and Lingeling. The table shows
the number of instances solved per SAT Competition benchmark, categorized as SAT
or UNSAT instances. CMS with LRB (we dub as MapleCMS) outperforms CMS with
VSIDS on most benchmarks.

Benchmark Status CMS with LRB CMS with VSIDS Glucose Lingeling

2009 Application SAT 85 87 83 80

UNSAT 140 143 138 141

BOTH 225 230 221 221

2009 Hard Combinatorial SAT 102 95 90 98

UNSAT 71 65 70 83

BOTH 173 160 160 181

2011 Application SAT 106 97 94 94

UNSAT 122 129 127 134

BOTH 228 226 221 228

2011 Hard Combinatorial SAT 86 86 80 88

UNSAT 57 49 44 66

BOTH 143 135 124 154

2013 Application SAT 115 109 104 100

UNSAT 120 115 111 122

BOTH 235 224 215 222

2013 Hard Combinatorial SAT 116 114 115 114

UNSAT 114 101 106 117

BOTH 230 215 221 231

2014 Application SAT 107 102 99 101

UNSAT 118 127 120 141

BOTH 225 229 219 242

2014 Hard Combinatorial SAT 89 85 79 89

UNSAT 122 100 93 119

BOTH 211 185 172 208

TOTAL (excluding duplicates) SAT 619 598 575 589

UNSAT 738 700 685 782

BOTH 1357 1298 1260 1371

SAT branching heuristics [18]. Their technique requires offline training on a class
of similar instances. Loth et al. used multi-armed bandits for directing the growth
of the search tree for Monte-Carlo Tree Search [21]. The rewards are computed
based on the relative depth failure of the tree walk. Fröhlich et al. used the UCB
algorithm from multi-armed bandits to select the candidate variables to define
the neighborhood of a stochastic local search for the theory of bitvectors [14]. The
rewards they are optimizing is to minimize the number of unsatisfied clauses.
Liang et al. also applied ERWA as a branching heuristic called CHB [19]. As
stated earlier, CHB is neither an optimization nor learning algorithm since the
rewards are computed on past events.

8 Conclusions and Future Work

In this paper, we provide three main contributions, and each has potential for
further enhancements.

138 J.H. Liang et al.

Contribution I: We define LR as a metric for the branching heuristic to opti-
mize. LR captures the intuition that the branching heuristic should assign
variables which are likely to generate a high quantity of learnt clauses with
no regards to the “quality” of those clauses [2]. A new metric that cap-
tures quality should encourage better clause learning. Or perhaps branching
heuristics can be stated as a multi-objective optimization problem where a
good heuristic would balance the tradeoff between quality and quantity of
learnt clauses.
Additionally, we would like to stress that the starting point for this research
was a model of CDCL SAT solvers as an interplay between branching heuris-
tic and clause learning. The branching heuristic guides the search, and has
great impact on the clauses that will be learnt during the run of the solver.
In the reverse direction, clause learning provides feedback to guide branching
heuristics like VSIDS, CHB, and LRB. We plan to explore a mathematical
model where the branching heuristic is an inductive engine (machine learn-
ing), and the conflict analysis is a deductive feedback mechanism. Such a
model could enable us to prove complexity theoretic results that at long last
might explain why CDCL SAT solvers are so efficient for industrial instances.

Contribution II: We chose MAB as the optimization method in this paper,
but many other optimization techniques can be applied to optimize LR. The
most natural extension to our work here is to incorporate the internal state of
the solver and apply stateful reinforcement learning. The state, for example,
could be the current community the solver is focused on and exploiting this
information could improve the locality of the branching heuristic [20].

Contribution III: We based LRB on one MAB algorithm, ERWA, due to its
low computational overhead. The literature of multi-armed bandits is very
rich, and provides many alternative algorithms with a wide spectrum of
characteristics and assumptions. It is fruitful to explore the MAB literature
to determine the best algorithm for branching in CDCL SAT solvers.

Finally, as our experimental results suggest, the line of research we have just
started exploring, namely, branching heuristics as machine learning algorithms
(and branching as an optimization problem) has already shown considerable
improvement over previous state-of-the-art branching heuristics such as VSIDS
and CHB, and affords a rich design space of heuristics to explore in the future.

References

1. Ansótegui, C., Giráldez-Cru, J., Levy, J.: The community structure of SAT formu-
las. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 410–423.
Springer, Heidelberg (2012)

2. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Proceedings of the 21st International Jont Conference on Artifical Intelligence,
IJCAI 2009, pp. 399–404. Morgan Kaufmann Publishers Inc., San Francisco (2009)

3. Audemard, G., Simon, L.: Refining restarts strategies for SAT and UNSAT. In:
Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 118–126. Springer, Heidelberg
(2012)

Learning Rate Based Branching Heuristic for SAT Solvers 139

4. Audemard, G., Simon, L.: Glucose 2.3 in the SAT 2013 Competition. In:
Proceedings of SAT Competition 2013, pp. 42–43 (2013)

5. Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28–33. Springer,
Heidelberg (2008)

6. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV
Report Series Technical report 10(1) (2010)

7. Biere, A., Fröhlich, A.: Evaluating CDCL variable scoring schemes. In: Heule, M.,
Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 405–422. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-24318-4 29

8. Brown, R.G.: Exponential smoothing for predicting demand. Oper. Res. 5, 145–145
(1957)

9. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. In: Proceedings of the 13th ACM Conference
on Computer and Communications Security, CCS 2006, pp. 322–335. ACM, New
York (2006)

10. Carvalho, E., Marques-Silva, J.P.: Using rewarding mechanisms for improving
branching heuristics. In: Proceedings of the Seventh International Conference on
Theory and Applications of Satisfiability Testing (2004)

11. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. Form. Methods Syst. Des. 19(1), 7–34 (2001)

12. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

13. Erev, I., Roth, A.E.: Predicting how people play games: reinforcement learning in
experimental games with unique, mixed strategy equilibria. Am. Econ. Rev. 88(4),
848–881 (1998)

14. Fröhlich, A., Biere, A., Wintersteiger, C., Hamadi, Y.: Stochastic local search for
satisfiability modulo theories. In: Proceedings of the Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, AAAI 2015, pp. 1136–1143. AAAI Press (2015)

15. Gershman, R., Strichman, O.: HaifaSat: a new robust SAT solver. In: Ur, S.,
Bin, E., Wolfsthal, Y. (eds.) HVC 2005. LNCS, vol. 3875, pp. 76–89. Springer,
Heidelberg (2006)

16. Goldberg, E., Novikov, Y.: BerkMin: a fast and robust sat-solver. Discrete Appl.
Math. 155(12), 1549–1561 (2007)

17. Jeroslow, R.G., Wang, J.: Solving propositional satisfiability problems. Ann. Math.
Artif. Intell. 1(1–4), 167–187 (1990)

18. Lagoudakis, M.G., Littman, M.L.: Learning to select branching rules in the DPLL
procedure for satisfiability. Electron. Notes Discrete Math. 9, 344–359 (2001)

19. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Exponential recency weighted
average branching heuristic for SAT solvers. In: Proceedings of AAAI 2016 (2016)

20. Liang, J.H., Ganesh, V., Zulkoski, E., Zaman, A., Czarnecki, K.: Understand-
ing VSIDS branching heuristics in conflict-driven clause-learning SAT solvers.
In: Liang, J.H., Ganesh, V., Zulkoski, E., Zaman, A., Czarnecki, K. (eds.) HVC
2015. LNCS, vol. 9434, pp. 225–241. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-26287-1 14

21. Loth, M., Sebag, M., Hamadi, Y., Schoenauer, M.: Bandit-based search for con-
straint programming. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 464–480.
Springer, Heidelberg (2013)

22. Marques-Silva, J.: The impact of branching heuristics in propositional satisfiability
algorithms. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI), vol.
1695, pp. 62–74. Springer, Heidelberg (1999)

http://dx.doi.org/10.1007/978-3-319-24318-4_29
http://dx.doi.org/10.1007/978-3-319-26287-1_14
http://dx.doi.org/10.1007/978-3-319-26287-1_14

140 J.H. Liang et al.

23. Marques-Silva, J.P., Sakallah, K.A.: GRASP-a new search algorithm for satis-
fiability. In: Proceedings of the 1996 IEEE/ACM International Conference on
Computer-aided Design, ICCAD 1996, pp. 220–227. IEEE Computer Society,
Washington, DC (1996)

24. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation
Conference, DAC 2001, pp. 530–535. ACM, New York (2001)

25. Newsham, Z., Ganesh, V., Fischmeister, S., Audemard, G., Simon, L.: Impact of
community structure on SAT solver performance. In: Sinz, C., Egly, U. (eds.) SAT
2014. LNCS, vol. 8561, pp. 252–268. Springer, Heidelberg (2014)

26. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-
isfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 294–299. Springer, Heidelberg (2007)

27. Rintanen, J.: Planning and SAT. In: Biere, A., Heule, M., van Maaren, H., Walsh,
T. (eds.) Handbook of Satisfiability, vol. 185, pp. 483–504. IOS Press, Amsterdam
(2009)

28. Ryan, L.: Efficient Algorithms for Clause-Learning SAT Solvers. Master’s thesis,
Simon Fraser University (2004)

29. Soos, M.: CryptoMiniSat v4. In: SAT Competition, p. 23 (2014)
30. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure

for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014.
LNCS, vol. 8562, pp. 367–373. Springer, Heidelberg (2014)

31. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, vol. 1. MIT
Press Cambridge, Massachusetts (1998)

32. Yechiam, E., Busemeyer, J.R.: Comparison of basic assumptions embedded in
learning models for experience-based decision making. Psychon. Bull. Rev. 12(3),
387–402 (2005)

33. Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict driven
learning in a boolean satisfiability solver. In: Proceedings of the 2001 IEEE/ACM
International Conference on Computer-aided Design, ICCAD 2001, pp. 279–285.
IEEE Press, Piscataway (2001)

On the Hardness of SAT with Community
Structure

Nathan Mull(B), Daniel J. Fremont(B), and Sanjit A. Seshia(B)

University of California, Berkeley, USA
{nathan.mull,dfremont,sseshia}@berkeley.edu

Abstract. Recent attempts to explain the effectiveness of Boolean
satisfiability (SAT) solvers based on conflict-driven clause learning
(CDCL) on large industrial benchmarks have focused on the concept
of community structure. Specifically, industrial benchmarks have been
empirically found to have good community structure, and experiments
seem to show a correlation between such structure and the efficiency
of CDCL. However, in this paper we establish hardness results suggest-
ing that community structure is not sufficient to explain the success of
CDCL in practice. First, we formally characterize a property shared by
a wide class of metrics capturing community structure, including “mod-
ularity”. Next, we show that the SAT instances with good community
structure according to any metric with this property are still NP-hard.
Finally, we also prove that with high probability, random unsatisfiable
modular instances generated from the “pseudo-industrial” community
attachment model of Giráldez-Cru and Levy have exponentially long
resolution proofs. Such instances are therefore hard for CDCL on aver-
age, indicating that actual industrial instances easily solved by CDCL
may have some other relevant structure not captured by this model.

1 Introduction

Over the last 20 years Boolean satisfiability (SAT) solvers have become widely
used tools for solving problems in many domains [1,2]. This is largely the result
of the conflict-driven clause learning (CDCL) paradigm, introduced in the mid-
1990s [3–5] and much developed since then. This success of SAT solving in prac-
tice is perhaps surprising in light of the NP-hardness of SAT, which is widely
interpreted to mean that the problem admits no efficient algorithms. This has led
to a line of research trying to answer the basic question: why does CDCL perform
so well in practice? In other words, what is it about industrial SAT instances
that allows them to seemingly avoid the worst-case behavior of CDCL?

One possible explanation is that SAT is significantly easier on average than
in the worst case. For algorithms like CDCL that are based on resolution (which
we will discuss in more detail below), this was ruled out by the discovery that
random instances require exponentially-long resolution proofs [6]. Of course,
industrial instances are generally highly non-random, so another possibility is
that such instances tend to fall into a tractable class of problems. For example,
c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 141–159, 2016.
DOI: 10.1007/978-3-319-40970-2 10

142 N. Mull et al.

SAT is known to be fixed-parameter tractable with respect to various natural
parameters such as treewidth and clique-width [7]. However, it is unclear whether
these parameters are always small in practice. Moreover, if the goal is to analyze
the success of CDCL, the existence of different algorithms that take advantage
of small (say) treewidth is not relevant: what matters is whether it correlates
with CDCL performance, and in fact there is evidence against this [8].

Parameters more relevant to CDCL are the sizes of backdoors [9] and back-
bones [10]. In essence, a backdoor is a set of variables which if assigned cause the
instance to become solvable by simplification with no further search, while the
backbone is the set of variables which can only be assigned one way in every sat-
isfying assignment. Correlations between the sizes of backdoors and backbones
and the performance of CDCL have been observed empirically, and some “struc-
tured” instances do seem to have small backdoors [11,12]. Unfortunately, these
experiments have all been limited by the computational difficulty of estimating
backdoor sizes, and it is unclear whether they are representative of a majority
of large industrial benchmarks.

None of these ideas have adequately covered the whole variety of industrial
instances, leaving a significant gap between our theoretical understanding of
when SAT is easy and the reality of CDCL’s effectiveness in practice. Of course,
despite the intuition that industrial instances have some common underlying
structure that explains why CDCL is so effective on them, it is probable that
no single explanation suffices. There are particular types of industrial instances
that are easy for a specific, known reason that does not apply to all other indus-
trial instances [13]. However, it is still worthwhile to seek general explanations
covering as many different types of instances as possible.

One recent approach has focused on the concept of community structure, as
measured by modularity [14]. The variables of an instance with “good community
structure” (high modularity) can be partitioned into relatively small sets such
that few clauses span multiple sets. It has been found that industrial instances
exhibit significantly better community structure than random instances [15], and
that community structure does empirically correlate with CDCL performance
[16,17]. This makes community structure a plausible candidate for the “hidden
structure” underlying the effectiveness of CDCL on industrial benchmarks. In
fact, community structure has been used as the basis for a model of random
“pseudo-industrial” instances, the community attachment model [17], which is
designed to reflect the properties of industrial benchmarks.

However, as yet there has been little theoretical analysis connecting commu-
nity structure to CDCL performance. The only relevant work we are aware of
is that of Ganian and Szeider [18], who observe that SAT remains NP-hard for
highly modular instances. They also give a tractability result for a parameter
“h-modularity” inspired by community structure. However, this parameter is
significantly different from the usual modularity, there is no evidence that it is
small in industrial benchmarks, and the tractability result is via an algorithm
completely different from CDCL.

On the Hardness of SAT with Community Structure 143

In this paper, we extend the connection between community structure and
worst-case complexity, and establish the first theoretical result on the average-
case performance of CDCL on modular instances. Specifically, we:

– Define the polynomial clique metrics (PCMs), a broad class of graph met-
rics that includes modularity and other popular measures of graph clustering
(Sect. 3.1).

– Show that the set of SAT instances which have “good community structure”
according to any PCM is still NP-hard (Sect. 3.2).

– Prove that on random unsatisfiable instances from the community attachment
model with fewer than Θ(n1/10) communities, CDCL takes exponential time
with high probability (Sect. 4).

Based on these results, we suggest that community structure by itself may not be
an adequate explanation for the effectiveness of CDCL in practice. We begin in
Sect. 2 with background on SAT, CDCL, and community structure both generally
and as recently applied to SAT, and conclude in Sect. 5 with a discussion of our
results and some directions for future work.

2 Background

2.1 SAT

The Boolean satisfiability or SAT problem is to decide, given a Boolean formula
ϕ(x) over a vector of variables x , whether or not there is a satisfying assignment
to x that makes the formula true. In this paper, we make the common assumption
that the formula ϕ is in conjunctive normal form (CNF): it is a conjunction
ψ1 ∧ · · ·∧ψm of clauses, where each clause ψi is a disjunction �i1 ∨ · · ·∨ �ik. Here
each �ij is a literal : either a variable from x or the negation of such a variable.
We also assume that every clause has the same length k. A formula ϕ satisfying
these conditions is called a k-SAT formula.

Given a partial assignment ρ to some of the variables x , the restriction ϕ�ρ

of ϕ(x) to ρ is the formula obtained from ϕ by removing all clauses satisfied by
ρ and all literals falsified by ρ. We can apply a restriction to any list of clauses
analogously. The size of the restriction is the number of variables assigned by ρ.

2.2 Resolution and CDCL

Resolution [19] is a fundamental proof system that underlies modern SAT solving
algorithms. It consists of a single rule stating that from clauses (v ∨ w) and
(¬v ∨ u) that have occurrences of v with opposite polarities, we may infer the
clause (w ∨ u). As we will see in a moment, the importance of resolution for
our purposes is that in order to establish that a formula ϕ is unsatisfiable,
SAT solvers based on CDCL implicitly construct a resolution refutation of ϕ:
a derivation of a contradiction (the empty clause) from ϕ using the resolution

144 N. Mull et al.

rule. This effectively means that the runtime of such a solver cannot be shorter
than the length of the shortest such refutation.

To make this precise we need to define what we mean by CDCL. Conflict-
driven clause learning [5] describes a class of algorithms that extend the Davis–
Putnam–Logemann–Loveland (DPLL) algorithm [20]. DPLL is a classical search
algorithm that assigns each variable in turn, backtracking if a clause is falsified
by the current assignment. If at any point there is a clause with only a single
unassigned variable, then that variable can immediately be given the assignment
which satisfies the clause — a rule called unit propagation. If we eventually assign
every variable, then we have found a satisfying assignment; otherwise, the search
will backtrack all the way to the top level, every possible assignment will have
been tried, and the formula is unsatisfiable.

CDCL-type algorithms augment this procedure by learning at every back-
track point a new clause that summarizes the reason why the current partial
assignment falsifies the formula [3,4]. This conflict clause C is derived by resolv-
ing the falsified clause F with one or more other clauses that were used to assign
variables in F by unit propagation. As a result C is always derivable from the
original formula ϕ by resolution, and writing out all clauses learned by CDCL
when ϕ is unsatisfiable gives a resolution refutation of ϕ [21]. So the shortest such
refutation gives a lower bound for the runtime of CDCL. This is true regardless
of the heuristics used by the particular CDCL variant to decide which variable
to assign and its polarity, how exactly to derive the conflict clause, and when
to restart search from the beginning (see [21] for a more precise statement). We
also note that pre- or inprocessing techniques that add no clauses (e.g. blocked
clause elimination [22]) or add only clauses derived via resolution (e.g. variable
elimination [23]) will not affect the lower bound.

2.3 Random SAT Instances

To study the performance of CDCL on “typical” instances, we use the frame-
work of average-case complexity, which analyzes the efficiency of algorithms on
random instances drawn from a particular distribution. We will be interested in
complexity lower bounds that hold for almost all sufficiently large instances:

Definition 1. An event X occurs with high probability in terms of n if
Pr[X] → 1 as n → ∞.

For example, if flipping n fair coins, with high probability at least 49% will be
heads.

Perhaps the simplest distribution over SAT instances arises from fixing the
numbers of variables, clauses, and variables per clause, and then sampling uni-
formly:

Definition 2. Fk(n,m) is the uniform distribution over k-CNF formulas with
n variables and m clauses.

This random k-SAT model has been widely studied, and is known to be diffi-
cult on average for CDCL (for clause-variable ratios in a certain range) by the

On the Hardness of SAT with Community Structure 145

resolution lower bound discussed above: with high probability, a random unsat-
isfiable instance has only exponentially long resolution refutations [24]. As we
will discuss shortly, our work extends this result to a more recent random SAT
model that favors instances that are “pseudo-industrial” in the sense of having
good community structure.

2.4 Community Structure

The notion of community structure has a long history in many fields [25]. The
essential idea is that graphs with “good community structure” can be broken
into relatively small pieces, communities, that are densely connected internally
but only sparsely connected to each other. There are a number of metrics which
have been proposed to make this notion formal, of which one of the most popular
is modularity [14]. We consider unweighted graphs as weighted graphs with all
weights 1.

Definition 3. Let G = (V,E) and let δ = {C1, . . . , Cn} be a vertex partition.
Let deg v be the degree of v, and w(x, y) be the weight of the edge (x, y) or zero
if there is no such edge. The modularity (or Q-value) of G is

Q = max
δ

∑

C∈δ

[∑
x,y∈C w(x, y)

∑
x,y∈V w(x, y)

−
(∑

x∈C deg x
∑

x∈V deg x

)2
]

.

While work on community structure in SAT instances has focused on mod-
ularity, there are several competing metrics that have been used to measure
community structure in other domains. In Appendix A of this paper,1 we con-
sider four: silhouette index, conductance, coverage, and performance [26].

Finally, we introduce notation for two graphs that will be useful in this paper:
Kn, the complete graph on n vertices, and Km

n , consisting of m disjoint copies
of Kn.

2.5 SAT and Community Structure

Recent work on the community structure of SAT instances begins by associating
to each instance its variable incidence graph (also known as the primal graph).

Definition 4. Let ϕ be a CNF formula. The variable incidence graph (VIG)
of ϕ is the graph Gϕ = (V,E) where V is the set of all variables occurring in ϕ
and E is the set {(v1, v2) : v1, v2 ∈ V and they appear together in some clause
of ϕ}.

Some works use a weighted version of this graph with w(v1, v2) =
∑

cl

[
1/

(|cl|
2

)]
,

where the sum is over all clauses in which both v1 and v2 appear [15,17]. This
ensures that each clause contributes an equal amount to the total weight of

1 Available in the full version [27].

146 N. Mull et al.

the graph regardless of its length. Our results apply to both the weighted and
unweighted versions.

Obviously, the graph Gϕ does not preserve all information about the instance
ϕ. In particular, the polarities of the literals are ignored. But the graph does
capture significant structural information: for example, if the graph has two
connected components on variables x and y then the formula ϕ(x ,y) can be
split into ψ(x) ∧ χ(y) and each subformula solved independently. In practice
a perfect decomposition is rare, but one into almost independent parts is more
plausible. This is exactly the idea of community structure, and leads us naturally
to consider applying modularity to SAT instances.

Definition 5. The modularity of a formula ϕ is the modularity of Gϕ.

As was mentioned earlier, it has been found empirically that modularity cor-
relates with CDCL performance [16]. This is a claim about the average behavior
of CDCL over a wide variety of industrial benchmarks, not about its behavior
on any specific instance. Thus it is naturally formalized in the average-case com-
plexity framework discussed above, by giving a distribution that favors instances
that are “industrial” in character. One such proposal, based on the idea that the
key commonality of industrial instances is their good community structure, is
the community attachment model of Giráldez-Cru and Levy [17]. In addition to
the numbers of variables and clauses, this model has parameters controlling the
number of communities and the (expected) fraction of clauses that lie within a
single community instead of spanning multiple communities.

Definition 6. Let N be a set of n variables. A partition of N into c com-
munities is a partition S = {S1, . . . , Sc} of N such that |Si| = n/c. A clause is
within a community if it contains only variables from a single Si. A bridge
clause is a clause whose variables are all in different communities.

Definition 7 [17] (Community Attachment Model). Let n,m, c, k ∈ N

and p ∈ [0, 1] such that c divides n and 2 ≤ k ≤ c ≤ n/k. Then Fk(n,m, c, p)
is the distribution over k-CNF formulas with n variables and m clauses given
by the following procedure: first, choose a random partition of n variables into c
communities. With probability p, choose a clause uniformly among clauses within
a community, and otherwise choose uniformly among bridge clauses. Generate
m clauses independently in this way.

Remark 1. We define bridge clauses in a way that matches the community
attachment model, but as we will discuss below our results also hold for a mod-
ified model where a bridge clause is any clause not within a single community.

Like the random k-SAT model Fk(n,m), the model Fk(n,m, c, p) ranges over
k-CNF formulas with n variables and m clauses, and each clause is chosen inde-
pendently of the others. However, in this model the clauses are of two different
types: those lying entirely within a community, and those spread across k differ-
ent communities. The probability p controls how likely a clause is to be of the
first type versus the second.

On the Hardness of SAT with Community Structure 147

The idea behind this model is that by picking c and p appropriately, one is
likely to obtain instances that decompose into loosely-connected communities,
as has been observed in actual industrial instances. More precisely, the expected
modularity of an instance drawn from Fk(n,m, c, p) is lower bounded by p−(1/c),
so that for nontrivial c highly modular instances can be generated by setting p
large enough [17]. Furthermore, Giráldez-Cru and Levy find experimentally that
high-modularity instances generated with this model are solved more quickly by
CDCL than by look-ahead solvers, and the reverse is true for low-modularity
instances [17]. This parallels the same observation for industrial instances versus
random instances. Thus, they conclude, Fk(n,m, c, p) is a more realistic model
of industrial instances than the random k-SAT model Fk(n,m).

3 Worst-Case Hardness

In this section, we propose a simple class of graph metrics that we argue should
include most metrics quantifying community structure. We show that modu-
larity is in fact within the class, as are several other popular graph clustering
metrics. However, we demonstrate that the set of SAT instances that have “good
community structure” according to any metric in the class is NP-hard. There-
fore, no such metric can be a guaranteed indicator of the difficulty of a SAT
instance.

3.1 A Class of “Modularity-Like” Graph Metrics

We begin by formalizing what we mean by a graph metric.

Definition 8. A graph metric is a function m from weighted graphs to [0, 1].
Given m and any ε ∈ [0, 1], SATm,ε is the class of all SAT instances ϕ such that
m(Gϕ) ≥ 1 − ε.

For example, if m is modularity then SATm,ε consists of the “high modularity”
formulas, where “high” means any modularity above 1 − ε.

In general we are interested in graph metrics that represent a notion of com-
munity structure, assigning larger values to graphs which have such a structure
than those that do not. For such a metric m, consider the following property:

Definition 9. A graph metric m is a polynomial clique metric (PCM) if
for all ε > 0, there is a poly-time computable function c : N → N with at most
polynomial growth and some n0 ∈ N such that for all n ≥ n0, if K is Kn with
any positive edge weights then m(Kc(n)) ≥ 1 − ε.

Remark 2. If using the unweighted version of the variable incidence graph, our
proofs will work using a relaxed definition that applies only to K = Kn with
unit weights.

148 N. Mull et al.

In essence, the definition states that for any (sufficiently large) size n, at most
a polynomial number of copies of Kn are needed to produce a graph that m
considers to have “good community structure”. This is a natural property for
modularity-like metrics to have, since copies of Kn are in some sense ideal com-
munities: internally connected as much as possible, with no external edges. Of
course we would not consider a single copy of Kn to have good community struc-
ture, so the definition of a PCM only requires that such structure be obtained
for some number of copies at most polynomial in n.

Next we demonstrate that the PCMs are a large class including modularity
and several other popular clustering metrics. While the other metrics have not
been experimentally evaluated in the context of SAT, this still supports our claim
that the PCM property is a natural one for metrics of community structure to
have. For lack of space, we defer the definitions and analysis of the metrics other
than modularity to Appendix A [27].

Theorem 1. Modularity is a PCM.

Proof. Fix any ε > 0 and n ≥ 2. Let K be Kn with arbitrary positive edge weights,
and let G = Kc. Let δ be the vertex partition that groups two vertices iff they are in
the same copyofK.Then since each community is identical, and there are c commu-
nities,

∑
x,y∈C w(x, y)/

∑
x,y∈V w(x, y) = 1/c and

∑
x∈C deg x/

∑
x∈V deg x =

1/c for any C ∈ δ. Therefore, Q(G) ≥ c(1/c − (1/c)2) = 1 − 1/c. Putting c = 1/ε,
we have Q(G) ≥ 1 − ε. Since c is O(1) with respect to n, Q is a PCM.
�
Theorem 2. Silhouette index, conductance, coverage, and performance are
PCMs.

3.2 Hardness of PCM-Modular Instances

Now we show that the SAT instances which have “good community structure”
according to a PCM are no easier in the worst case than any other instance. The
PCMs thus form a wide class of metrics which cannot be used as a guaranteed
indicator of the difficulty of a SAT instance. Our reduction can be viewed as a
variation of that suggested by Ganian and Szeider [18] to show NP-hardness in
the specific case of modularity.

Theorem 3. For any PCM m, the class SATm,ε is NP-hard for all ε > 0.

Proof. Given a SAT instance φ, we will convert it into an equisatisfiable instance
of SATm,ε in polynomial time. Let V be the set of all variables occurring in φ,
along with new variables as necessary so that |V | ≥ n0. Fixing a variable x
not in V , let ψ be the formula obtained by adding to φ all clauses of the form
x ∨ y ∨ z with y, z ∈ V . Clearly, the VIG of ψ is Kn with n = |V | + 1 ≥ n0.
Furthermore, φ and ψ are equisatisfiable, since we can simply assert x to satisfy
all the new clauses. Now letting χ be the conjunction of c(n) disjoint copies of ψ
(i.e. copies with variables renamed so none are common), the variable incidence

On the Hardness of SAT with Community Structure 149

graph G of χ is K
c(n)
n (with some positive weights). By the PCM property, we

have m(G) ≥ 1 − ε, so χ ∈ SATm,ε. Since χ and ψ are clearly equisatisfiable,
so are χ and φ, and thus this procedure gives a reduction from SAT to SATm,ε.
Finally, the procedure is polynomial-time since c(n) has at most polynomial
growth and can be computed in polynomial time.
�

4 Average-Case Hardness

In contrast to the previous section, we now consider the difficulty of modular
instances for a particular class of algorithms, namely those like CDCL which
prove unsatisfiability by effectively constructing a resolution refutation. While
these results are therefore more specific, they are also much more powerful: they
show that modular instances are difficult not just in the worst case but also on
average.

Our argument is largely based on the resolution lower bound of Beame and
Pitassi [24], which can be used to establish the hardness of instances from the
random k-SAT model. In order to use that result, we need to show that most
instances from the community attachment model have certain sparsity properties
used by the proof. So our main steps, detailed in Sects. 4.1–4.5 below, are as
follows:

1. Define a new distribution F k(n,m, c, p;m′) over k-CNF formulas that works
by taking a random subformula of an instance from the random k-SAT model
Fk(n,m′).

2. Show that this new distribution is in fact identical to the community attach-
ment model Fk(n,m, c, p).

3. Observe that the sparsity properties are inherited by subformulas, so the
sparsity result in [24] for the random k-SAT model Fk(n,m′) transfers to the
community attachment model Fk(n,m, c, p).

4. Adapt the Beame–Pitassi argument [24] to obtain an exponential lower bound
on the resolution refutation length.

5. Conclude that CDCL takes exponential time on unsatisfiable formulas from
the community attachment model Fk(n,m, c, p) with high probability.

4.1 Defining the New Distribution

We begin by defining our new distribution F k(n,m, c, p;m′), which takes an
additional parameter m′ that we will specify in Sect. 4.3.

Definition 10. Let n,m, c, k,m′ ∈ N and p ∈ [0, 1] such that 2 ≤ k ≤ c ≤ n/k.
Then F k(n,m, c, p;m′) is the distribution over k-CNF formulas with n variables
and m clauses defined by Algorithm 1 (which is such a distribution by Lemma 1
below).

150 N. Mull et al.

Algorithm 1. defining the distribution F k(n,m, c, p;m′)
1: choose φ from Fk(n, m′)
2: choose a uniformly random partition of the n variables into c communities
3: h ← c

(
n/c
k

)
/
(

n
k

)

4: b ← (n/c)k
(

c
k

)
/
(

n
k

)

5: ψ ← the empty formula on n variables
6: for all clauses C of φ do
7: with probability p do
8: if C is within a community then
9: add C to ψ

10: otherwise do
11: with probability h/b do
12: if C is a bridge clause then
13: add C to ψ

14: if |ψ| = m then return ψ � the algorithm “succeeds”

15: choose a fresh ψ from Fk(n, m, c, p)
16: return ψ � the algorithm “fails”

Lemma 1. For all parameters satisfying the conditions of Definition 10,
Algorithm 1 defines a probability distribution over k-CNF formulas with n vari-
ables and m clauses.

Proof. First we must check that h/b ≤ 1 so that the algorithm is well-defined.
We have

h

b
=

c
(
n/c
k

)

(
n
c

)k (
c
k

) ≤ c
(

n
c

)k

k!
(

n
c

)k (
c
k

)k
=

kk

k! ck−1
≤ 1

(k − 1)!
≤ 1,

since we assume c ≥ k. Algorithm 1 always terminates, returning a formula ψ
from either line 14 or 16. In the first case, ψ is a subset of φ, which is drawn
from Fk(n,m′) and so has k-CNF clauses over n variables. Furthermore, the
algorithm does not return from line 14 unless ψ has m clauses. In the second
case, ψ is drawn from Fk(n,m, c, p), and so again is a k-CNF formula with n
variables and m clauses.
�

4.2 Comparing the Distribution to the Community Attachment
Model

Next we prove that our definition via Algorithm 1 is equivalent to the usual
community attachment definition. Since the algorithm adds each clause inde-
pendently, in essence this amounts to showing that each clause is within a com-
munity with probability p.

Lemma 2. For any m′ ∈ N, the distribution F k(n,m, c, p;m′) is identical to
the distribution Fk(n,m, c, p).

On the Hardness of SAT with Community Structure 151

Proof. When Algorithm 1 returns a formula ψ from line 16, ψ is drawn from
Fk(n,m, c, p), and so the two distributions are trivially identical. So we need
only consider the case when the algorithm returns from line 14. Because the
algorithm handles each clause of φ independently (until m clauses are added),
it suffices to show that when a clause is added to ψ, it is within a commu-
nity with probability p and is otherwise a bridge clause. Starting from line 7 of
Algorithm 1, let Ccomm be the event that the clause C is within a community,
Cbridge the event that C is a bridge clause, and Cadded the event that C is added
to ψ. Let A be the event that the algorithm takes the random branch on line 7
instead of the branch on line 10. Then we have

Pr[Ccomm|Cadded] = Pr[Ccomm|A,Cadded] Pr[A|Cadded]

+ Pr[Ccomm|A,Cadded] Pr[A|Cadded].

The second term is zero because A means the algorithm takes the branch
on line 10 and thus only adds the clause if it is a bridge clause. Likewise,
Pr[Ccomm|A,Cadded] = 1 because the branch on line 7 only adds the clause
if it is within a community. So

Pr[Ccomm|Cadded] = Pr[A|Cadded] = Pr[Cadded|A] Pr[A] / Pr[Cadded].

By straightforward counting arguments, Pr[Ccomm] = c
(
n/c
k

)
/
(
n
k

)
= h and

Pr[Cbridge] = (n/c)k
(

c
k

)
/
(
n
k

)
= b. Since the coin flips on lines 7 and 11 are

independent of C, we have Pr[Cadded|A] = Pr[Ccomm] = h and Pr[Cadded|A] =
(h/b) Pr[Cbridge] = h. Also Pr[A] = p, so

Pr[Cadded] = Pr[Cadded|A] Pr[A] + Pr[Cadded|A] Pr[A] = hp + h(1 − p) = h.

Plugging these into the expression above we obtain Pr[Ccomm|Cadded] = p. So
each clause added to ψ is within a community with probability p, and otherwise
by construction it must be a bridge clause. Therefore when Algorithm 1 returns
from line 14, it is equivalent to generating m clauses independently, each of
which is a uniformly random clause within a community with probability p, and
otherwise a uniformly random bridge clause. So F k(n,m, c, p;m′) is identical to
Fk(n,m, c, p).
�

4.3 Transferring Subformula-Inherited Properties

Algorithm 1 can “fail” by adding fewer than the desired number of clauses m to
ψ, then falling back on the community attachment model as a backup. Otherwise,
the algorithm “succeeds”, returning on line 14 a formula that was built up from
clauses of φ and is therefore a subformula of it. Since our goal is to have the
formulas from this distribution inherit properties from φ, we need to ensure that
Algorithm 1 succeeds with high probability. We can do this by taking m′, the
number of clauses in φ, to be large enough: then even if a given clause is only
added to ψ with a small probability, overall we are likely to add m of them. As

152 N. Mull et al.

we will see in the proof, the probability of adding a clause is roughly 1/ck−1,
so taking m′ to be slightly larger than ck−1m will suffice. We use the following
standard tail bound.

Lemma 3. If B(n, p) is the number of successes in n Bernoulli trials each with
success probability p, then for k < pn we have

Pr[B(n, p) ≤ k] ≤ exp
(−(pn − k)2

2pn

)

.

Lemma 4. Suppose that c is o(n), m → ∞ as n → ∞, and m′ = (1 + ε)ck−1m
for some ε > 0. Then Algorithm 1 returns from line 14 with high probability.

Proof. As shown in Lemma 2, the probability that starting from line 7 the
clause C will be added to ψ is h. So the probability that Algorithm 1
returns from line 14 is Pr[B(m′, h) ≥ m] = 1 − Pr[B(m′, h) ≤ m − 1]. Now
observe that

hck−1 =
ck

(
n/c
k

)

(
n
k

) =
n(n − c) · · · (n − c(k + 1))
n(n − 1) · · · (n − k + 1)

≤ 1.

Furthermore, we have

lim
n→∞ hck−1 = lim

n→∞
ck

(
n/c
k

)

(
n
k

) = lim
n→∞

[(
n/c
k

)

(n/c)k

k!

·
nk

k!(
n
k

)

]

=

[

lim
n→∞

(
n/c
k

)

(n/c)k

k!

][

lim
n→∞

nk

k!(
n
k

)

]

= 1,

where in evaluating the second-to-last limit we use the fact that c is o(n) and so
limn→∞(n/c) = ∞. So for sufficiently large n we have hck−1 ≥ 1 − ε/2(1 + ε),
and therefore

hm′ = h(1 + ε)ck−1m ≥
(

1 − ε

2(1 + ε)

)

(1 + ε)m = (1 + ε/2)m.

Applying Lemma 3, we have

Pr[B(m′, h) ≤ m − 1] ≤ exp
(−[hm′ − (m − 1)]2

2hm′

)

≤ exp
(−[(1 + ε/2)m − m]2

2h(1 + ε)ck−1m

)

= exp
(−m(ε/2)2

2(1 + ε) · hck−1

)

≤ exp!
(−mε2

8(1 + ε)

)

,

which goes to zero as m → ∞, and therefore as n → ∞. So with high probability,
Algorithm 1 will return from line 14.
�

Now it is simple to show that subformula-inherited properties are indeed
passed down from random k-SAT instances to instances drawn from our distri-
bution. Here “subformula-inherited” simply means that if ϕ has the property,

On the Hardness of SAT with Community Structure 153

then any formula made up of a subset of the clauses of ϕ also has the property.
For example, being satisfiable is subformula-inherited, but being unsatisfiable is
not.

Lemma 5. Suppose that c is o(n), m → ∞ as n → ∞, m′ = (1 + ε)ck−1m
for some ε > 0, and P is a subformula-inherited property. Then if a formula
drawn from Fk(n,m′) has property P with high probability, a formula drawn
from F k(n,m, c, p;m′) has property P with high probability.

Proof. Run Algorithm 1 to sample from F k(n,m, c, p;m′). Let Pψ and Pφ respec-
tively be the events that the returned formula ψ and the formula φ from line 1
have property P . Also let R be the event that the algorithm returns from line
14. When the algorithm returns from line 14, ψ is a subformula of φ, and since
P is inherited by subformulas we have Pr[Pψ|R] ≥ Pr[Pφ]. Now as φ is drawn
from Fk(n,m′), the event Pφ occurs with high probability, and so Pr[Pψ|R] → 1
as n → ∞. By Lemma 4, the event R also happens with high probability, so
Pr[Pψ] ≥ Pr[Pψ ∧ R] = Pr[Pψ|R] · Pr[R] → 1 as n → ∞. Therefore ψ has
property P with high probability.
�

Together, Lemmas 2 and 5 show that subformula-inherited properties of ran-
dom k-SAT instances are also possessed (with high probability) by instances
from the community attachment model.

4.4 Proving the Resolution Lower Bounds

Now we transition to adapting the argument of Beame and Pitassi [24]. The
proof uses two types of sparsity conditions. Both view a clause C as a set of
variables, so that another set of variables X “contains” C if and only if every
variable in C is in X.

Definition 11. A formula is n′-sparse if every set of s ≤ n′ variables contains
at most s clauses.

Definition 12. Let n′ < n′′. A formula is (n′, n′′, y)-sparse if every set of s
variables with n′ < s ≤ n′′ contains at most ys clauses.

These are both clearly subformula-inherited.
The Beame–Pitassi argument [24] is broken into three major lemmas, each

of which we will use without change. The last lemma establishes the sparsity
properties above for the random k-SAT model.

Lemma 6 [24]. Let n′ ≤ n and F be an unsatisfiable CNF formula in n vari-
ables with clauses of size at most k that is both n′-sparse and (n′(k+ε)/4, n′(k+
ε)/2, 2/(k + ε))-sparse. Then any resolution proof P of the unsatisfiability of F
must include a clause of length at least εn′/2.

Lemma 7 [24]. Let P be a resolution refutation of F of size S. Given β > 0,
say the large clauses of P are those clauses mentioning more than βn distinct
variables. Then with probability at least 1 − 21−βt/4S, a random restriction of
size t sets all large clauses in P to 1.

154 N. Mull et al.

Lemma 8 [24]. Let x > 0, 1 ≥ y > 1/(k − 1), and z ≥ 4. Fix a restriction ρ
on t ≤ min{xn/2, x1−1/y(k−1)n1−1/(k−1)/z} variables. Drawing F from Fk(n,m)
with

m ≤ y

e1+1/y2k+1/y
x1/y−(k−1)n,

then with probability at least 1 − 2−t − (2k + 1)/zk−1, F �ρ is both (xn/2, xn, y)-
sparse and xn-sparse.

We can now combine these to prove the analog of the main theorem of Beame
and Pitassi for modular instances. Our argument is almost identical to theirs: the
only difference is that we apply Lemma 8 to larger instances from the random k-
SAT model,2 so that our results above will give us sparsity for modular instances
of the correct size embedded in them as subformulas.

Theorem 4. Let k ≥ 3, 0 < ε < 1, and x, t, z, c be functions of n such that
x > 0, t and z are ω(1), c is o(n), and t satisfies the conditions of Lemma 8
for all sufficiently large n. Then with high probability, an unsatisfiable formula
drawn from Fk(n,m, c, p) with

m ≤ 1
27k/2(1 + ε)ck−1

x−(k−2−ε)/2n

does not have a resolution refutation of size ≤ 2
ε

4(k+ε)xt/8.

Proof. Let S = 2
ε

4(k+ε)xt/8 and let U be the set of unsatisfiable k-CNF formu-
las with n variables and m clauses. For each ϕ ∈ U fix a shortest resolution
refutation Pϕ, and let W ⊆ U be the set of ϕ such that |Pϕ| ≤ S. Let R
be the set of all restrictions of size t, and for any formula ϕ and ρ ∈ R let
L(ϕ, ρ) be the indicator function for the event that either ϕ is satisfiable or Pϕ�ρ

contains a clause of length at least εxn/(k + ε). Now for any ϕ ∈ W , by
Lemma 7 with β = εx/(k + ε) we have

∑

ρ

L(ϕ, ρ)
|R| ≤ 21− ε

4(k+ε)xtS = 21− ε
4(k+ε)xt(2

ε
4(k+ε)xt/8) = 1/4.

Let X be a random variable defined over a restriction ρ and equal to
Prϕ[L(ϕ, ρ)|ϕ ∈ W], where ϕ is distributed as Fk(n,m, c, p). Putting a uni-
form distribution on ρ and writing q(ψ) for the conditional distribution Prϕ[ϕ =
ψ|ϕ ∈ W],

Eρ[X] =
∑

ρ

1

|R| Prϕ
[L(ϕ, ρ)|ϕ ∈ W] =

∑

ψ∈W

q(ψ)

⎡

⎣
∑

ρ

L(ψ, ρ)

|R|

⎤

⎦ ≤
∑

ψ∈W

q(ψ)
1

4
=

1

4
.

2 Note that as required by its statement, we are applying Lemma 8 to formulas drawn
from Fk(n, m), not to formulas drawn from F k(n, m, c, p; m′). Lemmas 6 and 7 work
for any formula, so we may use all three lemmas precisely as proved in [24].

On the Hardness of SAT with Community Structure 155

So by Markov’s inequality,

Pr
ρ

[X ≥ 1/2] ≤ Eρ[X]
1/2

≤ 1/2,

and therefore there is some ρ′ such that Prϕ[L(ϕ, ρ′)|ϕ ∈ W] ≤ 1/2. In other
words, there is a restriction that eliminates large clauses from a random ϕ ∈ W
with probability at least 1/2.

Now let y = 2/(k + ε). Since k ≥ 3 and ε < 1 we have y ≥ 1/(k − 1) and

y

e1+1/y2k+1/y
= 2

[
(k + ε)e1+

k+ε
2 2k+ k+ε

2

]−1

≥ 2(k + ε)−1e− k
2 − 3

2 2− 3k
2 − 1

2

= 2(k + ε)−1e−3/22−1/22−k(3+log2 e)/2

≥ 2(k + 1)−1e−3/22−1/22−2.23k ≥ 2−1.23k2−2.23k ≥ 2−7k/2.

By our assumption on m,

(1 + ε)ck−1m ≤ 2−7k/2x−(k−2−ε)/2n = 2−7k/2x1/y−(k−1)n

≤ y

e1+1/y2k+1/y
x1/y−(k−1)n.

Finally, since z is ω(1) we have z ≥ 4 for sufficiently large n, and then all the
conditions of Lemma 8 are satisfied by y, z, t, and m′ = (1+ ε)ck−1m. Therefore
for a formula ϕ drawn from Fk(n,m′), ϕ�ρ′ is simultaneously (xn/2, xn, 2/(k +
ε))-sparse and xn-sparse with probability at least 1− 2−t − (2k + 1)/zk−1. Since
t and z are ω(1), ϕ has this property with high probability. Furthermore, the
property is inherited by subformulas, so by Lemma 5 it also holds with high
probability for formulas drawn from F k(n,m, c, p;m′). Then by Lemma 2 the
same is true for formulas drawn from Fk(n,m, c, p).

Now let n′ = 2xn/(k+ε). Since k+ε ≥ 3, we have n′ ≤ xn and so xn-sparsity
implies n′-sparsity. Also note that

xn

2
=

2xn(k + ε)
4(k + ε)

=
n′(k + ε)

4
and xn =

n′(k + ε)
2

.

So by Lemma 6, when drawing an unsatisfiable formula ϕ from Fk(n,m, c, p),
with high probability every resolution refutation of ϕ�ρ′ has a clause of length
at least εn′/2 = εxn/(k + ε). That is, Prϕ[L(ϕ, ρ′) | ϕ ∈ U] → 1 as n → ∞. So

Pr
ϕ

[ϕ ∈ W |ϕ ∈ U] =
Prϕ[ϕ ∈ W ∧ L(ϕ, ρ′) | ϕ ∈ U]

Prϕ[L(ϕ, ρ′) | ϕ ∈ W]
≤ Prϕ[L(ϕ, ρ′) | ϕ ∈ U]

1/2
→ 0

as n → ∞. Therefore with high probability, an unsatisfiable instance drawn from
Fk(n,m, c, p) does not have a resolution refutation of size ≤ S.
�

Next we instantiate this general result to obtain exponential lower bounds
for the refutation length when the number of communities is not too large. We
use slightly different arguments for k ≥ 4 and k = 3, again following Beame

156 N. Mull et al.

and Pitassi [24]. As the computations are uninteresting, we defer the proofs to
Appendix B [27]. The basic idea is to let x go to zero fast enough that the bound
on m required by Theorem 4 is satisfied when m = O(n), but slowly enough that
the length bound is of the form 2O(nλ).

Theorem 5. Suppose that k ≥ 4, m = O(n), and c = O(nα) for some α <
k−2

4(k−1) . Then there is some λ > 0 so that with high probability, an unsatisfiable
formula drawn from Fk(n,m, c, p) does not have a resolution refutation of size
2O(nλ).

Theorem 6. Suppose m = O(n) and c = O(nα) for some α < 1/10. Then there
is some λ > 0 so that with high probability, an unsatisfiable formula drawn from
F3(n,m, c, p) does not have a resolution refutation of size 2O(nλ).

4.5 Deducing a Lower Bound on CDCL Runtime

Finally, we can conclude that unsatisfiable random instances from Fk(n,m, c, p)
with sufficiently few communities usually take exponential time for CDCL to
solve.

Theorem 7. If m = O(n) and c = O(nα) for any α < 1/10, the runtime of
CDCL on an unsatisfiable formula ϕ from Fk(n,m, c, p) is exponential with high
probability.

Proof. If ϕ is unsatisfiable, the runtime of CDCL on ϕ is lower bounded (up to
a polynomial factor) by the length of the shortest resolution refutation of ϕ
[21]. If k = 3, then the shortest refutation of ϕ is exponentially long with high
probability by Theorem 6. If instead k ≥ 4, the same is true by Theorem 5, since
1/10 < k−2

4(k−1) . Therefore with high probability, CDCL will take exponential
time to prove ϕ unsatisfiable.
�
Remark 3. By picking a sufficiently high clause-variable ratio, we can ensure ϕ
is unsatisfiable with high probability, so that CDCL takes exponential time on
average for formulas drawn from Fk(n,m, c, p) (not just the unsatisfiable ones).

We also note that our proof technique is not sensitive to the details of how the
community attachment model is defined. For example, changing the definition of
a bridge clause so that the variables do not all have to be in different communities
requires only minor changes to the proof (detailed in Appendix B) [27].

Theorem 8. Let F̃k(n,m, c, p) be the community attachment model modified so
that any clause that is not within a single community counts as a bridge clause.
Then if m = O(n) and c = O(nα) for any α < 1/10, the runtime of CDCL on an
unsatisfiable formula ϕ from F̃k(n,m, c, p) is exponential with high probability.

Thus we have showed that similarly to unsatisfiable random k-SAT instances,
unsatisfiable random modular instances (as formalized by the community attach-
ment model) are hard on average for CDCL as long as they do not have too many
communities.

On the Hardness of SAT with Community Structure 157

5 Discussion

We have introduced a broad class of “modularity-like” graph metrics, the poly-
nomial clique metrics, and showed that no PCM can be a guaranteed indicator
of whether a SAT instance is easy (unless P = NP). This is perhaps not too
surprising in light of the fact that the VIG throws away the Boolean informa-
tion in the formula. While the VIG has received the most attention in recent
work on community structure, it would be worthwhile to investigate other graph
encodings that preserve more information. Regardless, our result does indicate
that it may be difficult to define a tractable class of SAT instances based purely
on modularity or its variants. Furthermore, by setting up a concrete barrier (the
PCM property) that must be avoided to obtain a tractable class, our result can
help guide future attempts to find a graph metric that does work.

Our result on the community attachment model Fk(n,m, c, p) is more inter-
esting, as it shows that instances from this model are exponentially hard for
CDCL even on average (when c is small enough). An important point is that the
result is actually nontrivial when p < 1, unlike for p = 1. In the latter case there
are no bridge clauses, so the instances consist of c independent problems of size
n/c, and since we assume c = O(n1/10) each problem has size Ω(n9/10). So by
the old results on random k-SAT CDCL would take exponential time to solve
even the easiest problem, and so likewise for the original instance (with a slightly
smaller exponent on n). On the other hand, when p < 1 it is conceivable that the
bridge clauses could actually make the instances easier, by adding some extra
propagation power or easier-to-find contradictions that would make the whole
instance easier to solve than any individual community. Our result effectively
says that this happens with vanishing probability as n → ∞.

The case p = 1 also brings out an important caveat when interpreting our
result as evidence that community structure doesn’t explain CDCL’s effective-
ness on industrial instances. Our result shows that such structure isn’t enough to
bring random formulas down from exponential-time-on-average to polynomial-
time-on-average. However, it could decrease the time from (say) 2n1/2

to 2n1/4
,

which could be the difference between intractability and tractability if n is small
enough. On the other hand, given the enormous size of many industrial instances
it isn’t clear whether this is really all that is happening. It would be interesting
to do experiments on parametrized families of industrial instances to see whether
CDCL actually avoids exponential behavior, or if the point of blow-up is just
pushed out far enough that we tend not to encounter it in practice.

Another important aspect of our result is the limit on the number of com-
munities. It does not apply when communities have logarithmic size, for exam-
ple, so that c = Θ(n/ log n). In fact it is easy to see that the result cannot
hold in this case: if one of the communities is unsatisfiable then it will have a
polynomial-length resolution refutation, and as c → ∞ the probability that at
least one community is unsatisfiable by itself goes to 1. So with high probability
the entire instance has a short refutation, and CDCL could in theory solve it in
polynomial time. A clear direction for future work is to see whether improved
proof techniques can extend our results to larger numbers of communities, closing

158 N. Mull et al.

the gap between O(n1/10) and Ω(n/ log n). This is also another way our results
can inform future experiments: it would be interesting to explore a variety of
growth rates for c above n1/10 and see how the performance of CDCL changes.
Our results indicate that high modularity alone may not be adequate to ensure
good performance even on average, but that it could be rewarding to investigate
more refined notions of “good community structure” that somehow restrict the
number of communities.

Acknowledgments. The authors thank Vijay Ganesh, Holger Hoos, Zack Newsham,
Markus Rabe, Stefan Szeider, and several anonymous reviewers for helpful discus-
sions and comments. This work is supported in part by the National Science Founda-
tion Graduate Research Fellowship Program under Grant No. DGE-1106400, by the
Hellman Family Faculty Fund, by gifts from Microsoft and Toyota, and by TerraSwarm,
one of six centers of STARnet, a Semiconductor Research Corporation program spon-
sored by MARCO and DARPA.

References

1. Marques-Silva, J.: Practical applications of Boolean satisfiability. In: Proceedings
of the 9th International Workshop on Discrete Event Systems, pp. 74–80 (2008)

2. Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their
applications in model checking. Proc. IEEE 103(11), 2021–2035 (2015)

3. Marques-Silva, J.P., Sakallah, K.A.: GRASP - a new search algorithm for satisfia-
bility. In: ICCAD, pp. 220–227 (1996)

4. Bayardo Jr., R.J., Schrag, R.: Using CSP look-back techniques to solve real-world
SAT instances. In: Proceedings of the Fourteenth National Conference on Artificial
Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference,
pp. 203–208 (1997)

5. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satis-
fiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press
(2009)

6. Chvátal, V., Szemerédi, E.: Many hard examples for resolution. J. ACM 35(4),
759–768 (1988)

7. Samer, M., Szeider, S.: Fixed-parameter tractability. In: Biere, A., Heule, M., van
Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial
Intelligence and Applications, vol. 185. IOS Press (2009)

8. Mateescu, R.: Treewidth in industrial SAT benchmarks. Technical report MSR-
TR-2011-22, Microsoft Research, February 2011

9. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In:
Proceedings of the Eighteenth International Joint Conference on Artificial Intelli-
gence, IJCAI 2003, pp. 1173–1178 (2003)

10. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Deter-
mining computational complexity from characteristic phase transitions. Nature
400(6740), 133–137 (1999)

11. Kilby, P., Slaney, J.K., Thiébaux, S., Walsh, T.: Backbones and backdoors in
satisfiability. In: Proceedings of the Twentieth National Conference on Artificial
Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence
Conference, pp. 1368–1373 (2005)

On the Hardness of SAT with Community Structure 159

12. Gregory, P., Fox, M., Long, D.: A new empirical study of weak backdoors. In:
Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 618–623. Springer, Heidelberg
(2008)

13. Liang, J.H., Ganesh, V., Czarnecki, K., Raman, V.: SAT-based analysis of large
real-world feature models is easy. In: Proceedings of the 19th International Software
Product Line Conference, SPLC, pp. 91–100 (2015)

14. Newman, M.E., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

15. Ansótegui, C., Giráldez-Cru, J., Levy, J.: The community structure of SAT formu-
las. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 410–423.
Springer, Heidelberg (2012)

16. Newsham, Z., Ganesh, V., Fischmeister, S., Audemard, G., Simon, L.: Impact of
community structure on SAT solver performance. In: Sinz, C., Egly, U. (eds.) SAT
2014. LNCS, vol. 8561, pp. 252–268. Springer, Heidelberg (2014)

17. Giráldez-Cru, J., Levy, J.: A modularity-based random SAT instances generator.
In: 24th International Joint Conference on Artificial Intelligence, IJCAI 2015 (2015)

18. Ganian, R., Szeider, S.: Community structure inspired algorithms for SAT and
#SAT. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 223–237.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-24318-4 17

19. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
(JACM) 12(1), 23–41 (1965)

20. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962)

21. Beame, P., Kautz, H.A., Sabharwal, A.: Understanding the power of clause learn-
ing. In: Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence, IJCAI 2003, pp. 1194–1201 (2003)

22. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer,
Heidelberg (2010)

23. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

24. Beame, P., Pitassi, T.: Simplified and improved resolution lower bounds. In:
Proceedings of the 37th Annual Symposium on Foundations of Computer Science,
pp. 274–282. IEEE (1996)

25. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
26. Almeida, H., Guedes, D., Meira Jr., W., Zaki, M.J.: Is there a best quality metric

for graph clusters? In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M.
(eds.) ECML PKDD 2011, Part I. LNCS, vol. 6911, pp. 44–59. Springer, Heidelberg
(2011)

27. Mull, N., Fremont, D.J., Seshia, S.A.: On the hardness of SAT with community
structure. ArXiv e-prints (2016). http://arxiv.org/abs/1602.08620

http://dx.doi.org/10.1007/978-3-319-24318-4_17
http://arxiv.org/abs/1602.08620

Trade-offs Between Time and Memory
in a Tighter Model of CDCL SAT Solvers

Jan Elffers1, Jan Johannsen2, Massimo Lauria3, Thomas Magnard4,
Jakob Nordström1(B), and Marc Vinyals1

1 KTH Royal Institute of Technology, Stockholm, Sweden
{elffers,jakobn,vinyals}@kth.se

2 Ludwig-Maximilians-Universität München, Munich, Germany
Jan.Johannsen@ifi.lmu.de

3 Universitat Politècnica de Catalunya, Barcelona, Spain
lauria@cs.upc.edu

4 École Normale Supérieure, Paris, France
magnard@clipper.ens.fr

Abstract. A long line of research has studied the power of conflict-
driven clause learning (CDCL) and how it compares to the resolution
proof system in which it searches for proofs. It has been shown that
CDCL can polynomially simulate resolution even with an adversarially
chosen learning scheme as long as it is asserting. However, the simulation
only works under the assumption that no learned clauses are ever forgot-
ten, and the polynomial blow-up is significant. Moreover, the simulation
requires very frequent restarts, whereas the power of CDCL with less
frequent or entirely without restarts remains poorly understood. With a
view towards obtaining results with tighter relations between CDCL and
resolution, we introduce a more fine-grained model of CDCL that cap-
tures not only time but also memory usage and number of restarts. We
show how previously established strong size-space trade-offs for resolu-
tion can be transformed into equally strong trade-offs between time and
memory usage for CDCL, where the upper bounds hold for CDCL with-
out any restarts using the standard 1UIP clause learning scheme, and
the (in some cases tightly matching) lower bounds hold for arbitrarily
frequent restarts and arbitrary clause learning schemes.

1 Introduction

For two decades the dominant strategy for solving the Boolean satisfiability prob-
lem (SAT) in practice has been conflict-driven clause learning (CDCL) [5,27,28].
Although SAT is an NP-complete problem, and is hence widely believed to
be intractable in the worst case, CDCL SAT solvers have turned out to be
immensely successful over a wide range of application areas. An important prob-
lem is to understand how such SAT solvers can be so efficient and what theoret-
ical limits exist on their performance.

Previous Work. At the core, CDCL searches for proofs in the proof system
resolution [14]. While pre- and inprocessing techniques can, and sometimes do, go
c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 160–176, 2016.
DOI: 10.1007/978-3-319-40970-2 11

Trade-offs Between Time and Memory in CDCL 161

significantly beyond resolution (incorporating, e.g., solving of linear equations
mod 2 and reasoning with cardinality constraints), understanding the power
of even just the fundamental CDCL algorithm seems like an interesting and
challenging problem in its own right. Three crucial aspects of CDCL solvers,
which are the focus of our work, are running time, memory usage, and restart
policy.

In resolution, time is modelled by the size/length complexity measure, in
that lower bounds on proof size yield lower bounds on the running time of
CDCL solvers. Resolution proof size is a well-studied measure. It is not hard to
show that it need never be larger than exponential in the formula size, and such
exponential lower bounds were shown already in, e.g., [20,25,31].

Another more recently studied measure is (clause) space, measured as the
number of clauses needed in memory while verifying a proof.1 We remark that
although the study of space was originally motivated by SAT solving concerns,
it is not a priori clear to what extent this abstract space measure corresponds
to CDCL memory usage. Space need never be more than linear in the worst
case [24], even though such proofs might have exponential size, and optimal
linear lower bounds on space were obtained in [1,10,24].

More interesting than such space bounds is perhaps what can be said regard-
ing simultaneous optimization of time and space, which is the setting in which
SAT solvers operate. There are strong trade-offs [6,9,11] showing that this is
not possible in general. What this means is that one can find formulas for which
(a) there are short proofs and (b) also space-efficient proofs but (c) no proof can
get close to being simultaneously both size- and space-efficient.

Regarding restarts, such a concept does not quite make sense for resolution
proofs and so has not been studied in that context as far as we are aware.

It is natural to ask to what extent upper and lower bounds for resolution
apply to CDCL. By comparison, it is well understood that the DPLL method
[22,23] searches for proofs in tree-like resolution, which incurs an exponen-
tial loss in performance as compared to general resolution. There has been a
long line of research investigating how CDCL compares to general resolution,
e.g., [7,18,26,32], culminating in the result by [30] that CDCL viewed as a proof
system polynomially simulates resolution with respect to size/time. The non-
constructive part of this result is that variable decisions are not done according
to some concrete heuristic but are provided as helpful advice to the solver. This
limitation is probably inherent, since a fully algorithmic result would have unex-
pected implications in complexity theory [2]. It is worth noting, however, that
in independent work [3] showed that for resolution proofs where all clauses have
constant size, using a random variable selection heuristic will yield a constructive
polynomial-time simulation.

1 We mention for completeness that there is also a total space measure counting the
number of literals in memory, which has been studied in, e.g., [1,13,15,16], but for
our purposes clause space seems like a more relevant measure to focus on.

162 J. Elffers et al.

One strength of [3,30] is that the results hold for any learning scheme as
long as it is asserting (an assumption that anyway lies at the heart of the CDCL
algorithm). The results also have a few less desirable aspects, however:

– The simulations require very frequent restarts. Only the first conflict after
each restart is useful, and after that one has to wait for the next restart to
make any further progress.

– There is also a large polynomial blow-up in the simulations, which means that
for practical purposes these simulations are far too inefficient to yield really
concrete insights into CDCL performance as compared to resolution.

– Finally, and most seriously, the results crucially rely on the assumption that
no learned clause is ever forgotten. This is unrealistic, as typically around 90–
95 % of learned clauses are erased during CDCL search and this is absolutely
essential for performance.

It would be desirable to obtain results relating CDCL and resolution that also
take the above aspects into account.

Addressing one of these concerns, a more fine-grained study of the power of
CDCL without restarts has been conducted in, e.g., [8,17–19]. One problematic
aspect here is that the models studied appear to be quite far from actual CDCL
behaviour. Some papers assume non-standard and rather artificial preprocessing
steps. Others study CDCL models that do not enforce that unit clauses are
propagated or that do not trigger conflict analysis as soon as a clause is falsified.
In the latter case, as a result one gets very limited restrictions on what the clause
learning schemes are, and it is hard even to talk about what “conflict analysis”
is supposed to mean in this context. This is not an issue for results establishing
lower bounds limiting what CDCL can do—here a stronger model of CDCL
only makes the results stronger—but for upper bounds the results become too
optimistic, indicating that the theoretical CDCL model can do much better than
what seems possible in practice. As a case in point, there are currently no known
separations between general resolution and CDCL without restarts, but part of
the reason for this appears to be that the models of CDCL without restarts are
clearly too strong to be realistic.

We are not aware of any work on models measuring not only time but also
memory consumption in a proof system formalizing CDCL. As discussed above,
one can define a space measure for resolution proofs, but it is not clear what
relation, if any, there is between this space measure and the size of the clause
database during CDCL execution.

Our Contributions. In this work, we present a proof system that tightly mod-
els running time, memory usage, and restarts in CDCL. The model draws heavily
on [3,30], combined with ideas from [18] to capture memory and restarts. Indeed,
we do not claim any key new technical insights for this part of our work, but
rather it is more a matter of carefully studying previous models and painstak-
ingly putting the pieces together to get as clean and simple a proof system as
possible that is nevertheless significantly “closer to the metal” than in previous
papers.

Trade-offs Between Time and Memory in CDCL 163

Our CDCL proof system enforces unit propagation and triggers conflict
analysis directly at a conflict. It can incorporate any asserting learning scheme
(as long as it is based on resolution derivations from the current conflict and
reason clauses), and this scheme is specified explicitly as a parameter. Right
from the definitions one obtains natural measures of time, memory usage, and
restarts. Variable decisions are still provided externally, just as in [3,30], but in
principle one could also plug in, say, the most commonly used VSIDS (variable
state independent decaying sum) decision scheme with phase saving and analyse
what proofs can be generated using these heuristics (though this is not the
focus of our current work). Since we are now managing the database of learned
clauses explicitly, we also have to specify a clause database reduction policy. In
this paper, the decisions about which clauses to delete are also provided to the
solver, but the model allows to plug in a concrete reduction policy as well.

We argue that the proof system we present faithfully models possible exe-
cution traces during CDCL search. Some interesting questions to study in this
model are as follows:

1. Do upper and lower bounds on resolution size and space transfer to this CDCL
proof system?

2. How does CDCL compare to general resolution if we want efficient simulations
with respect to both time and space, and in addition aim for at most constant-
factor blow-ups rather than arbitrary polynomial blow-ups?

3. What is the power of CDCL without restarts compared to the subsystems of
tree-like resolution or so-called regular resolution? (Briefly, regularity is the
somewhat SAT solver-like restriction on resolution that along each path in
the proof any variable is branched over only once.)

The worst-case upper bounds on size and space in resolution carry over to
time and memory usage in CDCL, and it turns out that this can in fact be
read off from [29], although that paper uses quite a different language. More
interestingly, we show that there is a straightforward translation from CDCL to
resolution that preserves both time and space, and so we obtain that all size and
space lower bounds previously established for resolution apply also to CDCL
(which, in particular, was not at all obvious for space).

This means that the lower bounds on time-space trade-offs in [6,9,11] also
hold for CDCL. But this does not yet yield true trade-offs, since for such results
we also want upper bounds. That is, we want to show that CDCL can find
time- or space-efficient proofs optimizing just one of these measures in isolation.
It is known how to construct such proofs in resolution, but these proofs are
not obviously CDCL-like. Since SAT solving was mentioned as a motivation
for [6,9,11] it is a relevant question whether the size-space trade-offs shown in
these papers correspond to anything one could expect to see in practice, or
whether the size- and space-efficient proofs have such peculiar structure that
nothing similar can be found by CDCL proof search.

The main contribution of our work is to address the question of whether true
time-space trade-offs can be established for CDCL. Finding an answer turns out
to be surprisingly technically challenging, and we are not able to prove the known

164 J. Elffers et al.

trade-offs for exactly the same formulas as in [6,9,11] However, for many of the
formulas it is possible to modify them slightly to obtain CDCL trade-offs with
essentially the same parameters. An additional feature of these trade-offs is that
all our upper bounds hold for CDCL without any restarts using the standard
1UIP (first unique implication point) learning scheme, while the (often tightly
matching) lower bounds hold for arbitrarily frequent restarts and arbitrarily
chosen clause learning schemes (even non-asserting ones).

We leave as open problems whether CDCL with 1UIP clause learning and
with or without restarts can simulate or be separated from general or regular
resolution, respectively. While those problems still look quite challenging, we
hope and believe that it should be possible to make progress by investigating
them in a model that more closely resembles what happens during CDCL proof
search in practice, such as the model presented in this paper.

Organization of This Paper. In Sect. 2 we describe our proof system mod-
elling CDCL. Section 3 gives an overview of our time-space trade-off results.
Since the proofs are quite long and technical, however, we have to defer essen-
tially all of them to the full-length version of the paper, and in this extended
abstract we only sketch the proof of a simpler (but still nontrivial) trade-off for
CDCL with restarts. We make some concluding remarks in Sect. 4.

2 Modelling CDCL as a Proof System

We start by describing our model of CDCL and how it is formalized as a proof
system. As already mentioned, this is very much inspired by [3,30], but with ideas
added from [18]. We want to remark right away that we describe the model at
a level of detail that might seem excessive to SAT practitioners familiar with
CDCL. We do so precisely because a serious issue with many contributions on
the theoretical side has been that they fail to get crucial details of the model
right, as discussed in the introduction.

Preliminaries. Let us first fix some standard notation and terminology. A
literal a over a Boolean variable x is either x itself or its negation x (a positive
or negative literal, respectively). A clause C = a1 ∨ · · · ∨ ak is a disjunction of
literals, where the clause is unit if it contains only one literal. A CNF formula F
is a conjunction of clauses F = C1 ∧ · · · ∧ Cm. We think of clauses and formulas
as sets, so that the order of elements is irrelevant and there are no repetitions.

A resolution derivation of C from F is a sequence of clauses (C1, C2, . . . , Cτ)
such that Cτ = C and every Ci is either a clause in F (an axiom) or is derived
from clauses Cj , Ck with j, k < i, by the resolution rule

C ∨ x D ∨ x

C ∨ D
, (1)

where we say that C∨x and D∨x are resolved over x. A derivation is trivial if all
variables resolved over are distinct and each Ci either is an axiom or is derived
from a resolution rule application where one of the resolved clauses is an axiom.

Trade-offs Between Time and Memory in CDCL 165

A resolution refutation of, or resolution proof for, an unsatisfiable formula F
is a derivation of the empty clause ⊥ (containing no literals) from the axioms
in F . The length or size of a proof is the number of clauses in it counted with
repetitions. The space of a proof at step t is the number of clauses at steps ≤ t
that are used in applications of the resolution rule at steps ≥ t. The space of a
proof is obtained by measuring the space at each step and taking the maximum.

A Formal Description of CDCL. A CDCL solver running on a formula F
decides variable assignments and propagates values that follow from such assign-
ments until a clause is falsified, at which point a learned clause is added to the
clause database D (where we always have F ⊆ D) and the search backtracks. A
key concept is the current partial assignment maintained by the solver together
with some book-keeping why variables were set this way, which we refer to as
the trail . This is a sequence s = (x1 = b1/∗, x2 = b2/∗, . . . , x� = b�/∗) where
all variables are distinct and where ∗ = d indicates that the assignment is a
decision and ∗ = C that it was propagated by the clause C. We write s≤j and
s<j to denote the subsequences that are the prefixes of length j and j − 1 of s,
respectively. We denote the empty trail by ε.

The decision level of an assignment xj = bj/∗ is the number of decision
assignments in s≤j . The decision level of a (non-empty) trail is that of its last
assignment. Identifying a trail s with the partial assignment it defines, we write
C�s to denote the clause C restricted by s, which is the trivially true clause if
s satisfies C and otherwise C with all literals falsified by s removed, and this
notation is extended to sets of clauses by taking unions. If a trail s falsifies a
clause C, we say that C is asserting if it has a unique variable at the maximum
decision level of s. If so, the second largest decision level represented in C is the
assertion level of C.

A trail s = (x1=b1/∗, . . . , x� =b�/∗) is legal with respect to a formula F and
clause database D ⊇ F if the following holds:

– D�s<�
does not contain the empty clause;

– if the jth element of s is xj =bj/d, then D�s<j
does not contain a unit clause;

– if the jth element of s is xj = bj/C, then C is contained in D and has the
property that C�s<j

is unit and is satisfied by setting xj = bj .

This captures properties that must hold during CDCL search, and so in what
follows trails are implicitly required to be legal unless otherwise specified.

At each point in time, the solver is in a CDCL state (F,D, s), where at the
beginning D = F and s = ε. It is convenient to describe the solver as being in one
of the four modes Default (where it starts), Unit, Conflict, or Decision, where
transitions are performed as described below (guided by plug-in components that
specify the detailed behaviour; also to be discussed in what follows):

Default. If all variables in F have been assigned, the solver halts and outputs
SAT together with the assignment s. If s falsifies a clause in D, the solver
moves to Conflict. Otherwise, if D�s contains a unit clause, the solver tran-
sits to Unit mode. If none of the above cases apply, the solver uses its restart

166 J. Elffers et al.

policy to decide whether to set s = ε, and its clause database reduction policy
to decide whether to shrink D to D′

� D, where D′ must still contain F and
all clauses mentioned in the current trail s, after which it moves to Decision.

Conflict. If s has decision level 0, the solver outputs UNSAT. Otherwise it applies
the learning scheme to derive an asserting clause C and then backjumps by
updating the state to (F,D∪{C}, s′) (where s′ is the prefix of s that contains
all assignments with decision level less than or equal to the assertion level
of C), and shifts to Unit mode.

Unit. The solver uses the unit propagation scheme to pick a clause C in F ∪ D
such that C�s is unit, extends s with the assignment x = b/C that satisfies
C�s, and moves to Default mode.

Decision. The solver uses the decision scheme to determine an assignment
x=b/d with which to extend the trail and moves to Default mode.

We say that a CDCL state (F,D, s) is stable if it makes the solver move from
Default mode to Decision mode and a conflict state if it causes a move from
Default to Conflict. We remark that CDCL solvers typically apply restarts
and database reductions only in the first stable state after a conflict. However,
it is not hard to see that from a proof complexity point of view the solver does
not get any stronger by allowing these steps to be performed at any stable state,
and since this simplifies the description we have done so above.

In order to obtain a concrete CDCL implementation, one needs to instantiate
the components referred to above. Let us briefly discuss how this can be done.

For the clause learning scheme the assumption is that the clause is derivable
in resolution from the clause falsified (the conflict clause) and the clauses causing
unit propagations (the reason clauses) and that the learned clause is always
asserting. For our upper bounds we use the 1UIP learning scheme from [33],
which is simply a trivial resolution derivation from the conflict clause and the
reason clauses processed in reverse order up to the first point when there remains
only one variable of maximal decision level in the clause.2

The restart policy determines when the solver should clear the trail and
start over from the beginning (but keeping the rest of the solver state). From a
theoretical point of view adding more frequent restarts can only make the solver
more powerful. Hence, in order to obtain the strongest possible result we want
to prove our upper bounds on CDCL with a strict no-restarts policy and our
lower bounds in a setting with no restrictions on restarts.

If there is more than one unit clause that can propagate in Unit mode, the
unit propagation scheme determines in which order the clauses are chosen. Typ-
ically this will depend somewhat randomly on low-level implementation details,
and therefore we try to prove our upper and lower bounds for the settings when
the order chosen is maximally unhelpful and maximally helpful, respectively.

The decision scheme is used to choose the next variable to assign when there
are no unit propagations. The dominant heuristic in practice is VSIDS [28], but

2 In fact, our results hold for any UIP scheme, but for simplicity we focus on 1UIP,
which is anyway dominant in practice.

Trade-offs Between Time and Memory in CDCL 167

for our theoretical analysis we follow [3,30] by allowing the decisions to be chosen
externally by a helpful oracle and fed to the solver.

The database reduction policy , finally, regulates when and how to forget
learned clauses. Making this aspect explicit is the main difference between our
work and [3,30]—the latter papers crucially need the unrealistic assumption that
no learned clauses may ever be erased. In principle, here one could plug in, say,
the literal block distance (LBD) heuristic in [4] to decide which clauses to throw
away or keep, but in this work we will let this, too, be part of the external input
provided to construct a CDCL proof.

Formalizing CDCL as a Proof System. In order to construct a proof system
corresponding to CDCL, we will simply let the proofs be execution traces that
contain enough information to allow efficient verification that they are consistent
with the detailed description of the CDCL model above. More formally, we say
that a CDCL trace π is an ordered sequence of the following types of elements:

– decisions xi =b/d;
– unit propagations xi =b/C (with reason C);
– learned clauses addC/σC (with conflict analysis σC);
– deletions of clauses delC;
– restarts R.

Given a CDCL model with components as above partially or fully specified, a
trace π is legal, or is a CDCL proof , if it is consistent with an execution of the
CDCL model as described above.

We say that a CDCL trace is a CDCL proof of unsatisfiablity or CDCL
refutation of F if it is legal and makes the CDCL solver output UNSAT, and that
it is a CDCL proof of satisfiablity if the output is SAT. It should be clear that
if the components specified are efficiently computable, then CDCL traces are
efficiently verifiable and constitute a proof system in the sense of [21] (and since
all traces we construct will be legal, we will sometimes use the words “trace”
and “proof” as synonyms).

The time of a CDCL proof π is the number of elements in the sequence
plus the sum of the length of all conflict analysis resolution derivations σC ,
i.e., the total number of variable decisions, propagations, and steps in conflict
analysis. The space of the proof at a given point in time is the number of learned
clauses |D \ F |, i.e., the number of statements addC/σC minus the number of
statements delC up to that point, and the space of a proof is obtained by taking
the maximum over all time steps in it.

These measures are intended to capture the execution time and memory
usage of a CDCL solver execution described by the trace π, and in addition we
want them to translate to length and space bounds for resolution. This is indeed
the case, as we state in the next theorem (the proof of which is provided in the
full-length version of this paper).

Theorem 1. If there is a CDCL proof with some learning scheme using trivial
resolution (in particular, 1UIP) refuting a CNF formula F in time τ and space s,
then F has a resolution refutation in length at most τ and space s + O(1).

168 J. Elffers et al.

The meaning of this theorem is that all lower bounds on length and space
in resolution automatically carry over to impossibility results for conflict-driven
clause learning. These results hold even for very general models of CDCL, with
arbitrarily frequent restarts and arbitrarily smart decision and database reduc-
tion heuristics, as long as the clause learning scheme is realistic. In order to prove
upper bounds for CDCL, however—i.e., showing that proof search can (at least
sometimes) be performed in a time- and space-efficient manner compared to the
best-case resolution proof scenario—we have to work harder.

3 Overview of Time-Space Trade-Off Results

In this section we survey the kind of CDCL time-space trade-offs obtained in
this paper, and discuss some of the challenges that have to be overcome when
establishing such results.

Statement of Trade-off Theorems. Our first set of trade-off results are for
formulas defined in terms of pebble games as described in [12]. Given a directed
acyclic graph (DAG) G with source vertices S and a unique sink vertex z, and
with all non-sources having fan-in 2, we identify vertices with variables and define
the pebbling formula PebG to consist of the following clauses:

– for all s ∈ S, the unit clause s (source axioms),
– for all w with predecessors u, v, the clause u ∨ v ∨ w (pebbling axioms),
– for the sink z, the unit clause z (sink axiom).

These formulas are not too interesting, since it is easy to see that they are
solved immediately by unit propagation, but if we replace each variable by an
exclusive or of two new, fresh variables, and then expand out to CNF we obtain
a XORified pebbling formula Peb⊕

G as in Fig. 1b. Given the right kind of graphs,
[11] showed that such formulas have strong trade-offs between length and space
in resolution, and we are able to lift most of these results to CDCL. We give two
examples of such results below.

Theorem 2 (Robust trade-offs (informal)). There are XORified pebbling
formulas Fn of size Θ(n) such that:

– CDCL with 1UIP learning and no restarts can refute Fn in time O(n) and
space O(n/ log n) simultaneously.

– CDCL with 1UIP learning and no restarts can refute Fn in space O
(
(log n)2

)

and time nO(log n) simultaneously.
– Any CDCL refutation of Fn in space o(n/ log n) requires time at least

nΩ(log log n) regardless of learning scheme and restart policy.

Theorem 3 (Exponential trade-offs (informal)). There are XORified peb-
bling formulas Fn of size Θ(n) such that:

– CDCL with 1UIP learning and no restarts can refute Fn in time O(n) and
space O

(
4
√

n
)
simultaneously.

Trade-offs Between Time and Memory in CDCL 169

Fig. 1. Example pebbling formula for the pyramid of height 2.

Fig. 2. Example Tseitin formula.

170 J. Elffers et al.

– CDCL with 1UIP learning and no restarts can refute Fn in space O
(

8
√

n
)
and

time nO(8√n) simultaneously.
– Any CDCL refutation of Fn in space O

(
n1/4−ε

)
for ε > 0 requires exponential

time regardless of learning scheme and restart policy.

The other formula family considered in this paper are Tseitin formulas, which
are defined in terms of undirected graphs with vertices labelled 0/1 in such a
way that the total sum of all vertex labels is odd. The variables of the formula
are the edges of the graph. For every vertex we add a constraint saying that the
parity of the number of true edges incident to the vertex is equal to the vertex
label. Summing over all vertices, each edge is counted exactly twice and hence
the total number of true edges must be even. But this contradicts that the sum
of the labels is odd, and thus the formulas are unsatisfiable. Figure 2b gives an
example Tseitin formula generated from the labelled graph in Fig. 2a.

Using Tseitin formulas over long, skinny grids, we can build on [9] to obtain
the following trade-off, which applies even for superlinear space.

Theorem 4 (Superlinear space trade-offs (informal)). For a Tseitin for-
mula Fw,� over a grid graph with w rows and � columns, 1 ≤ w ≤ �1/4, and with
double edges between every two vertices at horizontal distance one or vertical
distance one, it holds that

– CDCL with 1UIP learning and no restarts can refute Fw,� in time O(25w�)
and space O(22w).

– CDCL with 1UIP learning and no restarts can refute Fw,� in space O(w log(�))
and time O

(
�O(w)

)
.

– For any CDCL refutation in time τ and space s, regardless of learning scheme
and restart policy, it holds that

τ =
(

2Ω(w)

s

)Ω(log log �
log log log �)

.

Proof Techniques and Technical Challenges. All the trade-offs stated in
Theorems 2, 3, and 4 are known to hold for resolution, and so by Theorem 1 we
immediately obtain that the lower bounds carry over to CDCL. What we need
to show in order to establish these theorems is that CDCL can find proofs that
match the upper bounds in resolution.

The general idea how we would like to do this is clear: given a resolution
proof π = (C1, C2, . . . , Cτ), we should force the CDCL solver to efficiently learn
the clauses Ci one by one, making sure at all times that the clause database size
is comparable to the space complexity of the resolution proof. This seems hard
to do, however, and somewhat ironically what causes trouble for us are the unit
propagations that otherwise make CDCL so efficient. To illustrate the problem,
suppose that we have learned C ∨ x and D ∨ x and now want to learn their
resolvent C ∨ D. It would be nice to decide on all literals in C ∨ D being false,
after which we could get a conflict on x. But there might be other clauses in the

Trade-offs Between Time and Memory in CDCL 171

database that propagate literals to “wrong values” before we manage to falsify
all of C ∨ D, and if so the CDCL search will veer off in another direction and
we will not be able to learn this resolvent.

This highlights two technical difficulties that we need to be able to deal with:

– Not only do we have to decide on variables in the right order, but we have to
make sure that no other unexpected (and unwanted) propagations occur.

– In contrast to resolution, where having more clauses at your disposal never
hurts, keeping too many learned clauses in the clause database can actually
hinder the CDCL search. This is also a striking contrast to [3,30], where a
key technical lemma is precisely that having more clauses in the database can
only be helpful.

We do not know how to simulate general resolution efficiently with respect
to length and space simultaneously, even using ever so frequent restarts. And an
additional problem is that we want to know—in order to better understand basic
CDCL reasoning with unit propagation and conflict analysis—whether for the
pebbling and Tseitin formulas presented above CDCL can find efficient proofs
even without restarts. This makes our task substantially more complicated.

If we allow suitably frequent restarts, however, it is not too hard to show
that CDCL can efficiently simulate the “canonical” resolution proofs for these
formulas. To give at least some flavour of the technical arguments needed to
reason about the CDCL proof system, we conclude this section with a description
of how this result can be proven for pebbling formulas.

Pebbling Formula Upper Bound for CDCL with Restarts. A pebbling
formula encodes the black pebble game played on a DAG G, where we start with
G being empty and want to finish with a pebble on the sink z. A vertex can be
pebbled if its predecessors have pebbles (vacuously true for sources), and pebbles
can always be removed. The time of a pebbling is the number of moves before z
is reached and the space is the maximum number of pebbles on vertices of G at
any point.

Resolution can simulate such pebblings by deriving, whenever a vertex w is
pebbled, the two pebble clauses w1 ∨ w2 and w1 ∨ w2 saying that the exclusive
or w1 ⊕ w2 is true, and by erasing these clauses whenever a pebble is removed.
For a source vertex the pebble clauses are already available as source axioms
in the formula (see Figure 1b), and it is not hard to show that resolution can
efficiently propagate exclusive ors from predecessors to successors. Once pebble
clauses have been derived for the sink z, contradiction immediately follows from
the sink axioms.

We want to mimic this in CDCL as described in the algorithm Pebble in
Fig. 3 producing a CDCL trace. For a pebble placement, we want to learn first
w1 ∨ w2, corresponding to “half of the pebble” on w, and then w1 ∨ w2. How to
do this is described in the procedure HalfPebble in Fig. 4, where the notation
xb for b ∈ {0, 1} is used as a compact way of denoting x1 = x and x0 = x.

When a pebble is placed on w in the pebbling, we let the CDCL solver make
the decisions (w1 = 0/d, w2 = 0/d) with the goal of learning w1 ∨ w2. Then we

172 J. Elffers et al.

decide values for the variables of the predecessors u and v of w, and since there
are clauses in memory encoding u1 ⊕ u2 and v1 ⊕ v2 this will provoke repeated
conflicts until finally the clause w1 ∨ w2 is learned. Since this only involves a
constant number of variables, the time and space required for this is constant,
and our goal can be achieved, e.g., as described in FindConflicts in Fig. 5.

But now we run into problems. At this point the CDCL solver will backjump
to the decision w1 = 0, where the learned clause w1 ∨ w2 asserts w2 = 1. As
the next step, we want to generate conflicts that lead to the “second half” of
the pebble w1 ∨ w2 being learned, but there is no way this can happen since the
decision w1 = 0 is on the trail and the clause w1 ∨w2 is thus satisfied. Moreover,
if the solver is not allowed to restart, then this satisfying assignment is fixed
on the trail, and no new conflict could possibly cause a backjump to before this
assignment. Therefore, the solver is forced to continue the proof search elsewhere.
This turns out to be a major obstacle, which we are able to circumvent only by
substantial extra work involving reordering the pebbling and using a different
algorithm. Unfortunately the technical arguments are rather intricate and the
algorithm too long to describe; we refer to the full-length version for the details.

If we instead give the solver the option to restart at this point, it can clear
the trail and also forget all unnecessary clauses. This means that the decisions
(w1 =1/d, w2 =1/d) can be made, after which the clause w1 ∨ w2 is learned in

Fig. 3. Procedure Pebble (P)

Fig. 4. Procedure HalfPebble (w, b)

Trade-offs Between Time and Memory in CDCL 173

the same way as above. To conclude, we again trigger a restart and erase all
auxiliary clauses that are no longer needed.

Pebble removals are very straightforward to simulate: the only condition that
could stop us from erasing the clauses w1 ∨w2 and w1 ∨w2 is if they are reasons
for propagated literals on the trail, but since we have just made a restart the
trail is empty. Formalizing the arguments above, we obtain the following lemma.

Fig. 5. Procedure FindConflicts (w, b)

Lemma 5. If P is a black pebbling of G in space s and time τ , then there is a
CDCL proof of Peb⊕

G with restarts using the 1UIP learning scheme and any unit
propagation scheme in space at most 2s + 3 and time O(τ).

Proof. Given a pebbling P we generate a trace as described by the procedure
Pebble. Note that this procedure maintains the invariant that the pebble clauses
for a non-source vertex w are in the clause database if and only if there is a
pebble on w. No other clauses are in memory. The space bound follows from this
invariant, and the time bound holds by construction.

It remains to check that the trace thus generated is legal. Observe that the
clauses in memory only propagate if at least one variable from each vertex they
mention is set. Since the decision sequence mentions at most three vertices at
the same time, we only need to reason about clauses that mention these vertices.

The correctness of FindConflicts is straightforward to verify, since the order
of unit propagations can be seen to be uniquely determined. At the end of
FindConflicts, the assignments to w1 and w2 are decisions and all predecessor
variables u1, u2, v1, v2 are set by unit propagation. Since one of the conflicting
clauses, a pebbling axiom, contains the decision variables w1 and w2, they have
to appear in any conflict clause. The remaining variables involved in the conflict
have maximal decision level, so they cannot appear in an asserting clause because
w2 already appears. Therefore, we learn the clause w1−b

1 ∨ w1−b
2 and assert w2=

1−b/u. We only erase clauses after a restart, so no erased clauses can be reasons
for unit propagations. This concludes the proof.

174 J. Elffers et al.

4 Concluding Remarks

In this paper, we present a proof system that closely models conflict-driven clause
learning (CDCL) and yields natural measures not only of running time but also
of memory usage and number of restarts. To the best of our knowledge, previous
papers considered either zero restarts or very frequent restarts, and none of the
models captured space. We show that lower bounds on proof size and space
in resolution carry over to this CDCL proof system. Furthermore, we establish
that currently known trade-offs between size and space in resolution can be
transformed into essentially equally strong trade-offs between time and memory
usage for CDCL, where the upper bounds are achieved by CDCL without any
restarts using the standard 1UIP clause learning scheme, and the lower bounds
apply even for arbitrarily frequent restarts and arbitrary clause learning schemes.

The focus of our work is theoretical, namely to see if CDCL proof search is
in principle subject to the kind of trade-offs shown previously for the resolution
proof system in which it searches for proofs. Since the answer turns out to be yes,
an interesting direction for future work would be to investigate experimentally
whether anything like these time-space trade-offs show up also in practice.

Two other interesting problems are whether CDCL with 1UIP can simulate
general resolution efficiently with respect to both time and space (measuring
time only, a polynomial simulation follows from [30]), and whether CDCL with
1UIP and without restarts can simulate or be separated from regular resolution.
If one believes that a separation should be more likely, a first step could be
to revisit the formulas in [17,19] and study them in our model, which is much
closer to actual CDCL search and where proving lower bounds might therefore
be easier. It should be said, though, that both of these problems still look like
formidable challenges.

A more specialized question along the same lines, but still quite intriguing,
is what can be said if VSIDS and phase saving is plugged into our CDCL model.
The VSIDS heuristic seems like an important part of what makes CDCL SAT
solvers so successful in practice, and yet there are also theoretical combinatorial
formulas where it seems to be less useful. It would be interesting if one could find
explicit examples of formulas where VSIDS in combination with phase saving
goes provably wrong compared to the best possible resolution proof, causing a
large polynomial or even superpolynomial blow-up in proof size.

Acknowledgements. We are grateful to the anonymous SAT conference reviewers
for detailed comments that helped improve the exposition in this paper.

The third author performed this work while at KTH Royal Institute of Technology,
and most of the work of the second and fourth author was done while visiting KTH.
The first, third, fifth, and sixth author were funded by the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007–2013) / ERC
grant agreement no. 279611 as well as by Swedish Research Council grant 621-2012-
5645. The third author was also supported by the European Research Council under
the European Union’s Horizon 2020 Research and Innovation Programme/ERC grant
agreement no. 648276.

Trade-offs Between Time and Memory in CDCL 175

References

1. Alekhnovich, M., Ben-Sasson, E., Razborov, A.A., Wigderson, A.: Space complex-
ity in propositional calculus. SIAM J. Comput. 31(4), 1184–1211 (2002). Prelimi-
nary version in STOC 2000

2. Alekhnovich, M., Razborov, A.A.: Resolution is not automatizable unless W[P]
is tractable. SIAM J. Comput. 38(4), 1347–1363 (2008). Preliminary version in
FOCS 2001

3. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many
restarts and bounded-width resolution. J. Artif. Intell. Res. 40, 353–373 (2011).
Preliminary version in SAT 2009

4. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI 2009), pp. 399–404, July 2009

5. Bayardo Jr., R.J., Schrag, R.: Using CSP look-back techniques to solve real-world
SAT instances. In: Proceedings of the 14th National Conference on Artificial Intel-
ligence (AAAI 1997), pp. 203–208, July 1997

6. Beame, P., Beck, C., Impagliazzo, R.: Time-space tradeoffs in resolution: super-
polynomial lower bounds for superlinear space. In: Proceedings of the 44th Annual
ACM Symposium on Theory of Computing (STOC 2012), pp. 213–232, May 2012

7. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the
potential of clause learning. J. Artif. Intell. Res. 22, 319–351 (2004). Preliminary
version in IJCAI 2003

8. Beame, P., Sabharwal, A.: Non-restarting SAT solvers with simple preprocessing
can efficiently simulate resolution. In: Proceedings of the 28th National Conference
on Artificial Intelligence (AAAI 2014), pp. 2608–2615. AAAI Press, July 2014

9. Beck, C., Nordström, J., Tang, B.: Some trade-off results for polynomial calculus.
In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing
(STOC 2013), pp. 813–822, May 2013

10. Ben-Sasson, E., Galesi, N.: Space complexity of random formulae in resolution.
Random Struct. Algorithms 23(1), 92–109 (2003). Preliminary version in CCC
2001

11. Ben-Sasson, E., Nordström, J.: Understanding space in proof complexity: separa-
tions and trade-offs via substitutions. In: Proceedings of the 2nd Symposium on
Innovations in Computer Science (ICS 2011). pp. 401–416, January 2011

12. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow–resolution madesimple. J.
ACM 48(2), 149–169 (2001). Preliminary version in STOC 1999

13. Bennett, P., Bonacina, I., Galesi, N., Huynh, T., Molloy, M., Wollan, P.: Space
proof complexity for random 3-CNFs. Technical report arXiv.org:1503.01613, April
2015

14. Blake, A.: Canonical Expressions in Boolean Algebra. Ph.D. thesis, University of
Chicago (1937)

15. Bonacina, I.: Total space in resolution is at least width squared. In: Proceedings
of the 43rd International Colloquium on Automata, Languages and Programming
(ICALP 2016), (to appear, July 2016)

16. Bonacina, I., Galesi, N., Thapen, N.: Total space in resolution. In: Proceedings of
the 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2014), pp. 641–650, October 2014

17. Bonet, M.L., Buss, S., Johannsen, J.: Improved separations of regular resolution
from clause learning proof systems. J. Artif. Intell. Res. 49, 669–703 (2014)

http://arxiv.org/abs/org:1503.01613

176 J. Elffers et al.

18. Buss, S.R., Hoffmann, J., Johannsen, J.: Resolution trees with lemmas: resolution
refinements that characterize DLL-algorithms with clause learning. Logical Meth.
Comput. Sci. 4(4:13), 1–28 (2008)

19. Buss, S.R., Ko�lodziejczyk, L.: Small stone in pool. Logical Meth. Comput. Sci. 10,
1–22 (2014)

20. Chvátal, V., Szemerédi, E.: Many hard examples for resolution. J. ACM 35(4),
759–768 (1988)

21. Cook, S.A., Reckhow, R.: The relative efficiency of propositional proof systems. J.
Symbolic Logic 44(1), 36–50 (1979)

22. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Commun. ACM 5(7), 394–397 (1962)

23. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960)

24. Esteban, J.L., Torán, J.: Space bounds for resolution. Inf. Comput. 171(1), 84–97
(2001). Preliminary versions of these results appeared in STACS 1999 and CSL
1999

25. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39(2–3), 297–308
(1985)

26. Hertel, P., Bacchus, F., Pitassi, T., Van Gelder, A.: Clause learning can effectively
P-simulate general propositional resolution. In: Proceedings of the 23rd National
Conference on Artificial Intelligence (AAAI 2008), pp. 283–290, July 2008

27. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999). Preliminary version in
ICCAD 1996

28. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference (DAC 2001). pp. 530–535, June 2001

29. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

30. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as
resolution engines. Artif. Intell. 175, 512–525 (2011). Preliminary version in CP
2009

31. Urquhart, A.: Hard examples for resolution. J. ACM 34(1), 209–219 (1987)
32. Van Gelder, A.: Pool resolution and its relation to regular resolution and DPLL

with clause learning. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS
(LNAI), vol. 3835, pp. 580–594. Springer, Heidelberg (2005)

33. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven
learning in boolean satisfiability solver. In: Proceedings of the IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD 2001), pp. 279–285, Novem-
ber 2001

Satisfiability Applications

A SAT Approach to Branchwidth

Neha Lodha, Sebastian Ordyniak, and Stefan Szeider(B)

Algorithms and Complexity Group, TU Wien, Vienna, Austria
{neha,ordyniak,sz}@ac.tuwien.ac.at

Abstract. Branch decomposition is a prominent method for struc-
turally decomposing a graph, hypergraph or CNF formula. The width
of a branch decomposition provides a measure of how well the object
is decomposed. For many applications it is crucial to compute a branch
decomposition whose width is as small as possible. We propose a SAT
approach to finding branch decompositions of small width. The core of
our approach is an efficient SAT encoding which determines with a single
SAT-call whether a given hypergraph admits a branch decomposition of
certain width. For our encoding we developed a novel partition-based
characterization of branch decomposition. The encoding size imposes a
limit on the size of the given hypergraph. In order to break through
this barrier and to scale the SAT approach to larger instances, we devel-
oped a new heuristic approach where the SAT encoding is used to locally
improve a given candidate decomposition until a fixed-point is reached.
This new method scales now to instances with several thousands of ver-
tices and edges.

1 Introduction

Background. Branch decomposition is a prominent method for structurally
decomposing a graph or hypergraph. This decomposition method was origi-
nally introduced by Robertson and Seymour [17] in their Graph Minors Project
and has become a key notion in discrete mathematics and combinatorial opti-
mization. Branch decompositions can be used to decompose other combinatorial
objects such as matroids, integer-valued symmetric submodular functions, and
propositional CNF formulas (after dropping of negations, clauses can be consid-
ered as (hyper-)edges). The width of a branch decomposition provides a measure
of how well it decomposes the given object; the smallest width over its branch
decompositions denotes the branchwidth of an object. Many hard computational
problems can be solved efficiently by means of dynamic programming along a
branch decomposition of small width. Prominent examples include the trav-
eling salesman problem [6], the #P-complete problem of propositional model
counting [3], and the generation of resolution refutations for unsatisfiable CNF
formulas [2]. In fact, all decision problems on graphs that can be expressed in
monadic second order logic can be solved in linear time on graphs that admit a
branch decomposition of bounded width [10].

Dedicated to the memory of Helmuth Veith (1971–2016).

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 179–195, 2016.
DOI: 10.1007/978-3-319-40970-2 12

180 N. Lodha et al.

A bottleneck for all these algorithmic applications is the space requirement
of dynamic programming, which is typically single or double exponential in the
width of the given branch decomposition. Hence it is crucial to compute first a
branch decomposition whose width is as small as possible. This is very similar to
the situation in the context of treewidth, where the following was noted about
inference on probabilistic networks of bounded treewidth [15]:

[. . .] since inference is exponential in the tree-width, a small reduction in
tree-width (say by even by 1 or 2) can amount to one or two orders of
magnitude reduction in inference time.

Hence small improvements in the width can change a dynamic programming
approach from unfeasible to feasible. The boundary between unfeasible and fea-
sible width values strongly depends on the considered problem and the currently
available hardware. For instance, Cook and Seymour [6] mention a threshold of
20 for the Traveling Salesman Problem in 2003. Today one might consider a
higher threshold. Computing an optimal branch decomposition is NP-hard [19].

Contribution. In this paper we propose a practical SAT-based approach to find-
ing a branch decompositions of small width. At the core of our approach is an
efficient SAT encoding which takes a hypergraph H and an integer w as input
and produces a propositional CNF formula which is satisfiable if and only if
H admits a branch decomposition of width w. By multiple calls of the solver
with various values of w we can determine the smallest w for which the formula
is satisfiable (i.e., the branchwidth of H), and we can transform the satisfying
assignment into an optimal branch decomposition. Our encoding is based on a
novel partition-based characterization of branch decompositions in terms of cer-
tain sequences of partitions of the set of edges. This characterization together
with clauses that express cardinality constraints allow for an efficient SAT encod-
ing that scales up to instances with about hundred edges. The computationally
most expensive part in this procedure is to determine the optimality of w by
checking that the formula corresponding to a width of w − 1 is unsatisfiable. If
we do not insist on optimality and aim at good upper bounds, we can scale the
approach to larger hypergraphs with over two hundred edges.

The number of clauses in the formula is polynomial in the size of the hyper-
graph and the given width w, but the order of the polynomial can be quintic,
hence there is a firm barrier to the scalability of the approach to larger hyper-
graphs. In order to break through this barrier, we developed a new SAT-based
local improvement approach where the encoding is not applied to the entire
hypergraph but to certain smaller hypergraphs that represent local parts of a
current candidate branch decomposition. The overall procedure thus starts with
a branch decomposition obtained by a heuristic method and then tries to improve
it locally by multiple SAT-calls until a fixed-point (or timeout) is reached. This
method scales now to instances with several thousands of vertices and edges and
branchwidth upper bounds well over hundred. We believe that a similar app-
roach using a SAT-based local improvement could also be developed for other
(hyper)graph width measures.

A SAT Approach to Branchwidth 181

Related Work. Previously, SAT techniques have been proposed for other graph
width measures: Samer and Veith [18] proposed a SAT encoding for treewidth,
based on a characterization of treewidth in terms of elimination orderings (that
is, the encoding entails variables whose truth values determine a permutation of
the vertices, and the width of a corresponding decomposition is then bounded
by cardinality constraints). This approach was later improved by Berg and
Järvisalo [4] who empirically evaluated various SAT and MaxSAT strategies
for treewidth encodings based on elimination orderings. Heule and Szeider [11]
developed a SAT approach for computing the clique-width of graphs. For this
purpose they developed a novel partition-based characterization of clique-width.
Our encoding of branchwidth was inspired by this. However, the two encodings
are different as clique-width and branchwidth are entirly different notions.

For finding branch decompositions of smallest width, Robertson and Sey-
mour [17] suggested an exponential-time algorithm which was later implemented
by Hicks [12]. Further exponential-time algorithms have been proposed (see, for
instance [9,14]) but there seem to be no implementations. Ulusal [20] proposed
an encoding to integer programming (CPLEX). One could also find subopti-
mal branch decompositions based on the related notion of tree decompositions;
however, finding an optimal tree decomposition is again NP-hard, and by trans-
forming it into a branch decomposition one introduces an approximation error
factor of up to 50 % [17] which makes this approach prohibitive in practice.
For practical purposes one therefore mainly resorts to heuristic methods that
compute suboptimal branch decompositions [6,13,16].

Due to the space restrictions several proofs have been omitted.

2 Preliminaries

Formulas and Satisfiability. We consider propositional formulas in Conjunctive
Normal Form (CNF formulas, for short), which are conjunctions of clauses, where
a clause is a disjunction of literals, and a literal is a propositional variable or
a negated propositional variables. A CNF formula is satisfiable if its variables
can be assigned true or false, such that each clause contains either a variable set
to true or a negated variable set to false. The satisfiability problem (SAT) asks
whether a given formula is satisfiable.

Graphs and Branchwidth. We consider finite hypergraphs and undirected graphs.
For basic terminology on graphs we refer to a standard text book [8]. For a
(hyper-)graph H we denote by V (H) the vertex set of H and by E(H) the
edge set of H. If E ⊆ E(H), we denote by H \ E the hypergraph with vertices
V (H) and edges E(H)\E. Let G be a simple undirected graph. The radius of G,
denoted by rad(G), is the minimum integer r such that G has a vertex from which
all other vertices are reachable via a path of length at most rad(G). The center
of G is the set of vertices such that all other vertices of G can be reached via a
path of length at most rad(G). We will often consider various forms of trees, i.e.,
connected acyclic graphs, as they form the backbone of branch decompositions.

182 N. Lodha et al.

Let T be an undirected tree. We will always assume that T is rooted (in some
arbitrary vertex r) and hence the parent and child relationships between its
vertices are well-defined. We say that T is ternary if every non-leaf vertex of T
has degree exactly three. We will write pT (t) (or just p(t) if T is clear from the
context) to denote the parent of t ∈ V (T) in T . We also write Tt to denote the
subtree of T rooted in t, i.e., the component of T \ {{t,pT (t)}} containing t. For
a tree T , we denote by h(T), the height of T , i.e., the length of a longest path
between the root and any leaf of T plus one. It is well-known that every tree
has at most two center vertices, moreover, if it has two center vertices then they
form the endpoints of an edge in the tree.

Let H be a hypergraph. Every subset E of E(H) defines a cut of H, i.e., the
pair (E,E(H) \ E). We denote by δH(E) (or just δ(E) if H is clear form the
context) the set of cut vertices of E in H, i.e., δ(E) contains all vertices incident
to both an edge in E and an edge in E(H) \ E. Note that δ(E) = δ(E(H) \ E).

A

1

3

2

5

4

9

8 29

382 8

28

38

23

29

14

54 A3

45

3

35

35

345

34

14

129

129

1
3

239

Fig. 1. A hypergraph H (left) and an optimal branch decomposition (T, γ) of H (right).
The labels of the leaves of T are the edges assigned to them by γ and the labels of the
edges of T are the cut vertices of that edge.

A branch decomposition B(H) of H is a pair (T, γ), where T is a ternary tree
and γ : L(T) → E(H) is a bijection between the edges of H and the leaves of T
(denoted by L(T)). For simplicity, we write γ(L) to denote the set { γ(l) | l ∈ L }
for a set of leaves L of T and we also write δ(T ′) instead of δ(γ(L(T ′))) for a
subtree T of T ′. For an edge e of T , we denote by δB(e) (or simply δ(e) if B is
clear from the context), the set of cut vertices of e, i.e., the set δ(T ′), where T ′

is any of the two components of T \{e}. Observe that δB(e) consists of the set of
all vertices v such that there are two leaves l1 and l2 of T in distinct components
of T \ {e} such that v ∈ γ(l1) ∩ γ(l2). The width of an edge e of T is the number
of cut vertices of e, i.e., |δB(e)| and the width of B is the maximum width of any
edge of T . The branchwidth bw(H) of H is the minimum width over all branch
decompositions of H (or 0 if |E(G)| = 0 and H has no branch decomposition).
We also define the depth of B as the radius of T . Figure 1 illustrates a branch
decomposition of a small hypergraph. In the figure and in the remainder of the

A SAT Approach to Branchwidth 183

paper we will often denote a set {1, 2, 3, A} of vertices as 123A. We will use the
following property of branch decompositions.

Proposition 1. Let B := (T, γ) and B′ := (T ′, γ′) be two branch decompositions
of the same hypergraph H. Then there is bijection α : V (T) → V (T ′) between
the vertices of T such that l ∈ L(T) if and only if α(l) ∈ L(T ′) and moreover
γ(l) = γ′(α(l)) for every l ∈ L(T). In other words w.l.o.g. one can assume that
B and B′ differ only in terms of the edges of T and T ′.

Partitions. As partitions play an important role in our reformulation of branch-
width, we recall some basic terminology. A partition of a set S is a set P of
nonempty subsets of S such that any two sets in P are disjoint and S is the
union of all sets in P . The elements of P are called equivalence classes. Let P, P ′

be partitions of S. Then P ′ is a refinement of P if for any two elements x, y ∈ S
that are in the same equivalence class of P ′ are also in the same equivalence
class of P (this entails the case P = P ′). Moreover, we say that P ′ is a k-ary
refinement of P if additionally it holds that for every p ∈ P there are p1, . . . , pk
in P ′ such that p =

⋃
1≤i≤k pi.

3 Partition-Based Reformulation of Branchwidth

One might be tempted to think that the original characterization of branch
decompositions as ternary trees leads to a very natural and efficient SAT encod-
ing for the existence of a branch decomposition of a certain width. In particular,
in the light of Proposition 1 one could encode the branch decomposition as a
formlula by fixing all vertices of the tree (as well as the bijection on the leaves)
and then employing variables to guess the children for each inner vertex of the
tree. We have tried this approach, however, to our surprise the performance of the
encoding based on this characterization of branch decomposition was very poor.
We therefore opted to develop a different encoding based on a new partition-
based characterization of branch decomposition which we will introduce next.
Compared to this, the original encoding was clearly inferior, resulting in an
encoding size that was always at least twice as large and overall solving times
that where longer by a factor of 3–10, even after several rounds of fine-tuning
and experimenting with natural variants.

Let H be a hypergraph. A derivation P of H of length l is a sequence
(P1, . . . , Pl) of partitions of E(G) such that:

D1 P1 = { {e} | e ∈ E(H) } and Pl = {E(H)} and
D2 for every i ∈ {1, . . . , l − 1}, Pi is a 2-ary refinement of Pi+1 and
D3 Pl−1 is a 3-ary refinement of Pl.

The width of P is the maximum size of δH(E) over all sets E ∈ ⋃
1≤i<l Pi. We

will refer to Pi as the i-th level of the derivation P and we will refer to elements in⋃
1≤i≤l Pi as sets of the derivation. We will show that any branch decomposition

can be transformed into a derivation of the same width and also the other way
around. The following example illustrates the close connection between branch
decompositions and derivations.

184 N. Lodha et al.

Example 1. Consider the branch decomposition B given in Fig. 1. Then B can,
e.g., be translated into the derivation P = (P1, . . . , P5) defined by:

P1 =
{{

129
}
,
{
35

}
,
{
45

}
,
{
3A

}
,
{
14

}
,
{
28

}
,
{
38

}
,
{
29

}}

P2 =
{{

129
}
,
{
35

}
,
{
45, 3A

}
,
{
14

}
,
{
28

}
,
{
38

}
,
{
29

}}

P3 =
{{

129
}
,
{
35, 45, 3A

}
,
{
14

}
,
{
28, 38

}
,
{
29

}}

P4 =
{{

129
}
,
{
35, 45, 3A, 14

}
,
{
28, 38, 29

}}

P5 =
{{

129, 35, 45, 3A, 14, 28, 38, 29
}}

The width of B is equal to the width of P.

The following theorem shows that derivations provide an alternative charac-
terization of branch decompositions.

Theorem 1. Let H be a hypergraph and w and d two integers. H has a branch
decomposition of width at most w and depth at most d if and only if H has a
derivation of width at most w and length at most d.

One important parameter influencing the size of the encoding for the existence
of a derivation is the length of the derivation. The next theorem shows a tight
upper bound on the length of any derivation required to rule out the existence
of a branch decomposition. Observe that a simple caterpillar (i.e., a path where
each inner vertex has one additional “pending” neighbor) shows that the bound
given below is tight. The main observations behind the following theorem are
that every branch decomposition has depth at most �|E(H)|/2� and moreover
for certain branch decompositions one can further reduce its depth by replacing
subtrees at the bottom of the branch decomposition containing at most �w/e	
leaves with complete binary subtrees of height at most �log�w/e�	.
Theorem 2. Let H be a hypergraph, e the maximum size over all edges of H,
and w an integer. Then the branchwidth of H is at most w if and only if H
has a derivation of width at most w and length at most �|E(H)|/2� − �w/e	 +
�log�w/e�	.

4 Encoding

Let H be a hypergraph with m edges and n vertices, and let w and d be positive
integers. We will assume that the vertices of H are represented by the numbers
from 1 to n and the edges of H by the numbers from 1 to m. The aim of this
section is to construct a formula F (H,w, d) that is satisfiable if and only if H
has derivation of width at most w and length at most d. Because of Theorem 2
(after setting d to the value specified in the theorem) it holds that F (H,w, d)
is satisfiable if and only if H has branchwidth at most w. To achieve this aim
we first construct a formula F (H, d) that is satisfiable if and only if H has
a derivation of length at most d and then we extend this formula by adding
constrains that restrict the width of the derivation to w.

A SAT Approach to Branchwidth 185

4.1 Encoding of a Derivation of a Hypergraph

The formula F (H, d) uses the following variables. A set variable s(e, f, i), for
every e, f ∈ E(H) with e < f and every i with 0 ≤ i ≤ d. Informally, s(e, f, i) is
true whenever e and f are contained in the same set at level i of the derivation.
A leader variable l(e, i), for every e ∈ E(H) and every i with 0 ≤ i ≤ d.
Informally, the leader variables will be used to uniquely identify the sets at each
level of a derivation, i.e., l(e, i) is true whenever e is the smallest edge in a set
at level i of the derivation.

We now describe the clauses of the formula. The following clauses ensure
(D1) and that the derivation is a sequence of refinements.

(¬s(e, f, 0)) ∧ (s(e, f, d)) ∧ (¬s(e, f, i) ∨ s(e, f, i + 1))
for e, f ∈ E(H), e < f , 1 ≤ i < d

The following clauses ensure that the relation of being in the same set is
transitive.

(¬s(e, f, i) ∨ ¬s(e, g, i) ∨ s(f, g, i))
∧(¬s(e, f, i) ∨ ¬s(f, g, i) ∨ s(e, g, i))
∧(¬s(e, g, i) ∨ ¬s(f, g, i) ∨ s(e, f, i)) for e, f, g ∈ E(H), e < f < g, 1 ≤ i ≤ d

The following clauses ensure that l(e, i) is true if and only if e is the smallest
edge contained in some set at level i of a derivation.

(l(e, i) ∨
∨

f∈E(H),f<e

s(f, e, i))

︸ ︷︷ ︸
A

∧
∧

f∈E(H),f<e

(¬l(e, i) ∨ ¬s(f, e, i))

︸ ︷︷ ︸
B

for e ∈ E(H), 1 ≤ i ≤ d
Part A ensures that e is a leader or it is in a set with an edge which is smaller
than e and the part B ensures that if e is not in same set with any smaller edge
then it is a leader. The following clauses ensure that at most two sets in the
partition at level i can be combined into a set in the partition at level i + 1, i.e.,
together with the clauses above it ensures (D2).

¬l(e, i) ∨ ¬l(f, i) ∨ ¬s(e, f, i + 1) ∨ l(e, i + 1) ∨ l(f, i + 1)
for e, f ∈ E(H), e < f , 1 ≤ i < d − 1

The following clauses ensure that at most three sets in the partition at level
d − 1 can be combined into a set in the partition at level d, i.e., together with
the clauses above it ensures (D3).

¬l(e, d − 1) ∨ ¬l(f, d − 1) ∨ ¬l(g, d − 1) ∨ ¬s(e, f, d) ∨ ¬s(e, g, d)
∨l(e, d) ∨ l(f, d) ∨ l(g, d) for e, f, g ∈ E(H), e < f < g

All of the above clauses together ensure (D1), (D2), and (D3). We also add the
following redundant clauses.

l(e, i) ∨ ¬l(e, i + 1) for e ∈ E(H), 1 ≤ i < d

These clauses use the observation that if an edge is not a leader at level i then it
cannot be a leader at level i + 1. The formula F (H, d) contains at most O(m2d)
variables and O(m3d) clauses.

186 N. Lodha et al.

4.2 Encoding of a Derivation of Bounded Width

Next we describe how F (H, d) can be extended to restrict the width of the
derivation. The main idea is to first identify the set of cut vertices for the sets in
the derivation and then restrict their sizes. To this end we first need to introduce
new variables (and later clauses), which allow us to identify cut vertices of edge
sets in the derivation. In particular, we introduce a cut variable c(e, u, i) for
every e ∈ E(H), u ∈ V (H) and i with 1 ≤ i ≤ d. Informally, c(e, u, i) is true if
u is a cut vertex of the set containing e at level i of the derivation. In order to
restrict the size of the sets of cut vertices later on we do not need the reverse
direction of the previous statement. Recall that a vertex u is a cut vertex for
some set p of the derivation if there are two distinct edges incident to u such
that one of them is contained in p and the other one is not.

Defining the Cut Vertices. In the following we will present an encoding that
has turned out to give the best results in our case. The main idea behind the
encoding is to only define the variables c(e, u, i) for the leading edges e in the
current derivation.

The following clauses ensure that whenever two edges incident to a vertex
are not in the same set at level i of the derivation, then the vertex is a cut vertex
for every leading edge of the sets containing the incident edges.

¬l(e, i) ∨ c(e, u, i) ∨ s(min{e, f},max{e, f}, i) ∨ ¬s(min{e, g},max{e, g}, i)
for e, f, g ∈ E(H), e = f , e = g, u ∈ V (H), u ∈ f , u ∈ g, 1 ≤ i ≤ d

¬l(e, i) ∨ s(min{e, f},max{e, f}, i) ∨ c(e, u, i)

for e, f ∈ E(H), e = f , u ∈ V (H), u ∈ e, u ∈ f , 1 ≤ i ≤ d
Additionally, we add the following redundant clauses that ensure the

“monotonicity” of the cut vertices, i.e., if u is a cut vertex for a set at level
i and for the corresponding set at level i + 2, then it also has to be a cut vertex
at level i + 1.

Table 1. An illustration of the behavior of the sequential counter for the case that H
has six vertices (labeled from 1 to 6) and w = 4. The first column identifies the vertex
u, the second column gives the value of the variable c(e, u, i) for a fixed edge e and a
fixed level i and the last four columns give the values of the variables #(e, u, i, j).

u c(e, u, i)
j

1 2 3 4
1 0 0 0 0 0
2 1 1 0 0 0
3 1 1 1 0 0
4 0 1 1 0 0
5 1 1 1 1 0
6 0 1 1 1 0

A SAT Approach to Branchwidth 187

¬l(e, i) ∨ ¬l(e, i + 1) ∨ ¬l(e, i + 2) ∨ ¬c(e, u, i) ∨ ¬c(e, u, i + 2) ∨ c(e, u, i + 1))
for e ∈ E(H), u ∈ V (H), 1 ≤ i ≤ d − 2

The definition of cut vertices adds at most O(mnd) variables and at most
O(m3nd) clauses.

Restricting the Size of the Cuts. Next we describe how to restrict the size of all
sets of cut vertices to w and thereby complete the encoding of F (H,w, d). In
particular, our aim is to restrict the number of vertices u ∈ V (H) for which a
variable c(e, u, i) is true for some e ∈ E(H) and 1 ≤ i ≤ d. In this paper we
will only present the sequential counter approach [18] since this approach has
turned out to provide the best results in our setting. We also considered the
order encoding [11] with less promising results. For the sequential counter, we
will introduce a counter variable #(e, u, i, j) for every e ∈ E(H), u ∈ V (H),
1 ≤ i ≤ d, 1 ≤ j ≤ w.

The idea of the sequential counter is illustrated in Table 1. Informally,
#(e, u, i, j) is true if u is the lexicographically j-th cut vertex of the edge e.
We need the following clauses.

(¬#(e, u − 1, i, j) ∨ #(e, u, i, j)) ∧ (¬c(e, u, i) ∨ ¬#(e, u − 1, i, j − 1))
∨#(e, u, i, j)) ∧ (¬c(e, u, i) ∨ ¬#(e, u − 1, i, w))

for e ∈ E(H), 2 ≤ u ≤ |V (H)|, 1 ≤ i ≤ d, 1 ≤ j ≤ w

¬c(e, u, i) ∨ #(e, u, i, 1) for e ∈ E(H), 1 ≤ u ≤ |V (H)|, 1 ≤ i ≤ d

This completes the construction of the formula F (H,w, d). In total F (H,w, d)
has at most O(m2d+mndw) ⊆ O(m3 +m2n2) variables and at most O(m3nd+
mndw) ⊆ O(m4n + m2n2) clauses. By construction, F (H,w, d) is satisfiable if
and only H has a derivation of width at most w and length at most d. Because
of Theorem 1, we obtain:

2938

38

29

28

28

2389

6714

14

6

64 61

46

16

14
6 146

14
239

3A

53 54

35

45

0912

12

09

10 20

01

02

01
2

0129

12
9 34

123
49

3

12349

Fig. 2. A branch decomposition B of the graph H given in Fig. 3 together with an
example of a local branch decomposition BL (highlighted by thicker edges) chosen by
our algorithm.

188 N. Lodha et al.

Theorem 3. The formula F (H,w, d) is satisfiable if and only if H has a branch
decomposition of width at most w and depth at most d. Moreover, a correspond-
ing branch decomposition can be constructed from a satisfying assignment of
F (H,w, d) in linear time in terms of the number of variables of F (H,w, d).

5 Local Improvement

A

1

03 2

5
4

7

6

9
8

Fig. 3. The graph H used to illus-
trate the main idea behind our local
improvement procedure.

The encoding presented in the previous
section allows us to compute the exact
branchwidth of hypergraphs up to a cer-
tain size. Due to the instinct difficulty
of the problem one can hardly hope to
go much further beyond this size bar-
rier with an exact method. In this section
we therefore propose a local improvement
approach that employs our SAT encoding
to improve small parts of an heuristically
obtained branch decomposition. Our local
improvement procedure can be seen as a
kind of local search procedure that at each
step tries to replace a part of the branch
decomposition with an better one found
by means of the SAT encoding and repeats this process until a fixed-point (or
timeout) is reached.

Let H be a hypergraph and B := (T, γ) a branch decomposition of H. For
a connected ternary subtree TL of T we define the local branch decomposition
BL := (TL, γL) of B by setting γL(l) = δB(e) for every leaf l ∈ L(TL), where e
is the (unique) edge incident to l in TL. We also define the hypergraph H(TL)
as the hypergraph that has one (hyper-)edge γL(l) for every leaf l of TL and
whose vertices are defined as the union of all these edges. We observe that BL is
a branch decomposition of H(TL). The main idea behind our approach, which

29

382 8

28

38

23

29

6714

14

6

64 61

46

16

14
6 146

54 A3

45

3

35

35

345

34
14

0912

12

09

10 20

01

02

01
2

0129

129

1
3

239

Fig. 4. The improved branch decomposition B′ obtained from B after replacing the
local branch decomposition BL of H(TL) with an optimal branch decomposition B′

L of
H(TL) obtained from our SAT encoding. See Fig. 2 for an illustration of B and BL.

A SAT Approach to Branchwidth 189

we will formalize below, is that we can obtain a new branch decomposition of
H by replacing the part of B formed by BL with any branch decomposition of
H(TL). In particular, by replacing BL with a branch decomposition of H(TL) of
lower width, we will potentially improve the branch decomposition B. This idea
is illustrated in Figs. 2 and 4.
input : A hypergraph H
output: A branch decomposition of H

B ← BDHeuristic(H) // (B := (T, γ))
improved ← true
while improved do

M ← “the set of edges e of B whose width
(|δB(e)|) is maximum”
C ← “the set of components of T [M]”
improved ← false
for C ∈ C do

BL ← LocalBD (B, C)
B′

L ← ImproveLD (BL)
if B′

L �= NULL then
B ← Replace (B, BL, B′

L)
improved ← true

else
break

Algorithm 1. Local Improvement

input : A branch decomposition
B := (T, γ) of H and a
branch decomposition
BL := (TL, γL) of H(TL)

output: An “improved” branch
decomposition of H(TL)

if |TL| >globalbudget then
return NULL

w ← “the width of BL”
repeat

BD ← SATSolve(H(TL), w)

if BD �= NULL then
B′

L ← BD

w ← w − 1

until BD == NULL
return B′

L

Algorithm 2. ImproveLD

A general outline of our algorithm is given in Algorithm1. The algorithm
uses two global parameters: globalbudget gives an upper bound on the size of
the local branch decomposition and the function length(H,w), which is only
used by the function SATSolve explained below, provides an upper bound on
the length of a derivation which will be considered by our SAT encoding.

Given a hypergraph H, the algorithm first computes a (not necessarily
optimal) branch decomposition B := (T, γ) of H using, e.g., the heuristics
from [6,13]. The algorithm then computes the set M of maximum cut edges
of T , i.e., the set of edges e of T with |δ(e)| = w, where w is the width of B.
It then computes the set C of components of T [M] and for every component
C ∈ C it calls the function LocalBD to obtain a local branch decomposition
BL := (TL, γL) of B, which contains (at least) all the edges of C. The function
LocalBD is given in Algorithm 3 and will be described later. Given BL the algo-
rithm tries to compute a branch decomposition B′

L := (T ′
L, γ′

L) of H(TL) with
smaller width than BL using the function ImproveLD, which is described later. If
successful, the algorithm updates B by replacing the part of B represented by TL

with B′
L according to Theorem 4 and proceeds with line 4. If on the other hand

BL cannot be improved, the algorithm proceeds with the next component C of
T [M]. This process is repeated until none of the components C of T [M] lead to
an improvement.

The function LocalBD, which is given in Algorithm 3, computes a local branch
decomposition BL := (TL, γL) of B that contains at least all edges in the com-
ponent C and which should be small enough to ensure solvability found by our

190 N. Lodha et al.

input : A branch decomposition B := (T, γ) of H and a component C
of T

output: A local branch decomposition of B
1 w ← “the width of B”
2 TL ← C
3 for c ∈ V (C) with degC(c) = 2 do
4 “add the unique third neighbor and its edge incident to c to TL”
5 Q ← “the set of leaves of TL”
6 while Q �= ∅ and |TL| ≤globalbudget −2 do
7 l ← Q.pop()
8 if “l is not a leaf of T” then
9 c, c′ ← “the two neighbors of l in T which are not neighbors of l

in TL”
10 if δB({l, c}) < w and δB({l, c′}) < w then
11 “add c and c′ together with their edges incident to l to TL”
12 Q.push(c)
13 Q.push(c′)
14 return “the local branch decomposition of B represented by TL”

Algorithm 3. Local Selection (LocalBD)

SAT encoding as follows. In the beginning TL is set to the connected ternary
subtree of T obtained from T [C] after adding the (unique) third neighbor of any
vertex v of C that has degree exactly two in T [C]. It then proceeds by processing
the (current) leaves of TL in a breadth first search manner, i.e., in the beginning
all the leaves of TL are put in a first-in first-out queue Q. If l is the current leaf
of TL, which is not a leaf of T , the algorithm adds the two additional neighbors
of l in T to TL and adds them to Q. It proceeds in this manner until the number
of edges in TL does exceed the global budget.

The function ImproveLD tries to compute a branch decomposition of H(TL)
with lower width than BL using our SAT encoding. In particular, if the size of TL

does not exceed the global budget (in which case it would be highly unlikely that
a lower width branch decomposition can be found using our SAT encoding), the
function calls the function SATSolve with decreasing widths w until SATSolve
does not return a branch decomposition any more. Here, the function SATSolve
uses the formula F (H(TL), w, d) from Theorem 3 with d set to length(H,w) to
test whether H(TL) has a branch decomposition of width at most w and depth
at most d. If so (and if the SAT-solver solves the formula within a predefined
timeout) SATSolve returns the corresponding branch decomposition; otherwise
it returns NULL.

Last but not least the function Replace replaces the part of B represented
by BL with the new branch decomposition B′

L according to Theorem 4.
Let H be a hypergraph, B := (T, γ) a branch decomposition of H, TL a con-

nected ternary subtree of T , BL := (TL, γL) be the local branch decomposition
of B corresponding to TL, and let B′

L := (T ′
L, γ′) be any branch decomposi-

tion of H(TL). Note that because BL and B′
L are branch decompositions of the

A SAT Approach to Branchwidth 191

same hypergraph H(TL), we obtain from Proposition 1 that we can assume that
V (TL) = V (T ′

L) and γ = γ′. We define the locally improved branch decompo-
sition, denoted by B(BL

B′
L
), to be the branch decomposition obtained from B by

replacing the part corresponding to BL with B′
L, i.e., the tree of B′ is obtained

from T by removing all edges of TL from T and replacing them with the edges
of T ′

L and the bijection of B′ is equal to γ.

Theorem 4. B(BL

B′
L
) is a branch decomposition of H, whose width is the max-

imum the width of B′
L and maximum width over all edges e ∈ E(T) \ E(TL)

in B.

6 Experimental Results

We have implemented the single SAT encoding and the SAT-based local improve-
ment method and tested them on various benchmark instances, including famous
named graphs from the literature [21], graphs from TreewidthLIB [5] which ori-
gin from a broad range of applications, and a series of circular clusters [7] which
are hypergraphs denoted Ce

v with v vertices and v edges of size e. Through-
out we used the SAT-solver Glucose 4.0 (with standard parameter setting) as
it performed best in our initial tests compared to other solvers such as GlueMi-
niSat 2.2.8, Lingeling, and Riss 4.27. We run the experiments on a 4-core Intel
Xeon CPU E5649, 2.35 GHz, 72 GB RAM machine with Ubuntu 14.04 with each
process having access to at most 8 GB RAM.

6.1 Single SAT Encoding

To determine the branchwidth of a graph or hypergraph with our encoding, one
could either start from w = 1 and increase w until the formula becomes sat-
isfiable, or by setting w to an upper bound on the branchwidth obtained by a
heuristic method, and decrease it until the formula becomes unsatisfiable. For
both approaches the solving time at the threshold (i.e., for the largest w for
which the formula is unsatisfiable) is, as one would expect, by far the longest.
Table 2 shows this behavior on some typical instances. Hence whether we deter-
mine the branchwidth from below or from above does not matter much. A more
elaborate binary search strategy could save some time, but overall the expected
gain is little compared to the solving time at the threshold. The size of the
encoding is manageable for graphs and hypergraphs for up to about 100 edges.
The solving time varies and depends on the structure of the (hyper)graph. We
could determine the exact branchwidth of many famous graphs known from the
literature, see Table 3. For many of the graphs the exact branchwidth has not
been known before. We also tested the encoding on circular cluster hypergraphs
Ci

2i−1. We were able to solve instances up to the hypergraph C26
51 , for which we

established a branchwidth of 42.

192 N. Lodha et al.

Table 2. Distribution of solving time in seconds for various values of w for some famous
named graphs of branchwidth 6.

w 2 3 4 5 6 7 8 9 10

Graph unsat unsat unsat unsat sat sat sat sat sat

Kittell 19.5 87.6 400.8 204.7 103.3 40.4 22.5 18.5 11.2

Errera 5.7 22.7 79.4 1530.9 12.0 7.3 6.7 5.4 6.1

Folkman 3.4 13.7 98.6 2747.0 6.1 5.3 3.7 3.8 5.2

Poussin 3.3 9.2 68.7 941.2 4.5 3.5 3.9 2.9 3.4

Table 3. Exact branchwidth w of famous named graphs known from the literature.
Column d indicates the smallest depth of a branch decomposition of width w for the
considered graph.

Graph |V | |E| w d

Watsin 50 75 6 8
Kittell 23 63 6 8
Holt 27 54 9 9
Shrikhande 16 48 8 7
Errera 17 45 6 7
Brinkmann 21 42 8 7
Clebsch 16 40 8 7
Folkman 20 40 6 7
Paley13 13 39 7 7
Poussin 15 39 6 7
Robertson 19 38 8 7

Graph |V | |E| w d

McGee 24 36 7 7
Nauru 24 36 6 7
Hoffman 16 32 6 6
Desargues 20 30 6 6
Dodecahedron 20 30 6 6
Flower Snark 20 30 6 6
Goldner-Harary 11 27 4 6
Pappus 18 27 6 6
Sousselier 16 27 5 6

664221latávhC
650211hcsztörG

Graph |V | |E| w d

648121rerüD
Franklin 12 18 4 6
Frucht 12 18 3 6
Herschel 11 18 4 6
Tietze 12 18 4 6
Petersen 10 15 4 6
Pmin 9 12 3 5
Wagner 8 12 4 5
Moser spindle 7 11 3 6
Prism 6 9 3 5
Butterfly 5 6 2 3

6.2 SAT-Based Local Improvement

We tested our local improvement method on graphs with several thousands of
vertices and edges and with initial branch decomposition of width over 200. In
particular, we tested it on all graphs from TreewidthLIB omitting graphs that
are minors from other graphs as well as small graphs with 80 or fewer edges
(small graphs can be solved with the single SAT encoding). These are in total
684 graphs with up to 5934 vertices and 17770 edges. We ran our SAT-based
local improvement algorithm on each graph with a timeout of 6 h, where each
SAT-call had a timeout of 600 s. We used a global budget of 80 and set the depth
to 0.6 times the upper bound provided by Theorem2. We computed the initial
branch decomposition by a greedy heuristic kindly provided to us by Hicks [12].

From the 684 graphs, our SAT-based local improvement algorithm could
improve the width of the initial branch decomposition for 290 graphs. In some
cases the improvement was significant. Table 4 shows the graphs with the best
improvement.

A SAT Approach to Branchwidth 193

Table 4. Results for SAT-based local improvement for instances from TreewidthLIB.
Column iw gives the width of the initial branch decomposition, w the width of the
branch decomposition obtained by local improvement.

Graph |V | |E| iw w

inithx.i.2-pp 363 8897 55 45
fpsol2.i.2-pp 333 7910 48 39
fpsol2.i.3-pp 333 7907 48 39
graph13 458 1877 141 134
fpsol2.i.3 425 8688 53 48
graph13pp-pp 374 1722 133 128
graph09-pp 405 1525 128 123
bn 31-pp 1148 3317 40 36
bn 4 100 574 42 38
celar08-pp-003 76 421 20 16
celar08pp-pp.dgf-034 76 421 20 16
celar09-pp-002 76 421 20 16

Graph |V | |E| iw w

celar10-pp-002 76 421 20 16
fpsol2.i.2 451 8691 53 49
graph05-wpp 94 397 28 24
graph04-pp 179 678 52 48
nrw1379.tsp 1379 4115 42 38
nrw1379.tsp-pp 1367 4081 42 38
bn 36 1444 4181 45 42
inithx.i.1-pp 317 12720 68 65
u724.tsp 724 2117 29 26
water-wpp 22 96 11 8
celar05-pp 80 426 18 15
mulsol.i.2-pp 116 2468 62 59

6.3 Discussion

As discussed earlier, we are aware of only two implemented algorithms that
determine the exact branchwidth of a graph or hypergraph: Hick’s combinatorial
algorithm based on tangles [12], and Ulusal’s integer programming encoding [20].
Since neither of the two implementations are available to the public, we were
not able to provide an up-to-date comparision with their approaches but instead
performed the comparision with respect to the results stated in the papers. It
should therefore be taken into account that hardware and software improved
since the time their results were obtained. As Ulusal [20] reports, the integer
programming encoding could not solve hypergraphs with more than 13 edges,
for instance, it could only solve the circular clusters Ci

2i−1 up to i = 7, whereas
we could go up to i = 26.

Because of the high branchwidth of these hypergraphs, they are also far out
of reach for the tangles-based algorithm. On small graphs the tangles-based algo-
rithm and our SAT encoding perform similarly. For very small branchwidth the
tangles-based algorithm can deal with larger graphs (according to [12]) whereas
our SAT encoding can deal with graphs with larger branchwidth. These dif-
ferences in scalability can be explained by the space requirements of the two
approaches: The tangles-based algorithm requires space that is exponential in
the branchwidth, whereas our SAT encoding requires polynomial space that
depends only linearly on the branchwidth.

Our experiments show that the SAT-based local improvement approach scales
well to large graphs with several thousands of vertices and edges and branchwidth
upper bounds well over hundred. These are instances that are by far out of reach
for any known exact method, in particular, for the tangles-based algorithm which

194 N. Lodha et al.

cannot handle large branchwidth. The use of our SAT encoding which scales well
with the branchwidth is therefore essential for these instances.

Our results on TreewidthLIB instances show that in some cases the obtained
improvement can make a difference of whether a dynamic programming algo-
rithm that uses the obtained branch decomposition is feasible or not.

7 Final Remarks

We have presented a first SAT encoding for branchwidth and introduced the
new method of SAT-based local improvements for branch decompositions. Both
methods are based on a novel partition-based formulation of branch decompo-
sitions. Our experiments show that the single encoding outperforms a known
integer programming method and performs competitively with the best known
combinatorial method. Our SAT-based local improvement method provides the
means for scaling the SAT-approach to much larger instances and exhibits a
fruitful new application field of SAT solvers.

For both the single SAT encoding and the SAT-based local improvement we
see several possibilities for further improvement. For the encoding one can try
other ways for stating cardinality constraints and one could apply incremen-
tal SAT solving techniques. Further, one could consider alternative encoding
techniques based on MaxSAT, which have been shown effective for related prob-
lems [4]. For the local improvement we see various directions for further research.
For instance, when a local branch decomposition cannot be improved, one could
use the SAT solver to obtain an alternative branch decomposition of the same
width but where other parameters are optimized, e.g., the number of maximum
cuts. This could propagate into adjacent local improvement steps and yield an
overall branch decomposition of smaller width.

Finally we would like to mention that branch decompositions are the basis
for several other (hyper)graph width measures such as rankwidth and Boolean-
width [1], and we leave the investigation on how our approaches can be extended
to these width measures for future research.

Acknowledgement. We thank Illya Hicks for providing us the code of his branch-
width heuristics and acknowledge support by the Austrian Science Fund (FWF,
projects W1255-N23 and P-27721).

References

1. Adler, I., Bui-Xuan, B.-M., Rabinovich, Y., Renault, G., Telle, J.A., Vatshelle, M.:
On the boolean-width of a graph: structure and applications. In: Thilikos, D.M.
(ed.) WG 2010. LNCS, vol. 6410, pp. 159–170. Springer, Heidelberg (2010)

2. Alekhnovich, M., Razborov, A.A.: Satisfiability, branch-width and Tseitin tau-
tologies. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2002), pp. 593–603 (2002)

A SAT Approach to Branchwidth 195

3. Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for #SAT
and Bayesian inference. In: 44th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS 2003), pp. 340–351 (2003)

4. Berg, J., Järvisalo, M.: SAT-based approaches to treewidth computation: an evalu-
ation. In: 26th IEEE International Conference on Tools with Artificial Intelligence,
ICTAI 2014, Limassol, Cyprus, 10–12 November 2014, pp. 328–335. IEEE Com-
puter Society (2014)

5. Bodlander, H.: TreewidthLIB a benchmark for algorithms for treewidth and related
graph problems. http://www.staff.science.uu.nl/∼bodla101/treewidthlib/

6. Cook, W., Seymour, P.: Tour merging via branch-decomposition. INFORMS J.
Comput. 15(3), 233–248 (2003)

7. Cornuéjols, G.: Combinatorial Optimization: Packing and Covering. Regional Con-
ference Series in Applied Mathematics. Society for Industrial and Applied Mathe-
matics, Carnegie Mellon University, Pittsburgh, Pennsylvania (2001)

8. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 2nd edn.
Springer, New York (2000)

9. Fomin, F.V., Mazoit, F., Todinca, I.: Computing branchwidth via efficient trian-
gulations and blocks. Discr. Appl. Math. 157(12), 2726–2736 (2009)

10. Grohe, M.: Logic, graphs, and algorithms. In: Flum, J., Grädel, E., Wilke, T. (eds.)
Logic and Automata: History and Perspectives. Texts in Logic and Games, vol. 2,
pp. 357–422. Amsterdam University Press (2008)

11. Heule, M.J.H., Szeider, S.: A SAT approach to clique-width. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 318–334. Springer, Heidelberg
(2013)

12. Hicks, I.V.: Graphs, branchwidth, and tangles! Oh my! Networks 45(2), 55–60
(2005)

13. Hicks, I.V.: Branchwidth heuristics. Congr. Numer. 159, 31–50 (2002)
14. Hliněný, P., Oum, S.: Finding branch-decompositions and rank-decompositions.

SIAM J. Comput. 38(3), 1012–1032 (2008)
15. Kask, K., Gelfand, A., Otten, L., Dechter, R.: Pushing the power of stochastic

greedy ordering schemes for inference in graphical models. In: Burgard, W., Roth,
D. (eds.) Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI 2011, San Francisco, California, USA, 7–11 August 2011. AAAI Press
(2011)

16. Overwijk, A., Penninkx, E., Bodlaender, H.L.: A local search algorithm for branch-
width. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R.,
Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 444–454. Springer,
Heidelberg (2011)

17. Robertson, N., Seymour, P.D.: Graph minors X. Obstructions to tree-
decomposition. J. Combin. Theory Ser. B 52(2), 153–190 (1991)

18. Samer, M., Veith, H.: Encoding treewidth into SAT. In: Kullmann, O. (ed.) SAT
2009. LNCS, vol. 5584, pp. 45–50. Springer, Heidelberg (2009)

19. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2),
217–241 (1994)

20. Ulusal, E.: Integer Programming Models for the Branchwidth Problem. Ph.D. the-
sis, Texas A&M University, May 2008

21. Weisstein, E.: MathWorld online mathematics resource. http://mathworld.
wolfram.com

http://www.staff.science.uu.nl/~bodla101/treewidthlib/
http://mathworld.wolfram.com
http://mathworld.wolfram.com

Computing Maximum Unavoidable
Subgraphs Using SAT Solvers

C.K. Cuong(B) and M.J.H. Heule

Department of Computer Science,
The University of Texas at Austin,

Austin, TX, USA
{ckcuong,marijn}@cs.utexas.edu

Abstract. Unavoidable subgraphs have been widely studied in the con-
text of Ramsey Theory. The research in this area focuses on highly struc-
tured graphs such as cliques, cycles, paths, stars, trees, and wheels. We
propose to study maximum unavoidable subgraphs measuring the size in
the number of edges. We computed maximum unavoidable subgraphs for
graphs up to order nine via SAT solving and observed that these sub-
graphs are less structured, although all are bipartite. Additionally, we
found large unavoidable bipartite subgraphs up to order twelve. We also
present the concept of multi-component unavoidable subgraphs and show
that large multi-component subgraphs are unavoidable in small graphs.
We envision that maximum unavoidable subgraphs can be exploited
using an alternative approach to breaking graph symmetries.

Keywords: Satisfiability solving · Unavoidable subgraph · Combina-
torics · Graph theory · Symmetry breaking

1 Introduction

Satisfiability (SAT) solvers have become very powerful tools to solve hard-
combinatorial problems that have only few symmetries. Recent successes in
this direction are solving Erdős discrepancy problem [10] and the Boolean
Pythagorean Triples problem [9]. However, for hard-combinatorial problems with
many symmetries, such as Ramsey numbers [7], SAT solvers may not be the
strongest tools around. For example, the most impressive result regarding Ram-
sey numbers, solving R(4, 5) [12], is two decades old and cannot be reproduced
with SAT solving yet. In this paper, we propose to study a special kind of hard-
combinatorial problems that could be helpful to bridge this gap.

Consider the fully connected undirected graph of order n, in short Kn.
A graph G is called an unavoidable subgraph of Kn if G occurs as a fully red or
fully blue subgraph in any red/blue edge-coloring of Kn. Unavoidable subgraphs
have been widely studied, as can be observed in a survey paper [13] that cites
over 600 papers on the subject. This research area focuses on highly structured
graphs such as cliques, cycles [3], paths [6], stars [8], trees [4], and wheels [14].
c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 196–211, 2016.
DOI: 10.1007/978-3-319-40970-2 13

Computing Maximum Unavoidable Subgraphs Using SAT Solvers 197

We propose to investigate less structured graphs: the maximum unavoidable
subgraphs with the size measured in the number of edges.

We compute the maximum unavoidable subgraphs via SAT solving. We
observe that the maximum unavoidable subgraphs for small graphs are all bipar-
tite and conjecture that this is also the case for large graphs. Another interest-
ing observation made within the experimented range is that Kn+1 always has a
strictly larger unavoidable subgraph than Kn for n > 3. The difference in size
between the maximum unavoidable subgraphs of Kn and Kn+1 is typically one
edge and sometimes two edges. Consequently, the size of the maximum unavoid-
able subgraphs (measured in the number of edges) grows faster than the size of
Kn (measured in the number of vertices).

The conventional notion of unavoidable subgraphs considers only connected
(single-component) subgraphs. We introduce the concept of multi-component
unavoidable subgraphs: each component occurs in either red or blue in all
red/blue edge-colorings of Kn — although some components may occur in blue,
while others occur in red. Starting with K6, some interesting patterns can be
observed in the largest found multi-component unavoidable subgraphs.

The state-of-the-art symmetry-breaking methods for SAT [1] or specifically
for graphs [5] are not powerful enough to make some reasonably simple unavoid-
able subgraph problems solvable via SAT techniques. For example, consider the
problem whether a star of eight edges, in short S8, is an unavoidable subgraph
of K15. Using a short combinatorial argument one can solve this problem: K15

has an odd number of edges (105), so not all vertices can have exactly seven red
and seven blue edges. Hence, one vertex must have at least eight red or at least
eight blue edges, or equivalently S8 as a monochromatic subgraph.

We envision that knowledge about the maximum unavoidable subgraphs,
both the single and the multi-component variants, could be a basis for novel
symmetry-breaking techniques for SAT solvers. All edges in a component can be
replaced by a single edge in the component, allowing significant simplification of
graph problems.

The remainder of this paper is structured as follows. First we present some
background information on unavoidable subgraphs in Sect. 2. In Sect. 3, we
describe how to encode unavoidable subgraph problems into SAT. Computing
single and multi-component unavoidable subgraphs is discussed in Sects. 4 and 5,
respectively. Section 6 presents a method to exploit unavoidable subgraphs and
we draw some conclusions in Sect. 7.

2 Unavoidable Subgraphs and Motivation

All graphs mentioned in the paper are undirected. Before presenting the defini-
tion of an unavoidable subgraph, we first introduce the concept of graph isomor-
phism: Two graphs G and H are isomorphic if there exists an edge-preserving
bijection from the vertices of G to the vertices of H. We say that two isomorphic
graphs occur in the same isomorphism class.

198 C.K. Cuong and M.J.H. Heule

Definition 1 (Unavoidable subgraph). A graph G is called an unavoidable
subgraph of the fully-connected graph Kn if for all red/blue edge-colorings EC of
Kn, there exists a subgraph H of Kn such that

1. H is isomorphic to G.
2. H is monochromatic, either in red or blue, under the coloring EC of Kn.

We want to emphasize that Definition 1 does not require that H is the same
graph for different red/blue edge-colorings of Kn. A small example of unavoidable
subgraphs is shown in Fig. 1. This figure lists all red/blue edge-colorings of K3.
Notice that a monochromatic path of two edges occurs in all graphs. Hence a
path of two edges is an unavoidable subgraph of K3.

b c

a

any

b c

a

a-c-b

b c

a

b-a-c

b c

a

a-b-c

b c

a

a-c-b

b c

a

b-a-c

b c

a

a-b-c

b c

a

any

Fig. 1. All red/blue edge-colorings of K3. For readability, we draw red and blue edges
using solid and dashed lines, respectively. Observe that all colored graphs contain a
monochromatic path of two edges (as shown below the graphs).

The two propositions below follow from the definition of unavoidable sub-
graphs. We will refer to them in Sect. 4:

Proposition 1. If G is an unavoidable subgraph of Kn, then G is also an
unavoidable subgraph of Km for all m ≥ n.

Proposition 2. If G is an unavoidable subgraph of Kn, then all subgraphs of G
are also unavoidable subgraphs of Kn.

Many “nicely” structured unavoidable subgraphs have been heavily stud-
ied [13] such as cliques, cycles [3], paths [6], stars [8], trees [4], and wheels [14].
We propose to study unavoidable subgraphs somewhat differently compared to
existing work. Instead of searching for graphs with a well-defined structure, we
want to compute maximum unavoidable subgraphs (measured in the number of
edges). Such maximum unavoidable subgraphs may not have a clear structure.

We argue that maximum unavoidable subgraphs are interesting, because they
allow for an alternative symmetry-breaking approach for graph problems: given
an avoidable subgraph, we can simplify graph problems by enforcing that all
edges in the unavoidable subgraph are either all present or all absent. The larger
the unavoidable subgraph, the stronger the symmetry-breaking predicate that
can be derived from it. In Sect. 6 we will explain this in more detail.

Computing Maximum Unavoidable Subgraphs Using SAT Solvers 199

3 SAT Encoding of Unavoidable Subgraph Problems

We employ a SAT solver to check whether a given graph G of order k is an
unavoidable subgraph of the complete graph Kn where k ≤ n. The SAT encoding
is illustrated in the following example: check whether a path of two edges is
an unavoidable subgraph of K3. There are three paths of two edges in K3 as
shown in Fig. 2. A path of two edges is an unavoidable subgraph of K3 if and
only if for any red/blue edge-coloring of K3, at least one of the three paths
in Fig. 2 is monochromatic. Let ab, ac, and bc denote the Boolean variables
representing the color of the edges connecting vertices a and b, a and c, and b
and c, respectively. If a Boolean variable has value true, the corresponding edge
has color red, otherwise it has color blue. Then, the following Boolean formula
represents the fact that at least one of the three paths in Fig. 2 is monochromatic:

FG,K3 = (ab ∧ bc) ∨ (ab ∧ bc) ∨ (ab ∧ ac) ∨ (ab ∧ ac) ∨ (ac ∧ bc) ∨ (ac ∧ bc)

Determining whether a path of two edges is an unavoidable subgraph of K3

is equivalent to checking the validity of FG,K3 , i.e., checking if FG,K3 holds for
all truth assignments to the variables. This is then equivalent to checking if the
negation of FG,K3 is unsatisfiable.

FG,K3 = (ab ∨ bc) ∧ (ab ∨ bc) ∧ (ab ∨ ac) ∧ (ab ∨ ac) ∧ (ac ∨ bc) ∧ (ac ∨ bc)

Since FG,K3 is in conjunctive normal form (CNF), SAT solvers can solve it
directly. Thus, determining an unavoidable subgraph problem can be converted
into a SAT problem as illustrated. The construction of FG,Kn

is described in
Algorithm 1. In particular, given the complete graph Kn and its subgraph G
that we want to check if G is unavoidable in Kn, for each subgraph H of Kn

that is isomorphic to G, we construct two clauses: (1) disjunction of positive
literals representing red color of edges in H, and (2) disjunction of negative
literals representing blue color of edges in H. The formula FG,Kn

is then the
conjunction of all of these clauses.

a

b c

a

b c

a

b c

Fig. 2. All paths of two edges in K3.

The most expensive computation in Algorithm 1 is the function call at line
2, which generates all subgraphs of Kn that are isomorphic to G. A naive app-
roach for generating all isomorphic graphs is to apply all permutations on every
set of k nodes taken from n nodes, where k is the number of nodes in G. Each
permutation application will of course produce an isomorphic graph to G. How-
ever, duplicate graphs can be produced since different permutations can return

200 C.K. Cuong and M.J.H. Heule

Algorithm 1. SAT Encoding of An Unavoidable Subgraph Problem
1: function Unavoid-Subgraph-SAT-Encoding(G, Kn)
2: G ← Isomorphic-Subgraphs-Gen(G, Kn)
3: FG,Kn ← ∅

4: for each H ∈ G do
5: Cr ← disjunction of positive literals representing red color of edges in H
6: Cb ← disjunction of negative literals representing blue color of edges in H
7: FG,Kn ← FG,Kn ∧ Cr ∧ Cb

8: end for
9: return FG,Kn

10: end function

the same graph. The number of duplicate graphs can be huge in comparison
with the number of non-duplicate isomorphic graphs, depending on the graph’s
structure and size. More importantly, the number of permutations grows rapidly
as the number of nodes in G increases. And the number of non-duplicate isomor-
phic graphs is usually very small in comparison with the number of permuta-
tions. Consequently, we will come up with spending most of the time computing
duplicate graphs, which are unnecessary. We want to avoid these computations.
Instead we just apply all permutations on the first set of k nodes taken from n
nodes. After this step, we will recognize which permutations generate duplicate
graphs. We can then avoid applying these permutations on all remaining sets of
k nodes. The details of this approach are described in Algorithm 2. The output
of this algorithm is a collection of all non-duplicate subgraphs of Kn that are
isomorphic to the input graph G.

Algorithm 2 only applies the set Pk of all permutations on the first set of k
nodes taken from n nodes in the first loop (lines 7–14). This loop also constructs
a minimal set P ′

k of permutations that generates all non-duplicate isomorphic
graphs to G for any set of k nodes (recall that k is the number of nodes in G).
After this loop, the algorithm will apply P ′

k instead of Pk for all remaining sets
of k nodes (lines 16–22).

4 Computing Unavoidable Subgraphs Using SAT Solvers

We are interested in computing unavoidable subgraphs mechanically. By exploit-
ing the gtools programs in the nauty package [11], we are able to generate all
non-isomorphic graphs of order k (≤ 10) very quickly. For each generated graph
G, we can mechanically check whether it is unavoidable for a given complete
graph Kn by converting into a SAT formula FG,Kn

as described in the previous
section, and then employing a SAT solver to check the formula’s satisfiability.
We use the glucose 3.0 SAT solver [2] to do the satisfiability check.

4.1 Breaking Symmetries

Symmetries are the main obstacle for checking the satisfiability of FG,Kn
effi-

ciently. To counter this obstacle, we add symmetry-breaking predicates (SBP)

Computing Maximum Unavoidable Subgraphs Using SAT Solvers 201

Algorithm 2. Computing Isomorphic Subgraphs
1: function Isomorphic-Subgraphs-Gen(G, Kn)
2: Pk ← all permutations of {0, 1, 2, ..., k − 1}, where k is the order of G
3: Qn

k ← all k-combinations of k nodes taken from the vertex set of Kn

4: G ← ∅ � Output: all subgraphs of Kn that are isomorphic to G
5: P ′

k ← ∅ � A subset of Pk s.t. its application generates non-duplicate graphs

6: Pick the first k-combination Q ∈ Qn
k

7: for each π ∈ Pk do
8: Q′ ← π(Q)
9: G′ ← Q′(G) � Construct an isomorphic graph G′ of G

10: if G′ /∈ G then � Check if G′ is not duplicate in G
11: G ← G ∪ {G′}
12: P ′

k ← P ′
k ∪ {π}

13: end if
14: end for

15: Qn
k ← Qn

k\{Q} � We are done with the first combination of Qn
k

16: for each Q ∈ Qn
k do

17: for each π ∈ P ′
k do

18: Q′ ← π(Q)
19: G′ ← Q′(G) � Construct an isomorphic graph G′ of G
20: G ← G ∪ {G′} � G′ is guaranteed to be non-duplicate in G
21: end for
22: end for

23: return G
24: end function

to FG,Kn
before calling a SAT solver. Unavoidable subgraph problems have two

symmetries: any permutation of the vertices and swapping the edge colors. The
edge color symmetry can easily be broken by selecting an edge and forcing it to
a color by adding a unit clause.

Several methods have been developed to break such graph symmetries [1,5].
Existing techniques can be viewed as enforcing a lexicographic order on the rows
of the adjacency matrix. Let AG be the adjacency matrix representing a graph G
of order n. The predicate AG[i] �{i,j} AG[j] states that the binary representation
of the i-th row of AG is less than or equal to the binary representation of the
j-th row of AG when excluding the i-th and j-th columns of AG.

Definition 2 (Linear symmetry break). We define the linear symmetry-
breaking predicates (L-SBP) for graph G as follows:

L-SBP(G) =
n−1∧

i=1

AG[i] �{i,i+1} AG[i + 1]

202 C.K. Cuong and M.J.H. Heule

Table 1. The number of graphs that satisfy the symmetry-breaking predicates L-SBP
and Q-SBP as compared to the number of isomorphism classes of graphs of order 5 to
12. The number of satisfying assignments were computed using sharpSAT [15].

n L-SBP Q-SBP # isomorphism classes

5 46 43 34

6 325 276 156

7 4,045 3,158 1,044

8 89,812 66,595 12,346

9 3,583,903 2,587,488 274,668

10 258,518,959 184,193,025 12,005,168

11 33,859,710,152 23,962,961,317 1,018,997,864

12 8,086,937,704,176 5,700,915,311,729 165,091,172,592

The symmetry-breaking tool shatter [1] adds L-SBP to graph problems such
as unavoidable subgraph formulas.

Codish et al. [5] demonstrated that the comparator �{i,j} is not transitive:
AG[h] �{h,i} AG[i] ∧ AG[i] �{i,j} AG[j] does not imply AG[h] �{h,j} AG[j].
Enforcing AG[i] �{i,j} AG[j] for all 1 ≤ i < j ≤ n is a valid symmetry-breaking
predicate for graph problems [5]. We will refer to this method as quadratic
symmetry-breaking method since it adds a quadratic number of constraints to
graph problems.

Definition 3 (Quadratic symmetry break). We define the quadratic
symmetry-breaking predicates (Q-SBP) for graph G as follows:

Q-SBP(G) =
∧

1≤i<j≤n

AG[i] �{i,j} AG[j]

Table 1 shows the number of graphs / assignments that satisfy the symmetry-
breaking predicates L-SBP and Q-SBP as well as the number of isomorphism
classes. Notice that Q-SBP is slightly better than L-SBP. Both numbers are not
close to the number of isomorphism classes meaning that many symmetries are
not broken by both methods.

The impact of symmetry-breaking predicates on the time required to solve
some large unavoidable subgraph problems is shown in Table 2. Notice that the
runtime is reduced by orders of magnitude for the larger unavoidable subgraphs.
However, there is no clear difference between the L-SBP and Q-SBP methods.

4.2 Enumerating Unavoidable Subgraphs

Algorithm 3 shows the pseudo-code of enumerating unavoidable subgraphs. In
principle, this algorithm can be applied to compute all unavoidable subgraphs of
a given complete graph Kn by setting k equal to n. Nonetheless, the number of

Computing Maximum Unavoidable Subgraphs Using SAT Solvers 203

Table 2. Runtime in seconds to compute the maximum or largest found unavoidable
subgraphs of K6 to K12 shown in Fig. 3 using glucose 3.0. The experiments were run on
3.5 GHz Intel Xeon E31280 processors with 8MB L3 cache size. A ‘-’ means a timeout
after 24 h.

n 6 7 8 9 10 11 12

No SBP 0 0.025 0.38 4.85 11,690.70 - -

L-SBP 0 0 0.01 0.11 4.77 18.73 312.60

Q-SBP 0 0 0.01 0.11 7.98 19.40 303.40

Algorithm 3. Computing Unavoidable Subgraphs of k Nodes for Kn

1: function Unavoid-Subgraphs-Order-K-Gen(k, Kn)
2: G ← all non-isomorphic graphs of order k generated using nauty

3: H ← ∅ � Output: all unavoidable subgraphs of order k in Kn

4: for each G ∈ G do
5: FG,Kn ← Unavoid-Subgraph-SAT-Encoding(G, Kn)
6: if UNSAT(FG,Kn ∧ SBP (FG,Kn)) then
7: H ← H ∪ {G}
8: end if
9: end for

10: return H
11: end function

non-isomorphic subgraphs of Kn grows rapidly as n increases, so it is impractical
to exhaustedly check the unavoidability of all non-isomorphic subgraphs of large
complete graphs.

We reduced the number of evaluated subgraphs by ignoring several kinds of
graphs that cannot be unavoidable in a given complete graph. For example, if the
maximum degree of a graph exceeds some threshold, it cannot be unavoidable in
a given complete graph. One may think this threshold degree is �n/2� for all Kn

by reasoning that there always exists a red/blue edge-coloring on any complete
graph Kn such that: among edges connected to each vertex v in Kn, the number
of edges of the same color is at most �n/2�. As a result, subgraphs with the
maximum degree higher than �n/2� cannot be unavoidable in Kn. However, this
is not true when n ≡ 3 (mod 4) as stated in Theorem 1.

Theorem 1. For every Kn with n ≡ 3 (mod 4), there exists a graph G such
that G is unavoidable in Kn and the maximum degree of G is at least �n/2�+1.

Proof. We prove by contradiction. Suppose there exists a red/blue edge-coloring
of Kn such that among edges connected to each vertex v in Kn, the number of
edges of the same color is at most �n/2�. (1)

Since n ≡ 3 (mod 4), n is an odd number. For each vertex v in Kn, there are
(n − 1) edges connected to v, which is therefore an even number. (2)

204 C.K. Cuong and M.J.H. Heule

From (1) and (2), we can claim that the number of red and blue edges
connected to each v in Kn are both equal to �n/2�. As a result, the number of
red and blue edges in Kn must be equal. (3)

Since n ≡ 3 (mod 4), Kn has an odd number of edges, or exactly 8l2+10l+3
with l = �n/4�. Hence, the number of red and blue edges in Kn must be different,
which contradicts (3). Thus there must exist a subgraph G in Kn with the
maximum degree at least (�n/2� + 1) and G is unavoidable in Kn.

By using our SAT solving approach, we proved that for all n ≤ 18, the
star S�n/2�+2 is not an unavoidable subgraph of Kn when n ≡ 3 (mod 4), and
S�n/2�+1 is not an unavoidable subgraph of Kn for other values of n1. Since the
star Sk (i.e., the complete bipartite graph K1,k) is the smallest graph with the
maximum degree k, if Sk is not unavoidable in Kn, then no other graphs with
the maximum degree at least k is unavoidable in Kn by the contrapositive of
Proposition 2. For that reason, given a complete graph Kn such that n ≤ 18, we
only need to check the unavoidability of subgraphs with the maximum degree
at most (�n/2� + 1) if n ≡ 3 (mod 4), and subgraphs with the maximum degree
at most �n/2� for the other case of n.

Table 3. The number of graphs to be evaluated while searching for maximum unavoid-
able subgraphs of Kn as compared to the number of isomorphism classes of graphs of
order n with 3 ≤ n ≤ 9. Our approach imposes an upper bound on the maximum
degree of graphs and a lower bound on the number of edges. We start with the fact
that K2 is the maximum unavoidable subgraph for itself.

n 3 4 5 6 7 8 9

isomorphism classes 4 11 34 156 1,044 12,346 274,668

checked graphs 2 2 6 35 97 291 904

Since we are interested in discovering maximum unavoidable subgraphs —
instead of all unavoidable subgraphs of a given complete graph Kn — we skipped
evaluating subgraphs that are smaller than the largest known unavoidable sub-
graph of Kn. For example, when we know that certain graph G is a maximum
unavoidable subgraph of Kn, then we only need to evaluate subgraphs with
at least (|E(G)| + 1) edges for Kn+1, because G is also unavoidable in Kn+1

by Proposition 1. In particular, we first check subgraphs satisfying the maxi-
mum degree requirement as stated above and their number of edges equal to
(|E(G)| + 1). If at least one of them is unavoidable in Kn, we then check sub-
graphs with the number of edges equal to (|E(G)| + 2), and so on. The process
will stop if neither one of subgraphs with the number of edges (|E(G)| + i) is
unavoidable in Kn. From the contrapositive of Proposition 2, we can claim that
there does not exist a subgraph H in Kn s.t. |E(H)| ≥ (|E(G)| + i) and H is
1 Currently, our system is not able to prove this property for n > 18 due to out of

computational resources.

Computing Maximum Unavoidable Subgraphs Using SAT Solvers 205

|E| = 2

K3 & K4:

|E| = 3

K5:

|E| = 5

K6:

|E| = 6

K7:

|E| = 7

K8:

(a)

|E| = 8

K9:

|E| = 10

K10:

|E| = 11

K11:

(b)

|E| = 12

K12:

Fig. 3. Some large single-component unavoidable subgraphs of K3 to K12: (a) max-
imum unavoidable subgraphs of K3 to K9, all of them are bipartite; (b) maximum
bipartite unavoidable subgraphs discovered of K10 to K12.

unavoidable in Kn. In other words, a maximum unavoidable subgraph of Kn

must have (|E(G)| + i− 1) edges. Using this approach, we are able to find max-
imum unavoidable subgraphs for K3 to K9 effectively by reducing the number
of subgraphs to be checked a substantial amount (see Table 3).

4.3 Results on Single-Component Unavoidable Subgraphs

Figure 3 (a) shows the maximum unavoidable subgraphs for each Kn with 3 ≤
n ≤ 92. Observe that all maximum unavoidable subgraphs are bipartite. We
used this observation to find large unavoidable subgraphs for K10 to K12. The
bipartite restriction was required to make the number of graphs to be evaluated
manageable — apart from the other restrictions of the maximum degree and
the minimum number of edges. Figure 3 (b) shows the largest found unavoidable
subgraphs for K10 to K12. We are unable to determine whether these unavoidable
bipartite subgraphs are maximal: the evaluation of many graphs with one more
edge required more than 24 h SAT solving time (the limit on our cluster).

2 We found multiple maximum unavoidable subgraphs for K9. Figure 3 (a) shows one
of them.

206 C.K. Cuong and M.J.H. Heule

5 Computing Multi-component Unavoidable Subgraphs

The concept unavoidable subgraphs as stated in Definition 1 can be generalized
to multiple components, such that each component must occur monochromatic
in all red/blue edge-colorings of Kn. We will represent a multiple-component
graph G by a graph with edge labels. Edges are in the same component of
G if and only if they have the same label. In this section, we show how to
compute multi-component unavoidable subgraphs using SAT solvers. We will
discuss in Sect. 6, how multi-component unavoidable subgraphs can be helpful in
constructing symmetry-breaking predicates for graph problems. Given a multi-
component graph G, we write Gi to denote the subgraph of G that has only
the edges with label i. The adjacency matrix of a multi-component graphs is
constructed as follows: AG(i, j) = AG(j, i) = k if the edge connecting nodes
i and j has label k and AG(i, j) = AG(j, i) = 0 if no edge connects nodes i
and j. Figure 4 shows a 3-component graph and its adjacency matrix. In the
visualizations, edges with label 1 are shown as solid lines, edges with label 2 as
dashed lines, and edges with label 3 as dotted lines.

Algorithm 4 describes the SAT encoding algorithm for the case m = 2.
Given a graph G consisting of two components, first all occurrences of G in Kn

are computed using Isomorphic-Subgraphs-Gen(G,Kn). Notice that we had
to generalize this procedure to deal with graphs that have labelled edges. For
each possible presence of G in Kn, we have 4 clauses stating that at least one
component must be non-monochromatic. The algorithm can be easily generalized
to m-component unavoidable subgraphs by adding 2m clauses for each possible
presence of the graph in Kn.

a

b

c

d e

f
a b c d e f

a 0 2 0 1 1 2
b 2 0 2 1 1 0
c 0 2 0 0 1 0
d 1 1 0 0 0 3
e 1 1 1 0 0 3
f 2 0 0 3 3 0

———

- - - - -

...........

: 1st component

: 2nd component

: 3rd component

Fig. 4. An example illustrating the adjacency matrix of a 3-component graph.

Our mechanism for computing m-component unavoidable subgraphs is incre-
mental from some (m − 1)-component unavoidable subgraph (m ≥ 2). Algo-
rithm 5 describes our mechanism for computing 2-component unavoidable sub-
graphs from a given single-component unavoidable subgraph. In this algorithm,
we use the notation V (G) to denote the vertex set of G, and Ei(G) to denote the
edges with label i in G. Given an unavoidable subgraph G of Kn, we generate
all possible supergraphs that have one additional edge in the second component.

Computing Maximum Unavoidable Subgraphs Using SAT Solvers 207

Algorithm 4. SAT Encoding of A 2-Component Unavoidable Subgraph Prob-
lem
1: function Two-Comp-Unavoid-Subgraph-SAT-Encoding(G, Kn)
2: G ← Isomorphic-Subgraphs-Gen(G, Kn)
3: FG,Kn ← ∅

4: for each H ∈ G do � Suppose H consists of 2 components H1 and H2

5: Cr1 ← disjunction of positive literals representing red color of edges in H1

6: Cb1 ← disjunction of negative literals representing blue color of edges in H1

7: Cr2 ← disjunction of positive literals representing red color of edges in H2

8: Cb2 ← disjunction of negative literals representing blue color of edges in H2

9: FG,Kn ← FG,Kn ∧ (Cr1 ∨ Cr2) ∧ (Cr1 ∨ Cb2) ∧ (Cb1 ∨ Cr2) ∧ (Cb1 ∨ Cb2)
10: end for
11: return FG,Kn

12: end function

Algorithm 5. Computing 2-Component Unavoidable Subgraphs of Kn from a
Given Subgraph
1: function Two-Comp-Unavoid-Subgraphs-Gen(G, Kn)
2: G ← all supergraphs H of G s.t. |V (H)| = |V (G)|, |E1(H)| = |E1(G)|, and

|E2(H)| = |E2(G)| + 1
3: H ← ∅ � Output: all 2-component graphs (extended from G)

� that are unavoidable in Kn.
4: for each H ∈ G do
5: FH,Kn ← Two-Comp-Unavoid-Subgraph-SAT-Encoding(H, Kn)
6: if UNSAT(FH,Kn ∧ SBP (FH,Kn)) then
7: H ← H ∪ {H} ∪ Two-Comp-Unavoid-Subgraphs-Gen(H, Kn)
8: end if
9: end for

10: return H
11: end function

For each of those generated graphs, we check whether it is also unavoidable in
Kn. If it is unavoidable, we recursively call the same procedure again (line 7).

The idea of this algorithm can be generalized to m-component unavoidable
subgraph computation for all m ≥ 2. Let S(n) denote the size of maximum single-
component unavoidable subgraphs of Kn. As heuristic to reduce the vast number
of possible multi-component graphs, we start with a single component with at
least S(n) − 1 edges. Second, we compute which one of them can be extended
using a second component consisting of two edges (not necessarily connected).
Notice that components consisting of a single edge can be ignored as each single
edge is always monochromatic. This is repeated by trying to extend the graphs
with two components to three components by adding another component with
two edges. Once the starting points of unavoidable subgraphs have been deter-
mined, we try to extend them by adding edges to each component. We repeat
this until no multi-component graphs can be further extended. Figure 5 displays

208 C.K. Cuong and M.J.H. Heule

2|E(K6)|−(5−1) = 211

2|E(K6)|−(7−2) = 210

K6: 2|E(K6)| = 215

2|E(K7)|−(6−1) = 216

2|E(K7)|−(10−3) = 214

K7: 2|E(K7)| = 221

2|E(K8)|−(7−1) = 222

2|E(K8)|−(11−3) = 220

K8: 2|E(K8)| = 228

Fig. 5. Comparison between maximum single-component and largest found multi-
component unavoidable subgraphs of K6, K7, and K8. The top row displays single-
component graphs. The bottom row displays multi-component graphs: 2-component
for K6, 3-component for K7 and K8. For all these three cases, symmetry-breaking
predicates derived from largest found multi-component unavoidable subgraphs result
in smaller search spaces (measured in the number of graphs) as compared to the ones
derived from maximum single-component unavoidable subgraphs.

our discovery of largest found multi-component unavoidable subgraphs for K6,
K7, and K8. One interesting observation is that the maximum single-component
unavoidable subgraph of K6 is an induced subgraph of the maximum single-
component unavoidable subgraphs for K7 and K8. The same observation can
also be made for the largest found multi-component unavoidable subgraphs.

The above procedure does not necessarily produce maximum multi-
component unavoidable subgraphs. The used heuristics, i.e., starting with a sin-
gle component of at least S(n) − 1 edges, may prevent us finding a maximum
multi-component unavoidable subgraph. Also, we restricted the search to graphs
that have at most three components. In future work, we want to compute maxi-
mum multi-component unavoidable subgraphs by applying the methods without
heuristics and restrictions.

6 Deriving Symmetry-Breaking Predicates
from Unavoidable Subgraphs

In order to compute unavoidable subgraphs efficiently, symmetry-breaking tech-
niques were used as discussed in Sect. 4.1. Although adding symmetry-breaking
predicates reduced the solving costs substantially, we also observed that these
predicates are not strong enough to solve some relatively easy unavoidable sub-
graph problems using SAT. For example, the problem whether the star S8 is

Computing Maximum Unavoidable Subgraphs Using SAT Solvers 209

unavoidable in K15 cannot be solved even after symmetry breaking. This section
describes how knowledge about some unavoidable subgraphs could be turned into
an alternative approach to symmetry breaking.

The method works as follows. Given a known unavoidable subgraph G of Kn

consisting of m components, construct a predicate that forces for each component
that all of its edges are equal. For example, recall that a path of two edges is an
unavoidable subgraph of K3. First, we pick a concrete path, say b-a-c, and force
both edges (a-b and a-c) to be equal, i.e., either both present or both absent
in graphs of order 3. There are only four graphs of order 3 that satisfy this
constraint and these are shown in Fig. 6. Moreover, these four graphs represent
exactly the four isomorphism classes of graphs of order 3. This implies that the
symmetry-breaking predicate derived from a path of two edges is perfect for
graphs of order 3, i.e., exactly one graph from each isomorphism class satisfies
the symmetry-breaking predicate.

a

b c

a

b c

a

b c

a

b c

Fig. 6. All graphs of order 3 satisfying the symmetry-breaking predicate that forces
the path b-a-c to be either present or absent.

More concretely, given an unavoidable subgraph G of Kn. Let |E1(G)| = l
and let e1, e2,..., el denote the Boolean variables representing the edges with
label 1. The symmetry-breaking predicate forcing all these variables (edges) to
be equivalent is

e1 e2 e3 ... el

The (l − 1) equivalence relations above can be expressed using a cycle of l
implications, which can be represented using l binary clauses as follows:

e1 e2 e3 ... el ≡ e1 e2 e3 ... el

≡ (e1 ∨ e2) ∧ (e2 ∨ e3) ∧ ... ∧ (el ∨ e1)

Thus, a monochromatic component consisting of l edges can be encoded
with l binary clauses. Applying the method for all components of G results in
a symmetry-breaking predicate of |E(G)| binary clauses. Since any unavoidable
subgraph G of Kn is also an unavoidable subgraph of Km where m ≥ n, we can
apply the symmetry-breaking predicate derived from G in checking the unavoid-
ability of other subgraphs of Km. How useful are these symmetry-breaking
predicates? Using the largest found unavoidable subgraph of K11 as symmetry-
breaking predicate to compute the largest found unavoidable subgraph of K12

reduces the runtime to 532.48 (s). Not as strong as the L-SBP and Q-SBP pred-
icates (see Table 2), but still reasonably well.

210 C.K. Cuong and M.J.H. Heule

Table 4. Number of graphs of order n that satisfy symmetry-breaking predicates. L-
SBP-bin: the binary clauses of L-SBP; Q-SBP-bin: the binary clauses of Q-SBP; and
USG-SBP: the symmetry-breaking predicates based on unavoidable subgraphs.

n L-SBP-bin Q-SBP-bin USG-SBP

6 5,210 4,672 1,024

7 196,608 181,248 16,384

8 14,680,064 13,664,256 1,048,576

In general, given an unavoidable subgraph G of Kn with m components, the
number of graphs of order n that satisfy the symmetry-breaking predicate is
2|E(Kn)|+m−|E(G)|, because |E(G)|−m edges will be depending on m edges (the
representatives of the components). Figure 5 shows how much the search space is
reduced when converting the maximum or largest known unavoidable subgraphs
for K6, K7, and K8 into symmetry-breaking predicates. In all these three cases,
the largest known multi-component unavoidable subgraphs are more effective
than the maximum single-component unavoidable subgraphs. When comparing
these numbers with Table 1, the results do not look impressive. However, the
existing symmetry-breaking methods use many long clauses. If we only consider
the binary clauses in symmetry-breaking predicates of existing techniques, then
symmetry-breaking predicates derived from unavoidable subgraphs look much
more interesting, see Table 4. The number of graphs that satisfy the predicates
is much smaller.

The main question that arises is: how can we improve the unavoidable sub-
graph based predicates? A possible answer is finding non-binary clauses that
can be added similar to the L-SBP and Q-SBP methods. Alternatively, one can
search for asymmetric unavoidable subgraphs, such as: is a cycle of four edges
occurring in red or a path of two edges occurring in blue unavoidable in K4? We
observed that this asymmetric subgraph is indeed unavoidable. Converting such
asymmetric unavoidable subgraphs into a symmetry-breaking predicate makes
it stronger. These topics will be the focus of future work.

7 Conclusions

We studied and computed maximum unavoidable subgraphs using SAT solvers.
During our experiments we observed that all maximum unavoidable subgraphs
are bipartite and conjecture that this holds in general. Also, it appears that the
maximum unavoidable subgraphs of Kn+1 are strictly larger than the maximum
unavoidable subgraphs of Kn for n > 3. Symmetry breaking was crucial to
obtain our results. However, we also observed that current symmetry-breaking
techniques are not strong enough to compute some relatively simple unavoidable
subgraph problems using SAT. We demonstrated how unavoidable subgraphs
can be converted into symmetry-breaking predicates. We are hopeful that this
approach helps to improve symmetry-breaking techniques for SAT.

Computing Maximum Unavoidable Subgraphs Using SAT Solvers 211

Acknowledgements. The authors are supported by the National Science Foundation
under grant number CCF-1526760 and acknowledge the Texas Advanced Computing
Center (TACC) at The University of Texas at Austin for providing grid resources that
have contributed to the research results reported within this paper.

References

1. Aloul, F.A., Sakallah, K.A., Markov, I.L.: Efficient symmetry breaking for boolean
satisfiability. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the Eighteenth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2003, Acapulco, Mexico,
9–15 August 2003, pp. 271–276. Morgan Kaufmann (2003)

2. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Boutilier, C. (ed.) Proceedings of the 21st International Joint Conference on
Artificial Intelligence, IJCAI 2009, Pasadena, California, USA, pp. 399–404, 11–17
July 2009

3. Bondy, J.A., Erdős, P.: Ramsey numbers for cycles in graphs. J. Combin. Theory
Ser. B 14(1), 46–54 (1973)

4. Burr, S.A., Erdős, P.: Extremal Ramsey theory for graphs. Utilitas Math. 9, 247–
258 (1976)

5. Codish, M., Miller, A., Prosser, P., Stuckey, P.J.: Breaking symmetries in graph
representation. In: Proceedings of IJCAI 2013, pp. 510–516. IJCAI/AAAI (2013)

6. Gerencsér, L., Gyárfás, A.: On Ramsey-type problems. Annales Universitatis Sci-
entiarum Budapestinensis 10, 167–170 (1967)

7. Graham, R.L., Rothschild, B.L., Spencer, J.H.: Ramsey Theory. A Wiley-
Interscience Publication. Wiley, New York (1990)

8. Harary, F.: Recent results on generalized ramsey theory for graphs. In: Alavi, Y.,
Lick, D.R., White, A.T. (eds.) Graph Theory and Applications. Lecture Notes in
Mathematics, vol. 303, pp. 125–138. Springer, Heidelberg (1972)

9. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D.
(eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Switzerland (2016)

10. Konev, B., Lisitsa, A.: A SAT attack on the Erdős discrepancy conjecture. In: Sinz,
C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 219–226. Springer, Heidelberg
(2014)

11. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symbol. Comput.
60, 94–112 (2014)

12. McKay, B.D., Radziszowski, S.P.: R(4, 5) = 25. J. Graph Theory 19(3), 309–322
(1995)

13. Radziszowski, S.P.: Small Ramsey numbers. Electron. J. Combin., #DS1 (2014)
14. Radziszowski, S.P., Jin, X.: Paths, cycles and wheels in graphs without antitriangle.

Australas. J. Combin. 9, 221–232 (1994)
15. Thurley, M.: sharpSAT – counting models with advanced component caching and

implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
424–429. Springer, Heidelberg (2006)

Heuristic NPN Classification for Large
Functions Using AIGs and LEXSAT

Mathias Soeken1(B), Alan Mishchenko2, Ana Petkovska1, Baruch Sterin2,
Paolo Ienne1, Robert K. Brayton2, and Giovanni De Micheli1

1 EPFL, Lausanne, Switzerland
mathias.soeken@epfl.ch

2 UC Berkeley, Berkeley, CA, USA

Abstract. Two Boolean functions are NPN equivalent if one can be ob-
tained from the other by negating inputs, permuting inputs, or negating
the output. NPN equivalence is an equivalence relation and the num-
ber of equivalence classes is significantly smaller than the number of
all Boolean functions. This property has been exploited successfully to
increase the efficiency of various logic synthesis algorithms. Since com-
puting the NPN representative of a Boolean function is not scalable,
heuristics have been proposed that are not guaranteed to find the repre-
sentative for all functions. So far, these heuristics have been implemented
using the function’s truth table representation, and therefore do not scale
for functions exceeding 16 variables.

In this paper, we present a symbolic heuristic NPN classification using
And-Inverter Graphs and Boolean satisfiability techniques. This allows
us to heuristically compute NPN representatives for functions with much
larger number of variables; our experiments contain benchmarks with
up to 194 variables. A key technique of the symbolic implementation is
SAT-based procedure LEXSAT, which finds the lexicographically small-
est satisfiable assignment. To our knowledge, LEXSAT has never been
used before in logic synthesis algorithms.

1 Introduction

Researchers have intensively studied the classification of Boolean functions in
the past. One of the frequently used classifications is based on NPN equiva-
lence [5,7,8,11,16]. Two Boolean functions f and g are Negation-Permutation-
Negation (NPN) equivalent, denoted f =NPN g, if one can be obtained from the
other by negating (i.e., complementing) inputs, permuting inputs, or negating
the output. This notion of equivalence is motivated by the logic representation
because NPN equivalent functions are invariant to the “shape” of an expression.
As an example, (x1∨x2)∧ x̄3 =NPN (x̄2∨x3)∧x1 by replacing x1 ← x̄2, x2 ← x3,
and x̄3 ← x1. This is especially true in frequently used logic representations,
such as And-Inverter Graphs (AIGs) [9,15], in which negations are represented
by complemented edges. An equivalence class represents a set of functions such
that each two functions belonging to the class are NPN equivalent. For each
c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 212–227, 2016.
DOI: 10.1007/978-3-319-40970-2 14

Heuristic NPN Classification for Large Functions Using AIGs and LEXSAT 213

equivalence class, one function, called representative, is selected uniquely among
all functions of the class.

Exact NPN classification refers to the problem of finding, for a Boolean func-
tion f , its representative r(f) of an NPN class. Thus, an exact NPN classification
algorithm can be used to decide NPN equivalence of two functions f and g, since
r(f) = r(g) ⇔ f =NPN g. Often r(f) is chosen to be the function in the equiva-
lence class that has the smallest truth table representation. The smallest truth
table is the one with the smallest integer value, when considering the truth table
as a binary number. To the best of our knowledge, there is no better way to
exactly find r(f) than to exhaustively enumerate all n! permutations and all
2n+1 negations. To cope with this complexity, heuristic NPN classification has
been proposed that computes r̃(f) ≥ r(f), i.e., it may not necessarily find the
smallest truth table representation. Since r̃(f) = r̃(g) ⇒ f =NPN g, heuristic
NPN classification algorithms are nevertheless very helpful in many applications.
For example, it has been applied to logic optimization [17,20] and technology
mapping [1,4,10,16]. Finally, another option is to perform Boolean matching
that directly checks if f =NPN g, without first generating the representatives.
Several algorithms solve this problem [1], but to the best of our knowledge, there
is no good heuristics for Boolean matching without the representative.

The existing algorithms for heuristic NPN computation are implemented
using truth tables [5,10] and therefore can only be efficiently applied to functions
with up to 16 variables. The operations that are performed on the functional rep-
resentation in heuristic NPN classification algorithms are typically: (i) negating
an input, (ii) negating an output, (iii) swapping two inputs, and (iv) comparing
two functions. When using truth tables as an underlying representation, all these
operations can easily be implemented.

In this paper, we propose an implementation of two existing heuristic NPN
classification algorithms using AIGs and LEXSAT. While the first three of the
above described operations are simple to implement in AIGs, the comparison of
two functions is difficult. Thus, our algorithm uses LEXSAT, which is a vari-
ant of the Boolean satisfiability (SAT) problem in which the lexicographically
smallest (or greatest) assignment is returned if the problem is satisfiable. Our
experimental evaluations show that, by using AIGs as function representation
together with LEXSAT, heuristic NPN classification can be applied to functions
with up to 194 variables while providing the same quality as the truth table
based implementation at the cost of additional runtime.

The paper is structured as follows. Section 2 introduces necessary back-
ground. Section 3 reviews two existing heuristic NPN classification algorithms.
Section 4 describes the truth table based implementation of the algorithms and
the proposed AIG based implementation using LEXSAT. Section 5 shows the
results of the experimental evaluation and Sect. 6 discusses possible performance
improvements. Section 7 concludes the paper.

214 M. Soeken et al.

2 Preliminaries

2.1 Boolean Functions

We assume that the reader is familiar with Boolean functions. A Boolean function
f : Bn → B evaluates bitvectors x = x1 . . . xn of size n. If f(x) = 1, we call x
a satisfying assignment. Given two assignments x = x1 . . . xn and y = y1 . . . yn,
we say that x is lexicographically smaller than y, denoted x < y, if there exists
a k ≥ 1 such that xk < yk and xi = yi for all i < k. We use the notation x1 and
x0 to refer to x and x̄, respectively.

The truth table of f is the bitstring obtained by concatenating the function
values for the assignments 0 . . . 00, 0 . . . 01, . . . , 1 . . . 10, 1 . . . 11 in the given order,
i.e., the lexicographically smallest assignment 0 . . . 00 corresponds to the most
significant bit. The notion of lexicographic order can be transferred to truth
tables. We also use f to refer to its truth table representation, if it is clear from
the context. We use 	 and ⊥ to refer to tautology and contradiction, respectively.

2.2 NPN Equivalence

Definition 1 (NPN equivalence, [7]). Let g(x1, . . . , xn) be a Boolean func-
tion. Given a permutation π ∈ Sn (Sn is the symmetric group over n elements)
and a phase-bitvector ϕ = (p, p1, . . . , pn) ∈ Bn+1, we define

apply(g, π, ϕ) = gp(xp1
π(1), . . . , x

pn

π(n)). (1)

We say that two Boolean functions f(x1, . . . , xn) and g(x1, . . . , xn) are Negation-
Permutation-Negation (NPN) equivalent, if there exists π ∈ Sn and ϕ ∈ Bn+1

such that f(x1, . . . , xn) = apply(g, π, ϕ), i.e., g can be made equivalent to f by
negating inputs, permuting inputs, or negating the output. We call the pair π, ϕ
an NPN signature.

NPN equivalence is an equivalence relation that partitions the set of all Boolean
functions over n variables into a smaller set of NPN classes. As an example,
all 22

n

Boolean functions over n variables can be partitioned into 2, 4, 14, 222,
616126 NPN classes for n = 1, 2, 3, 4, 5 [8].

Definition 2 (NPN classes and representatives). We refer to the NPN
class of a function f as [f] and define f =NPN g, if and only if [f] = [g]. As the
representative r(f) of each NPN class [f], we take the function with the smallest
truth table. In other words, r(f) ≤ g for all g ∈ [f].

Example 1. The truth table of x1 ∨ x2 is 0111, and its NPN representative is
x1 ∧x2 = x̄1 ∨ x̄2 which truth table is 0001. Note that g =NPN apply(g, π, ϕ) for
all π ∈ Sn and all ϕ ∈ Bn+1. For a detailed introduction into NPN classification
the reader is referred to the literature [1,18].

Heuristic NPN Classification for Large Functions Using AIGs and LEXSAT 215

Algorithm 1. LEXSAT implementation from [13, Ex. 7.2.2.2-109].

Input : Boolean function f(x1, . . . , xn)
Output : min f if f �= ⊥, otherwise unsatisfiable

1 set s ← SAT(f);
2 if s = unsatisfiable then return unsatisfiable;
3 set y1, . . . , yn ← s and yn+1 ← 1;
4 set d ← 0;
5 while true do
6 set d ← min{j > d | yj = 1};
7 if d > n then return y1, . . . , yn;

8 set s ← SAT(f, {xy1
1 , . . . , x

yd−1
d−1 , x̄d});

9 if s �= unsatisfiable then set y1, . . . , yn ← s;

10 end

2.3 Lexicographic SAT

Definition 3 (Lexicographically smallest (greatest) assignment). Let f :
Bn → B with f = ⊥. Then x ∈ Bn is the lexicographically smallest assignment
of f , if f(x) = 1 and f(x′) = 0 for all x′ < x. We denote this x as min f .
Analogously, x ∈ Bn is the lexicographically greatest assignment of f , if f(x) =
1 and f(x′) = 0 for all x′ > x. We denote this x as max f .

Based on this definition, lexicographic SAT (LEXSAT) is a decision procedure
that for a given function f , returns min f when the problem is satisfiable, or
returns unsatisfiable, when f = ⊥. LEXSAT is NP-hard and complete for the
class FPNP [14]. Knuth [13] proposes an implementation that calls a SAT solver
several times to refine the assignment, and which is described in Algorithm. 1. In
the algorithmic description SAT(f, a) refers to the default SAT decision proce-
dure for a Boolean function f and optional assumptions a that allows incremental
solving. SAT returns unsatisfiable, when f = ⊥, or a satisfying assignment, when
the problem is satisfiable. Further, to use the SAT solver, we assume that f is
translated into a CNF representation (e.g., using [6,21]). By replacing yj = 1
with yj = 0 in Line 6 and x̄d with xd in Line 8, Algorithm 1 can find max f .

3 Heuristic NPN Classification

To the best of our knowledge there is no efficient algorithm to find the repre-
sentative r(f) for a given Boolean function f : Bn → B, and an exhaustive
exploration of all functions in [f] is required. More efficient algorithms can be
found when using a heuristic to approximate the representative. Such heuristics
do not visit all functions in [f] and therefore are not guaranteed to find r(f),
only a function r̃(f) ≥ r(f) that is locally minimal to all visited ones is returned.

In the following subsections, we describe in detail two heuristic NPN classi-
fication algorithms from the literature for which truth table based implementa-
tions exists, e.g., in ABC [3]. The first heuristic [10] is called flip-swap, which

216 M. Soeken et al.

Algorithm 2. Flip-swap heuristic for NPN classification.

Input : Boolean function f ∈ Bn → B

Output : NPN signature π ∈ Sn, ϕ ∈ Bn+1

1 set π ← πe and ϕ ← 0 . . . 0;
2 repeat
3 set improvement ← 0;
4 for i = 0, . . . , n do
5 if apply(f, π, ϕ ⊕ 2i) < apply(f, π, ϕ) then
6 set ϕ ← ϕ ⊕ 2i;
7 set improvement ← 1;

8 end

9 end
10 for d = 1, . . . , n − 2 do
11 for i = 1, . . . , n − d do
12 set j ← i + d;
13 if apply(f, π ◦ (i, j), ϕ) < apply(f, π, ϕ) then
14 set π ← π ◦ (i, j);
15 set improvement ← 1;

16 end

17 end

18 end

19 until improvement = 0;
20 return π, ϕ;

in alternating steps flips single bits and permutes pairs of indices. The second
algorithm [10] is called sifting (inspired by BDD sifting [19]), which considers
only adjacent indices for flipping and swapping.

3.1 Flip-Swap Heuristic

Algorithm 2 shows the flip-swap heuristic, which in alternating steps first tries
to flip single bits in the phase ϕ and then permutes pairs of indices in π. The
phase is initialized to consist only of 0, and the permutation is initially the
identity permutation πe. The first for-loop, which flips bits (Line 4), also covers
negating the whole function when i = 0. Note that all index pairs in the second
for-loop (Line 10), which swaps inputs, are enumerated ordered by their distance
such that adjacent pairs are considered first. Flipping and swapping is repeated
until no more improvement, i.e., no smaller representative, can be found. The
algorithm returns a permutation π and a phase-bitvector ϕ, which lead to the
smallest function that is considered as representative r̃(f) of the input function
f . One can obtain r̃(f) by executing apply(f, π, ϕ).

3.2 Sifting Heuristic

Algorithm 3 shows the sifting heuristic that was presented by Huang et al. [10].
The idea is that a window is shifted over adjacent pairs of input variables xπ(i)

Heuristic NPN Classification for Large Functions Using AIGs and LEXSAT 217

Algorithm 3. Sifting heuristic for NPN classification.

Input : Boolean function f ∈ Bn → B

Output : NPN signature π ∈ Sn, ϕ ∈ Bn+1

1 set π ← πe and ϕ ← 0 . . . 0;
2 repeat
3 set improvement ← 0;
4 for i = 1, . . . , n − 1 do /* in alternating order */

5 set σ, σ̂ ← πe and ψ, ψ̂ ← 0 . . . 0;
6 for j = 1, . . . , 8 do
7 if 4 | j then
8 set σ ← σ ◦ (i, i + 1);
9 end

10 else if 2 | j then
11 set ψ ← ψ ⊕ 2i+1;
12 end
13 else
14 set ψ ← ψ ⊕ 2i;
15 end

16 if apply(f, π ◦ σ, ϕ ⊕ ψ) < apply(f, π ◦ σ̂, ϕ ⊕ ψ̂) then

17 set σ̂ ← σ and ψ̂ ← ψ;
18 set improvement ← 1;

19 end

20 end

21 set π ← π ◦ σ̂ and ϕ ← ϕ ⊕ ψ̂;

22 end

23 until improvement = 0;
24 return π, ϕ;

and xπ(i+1). The adjacent variables are negated and swapped (Lines 6–15) in
the following way that guarantees that all eight possibilities are obtained by
applying simple operations, and the initial configuration is restored in the end.

(2)

Whenever j is a multiple of 4 (i.e., j = 4 and j = 8), the variables are
swapped. Otherwise, whenever j is even (i.e., j = 2 and j = 6), the second
variable is negated, and in all other cases the first variable is negated.

All eight configurations are evaluated and the best configuration is stored in
σ̂ and ψ̂. This procedure is repeated as long as an improvement can be obtained.
The window is moved in alternating order over the variables, i.e., first from left
to right and then from right to left.

218 M. Soeken et al.

4 Implementations

The crucial parts in the algorithms presented in Sect. 3 are the checks in Lines 5
and 13 from Algorithm 2, and Line 16 from Algorithm 3, which derive the rep-
resentative of the given function by applying the given permutation and phase.
Four operations are required to perform these checks, which are (i) negating an
input, (ii) negating an output, (iii) swapping two inputs, and (iv) comparing the
two functions. This section describes two implementations for these four opera-
tions: (i) based on truth tables which scales to functions with up to 16 variables
and (ii) based on AIGs and LEXSAT which scales for large functions.

4.1 Truth Table Based Implementation

A truth table is represented as the binary expansion of a nonnegative number
t ∈ [0, 2n). The most significant bit represents the assignment 0 . . . 0 and the
least significant bit represents the assignment 1 . . . 1. In this representation the
truth table of the function x1 ∧ x2 is 0001 and of x1 ∨ x2 is 0111. The truth
table for a variable xn−i in a n-variable Boolean function is μn,i = 22

n−1

22i+1
for

0 ≤ i < n. For n = 3, we have 0000 1111, 0011 0011, and 0101 0101 for x1, x2,
and x3, respectively. The comparison of two functions given in their truth table
representation is straightforward, e.g., by comparing their integer values. The
other three operations can be implemented using well-known bitwise arithmetic
as illustrated next. A truth table t for an n-variable Boolean function can be
negated by flipping each bit, i.e., t ← t̄. In order to negate the polarity of a
variable xi in a truth table t for an n-variable Boolean function, we compute
t ← (

(t & μn,i) � 2n−i+1
) | (

(t & μ̄n,i) � 2n−i+1
)
. The operations ‘&’, ‘|’, ‘�’,

‘�’ are bitwise AND, bitwise OR, logical left-shift, and logical right-shift. Two
variables xi and xj with i > j can be swapped in a truth table t by performing
the two operations t′ ← (t ⊕ (t � δ)) & 2j and t ← t ⊕ t′ ⊕ (t′ � δ), where
δ = i − j and ‘⊕’ is bitwise XOR.

All the described operations can be implemented very efficiently when n is
small. For example, a 6-variable function fits into a word that requires one mem-
ory cell on a 64-bit computer architecture. Almost all of the bitwise operations
have a machine instruction counterpart that can be processed within one clock
cycle. Warren, Jr. [22] and Knuth [12] describe all these bitwise manipulations
and give more detailed equations.

4.2 AIG Based Implementation Using LEXSAT

For large functions, we propose representing the function using the AIG data
structure, which represents a logic network using two-input AND gates and
edges connecting them. The edges may be complemented, representing inverters
over these edges. For an AIG, negating the function, negating the polarity of a
single variable, and swapping two variables is trivial. This can be achieved by
complementing fanout edges from the primary output and primary inputs, and
by swapping two AIG nodes of the corresponding primary inputs, respectively.

Heuristic NPN Classification for Large Functions Using AIGs and LEXSAT 219

Since the truth table is not explicitly represented by an AIG, the lexico-
graphic comparison in Algorithm 2 cannot be performed directly. We find that
LEXSAT can be used to solve this problem. The next theorem, which is the
main contribution of this paper, explains how the comparison can be done.

Theorem 1. Let g : Bn → B and h : Bn → B be two Boolean functions. Then
g < h, if and only if

g = h and g(min(g ⊕ h)) = 0.

Proof. ‘⇐’: The condition can only hold if g = h. Then, g ⊕ h = ⊥ and its
lexicographic smallest assignment x = min(g ⊕ h) is the smallest assignment
for which g and h differ. Hence, x is the first bit-position in which the truth
table representations of g and h differ. (Recall that the most significant bit
corresponds to all variables set to 0.) If g(x) = 0, then h(x) = 1, and g must be
lexicographically smaller than h.

‘⇒’: Obviously, g = h. Let x be the smallest assignment for which g and h
differ, i.e., x = min(g ⊕ h). Since g < h, we have g(x) = 0. ��

Based on Theorem 1, the following steps are necessary in an AIG based imple-
mentation to compute whether g < h.

(1) Create an AIG for the miter m(x1, . . . , xn) = g(x1, . . . , xn) ⊕ h(x1, . . . , xn)
by matching the inputs and pairing the outputs using an XOR operation [2].

(2) Encode the AIG for m as a CNF.
(3) Solve LEXSAT for the variables x1, . . . , xn by assuming the output of m to

be 1.
(4) If a satisfying assignment x exists and if simulating g(x) returns 0, then

g < h.

In our use of this procedure, we will obtain g and h from apply(f, π, ϕ) and
apply(f, π′, ϕ′), respectively, and the result will determine whether the current
permutation and phase-bitvectors will be updated.

f

f

x1

xn

x′
1

x′
n

p1

pn

p′
1

p′
n

p ⊕ p′

x1

x′
1

s1,1

x1

x′
2

s1,2

xn

x′
n

sn,n

Fig. 1. Shared miter construction. The additional variables pi and p′
i control the phase

of the inputs and the output, while the additional variables si,j allow permuting inputs.

220 M. Soeken et al.

Simple Miter and Shared Miter Approach. The lexicographic comparison
has to be done several times by following the above mentioned steps that require
to build and encode the miter each time. We call this the simple miter app-
roach. Contrary to this approach, we propose a shared miter approach in which
the miter is only created once and can be reconfigured. Then, steps (1) and (2)
are performed only once. The shared miter is equipped with additional inputs
p1, . . . , pn, p′

1, . . . , p
′
n and outputs p, p′, s1,1, s1,2, . . . , sn,n to reconfigure w.r.t. dif-

ferent permutations and phases. These inputs and outputs can be assigned using
assumption literals in the LEXSAT calls in step (3).

The details are illustrated in Fig. 1. The assumption literals to control the
phase for inputs and outputs are (p, p1, . . . , pn) = ϕ and (p′, p′

1, . . . , p
′
n) = ϕ′.

Instead of assuming the output of m to be 1 in step (3), it is assumed to be p̄⊕p′

(note the XNOR gate at the outputs). To take input permutation into consid-
eration, we assume si,j = 1, if πi = π′

j . This is ensured by having a quadratic
number of XNOR gates for each pair of inputs xi and x′

j . The lexicographically
smallest assignment is determined with respect to x1, . . . , xn. Technically, the
simulation in step (4) is not required since the simulation value is contained in
the satisfying assignment, however, the runtime required for simulation is negli-
gible. As the experimental results from Sect. 5 show, the simple miter approach
and the shared miter approach trade off solving time against encoding time: the
LEXSAT instances in the simple miter approach are simpler to solve, however,
more time is spent for encoding the AIG of the miter for each lexicographic
comparison.

Encoding the AIG. The process of translating an AIG into a conjunctive
normal form (CNF), which is a set of clauses, is called encoding. In order to
call LEXSAT, the AIG of the miter needs to be encoded into a CNF. Several
techniques for encoding exist, but the most conventional one is the Tseytin
encoding [21] that introduces a new variable for each gate, and expresses the
relation of the output to the inputs using clauses. For example, an AND gate
c = a ∧ b is encoded with the three clauses (a ∨ c̄)(b ∨ c̄)(ā ∨ b̄ ∨ c). Since AIGs
contain only AND gates, the SAT formula consists of clauses that have the form
as the three clauses of the AND gate, with literals inverted with respect to
complemented edges.

Particularly for AIGs, one can do much better by using logic synthesis tech-
niques to derive a smaller set of clauses. We call this technique EMS encoding [6]
due to the authors’ last names. EMS encoding applies cut-based technology
mapping in which the objective is not area or delay but clause count. Several
applications indicate that this encoding is particularly desirable when CNFs are
generated from circuits and have a positive effect on the SAT solving runtime [6].
However, due to the overhead of technology mapping, the EMS encoding requires
more runtime than the Tseytin encoding.

Heuristic NPN Classification for Large Functions Using AIGs and LEXSAT 221

Table 1. Evaluating the quality of the heuristics for small functions.

Variables # Functions # Classes / Runtime (s)

Exact Flip-swap Sifting

6 40195 191 13941.11 441 5.65 368 24.26

8 81864 1274 > 4 h 2409 51.30 2251 127.55

10 19723 1707 > 4 h 2472 56.76 2360 81.25

5 Experiments

We have implemented all presented algorithms using CirKit1 in the commands
‘npn’ and ‘satnpn’. All experiments are carried out on an Intel Xeon E5 CPU
with 2.60 GHz and 128 GB main memory running Linux 3.13. First, Sect. 5.1
shows results of an experiment that compares different heuristics against the
exact NPN classification algorithm. However, this can only be done for small
functions, for which the exact algorithm finishes in reasonable time. On the
other hand, Sect. 5.2 shows results of an experiment that evaluates scalability
by applying the heuristics to larger functions beyond the applicablity of truth
table based implementations.

5.1 Quality Evaluation

We applied both the truth table based implementation and the AIG based imple-
mentation of both heuristics to small Boolean functions that were harvested
using structural cut enumeration in all instances of the MCNC, ISCAS, and
ITC benchmark sets as suggested by Huang et al. [10] Based on the computed
representative, all functions are partitioned into a smaller set of classes. Table 1
shows the number of classes generated by an exact algorithm for NPN classifica-
tion and by each of the two heuristic algorithms presented in Sect. 3. Although
the heuristic NPN classification algorithms can be applied to truth tables up to
16 variables, exact classification does not scale since all n!·2n+1 permutations and
phases have to be evaluated in the worst case. Runtimes are obtained from the
truth table based methods. For example, the exact and heuristic classifications
were applied to 40195 distinct functions of six variables. When partitioning this
set based on the NPN representatives, 191 classes are obtained using exact NPN
classification. The flip-swap heuristic cannot determine all representatives cor-
rectly and partitions the 40195 functions into 441 classes. The sifting heuristics
shows better results and returns 368 classes.

The best quality is reached with exact classification, but it cannot be applied
efficiently to larger functions due to the exponential search space. Nevertheless,
the heuristic classification can have a huge contribution in some logic synthesis
algorithms. For example, some optimizations which require a large computa-
tional effort can often be limited to only representatives of each NPN class. In
1 github.com/msoeken/cirkit.

http://github.com/msoeken/cirkit

222 M. Soeken et al.

Table 2. Benchmark properties.

Benchmark Inputs Outputs Max. inputs

c432 36 7 36

c499 41 32 41

c880 60 26 45

c1355 41 32 41

c1908 33 25 33

c2670 233 140 119

c3540 50 22 50

c5315 178 123 67

c7552 207 108 194

Table 3. Runtime (in seconds) and number of LEXSAT calls (in millions) of the
heuristics for the benchmark c7552. In bold are the number of SAT calls (in millions).

Heuristic LEXSAT Single miter Shared miter

calls Tseytin EMS Tseytin EMS

Flip-swap 0.8M 4416.10 57M 5348.17 63M 62357.90 22M 29184.40 23M

Sifting 1.8M 9450.02 123M 12018.30 135M 76582.10 49M 44896.10 47M

the case of 6-variable functions, when using the sifting heuristic, it means that
such computation only needs to be performed for 368 functions, instead of 40195.

We observed that both the truth table based and the AIG based implemen-
tation generate the same results in terms of quality. However, the AIG based
implementation showed significantly worse performance when applied to small
functions. This is due to the extra overhead spent on encoding and SAT solv-
ing which is only amortized for larger functions for which the truth table based
implementation is not scalable. For large functions, the exponential size repre-
sentation of truth tables becomes the bottleneck.

5.2 Scalability Evaluation

In order to demonstrate scalability of the AIG based implementation of the
heuristic NPN classification algorithms, as well as to evaluate the different
implementation options, we have applied both heuristics to the combinational
instances from the ISCAS benchmark suite. Since these benchmarks realize mul-
tiple output Boolean functions we ran the algorithm on each output cone sepa-
rately. The reported results are cumulative for all outputs. Table 2 shows number
of inputs and outputs of the used benchmarks, as well as the maximum number
of inputs in any of the output cones. Since the runtimes for c7552 are compara-
bly high, we report them separately in Table 3 and allow a better scaling of the
other benchmarks in the plots. As the main objective is runtime in this experi-

Heuristic NPN Classification for Large Functions Using AIGs and LEXSAT 223

Fig. 2. Experimental results for flip-swap heuristic. Bars show the runtime (top) and
the number of SAT calls (bottom). Cross marks show the number of LEXSAT calls.
(Color figure online)

ment, there is no direct comparison of both heuristics. A qualitative comparison
of both approaches has already been provided in the previous section.

The results of the experiments are presented in the plots in Fig. 2 for the flip-
swap heuristic and in Fig. 3 for the sifting heuristic. Both plots are organized in
the same way. We ran each benchmark in four configurations: simple miter with
Tseytin encoding, simple miter with EMS encoding, shared miter with Tseytin
encoding, and shared miter with EMS encoding. For each configuration, we plot
the runtime in seconds in the upper axis and the number of total SAT calls
in the lower axis. The runtime is separated into three parts: the lowest (blue)
part shows the runtime spent on SAT solving, the middle (red) part shows the
runtime spent on encoding, and the upper (brown) part shows the remaining
runtime. Finally, cross marks show the number of LEXSAT calls in the upper
axis. Note that the number of LEXSAT call is identical in each configuration.
The last entry in the plots gives the geometric mean of the overall runtimes and
SAT calls for each configuration.

The simple miter approach is often faster compared to the shared miter
approach, especially for larger benchmarks. It can be seen that percentage of
runtime spent on SAT solving is much smaller for the simple miter approach,

224 M. Soeken et al.

Fig. 3. Experimental results for sifting heuristic. Bars show the runtime (top) and the
number of SAT calls (bottom), while cross marks show the number of LEXSAT calls.
(Color figure online)

since more time is spent on generating and encoding the miter. In the simple
miter approaches the time spent on encoding can matter. Although the EMS
encoding can reduce the runtime on SAT solving significantly (see, e.g., c2670,
c3540, and c5315) the encoding time becomes the new bottleneck and eventually
results in an overall larger runtime. This effect is not evident in the shared
miter approach where a very small percentage of time is spent on encoding. The
EMS method, due to the improved encoding, and the resulting improvement in
SAT solving, reduces the overall runtime by about half overall. Note also that
the overall number of SAT calls is about two times larger in the simple miter
approach compared to the shared miter approach.

Challenges to Performance. Symmetric or functionally independent variables
can cause a problem for the algorithm, since they do not change the function
after permutation and negation, respectively. For two symmetric variables xi and
xj we have apply(f, π, ϕ) = apply(f, π ◦ (i, j), ϕ) and for a functionally indepen-
dent variable xi we have apply(f, π, ϕ) = apply(f, π, ϕ ⊕ 2i). Consequently, the
LEXSAT calls for the comparisons in the heuristic yield UNSAT and correspond
to equivalence checking of two equivalent circuits. In practice, the situation may
be slightly better due to several structural similarities of both circuits. In the

Heuristic NPN Classification for Large Functions Using AIGs and LEXSAT 225

experimental evaluation, this problem became evident for the multiplier bench-
mark c6288 making a heuristic NPN classification based on SAT infeasible.

6 Possible Improvements

In this section, we discuss several improvements that are not considered in the
current implementation, but could be help reduce runtime more.

Symmetry and Functional Dependency. One can circumvent the problem
with symmetric and functional independent variables by setting a time limit to
the execution of a LEXSAT call. If the timeout is reached one can try random
simulation as a last resort and, if this also fails, then one can proceed while not
updating the current permutation π and phase ϕ. This shows positive effects
on the overall runtime but can degrade the quality by increasing the number of
distict equivalence classes.

Partial EMS Encoding. The heuristics update the current permutation and
phase by swapping two variables or negating one variable. Consequently, in most
of the cases only small parts of the updated circuit change. The mapping of the
unchanged part of the circuit and the resulting CNF stay the same and do not
need to be recomputed. Making the EMS encoding aware of changes in the circuit
reduces runtime. Since in case of EMS, the encoding often is the predominant
part of the overall runtime, a significant speedup can be expected.

Avoid Miter Construction. Note that max f < max g implies f < g. The
other direction is not true which can readily be seen from f = 1010 and g = 1100.
This check may be faster than first constructing the miter and calling LEXSAT
on it. We have tried to integrate this check as a preprocessing step before the
miter construction in the simple miter approach. However, as in most cases we
had max f = max g, this resulted in a higher overall runtime. The check can be
better integrated using a thread, that is started at the same time of the miter
construction, and is terminated when a conclusive answer is found faster.

Using Simulation to Skip Some SAT Calls. For simplicity, consider the
computation of max f for one function, as in the above subsection, rather than
for the miter of two functions, as elsewhere in the paper. Assume that we found
max f , which is an assignment of n input variables x such that f(x) = 1, and
f(y) = 0 for all assignments y > x. Now take assignment x and generate n
assignments, which are distance-1 from x, by flipping the value of one input at a
time. Perform bit-parallel simulation of f using these distance-1 assignments and
observe the output of f . If f(d) = 1 for some distance-1 assignment d, we know
that flipping the corresponding input cannot reduce max f , and so we can skip
the SAT call. On the other hand, if f(d) = 0, flipping the corresponding input
may lead to a smaller max f . The reduction in max f is possible if flipping this
input does not create a new 1 for a lexicographically larger assignment, which
has a 0 before (follows from the fact that the original assignment is max f). As
a result, in the case when f(d) = 0, we need a LEXSAT call to check whether

226 M. Soeken et al.

flipping this input leads to an improvement in max f . However, when f(d) = 1
the call can be skipped to reduce the runtime.

Native LEXSAT Solver. A considerably faster LEXSAT algorithm can be
obtained by directly modifying the SAT solver (see Example 7.2.2.2–275 in [13]).
To this end, instead of using the assumption interface of MiniSAT, as we did
in this paper, we can modify decision heuristics of the SAT solver to always
perform decisions on the input variables in the order, which is imposed by the
user of the LEXSAT algorithm. Decisions on other variables can be performed
in any order.

Using Binary Search in LEXSAT. Another possibility to improve the run-
time of LEXSAT implementation is to use an approach based on binary search.
Instead of trying to append to the array of assumptions one literal at a time, we
can begin by putting one half of all literals, then one quarter, and so on. The
binary search approach can be taken one step further: We can profile and see
how often, on average, the first step of binary search leads to a SAT or UNSAT
call. Based on the result, we could try to make the first step to be, say, 25 %
or 75 % of the total number of assumptions, instead of 50 % (as in the näıve
binary search). This way, we could have a better “success rate” of searching,
which could lead to a faster LEXSAT implementation.

7 Conclusions

In this paper, we have shown how heuristic NPN classification algorithms can be
implemented based on AIGs and SAT instead of truth tables. The new imple-
mentation can be applied to larger functions. The key aspect of the proposed
approach is finding the lexicographically smallest assignment of a SAT instance
using the LEXSAT algorithm. An experimental evaluation shows that using the
AIG based implementation, the heuristic NPN classification algorithms can be
applied to functions with hundreds of inputs. Our current implementation is pre-
liminary and there are several possibilities to reduce the overall runtime, some
of them have been outlined in Sect. 6.

Acknowledgments. This research was supported by H2020-ERC-2014-ADG 669354
CyberCare, by the German Academic Exchange Service (DAAD) in the PPP 57134066,
and partly by the NSF/NSA grant “Enhanced equivalence checking in cryptoanalytic
applications” at University of California, Berkeley.

References

1. Benini, L., Micheli, G.D.: A survey of Boolean matching techniques for library
binding. ACM Trans. Design Autom. Electr. Syst. 2(3), 193–226 (1997)

2. Brand, D.: Verification of large synthesized designs. In: Proceedings of the Inter-
national Conference on Computer Aided Design, pp. 534–537 (1993)

Heuristic NPN Classification for Large Functions Using AIGs and LEXSAT 227

3. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010)

4. Chatterjee, S., Mishchenko, A., Brayton, R.K., Wang, X., Kam, T.: Reducing struc-
tural bias in technology mapping. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 25(12), 2894–2903 (2006)

5. Debnath, D., Sasao, T.: Efficient computation of canonical form for Boolean match-
ing in large libraries. In: Proceedings of the Asia and South Pacific Design Automa-
tion Conference, pp. 591–96 (2004)

6. Eén, N., Mishchenko, A., Sörensson, N.: Applying logic synthesis for speeding up
SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp.
272–286. Springer, Heidelberg (2007)

7. Goto, E., Takahasi, H.: Some theorems useful in threshold logic for enumerat-
ing Boolean functions. In: International Federation for Information Processing
Congress, pp. 747–52 (1962)

8. Harrison, M.A.: Introduction to Switching and Automata Theory. McGraw-Hill,
New York (1965)

9. Hellerman, L.: A catalog of three-variable Or-inverter and And-inverter logical
circuits. IEEE Trans. Electr. Comput. 12, 198–223 (1963)

10. Huang, Z., Wang, L., Nasikovskiy, Y., Mishchenko, A.: Fast Boolean matching
based on NPN classification. In: Proceedings of the 2013 International Conference
on Field Programmable Technology, pp. 310–313 (2013)

11. Katebi, H., Markov, I.L.: Large-scale Boolean matching. In: Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition, pp. 771–76
(2010)

12. Knuth, D.E.: The Art of Computer Programming, vol. 4A. Addison-Wesley, Read-
ing, Massachusetts (2011)

13. Knuth, D.E.: The Art of Computer Programming, vol. 4, Fascicle 6: Satisfiability.
Addison-Wesley, Reading, Massachusetts (2015)

14. Krentel, M.W.: The complexity of optimization problems. J. Comput. Syst. Sci.
36(3), 490–509 (1988)

15. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust Boolean reasoning
for equivalence checking and functional property verification. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 21(12), 1377–1394 (2002)

16. Mailhot, F., Micheli, G.D.: Algorithms for technology mapping based on binary
decision diagrams and on Boolean operations. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 12(5), 599–620 (1993)

17. Mishchenko, A., Chatterjee, S., Brayton, R.: DAG-aware AIG rewriting: a fresh
look at combinational logic synthesis. In: Proceedings of the 43rd Design Automa-
tion Conference, pp. 532–536 (2006)

18. Muroga, S.: Logic Design and Switching Theory. Wiley, New York (1979)
19. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In:

Proceedings of the International Conference on Computer Aided Design, pp. 42–
47 (1993)

20. Soeken, M., Amarù, L.G., Gaillardon, P., De Micheli, G.: Optimizing majority-
inverter graphs with functional hashing. In: Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition, pp. 1030–1035 (2016)

21. Tseytin, G.S.: On the complexity of derivation in propositional calculus. In:
Slisenko, A.P. (ed.) Studies in Constructive Mathematics and Mathematical Logic,
Part II, Seminars in Mathematics, pp. 115–125. Springer, NewYork (1970)

22. Warren, H.S.: Hacker’s Delight, 2nd edn. Addison-Wesley, Reading (2012)

Solving and Verifying the Boolean Pythagorean
Triples Problem via Cube-and-Conquer

Marijn J.H. Heule1(B), Oliver Kullmann2, and Victor W. Marek3

1 The University of Texas at Austin, Austin, USA
marijn@cs.utexas.edu

2 Swansea University, Swansea, UK
3 University of Kentucky, Lexington, USA

Abstract. The boolean Pythagorean Triples problem has been a long-
standing open problem in Ramsey Theory: Can the set N = {1, 2, . . . }
of natural numbers be divided into two parts, such that no part contains
a triple (a, b, c) with a2 + b2 = c2 ? A prize for the solution was offered
by Ronald Graham over two decades ago. We solve this problem, prov-
ing in fact the impossibility, by using the Cube-and-Conquer paradigm,
a hybrid SAT method for hard problems, employing both look-ahead
and CDCL solvers. An important role is played by dedicated look-ahead
heuristics, which indeed allowed to solve the problem on a cluster with
800 cores in about 2 days. Due to the general interest in this mathemati-
cal problem, our result requires a formal proof. Exploiting recent progress
in unsatisfiability proofs of SAT solvers, we produced and verified a proof
in the DRAT format, which is almost 200 terabytes in size. From this we
extracted and made available a compressed certificate of 68 gigabytes,
that allows anyone to reconstruct the DRAT proof for checking.

1 Introduction

Propositional satisfiability (SAT, for short) is a formalism that allows for rep-
resentation of all finite-domain constraint satisfaction problems. Consequently,
all decision problems in the class NP, as well as all search problems in the class
FNP [9,19,29,35], can be polynomially reduced to SAT. Due to great progress
with SAT solvers, many practically important problems are solved using such
reductions. SAT is especially an important tool in hardware verification, for
example model checking [8] and reactive systems checking. In this paper we
are, however, dealing with a different application of SAT, namely as a tool in
computations of configurations in a part of Mathematics called Extremal Com-
binatorics, especially Ramsey theory. In this area, the researcher attempts to
find various configurations that satisfy some combinatorial conditions, as well as
values of various parameters associated with such configurations [49].

One important result of Ramsey theory, the van der Waerden Theorem [45],
has been studied by the SAT community, started by [14]. That theorem says
that for all natural numbers k and l there is a number n, so that whenever
the integers 1, . . . , n are partitioned into k sets, there is a set containing an
c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 228–245, 2016.
DOI: 10.1007/978-3-319-40970-2 15

Solving and Verifying the Boolean Pythagorean Triples Problem 229

arithmetic progression of length l. A good deal of effort has been spent on specific
values of the corresponding number theoretic function, vdW(k, l). Two results on
specific values: vdW(2, 6) = 1132 and vdW(3, 4) = 293, were obtained by Kouril
[31,32] using specialized FPGA-based SAT solvers. Other examples include the
Schur Theorem [43] on sum-free subsets, its generalization known as Rado’s
Theorem [42], and a generalization of van der Waerden numbers [4]. In this
paper we investigate two areas:

1. We show the “boolean Pythagorean triples partition theorem” (Theorem1),
or colouring of Pythagorean triples, an analogue of Schur’s Theorem.

2. We develop methods to compute numbers in Ramsey theory by SAT solvers.

A triple (a, b, c) ∈ N
3 is called Pythagorean if a2 + b2 = c2. If for some n > 2

all partitions of the set {1, . . . , n} into two parts contain a Pythagorean triple in
at least one part, then that property holds for all such partitions of {1, . . . , m}
for m ≥ n. A partition by Cooper and Overstreet [10] of the set {1, . . . , 7664}
into two parts, with no part containing a Pythagorean triple, was previously the
best result, thereby improving on earlier lower bounds [11,30,41].

Theorem 1. The set {1, . . . , 7824} can be partitioned into two parts, such that
no part contains a Pythagorean triple, while this is impossible for {1, . . . , 7825}.

Graham repeatedly offered a prize of $100 for proving such a theorem, and the
problem is explicitly stated in [10]. To emphasize, the situation of Theorem 1 is
not as in previous applications of SAT to Ramsey theory, where SAT only “filled
out the numerical details”, but the existence of these numbers was not known
(and as such is a good success of Automated Theorem Proving). It is natural to
generalize our problem in a manner similar to the Schur Theorem:

Conjecture 1. For every k ≥ 1 there exist Ptn(k) ∈ N (the “Pythagorean triple
number”), such that {1, . . . ,Ptn(k)− 1} can be partitioned into k parts with no
part containing a Pythagorean triple, while this is impossible for {1, . . . ,Ptn(k)}.

We prove Theorem 1 by considering two SAT problems. One showing that
{1, . . . , 7824} can be partitioned into two parts such that no part contains a
Pythagorean triple (i.e., the case n = 7824 is satisfiable). The other one showing
that any partitioning of {1, . . . , 7825} into two parts contains a Pythagorean
triple (i.e., the case n = 7825 is unsatisfiable). Now a Pythagorean triple-free
partition for n = 7824 is checkable in a second, but the absence of such a partition
for n = 7825 requires a more “durable proof” than just the statement that we
run a SAT solver (in some non-trivial fashion!) which answered UNSAT — to
become a mathematically accepted theorem, our assertion for n = 7825 carries a
stronger burden of proof. Fortunately, the SAT community has spent a significant
effort to develop techniques that allow to extract, out of a failed attempt to get
a satisfying assignment, an actual proof of the unsatisfiability.

It is worth noting the similarities and differences to the endeavours of extend-
ing mathematical arguments into actual formal proofs, using tools like Mizar [1]

230 M.J.H. Heule et al.

and Coq [2]. Cases, where intuitions (or convictions) about completeness of math-
ematical arguments fail, are known [47]. So T. Hales in his project flyspeck [3]
extracted and verified his own proof of the Kepler Conjecture. Now the core of
the argument in such examples has been constructed by mathematicians. Very
different from that, the proofs for unsatisfiability coming from SAT solvers are,
from a human point of view, a giant heap of random information (no direct
understanding is involved). But we don’t need to search for the proof — the
present generation of SAT solvers supports emission of unsatisfiability proofs
and standards for such proofs exist [48], as well as checkers that the proof is
valid. However the proof that we will encounter in our specific problem is of
very large size. In fact, even storing it is a significant task, requiring significant
compression. We will tackle these problems in this paper.

2 Preliminaries

CNF Satisfiability. For a Boolean variable x, there are two literals, the positive
literal x and the negative literal x̄. A clause is a finite set of literals; so it may
contain complementary literals, in which case the clause is tautological. The
empty clause is denoted by ⊥. If convenient, we write a clause as a disjunction
of literals. Since a clause is a set, no literal occurs several times, and the order
of literals in it does not matter. A (CNF) formula is a conjunction of clauses,
and thus clauses may occur several times, and the order of clauses does matter;
in many situations these distinctions can be ignored, for example in semantical
situations, and then we consider in fact finite sets of clauses.

A partial assignment is a function τ that maps a finite set of literals to {0, 1},
such that for v ∈ {0, 1} holds τ(x) = v if and only if τ(x̄) = ¬v. A clause C
is satisfied by τ if τ(l) = 1 for some literal l ∈ C, while τ satisfies a formula F
if it satisfies every clause in F . If a formula F contains ⊥, then F is unsatisfi-
able. A formula F logically implies another formula F ′, denoted by F |= F ′,
if every satisfying assignment for F also satisfies F ′. A transition F � F ′ is
sat-preserving, if either F is unsatisfiable or both F, F ′ are satisfiable, while the
transition if unsat-preserving if either F is satisfiable or both F, F ′ are unsatis-
fiable. Stronger, F, F ′ are satisfiability-equivalent if both formulas are satisfiable
or both unsatisfiable, that is, iff the transition F � F ′ is both sat- and unsat-
preserving. We note that if F |= F ′, then F � F ′ is sat-preserving, and that
F � F ′ is sat-preserving iff F ′ � F is unsat-preserving. Clause addition is
always unsat-preserving, clause elimination is always sat-preserving.

Resolution and Extended Resolution. The resolution rule (see [18, Sub-
sects. 1.15–1.16]) infers from two clauses C1 = (x ∨ a1 ∨ . . . ∨ an) and C2 =
(x̄ ∨ b1 ∨ . . . ∨ bm) the resolvent C = (a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm), by resolv-
ing on variable x. C is logically implied by any formula containing C1 and C2.
For a given CNF formula F , the extension rule [44] allows one to iteratively
add definitions of the form x := a ∧ b by adding the extended resolution clauses
(x ∨ ā ∨ b̄) ∧ (x̄ ∨ a) ∧ (x̄ ∨ b) to F , where x is a new variable and a and b are
literals in the current formula. The addition of these clauses is sat-equivalent.

Solving and Verifying the Boolean Pythagorean Triples Problem 231

Unit Propagation. For a CNF formula F , unit propagation simplifies F based
on unit clauses; that is, it repeats the following until fixpoint: if there is a unit
clause {l} ∈ F , remove all clauses that contain the literal l from the set F
and remove the literal l̄ from the remaining clauses in F . This process is sat-
equivalent. If unit propagation on formula F produces complementary units {l}
and {l̄}, we say that unit propagation derives a conflict and write F �1 ⊥ (this
relation also holds if ⊥ is already in F).

Ordinary resolution proofs (or “refutations” – derivations of the empty
clause) just add resolvents. This is too inefficient, and is extended via unit prop-
agation as follows. For a clause C let ¬C denote the conjunction of unit clauses
that falsify all literals in C. A clause C is an asymmetric tautology with respect
to a CNF formula F if F ∧ ¬C �1 ⊥. This is equivalent to the clause C being
derivable from F via input resolution [20]: a sequence of resolution steps using
for every resolution step at least one clause of F . So addition of resolvents is gen-
eralised by addition of asymmetric tautologies (where addition steps always refer
to the current (enlarged) formula, the original axioms plus the added clauses).
Asymmetric tautologies, also known as reverse unit propagation (RUP) clauses,
are the most common learned clauses in conflict-driven clause learning (CDCL)
SAT solvers (see [39, Subsect. 4.4]). This extension is irrelevant from the proof-
complexity point of view, but for practical applications exploitation of the power
of fast unit propagation algorithms is essential.

RAT Clauses. We are seeking to add sat-preserving clauses beyond logically
implied clauses. The basic idea is as follows (proof left as instructive exercise):

Lemma 1. Consider a formula F , a clause C and a literal x ∈ C. If for all
D ∈ F such that x̄ ∈ F it holds that F |= C ∪ (D \ {x̄}), then addition of C to
F is sat-preserving.

In order to render the condition F |= C ∪ (D \ {x̄}) polytime-decidable, we
stipulate that the right-hand clause must be derivable by input resolution:

Definition 1 [28]. Consider a formula F , a clause C and a literal x ∈ C (the
“pivot”). We say that C has RAT (“Resolution asymmetric tautology”) on x
w.r.t. F if for all D ∈ F with x̄ ∈ D holds that F ∧ ¬(C ∪ (D \ {x̄})) �1 ⊥.

By Lemma 1, addition of RAT-clauses is sat-preserving. Every non-empty asym-
metric tautology C for F has RAT on any x ∈ C w.r.t. F . It is also easy to
see that the three extended resolution clauses are RAT clauses (using the new
variable for the pivot literals). All preprocessing, inprocessing, and solving tech-
niques in state-of-the-art SAT solvers can be expressed in terms of addition and
removal of RAT clauses [28].

3 Proofs of Unsatisfiability

A proof of unsatisfiability (also called a refutation) for a formula F is a sequence
of sat-preserving transitions which ends with some formula containing the empty

232 M.J.H. Heule et al.

CNF formula

p cnf 4 8

1 2 -3 0

-1 -2 3 0

2 3 -4 0

-2 -3 4 0

-1 -3 -4 0

1 3 4 0

-1 2 4 0

1 -2 -4 0

DRAT proof

-1 0

d -1 2 4 0

2 0

0

Fig. 1. Left, a formula in DIMACS CNF format, the conventional input for SAT solvers
which starts with p cnf to denote the format, followed by the number of variables and
the number of clauses. Right, a DRAT refutation for that formula. Each line in the
proof is either an addition step (no prefix) or a deletion step identified by the prefix
“d”. Spacing is used to improve readability. Each clause in the proof must be a RAT
clause using the first literal as pivot, or the empty clause as an asymmetric tautology.

clause. There are currently two prevalent types of unsatisfiability proofs: resolu-
tion proofs and clausal proofs. Both do not display the sequence of transformed
formulas, but only list the axioms (from F) and the additions and (possibly)
deletions. Several formats have been designed for resolution proofs [5,17,50]
(which only add clauses), but they all share the same disadvantages. Resolution
proofs are often huge, and it is hard to express important techniques, such as
conflict clause minimization, with resolution steps. Other techniques, such as
bounded variable addition [38], cannot be polynomially-simulated by resolution
at all. Clausal proof formats [23,46,48] are syntactically similar; they involve
a sequence of clauses that are claimed to be sat-preserving, starting with the
given formula. But now we might add clauses which are not logically implied,
and we also might remove clauses (this is needed now in order to enable certain
additions, which might depend on global conditions).

Definition 2 [48]. A DRAT proof (“Deletion Resolution Asymmetric Tautol-
ogy”) for a formula F is a sequence of additions and deletions of clauses, starting
with F , such that each addition is the addition of a RAT clause w.r.t. the current
formula (the result of additions and deletions up to this point), or, in case of
adding the empty clause, unit-clause propagation on the current formula yields
a contradiction. A DRAT refutation is a DRAT proof containing ⊥.

DRAT refutations are correct proofs of unsatisfiability (based on Lemma1
and the fact, that deletion of clauses is always sat-preserving; note that Defini-
tion 2 allows unrestricted deletions). Furthermore they are checkable in cubic time.
Since the proof of Lemma 1 is basically the same as the proof for [33, Lemma 4.1],
by adding unit propagation appropriately one can transfer [33, Corollary 7.2] and
prove that the power of DRAT refutations is up to polytime transformations the
same as the power of Extended Resolution.

Solving and Verifying the Boolean Pythagorean Triples Problem 233

Example 1. Figure 1 shows an example DRAT refutation. Consider the CNF
formula F = (a ∨ b ∨ c̄) ∧ (ā ∨ b̄ ∨ c) ∧ (b ∨ c ∨ d̄) ∧ (b̄ ∨ c̄ ∨ d) ∧ (a ∨ c ∨ d) ∧ (ā ∨
c̄ ∨ d̄) ∧ (ā ∨ b ∨ d) ∧ (a ∨ b̄ ∨ d̄), shown in DIMACS format in Fig. 1 (left), where
1 represents a, 2 is b, 3 is c, 4 is d, and negative numbers represent negation.
The first clause in the proof, (ā), is a RAT clause with respect to F because all
possible resolvents are asymmetric tautologies:

F ∧ (a) ∧ (b̄) ∧ (c) �1 ⊥ using (a ∨ b ∨ c̄)
F ∧ (a) ∧ (c̄) ∧ (d̄) �1 ⊥ using (a ∨ c ∨ d)
F ∧ (a) ∧ (b) ∧ (d) �1 ⊥ using (a ∨ b̄ ∨ d̄)

4 Cube-and-Conquer Solving

Arguably the most effective method to solve many hard combinatorial prob-
lems via SAT technology is the cube-and-conquer paradigm [25], abbreviated
by C&C, due to strong performance and easy parallelization, which has been
demonstrated by the C&C solver Treengeling [6] in recent SAT Competitions.
C&C consists of two phases. In the first phase, a look-ahead SAT solver [26]
partitions the problem into many (potentially millions of) subproblems. These
subproblems, expressed as “cubes” (conjunctions) of the decisions (the literals
set to true), are solved using a CDCL solver, also known as the “conquer” solver.
The intuition behind this combination of paradigms is that look-ahead heuristics
focus on global decisions, while CDCL heuristics focus on local decisions. Global
decisions are important to split the problem, while local decisions are effective
when there exist a short refutation. So the idea behind C&C is to partition the
problem until a short refutation arises. C&C can solve hard problems much faster
than either pure look-ahead or pure CDCL. The problem with pure look-ahead
solving is that global decisions become poor decisions when a short refutation
is present, while pure CDCL tends to perform rather poor when there exist no
short refutation. We will demonstrate that C&C outperforms pure CDCL and
pure look-ahead in Sect. 6.2. Apart from improved performance on a single core,
C&C allows for easy parallelization. The subproblems are solved independently,
so they are distributed on a large cluster.

There are two C&C variants: solving one cube per solver and solving multiple
cubes by an incremental solver. The first approach allows solving cubes in par-
allel, while the second approach allows for reusing heuristics and learned clauses
while solving multiple cubes. The second approach works as follows: an incre-
mental SAT solver receives the input formula and a sequence of cubes1. After
solving the formula under the assumption that a cube is true, the solver does
not terminate, but starts working on a next cube. The heuristics and the learned
clause database are not reset when starting solving a new cube, but reused to
potentially exploit similarities between cubes.

1 In practice this is done using a single incremental CNF file. For details about the
format, see http://www.siert.nl/icnf/.

http://www.siert.nl/icnf/

234 M.J.H. Heule et al.

In our computation we combined them, via a two-staged splitting, to exploit
both parallelism and reusage. First the problem is split into 106 cubes, and then
for each cube, the corresponding subproblem is split again creating billions of
sub-cubes. An incremental SAT solver solves all the sub-cubes generated from a
single cube sequentially.

5 Solving the Boolean Pythagorean Triples Problem

Our framework for solving hard problems consists of five phases: encode, trans-
form, split, solve, and validate. The focus of the encode phase is to make sure
that representation of the problem as SAT instance is valid. The transform phase
reformulates the problem to reduce the computation costs of the later phases.
The split phase partitions the transformed formula into many, possibly millions
of subproblems. The subproblems are tackled in the solve phase. The validation
phase checks whether the proofs emitted in the prior phases are a valid refuta-
tion for the original formula. Figure 2 shows an illustration of the framework.
The framework, including the specialized heuristics, have been developed by the
first author, who also performed all implementations and experiments.

1: encode 2: transform 3: split 4: solve

5: validate

cubes

encoder

original
formula

transformed
formula

transform
proof

tautology
proof

cube
proofs

Fig. 2. Illustration of the framework to solve hard combinatorial problems. The phases
are shown in the rectangle boxes, while the input and output files for these phases are
shown in oval boxes.

5.1 Encode

The first phase of the framework focusses on making sure that the problem to be
solved is correctly represented into SAT. In the second phase the representation
will be optimized. The DRAT proof format can express all transformations.

Solving and Verifying the Boolean Pythagorean Triples Problem 235

Formula Fn expresses whether the natural numbers up to n can be partitioned
into two parts with no part containing a triple (a, b, c) such that a2+b2 = c2. One
set will be called the positive part, while the other will be called the negative
part. Fn uses Boolean variables xi with i ∈ {1, . . . , n}. The assignment xi to
true/false, expresses that i occurs in the positive/negative part, respectively. For
each triple (a, b, c) such that a2+b2 = c2, there is a constraint NotEqual(a, b, c)
in Fn, or in clausal form: (xa ∨ xb ∨ xc) ∧ (x̄a ∨ x̄b ∨ x̄c).

5.2 Transform

The goal of the transformation phase is to massage the initial encoding to execute
the later phases more efficiently. A proof for the transformations is required
to ensure that the changes are valid. Notice that a transformation that would
be helpful for one later phase, might be harmful for another phase. Selecting
transformations is therefore typically a balance between different trade-offs. For
example, bounded variable elimination [16] is a preprocessing technique that
tends to speed up the solving phase. However, this technique is generally harmful
for the splitting phase as it obscures the look-ahead heuristics.

We applied two transformations. First, blocked clause elimination (BCE) [27].
BCE on F7824 and F7825 has the following effect: Remove NotEqual(a, b, c) if
a, b, or c occurs only in this constraint, and apply this removal until fixpoint.
Note that removing a constraint NotEqual(a, b, c) because e.g. a occurs once,
reduces the occurrences of b and c by one, and as a result b or c may occur only
once after the removal, allowing further elimination. We remark that a solution
for the formula after the transformation may not satisfy the original formula,
however this can be easily repaired [27]. The numerical effects of this reduction
are as follows: F7824 has 6492 (occurring) variables and 18930 clauses, F7825

has 6494 variables and 18944 clauses, while after BCE-reduction we get 3740
variables and 14652 clauses resp. 3745 variables and 14672 clauses.

The second transformation is symmetry breaking [12]. The Pythagorean
Triples encoding has one symmetry: the two parts are interchangeable. To break
this, we can pick an arbitrary variable xi and assign it to true (or, equivalently,
put in the positive part). In practice it is best to pick the variable xi that occurs
most frequently in Fn. For the two formulas used during our experiments, the
most occurring variable is x2520 which was used for symmetry breaking. Sym-
metry breaking can be expressed in the DRAT format, but it is tricky. A recent
paper [24] explains how to construct this part of the transformation proof.

Bounded variable elimination (a useful transformation in general) was not
applied. Experiments showed that this transformation slightly increased the solv-
ing times. More importantly, applying bounded variable elimination transforms
the problem into a non-3-SAT formula, thereby seriously harming the look-ahead
heuristics, as the specialized 3-SAT heuristics can no longer be used.

236 M.J.H. Heule et al.

5.3 Split

Partitioning is crucial to solve hard combinatorial problems. Effective partition-
ing is based on global heuristics [25] — in contrast to the “local” heuristics used
in CDCL solvers. The result of partitioning is a binary branching tree of which
the leaf nodes represent a subproblem of the original problem. The subproblem
is constructed by adding the conjunction of decisions that lead to the leaf as unit
clauses. Figure 3 shows such a partitioning as a binary tree with seven leaf nodes
(left) and the corresponding list of seven cubes (right). The cubes are shown in
the inccnf format that is used for incremental solvers to guide their search.

Splitting heuristics are crucial in solving a problem efficiently. In practice, the
best heuristics are based on look-aheads [26,34]. In short, a look-ahead refers to
assigning a variable to a truth value followed by unit propagation and measuring
the changes to the formula during the propagation. It remains to find good mea-
sures. The simplest measure is to count the number of assigned variables; measures
like that can be used for tie-breaking, but as has been realised in the field of heuris-
tics [34], the expected future gains for unit-clause propagation, given by new short
clauses, are more important than the current reductions. The default heuristic
in C&C, which works well on most hard-combinatorial problems, weighs all new
clauses using weights based on the length of the new clause (with an exponential
decay of the weight in the length). However for our Pythagorean Triples encoding,
using a refinement coming from random 3-SAT turned out to be more powerful.
Here all newly created clauses are binary, i.e., ternary clauses that become binary
during the look-ahead. The weight of a new binary clause depends on the occur-
rences of its two literals in the formula, estimating how likely they become falsified.
This better performance is not very surprising as the formulas Fn exhibit some-
what akin behavior to random 3-SAT formulas: (i) all clauses have length three;
and (ii) the distribution of the occurrences of literals is similar. On the other hand,
Fn consists of clauses with either only positive literal or only negative literals —
in contrast to random 3-SAT.

x5

x2x3

x7 x3

x6

ft

f t

ft

t f

t f

f t

cube file in inccnf format

a 5 -3 0

a 5 3 7 0

a 5 3 -7 0

a -5 2 0

a -5 -2 3 -6 0

a -5 -2 3 6 0

a -5 -2 -3 0

Fig. 3. A binary branching tree (left) with the decision variables in the nodes and the
polarity on the edges. The corresponding cube file (right) in the inccnf format. The
prefix a denotes assumptions. Positive numbers express positive literals, while negative
numbers express negative literals. Each cube (line) is terminated with a 0.

Solving and Verifying the Boolean Pythagorean Triples Problem 237

5.4 Details Regarding the Heuristics

The heuristics used for splitting extends the recursive weight heuristics [40],
based on earlier work [13,15,36,37], by introducing minimal and maximal values
α, β, and choosing different parameters, optimized for the special case at hand.
A look-ahead on literal l measures the difference between a formula before and
after assigning l to true followed by simplification. Let F (or Fl) denote the
formula before (or after) the look-ahead on l, respectively. We assume that F
and Fl are fully simplified using unit propagation. Thus Fl \ F is the set of new
clauses, and the task is to weigh them; we note that each clause in Fl \ F is
binary. Each literal is assigned a heuristic value h(l) and the weight wy∨z for
(y ∨ z) ∈ Fl \ F is defined as h(ȳ) · h(z̄). The values of h(l) are computed using
multiple iterations h0(l), h1(l), . . . , choosing the level with optimal performance,
balancing the predictive power of the heuristics versus the cost to compute it.
The idea of the heuristic values hi(l) is to approximate how strongly the literal
l is forced to true by the clauses containing l (via unit propagation). First, for
all literals l, h0(l) is initialized to 1: h0(x) = h0(x̄) = 1. At each level i ≥ 0, the
average value μi is computed in order to scale the heuristics values hi(x):

μi =
1
2n

∑

x∈var(F)

(
hi(x) + hi(x̄)

)
. (1)

Finally, in each next iteration, the heuristic values hi+1(x) are computed in
which literals y get weight hi(ȳ)/μi. The weight γ expresses the relative impor-
tance of binary clauses. This weight could also be seen as the heuristic value of
a falsified literal. Additionally, we have two other parameters, α expressing the
minimal heuristic value and β expressing maximum heuristic value.

hi+1(x) = max(α,min(β,
∑

(x∨y∨z)∈F

(hi(ȳ)
μi

· hi(z̄)
μi

)
+ γ

∑

(x∨y)∈F

hi(ȳ)
μi

)). (2)

In each node of the branching tree we compute h(l) := h4(l) for all literals
occurring in the formula. We use α = 8, β = 550, and γ = 25. The “magic” con-
stants differ significantly compared to the values used for random 3-SAT formulas
where α = 0.1, β = 25, and γ = 3.3 appear optimal [40]. The branching variable
x chosen is a variable with maximal H(x)·H(x̄), where H(l) :=

∑
y∨z∈Fl\F wy∨z.

5.5 Solve

The solving phase is the most straightforward part of the framework. It takes the
transformed formula and cube files as input and produces a proof of unsatisfia-
bility of the transformed formula. Two different approaches can be distinguished
in general: one for “easy” problems and one for “hard” problems. A problem is
considered easy when it can be solved in reasonable time, say within a day on a
single core. In that case, a single cube file can be used and the incremental SAT
solver will emit a single proof file. The more interesting case is when problems
are hard and two levels of splitting are required.

238 M.J.H. Heule et al.

The boolean Pythagorean triples problem F7825 is very hard and required two
level splitting: the total runtime was approximately 4 CPU years (21,900 CPU
hours for splitting and 13,200 CPU hours for solving). Any problem requiring
that amount of resources has to be solved in parallel. The first level consists of
partitioning the problem into 106 subproblems, which required approximately
1000 s on a single core; for details see Sect. 6.2. Each subproblem is represented
by a cube ϕi with i ∈ {1, . . . , 106} expressing a conjunction of decisions. On the
second level of splitting, each subproblem F7825 ∧ ϕi is partitioned again using
the same look-ahead heuristics. In contrast to the first level, the cubes generated
on the second level are not used to create multiple subproblems. Instead, the
second level cubes are provided to an incremental SAT solver together with a
subproblem F7825 and assumptions ϕi. The second level cubes are used to guide
the CDCL solver. The advantage of guiding the CDCL solver is that learned
clauses computed while solving one cube can be reused when solving another
cube.

For each subproblem F7825∧ϕi, the SAT solver produces a DRAT refutation.
Most state-of-the-art SAT solvers currently support the emission of such proofs.
One can check that the emitted proof of unsatisfiability is valid for F7825 ∧ϕi. In
this case, no changes to the proof logging of the solver are required. However, in
order to create an unsatisfiability proof of F7825 by concatenating the proofs of
subproblems, all lemmas generated while solving F7825 ∧ϕi need to be extended
with the clause ¬ϕi, and the SAT solver must not delete clauses from F7825.

5.6 Validate

The last phase of the framework validates the results of the earlier phases. First,
the encoding into SAT needs to be validated. This can be done by proving
that the encoding tool is correct using a theorem prover. Alternatively, a small
program can be implemented whose correctness can be checked manually. For
example, our encoding tool consists of only 19 lines of C code. For details and
validation files, check out http://www.cs.utexas.edu/∼marijn/ptn/.

The second part consists of checking the three types of DRAT proofs pro-
duced in the earlier phases: the transformation, tautology, and the cube proofs.
DRAT proofs can be merged easily by concatenating them. The required order
for merging the proofs is: transformation proof, cube proofs, and tautology proof.

Transformation Proof. The transformation proof expresses how the initial
formula, created by the encoder, is converted into a formula that is easier to solve.
This part of the proof is typically small. The latest version of the drat-trim
checker supports validating transformation proofs without requiring the other
parts of the proof, based on a compositional argument [22].

Cube Proofs. The core of the validation is checking whether the negation of
each cube, the clause ¬ϕi, is implied by the transformed formula. Since we par-
titioned the problem using 106 cubes, there are 106 of cube proofs. We generated

http://www.cs.utexas.edu/~marijn/ptn/

Solving and Verifying the Boolean Pythagorean Triples Problem 239

and validated them all. However, their total size is too large to share: almost
200 terabyte in the DRAT format. We tried to compress the proof using a range
of dedicated clause compression techniques [21] combined with state-of-the-art
general purpose tools, such as bzip2 or 7z. After compression the total proof size
was still 14 terabytes. So instead we provide the cube files for the subproblems
as a certificate. Cube files can be compressed heavily, because they form a tree.
Instead of storing all cubes as a list of literals, shown as in Fig. 3, it is possible to
store only one literal per cube. Storing the literal in a binary format [21] followed
by bzip2 allowed us to store all the cube files using “only” 68 gigabytes of disk
space. We added support for the inccnf format to glucose 3.0 in order to solve
the cube files. This solver can also reproduce the DRAT proofs in about 13,000
CPU hours. Checking these proofs requires about 16,000 CPU hours, so repro-
ducing the DRAT proofs almost doubles the validation effort. This is probably
a smaller burden than downloading and decompressing many terabytes of data.

Tautology Proof. A cube partitioning is valid, i.e., covers the complete search
space, if the disjunction of cubes is a tautology. This needs to be checked during
the validation phase. Checking this can be done by negating the disjunction of
cubes and feed the result to a CDCL solver which supports proof logging. If
the solver can refute the formula, then the disjunction of cubes is a tautology.
We refer to the proof emitted by the CDCL solver as the tautology proof. This
tautology proof is part of the final validation effort.

6 Results

This section offers details of solving the boolean Pythagorean Triples problem2.
All experiments were executed on the Stampede cluster3. Each node on this
cluster consists of an Intel Xeon Phi 16-core CPU and 32 Gb memory. We used
cube solver march cc and conquer solver glucose 3.0 during our experiments.

6.1 Heuristics

In our first attempt to solve the Pythagorean triples problem, we partitioned
the problem (top-level and subproblems) using the default decision heuristic in
the cube solver march cc for 3-SAT formulas. After some initial experiments, we
estimated that the total runtime of solving (including splitting) F7825 would be
roughly 300,000 CPU hours on the Stampede cluster. To reduce the computation
costs, we (manually) optimized the magic constants in march cc, resulting in the
heuristic presented in Sect. 5.4. The new heuristics reduced the total runtime to
35,000 CPU hours, so by almost an order of magnitude. Table 1 shows the results
of various heuristics on five randomly selected subproblems. Here, we optimized
march cc in favor of the other heuristics to make the comparison more fair: we
turned off look-ahead preselection, which is helpful for the new heuristics (and
thus used in the computation), but harmful for the other heuristics.
2 Files and tools can be downloaded at http://www.cs.utexas.edu/∼marijn/ptn/.
3 https://www.tacc.utexas.edu/systems/stampede.

http://www.cs.utexas.edu/~marijn/ptn/
https://www.tacc.utexas.edu/systems/stampede

240 M.J.H. Heule et al.

Table 1. Solving times for C&C using different look-ahead heuristics and pure CDCL.
The top left, bottom left, and right numbers expresses the cube, conquer, and their
sum times, respectively. Ptn 3-SAT is 3-SAT heuristics optimized for Pythagorean triple
problems; rnd 3-SAT is the 3-SAT heuristics optimized for random 3-SAT (default);
#bin is the sum of new binary clauses; and #var is the number of assigned variables.

cube # Ptn 3-SAT rnd 3-SAT #bin #var pure CDCL

104302
152.98

228.48
608.46

783.40
263.23

413.94
789.43

1053.22 1372.87
75.50 174.94 150.71 263.79

268551
74.03

107.86
92.09

140.91
98.93

154.76
487.45

707.72 150.06
33.83 48.82 55.83 220.27

934589
136.94

211.38
206.28

328.27
156.78

263.94
529.21

764.91 631.91
74.44 121.99 107.16 235.70

950025
143.69

217.78
152.49

252.16
203.18

341.27
550.47

777.46 330.61
74.09 99.67 138.09 226.99

980757
112.22

142.63
170.34

224.24
181.14

241.67
685.04

845.97 155.57
30.41 53.90 60.53 160.93

6.2 Cube and Conquer

The first step of the solving phase was partitioning the transformed formula into
many subproblems using look-ahead heuristics. Our cluster account allowed for
running on 800 cores in parallel. We decided to partition the problem into a
multiple of 800 to perform easy parallel execution: exactly 106. Partitioning the
formula into 106 subproblems ensured that the conquer time of solving most
subproblems is less than two minutes, a runtime with the property that proof
validating can be achieved in a time similar to the solving time.

A simple way of splitting a problem into 106 subproblems is to build a bal-
anced binary branching tree of depth 20. However, using a balanced binary
branching tree results in poor performance on hard combinatorial problems [25].
A more effective partitioning heuristic picks the leaf nodes such that the number
of assigned variables (including inferred variables) in those nodes are equal.
Based on some initial experiments, we observed that the best heuristics for
Pythagorean Triples formulas however is to count the number of binary clauses in
each node. Recall that all clauses in the transformed formula are ternary. Select-
ing nodes in the decision tree that have about 3, 000 binary clauses resulted in
106 subproblems. Figure 4 (left) shows a histogram of the depth of the branching
tree (or, equivalently, the size of the cube) of the selected nodes. Notice that the
smallest cube has size 12 and the largest cubes have size 49.

Figure 4 (right) shows the time for the cube and conquer runtimes averaged
per size of the cubes. The peak average of the cube runtime is around size 24,
while the peak of the conquer runtime is around size 26. The cutoff heuristics of
the cube solver for second level splitting were based on the number of unassigned
variables, 3450 variables to be precise.

Solving and Verifying the Boolean Pythagorean Triples Problem 241

Fig. 4. Left, a histogram (logarithmic) of the cube size of the 106 subproblems. Right,
average runtimes per size for the split (cube) and solve (conquer) phases.

Fig. 5. Left, a scatter plot comparing the cube (split) and conquer (solve) time per
subproblem. Right, a scatter plot comparing the validation and conquer time.

A comparison between the cube, conquer, and validation runtimes is shown
in Fig. 5. The left scatter plot compares cube and conquer runtimes. It shows
that within our experimental setup the cube computation is about twice as
expensive compared to the conquer computation. The right scatter plot compares
the validation and conquer runtimes. It shows that these times are very similar.
Validation runtimes grow slightly faster compared to conquer runtimes. The
average cube, conquer, and validation times for the 106 subproblems are 78.87,
47.52, and 60.62 s, respectively.

Figure 6 compares the cube+conquer runtimes to solve the 106 subproblems
with the runtimes of pure CDCL (using glucose 3.0) and pure look-ahead (using
march cc). The plot shows that cube+conquer clearly outperforms pure CDCL.
Notice that no heuristics of glucose 3.0 were changed during all experiments
for both cube+conquer and pure CDCL. In particular, a variable decay of 0.8
was used throughout all experiments as this is the glucose default. However,

242 M.J.H. Heule et al.

Fig. 6. Scatterplots comparing cube-and-conquer to pure CDCL (left) and pure look-
ahead (right) solving methods on the Pythagorean Triples subproblems.

we observed that a higher variable decay (in between 0.95 and 0.99) would
improve the performance of both cube+conquer and pure CDCL. We did not
optimize glucose to keep it simple, and because the conquer part is already
the cheapest phase of the framework (compared to split and validate); indeed
frequently speed-ups of two orders or magnitude could be achieved on the harder
instances. Pure look-ahead is also slower compared to cube+conquer, but the
differences are smaller: on average cube+conquer is about twice as fast.

6.3 Extreme Solutions

Of the 106 subproblems that were created during the splitting phase, only one
subproblem is satisfiable for the extreme case, i.e., n = 7824. This suggests that
the formula after symmetry breaking has a big backbone. A variable belongs
to backbone of a formula if it is assigned to the same truth value in all solu-
tions. We computed the backbone of F7824, which consists of 2304 variables.
The backbone reveals why it is impossible to avoid Pythagorean Triples indef-
initely when partitioning the natural numbers into two parts: variables x5180

and x5865 are both positive in the backbone, forcing x7825 to be negative due
to 51802 + 58652 = 78252. At the same time, variables x625 and x7800 are both
negative in the backbone forcing x7825 to be positive due to 6252+78002 = 78252.

A satisfying assignment does not necessarily assign all natural numbers up to
7824 that occur in Pythagorean Triples. For example, we found a satisfying
assignment that assigns only 4925 out of the 6492 variables occurring in F7824.
So not only is F7824 satisfiable, but it has a huge number of solutions.

7 Conclusions

We solved and verified the boolean Pythagorean Triples problem using C&C. The
total solving time was about 35,000 h and the verification time about 16,000 h.

Solving and Verifying the Boolean Pythagorean Triples Problem 243

Since C&C allows for massive parallelization, resulting in almost linear-time
speedups, the problem was solved altogether in about two days on the Stam-
pede cluster. Apart from strong computational resources, dedicated look-ahead
heuristics were required to achieve these results. In future research we want
to further develop effective look-ahead heuristics that will work for such hard
combinatorial problems out of the box. We expect that parallel computing com-
bined with look-ahead splitting heuristics will make it feasible to solve many
other hard combinatorial problems that are too hard for existing techniques.
Moreover, we argue that solutions to such problems require certificates that can
be validated by the community — similar to the certificate we provided for the
boolean Pythagorean Triples problem. A fundamental question is whether The-
orem 1 has a “mathematical” (human-readable) proof, or whether the gigantic
(sophisticated) case-distinction, which is at the heart of our proof, is the best
there is? It is conceivable that Conjecture 1 is true, but for each k has only proofs
like our proof, where the size of these proofs is growing so quickly, that Conjec-
ture 1 is actually not provable in current systems of foundations of Mathematics
(like ZFC).

Acknowledgements. The authors acknowledge the Texas Advanced Computing Cen-
ter (TACC) at The University of Texas at Austin for providing grid resources that have
contributed to the research results reported within this paper.

References

1. Mizar proof checker. Accessed: November 2015
2. Coq proof manager. Accessed: November 2015
3. The site of flyspeck project, the formal verification of the proof of Kepler Conjec-

ture. Accessed: November 2015
4. Ahmed, T., Kullmann, O., Snevily, H.: On the van der Waerden numbers w(2; 3, t).

Discrete Appl. Math. 174, 27–51 (2014)
5. Biere, A.: Picosat essentials. JSAT 4(2–4), 75–97 (2008)
6. Biere, A.: Lingeling, Plingeling and Treengeling entering the SAT competition 2013.

In: Proceedings of SAT Competition 2013, p. 51 (2013)
7. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satis-

fiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press,
Amsterdam (2009)

8. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

9. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings 3rd
Annual ACM Symposium on Theory of Computing (STOC 1971), pp. 151–158
(1971)

10. Cooper, J., Overstreet, R.: Coloring so that no Pythagorean triple is monochro-
matic (2015). arXiv:1505.02222

11. Cooper, J., Poirel, C.: Note on the Pythagorean triple system (2008)
12. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for

search problems. In: Proceedings of 5th International Conference on Knowledge
Representation and Reasoning, KR 1996, pp. 148–159. Morgan Kaufmann (1996)

http://arxiv.org/abs/1505.02222

244 M.J.H. Heule et al.

13. Dequen, G., Dubois, O.: kcnfs: an efficient solver for random k -SAT formulae.
In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 486–501.
Springer, Heidelberg (2004)

14. Dransfield, M.R., Marek, V.W., Truszczyński, M.: Satisfiability and computing van
der Waerden numbers. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS,
vol. 2919, pp. 1–13. Springer, Heidelberg (2004)

15. Dubois, O., Dequen, G.: A backbone-search heuristic for efficient solving of hard
3-SAT formulae. In: International Joint Conferences on Artificial Intelligence
(IJCAI), pp. 248–253 (2001)

16. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

17. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

18. Franco, J., Martin, J.: A history of satisfiability. In: Biere et al. [7], Chap. 1, pp.
3–74

19. Garey, M.R., Johnson, D.S.: Computers and Intractability/A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

20. Henschen, L.J., Wos, L.: Unit refutations and Horn sets. J. Assoc. Comput. Mach.
21(4), 590–605 (1974)

21. Heule, M.J.H., Biere, A.: Clausal proof compression. In: 11th International Work-
shop on the Implementation of Logics (2015)

22. Heule, M.J.H., Biere, A.: Compositional propositional proofs. In: Davis, M.,
Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR-20 2015. LNCS, vol. 9450,
pp. 444–459. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48899-7 31

23. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Verifying refutations with extended
resolution. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 345–359.
Springer, Heidelberg (2013)

24. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Expressing symmetry breaking in
DRAT proofs. In: Felty, A.P., Middeldorp, A. (eds.) CADE-25. LNCS, vol. 9195,
pp. 591–606. Springer, Heidelberg (2015)

25. Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: guiding
CDCL SAT solvers by lookaheads. In: Eder, K., Lourenço, J., Shehory, O. (eds.)
HVC 2011. LNCS, vol. 7261, pp. 50–65. Springer, Heidelberg (2012)

26. Heule, M.J.H., van Maaren, H.: Look-ahead based SAT solvers. In: Biere et al. [7],
Chap. 5, pp. 155–184

27. Järvisalo, M., Biere, A., Heule, M.J.H.: Blocked clause elimination. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Hei-
delberg (2010)

28. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer,
Heidelberg (2012)

29. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatche,
J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press,
New York (1972)

30. Kay, W.: An overview of the constructive local lemma. Master’s thesis, University
of South Carolina (2009)

31. Kouril, M.: Computing the van der Waerden number W (3, 4) = 293. INTEGERS:
Electron. J. Comb. Number Theory 12(A46), 1–13 (2012)

32. Kouril, M., Paul, J.L.: The van der Waerden number W (2, 6) is 1132. Exp. Math.
17(1), 53–61 (2008)

http://dx.doi.org/10.1007/978-3-662-48899-7_31

Solving and Verifying the Boolean Pythagorean Triples Problem 245

33. Kullmann, O.: On a generalization of extended resolution. Discrete Appl. Math.
96–97, 149–176 (1999)

34. Kullmann, O.: Fundaments of branching heuristics. In: Biere et al. [7], Chap. 7,
pp. 205–244

35. Levin, L.: Universal search problems. Problemy Peredachi Informatsii 9, 115–116
(1973)

36. Li, C.M.: A constraint-based approach to narrow search trees for satisfiability. Inf.
Process. Lett. 71(2), 75–80 (1999)

37. Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability prob-
lems. In: Proceedings of 15th International Joint Conference on Artificial Intelli-
gence (IJCAI 1997), pp. 366–371. Morgan Kaufmann Publishers (1997)

38. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of boolean formulas.
In: Proceedings of Haifa Verification Conference 2012 (2012)

39. Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT
solvers. In: Biere et al. [7], Chap. 4, pp. 131–153

40. Mijnders, S., de Wilde, B., Heule, M.J.H.: Symbiosis of search and heuristics for
random 3-SAT. In: Mitchell, D., Ternovska, E. (eds.) Third International Workshop
on Logic and Search (LaSh 2010) (2010)

41. Myers, K.J.: Computational advances in Rado numbers. Ph.D. thesis, Rutgers
University (2015)

42. Rado, R.: Some partition theorems. In: Colloquia Mathematica Societatis János
Bolyai 4. Combinatorial Theory and Its Applications III, pp. 929–936. North-
Holland, Amsterdam (1970)

43. Schur, I.: Über die Kongruenz xm+ym = zm (mod p). Jahresbericht der Deutschen
Mathematikervereinigung 25, 114–117 (1917)

44. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In:
Siekmann, J.H., Wrightson, G. (eds.) Automation of Reasoning 2, pp. 466–483.
Springer, Heidelberg (1983)

45. van der Waerden, B.L.: Beweis einer Baudetschen Vermutung. Nieuw Archief voor
Wiskunde 15, 212–216 (1927)

46. Van Gelder, A.: Verifying RUP proofs of propositional unsatisfiability. In: ISAIM
(2008)

47. Voevodski, V.: Lecture at ASC 2008, How I became interested in foundations of
mathematics. Accessed: November 2015

48. Wetzler, N., Heule, M.J.H., Hunt Jr., W.A.: DRAT-trim: efficient checking and
trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014.
LNCS, vol. 8561, pp. 422–429. Springer, Heidelberg (2014)

49. Zhang, H.: Combinatorial designs by SAT solvers. In: Biere et al. [7], Chap. 17,
pp. 533–568

50. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based
checker: practical implementations and other applications. In: DATE, pp. 10880–
10885 (2003)

Satisfiability Modulo Theory

Deciding Bit-Vector Formulas with mcSAT

Aleksandar Zeljić1, Christoph M. Wintersteiger2(B), and Philipp Rümmer1

1 Uppsala University, Uppsala, Sweden
{aleksandar.zeljic,philipp.ruemmer}@it.uu.se

2 Microsoft Research, Cambridge, UK
cwinter@microsoft.com

Abstract. The Model-Constructing Satisfiability Calculus (mcSAT) is
a recently proposed generalization of propositional DPLL/CDCL for
reasoning modulo theories. In contrast to most DPLL(T)-based SMT
solvers, which carry out conflict-driven learning only on the proposi-
tional level, mcSAT calculi can also synthesise new theory literals during
learning, resulting in a simple yet very flexible framework for designing
efficient decision procedures. We present an mcSAT calculus for the the-
ory of fixed-size bit-vectors, based on tailor-made conflict-driven learning
that exploits both propositional and arithmetic properties of bit-vector
operations. Our procedure avoids unnecessary bit-blasting and performs
well on problems from domains like software verification, and on con-
straints over large bit-vectors.

1 Introduction

Fixed-length bit-vectors are one of the most commonly used datatypes in Satisfi-
ability Modulo Theories (SMT), with applications in hardware and software ver-
ification, synthesis, scheduling, encoding of combinatorial problems, and many
more. Bit-vector solvers are highly efficient, and typically based on some form of
SAT encoding, commonly called bit-blasting, in combination with sophisticated
methods for upfront simplification. Bit-blasting may be implemented with vary-
ing degree of laziness, ranging from eager approaches where the whole formula is
translated to propositional logic in one step, to solvers that only translate con-
junctions of bit-vector literals at a time (for an overview, see [22]). Despite the
huge body of research, aspects of bit-vector solving are still considered challeng-
ing, including the combination of bit-vectors with other theories (e.g., arrays or
uninterpreted functions), large bit-vector problems that are primarily of arith-
metic character (in particular when non-linear), and problems involving very long
bit-vectors. A common problem encountered in such cases is excessive memory
consumption of solvers, especially for solvers that bit-blast eagerly.

A contrived yet instructive example with very long bit-vectors is given in Fig. 1,
adapted from a benchmark of the SMT-LIB QF BV ‘pspace’ subset [18]. The
benchmark tests the overflow behavior of addition. Its model is simple, regardless
of the size of bit-vectors x and y (x should consist of only 1-bits, while y should
consist of only 0-bits). Finding a model for the formula should in principle be easy,
c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 249–266, 2016.
DOI: 10.1007/978-3-319-40970-2 16

250 A. Zeljić et al.

(set-logic QF_BV)

(declare-fun x () (_ BitVec 29980))

(declare-fun y () (_ BitVec 29980))

(assert (and (bvuge x y) (bvule (bvadd x (_ bv1 29980)) y)))

Fig. 1. Simplified example from the ‘pspace’ subset [18] of SMT-LIB, QF BV

but proves challenging for bit-blasting procedures. Other sources of very long bit-
vectors are system memory in hardware verification or heap in software verifica-
tion (e.g., [4]), chemical reaction networks, or gene regulatory networks (e.g., [35]).

Generally, memory consumption is a limiting factor in the application of
bit-vector solvers. Increasing the size of bit-vectors that can efficiently be rea-
soned about would broaden the range of applications, while also simplifying
system models for further analysis. With that in mind, we introduce a new
model-constructing decision procedure for bit-vectors that is lazier than previ-
ous solvers. The procedure is defined as an instance of the model-constructing
satisfiability calculus (mcSAT [30]), a framework generalizing DPLL and conflict-
driven learning (CDCL) to non-Boolean domains. Like other SMT solvers for
bit-vectors, our procedure is defined on top of well-understood SAT technology;
unlike most existing solvers, we treat bit-vectors as first-class objects, which
enables us to design tailor-made propagation and learning schemes for bit-vector
constraints, as well as avoiding bit-blasting of bit-vector operations altogether.

The contributions of this paper are as follows: 1. a novel decision procedure
for the theory of bit-vectors that avoids bit-blasting, 2. an extension of the
mcSAT calculus to support partial model assignments, 3. a new mcSAT heuristic
for generalizing explanations, and 4. an implementation of the procedure and
preliminary experimental evaluation of its performance.

1.1 Motivating Examples

We start by illustrating our approach using two examples: a simple bit-vector
constraint that illustrates the overall strategy followed by our decision procedure,
and a simple family of bit-vector problems on which our procedure outperforms
existing bit-blasting-based methods. Consider bit-vectors x, y, z of length 4, and
let ⊕ denote bit-wise exclusive-or and ≤u, <u be unsigned comparison in

φ ≡ x = y + z ∧ y <u z ∧ (x ≤u y + y ∨ x ⊕ z = 0001).

The goal is to find an assignment to x, y, z such that formula evaluates to true.
Figure 2 illustrates an application of our algorithm to φ (after clausification).
Starting from an empty trail, we assert the unit clauses, denoted by implications
with empty antecedents (lines 1 and 2 in Fig. 2a). At this point the procedure
chooses between making a model assignment to one of the bit-vector variables,
or Boolean decisions. Here, we choose to make a decision and assume x ≤u y+y
(line 3). Decisions (and model assignments) are denoted with a horizontal line
above them in the trail. The Boolean structure of the formula φ is now satisfied,

Deciding Bit-Vector Formulas with mcSAT 251

Trail element
1 () → x = y + z
2 () → y <u z

3 x ≤u y + y

4 y �→ 1111
5 z �→?

(a) Infeasible trail

Trail element
1 () → x = y + z
2 () → y <u z

3 x ≤u y + y
4 y <u z → ¬(y = 1111)

5 y �→ 1110
6 z �→ 1111
7 x �→ 1101

(b) Conflicted trail

Trail element
1 () → x = y + z
2 () → y <u z

3 x ≤u y + y
4 y <u z → ¬(y = 1111)
5 (. . .) → ¬(y ≥u 1000)

6 y �→ 0111
7 z �→ 1001
8 x �→ 0000

(c) Satisfied trail

Fig. 2. Critical trail states during the execution of our algorithm

so we search for satisfying model assignments to the bit-vector variables. Here,
we decide on y �→ 1111 (line 4 in Fig. 2a). The literal y <u z now gives a lower
bound for z. Our procedure immediately determines that the trail has become
infeasible, since no value of z will be consistent with y = 1111 and y <u z.

We now need an explanation to restore the trail to a state where it is not
infeasible anymore. In mcSAT, an explanation of a conflict is a valid clause with
the property that the trail implies falsity of each of the clause literals. One pos-
sible explanation in our case is ¬(y = 1111) ∨ ¬(y <u z). After resolving the
explanation against the trail (in reverse order, similar to Boolean conflict reso-
lution in SAT solvers), at the first point where at least one literal in the conflict
clause no longer evaluates to false, the conflict clause becomes an implication
and is put on the trail. In this example, as soon as we undo the assignment
y �→ 1111, the literal ¬(y = 1111) can be assumed (line 4 in Fig. 2b). The pro-
cedure makes the next legal assignment y �→ 1110 (line 5 in Fig. 2b). Bounds
propagation using y <u z then implies the model assignment z �→ 1111 (line
6 in Fig. 2b). Values of y and z imply a unique value 1101 for x, however,
the model assignment x �→ 1101 is not legal because it violates x <u y + y
when y = 1110. By means of bounds propagation we have detected a conflict in
y = 1110 ∧ y <u z ∧ x = z + y ∧ x <u y + y.

Our procedure tries to generalize conflicts, to avoid re-visiting conflicts of sim-
ilar shape in the future. Generalization is done by weakening the literals of y =
1110 ∧ y <u z ∧ x = z + y ∧ x <u y + y, and checking if the conflict persists. First,
y = 1110 is rewritten to y ≤u 1110 ∧ y ≥u 1110; it is then detected that y ≤u 1110
is redundant, because bounds propagation derives unsatisfiability even without it.
Now we weaken the literal y ≥u 1110 by changing the constant, say to y ≥u 1000,
and verify using bounds propagation that the conflict persists (Example 3). Weak-
ening y ≥u 1000 further would lead to satisfiability. By negation we obtain a valid
explanation ¬(y ≥u 1000) ∨ ¬(y <u z) ∨ ¬(x = z + y) ∨ ¬(x <u y + y), which
we use to backtrack the trail to a non-conflicted state (line 5 in Fig. 2c). From this
point on straight-forward propagation yields a satisfying solution.

After presenting the basic ideas behind our procedure, we argue that it is
well suited to problems that stem from model checking applications. Consider

252 A. Zeljić et al.

Algorithm 1. Factorial

1 uns igned i n t factorial = 1u;

2 uns igned i n t n;

3 f o r (i n t i = n; i > 0u; i--) {

4 factorial = factorial * i;

5 }

6 assert (n <= 1 || f % 2u == 0u)

the simple C program shown in Algorithm 1. The program computes the factorial
of some value n by multiplying the factors starting from n and counting down.
We add an assertion at the end, which checks whether factorial is even if the
value of n is greater than one. We use bounded model checking and unwind the
loop a fixed number of iterations, to generate formulas of increasing complexity.
Figure 3 shows the performance of mcBV (our prototype) and state-of-the-art
solvers on these benchmarks (Boolector [10] is the winner of the QF BV track of
the 2015 SMT competition; Z3 [29] is our baseline as mcBV uses the Z3 parser
and preprocessor). On this class of benchmarks, mcBV performs significantly
better than Z3 and comparably to Boolector.

1.2 Related Work

The most popular approach to solving bit-vector formulas is to translate them
to propositional logic and further into conjunctive normal form via the Tseitin
translation [33] (bit-blasting), such that an off-the-shelf SAT solver can be used
to determine satisfiability. In contrast, our approach does not bit-blast, and we
attempt to determine satisfiability directly on the word level. Our technique
builds on the Model-Constructing Satisfiability Calculus recently developed by
Jovanović and de Moura [23,30]. Our approach is similar in spirit to previ-
ous work by Bardin et al. [1], which avoids bit-blasting by encoding bit-vector
problems into integer arithmetic, such that a (customized) CLP solver for finite

0.1

1

10

T/O

M/O

0 10 20 30 50 100 150

T
im

e
[s

ec
]

Iterations

mcBV

××
×××× × × × × × × × × × × × × × × × × × × ×

×
Z3 4.4.2

•••••• • • • •
•

•
•

• • • • • • • • • • • •

•
Boolector 2.2.0

∗∗∗∗∗∗
∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗

Fig. 3. Factorial example performance

Deciding Bit-Vector Formulas with mcSAT 253

domains can be used. A different angle is taken by Wille et al. [34] in their
SWORD tool, which uses vector-level information to increase the performance
of the SAT solver by abstracting some sub-formulas into ‘modules’ that are
handled similar to custom propagators in a CLP solver.

On the one hand, various decisions problems involving bit-vectors have
recently been shown to be of fairly high complexity [19,24,25] and on the other
hand, some fragments are known to be decidable in polynomial time; for instance,
Bruttomesso and Sharygina describe an efficient decision procedure for the ‘core’
theory of bit-vectors [11], based on earlier work by Cyrluk et al. [15], who defined
this fragment via syntactic restriction to extraction and concatenation being the
only bit-vector operators that are permitted. There is also a small body of work
on the extension of decision procedures for bit-vectors that do not have a fixed
size. For instance, Bjørner and Pichora [7] describe a unification-based calculus
for (non-)fixed size bit-vectors, while Möller and Ruess [28] describe a procedure
for (non-)fixed size bit-vectors that bit-blasts lazily (‘splitting on demand’).

Most SMT solvers implement lazy and/or eager bit-blasting procedures.
These either directly, eagerly translate to a Boolean CNF and then run a SAT
solver, or, especially when theory combination is required, they use a lazy bit-
blaster that translates relevant parts of formulas on demand. This is the case,
for instance in Boolector [10], MathSAT [13], CVC4 [2], STP [20], Yices [17],
and Z3 [29]. Hadarean et al. [22] present a comparison and evaluation of eager,
lazy, and combined bit-vector solvers in CVC4.

Griggio proposes an efficient procedure for the construction of Craig inter-
polants of bit-vector formulas ([27] via translation to QF LIA, quantifier-free
linear integer arithmetic [21]). Interpolants do have applications in mcBV, e.g.,
for conflict generalization, but we do not currently employ such methods.

Model checkers that do not use SMT solvers sometimes implement their
own bit-blasting procedures and then use SAT solvers, BDD-based, or AIG-
based solvers. This is often done in bounded model checking [5,6], but more
recently also in IC3 [9], Impact [27], or k-induction [32]. Examples thereof include
CBMC [14], EBMC [26], NuSMV2 [12]. In some cases model-checkers based
on abstract interpretation principles use bit-vector solvers for counter-example
generation when the proof fails; this is the case, for instance, for the separation-
logic based memory analyzer SLAyer [3,4].

In recent times bit-vector constraints are also used for formal systems analy-
sis procedures in areas other than verification, for instance in computational
biology [35] where Dunn et al. [16] identify and analyze a bit-vector model for
pluripotent stem-cells via an encoding of the model into bit-vector constraints.
Similarly, bit-vector solvers are used within interactive and automated theorem
provers to construct bit-vector proofs, for instance, in Isabelle/HOL [8].

2 Preliminaries: Bit-Vector Constraints

We consider a logic of quantifier-free fixed-width bit-vector constraints, defined
by the following grammar, in which φ ranges over formulas and t over bit-vector
terms:

254 A. Zeljić et al.

φ ::= true || false || p || ¬φ || φ ∧ φ || φ ∨ φ || t • t

t ::= 0n || 1n || · · · || (0|1)+ || x || extractnp (t) || ! t || t ◦ t

Here, p ranges over propositional variables; expressions 0n, 1n, . . . are decimal
bit-vector literals of width n; literals (0|1)+ represent bit-vectors in binary; x
ranges over bit-vector variables of size α(x); predicates • ∈ {=,≤s,≤u} repre-
sent equality, signed inequality (2’s complement format), and unsigned inequal-
ity, respectively; the operator extractnp represents extraction of n bits starting
from position p (where the left-most bit has position 0); ! is bit-wise negation;
binary operators ◦ ∈ {+,×,÷, & , | , ⊕ ,�,,�} represent addition, multipli-
cation, (unsigned) integer division, bit-wise and, bit-wise or, bit-wise exclusive
or, left-shift, right-shift, and concatenation, respectively. We assume typing and
semantics of bit-vector constraints are defined as usual.

An atom is a formula φ that does not contain ¬,∧,∨. An atom is flat if it is
of the form x ≤s y, x ≤u y, or x = t, and t does not contain nested operators.
A literal is an atom or its negation. A clause is a disjunction of literals. When
checking satisfiability of a bit-vector constraint, we generally assume that the
constraint is given in the form of a set of clauses containing only flat atoms.

3 mcSAT with Projections

We now introduce the framework used by our decision procedure for bit-vector
constraints, based on a generalized version of mcSAT [30]. In contrast to previous
formulations of mcSAT, we include the possibility to partially assign values to
variables; this enables assignments that only affect some of the bits in a bit-
vector, which helps us to define more flexible propagation operators. mcSAT
with projections is first defined in general terms, and tailored to the setting of
bit-vector constraints in the subsequent sections, resulting in mcBV.

We define our framework in the form of a transition system, following the
tradition of DPLL(T) [31] and mcSAT [30]. The states of the system have the
form 〈M,C〉, where M is the trail (a finite sequence of trail elements), and C
is a set of clauses. The trail M consists of: (1) decided literals l, (2) propagated
literals e → l, and (3) model assignments π(x) �→ α. A literal l (either decided or
propagated) is considered to be true in the current state if it appears in M , which
is denoted by l ∈ M . Model assignments π(x) �→ α denote a partial assignment
of a value α to a variable x, where π is a projection function.

We consider constraints formulated over a set of types {T1, T2, . . . , Tn} with
fixed domains {T1, T2, . . . , Tn}, and a finite family {πi}i∈I of surjective func-
tions πi : T �→ T ′ (here called projections) between the domains. Types can
for instance be bit-vector sorts of various lengths. A partial model assign-
ment π(x) �→ α with projection π : T �→ T ′ expresses that variable x of type
T is assigned some value β ∈ T such that π(β) = α, where α ∈ T ′. A trail can
contain multiple partial assignments to the same variable x; we define the partial
domain of a variable x under a trail M as

Domain(x,M) =
⋂

(π(x) �→α)∈M

{β ∈ T | π(β) = α}.

Deciding Bit-Vector Formulas with mcSAT 255

We call a trail M assignment consistent if the partial assignments to variables
are mutually consistent, i.e., the partial domain Domain(x,M) of each variable x
is non-empty. If the partial domain of a variable x contains exactly one element,
i.e., Domain(x,M) = {β}, then we say that all the partial assignments to x in
M form a full model assignment ; in the original mcSAT calculus, this is denoted
by x �→ β. Assignment consistency is violated if Domain(x,M) = ∅. We gener-
ally require that projections {πi}i∈I are chosen in such a way that assignment
consistency and full assignments can be detected effectively for any trail M . In
addition, projections are required to be complete in the sense that every full
model assignment x �→ β can be expressed as some finite combination of partial
assignments {πj(x) �→ αj}j∈J . More formally, for every β ∈ T there exists a
finite set of partial model assignments S such that Domain(x, S) = {β}. Inclu-
sion of the identity function among projections enables expression of full model
assignments directly.

Given a trail M , an interpretation v[M] = {x1 �→ β1, x2 �→ β2, . . . , xk �→ βk}
is constructed by collecting all full model assignments xi �→ βi implied by M .
The value v[M](t) of a term or formula t is its value under the interpretation v,
provided that all variables occurring in t are interpreted by v; or undef otherwise.
We define a trail extension M̄ of a trail M as any trail M̄ = [M,M ′] such that M ′

consists only of (partial) model assignments to variables already appearing in M ,
and furthermore each variable x that appears in M has a unique value assigned
from its partial domain; Domain(x,M) �= ∅ implies that |Domain(x, M̄)| = 1.
This ensures that assignment consistency is maintained.

Evaluation of literals in respect to the trail M is achieved using a pair of
functions valueB and valueT , defined as

valueB(l,M) =

⎧
⎪⎨

⎪⎩

true l ∈ M

false ¬l ∈ M

undef otherwise
and valueT (l,M) = v[M](l).

A trail M is consistent if it is assignment consistent, and for all literals l ∈ M
it holds that valueT (l,M) �= false. A trail M is said to be complete if it is
consistent and every literal l on the trail M can be evaluated in the theory,
i.e. valueT (l,M) = true. A trail which has no complete extensions is called
infeasible. Note that if a trail is inconsistent then it is also infeasible.

The value of a literal in a consistent state (consistent trail) is defined as

value(l,M) =

{
valueB(l,M) valueB(l,M) �= undef
valueT (l,M) otherwise

,

which is extended to clauses in the obvious way.

Evaluation strength. We remark that there is some freedom in the way valueT is
defined: even if v[M](l) = undef for some literal l (because l contains variables
with undefined value), the trail M might still uniquely determine the value of l.
In general, our calculus can use any definition of value∗

T that satisfies

256 A. Zeljić et al.

(1) v[M](l) �= undef implies value∗
T (l,M) = v[M](l), and

(2) value∗
T (l,M) �= undef implies that for every extension M̄ of M it holds that

valueT (l, M̄) = value∗
T (l,M).

These properties leave room for a trade-off between the strength of reasoning
and computational effort invested to discover such implications. For example,
suppose that a bit-vector variable x of length 3, under trail M has the partial
domain Domain(x,M) = {000, 001, 010}. For a literal l = (x < 100), evalua-
tion yields valueT (l,M) = undef . It is easy to see that valueT (l, M̄) = true
in every trail extension M̄ of M , however, so that a lazier mode of evaluation
could determine value∗

T (l,M) = true. With a more liberal evaluation strategy,
propagations and conflicts are detected earlier, though perhaps at higher cost.

3.1 A Calculus with Projections

The transitions of our calculus are the same as those of mcSAT [30], with the
exception of the T-Decide rule, which we define in terms of partial assignments
and partial domains (Fig. 4). As in mcSAT, it is assumed that a finite basis B of
literals is given, representing all literals that are taken into account in decisions,
propagations, or when constructing conflict clauses and explanations. B at least
has to contain all atoms, and the negation of atoms occurring in the clause set C.
The function explain is supposed to compute explanations of infeasible trails M
(which correspond to theory lemmas in DPLL(T) terminology). An explanation
of M is a clause e such that 1. e is valid; 2. all literals l ∈ e evaluate to false on
M (i.e., value(l,M) = false); 3. all literals l ∈ e occur in the basis B.

In order to state correctness of the calculus, we need one further assumption
about the well-foundedness of partial assignments: for every sequence of partial
assignments to a variable x, of the form [π1(x) �→ α1, π2(x) �→ α2, . . .], we assume
that the sequence of partial prefix domains

Domain(x, [])
Domain(x, [π1(x) �→ α1])
Domain(x, [π1(x) �→ α1, π2(x) �→ α2])

· · ·

eventually becomes constant. This ensures that partial assignment of a variable
cannot be refined indefinitely. Correctness of mcSAT with projections is then be
proven in largely the same manner as in mcSAT:

Theorem 1 (Correctness [30]). Any derivation starting from the initial state
〈[], C〉 eventually terminates in state sat, if C is satisfiable, or in state unsat, if
C is unsatisfiable.

Deciding Bit-Vector Formulas with mcSAT 257

T-Decide

〈M, C〉 −→ 〈[M, π(x) �→ α], C〉 if
x is a (theory) variable in C
Domain(x, [M, π(x) �→ α]) 	= Domain(x, M)
[M, π(x) �→ α] is consistent

Fig. 4. The modified T-Decide rule.

4 Searching for Models with mcBV

We now describe how the mcSAT calculus with projections is tailored to the
theory of bit-vectors, leading to our procedure mcBV. The theory of bit-vectors
already contains a natural choice for the projections, namely the extract func-
tions, of which we use a finite subset as projections. To ensure completeness
of this subset (in the sense that every full model assignment has a represen-
tation as a combination of partial model assignments), we include all one-bit
projections πk

i = extract1i , selecting the i-th bit of a bit-vector of length k.
In practice, our prototype implementation maintains a trail M as part of

its state, and attempts to extend the trail with literals and model assignments
such that the trail stays consistent, every literal on the trail eventually becomes
justified by a model assignment (i.e., valueT (l,M) = true for every literal l in
M), and every clause in C is eventually satisfied. A conflict is detected if either
some clause in C is found to be falsified by the chosen trail elements (which is
due to literals or model assignments), or if infeasibility of the trail is detected.

Since the calculus is model constructing, there is a strong preference to jus-
tify all literals on the trail through model assignments, i.e., to make the trail
complete, before making further Boolean decisions. Partial model assignments
are instrumental for this strategy: they enable flexible implementation of prop-
agation rules that extract as much information from trail literals as possible.
For instance, if the trail contains the equation x = extract32(y) and a model
assignment x �→ 101, propagation infers and puts a further partial assign-
ment extract32(y) �→ 101 on the trail, by means of the T-Decide rule. This par-
tial assignment is subsequently used to derive further information about other
variables. For this, we defined bit-precise propagation rules for all operators; our
solver includes native implementations of those rules and does not have to resort
to explicit bit-blasting. Similarly to Boolean Constraint Propagation (BCP),
propagation on the level of bit-vectors is often able to detect inconsistency of
trails (in particular variables with empty partial domain) very efficiently.

Once all possible bit-vector propagations have been carried out, but the
trail M is still not complete, the values of further variables have to be decided
upon through T-Decide. In order to avoid wrong decisions and obvious conflicts,
our implementation also maintains over-approximations of the set of feasible val-
ues of each variable, in the form of bit-patterns and arithmetic intervals. These
sets are updated whenever new elements are pushed on the trail, and refined
using BCP-equivalent propagation and interval constraint propagation (ICP).
Besides indicating values of variables consistent with the trail, these sets offer

258 A. Zeljić et al.

cheap infeasibility detection (when they become empty), which is crucial for the
T-Propagate and T-Conflict rules. Also, frequently one of these sets becomes
singleton, in which case a unique model assignment for the variable is implied.

4.1 Efficient Representation of Partial Model Assignments

Our procedure efficiently maintains information about the partial domains of
variables by tracking bit-patterns, which are strings over the 3-letter alphabet
{0, 1, u}; the symbol u represents undefined bits (don’t-cares). We say that bit-
vector x matches bit-pattern p (both of length k) iff x is included in the set of
vectors covered in the bit-pattern; formally we define

matches(x, p) =
∧

0≤i<k
pi 	=u

xi = pi,

where xi and pi denote i-th bit of x and p. The atom matches(x, p) is not a
formula in the sense of our language of bit-vector constraints, but for the sake
of presentation we treat it as such in this section.

For long bit-vectors, representation of partial domains using simple bit-
patterns can be inefficient, since linear space is needed in the length of the
bit-vector variable. To offset this, we use run-length encoding (RLE) to store
bit-patterns. Besides memory compression, RLE speeds up propagation, as it is
not necessary to process every individual bit of a bit-vector separately. The com-
plexity then depends on the number of bit alternations, as shown in the following
example demonstrating exclusive-or evaluation on both representations.

Example 1. Each digit in the output represents one bit operation, in standard
bit-vectors (left) and run-length encoded bit-vectors (right):

x 0000011111
y 1110000011

x⊕ y 1110011100

x 03 02 13 12

y 13 02 03 12

x⊕ y 13 02 13 02

4.2 Maintaining Partial Domain Over-Approximations

To capture arithmetic properties and enable efficient propagation, our implemen-
tation stores bounds x ∈ [xl, xu] for each variable x. The bounds are updated
when new elements occur on the trail, and bounds propagation is used to refine
bounds. Note that bit-patterns and arithmetic bounds abstractions sometimes
also refine each other. For example, lower and upper bounds are derived from a
bit-pattern, by replacing all u bits with 0 and 1 respectively. Conversely, if the
lower and upper bound share a prefix, then they imply a bit-pattern with the
same prefix and the remaining bits set to u.

Deciding Bit-Vector Formulas with mcSAT 259

5 Conflicts and Explanations

Explanations are the vehicle used by our calculus to generalize from conflicts.
Given an infeasible trail M , an explanation explain(M) is defined to be a valid
clause E = l1 ∨ · · · ∨ ln over the finite basis B, such that every literal li
evaluates to false under the current trail, i.e., value(li,M) = false for every
i ∈ {1, . . . , n}. Explanations encode contradictory assumptions made on the
trail, and are needed in the T-Consume and T-Conflict rules to control conflict
resolution and backtracking, as well as in T-Propagate to justify literals added
to the trail as the result of theory propagation.

Since the trail M is inconsistent at the beginning of conflict resolution, it is
always possible to find explanations that are simply disjunctions of negated trail
literals; to this end, every propagated literal c → l is identified with l, and every
model assignment π(x) �→ α as the formula π(x) = α.

5.1 Greedy Generalization

We present a greedy algorithm for creating explanations that abstract from
concrete causes of conflict. To this end, we assume that we have already derived
some correct (but not very general) explanation

e = ¬t1 ∨ ¬t2 ∨ · · · ∨ ¬tn ∨ ¬b1 ∨ ¬b2 ∨ · · · ∨ ¬bm,

where t1, . . . , tn denote literals with valueT (ti,M) = true, and b1, . . . , bm liter-
als with valueT (ti,M) = undef but valueB(bi,M) = true. The former kind of
literal holds as a result of model assignments, whereas the latter literals occur
on the trail either as decisions or as the result of propagation. The key observa-
tion is that the literals t1, . . . , tn allow over-approximations (replacements with
logically weaker literals), as long as the validity of the overall explanation clause
is maintained, in this way producing a more general explanation.

Our procedure requires the following components as input (apart from e):

– for each literal ti (for i ∈ {1, . . . , n}), a finite lattice (Ti,⇒) of conjunctions
of literals Ti ⊆ {l1 ∧ · · · ∧ lk | l1, . . . , lk ∈ B} ordered by logical implication,
with join �i and meet �i, and the property that ti ∈ Ti. The set Ti provides
constraints that are considered as relaxation of ti.

– a heuristic satisfiability checker hsat to determine the satisfiability of a con-
junction of literals. The checker hsat is required to (1) be be sound (i.e.,
hsat(φ) = false implies that φ is actually unsatisfiable), (2) to correctly report
the validity of e,

hsat(t1 ∧ · · · ∧ tn ∧ b1 ∧ · · · ∧ bm) = false,

and (3) to be monotonic in the following sense: for all elements l, l′ ∈ Ti

with l ⇒ l′ in one of the lattices, and for all conjunctions φ, ψ of literals, if
hsat(φ ∧ l′ ∧ ψ) = false then hsat(φ ∧ l ∧ ψ) = false.

260 A. Zeljić et al.

Algorithm 2. Explanation relaxation
Input: Raw explanation

∨n
i=1 ¬ti ∨∨m

i=1 ¬bi;
lattices (Ti, ⇒)ni=1; satisfiability checker hsat .

Output: Refined explanation
∨n

i=1 ¬tai ∨∨m
i=1 ¬bi.

1 φb ← b1 ∧ · · · ∧ bm;
2 for i ← 1 to n do
3 tai ← ti;
4 Bi ← ∅;

5 end

6 changed ← true;
7 while changed do
8 changed ← false;
9 for i ← 1 to n do

10 if ∃t ∈ Ti \ {tai } with tai ⇒ t and ∀l ∈ Bi. t 	⇒ l then

11 if hsat(
∧i−1

j=1 taj ∧ t ∧∧n
j=i+1 taj ∧ φb) then

12 Bi ← Bi ∪ {t};
13 else
14 tai ← t;
15 changed ← true;

16 end

17 end

18 end

19 end

20 return ¬ta1 ∨ · · · ∨ ¬tan ∨ ¬b1 ∨ · · · ∨ ¬bm;

The pseudo-code of the procedure is shown in Algorithm2, and consists
mainly of a fixed-point loop in which the literals t1, . . . , tn are iteratively weak-
ened, until no further changes are possible (lines 6–19). The algorithm keeps
blocking sets Bi of conjunctions of literals (for i ∈ {1, . . . , n}) that have been
considered as relaxation for ti, but were found to be too weak to maintain a
valid explanation.

Lemma 1. Provided a correct explanation clause as input, Algorithm2 termi-
nates and produces a correct refined explanation.

The next two sections describe two instances of our procedure: one targeting
explanations that are primarily of arithmetic character, and one for explanations
that mainly involve bit-wise operations.

5.2 Greedy Bit-wise Generalization

If the literals of an explanation clause are primarily bit-wise in nature, the relax-
ation considered in our method is to weaken the bit-patterns associated with the
variables occurring in the conflict. For every literal ti of the form matches(x, p),

Deciding Bit-Vector Formulas with mcSAT 261

¬matches(y, 0000) ∨ ¬matches(x, 10) ∨ ¬extract22(y) = x Valid

¬matches(y, u000) ∨ ¬matches(x, 10) ∨ ¬extract22(y) = x Valid
¬matches(y, uuu0) ∨ ¬matches(x, 10) ∨ ¬extract22(y) = x y = 0010, x = 10
¬matches(y, uu00) ∨ ¬matches(x, 10) ∨ ¬extract22(y) = x Valid
¬matches(y, uu0u) ∨ ¬matches(x, 10) ∨ ¬extract22(y) = x Valid
¬matches(y, uu0u) ∨ ¬matches(x, u0) ∨ ¬extract22(y) = x y = 0000, x = 00
¬matches(y, uu0u) ∨ ¬matches(x, 1u) ∨ ¬extract22(y) = x Valid

Fig. 5. Generalization based on bit-patterns

where x is a bit-vector variable and p a bit-pattern of width k = α(x) implied
by the trail, we choose the lattice (Ti,⇒) with

Ti = {false} ∪ {matches(x, a) | a ∈ {0, 1, u}k}.

This set contains a constraint that is equivalent to true, namely the literal
matches(x, uk). Conflicts involving (partial) assignments allow us to start near
the bottom of the lattice and we weaken the literal as much as possible in order
to cover as many similar assignments as possible. Concretely, the weakening is
performed by replacing occurrences of 1 or 0 in the bit-pattern by u.

Our prototype satisfiability checker hsat for this type of constraints is imple-
mented by propagation (Sect. 4), which is able to show validity of raw explana-
tion clauses, and similarly handles bit-pattern relaxations. Our implementation
covers all operations, but it is imprecise for some arithmetic operations.

Example 2. Consider the trail

M = [. . . , y �→ 04, x �→ 1101, extract22(y) = x].

This trail is inconsistent because literal extract22(y) = x evaluates to false in the
theory. A simple explanation clause is ¬matches(y, 04) ∨ ¬matches(x, 1101) ∨
¬(extract22(y) = x). The generalization procedure now tries to generalize this
naive explanation by weakening the literals. Figure 5 shows steps of generalizing
the conflict observed in trail M . One by one, bits in the pattern are set to u and
it is checked whether the new clause is valid. If it is valid, the new bit-pattern is
altered further, otherwise we discard it and continue with the last successfully
weakened pattern. Note that we are not restricted to changes to only one bit, or
even only one literal at a time.

5.3 Greedy Arithmetic Generalization

If the literals of an explanation clause are primarily arithmetic, the relaxation
considered in our method is to replace equations (that stem from model assign-
ments on the trail) with inequalities or interval constraints: for every literal ti

262 A. Zeljić et al.

¬(y ≤u 14) ∨ ¬(y ≥u 14) ∨ ¬(y <u z) ∨ ¬(x = z + y) ∨ ¬(x <u y + y) Valid

¬(y ≤u 15) ∨ ¬(y ≥u 14) ∨ ¬(y <u z) ∨ ¬(x = z + y) ∨ ¬(x <u y + y) Valid
¬(y ≥u 0) ∨ ¬(y <u z) ∨ ¬(x = z + y) ∨ ¬(x <u y + y) y = 1, . . .
¬(y ≥u 7) ∨ ¬(y <u z) ∨ ¬(x = z + y) ∨ ¬(x <u y + y) y = 7, . . .
¬(y ≥u 10) ∨ ¬(y <u z) ∨ ¬(x = z + y) ∨ ¬(x <u y + y) Valid
¬(y ≥u 8) ∨ ¬(y <u z) ∨ ¬(x = z + y) ∨ ¬(x <u y + y) Valid

Fig. 6. Generalization based on arithmetic and interval bounds propagation

of the form x = vk, where x is a bit-vector variable and vk a literal bit-vector
constant of width k = α(x), we choose the lattice (Ti,⇒) with

Ti = {false} ∪ {x = a | a ∈ {0, 1}k} ∪
{a ≤u x ∧ x ≤u b | a, b ∈ {0, 1}k, a < b}

This set contains a constraint that is equivalent to true (0k ≤u x ∧ x ≤u 1k),
and similarly constraints that only impose concrete lower or upper bounds on
x, and equalities (x = vk) ∈ Ti.

Our satisfiability checker hsat for this type of constraints implements interval
constraint propagation, covering all bit-vector operations, although it tends to
yield more precise results for arithmetic than for bit-wise operations. If ICP
shows that an interval becomes empty, then the generalization succeeds because
the conflict persists. Otherwise, generalization fails when ICP reaches a fix point
or exceeds a fixed number of steps (to avoid problems with slow convergence).

Example 3. For readability purposes we switch to numerical notation in this
example. Recall the basic explanation of the trail conflict shown in Fig. 2b in the
motivating example (Sect. 1.1):

¬(y = 14) ∨ ¬(y <u z) ∨ ¬(x = z + y) ∨ (x <u y + y)

We rewrite the first negated equality as a disjunction of negated inequalities.
Then the iterative generalization procedure starts. For each bound literal, the
procedure first attempts to remove it (by weakening it to a true-equivalent in
the lattice Ti). If unsuccessful, it navigates the lattice of literals using binary
search over bounds. Figure 6 shows the steps in this particular example.

6 Experiments and Evaluation

To evaluate the performance of our mcBV implementation we conducted exper-
iments on the SMT-LIB QF BV benchmark set, using our implementation of
mcBV in F#, on a Windows HPC cluster of Intel Xeon machines. The bench-
mark set contains 49971 files in SMT2 format, each of which contains a set of
assertions and a single (check-sat) command. The timeout for all experiments is
at 1200 s and the memory limit is 2 GB.

Deciding Bit-Vector Formulas with mcSAT 263

0.1

1

10

100

T/O

M/O

0.1 1 10 100 T/O M/O

m
cB

V
[s

ec
]

Boolector 2.2.0 [sec]

Set
Z3 Boolector

mcBV # <
4.4.2 2.2.0

QF BV
SAT 16260 16793 6679 35

UNSAT 30748 31534 17025 58

brummayer- SAT 10 0 10 0
biere4 UNSAT 0 0 0 0

pspace
SAT 0 21 21 21

UNSAT 15 60 0 0

sage
SAT 8077 8077 6069 0

UNSAT 18530 18530 16152 29

Sage2
SAT 5104 5649 16 14

UNSAT 9961 10612 176 29

Fig. 7. Runtime comparison on selected subsets of SMT QF BV. Markers for ‘sage’
and ‘sage2’ are smaller to avoid clutter; #< shows the number of benchmarks that
only mcBV solves or mcBV solves quicker than both Z3 and Boolector.

Currently we do not implement any advanced heuristics for clause learning,
clause deletion, or restarts and thus mcBV does not outperform any other solver
consistently. We present a runtime comparison of mcBV with the state-of-the-art
SMT solvers Boolector and Z3 on a selected subset of the QF BV benchmarks see
Fig. 7. On the whole benchmark set, mcBV is not yet competitive with Boolector
or Z3, but it is interesting to note that mcBV performs well on some of the
benchmarks in the ‘sage’, ‘sage2’ and ‘pspace’ sets, as well as the entirety of the
‘brummayerbiere4’ set. Those sets contain a substantial number of benchmarks
that mcBV could solve, but Z3 and Boolector cannot. The ‘pspace’ benchmarks
are hard for all solvers as they contains very large bit-vectors (in the order
of 20k bits) which will often result in the bit-blaster running out of memory;
this is reflected in the small clusters at the bottom right in Fig. 7. The table
in Fig. 7 gives the number of instances solved by each approach. While our
prototype performs relatively well on selected subsets, it will need improvements
and advanced heuristics to compete with the state-of-the-art on all of QF BV.

7 Conclusion

We presented a new decision procedure of the theory of bit-vectors, which
is based on an extension of the Model-Constructing Satisfiability Calculus
(mcSAT). In contrast to state-of-the-art solvers, our procedure avoids unnec-
essary bit-blasting. Although our implementation is prototypical and lacks most
of the more advanced heuristics used in solvers (e.g., variable selection/decision
heuristics, lemma learning, restarts, deletion strategies), our approach shows
promising performance, and is comparable with the best available solvers on a
number of benchmarks. This constitutes a proof of concept for instantiation of
the mcSAT framework for a new theory; we expect significantly improved per-
formance as we further optimise our implementation. Additionally, we improve

264 A. Zeljić et al.

the flexibility of the mcSAT framework by introducing projection functions and
partial assignments, which we believe to be crucial for the model-constructing
approach for bit-vectors.

References

1. Bardin, S., Herrmann, P., Perroud, F.: An alternative to SAT-based approaches for
bit-vectors. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 84–98. Springer, Heidelberg (2010)

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

3. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: memory safety for systems-level code.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 178–183.
Springer, Heidelberg (2011)

4. Berdine, J., Cox, A., Ishtiaq, S., Wintersteiger, C.M.: Diagnosing abstraction fail-
ure for separation logic–based analyses. In: Madhusudan, P., Seshia, S.A. (eds.)
CAV 2012. LNCS, vol. 7358, pp. 155–173. Springer, Heidelberg (2012)

5. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking
using SAT procedures instead of BDDs. In: DAC (1999)

6. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

7. Bjørner, N.S., Pichora, M.C.: Deciding fixed and non-fixed size bit-vectors. In:
Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 376–392. Springer, Heidelberg
(1998)

8. Böhme, S., Fox, A.C.J., Sewell, T., Weber, T.: Reconstruction of Z3’s bit-vector
proofs in HOL4 and Isabelle/HOL. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011.
LNCS, vol. 7086, pp. 183–198. Springer, Heidelberg (2011)

9. Bradley, A.R.: sat-based model checking without unrolling. In: Jhala, R., Schmidt,
D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011)

10. Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and
arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505,
pp. 174–177. Springer, Heidelberg (2009)

11. Bruttomesso, R., Sharygina, N.: A scalable decision procedure for fixed-width bit-
vectors. In: ICCAD. ACM (2009)

12. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

13. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 93–107. Springer, Heidelberg (2013)

14. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

15. Cyrluk, D., Möller, M.O., Rueß, H.: An efficient decision procedure for the theory
of fixed-sized bit-vectors. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp.
60–71. Springer, Heidelberg (1997)

Deciding Bit-Vector Formulas with mcSAT 265

16. Dunn, S.J., Martello, G., Yordanov, B., Emmott, S., Smith, A.: Defining an essen-
tial transcriptional factor program for naive pluripotency. Science 344(6188), 1156–
1160 (2014)

17. Dutertre, B.: System description: Yices 1.0.10. In: SMT-COMP 2007 (2007)
18. Froehlich, A., Kovasznai, G., Biere, A.: Efficiently solving bit-vector problems using

model checkers. In: SMT Workshop (2013)
19. Fröhlich, A., Kovásznai, G., Biere, A.: More on the complexity of quantifier-free

fixed-size bit-vector logics with binary encoding. In: Bulatov, A.A., Shur, A.M.
(eds.) CSR 2013. LNCS, vol. 7913, pp. 378–390. Springer, Heidelberg (2013)

20. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Heidel-
berg (2007)

21. Griggio, A.: Effective word-level interpolation for software verification. In:
FMCAD. FMCAD Inc. (2011)

22. Hadarean, L., Bansal, K., Jovanović, D., Barrett, C., Tinelli, C.: A tale of two
solvers: eager and lazy approaches to bit-vectors. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 680–695. Springer, Heidelberg (2014)

23. Jovanovic, D., de Moura, L.M.: Cutting to the chase - solving linear integer arith-
metic. J. Autom. Reasoning 51(1), 79–108 (2013)

24. Kovásznai, G., Fröhlich, A., Biere, A.: On the complexity of fixed-size bit-vector
logics with binary encoded bit-width. In: SMT. EPiC Series, vol. 20. EasyChair
(2013)

25. Kovásznai, G., Veith, H., Fröhlich, A., Biere, A.: On the complexity of symbolic
verification and decision problems in bit-vector logic. In: Csuhaj-Varjú, E., Diet-
zfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 481–492.
Springer, Heidelberg (2014)

26. Kroening, D.: Computing over-approximations with bounded model checking. In:
BMC Workshop, vol. 144, January 2006

27. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

28. Möller, M.O., Rueß, H.: Solving bit-vector equations. In: Gopalakrishnan, G.C.,
Windley, P. (eds.) FMCAD 1998. LNCS, vol. 1522, pp. 36–48. Springer, Heidelberg
(1998)

29. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

30. de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Gia-
cobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
1–12. Springer, Heidelberg (2013)

31. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

32. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 108–125. Springer, Heidelberg (2000)

33. Tseitin, G.: On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic, Part II, Seminars in Math-
ematics (1970), translated from Russian: Zapiski Nauchnykh Seminarov LOMI 8
(1968)

266 A. Zeljić et al.

34. Wille, R., Fey, G., Große, D., Eggersglüß, S., Drechsler, R.: SWORD: a SAT like
prover using word level information. In: International Conference on Very Large
Scale Integration of System-on-Chip (VLSI-SoC 2007). IEEE (2007)

35. Yordanov, B., Wintersteiger, C.M., Hamadi, Y., Kugler, H.: SMT-based analysis
of biological computation. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013.
LNCS, vol. 7871, pp. 78–92. Springer, Heidelberg (2013)

Solving Quantified Bit-Vector Formulas
Using Binary Decision Diagrams

Martin Jonáš(B) and Jan Strejček

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{martin.jonas,strejcek}@mail.muni.cz

Abstract. We describe a new approach to deciding satisfiability of
quantified bit-vector formulas using binary decision diagrams and
approximations. The approach is motivated by the observation that the
binary decision diagram for a quantified formula is typically significantly
smaller than the diagram for the subformula within the quantifier scope.
The suggested approach has been implemented and the experimental
results show that it decides more benchmarks from the SMT-LIB repos-
itory than state-of-the-art SMT solvers for this theory, namely Z3 and
CVC4.

1 Introduction

During the last decades, the area of Satisfiability Modulo Theories (SMT) [6]
solving has undergone steep development in both theory and practice. Achieved
advances of SMT solving opened new research directions in program analysis
and verification, where SMT solvers are now seen as standard tools.

Common programming languages provide basic datatypes of fixed size. Pro-
gram variables of these datatypes naturally correspond to variables of the bit-
vector logic, which can easily express bit-wise operations or arithmetic overflows.
In spite of this natural correspondence, most SMT-based program analysis tech-
niques model program variables by variables in the theory of integers. This may
look a bit strange considering the fact that the satisfiability problem for the
theory of integers is undecidable whenever an arbitrary usage of addition and
multiplication is allowed, while the same problem is decidable for the bit-vector
theory. The reasons for using the integer logic instead of the bit-vector logic are
twofold. First, the satisfiability problem is NEXPTIME-complete even for formu-
las of the quantifier-free fragment of the bit-vector logic (QF BV) with binary
encoding of bit-vector sizes [21]. In this paper, we consider formulas with quanti-
fiers and without uninterpreted functions. The precise complexity of the problem
for this logic is an open question: it is known to be NEXPTIME-hard [21] and triv-
ially solvable in EXPSPACE. Second and from the practical point of view more
important, the SMT solvers for the theory of integers are often more efficient
than the solvers for the theory of fixed-size bit-vectors.

The research was supported by Czech Science Foundation, grant GBP202/12/G061.

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 267–283, 2016.
DOI: 10.1007/978-3-319-40970-2 17

268 M. Jonáš and J. Strejček

1 10 103 105
1

10

102
103
104
105
106

Before quantification

A
ft

er
qu

an
ti

fic
at

io
n

existential quantifier
universal quantifier

Fig. 1. Comparison of sizes (measured
by the number of BDD nodes) of BDDs
corresponding to all quantified sub-
formulas in SMT-LIB benchmarks for
BV logic, before and after quantifica-
tion.

10 102 103 104 105
10

102

103

104

105

Before simplifications

A
ft

er
si

m
pl

ifi
ca

ti
on

s

SymDivine
SMT-LIB

Fig. 2. Effect of simplifications on the
number of bit variables in the for-
mulas of the SMT-LIB and SymDi-
vine benchmarks. Formulas simplified
to true or false are not represented.

While there are several SMT solvers for QF BV formulas, only few of them
can decide the quantified bit-vector (BV) logic. In particular, the logic is sup-
ported by CVC4 [3] and Z3 [16]. Relatively modest support of this logic from
developers of SMT solvers is definitely not a consequence of a low demand from
potential users. For example, in the program analysis community, BV formu-
las are suitable for description of various properties of program loops like loop
invariants, ranking functions, or loop summaries [22], or to describe properties
of symbolic representations of sets of program states, such as inclusion [7].

While current solvers for BV logic rely on model-based quantifier instan-
tiation [25], we present a new algorithm based on Binary Decision Diagrams
(BDDs) and approximations. BDDs have been previously used to implement sat-
isfiability decision procedures for the propositional logic, however state-of-the-art
CDCL-based solvers usually achieve much better performance. The main disad-
vantage of BDDs is low scalability: the size of a BDD corresponding to a propo-
sitional formula can be exponential in the number of propositional variables, and
when a BDD becomes too large, some operations are very slow. Employment of
BDDs in SMT solving makes more sense when formulas with quantifiers are con-
sidered: quantification usually reduces size of a BDD as it decreases the number
of BDD variables. This can be documented by Fig. 1, which compares the BDD
sizes for formulas before and after existential or universal quantification.

There already exist some BDD-based tools deciding validity of quantified
boolean formulas with the performance similar to state-of-the-art solvers for
this problem [2,23].

Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams 269

Our BDD-based algorithm for satisfiability of the BV logic consists of three
main components:

– Formula simplifications, which reduce the number of variables in the formula
and push quantifiers downwards in the syntax tree of the formula (which later
helps to keep intermediate BDDs smaller as they are build in the bottom-up
manner). Formula simplifications can reduce some formulas to true or false
and thus immediately decide their satisfiability.

– Construction of BDD using a specific variable ordering. The ordering has a
significant influence on the BDD size.

– Formula approximations, which reduce the width of bit-vector variables in
the formula and thus lead to smaller BDDs. Unsatisfiability of a formula over-
approximation implies unsatisfiability of the original formula and an analogous
statement holds for satisfiability of an under-approximation.

We present a minor contribution in each component. The main contribution of
the paper is the fact that the algorithm based on the three parts can compete
with leading SMT solvers for the BV logic, which participated in the BV cate-
gory of SMT-COMP 2015 [1], namely Z3 and CVC4.

In the next section, we recall the definition of BV logic and BDDs, and
briefly explain the main idea of the model-based quantifier instantiation tech-
nique employed by CVC4 and Z3. The proposed algorithm including the three
main components is presented in Sect. 3. Section 4 is devoted to the implementa-
tion of the algorithm and to experimental results showing separately the effect of
formula simplification, variable ordering, and approximations. The section also
provides an experimental comparison of our solver with Z3 and CVC4. The
paper closes with conclusions and intended directions of future work.

2 Preliminaries

2.1 Quantified Bit-Vector Formulas

In what follows, we assume a knowledge of the multi-sorted first-order logic and
the model theory [18,19]. Let N denote the set of positive integers.

The bit-vector logic is a multi-sorted first-order logic with the set of sort
symbols S = {bitveci | i ∈ N}, where bitveci represents the sort of bit-vectors
of length i, the set of function symbols

F = {ci[n] | n, i ∈ N} ∪
⋃

n∈N

{0[n], 1[n], . . . , (2n − 1)[n]} ∪

∪
⋃

n∈N

{not[n], and[n], or[n], shl[n], shr[n],−[n],+[n],×[n], /[n],%[n]} ∪

∪ {concat[m,n] | m,n ∈ N} ∪ {extract[n,i,j] | n, i, j ∈ N, i ≤ j < m},

and the set of the predicate symbols P = {=[n], <[n] | n ∈ N}. Arities of function
and predicate symbols are described in Table 1.

270 M. Jonáš and J. Strejček

Table 1. Function and predicate symbols of the bit-vector logic.

Symbol Arity Interpretation

0[n], 1[n], . . . bitvecn natural number constants

c1[n], c
2
[n], . . . bitvecn uninterpreted constants

not[n] bitvecn → bitvecn bit-wise negation

and[n], or[n] bitvecn × bitvecn → bitvecn bit-wise and, or

shl[n], shr[n] bitvecn × bitvecn → bitvecn bit-wise shift left, right

−[n] bitvecn → bitvecn two-complement negation

+[n],×[n] bitvecn × bitvecn → bitvecn addition, multiplication

/[n],%[n] bitvecn × bitvecn → bitvecn unsigned division, remainder

concat[m,n] bitvecm × bitvecn → bitvecm+n concatenation

extract[m,i,j] bitvecm → bitvecj−i+1 extraction from i-th to j-th bit

=[n], <[n] bitvecn × bitvecn equality, unsigned less than

The syntax of bit-vector formulas is defined in the standard way. Every for-
mula can be transformed into the negation normal form (NNF), where negation
is applied only to atomic subformulas and implication is not used at all.

A structure M is said to be a model for formula ϕ, if the formula ϕ is true in
M and if M interprets all function and predicate symbols according to Table 1.
Precise description of function and predicate symbols interpretation can be found
in [4]. A closed formula is said to be satisfiable if it has a model.

We omit subscripts representing the sorts from the function and predicate
symbols if the bit-width can be inferred from the context. If the sort of a
variable or a constant is not specified, it is assumed to be bitvec32. We also
write a, b, c, . . . instead of uninterpreted constants c1, c2, c3, For example,
∀x (x < a) denotes the formula ∀x[32] (x[32] <[32] c1[32]). We write ϕ[x1, . . . , xn]
for a formula ϕ, which may contain free variables x1, . . . , xn. If ϕ[x1, . . . , xn] is a
formula and t1, . . . , tn are terms of corresponding sorts, then ϕ[t1, . . . , tn] is the
result of simultaneous substitution of free variables x1, . . . , xn in the formula ϕ
by terms t1, . . . , tn, respectively.

2.2 Model-Based Quantifier Instantiation

Satisfiability of the quantifier-free fragment of the bit-vector logic is traditionally
solved by eager or lazy reduction to a propositional formula (bit-blasting) and
subsequent call of a SAT solver. In the following, we describe the model-based
quantifier instantiation algorithm [25], which is used by existing solvers for the
full bit-vector logic.

Given a closed formula with quantifiers, the first step is to convert the formula
to the negation normal form and apply Skolemization to obtain equisatisfiable
formula of the form

ϕ ∧ ∀x1, x2, . . . , xn (ψ[x1, . . . , xn]),

Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams 271

where ϕ and ψ are quantifier-free formulas. Then the QF BV solver is invoked
to check the satisfiability of the formula ϕ. If ϕ is unsatisfiable, then the entire
formula is unsatisfiable. If ϕ is satisfiable, the QF BV solver returns its model
M and another call to the QF BV solver is made to determine whether M is also
a model of ∀x1, x2, . . . , xn (ψ). This is achieved by asking the solver whether the
formula ¬ψ̂ is satisfiable, where ψ̂ is the formula ψ with uninterpreted constants
replaced by their corresponding values in M . If ¬ψ̂ is not satisfiable, then the
structure M is indeed a model of the formula ∀x1, x2, . . . , xn (ψ), therefore the
entire formula is satisfiable and M is its model. If ¬ψ̂ is satisfiable, we get values
v1, . . . , vn such that ¬ψ̂[v1, . . . , vn] holds. To rule out M as a model, the instance
ψ[v1, . . . , vn] of the quantified formula is added to the quantifier-free part, i.e. the
formula ϕ is modified to

ϕ′ ≡ ϕ ∧ ψ[v1, . . . , vn],

and the procedure is repeated.

Example 1. Consider the formula 3 < a ∧ ∀x (¬(a = 2 ×x)). The subformula
3 < a is satisfiable and a = 4 is its model. However, it is not a model of
the formula ∀x (¬(a = 2 × x)), since the QF BV solver called on the formula
¬(¬(4 = 2 × x)) returns x = 2 as a model. The next step is to decide the
satisfiability of the formula 3 < a ∧ ¬(a = 2 × 2). This formula is satisfiable
and a = 5 is its model. Moreover, it is also a model of ∀x (¬(a = 2 × x)) as
¬(¬(5 = 2 × x)) is unsatisfiable. Hence, the input formula is satisfiable and
a = 5 is its model.

This algorithm is trivially terminating, since there is only a finite number
of distinct models M of ϕ. However, in some cases exponentially many such
models have to be ruled out before the solver is able to find a correct model
or decide unsatisfiability of the whole formula. To overcome this issue, state-
of-the-art SMT solvers do not use just instances of the form ψ[v1, . . . , vn] with
concrete values, but employ heuristics such as E-matching [15,17] or symbolic
quantifier instantiation [25] to choose instances with ground terms which can
potentially rule out more spurious models and thus significantly reduce the num-
ber of iterations of the algorithm. In practice, suitable ground terms substituted
for quantified variables are selected only from subterms of the input formula.
This strategy brings some drawbacks. For example, the formula

a = 24× b + 24× c ∧ ∀x (¬(a = 24× x))

is unsatisfiable as the subformula ∀x (¬(a = 24× x)) is true precisely when the
value of a is not a multiple of 24, while a = 24× b + 24× c implies that a is a
multiple of 24. The quantifier instantiation can prove the unsatisfiability easily
by using the instance ψ[b+c] of ψ[x] ≡ ¬(a = 24×x). However, the current tools
do not consider this instance as b+c is not a subterm of the formula. As a result,
current tools can not decide satisfiability of this formula within a reasonable time
limits.

272 M. Jonáš and J. Strejček

2.3 Binary Decision Diagrams

A binary decision diagram (BDD) is a data structure proposed by Bryant [12]
to succinctly represent all satisfying assignments of a boolean formula.

A BDD is a rooted directed acyclic graph with inner nodes labeled by boolean
variables of the formula and two leaf nodes 0 and 1. Every inner node has two
outgoing edges, one labeled with true and the other with false. Every assignment
of boolean variables determines a path from the root to a leaf: from every inner
node we follow the edge labeled with the truth value assigned to the variable
corresponding to the node. The BDD represents all assignments that determine
paths to leaf 1. Fixing an order in which variables can occur on paths from the
root yields an Ordered Binary Decision Diagram (OBDD) and merging identical
subgraphs of an OBDD and deleting every node whose two children are iden-
tical yields a Reduced Ordered Binary Decision Diagram (ROBDD). The main
advantage of ROBDDs is that for the fixed variable order every set of assignments
corresponds to a unique ROBDD [12]. In the following, BDD always stands for
ROBDD.

A BDD for a boolean formula can be built from BDDs for atomic subformulas
in a bottom-up manner. Application of negation corresponds to switching the
leaf nodes 0 and 1. For binary operators, there is a function Apply that gets an
operator and two BDDs corresponding to the operands and produces the desired
BDD. Using this function, one can also build a BDD representing a quantified
boolean formula: if B is a BDD representing a formula ϕ, then the BDD for
∀x (ϕ) is obtained by Apply(∧, B[x ← true], B[x ← false]) and the BDD for
∃x (ϕ) by Apply(∨, B[x ← true], B[x ← false]).

A BDD can also represent a set of all models of a BV formula. It is suffi-
cient to decompose every bit-vector variable and every uninterpreted constant
of bit-width n into n boolean variables and perform operations on individual
bits. For example, all models of the formula ∀x (¬(a = 24× x)) are represented
by the BDD of Fig. 3a, where the 32 bits of the uninterpreted constant a are
denoted by boolean variables a0, a1, . . . , a31 in order from the least significant to
the most significant bit. Boolean variables arising from bit-vector variables and
uninterpreted constants are called bit variables henceforth. As usual, instead of
labelling edges as true and false, edges are drawn as solid and dashed, respec-
tively. Note that every unsatisfiable formula is represented by the BDD with the
single node 0. By the BDD size we mean the number of its nodes.

3 Our Approach

This section first describes three main parts of our algorithm, namely formula
simplifications, bit variable ordering for BDD construction, and approximations.
Subsequently, the main algorithm is presented.

Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams 273

Fig. 3. Examples of BDDs representing bit-vector formulas.

3.1 Formula Simplifications

As in most of modern SMT solvers, the first step of deciding satisfiability is
simplification of the input formula. Besides trivial simplifications (e.g. ϕ ∧ ϕ
reduces to ϕ), we apply the following simplification rules.

Miniscoping. Miniscoping [19] is a technique reducing the scope of universal
quantifier over disjunctions whenever one disjunct has no free occurrences of the
quantified variable, and over conjunctions by distributivity (existential quanti-
fiers are handled analogously). The simplification rules are as follows:

∀x (ϕ[x] ∨ ψ) � ∀x (ϕ[x]) ∨ ψ ∀x (ϕ[x] ∧ ψ[x]) � ∀x (ϕ[x]) ∧ ∀x (ψ[x])
∃x (ϕ[x] ∧ ψ) � ∃x (ϕ[x]) ∧ ψ ∃x (ϕ[x] ∨ ψ[x]) � ∃x (ϕ[x]) ∨ ∃x (ψ[x])

Destructive Equality Resolution. Destructive equality resolution (DER) [25]
eliminates a universally quantified variable x in a formula ∀xQy (¬(x = t) ∨
ϕ[x]), where t is a term that does not contain the variable x, and Qy is a sequence
of variable quantifications. The formula is equivalent to ∀xQy (x = t → ϕ[x])
and hence also to Qy (ϕ[t]). The simplification rule is formulated as follows:

∀xQy (¬(x = t) ∨ ϕ[x]) � Qy (ϕ[t])

Constructive Equality Resolution. Constructive equality resolution (CER) is a
dual version of DER. As far as we know, it was not considered before as solvers
for quantified formulas typically work with formulas after Skolemization and
thus without any existential quantifiers. CER can be formulated as the following
simplification rule, where t and Qy have the same meaning as above:

∃xQy (x = t ∧ ϕ[x]) � Qy (ϕ[t])

274 M. Jonáš and J. Strejček

Theory-Related Simplifications. We also perform several simplifications related
to the interpretation of the function and predicate symbols in the BV logic.
Examples of such simplifications are reductions a[n] + (−a[n]) � 0[n], a[n] ×
0[n] � 0[n], a[n] and 0[n] � 0[n], or extract[n,i,j](0[n]) � 0[j−i+1].

Note that all mentioned simplification rules have no effect on models of the
formula and thus they have no direct effect on the resulting BDD. However, a
simplified formula has simpler subformulas and thus the intermediate BDDs are
often smaller and the computation of the resulting BDD is faster.

3.2 Bit Variable Ordering

When constructing a BDD, one has to specify an order of BDD variables. In
our case, BDD variables precisely correspond to bit variables. The order of these
variables has a significant effect on the BDD size and its construction time. In
some cases, the size of a BDD for a formula is linear in the number of BDD
variables with one variable ordering, but exponential with another ordering.

For example, consider the formula φ1 ≡ a[n] = b[n] for arbitrary n ∈ N and
let a0, a1, . . . , an−1 be the bits of a and b0, b1, . . . , bn−1 be the bits of b. We define
two orderings:

≤1 All bit variables are ordered according to their significance (from the least to
the most significant) and variables with the same significance are ordered by
the order of the first occurrences of the corresponding bit-vector variables in
the formula. For the considered formula φ1, we get:

a0 ≤1 b0 ≤1 a1 ≤1 b1 ≤1 . . . ≤1 an−1 ≤1 bn−1

≤2 Bit variables are ordered by the order of the first occurrences of the corre-
sponding bit-vector variables in the formula and bit variables corresponding
to the same bit-vector variable are ordered according to their significance
(from the least to the most significant). For the considered formula, we get:

a0 ≤2 a1 ≤2 . . . ≤2 an−1 ≤2 b0 ≤2 b1 ≤2 . . . ≤2 bn−1

The BDD for φ1 using the ordering ≤1 has 3n + 2 nodes, while the BDD for the
same formula and ≤2 has 3 · 2n − 1 nodes. Figure 3b and c show these BDDs for
n = 2 and orderings ≤1 and ≤2, respectively.

These orderings can lead to opposite results with other formulas. For exam-
ple, the size of the BDD for the formula

φ2 ≡ (c1[2] = c2[2] shr 1[2]) ∧ (c3[2] = c4[2] shr 1[2]) ∧ . . . ∧ (c2n−1
[2] = c2n[2] shr 1[2])

using the ordering ≤1 is 2n+2 − 1, while it is only 4n + 2 for ≤2. In general,
choosing the optimal variable ordering is an NP-complete problem [10]. In the
following, we introduce an ordering ≤3 combining advantages of ≤1 and ≤2.

Let V be the set of bit-vector variables and uninterpreted constants appearing
in an input formula ϕ. Elements x, y ∈ V are dependent, written x ∼ y, if they

Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams 275

both appear in some atomic subformula of ϕ. Let be the equivalence on V
defined as the transitive closure of ∼. Every v ∈ V then defines an equivalence
class [v]� of transitively dependent elements.

≤3 Bit variables are first ordered according to ≤1 within corresponding equiv-
alence classes of and the equivalence classes are then ordered by the first
occurrences of BV variables in ϕ. In particular for u � v, ui ≤3 vj if there is
a BV variable in [u]�, which occurs in ϕ before all BV variables of [v]�.

Note that for both formulas φ1, φ2 mentioned above, ≤3 coincides with the
better of the orderings ≤1 and ≤2.

In addition to the initial variable ordering, there are several techniques that
dynamically reorder the BDD variables to reduce the BDD size. We use sift-
ing [24] as usually the most successful one [20].

3.3 Approximations

For some BV formulas, e.g. formulas containing non-linear multiplication, the
size of the BDD representation is exponential for every possible variable order-
ing [13]. Fortunately, satisfiability of these formulas can be often decided using
their over-approximations or under-approximations. Given a formula ϕ, its
under-approximation is any formula ϕ that logically entails ϕ, and its over-
approximation is any formula ϕ logically entailed by ϕ. Clearly, every model of
ϕ is also a model of ϕ and if an under-approximation ϕ is satisfiable, so is the
formula ϕ. Similarly, if an over-approximation ϕ is unsatisfiable, so is ϕ.

The model-based quantifier instantiation presented in Sect. 2.2 can be seen
as a technique based on iterative over-approximation refinement: the formulas
ϕ, ϕ∧ψ[v̄], . . . are over-approximations of ϕ ∧ ∀x̄ (ψ[x̄]). A different concepts of
approximations can be found in SMT solvers for QF BV formulas. For example,
the SMT solver uclid over-approximates a formula in the negation normal form
by replacing some subformulas with fresh uninterpreted constants [14]. Further,
SMT solvers uclid and Boolector under-approximate a formula by restricting
the value of m most significant bits of a bit-vector variable while leaving the
remaining bits unchanged [11,14]. The number of bit variables used to represent
the bit-vector variable or uninterpreted constant is called its effective bit-width.
This approach inspired both over- and under-approximation used in our algo-
rithm.

Let a[n] be a variable or an uninterpreted constant of bit-width n and e ∈ N

be its desired effective bit-width. If e ≥ n, we leave a[n] unchanged. Otherwise,
we consider four different ways to reduce the effective bit-width of a[n] to e:

zero-extension uses the effective bit-width to represent the e least significant
bits and sets the n − e most significant bits to 0.

sign-extension also uses the effective bit-width to represent the e least signifi-
cant bits and sets the n− e most significant bits to the value of the e-th least
significant bit.

276 M. Jonáš and J. Strejček

Fig. 4. Reductions of a[6] = a5a4a3a2a1a0 to 3 effective bits.

right zero-extension uses the effective bit-width to represent the e most sig-
nificant bits and sets the n − e least significant bits to 0.

right sign-extension also uses the effective bit-width to represent the e most
significant bits and sets the n− e least significant bits to the value of the e-th
most significant bit.

All considered extensions are illustrated in Fig. 4. The first two extensions are
taken directly from [14], while the other two are original. One can easily see
that each extension reduces the domain of a[n] to a different subdomain of size
2e. Another extensions are suggested in [11], e.g. one-extension defined analo-
gously to the zero-extension. Our choice of considered extensions is motivated
by exploration of values near corner cases as well as by reduction of BDD size. In
particular, we do not consider one-extension because it produces only few zero
bits which are desired as they tend to reduce the size of BDDs for multiplication.

In the following, the term extension always refers either to zero-extension, or
to sign-extension. In an over-approximation, we apply a selected reduction to all
universally quantified variables. Given a formula ϕ and e ∈ N, let ϕe denote the
formula ϕ where the effective bit-width of each universally quantified variable is
reduced to e by the chosen extension. Further, ϕ−e denotes the formula obtained
by application of the right counterpart of the chosen extension.

In an under-approximation, we apply the selected reduction to all existen-
tially quantified variables and uninterpreted constants. Given a formula ϕ and
e ∈ N, let ϕ

e
and ϕ−e

denote the formula ϕ where the effective bit-width of
each existentially quantified variable and uninterpreted constant is reduced to e
by the chosen extension or its right counterpart, respectively.

The following theorem establishes that, for each formula ϕ in the nega-
tion normal form, ϕe, ϕ−e are over-approximations (and analogously for under-
approximations). The theorem can be easily proven by an induction on the
structure of the formula ϕ.

Theorem 1. For every formula ϕ in the NNF and any e ∈ N, it holds:

1. If M is a model of ϕ, then M is also a model of ϕe and ϕ−e.
2. If M is a model of ϕ

e
or ϕ−e

, then M is also a model of ϕ.

Corollary 1. For every formula ϕ in the NNF and any e ∈ N, it holds:

1. If the formula ϕe or ϕ−e is unsatisfiable, so is the formula ϕ.
2. If the formula ϕ

e
or ϕ−e

is satisfiable, so is the formula ϕ.

Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams 277

3.4 The Algorithm

In this section, we present the complete algorithm deciding satisfiability of
BV formulas. In the algorithm, we use a procedure ConvertToBDD which con-
verts a formula to the corresponding BDD recursively on the formula structure.
For a given input formula ϕ, the algorithm proceeds in the following steps:

1. Simplify the formula ϕ using the rules discussed in Sect. 3.1 up to the fix-
point and convert it to the negation normal form. If the result is true, return
SAT. If the result is false, return UNSAT.

2. Take the simplified formula in NNF ϕ′ and compute a chosen ordering ≤ as
described in Sect. 3.2. This ordering will be used as the initial ordering in the
procedure ConvertToBDD.

3. Call ConvertToBDD(ϕ′) to compute the BDD corresponding to ϕ′. If the root
node of the BDD has label 0, return UNSAT. Otherwise return SAT.

4. If the procedure ConvertToBDD called in the previous step has not finished
within 0.1 s, additionally run in parallel:
(a) Under-approximations: Sequentially compute ConvertToBDD(ϕ′

i
) for i =

1,−1, 2,−2, 4,−4, 6,−6, . . . until reaching the greatest bit-width of a bit-
vector variable in ϕ′. If any of the resulting BDDs has a root node distinct
from the leaf 0, return SAT.

(b) Over-approximations: Sequentially compute ConvertToBDD(ϕ′
i) for i =

1,−1, 2,−2, 4,−4, 6,−6, . . . until reaching the greatest bit-width of a bit-
vector variable in ϕ′. If any of the produced BDDs has a root node labeled
by 0, return UNSAT.

The algorithm is parametrized by the choice of an ordering and reductions
for approximations. Regardless these parameters, the algorithm is sound and
complete. The decision to start the solvers using approximations after 0.1 s is
based on our experiments. In practice, the procedure ConvertToBDD may need
exponential time and memory and thus the algorithm may not finish within
reasonable limits.

4 Implementation and Experimental Results

We have implemented the presented algorithm in an experimental SMT solver
called Q3B. The implementation is written in C++, relies on the BDD package
BuDDy1, and uses the API of Z3 to parse the input formula in the SMT-
LIB 2.5 format [4] and to perform some formula simplifications. As the BuDDy
package does not support allocation of multiple BDD instances, we run separate
processes for the base solver and for computing over- and under-approximations.
The execution of these three processes is controlled by a Python wrapper.

We have evaluated our solver on two sets of BV formulas. The first set
consists of all 191 formulas in the category BV of the SMT-LIB benchmark
repository [5]. The second set contains 5 461 formulas generated by the model
1 http://sourceforge.net/projects/buddy.

http://sourceforge.net/projects/buddy

278 M. Jonáš and J. Strejček

checker SymDivine [7] when run on verification tasks from SV-COMP [8]. These
formulas correspond to checking equivalence of two symbolic states of the verified
program. In total, SymDivine generated 1 462 500 formulas. For tasks with more
than 25 generated formulas, we randomly picked 25 formulas to keep the number
of formulas reasonable.

All experiments were performed on a Debian machine with two six-core Intel
Xeon E5-2620 2.00 GHz processors and 128 GB of RAM. Each benchmark run
was limited to use 3 processor cores, 4 GB of RAM and 20 min of CPU time (if not
stated otherwise). All measured times are CPU times. For reliable benchmarking
we employed BenchExec [9], a tool that allocates specified resources for a
program execution and measures their use precisely.

All used benchmarks and detailed experimental results are available at
http://www.fi.muni.cz/∼xstrejc/sat2016.tar.gz. Q3B is available under the MIT
License and hosted at GitHub: https://github.com/martinjonas/Q3B.

In the following, we demonstrate the effect of formula simplifications on the
formulas and the effect of various algorithm parameters on its efficiency. At the
end, we compare our solver with the best parameters against CVC4 and Z3.

Formula Simplifications. Considered formula simplifications reduced 108 of 191
SMT-LIB benchmarks and 300 of 5 461 SymDivine benchmarks to true or false.
Additionally, 1 276 SymDivine benchmarks were reduced to a quantifier-free
formulas, which is not the case for any SMT-LIB benchmark. Figure 2 shows
the number of bit variables (i.e. the sum of bit-widths of all bit-vector variables
and uninterpreted constants in the formula) of each formula before and after
simplification.

Variable Ordering. To compare the effect of BDD variable orderings ≤1, ≤2,
and ≤3 defined in Sect. 3.2, we run our tool with each of these initial orderings
on all considered benchmarks. Recall that sifting method is used for dynamic
variable reordering. The solver has been executed without approximations (to
ensure that approximations will not hide the effect of the initial ordering) and
with CPU time limited to 3 min. The results are shown in Fig. 5.

When SMT-LIB are considered, the worst performing initial ordering is ≤2.
The results for ≤1 and ≤3 are almost identical as nearly all bit-vector variables in
these benchmarks are mutually transitively dependent. For SymDivine bench-
marks, initial ordering ≤1 performs the worst. The results for ≤2 and ≤3 are
very similar, as SymDivine formulas usually contain a large number of mutually
independent groups of variables. The solver using ≤3 decided 3 more formulas
than the solver using ≤2. To sum up, since now we always use the ordering ≤3

as it provides better overall performance than ≤1 and ≤2.
Note that the solver runs usually faster when executed without sifting, as the

dynamic reordering causes some computational overhead. However, with sifting
it decides 2 more SMT-LIB benchmarks and 9 more SymDivine benchmarks.

Approximations. To compare the effect of the considered effective bit-width
reductions, we run the solver once with approximations based on (right) zero-

http://www.fi.muni.cz/~xstrejc/sat2016.tar.gz
https://github.com/martinjonas/Q3B

Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams 279

0 20 40 60 80 120
0.01

0.1

1

10

100

Solved SMT-LIB benchmarks

C
P

U
ti

m
e

(s
)

≤1 + sifting
≤2 + sifting
≤3 + sifting

0 2000 4000 6000
Solved SymDivine benchmarks

≤1 + sifting
≤2 + sifting
≤3 + sifting

Fig. 5. Quantile plot of the number of solved benchmarks for each of three described
initial variable orderings. (Color figure online)

extension, and again with approximations based on (right) sign-extension. Quan-
tile plots in Fig. 6 show results for zero-extension and sign-extension on SMT-LIB
benchmarks. The results are presented separately for satisfiable and unsatisfiable
formulas. On satisfiable formulas, approximation using zero-extension performs
better and can decide 3 more satisfiable formulas. On the contrary, on unsatis-
fiable formulas sign-extension performs better and can decide 5 formulas more.
Corresponding plots for SymDivine formulas are not presented, since the dif-
ference in CPU times was insignificant. Based on this observation and the fact
that satisfiability can be decided by an under-approximation and unsatisfiabil-
ity by an over-approximation, the default bit-width reduction method in our
solver is zero-extension for under-approximations and sign-extension for over-
approximations.

Further, to show the contribution of approximations, we compare the solver
using the proposed algorithm as described in the Sect. 3.4 against the same
algorithm without approximations. Figure 7 shows quantile plots corresponding
to measured CPU times. With approximations, the solver was able to decide
54 more SMT-LIB formulas. The difference is less significant when SymDivine
formulas are considered, as they mostly do not contain difficult arithmetic; only
15 more of SymDivine formulas were decided using approximations.

Comparison. Finally, we compare our solver (with the parameters selected by the
previous experiments) to the current stable versions of leading SMT solvers for
BV logic, namely to the version 4.4.1 of Z3 [16] and the version 1.4 of CVC4 [3].
We also tested the latest development version of CVC4 (2016-02-25), but it
decided some SymDivine benchmarks incorrectly. The solver Z3 was executed
with the default settings, CVC4 was executed with settings supplied for the
SMT-competition, where the benchmarks from the SMT-LIB benchmark repos-
itory are used.

Table 2 shows summary results of the solvers CVC4, Z3, and Q3B on the
two benchmark sets. Additionally, Table 3 shows for each pair of solvers the
number of formulas which were decided by one solver, but not by the other

280 M. Jonáš and J. Strejček

0 20 40 60 80 100
0.01

0.1

1

10

100

Solved SAT benchmarks

C
P

U
ti

m
e

(s
)

zero-ext.
sign-ext.

0 20 40 60 80 100
Solved UNSAT benchmarks

zero-ext.
sign-ext.

Fig. 6. Quantile plot of the number of solved SMT-LIB benchmarks using approxima-
tion via sign-extension and zero-extension compared by the CPU time. (Color figure
online)

0 40 80 120 160 200
0.01

0.1

1

10

100

Solved SMT-LIB benchmarks

C
P

U
ti

m
e

(s
)

approx.
no approx.

0 2000 4000 6000
Solved SymDivine benchmarks

approx.
no approx.

Fig. 7. Quantile plot of the number of solved benchmarks with and without approxi-
mations compared by the CPU time. (Color figure online)

one. Out of the 191 SMT-LIB benchmarks, CVC4 solves 84 benchmarks, Z3
decides 164 benchmarks, and our solver can decide 188 benchmarks. Out of
the 5 461 SymDivine benchmarks, CVC4 decides 4 969 benchmarks, Z3 solves
5 297 benchmarks, and our solver Q3B decides 5 339 benchmarks. To sum up,
in the number of decided benchmarks Q3B outperforms both CVC4 and Z3.
Moreover, only 1 of all considered formulas was solved by Z3 and not by Q3B,
and no formula was solved by CVC4 and not by Q3B.

Further, quantile plots of Fig. 8 show numbers of input formulas each of the
solvers was able to decide within different CPU time limits. Note that the y
axis has the logarithmic scale. On the easy instances, our experimental solver
can not compete with highly optimized solvers as CVC4 and Z3. The initial
delay of Q3B is caused by an overhead of a process creation within the Python
wrapper. However, as the instances become harder, the difference in solving
times decreases. In particular, Q3B solves more SMT-LIB benchmarks than
CVC4 whenever the CPU time limit is longer than 0.05 s and more than Z3 for
any CPU time limit over 0.39 s. For SymDivine benchmarks, these thresholds

Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams 281

0 40 80 120 160 200
0.001
0.01
0.1

1
10

100

Solved SMT-LIB benchmarks

C
P

U
ti

m
e

(s
)

CVC4
Z3
Q3B

0 2000 4000 6000
Solved SymDivine benchmarks

CVC4
Z3
Q3B

Fig. 8. Quantile plot of the number of benchmarks which CVC4, Q3B, and Z3 solved
compared by the CPU time. (Color figure online)

Table 2. For each benchmark set and each solver, the table provides the numbers of
formulas decided as satisfiable (sat), unsatisfiable (unsat), or undecided with the result
unknown or because of an error (unknown), or a timeout.

SMT-LIB SymDivine

sat unsat unknown timeout sat unsat unknown timeout

CVC4 29 55 32 75 1 124 3 845 2 490

Z3 71 93 5 22 1 135 4 162 22 142

Q3B 94 94 0 3 1 137 4 202 0 122

Table 3. For each pair of solvers, the table shows the number of benchmarks, which
were solved by the solver in the corresponding row, but not by the solver in the corre-
sponding column.

SMT-LIB SymDivine

CVC4 Z3 Q3B CVC4 Z3 Q3B

CVC4 – 0 0 – 21 0

Z3 80 – 1 349 – 0

Q3B 104 25 – 370 42 –

are 0.08 s for CVC4 and 8.72 s for Z3. Note that Q3B uses 3 parallel processes
and hence its wall times are usually three times shorter than presented CPU
times, while wall times are the same as CPU times for Z3 and CVC4.

5 Conclusions

We presented a new SMT solving algorithm for quantified bit-vector formulas.
While current SMT solvers for this logic typically rely on model-based quanti-
fier instantiation and an SMT solver for quantifier-free bit-vector formulas, our

282 M. Jonáš and J. Strejček

algorithm is based on BDDs (with a specific initial variable ordering) and approx-
imations. We have implemented the algorithm and experimental results indicate
that our approach can compete with state-of-the-art SMT solvers CVC4 and
Z3. In fact, it decides more formulas than the mentioned solvers.

We plan to further develop the algorithm and the tool. In particular, we plan
to add a support for arrays and uninterpreted functions as these are useful for
modelling some features of computer programs. We would also like to investigate
possible approximations of bit-vector operations and predicates, or to develop
some fine-grained methods for a targeted approximation refinement.

References

1. The 10th International Satisfiability Modulo Theories Competition (SMT-
COMP2015) (2015). http://smtcomp.sourceforge.net/2015/

2. Audemard, G., Sais, L.: SAT based BDD solver for quantified Boolean formulas. In:
16th IEEE International Conference on Tools with Artificial Intelligence, ICTAI
2004, pp. 82–89 (2004)

3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

4. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.5. Techni-
cal report, Department of Computer Science, The University of Iowa (2015). www.
SMT-LIB.org

5. Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2010). www.SMT-LIB.org

6. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Handbook of Satisfiability, pp. 825–885 (2009)

7. Bauch, P., Havel, V., Barnat, J.: LTL model checking of LLVM bitcode with sym-
bolic data. In: Hliněný, P., Dvořák, Z., Jaroš, J., Kofroň, J., Kořenek, J., Matula,
P., Pala, K. (eds.) MEMICS 2014. LNCS, vol. 8934, pp. 47–59. Springer, Heidelberg
(2014)

8. Beyer, D.: Software verification and verifiable witnesses. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 401–416. Springer, Heidelberg (2015)

9. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement. In:
Proceedings Model Checking Software - 22nd International Symposium, SPIN
2015, pp. 160–178 (2015)

10. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs Is NP-complete.
IEEE Trans. Comput. 45(9), 993–1002 (1996)

11. Brummayer, R., Biere, A.: Effective bit-width and under-approximation. In:
Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2009.
LNCS, vol. 5717, pp. 304–311. Springer, Heidelberg (2009)

12. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

13. Bryant, R.E.: On the complexity of VLSI implementations and graph representa-
tions of Boolean functions with application to integer multiplication. IEEE Trans.
Comput. 40(2), 205–213 (1991)

14. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.A.:
Deciding bit-vector arithmetic with abstraction. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 358–372. Springer, Heidelberg (2007)

http://smtcomp.sourceforge.net/2015/
www.SMT-LIB.org
www.SMT-LIB.org
www.SMT-LIB.org

Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams 283

15. de Moura, L., Bjørner, N.S.: Efficient E-matching for SMT solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007)

16. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

17. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005)

18. Enderton, H.B.: A Mathematical Introduction to Logic. Harcourt/Academic Press,
Burlington (2001)

19. Harrison, J.: Handbook of Practical Logic and Automated Reasoning, 1st edn.
Cambridge University Press, New York (2009)

20. Knuth, D.E.: The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise
Tricks & Techniques; Binary Decision Diagrams, 12th edn. Addison-Wesley Pro-
fessional, Boston (2009)

21. Kovásznai, G., Fröhlich, A., Biere, A.: Complexity of fixed-size bit-vector logics.
Theor. Comput. Syst. 7913, 1–54 (2015)

22. Kroening, D., Lewis, M., Weissenbacher, G.: Under-approximating loops in C pro-
grams for fast counterexample detection. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 381–396. Springer, Heidelberg (2013)

23. Olivo, O., Emerson, E.A.: A more efficient BDD-based QBF solver. In: Lee, J. (ed.)
CP 2011. LNCS, vol. 6876, pp. 675–690. Springer, Heidelberg (2011)

24. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In:
Proceedings of the 1993 IEEE/ACM International Conference on Computer-Aided
Design, pp. 42–47 (1993)

25. Wintersteiger, C.M., Hamadi, Y., de Moura, L.: Efficiently solving quantified bit-
vector formulas. Formal Methods Syst. Des. 42(1), 3–23 (2013)

Speeding up the Constraint-Based Method
in Difference Logic

Lorenzo Candeago1, Daniel Larraz2, Albert Oliveras2,
Enric Rodŕıguez-Carbonell2(B), and Albert Rubio2

1 SpazioDati, Trento, Italy
2 Universitat Politècnica de Catalunya, Barcelona, Spain

erodri@cs.upc.edu

Abstract. Over the years the constraint-based method has been suc-
cessfully applied to a wide range of problems in program analysis, from
invariant generation to termination and non-termination proving. Quite
often the semantics of the program under study as well as the properties
to be generated belong to difference logic, i.e., the fragment of linear
arithmetic where atoms are inequalities of the form u − v ≤ k. However,
so far constraint-based techniques have not exploited this fact: in gen-
eral, Farkas’ Lemma is used to produce the constraints over template
unknowns, which leads to non-linear SMT problems. Based on classical
results of graph theory, in this paper we propose new encodings for gen-
erating these constraints when program semantics and templates belong
to difference logic. Thanks to this approach, instead of a heavyweight
non-linear arithmetic solver, a much cheaper SMT solver for difference
logic or linear integer arithmetic can be employed for solving the result-
ing constraints. We present encouraging experimental results that show
the high impact of the proposed techniques on the performance of the
VeryMax verification system.

1 Introduction

Since Colón’s et al. seminal paper [1], the so-called constraint-based method has
been applied with success to a wide range of problems in system verification,
from invariant generation in Petri nets [2], hybrid systems [3] and programs
with arrays [4,5], to termination [6,7] and non-termination proving [8]. In most
of these applications, one is interested in generating linear properties, e.g., linear
invariants or linear ranking functions. In these cases, Farkas’ Lemma is employed
for producing the constraints over the template unknowns. As a result, a non-
linear SMT formula is obtained, for which a model has to be found. Despite the
great advances in non-linear SMT [9–11], the applicability of the approach is
still strongly conditioned by current solving technology.

A way to circumvent the bottleneck of using non-linear constraint solvers is
to exploit the fragment of logics in which the program under study is described.

Partially supported by Spanish MINECO under grant TIN2015-69175-C4-3-R.

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 284–301, 2016.
DOI: 10.1007/978-3-319-40970-2 18

Speeding up the Constraint-Based Method in Difference Logic 285

Although this has not been explored so far in the constraint-based method, other
more mature approaches for program analysis such as abstract interpretation [12]
have profited from this sort of refinements since the early days of their inception.
Indeed, there is a wide variety of non-relational and weakly-relational numerical
abstract domains which cover different subsets of linear arithmetic, but whose
complexity is lower than that of the full language [13]: intervals [14], zones [15]
and octagons [16], to name a few. Also in the model checking community, it
is common to focus on particular subclasses of linear inequalities as a means to
improve efficiency. In particular, potential constraints have been employed in the
verification of several kinds of timed and concurrent systems [17–19].

In this paper we restrict our attention to difference logic over the integers,
in which atoms are inequalities of the form u − v ≤ k, where u and v are
integer variables, and k ∈ Z. This fragment of linear arithmetic corresponds to
the aforementioned zone abstract domain in abstract interpretation, and to the
potential constraints in model checking. Our contributions in this work are:

– we propose an encoding for satisfiability and unsatisfiability of sets of inequal-
ities in difference logic including templates, which results in formulas of differ-
ence logic. This is noteworthy since current approaches to equivalent problems
in general full linear arithmetic lead to non-linear formulas.

– for the problem of, given a set of inequalities with free independent terms,
choosing an invariant subset that proves an assertion, we present two encod-
ings, one for full linear arithmetic and another specialized one for difference
logic. While the former leads to non-linear formulas, again the latter falls into
a more tractable fragment, in this case linear arithmetic.

– we present an experimental evaluation with the constraint-based verification
system VeryMax [20]. We consider the problem of proving the absence of out-
of-bounds array accesses in a benchmark suite of numerical programs, and our
results show that the expressiveness of difference logic is sufficient to succeed in
the majority of the cases, while a remarkable boost in performance is obtained
thanks to the proposed techniques.

Two closely related works are [21,22], in which invariants of slightly more
general classes than difference logic are generated following the constraint-based
method, but with different strategies for producing the constraints over tem-
plate unknowns. In [21], the authors discover octagonal invariants, i.e., of the
form ±x1 ± x2 ≤ k, as well as max-plus invariants max1≤i≤n(a0, xi + ai) ≤
max1≤i≤n(b0, xi + bi). While our approach cannot currently produce max-plus
invariants, the standard technique of adding for each variable x a copy standing
for −x [16,23] allows generating octagonal invariants too. However, the quan-
tifier elimination method in [21] is incomplete and, as a result, invariants may
be missed. Moreover, program assignments must be of the form x := ±x + K
or x := K, where K is a constant, and so unlike with our techniques the com-
mon case of assignments like x := y, where x, y are different variables, is not
allowed. As regards [22], in that paper template domains are considered, where
templates are linear inequalities with free independent term but fixed dependent

286 L. Candeago et al.

term. There the quantifier elimination procedure [24] is precise, but is not spe-
cialized for difference logic. Unfortunately, the available implementation cannot
produce difference logic invariants and so cannot be used for an experimental
comparison.

2 Background

Programs, Invariants and Safety. Let us fix a set of (integer) program vari-
ables X = {x1, . . . , xn}, and denote by F(X) the formulas consisting of conjunc-
tions of linear inequalities1 over the variables X . Let L be the set of program
locations, which contains a set L0 of initial locations. Program transitions T
are tuples (�S , τ, �T), where �S and �T ∈ L represent the source and target loca-
tions respectively, and τ ∈ F(X ∪ X ′) describes the transition relation. Here
X ′ = {x′

1, . . . , x
′
n} represent the values of the variables after the transition.2 A

transition is initial if its source location is initial. The set of initial transitions is
denoted by T0. A program is a pair P = (L, T), which can be viewed as a directed
graph where the locations L are the nodes, and each transition (�S , τ, �T) from
T leads to an edge in the graph from �S to �T labelled by τ .

A state s = (�,x) consists of a location � ∈ L and a valuation x : X → Z.
A state is initial if its location is initial. We denote a computation step with
transition t = (�S , τ, �T) by (�S ,x) →t (�T ,x′) when the valuations x, x′ satisfy
the transition relation τ of t. We use →P if we do not care about the executed
transition, and →∗

P to denote the transitive-reflexive closure of →P . We say that
a state s is reachable if there exists an initial state s0 such that s0 →∗

P s.
An assertion (�, ϕ) is a pair of a location � ∈ L and a formula ϕ with free

variables X . A program is safe with respect to the assertion (�, ϕ) if for every
reachable state (�,x), we have that x |= ϕ holds.

A map I : L → F(X) is an invariant if for every � ∈ L, the program is
safe with respect to (�, I(�)). An important class of invariants are inductive
invariants. A map I is an inductive invariant if the following two conditions
hold:

Initiation: For (�S , τ, �T) ∈ T0: τ |= I(�T)′

Consecution: For (�S , τ, �T) ∈ T − T0: I(�S) ∧ τ |= I(�T)′

If only the condition Consecution is fulfilled, the map I is called a conditional
inductive invariant.

One of the key problems in program analysis is to determine whether a
program is safe with respect to a given assertion (�, ϕ). This is typically proved
by computing an (inductive) invariant I such that the following condition holds:

Safety: I(�) |= ϕ
In this case we say that the invariant I proves the assertion (�, ϕ).

Finally, we say a transition t = (�S , τ, �T) is disabled if it can never be
executed, i.e., if for any reachable state (�S ,x), there does not exist any x′ such
that (x,x′) satisfies τ . One can prove this by computing an invariant I such

1 Note that equalities can be considered as conjunctions of inequalities.
2 For ϕ ∈ F(X), the formula ϕ′ ∈F(X ′) is the version of ϕ using primed variables.

Speeding up the Constraint-Based Method in Difference Logic 287

that I(�S) |= ¬τ . Disabled transitions allow one to simplify the program under
analysis, since they can be soundly removed from the program. In general, if I is
an invariant map, then any transition t = (�S , τ, �T) can be soundly strengthened
by replacing the transition relation τ by I(�S) ∧ τ .
Constraint-Based Invariant Generation. Invariants can be generated using
the constraint-based (also called template-based) method [1]. The idea is to con-
sider templates for candidate invariant properties. These templates involve both
the program variables as well as fresh template variables whose values have to be
determined to ensure invariance. To this end, conditions Initiation and Conse-
cution are enforced by means of constraints. Any solution to these constraints
yields an invariant. If templates represent linear inequalities, Farkas’ Lemma [25]
is used to express the constraints in terms of the template variables:

Theorem 1 (Farkas’ Lemma). Let S be a system of linear inequalities Ax ≤
b (A ∈ R

m×n, b ∈ R
m) over real variables x. Then S has no solution iff there

is λ ∈ R
m (called the multipliers) such that λ ≥ 0, λT A = 0 and λT b ≤ −1.

In general, an SMT formula over non-linear arithmetic is obtained. By assign-
ing weights to the different conditions, invariant generation can be cast as an
optimization problem in the Max-SMT framework [7,8,20].

Example 1 Consider the program in Fig. 1, with the state variables n, x0, i:

τ0 : n − x0 ≥ 1, x0 = x0, n = n, i = x0

τ1 : i ≤ n − 2, x0 = x0, n = n, i = i

τ2 : x0 = x0, n = n, i = i + 1

τ3 : i ≥ n − 1, x0 = x0, n = n, i = i
0 1

2

3
τ0

τ1 τ2

τ3

Fig. 1. Program with a single initial location �0.

Let us take the following 3 templates expressing general linear inequalities, one
for each non-initial location:

Tj := c0j x0 + c1j n + c2j i ≤ dj for all j = 1 . . . 3 .

By imposing that these templates yield an invariant, we obtain the conditions
(for simplicity, no assertion and thus no Safety condition is considered here):

Initiation: τ0 |= T ′
1, i.e., τ0 ∧ ¬T ′

1 unsatisfiable
Consecution: T1 ∧ τ1 |= T ′

2, i.e., T1 ∧ τ1 ∧ ¬T ′
2 unsatisfiable

T2 ∧ τ2 |= T ′
1, i.e., T2 ∧ τ2 ∧ ¬T ′

1 unsatisfiable
T1 ∧ τ3 |= T ′

3, i.e., T1 ∧ τ3 ∧ ¬T ′
3 unsatisfiable .

288 L. Candeago et al.

By fleshing out the transition relations, expanding the templates and simplifying,
these four formulas are equivalent to

(1) x0 − n ≤ −1 ∧ −(c01 + c21) x0 − c11 n ≤ −d1 − 1
(2) c01 x0 + c11 n + c21 i ≤ d1 ∧ i − n ≤ −2 ∧ −c02 x0 − c12 n − c22 i ≤ −d2 − 1
(3) c02 x0 + c12 n + c22 i ≤ d2 ∧ ∧ − c01 x0 − c11 n − c21 i ≤ −d1 − 1 + c21
(4) c01 x0 + c11 n + c21 i ≤ d1 ∧ n − i ≤ 1 ∧ −c03 x0 − c13 n − c23 i ≤ −d3 − 1

respectively. Now Farkas’ Lemma is applied to express unsatisfiability. Namely,
for (1) we consider non-negative multipliers λ11, λ12 such that the linear com-
bination that consists in multiplying the first inequality by λ11 and the second
inequality by λ12 results in a trivially false inequality. For that, we need the
coefficients of x0 to cancel out, i.e., λ11 −λ12(c01 + c21) = 0, and the same for n,
i.e., −λ11 − λ12c11 = 0. With respect to the independent term, we force that it
is smaller than or equal to −1, i.e., −λ11 +λ12(−d1 − 1) ≤ −1, which will create
a trivially false inequality. All in all, we get the non-linear formula

∃λ11λ12

(
λ11, λ12 ≥ 0 ∧

λ11 − λ12(c01 + c21) = −λ11 − λ12c11 = 0 ∧
−λ11 + λ12(−d1 − 1) ≤ −1

) (1)

Similar constraints are obtained for (2)-(4). 	

Difference Logic and Graph Theory. Given variables u and v and a numeric
constant k, henceforth we will refer to an inequality of the form u − v ≤ k as
a difference inequality. The fragment of (quantifier-free) first-order logic where
atoms are difference inequalities is called difference logic.

Sets (conjunctions) of difference inequalities, also called difference systems,
have long been studied in the literature (e.g., in [26], where they are referred
to as simple temporal problems, STP’s). For instance, they can be repre-
sented as graphs as follows. Given a difference system S defined over variables
v1, v2, . . . , vn, we consider the weighted graph G with vertices (v1, v2, . . . , vn)
and an edge vi

k→ vj for each inequality vi − vj ≤ k ∈ S. This graph is called
the constraint graph of S.

It is well-known that a constraint graph has interesting properties as regards
to the solutions of the corresponding difference system [27]:

Theorem 2 Let S be a difference system, and G its constraint graph. Then S
has no solution iff G has a negative cycle.

This result is a particular case of Farkas’ Lemma. It essentially ensures that,
for difference systems, the multipliers of Farkas’ Lemma are either 1 or 0 (the
difference inequality belongs to the negative cycle or it does not, respectively).

One of the most important practical consequences of Theorem 2 is that any
algorithm that is able to detect negative cycles in weighted graphs (such as, for
instance, Bellman-Ford, or Floyd-Warshall [27]) can be used to determine the
existence of solutions to a difference system.

Speeding up the Constraint-Based Method in Difference Logic 289

Theorem 2 can be extended to allow also bound inequalities, i.e., inequalities
of the form v ≤ k or v ≥ k, where v is a variable and k is a numeric constant:
Given a system S that includes difference inequalities as well as bound inequali-
ties, a fresh variable v0 is introduced. Then a new system S∗ is defined, which is
like S but where each inequality of the form vi ≤ k in S is replaced by vi−v0 ≤ k,
and each vi ≥ k, or equivalently −vi ≤ −k, is replaced by v0 − vi ≤ −k. It is not
difficult to prove that S has a solution iff S∗ has one.

3 Proving Safety of Difference Programs

In this paper we will focus on difference programs, that is, programs whose
transition relations are conjunctions of difference inequalities.

Although this may seem rather restrictive, in fact more general programs can
be cast into this form: for any program with difference as well as bound inequal-
ities in the transition relations, there exists an equivalent difference program,
as it is well-known in the literature [15]. The trick consists in introducing an
artificial variable x0, which intuitively is always zero, and then transform bound
inequalities into difference inequalities by adding x0 with the appropriate sign.
Thus, e.g., n ≥ 1 is transformed into n−x0 ≥ 1. Moreover, the equation x′

0 = x0

has to be added to all transitions. For example, after this transformation the
program in Fig. 2 leads to that in Fig. 1.

τ̃0 : n ≥ 1, n = n, i = 0
τ̃1 : i ≤ n − 2, n = n, i = i

τ̃2 : n = n, i = i + 1

τ̃3 : i ≥ n − 1, n = n, i = i
0 1

2

3
τ̃0

τ̃1 τ̃2

τ̃3

Fig. 2. Program with difference and bound inequalities in the transition relations.

The problem we consider in this section is, given a location � and a difference
inequality ϕ, to prove that the program under consideration is safe with respect
to the assertion (�, ϕ). As the following theorem states, proving safety of a dif-
ference program is in general undecidable, and therefore we cannot hope for a
sound and complete terminating algorithm that solves the problem:

Theorem 3 Given a difference program P, a location � ∈ L and a difference
inequality ϕ, the problem of deciding whether P is safe with respect to the asser-
tion (�, ϕ) is undecidable.

290 L. Candeago et al.

3.1 Specialization of the Constraint-Based Method

Here we attempt to prove difference programs safe by finding invariants con-
sisting of difference inequalities with a specialization of the constraint-based
method.3 Let us first illustrate the gist of our technique with an example.

Example 2 Again let us consider the program in Fig. 1 and assign a template to
each non-initial location: Tj := c0j x0 + c1j n + c2j i ≤ dj for all j = 1 . . . 3 .
This program is a difference program. Let us also consider the assignment
c0,j = 0, c1,j = −1, c2,j = 1 for all j = 1 . . . 3, d1 = d3 = −1, d2 = −2,
which instantiates the templates as follows:

T1 ≡ i − n ≤ −1 T2 ≡ i − n ≤ −2 T3 ≡ i − n ≤ −1,

and check that they are invariant. Since the above inequalities belong to differ-
ence logic, we can use Theorem 2 to check that indeed the formulas τ0 ∧ ¬T ′

1,
T1 ∧ τ1 ∧ ¬T ′

2, T2 ∧ τ2 ∧ ¬T ′
1 and T1 ∧ τ3 ∧ ¬T ′

3 are unsatisfiable, as required
by the Initiation and Consecution conditions. By the theorem, the unsatisfi-
ability of each of these formulas is equivalent to the existence of a negative cycle
in the corresponding graph. In Fig. 3 some of these graphs are shown for the
particular solution considered here, and the respective negative cycles are high-
lighted. Solving the Initiation and Consecution constraints over the template
coefficients can thus be seen as adding new weighted edges to the graphs of the
transition relations so that, in the end, all graphs have a negative cycle. Note
this must be done consistently for all Initiation and Consecution constraints,
so that, e.g., the edge of ¬T ′

1 is the same in τ0 ∧ ¬T ′
1 and in T2 ∧ τ2 ∧ ¬T ′

1.

In what follows, we assume we have associated to each non-initial location �
a template invariant T� of the form

c0,� x0 + c1,� x1 + . . . + cn,� xn ≤ d�

where the ci,� and the d� are template unknowns.4 For obvious reasons we will
refer to the ci,� as left-hand side variables, whereas the d� are called right-hand
side variables (LHS and RHS variables, respectively). Here we focus on differ-
ence inequalities, and therefore the domain of LHS variables is {+1, 0,−1}, while
the domain of RHS variables is Z.

We propose to find appropriate values for the RHS and LHS variables fol-
lowing an eager approach: we encode all required constraints obtained from the
Initiation, Consecution and Safety conditions into a single SMT formula,
and then use an off-the-shelf SMT solver to solve the resulting problem. As will
be seen next, in our particular case the atoms in the SMT formula will be either

3 Here a simplified procedure for proving an assertion is described in order to highlight
the key contribution of this work, that is, how to circumvent non-linearities.

4 When the generated invariants consisting of a single inequality do not prove the
assertion, as indicated in Section 2 the procedure can be iterated by strengthening the
transitions, thereby allowing the synthesis of invariant conjunctions of inequalities.

Speeding up the Constraint-Based Method in Difference Logic 291

n

n

x0

x0

i

i

0

0

0

−1
0

0

0

0

(a)

n

n

x0

x0

i

i

0

0

0

−2

0

0

−1

1

(b)

Fig. 3. Graphs for the formulas τ0 ∧ ¬T ′
1 (a) and T2 ∧ τ2 ∧ ¬T ′

1 (b). The edges cor-
responding to the templates (or their negation) are dashed. The edges forming the
negative cycles are highlighted with thicker lines.

Boolean variables or bound inequalities or difference inequalities. By virtue of
the results reviewed in Sect. 2, the generated formula can be handled with an
SMT solver of difference logic, for which efficient implementations are available.

The formula that expresses the constraints over template variables (LHS and
RHS variables) is a conjunction of the following ingredients.

Membership to Difference Logic. First of all, we have to express that all templates
are difference inequalities. To that end, for each LHS variable ci we introduce
two auxiliary Boolean variables: c+i and c−

i . Intuitively, c+i will be true iff ci is
assigned to +1, and c−

i will be true iff ci is assigned to −1. If both c+i and c−
i are

false, then ci is 0. We need to enforce: (i) that the c+i and c−
i cannot be true at the

same time, (ii) that exactly one of the ci in each template is +1 (i.e., exactly one
of the c+i is true), and (iii) exactly one is −1 (i.e., exactly one of the c−

i is true).
The constraints resulting from (ii) and (iii), which are of the form

∑m
j=1 bj = 1,

are encoded with a clause
∨m

j=1 bj that imposes
∑m

j=1 bj ≥ 1, together with
additional clauses that express

∑m
j=1 bj ≤ 1 using one of the available encodings

in the literature (e.g., quadratic, logarithmic [28] or ladder [29]).

Unsatisfiability of Difference Systems. When encoding the Initiation, Conse-
cution and Safety conditions, essentially one has to impose the unsatisfiability
of a set of difference inequalities, some of which may be templates. Namely, in
Initiation and Safety one has a single template, but while in the former the

292 L. Candeago et al.

template appears negatively, in the latter it appears positively. On the other
hand, in Consecution two templates appear, one negatively and the other pos-
itively. Here we will elaborate on this latter case, being the others simpler.

Thus, let S be a difference system over program variables X , X ′ such that

c0 x0 + . . . + cn xn ≤ d ∧ S ∧ ¬(c̃0 x′
0 + . . . + c̃n x′

n ≤ d̃)

must be unsatisfiable. Our goal is to instantiate the templates so that this is the
case. Note ¬(c̃0 x′

0+. . .+ c̃n x′
n ≤ d̃) is equivalent to −c̃0 x′

0−. . .− c̃n x′
n ≤ −d̃−1.

To ensure unsatisfiability, i.e., that a negative cycle exists, we first construct G,
the constraint graph induced by S. We then apply Floyd-Warshall algorithm in
order to compute the distances dist(y, z) for each pair of vertices y and z in G.

If for some vertex y we have dist(y, y) < 0, then S has a negative cycle
and hence the unsatisfiability requirement is fulfilled independently from the
templates. In this case, no clause needs to be added.

Otherwise S has no negative cycles, and the only possibility to construct
one is to go through the edges induced by the templates. Let us consider an
assignment such that cu = +1, cv = −1, c̃ũ = +1 and c̃ṽ = −1 (i.e. c+u , c−

v ,
c+ũ and c−

ṽ are true). In this case the instantiation of the positive template is
xu − xv ≤ d, and the instantiation of the negation of the other template is
x′

ṽ − x′
ũ ≤ −d̃ − 1. Hence, the former induces an edge from xu to xv with weight

d, while the latter induces an edge from x′
ṽ to x′

ũ with weight −d̃ − 1.
To form a negative cycle, either (i) the cycle contains only the posi-

tive template, or (ii) contains only the negative template, or (iii) contains
both. The first situation can be seen in Fig. 4(a), where it is needed that
dist(xv, xu) + d < 0. The second situation is depicted in Fig. 4(b), where we
need dist(x′

ũ, x′
ṽ)− d̃−1 < 0. Finally the third situation can be seen in Fig. 4(c),

where we need d + dist(xv, x′
ṽ) − d̃ − 1 + dist(x′

ũ, xu) < 0. Hence, we add the
following clause:

c+u ∧ c−
v ∧ c̃+ũ ∧ c̃−

ṽ =⇒ d ≤ −dist(xv, xu) − 1 ∨
−d̃ ≤ −dist(x′

ũ, x′
ṽ) ∨

d − d̃ ≤ −dist(xv, x′
ṽ) − dist(x′

ũ, xu)
(2)

Note that it might be the case that some of the paths represented in Fig. 4 do
not actually exist. For example, if xu is unreachable from xv, i.e., dist(xv, xu) =
∞, then there cannot be a negative cycle that only uses the positive template,
independently of the value we give to its RHS variable. Hence the first inequality
in the clause of Eq. 2 can be dropped.

This reasoning is applied to all vertices, namely, to all u, v, ũ, ṽ with u �= v,
ũ �= ṽ, and u, v, ũ, ṽ ∈ {0, 1, . . . , n}, adding in each case the respective clause.

Satisfiability of Difference Systems. The opposite problem to the previous one,
that is, to enforce that a difference system is satisfiable, also arises in the
constraint-based method. This is the case when, for example, one performs sev-
eral rounds of invariant generation as described above, and requires that the

Speeding up the Constraint-Based Method in Difference Logic 293

xu xv

dist(xv, xu)

d

xũ xṽ

dist(xũ, xṽ)

−d̃ − 1

(a) (b)

xu xv

xũ xṽ

dist(xũ, xu) dist(xv, xṽ)

d

−d̃ − 1

(c)

Fig. 4. The only three ways of creating a negative cycle.

newly generated invariants are not redundant with respect to the already com-
puted ones: then there must exist a witness that certifies the non-redundancy.

Hence, let S be a difference system over program variables X such that

S ∧ ¬(c0 x0 + . . . + cn xn ≤ d) ≡ S ∧ −c0 x0 − . . . − cn xn ≤ −d − 1

must be satisfiable5. By Theorem 2, this amounts to proving that no negative
cycle exists in the corresponding constraint graph. Again, we will start by con-
structing G, the constraint graph induced by S, and applying Floyd-Warshall.

If a negative cycle is already detected, the satisfiability requirement cannot
be met. Otherwise S has no negative cycles, and the only possibility to achieve
one is to go through the edge induced by the template. If cu = 1 and cv = −1,
then the negation of the template is xv − xu ≤ −d − 1, which induces an edge
from xv to xu with weight −d − 1. This edge is part of a negative cycle iff
dist(xu, xv) − d − 1 < 0. Since we want to avoid negative cycles, we should
enforce that d ≤ dist(xu, xv) − 1. Hence, we should add the clause:

c+u ∧ c−
v =⇒ d ≤ dist(xu, xv) − 1 .

Note that if dist(xu, xv) = ∞ the clause is trivially satisfied and can be dropped.

3.2 Experiments

To experimentally evaluate our techniques, we executed an implementation of
the encoding presented in Sect. 3.1 on a benchmark suite obtained as follows6:
5 This yields a non-linear formula if templates and S include general linear inequalities.
6 Executables, benchmarks and detailed tables with the results of all the experiments

in this paper can be found at www.cs.upc.edu/∼erodri/sat16.tgz.

www.cs.upc.edu/~erodri/sat16.tgz

294 L. Candeago et al.

we first ran our verification system VeryMax [20] on numerical (possibly non-
difference) programs from [30], checking whether all array accesses are within
bounds. For each such check, VeryMax needs to process several safety subqueries,
which consist of a small program with an assertion to be proved. Among them, we
chose those where the program and the assertion can be expressed in difference
logic. For these queries, VeryMax requires one of the next five possible outputs:

I. An invariant at each location proving the assertion
II. An invariant at each location disabling a transition

III. A conditional invariant at each location proving the assertion
IV. An invariant at each location
V. None of the previous ones

Solving one such query using the constraint-based method generates an SMT
formula with multiple Initiation, Consecution, Safety and other conditions
(e.g. no redundant invariants are generated, conditional invariants are compat-
ible with initial transitions) that can be encoded via Farkas’ Lemma or via our
novel difference logic encoding presented in the previous section. By making
some of these conditions soft with the use of appropriate weights as in [31], we
can order the five possible outputs from most desirable (I) to least desirable (V).
For example, the optimal solution gives output (III) only if no solution exists
that gives results (II) or (I).

The resulting Max-SMT formula can be processed with an off-the-shelf Max-
SMT solver, such as Opti-Mathsat [32], Z3Opt [33] or Barcelogic [34]. Unfor-
tunately, we had to discard Opti-Mathsat because it cannot deal with non-
linearities. Between the remaining two, it was Barcelogic the one that showed
a better performance, probably due to its novel method to deal with non-
linearities [11]. Regarding the optimization part, Barcelogic implements a very
simple branch-and-bound approach as explained in [35]. Due to its better per-
formance, in what follows only experiments with Barcelogic will be reported.

Experiments were performed on an Intel i5 2.8 GHz CPU with 8 Gb of mem-
ory. For each of the 3270 generated queries and each encoding, we consider the
best solution obtained within a time limit of 5 s7. In Table 1 we can see the
output and the running time of four different encodings: Farkas (the standard
encoding based on Farkas’ Lemma), FarkasDL (the previous one additionally
restricting the templates to be difference logic), FarkasDL-λ (the previous one
additionally imposing that the λ multipliers are 0 or 1), and Diff Logic (our
novel encoding introduced in the previous section).

The experiments confirm our intuition that our specialized difference logic
encoding outperforms Farkas both in runtime and in quality of solutions. Even if
we try to improve Farkas with additional constraints that limit the search space,
as in FarkasDL and FarkasDL-λ, the differences are still dramatic. We want
to remark that in no query Farkas gave a better-quality result than Diff Logic.

More detailed results can be seen in Fig. 5, where in the scatter plots we
display the timings (in seconds, logarithmic scale) over queries whose optimal
7 This is the time limit used in VeryMax for this type of queries in previous works [20].

Speeding up the Constraint-Based Method in Difference Logic 295

Table 1. Results on the 3270 generated queries with a time limit of 5 s.

(I) (II) (III) (IV) (V)

Method Inv. prove Disable tr Cond. inv. prove Invariant Nothing Time

Farkas 215 427 330 1024 1274 4 h 11m 47 s

FarkasDL 215 526 322 1042 1165 3 h 8m 22 s

FarkasDL-λ 217 594 324 1042 1039 3 h 1m 52 s

Diff Logic 786 1044 328 1112 0 56m 20 s

 0.01

 0.1

 1

 0.01 0.1 1
Diff Logic

F
a
rk

a
sD

L
-λ

 0.01

 0.1

 1

 0.01 0.1 1
Diff Logic

F
a
rk

a
sD

L
-λ

(a) (b)

Fig. 5. Comparison of Diff Logic and FarkasDL-λ runtimes over queries whose opti-
mal solution gives invariants proving the assertion (a) or disabling a transition (b).

solution finds invariants proving the assertion (a) or disabling a transition (b).
One can see that even the best Farkas-based encoding is systematically slower
than Diff Logic. We can also observe that in lots of queries Farkas times out,
which means that the Max-SMT solver could not prove the solution to be opti-
mal. One could think this is because proving optimality is equivalent to proving
unsatisfiability, something at which Barcelogic non-linear techniques are partic-
ularly bad. However, a careful inspection of the results reveals the situation is
worse, as in more than 80 % of the queries the found solution was not optimal.

4 Finding Invariant Subsets

Another important problem that we need to solve inside VeryMax is the Invariant
Subset Selection Problem. Formally, we are given a program, an assertion (�ass, ϕ)
and, for each location � ∈ L, a set Cand(�) of m� candidate invariants

c�,1
1 x1+ · · · + c�,1

n xn ≤ d�,1

. . .

c�,m�

1 x1+ · · · + c�,m�
n xn ≤ d�,m�

where the c�,j
i are fixed integer numbers and the d�,j are integer variables. The

goal is to select, if it exists, a subset of Cand(�) for each � ∈ L, and find an

296 L. Candeago et al.

assignment to the d�,j ’s such that (i) the chosen subsets are invariant and (ii)
the invariants chosen at �ass imply ϕ.

As in Sects. 2 and 3 we will show that, in the general case, if we use Farkas’
Lemma we obtain a non-linear formula, whereas non-linearities can be avoided
when the program, the assertion and the candidate invariants are difference logic.
In this case, the resulting formula belongs to linear arithmetic.

4.1 General Case

We can imagine the process of finding a solution as working in two stages. First
of all, we have to select a subset of the candidate invariants at each location,
together with their corresponding right-hand sides d�,j . After that, we need to
ensure that Initiation, Consecution and Assertion conditions are satisfied.
To prove these conditions, we only need to find the right Farkas’ multipliers.

More precisely, for each location � ∈ L and 1 ≤ j ≤ m�, let us consider a
Boolean variable chosen�,j that indicates whether the j-th invariant in Cand(�)
is chosen. Additionally, to each coefficient c�,j

i we will associate a fresh integer
variable ĉ�,j

i , and to each d�,j a fresh integer variable d̂�,j . The following formulas

chosen�,j =⇒
n∧

i=1

ĉ�,j
i = c�,j

i ∧ d̂�,j = d�,j (3)

¬chosen�,j =⇒
n∧

i=1

ĉ�,j
i = 0 ∧ d̂�,j = 0 (4)

constraint the shape of the invariants depending on whether they are chosen or
not. In the following, we will consider that Ĉand(�) consists of all elements of
Cand(�) where all c’s and d’s have been replaced by their respective ĉ’s and d̂’s.

Let us explain how a Consecution condition will be enforced (for Initiation
and Assertion an analogous idea applies). Let (�S , τ, �T) be the transition to
which consecution refers. We want to enforce that Ĉand(�S) ∧ τ |= Ĉand(�T)′,
which amounts to checking, for each înv ′ ∈ Ĉand(�T)′, that Ĉand(�S)∧τ |= înv ′,
or equivalently, that Ĉand(�S)∧τ ∧¬înv ′ is unsatisfiable. The latter can be easily
encoded into a non-linear formula by using Farkas’ Lemma.

4.2 Difference Logic Case

Let us now assume that all candidate invariants, the formula in the assertion and
the input program are expressed in difference logic. The idea of the encoding is
similar. However, in Sect. 4.1 new inequalities were globally introduced standing
for the original inequalities or the trivial inequality 0 ≤ 0, depending on whether
they had been chosen or not. Instead, here we exploit the fact that in Farkas’
proofs of unsatisfiability of difference sets, multipliers are 0 or 1: for each unsat-
isfiability proof that must hold, new inequalities are locally introduced, standing
for the product of the Farkas’ multiplier with the original inequality.

As an example, let us explain how to encode a Consecution condition refer-
ring to a transition (�S , τ, �T). The chosen�,j variables will be as before, common

Speeding up the Constraint-Based Method in Difference Logic 297

to the overall encoding. However, for each inv ∈ Cand(�T), in order to enforce
that Cand(�S) ∧ τ |= inv ′, we will now introduce fresh ĉ’s and d̂’s and add, for
1 ≤ j ≤ m�S

, the previous formula (4) and:

(
n∧

i=1

ĉ�S ,j
i = 0 ∧ d̂�S ,j = 0) ∨ (

n∧

i=1

ĉ�S ,j
i = c�S ,j

i ∧ d̂�S ,j = d�S ,j)

The intuition is that ĉ1
�S ,jx1 + · · · + ĉn

�S ,jxn ≤ d̂�S ,j is the inequality resulting
from multiplying c�S ,j

1 x1+· · ·+c�S ,j
n xn ≤ d�S ,j by the corresponding multiplier in

Farkas’ proof of unsatisfiability of Cand(�S)∧ τ ∧¬inv ′. Similarly, let us assume
that inv is c1x1 + · · · + cnxn ≤ d, with chosen being the variable that indicates
whether we pick it or not. Then we will add the formula

(
n∧

i=1

c�
i = 0 ∧ d� = 0) ∨ (

n∧

i=1

c�
i = −ci ∧ d� = −1 − d),

which intuitively means that c�
1x1 + · · · + c�

nxn ≤ d is the inequality resulting
from multiplying ¬(c1x1 + · · ·+ cnxn ≤ d) ≡ −c1x1 −· · ·− cnxn ≤ −1−d by the
corresponding multiplier in the proof of unsatisfiability of Cand(�S) ∧ τ ∧ ¬inv ′.

The encoding finishes by: (i) applying Farkas’ Lemma to enforce unsatisfia-
bility of ̂Cand(�S) ∧ τ ∧ c�

1x
′
1 + · · · + c�

nx′
n ≤ d′ as in the general case, but now

assuming that multipliers are 1, which gives a linear formula F ; and (ii) adding
the implication chosen ⇒ F to the encoding. Detailed experiments comparing
the general and the particular encoding for difference logic give similar results
to Sect. 3.2, and we omit them here due to lack of space.

A final remark is that the previous encoding can be applied to solve the
problem in Sect. 3 by exhaustively considering in Cand(�) all differences of vari-
ables. This allows finding simultaneously more than one invariant inequality per
location, in particular coinductive invariants. So the price to pay for a complete
method is moving from a difference logic to a linear arithmetic formula.

5 Experiments

The goal here is to assess to which extent a constraint-based verifier like VeryMax
can be globally improved by incorporating the novel encodings introduced in
Sects. 3.1 and 4.2 (for handling safety subqueries and invariant subset selection
problems, respectively). Note it is not uncommon that huge enhancements on
the runtime of a theorem prover (SAT or SMT solver or first-order theorem
prover) get diluted into insignificant improvements on the verifier that uses it.

We compared the original VeryMax safety prover, which uses Farkas as the
encoding methodology to find linear invariants, with a new version VeryMaxDL
where the problems described in Sects. 3 and 4 are solved using the novel encod-
ings. A time limit of 900 s was given to each problem. Table 2 summarizes the
experiments, where for each system we report the number of problems found to

298 L. Candeago et al.

Table 2. Results comparing VeryMax and VeryMaxDL.

System Yes No Only-yes Time

VeryMax 524 312 27 11 h 58 m 59 s

VeryMaxDL 516 320 19 4 h 12 m 38 s

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

Ve
ry

M
ax

VeryMaxDL

VeryMax vs VeryMaxDL (All)

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

Ve
ry

M
ax

VeryMaxDL

VeryMax vs VeryMaxDL (Yes)

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

Ve
ry

M
ax

VeryMaxDL

VeryMax vs VeryMaxDL (No)

Fig. 6. Scatter plots comparing VeryMax and VeryMaxDL.

be safe (Yes), not found to be safe8 (No), proved safe only by this version of the
system (Only-yes) and the total runtime (including timeouts).

The results are extremely positive since the runtime is reduced to one third,
and the loss of verification power due to generating only difference logic invari-
ants, as opposed to linear invariants, is very limited. We analyzed all problems
that VeryMax could prove safe whereas VeryMaxDL could not and they all need
linear invariants outside difference logic, which means that they cannot be proved
using the techniques on which VeryMaxDL is based.

Figure 6 contains scatter plots comparing VeryMax and VeryMaxDL on all
problems, problems proved safe by VeryMaxDL, and problems not found to be
safe by VeryMaxDL. At first glance, although the difference logic version is faster,
we observe that the plots are not as clean as the ones of Sect. 3.2. This is not
surprising: if the subproblems solved via Farkas or difference logic give differ-
ent results (e.g. they disable different transitions), the overall behavior of the
verification system changes and this has an impact on the overall runtime. The
second observation is that VeryMaxDL is faster, independently of whether the
problem can be found to be safe or not. This opens the way to run both versions
in parallel, or even first run VeryMaxDL and if the program cannot be proved
safe, run VeryMax in a second attempt.

6 Conclusions and Future Work

It is well acknowledged that the current bottleneck in the effectiveness of the
constraint-based method compared to other approaches for verification is the
8 Note that this does not mean that they are unsafe.

Speeding up the Constraint-Based Method in Difference Logic 299

technology for solving non-linear constraints. In this paper we have introduced
novel encodings that, if we restrict ourselves to programs and invariants in differ-
ence logic, allow one to replace non-linear solvers by cheaper ones. Experiments
show that this yields a remarkable gain in terms of runtime at the expense of
restricting the class of programs under consideration and a certain but accept-
able loss of verification power.

As future work, we plan to extend the use of similar encodings in our verifica-
tion system VeryMax. E.g., finding simple ranking functions in (non)-termination
problems is a particularly interesting area where related ideas could be applied.

References

1. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

2. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Petri net analysis using invariant
generation. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol.
2772, pp. 682–701. Springer, Heidelberg (2004)

3. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid
systems. Formal Methods Syst. Des. 32(1), 25–55 (2008)

4. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant synthesis
for combined theories. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol.
4349, pp. 378–394. Springer, Heidelberg (2007)

5. Larraz, D., Rodŕıguez-Carbonell, E., Rubio, A.: SMT-based array invariant gen-
eration. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 169–188. Springer, Heidelberg (2013)

6. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004)

7. Larraz, D., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Proving termination
of imperative programs using Max-SMT. In: Proceeding FMCAD 2013, pp. 218–
225. IEEE (2013)

8. Larraz, D., Nimkar, K., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Proving
non-termination using Max-SMT. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 779–796. Springer, Heidelberg (2014)

9. Borralleras, C., Lucas, S., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: SAT
modulo linear arithmetic for solving polynomial constraints. Journal of Automated
Reasoning 48(1), 107–131 (2012)

10. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Hei-
delberg (2012)

11. Larraz, D., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Minimal-model-
guided approaches to solving polynomial constraints and extensions. In: Sinz, C.,
Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 333–350. Springer, Heidelberg
(2014)

12. Cousot, P., Cousot, R.: Abstract interpretation : a unified lattice model for the
static analysis of programs by construction or approximation of fixpoints. In: Pro-
ceeding POPL 1977, pp. 238–252. ACM Press (1977)

300 L. Candeago et al.

13. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceeding POPL 1978, pp. 84–96. ACM Press (1978)

14. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Proceeding 2nd International Symposium on Programming, pp. 106–130 (1976)

15. Miné, A.: A new numerical abstract domain based on difference-bound matrices. In:
Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer,
Heidelberg (2001)

16. Miné, A.: The octagon abstract domain. High. Order Symbolic Comput. 19(1),
31–100 (2006)

17. Menasche, M., Berthomieu, B.: Time petri nets for analyzing and verifying time
dependent communication protocols. In: Protocol Specification, Testing, and Ver-
ification, pp. 161–172 (1983)

18. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
Automatic Verification Methods for Finite State Systems. LNCS, vol. 407, pp.
197–212. Springer, Heidelberg (1989)

19. Yovine, S.: Model checking timed automata. In: Lectures on Embedded Systems,
European Educational Forum, School on Embedded Systems. vol. 1494. LNCS, pp.
114–152. Springer, Heidelberg (1996)

20. Brockschmidt, M., Larraz, D., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.:
Compositional safety verification with Max-SMT. In: Proceeding FMCAD 2015,
pp. 33–40. IEEE (2015)

21. Kapur, D., Zhang, Z., Horbach, M., Zhao, H., Lu, Q., Nguyen, T.V.: Geometric
quantifier elimination heuristics for automatically generating octagonal and max-
plus invariants. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and
Mathematics. LNCS, vol. 7788, pp. 189–228. Springer, Heidelberg (2013)

22. Monniaux, D.: Automatic modular abstractions for linear constraints. In: Proceed-
ing POPL 2009, pp. 140–151. ACM (2009)

23. Lahiri, S.K., Musuvathi, M.: An efficient decision procedure for UTVPI con-
straints. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 168–183.
Springer, Heidelberg (2005)

24. Monniaux, D.: A quantifier elimination algorithm for linear real arithmetic. In:
Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330,
pp. 243–257. Springer, Heidelberg (2008)

25. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Amsterdam
(1998)

26. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49(1–
3), 61–95 (1991)

27. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education, New York (2001)

28. Frisch, A.M., Peugniez, T.J., Doggett, A.J., Nightingale, P.W.: Solving non-
boolean satisfiability problems with stochastic local search: a comparison of encod-
ings. J. Autom. Reasoning 35(1–3), 143–179 (2005)

29. Argelich, J., Manyà, F.: Solving over-constrained problems with SAT technology.
In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 1–15. Springer,
Heidelberg (2005)

30. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes:
The Art of Scientific Computing. Cambridge Univ. Press, NewYork (1989)

31. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic opti-
mization: algorithms & applications. Ann. Math. Artif. Intell. 62(3–4), 317–343
(2011)

Speeding up the Constraint-Based Method in Difference Logic 301

32. Sebastiani, R., Trentin, P.: OptiMathSAT: a tool for optimization modulo theories.
In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 447–454.
Springer, Heidelberg (2015)

33. Bjørner, N., Phan, A.-D., Fleckenstein, L.: νz - an optimizing SMT solver. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer,
Heidelberg (2015)

34. Bofill, M., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: The
Barcelogic SMT solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 294–298. Springer, Heidelberg (2008)

35. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems.
In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer,
Heidelberg (2006)

Synthesis of Domain Specific CNF Encoders
for Bit-Vector Solvers

Jeevana Priya Inala(B), Rohit Singh, and Armando Solar-Lezama

Massachusetts Institute of Technology, Cambridge, MA, USA
{jinala,rohitsingh,asolar}@csail.mit.edu

The theory of bit-vectors in SMT solvers is very important for many applica-
tions due to its ability to faithfully model the behavior of machine instructions.
A crucial step in solving bit-vector formulas is the translation from high-level bit-
vector terms down to low-level boolean formulas that can be efficiently mapped
to CNF clauses and fed into a SAT solver. In this paper, we demonstrate how
a combination of program synthesis and machine learning technology can be
used to automatically generate code to perform this translation in a way that is
tailored to particular problem domains. Using this technique, the paper shows
that we can improve upon the basic encoding strategy used by CVC4 (a state of
the art SMT solver) and automatically generate variants of the solver tailored
to different domains of problems represented in the bit-vector benchmark suite
from SMT-COMP 2015.

1 Introduction

SMT solvers are at the heart of a number of software engineering tools rang-
ing from automatic test generators [42,44,49] to deterministic replay tools [16],
just to name two applications among many others [11,25,53]. Of particular
importance to these applications is the theory of bit-vectors, which is widely
used [17,26,43,47] because of its ability to faithfully represent the full range of
machine arithmetic.

One of the most important steps in a bit-vector solver is the mapping of high-
level bit-vector terms down to low-level CNF clauses that can be fed to a SAT
solver—a process often referred to as bit-blasting. One approach to bit-blasting
is to use the known efficient encodings for simpler boolean terms (such as AND or
XOR) and compose them to generate CNF clauses for complex terms [50]. This
approach can have a huge impact on the performance of the solver [39,40], but
generally, it relies on having optimal encodings for the simpler terms, and even
then it does not guarantee any kind of optimality of the overall encoding.

In this paper, we propose OptCNF, a new approach to automatically gen-
erate the code that converts high-level bit-vector terms into low-level CNF
clauses. In addition to the obvious benefits of having the code automatically
generated instead of having to write it by hand, OptCNF has three novel
aspects that together significantly improve the quality of the overall encod-
ing: (a) OptCNF uses synthesis technology to automatically generate efficient
encodings from high-level formulas to CNF (b) OptCNF relies on auto-tuning

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 302–320, 2016.
DOI: 10.1007/978-3-319-40970-2 19

Synthesis of Domain Specific CNF Encoders for Bit-Vector Solvers 303

to choose encodings that produce the best results for problems from a given
domain. (c) OptCNF identifies commonly occurring clusters of terms in a given
domain and focuses on finding optimal encodings for such clusters.

The synthesis of encodings balances optimality among three criteria: number
of clauses, number of variables and propagation completeness. The propagation
completeness requirement has been proposed as an important criterion in order
for the encoded constraints to solve efficiently in the SAT solver [10]. Modern
SAT solvers rely heavily on unit propagation to infer the values of variables with-
out having to search for them. Propagation completeness means that if a given
partial assignment implies that another unassigned variable should have a partic-
ular value, then the solver should be able to discover this value through unit prop-
agation alone. Prior work has demonstrated the synthesis of propagation com-
plete encodings for terms involving a small number of variables [12]. OptCNF,
however, is more flexible and is able to produce propagation complete encod-
ings even for relatively large bit-vector terms by taking advantage of high-level
hypothesis about the structure of the encoding (See Sect. 2).

In practice, however, propagation completeness does not always improve the
performance of an encoding. For certain classes of problems, for example, the
additional unit propagations caused by a propagation complete encoding can
actually slow the solver down. Similarly, there is often a trade-off between the
number of auxiliary variables and the number of clauses used by an encoding;
for some problems having more variables but fewer clauses can be better, but
for other problems, having fewer variables at the expense of more clauses can be
better. In order to cope with this variability, OptCNF uses auto-tuning to make
choices about which encodings are best for problems from a particular domain.
Prior work has demonstrated the value of tuning solver parameters in order
to achieve optimal performance for problems from particular domains [32], but
ours is the first work we know of where auto-tuning is used to make high-level
decisions about how to encode particular terms (see Sect. 5).

Finally, OptCNF is able to better leverage its ability to synthesize optimal
encodings by focusing on larger clusters of terms, as opposed to focusing on indi-
vidual bit-vector operations independently. Given a corpus of sample problems
from a domain, OptCNF is able to identify common recurring patterns in the
formulas from those problems and then generate specialized encodings for those
patterns.

Figure 1 shows how these ideas come together as OptCNF. The input
to OptCNF is a collection of formulas represented as DAGs (Directed Acyclic
Graphs) extracted from a set of benchmarks from a given problem domain.
OptCNF samples these DAGs to extract representative clusters of terms—what
the figure refers to as patterns. OptCNF then leverages Sketch synthesis sys-
tem [46] to synthesize “optimal” encodings for those patterns and generates
C++ code for the encodings that can be linked with a modified version of CVC4
solver [6]. The auto-generated code contains a set of switches to turn different
encodings on or off. Finally, the auto-tuner searches for the optimal configura-
tion of those switches in order to produce the best performing domain-specific
version of CVC4.

304 J.P. Inala et al.

Fig. 1. OptCNF: System overview

Our evaluation shows that the resulting domain-specific encodings are able
to significantly improve the performance of CVC4 when run in eager bit-
blasting mode. Using OptCNF, we generated a separate solver for 7 different
domains represented in the quantifier-free bit-vector benchmarks from the SMT-
COMP 15 benchmark suite [7]; using these specialized solvers on their respective
domains, we were able to solve 83 problems from the test set (see Sect. 6) that
CVC4 could not solve.

2 Synthesis of Encoders

Previous work [12] has attacked the problem of generating optimal propaga-
tion complete encodings for a given term by starting with an initial encoding
and then exhaustively checking for violations of propagation completeness and
incrementally adding more clauses to fix these violations. The resulting propaga-
tion complete encoding is then minimized to produce an equivalent but smaller
encoding. Our approach to generating encodings is quite different because it
relies on program synthesis technology, allowing us to symbolically search for an
encoding based on a formal specification. An important advantage of our app-
roach is flexibility. In particular, it allows us to generate encoders that generate
encodings at solver run-time from terms that have parameters that will only be
known at run-time (for example, the bit-width for a bit-vector operation).

OptCNF frames the task of generating these encoders as a Syntax Guided
Synthesis problem (SyGuS) [2]. A SyGuS problem is a combination of a template
or grammar that represents the space of the candidate solutions and a specifica-
tion that constrains the solution. The goal of a SyGuS solver is to find a candidate
in the template that satisfies the specification. The two components, template
and specification, are very crucial in determining the scalability of the problem.
Here, we first describe the templates that represent the space of CNF encoders
for booleans and bit-vector terms. Then, we formalize the correctness and the
optimality specification that constraints the template. Finally, we describe an
efficient but equivalent specification that makes the SyGus synthesis problem
more scalable.

2.1 CNF Encoders and Templates

The encoders generated by OptCNF work in two passes. Given a formula to
be encoded into SAT, OptCNF first identifies terms for which it has learned

Synthesis of Domain Specific CNF Encoders for Bit-Vector Solvers 305

to generate CNF constraints and replaces them by special placeholder operators
Ni. Then, the pass that would normally have generated low-level constraints
from the bit-vector terms is extended to recognize these placeholder operators
and generate the specialized constraints for them.

The pass that identifies the known terms, and the scaffolding that iterates
through the different operators in a DAG representation of the formula and
identifies the placeholder nodes are all produced using relatively straightforward
code-generation techniques. The synthesis problem focuses on the code that exe-
cutes when one of these placeholder nodes is found. This is the encoder code that
generates the CNF encoding for a previously identified term T .

Fig. 2. Encoders for three different kinds of terms

The term T for which OptCNF is generating an encoding is known at syn-
thesis time, so OptCNF can choose a template or a set of templates for this code
depending on the properties of T . Figure 2 illustrates the three different kind of
terms and the encodings that represent the terms. If T is not parametric—for
example if it is just a collection of boolean operators—then the encoder just
needs to generate a fixed set of clauses corresponding to the constraint repre-
sented by T , and the template will reflect that. On the other hand, many terms
will be parameterized by bit-widths, so the encoder will have to produce clauses
in one or more loops.

For bit-vector terms, which are parametric on the bit-width of their different
operators, we differentiate between two different kinds – bit-parallel and non bit-
parallel. Bit-parallel terms are those that are composed entirely of operations,
such as bitwise AND, OR or XOR, where there is no dependency from one
column of the bit-vector to another. For these kinds of terms, generating the
encoding for a single column and then enumerating them over all columns will
still preserve optimality. Hence, it is sufficient to just synthesize the encoding for
the boolean term that represents operations in a single column. This is, however,
not the case for all bit-vector terms.

Terms involving bitwise PLUS, for example, cannot be dealt in the same way
because there are dependencies that flow from one column to another. These
operations can still be represented as a loop of encodings, but there will be
auxiliary variables that are threaded from one iteration of the loop to another.
Figure 3 shows one such template for a bit-vector formula involving two bit-
vector inputs of size N (taken as a parameter) and outputs another bit-vector of

306 J.P. Inala et al.

size N. For each column in the bit-vectors, the template calls encode column which
is another template for explicit encodings, but this template can be instantiated
with variables specific to loop iteration. This template has one auxiliary vari-
able per column. Every column has an incoming auxiliary variable (a constant
for the first column) which carries information from the previous columns and
an outgoing auxiliary variable that carries information forward. This same tem-
plate represents multiple formulas depending on how the encode column template
is instantiated. For example, this same template is used to generate encodings
for both bitwise PLUS and bitwise MINUS operations.

Fig. 3. Template for a bitwise operation on two bit-vectors (with one auxiliary variable
per column)

The templates in OptCNF are all written in the Sketch language, which
allows us to leverage the Sketch synthesis engine for the synthesis problem. A
template in Sketch is a piece of code with integer and boolean holes to represent
the set of candidate solutions that the synthesizer should consider. The standard
template for an encoding is a list of clauses with holes representing the number
of clauses, and the length and the literals present in each clause. We significantly
reduce the size of the search space by enforcing an order among the literals in
each clause and among clauses themselves and thus, eliminating symmetries.
This canonical representation captures any general CNF encoding, but it does
not impose any structure on the clauses. We found that this model is scalable
enough for boolean formulas that expand into a small number of CNF clauses
(about 20 to 30). But, in order to deal with bigger formulas like bit-vector
operations, we need to represent the search space using loops to capture the
structure.

OptCNF has a library of templates for different kinds of input types, output
types and number of auxiliary variables per column. When running Sketch on
a term, OptCNF runs different instances of Sketch with a different template
and chooses the one that provides the best encoding (based on heuristics like
number of clauses and number of auxiliary variables). Due to the scalability
limits of Sketch, OptCNF can currently only synthesize encodings for non
bit-parallel terms that have at most two input bit-vectors, at most two auxiliary
variables per column and no nested loops in the template.

Synthesis of Domain Specific CNF Encoders for Bit-Vector Solvers 307

2.2 Problem Formulation

In addition to the template, the other important component of a SyGus problem
is the specification. Unlike the templates, which are very different for parameter-
ized and non-parameterized terms, the specifications for both are actually very
similar; the only difference is that for parameterized terms, the parameters must
be threaded through to all the relevant predicates. Therefore, the rest of the
section will omit these bit-width parameters in the interest of clarity.

A term T (in) can be represented by a predicate P (in, out) defined as
P (in, out) ⇔ out = T (in). For notational convenience, we will just write P (x),
where x is understood to be a vector containing both the input and the output
variables. The goal is to generate an alternative representation of the predicate
in terms of CNF clauses C(x).

Definition 1 (Correctness Specification). A set of CNF clauses “repre-
sents” a boolean predicate P iff P (x) ⇔ C(x).

In addition to the correctness specification, however, we want to ensure prop-
agation completeness which needs to be defined in terms of the behavior of the
encoding under partial assignments. A partial assignment σ maps every vari-
able to one of {true, false, �} where � indicates that the value has not been
assigned by the solver and could be true or false. A partial assignment can be
understood as the set of all complete assignments that are consistent with the
partial assignment. Therefore, it is standard to define a partial order among
partial assignments as:

σ � σ′ ⇐⇒ ∀i. σ(xi) �= � ⇒ σ′(xi) = σ(xi)

We generalize the predicate to be a function from partial assignments to the
set {true, false, �}, and define P (σ) = � for any partial assignment where some
variable xi is set to �.

Definition 2. We define the following predicates on partial assignments:

complete(σ) ≡ ∀i. σ(xi) �= �
satisfiable(σ, P) ≡ ∃σ′ � σ. P (σ′) = true

unsatisfiable(σ, P) ≡ ∀σ′ � σ. P (σ′) �= true
forces(σ, P, xi, b) ≡ (σ′ = extend(σ, xi,¬b)) ⇒ unsatisfiable(σ′, P)

maypropagate(σ, P) ≡ ∃i, b. forces(σ, P, xi, b)

where extend(σ, xi, b) is defined as extending an assignment with σ(xi) = � to
one where variable xi has value b. The predicate maypropagate(σ, P) indicates
that the partial assignment σ forces the value of some currently unassigned vari-
able.

Lemma 1. The forces() predicate has the following property.

forces(σ, P, x̂i, b̂) ∧ σ′ = extend(σ, x̂i, b̂)
⇒ ∀(xi,b) �=(x̂i,b̂)

forces(σ, P, xi, b) ⇒ forces(σ′, P, xi, b)

308 J.P. Inala et al.

This means that if P and a partial assignment σ force x̂i to take a particular
value b̂, then any other variable that was also forced by σ and P will also be
forced after extending the assignment with σ(x̂i) = b̂.

Lemma 2. Another important property of forces() is the following.

satisfiable(σ, P) ∧ forces(σ, P, x̂i, b̂) ∧ σ′ = extend(σ, x̂i, b̂)
⇒ satisfiable(σ′, P)

This means that if P and a partial assignment σ force x̂i to take a particular
value, then after extending the assignment with σ(x̂i) = b̂, the new assignment
is still satisfiable.

A clause c can be applied to a partial assignment as well, resulting in a value
c(σ) ∈ {true, false, μ,�}. A clause is unit (μ) if one of the literals in the clause
has an unknown value and all others are false. A CNF encoding is a collection
of clauses C. C(σ) can either be true if c(σ) = true for all the clauses, false if
c(σ) = false for at least one of the clauses, μ if σ makes at least one clause unit
(and σ does not falsify any others), or � if none of the above. Thus, the result
of applying C to a partial assignment helps identify the case when at least one
of the clauses is a unit clause, and it is, therefore, possible to propagate further
assignments. This is useful in describing unit propagation.

Definition 3 (UP). The function UP captures the unit propagation in SAT
solvers. We say that C propagates σ to UP(C, σ) under unit propagation accord-
ing to the following rules:

1. if C(σ) �= μ, then UP(C, σ) = σ.
2. else, C(σ) has a unit clause. If the unit clause forces σ(xi) = b, then
UP(C, σ) = UP(C, σ′) where σ′ = extend(σ, xi, b).

The definitions above give rise to an important lemma.

Lemma 3. A set of CNF clauses C “represents” a boolean predicate P iff it
satisfies the following two conditions:

1. satisfiable(σ, P) ⇒ C(UP(C, σ)) �= false
2. unsatisfiable(σ, P) ⇒ C(UP(C, σ)) �= true (2.1)

i.e. if an assignment can be extended to a satisfiable assignment for P , then
unit propagation should not lead to a contradiction. And similarly, if an assign-
ment (possibly partial) already contradicts P , then unit propagation should not
lead to a satisfiable assignment for the CNF clauses.

With the definitions above, we can now state the requirement for propagation
completeness.

Synthesis of Domain Specific CNF Encoders for Bit-Vector Solvers 309

Definition 4 (Propagation Completeness). C is a set of propagation com-
plete CNF clauses representing P if C “represents” P and

∀σ. satisfiable(σ, P)
⇒ ∀ xi, bi. (forces(σ, P, xi, bi) ⇒ UP(C, σ) � extend(σ, xi, bi))

(2.2)

In other words, if a partial assignment can be completed into a satisfying assign-
ment, and if there are unassigned variables xi that if set to ¬bi would make the
partial assignment unsatisfiable, then unit propagation must set all such xi to bi.

2.3 Synthesis-Friendly Propagation Completeness

The above definition captures the notion of propagation complete encodings, but
it is unsuitable as a specification for synthesis because the recursive definition
of UP essentially defines a small SAT solver, making it too complex for a state
of the art synthesizer. Instead, OptCNF relies on an equivalent but simpler
specification that does not require implementing a SAT solver. The idea is that
instead of thinking in terms of full unit propagation, we now verify propagation
only one step at a time. Specifically, the claim is that the following three rules
guarantee propagation completeness.

1.∀σ. satisfiable(σ, P) ⇒ C(σ) �= false
2.∀σ. maypropagate(σ, P) ⇒ C(σ) = μ
3.∀σ. unsatisfiable(σ, P) ⇒ C(σ) = false ∨ C(σ) = μ

(2.3)

Theorem 1. Formula (2.3) ⇐⇒ Correctness ∧ Formula (2.2)

Proof: Formula (2.3) ⇒ Correctness
This follows directly from Formula (2.3), because when σ is complete,
satisfiable(σ, P) implies P (σ) = true and similarly, unsatisfiable(σ, P) implies
P (σ) = false.

Proof: Formula (2.3) ⇒ Formula (2.2)
This can be proved by induction on the number of times σ can be extended

before it fails maypropagate(σ, P). For the base case, ¬maypropagate(σ, P), (2.2)
is vacuously satisfied because forces() fails for all variables. For the inductive case,
maypropagate(σ, P), C(σ) = μ (by 2.3-2). Let σ′ = extend(σ, x̂i, b̂) which is
obtained by propagating the unit clause in C(σ). Note that UP(C, σ) = UP(C, σ′)
by Definition 3. Applying Lemma 2 tells us that satisfiable(σ′, P), so applying the
inductive hypothesis together with Lemma 1, we can prove the inductive case.

Proof: Correctness ∧ Formula (2.2) ⇒ Formula (2.3)
First, we use the fact that correctness is equivalent to Formula (2.1). If

satisfiable(σ, P), then C(UP(C, σ)) �= false and this implies C(σ) �= false.
If σ can be propagated, then ∃xi, b. forces(σ, P, xi, b). And hence,

UP(C, σ) �= σ and this implies C(σ) = μ.
If unsatisfiable(σ, P), then let σ′ � σ be the maximal satisfying subset of σ

i.e. σ′ is satisfiable and ∀σ′ � σ′′ � σ. σ′′ is unsatisfiable. Then, C(σ′) = μ and
since σ′ is maximal subset, C(σ) = false ∨ C(σ) = μ.

310 J.P. Inala et al.

2.4 Introducing Auxiliary Variables

In some cases, the encoding C will involve auxiliary variables ti in addition to
the variables xi, in such cases, we write C((x, t)). In that case, the correctness
specification must be generalized to

∀x. P (x) ⇐⇒ ∃t. C((x, t))

Similarly, the conditions in Formula (2.3) generalize to the conditions below.

1.∀σ. satisfiable(σ, P) ⇒ ∃σt. C((σ, σt)) �= false
2.∀σ, σt. maypropagate(σ, P) ∧ C((σ, σt)) �= false ⇒ C((σ, σt)) = μ
3.∀σ, σt. unsatisfiable(σ, P) ⇒ C((σ, σt)) = false ∨ C((σ, σt)) = μ

(2.4)

The proof for this has a similar structure to the previous proof. Basically, once
we establish the first rule above, auxiliary variables can be treated just as the
other variables in P . It should be noted that this specification is more complex
than Formula (2.3) because of the existential quantifier in the R.H.S of rule 1.
The CEGIS algorithm employed by solvers like Sketch is designed to deal with
the outer universal quantifiers, but cannot handle inner existential quantifiers.
Hence, this existential quantifier should be translated into an explicit loop over
all auxiliary assignments, which makes the synthesis problem hard. In practice,
we found that this overhead is not significant when the number of auxiliaries
used in the encodings is low.

2.5 Clause Minimization

Another important optimality criterion for the encodings is the clause minimiza-
tion. If there are two propagation complete encodings having different number of
clauses representing the same predicate, then the encoding with the lower num-
ber of clauses is preferred. OptCNF relies on binary search to find an encoding
with an optimal number of clauses. This requires solving a logarithmic number
of synthesis problems to generate a single encoding, which has proven to be
reasonably efficient in practice.

2.6 Guarantees of the Synthesized Solution

When the formula is a boolean term or a bit-parallel term, Sketch performs
full verification and hence, the output is guaranteed to be correct and propa-
gation complete. When the input formula is a non bit-parallel bit-vector term,
OptCNF does bounded verification on the size of the bit-width parameters.
The correctness specification is easier to verify than the propagation complete-
ness requirement, so OptCNF allows the user to separately specify the checking
bounds for both specifications. In our experiments, we check correctness for all
inputs up to 6-bits and propagation completeness for up to 3-bits. Beyond these
bounds, OptCNF relies on verifying the output (sat/unsat) of the solver on all
the benchmarks used in our experiments to provide confidence on the correct-
ness of the synthesized encodings. We did not encounter a single instance where
OptCNF resulted in an incorrect output.

Synthesis of Domain Specific CNF Encoders for Bit-Vector Solvers 311

3 Pattern Finding

In this phase, we identify commonly occurring patterns in the formulas arising
from a given domain. For this, we build on prior work on representative sam-
pling from DAG-based representations of formulas [45]. The original sampling
work on which we build takes as input a size k and produces a representative
sample of all sub-terms of size k that appear in the corpus. When k = 1, for
example, the process will return a sample of all the operations that appear in
the corpus; the frequency with which a given operation appears in the sample
will be approximately the same as the frequency with which it appears in the
corpus. When sampling with higher values of k, the sampling process takes into
account the fact that some operations are commutative, but not others.

Given a corpus, OptCNF collects representative samples for values of k ≤ 5
for bit-parallel formulas and k ≤ 3 for non bit-parallel formulas. The upper
bounds are determined by the capabilities of our encoding synthesis algorithm,
which is unable to generate encodings for larger terms.

4 Encoder Code Generation

OptCNF uses CVC4 as the target solver and generates the code for implement-
ing the synthesized encoders in two phases: (1) Pattern matching in the decreas-
ing order of the pattern size and (2) Extending the existing encoding phase in
CVC4. OptCNF generates code for a straight-forward pattern matching phase
while handling symmetries by enumerating all equivalent permutations of pat-
terns with commutative operations. The generated code for augmenting CVC4
implements the synthesized encoder for each matched pattern and provides a
command-line interface for switching them on or off individually.

However, there is scope for optimizing this code by implementing: (1) fast pat-
tern matching that reuses common terms in the matched patterns (2) caching and
reusing newly generated literals in the encoding phase (3) reduction in number of
function calls in the generated code and (4) simplifying the encodings for patterns
with constant inputs. Even without these optimizations, we are able to show sig-
nificant improvement in CVC4’s performance on certain domains (Sect. 6).

5 Auto-Tuning Encoders

For each domain, we use OpenTuner [3] to auto-tune the set of encoders (one for
each pattern) obtained from the synthesis phase according to a performance met-
ric based on the number of benchmark problems solved and the time taken to
solve them. The evaluation function (fopt) to be optimized takes as input a set
of encoders to be used and returns a real number. The number is the sum of all the
times taken by the benchmarks to solve; for any benchmarks that time out, their
time is counted as the timeout bound times two. The auto-tuner tries to minimize
this value by trying out various subsets of encoders provided to it as input while
learning a model of the dependence of fopt on the selection of encoders.

312 J.P. Inala et al.

6 Evaluation

We extend CVC4 solver (ranked 2 in the bit-vector category of SMT-COMP
2015 [8]) with synthesized encoders for each domain and evaluate the impact
on its performance. Each generated solver is evaluated on the non-incremental
quantifier free bit-vector (QF BV) benchmark suite from SMT-COMP 2015. This
benchmark suite consists of 26320 benchmarks that are grouped into 36 sub-
categories. In most cases, these sub-categories represent a particular domain of
problems–for example, the log − slicing category represents benchmarks that verify
bit-vector translation from operations like addition and multiplication to a set
of base operations. Some other sub-categories like asp are themselves a collection
of benchmarks from multiple different sources. We treat these sub-categories as
domains irrespective of whether they really represent a single domain.

6.1 Experimental Setup

OptCNF generates a domain specific solver in four stages:

1. Randomly sampling 10 % of the benchmarks from the domain and running
CVC4 to collect all the formulas just before they are encoded to SAT.

2. Pattern finding (Sect. 3) on these formulas and filtering the terms based on
capabilities of the synthesis phase of OptCNF.

3. Translation of each term to multiple SyGus problems one for each possible
template that is suitable for the type and the size of the term. For problems
involving non bit-parallel terms, OptCNF uses Sketch with 4 cores to par-
allelize the clause minimization algorithm (Sect. 2.5). All other problems use
a single core. Each problem is also given a timeout of 3 h.

4. Augmenting CVC4 code with the generated encoders (Sect. 4) and auto-
tuning to find a subset of encoders that improve the performance (Sect. 5).

Different parts of OptCNF system were run on different machines. Pattern
finding and synthesis of encoders were run on a machine with forty 2.4 GHz Intel
Xeon processors and 96 GB RAM. For auto-tuning, we used a private cluster
running OpenStack with parallelism of 150 on 75 virtual machines each with 4
cores and 8 GB RAM of processing power. Finally, the performance experiment
evaluating the solvers on QF BV benchmarks was run on the StarExec [48] cluster
infrastructure with a timeout of 900 s and a memory limit of 200 GB (similar to
the resources used for the SMT competition).

6.2 Domains and Benchmarks

We generate a total of 7 domain-specific solvers and a general solver which is
obtained by using the entire QF BV benchmark suite for pattern finding and
synthesis. For the general solver, we enable all the generated encoders and do not
auto-tune them. The 7 domains are chosen from the 36 categories in QF BV.
We chose these categories based on the criteria that the number of benchmarks

Synthesis of Domain Specific CNF Encoders for Bit-Vector Solvers 313

in the domain is at least 20 and the average run-time is significant enough to see
an improvement. The solvers for these domains are referred by their category
name.

6.3 Experiments

We focus on the following questions: (1) Can OptCNF generate domain-specific
solvers in reasonable amount of time? (2) How does the performance of the
domain-specific optimal solvers generated by OptCNF compare to CVC4? (3)
How domain-specific are the encoders generated by OptCNF?

Time Taken to Generate Optimal Encoders: Table 1 shows the number
of generated (gen) and selected (sel) encoders (selected after auto-tuning, differ-
entiated by the type of patterns), and, the total time taken to synthesize these
encoders (both cpu time and clock time). In addition to this, Pattern Finding
was run for an hour per domain and Auto-tuning was run for 7.5 h per domain.
In total, OptCNF was able to generate domain-specific encoders in 10 − 22 h
per domain which is a reasonable amount of time as compared to a software
engineer implementing and debugging encoders in a solver.

Table 1. Encoder statistics and Sketch running times

Domain # boolean # bit parallel # non bit parallel Total patterns Synthesis time

gen sel gen sel gen sel gen sel (cpu hrs) (clock hrs)

general 336 336 334 334 12 12 682 682 497 17

asp 29 22 0 0 4 3 33 25 8 2

brummayerbiere2 66 0 12 7 2 2 80 9 16 2

brummayerbiere3 35 0 13 3 5 3 53 6 15 3

bruttomesso 21 4 1 0 1 0 23 4 5 2

float 272 17 294 18 3 0 569 35 360 13

log-slicing 19 0 86 60 5 5 110 65 49 4

mcm 13 3 2 1 4 1 19 5 7 2

Impact of Domain-Specific Solvers: With the exception of the general solver,
all the other solvers are auto-tuned to select a subset of the generated encodings
that improves the performance. For all domains except asp and bruttomesso, the
training set for auto-tuning contains 50 % benchmarks chosen randomly from
the domain. For these domains, we perform 2-fold cross-validation i.e. we swap
training/test sets and run auto-tuning again. For asp and bruttomesso, the train-
ing set contains only 20 % benchmarks due to resource constraints for auto-
tuning resulting from them having a large number of benchmarks. For these
two domains, we run auto-tuning again for approximating cross-validation with
another disjoint training set that contains 20 % benchmarks form the domain.

314 J.P. Inala et al.

Table 2. Performance comparison: Domain-specific, general and CVC4 solvers on 7
categories of QF BV benchmark suite (first training set)

CVC4 general Domain-Specific Boolector

Benchmark category solved time (s) solved time (s) solved time (s) solved time (s)

asp (365) 240 32652.8 238 33291.8 288 34971.5 308 29821.6

brummayerbiere2 (33) 28 1202.8 24 1653.2 29 1691.0 33 1371.2

brummayerbiere3 (40) 23 1165.2 23 2239.4 24 1272.1 32 1760.7

bruttomesso (676) 623 32880.8 604 35808.6 623 32840.2 774 8461.1

float (62) 59 4015.9 55 3599.6 60 4395.5 58 6152.9

log-slicing (79) 33 12636.1 57 17290.6 62 21115.4 53 9534.8

mcm (61) 40 3933.9 38 3355.0 43 4193.0 39 8333.1

1046 88487.5 1039 97238.2 1129 100479.8 1297 65435.4

We compare the performance of the domain-specific solvers (auto-tuned on
the first training set) with the general solver and CVC4 in Table 2. Only the
benchmarks from the first test set are considered for evaluation in the table. The
best-performing solver for every domain is marked as bold. The auto-tuned solver
solves 83 benchmarks more than CVC4 in total. For all domains, the domain-
specific solvers outperform CVC4. The domain-specific solvers auto-tuned on the
second training set for each domain also outperform CVC4 and solve 73 more
benchmarks on their corresponding test sets (the details are omitted due to lack
of space).

Table 2 also presents the performance of the Boolector solver (the best bit-
vector solver in SMT-COMP’15) on the same test set benchmarks for refer-
ence. CVC4 is already better than Boolector on two domains (mcm, float) and
OptCNF improves it slightly further. On one domain (log − slicing), CVC4 is
notably worse than Boolector, but OptCNF makes it outperform Boolector. In
addition, OptCNF significantly bridges the gap between CVC4 and Boolector
on the mcm domain.

The run-times for benchmarks from domains where we did not perform auto-
tuning can be found in the full technical report [37]. The general solver performs
better on some domains but not the others, and, slightly worse than CVC4 over-
all. In all cases where we performed auto-tuning, the domain-specific solvers beat
the general solver (Table 2). Two scatter plots showing the performance of CVC4
versus general and the domain-specific solvers on these 7 domains can be found
in Fig. 4. It is evident from the graphs that the domain-specific solvers reduce
the number of negative points (in the upper left triangle) thereby improving the
performance when compared to CVC4 overall.

Domain Specificity: We ran each domain-specific solver (obtained from the
first training set) on all the other domains and the results are summarized in
Table 3. The best performing result for each domain is marked as bold and the
results that are worse than CVC4 are underlined. 5 out of 7 of the domains
are very domain-specific; the solvers that are tuned specially for them perform

Synthesis of Domain Specific CNF Encoders for Bit-Vector Solvers 315

Fig. 4. Scatter plots showing run-times (log scale) for different solvers on the 7 domains

Table 3. Cross-domain performance

significantly better than all the other solvers. In some cases, using one solver on
another domain makes it worse than CVC4. However, mcm domain has a solver
optimal for other two domains performing almost identical to their respective
solvers.

7 Related Work

A recent paper [12] on automatically generating propagation complete encodings
is the closest to this work. Encodings generated through OptCNF are propa-
gation complete and OptCNF also minimizes the number of clauses across the
template being used for the encoder similar to [12]. But, OptCNF is different
in two important ways: (1) Instead of encodings, OptCNF generates encoders
which produce encodings at run-time (enabled by program synthesis) (2) The
generated encoders are specialized for a particular domain (enabled by pattern
finding and auto-tuning).

Different notions of propagation strength of encodings have been considered
in both Knowledge Compilation [18] (e.g. unit-refutation completeness [20] and
its generalizations [27–29]) and Constraint Programming [5,13] communities.

316 J.P. Inala et al.

Propagation complete encodings (PCEs) have been established [10] to be “well-
posed” for a SAT solver’s deduction mechanism, which provides a tractable
reasoning on the constraints. [10] reduces the problem of generating PCEs to
iteratively solving QBF formulas whereas OptCNF relies on CEGIS based pro-
gram synthesis [46] to generate encoders producing PCEs at run-time. There
has also been some recent work on using SAT solvers for enumeration of prime
implicants in the Knowledge Compilation community [27,28]. In Constraint Pro-
gramming, Generalized Arc-Consistency (GAC) [5] is connected to propagation
completeness and has been adopted in SAT [24] but is usually only enforced on
input/output variables and not on auxiliary variables which provides a weaker
notion of propagation strength as compared to PCEs. [9] shows that certain
global constraints can require exponential sized formulas for PCEs. In our work,
we do not encounter this issue since we consider only small patterns as con-
straints.

Reducing the size of the CNF encodings derived from SAT formulas has been
shown to be an effective way of optimizing SAT solvers [15,22,23,30,41,52].
There has been a lot of work on optimal encodings for specific kinds of con-
straints like cardinality constraints [1], sequence constraints [13], verification of
microprocessors [52]. There is also some work on logic minimization techniques
like Beaver [38]. But, to our knowledge, we are the first ones to generate domain
specific encodings that are propagation complete and minimal for multiple chal-
lenging domains using program synthesis technology.

OptCNF can be extended to other SMT solvers besides CVC4 such as
Z3 [19], Beaver [38], Boolector [14] and Yices [21]. In Beaver and Boolector,
intermediate data structures like And-Inverter graphs (AIGs) are employed and
are later on transformed to CNF efficiently. Consequently, they have numerous
optimizations on the AIG representation before translating it to CNF. Apply-
ing OptCNF directly to such solvers can override these optimizations and hence,
requires more work. These solvers can also use lazy bit-blasting strategy as
opposed to eager bit-blasting that we use in our experiments. OptCNF can be
extended to solvers employing lazy bit-blasting by using the generated encodings
at the time of bit-blasting.

Finally, algorithm configuration [4,33,34], an active area of research in artifi-
cial intelligence, has been used in generation of encodings for Planning Domain
Models [51] and improving CSP solving by searching for optimal solver choices
and the different encodings for the CSP constraints [31]. It has also been shown
to be successful for tuning parameters for SAT solvers [36]. Unlike OpenTuner [3],
where the optimization function is a black-box, algorithm configuration can
use the structure of certain types of functions and employ additional heuris-
tics [35,36] to optimize them.

8 Conclusion

In this paper, we presented a technique to generate propagation complete CNF
encoders for bit-vector terms. We combined it with machine learning based

Synthesis of Domain Specific CNF Encoders for Bit-Vector Solvers 317

techniques namely pattern finding and auto-tuning to generate domain-specific
solvers. Our evaluation showed that this technique can significantly improve
CVC4, a state of the art SMT solver, on the domains represented in the bit-
vector benchmark suite from SMT-COMP 2015.

Acknowledgments. This research was partially supported by NSF award #1139056
(ExCAPE) and by DARPA MUSE award #FA8750-14-2-0270.

References

1. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: A parametric
approach for smaller and better encodings of cardinality constraints. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 80–96. Springer, Heidelberg (2013)

2. Alur, R., Bodik, R., Juniwal, G., Martin, M.M., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis.
Dependable Softw. Syst. Eng. 40, 1–25 (2015)

3. Ansel, J., Kamil, S., Veeramachaneni, K., Ragan-Kelley, J., Bosboom, J., O’Reilly,
U., Amarasinghe, S.P.: OpenTuner: an extensible framework for program auto-
tuning. In: Amaral, J.N., Torrellas, J., (eds.) International Conference on Paral-
lel Architectures and Compilation, PACT 2014, Edmonton, AB, Canada, 24–27
August 2014, pp. 303–316. ACM (2014)

4. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS,
vol. 5732, pp. 142–157. Springer, Heidelberg (2009)

5. Bacchus, F.: GAC via unit propagation. In: Bessière, C. (ed.) CP 2007. LNCS, vol.
4741, pp. 133–147. Springer, Heidelberg (2007)

6. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

7. Barrett, C., Deters, M., Moura, L., Oliveras, A., Stump, A.: 6 years of SMT-COMP.
J. Autom. Reasoning 50(3), 243–277 (2012)

8. Barrett, C.W., de Moura, L., Stump, A.: SMT-COMP: satisfiability modulo the-
ories competition. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol.
3576, pp. 20–23. Springer, Heidelberg (2005)

9. Bessiere, C., Katsirelos, G., Narodytska, N., Walsh, T.: Circuit complexity and
decompositions of global constraints. In: Boutilier, C. (ed.) IJCAI 2009, Proceed-
ings of the 21st International Joint Conference on Artificial Intelligence, Pasadena,
11–17 July 2009, pp. 412–418 (2009)

10. Bordeaux, L., Marques-Silva, J.: Knowledge compilation with empowerment. In:
Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOF-
SEM 2012. LNCS, vol. 7147, pp. 612–624. Springer, Heidelberg (2012)

11. Bounimova, E., Godefroid, P., Molnar, D.: Billions and billions of constraints:
whitebox fuzz testing in production. In: Proceedings of the 2013 International
Conference on Software Engineering, ICSE 2013, Piscataway, pp. 122–131. IEEE
Press (2013)

12. Brain, M., Hadarean, L., Kroening, D., Martins, R.: Automatic generation of prop-
agation complete SAT encodings. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI
2016. LNCS, vol. 9583, pp. 536–556. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49122-5 26

http://dx.doi.org/10.1007/978-3-662-49122-5_26
http://dx.doi.org/10.1007/978-3-662-49122-5_26

318 J.P. Inala et al.

13. Brand, S., Narodytska, N., Quimper, C.-G., Stuckey, P.J., Walsh, T.: Encodings
of the sequence constraint. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp.
210–224. Springer, Heidelberg (2007)

14. Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and
arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505,
pp. 174–177. Springer, Heidelberg (2009)

15. Chambers, B., Manolios, P., Vroon, D.: Faster SAT solving with better CNF gen-
eration. In: Proceedings of the Conference on Design, Automation and Test in
Europe, DATE 2009, pp. 1590–1595. European Design and Automation Associa-
tion, Belgium (2009)

16. Cheung, A., Solar-Lezama, A., Madden, S.: Partial replay of long-running appli-
cations. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of software engineering, ESEC/FSE 2011,
pp. 135–145. ACM, New York (2011)

17. Cook, B., Kroening, D., Rümmer, P., Wintersteiger, C.M.: Ranking function syn-
thesis for bit-vector relations. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 236–250. Springer, Heidelberg (2010)

18. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res.
(JAIR) 17, 229–264 (2002)

19. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

20. del Val, A.: Tractable databases: how to make propositional unit resolution com-
plete through compilation. In: Doyle, J., Sandewall, E., Torasso, P., (eds.) Proceed-
ings of the 4th International Conference on Principles of Knowledge Representation
and Reasoning (KR 1994), Bonn, Germany, 24–27 May 1994, pp. 551–561. Morgan
Kaufmann (1994)

21. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Heidelberg (2014)

22. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

23. Eén, N., Mishchenko, A., Sörensson, N.: Applying logic synthesis for speeding up
SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp.
272–286. Springer, Heidelberg (2007)

24. Gent, I.P.: Arc consistency in SAT. In: van Harmelen, F. (ed.) Proceedings of the
15th European Conference on Artificial Intelligence, ECAI 2002, Lyon, July 2002
pp. 121–125. IOS Press (2002)

25. Godefroid, P.: Test generation using symbolic execution. In: D’Souza, D., Kavitha,
T., Radhakrishnan, J. (eds.) IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2012, 15–17 December
2012, Hyderabad, vol. 18. LIPIcs, pp. 24–33. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2012)

26. Gulwani, S., Srivastava, S., Venkatesan, R.: Constraint-based invariant inference
over predicate abstraction. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009.
LNCS, vol. 5403, pp. 120–135. Springer, Heidelberg (2009)

27. Gwynne, M., Kullmann, O.: Generalising and unifying SLUR and unit-refutation
completeness. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J.,
Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 220–232. Springer, Heidelberg
(2013)

Synthesis of Domain Specific CNF Encoders for Bit-Vector Solvers 319

28. Gwynne, M., Kullmann, O.: Towards a theory of good SAT representations. CoRR,
abs/1302.4421 (2013)

29. Gwynne, M., Kullmann, O.: Generalising unit-refutation completeness and SLUR
via nested input resolution. J. Autom. Reasoning 52(1), 31–65 (2014)

30. Heule, M., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF for-
mulas. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp.
357–371. Springer, Heidelberg (2010)

31. Hurley, B., Kotthoff, L., Malitsky, Y., O’Sullivan, B.: Proteus: a hierarchical port-
folio of solvers and transformations. In: Simonis, H. (ed.) CPAIOR 2014. LNCS,
vol. 8451, pp. 301–317. Springer, Heidelberg (2014)

32. Hutter, F., Babic, D., Hoos, H.H., Hu, A.J.: Boosting verification by automatic
tuning of decision procedures. In: Proceedings of the Formal Methods in Computer
Aided Design, FMCAD 2007, pp. 27–34. IEEE Computer Society, Washington, DC
(2007)

33. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011)

34. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Int. Res. 36(1), 267–306 (2009)

35. Hutter, F., Hoos, H.H., Stützle, T.: Automatic algorithm configuration based on
local search. In: Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence, 22–26 July 2007, Vancouver, pp. 1152–1157. AAAI Press (2007)

36. Hutter, F., Lindauer, M.T., Balint, A., Bayless, S., Hoos, H.H., Leyton-Brown, K.:
The configurable SAT solver challenge (CSSC). CoRR, abs/1505.01221 (2015)

37. Inala, J.P., Singh, R., Solar-Lezama, A.: Technical report: Synthesis of Domain Spe-
cific CNF Encoders for Bit-Vector Solvers (2016). http://jinala.github.io/assets/
papers/sat2016tr.pdf. (Accessed on 24 April 2016)

38. Jha, S., Limaye, R., Seshia, S.A.: Beaver: engineering an efficient SMT solver for
bit-vector arithmetic. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 668–674. Springer, Heidelberg (2009)

39. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of Boolean formu-
las. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC. LNCS, vol. 7857, pp. 102–117.
Springer, Heidelberg (2013)

40. Martins, R., Manquinho, V.M., Lynce, I.: Exploiting cardinality encodings in par-
allel maximum satisfiability. In: IEEE 23rd International Conference on Tools with
Artificial Intelligence, ICTAI 2011, Boca Raton, 7–9 November 2011, pp. 313–320.
IEEE Computer Society (2011)

41. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation
Conference, DAC 2001, pp. 530–535. ACM, New York (2001)

42. Nguyen, C., Yoshida, H., Prasad, M.R., Ghosh, I., Sen, K.: Generating succinct test
cases using don’t care analysis. In: Proceedings of the Eighth IEEE International
Conference on Software Testing, Verification and Validation, pp. 1–10. IEEE (2015)

43. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 1989, pp. 179–190. ACM, New York (1989)

44. Sen, K., Kalasapur, S., Brutch, T., Gibbs, S.: Jalangi: A selective record-replay and
dynamic analysis framework for Javascript. In: Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pp. 488–498.
ACM, New York (2013)

http://jinala.github.io/assets/papers/sat2016tr.pdf
http://jinala.github.io/assets/papers/sat2016tr.pdf

320 J.P. Inala et al.

45. Singh, R., Solar-Lezama, A.: Automatic generation of formula simplifiers based on
conditional rewrite rules arXiv:1602.07285 (2016)

46. Solar-Lezama, A.: Program Synthesis By Sketching. PhD thesis, EECS Dept., UC
Berkeley (2008)

47. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program syn-
thesis. In: Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2010, pp. 313–326. ACM, New
York (2010)

48. Stump, A., Sutcliffe, G., Tinelli, C.: Introducing StarExec: a cross-community
infrastructure for logic solving. In: Klebanov, V., Beckert, B., Biere, A., Sut-
cliffe, G. (eds.) COMPARE, CEUR Workshop Proceedings, vol. 873, p. 2 (2012).
CEUR-WS.org

49. Tanno, H., Zhang, X., Hoshino, T., Sen, K.: TesMa and CATG: automated test
generation tools for models of enterprise applications. In: Proceedings of the 37th
International Conference on Software Engineering, ICSE 2015, vol. 2, pp. 717–720.
IEEE Press, Piscataway (2015)

50. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siek-
mann, J.H., Wrightson, G. (eds.) Automation of Reasoning, pp. 466–483. Springer,
Heidelberg (1983)

51. Vallati, M., Hutter, F., Chrpa, L., McCluskey, T.L.: On the effective configuration
of planning domain models. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of
the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, 25–31 July 2015, pp. 1704–1711. AAAI Press (2015)

52. Velev, M.N.: Efficient translation of boolean formulas to cnf in formal verification
of microprocessors. In: Proceedings of the 2004 Asia and South Pacific Design
Automation Conference, ASP-DAC 2004, pp. 310–315. IEEE Press, Piscataway
(2004)

53. Wang, X., Zeldovich, N., Kaashoek, M.F., Solar-Lezama, A.: A differential app-
roach to undefined behavior detection. Commun. ACM 59(3), 99–106 (2016)

http://arxiv.org/abs/1602.07285
http://arXiv.org/abs/1602.07285
http://ceur-ws.org/

Beyond SAT

Finding Finite Models in Multi-sorted
First-Order Logic

Giles Reger1(B), Martin Suda1, and Andrei Voronkov1,2,3

1 University of Manchester, Manchester, UK
giles.reger@manchester.ac.uk

2 Chalmers University of Technology, Gothenburg, Sweden
3 EasyChair, Manchester, UK

Abstract. This work extends the existing MACE-style finite model
finding approach to multi-sorted first-order logic. This existing app-
roach iteratively assumes increasing domain sizes and encodes the related
ground problem as a SAT problem. When moving to the multi-sorted
setting each sort may have a different domain size, leading to an explo-
sion in the search space. This paper focusses on methods to tame that
search space. The key approach adds additional information to the SAT
encoding to suggest which domains should be grown. Evaluation of an
implementation of techniques in the Vampire theorem prover shows that
they dramatically reduce the search space and that this is an effective
approach to find finite models in multi-sorted first-order logic.

1 Introduction

There have been a number of approaches looking at finding finite models for
First-Order Logic (FOL), however there has not been much work on finding
such models for Multi-Sorted FOL where symbols are given sorts. We consider
a model finding method, pioneered by MACE [12], that encodes the search as a
SAT problem. We show how this method can be modified to deal directly with
multi-sorted input, rather than translating the problem to the unsorted setting,
which is the most common current method.

There are two main motivations for this work. Firstly, many problems are
more naturally expressed in multi-sorted FOL than in unsorted FOL (although
their theoretical expressive power is equivalent). Therefore, it is useful to be able
to reason in this setting and translations from multi-sorted FOL to unsorted FOL
often make this reasoning harder. Secondly, MACE-style model finders can use
sort information to make the SAT encoding smaller. However, as we discuss
below, finding finite models of multi-sorted formulas also presents significant
challenges.

This work was supported by EPSRC grant EP/K032674/1. Martin Suda and Andrei
Voronkov were partially supported by ERC Starting Grant 2014 SYMCAR 639270.
Andrei Voronkov was also partially supported by the Wallenberg Academy Fellow-
ship 2014 - TheProSE.

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 323–341, 2016.
DOI: 10.1007/978-3-319-40970-2 20

324 G. Reger et al.

The MACE-style approach, later extended in the Paradox [5] work, involves
selecting a domain size for the finite model, grounding the first-order problem
with this domain and translating the resulting formulas into a SAT problem,
which, if satisfied, gives a finite model of the selected size. Search for a finite
model then involves considering iteratively larger domain sizes. In the multi-
sorted setting it is necessary to consider the size of each sort separately. This
can be demonstrated by the following example, which is an extension of the
much used Monkey Village example [2,4].

Example 1 (Organised Monkey Village). Imagine a village of monkeys where
each monkey owns at least two bananas. As the monkeys are well-organised,
each tree contains exactly three monkeys. Monkeys are also very friendly, so
they pair up to make sure they will always have a partner. We can represent this
problem as follows:

(∀M : monkey)(owns(M, b1(M)) ∧ owns(M, b2(M)) ∧ b1(M) �= b2(M))
(∀M1,M2 : monkey)(∀B : banana)(owns(M1, B) ∧ owns(M2, B) → M1 = M2)

(∀T : tree)(∃M1,M2,M3 : monkey)((
∧3

i=1 sits(Mi) = T) ∧ distinct(M1,M2,M3))

(∀M1,M2,M3,M4 : monkey)(∀T : tree)((
∧4

i=1 sits(Mi) = T) ⇒ ¬distinct(M1,M2,M3,M4))
(∀M : monkey)(partner(M) �= M ∧ partner(partner(M)) = M)

where the predicates owns associates monkeys with bananas, the functions b1 and
b2 witness the existence of each monkey’s minimum two bananas, the function
sits maps monkeys to the tree that they sit in, the function partner associates
a monkey with its partner, and the (meta-)predicate distinct is true if all of its
arguments are distinct.

This problem requires the domain of monkey to be exactly three times larger
than the domain of tree, the domain of banana to be at least twice as large
as the domain of monkey, and the domain of monkey to be even. The main
model finding effort then becomes searching for an assignment of domain sizes
that satisfies this problem. Here, the smallest such assignment is |tree| = 2,
|monkey| = 6, and |banana| = 12. In the general case it is necessary to try all
combinations of domain sizes. In the worst case this will mean trying a number
of assignments exponential in the number of sorts.

The techniques introduced in this paper tackle this issue by introducing a
number of ways to constrain this search space. The main contributions can be
summarised as:

1. We show how the MACE-style approach (described in Sect. 3) can be extended
to the multi-sorted setting via a novel extension of the SAT encoding (Sect. 5).
This encoding uses information from the SAT solver to guide the search
through the space of domain size assignments.

2. We use monotonic sorts introduced in [4] in a new way for the multi-sorted
case to reduce the search space further (Sect. 5.5).

3. We utilise the saturation-based approach for first-order logic to detect fur-
ther constraints on the search space introduced by injective and surjective
functions (Sect. 6).

Finding Finite Models in Multi-sorted First-Order Logic 325

4. We present an alternative to (1), a complementary search strategy, utilising
a different SAT encoding, that only needs to expand (and never shrink) the
sizes of sort domains (Sect. 8).

These ideas have been realised within the Vampire theorem prover [11] and
evaluated on problems taken from the TPTP and SMT-LIB benchmark suites.
Our experimental evaluation (Sect. 9) shows that these techniques can be used
to (i) improve finite model finding in the unsorted setting, (ii) effectively and
efficiently find finite models in the multi-sorted setting, and (iii) detect cases
where no models exist.

2 Preliminaries

Multi-sorted First-Order Logic. We consider a multi-sorted first-order logic
with equality. A term is either a variable, a constant, or a function symbol applied
to terms. A literal is either a propositional symbol, a predicate applied to terms,
an equality of two terms, or a negation of either. Function and predicate symbols
are sorted i.e. their arguments (and the return value in the case of functions)
have a unique sort drawn from a finite set of sorts S. We only consider well-sorted
literals. There is an equality symbol per sort and equalities can only be between
terms of the same sort. Formulas may use the standard notions of quantification
and boolean connectives, but in this work we assume all formulas are clausified
using standard techniques. A clause is a disjunction of literals where all variables
are universally quantified (existentially quantified variables can be replaced by
skolem functions during clausification).
SAT Solvers. The technique we present later will make use of a black-box
SAT solver and we assume the reader is familiar with their general properties.
We assume that a SAT solver supports solving under assumptions [7,8]. This
means the SAT solver can be asked to search for a model of a set of clauses N
additionally satisfying a conjunction of assumption literals A and is able, in case
the answer is UNSAT, to provide a subset A0 ⊆ A of those assumptions which
were sufficient for the unsatisfiability proof.

3 MACE-Style Finite Model Finding in an Unsorted
Setting

We describe the finite model finding procedure in a single sorted setting. This is
a variation of the approach taken by Paradox [5]. The general idea is to create,
for each integer n ≥ 1, a SAT problem that is satisfiable if the problem has a
finite model of size n. To find a finite model we therefore iterate the approach
for domain sizes n = 1, 2, 3,

326 G. Reger et al.

3.1 DC -Models

Let S be a set of clauses. Let us fix an integer n ≥ 1. Let DC = {c1, . . . , cn}
be a set of distinct constants not occurring in S, we will call the elements of
DC domain constants. We extend the language by adding the domain constants
and say that an interpretation is a DC-interpretation, if (i) the domain of this
interpretation is DC and (ii) every domain constant ci is interpreted in it by
itself. Every model of S that is also a DC -interpretation will be called a DC-
model of S. It is not hard to argue that, if S has a model of size n, then it also
has a DC -model. We say that S is n-satisfiable if it has a model of size n.

Let C be a clause. A DC-instance of C is a ground clause obtained by replac-
ing every variable in C by a constant in DC . For example, if p(x) ∨ x = y is a
clause and n ≥ 2, then p(c1) ∨ c1 = c2 and p(c1) ∨ c1 = c1 are DC -instances,
while p(c1) ∨ c2 = c3 is not a DC -instance. A clause with k different variables
has exactly nk DC -instances.

Theorem 1. Let I be a DC-interpretation and C a clause. Then C is true in
I if and only if all DC-instances of C are true in I.

Let us denote by S∗ the set of all DC -instances of the clauses in S. Consider an
example. Let S consist of three clauses

p(b), f(a) �= b, f(f(x)) = x.

The smallest model of S has a domain of size two. Take n = 2, then DC =
{c1, c2}. By the above theorem, S has a model of size two if an only if S∗ has a
DC-model. The set S∗ consists of four ground clauses:

p(b), f(a) �= b, f(f(c1)) = c1, f(f(c2)) = c2.

Note that DC -models are somehow similar to Herbrand models used in logic
programming and resolution theorem proving, except that they are built using
(domain) constants instead of all ground terms and DC -instances instead of
ground instances.

Theorem 1 is not directly applicable to encode the existence of models of
size n as a SAT problem, because DC -instances can contain complex terms. We
will now introduce a special kind of ground atom which contains no complex
subexpressions. We call a principal term any term of the form f(d1, . . . , dm),
where m ≥ 0, f is a function symbol, which is not a domain constant, and
d1, . . . , dm are domain constants. In our example there are four principal terms:
a, b, f(c1), f(c2). A ground atom is called principal if it either has the form
p(d1, . . . , dm) where m ≥ 0, p is a predicate symbol different from equality and
d1, . . . , dm are domain constants or has the form t = d, where t is a principal
term and d a domain constant. We call a principal literal a principal atom or its
negation.

Theorem 2. Let I1, I2 be DC-interpretations. If they satisfy the same principal
atoms, then I1 coincides with I2.

Finding Finite Models in Multi-sorted First-Order Logic 327

Theorem 1 reduces n-satisfiability of S to the existence of a DC -interpretation
of the set S∗ of ground clauses. Theorem 2 shows that DC -interpretations can
be identified by the set of principal atoms true in them. What we will do next
is to introduce a propositional variable for every principal atom and reduce the
existence of a DC -model of S∗ to satisfiability of a set of clauses using only
principal literals.

3.2 The SAT Encoding

The main step in the reduction is to transform every non-ground clause C into an
equivalent clause C ′ such that DC -instances of C ′ consist (almost) only of prin-
cipal literals. We will explain what “almost” means below. This transformation
is known as flattening.
Flattening. A literal is called flat if it has one of the following forms:

1. p(x1, . . . , xm) or ¬p(x1, . . . , xm), where m ≥ 0 and p is a predicate symbol;
2. f(x1, . . . , xm) = y or f(x1, . . . , xm) �= y, where m ≥ 0 and f is a function

symbol, which is not a domain constant.
3. an equality between variables x = y.

Every DC -instance of a flat literal is either a principal literal (for the first two
cases), or an equality ci = cj between domain constants.

To flatten clauses in S, we first get rid of all inequalities between variables,
replacing every clause of the form x �= y ∨ C[x] by the equivalent clause C[y].
Then we repeatedly replace every clause C[t], where t is not a variable and t
occurs as an argument to a predicate or a function symbol, by the equivalent
clause t �= x ∨ C[x], where x is a fresh variable.

Our example clauses can be flattened as follows:

p(y) ∨ b �= y, f(y1) = y2 ∨ a �= y1 ∨ b �= y2, f(y) = x ∨ f(x) �= y

DC -Instances. We can now produce the DC -instances of each flattened clause
C[x1, . . . , xk]. For our running example (with n = 2) this produces the following
ten DC -instances:

p(c1) ∨ b �= c1 f(c1) = c1 ∨ a �= c1 ∨ b �= c1 f(c1) = c1 ∨ f(c1) �= c1
p(c2) ∨ b �= c2 f(c1) = c2 ∨ a �= c1 ∨ b �= c2 f(c1) = c2 ∨ f(c2) �= c1

f(c2) = c2 ∨ a �= c2 ∨ b �= c2 f(c2) = c2 ∨ f(c2) �= c2
f(c2) = c1 ∨ a �= c2 ∨ b �= c1 f(c2) = c1 ∨ f(c1) �= c2

Note that all literals are principal. If we treat principal atoms as propositional
variables, the two leftmost clauses can be satisfied by making b �= c1 and b �= c2
both true, but this violates the assumption that b should equal one of the domain
constants. Additionally, the two rightmost topmost clauses can be satisfied by
making f(c1) = c1 and f(c1) = c2 true but this violates the assumption that f
is a function. We would like to prevent both situations. To do this we introduce
additional definitions.

328 G. Reger et al.

Functionality Definitions. For each principal term p and distinct domain
constants d1, d2 we produce the following clause

p �= d1 ∨ p �= d2,

These clauses are satisfied by every DC -interpretation and guarantee that all
function symbols are interpreted as (partial) functions.

For our running example we introduce four new definitions:

a �= c1 ∨ a �= c2, b �= c1 ∨ b �= c2, f(c1) �= c1 ∨ f(c1) �= c2, f(c2) �= c1 ∨ f(c2) �= c2

Totality Definitions. For each principal term p we produce the following clause

p = c1 ∨ . . . ∨ p = cn

These clauses are satisfied by every DC -interpretation of size n and guarantee,
together with functionality axioms, that all function symbols are interpreted as
total functions.

For our running example we introduce four new definitions:

a = c1 ∨ a = c2, b = c1 ∨ b = c2, f(c1) = c1 ∨ f(c1) = c2, f(c2) = c1 ∨ f(c2) = c2

The resulting SAT clauses have a model, meaning that the original clauses have
a finite model with a domain of size 2, which can be extracted from the SAT
encoding.
Equalities Between Variables. Flattening can result in equalities between
variables, that is, clauses of the form C ∨ x = y. DC -instances of such clauses
can have, in addition to principal literals, equalities between domain constants
d1 = d2, which are not principal literals. Since we only want to deal with prin-
cipal literals, we will get rid of such equalities in an obvious way: delete clauses
containing tautologies d = d and delete from clauses literals d1 = d2, where d1
are distinct d2 domain constants.

The following theorem underpins the SAT-based finite model building
method:

Theorem 3. Let S be a set of flat clauses and S′ be the set of clauses obtained
from S∗ by removing equalities between domain constants as described above and
adding all functionality and totality definitions. Then (i) all literals in S′ are
principal and (ii) S is n-satisfiable if and only if S′ is propositionally satisfiable.

Incrementality. In [5] the authors describe a method for incremental finite
model finding which advocates keeping (parts of) the contents of the SAT solver
when increasing n. However, in previous experiments we discovered that the
technique of variable and clause elimination [6] is useful at reducing the size
of the SAT problem. As this is not compatible with incremental solving, our
general approach is non-incremental.

Finding Finite Models in Multi-sorted First-Order Logic 329

3.3 Reducing the Number of Variables

The number of instances produced is exponential in the number of variables in
a flattened clause. We describe two approaches that aim to reduce this number.
Definition Introduction. This reduces the size of clauses produced by flat-
tening. Complex ground subterms are removed from clauses by introducing def-
initions. For example, a clause p(f(a, b), g(f(a, b))) becomes p(e1, e2) and we
introduce the definition clauses e1 = f(a, b) and e2 = g(e1), where e1, e2 are new
constants. One can also introduce definitions for non-ground subterms.
Clause Splitting. Clauses with k variables are split into subclauses having less
than k variables each. New predicate symbols applied to the shared variables are
then added to join the subclauses. For example, the clause p(x, y) ∨ q(y, z) with
three variables is replaced by the two clauses p(x, y) ∨ s(y) and ¬s(y) ∨ q(y, z)
where s is a new predicate symbol. These new clauses have two variables each.
For large domain sizes splitting can drastically reduce the size of the resulting
propositional problem. This was first used for finite model finding by Gandalf
[17] and later in Eground [14] for EPR problems.

3.4 Symmetry Breaking

The SAT problem produced above can contain many symmetries. For example,
every permutation of DC applied to a DC -model will give a DC -model, and
there are n! such permutations. We can (partially) break these symmetries as
follows. Firstly, if the input contains constants a1, . . . , al we can add the clauses

ai �= cm ∨ a1 = cm−1 ∨ . . . ∨ ai−1 = cm−1

for 1 < i ≤ l and 1 < m ≤ n, where we have arbitrarily ordered the constants
and captured the constraint that if the i-th constant is equal to a domain element
then some earlier constant must be equal to the next smallest domain element.
Secondly, we can tell the SAT solver about this order on constants by adding
the clauses

ai = c1 ∨ . . . ∨ ai = ci

for i ≤ min(m,n), which captures the constraint that the i-th constant must be
equal to one of the first i-th domain elements. If 1 < m < n then we can also
use principal terms other than constants in the second case, but not in the first.

3.5 Determining Unsatisfiability

If it is possible to detect the maximum domain size then it is possible to show
there is no model for a formula if all domain sizes up to, and including, this
maximum size have been explored. There are two straightforward ways to detect
maximum domain sizes. Firstly, we can look for axioms such as (∀x)(x = a∨x =
b) and (∀x)(∀y)(∀z)(x = y ∨ x = z ∨ z = y). Both indicate that the problem has
a maximum domain size of 2. Secondly, we can look for so-called EPR problems
that only use constant function symbols, in this case, the domain size is bounded
by the number of constants.

330 G. Reger et al.

4 Previous Work in the Multi-sorted Setting

We review previous work related to finite model finding for multi-sorted FOL.
Translating Sorts Away. One approach to dealing with multi-sorted FOL is
to translate the sorts away. We discuss two well-known translations, see [2] for
further discussions of such translations.

Sort Predicates. One can guard the use of sorted variables by a sort predicate
that indicates whether a variable is of that sort. This predicate can be set to
false in a model for all constants not of the appropriate sort. For example, the
last formula in the Organised Monkey Village problem can be rewritten using
the sort predicate isMonkey.

(∀M)(isMonkey(M) → partner(M) �= M ∧ partner(partner(M)) = M)

One also needs to add additional axioms that say that sorts are non-empty and
that functions return the expected sort. For the monkey sort we need to add

(∃M)(isMonkey(M)) (∀M)(isMonkey(partner(M))).

Sort Functions or Tags. One can tag all values of a sort using a sort function
for that sort. The idea is that in a model the function can map all constants (of
any sort) to a constant of the given sort. For example, the last formula from the
Organised Monkey Village problem can be rewritten using fm as a sort function
for monkey :

(∀M)(fm(partner(fm(M))) �= fm(M) ∧ fm(partner(fm(partner(fm(M))))) = fm(M))

The authors of [2] suggest conditions that allow certain sort predicates and
functions to be omitted. However, their arguments relate to resolution proofs
and do not apply here.
Sorting it Out with Monotonicity. In [4] Claessen et al. introduce a
monotonicity analysis and show how it can help translate multi-sorted formu-
las to unsorted ones by only applying the above translations to non-monotonic
sorts. A sort τ is monotonic for a multi-sorted FOL formula φ if for any model
of φ one can add an element to the domain of τ to produce another model of
φ. For example, in the Organised Monkey Village example the banana sort is
monotonic as we can add more bananas once we have enough. However, monkey
and tree are not monotonic as increasing either requires more trees, monkeys
and bananas.

In [4] they observe that if there is no positive equality between elements of
a sort then a new domain constant can be added and made to behave like an
existing domain constant and there is no way to detect this i.e. positive equalities
are required to bound a sort. They refine this notion further by noting that a
positive equality can be guarded by a predicate, if that predicate can be forced
to be true for all new domain elements. They introduce a calculus and associated
SAT encoding capturing these ideas that can be used to detect monotonic sorts,
which we use in our work.

Finding Finite Models in Multi-sorted First-Order Logic 331

Using a Theory of Sort Cardinalities. In the single-sorted setting there is
a family of techniques called SEM-style after the SEM model finder [18] based
on constraint satisfaction methods. There exists a technique in this direction
for the multi-sorted setting implemented in the CVC4 SMT solver [13]. The
idea behind this approach is to introduce a theory of sort cardinality constraints
and to incorporate this theory into the standard SMT solver structure. Briefly,
this approach introduces cardinality constraints (upper bounds) for sorts and
searches for a set of constraints that is consistent with the axioms. To check
a cardinality constraint k for sort s, a congruence relation is built for s-terms
and an attempt made to merge congruence classes so that there are at most k.
Cardinality constraints are then increased if found to be inconsistent. Quantified
formulas are then instantiated with representative constants from the equivalence
classes.

5 A Framework for the Multi-sorted Setting

In this section we introduce our framework able to build models of multi-sorted
formulas directly, in contrast to translating the sorts away. The key challenge is
dealing with a large and growing search space of domain sizes.

5.1 Using Sorts in the SAT Encoding

The SAT encoding in Sect. 3 can be updated to become sort-aware. First, instead
of the domain size n we use finite domain sizes ns for every sort s. Second,
instead of considering DC = {c1, . . . , cn}, we consider domains for each sort
DC s = {c1, . . . , cns

}. We can now define n as a function (called domain size
assignment) mapping each sort s to ns and likewise, define DC as the function
mapping each sort s to DC s. After that we can speak about DC -models and
n-satisfiability in the multi-sorted case.

All the definitions for the one-sorted case are modified to respect sorts. This
means, in particular, that in a DC -instance of a clause a variable of a sort
s can only be replaced by a domain constant in DC s. For example, for the
Organised Monkey Village problem (see page 324) we could consider the domain
size assignment n such that ntree = 1, nmonkey = 2 and nbanana = 2. The first
formula in this description can be split into three clauses, the first of which would
be flattened as owns(M,x)∨b1(M) �= x, which would have the two DC -instances
owns(c1, c1) ∨ b1(c1) �= c1 and owns(c1, c2) ∨ b1(c1) �= c2. We can use c1 for both
monkeys and bananas here as monkeys and bananas are never compared. For
this reason we can also break symmetries on a per-sort basis.

Once we have updated the SAT encoding, finite model finding can then pro-
ceed as before where we construct the SAT problem for the current domain size
assignment, check for satisfiability, and then either return a model or repeat the
process with an updated domain size assignment. The problem then becomes
how to generate the next domain size assignment to try.

332 G. Reger et al.

5.2 A Search Strategy

We will view the search space of domain size assignments as an infinite directed
graph whose nodes are domain size assignments and the children of an assign-
ment are all the nodes that have exactly one domain size that is one larger.
Thus, the number of children of every node is the number of sorts. A child of a
node n having a larger domain size than n for a sort s is called the s-child of n.
The s-descendant relation is the transitive closure of the s-child relation.

A search strategy will explore this graph node by node in such a way that
a node is always visited before its children. For each node n that we visit, we
can either check n-satisfiability or ignore this node. To decide whether a node
can be ignored, we will maintain a set of constraints. Abstractly, a constraint
is a predicate on domain size assignments and nodes that do not satisfy the
current set of constraints will be ignored. Concretely, we will use a language
of (boolean combinations of) arithmetical comparison literals such as |s| < b,
|s| ≤ b, . . . to represent the constraints. Here b stands for a concrete integer and
|s| is a symbolic placeholder variable for the “intended size” of the domain of
sort s. The semantics of the this representation is the obvious one.

We will work with a queue Q of nodes and a set C of constraints. Initially, Q
consists of a single node assigning 1 to all sorts and C is empty. We then repeat
the following steps:

1. If Q is empty, return “unsatisfiable”.
2. Remove the node q from the front of Q. Do nothing if q was visited before at

this step. Otherwise, continue with the following steps.
3. If q satisfies all constraints in C, perform finite model finding for q, terminating

if a model is found. In variations of this algorithm considered later, we can
add some constraints to C at this step: these constraints will be obtained by
analyzing the proof of q-unsatisfiability.

4. Add to Q all children of q.

We will now introduce an important notion helping us to prevent exploring
large parts of the search space. A constraint is said to have the s-beam property
at a node n, if all s-descendants of n violate this constraint. For example, the
constraint |s| < 3 has the s-beam property at any node q having qs = 2. We can
generalize this notion to more than one sort.

With this notion we can improve step 4 of the algorithm as follows:

4.′ If there is a constraint in C having an s-beam property at the s-child n of q,
if n violates this constraint, add to Q all children of q apart from n.

For example, if we have the constraint |s| < 3 and qs = 2, this constraint will
prevent us from considering the s-child n of q having ns = 3.

As a small refinement, we introduce a heuristic for deciding which node in the
queue to consider next, rather than processing them in the first-in-first-out order.
The idea is to estimate how difficult a domain size assignment is to check and to
prioritise exploration of the easier parts of the search space. Under this variation,

Finding Finite Models in Multi-sorted First-Order Logic 333

Q is a priority queue ordered by some size measure of the corresponding SAT
encoding (in the experiment, we measured size in the number of clauses). This
setup is complete, as long as this size grows strictly from a parent to its child
(which is trivially satisfied for number of clauses).

5.3 Encoding the Search Problem

We now show how an extension of the SAT encoding can be used to produce con-
straints and therefore indicate areas of the search space that should be avoided.
This is done by marking certain clauses of the encoding with certain special vari-
ables and using the mechanism for solving under assumptions to detect which of
these clauses were actually used in the unsatisfiability proof. We will design the
names of these special marking variables in such a way that the detected set of
used assumptions will immediately correspond to a (disjunctive) constraint.

Let us assume we are encoding for the domain size assignment n. For each
sort s we introduce two new propositional variables “|s| > ns” and “|s| < ns”,
which can be understood as stating that the intended size of the domain of s
should be larger, respectively smaller, than current ns. The marking of clauses
is now done as follows.

The totality definition for each principal term p becomes

p = c1 ∨ . . . ∨ p = cns
∨ “|s| > ns”

i.e. either the principal term equals one of the domain constants or the domain
is currently too small. DC -instances can be similarly updated. Let C be a DC -
instance and let sorts(C) be the set of sorts of variables occurring in C. We
replace C by

C ∨ ∨
s∈sorts(C) “|s| < ns”

i.e. either the DC -instance holds or the domain is too large.
We then attempt to solve the updated SAT problem under the assumptions

A =
∧

s∈S(¬“|s| > ns”) ∧ (¬“|s| < ns”)

tree

monkey

1 2 3

1

2

3

4

5

6

7

1

2

3

4 5-7

8

9-17

banana

monkey

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

1

2

3
4-5

6 7

8

9 10 11 12 13 14 15 16 17 18

Fig. 1. Finding a finite model for the Organised Monkey Village problem.

334 G. Reger et al.

i.e. we assume that we are using the correct domain sizes. These added assump-
tions ensure that the logical meaning of the updated encoding is exactly the
same as before. However, in the unsatisfiable case the solver now returns a sub-
set A0 ⊆ A of the assumptions that were sufficient to establish unsatisfiability.
Equivalently, ¬A0 is a conflict clause over the marking variables implied by the
encoded problem. This clause can now be understood as the newly derived con-
straint. We just need to interpret the marking variables in their “unquoted”
form, i.e., as arithmetic comparison literals.

The argument why this interpretation is correct is best done with the set A0,
which contains the marking variables negated. It consists of two main observa-
tions:

1. If A0 contains ¬“|s| > ns”, the unsatisfiability relies on a totality clause for
the sort s. Because a totality clause gets logically stronger when the domain
size is decreased, essentially the same unsatisfiability proof could be repeated
for the domain size |s| smaller or equal to the current ns (given the other
conditions from A0).

2. If A0 contains ¬“|s| < ns”, the unsatisfiability relies on a DC -instance with
a variable of sort s. Because we only add more instances of a clause if a
domain size is increased, the same unsatisfiability proof would also work for
the domain size |s| greater or equal to the current ns.

Thus at least one of the (atomic) constraints represented by the literals in A0

must be violated by a domain size assignment, if we want to have a chance of
finding a model.

5.4 An Example

Let us consider the Organised Monkey Village example (page 2). Running the
initial search strategy on this problem requires checking 2,661 different domain
sort assignments. Using the encoding described above means that only 18 assign-
ments are tried. The search carried out by our approach is illustrated in Fig. 1.
We give two projections of the 3-dimensional search space and the arrows show
the parts of the search space ruled out by s-beam constraints. On each step the
constraints rule out all but one neighbour, meaning that we take a direct path
to the solution through the search space.

5.5 Using Monotonicity

In our framework we can use the notion of monotonicity (see Sect. 4) in two
ways.

– Collapsing Monotonic Sorts. All monotonic sorts can be collapsed into a single
sort as this sort can grow to the size of the largest monotonic sort. It is never
safe to collapse a monotonic sort into a non-monotonic one as the monotonic
sort may depend on the non-monotonic one. For example, whilst banana is
a monotonic sort it must always be twice as large as the non-monotonic sort
monkey.

Finding Finite Models in Multi-sorted First-Order Logic 335

– Refining the Search Encoding. If a sort s is monotonic then if no model exists
for domain size ns then no model can exist where ns is smaller. We reflect
this in our encoding by not marking DC -instances with marking variables for
monotonic sorts. This leads to a derivation of potentially stronger constraints.

6 Detecting Constraints Between Sorts

In this section we discuss how properties of functions between sorts can be used
to further constrain the domain size search space. Consider the following set of
formulas

distinct(a1, a2, a3, a4, a5) (∀x : s1)(f(x) �= b)
(∀x, y : s1)(f(x) = f(y) → x = y) (∀x, y : s2)(g(x) = g(y) → x = y)

where ai are constants of sort s1, b is a constant of sort s2, f : s1 → s2, and
g : s2 → s3. The previous approach would try increasing the size of each sort by
1, discovering that one sort must grow at each step. However, we can see from
the bottom two formulas that f and g are injective and therefore that |s1| ≤
|s2| ≤ |s3|, furthermore, the second formula tells us that f is non-surjective and
therefore that |s1| < |s2|. Using these constraints we can immediately discount
9 of the 15 domain size assignments considered without them.

To find constraints between the sizes of sorts s1 and s2 we look for four cases:

1. If a function f : s1 → s2 is injective, then |s1| ≤ |s2|.
2. If a function f : s1 → s2 is injective and non-surjective, then |s1| < |s2|.
3. If a function f : s1 → s2 is surjective, then |s1| ≥ |s2|.
4. If a function f : s1 → s2 is surjective and non-injective, then |s1| > |s2|.
These constraints can be added to the constraints used in the search described
in Sect. 5.

Our method for detecting bounds was inspired by Infinox [3], a method for
showing no finite model can exist for unsorted FOL formulas if there is a strict
bound within a sort. We detect bounds by attempting to prove properties of
functions between sorts. For a unary function f : s1 → s2 occurring in the
problem we can simply make a claim such as

(∀x : s1)(∀y : s2)(f(x) = f(y) → x = y) ∧ (∃y : s2)(∀x : s1)(f(x) �= y)

for each case (this is case (2) above), and then ask whether this claim follows
from the axioms of the input problem. For non-unary functions it is necessary
to existentially quantify over one of the arguments, details of how to do this can
be found in [3].

To check each claim C we could use standard techniques to check A |= C
where A are the input axioms. Any black box solver could be used for this.
However, doing this on a per-claim basis is inefficient and we implement an
optimisation of Vampire’s saturation loop to establish multiple claims in a single
proof attempt. Recall that the saturation loop will search for consequences of

336 G. Reger et al.

its input. Therefore, we saturate A ∪ {Ci → li} where li is a fresh propositional
symbol labelling claim Ci. If the unit li is derived then we can conclude that the
claim Ci is a consequence of A. This approach was inspired by the consequence
elimination mode of Vampire [9] (see this work for technical details).

7 Getting More Sorts

Previously we have seen how sort information can be used to reduce the size
of the SAT encoding by only growing the domain sizes of sorts that need to be
grown. In this section we recall a technique first described in [4] for inferring
new sorts and explain how these new sorts can be useful.
Inferring Subsorts. Consider the Organised Monkey Village example. The
monkey sort can be split into three separate subsorts as there are three parts
(assigning bananas to monkeys, assigning monkeys to trees and assigning mon-
keys to their partners) where the signatures do not overlap. Abstractly, we can
use different monkeys in these different places as they do not interact – later
we will see why this is useful. To infer such subsorts we can use the standard
union-find method on positions in the signature.
Using Inferred Subsorts. Claessen et al. [4] describe two uses for inferred
subsorts:
–Removing Instances. If a subsort τ is monotonic and all function symbols with
the return sort τ are constants, then we can bound the subsort by the number
of constants. It is easy to argue that any ground clauses (instances, totality or
functionality) for a domain constant larger than the bound of the subsort can be
omitted as they will necessarily be equivalent to an existing clause. This helps
reduce the size of the SAT encoding.
–Symmetry breaking. For the same reasons that symmetry breaking can occur
per sort, symmetry breaking can now occur per inferred subsort. This is safe
due to the above observation that values for different subsorts will never be
compared.
Making Subsorts Proper Sorts. Proper sorts and inferred subsorts are
treated differently as we only grow the sizes of proper sorts. If an inferred subsort
is not bounded as described above then it is forced to grow to the same size as
its parent sort. To understand why this can be problematic consider the FOL
formula

distinct(a1, . . . , a50) ∧ (∀x)(f(f(f(f(f(f(f(f(f(f(x)))))))))) �= x)

which has an overall finite model size of 50. Establishing this finite model requires
a SAT problem consisting of 1,187,577 clauses. However, there are two subsorts:
that of the constants a1 to a50 and that of f . The second subsort is monotonic
and does not need to grow beyond size 3. If this had been declared as a separate
sort then the required SAT encoding would only consist of 125,236 clauses.

It is only safe to treat an inferred subsort as a proper sort if we can translate
any resulting model into one where elements of the inferred subsort belong to
the original sort. This is possible when (i) the inferred subsort is monotonic, and

Finding Finite Models in Multi-sorted First-Order Logic 337

(ii) the size of the inferred subsort is not larger than the size of its parent sort.
To ensure (ii) we add constraints to the search strategy in the same way as for
sort bounds detected previously.

8 An Alternative Growing Search

The previous search strategy considers each domain size assignment separately
(we therefore refer to it as a pointwise encoding). However, we can modify the
encoding so that it captures the current assignment and all smaller ones at the
same time. Thus we no longer talk of a domain size but rather of a domain
size upper bound, as the parameter of the encoding. These bounds never need
to shrink and thus grow monotonically for each sort. We call this encoding a
contour encoding as we can think of it drawing a contour around the explored
part and growing this outwards.

This alternative encoding works as follows. For each sort s with domain
size bound ns we introduce ns propositional variables bounds(1) to bounds(ns).
Then instead of single totality constraint for each principal term p we introduce
all totality constraints for domain sizes up to ns guarded by the appropriate
bound i.e.

p = c1 ∨ bounds(1), . . . , p = c1 ∨ . . . ∨ p = cns
∨ bounds(ns)

We guard DC -instances of clauses with negations of these guards in the following
way. For each sort s let smax be the index of the largest domain constant in this
instance used to replace a variable of sort s. Then if smax is defined, i.e. there
is at least one such variable, and smax > 1 we guard the instance with a literal
¬bounds(smax −1). For example, given a function symbol f : s1 → s2, a constant
b : s2, and a flattened clause f(x) �= y∨b �= y, its DC -instance f(c3) �= c1∨b �= c1
would be guarded as f(c3) �= c1 ∨ b �= c1 ∨ ¬bounds1(2).

In this encoding the SAT solver can satisfy the clauses for a domain size
smaller than ns i.e. if it can satisfy a stricter totality constraint then it can effec-
tively ignore some of the instances. As a further variation, if a sort is monotonic
then we do not need to consider the possibility that a sort is smaller than its
current bound. Therefore, we only need the largest totality constraint and do
not need constraints on instances.

In a similar way as before, we solve the problem under the assumptions that
the sort sizes are big enough i.e.

A =
∧

s∈S ¬bounds(ns).

If this is shown unsatisfiable the subset of assumptions A0 will suggest the sorts
that could be grown; growing a sort not mentioned in A0 would allow the same
proof of unsatisfiability to be produced. If A0 is empty, the SAT-solver has
shown that the given first-order formula is unsatisfiable. Otherwise, we can either
arbitrarily select a sort to grow out of the ones mentioned in A0. This approach
is significantly different from the previous approach as now we only consider one

338 G. Reger et al.

Table 1. Experimental results for unsorted problems.

Vampire

CVC4 Paradox iProver Ignore Use Expand

FOF+CNF: sat 1181 1444 1348 1421 1463 1503

FOF+CNF: unsat - - 1337 1400 1604 1628

next domain size assignment. However, the SAT problems may be considerably
harder to solve as the SAT solver is now considering a much larger set of models.
In essence, each new SAT problem contains all the previous ones as sub-problems.

Finally, if the SAT problem is satisfiable then the actual size of a sort s is
given by its smallest totality constraint that is “enabled”; more precisely, by the
smallest i such that bounds(i) is false in the computed model.

9 Experimental Evaluation

In this section we evaluate the different techniques for finite model finding in
multi-sorted FOL described in this paper and compare our approach to other
tools.
Experimental Setup. We considered two sets of problems. From the TPTP
[16] library (version 6.3.0) we took unsorted problems in the FOF or CNF format.
From the SMT-LIB library [1] we took problems from the UF (Uninterpreted
Functions) logic. Experiments were run on the StarExec cluster [15], whose nodes
are equipped with Intel Xeon 2.4 GHz processors and 128 GB of memory. For
each experiment we will report the number of problems solved with the time
limit of 60 s.

On satisfiable problems we compare our implementation with version 3.0 of
Paradox [5] and version 1.4 of CVC4 [13]; Paradox does not establish unsatis-
fiability and CVC4 runs more than a finite model finding approach, making a
comparison on unsatisfiable problems difficult. On the TPTP problems, we also
compare to version 2.0 of iProver [10]. The techniques described in this paper
were implemented in Vampire.
Adding Sorts to Unsorted Problems. Our first experiment considers the
effect of sort inference on unsorted problems. We consider three settings: (i)
inferred subsorts are ignored, (ii) inferred subsorts are used to reduce the prob-
lem size and break symmetries only, and (iii) inferred subsorts are expanded to
proper sorts where possible. Table 1 presents the results. This shows that sort
information can be used to solve more problems. For satisfiable problems the
best Vampire strategy solves more problems than CVC4, Paradox or iProver.
For both satisfiable and unsatisfiable problems, expanding subsorts into proper
sorts and treating the problems as multi-sorted problems helps solve the most
problems. We note that 4 problems found unsatisfiable using this approach could
not be solved by any other technique in Vampire, this is significant as Vampire
is one of the best theorem provers available for such problems.

Finding Finite Models in Multi-sorted First-Order Logic 339

Table 2. Experimental results for translations from multi-sorted to unsorted.

Sort Predicates Sort Functions

Plain Monotonicity Subsorts Both Plain Monotonicity Subsorts Both

UF: sat 813 810 872 874 710 771 834 873

UF: unsat 101 112 221 232 67 67 171 171

Table 3. Experimental results for multi-sorted problems.

CVC4 Pointwise Contour Without

Default Expand Collapse Bounds Default Collapse Bounds Constraints

UF: sat 764 (8) 795 789 901 (12) 810 886 (3) 899 (1) 886 (1) 154

UF: unsat - 212 215 241 218 270 261 267 66

Removing Sorts from Sorted Problems. Next we consider the translation
techniques described in Sect. 4 applied to multi-sorted problems. Table 2 shows
the results of running variations of these translations on the multi-sorted UF
problems described above. Plain applies the translation to the whole problem,
ignoring subsorts in the result. With Monotonicity only non-monotonic sorts
are translated and with Subsorts the resulting problem is solved using inferred
subsorts. Both adds both variations.

These results show that, for these problems, sort predicates are more useful
and that the techniques of monotonicity detection and subsort inference are
useful in improving the translation and reasoning with it.
Finding Models of Multi-sorted Problems. Finally, we consider our frame-
work for reasoning with multi-sorted problems directly. Table 3 gives the results
for CVC4 and eight variations of the techniques presented in this paper (we use
only CVC4 since Paradox does not work on sorted problems). At the top level
these are split into the Pointwise and Contour encodings and a version where
no constraints were added. Then Expand refers to subsort expansion (Sect. 7),
Collapse refers to collapsing monotonic sorts together (Sect. 5.5), and Bounds
refers to sort bound extraction (Sect. 6). These results can also be compared to
Table 2 as the problems are the same.

The three main conclusions from this information are (i) overall the approach
taken in this paper is able to solve more problems than the approach taken by
CVC4, (ii) collapsing monotonic sorts is very useful, and (iii) including the search
problem as part of the SAT encoding is vital. Bracketed numbers show unique
problems solved by an approach. This shows that although CVC4 solves fewer
problems it does solve some uniquely. The contour encoding was generally more
successful, however in UF there are 15 and 19 problems that are only solvable
using the pointwise and contour encodings respectively. As a further point, we
note that the heuristic introduced on page 9 is useful, without it the default
pointwise approach solved 61 fewer problems. Finally, comparing with the results
in Table 2, we see that finding models for multi-sorted problems directly performs
better than translating the problem to an unsorted one.

340 G. Reger et al.

10 Conclusions and Further Work

We have introduced a new framework for MACE-style finite model finding for
multi-sorted first-order logic. This involved two complementary SAT encodings
that capture the search for a satisfying domain size assignment and techniques
aimed at decreasing the size of this search space. We have demonstrated exper-
imentally that these techniques are effective at improving finite model finding
in the unsorted setting and finding finite models for multi-sorted first-order for-
mulas. Further work will consider possible extensions to uninterpreted sorts and
infinite, but finitely representable, models.

References

1. Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2010). http://www.SMT-LIB.org

2. Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomor-
phic and polymorphic types. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013
(ETAPS 2013). LNCS, vol. 7795, pp. 493–507. Springer, Heidelberg (2013)

3. Claessen, K., Lillieström, A.: Automated inference of finite unsatisfiability. J.
Autom. Reasoning 47(2), 111–132 (2011)

4. Claessen, K., Lillieström, A., Smallbone, N.: Sort it out with monotonicity. In:
Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp.
207–221. Springer, Heidelberg (2011)

5. Claessen, K., Sörensson, N.: New techniques that improve MACE-style model find-
ing. In: CADE-19 Workshop: Model Computation - Principles, Algorithms and
Applications (2003)

6. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

8. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr.
Notes Theor. Comput. Sci. 89(4), 543–560 (2003)

9. Hoder, K., Kovács, L., Voronkov, A.: Case studies on invariant generation using a
saturation theorem prover. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011, Part
I. LNCS, vol. 7094, pp. 1–15. Springer, Heidelberg (2011)

10. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic
(System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)

11. Kovács, L., Voronkov, A.: First-order theorem proving and vampire. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg
(2013)

12. Mccune, W.: A Davis-Putnam Program and its Application to Finite First-Order
Model Search: Quasigroup Existence Problems. Technical report, Argonne National
Laboratory (1994)

13. Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite model finding in SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 640–655. Springer,
Heidelberg (2013)

http://www.SMT-LIB.org

Finding Finite Models in Multi-sorted First-Order Logic 341

14. Schulz, S.: A comparison of different techniques for grounding near-propositional
CNF formulae. In: Proceedings of the Fifteenth International Florida Artificial
Intelligence Research Society Conference, May 14–16, 2002, Pensacola Beach,
Florida, USA, pp. 72–76 (2002)

15. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec, a cross community logic solving
service (2012). https://www.starexec.org

16. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reasoning 43(4), 337–362 (2009)

17. Tammet, T.: Reasoning. Gandalf. J. Autom 18(2), 199–204 (1997)
18. Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: Proceedings of

the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI 95,
Montréal Québec, Canada, August 20–25 1995, vol. 2s, pp. 298–303 (1995)

https://www.starexec.org

MCS Extraction with Sublinear Oracle Queries

Carlos Menćıa2(B), Alexey Ignatiev1,3, Alessandro Previti1,
and Joao Marques-Silva1

1 LaSIGE, Faculty of Science, University of Lisbon, Lisbon, Portugal
{aignatiev,jpms}@ciencias.ulisboa.pt, apreviti.research@gmail.com

2 University of Oviedo, Gijón, Spain
cmencia@gmail.com

3 ISDCT SB RAS, Irkutsk, Russia

Abstract. Given an inconsistent set of constraints, an often studied
problem is to compute an irreducible subset of the constraints which, if
relaxed, enable the remaining constraints to be consistent. In the case
of unsatisfiable propositional formulas in conjunctive normal form, such
irreducible sets of constraints are referred to as Minimal Correction Sub-
sets (MCSes). MCSes find a growing number of applications, including
the approximation of maximum satisfiability and as an intermediate step
in the enumeration of minimal unsatisfiability. A number of efficient algo-
rithms have been proposed in recent years, which exploit a wide range
of insights into the MCS extraction problem. One open question is to
find the best worst-case number of calls to a SAT oracle, when the calls
to the oracle are kept simple, and given reasonable definitions of simple
SAT oracle calls. This paper develops novel algorithms for computing
MCSes which, in specific settings, are guaranteed to require asymptoti-
cally fewer than linear calls to a SAT oracle, where the oracle calls can be
viewed as simple. The experimental results, obtained on existing problem
instances, demonstrate that the new algorithms contribute to improving
the state of the art.

1 Introduction

The analysis of over-constrained systems finds a wide range of practical applica-
tions [8,17,20]. Given an inconsistent set of constraints, one is often interested
in finding minimal explanations of inconsistency, or in finding maximally con-
sistent sets of constraints (and so minimal sets of constraints to discard). For
propositional formulas, a minimal set of clauses to discard to achieve consistency
of the remaining clauses is referred to as a minimal correction subset (MCS).
In general, selecting minimal sets of constraints is of prime importance, since
this enables irrelevant constraints not to be considered. Many application areas
of inconsistency analysis, including minimal explanations of inconsistency and
maximally consistent subsets of constraints, can be viewed as instantiations of
model-based diagnosis [36]. These include, among others, product configuration,
axiom pinpointing in description logics, fault localization in software, and design
debugging. Other applications of MCSes include the computation of minimal
c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 342–360, 2016.
DOI: 10.1007/978-3-319-40970-2 21

MCS Extraction with Sublinear Oracle Queries 343

and maximal models [6,23], enumeration of minimal unsatisfiability, approxima-
tion of maximum satisfiability and, as a result, also in relational inference [26].
In the concrete case of propositional formulas, the enumeration of MCSes has
been used for approximating maximum satisfiability (MaxSAT), enumeration of
minimal unsatisfiability and also solving function problems in the second level
of the function polynomial hierarchy, including minimum unsatisfiability [19].
Although the subject of over-constrained system analysis has been studied in
different settings, in some cases for more than a century1, recent years have
seen a multitude of algorithms and algorithmic optimizations being proposed,
both for finding minimal explanations of inconsistency [5,17,18,22] and for find-
ing minimal corrections of inconsistency (which enable the consistency of the
remaining constraints) [1,3,14,16,25,27,32,33,39].

This paper studies the problem of computing MCSes of unsatisfiable proposi-
tional formulas in conjunctive normal form (CNF). Recent work proposed algo-
rithms that analyze variables instead of clauses [16,27,32]. The main goal of most
novel algorithms is to reduce the number of calls to a SAT solver (i.e. the oracle
queries) in such a way that the SAT solver calls remain simple, i.e. changes to
the original formula are mostly negligible. Accordingly, most recent algorithms
require a worst-case number of SAT oracle queries that is linear in the number
of variables. Given that the number of clauses can be exponentially larger than
the number of variables, these algorithms are in the worst-case asymptotically
as efficient as using maximum satisfiability [35], while ensuring simpler oracle
queries, in the sense that no new variables are used and encodings of cardinality
constraints are not required [24].

The main contribution of this paper is to develop three novel algorithms for
MCS extraction, aiming at reducing the number of oracle queries, both in theory
and in practice. Two of the proposed algorithms are shown to require asymp-
totically fewer than linear SAT oracle queries in the number of (soft) clauses.
Nevertheless, for problem domains where the number of (soft) clauses is linear
in the number of (interesting) variables, the algorithms are shown to require
asymptotically fewer oracle queries than recent algorithms [16,27,32]. Concrete
examples of problem domains where the number of (soft) clauses is linear on
the number of relevant variables include computing minimal and maximal mod-
els [6,23]. Besides providing theoretical guarantees in terms of the worst-case
number of SAT oracle queries, the new algorithms are shown to be effective in
practice. On the one hand, the new algorithms are shown to be more robust,
being less dependent on practical optimizations commonly used in practice. In
addition, the new algorithms contribute to improving the performance of port-
folios of MCS extraction algorithms.

It should also be emphasized that the proposed new algorithms find appli-
cation in settings other than MCS extraction. As shown elsewhere [21,28,29],
MCS extraction is an instantiation of the problem of computing a minimal set
subject to a monotone predicate (MSMP), with a specific predicate form. The

1 This is the case for example with the analysis of infeasible systems of linear inequal-
ities [10].

344 C. Menćıa et al.

algorithms proposed in this paper can be applied to any computational problem
that can be reduced to the same MSMP predicate form. A list of problems with
the same MSMP predicate form as MCS extraction can be found in [28], and
include finding a minimal distinguishing subset (MDS), computing a minimal
(and a maximal) model, and computing a maximum autarky.

The paper is organized as follows. Section 2 introduces the notation and def-
initions used throughout. Section 3 provides a brief overview of recent work on
MCS extraction. Section 4 builds on recent algorithms and develops an alter-
native MCS extraction algorithm that requires a worst-case linear number of
queries to the SAT oracle on the number of clauses. The insights provided by
this new algorithm enable the development of two novel algorithms in Sect. 5
which require worst-case sublinear number of queries to a SAT oracle, on the
number of clauses. This section also shows that a number of important classes
of problems are shown to require sublinear number of queries to a SAT oracle,
on the number of variables. Section 6 evaluates the proposed algorithms on stan-
dard problem instances [1,2,16,27,32]. The results demonstrate that the new
algorithms proposed in this paper enable further improvements to the state of
the art in MCS extraction. Section 7 concludes the paper.

2 Preliminaries

This section introduces the notation and definitions used throughout the paper.
Standard propositional logic definitions apply (e.g. [7]). CNF formulas are
defined over a set of propositional variables. A CNF formula E is a finite conjunc-
tion of clauses, also interpreted as a finite set of clauses. A clause is a disjunction
of literals, also interpreted as a set of literals. A literal is a variable or its comple-
ment. m � |E| represents the number of clauses. The set of variables associated
with a CNF formula E is denoted by X � var(E), with n � |X|. A CNF formula
E is partitioned into a set of soft clauses F , which can be relaxed (i.e. may not
be satisfied), and a(n optional) set of hard clauses H, which cannot be relaxed
(i.e. must be satisfied). Thus, a CNF formula E is represented by a pair 〈H,F〉.
Moreover, MUSes, MCSes and MSSes are defined over F taking into account
the hard clauses in H as follows:

Definition 1 (Minimal Unsatisfiable Subset (MUS)). Let F denote the
set of soft clauses and H denote the set of hard clauses, such that H ∪ F is
unsatisfiable. M ⊆ F is a Minimal Unsatisfiable Subset (MUS) iff H ∪ M is
unsatisfiable and ∀M′�M, H ∪ M′ is satisfiable.

Definition 2 (Minimal Correction Subset (MCS)). Let F denote the set
of soft clauses and H denote the set of hard clauses, such that H ∪ F is unsatis-
fiable. C ⊆ F is a Minimal Correction Subset (MCS) iff H ∪ F \ C is satisfiable
and ∀C′�C , H ∪ F \ C′ is unsatisfiable.

MCS Extraction with Sublinear Oracle Queries 345

Definition 3 (Maximal Satisfiable Subset (MSS)). Let F denote the set
of soft clauses and H denote the set of hard clauses, such that H ∪ F is unsatis-
fiable. S ⊆ F is a Maximal Satisfiable Subset (MSS) iff H ∪ S is satisfiable and
∀S′�S , H ∪ S ′ is unsatisfiable.

For query complexity analyses, the size of either the largest or the smallest
MCS is denoted by k. Recent years have seen extensive work on extracting
MUSes and MCSes. Recent work on MUS extraction is summarized for example
in [2,5,29]. Recent work on MCS extraction is overviewed in the next section.
Among the many applications of MCS extraction, a representative example is
the computation of minimal and maximal models [6,23]. Throughout the paper
special emphasis will be given to problems for which the number of soft clauses is
linear on the number of variables, with the computation of minimal and maximal
models representing concrete examples.

Unless stated otherwise, in the remainder of the paper clauses are assumed to
be half-reified [15], and the algorithms are described in terms of the reification
variables. Concretely, the input to an MCS extraction algorithm is a pair of
clauses 〈H,F〉, where H denotes the hard clauses, and F denotes the soft clauses,
and such that H � ⊥ and H∧F �⊥. An initial assignment is selected from which
two sets S ⊇ H and U ⊆ F are obtained, that denote respectively the satisfied
and falsified clauses of 〈H,F〉. The clauses in U are half-reified using a set R
of O(m) fresh variables [2,31]. Each (soft) clause ci ∈ U is replaced by a (hard)
clause (¬ri∨ci), which is added to S, and the new variable ri is added to R. The
set U of falsified soft clauses is replaced by a new set of unit (soft) clauses (ri), one
for each ri ∈ R. Given U , each variable occurs with a single polarity (otherwise
one of the clauses would be satisfied) [27]. The D clause is the disjunction of all
literals in the clauses of U ; either the original literals or the reification literals
can be considered. The D clause check step is to run a SAT oracle on S ∧D (or
on a subset of D), being used in recent MCS extraction algorithms [16,27,32].

Given a formula E , a backbone literal l of E is such that E � l. Given an MCS
C of a pair 〈H,F〉, any literal in C is the complement of a backbone literal of
H ∧ (F \ C) [27].

A SAT oracle is modeled as a function call that, in this paper, returns an
outcome, which is either true (or SAT), for a satisfiable formula, or false (or
UNSAT), for an unsatisfiable formula. For the cases the outcome is true, the SAT
oracle also returns a witness of satisfiability µ (i.e. a satisfying truth assignment).
Given a pair 〈H,F〉, a SAT solver call is thus represented as (st, µ) ← SAT(H ∧
F), where st is either true (or SAT) or false (or UNSAT).

3 Related Work

The extraction of MCSes can be traced at least to the work of Reiter [36], in
the form of minimal diagnoses2. A wealth of work has been developed since

2 Nevertheless, irreducible inconsistent sets of linear inequalities have been studied for
more than a century [10].

346 C. Menćıa et al.

then. We emphasize the work more related with MCS extraction. Besides the
work on algorithms for MCS and MUS extraction, there is a well-known hitting
set duality relationship between MCSes and MUSes, which has been studied in
different settings [3,8,25,36].

A simple approach for MCS extraction is to use MaxSAT [25], with optimality
guarantees in terms of the worst-case number of SAT oracle queries [9,35]. Recent
experimental results [27] indicate that the use of MaxSAT can perform poorly
in practice, on representative classes of problem instances. As a result, most
recent work focused on simple SAT oracle queries, where the modifications to
the original formula are minimal. (For example, the use of cardinality constraints
and the auxiliary variables required for CNF encoding cardinality constraints
yields CNF formulas fairly different from the original CNF formula, which can
be significantly harder.).

One of the most widely used MCS extraction algorithms is linear search [3,
27,33]. Starting from a set S of satisfiable clauses and a set U of falsified clauses,
the linear search algorithm iteratively tests the satisfiability of S ∪ {c}, for each
clause c ∈ U . If the outcome is true, the clause is added to S; otherwise it
is discarded, i.e. it is included in the MCS. The number of SAT oracle calls
grows with the number of clauses, i.e. Θ(m). Recent work [21,28,29] has shown
that linear search essentially corresponds to the well-known deletion-based MUS
extraction algorithm [4,11].

Inspired by the work on QuickXplain [22], FastDiag [14] represents an alter-
native for MCS extraction, which often requires a number of oracle calls smaller
than linear (on the number of clauses), but which is linear in the worst-case. An
alternative, similar to dichotomic search for MUS extraction [18], is the genera-
tion of corrective explanations [34], which is worse than linear in the worst-case.

The modification of the actual oracle, by introducing a preference on the
literals was considered in different settings [1,37,38]. These approaches require a
single SAT oracle call, with the main drawback being that the oracle is modified
to solve SAT problems with preferences. Existing experimental evidence [32]
(but also the results in this paper) indicate that the use of SAT with preferences
does not scale for the more challenging MCS extraction problem instances.

Recent years have seen a number of alternative algorithms being proposed.
The CLD algorithm [27] exploits the fact that falsified clauses do not have com-
plemented literals, and so analyzes a single clause (i.e. the D clause) at each
iteration. The D clause represents the disjunction of the literals in the falsified
clauses of U . An important observation is that the worst-case number of oracle
calls for the CLD algorithm grows with the number of variables [32]. Moreover,
it has been shown that the CLD can be applied to the more general setting of
constraint programming [31], by using half reification [15]. The connection of
backbone literals with MCSes was first investigated in [27] and further refined
in [32]. These insights are used extensively throughout this paper. A variant of
CLD was also recently proposed [2]. Similar to earlier work [31], half reification
is also used.

MCS Extraction with Sublinear Oracle Queries 347

Algorithm 1. Literal-Based eXtractor (lbx) [32]
1 Function lbx(H,F)

2 (S,U) ← InitialAssignment(H,F)
3 (L,B) ← (Literals(U), ∅)
4 while L �= ∅ do
5 if CheckDClause(S,L) then break;
6 l ← RemoveLiteral(L)
7 (st, µ) = SAT(S ∪ B ∪ {l})
8 if st then
9 (S,U) ← UpdateSATClauses(µ,S,U)

10 L ← L ∩ Literals(U)

11 else
12 B ← B ∪ {¬l}
13 return F \ S // F \ S is MCS of F

Algorithm 2. Set up phase
1 Function Setup(H,F)

2 (S,U) ← InitialAssignment(H,F)
3 (S,U ,R) ← ReifyClauses(U)
4 return (S,U ,R)

The CMP algorithm [16] revisits the well-known insertion-based MUS extrac-
tion algorithm [12] in the context of MCS extraction3. Although apparently the
CMP algorithm requires a close to quadratic number of oracle calls [16], it is
also the case that the CMP algorithm checks the satisfiability of a (partial) D
clause at every major iteration. The main consequence, as shown elsewhere [32],
is that this technique reduces the worst-case number of oracle calls to linear, on
the number of clauses.

A recent line of work has investigated algorithms that analyze falsified lit-
erals (which are bound by the number of variables) instead of clauses [32].
Although not claimed in earlier work, but an immediate consequence of this
earlier work [32], is the observation that the number of oracle calls can be expo-
nentially smaller than the size of the formula, because the number of clauses can
be exponentially larger than the number of variables. The current state of the art
algorithms for MCS extraction [16,32] both require a number of oracle calls that
grows linearly with the number of variables. Concretely, LBX [32] requires Θ(n)
SAT oracle calls and CLD requires O(min{n− r,m− k}), where k is the size of
the smallest MCS and r is the smallest size of backbone literals in an MCS [32].
LBX, the currently best performing MCS extraction algorithm, is summarized
in Algorithm 1. Inspired by CLD [27], and similarly to CMP [16], LBX performs

3 By exploiting the reduction of MCS extraction to MSMP [29], a wealth of different
MUS extraction algorithms can be used for MCS extraction, including the insertion-
based algorithm.

348 C. Menćıa et al.

a D clause check (i.e. the satisfiability of S conjoined with a global D clause)
at line 5. If the function call returns true, then S ∧ D is unsatisfiable, and each
literal in D is the complement of a backbone literal of S. It is important to note
that the linear complexity of CMP is achieved only when a similar D clause check
is executed at each iteration of the algorithm. (The experimental results Sect. 6
demonstrate the practical importance of the clause D check.) The extraction of
preferred MCSes (and MUSes as well) has been investigated in [30,39], extending
earlier work on computing preferred explanations [22]. Finally, the algorithms
proposed in this paper can be related with recent work on computing maximum
autarkies [24].

4 MCS Extraction with Linear Oracle Calls

The algorithms described in this and the next section start with a set up phase
shown in Algorithm 2. The set up phase picks an initial assignment that satisfies
the clauses in H and some clauses in F . The falsified clauses in F , represented as
set U , are half-reified and added to S. The set of reification variables is R. Set U
is rewritten to include the reification variables of the clauses originally in U .

This section develops a new algorithm for MCS extraction. The algorithm
is referred to as Unit Clauses D (UCD). Similarly to CLD [27], UCD uses D
clauses. However, in contrast with CLD, all of the D clauses are unit. UCD is also
tightly related with FastDiag [14] in that UCD iteratively splits a working set of
clauses. Similar to earlier algorithms, an initial SAT call (see Algorithm2) will
split 〈H,F〉 into S ⊇ H and U ⊆ F , respectively the satisfied and falsified clauses
of 〈H,F〉. Let XU be the set of falsified literals in the clauses of U . Let D be the
set of unit D clauses. A stack T of sets D is maintained, initially with a single set
D containing one unit D clause for each falsified literal in U . Moreover, S denotes
the set of clauses that must be satisfied, starting from an initial assignment
that includes the hard clauses H. Algorithm 3 summarizes the organization of
UCD. As can be observed, UCD shares a number of ideas with FastDiag [14]
(and so with QuickXplain [22]), with the main differences summarized by the
pseudo-code invariants. One invariant is that any set of D clauses in the stack
is inconsistent with S. Each set is split into two approximately equal sets of
D clauses. Each such set is tested for consistency with S. If the SAT formula
is satisfiable, the set S is updated. The satisfied unit soft clauses (each with a
single reified variable) become unit hard clauses. As a result, at least one call
to the SAT solver is guaranteed to return false (i.e. the formula is unsatisfiable).
Thus, at each iteration, if |D| > 1, then at least one set of D clauses is added
to the stack. The size of the sets of D clauses is strictly decreasing. Whenever
a set with a single D clause is found, the complements of the associated literals
are added to the set of backbone literals.

Proposition 1. (Correctness of UCD) Algorithm3 computes an MCS C of
〈H,F〉.

MCS Extraction with Sublinear Oracle Queries 349

Algorithm 3. Unit Clauses D (ucd)
1 Function ucd(H, F)

2 (S,U ,R) ← Setup(H,F)
3 (B,D) ← (∅, CreateUnitClausesD(R))
4 Push(T,D)
5 while T �= ∅ do
6 if CheckDClause(S,R) then break;
7 D ← Pop(T)
8 D ← UpdateDClauses(D,R,B)

// Invariant: ¬SAT(S ∧ D)
9 if |D| ≤ 1 then

10 (B,R) ← UpdateBackbones(B,R,D)
11 continue

12 (D1,D2) ← HalfSplit(D)
13 (st1, µ) ← SAT(S ∪ ∪Di∈D1{Di})
14 if st1 then (S,R) ← UpdateSATClauses(µ,S,R)
15 (st2, µ) ← SAT(S ∪ ∪Di∈D2{Di})
16 if st2 then (S,R) ← UpdateSATClauses(µ,S,R)

// Invariant: ¬st1 ∨ ¬st2
17 if ¬st1 then Push(T,D1)
18 if ¬st2 then Push(T,D2)

19 return F \ S // F \ S is MCS of F

Proof. (Sketch) By inspection the following invariants hold. First, the set of
clauses S is satisfiable. Second, any set of unit D soft clauses consistent with S
is added to S, and consistency of S is preserved. If the set of unit clauses D is
unsatisfiable given S, then the set is split and the resulting sets of unit D clauses
are pushed onto the stack. The size of the sets of D clauses in T is decreasing,
and the stack is not updated when the size of the D clauses is less than or equal
to 0. Thus the algorithm is terminating. Any clause c ∈ F not added to S is such
that S ∪ {c} is unsatisfiable. Finally, sets of D clauses of size not greater than
1 are either discarded (if there are no literals) or added as the (complement) of
backbone literals, with S ∧D � ⊥. Thus, the UCD algorithm computes an MCS
of 〈H,F〉. �
Proposition 2. (Query Complexity of UCD) The worst case number of SAT
oracle calls for the UCD algorithm is O(k+k log (mk)), where k is the size of the
largest MCS.

Proof. (Sketch) The query complexity analysis ignores the additional SAT oracle
query made by the D clause check set (see line 6). This additional call at most
doubles the total number of SAT oracle queries. The analysis develops an upper
bound on the number of oracle queries. The algorithm searches a tree with m
possible leaves, with a total number of nodes bounded by 2m. Since each node can
make two oracle queries, except the leaves, then an upper bound on the number
of oracle queries is 2m − 1. Groups of literals that are not in the MCS, and so

350 C. Menćıa et al.

the outcome of the SAT query is true, are not pushed onto the stack. Groups of
literals that contain one or more literals in the MCS, and so the outcome of the
SAT query is false, are pushed onto the stack. Therefore, the number of oracle
queries grows with the number of literals in the (largest) MCS, k with k ≥ 1.
To maximize the number of oracle queries the literals in the MCS must be as
far apart as possible. Thus, we consider groups of m−k

k + 1 = m
k literals, where

the last one is a literal in the MCS. We now consider how each literal in the
MCS is identified. The literal in the MCS needs to be selected after a number of
queries that will select that literal out of m

k literals. This corresponds to a tree
with an upper bound of 2(mk) − 1 nodes. Of these, the SAT query will return
false in log (mk) + 1 nodes and true in log (mk) nodes, because the subtree for the
m
k elements starts with an unsatisfiable call. Thus, the number of saved oracle
queries becomes 2(mk) − 1 − 2 log (mk) − 1. Since there are k literals in the MCS,
then the total number of oracle queries becomes 2m− 2k(mk) + 2k log (mk) + 2k,
which can be simplified to 2k+2k log (mk). Thus, an upper bound on the number
of oracle queries is O(k + k log (mk)). �

For problem domains where the number of clauses are of the order of the
number of variables (e.g. computing minimal and maximal models), the query
complexity becomes asymptotically competitive with LBX [32] and CLD [27].

Corollary 1. The query complexity of UCD is O(k+k log (nk)) when m = Θ(n).

5 MCS Extraction with Sublinear Oracle Calls

This section develops two novel algorithms for MCS extraction which, for specific
classes of problems, will require asymptotically less than linear oracle calls. The
two algorithms exploit the insights provided by the UCD algorithm (see Sect. 4).
The algorithms also build on recent work on computing maximum autarkies [24].

5.1 Uniform Spliting with Binary Search

Instead of creating unit clauses D, the Uniform Spliting with Binary Search
(UBS) algorithm, divides the reified variables into (approximately)

√
m clauses

D, each containing (approximately)
√
m literals. The SAT oracle is run on S

together with all the D clauses. If the formula is satisfiable, then at least
√
m

reification variables are satisfied, indicating that the corresponding clauses in U
are consistent with S. As a result, the sets of satisfied and falsified clauses, respec-
tively S and U , are updated. Moreover, the reification variables are dropped from
R. Otherwise, if the formula is unsatisfiable, a binary search step is used to find
a culprit, i.e. a D clause which, together with S is unsatisfiable (or alternatively,
S entails its complement). Algorithm 4 shows the main steps of the proposed
approach. The binary search step is shown in Algorithm5.

The operation of the binary search step used for finding the culprit is essential
for correctness, and exploits the ideas used previously for the UCD algorithm.
As shown in Algorithm 5, the loop invariant for the binary search procedure is

MCS Extraction with Sublinear Oracle Queries 351

Algorithm 4. Uniform Splitting Binary Search (UBS)
1 Function ubs(H, F)

2 (S,U ,R) ← Setup(H,F)
3 B ← ∅
4 while R �= ∅ do
5 if CheckDClause(S,R) then break;
6 D ← CreateClausesD(R) // Uniform split reif. variables

7 (st, µ) ← SAT(S ∪ ∪Di∈D{Di})
8 if st then
9 (S,R) ← UpdateSATClauses(µ,S,R)

10 else
11 (S,B,R) ← FindCulprit(S,B,R,D)

12 return F \ S // F \ S is MCS of F

Algorithm 5. Binary Search Step
1 Function FindCulprit(S,B,R,D)

2 while |D| > 1 do
// Invariant: ¬SAT(S ∪ ∪Di∈DDi)

3 (D1,D2) ← HalfSplit(D)
4 (st1, µ) ← SAT(S ∪ ∪Di∈D1{Di})
5 if st1 then (S,R) ← UpdateSATClauses(µ,S,R)
6 (st2, µ) ← SAT(S ∪ ∪Di∈D2{Di})
7 if st2 then (S,R) ← UpdateSATClauses(µ,S,R)

// Invariant: ¬st1 ∨ ¬st2
8 D ← (¬st1) ? D1 : D2

9 (B,R) ← UpdateBackbones(B,R,D)
10 return (S,B,R)

such that the set of D clauses being analyzed is inconsistent with the current
set S.

Lemma 1. The loop invariants of Algorithm5 hold.

Proof. (Sketch) Observe that any SAT oracle query with a satisfiable outcome
causes the set S to be updated. Thus, one of the SAT oracle queries must return
an unsatisfiable outcome in each loop iteration. �

Lemma 1 is used for arguing the correctness of the two algorithms investi-
gated in this section.

Proposition 3. (Correctness of UBS) Given 〈H,F〉, UBS (see Algorithm4)
computes an MCS C of 〈H,F〉.
Proof. (Sketch) By inspection of Algorithm 4, any clause added to S is such
that the resulting set of clauses is consistent. Given a SAT oracle query with
an unsatisfiable outcome, by Lemma 1 the binary search step in Algorithm5

352 C. Menćıa et al.

will find a single D clause which is inconsistent with (a possibly updated set) S.
Thus S � ¬D. This means that each literal in D is the complement of a backbone
literal of S, and so clauses composed of the complements of backbone literals
are not consistent with S. �
Proposition 4. (Query Complexity of UBS) The number of SAT oracle calls
for the UBS algorithm is O(

√
m logm).

Proof. (Sketch) The query complexity analysis ignores the additional SAT oracle
query made by the D clause check (see line 5). This additional call at most
doubles the total number of SAT oracle queries. By inspection, the algorithm
removes O(

√
m) literals in each iteration of the main loop. In the worst case,

the algorithm runs the binary search step in each iteration of the main loop.
The worst-case number of loop iterations for the binary search step is O(logm).
Thus, the overall number of calls to the SAT oracle is O(

√
m logm). �

Corollary 2. The query complexity of UBS is O(
√
n log n) when m = Θ(n).

Remark 1. For computing minimal or maximal models, the query complexity of
UBS is sublinear on the number of variables.

5.2 Literal-Oriented Geometric Progression

For the UBS algorithm, there is no bias towards SAT or UNSAT outcomes. How-
ever, UNSAT outcomes have far greater cost, due to the need to find a culprit.
As a result, it would be preferable to give preference to obtaining more SAT
outcomes. Moreover, for the cases where the number of backbone literals in U is
large, the uniform splitting of UBS may represent a drawback. A modification
to the UBS algorithm is to start with larger D clauses, trying to mimic the
behavior of the original CLD algorithm. The number of D clauses is increased
by a geometric progression while instances are satisfied. Similarly, the number of
literals in each D clause is reduced by a geometric progression. When an unsat-
isfiable instance is identified, the algorithm runs a binary search to identify a
culprit. Thus, in contrast with UBS, the size and number of D clauses is not kept
constant given the number of literals in U . Algorithm 6 illustrates the proposed
approach.

Proposition 5. (Correctness of LOPZ) Given 〈H,F〉, LOPZ (see Algorithm6)
computes an MCS C of 〈H,F〉.
Proof. (Sketch) By inspection of Algorithm6, any clause added to S is such
that the resulting set of clauses is consistent. Given a SAT oracle query with an
unsatisfiable outcome, by Lemma 1 the binary search procedure in Algorithm5
will find a single D clause which is inconsistent with (a possibly updated set) S.
Thus S � ¬D. This means that each literal in D is the complement of a backbone
of S, and so clauses composed of the complements of backbone literals are not
consistent with S. �

MCS Extraction with Sublinear Oracle Queries 353

Algorithm 6. Literal-Oriented Geometric Progression (LOPZ)
1 Function ubs(H, F)

2 (S,U ,R) ← Setup(H,F)
3 (i,B) ← (0, ∅)
4 while R �= ∅ do
5 if CheckDClause(S,R) then break

6 D ← CreateClausesD(R,min(1, |R|/2i))
7 (st, µ) ← SAT(S ∪ ∪Di∈D{Di})
8 if st then
9 (S,R) ← UpdateSATClauses(µ,S,R)

10 i ← i + 1

11 else
12 (S,B,R) ← FindCulprit(S,B,R,D)
13 i ← 0

14 return F \ S // F \ S is MCS of F

Proposition 6. (Query Complexity of LOPZ) The number of SAT oracle calls
for the LOPZ algorithm is O(

√
m logm).

Proof. (Sketch) The query complexity analysis ignores the additional SAT ora-
cle query made by the D clause check (see line 5). This additional call at most
doubles the total number of SAT oracle queries. We first count the number of
removed literals for a sequence of satisfiable oracle calls. If the current number
of literals is mi and the ith iteration takes ji steps, i.e. the number of satisfiable
instances until the first unsatisfiable instance, then the number of removed lit-
erals is at least, Δi = 2ji − 1 + mi

2ji+1 . Thus, we can define the variation in the
number of elements with a recurrence:

mi =
{
m i = 0
mi−1 − 2ji−1 + 1 − mi−1

2ji−1+1 i ≥ 1

where m is the initial number of distinct literals in R. Observe that the value of
each ji cannot exceed logm. The LOPZ algorithm can be viewed as a sequence
of phases, where a phase ends when the index i is reset to 0. For each phase,
an upper bound on the number of queries to the SAT oracle is O(logm). This
results from the number of SAT oracle calls returning true being O(logm) and,
to find a culprit, binary search also makes O(logm) oracle calls. Now, the number
of phases is maximized when the number of elements removed in each phase is
minimized. Thus, we want to find the value of ji that minimizes Δi given some
initial number of elements mi. To find the minima of the function above, we
can differentiate with respect to ji and equate to 0. Thus, the minimum number
of removed elements is achieved for ji = 1

2 log mi

2 = log
√

mi

2 . This means that
the minimum number of literals removed in each phase is

√
mi

2 − 1 +
√

mi

2 =
2
√

mi

2 − 1, and so the number of phases is O(
√
m). Thus, an upper bound on

the number of queries to the SAT oracle is O(
√
m logm). �

354 C. Menćıa et al.

Although the query complexity of LOPZ and UBS are the same, we expect
LOPZ to perform better in practice, since preference is given to SAT outcomes.

Corollary 3. The query complexity of LOPZ is O(
√
n log n) when m = Θ(n).

Remark 2. For computing minimal or maximal models, the query complexity of
LOPZ is sublinear on the number of variables.

Remark 3. As pointed out earlier (see Sect. 1), the algorithms described in this
and the previous section, namely UCD, UBS and LOPZ can be used in settings
other than MCS extraction. Concretely, the algorithms can be formulated in
the general setting of solving the MSMP problem [29], and used with any com-
putational problem with the same predicate form as MCS extraction [21,28].
Concretely, the UCD, UBS and LOPZ algorithms can be formulated in terms
of computing a minimal set subject to a monotone predicate for predicates of
form L .

6 Experimental Results

This section conducts an experimental evaluation of the algorithms proposed
in this paper with state-of-the-art MCS extractors. Representative sets of prob-
lem instances were considered [32]. The experiments were performed in Ubuntu
Linux running on an Intel Xeon E5-2630 2.60 GHz processor with 64GByte of
memory. The time limit was set to 1800 s and the memory limit to 10GByte. All
the described algorithms were implemented in a prototype tool named mcsXL4

(MCS eX tractor with subLinear number of oracle calls). The mcsXL tool
is written in C++ on top of the MiniSat SAT solver [13]. Besides, the exper-
iments also used the state-of-the-art MCS extractors: CLD [27], CMP (with
all its optimizations) [16], RS [1], as well as LBX [32]. In all cases, the origi-
nal binaries provided by the authors were run according to their instructions.
Other well-known MCS extraction algorithms including basic linear search [3,33],
MaxSAT [25], SAT with preferences [37,38] (resp. nOPTSAT and SAT&PREF),
and FastDiag [14] have been shown to be outperformed by recent approaches.
A recently proposed MCS extraction algorithm [2] is not publicly available. In
addition, the experimental results in [2] show gains with respect to CLD [27] and
RS [1], but these gains are not competitive with other recent approaches [16,32].

6.1 Performance Comparison

The benchmark suite considered in this paper is referred to as IJCAI15 and
comprises three different sets of unsatisfiable instances considered previously
in [32]. These include ijcai13-bench containing 866 plain and partial MaxSAT
instances taken from [27], mus-bench with 295 plain instances from the 2011 MUS
competition proposed in [16], as well as 179 plain and partial instances from the

4 Available at http://logos.ucd.ie/web/doku.php?id=mcsxl.

http://logos.ucd.ie/web/doku.php?id=mcsxl

MCS Extraction with Sublinear Oracle Queries 355

300 350 400 450 500
instances

0

200

400

600

800

1000

1200

1400

1600

1800

C
PU

tim
e

(s
)

VBS (505)

UBS (499)

UCD (499)

LOPZ (499)

LBX (498)

CMP (472)

RS (434)

CLD (418)

Fig. 1. Results for the IJCAI15 [32] problem instances.

Table 1. Average number of SAT oracle calls for the IJCAI15 [32] problem instances.

CLD CMP LBX UCD UBS LOPZ LBXw/o D UCDw/o D UBSw/o D LOPZw/o D

S 91.9 5.9 16.5 11.5 9.3 8.4 131.9 30.5 9.1 7.4

U 3651.3 24.2 5.5 7.4 2.5 1.8 799.8 1641.9 71.5 2.8

A 3743.2 30.0 21.9 18.8 11.8 10.2 931.6 1672.4 80.6 10.2

maxsat-bench considered in [32] and taken from the 2014 MaxSAT evaluation. All
the three benchmark sets were filtered by removing easy instances. An instance
was declared to be easy if it was solved by each of the considered algorithms
within 5 s. As a result, after filtering easy instances the total number of instances
in the IJCAI15 benchmark suite is 556.

The cactus plot reporting the performance of the considered algorithms mea-
sured for the IJCAI15 problem instances is shown in Fig. 1. The algorithms pro-
posed in this paper perform comparably to LBX, solving one more instance than
LBX. The plot also includes a VBS (virtual best solver) based on picking the
best result out of LBX, UCD, UBS and LOPZ. It is important to emphasize that
the good performance of some algorithms, more concretely of LBX and CMP,
but also of UCD, is in part explained by the regular clause D checks. The cactus
plot shown in Fig. 2 illustrates the effect of removing the clause D check step in
LBX, UCD, UBS and LOPZ. As can be observed, the performance of LBX and
UCD is strongly dependent on the use of the clause D check step. However, this
is not the case with LOPZ and UBS. Our interpretation of these results is that
both LOPZ and UBS are more robust than either LBX and UCD, since both are
less dependent upon the clause D check step. Another measure of robustness of
the MCS extraction algorithms is the number of SAT oracle calls. This informa-

356 C. Menćıa et al.

300 350 400 450 500
instances

0

200

400

600

800

1000

1200

1400

1600

1800

C
PU

tim
e

(s
)

VBS (504)

LOPZ w/o Dcall (497)

UBS w/o Dcall (494)

LBX w/o Dcall (445)

UCD w/o Dcall (442)

CLD (418)

Fig. 2. Results for the IJCAI15 [32] problem instances, without the D clause check.

Table 2. Contribution to the VBS by LBX, UCD, UBS, and LOPZ.

LBXa UCDa UBSa LOPZa Total

Figure 1 82 108 120 194 504

Figure 2 66 81 124 232 503
a Observe that the algorithms make use of
D calls for Fig. 1 but do not use D calls for
Fig. 2.

tion is summarized in Table 1 (S, U, A represent the number of SAT, UNSAT
and total calls). The reduction in the number of SAT oracle calls observed in
practice confirms the theory, with LOPZ and UBS achieving the smallest num-
ber of SAT oracle calls. The large number of SAT oracle calls for CLD results
for the identification of disjoint unsatisfiable cores as a preprocessing step [27],
being used in the default configuration. Furthermore, it can be observed that
the number of SAT oracle calls increases significantly (i.e. between one and two
orders of magnitude) when the clause D check step is not used in LBX and UCD.
For UBS there is a modest increase, whereas for LOPZ the average number of
SAT oracle calls remains unchanged (with a reduction in the number of SAT
outcomes and an increase in the number of UNSAT outcomes).

6.2 Analysis of the VBS

The VBS in both Figs. 1 and 2 shows gains when compared to each separate
algorithm. This confirms that the new algorithms have an observable contribu-
tion to improving the state of the art in MCS extraction. Table 2 summarizes the

MCS Extraction with Sublinear Oracle Queries 357

10−3 10−2 10−1 100 101 102 103 104

LOPZ

10−3

10−2

10−1

100

101

102

103

104
L

B
X

1800 sec. timeout

18
00

se
c.

tim
eo

ut
10−3 10−2 10−1 100 101 102 103 104

VBS

10−3

10−2

10−1

100

101

102

103

104

L
B

X

1800 sec. timeout

18
00

se
c.

tim
eo

ut

LBX

UCD

UBS

LOPZ

Fig. 3. Scatter plots comparing LBX with LOPZ and the VBS.

Table 3. Comparison of the percentage of pairwise wins between LBX, UCD, UBS,
and LOPZ.

LBX UCD UBS LOPZ

LBX wins 46.2 44.4 35.1

UCD wins 53.6 48.2 36.5

UBS wins 55.0 51.4 34.5

LOPZ wins 64.3 63.1 65.1

contribution to the VBS. Regarding the VBS in Fig. 1, and as can be observed,
the percentage of instances for which the selected solver is either LOPZ, UBS,
UCD or LBX is, respectively, 38.5 %, 33.8 %, 21.4 % and 16.3 %. For Fig. 2, with-
out the use of the clause D check step, the numbers are even more conclusive.
The data shown provides additional evidence of the contribution of LOPZ, UBS
and UCD to the state of the art in MCS extraction.

Figure 3 shows a scatter plot comparing LOPZ with LBX. As can be observed,
there is an observable performance gain of LOPZ when compared to LBX. More
importantly, LOPZ adds to the robustness of MCS extraction, with fewer outliers
than LBX. Figure 3 also includes a scatter plot highlighting the run times of the
instances for which the selected solver is not LBX. As can be observed, the new
algorithms LOPZ, UBS and UCD contribute for the VBS for the larger run
times. Again, the conclusion is that the new algorithms contribute to increase
the robustness of MCS extraction. Table 3 complements the scatter plots of Fig. 3
and shows an analysis of the percentage of pairwise performance wins between
the different algorithms. As can be concluded, LOPZ performs better than LBX
for every around 2 out of 3 problem instances.

358 C. Menćıa et al.

7 Conclusions

The paper extends recent work on MCS extraction [1,16,27,32]. Recently pro-
posed highly efficient algorithms have been shown to be linear on the number of
variables [32]. This paper develops a new algorithm with worst-case linear num-
ber of oracle calls, on the number of clauses. In addition, the paper develops two
new algorithms which require asymptotically fewer than linear number of oracle
calls, on the number of clauses. However, for representative classes of problems,
including the computation of minimal and maximal models, the algorithms are
shown to require asymptotically fewer than linear oracle calls on the number of
variables. This improves earlier results for specific problem domains. The paper
also argues that the proposed algorithms can be easily adapted to solving specific
predicate forms of the MSMP problem [21,28,29].

The experimental results show that the new algorithms perform comparably
to the state of the art in MCS extraction. More importantly, the new algorithms
are shown to enable observable performance gains when portfolios of algorithms
are considered. The experimental results also confirm that, in practice, far fewer
oracle calls may not guarantee large performance gains, even when the calls are
expected to be simple. Earlier work [27] had reached similar conclusions when
using MaxSAT for MCS extraction. Finding the best possible balance between
fewer oracle calls and best SAT solver performance remains an open research
subject.

Acknowledgement. This work was partly funded by grant TIN2013-46511-C2-2-P.

References

1. Bacchus, F., Davies, J., Tsimpoukelli, M., Katsirelos, G.: Relaxation search: a
simple way of managing optional clauses. In: AAAI, pp. 835–841 (2014)

2. Bacchus, F., Katsirelos, G.: Using minimal correction sets to more efficiently com-
pute minimal unsatisfiable sets. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9207, pp. 70–86. Springer, Heidelberg (2015)

3. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL
2004. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005)

4. Bakker, R.R., Dikker, F., Tempelman, F., Wognum, P.M.: Diagnosing and solving
over-determined constraint satisfaction problems. In: IJCAI, pp. 276–281 (1993)

5. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Com-
mun. 25(2), 97–116 (2012)

6. Ben-Eliyahu, R., Dechter, R.: On computing minimal models. Ann. Math. Artif.
Intell. 18(1), 3–27 (1996)

7. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
IOS Press, Amsterdam (2009)

8. Birnbaum, E., Lozinskii, E.L.: Consistent subsets of inconsistent systems: structure
and behaviour. J. Exp. Theor. Artif. Intell. 15(1), 25–46 (2003)

9. Cayrol, C., Lagasquie-Schiex, M.-C., Schiex, T.: Nonmonotonic reasoning: from
complexity to algorithms. Ann. Math. Artif. Intell. 22(3–4), 207–236 (1998)

MCS Extraction with Sublinear Oracle Queries 359

10. Chinneck, J.W.: Feasibility Infesasibility in Optimization: Algorithms and Com-
putational Methods. International Series in Operations Research & Management
Science, vol. 118. Springer, Heidelberg (2008)

11. Chinneck, J.W., Dravnieks, E.W.: Locating minimal infeasible constraint sets in
linear programs. INFORMS J. Comput. 3(2), 157–168 (1991)

12. de Siqueira J.L.N., Puget, J.: Explanation-based generalisation of failures. In:
ECAI, pp. 339–344 (1988)

13. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://github.com/niklasso/minisat

14. Felfernig, A., Schubert, M., Zehentner, C.: An efficient diagnosis algorithm for
inconsistent constraint sets. AI EDAM 26(1), 53–62 (2012)

15. Feydy, T., Somogyi, Z., Stuckey, P.J.: Half reification and flattening. In: Lee, J.
(ed.) CP 2011. LNCS, vol. 6876, pp. 286–301. Springer, Heidelberg (2011)

16. Grégoire, É., Lagniez, J., Mazure, B.: An experimentally efficient method for (MSS,
coMSS) partitioning. In: AAAI, pp. 2666–2673 (2014)

17. Grégoire, É., Mazure, B., Piette, C.: On approaches to explaining infeasibility of
sets of boolean clauses. In: ICTAI, pp. 74–83 (2008)

18. Hemery, F., Lecoutre, C., Sais, L., Boussemart, F.: Extracting MUCs from con-
straint networks. In: ECAI, pp. 113–117 (2006)

19. Ignatiev, A., Previti, A., Liffiton, M.H., Marques-Silva, J.: Smallest MUS extraction
with minimal hitting set dualization. In: CP, pp. 173–182 (2015)

20. Jampel, M.: A brief overview of over-constrained systems. In: Jampel, M., Maher,
M.J., Freuder, E.C. (eds.) CP-WS 1995. LNCS, vol. 1106, pp. 1–22. Springer,
Heidelberg (1996)

21. Janota, M., Marques-Silva, J.: On the query complexity of selecting minimal sets
for monotone predicates. Artif. Intell. 233, 73–83 (2016)

22. Junker, U.: QuickXplain: Preferred explanations and relaxations for over-
constrained problems. In: AAAI, pp. 167–172 (2004)

23. Kavvadias, D.J., Sideri, M., Stavropoulos, E.C.: Generating all maximal models of
a boolean expression. Inf. Process. Lett. 74(3–4), 157–162 (2000)

24. Kullmann, O., Marques-Silva, J.: Computing maximal autarkies with few and sim-
ple oracle queries. In: Heule, M. (ed.) SAT 2015. LNCS, vol. 9340, pp. 138–155.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-24318-4 11

25. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)

26. Mangal, R., Zhang, X., Kamath, A., Nori, A.V., Naik, M.: Scaling relational infer-
ence using proofs and refutations. In: AAAI (2016)

27. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing
minimal correction subsets. In: IJCAI, pp. 615–622 (2013)

28. Marques-Silva, J., Janota, M.: Computing minimal sets on propositional formulae
I: problems & reductions. CoRR, abs/1402.3011 (2014)

29. Marques-Silva, J., Janota, M., Belov, A.: Minimal sets over monotone predicates in
boolean formulae. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 592–607. Springer, Heidelberg (2013)

30. Marques-Silva, J., Previti, A.: On computing preferred MUSes and MCSes. In: Sinz,
C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 58–74. Springer, Heidelberg
(2014)

31. Menćıa, C., Marques-Silva, J.: Efficient relaxations of over-constrained CSPs. In:
ICTAI, pp. 725–732 (2014)

https://github.com/niklasso/minisat
http://dx.doi.org/10.1007/978-3-319-24318-4_11

360 C. Menćıa et al.

32. Menćıa, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In:
IJCAI, pp. 1973–1979 (2015)

33. Nöhrer, A., Biere, A., Egyed, A.: Managing SAT inconsistencies with HUMUS. In:
VaMoS, pp. 83–91 (2012)

34. O’Callaghan, B., O’Sullivan, B., Freuder, E.C.: Generating corrective explanations
for interactive constraint satisfaction. In: van Beek, P. (ed.) CP 2005. LNCS, vol.
3709, pp. 445–459. Springer, Heidelberg (2005)

35. Papadimitriou, C.H.: Computational Complexity. Addison Wesley, Boston (1994)
36. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95

(1987)
37. Rosa, E.D., Giunchiglia, E.: Combining approaches for solving satisfiability prob-

lems with qualitative preferences. AI Commun. 26(4), 395–408 (2013)
38. Rosa, E.D., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with pref-

erences. Constraints 15(4), 485–515 (2010)
39. Walter, R., Felfernig, A., Kuchlin, W.: Inverse QUICKXPLAIN vs. MAXSAT -

a comparison in theory and practice. In: Configuration Workshop, volume CEUR
1453, pp. 97–104 (2015)

Predicate Elimination for Preprocessing
in First-Order Theorem Proving

Zurab Khasidashvili1 and Konstantin Korovin2(B)

1 Intel Israel Design Center, 31015 Haifa, Israel
zurabk@iil.intel.com

2 The University of Manchester, Manchester, UK
korovin@cs.man.ac.uk

Abstract. Preprocessing plays a major role in efficient propositional
reasoning but has been less studied in first-order theorem proving. In
this paper we propose a predicate elimination procedure which can be
used as a preprocessing step in first-order theorem proving and is also
applicable for simplifying quantified formulas in a general framework of
satisfiability modulo theories (SMT). We describe how this procedure
is implemented in a first-order theorem prover iProver and show that
many problems in the TPTP library can be simplified using this proce-
dure. We also evaluated our preprocessing on the HWMCC’15 hardware
verification benchmarks and show that more than 50% of predicates can
be eliminated without increasing the problem sizes.

1 Introduction

Preprocessing techniques for Boolean satisfiability apply rewriting and other sim-
plification rules to a propositional formula in conjunctive normal form (CNF)
with the aim of making SAT solving easier [3,6,10,14,27,37]. Since the devel-
opment of the SatElite pre-processing technique [14], the usefulness of pre-
processing has become evident and it is now an integrated part of SAT solving.
We refer to [20] for an overview of recent advances in CNF pre-processing and in-
processing techniques where simplification steps are also applied in interleaving
the SAT solving.

Variable elimination [6,12,14,37] is an important simplification technique for
CNF and QBF formulas. In this paper we aim at generalizing this approach to
first-order logic such that it becomes a predicate elimination technique. Predi-
cate elimination is a special case of second-order quantifier elimination which has
been investigated starting from the work of Ackermann [1] and more recently in,
e.g., [15,16]. Second-order quantifier elimination in first-order logic has a number
of applications ranging from invariant generation and interpolation in program
analysis [19,25] to correspondence theory in modal logics [33] and uniform inter-
polation in description logics [22].

In this paper we propose to use predicate elimination as a preprocessing
technique for first-order reasoning and show that it is also applicable for simpli-
fying quantified formulas in a general framework of satisfiability modulo theories
c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 361–372, 2016.
DOI: 10.1007/978-3-319-40970-2 22

362 Z. Khasidashvili and K. Korovin

(SMT). The main goal of our algorithm is to eliminate as many predicates as
possible without increasing the complexity of the clause set. The second goal is
to simplify the original set of clauses as much as possible using newly generated
clauses. Let us note that in contrast to variable elimination in propositional logic,
effective predicate elimination is not always possible for first-order formulas with
quantifiers. In order obtain a terminating procedure we propose to restrict pred-
icate elimination to a specific case of non-self-referential predicates as defined
in the paper. We show that using non-self-referential predicate elimination one
can eliminate predicates from 77% of problems in the TPTP library [38] and
considerably reduce the number of predicates and clauses in many cases. In the
case of HWMCC’15 benchmarks [9] we show that in total more than 50 % of
predicates can be eliminated without increasing the problem size.

This paper is organized as follows: In the next section we set the terminology
and the framework. In Sect. 3 we introduce predicate elimination and prove its
soundness and correctness as a simplification technique for first-order formulas
in clausal normal form. In Sect. 4 we introduce an algorithm for predicate elimi-
nation, called NSR-Pred-Elim. In Sect. 5 we present experimental results which
show that a number of previously unsolved problems in the TPTP library for
first-order logic problems can be solved after applying predicate elimination.

2 Preliminaries

In this paper we are mainly focused on theorem proving in first-order logic but
our considerations are also applicable in a more general setting of satisfiability
of quantified first-order formulas modulo theories (SMT) [5,28,29,31], as briefly
introduced below. Let Σ be a first-order signature consisting of predicate and
function symbols. Let Σ be split into a theory part ΣT , containing interpreted
theory symbols and ΣF containing uninterpreted symbols. We assume that the
equality symbol � is in ΣT and is interpreted as equality. A theory T is defined
by a non-empty class of first-order interpretations in the signature ΣT , closed
under isomorphisms. We say that a first-order formula F is satisfiable modulo T
if there exists an interpretation I satisfying F such that the reduction of I to the
signature ΣT (forgetting symbols in ΣF) is in T . In the rest of the paper when
we say satisfiability we assume satisfiability modulo some arbitrary but fixed
theory T . If ΣT is empty then we have usual first-order logic without equality.

Satisfiability of quantified first-order formulas (modulo theories) can be
reduced to satisfiability of sets of universally quantified first-order clauses using
Skolemization and CNF transformation [18,30]. In the rest of the paper we will
consider the satisfiability of sets of first-order clauses and assume that all vari-
ables in clauses are implicitly universally quantified. Given an interpretation I,
a variable assignment σ is a mapping from variables X into I. We denote by σx̄

a restriction of σ onto variables x̄. A substitution is a mapping from variables X
into the set of terms over X. We will use σ, ρ, γ to denote variable assignments
and also substitutions when this does not cause confusion.

Predicate Elimination for Preprocessing in First-Order Theorem Proving 363

3 Predicate Elimination

Let S be a set of first-order clauses over the signature Σ. Consider a predicate
P of arity n in ΣF which we aim to eliminate from S. A literal which contains
P will be called a P -literal. Our predicate elimination procedure will be based
on two rules: flattening, where we abstract all terms from P -literals, and flat
resolution, where we resolve the flattened predicates.

A P -literal is flat if it is of the form P (x1, . . . , xn) or ¬P (x1, . . . , xn), where
x1, . . . , xn are pairwise distinct variables. A predicate P is flat in a set of clauses
S if all occurrences of P -literals in S are flat. We define the flattening rule on
clauses containing P as follows:

C ∨ (¬)P (t1, . . . , tn)
(Flattening)

C ∨ x1 �� t1 ∨ . . . ∨ xn �� tn ∨ (¬)P (x1, . . . , xn)

where x1, . . . , xn are fresh variables that do not occur in C ∨ P (t1, . . . , tn) and
literal (¬)P (t1, . . . , tn) is not flat. It is clear that flattening is equivalence pre-
serving and therefore we can remove the premise after adding the conclusion of
the rule.

We eliminate predicates after flattening using flat resolution defined as fol-
lows:

C ∨ P (x1, . . . , xn) D ∨ ¬P (x1, . . . , xn)
(FRes)

C ∨ D

We assume that before applying flat resolution, variables in clauses are renamed
such that resolved literals are of the form P (x1, . . . , xn) and ¬P (x1, . . . , xn)
respectively and all common variables in C and D are in x1, . . . , xn.

We call a predicate P self-referential in a clause C if the number of occur-
rences of P in C is greater than 1. A predicate P is self-referential in a set of
clauses S if P is self-referential in at least one clause in S. A predicate which is
not self-referential in a set of clauses S will be called non-self-referential in S.

In order to obtain a terminating elimination procedure we restrict ourselves
to eliminating non-self-referential predicates. Let S be a set of clauses and let
P ∈ ΣF be a flat and non-self-referential predicate in S. Partition S into three
disjoint sets SP , S¬P , SP̃ – the set of clauses containing P positively, negatively
and not containing P , respectively. Denote by SP �� S¬P the set of all resolvents
obtained by pairwise flat resolutions between clauses in SP and S¬P upon P .

Then, the non-self-referential predicate elimination transformation is defined
as the following rule on sets of clauses:

SP̃ ∪ SP ∪ S¬P
(NSR-Pred-Elim)

SP̃ ∪ (SP �� S¬P)

Let us note that since P is non-self-referential in SP̃ ∪ SP ∪ S¬P , P does not
occur in the conclusion set of the NSR-Pred-Elim.

364 Z. Khasidashvili and K. Korovin

The following theorem essentially follows from results in [5,16]. Here we give
a simple proof and would like to emphasise that predicate elimination is a sat-
isfiability preserving transformation in a general setting of satisfiability modulo
theories.

Theorem 1. The non-self-referential predicate elimination transformation is
satisfiability preserving.

Proof. Since flat resolution is a sound rule, satisfiability of the set of clauses in
the premise implies satisfiability of the set of clauses in the conclusion. Let us
show that the reverse direction also holds. Let us note that P does not occur
in SP̃ ∪ (SP �� S¬P). Assume that SP̃ ∪ (SP �� S¬P) is satisfiable and let I
be a model of SP̃ ∪ (SP �� S¬P) in the signature Σ \ {P}. We construct an
interpretation IP over the signature Σ which will be an expansion of I (i.e.,
coincide with I on all predicates other than P) and satisfy all clauses in SP̃ ∪
SP ∪ S¬P .

We define the predicate P in IP by defining the truth value of P (x̄)σ for
each variable assignment σ in I. Consider a variable assignment σ in I. We
define P (x̄)σ to be true in IP whenever there is a clause D ∨ P (x̄) ∈ SP such
that Dσ is false in I. Likewise, define P (x̄)σ to be false in IP if there is a clause
C ∨ ¬P (x̄) ∈ S¬P such that Cσ is false in I. In all other cases we define the
truth value of P (x̄)σ arbitrarily. Let us show that this definition is well-defined,
i.e., we never assign true to P (x̄)σ and false to P (x̄)ρ under assignments σ and
ρ such that σx̄ = ρx̄. Assume otherwise. Let σ and ρ be such that σx̄ = ρx̄ and
for some clauses D ∨ P (x̄) ∈ SP and C ∨ ¬P (x̄) ∈ S¬P , both Dσ and Cρ are
false in I. Then D ∨ C is in SP �� S¬P and since all common variables in D and
C are in x̄ we have (Dσ) ∨ (Cρ) = (D ∨ C)γ for an assignment γ that coincides
with σ on variables of D and with ρ on variables of C. We have I � (D ∨ C)γ,
hence I � (Dσ) ∨ (Cρ) which contradicts to the assumption that Dσ and Cρ
are false in I. By construction, Ip satisfies all clauses in SP ∪ S¬P and since IP
is an expansion of I we also have IP satisfies all clauses in SP̃ .

Predicate elimination allows us to eliminate a non-self-referential predicate from
a set of clauses by first applying flattening and then NSR-Pred-Elim. After
application of NSR-Pred-Elim we can apply the equality substitution rule to
eliminate negative equalities which were introduced during flattening. Equality
substitution is defined as follows:

C ∨ x �� t
(Eq-Subst)

C[t/x]

where x does not occur in t. Equality substitution is an equivalence preserving
rule so we can remove the premise when we add the conclusion to a set of clauses.

Let us note that in the case of first-order logic without theories (includ-
ing equality) we do not need to apply flattening and instead we can use most
general unifiers when applying resolution in the elimination. The proof of Theo-
rem 1 carries over by considering Herbrand interpretations rather than arbitrary
interpretations. Already in the presence of equality flattening is essential.

Predicate Elimination for Preprocessing in First-Order Theorem Proving 365

Example 1. Consider the following set of unit clauses:

P (a),¬P (b), a � b.

This set is unsatisfiable, but we can not eliminate P based on unification. When
flattening is applied to P -literals we obtain:

P (x1) ∨ x1 �� a,¬P (x1) ∨ x1 �� b, a � b.

After applying flat resolution and equality substitution we obtain an unsatisfiable
set a � b, a �� b where P is eliminated.

4 Predicate Elimination for Preprocessing

Let us note that if we start with a finite set of clauses then after eliminating
a non-self-referential predicate we obtain a clause set that is at most quadratic
in the number of clauses compared to the original set. As we will see in Sect. 5,
in practice this set is usually much smaller after eliminating redundant clauses.
Let us also note that after eliminating a non-self-referential predicate some pre-
viously non-self-referential predicates can become self-referential and conversely
some self-referential predicates can become non-self-referential due to removal
of clauses during elimination and simplification steps. Thus, the order of elimi-
nation can affect which predicates can be eliminated in the process.

Example 2. Consider the following set of clauses S, where predicates P,Q,R are
uninterpreted and function symbols f, g can be either interpreted or uninter-
preted.

1 P (f(u), u) ∨ f(f(u)) � g(u)
2 ¬P (v, g(u)) ∨ Q(f(g(u))) ∨ ¬Q(v)
3 Q(v) ∨ R(v)
4 ¬Q(f(v)) ∨ ¬R(f(v)) ∨ R(f(f(v)))

In this set of clauses predicate P is non-self-referential while Q and R are self-
referential. In order to eliminate P we first flatten P -literals in clauses 1 and 2
and rename variables, obtaining:

1flat P (x1, x2) ∨ x1 �� f(u1) ∨ x2 �� u1 ∨ f(f(u1)) � g(u1)
2flat ¬P (x1, x2) ∨ x1 �� v2 ∨ x2 �� g(u2) ∨ Q(f(g(u2))) ∨ ¬Q(v2)

After applying flat resolution and repeatedly applying equality substitution we
obtain:

5. f(f(g(u2))) � g(g(u2)) ∨ Q(f(g(u2))) ∨ ¬Q(f(g(u2)))

Clause 5 is a tautology and therefore we can eliminate P by simply removing
clauses 1 and 2. After eliminating P , Q becomes non-self-referential and therefore
can also be eliminated. After eliminating Q we obtain the empty set of clauses,
hence the original set of clauses is satisfiable.

366 Z. Khasidashvili and K. Korovin

Our main goal is to use predicate elimination for preprocessing to simplify
sets of first-order clauses. For this we consider the non-self-referential predi-
cate elimination (NSR-Pred-Elim), presented below. Clause simplifications play
a central role in the NSR-Pred-Elim algorithm. Let us first briefly describe sim-
plifications that were used in our implementation.

Tautology elimination. Clauses of the form P (t̄) ∨ ¬P (t̄) ∨ C are tautologies
and can be eliminated. In the presence of equality we also eliminate equational
tautologies of the form t � t ∨ C. We refer to [26] for a more general notion of
equational tautologies.

Subsumption. A clause C subsumes a clause D if Cσ ⊆ D for some substitution
σ, considering clauses as literal multi-sets. Subsumed clause D can be removed
in the presence of clause C.

Subsumption resolution. Subsumption resolution of two clauses can be seen as
an application of resolution to these clauses followed by subsumption of one of
its premises by the conclusion [4]. In this case, the subsumed premise is replaced
by the conclusion.

Global subsumption. A set of clauses S globally subsumes a clause D if there is
a clause C such that S �gr C and Cσ � D for a substitution σ, where �gr is
a propositional approximation of �. In this case C is called a witness for global
subsumption and we can replace subsumed clause D by C. A global subsumption
witness C can be obtained from S and D by adjoining negations of subclauses
of D to S and applying propositional reasoning. We refer to [24] for details.

Let us note that we are not restricted to using only these simplifications, the
method allows one to use any other collection of sound simplifications.

The NSR-Pred-Elim algorithm. The input of the NSR-Pred-Elim (Algo-
rithm 1) is a set of first-order clauses and a predicate elimination queue. The
main goal is to eliminate as many predicates as possible from the elimination
queue without increasing the complexity of the clause set. The second goal is
to simplify the original set of clauses as much as possible using newly generated
clauses. There are different possible complexity measures, we use one of the most
restrictive and require that after each predicate elimination the number of liter-
als should not increase and in addition that the normalised variable complexity
of the set of clauses should also not increase. We define normalised variable com-
plexity of a set of clauses as a sum of squares of the number of variables in each
clause. The idea behind the last restriction is to give a greater weight to clauses
with higher number of variables since reasoning with such clauses is generally
more expensive.

During a run of the algorithm we maintain a set global-clauses which is equi-
satisfiable to the input set and a set local-clauses which is generated during
elimination of a predicate. Clause simplifications play a central role in the NSR-
Pred-Elim algorithm. Each newly generated clause is first self-simplified by sim-
plifications such as equality substitution and tautology elimination (line 14).

Predicate Elimination for Preprocessing in First-Order Theorem Proving 367

Then the forward-simplify procedure (line 15) is applied, where the clause is
simplified by local clauses and global clauses using simplifications such as sub-
sumption, subsumption resolution and global subsumption. If the clause is elimi-
nated by, e.g., tautology elimination or subsumption then we proceed to the next
generated clause, otherwise we apply the backward-simplify procedure which uses
(a simplification of) this clause to simplify both local and global clauses using
simplifications such as subsumption and subsumption resolution (lines 17, 18).
After processing all clauses in the resolvent set SP �� S¬P we check whether to
keep the result of the elimination or to discard it based on the complexity of
the generated clause set (line 26). Even when we discard the result of the predi-
cate elimination we still benefit from the simplifications of the global set by the
clauses generated in the process. For this, in the case when we simplify a clause
in the global set we keep simp-witnesses of this simplification (line 32): the set
of clauses which are used to simplify the clause and imply the simplified clause.
A simplification witness usually consists of a clause derived by flat resolution
and equality substitution during the elimination or by simplifications such as
subsumption resolution or global subsumption.

The algorithm maintains a map (pred-map) which maps predicates to sets
of clauses where the predicate occurs positively and negatively and a set of sus-
pended predicates (suspended-pred-set) for which the elimination was suspended
either due to self-referential occurrences in clauses (line 32) or to complexity
of the clause set after elimination (line 27). After updating the set of global
clauses we also update pred-map and suspended-pred-set. During this update
some predicates from suspended-pred-set can be moved back to the elimination
queue due to clauses eliminated from the global set, which contain predicates
from suspended-pred-set.

5 Implementation and Evaluation

We implemented the NSR-Pred-Elim algorithm in iProver1 – a theorem prover
for first-order logic [23,24]. iProver is a general purpose theorem prover for first-
order logic which incorporates SAT solvers at its core, currently MiniSAT [13]
and optionally PicoSAT [7]. One of the main challenges in efficient implemen-
tation of NSR-Pred-Elim are efficient local and global simplifications. In con-
trast to propositional subsumption, clause-to-clause first-order subsumption is
an NP-complete problem. In order to deal with subsumption and subsumption
resolution efficiently we employed the compressed feature vector index (CFVI)
which is an extension of the feature vector index proposed in [34]. This allowed us
to successfully apply NSR-Pred-Elim to problems containing hundreds of thou-
sands of clauses. One of the important parameters of the algorithm is a criterion
deciding when to keep the result of a predicate elimination.

For our experiments we used machines with Intel Xeon L5410 2.33 GHz
CPU, 4 cores, 12Gb. Each problem was run on a single core with time limit

1 iProver is available at http://www.cs.man.ac.uk/∼korovink/iprover.

http://www.cs.man.ac.uk/~korovink/iprover

368 Z. Khasidashvili and K. Korovin

Algorithm 1. NSR-Pred-Elim
1: input: S – input clause set
2: input: elim-queue – predicate elimination priority queue
3: output: a simplified set of clauses equi-satisfiable with S
4: global-clauses ← S
5: eliminated-pred-set ← ∅
6: suspended-pred-set ← ∅
7: pred-map.create(global-clauses)
8: while elim-queue �= ∅ do
9: P ← pop(elim-queue)

10: if non-self-referential(P) then
11: (SP , S¬P) ← pred-map.find(P)
12: local-clauses ← ∅
13: for C ∈ SP �� S¬P do
14: self-simplify(C)
15: C ← forward-simplify(C, local-clauses ∪ global-clauses)
16: if ¬is-eliminated(C) then
17: local-clauses ← backward-simplify(C, local-clauses)
18: global-clauses ← backward-simplify(C, global-clauses)
19: local-clauses ← local-clauses ∪ {C}
20: end if
21: end for
22: if keep-elim(local-clauses) then
23: global-clauses ← (global-clauses \ (SP ∪ S¬P)) ∪ local-clauses
24: eliminated-pred-set ← eliminated-pred-set ∪ {P}
25: else
26: global-clauses ← global-clauses ∪ simp-witnesses(global-clauses)
27: suspended-pred-set ← suspended-pred-set ∪ {P}
28: end if
29: pred-map.update(global-clauses)
30: suspended-pred-set.update(global-clauses)
31: else
32: suspended-pred-set ← suspended-pred-set ∪ {P}
33: end if
34: end while
35: return global-clauses

300 s and memory limit 3.5Gb. We evaluated predicate elimination over first-
order problems in FOF and CNF formats over the TPTP-v6.1.0 library. iProver
accepts first-order problems in CNF form, for problems in general first-order
form we used Vampire’s [26] clausifier to transform them into CNF. TPTP-v6.1.0
contains 15897 problems in FOF and CNF formats, 13708 (86 %) of problems
contain predicates other than equality. The left-hand table in Fig. 1 shows that
our predicate elimination procedure is able to eliminate predicates in 10617
problems in TPTP, which is 77 % of all first-order problems in TPTP containing
non-equality predicates. In particular, from this it follows that at least 77 % of

Predicate Elimination for Preprocessing in First-Order Theorem Proving 369

problems contain non-self-referential predicates which can be eliminated without
increasing the size of the problem.

eliminated predicates problems
1 − 10 4759

11 − 100 3682
101 − 1000 1473

1001 − 10000 607
10001 − 100000 82

100001 − 1000000 14
total 10617

reduction in clauses problems
0.01% − 20% 8042

20% − 40% 930
40% − 60% 515
60% − 80% 399
80% − 100% 188

total 10074

Fig. 1. The number of TPTP problems with the number of eliminated predicates in
the specified range (left) and the specified reduction in the number of clauses (right).

The right-hand table in Fig. 1 shows the percentage of reduction in the num-
ber of clauses due to the predicate elimination. Let us note that even when there
is no reduction in the number of clauses the set of clauses may change after
the predicate elimination process. This is the case when the number of removed
clauses due to simplifications is the same as the number of generated clauses due
to predicate elimination and the addition of simplification witnesses.

Table 1 compares the performance of iProver with predicate elimination and
without. Ratings of problems range from 0 – easy problems to 1 – problems that
cannot be solved by any solver so far (including previous versions of iProver). We

Table 1. iProver performance on TPTP problems with and without predicate
elimination

pred elim w/o pred elim

Ratings Total Solved % Solved %

0.0 - 0.1 3495 3123 89 3110 89

0.1 - 0.2 1744 1512 87 1498 86

0.2 - 0.3 1302 931 71 916 70

0.3 - 0.4 1092 602 55 587 54

0.4 - 0.5 999 512 51 506 51

0.5 - 0.6 830 321 39 294 35

0.6 - 0.7 913 268 29 241 26

0.7 - 0.8 607 141 23 129 21

0.8 - 0.9 1115 109 10 110 10

0.9 - 1.0 993 55 6 44 4

1.0 - 1.0 1892 20 1 18 1

total 14982 7594 51 7453 50

370 Z. Khasidashvili and K. Korovin

can see from this table that iProver with predicate elimination considerably out-
performs iProver without predicate elimination on problems of all ratings except
for one case where it loses one problem. iProver can also be used as a preprocess-
ing tool and combined with other theorem provers. We evaluated the effect of the
NSR-Pred-Elim preprocessing on top-of-the-range first-order theorem provers
Vampire [26] and E [35], which also have their own advanced preprocessors. In
both cases the NSR-Pred-Elim preprocessing considerably increased the num-
ber of solved problems over TPTP: 130 in the case of E and 32 in the case of
Vampire.

Our second set of experiments focuses on the model checking problems in
the Hardware Model Checking Competition, HWMCC’15 [9]. In [21], the authors
proposed two new model checking algorithms based on an encoding of the model-
checking problem into the effectively propositional fragment of first-order logic
(EPR). The first one is a bounded model checking [8] algorithm called UCM-
BMC1, and the second one is a k-induction algorithm [36] called UCM-k-ind.
These algorithms employ an unsat core and model-based (UCM) abstraction
refinement scheme inspired by [2,11,17], based on approximations of the tran-
sition relation by first-order predicates. These algorithms are implemented in
iProver and the implementation uses the iProver theorem prover to solve the
BMC and induction formulas of UCM-BMC1 and UCM-k-ind.

In these experiments, we apply predicate elimination to the BMC and induc-
tion formulas of UCM-BMC1 and UCM-k-ind as part of preprocessing and com-
pare them with UCM-BMC1 and UCM-k-ind where predicate elimination is not
performed in iProver. With predicate elimination iProver solves more problems
and reaches deeper bounds: on the 547 available problems, the total number
of bounds reached with predicate elimination is 24244, without predicate elim-
ination it is 21820. Furthermore, predicate elimination eliminated 27 million
predicates from the total of 54 million, and eliminated 57 million clauses from
the total of 160 million.

References

1. Ackermann, W.: Untersuchungen über das Eliminationsproblem der matheraatis-
chen Logik. Math. Ann. 110, 390–413 (1935)

2. Amla, N., McMillan, K.L.: Combining abstraction refinement and SAT-based
model checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 405–419. Springer, Heidelberg (2007)

3. Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equality
reduction. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp.
341–355. Springer, Heidelberg (2004)

4. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson and
Voronkov [32], pp. 19–99

5. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for
hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212
(1994)

6. Biere, A.: Resolve and expand. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

Predicate Elimination for Preprocessing in First-Order Theorem Proving 371

7. Biere, A.: Picosat essentials. JSAT 4(2–4), 75–97 (2008)
8. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without

BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

9. Biere, A., Heljanko, K.: Hardware model checking competition report (2015).
http://fmv.jku.at/hwmcc15/Biere-HWMCC15-talk.pdf

10. Brafman, R.I.: A simplifier for propositional formulas with many binary clauses.
IEEE Trans. Syst. Man Cybern. Part B 34(1), 52–59 (2004)

11. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

12. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960)

13. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

14. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

15. Gabbay, D.M., Schmidt, R.A., Szalas, A.: Second-Order Quantifier Elimination:
Foundations, Computational Aspects and Applications, Studies in Logic: Mathe-
matical Logic andFoundations, vol. 12. College Publications (2008)

16. Gabbay, D.M., Ohlbach, H.J.: Quantifier elimination in second-order predicate
logic. In: Proceedings of the 3rd International Conference on Principles of Knowl-
edge Representation and Reasoning (KR 1992), pp. 425–435 (1992)

17. Gupta, A., Ganai, M.K., Yang, Z., Ashar, P.: Iterative abstraction using sat-based
BMC with proof analysis. In: International Conference on Computer-Aided Design,
ICCAD, pp. 416–423 (2003)

18. Hoder, K., Khasidashvili, Z., Korovin, K., Voronkov, A.: Preprocessing techniques
for first-order clausification. In: Cabodi, G., Singh, S. (eds.) Formal Methods in
Computer-Aided Design, FMCAD, pp. 44–51. IEEE (2012)

19. Hoder, K., Kovács, L., Voronkov, A.: Interpolation and symbol elimination in vam-
pire. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 188–195.
Springer, Heidelberg (2010)

20. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer,
Heidelberg (2012)

21. Khasidashvili, Z., Korovin, K., Tsarkov, D.: EPR-based k-induction with coun-
terexample guided abstraction refinement. In: Gottlob, G., Sutcliffe, G., Voronkov,
A. (eds.) GCAI 2015. Global Conference on Artificial Intelligence. EPiC Series in
Computing, vol. 36, pp. 137–150. EasyChair (2015)

22. Koopmann, P., Schmidt, R.A.: Uniform interpolation and forgetting for ALC
ontologies with aboxes. In: Bonet, B., Koenig, S. (eds.) Proceedings of the AAAI-
2015, pp. 175–181. AAAI Press (2015)

23. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)

24. Korovin, K.: Inst-Gen – a modular approach to instantiation-based automated
reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS,
vol. 7797, pp. 239–270. Springer, Heidelberg (2013)

25. Kovács, L., Voronkov, A.: Interpolation and symbol elimination. In: Schmidt, R.A.
(ed.) CADE-22. LNCS, vol. 5663, pp. 199–213. Springer, Heidelberg (2009)

http://fmv.jku.at/hwmcc15/Biere-HWMCC15-talk.pdf

372 Z. Khasidashvili and K. Korovin

26. Kovács, L., Voronkov, A.: First-Order theorem proving and vampire. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer,
Heidelberg (2013)

27. Lynce, I., Silva, J.P.M.: Probing-based preprocessing techniques for propositional
satisfiability. In: 15th IEEE International Conference on Tools with Artificial Intel-
ligence ICTAI, p. 105. IEEE Computer Society (2003)

28. de Moura, L., Bjørner, N.S.: Efficient E-matching for SMT solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007)

29. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract davis-putnam-logemann-loveland procedure to DPLL(T). J. ACM
53(6), 937–977 (2006)

30. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robin-
son and Voronkov [32], pp. 335–367

31. Reynolds, A., Tinelli, C., de Moura, L.M.: Finding conflicting instances of quanti-
fied formulas in SMT. In: Formal Methods in Computer-Aided Design, FMCAD,
pp. 195–202. IEEE (2014)

32. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in vol-
ume 2s). Elsevier and MIT Press, Cambridge (2001)

33. Schmidt, R.A.: The Ackermann approach for modal logic, correspondence theory
and second-order reduction. J. Appl. Logic 10(1), 52–74 (2012)

34. Schulz, S.: Simple and efficient clause subsumption with feature vector indexing.
In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics.
LNCS, vol. 7788, pp. 45–67. Springer, Heidelberg (2013)

35. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013)

36. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-Solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 108–125. Springer, Heidelberg (2000)

37. Subbarayan, S., Pradhan, D.K.: NiVER: non-increasing variable elimination reso-
lution for preprocessing SAT instances. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT
2004. LNCS, vol. 3542, pp. 276–291. Springer, Heidelberg (2005)

38. Sutcliffe, G.: The TPTP World – Infrastructure for automated reasoning. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 1–12.
Springer, Heidelberg (2010)

Quantified Boolean Formula

Incremental Determinization

Markus N. Rabe(B) and Sanjit A. Seshia(B)

University of California, Berkeley, USA
{rabe,sseshia}@berkeley.edu

Abstract. We present a novel approach to solve quantified boolean for-
mulas with one quantifier alternation (2QBF). The algorithm incremen-
tally adds new constraints to the formula until the constraints describe
a unique Skolem function - or until the absence of a Skolem function
is detected. Backtracking is required if the absence of Skolem functions
depends on the newly introduced constraints. We present the algorithm
in analogy to search algorithms for SAT and explain how propagation,
decisions, and conflicts are lifted from values to Skolem functions. The
algorithm improves over the state of the art in terms of the number of
solved instances, solving time, and the size of the certificates.

1 Introduction

Solvers for quantified boolean formulas (QBFs) have been considered as an algo-
rithmic backend in a variety of application areas, such as planning in uncertain
environments [3,32,38], chess [2,3,44], program verification [5,14], model check-
ing of Markov chains [42], circuit analysis [17,18,35], and synthesis [12,16,46].
However, the performance of the currently available solvers can be unsatisfac-
tory. For example, competitive solvers such as DepQBF [34], RAReQS [26], and
Qesto [27] cannot solve the quantified boolean formula ∀X.∃Y. X = Y in a rea-
sonable timeframe, where X and Y are 32-bit words and = states their bitwise
equivalence. Even though preprocessors like Bloqqer [11] help to solve this for-
mula, the example suggests that there is a fundamental problem with the solving
principle of state-of-the-art QBF solvers.

The formula describes a trivial problem. We can see that for every assign-
ment to X there is exactly one assignment to Y that satisfies the constraint.
That is, the formula describes the Skolem function that is the solution to the
problem. This reasoning, however, requires us to detect functional dependencies
in formulas that are typically given in conjunctive normal form.

In this paper we present an algorithm to determine the truth of formulas
with one quantifier alternation (2QBF) that detects existing functional depen-
dencies among variables and incrementally builds new Skolem functions when-
ever the problem does not imply a unique Skolem function. We employ the view
that the propositional part ϕ of a 2QBF ∀x1, . . . , xn ∈ B. ∃y1, . . . , ym ∈ B. ϕ
is a binary relation Rϕ over assignments x and y to the variables x1, . . . , xn

and y1, . . . , ym: Rϕ = {(x,y) | ϕ(x,y)}. We call Rϕ the Skolem relation. The

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 375–392, 2016.
DOI: 10.1007/978-3-319-40970-2 23

376 M.N. Rabe and S.A. Seshia

solution to a true 2QBF is a Skolem function f that assigns values to the exis-
tentially quantified variables depending on the universally quantified variables
such that the constraints are satisfied for all pairs of assignments (x, f(x)). Also
a Skolem function can be seen as a relation over assignments and it is a subset
of the Skolem relation Rϕ. The difference between the Skolem relation Rϕ and a
Skolem function f is that Rϕ may still provide multiple possible assignments y
for some assignment x, while f has to provide exactly one y for every x. The
presented algorithm adds constraints to ϕ to eliminate the remaining nondeter-
minism - we determinize the Skolem relation to obtain a Skolem function.

The algorithm is a generalization of the DPLL algorithm [15] with conflict-
driven clause learning (CDCL) [45]. We lift the concepts of propagation, deci-
sions, and conflicts from values for variables to Skolem functions for variables.
We thereby break the search for Skolem functions down to single variables, which
allows us to determinize the relation incrementally, giving rise to the name of
the algorithm - incremental determinization.

After presenting an overview of the algorithm in Sect. 3, we present a prop-
agation procedure in Sect. 4, which identifies variables that already have unique
Skolem functions and whether there is a conflicted variable. In Sect. 5 we discuss
how to introduce additional constraints to fix a Skolem function for a variable in
case propagation cannot derive a unique Skolem function. Section 6 covers how
to compute a conflict clause after a conflicted variable is detected. Termination,
correctness, and the generation of certificates is covered in Sect. 7. In Sect. 8 we
describe the implementation and give an experimental evaluation of the app-
roach. We sketch out relations to other algorithms and preprocessing techniques
for QBF in Sect. 9 and conclude with Sect. 10.

2 Quantified Boolean Formulas

We assume that the reader is familiar with the natural semantics of propositional
boolean formulas and summarize the basic notation for quantified boolean for-
mulas in the following. Quantified boolean formulas over a finite set of variables
x ∈ X with domain B = {0, 1} are generated by the following grammar:

ϕ := 0 | 1 | x | ¬ϕ | (ϕ) | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x. ϕ | ∀x. ϕ,

We abbreviate multiple quantifications Qx1.Qx2. . . . Qxn.ϕ to the quantification
over a set of variables QX.ϕ, where xi ∈ X and Q ∈ {∀,∃}.

An assignment x to a set of variables X is a function x : X → B that maps
each variable x ∈ X to either 1 or 0. Given a propositional formula ϕ over
variables X and an assignment x′ for X ′ ⊆ X, we define ϕ(x′) to be the formula
obtained by replacing the variables X ′ by their truth value in x′. By ϕ(x′,x′′) we
denote the replacement by multiple assignments for disjoint sets X ′,X ′′ ⊆ X.

The dependency set of an existentially quantified variable y, denoted by
dep(y), is the set of universally quantified variables x such that ∃y. ϕ is a subfor-
mula of ∀x.ϕ′. A Skolem function fy maps assignments to dep(y) to assignments
to y. We define the truth of a QBF ϕ as the existence of Skolem functions

Incremental Determinization 377

fY = {fy1 , . . . , fyn
} for the existentially quantified variables Y = {y1, . . . , yn},

such that ϕ(x, fY (x)) holds for every x, where fY (x) is the assignment to Y
that the Skolem functions fY provide for x.

A quantifier Qx.ϕ for Q ∈ {∃,∀} binds the variable x in its subformula ϕ. A
closed QBF is a formula in which all variables are bound. A formula is in prenex
normal form, if the formula is closed and starts with a sequence of quantifiers
followed by a propositional subformula. A formula ϕ is in the kQBF fragment for
k ∈ N

+ if it is closed, in prenex normal form, and has exactly k − 1 alternations
between ∃ and ∀ quantifiers.

A literal l is either a variable x ∈ X, or its negation ¬x. Given a set of
literals {l1, . . . , ln}, their disjunction (l1 ∨ . . . ∨ ln) is called a clause and their
conjunction (l1 ∧ . . . ∧ ln) is called a cube. A propositional formula is in con-
junctive normal form (CNF), if it is a conjunction of clauses. A prenex QBF
is in prenex conjunctive normal form (PCNF) if its propositional subformula
is in CNF. W.l.o.g. we assume for all PCNF formulas that none of the clauses
contains two opposite literals, which would trivially satisfy the clause, and that
all clauses contain at least one literal from an existentially quantified variable.
To simplify the notation, we treat the propositional formulas ψ as sets of clauses
ψ = {C1, . . . , Cn}, clauses C as sets of literals C = {l1, . . . , lm}, and use set
operations like intersection and union for their manipulation. Every QBF ϕ can
be transformed into an equivalent PCNF with size O(|ϕ|) [47].

We assume that the reader is familiar with unit propagation and define
UP(ϕ) as the partial assignment to the variables in a propositional ϕ resulting
from applying the unit propagation rule until a fixpoint is reached. We define
UP(ϕ) = ⊥ if unit propagation results in a conflicting assignment for a variable.

3 Algorithm

Let ∀X.∃Y.ϕ be a 2QBF in PCNF, where ϕ is the propositional part. The algo-
rithm IncrementalDeterminization determines whether the formula is true.
The key principle of the algorithm is to maintain a set of variables D ⊆ Y for
which the set of clauses D = {C ∈ ϕ | C ⊆ D ∪ X} that only have variables in
D and X defines a Skolem function for each variable in D: We say that ϕ is D-
consistent if for each assignment x to X, UP(D(x)) is not ⊥ and assigns a value
to all variables in D. (In particular, ∀X∃!D. D.) It is clear that a Y -consistent
2QBF is true and for each true 2QBF ∀X.∃Y.ϕ there exists a set of clauses ψ,
such that ∀X.∃Y.ϕ ∧ ψ is Y -consistent.

Given a D-consistent formula ∀X.∃Y.ϕ, we say a variable v ∈ Y has a unique
Skolem function, if ∀X.∃Y.ϕ is also (D ∪ {v})-consistent. For determining (D ∪
{v})-consistency we have to extend the clauses D by the clauses Uv in which v is
the only variable not in D and not in X. Clauses in Uv can be read as implications
where the consequence is a literal of v, because we know that all other variables
are already determined for all assignments x. We say that a clause C ∈ Uv has
the unique consequence v.

The algorithm checks for unique Skolem functions in two steps which require
the following definitions: Variable v is deterministic, if UP(D(x) ∧ Uv(x)) is ⊥

378 M.N. Rabe and S.A. Seshia

or gives a unique assignment to v for all assignments x to X, and v is conflicted,
if UP(D(x) ∧ Uv(x)) = ⊥ for some assignment x to X. Deterministic variables
that are not conflicted have a unique Skolem function.
1: procedure IncrementalDeterminization(∀X.∃Y.ϕ)
2: dlvl ← 0; D ← ∅
3: while true do
4: D,ϕ, conflict ,x ← Propagate(∀X.∃Y.ϕ,D, dlvl)
5: if conflict then
6: c ← AnalyzeConflict(∀X.∃Y. ϕ,x,D, dlvl)
7: if c only contains variables in X then
8: return false
9: dlvl ← (maximal decision level in c) − 1

10: ϕ,D ← Backtrack(ϕ,D, dlvl)
11: ϕ ← ϕ ∧ c
12: else
13: if D = Y then
14: return true
15: v ← PickVar(Y \ D)
16: dlvl ← dlvl + 1
17: ϕ ← ϕ ∧ Decision(v, ϕ,D)

The elements of the algorithm are as follows: The procedure Propagate
extends D with variables with unique Skolem functions until the procedure returns
an updated set D, or until a conflicted variable is detected upon which propagation
reports an assignment to X for which the conflict occurs (see Sect. 4). In case of a
conflict, AnalyzeConflict computes a conflict clause (Sect. 6).

Variables that are detected to have a unique Skolem function get labeled
with the current decision level (dlvl) during propagation, which is used during
backtracking (lines 10 to 12). The procedure Backtrack(ϕ, dlvl) resets the set
D and the formula ϕ to a certain decision level, but keeps the learnt clauses. In
case no conflict is detected during propagation, the procedures PickVar and
Decision fix a Skolem function for an additional variable (see Sect. 5).

4 Propagation and Conflicts

During propagation search algorithms for SAT consider which assignments to
the yet unassigned variables are entailed by the current partial assignment. In
this section we generalize propagation of values to a notion of propagation of
Skolem functions. To develop some intuition on the determinicity check let us
consider the following example:

∀x1.∀x2. ∃y1.∃y2. (x1 ∨ ¬y1) ∧ (x2 ∨ ¬y1) ∧ (¬x1 ∨ ¬x2 ∨ y1)
︸ ︷︷ ︸

fy1 : (x1,x2) �→x1∧x2

(1)

∧ (¬x1 ∨ ¬y2) ∧ (¬y1 ∨ ¬y2) ∧ (x1 ∨ y1 ∨ y2)
︸ ︷︷ ︸

fy2 : (x1,y1) �→¬(x1∨y1)

(2)

Incremental Determinization 379

The first three clauses (clause group (1)) of the formula can easily be iden-
tified as a definition of a Skolem function for y1: For each assignment to x1

and x2, one of the first three clauses entails a unique value for y1. It helps to
consider each of these clauses as an implication, that is (¬x1 → ¬y1) ∧ (¬x2 →
¬y1) ∧ (x1 ∧ x2 → y1). Variable y1 thus satisfies the determinicity condition for
the empty set D. It is also easy to see that the antecedents of the implications
described by clause group 1 do not overlap; variable v is not conflicted. We can
conclude that there is no solution to the formula above in which y1 has a Skolem
function different from fy1 : (x1, x2) → x1 ∧ x2.

After we identified that y1 has a unique Skolem function, we see that also the
Skolem function for variable y2 is unique. The second group of clauses (clause
group (2)) allows no Skolem function other than fy2 : (x1, y1) → ¬(x1 ∨y1). The
use of an existentially quantified variable in the definition of this Skolem function
is a short form for the Skolem function fy2 : (x1, x2) → ¬(x1∨fy1(x1, x2)).1 Note
that variable y2 does not have a unique Skolem function relative to an empty
set D. Identifying Skolem functions for some variables can thus help to identify
variables for further variables.

4.1 Checking for Determinicity

We consider D-consistent 2QBF in PCNF ∀X.∃Y.ϕ, where ϕ is the propositional
part and D ⊂ Y . For determining determinicity of a variable v ∈ Y \D, only the
clauses D and Uv play a role. As explained in Sect. 3 we can see each clause C
in Uv as an implication ¬(C \ {v,¬v}) =⇒ v from variables in X and variables
with a fixed Skolem function to a literal of v. If, and only if, for every pair of
assignments (x,d) (to variables X and D) satisfying D one of the antecedents
described by Uv applies, variable v is deterministic: D =⇒ ∨

C∈Uv
¬(C\{v,¬v}).

To enable the use of SAT solvers we avoid the validity in the formulation and
negate the formula.

Lemma 1. Variable v is deterministic w.r.t. D iff the following is unsatisfiable:

D ∧
∧

C∈ Uv

C \ {v,¬v}

4.2 Local Under-Approximation of Determinicity

Checking determinicity with the formula above can be costly, as the check
involves the potentially large set of clauses D. We thus suggest to drop D and
obtain the under-approximation:

∧
C∈ Uv

C \ {v,¬v} . That is, the local under-
approximation does not take into account that certain assignments to D may
violate the definitions of the Skolem functions. We call a variable that satisfies
the local determinicity check locally deterministic.
1 The algorithm only constructs Skolem functions that depend on universally quan-

tified variables. The use of existentially quantified variables is just an abbreviation,
so there is no risk of circular dependencies.

380 M.N. Rabe and S.A. Seshia

Let us revisit the example in the beginning of Sect. 4. Assuming that none of
the variables have been identified yet to have a unique Skolem function (D = ∅),
we check local determinicity for variable y1 with the following propositional for-
mula: x1 ∧ x2 ∧ (¬x1 ∨ ¬x2). As the formula is unsatisfiable, y1 is deterministic.
If we checked y2 first, there would be only a single clause with unique conse-
quence y2 and thus the local determinicity check consists of the single clause
¬x1, which is trivially satisfiable. Only after identifying a Skolem function for
y1, i.e. with y1 ∈ D, also the other two clauses in which y2 occurs have a unique
consequence. In this case we formulate the query ¬x1∧¬y1∧(x1∨y1), determine
its unsatisfiability, and conclude that y2 satisfies condition (1) as well.

4.3 Pure Literals

If an existentially quantified variable occurs in only one polarity in a formula in
PCNF we call it a pure literal and we can assign it this polarity while preserving
the truth of the formula. When we additionally consider a partial assignment,
we can easily generalize this to the following: when all literals of one polarity
are in clauses that are satisfied by literals of other variables, we can assign the
variable the opposite literal. We encode this condition as a constraint:

Lemma 2. Given a PCNF ∀X.∃Y.ϕ and a literals l of v ∈ Y , we have:

∀X.∃Y.ϕ ⇐⇒ ∀X.∃Y.ϕ ∧
((∧

C∈ϕ with l∈C

C \ {l})
=⇒ l

)

We call
(∧

C∈ϕ with l∈C C \ {l}
)

=⇒ l the pure literal constraint. We could
add the constraint for all variables, but this would increase the formula size
significantly. Instead we add the constraint only if during propagation v is not
locally deterministic and a literal l of v only occurs in clauses in Uv. Adding the
pure literal constraint then guarantees that v is deterministic.

Consider a variation of the previous example, where we only flip the negation
of the second occurrence of y2:

∀x1.∀x2. ∃y1.∃y2. (x1 ∨ ¬y1) ∧ (x2 ∨ ¬y1) ∧ (¬x1 ∨ ¬x2 ∨ y1)
︸ ︷︷ ︸

fy1 : (x1,x2) �→x1∧x2

(3)

∧ (¬x1 ∨ ¬y2)
︸ ︷︷ ︸
fy2 : x1 �→¬x1

∧(¬y1 ∨ y2) ∧ (x1 ∨ y1 ∨ y2) (4)

Even when we test y2 for determinicity before we establish that y1 is deter-
ministic, we can now fix a Skolem function for y2: The only negative occurrence
of variable y2 is in the clause ¬x1 ∨¬y2, which happens to have ¬y2 as a unique
consequence. We can thus fix y2 to be positive in all remaining cases and set
fy2 : x1 → ¬x1 by adding the clause x1 ∨ y2 to the formula.

Incremental Determinization 381

4.4 Checking for Conflicts

In algorithms for propositional SAT, we call variables conflicted, if unit prop-
agation resulted in conflicting assignments to the variable. In the incremental
determinization algorithm a variable v is conflicted in a D-consistent 2QBF,
if there is an assignment to the universally quantified variables that propa-
gates conflicting assignments to v. We consider the example from Subsect. 4.3 to
develop some intuition on conflicted variables. Assume we first identified vari-
able y2 to have the unique Skolem function fy2 : x1 → ¬x1. Then all clauses in
clause group 3 and the latter two clauses of clause group 4 have a literal of y1
as a unique consequence. The determinicity check determines that the formula
x1 ∧ x2 ∧ (¬x1 ∨ ¬x2) ∧ ¬y2 ∧ (x1 ∨ y2) is unsatisfiable and concludes that y1
is deterministic. To see that the variable is conflicted, i.e. there is no Skolem
function satisfying all constraints, consider the assignment x1 ∧ x2, which sets
y2 to false according to fy2 . In this case we cannot give variable y1 a value that
satisfies all constraints: The last clause of clause group 3 requires y1 to be set
to true while the second clause of clause group 4 requires y1 to be set false. We
found a conflict!

As for the determinicity check, we can easily construct a formula for the
global conflict check that represents the assignments to X that prove a variable
v ∈ Y \ D to be conflicted. Let us consider a D-consistent 2QBF in PCNF
∀X.∃Y.ϕ, where ϕ is the propositional part and D ⊂ Y . The clauses D represent
the known Skolem functions and are guaranteed to provide unique values to D
for every assignment x to X. In particular, UP(x) cannot result in ⊥ and so it
suffices to check for conflicting assignments to variable v. Variable v can only be
propagated if one of the antecedents of the clauses Uv with unique consequence v
is true. We thus know that variable v is conflicted if, and only if, there is a pair of
assignments (x,UP(x)) that satisfies the antecedents of two clauses C,C ′ ∈ Uv

with v ∈ C and ¬v ∈ C ′.

Lemma 3. Variable v is conflicted if, and only if, the following is satisfiable:

D ∧
(

∨

C∈Uv with v∈C

¬(C \ {v})

)

∧
(

∨

C∈Uv with ¬v∈C

¬(C \ {¬v})

)

4.5 Local Over-Approximation for Conflict Detection

The global conflict check is a relatively expensive step, as it involves the poten-
tially large set of clauses D. Similar to the local determinicity check, we drop
D from the conflict check to first check for local conflicts. If the local conflict
check returns an assignment to X and D, we cannot be sure that the assignment
satisfies D, so we then resort to the global conflict check.

4.6 The Propagation Procedure

The procedure Propagate extends a given set D of variables that have a unique
Skolem function and it checks whether there is a conflicted variable. The returned

382 M.N. Rabe and S.A. Seshia

set D may be an under-approximation of the set of variables with unique Skolem
functions, just as propagation for SAT computes an under-approximation of the
set of variables having a unique value. This may lead to unnecessary decisions,
but avoids the costly global determinicity check. Also, the procedure does not
check all variables for conflicts. Instead it only makes sure that deterministic
variables are not conflicted, so no conflicted variable gets added to the set D.
In this way all variables will still be checked for conflicts eventually (unless the
algorithm terminates with false).

Given a set D of variables, a D-consistent 2QBF, and a decision level, Prop-
agate returns a 4-tuple indicating the updated set of variables D, whether there
is a conflict, the formula (which may be modified by pure literal detection), and
an assignment x to the universally quantified variables:
1: procedure Propagate(∀X.∃Y. ϕ, D, dlvl)
2: U ← variables occurring as unique consequence in ϕ
3: while U ∩ (Y \ D) �= ∅ do
4: v ← pick a variable in U ∩ (Y \ D)
5: U ← U \ v
6: if v is locally deterministic then
7: if local conflict for v then
8: if global conflict for v for assignment x then
9: return (D, true, ϕ, x)

10: v.dlvl ← dlvl
11: D ← D ∪ {v}
12: check for new clauses with unique consequences; update U
13: else
14: if v occurs only in Uv or ¬v occurs only in Uv then
15: ϕ ← ϕ ∧ pure literal constraint
16: U ← U ∪ {v}
17: return (D, false, ϕ, N/A)

With the set U we remember which variables we still have to check for deter-
minicity. Whenever a variable is detected to have a unique Skolem function, we
check for clauses that now have a unique consequence and update U (line 12). It
is possible (and desirable) to start with a smaller set U than shown above: only
variables v for which we added a new clause with unique consequence v since
the last propagation phase can possibly become deterministic. For the sake of
simplicity we omitted the additional bookkeeping in this exposition.

5 Decisions

Decisions are made when the propagation procedure comes to a stop and no
conflict was detected. The procedure PickVar picks a variable v ∈ Y \ D,
which we call the decision variable. The procedure Decision then adds clauses,
the decision clauses, that make variable v locally deterministic. Note the decision
variable may be conflicted, though not yet detected as such, at the time of the

Incremental Determinization 383

decision, as the propagation procedure does not guarantee that all variables are
conflict free. In the next propagation phase, after the decision variable is detected
to be deterministic, it may thus be detected to be conflicted.

In this section we propose a simple way to take decisions that avoids intro-
ducing additional conflicts—between decision clauses and clauses in Uv—for the
decision variable. We simply fix the Skolem function that assigns 1 to v whenever
the clauses Uv do not require otherwise. That is, we consider the clauses with
unique consequence that may require v to be set to 0, i.e. C ∈ Uv with ¬v ∈ C,
and define the result of Decision as the constraint that sets v to 1 when all
their antecedents are false:

(∧

C∈ Uvwith¬v∈C

C \ {¬v}
)

=⇒ v

We again consider the example of Subsect. 4.3 with an empty set D. In case
we were to take a decision over variable y2 instead of considering the pure literal
rule, we would fix the cases described by the only clause in Uv, which is ¬x1∨¬y2.
Then we fix y2 to be true in all remaining cases, i.e. by adding the clause x1∨y2.

Given a D-consistent 2QBF ∀X.∃Y.ϕ it is clear that a variable v ∈ Y \ D
is deterministic in ∀X.∃Y.ϕ ∧ Decision(v, ϕ,D). It is also easy to see that the
procedure does not introduce additional conflicts for v. Also, for all assignments
x to X and d to D we have:

UP
(D ∧ Uv ∧ Decision(v, ϕ,D)(x,d)

)
= ⊥ =⇒ UP

(D ∧ Uv(x,d)
)

= ⊥
This property guarantees that the conflict analysis, which we cover in Sect. 6,

always results in a new clause and thereby provides us with an argument for the
termination of the algorithm. The procedure Decision also marks the added
clauses as decision clauses. During conflict analysis and during backtracking we
have to distinguish decision clauses from learnt clauses.

6 Conflict Analysis

Conflict analysis for incremental determinization stays remarkably similar to
CDCL. Once a (global) conflict is detected, we compute a conflict clause along
an implication graph. If the conflict clause contains only universally quantified
variables, we proved the formula to be false. Otherwise, we have to backtrack to
the largest decision level that contributed to the conflict, add the conflict clause
to the formula, and continue with propagation.

Let us consider a D-consistent 2QBF ∀X.∃Y. ϕ, and let δ ⊆ ϕ be the set
of decision clauses for the decision variables E ⊆ Y . Assume we detected a
conflict for a variable v ∈ Y \ D for which the global conflict check returned the
assignment x to X. The procedure AnalyzeConflict first computes UP(D(x))
to obtain an assignment e for the variables D∩E. Then the algorithm computes
a conflict clause as for CDCL [45] along the implication graph of:

UP
((

(D ∧ Uv) \ δ)(x, e)
)

384 M.N. Rabe and S.A. Seshia

which is guaranteed to return ⊥. That is, we omit the decision clauses and
instead treat decision variables as a decisions in the sense of CDCL with the
values obtained by UP(D(x)).

Lemma 4. Let ∀X.∃Y. ϕ be a D-consistent 2QBF and let δ ⊆ ϕ be the set
of decision clauses in ϕ. The algorithm AnalyzeConflict(∀X.∃Y. ϕ,D, dlvl)
returns a clause C such that ϕ \ δ ⇔ (ϕ \ δ) ∧ C and C /∈ ϕ \ δ.

Proof. Let v ∈ Y \ D be a conflicted variable, provoked by an assignment x to
X. After every decision the first variable that is checked for determinicity and
conflictedness, is the decision variable. So we have E ⊆ (D ∪ {v}) and if v /∈ E
then we even have E ⊆ D. In either case UP(D(x)) returns an assignment to all
decision variables that are not conflicted. Since v is conflicting with the decision
clauses, it is also conflicting when we replace the decision clauses by the values
of the decision variables: UP

((
(D ∧ Uv) \ δ)(x, e)

)
= ⊥.

Any conflict clause C derived by CDCL can be derived by a sequence of
resolution steps [40] and we thus know (D ∧ Uv) \ δ ⇔ ((D ∧ Uv) \ δ) ∧ C by
the soundness of the resolution rule [43]. Since C is over the same variables as
D this extends to ϕ ⇔ ϕ ∧ C. Also, a conflict clause computed as for CDCL is
guaranteed to be not contained in the formula it is derived from, so it is not in
(D∧Uv)\ δ. Since C only contains variables from X and D and since D includes
all clauses over X and D in ϕ, C cannot be in ϕ \ (D ∪ Uv) either. ��

Consider the following example:

∀x1.∀x2. ∃y1.∃y2. (x2 ∨ ¬y1) ∧ (¬x1 ∨ ¬x2 ∨ y1) (5)
∧ (x1 ∨ ¬y2) ∧ (¬y1 ∨ ¬y2) ∧ (x1 ∨ y1 ∨ y2) (6)

This time, neither y1 nor y2 can be propagated. Let us pick y2 as the decision
variable. According to the decisions discussed in Sect. 5 we add the clause ¬x1∨y2
to complement the only other clause in which y2 occurs as its unique consequence,
i.e., x1∨¬y2. The variable y2 is thus assigned the Skolem function fy2 : x1 → x1.
Now variable y1 is conflicted: The conflict test could return the assignment for
the universal variables represented by the conjunction x1 ∧x2, which determines
y2 to be true according to fy2 . The second clause of clause group 5 and the second
clause of clause group 6 then require conflicting assignments to y1. Consider the
implication graph:

x1

x2 y1

¬y1
y2

(¬x1 ∨ y2)
(¬x1 ∨ ¬x2 ∨ y1)(¬x1 ∨ ¬x2 ∨ y1)

(¬y1 ∨ ¬y2)

The presence of both nodes y1 and ¬y1 represents a conflict, indicated by the
red edge. The labels on the edges indicate the clauses with unique consequence
that correspond to the edges. The clause ¬x1 ∨ ¬y2 added in the decision cor-
responds to the dashed edge from x1 to y2. AnalyzeConflict considers the

Incremental Determinization 385

implication graph for the formula without the dashed edge and instead assumes
the value 1 for the decision variable y2 as an additional decision. The only conflict
clause that could be computed in this case is ¬x1 ∨ ¬x2 ∨ ¬y2.

7 Correctness, Termination, Certificates

Theorem 1. Incremental determinization is correct and terminates.

Proof Sketch: We first show that the algorithm maintains D-consistency and
terminates as there are only finitely many clauses that could be learnt. If the
algorithm terminates with true, the computed formula is Y -consistent and con-
tains the original formula. This represents a Skolem function satisfying all origi-
nal constraints. Lemmas 4 and 2 imply soundness for the case that the algorithm
terminates with false.
Certificates. Once terminated, the correctness of the result can be checked by
an independent, simpler algorithm. This is important in practice since highly
optimized logic solvers can easily contain programming errors. In some appli-
cations the proof object, that is the Skolem function, may also represent an
interesting object like an implementation or a strategy.

For the presented method, certification is straightforward: The final set of
clauses is Y -consistent and we can thus obtain an assignment to the existen-
tially quantified variables Y for every assignment to the universally quantified
variables through propagation - the clauses represents the Skolem function. To
check the correctness of the Skolem function via existing QBF proof checkers
such as QBFCert [36,41], we translate the function into a circuit in the AIGER
format [1]. The circuit reads the values of the universally quantified variables
and its outputs provide the values for the existentially quantified variables.

We can exploit the order in which the algorithm added variables to the set
D. This order provides us a unique direction in which the clauses can propagate.
Let Uv be the set of clauses with unique consequence at the time variable v was
added last to the set D. For every variable v we then define the circuit’s output
for variable v as ∨

C∈Uv withv∈C

¬(C \ {v}) .

The order among the existentially quantified variables then guarantees the
absence of circular dependencies.

In case the algorithm determines that the given QBF is false, the implemen-
tation provides the assignment to the universally quantified variables from the
last global conflict check.

8 Implementation and Experimental Evaluation

We implemented the algorithm in a tool we named the Cal incremental determi-
nizer (CADET)2, using PicoSAT [10] to solve the propositional problems. The
2 CADET is available via https://eecs.berkeley.edu/∼rabe/cadet.html.

https://eecs.berkeley.edu/~rabe/cadet.html

386 M.N. Rabe and S.A. Seshia

implementation emphasizes simplicity over speed and consists of about 4000
lines of code (not counting the SAT solver) in the programming language C.
For global conflict detection, we make use of the incremental solving features of
PicoSAT. We maintain an instance of PicoSAT containing the clauses D that
have only literals of universally quantified variables and deterministic existen-
tially quantified variables. Each global conflict check can then be performed by
adding only few clauses. Whenever we detect new variables to be deterministic,
we push more clauses into the SAT solver, and accordingly pop clauses during
backtracking. We implemented two further optimizations:

Restarts: After a certain threshold of conflicts, we backtrack all decisions and
continue with propagation. The restart threshold is then increased by a constant
factor >1. Thus there will eventually be a large enough interval such that the
termination argument holds.

Constant propagation: When the algorithm starts and whenever we identify
variables as deterministic, we check for unit clauses. Unit clauses imply a unique
value for a variable, which we propagate among the not yet determined variables.

Experimental Evaluation. We performed experiments on several sets of
benchmarks of 2QBF instances to compare CADET to state-of-the-art QBF
solvers. The experiments were conducted on machines with a quadcore 3.6 GHz
Intel Xeon processor, with a 10 min timeout and 4 GB memory limit. Table 1
summarizes the number of instances solved for different benchmark families.

Table 1. Number of instances solved within 10 min and 4 GB memory for various
benchmarks. For columns labeled with +b we applied the preprocessor Bloqqer before
running the solver. Numbers in bold font indicate the best result for a benchmark.

CADET RAReQS quantor Qesto CAQE DepQBF GhostQ

Family Total - +b - +b - +b - +b - +b - +b -

Terminator 590 583 513 0 382 12 138 1 491 32 288 547 572 480

Hardware Fixpoint 131 110 92 8 67 16 62 8 67 7 78 22 68 8

Ranking Functions 365 365 365 0 363 13 360 0 363 0 363 168 360 6

Reduction Finding 48 0 4 21 38 2 5 22 36 16 26 14 16 2

Circuit Underst. 78 20 44 2 50 2 6 2 34 2 48 36 17 36

Partial Equivalence 300 217 201 2 246 80 102 20 235 56 261 86 159 11

Reactive Synthesis 153 153 153 133 153 153 153 129 153 106 153 137 153 149

Random 254 242 243 246 238 90 91 226 220 249 250 231 224 183

The first group of benchmarks was taken from QBFLIB [19]. These bench-
marks consist of interesting software and hardware verification problems (Ter-
minator [5], Hardware Fixpoint [48], Ranking Functions [14]) and demonstrate
the strength of incremental determinization compared to existing algorithms.
CADET solved more instances than any other approach while not being depen-
dent on preprocessing.

The second group of benchmarks is from recent papers on QBF applications:
Reduction Finding [29] (also used in QBFGallery 2014 [25]), Circuit Understand-
ing [18], Partial Equivalence [17], Reactive Synthesis [12]. We included the second

Incremental Determinization 387

group of benchmarks to also present cases in which incremental determinization
is not superior to the existing approaches. The last benchmark, Random, consists
of all 2QBFs from the randomly generated instances listed on QBFLIB [19].

Figure 1 shows that CADET is the strongest solver overall. The log-scale
allows us to observe that there is a substantial gap between the solving times of
CADET and the other approaches. This is also reflected in the overall solving
times, where CADET leads with 144009 s before Qesto+b, DepQBF+b, and
RAReQS+b taking 224220, 243575, and 259125 s.

0 500 1,000 1,500
0.001

0.01

0.1

1

10

100

Number of instances solved

T
im

e
in

se
co

n
d
s

CADET

DepQBF

DepQBF+b

GhostQ

Qesto

Qesto+b

CAQE

CAQE+b
quantor

quantor+b

RAReQS

RAReQS+b

Fig. 1. Log-scale cactus plot comparing the performance over all instances.

The scatter plot in Fig. 2 compares the relative runtimes of RAReQS (with
Bloqqer) and CADET. The scatter plot suggests that incremental determiniza-
tion and abstraction refinement perform quite differently and that their relative
performance highly depends on the benchmark. The comparison to the other
solvers shows similar features.

The certificates computed by CADET are typically much smaller than those
by DepQBF. In Fig. 3 we compare the certificate sizes of DepQBF and CADET.
For CADET we present the size of the certificates before and after simplification
with the ABC model checker. For DepQBF we used the --simplify during
the generation with qrpcert. DepQBF’s certificate cannot be simplified further
using ABC, as DepQBF encodes some information in the structure of the certifi-
cates. The plot reveals an enormous difference in the ability to certify and the
quality of the produced certificates.

9 Related Work

Early approaches to solving QBFs focused on expanding the quantifiers using
data structures like CNF [9,33], BDDs [4,37] or AIGs [39]. Skolemization helps

388 M.N. Rabe and S.A. Seshia

10−3 10−2 10−1 100 101 102

10−3

10−2

10−1

100

101

102

Runtime of RAReQS+Bloqqer in s

R
u
n
ti

m
e

o
f
C

A
D

E
T

in
s

Terminator

Hardware F.

Ranking F.

Reduction F.

Circuit U.

Partial Equ.

Synthesis

Random

Fig. 2. Relative performance of CADET and RAReQS+Bloqqer.

0 100 200 300 400 500 600

10

1,000

100,000

10,000,000

Number of instances

G
a
te

s
in

ce
rt

ifi
ca

te

CADET+ABC

CADET

DepQBF

Fig. 3. Log-scale cactus plot showing the distribution of sizes of the certificates.

to reduce the expansion effort [7]. QDPLL is a generalization of DPLL to QBF
where we propagate and decide on values of variables, as for propositional SAT [6,
13,20,34]. QDPLL solvers often explore a large portion of the exponentially
many assignments to the universally quantified variables as the example from the
introduction shows. The incremental determinization algorithm encapsulates the
reasoning about the assignments to the universal variables in the global conflict
check, which is a propositional formula and can thus be offloaded to SAT solvers.

The CEGAR approach for QBF [26–28,41] was most competitive in recent
evaluations [19,25]. The basic idea is to maintain one SAT solver for each quanti-
fier level. In each iteration these algorithms exclude all assignments to universal
variables that can be matched with one assignment to the existential variables.
Skolem functions that require many different outputs, like the identity example
∀X.∃Y. X = Y from the introduction, thus need an exponential number of iter-
ations. Incremental determinization does not have to explore single assignments
to Y in cases, like the identity example, where we can derive parts of the Skolem
function directly.

Incremental Determinization 389

Non-CNF solvers. Recently there has been a surge of interest in QBF solvers
that are not based on the PCNF representation of formulas. Exploiting the
formula structure [21,30,31] or even the word-level structure [48] has been argued
to be superior to pure CNF-level reasoning. The experimental results in this
paper suggest that this question is not yet settled. For example, the circuit-based
solver GhostQ is significantly less effective than CADET on most benchmarks.
After the initial circuit-extraction current circuit-based solvers suffer from the
same principal problem as solvers using QDPLL or CEGAR.

Proof systems for QBF. Resolution based proof calculi, like resolve and
expand [9] and IR [8], also add clauses to the QBF. The generation of con-
flict clauses in this work relies on the instantiation of the universally quantified
variables, which resembles the proof rules in IR. In contrast, incremental deter-
minization adds constraints that possibly change the truth of the formula. This
comes at the cost of backtracking, in case the added constraints (during deci-
sions) were too strong.

Certification. Previous certifying QBF solvers produce proof traces from
which certificates (Skolem functions) can be reconstructed [36,41]. Also pre-
processing techniques such as QBCE [11] can be certified [22,23] and combined
with certificates for solvers [24]. In this work, the final set of clauses is the certifi-
cate and can easily be translated into a circuit representing the Skolem function.

10 Conclusions

Quantified boolean formulas are a natural choice to encode problems in verifica-
tion, synthesis, and artificial intelligence. We give a completely new algorithm to
solve problems in 2QBF that is based on incrementally adding constraints until
the Skolem relation collapses to a Skolem function. The algorithm employs a
propagation step that directly constructs Skolem functions out of the constraints
of the formula. We thereby exploit the formula structure despite working on the
level of the CNF. The example from the introduction, ∀X.∃Y. X = Y , is thus
solved instantly. Working on the level of Skolem functions avoids situations in
which other approaches have to explore an exponential number of cases and also
helps to certify the results.

Most parts of the algorithm are kept simplistic on purpose. Likely there are
stronger and more efficient ways to propagate, take decisions, and to analyze
conflicts in this setting. The purpose of this work is to introduce a framework
for the direct manipulation of Skolem functions in a search-based algorithm.
Still, the experimental evaluation suggests that the algorithm already improves
over existing approaches.

Acknowledgements. We thank our anonymous reviewers for their comments and
Marcell Vazquez-Chanlatte, Leander Tentrup, Ashutosh Trivedi, and Christoph
Wintersteiger for fruitful discussions on this work. Adrià Gascón and Leander Ten-
trup kindly provided 2QBF benchmarks. This work was supported in part by NSF
grants CCF-1139138 and CCF-1116993, by SRC contract 2460.001, NSF STARSS grant
1528108, and by gifts from Toyota and Microsoft.

390 M.N. Rabe and S.A. Seshia

References

1. AIGER toolset. http://fmv.jku.at/aiger/
2. Alur, P., Madhusudan, W.N.: Symbolic computational techniques for solving

games. Softw. Tools Technol. Transf. 7(2), 118–128 (2005)
3. Ansotegui, C., Gomes, C.P., Selman, B.: The Achilles’ heel of QBF. In: Proceedings

of AAAI, vol. 2, pp. 275–281 (2005)
4. Audemard, G., Säıs, L.: A symbolic search based approach for quantified boolean

formulas. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 16–30.
Springer, Heidelberg (2005)

5. Basler, G., Kroening, D., Weissenbacher, G.: SAT-based summarization for boolean
programs. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp.
131–148. Springer, Heidelberg (2007)

6. Bayless, S., Hu, A.J.: Single-solver algorithms for 2QBF. In: Cimatti, A., Sebas-
tiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 487–488. Springer, Heidelberg
(2012)

7. Benedetti, M.: sKizzo: A suite to evaluate and certify QBFs. In: Nieuwenhuis, R.
(ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 369–376. Springer, Heidelberg
(2005)

8. Beyersdorff, O., Chew, L., Janota, M.: On unification of QBF resolution-based
calculi. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part
II. LNCS, vol. 8635, pp. 81–93. Springer, Heidelberg (2014)

9. Biere, A.: Resolve and expand. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

10. Biere, A.: PicoSAT essentials. JSAT 4(2–4), 75–97 (2008)
11. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner,

N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 101–115.
Springer, Heidelberg (2011)

12. Bloem, R., Egly, U., Klampfl, P., Könighofer, R., Lonsing, F.: SAT-based methods
for circuit synthesis. In: Proceedings of FMCAD, pp. 31–34 (2014)

13. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate
quantified boolean formulae and its experimental evaluation. J. Automated Reason.
28(2), 101–142 (2002)

14. Cook, B., Kroening, D., Rümmer, P., Wintersteiger, C.M.: Ranking function syn-
thesis for bit-vector relations. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 236–250. Springer, Heidelberg (2010)

15. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962)

16. Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: 3 encodings of reactive
synthesis. In: Proceedings of QUANTIFY, pp. 20–22 (2015)

17. Finkbeiner, B., Tentrup, L.: Fast DQBF refutation. In: Sinz, C., Egly, U. (eds.)
SAT 2014. LNCS, vol. 8561, pp. 243–251. Springer, Heidelberg (2014)

18. Gascón, A., Subramanyan, P., Dutertre, B., Tiwari, A., Jovanovic, D., Malik, S.:
Template-based circuit understanding. In: Proceedings of FMCAD, pp. 83–90.
IEEE (2014)

19. Giunchiglia, E., Narizzano, M., Pulina, L., Tacchella, A.: Quantified Boolean For-
mulas satisfiability library (QBFLIB) (2005). www.qbflib.org

20. Giunchiglia, E., Narizzano, M., Tacchella, Q.A.: A system for deciding Quantified
Boolean Formulas satisfiability. In: Proceedings of IJCAR, pp. 364–369 (2001)

http://fmv.jku.at/aiger/
www.qbflib.org

Incremental Determinization 391

21. Goultiaeva, A., Bacchus, F.: Recovering and utilizing partial duality in QBF.
In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 83–99.
Springer, Heidelberg (2013)

22. Heule, M., Seidl, M., Biere, A.: Efficient extraction of skolem functions from QRAT
proofs. In: Proceedings of FMCAD, pp. 107–114 (2014)

23. Heule, M.J.H., Seidl, M., Biere, A.: A unified proof system for QBF preprocessing.
In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562,
pp. 91–106. Springer, Heidelberg (2014)

24. Janota, M., Grigore, R., Marques-Silva, J.: On QBF proofs and preprocessing. In:
McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol.
8312, pp. 473–489. Springer, Heidelberg (2013)

25. Janota, M., Jordan, C., Klieber, W., Lonsing, F., Seidl, M., Van Gelder, A.: The
QBFGallery 2014: The QBF competition at the FLoC olympic games. J. Satisfia-
bility Boolean Modeling Comput. 9, 187–206 (2016)

26. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)

27. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: Proceedings of
IJCAI, pp. 325–331. AAAI Press (2015)

28. Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: Sakallah,
K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 230–244. Springer, Heidel-
berg (2011)

29. Jordan, C., Kaiser, �L.: Experiments with reduction finding. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 192–207. Springer, Heidelberg
(2013)

30. Jordan, C., Klieber, W., Seidl, M.: Non-CNF QBF solving with QCIR. In: Pro-
ceedings of BNP (Workshop) (2016)

31. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver
with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS,
vol. 6175, pp. 128–142. Springer, Heidelberg (2010)

32. Kronegger, M., Pfandler, A., Pichler, R.: Conformant planning as a benchmark for
QBF-solvers. In: Report on the International Workshop on QBF, pp. 1–5 (2013)

33. Lonsing, F., Biere, A.: Nenofex: Expanding NNF for QBF solving. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 196–210. Springer,
Heidelberg (2008)

34. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. JSAT 7(2–3),
71–76 (2010)

35. Miller, C., Scholl, C., Becker, B.: Proving QBF-hardness in bounded model check-
ing for incomplete designs. In: Proceedings of MTV, pp. 23–28 (2013)

36. Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based cer-
tificate extraction for QBF. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS,
vol. 7317, pp. 430–435. Springer, Heidelberg (2012)

37. Olivo, O., Allen Emerson, E.: A more efficient BDD-based QBF solver. In: Pro-
ceedings of CP, pp. 675–690 (2011)

38. Otwell, C., Remshagen, A., Truemper, K.: An effective QBF solver for planning
problems. In: MSV/AMCS, pp. 311–316. Citeseer (2004)

39. Pigorsch, F., Scholl, C.: An AIG-based QBF-solver using SAT for preprocessing.
In: Proceedings of DAC, pp. 170–175. IEEE (2010)

40. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as
resolution engines. Artif. Intell. 175(2), 512–525 (2011)

392 M.N. Rabe and S.A. Seshia

41. Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: Proceedings of
FMCAD, pp. 136–143 (2015)

42. Rabe, M.N., Wintersteiger, C.M., Kugler, H., Yordanov, B., Hamadi, Y.: Symbolic
approximation of the bounded reachability probability in large Markov Chains.
In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 388–403.
Springer, Heidelberg (2014)

43. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965)

44. Sabharwal, A., Ansótegui, C., Gomes, C.P., Hart, J.W., Selman, B.: QBF modeling:
Exploiting player symmetry for simplicity and efficiency. In: Biere, A., Gomes, C.P.
(eds.) SAT 2006. LNCS, vol. 4121, pp. 382–395. Springer, Heidelberg (2006)

45. Marques Silva, J.P., Sakallah, K.A.: GRASP - A new search algorithm for satisfi-
ability. In: Proceedings of CAD, pp. 220–227. IEEE (1997)

46. Solar-Lezama, A.: Program synthesis by sketching. Ph.D. thesis, University of Cal-
ifornia, Berkeley (2008)

47. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Stud.
Constructive Math. Math. Logic 2(115–125), 10–13 (1968)

48. Wintersteiger, C.M., Hamadi, Y., De Moura, L.: Efficiently solving quantified bit-
vector formulas. In: Proceedings of FMSD, vol. 42, no. 1, pp. 3–23, (2013). Obser-
vation of strains. Infect. Dis. Ther. 3(1), 35–43 (2011)

Non-prenex QBF Solving Using Abstraction

Leander Tentrup(B)

Reactive Systems Group, Saarland University, Saarbrücken, Germany
tentrup@react.uni-saarland.de

Abstract. In a recent work, we introduced an abstraction based algo-
rithm for solving quantified Boolean formulas (QBF) in prenex negation
normal form (PNNF) where quantifiers are only allowed in the formula’s
prefix and negation appears only in front of variables. In this paper,
we present a modified algorithm that lifts the restriction on prenex
quantifiers. Instead of a linear quantifier prefix, the algorithm handles
tree-shaped quantifier hierarchies where different branches can be solved
independently. In our implementation, we exploit this property by solv-
ing independent branches in parallel. We report on an evaluation of our
implementation on a recent case study regarding the synthesis of finite-
state controllers from ω-regular specifications.

1 Introduction

In recent work [18], we introduced an algorithm for solving quantified Boolean
formulas (QBF) in prenex negation normal form (PNNF). For each maximal
consecutive block of quantifiers of the same type, we build an abstraction, i.e.,
a propositional formula that combines valuations of inner and outer quantifier
blocks into valuations of special literals, called interface literals. The algorithm
employs a counterexample guided abstraction refinement (CEGAR) loop that
does recursion over the quantifier blocks. In every block, we use a SAT solver as
an oracle to generate new abstraction entries and to provide us with witnesses for
unsatisfiable queries. This algorithm, however, is limited to prenex QBF where
quantifier are only allowed in the formula’s prefix. This can be problematic for
non-prenex formulas since the task of prenexing a QBF is non-deterministic and
different prenexing strategies lead to different solving times [3]. On the other
hand, miniscoping can be used to translate prenex formulas into non-prenex
form. We have observed [17] that this is very effective for splitting instances into
independent parts on some benchmark families.

In this paper, we extend our previous algorithm to handle non-prenex QBFs
in negation normal form. Instead of a linear quantifier prefix, the algorithm
is optimized to handle tree-shaped quantifier hierarchies. These optimizations
include identifying parts of the formula that belongs only to one quantifier block,

This work was partially supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 393–401, 2016.
DOI: 10.1007/978-3-319-40970-2 24

394 L. Tentrup

hence, eliminating the need for interface literals. Further, for a branching node,
i.e., a quantifier block which has multiple children, it is possible to solve the chil-
dren independently. Our implementation exploits this independence by solving
the different branches in parallel.

2 Quantified Boolean Formulas

A quantified Boolean formula (QBF) is a propositional formula over a finite set
of variables X with domain B = {0, 1} extended with quantification. The syntax
is given by the grammar

ϕ :=x | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x. ϕ | ∀x. ϕ,

where x ∈ X . For readability, we lift the quantification over variables to the
quantification over sets of variables and denote a maximal consecutive block of
quantifiers of the same type ∀x1.∀x2. · · · ∀xn. ϕ by ∀X.ϕ and ∃x1.∃x2. · · · ∃xn. ϕ
by ∃X.ϕ, accordingly, where X = {x1, . . . , xn}.

Given a subset of variables X ⊆ X , an assignment of X is a function α :
X → B that maps each variable x ∈ X to either true (1) or false (0). We
identify α as the conjunctive formula

∧
x∈X|α(x)=1 x ∧ ∧

x∈X|α(x)=0 ¬x. When
the domain of α is not clear from context, we write αX . A partial assignment
β : X → B∪{⊥} may additional set variables x ∈ X to an undefined value ⊥. We
say that β is compatible with α, β � α for short, if they have the same domains
(dom(α) = dom(β)) and α(x) = β(x) for all x ∈ X where β(x) �= ⊥. For two
assignments α and α′ with disjoint domains X = dom(α) and X ′ = dom(α′) we

define the combination α α′ : X ∪ X ′ → B as α α′(x) =

{
α(x) if x ∈ X,

α′(x) otherwise.
We define the complement α to be α(x) = ¬α(x) for all x ∈ dom(α). The set of
assignments of X is denoted by A(X).

A quantifier Q x.ϕ for Q ∈ {∃,∀} binds the variable x in the scope ϕ. Vari-
ables that are not bound by a quantifier are called free. The set of free variables
of formula ϕ is defined as free(ϕ). We assume the natural semantics of the sat-
isfaction relation αX � ϕ for QBF ϕ and assignments αX where X are the
free variables of ϕ. QBF satisfiability is the problem to determine, for a given
QBF ϕ, the existence of an assignment α for the free variables of ϕ, such that
the relation � holds.

A closed QBF is a formula without free variables. Closed QBFs are either
true or false. A formula is in prenex form, if the formula consists of a quantifier
prefix followed by a propositional formula.

A literal l is either a variable x ∈ X, or its negation ¬x. Given a set of
literals {l1, . . . , ln}, the disjunctive combination (l1 ∨ . . . ∨ ln) is called a clause.
Given a literal l, the polarity of l, sign(l) for short, is 1 if l is positive and 0
otherwise. The variable corresponding to l is defined as var(l) = x where x = l
if sign(l) = 1 and x = ¬l otherwise.

A QBF is in negation normal form (NNF) if negation is only applied to
variables. Every QBF can be transformed into NNF by at most doubling the

Non-prenex QBF Solving Using Abstraction 395

size of the formula and without introducing new variables. For formulas in NNF,
we treat literals as atoms.

3 Algorithm

We introduce additional notation to facilitate working with arbitrary Boolean
formulas. Let B be the set of quantified Boolean formulas and let sf (ϕ) ⊂ B
(dsf (ϕ) ⊂ B) be the set of (direct) subformulas of ϕ (note that ϕ ∈ sf (ϕ)
but ϕ /∈ dsf (ϕ)). Further, dqsf (ϕ) ⊂ B denotes the direct quantified sub-
formulas of ϕ, i.e., a quantifier Q X ′. ψ is in dqsf (ϕ) if Q X ′. ψ is in the
scope of ϕ and there is no other quantifier QX ′′. ψ′ such that Q X ′′. ψ′ is
in the scope of ϕ and QX ′. ψ is in the scope of ψ′. For a subformula ψ,
type(ψ) ∈ {lit ,∨,∧, Q} returns the Boolean connector if ψ is not a literal nor
a quantifier. For example, given ψ = ∃x. (∀y.∃z. (x ∨ y ∨ ¬x)) ∨ (∀y. (y ∧ x)),
it holds that type(ψ) = Q, dsf (ψ) = {∀y.∃z. (x ∨ y ∨ ¬x)) ∨ (∀y. (y ∧ x)}, and
dqsf (ψ) = {∀y.∃z. (x ∨ y ∨ ¬x),∀y. (y ∧ x)}.

For this section, we assume w.l.o.g. that all quantifier blocks in the QBF are
strictly alternating, even for quantifiers not in the prefix. That means that for
every quantified formula QX.ψ, the quantifier type of all ψ′ ∈ dqsf (Q X.ψ) is Q.
We use a generic solving function sat(θ, α) for propositional formula θ under
assumptions α, that returns whether θ ∧ α is satisfiable and either a satisfying
assignment αV for variables V ⊆ free(θ) or a partial assignment βfailed � α such
that θ ∧βfailed is unsatisfiable. Further, we define SATQ to be SAT if Q = ∃ and
UNSAT otherwise (UNSATQ analogously).

The non-prenex algorithm works on the principle of communicating the sat-
isfaction of subformulas between quantifier blocks in the QBF. This communi-
cation is realized by two special types of literals which we call interface literals.
Only the valuation of those literals are communicated between the quantifier
levels. For a given quantifier QX and a subformula ψ, the T literal tψ represents
the assignments made by the outer quantifiers while the B literal bψ represents
the assignments from the current quantifier Q X including assumptions on the
satisfaction of subformulas by inner quantifiers. Thus, tψ is true if ψ is satisfied
by the outer quantifiers and a valuation that sets bψ to true indicates that ψ is
satisfied by the quantifier Q X. Before going in more detail on the abstraction,
we introduce the basic algorithm first.

The algorithm abstraction-qbf is depicted in Algorithm 1. The algorithm
uses a dual abstraction for optimization of abstraction entries [18]. Given a quan-
tifier Q X, the sets TX and BX contain the T and B literals corresponding to
this quantifier. When translating a B literal to a T literal, we use the the same
index, e.g., in line 12, the B literals bψ′′ are translated to T literals tψ′′ of the
inner quantifier. We initialize θX with the abstraction described below, which is
a propositional formula over variables in X, as well as T and B literals. For the
innermost quantifier, it holds that BX = ∅. Further, the dual abstraction θX is
defined as the abstraction for Q X.

In every iteration of the while loop, a B literal assignment αBX
is generated

according to the outer T assignment αTX
(line 3). For every direct quantified

396 L. Tentrup

Algorithm 1. Non-prenex Abstraction Based Algorithm
1: procedure abstraction-qbf(Q X. ψ, αTX)
2: while true do
3: result , αX � αBX , βfailed ← sat(θX , αTX) � βfailed � αTX

4: if result = UNSAT then
5: return UNSATQ, βfailed

6: else if ψ is propositional then
7: result , , βfailed ← sat(θX , αX � αTX) � result = UNSAT
8: return SATQ, βfailed � βfailed � αTX

9: sub-result ← SATQ

10: Let βsub be the empty assignment
11: for ψ′ = Q Y. ψ∗ in dqsf (Q X. ψ) where αBX (bψ′) = 0 do
12: Define αTY s.t. αTY (tψ′′) = ¬αBX (bψ′′) for all tψ′′ ∈ TY

13: result , βTY ← abstraction-qbf(ψ′, αTY) � βTY � αTY

14: if result = UNSATQ then
15: θX ← θX ∧ (

∨
bψ′′ ∈BX |βTY

(tψ′′)=1 bψ′′)

16: sub-result ← UNSATQ

17: else
18: βsub ← βsub � βTY

19: if sub-result = SATQ then
20: θX ← θX ∧ (

∨
bψ′′ ∈BX |βsub(tψ′′)=1 bψ′′)

21: result , , βfailed ← sat(θX , αX � βsub) � result = UNSAT
22: return SATQ, βfailed � βfailed � αTX

subformula ψ′ = QY.ψ∗ (line 11) which is assumed to be satisifed (αBX
(bψ′) =

0), we translate αBX
into a T assignment for the inner quantifier (line 12) and

proceed recursively (line 13). If the recursive call is UNSAT (w.r.t the current
quantifier), we refine the abstraction to exclude the counterexample βTY

, i.e., in
the following iterations one of the bψ′′ such that βTY

(tψ′′) = 1 must be set to
true. Due to the negation during translation, those bψ′′ were set to false in αBX

.
In case the recursive call is SAT, we update βsub to include the optimized T
assignment returned from the inner quantifier. When all recursive calls returned
SAT, we update the dual abstraction θX and use it to optimize the witness
βsub for the outer scope. If the query in line 3 fails, UNSATQ together with an
assignment βfailed � αTX

witnessing the unsatisfiability is returned.
To ensure correctness, we need requirements on the abstraction being used.

Given a quantifier ∃X, we say that a subformula ψ is good if it is not yet falsified
(type(ψ) = ∧), respectively satisfied (type(ψ) = ∨). For every quantifier Q X and
B literal bψ it must hold that if bψ is set to true then ψ is good for quantifier X.
This gives us proper refinement semantics (line 15). The same property holds for
t literals tψ. For every direct quantified subformula ψ′ = Q Y.ϕ∗ in the current
scope, the B literal bψ′ can be only set to true if the subformula ψ′ is not assumed
to be true. Intuitively, this means that the result of subformula ψ′ is not used
to satisfy the abstraction θX . Further, for a quantifier alternation, it must hold
that the set of outer B literals BX matches the union of all inner T literals TY

Non-prenex QBF Solving Using Abstraction 397

to enable the translation in line 12. Combining these properties gives us that a
good subformula of quantifier QX is a bad subformula of quantifier QY and
vice versa. Termination then follows from progress due to refinements (line 15)
and correctness can be showed by induction over the quantifiers.

Abstraction. We now give a formal definition of the abstraction. Given a
QBF ϕ in NNF and a quantifier ∃X.ϕ′, we build the following propositional
formula in conjunctive normal form representing the structural abstraction
θX = out(ϕ) ∧ ∧

ψ∈sf (ϕ)∧type(ψ) �=lit enc(ψ) for this quantifier, where out encodes
the entry point of the formula and enc defines a CNF formula that encodes the
truth of subformula ψ with respect to the valuations of the current, inner and
outer quantifiers represented by B and T literals, respectively:

enc(ψ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∧

ψ′∈ dsf (ψ)

(¬bψ ∨ encψ(ψ′)) if type(ψ) = ∧

¬bψ ∨
∨

ψ′∈ dsf (ψ)

encψ(ψ′) if type(ψ) = ∨

(bψ ∨ out(ψ′)) if ψ = Q X.ψ′

encψ(ψ′) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ψ′ if type(ψ′) = lit ∧ var(ψ′) ∈ X

tψ if type(ψ′) = lit ∧ var(ψ′) bound by outer scope

¬bψ if type(ψ′) = lit ∧ var(ψ′) bound by inner scope

bψ′ if type(ψ′) �= lit ∧ ψ′ only influenced by current or outer scope

¬bψ′ if type(ψ′) = Q

⊥ otherwise

enc∨(ψ) =
∨

ψ′∈dsf (ψ)
type(ψ′)=lit

encψ(ψ′) ∨
∨

ψ′∈ dsf (ψ)
type(ψ′)=∧

bψ′ ∨
∨

ψ′∈ dsf (ψ)
type(ψ′)=∨

enc∨(ψ′) ∨
∨

ψ′∈ dsf (ψ)
type(ψ′)=Q

¬bψ′

out(ψ) =

⎧
⎪⎨

⎪⎩

bψ if type(ψ) = ∧
enc∨(ψ) if type(ψ) = ∨
¬bψ if type(ψ) = Q

An undefined result ⊥ form encψ(ψ′) means that the subformula ψ′ is ignored in
the encoding enc(ψ). The abstraction of a scope ∀X is defined as the existential
abstraction for ¬ϕ. The dual abstraction θX is defined as the abstraction for
¬Q X. Note that not every B literal that is used in the abstraction may be
exposed as an interface literal.

For disjunctive formulas, enc(ψ) enforces that bψ can be only set to true if
a direct subformula that is (1) a (possibly negated) variable of the current or
outer scope, (2) a subformula that is not influenced by an inner variable, or
(3) a quantified subformula, is set to true. The encoding enc(ψ) of a conjunc-
tive formula enforces likewise that if bψ is true, the encodings encψ(ψ′) of all
such direct subformulas ψ′ ∈ dsf (ψ) are true. The abstraction has the required
refinement semantics: If we want to ensure that one of the subformulas in a set

398 L. Tentrup

R = {ψ1, . . . , ψk} is guaranteed to be true at the current scope, we add the
clause (bψ1 ∨ · · · ∨ bψk

).

Optimizations. The optimizations from the prenex algorithm [18] can be applied
to this algorithm as well. Additionally, we preprocess the formula using the well-
known miniscoping rules in order to decompose quantifier blocks.

In the algorithm, satisfying results of direct quantified subformulas are dis-
carded if one of them is UNSAT. Instead, we found that modifying the decision
heuristic of the underlying SAT solver to regenerate this subassignment reduced
the number of iterations overall.

4 Case Study: Reactive Synthesis

For our case study, we consider the reactive synthesis problem, i.e., the problem
of synthesizing a finite-state controller from an ω-regular specification. Formally,
we have a specification ϕ that defines a language L(ϕ) ⊆ (2I∪O)ω over the
atomic propositions that are partitioned into a finite set of inputs I to the
controller and a finite set of outputs O of the controller. An implementation
of a controller is a 2O-labeled 2I-transition system S = 〈S, s0, δ, l〉 where S is
a finite set of states, s0 ∈ S is the designated initial state, δ : S × 2I → S is
the transition function, and l : S → 2O is the state-labeling. The run of S on a
sequence π ∈ (2I)ω is run(S, π) = s0π0s1π1 · · · ∈ (S · 2I)ω where si+1 = δ(si, πi)
for every i ≥ 0. The corresponding trace, denoted by trace(S, π), is (l(s0) ∪
π0)(l(s1) ∪ π1) · · · ∈ (2I∪O)ω. A transition system S satisfies the specification ϕ
if trace(S, π) ∈ L(ϕ) for all input sequences π ∈ (2I)ω. By bounding the number
of states that the implementation of the controller may use, one can derive a
QBF encoding [4] from this problem using the bounded synthesis approach [5].
The synthesis instances used in this case study where taken from the Acacia
benchmark set [2].

The exact encoding is out of scope for this paper, so we are only giving a
high level overview. The QBF query has a quantifier prefix of the form ∃∀∃. The
variables in the top level existential correspond to a global constraint that cannot
be split syntactically. However, the constraints regarding the inner quantifiers
∀∃ are local to the state of the implementation, so one gets a QBF with a top
level existentially quantifier and n independent ∀∃ quantifiers below by using
miniscoping rules, where n is the number of states in the implementation. This is
merely a new observation and not particularly special for this kind of benchmark
as we have made similar observations regarding competitive benchmark suites
for CNF [17].

We implemented Algorithm 1 and its optimizations in a prototype tool called
PQuAbS (Parallel Quantified Abstraction Solver)1 that takes QBFs in the stan-
dard format QCIR [16]. We use PicoSAT [1] as the underlying SAT solver and
the POSIX pthreads library for thread creation and synchronization. For every
quantifier Q X that branches more than once, we create a thread for each child
1 Available at https://www.react.uni-saarland.de/tools/quabs/.

https://www.react.uni-saarland.de/tools/quabs/

Non-prenex QBF Solving Using Abstraction 399

Table 1. Cumulated solving time of PQuAbS with respect to number of used threads.
There are 443 instances in total.

1 thread 2 threads 3 threads 4 threads Prenex

solved instances 397 403 407 409 325

cumulated solving time 100 % 64.51 % 54.15 % 49.94 % -

quantifier. The loop in line 11 is then implemented by passing αTY
to the sub-

quantifier and waking the corresponding thread. Before line 19, there is a barrier
where we wait for all children to finish. For our experiments, we used a machine
with a 3.6GHz quad-core Intel Xeon processor and 32GB of memory. The time-
out was set to 10 min.

Table 1 shows the overall results of our experiments. It depicts the number of
solved instances and the cumulated solving times with respect to the number of
threads used. For comparison, we also included the number of solved instances
from the single threaded version of PQuAbS without miniscoping, i.e., linear
prenex solving. One cannot expect linear speedup due to the non-parallelizable
parts, like preprocessing and solving of the top-level existential quantifier, as well
as the fact that the solving time of the children ∀∃ quantifiers are not uniform.

Nevertheless, already using 2 threads, the speedup compared to single thread
solving is more than 1.5 and using 4 threads reduces the solving time by a factor
of 2 on average. Table 2 gives detailed results for select instances from the scatter
plot of Fig. 1. These examples are the two “outliers” load-full-6 and ltl2dba-05,
the hardest commonly solved instance ltl2dba-23, and two instances with close
to optimal speedup (ltl2dpa-12 and ltl2dpa-11).

Table 2. Detailed solving results for example instances.

Instance Branching 1 thread 2 threads 3 threads 4 threads

ltl2dba-23 10 598.20 s 393.68 s 335.59 s 312.70 s

100% 65.81 % 56.10 % 52.27 %

ltl2dpa-12 15 521.35 s 302.13 s 233.98 s 202.27 s

100% 57.95 % 44.88 % 38.80 %

ltl2dba-05 4 476.12 s 359.40 s 331.87 s 322.59 s

100% 75.49 % 69.70 % 67.75 %

load-full-6 3 386.94 s 332.15 s 314.37 s 321.75 s

100% 85.84 % 81.25 % 83.15 %

ltl2dpa-11 18 252.61 s 143.13 s 107.54 s 92.43 s

100% 56.67 % 42.57 % 36.59 %

400 L. Tentrup

0 100 200 300 400 500 600
0

100

200

300

400

run time in sec.

ru
n

ti
m

e
in

se
c.

2 threads

3 threads

4 threads

Fig. 1. Scatter plot of solving times with multiple threads against single thread base-
line. Here, we consider only instances with more than 1 s of solving time.

5 Related Work

There are other solving techniques that use structural information, but they are
conceptional very different, including DPLL like [3,6,10] and expansion [7,13,
15]. Further, some of them can be applied to non-prenex setting as well [3,10].
Employing SAT solver to solve propositional queries with quantifier alternations
has been used before [7,8,17,19]. We extend our own work on abstraction based
QBF solving [18] that itself originated from techniques that communicate the
satisfaction of clauses through a recursive refinement algorithm [8,17] that were
limited to conjunctive normal form. MPIDepQBF [9] is the most recent parallel
solver for QBF. Their approach differs from our as they start instances of a
sequential solver without synchronization. Mota et al. [14] proposed methods to
split a QBF at the top level and solve the resulting QBF instances in parallel by
a sequential CNF algorithm. In contrast, our approach can handle branches at
every node in the quantifier hierarchy and our solving step is tightly integrated
into the algorithm. Other parallel solving approaches [11,12] are conceptionally
very different to our solution.

6 Conclusion and Future Work

We presented a QBF solving algorithm for QBFs in negation normal form, which
extends our previous algorithm [18] to non-prenex formulas together with new
optimizations and parallelization. Our evaluation shows that the parallelization
is beneficial for our case study and other experiments suggests this method is
more broadly applicable. Adapting the certification from [18] for non-prenex
formulas is left for future work. Further, it would be interesting to try non-
syntactic unprenexing methods to improve the parallelization, e.g., expansion of
variables that combine otherwise independent subformulas.

Non-prenex QBF Solving Using Abstraction 401

References

1. Biere, A.: PicoSAT essentials. JSAT 4(2–4), 75–97 (2008)
2. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL

synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
652–657. Springer, Heidelberg (2012)

3. Egly, U., Seidl, M., Woltran, S.: A solver for QBFs in negation normal form.
Constraints 14(1), 38–79 (2009)

4. Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of reactive
synthesis. In: Proceedings of QUANTIFY (2015)

5. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5–6), 519–539 (2013)
6. Goultiaeva, A., Iverson, V., Bacchus, F.: Beyond CNF: a circuit-based QBF solver.

In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 412–426. Springer, Heidel-
berg (2009)

7. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)

8. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: Proceedings of
IJCAI, pp. 325–331. AAAI Press (2015)

9. Jordan, C., Kaiser, L., Lonsing, F., Seidl, M.: MPIDepQBF: towards parallel QBF
solving without knowledge sharing. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 430–437. Springer, Heidelberg (2014)

10. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver
with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS,
vol. 6175, pp. 128–142. Springer, Heidelberg (2010)

11. Lewis, M.D.T., Schubert, T., Becker, B.: QmiraXT - a multithreaded QBF solver.
In: Methoden und Beschreibungssprachen zur Modellierung und Verifikation von
Schaltungen und Systemen (MBMV), Berlin, Germany, 2–4 March 2009, pp. 7–16.
Universitätsbibliothek Berlin, Germany (2009)

12. Lewis, M.D.T., Schubert, T., Becker, B., Marin, P., Narizzano, M., Giunchiglia, E.:
Parallel QBF solving with advanced knowledge sharing. Fundam. Inf. 107(2–3),
139–166 (2011)

13. Lonsing, F., Biere, A.: Nenofex: expanding NNF for QBF solving. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 196–210. Springer,
Heidelberg (2008)

14. Mota, B.D., Nicolas, P., Stéphan, I.: A new parallel architecture for QBF tools. In:
Proceedings of HPCS, pp. 324–330. IEEE (2010)

15. Pigorsch, F., Scholl, C.: Exploiting structure in an AIG based QBF solver. In:
Proceedings of DATE, pp. 1596–1601. IEEE (2009)

16. QBF Gallery 2014: QCIR-G14: a non-prenex non-CNF format for quantified
Boolean formulas. http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf

17. Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: Proceedings of
FMCAD, pp. 136–143. IEEE (2015)

18. Tentrup, L.: Solving QBF by abstraction. CoRR abs/1604.06752 (2016). https://
arxiv.org/abs/1604.06752

19. Tu, K.-H., Hsu, T.-C., Jiang, J.-H.R.: QELL: QBF reasoning with extended clause
learning and levelized SAT solving. In: Heule, M., Weaver, S. (eds.) SAT 2015.
LNCS, vol. 9340, pp. 343–359. Springer, Heidelberg (2015)

http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf
https://arxiv.org/abs/1604.06752
https://arxiv.org/abs/1604.06752

On Q-Resolution and CDCL QBF Solving

Mikoláš Janota(B)

Microsoft Research, Cambridge, UK
mikolas.janota@gmail.com

Abstract. The proof system Q-resolution and its variations provide the
underlying proof systems for the DPLL-based QBF solvers. While (long-
distance) Q-resolution models a conflict driven clause learning (CDCL)
QBF solver, the inverse relation is not well understood. This paper shows
that CDCL solving not only does not simulate Q-resolution, but also that
this is deeply embedded in the workings of the solver. This contrasts
with SAT solving, where CDCL solvers have been shown to simulate
resolution.

1 Introduction

Conflict driven clause learning (CDCL) has been established as an efficient
and practical method for SAT solving [26]. The relation between CDCL and
propositional resolution has been extensively studied. It has been shown that,
under various assumptions, modern SAT solvers simulate propositional resolu-
tion [2,4,5,27].

CDCL, with certain modifications, enables also solving quantified Boolean
formulas (QBF) [11,22,30]. Analogously, propositional resolution also has its
quantified counterpart Q-resolution [18] and a popular extension long distance
Q-resolution [3,30]. As of today, the relation between CDCL solving and the
underlying proof systems leaves a number of open questions.

The objective of this paper is to explore the relation between CDCL solv-
ing and (long-distance) Q-resolution. In particular, the paper gives a negative
answer to the question whether a CDCL solver can simulate any Q-resolution
proof. By this is meant that there is an infinite enumerable family of formu-
las Φ1, . . . , Φn, . . . , for which there exist Q-resolution refutations polynomial in
n but any CDCL solver requires computation time super-polynomial (or even
exponential) in n. In fact, it is shown that not even tree-like Q-resolution can
be simulated by CDCL.

QBF solving brings in the complication that propagation can also be per-
formed on the universal variables, which is done with the aid of solution driven
cube learning (SDCL). When combined, CDCL and SDCL influence one another
because order of propagation determines which clauses/cubes are learned. While
the presented result focuses on CDCL solving, we show that it is still relevant
in a restricted form for solving with the combined learning and some hints for
future work are explored.

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 402–418, 2016.
DOI: 10.1007/978-3-319-40970-2 25

On Q-Resolution and CDCL QBF Solving 403

The paper is organized as follows. The paper reviews notation and basic con-
cepts in Sect. 2. Section 3 reviews the family of formulas CRn, which are studied
in the remainder of the paper. This section also builds on a previous result,
which shows that level-ordered refutations of the said formula must be exponen-
tial [16]. Here we strengthen this result by showing that also any derivation of
unit clauses must already be exponential (Sect. 3.1). This will let us study runs
of the solver only until the first unit clause is derived. Section 4 studies properties
of unit propagation on the studied family of formulas CRn. Section 5 uses these
properties to show exponential behavior on CRn. Section 6 reviews a polynomial
tree-like, ordered Q-resolution refutation of CRn. Finally, Sect. 7 discusses results
of the paper and Sect. 8 concludes the paper.

Two distinctive proof techniques are used in the paper. The construction
and motivation for the formula CRn relies on the concept of two-player games
perspective for QBF. This is somewhat similar to Ehrenfeucht-Fräıssé games [10]
used in other domains (e.g. [21]). Second is to force the QBF solver to derive
level-order proofs, which must be necessarily exponential on CRn. Further, we
show that not only they are exponential for the whole formula but as early as
a unit clause is derived. This greatly simplifies the lower-bound proof because
propagation in a QBF solver is simpler with no unit clauses in its database.

2 Preliminaries

A literal is a Boolean variable or its negation. The literal complementary to a
literal l is denoted as l̄, i.e. x̄ = ¬x, ¬x = x. A clause is a disjunction of zero or
more non-complementary literals. A formula in conjunctive normal form (CNF)
is a conjunction of clauses. Whenever convenient, a clause is treated as a set of
literals and a CNF formula as a set of sets of literals. For a literal l = x or l = ¬x,
we write var(l) for x. For a clause C, we write var(C) to denote {var(l) | l ∈ C}
and for a CNF ψ, var(ψ) denotes {l | l ∈ var(ψ), C ∈ ψ}

A complementary concept to clause, is cube, which is a conjunction of zero
or more non-complementary literals.

2.1 Quantified Boolean Formulas

Quantified Boolean Formulas (QBFs) [17] extend propositional logic by enabling
quantification over Boolean variables. Any propositional formula φ is also a QBF
with all variables free. If Φ is a QBF with a free variable x, the formulas ∃x. Φ
and ∀x. Φ are QBFs with x bound, i.e. not free. Note that we disallow expressions
such as ∃x.∃x. x. Whenever possible, we write ∃x1 . . . xk instead of ∃x1 . . . ∃xk;
analogously for ∀. For a QBF Φ = ∀x. Ψ we say that x is universal in Φ and
is existential in ∃x. Ψ . Analogously, a literal l is universal (resp. existential) if
var(l) is universal (resp. existential).

The application of an assignment τ is defined for a QBF Φ if all variables of
dom(τ) are free in Φ, and, it is defined as (Qx. Φ)τ = Φτ for Q ∈ {∃,∀}. QBFs can
be seen as compact representations of propositional formulas. In particular, the

404 M. Janota

formula ∀x. Ψ is satisfied by the same truth assignments as Ψ [x�0]∧Ψ [x�1] and
∃x. Ψ by Ψ [x�0]∨Ψ [x�1]. Since ∀x∀y. Φ and ∀y∀x. Φ are semantically equivalent,
we allow writing ∀X for a set of variables X; analogously for ∃. A QBF with no
free variables is false (resp. true), iff it is semantically equivalent to the constant
0 (resp. 1).

A QBF is closed if it does not contain any free variables. A QBF is in prenex
form if it is of the form Q1X1 . . . QkXk. φ, where Qi ∈ {∃,∀}, Qi �= Qi+1, and
φ is propositional. The propositional part φ is called the matrix and the rest
the prefix. If a variable x is in the set Xi, we say that x is at level i and write
lv(x) = i; we write lv(l) for lv(var(l)).

We write QCNF for the class of QBFs in prenex form where the matrix is in
CNF. Unless specified otherwise, QBFs are assumed to be closed and with CNF
matrix.

2.2 Q-Resolution

Q-resolution (Q-Res), by Kleine Büning et al. [18], is a resolution-like calculus
that operates on QBFs in prenex form where the matrix is a CNF. The rules are
given in Fig. 1.

(Axiom)
C

C1 ∪ {x} C2 ∪ {¬x}
(Res)

C1 ∪ C2

C is a clause in the matrix. Variable x is existential. If z ∈ C1, then ¬z /∈ C2.

C ∪ {u}
(∀-Red)

C

Variable u is universal. If x ∈ C is
existential, then lv(x) < lv(u).

Fig. 1. The rules of Q-Res [18]

Long-distance resolution (LD-Q-Res) appears originally in the work of Zhang
and Malik [30] and was formalized into a calculus by Balabanov and Jiang [3]. It
merges complementary literals of a universal variable u into the special literal u∗.
These special literals prohibit certain resolution steps. In particular, different
literals of a universal variable u may be merged only if lv(x) < lv(u), where x
is the resolution variable. The rules are given in Fig. 2. In practice, solvers do
not maintain a literal of the form u∗ but rather two complementary literals, e.g.
e∨u∨¬u∨ z. Such clauses arise naturally by learning and give propagation due
to universal reduction (see below). An alternative formulation via no-goods is
suggested by Klieber [19,20].

For a clause C, a universal literal l ∈ C is blocked by an existential literal
k ∈ C iff lv(l) < lv(k). ∀-reduction is the operation of removing from a clause C
all universal literals that are not blocked by some literal.

On Q-Resolution and CDCL QBF Solving 405

(Axiom)
C

D ∪ {u}
(∀-Red)

D

D ∪ {u∗}
(∀-Red∗)

D

C is a clause in the matrix. Literal u is universal and lv(u) ≥ lv(l) for all l ∈ D.

C1 ∪ U1 ∪ {x} C2 ∪ U2 ∪ {¬x}
(Res)

C1 ∪ C2 ∪ U

Variable x is existential. If for l1 ∈ C1, l2 ∈ C2, var(l1) = var(l2) = z then l1 =
l2 �= z∗. U1, U2 contain only universal literals with var(U1) = var(U2). For each
u ∈ var(U1) we require lv(x) < lv(u). If for w1 ∈ U1, w2 ∈ U2, var(w1) = var(w2) = u
then w1 = ¬w2, w1 = u∗ or w2 = u∗. U is defined as {u∗ | u ∈ var(U1)}.

Fig. 2. The rules of LD-Q-Res [3]

For a QCNF P . φ, a Q-resolution proof of a clause C is a sequence of clauses
C1, . . . , Cn where Cn = C and any Ci in the sequence is part of the given
matrix φ; or was obtained from one of the preceding clauses by ∀-reduction; or
it is a Q-resolvent of some pair of preceding clauses. A Q-resolution proof is
called a refutation iff C is the empty clause, denoted ⊥.

In this article Q-resolution and plain resolution proofs are treated as con-
nected directed acyclic graphs (DAG). Any graph representing a resolution or
Q-resolution proof has one and only one node with in-degree 0, which we call the
root (the final clause in the proof). All the nodes with out-degree 0 are labeled
with clauses from the original formula and we call them leafs of the proof or
axiom clauses. Any non-axiom clause has two outgoing edges pointing to its
respective antecedents.

A Q-resolution proof is called tree-like if the corresponding graph forms a
tree (rooted in the final clause). It is known that at the propositional level, tree
resolution does not p-simulate DAG resolution [7].

A Q-resolution proof is called ordered, if there exists a sequence of variables
S such that for any path from a leaf to the root the sequence of variables being
eliminated form a sub-sequence of S. Sometimes ordered propositional resolution
is referred to as Davis-Putnam resolution as it corresponds to the Davis-Putnam
algorithm. It is known that at the propositional level, ordered resolution does
not p-simulate unrestricted resolution [1,13].

Definition 1 (level-ordered proof). Let π be a Q-resolution proof of a QCNF
formula Φ. We say that π is level-ordered iff the following holds. Consider an
arbitrary path from the root to some leaf and some resolution steps on that
path on literals x1 and x2 such that the resolution on x1 is closer to the root.
Then, lv(x1) ≤ lv(x2).

Remark 1. Janota and Silva define level-order refutations [16], which the above
definition generalizes for an arbitrary proof.

406 M. Janota

2.3 CDCL and SDCL Solving

Basic understanding of CDCL+SDCL QCNF solving is assumed; for further
details see [12,22]. We assume that a solver’s state is uniquely determined by
a sequence of decisions D, a trail T , and a database of clauses and cubes. The
input formula is always in the database of clauses.

For the purpose of this paper we only assume CDCL, i.e. universal variables
are handled by traditional chronological backtracking and there are no cubes in
the database. SDCL is also briefly discussed for completeness.

The trail T and decisions D are modeled as sequences of literals, where D is
a subsequence of T . Any literal l in T but not in D is said to be propagated, and
is obtained by unit propagation from D. For a literal l we write T (l) to denote
the value of l in T , i.e. T (l) = 1 if l ∈ T and T (l) = 0 if l̄ ∈ T .

CDCL. A conflict is reached whenever unit propagation gives an existential
literal two opposing values. This corresponds to violating a clause in the data-
base. Upon a conflict, clause learning is invoked. Learning performs Q-resolution
steps in the reverse chronological order of propagations. We assume that any ∀-
reduction is carried out as soon as possible.

The learning process stops when the derived clause C fulfills the unique
implication point property, which for QBF has the following conditions [30].
There exists a literal l ∈ C such that all the following properties are fulfilled:

1. l is existential and it has the highest decision level in C.
2. l is at a decision level where the decision is an existential literal.
3. All universal literals with quantification level smaller than l are decided at a

decision level smaller than l.

CDCL QBF solving is simulated by long-distance Q-resolution. More pre-
cisely, if a solver decides given formula as false, a long-distance Q-resolution
refutation can be constructed for it in time polynomial to the running time of
the solver.

Certain propagation can yield long-distance resolution steps, which can be
avoided by modifying the UIP scheme [11], this however potentially leads to
exponential blowup [28]. For the purpose of this paper, this difference is not
important as we later see that long-distance steps do not occur in the considered
formula.

SDCL. Solution driven cube learning (SDCL) is symmetrical to CDCL with
the difference that the initial cube database is empty and new cubes are also
created when the current assignment gives a model to the initial formula. Hence,
in SDCL initially the solver has an empty database of cubes. Once it reaches an
assignment μ that satisfies the original matrix, it uses it to generate a cube. This
is done by conjoining the literals that form the assignment μ. The cube is then
existentially reduced and inserted into the database. Such cube is from now on
used for propagation. If a cube is fully satisfied by the current assignment, this

On Q-Resolution and CDCL QBF Solving 407

a1

b1

a1

bN

aN

b1

aN

bN

Fig. 3. Completion principle

constitutes a losing situation for the universal player. Hence, unit cubes are used
for propagation and fully satisfied cubes to jumpstart learning just as conflicting
clauses do. See [22] for further details. We note that symmetrical approaches to
SDCL+CDCL solving exist [14,29].

Model for the Paper. For the results in the paper we are assuming a CDCL
solver with no SDCL. This means that the solver makes decisions along the
quantifier prefix until it either reaches a conflict and then it applies clause learn-
ing, or, it satisfies the matrix and then it backtracks to the last universal variable
and flips its polarity (if such exists). We do not make any assumptions about
restarts, i.e., restarts may be issued arbitrarily.

3 Formula

The formula used to show the main result is taken from Janota and Silva [16].1

Its construction derives from a principle named completion principle. Two sets
are considered: A = {a1, . . . , an}, B = {b1, . . . , bn} and their Cartesian-product
A × B. Let us visualize the cross-product as in Fig. 3. The following game is
played. In the first round, the ∃-player deletes one and only one cell from each
column. In the second round, the ∀-player chooses one of the two rows. The
∀-player wins if the chosen row contains either the complete set A or the set B.

There is the following winning strategy for the ∀-player. If the ∃-player wants
to make sure that the bottom row (the bi row) does not contain the complete
set B, it must delete at least one element from each of the n copies of B. Hence,
for the j-th copy of B there is an element aj that was not deleted and thus
forming the complete set A. Hence, the winning strategy for the ∀-player is to
look at the bottom row and see if it contains a complete copy of B. If it does,
the ∀-player selects the bottom row and otherwise he selects the top row.

Let us construct a formula based on this principle. For each column (i, j)
introduce a variable xij that determines which cell is deleted by the ∃-player in
the first round. For the ∀-player introduce a single universal variable z, which
determines the selected row. Further, add clauses that make sure that whenever
one of the sets A or B is complete, the formula becomes false.

In the remainder of the paper we denote the set of variables xij , i, j ∈ 1..n
by X , and ai, bi, i ∈ 1..n by L (the letter L is chosen to evoke “last”).

1 See http://sat.inesc-id.pt/∼mikolas/cdcl16 for a formula generator.

http://sat.inesc-id.pt/~mikolas/cdcl16

408 M. Janota

The formula CRn is defined by the prefix ∃X ∀z∃L and the following matrix.

xij ∨ z ∨ ai, i, j ∈ 1..n (1)
¬xij ∨ ¬z ∨ bj , i, j ∈ 1..n (2)

∨

i∈1..n

¬ai (3)

∨

i∈1..n

¬bi (4)

The first two types of clauses (1) and (2) represent the effects of the moves.
The last two clauses (3) and (4) disable setting all ai and bi to true, respectively.
Hence, the whole formula CRn is false because once z is set according to the
strategy outlined above, the variables L must be set such that variables from
one of the sets ai and bi will be all true. Consequently, one of the clauses (3)
and (4) must be falsified.

3.1 Lower Bounds for Level-Ordered Q-Resolution

An exponential lower-bound for level-ordered resolution for CRn is known [16].

Proposition 1 [16, Proposition 5]. Any level-ordered Q-resolution refutation
of CRn is exponential in n.

For the purpose of this paper a stronger result is needed. Here we show that
any level-ordered proof of any unit clause is already exponential.

Lemma 1. Let π be a level-ordered Q-resolution proof from CRn, where π is a
proof of a unit clause {l} with var(l) ∈ L. Let P be a path from the root of π to
some clause C where P does not contain any resolutions on L. Let πC ⊆ π be
the proof of C.

Then, πC contains one of the clauses (3), (4).

Proof. We consider the following cases:

1. πC contains at least one resolution step on L. Then one of (3), (4) must
appear in πC since they are the only clauses containing negative occurrences
of the L variables.

2. πC does not contain any resolution step on L. Then, if there are no clauses (3),
(4), than all axiom clauses are of type (1) or (2). This would be a contradiction
with the requirement that π proves a unit clause since the variable z would
always remain blocked as there are no more L resolutions on the path from
the root of π to C. ��

Lemma 2. Let π be a level-ordered Q-resolution proof from CRn, where π is a
proof of a unit clause {l} with var(l) ∈ L. Let P be a path from the root of π to
some clause C where P does not contain any resolutions on L and P is maximal
in that respect.

Then, C contains at least n − 1 different X variables.

On Q-Resolution and CDCL QBF Solving 409

Proof. Observe that all L variables are treated symmetrically in the formula so
without loss of generality, consider l ∈ {ak,¬ak} for some k ∈ 1..n.

Let πC ⊆ π be the proof of C. From Lemma 1, one of the clauses (3), (4)
must appear in πC .

Let us assume that (3) is in πC . Since π is level-ordered and it derives the
clause {l}, all ai with i ∈ 1..n, i �= k must be resolved away in πC . This means
that πC contains the clause xij ∨ z ∨ ai for each i ∈ 1..n, i �= k. Since πC has no
resolutions on X , the corresponding X variables also appear in C.

If (4) is in πC , the reasoning is analogous to the above. ��
Proposition 2. Let π be a level-ordered Q-resolution proof from CRn, where π
is a proof of a unit clause {l} with var(l) ∈ L. Then π is exponential in n.

Proof. Pick an assignment τ to all the X variables. Construct a path P from
the root of π that contains ∀-reductions and X resolutions only and is maximal
in that respect such that it respects the assignment τ .

Due to Lemma 2, P ends in a clause C containing at least n − 1 X variables.
There are 2n

2
assignments to X variables and C covers at most 2n

2−(n−1) of
those. Hence, there are at least 2n

2
/2n

2−(n−1) = 2n−1 clauses in π. ��
Proposition 3. Let π be a level-ordered Q-resolution proof from CRn, where π
is a proof of a unit clause {l} with var(l) ∈ X . Then π is exponential in n.

Proof. Since xij and ¬xij are treated symmetrically in CRn, any level-ordered
sub-exponential proof of xij could be rewritten to a level-ordered sub-exponential
proof of ¬xij . Resolving the two would give a level-ordered sub-exponential refu-
tation of CRn, which would be a contradiction with Proposition 1. ��
Corollary 1. Let C be a unit or empty clause with a level-ordered Q-resolution
proof π from CRn. Then π is exponential with respect to n.

4 Properties of Propagation on CRn

To be able to reason about the clauses that are learned during solving of CRn,
several properties of unit propagation are needed. A crucial property of the input
formula is that there are no clauses enabling propagation “across quantification
levels”. Namely, while decisions are being made on the X variables, no propa-
gation happens in the L variables. These get value only once z gets a value. For
this purpose we introduce the concept of mixed clauses.

Definition 2 (mixed clause). We say that a clause is mixed if it contains both
X variables and L variables, i.e., if var(C) ∩ X �= ∅ and var(C) ∩ L �= ∅.

The following lemma shows that Q-resolution does not enable us to derive
mixed clauses without the variable z.

Lemma 3. Let π be an arbitrary Q-resolution proof from CRn. For any mixed
clause C ∈ π it holds that z ∈ var(C).

410 M. Janota

Proof (By induction on the derivation depth). The hypothesis holds for all the
axiom clauses of CRn.

Let C be a new mixed clause derived by resolution from some clauses D1

and D2, for which the hypothesis holds. Since C is mixed, at least one of D1,
D2 must be mixed. Therefore C also contains z.

Let C be derived by ∀-reduction from an existing clause D. Since L variables
block ∀-reduction of z, the clauses C and D do not contain L variables and
therefore are not mixed. ��
Remark 2. The above-lemma can be easily generalized. Indeed, if the input for-
mula only contains mixed clauses that have a universal variable in the middle,
that variable cannot be reduced unless all the variables at the higher quantifi-
cation level are resolved away.

The following lemma is crucial for our result. As long as there are no unit
clauses, there cannot be propagation across quantification levels since all the
mixed clauses need z to have a value to give propagation.

Lemma 4. Let T be the trail for a CDCL solver in a state before any unit
clauses are learned. If var(T) ⊆ X then there is no propagation on L variables.

Proof. Since CRn does not contain any unit clauses and no unit clauses have been
learned so far, any propagation on L must come from a clause in the database
that has at least two literals. Since var(T) ⊆ X , such clause would have to contain
an X variable. However, due to Lemma 3, any mixed clauses contain also the z
variable, which is unassigned and therefore cannot give a unit L clause. There
is no propagation on z since we’re assuming only CDCL (not SDCL). ��

5 Exponential Lower Bound for CDCL QBF Learning

This section shows that a run of a CDCL solver on the formula CRn is exponential.
This is done by showing that the proofs of all learned clauses are level-ordered.
Due to Corollary 1, it is sufficient to show that the proofs of learned clauses are
level-ordered until a unit clause is learned. Indeed, even if the solver derives some
non-level-ordered proofs after the first unit clause has been learned, the proof
of the unit clause is already exponential. Therefore, the solver must perform an
exponential number of steps to derive the unit clause. Note also that the input
formula has no unit clauses as long as n ≥ 2.

Note that the reasoning below needs to account for all the clauses derived
during learning, not just the learned clauses. We start by a couple of technical
lemmas characterizing the learning process.

Lemma 5. Let T be the trail for a CDCL solver in a state before any unit
clauses are learned. Let T be such that it leads to a conflict and let C be some
clause that is derived during the learning of the pertaining learned clause. If
l ∈ C with var(l) = z, then T (l) = 0.

On Q-Resolution and CDCL QBF Solving 411

Proof. By construction, C is derived by resolution steps on clauses that partic-
ipated in the propagation leading to the conflict.

While z is not assigned, propagation is only on clauses that contain X vari-
ables only because any clauses that contain also some L variables also contain z
due to Lemma 3.

Once z is assigned, all clauses that contain a literal l with var(l) = z and
T (l) = 1 cannot be used during propagation (they are effectively deleted from
the propagation process). ��

The above lemma immediately gives us the consequence that there are no
long-distance resolution steps in learned clauses.

Corollary 2. For the formula CRn, a CDCL solver never learns clauses derived
by long-distance Q-resolution steps.

Lemma 6. Let T be a trail for a CDCL solver in a state before any unit clauses
are learned. Let T be such that it leads to a conflict and let C be some clause
that is derived during the learning of the pertaining learned clause.

Let C be such that it does not contain any propagated L literals, but it
contains some L literals. Then C is a UIP.

Proof. Due to the precondition, all L are decisions in C therefore there must be
one literal k with var(k) ∈ L with the highest decision level as all L variables
are decided after X variables due to Lemma 4. From Lemma 5, if C contains the
variable z, then the corresponding literal is set to 0. This fulfills the conditions
for C be a UIP. ��
Proposition 4. Let T be the trail for a CDCL solver in a state before any unit
clauses are learned. Let T be such that it leads to a conflict and let C be some
clause that is derived during the learning of the pertaining learned clause.

If C contains any L variables, then it is derived by resolution steps only on
the L variables.

Proof. The hypothesis is trivially true for all the axiom clauses.
If var(T) ⊆ X then the derivation of the learned clause only contains X

variables due to Lemma 4.
If var(T) ∩ (L ∪{z}) �= ∅ then consider the following cases:

1. C contains some L literal, forced to 0 by propagation. Then, resolution is
performed on one such literal as propagation on L takes place later chrono-
logically than propagation on X variables due to Lemma 4.

2. C does not contain any L literal, then the hypothesis is trivially satisfied.
3. C does not contain any propagated L literal, then C is a UIP due to Lemma 6.

��
Finally we need to show that as long as clauses containing L variables are

only derived by resolution steps on L, the corresponding proofs are level-ordered.
For such we utilize the following two observations.

412 M. Janota

Observation 1. Let C be derived by a resolution step over an X variable from
clauses with level-ordered proofs. Then the proof of C is also level-ordered.

Observation 2. A proof that contains resolution steps only on L variables is
level-ordered.

Proposition 5. Let T be the trail that leads to a conflict for a CDCL solver
in a state before any unit clauses are learned. The proof of the corresponding
learned clauses is level-ordered.

Proof. Prove from Proposition 4 by induction on derivation depth.
The hypothesis is trivially true for axiom clauses and is trivially preserved

by ∀-reduction. Split on the following two cases.

1. If a clause C is derived by resolution on a L variable, then both antecedents
must contain at least one L variable, From Proposition 4, the antecedents
are derived only by L resolutions only. Therefore, the proof is level-ordered
(Observation 2).

2. If a clause C is derived by resolution on an X variable, then the derivation
of C is level-ordered because the antecedents are level-ordered (IH) and due
to Observation 1. ��

Remark 3. Proving that learned clauses are themselves level-ordered is not itself
inductive. The solver could learn a clause containing an L variable while using
X resolutions and then use this learned clause in a level-ordered manner.

Theorem 1. Solving CRn by a CDCL QBF solver requires time exponential in n.

Proof. Due to Proposition 5, proof of any learned clause is level-ordered while no
unit clauses are learned. Consider the first unit clause learned by the solver. Due
to Corollary 1, the Q-resolution proof of the clause is exponential in n. Therefore,
the solver must have carried out an exponential number of steps to learn this
clause.

Observe that restarting the solver does not affect in any way the above results.
Indeed, the whole proof hinges on the fact that learned clauses are always level-
ordered independently of the content of the current trail—as long as the trail
observes the condition that a variable is decided only if all the variables that
precede it in the prefix are valued. More broadly speaking, restarts in QBF do not
change the fact that the solver has to assign variables according to quantification
levels; unlike in SAT, where restarts can come up with an arbitrary order.

Note that the proof relies on the UIP learning scheme (Lemma6). we con-
jecture, however, that this precondition can be weakened. Other schemas, like
QPUP [24,28] could be considered.

On Q-Resolution and CDCL QBF Solving 413

x1k ∨ x2k ∨ · · · ∨ xnk

x1k ∨ x2k ∨ · · · ∨ xnk ∨ z

xnk ∨ z ∨ an

an

. . .

x2k ∨ z ∨ a2

a2

x1k ∨ z ∨ a1

a1

¬a1 ∨ · · · ∨ ¬an

¬a1

¬a2

¬an

∀z

Fig. 4. Derivation of an “all x” clause for k ∈ 1..n in n resolution steps.

¬z ∨ bk

¬xnk ∨ ¬z ∨ bk
¬xnk

. . .

¬x2k ∨ ¬z ∨ bk
¬x2k

¬x1k ∨ ¬z ∨ bk
¬x1k

x1k ∨ x2k ∨ · · · ∨ xnk

x1k

x2k

xnk

Fig. 5. Derivation of an ¬z ∨ bk clause for k ∈ 1..n in n steps, using Fig. 4.

6 Short Tree-Like Q-Resolution Refutation of CRn

This section shows that CRn has a polynomial tree-like Q-resolution refutation.
We do so in a constructive manner and the proof is conceptually divided into
three parts.

First, derive clauses
∨

i∈1..n xik for k ∈ 1..n (Fig. 4). Each of these clauses
lets us derive a clause ¬z ∨ bk for k ∈ 1..n (Fig. 5). Finally, using the clause
¬b1 ∨ · · · ∨ ¬bn, the empty clause is derived (Fig. 6).

The first phase requires n2 resolution steps and n ∀-reduction steps. The
second phase requires n2 resolution steps. Finally, the last phase requires n
resolution steps and one ∀-reduction. Since the size of the input formula has
2n2 + 2 clauses, the proof size is linear in the formula’s size.

Observe that each clause appears exactly once in the proof—the proof forms
a tree. Also note that the proof is not level-ordered because it starts with resolu-
tions on ai variables, continues with X resolutions, and finishes with resolutions
on bi variables. However, the proof is ordered with the following order.

a1, . . . , an, x(1,1), . . . , x(n,n), b1, . . . , bn

Theorem 2. CRn has a polynomial refutation in ordered tree-like Q-resolution.

414 M. Janota

⊥

¬z

¬z ∨ bn

bn

. . .

¬z ∨ b2

b2

¬z ∨ b1

b1

¬b1 ∨ · · · ∨ ¬bn
¬b1

¬b2

¬bn

∀¬z

Fig. 6. Derivation of ⊥, using Fig. 5.

Corollary 3. Level-ordered resolution does not simulate ordered or tree-like Q-
resolution.

Corollary 4. CDCL QBF solving does not simulate Q-resolution even under
the restriction that the Q-resolution proofs are tree-like and ordered.

Remark 4. Mahajan and Shukla in fact show that level-ordered Q-resolution and
tree-like Q-resolution are incomparable [25]. In fact, the short resolution proof
above also appears in their paper.

7 Discussion

QBF solving presents us with some subtleties and complications due to the
two types of propagation and learning. Here we discuss how these relate to the
presented results.

7.1 SDCL

The presented result is concerned only with CDCL and so we may ask whether
SDCL can speed up the solving of CRn. A pivotal point in our proof is Lemma4,
which shows that there is no propagation from X variables to L variables, i.e.,
propagation across levels. The lemma relies on the fact that z will not be given
a value by propagation from X variables. This can happen if SDCL is employed.
More precisely, if the solver learns a cube containing only a subset of X variables
and z, the variable z may be given a value before all X variable are assigned,
which may subsequently give propagation on L variables. Such propagation could
potentially lead to learned clauses with non-level-ordered proofs.

However, this can only happen when the universal player made a wrong
choice for the value of z in the past. Since there is a winning strategy for the
universal player, there always is a value for z that does not lead to a solution
and consequently no cube learning takes place if the universal player follows the
strategy.

On Q-Resolution and CDCL QBF Solving 415

Table 1. Number of backtracks for DepQBF on CRn with a 1-hr. timeout. Unsolved
instances are marked with >.

n CDCL CDCL + SDCL CDCL + SDCL − pure lits

4 101 101 101

5 1081 1081 751

6 19611 19611 3531

7 370811 370811 36411

8 > 9995451 > 10000981 5464551

9 > 10612011 > 10619361 > 931211

10 > 10303551 > 10313901 > 8608251

Observation 3. For a false QBF Φ, if universal variables are given values
according to a winning strategy for the universal player, a SDCL+CDCL QBF
solver behaves identically to a CDCL QBF solver. Consequently, the Corollary 4
also holds for a SDCL+CDCL QBF solver under such restriction.

7.2 Pure Literals

Another relevant technique is pure literals [8,22]. Those enable assigning values
to variables out of the quantification order. This can again influence what kind
of clauses and cubes are learned. However, there is also a potential adversarial
effect of pure literals. If the universal player makes better choices, it learns fewer
cubes—which could have otherwise potentially speed up the proof.

While at this point we do not have a definite answer to the above ques-
tions, experimental evaluation might provide some hints. I have run the solver
DepQBF [23] on CRn and recorded the number of backtracking steps—these
are presented for various configurations in Table 1. All configurations have the
switches --traditional-qcdcl --long-dist-res --dep-man=simple to dis-
able advanced features of DepQBF but also allow long-distance Q-resolution.
The leftmost configuration only performs CDCL, the middle CDCL+SDCL, and
the last one also combines CDCL and SDCL but switches off the pure-literal
technique.

Instances that were not solved within 1 hour, are marked with > B where B
is the number of backtracking steps performed up to that point.

The configuration CDCL and CDCL+SDCL behave identically and can only
solve CRn for n ∈ 1..7. Interestingly enough, turning off pure literals leads to a
significant improvement and also n = 8 is solved.

Further inspection reveals that the CDCL+SDCL configuration never learned
any cubes. Because, as indicated above, it never makes a wrong decision for the
universal variable z. Somewhat paradoxically, this is disadvantageous.

416 M. Janota

7.3 Other Work on Separation

In his thesis, Lonsing presents a formula that shows that Q-resolution is more
powerful than standard CDCL solving—see Example 3.3.6 in [22]. The formula
is of the form ∃X∀U∃Z. φ1∧φ2, where φ1 depends only on the X variables and it
is a hard unsatisfiable propositional formula, e.g. pigeonhole principle [15]. The
formula φ2 depends on U and Z and is easy to refute. While a Q-resolution proof
can simply use φ2 to construct a refutation, a CDCL solver will try to construct
an assignment satisfying φ1, which is impossible and will take an exponential
amount of time. As discussed in Lonsing’s work, this can be overcome by ana-
lyzing variable dependencies such as in the DepQBF solver [23]. A solver could
also refute this formula by deciding U out-of-order and soundly conclude that
it is false. Hence, in some sense, the hardness of this formula really lies in the
propositional formula φ1 rather than the QBF structure. This contrasts with the
CRn formulas where pulling the universal variable to the front makes the formula
true. Nevertheless, this notion should be better understood and the recent work
of Chen could possibly provide pointers in this direction [9].

8 Summary and Future Work

The paper compares the strength of QBF conflict driven clause learning (CDCL)
to Q-resolution. In contrast to its propositional counterparts, CDCL QBF solving
appears to be quite weak compared to general Q-resolution. Indeed, even if we
impose the limit that the resolution should be tree-like and ordered, CDCL
cannot simulate the refutation. Our result strengthens an existing separation
between CDCL solving and Q-resolution, which can be overcome by variable
dependencies (see Sect. 7.3). We further conjecture that the presented separation
stems from the QBF hardness of the problem rather than propositional hardness.

The crux of our proof is that the investigated formula does not permit propa-
gation across levels, which consequently leads to level-ordered derivations of the
learned clauses. This observation suggests a number of interesting questions for
future research. Can solution driven cube learning (SDCL) speed-up the proof?
The experimental evaluation suggest that it might. However, only if the pure
literal technique is turned off. This observation also has a practical consequence.
Pure literals may lead to fewer learned cubes and consequently a decrease in the
quality of the clausal proof. Can such adversarial effect be avoided?

References

1. Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential separa-
tion between regular and general resolution. Theory Comput. 3(5), 81–102 (2007)

2. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many
restarts and bounded-width resolution. J. Artif. Intell. Res. (JAIR) 40, 353–373
(2011)

3. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. For-
mal Methods Syst. Des. 41(1), 45–65 (2012)

On Q-Resolution and CDCL QBF Solving 417

4. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing
the potential of clause learning. J. Artif. Intell. Res. (JAIR) 22, 319–351 (2004)

5. Beame, P., Sabharwal, A.: Non-restarting SAT solvers with simple preprocessing
can efficiently simulate resolution. In: Brodley, C.E., Stone, P. (eds.) Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2608–2615.
AAAI Press (2014)

6. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfia-
bility. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press,
Amsterdam (2009)

7. Bonet, M.L., Esteban, J.L., Galesi, N., Johannsen, J.: Exponential separations
between restricted resolution and cutting planes proof systems. In: 39th Annual
Symposium on Foundations of Computer Science, FOCS, pp. 638–647. IEEE Com-
puter Society (1998)

8. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate
quantified Boolean formulae and its experimental evaluation. J. Autom. Reasoning
28(2), 101–142 (2002)

9. Chen, H.: Proof complexity modulo the polynomial hierarchy: understanding alter-
nation as a source of hardness. In: 43rd International Colloquium on Automata,
Languages, and Programming (ICALP) (2016)

10. Ehrenfeucht, A.: An application of games to the completeness problem for formal-
ized theories. Fund. Math. 49, 129–141, 13 (1961)

11. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning
in the evaluation of quantified Boolean formulas. J. Artif. Intell. Res. 26(1), 371–
416 (2006)

12. Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified boolean for-
mulas. In: Biere et al. [6], pp. 761–780

13. Goerdt, A.: Davis-Putnam resolution versus unrestricted resolution. Ann. Math.
Artif. Intell. 6(1–3), 169–184 (1992)

14. Goultiaeva, A., Seidl, M., Biere, A.: Bridging the gap between dual propagation
and CNF-based QBF solving. In: DATE, pp. 811–814 (2013)

15. Haken, A.: The intractability of resolution. Theoret. Comput. Sci. 39, 297–308
(1985)

16. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution.
Theoret. Comput. Sci. 577, 25–42 (2015)

17. Kleine Büning, H., Bubeck, U.: Theory of quantified boolean formulas. In: Biere
et al. [6], pp. 735–760

18. Büning Kleine, K., Karpinski, M., Flögel, A.: Resolution for quantified Boolean
formulas. Inf. Comput. 117(1), 12–18 (1995)

19. Klieber, W.: Formal Verification Using Quantified Boolean Formulas (QBF). Ph.D.
thesis, Carnegie Mellon University (2014). http://www.cs.cmu.edu/∼wklieber/
thesis.pdf

20. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver
with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS,
vol. 6175, pp. 128–142. Springer, Heidelberg (2010)

21. Kolaitis, P.G.: The expressive power of stratified programs. Inf. Comput. 90(1),
50–66 (1991)

22. Lonsing, F.: Dependency Schemes and Search-Based QBF Solving: Theory and
Practice. Ph.D. thesis, Johannes Kepler Universität (2012). http://www.kr.tuwien.
ac.at/staff/lonsing/diss/

23. Lonsing, F., Biere, A.: DepQBF: a dependency-aware QBF solver. JSAT 7(2–3),
71–76 (2010)

http://www.cs.cmu.edu/~wklieber/thesis.pdf
http://www.cs.cmu.edu/~wklieber/thesis.pdf
http://www.kr.tuwien.ac.at/staff/lonsing/diss/
http://www.kr.tuwien.ac.at/staff/lonsing/diss/

418 M. Janota

24. Lonsing, F., Egly, U., Van Gelder, A.: Efficient clause learning for quantified
boolean formulas via QBF pseudo unit propagation. In: Järvisalo, M., Van Gelder,
A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 100–115. Springer, Heidelberg (2013)

25. Mahajan, M., Shukla, A.: Level-ordered Q-resolution and tree-like Q-resolution are
incomparable. Inf. Process. Lett. 116(3), 256–258 (2016)

26. Marques Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

27. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as
resolution engines. Artif. Intell. 175(2), 512–525 (2011)

28. Van Gelder, A.: Contributions to the theory of practical quantified boolean formula
solving. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 647–663. Springer,
Heidelberg (2012)

29. Zhang, L.: Solving QBF by combining conjunctive and disjunctive normal forms.
In: AAAI. AAAI Press (2006)

30. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability
solver. In: ICCAD, pp. 442–449 (2002)

On Stronger Calculi for QBFs

Uwe Egly(B)

Institut für Informationssysteme 184/3, Technische Universität Wien,
Favoritenstrasse 9–11, 1040 Vienna, Austria

uwe@kr.tuwien.ac.at

Abstract. Quantified Boolean formulas (QBFs) generalize proposi-
tional formulas by admitting quantifications over propositional variables.
QBFs can be viewed as (restricted) formulas of first-order predicate logic
and easy translations of QBFs into first-order formulas exist. We analyze
different translations and show that first-order resolution combined with
such translations can polynomially simulate well-known deduction con-
cepts for QBFs. Furthermore, we extend QBF calculi by the possibility to
instantiate a universal variable by an existential variable of smaller level.
Combining such an enhanced calculus with the propositional extension
rule results in a calculus with a universal quantifier rule which essentially
introduces propositional formulas for universal variables. In this way, one
can mimic a very general quantifier rule known from sequent systems.

1 Introduction

Quantified Boolean formulas (QBFs) generalize propositional formulas by admit-
ting quantifications over propositional variables. QBFs can be viewed in two
different ways, namely (i) as a generalization of propositional logic and (ii) as a
restriction of first-order predicate logic (where we interpret over a two element
domain). A number of calculi are available for QBFs: the ones based on variants
of resolution for QBFs [2,3,12,14], the ones based on instantiating universal
variables with truth constants combined with propositional resolution and an
additional instantiation rule [4], and different sequent systems [7,9,11,15].

In all these calculi (except the latter ones from [7,9,15]), the possibility to
instantiate a given formula is limited. In purely resolution-based calculi, formulas
(or more precisely universal variables) are never instantiated. In instantiation-
based calculi, instantiation is restricted to truth constants. In contrast, sequent
systems possess flexible quantifier rules, and (existential) variables as well as
(propositional) formulas can be used for instantiation with tremendous speed-
ups in proof complexity. This motivates why we are interested in strengthening
instantiation techniques for instantiation-based calculi.

This work was supported by the Austrian Science Fund (FWF) under grant S11409-
N23. Partial results have been announced at the QBF Workshop 2014 (http://www.
easychair.org/smart-program/VSL2014/QBF-program.html). We thank the review-
ers for valuable comments. An extended version with proofs is available [10].

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 419–434, 2016.
DOI: 10.1007/978-3-319-40970-2 26

http://www.easychair.org/smart-program/VSL2014/QBF-program.html
http://www.easychair.org/smart-program/VSL2014/QBF-program.html

420 U. Egly

We allow to replace (some) universal variables x not only by truth constants
but by existential variables left of x in the quantifier prefix. This approach mim-
ics the effect of quantifier rules introducing atoms in sequent calculi from [9]. We
add a propositional extension principle (known from extended resolution [20]),
which enables the introduction of propositional formulas for universal variables
via extension variables (or names for the formula). Contrary to [9], where we
proposed propositional extensions of the form ∃q(q ↔ F) which can be elimi-
nated if the cut rule is available in the sequent calculus, such an elimination is
not possible here for which reason we have to use (classical) extensions.
Contributions.

1. We consider different translations from QBFs to first-order logic [18] and
provide a proof-theoretical analysis of the translation in combination with
first-order resolution (R1). We exponentially separate two variants of the
translation in Theorem 4.

2. We show that such combinations can polynomially simulate Q-resolution with
resolution over existential and universal variables (QU-res [12], Theorem 1),
Q-resolution (Q-res [14], Corollary 1) and the instantiation-based calculus
IR-calc [4] (Theorem 2, Corollary 2). The latter simulation provides a sound-
ness proof for IR-calc independent from strategy extraction.

3. We show in Theorem 3 that neither Q-res nor QU-res, the long-distance
Q-resolution variants LDQ-res, LDQU-res, LDQU+-res [2,3,21], different in-
stantiation-based calculi [4] nor Q(D)-res [19] can polynomially simulate R1

with one of the considered translations.
4. We generalize IR-calc by the possibility to instantiate universal variables not

only with truth constants but also with existential variables (similar to the
corresponding quantifier rule in [9]). We show in Proposition 12 that this
generalized calculus is actually stronger than the original one.

5. We combine generalized IR-calc by a propositional extension rule [6,20] essen-
tially enabling the introduction of Boolean functions (instead of atoms and
truth constants) for universal variables.

Structure. In Sect. 2 we introduce necessary definitions and notations. In Sect. 3
different translations from QBFs to (restrictions of) first-order logic [18] are
reconsidered. In Sect. 4 different calculi based on (variants of) the resolution
calculus are described. Here, we introduce our calculi generalized from IR-calc.
In Sect. 5 we present our results on polynomial simulations between considered
calculi and in Sect. 6 we provide exponential separations. In the last section we
conclude and discuss future research possibilities.

2 Preliminaries

We assume familiarity with the syntax and semantics of propositional logic,
QBFs and first-order logic (see, e.g., [16] for an introduction). We recapitulate
some notions and notations which are important for the rest of the paper.

On Stronger Calculi for QBFs 421

We consider a propositional language based on a set PV of Boolean variables
and truth constants � (true) and ⊥ (false), both of which are not in PV. A
variable or a truth constant is called atomic and connectives are from {¬,∧,∨,→
,↔,⊕}. A literal is a variable or its negation. A clause is a disjunction of literals,
but sometimes we consider it as a set of literals. Tautological clauses contain a
variable and its negation and the empty clause is denoted by �. Propositional
formulas are denoted by capital Latin letters like A,B,C possibly annotated
with subscripts, superscripts or primes.

We extend the propositional language by Boolean quantifiers. Universal (∀b)
and existential (∃b) quantification is allowed within a QBF. The superscript b
is used to distinguish Boolean quantifiers from first-order quantifiers introduced
later. QBFs are denoted by Greek letters. Observe that we allow non-prenex for-
mulas, i.e., quantifiers may occur deeply in a QBF. An example for a non-prenex
QBF is ∀bp (p → ∀bq∃br (q ∧ r ∧ s)), where p, q, r and s are variables. Moreover,
free variables (like s) are allowed, i.e., there might be occurrences of variables
in the formula for which we have no quantification. Formulas without free vari-
ables are called closed ; otherwise they are called open. The universal (existential)
closure of ϕ is ∀bx1 . . . ∀bxnϕ (∃bx1 . . . ∃bxnϕ), for which we often write ∀bXϕ
(∃bXϕ) if X = {x1, . . . , xn} is the set of all free variables in ϕ. A formula in
prenex conjunctive normal form (PCNF) has the form Qb

1p1 . . . Qb
npn M , where

Qb
1p1 . . . Qb

npn is the quantifier prefix, Q ∈ {∀,∃} and M is the (propositional)
matrix which is in CNF. Often we write a QBF as Qb

1X1 . . . Qb
kXk M (Qi �= Qi+1

for all i = 1, . . . , k − 1 and the elements of {X1, . . . , Xk} are pairwise disjoint).
We define the level of a literal �, lv(�), as the index i such that the variable of
� occurs in Xi. The logical complexity of a formula Φ, lc(Φ), is the number of
occurrences of connectives and quantifiers.

We use a first-order language consisting of (objects) variables, function sym-
bols (FSs), predicate symbols (PSs), together with the truth constants and con-
nectives mentioned above. Quantifiers ∀ and ∃ bind object variables. Terms and
formulas are defined according to the usual formation rules. We identify 0-ary
PSs with propositional atoms, and 0-ary FSs with constants. Clauses, tautolog-
ical clauses and the empty clause are defined as in the propositional case.

Let V be the set of first-order variables and T be the set of terms. A substi-
tution is a mapping σ of type V → T such that σ(v) �= v only for finitely many
variables v ∈ V . We represent σ by a finite set of the form {v1\t1, . . . , vn\tn}.
The domain of σ, dom(σ), is the set {v | v ∈ V, σ(v) �= v}. The range of σ, rg(σ),
is the set {σ(v) | v ∈ dom(σ)}. We call σ a variable substitution if rg(σ) ⊆ V .
The empty substitution ε is denoted by {}. We often write substitutions post-fix,
e.g., we use xσ instead of σ(x). Algebraically, substitutions define a monoid with
ε being the neutral element under the usual composition of substitutions.

Substitutions are extended to terms and formulas in the usual way, e.g.,
f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ), (¬)p(t1, . . . , tn)σ = (¬)p(t1σ, . . . , tnσ), and (F ◦
G)σ = Fσ ◦ Gσ, where f is an n-place FS, p is an n-place PS, t1, . . . , tn are
terms, F and G are (quantifier-free) formulas and ◦ is a binary connective. For
substitutions σ and τ , σ is more general than τ if there is a substitution μ such

422 U. Egly

Fig. 1. The translation of QBFs to first-order formulas. The connective ◦ is a binary
connective present in both languages and Q ∈ {∀, ∃}. The symbols p and f do not
occur in the source QBF; p is a unary predicate symbol and f is used to construct
constant and function symbols by indices.

that σμ = τ . A substitution σ is called a permutation if σ is one-one and a
variable substitution. A permutation σ is called a renaming (substitution) of an
expression E (i.e., E is a term or a quantifier-free formula) if var(E)∩rg(σ) = {},
where var(E) is the set of all variables occurring in E. For an expression G, Gσ
is a variant of G provided σ is a renaming substitution.

Let E = {E1, . . . , En} be a non-empty set of expressions. A substitution σ
is called a unifier of E if |{E1σ, . . . , Enσ}| = 1. Unifier σ is called most general
unifier (mgu), if for every unifier τ of E, σ is more general than τ .

Let P1 and P2 be two proof systems. P1 polynomially simulates (p-simulates)
P2 if there is a polynomial p such that, for every natural number n and every
formula Φ, the following holds. If there is a proof of Φ in P2 of size n, then there
is a proof of Φ (or a suitable translation of it) in P1 whose size is less than p(n).

3 Different Translations of QBFs to First-Order Logic

We introduce different translations of (closed) QBFs to (closed) formulas in
(restrictions of) first-order logic. We start with the basic translation from [18] in
Fig. 1. Obviously, the QBF Φ and the first-order formula [[Φ]]fp enjoy a very sim-
ilar structure. Especially the variable dependencies expressed by the quantifier
prefix are exactly the same and the connectives are preserved.

Proposition 1. Let Φ be a (closed) QBF and let [[Φ]]fp be its (closed) first-order
translation. Then Φ ∼= [[Φ]]fp , i.e., Φ and [[Φ]]fp are isomorphic.

The proof in the appendix of [10] is by induction on the logical complexity of Φ.
The basic translation from Fig. 1 can be extended to Sk [[Φ]]fp generating a

skolemized version of [[Φ]]fp . We restrict our attention here to QBFs in PCNF.

Definition 1. Let Φ be a closed QBF in PCNF with matrix M and let [[Φ]]fp be
its closed first-order translation. For any existential variable a in the quantifier
prefix of Φ, let dep(a) be the sequence of universal variables left of a (in exactly
the same order in which they occur in the prefix). Let fa be the Skolem function
symbol associated to a. We call [[M]]fpσ the skolemized form of [[M]]fp and denote
it by Sk [[M]]fp , where the substitution σ is as follows.

σ = {a\fa(dep(a)) | for all existential variables a in Φ}

On Stronger Calculi for QBFs 423

Fig. 2. The rules of Q-res and QU-res [12,14]

Traditionally, Sk [[M]]fp is denoted as a quantifier-free formula with the assump-
tion that all free variables are (implicitly) universally quantified.

The number of universal variables a Skolem function depends on can be
optimized, e.g., by using miniscoping or dependency schemes [18]. As we will see
later on, most of our results do not depend on such optimizations.

Proposition 2. Let Φ be a closed QBF in PCNF with matrix M and let [[Φ]]fp be
its closed first-order translation. Let Sk [[M]]fp be the skolemized form of [[M]]fp .
Then M ∼= Sk [[M]]fp .

Due to Propositions 1 and 2, we can relate each literal of each clause from
M to its isomorphic counterpart in [[M]]fpσ.

Since we interpret over a two-element domain, proper Skolem function sym-
bols (i.e., the arity is greater than 0) can be eliminated by introducing new
predicate symbols. The resulting formula belongs to EPR (Effectively PRoposi-
tional logic or more traditionally it belongs to the Bernays-Schoenfinkel class).

Definition 2. Let Φ be a closed QBF in PCNF with matrix M and let [[Φ]]fp
be its closed first-order translation. Let Sk [[M]]fp the skolemized form of [[M]]fp .
Replace any occurrence of a predicate of the form p(fb(X)) by pb(X) where fb is
a proper function symbol and X is a non-empty list of universal variables. The
formula resulting after all possible replacements is the EPR formula EPR[[M]]fp .

We will see later that the first-order and the EPR translation have different
proof-theoretical properties because some resolutions are blocked by different
predicate symbols. Proposition 3 is Lemma 1 in [18] (stated without a proof).

Proposition 3. Let Φ be a closed QBF. Then

Φ is satisfiable iff [[Φ]]fp ∧ p(1) ∧ ¬p(0) is satisfiable.

A proof can be found in the appendix of [10].

4 Different Calculi Based on Resolution

We introduce different calculi used in this paper. We start with two resolution
calculi, Q-res and QU-res, for QBFs in Fig. 2. Observe that the consequence

424 U. Egly

Axiom
{e[σ] | e ∈ C, e is existential}

C is a non-tautological clause from the matrix M , σ = {u\0 | u ∈ C universal}
where u\0 is a shorthand for x\0 if u = x and x\1 if u = ¬x.

xτ ∨ C1 ¬xτ ∨ C2
Res

C1 ∨ C2

C ∨ �τ ∨ �τ

Fac
C ∨ �τ

C
Inst

inst(τ, C)

τ is an assignment to universal variables and rg(τ) ⊆ {0, 1}.

Fig. 3. The rules of IR-calc(P,M) taken from [4]

of each rule is non-tautological. We continue with the calculus IR-calc(P,M) in
Fig. 3, where we use the same presentation as in [4]. P is the quantifier prefix and
M is the quantifier-free matrix in CNF. In instantiation-based calculi, inference
rules do not work on usual clauses but on annotated clauses based on extended
assignments. An extended assignment is a partial mapping from the Boolean
variables to {0, 1}. An annotated clause consists of annotated literals of the form
�[τ], where τ is an extended assignment to universal variables and [τ] = {u\c |
(u\c) ∈ τ, lv(u) < lv(�)} with c ∈ {0, 1}. Composition of extended assignments
is defined using completion. The expression μ � τ is called the completion of μ
by τ . Then σ, the completion of μ by τ , is defined as follows.

σ(x) =

{
μ(x) if x ∈ dom(μ);
τ(x) if x /∈ dom(μ) and x ∈ dom(τ).

(1)

The function inst(τ, C) produces instantiations of clauses; it computes {�[μ�τ] |
�μ ∈ C} for an extended assignment τ and an annotated clause C. Later, we will
clarify the relation between annotations and substitutions in first-order logic.

We extend IR-calc(·, ·) by the possibility to instantiate universal variables by
existential ones. Technically the instantiation is performed by a global substitu-
tion σv. If a universal variable x is replaced by some existential variable e, i.e.,
(x\e) ∈ σv, then lv(e) < lv(x) must hold. We name the calculus equipped with
the substitution σv IR-calc(P,M, σv) and depict the rules in Fig. 4.

It is immediately apparent that this calculus is sound and complete. We
get completeness, when we use the empty substitution as σv because then,
IR-calc(·, ·, ·) reduces to IR-calc(·, ·) which is sound and complete [4]. Soundness
follows from the validity of QBFs of the form

Q1∃eQ2∀xQ3 ϕ(e, x) → Q1∃eQ2Q3 ϕ(e, e).

If the right formula has an IR-calc(·, ·) refutation, then it is false and therefore
the left formula has to be false.

We further enhance IR-calc(·, ·, ·) by the possibility to use propositional exten-
sions [6,20]. This extension operation is a generalization of the well-known

On Stronger Calculi for QBFs 425

Axiom
{e[σ] | e ∈ Cσv, e is existential}

1. C is a non-tautological clause from the matrix M .
2. σv = {x\e | x is universal, e is existential, lv(e) < lv(x)}.
3. Cσv = {e | e ∈ C existential} ∪ {xσv | x ∈ C universal, x ∈ dom(σv)} ∪

{x | x ∈ C universal, x /∈ dom(σv)}.
4. σ, Res, Fac and Inst are the same as in IR-calc(·, ·), but Cσv is used instead

of C in the definition of σ.

Fig. 4. The rules of IR-calc(P, M, σv)

Axiom
{e[σ] | e ∈ Cσv, e is existential}

1. C is a non-tautological clause from the matrix M or from Δ.
2. σv, Cσv, σ, Res, Fac and Inst are the same as in IR-calc(·, ·, ·).
3. If C ∈ Δ then σ = ε and C = Cσv by construction.

Fig. 5. The rules of IR-calc(P, M, Δ, σv)

structure-preserving translation to (conjunctive) normal form in propositional
logic. For presentational reasons, we require to have all extensions at the very
beginning of the deduction in order to allow extension variables as replace-
ments for universal variables. Figure 5 shows the inference rules of this calculus
IR-calc(P,M,Δ, σv), where Δ is a sequence δ1, . . . , δd of (clausal representations
of) extensions of the form δi : qi ↔ F with F being of the form ¬p or of the
form p ◦ r (◦ ∈ {∧,∨,→,↔,⊕}) and qi is a variable neither occurring in M nor
in F nor in δ1, . . . , δi−1. The variables qi, p, r are existential. The quantification
∃qi extends the quantifier prefix P such that lv(v) ≤ lv(qi) for all variables v
occurring in F and lv(qi) is minimal. Due to the requirements on the extension
variables qi and the placement of ∃qi, the resulting calculus is sound. Complete-
ness is not an issue here, because we can use an empty Δ.

Remark 1. The usual formalization of clauses and resolvents as sets of literals
can be simulated in our formalizations by the factoring rule Fac. We assume in
the following that Fac is applied as soon as possible.

We finally introduce first-order resolution. Let C be a clause and let K and
L be two distinct literals in C both of which are either negated or unnegated. If
there is an mgu σ of K and L, then the clause D = Cσ = {Nσ | N ∈ C} is called
a factor of C. The clause C is called the premise of the factoring operation.

Let C and D be two clauses and let D′ be a variant of D which has no
variable in common with C. A clause E is a resolvent of the parent clauses C
and D if the following conditions hold:

426 U. Egly

1. K ∈ C and L′ ∈ D′ are literals of opposite sign whose atoms are unifiable by
an mgu σ.

2. E =
(
Cσ \ {Kσ}) ∪ (

D′σ \ {L′σ})
.

Let C be a set of clauses. A sequence C1, . . . , Cn is called R1 deduction (first-order
resolution deduction) of a clause C from C if Cn = C and for all i = 1, . . . , n,
one of the following conditions hold.

1. Ci is an input clause from C.
2. Ci is a factor of a Cj for j < i.
3. Ci is a resolvent of Cj and Ck for j, k < i.

An R1 refutation of C is an R1 deduction of the empty clause � from C. The
size of a deduction is given by

∑n
i=1 size(Ci), where size(Ci) is the number of

character occurrences in Ci. An R1 deduction has tree form if every occurrence
of a clause is used at most once as a premise in a factoring operation or as a
parent clause in a resolution operation.

Next we introduce the subsumption rule taken from Definition 2.3.4 in [8].
Contrary to the usual use of subsumption in automated deduction as a deletion
rule, here we add clauses which are (factors of) instantiations of clauses.

Definition 3. If C and D are clauses, then C subsumes D or D is subsumed
by C, if there is a substitution σ such that Cσ ⊆ D. A set S′ of clauses is
obtained from a set S by subsumption if S′ = S ∪ {D} where D is subsumed by
a clause of S.

Resolution can be extended by the subsumption rule (Definition 3.2.3 in [8]).

Definition 4. By a derivation of a set of clauses S2 from a set of clauses S1

by R1 plus subsumption, we mean a sequence C1, . . . , Cn of clause such that the
following conditions are fulfilled.

1. S2 ⊆ S1 ∪ {C1, . . . , Cn}.
2. For all k = 1, . . . , n there is a clause C ∈ S1 ∪ {C1, . . . , Ck−1} subsuming the

clause Ck or there exist clauses C,D ∈ S1 ∪ {C1, . . . , Ck−1} such that Ck is
subsumed by a resolvent of C and D.

Factors are not needed in item 2, because the factor of C can be generated by
subsumption. We need a simplified version of Proposition 3.2.1 from [8].

Proposition 4. R1 polynomially simulates R1 plus subsumption.

The subsumption rule is not necessary but makes proofs of polynomial simula-
tion results much more convenient. It allows instantiated deductions for which
eventually the lifting theorem provides a deduction “on the most general level”.

On Stronger Calculi for QBFs 427

5 Polynomial Simulations of Calculi

In this section we show that R1 together with a suitable translation T and the
clauses p(1) and ¬p(0) (denoted by R1 + T) polynomially simulates QU-res,
Q-res and IR-calc(·, ·).
Theorem 1. R1 + Sk [[·]]fp polynomially simulates QU-res.

The proof is by induction on the number of clauses in the QU-res deduction. It can
be found in the appendix of [10]. It shows that first-order literals obtained from
universal literals in the QBF and eliminated by ∀R are eliminated by resolutions
with p(1) and ¬p(0) without instantiating the first-order resolvent.

Corollary 1. The following results are immediate consequences of Theorem 1.

1. R1 + EPR[[·]]fp polynomially simulates QU-res.
2. R1 + Sk [[·]]fp as well as R1 + EPR[[·]]fp polynomially simulates Q-res.

We present a soundness proof of IR-calc(·, ·) independent from strategy
extraction by a polynomial simulation of IR-calc(·, ·) by R1+ Sk [[·]]fp .

Definition 5. Let τ = {x1\s1, . . . , xk\sk} and μ = {y1\t1, . . . , yl\tl} be two
substitutions. The composition of τ and μ, τμ, is obtained from

{
x1\s1μ, . . . , xk\skμ, y1\t1, . . . , yl\tl

}

by deleting all yi\ti for which yi ∈ {x1, . . . , xk} holds.

Lemma 1. Let τ and μ be two substitutions as defined in Definition 5, where
x1, . . . , xk, y1, . . . , yl are universal variables and {s1, . . . , sk, t1, . . . , tl} ⊆ {0, 1}.
Then τ � μ is the composition τμ.

Proof. Let σ be the completion of τ by μ defined in (1). Since dom(τ) as well
as dom(μ) is a subset of the set of universal variables and rg(τ) as well as
rg(μ) is a subset of {0, 1}, rg(τ) ∩ dom(μ) = {} and therefore siμ = si for all
i = 1, . . . , k. Hence, the completion σ of the two substitutions τ and μ is exactly
their composition τμ. ��

In the following, we deal with annotated clauses C of the form {l
[σ1]
1 , . . . , l

[σk]
k }

where any li is an existential literal and any [σi] is the restriction of assignment
σi to exactly those universal variables x ∈ dom(σi) for which lv(x) < lv(li)
holds. We denote the sequence of all universal variables x with lv(x) < lv(li)
by dep(li) = X li where we assume the same order as in the quantifier prefix. A
first-order clause D corresponding to C is constructed as follows

{
(¬)p(fe(Xe))σ | (¬)e[σ] ∈ C and p(fe(Xe)) ∼= e

}
,

where p(fe(Xe)) is the isomorphic counterpart of e (cf. the remark after Propo-
sition 2). Using Xe together with σ mimics the effect of [σ]; the difference is the
explicit notation of all universal variables Xe left of e and not only the variables
in Xe ∩ dom(σ).

428 U. Egly

Theorem 2. R1 + Sk [[·]]fp polynomially simulates IR-calc(·, ·).
In the proof, we construct by induction on the number of derived clauses in the
IR-calc deduction stepwisely a deduction in R1 plus subsumption. We consider the
sequence of first-order clauses obtained from the original clauses as a skeleton for
the final proof. Since not all clauses in the skeleton follow by a single application
of an inference rule, we have to provide a short deduction of the clauses.

Proof. We utilize Proposition 4 and allow subsumption in the simulation. The
proof is by strong mathematical induction on the number of derived clauses
in the IR-calc deduction. Let P (n) denote the statement “Given a IR-calc
deduction C1, . . . , Cn from a QBF Q.M and a sequence of first-order clauses
D1, . . . , Dn, the clause Dn has a short deduction in R1 plus subsumption from
p(1),¬p(0),Sk [[M]]fp ,D1, . . . , Dn−1”.
Base: n = 1. C1 is a consequence of the axiom rule using clause C from the matrix
M . Let σ be the assignment induced by C. Then we have a clause D ∈ Sk [[M]]fp
from which we can derive D1σ by resolution steps using p(1) and ¬p(0). The
number of these steps is equal to the number of universal variables in C.
IH: Suppose P (1), . . . , P (n) hold for some n ≥ 1.
Step: We have to show P (n + 1). Consider C1, . . . , Cn+1 and D1, . . . , Dn+1.
Case 1: Cn+1 is derived by the axiom rule. Then proceed like in the base case.
Case 2: Cn+1 is a consequence of the rule Inst with premise Ci (for some i
with 1 ≤ i ≤ n) and assignment τ . By IH and Remark 1, we have a short
R1 plus subsumption deduction of Di = {(¬)p(fe(Xe))σ | (¬)e[σ] ∈ Ci}. Cn+1

is of the form {(¬)e[σ�τ] | (¬)e[σ] ∈ Ci}. By Lemma 1, x(σ � τ) = xστ for
any universal variable x with lv(x) < lv(e). Therefore Dn+1 is of the form
{(¬)p(fe(Xe))στ | (¬)e[σ�τ] ∈ Cn+1}. Now Dn+1 = Diτ and Dn+1 can be
derived by subsumption.
Case 3: Cn+1 is a consequence of the rule Fac with premise Ci : C̃i ∨ �τ ∨ �τ (for
some i with 1 ≤ i ≤ n). By IH, we have a short R1 plus subsumption deduction
of Di : C̃i ∨ L ∨ L, where L is of the form (¬)p(fe(Xe)τ . We generate a factor
Dn+1 of Di simply by omitting one of the duplicates.
Case 4: Cn+1 is a consequence of the resolution rule with parent clauses Ci, Cj

(for some i, j with 1 ≤ i, j ≤ n). By IH, we have two clauses

Di = {p(fe(Xe))σ} ∪ D′
i and Dj = {¬p(fe(Xe))σ} ∪ D′

j

We use λ of the form {x\y} as a renaming of the variables in Dj such that
Djλ does not share any variable with Di. The resolvent is D′

i ∪ D′
jλμ where μ

is the mgu of the form {y\x | x ∈ Xe, x /∈ dom(σ)}. We add D′
i ∪ D′

jλμλ′ by
subsumption, where λ′ maps all remaining variables y to their x counterpart. ��
Corollary 2. R1 + EPR[[·]]fp polynomially simulates IR-calc(·, ·).

When we inspect the translation of (axiom) clauses, we observe that a univer-
sal variable x is translated to an atom of the form p(x). With the subsumption
rule we can instantiate the clause by a substitution of the form {x\t} for a term t.

On Stronger Calculi for QBFs 429

This observation was the trigger to introduce the stronger calculus IR-calc(·, ·, ·),
where universal variables cannot be replaced only by 0 or 1 but also by any
existential variable e with lv(e) < lv(x).

6 Exponential Separation of Resolution Calculi

We constructed in [9] a family (Φn)n≥1 of short closed QBFs in PCNF for which
any Q-res refutation of Φn is superpolynomial. We recapitulate the construction
here. The formula Φn is

∃bXn∀bYn∃bZn

(
TPHPYn,Zn

n ∧ CPHPXn
n

)
. (2)

CPHPXn
n is the pigeon hole formula for n holes and n + 1 pigeons in conjunctive

normal form and denoted over the variables Xn = {x1,1, . . . , xn+1,n}. Variable
xi,j is intended to denote that pigeon i is sitting in hole j. CPHPXn

n is

(n+1∧

i=1

(n∨

j=1

xi,j

)
)

∧
(n∧

j=1

∧

1≤i1<i2≤n+1

(¬xi1,j ∨ ¬xi2,j)
)

.

The number of clauses in CPHPXn
n is ln = (n+1)+n2(n+1)/2 and size(CPHPXn

n)
is O(n3). The formula TPHPYn,Zn

n is obtained from the pigeon hole formula in
disjunctive normal form, DPHPYn

n , by a structure-preserving polarity-sensitive
translation to clause form [17]. The formula DPHPYn

n is simply the negation of
CPHPYn

n where negation has been pushed in front of atoms and double-negation
elimination has been applied.

We use new variables of the form zi1,i2,j for disjuncts in DPHPYn
n . For the

first n + 1 disjuncts of the form
∧n

j=1 ¬yi,j with 1 ≤ i ≤ n + 1, we use variables
z1,0,0, . . . , zn+1,0,0. For the second part, for any 1 ≤ j ≤ n and the n(n + 1)/2
disjuncts, we use

z1,2,j , . . . , z1,n+1,j , z2,3,j , . . . , z2,n+1,j , . . . , zn,n+1,j . (3)

The set of these variables for DPHPn is denoted by Zn. Due to this construction,
we can speak about the conjunction corresponding to the variable zi1,i2,j .

We construct the conjunctive normal form TPHPYn,Zn
n of DPHPYn,Zn

n as fol-
lows. First, we take the clause DZn

n =
∨

z∈Zn
¬z over all variables in Zn. The

formula PYn,Zn
n for the first (n + 1) disjuncts of DPHPYn

n is of the form

n+1∧

i=1

n∧

j=1

(zi,0,0 ∨ ¬yi,j) .

For the remaining n2(n+1)/2 disjuncts of DPHPYn
n , we have the formula QYn,Zn

n

n∧

j=1

∧

1≤i1<i2≤n+1

(
(zi1,i2,j ∨ yi1,j) ∧ (zi1,i2,j ∨ yi2,j)

)
.

430 U. Egly

Then TPHPYn,Zn
n is DZn

n ∧PYn,Zn
n ∧QYn,Zn

n and size(TPHPYn,Zn
n) is O(n3). It is

easy to check that DPHPYn
n ↔ ∃bZn TPHPYn,Zn

n is valid.
Let us modify the quantifier prefix of Φn. By quantifier shifting rules we

get, in an “antiprenexing” step, the equivalent formula (∀bYn∃bZnTPHP
Yn,Zn
n)∧

(∃bXnCPHP
Xn
n). Prenexing yields the equivalent QBF Ωn

∀bYn∃bZn∃bXn

(
TPHPYn,Zn

n ∧ CPHPXn
n

)
(4)

which has only one quantifier alternation instead of two. In [9] we showed that
Φn and Ωn have short cut-free tree proofs in a sequent system Gqve∗, where
weak quantifiers introduce atoms. The following extends Proposition 3 in [9].

Proposition 5. Any Q-res refutation of Φn from (2) or Ωn from (4) has super-
polynomial size.

The proof is based on the fact that (i) the two conjuncts belong to lan-
guages with different alphabets and (ii) that the alphabets cannot be made
identical by instantiation of quantifiers in Q-res. Therefore we have to
refute either TPHPYn,Zn

n or CPHPXn
n under the given quantifier prefix. Since

∀bYn∃bZnTPHP
Yn,Zn
n is true, there is no Q-res refutation and we have to turn

to ∃bXnCPHP
Xn
n . But then, we essentially have to refute CPHPXn

n with propo-
sitional resolution and consequently, by Haken’s famous result [13], any Q-res
refutation of CPHPXn

n is superpolynomial in n.
Since QU-res, LDQ-res, LDQU-res, LDQU+-res, and Q(D)-resolution

(Q(D)-res) [19] are based on the same quantifier-handling mechanism as Q-res,
the following corollary is obvious.

Corollary 3. Any refutation of Φn from (2) or Ωn from (4) in the QU-res,
LDQ-res, LDQU-res, LDQU+-res, or Q(D)-res calculus has superpolynomial size.

For IR-calc(·, ·) the situation is not better. Since universal literals are only
replaced by 0, no unification of the two alphabets can happen. Moreover, even
the factorization rule of IRM-calc [4] does not help.

Proposition 6. Any refutation of Φn from (2) or Ωn from (4) in IR-calc(·, ·)
or IRM-calc has size superpolynomial in n.

The quantifier prefix is unfortunate if one expects Ωn being false. Actually, the
initial universal quantifier block prevents any non-empty σv and consequently,
any IR-calc(·, ·, ·) refutation of Ωn reduces to an IR-calc(·, ·) refutation of Ωn.

Proposition 7. Any refutation of Ωn from (4) in IR-calc(·, ·, ·) has size super-
polynomial in n.

In the following we show that Sk [[Ωn]]fp has a short tree refutation in R1.
We use fxi,j

to denote the Skolem function symbol corresponding to xi,j ∈ Xn

and fzi,j,k
to denote the Skolem function symbols corresponding to zi,j,k ∈ Zn.

On Stronger Calculi for QBFs 431

All the Skolem function symbols have arity |Yn| = n(n + 1). Let F denote the
formula F under the first-order translation. We have

CPHPXn
n :

(n+1∧

i=1

(n∨

j=1

p(fxi,j
(Yn))

)
)

∧
(n∧

j=1

∧

1≤i1<i2≤n+1

(¬p(fxi1,j
(Yn)) ∨ ¬p(fxi2,j

(Yn)))
)

.

DZn
n :

∨

z∈Zn

¬p(fz(Yn))

PYn,Zn
n :

n+1∧

i=1

n∧

j=1

(p(fzi,0,0(Yn)) ∨ ¬p(yi,j))

QYn,Zn
n :

n∧

j=1

∧

1≤i1<i2≤n+1

(
(p(fzi1,i2,j

(Yn)) ∨ p(yi1,j))∧

(p(fzi1,i2,j
(Yn)) ∨ p(yi2,j))

)
.

The refutation of Sk [[Ωn]]fp is constructed as follows.

1. We use PYn,Zn
n together with the first n + 1 clauses from CPHPXn

n to
derive p(fzi,0,0(Yn))μi (for all i = 1, . . . , n + 1). The deduction consists of
O(n2) clauses and applies resolution and factoring. The substitution μi is⋃n

j=1{yi,j\fxi,j
(Yn)σi,j}, where σi,j is a variable renaming from the variant

generation in resolution.
2. We use QYn,Zn

n together with the binary clauses from CPHPXn
n to derive

p(fzi1,i2,j
(Yn))νi1,i2,j (for all j = 1, . . . , n and i1, i2 with 1 ≤ i1 < i2 ≤ n+1).

The deduction consists of O(n3) clauses and applies resolution and factoring.
Then νi1,i2,j is {yi1,j\fxi1,j

(Yn)σi1,i2,j , yi2,j\fxi2,j
(Yn)σi1,i2,j}. Again σi1,i2,j

is a variable renaming like above.
3. We use DZn

n together with the derived instance of p(fzk,l,m
(Yn)) to derive �

by resolution. Since any variable yi,j is assigned to a variant of fxi,j
(Yn) for

all i = 1, . . . , n + 1 and all j = 1, . . . , n, all resolution steps are possible. The
deduction consists of O(n3) clauses.

The formulas Sk [[Φn]]fp and EPR[[Φn]]fp can be refuted in a similar way in R1.
Short refutations of Φn can be obtained similarly in IR-calc(·, ·, ·) by instantiating
yi,j by xi,j (for all i = 1, . . . , n + 1 and all j = 1, . . . , n).

Proposition 8. Let (Φn)n≥1 and (Ωn)n≥1 be the families of closed QBFs from
above. Then Sk [[Φn]]fp , Sk [[Ωn]]fp and EPR[[Φn]]fp have short tree refutations in
R1 consisting of O(n3) clauses. Moreover the size of the refutation is O(n8). The
same is true for Φn and IR-calc(·, ·, ·).
Theorem 3. QU-res, LDQ-res, LDQU-res, LDQU+-res, Q(D)-res, IR-calc(·, ·),
IR-calc(·, ·, ·) and IRM-calc cannot polynomially simulate tree R1 + Sk [[·]]fp .

432 U. Egly

We use (Ωn)n≥1 to exponentially separate R1 combined with the two trans-
lations, i.e., we compare Sk [[·]]fp with EPR[[·]]fp .

Proposition 9. Let (Ωn)n≥1 be the family of closed QBFs from (4). Then any
refutation of EPR[[Ωn]]fp ∧ p(1) ∧ ¬p(0) in R1 has size superpolynomial in n.

Proof (Sketch). Similar arguments as in Proposition 5 apply, because the EPR
translations of TPHPYn,Zn

n and CPHPXn
n are denoted in different languages and

literals from the former cannot be resolved with literals from the latter. Again,
the pigeonhole formula has to be refuted. Consequently, the (essentially propo-
sitional) resolution proof has size superpolynomial in n. ��
Theorem 4. R1 + EPR[[·]]fp cannot polynomially simulate tree R1 + Sk [[·]]fp .

Let us reconsider the family (Ψ)t≥1 of QBFs from [14]. Formula Ψt has the
prefix Pt : ∃d0d1e1∀x1∃d2e2∀x2∃d3e3 . . . ∀xt−1∃dtet∀xt∃f1 . . . ft and the matrix
Mt consisting of the following clauses:

C0 : d0 C1 : d0 ∨ d1 ∨ e1
C2j : dj ∨ xj ∨ dj+1 ∨ ej+1 C2j+1 : ej ∨ xj ∨ dj+1 ∨ ej+1 j = 1, . . . , t − 1
C2t : dt ∨ xt ∨ f1 ∨ · · · ∨ f t C2t+1 : et ∨ xt ∨ f1 ∨ · · · ∨ f t

B2j : xj+1 ∨ fj+1 B2j+1 : xj+1 ∨ fj+1 j = 0, . . . , t − 1

By Theorem 3.2 in [14] and Theorem 6 in [5], any Q-res refutation and any
IR-calc(·, ·) refutation of Ψt is exponential in t. The formula Ψt has a polynomial
size Q-resolution refutation if universal pivot variables are allowed [12].

Let us extract Herbrand functions from such a short QU-res refutation of Ψt

with the method of [2] resulting in di ∧ei for xi. We explain in the following how
we can produce short IR-calc(Pt,Mt,Δ, σv) refutations using such functions.

Let Δ : δ1, . . . , δt where δi is qi ∨ di ∨ ei, qi ∨ di, qi ∨ ei, i.e., δi is the clausal
representation of qi ↔ di ∧ ei. The quantifier ∃qi is in the same quantifier block
as di and ei and thus lv(qi) < lv(xi). Consequently, σv can replace xi by qi.

Proposition 10. Let Δ : δ1, . . . , δt where δi is qi ∨ di ∨ ei, qi ∨ di, qi ∨ ei, i.e., δi

is the clausal representation of qi ↔ di ∧ei. Let σv,t = {xi\qi | 1 ≤ i ≤ t}. There
is a tree refutation of Ψt in IR-calc(Pt,Mt,Δ, σv,t) of size polynomial in t.

Proof (sketch). Derive d1 ∨ e1, . . . , dt ∨ et. The first clause is derived by a res-
olution step between C0 and C1. Then we derive dj+1 ∨ ej+1 from dj ∨ ej ,
C2jσv,t, C2j+1σv,t, and the clauses obtained from qj ↔ dj ∨ej as follows. Resolve
dj ∨qj ∨dj+1 ∨ej+1 with qj ∨dj ∨ej and derive dj ∨ej ∨dj+1 ∨ej+1 by factoring.
Then continue with dj ∨ ej and obtain R : ej ∨ dj+1 ∨ ej+1 by resolution and
factoring. Use ej ∨qj ∨dj+1∨ej+1, resolve it with qj ∨ej and factor the resolvent
resulting in ej ∨dj+1∨ej+1. Resolve R with the latter clause, factor the resolvent
and obtain dj+1 ∨ ej+1.

Each of the 15 clauses has at most 5 literals. For j + 1 = t, we have a similar
deduction but with at most 2t + 3 literals per clause. We obtain f1 ∨ · · · ∨ f t

which can be resolved by fi obtained from qi ∨ fi and qi ∨ fi. Finally, it is easy
to check that the refutation has tree structure and is of size polynomial in t. ��

On Stronger Calculi for QBFs 433

The Herbrand functions obtained from Q-res or QU-res refutations by the method
in [2] are often (too) complex. It is easy to check that atomic Herbrand functions
ei for xi are sufficient and therefore a short tree IR-calc(·, ·, ·) refutation of Ψt is
possible. The proof of the next proposition can be found in the appendix of [10].

Proposition 11. Let σv,t = {xi\ei | 1 ≤ i ≤ t}. Then there is a tree refutation
of Ψt in IR-calc(Pt,Mt, σv,t) of size polynomial in t.

Proposition 12. IR-calc(·, ·) cannot polynomially simulate IR-calc(·, ·, ·).
According to Proposition 11, there are not only short tree refutations of Ψt, but
also the search space is limited if a simple heuristic restricting the number of
possible variable replacements σv,t is employed during proof search. The heuristic
requires that for each (x\e) ∈ σv,t, there is at least one clause Cσv,t, which
contain duplicate literals.

7 Conclusion

We studied various calculi for QBFs with respect to their relative strength.
We provided polynomial simulations using first-order translations in order to
clarify the possibility to employ (non-trivial) instantiations in refutations. By
a simulation of Q-res and QU-res by R1, we have seen that the former ones
avoid instantiations. The simulation of simple instantiation-based calculi by R1

revealed that instantiation of universal variables is possible by resolutions with
p(1) and ¬p(0) together with the usual propagation of substitutions, and clarified
the purpose of the employed framework of assignments and annotated clauses.
We showed that enabling instantiations with existential variables and formulas
increase the strength of instantiation-based calculi.
Open problems and future research directions: In all our comparisons, we did
not optimize the quantifier prefix by (advanced) dependency schemes. It is well
known that less dependencies between variables can considerably shorten proofs,
for which reason one would like to integrate these techniques into calculi. We have
left open some proof-theoretical comparisons like sequent systems for prenex
formulas with propositional cuts and IR-calc(·, ·, ·, ·), or IRM-calc [4] with our
new calculi or R1. The problem here is that R1 is probably not strong enough
because inference rules for Skolem function manipulation [1,8] are not available
but seem to be necessary for a polynomial simulation. The ultimate goal is to
make instantiation-based calculi ready for proof search. A first step has been
accomplished by showing (in the simulation) that unrestricted instantiations in
IR-calc(·, ·) can be restricted to minimal ones by simply using unification and
mgus like in the first-order case. Achieving the goal for strong cacluli is not an
easy exercise because some techniques like extensions are hard to control.

References

1. Baaz, M., Egly, U., Leitsch, A.: Normal form transformations. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 273–333. Elsevier and
MIT Press, Cambridge (2001)

434 U. Egly

2. Balabanov, V., Jiang, J.-H.R.: Unified QBF certification and its applications. For-
mal Methods Syst. Des. 41(1), 45–65 (2012)

3. Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof
complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169.
Springer, Heidelberg (2014)

4. Beyersdorff, O., Chew, L., Janota, M.: On unification of QBF resolution-based
calculi. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part
II. LNCS, vol. 8635, pp. 81–93. Springer, Heidelberg (2014)

5. Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF
calculi. In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on The-
oretical Aspects of Computer Science, STACS. LIPIcs, Garching, Germany, 4–7
March 2015, vol. 30, pp. 76–89. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik (2015)

6. Beyersdorff, O., Chew, L., Janota, M.: Extension variables in QBF resolution. In:
AAAI 2016 Workshop Beyond NP (2016)

7. Cook, S.A., Morioka, T.: Quantified propositional calculus and a second-order the-
ory for NC1. Arch. Math. Log. 44(6), 711–749 (2005)

8. Eder, E.: Relative complexities of first order calculi. Artificial intelligence =
Künstliche Intelligenz. Vieweg (1992)

9. Egly, U.: On sequent systems and resolution for QBFs. In: Cimatti, A., Sebastiani,
R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 100–113. Springer, Heidelberg (2012)

10. Egly, U.: On stronger calculi for QBFs. CoRR, abs/1604.06483 (2016)
11. Egly, U., Seidl, M., Woltran, S.: A solver for QBFs in negation normal form.

Constraints 14(1), 38–79 (2009)
12. Van Gelder, A.: Contributions to the theory of practical quantified boolean formula

solving. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 647–663. Springer,
Heidelberg (2012)

13. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)
14. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean

formulas. Inf. Comput. 117(1), 12–18 (1995)
15. Kraj́ıček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory.

Encyclopedia of Mathematics and its Application, vol. 60. Cambridge University
Press, Cambridge (1995)

16. Leitsch, A.: The Resolution Calculus. Texts in Theoretical Computer Science.
Springer, Heidelberg (1997)

17. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J.
Symb. Comput. 2(3), 293–304 (1986)

18. Seidl, M., Lonsing, F., Biere, A.: qbf2epr: A tool for generating EPR formulas
from QBF. In: Fontaine, P., Schmidt, R.A., Schulz, S. (eds.) PAAR@IJCAR. EPiC
Series, vol. 21, pp. 139–148. EasyChair (2012)

19. Slivovsky, F., Szeider, S.: Variable dependencies and Q-resolution. In: Sinz, C.,
Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 269–284. Springer, Heidelberg
(2014)

20. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In:
Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic,
Part II, vol. 8, pp. 234–259. Seminars in Mathematics, V.A. Steklov Mathematical
Institute, Leningrad (1968)

21. Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability
solver. In: Pileggi, L.T., Kuehlmann, A. (eds.) Proceedings of the 2002 IEEE/ACM
International Conference on Computer-aided Design, ICCAD 2002, San Jose, Cal-
ifornia, USA, 10–14 November 2002, pp. 442–449. ACM/IEEE Computer Society
(2002)

Q-Resolution with Generalized Axioms

Florian Lonsing1(B), Uwe Egly1, and Martina Seidl2

1 Knowledge-Based Systems Group, Vienna University of Technology,
Vienna, Austria

florian.lonsing@tuwien.ac.at
2 Institute for Formal Models and Verification, JKU, Linz, Austria

Abstract. Q-resolution is a proof system for quantified Boolean formu-
las (QBFs) in prenex conjunctive normal form (PCNF) which underlies
search-based QBF solvers with clause and cube learning (QCDCL). With
the aim to derive and learn stronger clauses and cubes earlier in the
search, we generalize the axioms of the Q-resolution calculus resulting
in an exponentially more powerful proof system. The generalized axioms
introduce an interface of Q-resolution to any other QBF proof system
allowing for the direct combination of orthogonal solving techniques.
We implemented a variant of the Q-resolution calculus with general-
ized axioms in the QBF solver DepQBF. As two case studies, we apply
integrated SAT solving and resource-bounded QBF preprocessing during
the search to heuristically detect potential axiom applications. Experi-
ments with application benchmarks indicate a substantial performance
improvement.

1 Introduction

In the same way as SAT, the decision problem of propositional logic, is the
archetypical problem complete for the complexity class NP, QSAT, the decision
problem of quantified Boolean formulas (QBF), is the archetypical problem com-
plete for the complexity class PSPACE. The fact that many important practical
reasoning, verification, and synthesis problems fall into the latter complexity class
(cf. [3] for an overview) strongly motivates the quest for efficient QBF solvers.

As the languages of propositional logic and QBF only marginally differ from a
syntactical point of view, namely the quantifiers, it is a natural approach to take
inspiration from SAT solving and lift powerful SAT techniques to QSAT. Moti-
vated by the success of conflict-driven clause learning (CDCL) in SAT solving [31],
a generalized version ofCDCLcalled conflict/solution-driven clause/cube learning
(often abbreviated by QCDCL) is applied in QSAT solving [11]. Given a propo-
sitional formula in conjunctive normal form (CNF), a CDCL-based SAT solver
enriches the original CNF with clauses—already found and justified conflicts—
which force the solver into a different area of the search space until either a model,
i.e., a satisfying variable assignment, is found or until the CNF is proven to be

Supported by the Austrian Science Fund (FWF) under grants S11408-N23 and
S11409-N23.

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 435–452, 2016.
DOI: 10.1007/978-3-319-40970-2 27

436 F. Lonsing et al.

unsatisfiable. If a QBF in prenex conjunctive normal form (PCNF) is unsatisfiable
then QCDCL works similar, apart from technical details. In the case of satisfiabil-
ity, however, it is not sufficient to find one assignment satisfying the formula. To
respect the semantics of universal quantification, QBF models have to be described
either by assignment trees or by Skolem functions. Hence, a QBF solver may not
abort the search if a satisfying assignment is found. Dual to clause learning, a cube
(a conjunction of literals) is learned and the search is resumed. QCDCL is imple-
mented in several state-of-the-art QBF solvers [12,19,21,34].

Apart from QCDCL, orthogonal approaches to QBF solving have been
developed. QBF competitions like the QBF Galleries 2013 [25] and 2014 [15]
revealed the power of expansion-based approaches [1,6,18], which are based on
a different proof system than search-based solving with QCDCL. We refer to
related work [4,5] for an overview of QBF proof systems. QCDCL relies on
Q-resolution [19]. Traditionally, Q-resolution calculi1 offer two kinds of axioms
with limited deductive power: (i) the clause axiom stating that any clause in the
CNF part of a QBF can be immediately derived and (ii) the cube axiom allow-
ing to derive cubes which are propositional implicants of the CNF. In previous
work [22], we generalized the cube axiom such that quantified blocked clause
elimination (QBCE) [8], a clause elimination procedure for preprocessing, could
be tightly integrated in QCDCL for learning smaller cubes earlier in the search.

To overcome the restrictions of the traditional axioms of Q-resolution, we
extend previous work [22] on the cube axiom and present more powerful clause
axioms. We generalize the traditional clause and cube axioms such that their
application relies on checking the satisfiability of the PCNF under the current
assignment in QCDCL. This way, the axioms can be applied earlier in the search.
Further, they provide a framework to combine Q-resolution with any other (com-
plete or incomplete) QBF proof system. We implemented the generalized axioms
in the QCDCL solver DepQBF. As a case study, we integrated bounded expan-
sion and SAT-based abstraction [9] in QCDCL as incomplete QBF solving tech-
niques to detect potential axiom applications. Experimental results indicate a
substantial performance increase, particularly on application benchmarks.

This paper is structured as follows. In Sects. 2 and 3, we introduce prelimi-
naries and recapitulate search-based QBF solving with QCDCL and traditional
Q-resolution. Then we generalize the axioms of Q-resolution in Sect. 4 allow-
ing for the integration of other proof systems. In Sect. 5 we integrate SAT-based
abstraction into QCDCL. Implementation and evaluation are discussed in Sect. 6.
We conclude with a summary and an outlook to future work in Sect. 7.

2 Preliminaries

We introduce the concepts and terminology used in the rest of the paper.
A literal is a variable x or its negation x̄. By l̄ we denote the negation of literal
l and var(l) := x if l = x or l = x̄. A disjunction, resp. conjunction, of literals
1 Note that there are different variants of Q-resolution, e.g., long-distance resolu-

tion [34], QU-resolution [33], etc. [2,5].

Q-Resolution with Generalized Axioms 437

is called clause, resp. cube. A propositional formula in conjunctive normal form
(CNF) is a conjunction of clauses. If convenient, we interpret a CNF as a set of
clauses, and clauses and cubes as sets of literals. A QBF in prenex conjunctive
normal form (PCNF) has the form Π.ψ with prefix Π := Q1X1 . . . QnXn and
matrix ψ, where ψ is a propositional CNF over the variables defined in Π. The
variable sets Xi are pairwise disjoint and for Qi ∈ {∀,∃}, Qi �= Qi+1. We define
var(Π) := X1 ∪ . . . ∪ Xn. The quantifier Q(Π, l) of a literal l is Qi if var(l) ∈ Xi.
If Q(Π, l) = Qi and Q(Π, k) = Qj , then l ≤Π k iff i ≤ j. For a clause or cube
C, var(C) := {var(l) | l ∈ C} and for CNF ψ, var(ψ) := {var(l) | l ∈ C,C ∈ ψ}.

An assignment A is a mapping from the variables var(Π) of a QBF Π.ψ to
truth values true and false. We represent A as a set of literals A = {l1, . . . , ln}
with {var(li) | li ∈ A} ⊆ var(Π) such that if a variable x is assigned true then
li ∈ A and li = x, and if x is assigned false then li ∈ A and li = x̄. Further, for
any li, lj ∈ A with i �= j, var(li) �= var(lj). An assignment A is partial if it does not
map every variable in var(Π) to a truth value, i.e., {var(li) | li ∈ A} ⊂ var(Π).
A QBF φ under assignment A, written as φ[A], is the QBF obtained from φ
in which for all l ∈ A, all clauses containing l are removed, all occurrences
of l̄ are deleted, and var(l) is removed from the prefix. If the matrix of φ[A]
is empty, then the matrix is satisfied by A and A is a satisfying assignment
(written as φ[A] = T). If the matrix of φ[A] contains the empty clause, then the
matrix is falsified by A and A is a falsifying assignment (written as φ[A] = F).
A QBF Π.ψ with Q1 = ∃ (resp. Q1 = ∀) is satisfiable iff Π.ψ[{x}] or (resp.
and) Π.ψ[{x̄}] is satisfiable where x ∈ X1. Two QBFs φ and φ′ are satisfiability-
equivalent, written as φ ≡sat φ′, iff φ is satisfiable whenever φ′ is satisfiable.
Two propositional CNFs ψ and ψ′ are logically equivalent, written as ψ ≡ ψ′,
iff they have the same set of propositional models, i.e., satisfying assignments.
Two simplification rules preserving satisfiability equivalence are unit and pure
literal detection. If a QBF φ contains a unit clause C = (l), where Q(Π, l) = ∃,
then φ ≡sat φ[{l}]. If a literal is pure in QBF φ, i.e., φ contains l but not l̄, then
φ ≡sat φ[{l}] if Q(Π, l) = ∃ and φ ≡sat φ[{l̄}] otherwise.

3 QCDCL-Based QBF Solving

Figure 1 shows an abstract workflow of traditional search-based QBF solving
with QCDCL [12,19,21,34]. Given a PCNF φ, assignments A are successively
generated (box in top left corner of Fig. 1). In general, variables must be assigned
in the ordering of the quantifier prefix. Variables may either be assigned tenta-
tively as decisions or by a QBF-specific variant of Boolean constraint propagation
(QBCP). QBCP consists of unit and pure literal detection. Assignments of vari-
ables carried out in QBCP do not have to follow the prefix ordering. We formalize
the assignments generated during a run of QCDCL as follows.

Definition 1 (QCDCL Assignment). Given a QBF φ = Π.ψ. Let assign-
ment A = A′ ∪ A′′ where A′ are variables assigned as decisions and A′′

are variables assigned by unit/pure literal detection. A is a QCDCL assign-
ment if (1) for a maximal l ∈ A′ with ∀l′ ∈ A′ : l′ ≤Π l it holds that

438 F. Lonsing et al.

Assignment
Generation

φ[A] = T/F?

Backtracking
Clause/Cube
Learning

SAT/
UNSAT

PCNF φ

YES

C = ∅
C = ∅

A

NO

Propagate A

Fig. 1. Abstract workflow of QCDCL with traditional Q-resolution axioms.

∀x ∈ var(Π) <Π l : x ∈ var(A) and (2) all l ∈ A′′ are unit/pure in φ[A′]
after applying QBCP until completion.

QCDCL generates only QCDCL assignments by Definition 1. Assignment
generation by decisions and QBCP continues until the current assignment A is
either falsifying or satisfying by checking whether φ[A] = F or φ[A] = T (box
in top right corner of Fig. 1). In these cases, a new learned clause or learned cube
is derived in a learning phase, which is based on the Q-resolution calculus.

Definition 2 (Q-Resolution Calculus). Let φ = Π.ψ be a PCNF. The rules
of the Q-resolution calculus (QRES) are as follows.

C1 ∪ {p} C2 ∪ {p̄}
C1 ∪ C2

if for all x ∈ Π : {x, x̄} �⊆ (C1 ∪ C2),
p̄ �∈ C1, p �∈ C2, and either
(1) C1,C2 are clauses and Q(Π, p) = ∃ or
(2) C1,C2 are cubes and Q(Π, p) = ∀

(res)

C ∪ {l}
C

if for all x ∈ Π : {x, x̄} �⊆ (C ∪ {l}) and either
(1) C is a clause, Q(Π, l) = ∀,

l′ <Π l for all l′ ∈ C with Q(Π, l′) = ∃ or
(2) C is a cube, Q(Π, l) = ∃,

l′ <Π l for all l′ ∈ C with Q(Π, l′) = ∀

(red)

C if for all x ∈ Π : {x, x̄} �⊆ C, C is a clause and C ∈ ψ (cl-init)

C

A is a QCDCL assignment,
φ[A] = T,
and C = (

∧
l∈A l) is a cube

(cu-init)

QRES is a proof system which underlies QCDCL. Rule cl-init is an axiom to
derive clauses which are already part of the given PCNF φ. In practice, the clause
C selected by axiom cl-init is falsified under the current QCDCL assignment.
Axiom cu-init allows to derive cubes based on a QCDCL assignment A which

Q-Resolution with Generalized Axioms 439

satisfies all the clauses of the matrix ψ of φ = Π.ψ (i.e., φ[A] = T). A cube C
derived by axiom cu-init is an implicant of ψ, i.e., the implication C ⇒ ψ is
valid.

The resolution and reduction rules res and red, respectively, are applied either
to clauses or cubes. Rule red is called universal (existential) reduction when
applied to clauses (cubes). We write UR(C) (ER(C)) to denote the clause (cube)
resulting from universal (existential) reduction of clause (cube) C. The PCNF
UR(φ) is obtained by universal reduction of all clauses in the PCNF φ.

Q-resolution of clauses [19] generalizes propositional resolution, which con-
sists of rules cl-init and res, by the reduction rule red. Q-resolution of cubes was
introduced for cube learning [12,21,34], the dual variant of clause learning.

QRES is sound and refutationally complete for PCNFs [12,19,21,34]. The
empty clause (cube) is derivable from a PCNF φ in QRES if and only if φ is
unsatisfiable (satisfiable). A derivation of the empty clause (cube) from φ is a
clause (cube) resolution proof of φ.

In QCDCL, the rules of QRES are applied to derive new learned clauses or
cubes. A learned clause (cube) C is added conjunctively (disjunctively) to the
PCNF φ = Π.ψ to obtain Π.(ψ ∧ C) (Π.(ψ ∨ C)). After C has been added, cer-
tain assignments in the current assignment A are retracted during backtracking,
resulting in assignment A′ (C �= ∅ in Fig. 1). Assignment generation based on A′

continues, where learned clauses and cubes participate in QBCP. Typically, only
asserting learned clauses and cubes are generated in QCDCL. A clause (cube)
C is asserting if UR(C) (ER(C)) is unit under A′ after backtracking. QCDCL
terminates if and only if the empty clause or cube is learned (C = ∅ in Fig. 1).

Example 1 ([22]). Given a PCNF φ with prefix ∃z,z′∀u∃y and matrix ψ:

ψ := (u ∨ ȳ) ∧ (ū ∨ y) ∧
(z ∨ u ∨ ȳ) ∧ (z′ ∨ ū ∨ y) ∧
(z̄ ∨ ū ∨ ȳ) ∧ (z̄′ ∨ u ∨ y)

(z̄ ∧ z̄′ ∧ ū ∧ ȳ)
(z̄ ∧ z̄′ ∧ ū)

(z̄ ∧ z̄′ ∧ u ∧ y)
(z̄ ∧ z̄′ ∧ u)

z̄ ∧ z̄′

∅
Let A1 := {z̄, z̄′, ū, ȳ} and A2 := {z̄, z̄′, u, y} be satisfying QCDCL assignments
to be used for applications of axiom cu-init. A derivation of the empty cube by
rules cu-init, red, res, and red (from top to bottom) is shown on the right. �

4 Generalizing the Axioms of QRES

The axioms cl-init and cu-init of QRES have limited deductive power. Any
clause derived by cl-init already appears in the matrix ψ of the PCNF φ = Π.ψ.
Any cube derived by cu-init is an implicant of ψ.

To overcome these limitations, we equip QRES with two additional axioms—
one to derive clauses and one to derive cubes—which generalize cl-init and cu-
init. Generalized model generation (GMG) [22] was presented as a new axiom
to derive learned cubes. The combination of QRES with GMG is stronger than
QRES with cu-init in terms of the sizes of cube resolution proofs it is able

440 F. Lonsing et al.

Assignment
Generation

φ[A] (un)sat.?

Backtracking
Clause/Cube
Learning

SAT/
UNSAT

PCNF φ

YES

C = ∅
C = ∅

A

NO

Propagate A

Fig. 2. Abstract workflow of QCDCL with generalized Q-resolution axioms.

to produce. In the following, we formulate a generalized clause axiom which
we combine with QRES in addition to GMG. Thereby, we obtain a variant of
QRES which is stronger than traditional QRES also in terms of sizes of clause
resolution proofs.

Figure 2 shows an abstract workflow of search-based QBF solving with
QCDCL relying on QRES with generalized axioms. This workflow is the same
as in Fig. 1 except for applications of axioms (box in top right corner). The gen-
eralized axioms are applied if the PCNF φ[A] under a QCDCL assignment A is
(un)satisfiable. This is in contrast to the more restricted conditions φ[A] = T or
φ[A] = F in Fig. 1. We show that the generalized axioms allow to combine any
sound (but maybe incomplete) QBF solving technique with QCDCL based on
QRES. First, we define QCDCL clauses and recapitulate QCDCL cubes [22].

Definition 3 (QCDCL Clause/Cube). Given a QBF φ = Π.ψ. The
QCDCL clause C of QCDCL assignment A is defined by C = (

∨
l∈A l̄). The

QCDCL cube C of QCDCL assignment A is defined by C = (
∧

l∈A l).

By Definition 1, a QCDCL clause or cube cannot contain complementary literals
x and x̄ of some variable x. According to QCDCL assignments, we split QCDCL
clauses and cubes into decision literals and literals assigned by unit and pure
literal detection. Let C be a QCDCL clause or QCDCL cube. Then C = C ′ ∪C ′′

where C ′ is the maximal subset of C such that X1 ∪ . . . ∪ Xi−1 ⊂ var(C ′) and
C ′ ∩ Xi �= ∅. The literals in C ′ are the first |C ′| consecutive variables of Π
which are assigned, i.e., C ′ contains all the variables in C assigned as decisions.2

The literals in C ′′ are assigned due to pure and unit literal detection and may
occur anywhere in Π starting from Xi+1. Further we define dec(C) = C ′ and
der(C) = C ′′. We review generalized model generation [22] as an axiom to derive
cubes.

Definition 4 (Generalized Model Generation [22]). Given a PCNF φ and
a QCDCL assignment A according to Definition 1. If φ[A] is satisfiable, then the
QCDCL cube C = (

∧
l∈A l) is obtained by generalized model generation.

2 C′ can also contain literals assigned by pure/unit literal detection, but as they are left
to the maximal decision variable in the prefix, we treat them like decision variables.

Q-Resolution with Generalized Axioms 441

Theorem 1 ([22]). Given PCNF φ = Π.ψ and a QCDCL cube C obtained
from φ by generalized model generation. Then it holds that Π.ψ ≡sat Π.(ψ ∨ C).

Corollary 1 ([22]). By Theorem 1, a cube C obtained from PCNF Π.ψ by
generalized model generation can be used as a learned cube in QCDCL.

Dual to generalized model generation, we define generalized conflict generation
to derive clauses which can be added to a PCNF in a satisfiability-preserving way.

Definition 5 (Generalized Conflict Generation). Given a PCNF φ and a
QCDCL assignment A according to Definition 1. If φ[A] is unsatisfiable, then
the QCDCL clause C = (

∨
l∈A l̄) is obtained by generalized conflict generation.

Theorem 2. Given PCNF φ = Π.ψ and a QCDCL clause C obtained from φ
by generalized conflict generation using QCDCL assignment A. Then it holds
that Π.ψ ≡sat Π.(ψ ∧ C).

Proof (Sketch). We argue that if Π.ψ is satisfiable, so is Π.(ψ ∧C). The case for
unsatisfiability is trivial. Let C = C ′ ∪ C ′′ with C ′ = dec(C) and C ′′ = der(C).
Further, let A = A′ ∪ A′′ such that var(A′) = var(C ′) and var(A′′) = var(C ′′).
Now assume that Π.ψ is satisfiable, but Π.(ψ ∧ C) is not. In order to falsify C,
its subclause C ′ has to be falsified, i.e., the first |C ′| variables of Π have to be set
according to A′. Then, due to pure and unit, also C ′′ is falsified, and therefore,
each assignment falsifying C has to contain A. But Π.ψ[A] is unsatisfiable. Since
Π.ψ is satisfiable, there have to be other decisions than the decisions of A to
show its satisfiability, but these also satisfy Π.(ψ ∧ C). ��
Corollary 2. By Theorem 2, a clause C obtained from PCNF Π.ψ by general-
ized conflict generation can be used as a learned clause in QCDCL.

Based on Corollaries 1 and 2, we formulate axioms to derive learned clauses
(cubes) from QCDCL assignments A under which the PCNF φ is (un)satisfiable.

Definition 6 (Generalized Axioms). Let φ = Π.ψ be a PCNF. The gener-
alized clause and cube axioms are as follows.

C

A is a QCDCL assignment,
φ[A] is unsatisfiable,
and C = (

∨
l∈A l̄) is a QCDCL clause

(gen-cl-init)

C

A is a QCDCL assignment,
φ[A] is satisfiable,
and C = (

∧
l∈A l) is a QCDCL cube

(gen-cu-init)

The generalized axioms gen-cl-init and gen-cu-init are added to QRES in
addition to the traditional axioms cl-init and cu-init from Definition 2.

442 F. Lonsing et al.

Example 2. Consider the PCNF from Example 1. Let A := {z̄, z̄′} be
a QCDCL assignment where z and z′ are assigned as decisions. The
PCNF φ[A] = ∀u∃y.(u ∨ ȳ) ∧ (ū ∨ y) is satisfiable. We apply axiom
gen-cu-init to derive the cube C := (z̄ ∧ z̄′) and finally the empty
cube ER(C) = ∅ (proof shown on the right).

z̄ ∧ z̄′

∅
�

In contrast to axioms cl-init and cu-init (the latter corresponds to model
generation [12]), the generalized axioms allow to derive clauses that are not part
of the given PCNF φ and cubes that are not implicants of the matrix of φ.

Given the empty assignment A = {} and a PCNF φ, the empty clause or cube
can be derived using A by axioms gen-cl-init or gen-cu-init right away if φ[A]
is unsatisfiable or satisfiable, respectively. However, checking the satisfiability of
the PCNF φ[A] as required in the side conditions of the generalized axioms is
PSPACE-complete. Therefore, in practice it is necessary to consider non-empty
QCDCL assignments A and apply either complete approaches in a bounded
way, like the successful expansion-based approaches [1,6,13,18], or incomplete
polynomial-time procedures, e.g., as used in preprocessing [13], to check the
satisfiability of φ[A]. Sign abstraction [21] can be regarded as a first approach
towards more powerful cube learning as formalized by axiom gen-cu-init.

Axioms gen-cl-init and gen-cu-init provide a formal framework for combin-
ing Q-resolution in QRES with any QBF decision procedure D by using D to
check φ[A]. This framework also applies to related combinations of search-based
QBF solving with variable elimination [27]. Regarding proof complexity, deci-
sion procedures like expansion and Q-resolution are incomparable as the lengths
of proofs they are able to produce for certain PCNFs differ by an exponential
factor [2,5,16]. Due to this property, the combination of incomparable proce-
dures in QRES via the generalized axioms allows to benefit from their individ-
ual strengths. For example, the use of expansion to check the satisfiability of
φ[A] in axioms gen-cl-init and gen-cu-init results in a variant of QRES which
is exponentially stronger than traditional QRES. For satisfiable PCNFs, QBCE,
originally a preprocessing technique to eliminate redundant clauses in a PCNF,
was shown to be effective to solve φ[A] for applications of axiom gen-cu-init [22],
resulting in an exponentially stronger cube proof system.

If a decision procedure D is applied as a black box to check φ[A], then QRES
extended by gen-cl-init and gen-cu-init is not a proof system as defined by Cook
and Reckhow [10] because the final proof P of φ cannot be checked in polynomial
time. However, D can be augmented to return a proof P ′ of φ[A] for every
application of gen-cl-init and gen-cu-init. Such proof P ′ may be formulated, e.g.,
in the QRAT proof system [14]. Finally, the proof P of φ contains subproofs P ′,
all of which can be checked in polynomial time, like P itself (the size of P may
blow up exponentially in the worst case depending on the decision procedures
that are used to produce the subproofs P ′).

The QCDCL framework (Fig. 2) readily supports applications of the gener-
alized axioms gen-cl-init and gen-cu-init. A clause (resp. cube) C derived by
these axioms is first reduced by universal (resp. existential) reduction to obtain
a reduced clause (cube) C ′ ⊆ C. Then C ′ is used to derive an asserting learned

Q-Resolution with Generalized Axioms 443

clause (cube) in the same way as in clause learning by traditional QRES (Defi-
nition 2).

5 An Abstraction-Based Clause Axiom

Axioms gen-cl-init and gen-cu-init by Definition 6 are based on QCDCL assign-
ments, where decision variables have to be assigned in prefix ordering. To over-
come the order restriction, we introduce a clause axiom which allows to derive
clauses based on an abstraction of a PCNF and arbitrary assignments.

Definition 7 (Existential Abstraction). Let φ = Π.ψ be a PCNF with
prefix Π := Q1X1Q2X2 . . . QnXn and matrix ψ. The existential abstraction
Abs∃(φ) := Π ′.ψ of φ has prefix Π ′ := ∃(X1 ∪ X2 ∪ . . . ∪ Xn).

Lemma 1. Let φ = Π.ψ be a PCNF, Abs∃(φ) its existential abstraction, and A
a partial assignment of the variables in Abs∃(φ). If Abs∃(φ)[A] is unsatisfiable
then ψ ≡ ψ ∧ (

∨
l∈A l̄).

Proof. Obviously, every model M of ψ ∧ (
∨

l∈A l̄) is also a model of ψ. To show
the other direction, let M be a model of ψ, but (ψ ∧ (

∨
l∈A l̄))[M] = F. Then

A ⊆ M . Since Abs∃(φ)[A] is unsatisfiable, also ψ[A] is unsatisfiable. Then M
cannot be a model of ψ. ��
Theorem 3 (cf. [29,30]). For a PCNF φ = Π.ψ, Abs∃(φ) its existential
abstraction, and a partial assignment A of the variables in Abs∃(φ) such that
Abs∃(φ)[A] is unsatisfiable, it holds that Π.ψ ≡sat Π.(ψ ∧ (

∨
l∈A l̄)).

Proof. By Lemma 1, ψ and ψ ∧ (
∨

l∈A l̄) have the same sets of propositional
models. As argued in the context of SAT-based QBF solving [29] and QBF
preprocessing [30], model-preserving manipulations of the matrix of a PCNF
result in a satisfiability-equivalent PCNF.3 ��
Definition 8 (Abstraction-Based Conflict Generation). Given a PCNF
φ, its existential abstraction Abs∃(φ) and an assignment A (not necessarily
being a QCDCL assignment). If Abs∃(φ)[A] is unsatisfiable, then the clause
C = (

∨
l∈A l̄) is obtained by abstraction-based conflict generation.

We formulate a new axiom to derive clauses by abstraction-based conflict
generation, which can be used as ordinary learned clauses in QCDCL (Theo-
rem 3).

Definition 9 (Abstraction-Based Clause Axiom). For a PCNF φ = Π.ψ
and Abs∃(φ) by Definition 7, the abstraction-based clause axiom is as follows:

C

A is an assignment,
Abs∃(φ)[A] is unsatisfiable,
and C = (

∨
l∈A l̄) is a clause

(abs-cl-init)

3 In fact, a stronger result is proved in [30]: model-preserving manipulations of the
matrix of a PCNF result in a PCNF having the same set of tree-like QBF models.

444 F. Lonsing et al.

Axiom abs-cl-init can be added to QRES in addition to all the other axioms.
In the side condition of axiom abs-cl-init, the propositional CNF Abs∃(φ)[A]
has to be solved, which naturally can be carried out by integrating a SAT
solver in QCDCL. SAT solving has been applied in the context of QCDCL
to derive learned clauses [29] and to overcome the ordering of the prefix of a
PCNF. Further, many QBF solvers rely on SAT solving [17,18,26,32]. Integrat-
ing axiom abs-cl-init in QRES by Definition 2 results in a variant of QRES which
is exponentially stronger than traditional QRES, as illustrated by the following
example.

Example 3. Consider the following family (φt)t≥1 of PCNFs defined by Kleine
Büning et al. [19]. A formula φt in (φt)t≥1 has the quantifier prefix

∃d0d1e1∀x1∃d2e2∀x2∃d3e3 . . . ∀xt−1∃dtet∀xt∃f1 . . . ft

and a matrix consisting of the following clauses:

C0 := d0 C1 := d0 ∨ d1 ∨ e1
C2j := dj ∨ xj ∨ dj+1 ∨ ej+1 C2j+1 := ej ∨ xj ∨ dj+1 ∨ ej+1 for 1 ≤ j < t

C2t := dt ∨ xt ∨ f1 ∨ . . . ∨ f t C2t+1 := et ∨ xt ∨ f1 ∨ . . . ∨ f t

B2j−1 := xj ∨ fj B2j := xj ∨ fj for 1 ≤ j ≤ t

The size of every clause resolution proof of φt in traditional QRES (Definition 2)
is exponential in t [5,19]. We show that QRES with axiom abs-cl-init allows to
generate proofs of φt which are polynomial in t. To this end, we apply abs-cl-init
to derive unit clauses (fj) for all existential variables fj in φt using assignments
A := {f̄j}, respectively. Since Abs∃(φt)[A] contains complementary unit clauses
(xj) and (xj) resulting from the clauses B2j−1 and B2j in φt, the unsatisfia-
bility of Abs∃(φt)[A] can be determined in polynomial time without invoking
a SAT solver. The derived unit clauses (fj) are resolved with clauses C2t and
C2t+1 to produce further unit clauses (dt) and (et) after universal reduction.
This process continues with C2j and C2j+1 until the empty clause is derived
using C0 and C1. �

Abstraction-based failed literal detection [23], where certain universal quanti-
fiers of a PCNF are treated as existential ones, implicitly relies on QU-resolution.
QU-resolution allows universal variables as pivots in rule res and can generate
the same proofs of (φt)t≥1 as in Example 3 [33]. Applying axiom abs-cl-init for
clause learning in QCDCL harnesses the power of SAT solving. Furthermore, the
combination of QRES (Definition 2) and abs-cl-init polynomially simulates4 QU-
resolution, which has not been applied systematically to learn clauses in QCDCL.
Like with the axioms gen-cl-init and gen-cu-init, clauses derived by axiom abs-
cl-init can readily be used to derive asserting learned clauses in QCDCL.

4 We refer to an appendix of this paper with additional results [24].

Q-Resolution with Generalized Axioms 445

6 Case Study and Experiments

DepQBF5 is a QCDCL-based QBF solver implementing the Q-resolution cal-
culus as in Definition 2. Since version 5.0, DepQBF additionally applies the
generalized cube axiom gen-cu-init based on dynamic blocked clause elimina-
tion (QBCE) [22]. The case where QBCE reduces the PCNF φ[A] under the
current assignment A to the empty formula constitutes a successful application
of axiom gen-cu-init. DepQBF comes with a sophisticated analysis of variable
dependencies in a PCNF [28] to relax their linear prefix ordering. However, we
disabled dependency analysis to focus the evaluation on axiom applications.
In the following, we evaluate the impact of (combinations of) the generalized
axioms gen-cl-init and gen-cu-init and the abstraction-based clause axiom abs-
cl-init in practice.

6.1 Axiom Applications in Practice

In DepQBF, we attempt to apply the generalized axioms after QBCP has satu-
rated in QCDCL, i.e., before assigning a variable as decision. We integrated the
preprocessor Bloqqer [8] to detect applications of gen-cl-init and gen-cu-init. Blo-
qqer implements techniques such as equivalence reasoning, variable elimination,
(variants of) QBCE, and expansion of universal variables. Since these techniques
are applied in bounded fashion, Bloqqer can be regarded as an incomplete QBF
solver. If the PCNF φ[A] is satisfiable (unsatisfiable) and Bloqqer solves it, then
a QCDCL cube (clause) is generated by axiom gen-cu-init (gen-cl-init), which
is used to derive a learned cube (clause). Otherwise, QCDCL proceeds as usual
with assigning a decision variable. Bloqqer is explicitly provided with the entire
PCNF φ[A] before each call. To limit the resulting run time overhead in practice,
Bloqqer is called in intervals of 2n decisions, where n := 11 in our experiments.
Further, Bloqqer is never called on PCNFs with more than 500,000 original
clauses, and it is disabled at run time if the average time spent to complete a
call exceeds 0.125 s.

To detect applications of the abstraction-based clause axiom abs-cl-init, we
use the SAT solver PicoSAT [7] to check the satisfiability of the existential
abstraction Abs∃(φ)[A] of the PCNF φ = Π.ψ under the current QCDCL assign-
ment A. The matrix ψ is imported to PicoSAT once before the entire solving
process starts. For each check of Abs∃(φ)[A], the QCDCL assignment A is passed
to PicoSAT via assumptions, and PicoSAT is called incrementally. If Abs∃(φ)[A]
is unsatisfiable, then we try to minimize the size of A by extracting the set
A′ ⊆ A of failed assumptions. Failed assumptions are those assumptions that
were relevant for the SAT solver to determine the unsatisfiability of Abs∃(φ)[A].
Note that in general A′ is not a QCDCL assignment. It holds that Abs∃(φ)[A′] is
unsatisfiable and hence we derive the clause C = (

∨
l∈A′ l̄) by axiom abs-cl-init.

In addition to Bloqqer and dynamic QBCE (which is part of DepQBF
5.0 [22]) used to detect applications of the generalized cube axiom gen-cu-init,
we implemented a trivial truth [9] test based on the following abstraction.

5 DepQBF is free software: http://lonsing.github.io/depqbf/.

http://lonsing.github.io/depqbf/

446 F. Lonsing et al.

Definition 10 (Universal Literal Abstraction, cf. Trivial Truth [9]).
Let φ = Π.ψ be a PCNF. The universal literal abstraction Abs∀(φ) := Π ′.ψ′ of
φ is obtained by removing all universal literals from all the clauses in ψ and by
removing all universal variables and universal quantifiers from Π.

Lemma 2 ([9]). For a PCNF φ = Π.ψ, Abs∀(φ), and a QCDCL assignment
A of variables in Abs∀(φ): if Abs∀(φ)[A] is satisfiable, then φ[A] is satisfiable.

By Lemma 2, we can check the side condition of axiom gen-cu-init whether φ[A]
is satisfiable under a QCDCL assignment A by checking whether Abs∀(φ)[A] is
satisfiable. To this end, we use a second instance of PicoSAT. Note that while
Definition 10 corresponds to trivial truth, the existential abstraction (Defini-
tion 7) corresponds to trivial falsity [9]. Hence by axiom applications, we apply
trivial truth and falsity, which originate from purely search-based QBF solving
without learning, to derive clauses and cubes in QCDCL.

Like Bloqqer, we call the two instances of PicoSAT to detect applications
of abs-cl-init and gen-cu-init in QCDCL before assigning a decision variable.
PicoSAT is called in intervals of 2m decisions, where m := 10. PicoSAT is never
called on PCNFs with more than 500,000 original clauses, and it is disabled at
run time if the average time spent to complete a call exceeds five seconds.

6.2 Experimental Results

The integration of Bloqqer and SAT solving to detect axiom applications results
in several variants of DepQBF. We use the letter code “DQ-{nQ|B|A|T}” to
label the variants, where “DQ” represents DepQBF 5.0 with dynamic QBCE
used for axiom gen-cu-init [22]. Variant “nQ” indicates that dynamic QBCE is
disabled. Letters, “B”, “A”, and “T” represent the additional application of Blo-
qqer for axioms gen-cl-init and gen-cu-init, SAT solving to check the existential
abstraction for axiom abs-cl-init, and SAT solving to carry out the trivial truth
test for gen-cu-init, respectively.

For the empirical evaluation, we used the original benchmark sets from the
QBF Gallery 2014 [15]6 preprocessing track (243 instances), QBFLIB track (276
instances), and applications track (735 instances). We compare the variants of
DepQBF to RAReQS [18] and GhostQ [20], which showed top performance in
the QBF Gallery 2014, and to the recent solvers CAQE [26]7, QESTO [17], and
QELL [32]. We tested QELL with (QELL-c) and without (QELL-nc) exploiting
circuit information and show only the results of the better variant of the two in
terms of solved instances. All experiments reported in the following were run on
an AMD Opteron 6238 at 2.6 GHz under 64-bit Ubuntu Linux 12.04 with time
and memory limits of 1800 s and 7 GB, respectively.

Tables 1, 2 and 3 illustrate solver performance by solved instances and total
wall clock time. For DepQBF, the variant where only dynamic QBCE is applied

6 http://qbf.satisfiability.org/gallery/.
7 The authors [26] provided us with an updated version which we used in our tests.

http://qbf.satisfiability.org/gallery/

Q-Resolution with Generalized Axioms 447

Table 1. Preprocessing track. Solved
instances (#T), solved unsatisfiable
(#U) and satisfiable ones (#S), and
total wall clock time in seconds includ-
ing time outs.

Solver #T #U #S Time

RAReQS 107 44 63 255K
DQ-nQAT 105 46 59 266K
QESTO 104 46 58 267K
DQ-nQ 101 44 57 271K
DQ-AT 99 45 54 273K
DQ-BAT 98 43 55 276K
DQ 95 43 52 278K
DQ-A 95 44 51 280K
DQ-T 94 41 53 278K
DQ-B 94 42 52 284K
QELL-c 87 34 53 290K
CAQE 74 24 50 319K
GhostQ 61 18 43 338K

Table 2. QBFLIB track. Same column
headers as Table 1.

Solver #T #U #S Time

GhostQ 139 62 77 265K
DQ-AT 110 58 52 314K
DQ-BAT 109 56 53 314K
DQ-T 108 56 52 318K
QELL-c 106 48 58 320K
DQ-A 106 58 48 321K
DQ 105 57 48 326K
DQ-B 104 56 48 326K
DQ-nQAT 88 49 39 352K
DQ-nQ 82 44 38 362K
RAReQS 80 47 33 361K
QESTO 73 46 27 378K
CAQE 53 32 21 406K

(DQ) is the baseline of the comparison. In the QBFLIB (Table 2) and applica-
tions track (Table 3), DepQBF with Bloqqer and SAT solving for axioms gen-cl-
init, gen-cu-init, and abs-cl-init solves substantially more instances than DQ.

Disabling dynamic QBCE used for axiom gen-cu-init (variants with “nQ”
in the tables) results in a considerable performance decrease, except in the pre-
processing track (Table 1). There, dynamic QBCE is harmful to the performance.
We attribute this phenomenon to massive preprocessing, after which QBCE does
not pay off. However, SAT solving for axioms gen-cl-init and gen-cu-init is cru-
cial as the variant DQ-nQAT outperforms DQ-nQ without SAT solving.

In general, combinations of dynamic QBCE, Bloqqer, and SAT solving (for
solving the existential abstraction and for testing trivial truth) outperform vari-
ants where only one of these techniques is applied. Examples are DQ-AT, DQ-A
and DQ-T in Table 2 and DQ-BAT, DQ-B, DQ-A, and DQ-T in Table 3. The
results in the applications track are most pronounced, where six out of eight
variants of DepQBF outperform the other solvers (Fig. 3 shows a related cactus
plot of the run times). In the following we focus on the applications track.

Consider the best performing variant DQ-BAT in Table 3. Table 4 shows sta-
tistics on the number of attempted and successful applications of axioms gen-
cl-init, gen-cu-init and abs-cl-init by Bloqqer and SAT solving. On the 466
instances solved by DQ-BAT, Bloqqer was called on φ[A] at least once on 185
instances and successfully solved φ[A] at least once on 184 instances, thus allow-
ing applications of axiom gen-cl-init or gen-cu-init. Bloqqer was disabled at run
time on 143 instances due to the predefined limits. SAT solving for the triv-
ial truth test for gen-cu-init (respectively, to solve the existential abstraction
for abs-cl-init) was applied at least once on 364 (445) instances, was successful
at least once on 177 (226) instances, and was disabled at run time on 21 (70)
instances. While Bloqqer is applied less frequently than SAT solving by a factor

448 F. Lonsing et al.

Table 3. Applications track. Same column
headers as Table 1.

Solver #T #U #S Time

DQ-BAT 466 236 230 553K

DQ-AT 461 234 227 555K

DQ-A 459 237 222 561K

DQ-B 449 222 227 563K

DQ-T 441 220 221 571K

DQ 441 224 217 575K

QELL-nc 434 302 132 563K

RAReQS 414 272 142 611K

CAQE 370 192 178 708K

GhostQ 347 166 181 752K

QESTO 331 188 143 767K

DQ-nQBAT 293 140 153 848K

DQ-nQ 279 127 152 880K

0 100 200 300 400 466
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800
DQ-nQ
DQ-nQBAT
QESTO
GhostQ
CAQE
RAReQS
QELL-nc
DQ
DQ-T
DQ-B
DQ-A
DQ-AT
DQ-BAT

Fig. 3. Sorted run times (y-axis) of
instances (x-axis) related to Table 3.
(Color figure online)

of two, applications of Bloqqer have much higher success rates (97%) than SAT
solving (8% and 22%).

In the following, we analyze applications of the abstraction-based clause
axiom in more detail. The extraction of failed assumptions in SAT solving for abs-
cl-init allows to reduce the size of the clauses learned by abstraction-based con-
flict generation. On 145 instances solved by DQ-BAT (Table 3), axiom abs-cl-init
was applied more than once. Per instance, on average (median) 3,336K (70.7K)
assumptions were passed to the SAT solver when solving Abs∃(φ)[A], 28.8K
(2.3K) failed assumptions were extracted, and the clauses finally learned had
20.7K (1.5K) literals. The difference in the number of failed assumptions and
the size of learned clauses is due to additional, heuristic minimization of the set
of failed assumptions which we apply. Given that Abs∃(φ)[A] is unsatisfiable, it
may be possible to remove assignments from A, thus resulting in a smaller assign-
ment A′, while preserving unsatisfiability of Abs∃(φ)[A′]. Additionally, universal
reduction by rule red may remove literals from the clause learned by generalized
conflict generation. Figure 4 shows related average statistics.

The abstraction-based clause axiom abs-cl-init is particularly effective on
instances from the domain of conformant planning. With variant DQ-BAT
(Table 3), 81 unsatisfiable instances from conformant planning were solved by
a single application of axiom abs-cl-init where the empty clause was derived
immediately. On 13 of these 81 instances, solving Abs∃(φ) was hard for the SAT
solver, which took more than 900 s. In contrast to DQ-BAT, DQ does not use
axiom abs-cl-init and failed to solve 15 of the 81 instances.

Additionally, we evaluated the variants of DepQBF and the other solvers
on the benchmarks of the applications and QBFLIB tracks with preprocessing

Q-Resolution with Generalized Axioms 449

Table 4. Related to variant DQ-BAT
in Table 3: statistics on applications of
Bloqqer (B), SAT solving for abs-cl-init
(A), and SAT solving to test trivial truth
for gen-cu-init (T) with respect to total
solved instances (#T) and solved satisfiable
(#S) and unsatisfiable ones (#U).

#T #S #U

B tried: 18,559 12,052 6,507

B success: 18,150 11,946 6,204

B sat: 10,917 10,405 512

B unsat: 7,233 1,541 5,692

T tried: 241,180 88,623 152,557

T success: 20,494 19,276 1,218

A tried: 301,652 122,929 178,723

A success: 67,129 34,306 32,823

0 25 50 75 100 125 145
 0

 1

 2

 3

 4

 5
A
F
L

Fig. 4. Average SAT solver assump-
tions per successful application of abs-
cl-init (“A”) on 145 selected instances
solved by DQ-BAT (Table 3), failed
assumptions (“F”), and literals in the
clauses learned by abs-cl-init (“L”),
log10 scale on y-axis.

by Bloqqer before solving.8 In the QBFLIB track, RAReQS and DQ-T solved
the largest number of instances (134 in total each instead of 80 and 108 in
Table 2). However, here it is important to remark that already the plain variant
DepQBF solved 132 instances if Bloqqer is applied before solving. With partial
preprocessing by Bloqqer (using only QBCE and universal expansion), on the
applications track QELL-nc and DQ-AT each solved 483 instances, i.e., 49 and
22 more instances than without preprocessing (Table 3). Note that the best vari-
ant DQ-BAT of DepQBF in Table 3 solved 480 instances. Partial preprocessing
increases the number of instances solved by the variants of DepQBF. In contrast
to that, with full preprocessing the performance of the variants of DepQBF on the
applications track considerably decreases. If Bloqqer is applied to the full extent
(enabling all techniques), then RAReQS, QELL-nc, and QESTO solve 547, 501,
and 463 instances, respectively. The variant DQ-AT of DepQBF, however, which
solved 483 instances with partial preprocessing, solves only 434 instances. The
phenomenon that preprocessing is not always beneficial was also observed in the
QBF Galleries [15,25]. When applied without restrictions, Bloqqer rewrites a
formula and thus destroys or blurs structural information. For some approaches
structural information is essential to fully exploit their individual strengths.

7 Conclusion

The Q-resolution calculus QRES is a proof system which underlies clause and
cube learning in QCDCL-based QBF solvers. In QCDCL, the traditional axioms
of QRES either select clauses which already appear in the input PCNF φ or
construct cubes which are implicants of the matrix of φ.
8 We refer to an appendix of this paper with additional tables [24].

450 F. Lonsing et al.

To overcome the limited deductive power of the traditional axioms, we pre-
sented two generalized axioms to derive clauses and cubes based on checking the
satisfiability of φ under an assignment A generated in QCDCL. We also formu-
lated a new axiom to derive clauses which relies on an existential abstraction
of φ and on SAT solving. This abstraction-based axiom leverages QU-resolution
and allows to overcome the prefix order restriction in QCDCL to some extent.
The new axioms can be integrated in QRES and used for clause and cube
learning in the QCDCL framework. They are compatible with any variant of
Q-resolution, like long-distance resolution [35], QU-resolution [33], and combi-
nations thereof [2].

For axiom applications in practice, any complete or incomplete QBF decision
procedure can be applied to check the satisfiability of φ under assignment A. In
this respect, the generalized axioms act as an interface to combining Q-resolution
with other QBF decision procedures in QRES. The combination of orthogonal
techniques like expansion via the generalized axioms results in variants of QRES
which are stronger than traditional QRES with respect to proof complexity. A
proof P produced by such variants of QRES can be checked in time which is
polynomial in the size of P if subproofs of all clauses and cubes derived by the
generalized axioms are provided by the QBF decision procedures.

In order to demonstrate the effectiveness of the newly introduced axioms, we
made case studies using the QCDCL solver DepQBF. We applied the preproces-
sor Bloqqer and SAT solving as incomplete QBF decision procedures in DepQBF
to detect axiom applications. Overall, our experiments showed a considerable
performance improvement of QCDCL, particularly on application instances.

As future work, it would be interesting to integrate techniques like expansion-
based QBF solving more tightly in QCDCL than what we achieved with Bloqqer
in our case study. A tighter integration would allow to reduce the run time over-
head we observed in practice. Further research directions include axiom applica-
tions based on different QBF solving techniques in parallel QCDCL, and poten-
tial relaxations of the prefix order in assignments used for axiom applications.

References

1. Ayari, A., Basin, D.A.: QUBOS: Deciding quantified boolean logic using proposi-
tional satisfiability solvers. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002.
LNCS, vol. 2517, pp. 187–201. Springer, Heidelberg (2002)

2. Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof
complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169.
Springer, Heidelberg (2014)

3. Benedetti, M., Mangassarian, H.: QBF-based formal verification: Experience and
perspectives. JSAT 5(1–4), 133–191 (2008)

4. Beyersdorff, O., Chew, L., Janota, M.: On unification of QBF resolution-based
calculi. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part
II. LNCS, vol. 8635, pp. 81–93. Springer, Heidelberg (2014)

5. Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF
calculi. In: STACS. Leibniz International Proceedings in Informatics (LIPIcs), vol.
30, pp. 76–89. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)

Q-Resolution with Generalized Axioms 451

6. Biere, A.: Resolve and expand. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

7. Biere, A.: PicoSAT essentials. JSAT 4(2–4), 75–97 (2008)
8. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner,

N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 101–115.
Springer, Heidelberg (2011)

9. Cadoli, M., Giovanardi, A., Schaerf, M.: An algorithm to evaluate quantified
boolean formulae. In: AAAI, pp. 262–267. AAAI Press/The MIT Press (1998)

10. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
J. Symbolic Logic 44(1), 36–50 (1979)

11. Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified boolean for-
mulas. In: Biere, A., Heule, M., Van Maaren, H., Walsh, T. (eds.) Handbook of
Satisfiability. FAIA, vol. 185, pp. 761–780. IOS Press, Amsterdam (2009)

12. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning
in the evaluation of quantified boolean formulas. JAIR 26, 371–416 (2006)

13. Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for
SAT and QSAT. JAIR 53, 127–168 (2015)

14. Heule, M.J.H., Seidl, M., Biere, A.: A unified proof system for QBF preprocessing.
In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562,
pp. 91–106. Springer, Heidelberg (2014)

15. Janota, M., Jordan, C., Klieber, W., Lonsing, F., Seidl, M., Van Gelder, A.: The
QBF Gallery 2014: The QBF competition at the FLoC olympic games. JSAT 9,
187–206 (2015)

16. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution.
Theor. Comput. Sci. 577, 25–42 (2015)

17. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: IJCAI, pp.
325–331. AAAI Press (2015)

18. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. Artif. Intell. 234, 1–25 (2016)

19. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified boolean
formulas. Inf. Comput. 117(1), 12–18 (1995)

20. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver
with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS,
vol. 6175, pp. 128–142. Springer, Heidelberg (2010)

21. Letz, R.: Lemma and model caching in decision procedures for quantified boolean
formulas. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol.
2381, pp. 160–175. Springer, Heidelberg (2002)

22. Lonsing, F., Bacchus, F., Biere, A., Egly, U., Seidl, M.: Enhancing search-based
QBF solving by dynamic blocked clause elimination. In: Davis, M., Fehnker, A.,
McIver, A., Voronkov, A. (eds.) LPAR-20 2015. LNCS, vol. 9450, pp. 418–433.
Springer, Heidelberg (2015)

23. Lonsing, F., Biere, A.: Failed literal detection for QBF. In: Sakallah, K.A., Simon,
L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 259–272. Springer, Heidelberg (2011)

24. Lonsing, F., Egly, U., Seidl, M.: Q-resolution with generalized axioms. CoRR
abs/1604.05994, SAT 2016 proceedings version with appendix (2016). http://arxiv.
org/abs/1604.05994

25. Lonsing, F., Seidl, M., Van Gelder, A.: The QBF Gallery: Behind the scenes. Artif.
Intell. 237, 92–114 (2016)

26. Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: FMCAD, pp. 136–
143. IEEE (2015)

http://arxiv.org/abs/1604.05994
http://arxiv.org/abs/1604.05994

452 F. Lonsing et al.

27. Reimer, S., Pigorsch, F., Scholl, C., Becker, B.: Enhanced Integration of QBF
Solving Techniques. In: Methoden und Beschreibungssprachen zur Modellierung
und Verifikation von Schaltungen und Systemen (MBMV), pp. 133–143. Verlag
Dr. Kovac (2012)

28. Samer, M., Szeider, S.: Backdoor sets of quantified boolean formulas. JAR 42(1),
77–97 (2009)

29. Samulowitz, H., Bacchus, F.: Using SAT in QBF. In: van Beek, P. (ed.) CP 2005.
LNCS, vol. 3709, pp. 578–592. Springer, Heidelberg (2005)

30. Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Benhamou, F.
(ed.) CP 2006. LNCS, vol. 4204, pp. 514–529. Springer, Heidelberg (2006)

31. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:
Biere, A., Heule, M., Van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability.
FAIA, vol. 185, pp. 131–153. IOS Press, Amsterdam (2009)

32. Tu, K.-H., Hsu, T.-C., Jiang, J.-H.R.: QELL: QBF reasoning with extended clause
learning and levelized SAT solving. In: Heule, M., Weaver, S. (eds.) SAT 2015.
LNCS, vol. 9340, pp. 343–359. Springer, Heidelberg (2015)

33. Van Gelder, A.: Contributions to the theory of practical quantified boolean formula
solving. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 647–663. Springer,
Heidelberg (2012)

34. Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability
solver. In: ICCAD, pp. 442–449. ACM/IEEE Computer Society (2002)

35. Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts
in quantified boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002.
LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002)

2QBF: Challenges and Solutions

Valeriy Balabanov1(B), Jie-Hong Roland Jiang2, Christoph Scholl3,
Alan Mishchenko4, and Robert K. Brayton4

1 Calypto Systems Division, Mentor Graphics, Fremont, USA
balabasik@gmail.com

2 National Taiwan University, Taipei, Taiwan
jhjiang@ntu.edu.tw

3 University of Freiburg, Freiburg, Germany
scholl@informatik.uni-freiburg.de

4 UC Berkeley, Berkeley, USA
{alanmi,brayton}@berkeley.edu

Abstract. 2QBF is a special form ∀x∃y.φ of the quantified Boolean
formula (QBF) restricted to only two quantification layers, where φ
is a quantifier-free formula. Despite its restricted form, it provides a
framework for a wide range of applications, such as artificial intelligence,
graph theory, synthesis, etc. In this work, we overview two main 2QBF
challenges in terms of solving and certification. We contribute several
improvements to existing solving approaches and study how the corre-
sponding approaches affect certification. We further conduct an extensive
experimental comparison on both competition and application bench-
marks to demonstrate strengths of the proposed methodology.

1 Introduction

Satisfiability (SAT) solving recently attracted much attention due to its numer-
ous applications in computer science [14]. Some problems (e.g., in the domains
of artificial intelligence and games), however, are beyond the reach of SAT solv-
ing alone but are naturally expressible in terms of quantified Boolean formulas
(QBFs) [18]. 2QBF is a restriction of general QBF problems to just two quan-
tification levels, i.e., to the form ∀x∃y.φ or ∃y∀x.φ, where φ is a quantifier-free
propositional formula. Despite this restriction many applications can be natu-
rally expressed in 2QBF language [15,16,18]. The main goal of this study is to
evaluate and improve scalability of the existing 2QBF methodology to enable
QBF as a competitive framework for both existing and new applications.

Recent QBF evaluation showed that there are two main robust algorithms
for 2QBF solving: search-based (i.e., QDPLL [13]) and expansion-based (i.e.,
CEGAR [11,12]). Both have their own strengths and weaknesses, depending on
the problem domain, and both can be generally used with either CNF and/or
circuit problem representation. Conjunctive normal form (CNF) is a commonly
accepted format for propositional satisfiability problems. It is as well extended
to QCNF and used to represent QBF problems [3]. It is not an uncommon case,

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 453–469, 2016.
DOI: 10.1007/978-3-319-40970-2 28

454 V. Balabanov et al.

however, that originally QBF is specified on a circuit, rather on a CNF. E.g.,
in [15] FPGA synthesis benchmarks are formulated on And-Inverter Graphs
(AIGs), which is an efficient way to represent general Boolean networks. It is
known that any Boolean circuit can be transformed into an equisatisfiable CNF
formula, by the various CNFization procedures, e.g., by Tseitin transform [20].
The same procedure extends to the QBF context. In this work we shall provide a
detailed comparison of different solving techniques over different representations,
introduce several algorithmic and implementational improvements, and outline
the important observations that must be taken in account by 2QBF users and
developers (Sects. 4 and 5).

It is often not enough to only determine the answer to the QBF problem,
but also to provide a certificate, that either could be used to prove the validity
of the answer, or to be used for other application-specific purposes. The problem
of finding certificates with QDPLL solvers was addressed in [4]. In the later
sections we are going to show that certificates for 2QBFs have a very restricted
form compared to general QBFs, and will show how they could be found using
both QDPLL or CEGAR (Sect. 6).

In Sect. 7 we will evaluate all the proposed techniques on the existing compe-
tition benchmarks as well as on the application benchmarks, and show that we
contribute a significant improvement over the existing 2QBF solvers. Conclusions
will be drawn in Sect. 8.

2 Preliminaries

In this work we shall use commonly accepted notations from Boolean algebra
and logic. A Boolean variable is interpreted over the binary domain {0, 1}. A
literal is either a variable or its negation. A clause (resp. cube) is a disjunc-
tion (resp. conjunction) of literals (sometimes we might use set operations on
clause/cube literals as well for convenience). A Boolean formula in conjunctive
normal form (CNF) is a conjunction of clauses. A Boolean formula in disjunctive
normal form (DNF) is a disjunction of cubes. Both CNF and DNF might be a
subject to set operations for convenience. As a notational convention, we may
also sometimes (where the context allows) omit the conjunction symbol (∧) and
represent negation (¬) by an overline.

For a Boolean formula φ(x1, . . . , xi, . . . , xn), we say its positive (resp. nega-
tive) cofactor with respect to variable xi, denoted φ|xi

(resp. φ|xi), is the formula
φ(x1, . . . , xi−1, 1, xi+1, . . . , xn) (resp. φ(x1, . . . , xi−1, 0, xi+1, . . . , xn)). The cofac-
tor definition also extends to a cube of literals α = l1∧· · ·∧lm, with the following
recursive definition φ|α = (φ|α\lm)|lm , where φ|lm is a positive (resp. negative)
cofactor with respect to variable var(lm) if lm is a positive (resp. negative) lit-
eral. If the context allows we may as well drop the vertical line and simply write
φα. We say that formula φ is satisfiable if there is an assignment to its variables
that evaluates φ to true. We say φ is unsatisfiable otherwise. We denote ON(φ)
the onset of φ, i.e., the set of assignments under which φ evaluates to true. We
define an unsatisfiable core of an unsatisfiable CNF formula φ as an arbitrary
unsatisfiable subset of clauses of φ.

2QBF: Challenges and Solutions 455

A quantified Boolean formula (QBF) Φ over universal variables
x = {x11, . . . , xkik} and existential variables y = {y11, . . . , ykjk} in prenex form
is of the form Φ = ∀x11 . . . x1i1∃y11 . . . y1j1 . . . ∀xk1 . . . xkik∃yk1 . . . ykjk .φ where
the quantification part is called the prefix, denoted Φpfx, and φ, a quantifier-free
formula in terms of variables x and y, is called the matrix, denoted Φmtx. Further
Φ is said to be a k-QBF, or a QBF with k quantification levels. 2QBF (resp.
3QBF) is a special case of QBF with k = 2 (resp. k = 3).

We say that 2QBF Φ = ∀x∃y.φ is false if there is an assignment αx to
x variables (also referred to as the winning strategy for the universal player
or a constant Herbrand-functions countermodel) such that Φmtx |αx

(which is
a function of y variables) is unsatisfiable. We say Φ is true otherwise (i.e., a
winning strategy for the universal player does not exist). Alternatively, 2QBF
Φ = ∀x∃y.φ is true if and only if there exists a set of the so-called Skolem
functions Sy(x) that renders φ to a tautology (i.e., φ(x, Sy(x)) ≡ 1). For more
general 3QBF Φ = ∃w∀x∃y.φ(w,x,y), it is true if and only if there exists a set
of constant functions Sw, and a set of functions Sy(x) (i.e., depending on x),
such that φ(Sw,x, Sy) is a tautology. Here Sw and Sy form the Skolem-functions
model, certifying the validity of Φ. There are other forms of certificates (e.g., Q-
resolution). For more details on general QBF solving and certification please
refer to [4,5,8,13].

3 Overview of Prior Work

Among other possibilities, there are two main approaches to QBF solving: search
based and expansion based. The former is referred to the QDPLL style search
algorithm, and the latter to the counterexample guided abstraction refinement
(CEGAR). Recent 2QBF evaluation showed that CEGAR solvers are generally
more robust than QDPLL solvers. In this work, we focus on the CEGAR-based
approach, and will provide an intuition later how it is more beneficial than
QDPLL.

Figure 1 outlines the generic CEGAR-based algorithm Cegar2QBF for solving
an arbitrary 2QBF formula in the prenex form, introduced in [11]. In Line 1,
two SAT solving managers, i.e., synthesis manager synMan (to guess a candidate
winning move of the universal player) and verification manager verMan (to verify
if the guessed move of the universal player is indeed winning), are initialized.
Initially synMan contains variables x and verMan contains variables x and y. In
Line 3, we search for a candidate winning move αx. If all candidates have been
blocked, the 2QBF is determined to be true in Line 4. In Line 5, a counterexample
to the candidate winning move is searched, which renders φ true (i.e., it disproves
the candidate winning move αx). Note that if CNF is used as an underlying
data structure for verMan, then αx can be easily passed to the SAT solver via
its assumptions interface (which is commonly available in modern SAT solvers,
e.g., in Minisat [7]). If no counterexample can be found, the QBF is determined
to be false in Line 6. Otherwise, cofactor φ|αy

is performed in Line 7, and block
all the known wrong candidates x′, such that φ|αy

(x′) = 1, in Line 8.

456 V. Balabanov et al.

Algorithm Cegar2QBF
input: a QBF Φ = ∀x∃y.φ
output: True or False
begin
01 synMan[x] := 1; verMan[x,y] := φ;
02 while True
03 αx := SatSolve(synMan);
04 if αx = ∅ then return True;
05 αy := SatSolve(verMan, αx);
06 if αy = ∅ then return False;
07 negCof := ¬φ|αy ;
08 synMan := synMan ∧ negCof;
end

Fig. 1. CEGAR algorithm for generic 2QBF solving.

The above CEGAR algorithm differs from QDPLL-based algorithms [9,13]
in that in QDPLL negCof is simply substituted with ¬α′

x, where α′
x is obtained

from αx by a single minimal hitting set generalization, to block the failed candi-
date within synMan. The strength of Cegar2QBF is in that besides α′

x it poten-
tially blocks several other hitting set assignments.

Algorithm Cegar2QBF may be applied to an arbitrary 2QBF in prenex form
regardless of the representation of its matrix. Some QBF solvers use And-Inverter
graphs (AIGs) as an underlying matrix structure [15,17]. On the other hand, as
CNF has been proven to be an efficient data structure for SAT solving (e.g.,
due to an efficient representation of learnt information in the form of learnt
clauses [7]), CNF is also the most commonly accepted QBF matrix representation
format [3]. We therefore distinguish between CNF and circuit 2QBF solvers,
depending on the matrix input format that they accept. Both CNF and circuit
representations have their advantages and disadvantages, which will be discussed
in later sections.

Below we mention the idea of Qesto [12] for efficient implementation of
CEGAR-based 2QBF solving on CNF matrix. Note that verMan is initialized to
φ in Line 1 of Fig. 1 and is never changed, while synMan is constantly changed
by conjunction with negCof in Line 8. If the matrix is already represented in
CNF, then the main complication of the algorithm is the CNFization of negCof
prior to conjunction with synMan. The approach of [11] suggested to use Tseitin
transform [20] to perform a syntactic negation, at the cost of introducing fresh
variables. This approach, however, suffers from variable blow up within synMan
after a large number of iterations. In Qesto, the variable blow-up problem
is overcome by efficient representation of a larger number of cofactors within
synMan as follows. Consider a matrix φ = C1∧C2∧· · ·∧Cn, where each Ci is split
into existential literals Cei and universal literals Cui. Notice that regardless of the

2QBF: Challenges and Solutions 457

specifics of the assignment αy, negCof always takes the form ¬Cuj1 ∨ ¬Cuj2 ∨
· · · ∨ ¬Cujk . By defining di ≡ ¬Cui for each i ∈ [1..n], one can conveniently
represent negCof as a clause (dj1 ∨dj2 ∨· · ·∨djk). Consequently, at most n fresh
variables need to be introduced, independent of the number of iterations of the
while-loop in Fig. 1. Under this scenario, the algorithm in Fig. 1 can be modified
to initialize the synthesis manager by

synMan[x,d] :=
∧

i∈[1..n]
(di ≡ ¬Cui).

Qesto was experimentally shown to be superior to others [12]. In the next
section we will examine the advantages and disadvantages of CNF CEGAR-
based 2QBF solving, and introduce a heuristics, inspired by Qesto, to improve
existing circuit CEGAR-based 2QBF algorithms.

4 Heuristics for CNF and Circuit 2QBF Solving

In this section we introduce several implementation improvements to the Qesto
algorithm and also show how the Qesto CNF ideas can be lifted to the circuit
2QBF solving.

4.1 Improvements for CNF-based 2QBF Solving

The following three observations could be used to enhance the performance of
the Qesto implementation of the Cegar2QBF algorithm:

1. In case Cuj1 = xi (i.e., Cj1 is a universally unit clause), there is no need to
introduce a fresh variable for this clause, but rather just using xi itself in
computing negCof. Note that this condition may occur quite often if CNF
was obtained through the Tseitin transform. For example AND-gate c = a∧b,
where c is existential and both a and b are universal, will be transformed into
clauses (c∨a)(c∨b)(c∨a∨b), therefore producing two universally unit clauses.

2. In case Cuj1 = Cuj2 , there is no need to introduce two definition variables
d1 and d2, but just one. Similar to the previous case, this may happen after
Tseitin transform, e.g., if the universally quantified primary input had several
fanouts in the circuit.

3. In case Cuj1 ⊆ Cuj2 and negCof = duj1 ∨ duj2 ∨ · · · , we can simply drop Cuj1

from negCof because of the logical implication duj1 → duj2 . This often may be
seen after existential variable elimination, which is a common preprocessing
technique in both QBF and SAT solving. For example given QBF

∀ab∃cde . (c ∨ a)1(c ∨ a)2(d ∨ b ∨ c)3(d ∨ b)4(d ∨ c)5(a ∨ e)6(b ∨ e)7,

after elimination of variable c we get QBF

∀ab∃de . (d ∨ b ∨ a)3(d ∨ b)4(d ∨ a)5(a ∨ e)6(b ∨ e)7,

where clause Cu3 = (b ∨ a) now subsumes both Cu6 = a and Cu7 = b (note
that Cu3 does not trigger any of the first two heuristics).

458 V. Balabanov et al.

The first two enhancements are simpler, and intend to decrease the number of
definitions added to the synMan at the initialization step. As a consequence,
underlying SAT solver has to deal with less variables, and hopefully find the
solution faster. On the other hand the third enhancement does not change the
number of definitions, but rather simplifies the blocking constraint negCof by
observing that some literals could be effectively dropped from the underlying
blocking clause. As learned clause size is an important criteria in SAT solving,
we speculate that this could also potentially speed up the solving process. All
the three refinements are to be evaluated in Sect. 7.

4.2 Improvements for AIG-based 2QBF Solving

The main idea behind Qesto could be formulated in a different manner: the
cofactors computed in Line 7 of algorithm Cegar2QBF on Fig. 1 have a lot in
common. If certain universal subclause Cui is present in several cofactors then the
Tseitin definition for this clause could be reused multiple times when performing
the CNFization of the complemented cofactors. This idea could be efficiently
lifted to the circuit solvers. Following the notion of structural hashing of nodes
in And-Inverter graphs (AIGs), we propose algorithm AigShare2Qbf as sketched
in Fig. 2 for circuit-based 2QBF solving.

The core CEGAR procedure of algorithm AigShare2Qbf is the same as that
of Cegar2QBF. Furthermore Cegar2QBF may use AIGs as the underlying data
structure of its verification manager and the negated cofactors as well. The
only difference is the cofactor hashing heuristics in lines 8 and 9 of Fig. 2.

Algorithm AigShare2Qbf
input: a QBF Φ = ∀X∃Y.φ
output: True or False
begin
01 synMan[X] := 1; verMan[X, Y] := φ; aigMan := ∅;
02 while True
03 αX := SatSolve(synMan);
04 if αX = ∅ then return True;
05 αY := SatSolve(verMan, αX);
06 if αY = ∅ then return False;
07 negCof := AIG(¬φ|αY

);
08 newAnd := NotHashed(negCof,aigMan);
09 Hash(aigMan, newAnd);
10 synMan := synMan ∧ CNF(newAnd);
end

Fig. 2. CEGAR algorithm for AIG-based 2QBF solving with cofactor sharing
heuristics.

2QBF: Challenges and Solutions 459

More specifically, in Line 8 we extract a subset newAnd of AND gates from
negCof that have not been hashed previously. Then in Line 9 we hash them
and add them to the AIG manager aigMan. In Line 10 we add CNFized newAnd
gates to synMan. For the AND gates in Line 8 which have been hashed previously,
synMan already contains clauses for the corresponding definitions. As to be seen
from experiments, cofactor sharing heuristic gives a significant improvement on
the benchmarks where a large number of iterations are needed for algorithm
Cegar2QBF to converge.

5 CNF Versus Circuit Solvers

In this section we compare the CNF and circuit 2QBF solvers. We outline the
strengths of one over the other, and address the question in which applications
which one should be used.

Given a non-CNF formula φ (e.g., represented as an AIG) one could CNFize
it (i.e., transform it to an equisatisfiable CNF formula, for example by using
the Tseitin transform [20]) to get φCNF , and then run the Qesto algorithm
introduced in Sect. 3. However, this approach could be inefficient as the following
example suggests.

Example 1. Consider the following simple true 2QBF formula Φ = ∀abc ∃d . φ,
where φ is given as a nested XOR tree circuit φ = a⊕ b⊕ c⊕d. Assume that the
synthesis manager in algorithm Cegar2QBF of Fig. 1 comes up with a candidate
αx = abc (i.e., assigns a = b = c = 0), and the verification manager returns a
counterexample αy = d (i.e., assigns d = 1). Note that in this case negCof1 =
a ⊕ b ⊕ c. After the second iteration with, e.g., αx = abc and αy = d, we have
negCof2 = ¬(a ⊕ b ⊕ c), thus blocking all the universal candidate assignments,
and conclude that Φ is true. The same number of iterations would be required
for an arbitrary large nested XOR tree.

In contrast, consider the same 2QBF, but CNFized by Tseitin transform
prior to solving, introducing definitions x = a ⊕ b and y = x ⊕ c, and resulting
into QBF

ΦCNF =∀abc ∃d ∃xy . φCNF , where

φCNF =(x ∨ a ∨ b)(x ∨ a ∨ b)(x ∨ a ∨ b)(x ∨ a ∨ b)
∧(y ∨ x ∨ c)(y ∨ x ∨ c)(y ∨ x ∨ c)(y ∨ x ∨ c)

∧(y ∨ d)(y ∨ d).

Suppose that the synthesis manager in algorithm Cegar2QBF guesses the same
candidate αx = abc, and the verification manager replies with a counterexample
αy = dxy. In this case we compute negCof1 = (a ⊕ b) ∨ c. After the second
iteration with αx = abc and αy = dxy, we have negCof2 = (a ⊕ b) ∨ ¬c, thus
resulting in formula a ⊕ b in the synthesis manager. Without any conclusion, we
have to proceed with further iterations. In fact, for a general nested XOR tree
the computation may require an exponential number of iterations to terminate.

460 V. Balabanov et al.

The rationale behind Example 1 is as follows. Whenever the counterexample
(Line 5 in Fig. 1) is computed under the CNF representation, it fixes a value
assignment to the auxiliary variables (i.e., the intermediate variables introduced
during CNFization). The negated cofactor (Line 7 in Fig. 1) in this case will
only block X assignments that respect the auxiliary variable assignment. This
phenomenon is summarized in Proposition 1.

Proposition 1. Given a 2QBF Φ = ∀x∃y.φ, with φ represented as a circuit,
let αy be an assignment to variables y and αx1 and αx2 be two assignments to
variables x and let g = G(x,y) be such an intermediate gate in the circuit of φ,
such that

φ|αyαx1
∧ φ|αyαx2

∧ G|αyαx1
⊕ G|αyαx2

.

(That is, the output of φ evaluates to the same value under the two input assign-
ments, but there is an internal gate disagreement for the two assignments.) Then
αx1 and αx2 will be blocked within the same iteration computing counterexample
αy in Line 5 of Fig. 1, if algorithm Cegar2QBF is applied to Φ. On the other
hand, αx1 and αx2 will not be blocked within the same iteration, if Cegar2QBF
is applied to a CNFized version (by Tseitin transform) of Φ.

Example 1 and Proposition 1 show that flattening the circuit structure into
CNF affects the 2QBF solving process more than it does for propositional SAT.
In theory one could avoid cofactoring on Tseitin variables, and modify the algo-
rithm Cegar2QBF accordingly to eliminate the problem described in Proposi-
tion 1. In practice, however, CNF based QBF solvers can not easily distinguish
auxiliary variables from the original primary inputs quantified in the same quan-
tification layer. It is therefore advised to use CNF for underlying SAT queries
(e.g., for efficient clause learning), while cofactoring on circuit level instead of
CNF. As will be confirmed experimentally later, the gained reduction in num-
ber of iterations needed for completion of algorithm Cegar2QBF even overcomes
the benefits of efficient cofactor representation in Qesto algorithm applied after
circuit CNFization.

Please note that in circuit 2QBF solvers the SAT queries in Line 3 of algo-
rithm Cegar2QBF (Fig. 1) are made to a CNF-based SAT solver as well. This
choice is caused by a specific “incremental” nature of the underlying SAT calls:
Please recall that synthesis manager synMan is updated by iterative conjunction
with negCof in Line 8 of Fig. 1, i.e., in each iteration clauses from the CNFized
negCof are added to manager synMan. Therefore it will be highly benefitial to
use the learned information from the previous solving iterations in the later ones.

Despite the ineffectiveness of CNF 2QBF solvers compare to their cir-
cuit counterparts, we speculate that there is a better encoding of a circuit
2QBF problem into QCNF, as is described below. Given circuit 2QBF for-
mula Φ = ∀x∃y.φ(x,y), instead of computing its CNFized version ΦCNF =
∀x ∃y ∃t . φCNF (x,y, t) we obtain it’s negation as Φ′ = ¬Φ = ∃x∀y.φ′(x,y),
with φ′ = ¬φ. Now the translation to an equisatisfiable CNF can be done as fol-
lowing: Φ′

CNF = ∃x ∀y ∃t . φ′
CNF (x,y, t). By construction, the truth of Φ could

be determined as an inverse of Φ′
CNF . Further any model (resp. countermodel)

for Φ′
CNF could be mapped to corresponding model (resp. countermodel) for Φ.

2QBF: Challenges and Solutions 461

Note that Φ′
CNF above is a 3QBF formula, rather than 2QBF. Despite the

increase in the number of quantifier alternations (which in general correlates with
the formula complexity), Φ′

CNF may be much easier to solve compare to ΦCNF .
The intuition here is that innermost quantification level in Φ′

CNF contains only
Tseitin variables. Values for these variables shall be uniquely determined upon
the assignments to variables x and y.

Generally CEGAR based algorithm for 3QBF is slightly more complex than
for 2QBF, but let us briefly outline how the above procedure applies to the earlier
Example 1. First compute Φ′

CNF in the same way as it was done for ΦCNF :

Φ′
CNF =∃abc ∀d ∃xy . φ′

CNF , where

φ′
CNF =(x ∨ a ∨ b)(x ∨ a ∨ b)(x ∨ a ∨ b)(x ∨ a ∨ b)

∧(y ∨ x ∨ c)(y ∨ x ∨ c)(y ∨ x ∨ c)(y ∨ x ∨ c)

∧(y ∨ d)(y ∨ d).

It is worthy to mention that the negation on circuit level is a very cheap
operation, and as one can see Φ′

CNF differs from ΦCNF only by the last two
clauses. Let us now examine candidate solution αx = abc, and the (potential)
counterexample to this solution αy = d. First observe that values of x and
y are uniquely determined to be x = y = 0. Second, under the completed
assignment φ′ evaluates to false. So at this point no further computations are
required to conclude that αy = d is a counterexample to candidate αx = abc.
To block this candidate we basically add formula negCof1 = ¬φ′

CNF |d to the
outermost existential solver, and rename variables x, y to x1, y1. After the sec-
ond iteration with αx = abc and αy = d we shall again conclude invalidity
of αx and block it by formula negCof2 = ¬φ′

CNF |d, where variables x, y are
renamed to x2, y2. Intuitively negCof1(a, b, x1, y1) and negCof2(a, b, x2, y2) are
the CNFized versions of circuit cofactors φ|d and φ|d. One could verify that
negCof1(a, b, x1, y1) ∧ negCof2(a, b, x2, y2) is unsatisfiable. Generally speaking,
solving 3QBF Φ′

CNF should not take more CEGAR iterations than circuit 2QBF
Φ. On the other hand each iteration could be more inefficient due to the naive
cofactoring and variable renaming. In circuit solving this can be done more effi-
ciently using e.g., cofactor sharing heuristics introduced in the previous section.
This phenomenon is to be examined in the experimental section.

6 Certificate Generation for 2QBF

As mentioned previously, recent evaluation on QBF solvers suggested the supe-
riority of CEGAR-based QBF solvers. In contrast to search-based approaches
(e.g., DepQBF [13]), however, there exists no methodology to certify their
answer with semantic winning strategies in a closed form (e.g., Skolem-functions
for true QBFs, which are essential for many QBF applications). CEGAR-based
QBF solver RAReQS [10], can produce partial winning moves for both existen-
tial and universal players at each turn of an abstraction-refinement game [10].
One straightforward use of this ability is that RAReQS returns the winning

462 V. Balabanov et al.

MUX
1 0

MUX
1 0

Φ(x, 1

Φ(x, 2)
1

2 3

Sy

SMUX
Φ(x, 1)

Φ(x, 3)
Φ(x, 2)

2 31

Sy

)

Fig. 3. Multiplexer construction [on the left], SMUX cell [on the right].

assignment to the outermost existential (resp. universal) variables for true (resp.
false) QBFs upon completion. In this section we describe how to construct
Skolem/Herbrand functions for 2QBFs, based on the partial winning-move infor-
mation deduced from CEGAR-based QBF solvers. We present several heuristics
to enhance the construction procedure as well as the produced certificate quality.

6.1 Construction Procedure

Consider a true 2QBF formula Φ. Assume that the CEGAR 2QBF solver needs
three, say, refinement iterations to prove its validity. It means that three candi-
date solutions for the universal player were found, leading to existential coun-
terexamples ε1, ε2, and ε3. Let Φcof be the formula refined by the three corre-
sponding cofactors as shown below.

Φ = ∀x∃y.φ(x,y) Φcof = ∀x.{φ(x, ε1) ∨ φ(x, ε2) ∨ φ(x, ε3)}

Now the search for a candidate solution fails, i.e., the universal player does not
find a candidate solution which falsifies all cofactors generated so far. Conse-
quently Φcof is true, which is determined by an unsatisfiable SAT call ¬Φcof

(which is propositional as it has only existentially quantified variables x).
Effectively, validity of Φcof says that an arbitrary assignment to x is included

in ON(φ(x, ε1)), ON(φ(x, ε2)), or ON(φ(x, ε3)). This information in fact is
sufficient to get Skolem functions Sy(x) for any assignment α to x, by the
following steps:

1. For all α ∈ ON(φ(x, ε1)), define Sy(α) = ε1.
2. For all α ∈ ON(φ(x, ε2)) \ ON(φ(x, ε1)), define Sy(α) = ε2.
3. For all α ∈ ON(φ(x, ε3))\(ON(φ(x, ε1))∪ON(φ(x, ε2))), define Sy(α) = ε3.

The above computation of the Skolem functions is visualized by a multi-
plexer construction as shown on the left of Fig. 1. We abbreviate the multiplexer

2QBF: Challenges and Solutions 463

construction by a cell “SMUX” which means that we have a series of multiplex-
ers defining a prioritization in case that the sets ON(Φ(x, εi)) overlap. SMUX
cell is shown on the right of Fig. 1. By the following proposition we ensure the
soundness of returned Skolem functions Figs. 3 and 5 .

Proposition 2. The functions Sy(x) constructed by the above procedure form
a valid model for Φ.

Proof. Since Φcof is true, for every assignment α to x, some φ(α, εi)), i ∈ [1..3],
must be true. Our construction ensures that Sy(α) = εi, i.e., that φ(α, Sy(α))
evaluates to true. By definition, the functions Sy form a valid set of Skolem
functions. �

The proposed procedure can be easily extended to true 2QBFs with an arbi-
trary number of refinement steps, just by replacing three cofactors from the
above example with the cofactors returned by the solver. Further, the method
can be extended for true 3QBFs as follows. Suppose we are given a true 3QBF
Φ = ∃w∀x∃y.φ(w,x,y), and a winning move (assignment) β for w variables
(which is returned upon completion of RAReQS as a by-product of solving
process). Because the 2QBF Φ = ∀x∃y.φ(β,x,y) must be true, Skolem func-
tions Sy can be extracted using the previous method for 2QBFs. The complete
Skolem model now consists of {Sw = β, Sy}. Although to achieve efficient imple-
mentation of this extension is slightly more sophisticated than the 2QBF case,
the essential idea is as described above.

6.2 Certificate Optimization

Below we propose three optimization techniques in order to minimize the cer-
tificates returned by the proposed Skolem-function construction procedure.

1. Observe that any reordering of the multiplexers in a SMUX cell still maintains
a valid set of Skolem functions. In our implementation, we allow an option
to use cofactors either in a forward or backward order with respect to the
derivation sequence of the corresponding winning moves. The backward order
turns out to be empirically superior.

2. It was observed that cofactors often share identical clauses. Therefore we
implement a hashing procedure that detects and substitutes repeating clauses.

3. Although each next counterexample returned by CEGAR QBF solving app-
roach covers at least one new (so-far unblocked) universal winning move can-
didate, in practice it happens that older cofactors are fully covered by newer
ones. The problem of identifying redundant cofactors can be done using the
so-called group minimal unsatisfiability subset extraction (group MUS, or
GMUS). The GMUS framework partitions the clauses of a CNF formula
into groups (cofactors in our case), and returns the minimal subset of them,
which is still unsatisfiable (which is clearly a requirement for our extracted
Skolem functions to be sound). More information on GMUS extraction can be
found at [19].

464 V. Balabanov et al.

7 Experimental Results

We performed experimental evaluation of various 2QBF solving and certifica-
tion techniques both on the competition as well as application benchmarks. The
experiments are divided into the solver performance testing and the certificate
quality testing. To test solvers’ performance, we used two sets of benchmarks:
2QBF track of QBFEVAL’10 [2] QBF competition formulas and FPGA tech-
nolgy mapping benchmarks from [15]. For certificate generation, due to the few
number of true 2QBFs in QBFEVAL’10, we used the application track bench-
marks of QBF Gallery 2014 [1].1

7.1 2QBF Solving

2QBF Track of QBFEVAL’10 [2] . We used CEGAR-based QBF solvers
RAReQs [11] and Qesto [12] for comparison. In this section we refer to Qesto
as to the tool from [12], rather than to the algorithm itself. Please note that
according to [12], tool Qesto dominates other 2QBF solvers, including both
QDPLL-based and circuit-based solvers. Since the source code for Qesto is not
publicly available, we have reimplemented its simplified 2QBF version (further
referred to as Mini2qbf) on top of the Minisat SAT solver [7]) to test the
enhancements proposed in Sect. 4.

The benchmark suit contains 200 QBFs in prenex CNF from the 2QBF
track of QBFEVAL’10. Preprocessor Bloqqer [6] was used to preprocess the
formulas, and 135 formulas solved directly by Bloqqer were excluded from
further experiments. All CNF-based solvers, namely RAReQS, Qesto, and
Mini2qbf, ran on the preprocessed benchmarks. To compare against the cir-
cuit 2QBF solvers, we implemented a tool minicnf2blif to extract circuits
from unpreprocessed CNF formulas, and then ran the existing circuit 2QBF
solver (command “&qbf”) embedded into the synthesis tool ABC [15] under
two settings: without cofactor sharing (referred to as ABC-) and with cofactor
sharing (referred to as ABC+). A third version, called PreABC+ is similar to
ABC+, with the only difference that the QBF preprocessor Bloqqer is used
for preprocessing the QBFs where minicnf2blif did not find any circuit struc-
ture (after preprocessing the resulting CNF formulas are then just translated
to product-of-sums circuits and then solved by ABC+). All the solvers were
limited by the 4GB memory and 1200 second time limit.

Table 1 summarizes the results. A cactus plot of time performance is shown in
Fig. 4. The extraction time of minicnf2blif was negligible compared to solving,
and we omitted reporting it. From Table 1 and Fig. 4, we see that the circuit-
based 2QBF solver PreABC+ outperforms existing CNF based solvers. On the
17 benchmarks where no circuit structure was found, PreABC+ was on average
3 times slower compared to Qesto. The remaining 48 benchmarks were found
highly structural. On these ABC+ was on an average of 28 times faster than

1 All the tools, benchmarks, and experimental results can be found at
https://www.dropbox.com/s/xyfb2i9xl1pvrv3/sat16 tools 2qbf.zip?dl=0.

https://www.dropbox.com/s/xyfb2i9xl1pvrv3/sat16_tools_2qbf.zip?dl=0

2QBF: Challenges and Solutions 465

Fig. 4. Cactus plot of solvers performance on QBFEVAL’10 2QBF benchmark set.

Table 1. Statistics for 2QBF track from QBFEVAL’10.

RAReQS Qesto Mini2qbf ABC- ABC+ PreABC+

Solved 50 55 57 48 61 62

Time, s 20658 17842 12725 20677 7748 4124

Iterations NA 7.26M NA 46.0K 368K 153K

Qesto. ABC+ in comparison to ABC- was on average 30 % faster; however
if we only consider problems solved within more than 100 iterations (or alter-
natively solved in about more than 1 second) cofactor sharing gives about an
order of magnitude speed up. This phenomenon is well explained by the fact that
within first few iterations cofactor sharing occurs rarely, while on the larger scale
AIG nodes from the new cofactors are found to be previously hashed practically
all the time. On the other hand we can also see that our reimplementation of
Qesto algorithm performs quite well too. If we switch off the last heuristic from
Sect. 4, Mini2qbf solves 2 instances less and is of similar performance to Qesto
(the first two heuristics from Sect. 4 are hardcoded so we cannot switch them on
or off).

FPGA Mapping Benchmarks From [15] . We picked 100 (50 SAT and 50
UNSAT) 2QBF benchmarks from an FPGA mapping application [15]. For the
comparison with CNF solvers we encoded these benchmarks into both 2QBF
and negated 3QBF forms (introduced in Sect. 4). Original AIG circuits have 50
primary inputs and 250 AIG nodes on average. After CNFization by ABC’s
internal engine resulting QCNFs on average have 93 variables and 240 clauses.

For the circuit solving we used ABC to solve original problems, and
RAReQS and Qesto for the corresponding CNF problems. Further we also
used RAReQS for the negated 3QBF problems. The Bloqqer preprocessor
was found to degrade the performance of CNF QBF solvers significantly on
this benchmark set, therefore we do not include it in this set of experiments.

466 V. Balabanov et al.

Table 2. Statistics for FPGA mapping benchmark set.

RAReQS Qesto Bloqqer+RAReQS+3QBF ABC

Solved 22 44 100 100

Time, s 96.9K 75.0K 63.5 64.3

Iterations NA 6.46M NA 1241

Solving statistics are shown in Table 2. As one can observe from Table 2 CNF
2QBF solvers required several orders of magnitude more iterations, and signifi-
cantly larger solving time.

The cumulated number of iterations shown in Table 2 confirms that in 2QBF
solving CNF representation is good for carrying out SAT queries, but cofactoring
should be done on the circuit and not on the CNF level. On the other hand an
alternative, equally efficient to circuit 2QBF solving, way is to use complemented
3QBF encoding presented in Sect. 4.

7.2 Certificate Derivation

We patched RAReQS solver to emit countermoves associated with the CEGAR
QBF solving process. Proposed in Sect. 6 algorithm was implemented into a
tool CegarSkolem. In order to test the unsat core optimization from Sect. 6
we used Haifa-HLMUC group MUS extractor [19]. Experimental setup con-
sisted of QBFs from “QBFLIB” and “Applications” tracks taken from QBF
Gallery 2014 [1]. We used DepQBF QBF solver [13] and ResQu [4] to com-
pare CegarSkolem against existing Q-resolution based model computation
in search-based QBF-solvers framework. An additional limitation of 1 Gb was
imposed on Q-resolution proofs produced by DepQBF and moves information
emitted by RAReQS.

We selected 29 and 137 true 3QBFs either solved by DepQBF or RAReQS,
for experiments from “QBFLIB” and “Applications” tracks, respectively. The
number of true 2QBF formulas was insufficient so we decided to focus only on
3QBFs instead. Table 3 shows the solving and certification time statistics (right-
most “#cert” and “#mincert” columns stand for CegarSkolem w/o and w/
optimization heuristics, respectively). Note that as certification requires addi-
tional effort, both DepQBF and RareQs were not able to solve some of the
instances that they could solve w/o certification. As we could see in general
RAReQS solved more instances, but DepQBF has much smaller runtime-
per-instance. On contrary, even with optimizations, CegarSkolem constructed
Skolem functions much quicker than ResQu, which is explained by large over-
head in the size of Q-refutations produced by DepQBF, in comparison to (rel-
atively small) number of existential counterexamples emitted by RAReQS.

Figure 2 compares certificates quality in terms of numbers of AIG nodes.
X-axis in figures corresponds to certificates produced by ResQu, and Y-axis
to those by CegarSkolem and CegarSkolemMin. We omit the details of

2QBF: Challenges and Solutions 467

Table 3. Solving and certification statistics.

DepQBF+ResQu RAReQS+CegarSkolem

#solved time, s #cert time, s #solved time, s #cert time, s #mincert time, s

QBFLIB [29] 15 424.1 14 943.2 19 2710.6 19 49.5 19 67.5

Appl [137] 94 457.9 86 5162.8 102 4351.6 97 533.8 97 589.0

the impact of various optimizations in CegarSkolemMin, but as one can see
from Table 3 the computational overhead they introduce is small anyway. The
certificate sizes, on the other hand, are reduced much in some cases. Another
observation to make is that certificates for DepQBF and RAReQS are quite
scattered across the figures. This means that for some benchmarks there exist
simple Skolem-functions found by ResQu but not found by Cegar-Skolem
and vice-versa.

Fig. 5. Comparison of Skolem functions AIG sizes.

8 Conclusions and Future Work

In this work we overviewed different methods of solving and certifying 2QBF
formulas. Based on our experience we introduced several improvements both to
the CNF and circuit based solving techniques. We as well performed an exten-
sive comparison to the state of the art algorithms. Experiments showed that
the proposed solving improvements outperform existing 2QBF solvers, as well
as the introduced approach for semantic certificate generation. In conclusion we
summarize that circuit CEGAR-based 2QBF solvers generally scale better com-
pare to the CNF based solvers. On the other hand, CNF preprocessing may be
one of the levers, infeasible to the circuit solvers, that could lift the off-the-shelf
CNF QBF solvers to a competitive level, given that circuit problem is properly
encoded into CNF (e.g., with the negated 3QBF encoding).

468 V. Balabanov et al.

Acknowledgments. This work was partly supported by NSF/NSA grant “Enhanced
equivalence checking in cryptoanalytic applications” at University of California,
Berkeley.

References

1. QBF Gallery 2014. http://qbf.satisfiability.org/gallery/
2. QBF solver evaluation portal. http://www.qbflib.org/qbfeval/
3. QDIMACS: Standard QBF input format. http://www.qbflib.org/qdimacs
4. Balabanov, V., Jiang, J.-H.R.: Unified QBF certification and its applications. For-

mal Meth. Syst. Des. 41, 45–65 (2012)
5. Benedetti, M.: sKizzo: a suite to evaluate and certify QBFs. In: Nieuwenhuis, R.

(ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 369–376. Springer, Heidelberg
(2005)

6. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 101–115.
Springer, Heidelberg (2011)

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

8. Giunchiglia, E., Narizzano, M., Tacchella, A.: QuBE++: an efficient QBF solver.
In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 201–213.
Springer, Heidelberg (2004)

9. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning
in the evaluation of quantified Boolean formulas. J. Artif. Intell. Res. (JAIR) 26,
371–416 (2006)

10. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)

11. Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: Sakallah,
K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 230–244. Springer,
Heidelberg (2011)

12. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: Proceed-
ings International Joint Conference on Artificial Intelligence (IJCAI), pp. 325–331
(2015)

13. Lonsing, F., Biere, A.: DepQBF: a dependency-aware QBF solver (system descrip-
tion). J. Satisfiability Boolean Model. Comput. 7, 71–76 (2010)

14. Marques-Silva, J.P., Sakallah, K.A.: Boolean satisfiability in electronic design
automation. In: Proceednigs Design Automation Conference (DAC), pp. 675–680
(2000)

15. Mishchenko, A., Brayton, R.K., Feng, W., Greene, J.W.: Technology mapping into
general programmable cells. In: Proceedings International Symposium on Field-
Programmable Gate Arrays (FPGA), pp. 70–73 (2015)

16. Mneimneh, M., Sakallah, K.A.: Computing vertex eccentricity in exponentially
large graphs: QBF formulation and solution. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 411–425. Springer, Heidelberg (2004)

17. Pigorsch, F., Scholl, C.: Exploiting structure in an AIG based QBF solver. In: Pro-
ceedings Design, Automation and Test in Europe (DATE), pp. 1596–1601 (2009)

18. Remshagen, A., Truemper, K.: An effective algorithm for the futile questioning
problem. J. Autom. Reasoning 34(1), 31–47 (2005)

http://qbf.satisfiability.org/gallery/
http://www.qbflib.org/qbfeval/
http://www.qbflib.org/qdimacs

2QBF: Challenges and Solutions 469

19. Ryvchin, V., Strichman, O.: Faster extraction of high-level minimal unsatisfiable
cores. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 174–187.
Springer, Heidelberg (2011)

20. Tseitin, G.: On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic (1970)

Dependency QBF

Dependency Schemes for DQBF

Ralf Wimmer1,2(B), Christoph Scholl1, Karina Wimmer1, and Bernd Becker1

1 Albert-Ludwigs-Universität Freiburg im Breisgau, Freiburg im Breisgau, Germany
{wimmer,scholl,wimmerka,becker}@informatik.uni-freiburg.de

2 Dependable Systems and Software, Saarland University, Saarbrücken, Germany

Abstract. Dependency schemes allow to identify variable independen-
cies in QBFs or DQBFs. For QBF, several dependency schemes have
been proposed, which differ in the number of independencies they are
able to identify. In this paper, we analyze the spectrum of dependency
schemes that were proposed for QBF. It turns out that only some of
them are sound for DQBF. For the sound ones, we provide a correct-
ness proof, for the others counter examples. Experiments show that a
significant number of dependencies can either be added to or removed
from a formula without changing its truth value, but with significantly
increasing the flexibility for modifying the representation.

1 Introduction

During the last two decades an enormous progress in the solution of quantifier-
free Boolean formulas (SAT) has been observed. Nowadays, SAT solving is suc-
cessfully used in many application areas, e.g., in formal verification of hard- and
software systems [1,5,10], automatic test pattern generation [11,12], or plan-
ning [22]. Motivated by the success of SAT solvers, more general formalisms like
quantified Boolean formulas (QBFs) have been studied. However, for applica-
tions like the verification of partial circuits [17,24], the synthesis of safe con-
trollers [6], and the analysis of games with incomplete information [21], even
QBF is not expressive enough to provide a compact and natural formulation.
The reason is that the dependencies of existential variables on universal ones are
restricted in QBF: Each existential variable implicitly depends on all universal
variables in whose scope it is, i.e., in a model for a QBF in prenex normal form
the value of an existential variable can be chosen depending on the values of the
universal variables to the left. Consequently, the dependency sets of the existen-
tial variables (i.e., the sets of universal variables they may depend on) are linearly
ordered w.r.t. set inclusion in QBF. In so-called dependency quantified Boolean
formulas (DQBFs) this restriction is removed and for each existential variable a
dependency set is explicitly specified. The more general DQBF formulations can
be tremendously more compact than equivalent QBF formulations; on the other
hand the decision problem is NEXPTIME-complete for DQBF [21] instead of

This work was partly supported by the German Research Council (DFG) as part of
the project “Solving Dependency Quantified Boolean Formulas”.

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 473–489, 2016.
DOI: 10.1007/978-3-319-40970-2 29

474 R. Wimmer et al.

PSPACE-complete for QBF. Driven by the needs of the applications mentioned
above, research on DQBF solving has started during the last few years, leading
to first solvers like iDQ and HQS [14,15,18,28].

Although the dependency sets of existential variables are fixed by the syn-
tax of DQBFs, it might be the case that those dependency sets can be reduced
or extended without changing the DQBF’s truth value. Manipulating depen-
dency sets can be beneficial in different ways: In search-based DQBF solvers [14]
extending the DPLL algorithm, manipulation of the dependencies may be used
in a similar way as in QBF solvers [20], e.g., for detecting unit literals and con-
flicts earlier (due to possible universal reductions), for enabling decisions earlier,
etc. In DQBF solvers relying on universal expansions like HQS [18], minimizing
the number of dependencies to be considered leads to fewer copies of existen-
tial variables and thus to faster solving times with lower memory consumption.
Manipulating the number of dependencies might lead to similar advantages for
iDQ [15]. iDQ uses instantiation-based solving, i.e., it reduces deciding a DQBF
to deciding a series of SAT problems which correspond to partial universal expan-
sions. HQS [18] processes a DQBF by several methods until the resulting formula
is a QBF, which then can be solved by an arbitrary QBF solver. Therefore also
adding dependencies can be beneficial for HQS in order to make the formula
more QBF-like.

An existential variable y, which contains a universal variable x in its syntactic
dependency set, is called independent of x iff removing x from y’s dependency set
preserves the truth value of the DQBF. Using the same proof idea as described
in [23] for QBF, it can be shown that deciding whether an existential variable is
independent of a universal one has the same complexity as deciding the DQBF
itself. Therefore one resorts to sufficient criteria to show independencies. We
mainly look into generalizations of so-called dependency schemes, which were
devised for QBF [16,23,25,26] and can be computed efficiently. A dependency
scheme ds(ψ) for a DQBF ψ gives pairs of universal variables x and existential
variables y such that ‘y potentially depends on x’. If (x, y) /∈ ds(ψ), then y is
definitely independent of x.

The contributions of this paper are as follows:

– For DQBF, the paper provides generalizations of dependency schemes known
from QBF and provides for the first time a comprehensive characterization
of the dependency schemes which are sound for proving independencies in
DQBFs. For the dependency schemes which are not sound for DQBF coun-
terexamples are given.

– The paper proves for all DQBF dependency schemes that both adding and
removing dependencies has a unique fixed point.

– Dependency schemes and an orthogonal method based on detection of func-
tional definitions are seamlessly integrated in order to profit from each other.

– We present first experimental results showing an enormous amount of flex-
ibility w.r.t. adding and removing dependencies in numerous benchmark
instances.

Dependency Schemes for DQBF 475

Related work. Several dependency schemes have been introduced for QBF. Based
on earlier ideas in [4,9,23] defined the so-called standard dependency scheme and
the more precise triangle dependency scheme for QBF. In [16,25,26] these ideas
have been refined further, leading to the even more precise resolution path depen-
dency scheme. In [19,20] applications of dependency schemes to expansion-based
and search-based QBF solvers have been intensively discussed. The correctness
of using dependency schemes in search-based QBF solvers like DepQBF is stud-
ied in [27], showing that using quadrangle and triangle dependencies in that
context is unsound. Instead (sound) reflexive variants of them are proposed. In
[28] dependency schemes for DQBF has been considered first. [28] contains a
generalization of the simple standard dependency scheme to DQBF, but neither
a comprehensive characterization of the dependency schemes which are sound
for DQBF nor any deeper analysis.

Structure of this paper. In the next section, we introduce the necessary foun-
dations on DQBFs, Sect. 3 contains the main part of the paper on dependency
schemes for DQBF. Section 4 shows first experimental results evaluating the flex-
ibility provided by the different methods. Finally, Sect. 5 concludes the paper
with a summary and directions for future research.

2 Foundations

Let ϕ, κ be quantifier-free Boolean formulas over the set V of variables and v ∈ V .
We denote by ϕ[κ/v] the Boolean formula which results from ϕ by replacing all
occurrences of v (simultaneously) by κ. For a set V ′ ⊆ V , we denote by A(V ′)
the set of Boolean assignments for V ′, i.e., A(V ′) =

{
ν

∣
∣ ν : V ′ → {0, 1}}. For

each formula ϕ over V , a variable assignment ν to the variables in V induces a
truth value 0 or 1 of ϕ, which we call ν(ϕ).

Definition 1 (Syntax of DQBF). Let V = {x1, . . . , xn, y1, . . . , ym} be a
set of Boolean variables. A dependency quantified Boolean formula (DQBF)
ψ over V has the form ψ := ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym

) : ϕ, where
Dyi

⊆ {x1, . . . , xn} for i = 1, . . . ,m is the dependency set of yi, and ϕ is a
quantifier-free Boolean formula over V , called the matrix of ψ.

V ∀
ψ = {x1, . . . , xn} is the set of universal and V ∃

ψ = {y1, . . . , ym} the set of
existential variables of ψ. We often write ψ = Q : ϕ with the quantifier prefix
Q and the matrix ϕ. Q \ {v} denotes the prefix that results from removing
a variable v ∈ V from Q together with its quantifier. If v is existential, then
its dependency set is removed as well; if v is universal, then all occurrences
of v in the dependency sets of existential variables are removed. Similarly we
use Q ∪ {∃y(Dy)

}
to add existential variables to the prefix. In this paper, we

always assume that a DQBF ψ = Q : ϕ as in Definition 1 with ϕ in conjunctive
normal form (CNF) is given. A formula is in CNF if it is a conjunction of (non-
tautological) clauses; a clause is a disjunction of literals, and a literal is either
a variable v or its negation ¬v. As usual, we identify a formula in CNF with its

476 R. Wimmer et al.

set of clauses and a clause with its set of literals. For a formula ϕ (resp. clause
C, literal l), var(ϕ) (resp. var(C), var(l)) means the set of variables occurring in
ϕ (resp. C, l); lit(ϕ) (lit(C)) denotes the set of literals occurring in ϕ (C).

A QBF (in prenex normal form) is a DQBF such that Dy ⊆ Dy′ or Dy′ ⊆ Dy

holds for any two existential variables y, y′ ∈ V ∃
ψ . Then the variables in V can

be ordered resulting in a linear quantifier prefix, such that for each y ∈ V ∃
ψ , Dy

equals the set of universal variables which are to the left of y.
The semantics of a DQBF is typically defined by so-called Skolem functions.

Definition 2 (Semantics of DQBF). Let ψ be a DQBF as above. It is satis-
fiable iff there are functions sy : A(Dy) → {0, 1} for y ∈ V ∃

ψ such that replacing
each y ∈ V ∃

ψ by (a Boolean expression for) sy turns φ into a tautology. The
functions (sy)y∈V ∃

ψ
are called Skolem functions for ψ.

The elimination of universal variables in solvers like HQS [18] is done by
universal expansion [2,7,8,17]:

Definition 3 (Universal expansion). For a DQBF ψ = ∀x1 . . . ∀xn∃y1(Dy1)
. . . ∃ym(Dym

) : ϕ with Zxi
=

{
yj ∈ V ∃

ψ

∣
∣ xi ∈ Dyj

)
}
, the universal expansion

w.r.t. variable xi ∈ V ∀
ψ , is defined by

(
Q\{xi}

)∪{∃y′
j(Dyj

\{xi})
∣
∣ yj ∈ Zxi

}
: ϕ[1/xi]∧ϕ[0/xi][y′

j/yj for all yj ∈ Zxi
].

ψ and its universal expansion have the same truth value, they are called ‘equi-
satisfiable’. It can be seen from Definition 3 that the universal expansion w.r.t.
a universal variable requires to double all existential variables which depend on
it. This shows that reducing the dependency sets can be beneficial (as long as
an equisatisfiable DQBF results). Increasing dependency sets may be beneficial
as well, if adding dependencies makes the DQBF more QBF-like (see Sect. 3.2).

Manipulating the dependency sets is done using so-called dependency
schemes in QBF. In the following section, we investigate which of the QBF
dependency schemes can be generalized to DQBF and which cannot.

3 Dependency Schemes

Let ψ = ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym
) : ϕ be a DQBF. For x ∈ V ∀

ψ and
y ∈ V ∃

ψ , we denote by ψ 	 (x, y) the formula which results from ψ by removing
the dependency of y on x, i.e., by replacing Dy with Dy \ {x}. Accordingly,
ψ ⊕ (x, y) results from ψ by replacing Dy with Dy ∪ {x}.

Definition 4. An existential variable y ∈ V ∃
ψ is independent of a universal

variable x ∈ V ∀
ψ in ψ, iff ψ ⊕ (x, y) and ψ 	 (x, y) have the same truth value. In

this case, the pair (x, y) is called a pseudo-dependency.

Dependency schemes provide sufficient criteria to show variable independencies.

Dependency Schemes for DQBF 477

Definition 5 (Dependency scheme). A dependency scheme for a DQBF
ψ is a relation ds(ψ) ⊆ V ∀

ψ × V ∃
ψ such that (x, y) /∈ ds(ψ) implies that y is

independent of x in ψ.

Dependency schemes for QBF have been considered in several papers like
[16,19,20,23,25–27]. They encompass the standard, strict standard, (reflexive)
triangle, (reflexive) quadrangle and the resolution path dependency schemes. In
the following, we generalize them to DQBF.

Most dependency schemes are based on ‘connections’ between clauses:

Definition 6 (Connected). Let ψ = Q : ϕ be a DQBF. A Z-path for Z ⊆ V
between two clauses C,C ′ ∈ ϕ is a sequence C1, . . . , Cn of clauses with C = C1,
C ′ = Cn such that var(Ci) ∩ var(Ci+1) ∩ Z �= ∅ for all 1 ≤ i < n. A sequence
v1, . . . , vn−1 of variables with vi ∈ var(Ci) ∩ var(Ci+1) ∩ Z for all 1 ≤ i < n is
called a connecting sequence of the Z-path. Two clauses C,C ′ ∈ ϕ are connected
w.r.t. Z (written C

Z←→ C ′) if there is a Z-path between C and C ′.

Using the notion of connected clauses, Samer et al. defined the standard
(sdep) and triangle (tdep) dependency schemes [23]. Van Gelder [16] general-
ized standard dependencies to strict standard dependencies (ssdep) and triangle
dependencies to quadrangle dependencies (qdep), using connected clauses as
well.

For the definition of stronger dependency schemes (i.e., of dependency
schemes leading to smaller relations ds(ψ), and thus detecting more indepen-
dencies), in [16,25,26] a more restricted notion of connected clauses has been
introduced which leads to so-called resolution path dependencies:

Definition 7 (Resolution path connected). Let ψ = Q : ϕ be a DQBF.
A resolution Z-path for Z ⊆ V between two clauses C,C ′ ∈ ϕ is a sequence
C1, . . . , Cn of clauses with C = C1, C ′ = Cn such that for all 1 ≤ i < n there is
a literal li with var(li) ∈ Z, li ∈ Ci, ¬li ∈ Ci+1, and for all 1 ≤ i < n−1 we have
var(li) �= var(li+1).1 The sequence var(l1), . . . , var(ln−1) is called a connecting
sequence of the resolution Z-path. Two clauses C,C ′ ∈ ϕ are resolution path
connected w.r.t. Z (written C

Z←→
rp

C ′) if there is a resolution Z-path between C

and C ′.

Figure 1 gives an overview of the dependency schemes that have been proposed for
QBF.The figure also shows the relation between the different dependency schemes.
An arrow from a dependency scheme ds1 to a scheme ds2 means that ds1(ψ) ⊆
ds2(ψ) holds for all DQBFs ψ and that there is at least one DQBF for which the
subset relation is strict. ds1 is more precise than ds2 in the sense that every inde-
pendence identified by ds2 is also identified by ds1, but not necessarily vice versa.
Arrows that can be derived by transitivity have been omitted. Because the reso-
lution path dependency scheme [16,25,26] is the quadrangle dependency scheme
1 In [16] there is an additional constraint ‘the resolvent of Ci and Ci+1 w.r.t. li is

non-tautologous’. This constraint has to be removed according to [25,26]. If it is not
removed, resolution path dependencies are not sound.

478 R. Wimmer et al.

QBF

DQBF

sdeprp sdep

ssdep

ssdeprp

rtdeprtdeprp

tdeptdeprp

rqdep rqdeprp

qdep qdeprp

Fig. 1. The different dependency schemes for QBF and DQBF. Only those in the blue
box are sound for DQBF, while all in the green box are sound for QBF. (Color figure
online)

using ‘resolution path connectivity’ (Definition 7) instead of simple connectivity
(Definition 6), we renamed it into quadrangle resolution path dependency scheme
(qdeprp). For each dependency scheme in {tdep, tdeprp, qdep, qdeprp} there is a
so-called ‘reflexive’ counterpart (called rtdep, rtdeprp, rqdep, rqdeprp, resp.) which
is weaker than the original scheme. Reflexivity has been introduced in [27]. Exact
definitions for the different dependency schemes for (D)QBF follow in Definition 8.

After giving the definition, we will have a closer look into the different depen-
dency schemes. The main result of the paper will be the fact that for DQBF only
those dependency schemes in the blue box are sound and the others are not.

Definition 8 (Dependency schemes). Let ψ be a DQBF as in Def. 1. Fur-
thermore, let x∗ ∈ V ∀

ψ and y∗ ∈ V ∃
ψ such that x∗ ∈ Dy∗ . We set Zx∗ := {z ∈

V ∃
ψ |x∗ ∈ Dz}.

For the following dependency schemes, (x∗, y∗) ∈ ds(ψ) holds iff there are
clauses C1, C2, C3, C4 ∈ ϕ with x∗ ∈ C1, ¬x∗ ∈ C2, y∗ ∈ C3, and ¬y∗ ∈ C4 such
that the following requirements hold:

1. standard dependency scheme sdep [23]:

C1
Zx∗←−→ C3 ∨ C2

Zx∗←−→ C3 ∨ C1
Zx∗←−→ C4 ∨ C2

Zx∗←−→ C4

2. strict standard dependency scheme ssdep [16]:

(C1
Zx∗←−→ C3 ∨ C1

Zx∗←−→ C4) ∧ (C2
Zx∗←−→ C3 ∨ C2

Zx∗←−→ C4)

3. reflexive triangle dependency scheme rtdep [27]:

(C1
Zx∗←−→ C3 ∨ C2

Zx∗←−→ C3) ∧ (C1
Zx∗←−→ C4 ∨ C2

Zx∗←−→ C4)

Dependency Schemes for DQBF 479

4. triangle dependency scheme tdep [23]:

(C1
Zx∗ \{y∗}←−−−−−→ C3 ∨ C2

Zx∗ \{y∗}←−−−−−→ C3) ∧ (C1
Zx∗ \{y∗}←−−−−−→ C4 ∨ C2

Zx∗ \{y∗}←−−−−−→ C4)

5. reflexive quadrangle dependency scheme rqdep [27]:

(C1
Zx∗←−→ C3 ∧ C2

Zx∗←−→ C4) ∨ (C1
Zx∗←−→ C4 ∧ C2

Zx∗←−→ C3)

6. quadrangle dependency scheme qdep [16]:

(C1
Zx∗ \{y∗}←−−−−−→ C3 ∧ C2

Zx∗ \{y∗}←−−−−−→ C4) ∨ (C1
Zx∗ \{y∗}←−−−−−→ C4 ∧ C2

Zx∗ \{y∗}←−−−−−→ C3)

The references given for each of these dependency schemes refer to the original
definition for QBF. Only the standard dependency scheme has been considered
for DQBF so far [28]. Its correctness is proven in [29].

For each of these dependency schemes sdep, ssdep, rtdep, tdep, rqdep, qdep, a

stronger variant is obtained by replacing connectedness Ci
Zx∗←−→ Cj (Ci

Zx∗ \{y∗}←−−−−−→
Cj) with resolution path connectedness Ci

Zx∗←−→
rp

Cj (Ci
Zx∗ \{y∗}←−−−−−→

rp
Cj , resp.). This

yields the standard resolution path dependency scheme, the strict standard res-
olution path dependency scheme, etc. [16,25–27]. They are denoted with sdeprp,
ssdeprp, rtdeprp, tdeprp, rqdeprp, and qdeprp, respectively. We use the following
sets of dependency schemes:

Δdqbf = {sdep, sdeprp, ssdep, ssdeprp, rtdep, rtdeprp, rqdep, rqdeprp},

Δqbf = Δdqbf ∪ {tdep, tdeprp, qdep, qdeprp},

The quadrangle resolution path dependency scheme has been introduced as
‘resolution path dependency scheme’ in [16,25,26]. For a clear categorization,
however, we prefer to call it the ‘quadrangle resolution path dependency scheme’
qdeprp.

The relations between the dependency schemes shown in Fig. 1 are the imme-
diate consequences of the different dependency schemes’ definition. As each res-
olution path connection according to Definition 7 is also a simple connection
according to Definition 6, but not vice versa, each variant using resolution paths
is stronger than its counterpart that uses simple paths.

For all of the defined dependency schemes, it is known that the following
result holds for QBF:

Theorem 1 ([16,23,25–27]). Let ψ = Q : ϕ be a QBF. Let x∗ ∈ V ∀
ψ and y∗ ∈

V ∃
ψ such that x∗ ∈ Dy∗ . If, for some dependency scheme ds ∈ Δqbf , (x∗, y∗) /∈

ds(ψ) and ψ 	 (x∗, y∗) is a QBF as well, then y∗ is independent of x∗.

In the following, we will prove (1) that the reflexive resolution path depen-
dency scheme (and all weaker schemes) are sound for DQBF as well, and (2) that
the triangle dependency scheme (and all stronger schemes) are unsound for
DQBF.

We start by showing that the triangle dependency scheme is unsound for
arbitrary DQBFs:

480 R. Wimmer et al.

Theorem 2. There is a DQBF ψ = Q : ϕ with x∗ ∈ V ∀
ψ , y∗ ∈ V ∃

ψ such that
x∗ ∈ Dy∗ , with the following property: y∗ is not independent of x∗, but (x∗, y∗) /∈
tdep(ψ), (x∗, y∗) /∈ tdeprp(ψ), (x∗, y∗) /∈ qdep(ψ), and (x∗, y∗) /∈ qdeprp(ψ).

Proof. Let

D1 = (x1 ∨ x2 ∨ ¬y1), D2 = (x2 ∨ y1 ∨ y2)
D3 = (¬x2 ∨ y1 ∨ ¬y2), D4 = (¬x1 ∨ ¬x2 ∨ ¬y1), and

ϕ = D1 ∧ D2 ∧ D3 ∧ D4.

Consider the DQBF ψ = ∀x1∀x2∃y1(x1, x2)∃y2(x1) : ϕ. First we show for ψ
that y1 is not independent of x1, i.e., we have to prove that ψ is satisfiable, but
ψ′ = ψ 	 (x1, y1) = ∀x1∀x2∃y1(x2)∃y2(x1) : ϕ is unsatisfiable. We prove this by
considering the full universal expansions of ψ and ψ′ w.r.t. variables x1 and x2:

– ψ is equisatisfiable to
[
(¬y00

1) ∧ (y00
1 ∨ y0

2)
] ∧ [

(y01
1 ∨ ¬y0

2)
] ∧ [

(y10
1 ∨ y1

2)
] ∧ [

(y11
1 ∨ ¬y1

2) ∧ (¬y11
1)

]

A satisfying assignment is given by y0
2 = y01

1 = y10
1 = 1, y11

1 = y1
2 = y00

1 = 0.
– ψ′ is equisatisfiable to

[
(¬y0

1) ∧ (y0
1 ∨ y0

2)
] ∧ [

(y1
1 ∨ ¬y0

2)
] ∧ [

(y0
1 ∨ y1

2)
] ∧ [

(y1
1 ∨ ¬y1

2) ∧ (¬y1
1)

]

Due to the unit clause (¬y0
1), y0

1 has to be 0. Therefore y0
2 has to be 1 and

thus y1
1 has to be 1. This contradicts the unit clause (¬y1

1).

On the other hand, it is easy to see that (x1, y1) /∈ tdep(ψ). For (x1, y1) ∈ tdep(ψ)
we would need clauses C1, C2, C3, C4 ∈ ϕ with x1 ∈ var(C1), x1 ∈ var(C2),

y1 ∈ C3, ¬y1 ∈ C4, such that C1
{y2}←−→ C3 and C2

{y2}←−→ C4. The only clauses in
ϕ containing ¬x1 or x1 are D1 and D4. Since ¬y1 is the only existential literal in
D1 and D4, the only {y2}-path starting with D1 (D4) is the sequence D1 (D4)
of length 1. Therefore a suitable clause C3 cannot be found in ϕ.

(x2, y1) /∈ tdep(ψ) implies (x2, y1) /∈ tdeprp(ψ), (x2, y1) /∈ qdep(ψ), and
(x2, y1) /∈ qdeprp(ψ). ��

The next step is to prove that rqdeprp is sound for DQBF.

Theorem 3. Let x∗ ∈ V ∀
ψ and y∗ ∈ V ∃

ψ such that x∗ ∈ Dy∗ . If (x∗, y∗) /∈
rqdeprp(ψ), then y∗ is independent of x∗.

For the proof, we assume that y∗ is not independent of x∗ and show that then
(x∗, y∗) ∈ rqdeprp(ψ). The main idea of the proof consists of using universal expan-
sion on the DQBF until known results for QBFs become applicable. Then these
results imply (x∗, y∗) ∈ rqdeprp(ψ). Before we come to the proof, we have to con-
sider the following technical lemma on DQBFs resulting from universal expansion:

Lemma 1. Let ψ = Q : ϕ be a DQBF and ψ′ = Q′ : ϕ′ a DQBF derived
from ψ by universally expanding some variables in ψ. If there exists a resolution
Z-path from C1 ∈ ϕ′ to C2 ∈ ϕ′, then the connecting sequence y1, . . . , yn (see
Definition 7) does not include a pair (yi, yi+1) where yi and yi+1 are two copies
of the same existential variable in ψ.

Dependency Schemes for DQBF 481

Proof. Assume that the resolution Z-path has a connecting sequence with a pair
(yi, yi+1) where yi and yi+1 are two copies of the same existential variable in ψ.
According to the definition of resolution Z-paths, yi �= yi+1, i.e., yi and yi+1 are
two different copies of the same existential variable in ψ. Then there exists a
clause C ∈ ϕ′ with yi, yi+1 ∈ var(C), yi �= yi+1. This contradicts the definition
of universal expansion (see Definition 3), since clauses in a universal expansion
can contain at most one copy of the same original variable. ��
Now we come to the proof of Theorem 3. After the proof, its construction is
illustrated by Example 1.

Proof. Let ψ = ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym
) : ϕ be a DQBF. W. l. o. g.

assume that x1 ∈ Dy1 and y1 is not independent of x1. We have to prove that
(x1, y1) ∈ rqdeprp(ψ).

Since, in ψ, y1 is not independent of x1, ψ has to be satisfiable and ψ	(x1, y1)
is unsatisfiable. In ψ, we universally expand on the remaining universal variables
x2, . . . , xn. Let yindep be the copies of existential variables yi (i ∈ {2, . . . , m})
with x1 /∈ Dyi

, ydep be the copies of existential variables yi (i ∈ {2, . . . , m})
with x1 ∈ Dyi

, and y1
1 , . . . , y

k
1 the copies of y1 with k = 2|Dy1 |−1. Thus, universal

expansion results in the following QBF ψ′:

ψ′ = ∃yindep∀x1∃y1
1 . . . ∃yk

1∃ydep : ϕ′.

Now we start to move copies yi
1 from the right of x1 to the left of x1. Since

ψ 	 (x1, y1) is unsatisfiable, ψ′ will get unsatisfiable when all y1
1 . . . yk

1 have been
moved to the left of x1. So there exists a maximal subset ymov

1 � {y1
1 , . . . , y

k
1}

(with ystay
1 = {y1

1 , . . . y
k
1} \ ymov

1 containing the remaining variables from
{y1

1 . . . yk
1}) with the property that

ψ′′ = ∃yindep∃ymov
1 ∀x1∃ystay

1 ∃ydep : ϕ′

is satisfied and, in ψ′′, each variable from ystay
1 is not independent of x1. That

means that moving an arbitrary variable from ystay
1 to the left of x1 will turn ψ′′

from satisfiable to unsatisfiable. The set ystay
1 is not empty, since otherwise y1

would be independent of x1 in ψ. Choose an arbitrary existential variable yj
1 in

ystay
1 . Since ψ′′ is a QBF where yj

1 is not independent of x1, we have (x1, y
j
1) ∈

qdeprp(ψ′′) due to Theorem 1, i.e., ∃C1, C2, C3, C4 ∈ ϕ′ with x1 ∈ C1, ¬x1 ∈ C2,

yj
1 ∈ C3, ¬yj

1 ∈ C4, and – w. l. o. g. – C1

Zx1\{yj
1}←−−−−−→

rp
C3 and C2

Zx1\{yj
1}←−−−−−→

rp
C4 with

Zx1 = ystay
1 ∪ ydep.

Now we make use of a simple property of the process of universal expansion in
order to turn the two constructed resolution (Zx1 \ {yj

1})-paths for ψ′′ into suit-
able resolution paths for the original DQBF ψ proving that (x1, y1) ∈ rqdeprp(ψ):
Each clause C in a universal expansion can be mapped back to a clause Corig

of the original formula ‘it results from’ by (1) adding universal literals which
have been removed by the universal expansion, since they are unsatisfied in the
copy of the clause at hand, and by (2) replacing copies of existential literals � by

482 R. Wimmer et al.

the existential literals �orig in the original formula. Now consider one of the con-
structed resolution (Zx1 \ {yj

1})-paths D1, . . . , Dn with D1 = C1 and Dn = C3

(or D1 = C2 and Dn = C4). For all 1 ≤ i < n there is a literal �i with var(�i)
from Zx1 \{yj

1} = ydep∪ (ystay
1 \{yj

1}), �i ∈ Ci, ¬�i ∈ Ci+1. It is easy to see that
Dorig

1 , . . . , Dorig
n is a resolution Z ′

x1
-path for ψ with Z ′

x1
= {y ∈ V ∃

ψ

∣
∣ x1 ∈ Dy}:

For all 1 ≤ i < n there is a literal �origi with var(�origi) ∈ Z ′
x1

, �origi ∈ Ci,
¬�origi ∈ Ci+1. (Note that �origi may also be y1 or ¬y1, since the connecting
sequence of D1, . . . , Dn may contain a copy of y1 which is different from yj

1.) Due
to Lemma 1, var(�i) and var(�i+1) are copies of different existential variables and
thus var(�origi) �= var(�origi+1) for all 1 ≤ i < n. Altogether we have proven that
there are two resolution Z ′

x1
-paths for ψ with Z ′

x1
= {y ∈ V ∃

ψ

∣
∣ x1 ∈ Dy} leading

from Corig
1 ∈ ϕ with x1 ∈ Corig

1 to Corig
3 ∈ ϕ with y1 ∈ Corig

3 and from Corig
2 ∈ ϕ

with ¬x1 ∈ Corig
2 to Corig

4 ∈ ϕ with ¬y1 ∈ Corig
4 . Thus (x1, y1) ∈ rqdeprp(ψ).2 ��

Example 1. We illustrate the construction of the proof for Theorem3 by means
of an example. Here we use the same example as in the proof of Theorem 2, i.e.,

D1 = (x1 ∨ x2 ∨ ¬y1), D2 = (x2 ∨ y1 ∨ y2)
D3 = (¬x2 ∨ y1 ∨ ¬y2), D4 = (¬x1 ∨ ¬x2 ∨ ¬y1),

ϕ = D1 ∧ D2 ∧ D3 ∧ D4,

and the DQBF ψ = ∀x1∀x2∃y1(x1, x2)∃y2(x1) : ϕ. For ψ, y1 is not independent
of x1. In ψ, we universally expand on the universal variables different from x1,
i.e., we expand on x2. This results in the DQBF

ψ′ = ∀x1∃y0
1(x1)∃y1

1(x1)∃y2(x1) :[
(x1 ∨ ¬y0

1) ∧ (y0
1 ∨ y2)

] ∧ [
(y1

1 ∨ ¬y2) ∧ (¬x1 ∨ ¬y1
1)

]
.

Since only one universal variable is left, the DQBF is a QBF and can be
written (in QBF notation) as

ψ′ = ∀x1∃y0
1∃y1

1∃y2 :
[
(x1 ∨ ¬y0

1) ∧ (y0
1 ∨ y2)

] ∧ [
(y1

1 ∨ ¬y2) ∧ (¬x1 ∨ ¬y1
1)

]
.

There are no existential variables which do not have x1 in their dependency set,
i.e., in the notions used in the proof, yindep = ∅, ydep = {y2}, and there are
two copies (y0

1 and y1
1) of y1. Moving y0

1 or y1
1 to the left of ∀x1 turns the QBF

from satisfiable to unsatisfiable, thus, in the notions used in the proof, ymov
1 = ∅

and ystay
1 = {y0

1 , y
1
1}, and each variable from ystay

1 is not independent of x1.
Choose y0

1 ∈ ystay
1 . Due to Theorem 1, (x1, y

0
1) ∈ qdeprp(ψ′). This can be seen

by choosing C1 = C4 = (x1 ∨ ¬y0
1), C2 = (¬x1 ∨ ¬y1

1), and C3 = (y0
1 ∨ y2).

2 The construction does not lead to (Z′
x1 \ {y1})-paths and thus (x1, y1) ∈ qdeprp(ψ)

cannot be proven (which is not surprising due to Theorem 2).

Dependency Schemes for DQBF 483

(1) (x1 ∨ ¬y0
1) is a (trivial) resolution {y1

1 , y2}-path with empty connecting

sequence showing C1
{y1

1 ,y2}←−−−→
rp

C4 and

(2) (¬x1∨¬y1
1), (y

1
1 ∨¬y2), (y0

1 ∨y2) is a resolution {y1
1 , y2}-path with connecting

sequence y1
1 , y2 showing C2

{y1
1 ,y2}←−−−→
rp

C3.

Mapping the clauses of the universal expansion ψ′ back to the corresponding
original clauses from ψ turns (1) the first path into (x1 ∨ x2 ∨ ¬y1) (again with
empty connecting sequence) and (2) the second path into (¬x1 ∨ ¬x2 ∨ ¬y1),
(¬x2 ∨ y1 ∨ ¬y2), (x2 ∨ y1 ∨ y2) with connecting sequence y1, y2.

These two paths are resolution Zx1-paths for ψ with Zx1 = {z ∈ V ∃
ψ |x1 ∈

Dz} = {y1, y2}. They prove (x1, y1) ∈ rqdeprp(ψ).

3.1 Monotonicity of Dependency Schemes

Monotonicity of dependency schemes has been considered before for QBF [23,26].
In general, dependency schemes are not monotone [23,26]. Monotone dependency
schemes have the advantage that removing pseudo-dependencies identified by
that scheme has a unique fixed point, i.e., the order of removal has no influence
on the final result.

Definition 9 (Monotone). Let ds be a dependency scheme. It is called
monotone if for all DQBFs ψ, variables x∗ ∈ V ∀

ψ and y∗ ∈ V ∃
ψ such that

(x∗, y∗) /∈ ds(ψ) the condition ds
(
ψ 	 (x∗, y∗)

) ⊆ ds
(
ψ

)
is satisfied.

That means, a dependency scheme is monotone if removing a pseudo-dependency
from a DQBF never turns a pseudo-dependency into a proper one.

All dependency schemes which are sound for DQBF in the sense that they can
be used to remove pseudo-dependencies have the nice property of monotonicity:

Theorem 4. All dependency schemes in Δdqbf are monotone.

Monotonicity simply follows from the definition of ‘connected’ (Definition 6)
and ‘resolution path connected’ (Definition 7): Removing a pseudo-dependency
(x∗, y∗) means removing x∗ from the dependency set of y∗. Let ds ∈ Δdqbf . For
(x∗∗, y∗∗) ∈ ds

(
ψ 	 (x∗, y∗)

)
, the existence of certain (resolution) Zx∗∗ -paths

from clauses containing x∗∗ or ¬x∗∗ to clauses containing y∗∗ or ¬y∗∗ is needed
with Zx∗∗ =

{
y ∈ V ∃

ψ

∣
∣ x∗∗ ∈ Dy

}
. Since the dependency sets of ψ 	 (x∗, y∗) can

only be smaller than or equal to the dependency sets of ψ, the corresponding
paths are valid for proving (x∗∗, y∗∗) ∈ ds

(
ψ

)
as well.

3.2 Adding Dependencies

For DQBFs, it may not only be beneficial to remove dependencies from the
dependency set of an existential variable, but also to add dependencies in
order to make the formula more QBF-like. Consider, for instance, the formula

484 R. Wimmer et al.

∀x1∀x2∃y1(x1)∃y2(x2) : ϕ with some matrix ϕ. It can either be turned into a
QBF by removing one of the dependencies or by adding one dependency.

Dependency schemes can be used to add pseudo-dependencies. The intuition
is that one may add a dependency (x∗, y∗) according to a dependency scheme
ds if ds allows to remove the dependency afterwards.

Lemma 2. Let ds ∈ Δdqbf be a dependency scheme, ψ a DQBF, and (x∗, y∗) ∈
V ∀

ψ ×V ∃
ψ such that x∗ /∈ Dy∗ . If (x∗, y∗) /∈ ds

(
ψ⊕(x∗, y∗)

)
, then ψ and ψ⊕(x∗, y∗)

are equisatisfiable.

Proof. If (x∗, y∗) /∈ ds
(
ψ ⊕ (x∗, y∗)

)
, then ψ ⊕ (x∗, y∗) and

(
ψ ⊕ (x∗, y∗)

) 	
(x∗, y∗) = ψ are equisatisfiable. ��

We can show that even adding dependencies has a unique fixed point. The
reason for this is not as simple as for removing pseudo-dependencies in Sect. 3.1
and needs a slightly refined analysis. It relies on the following lemma which says
that the order in which dependencies are added does not matter.

Lemma 3. Let ds ∈ Δdqbf be a dependency scheme. Additionally, for i = 1, 2,
let xi ∈ V ∀

ψ , yi ∈ V ∃
ψ such that xi �∈ Dyi

and (xi, yi) /∈ ds
(
ψ ⊕ (xi, yi)

)
. Then

(x2, y2) /∈ ds
(
ψ ⊕ (x1, y1) ⊕ (x2, y2)

)
.

Proof. W. l. o. g. we assume that ds = sdep and define the following abbrevia-
tions:

ψ1 := ψ ⊕ (x1, y1), ψ2 := ψ ⊕ (x2, y2), ψ12 := ψ ⊕ (x1, y1) ⊕ (x2, y2).

Now we distinguish the following two cases:

– Case 1: x1 �= x2.
Assume that (x2, y2) ∈ sdep(ψ12). That means, there are clauses C,C ′ ∈ ϕ

such that x2 ∈ var(C), y2 ∈ var(C ′) and C
Z

x2
ψ12←−−→ C ′ where Zx2

ψ12
= {y ∈

V ∃
ψ |x2 ∈ Dψ12

y }. Since x2 ∈ Dψ12
y iff x2 ∈ Dψ2

y , we have C
Z

x2
ψ2←−→ C ′ with

Zx2
ψ2

= {y ∈ V ∃
ψ |x2 ∈ Dψ2

y }. This in turn means that (x2, y2) ∈ sdep(ψ2),
which contradicts the assumption of the lemma.

– Case 2: x1 = x2.
Let x := x1 = x2. We have (x, yi) �∈ sdep(ψi) for i = 1, 2. Assume that
(x, y2) ∈ sdep(ψ12).
(x, y2) ∈ sdep(ψ12) means there are clauses C,C ′ ∈ ϕ such that x ∈ var(C),

y2 ∈ var(C ′) and C
Zx

ψ12←−−→ C ′, Zx
ψ12

= {y ∈ V ∃
ψ |x ∈ Dψ12

y }. Say the Zx
ψ12

-path

proving C
Zx

ψ12←−−→ C ′ is C = C(1), C(2), . . . , C(n) = C ′ with the connecting
sequence y(1), y(2), . . . , y(n−1) and assume w. l. o. g. that there is no 1 ≤ i < n
with y(i) = y2 (otherwise we simply shorten the path). As (x, y2) �∈ sdep(ψ2),
the connecting sequence has to contain y1, i. e., y(i) = y1 for some 1 ≤ i < n.

That means, C
Zx

ψ1←−→ C(i) with x ∈ var(C) and y1 ∈ var(C(i)), Zx
ψ1

= {y ∈
V ∃

ψ |x ∈ Dψ1
y }. Therefore (x, y1) ∈ sdep(ψ1), which is a contradiction.

Dependency Schemes for DQBF 485

The same argumentation can be applied for all dependency schemes in Δdqbf ,
replacing “connected” by “resolution path connected” where appropriate. ��
Corollary 1. Adding as many dependencies as possible according to ds ∈ Δdqbf

leads to a unique result, irrespective of the order.

3.3 Manipulation of Dependencies Using Functional Definitions

CNFs (especially those derived from circuit representations) may contain so-
called functional definitions. These are clauses which are logically equivalent to
a formula y ≡ f(v1, . . . , vk) with an existential variable y, an arbitrary boolean
function f and (universal or existential) variables vi (1 ≤ i ≤ k). Here y is called
the defined variable, f is the defn of y, and the clauses corresponding to the
relationship y ≡ f(v1, . . . , vk) are also called the defining clauses.

As already mentioned in [28], the detection of functional definitions provides
a method for manipulating dependency sets which is completely orthogonal to
the dependency schemes presented so far: If the CNF contains defining clauses
for y ≡ f(v1, . . . , vk) and

⋃k
i=1 dep(vi) � Dy,3 then Dy can be replaced by

⋃k
i=1 dep(vi), by V ∀

ψ , or by any set in between without changing the truth value
of the DQBF, since any assignment to the universal variables from

⋃k
i=1 dep(vi)

already fixes the only value of y which is able to satisfy the defining clauses.
The manipulation of dependencies using functional definitions can be com-

bined with the manipulation of dependencies using dependency schemes:
If the goal is to remove as many dependencies as possible, then we first

remove dependencies based on functional definitions. Then, the dependency sets
are already reduced when we start computing dependency schemes. Since this
reduces the number of existing (resolution) Z-paths, this leads to smaller depen-
dency schemes and thus to the detection of more pseudo-dependencies.

If the goal is to add as many dependencies as possible, we proceed the other
way round: We make use of dependency schemes first and then add dependen-
cies due to functional definitions. If we started by adding dependencies due to
functional definitions, then the potential to add dependencies due to dependency
schemes would be reduced with the same argumentation as above.

4 Experiments

We have implemented all of the presented dependency schemes that are sound
for DQBF as well as the detection of functional definitions.4 For each dependency
scheme ds, we used an implementation which needs linear run-time in the size
of the graphs representing Z←→ / Z←→

rp
for computing whether (x, y) ∈ ds(ψ) as

in [25]. Our tool supports both adding and removing pseudo-dependencies. We
want to compare the effectiveness of the different dependency schemes.
3 For notational convenience, we use here dep(vi) = Dvi if vi is existential and

dep(vi) = {vi} if vi is universal.
4 Our tool and all benchmarks we used are available at https://projects.informatik.

uni-freiburg.de/projects/dqbf.

https://projects.informatik.uni-freiburg.de/projects/dqbf
https://projects.informatik.uni-freiburg.de/projects/dqbf

486 R. Wimmer et al.

Table 1. Effectiveness of the different dependency schemes (f. d. = extraction of func-
tional definitions)

Benchmark f. d.? Original sdep sdeprp ssdep ssdeprp rtdep rtdeprp rqdep rqdeprp

adding dependencies

pec adder n bit 9 7 no 19751 123628 123628 123628 123628 123628 123628 123628 123628

yes 113805 124038 124038 124038 124038 124038 124038 124038 124038

term1 0.50 1.00 3 1 no 48678 48730 48730 48745 48745 48730 48866 48745 48869

yes 48768 48730 48730 48745 48745 48730 48866 48745 48869

C432 0.20 1.00 5 3 no 32560 32649 32960 32649 32965 32649 32996 32649 33001

yes 32560 32649 32960 32649 32965 32649 32996 32649 33001

removing dependencies

genbuf15f14unrealy no 198412 198412 198412 198412 198412 198412 198412 198412 198412

yes 60873 60873 60873 60873 60873 60873 60873 60873 60873

term1 0.50 1.00 3 1 no 48678 32570 32506 29683 29623 32570 32234 29683 29375

yes 41061 27543 27479 25142 25082 27543 27207 25142 24834

C432 0.20 1.00 5 3 no 32560 28397 22915 28389 22883 28397 21362 28389 21346

yes 32264 28109 22627 28101 22595 28109 21074 28101 21058

All experiments were run on one Intel Xeon E5-2650v2 CPU core at 2.60 GHz
clock frequency and 64 GB of main memory under Ubuntu Linux as operating
system. As benchmarks we used 4811 DQBF instances from different sources.
They encompass the 4381 instances already used in [28]: DQBFs resulting from
equivalence checking of incomplete circuits [13,15,17] and controller synthesis
problems [6]. We have added 34 instances which were obtained from converting
SAT instances into DQBFs that depend only on a logarithmic number of vari-
ables [3]. Additionally we used 396 instances resulting from partial equivalence
checking problems [17,24].

0

20
00

0

40
00

0

60
00

0

80
00

0

10
0 0

00

12
0 0

00
0

20 000

40 000

60 000

80 000

100 000

120 000

Original

rq
de

pr
p

+
fu

nc
ti

on
al

de
fin

it
io

ns remove
add

Fig. 2. Effectiveness of dependency manip-
ulation using rqdeprp and detection of
functional definitions.(Color figure online)

We applied detection of functional
definitions and then the reflexive quad-
rangle resolution path dependency
scheme rqdeprp to remove as many
dependencies as possible. The same
was done for adding dependencies,
using first rqdeprp and then detec-
tion of functional definitions. For all
instances, our tool terminated within
fractions of a second and used less than
50 MB of main memory.

Figure 2 shows the results. We
compare the original formula with
the formula both after the removal
(blue crosses) and the addition (green
stars) of pseudo-dependencies. For a
fixed instance, a mark on the diago-
nal means that the dependency set could not be modified, above that it could
be increased and below that it could be reduced. We can observe that almost all

Dependency Schemes for DQBF 487

10
−2

10
−1 10

0

10
1

10
2

10
3

10−2

10−1

100

101

102

103

N/A

N/A

Original

M
in

im
al

nu
m

be
r

of
de

pe
nd

en
ci

es

10
−2

10
−1 10

0

10
1

10
2

10
3

10−2

10−1

100

101

102

103

N/A

N/A

Original

M
ax

im
al

nu
m

be
r

of
de

pe
nd

en
ci

es

Fig. 3. Running times of HQS [18] compared to the original benchmark after removing
(left) and adding (right) dependencies using rqdeprp and detecting functional defini-
tions. “N/A” means that the benchmark could not be solved within 3600 s computation
time and 8 GB of memory.

instances could be modified; in some cases, the size of the maximal dependency
set is ten times the size of the minimal one.

Table 1 shows the numbers of dependencies for some selected instances before
and after modifying the dependency sets using the different dependency schemes.
We can observe that they are not equally powerful and that the detection of func-
tional definitions can amplify the effectiveness of the dependency schemes. Since
the computation times for rqdeprp are in the same range as the computation
times for the other dependency schemes, we propose to use rqdeprp together
with the detection of functional definitions.

Our work demonstrates the potential of adding/removing dependencies and
lays the groundwork for exploiting this flexibility later on. Figure 3 demonstrates
that trivial solutions (just adding or removing dependencies) for exploiting the
flexibility do not help much. It shows the solution times of HQS [18] on all
4811 instances after applying rqdeprp and detection of functional definitions
compared to the original benchmark. The left image is for removing dependen-
cies, the right one for adding dependencies. We can see that manipulating the
dependency sets can have a huge effect on the solution times. They can both
increase and decrease. This is not really surprising, since both adding and remov-
ing dependencies may increase or decrease the ‘distance’ of the DQBF from an
equisatisfiable QBF. Some of the benchmarks even became solvable or unsolv-
able within the resource limits of 3600 s computation time and 8 GB of memory.
These results show that a clever way for exploiting the flexibility is definitely
needed to solve more instances in less time.

5 Conclusion

We have presented a complete characterization of those dependency schemes
which can be generalized from QBF to DQBF and those which cannot. The
generalizations are suitable to remove and add dependencies in DQBFs. Both

488 R. Wimmer et al.

adding and removing dependencies lead to a unique fixed point, irrespective of
the order of adding/removing and can be combined with an orthogonal method
based on functional definitions. First experimental results show that the pre-
sented methods give an enormous amount of flexibility for the manipulation of
dependency sets and each method has its own contributions to the overall flexi-
bility. A central task for future research is to develop appropriate heuristics for
exploiting the flexibility in the dependency sets in order to turn a DQBF into
a QBF at lower costs. The groundwork for such a method has been laid by the
presented paper.

Acknowledgments. We thank the anonymous reviewers for their really helpful
comments.

References

1. Ashar, P., Ganai, M.K., Gupta, A., Ivancic, F., Yang, Z.: Efficient SAT-based
bounded model checking for software verification. In: Margaria, T., Steffen, B.,
Philippou, A., Reitenspieß, M. (eds.) International Symposium on Leveraging
Applications of Formal Methods (ISoLA). Technical Report, vol. TR-2004-6, pp.
157–164, Department of Computer Science, University of Cyprus, Paphos, Cyprus,
October 2004

2. Balabanov, V., Chiang, H.K., Jiang, J.R.: Henkin quantifiers and boolean formulae:
a certification perspective of DQBF. Theor. Comput. Sci. 523, 86–100 (2014)

3. Balabanov, V., Jiang, J.H.R.: Reducing satisfiability and reachability to DQBF,
September 2015. Talk at the International Workshop on Quantified Boolean For-
mulas (QBF)

4. Biere, A.: Resolve and expand. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

5. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Adv. Comput. 58, 117–148 (2003)

6. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs.
In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1–20.
Springer, Heidelberg (2014)

7. Bubeck, U.: Model-based transformations for quantified boolean formulas. Ph.D.
thesis, University of Paderborn (2010)

8. Bubeck, U., Büning, H.K.: Dependency quantified horn formulas: models and com-
plexity. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 198–211.
Springer, Heidelberg (2006)

9. Bubeck, U., Kleine Büning, H.: Bounded universal expansion for preprocessing
QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp.
244–257. Springer, Heidelberg (2007)

10. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satis-
fiability solving. Formal Methods Syst. Design 19(1), 7–34 (2001)

11. Czutro, A., Polian, I., Lewis, M.D.T., Engelke, P., Reddy, S.M., Becker, B.: Thread-
parallel integrated test pattern generator utilizing satisfiability analysis. Int. J.
Parallel Prog. 38(3–4), 185–202 (2010)

12. Eggersglüß, S., Drechsler, R.: A highly fault-efficient SAT-based ATPG flow. IEEE
Des. Test Comput. 29(4), 63–70 (2012)

Dependency Schemes for DQBF 489

13. Finkbeiner, B., Tentrup, L.: Fast DQBF refutation. In: Sinz, C., Egly, U. (eds.)
SAT 2014. LNCS, vol. 8561, pp. 243–251. Springer, Heidelberg (2014)

14. Fröhlich, A., Kovásznai, G., Biere, A.: A DPLL algorithm for solving DQBF. In:
International Workshop on Pragmatics of SAT (POS), Trento, Italy (2012)

15. Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: iDQ: instantiation-based DQBF
solving. In: Berre, D.L. (ed.) International Workshop on Pragmatics of SAT
(POS). EPiC Series, vol. 27, pp. 103–116. EasyChair, Vienna, Austria. http://
www.easychair.org/publications/?page=2037484173

16. Van Gelder, A.: Variable independence and resolution paths for quantified boolean
formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer,
Heidelberg (2011)

17. Gitina, K., Reimer, S., Sauer, M., Wimmer, R., Scholl, C., Becker, B.: Equiva-
lence checking of partial designs using dependency quantified Boolean formulae.
In: Proceedings of ICCD, pp. 396–403. IEEE CS, Asheville, October 2013

18. Gitina, K., Wimmer, R., Reimer, S., Sauer, M., Scholl, C., Becker, B.: Solving
DQBF through quantifier elimination. In: Proceedings of DATE. IEEE, Grenoble,
March 2015

19. Lonsing, F., Biere, A.: Efficiently representing existential dependency sets for
expansion-based QBF solvers. ENTCS 251, 83–95 (2009)

20. Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF
solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–
171. Springer, Heidelberg (2010)

21. Peterson, G., Reif, J., Azhar, S.: Lower bounds for multiplayer non-cooperative
games of incomplete information. Comput. Math. Appl. 41(7–8), 957–992 (2001)

22. Rintanen, J., Heljanko, K., Niemelä, I.: Planning as satisfiability: parallel plans
and algorithms for plan search. Artif. Intell. 170(12–13), 1031–1080 (2006)

23. Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom.
Reasoning 42(1), 77–97 (2009)

24. Scholl, C., Becker, B.: Checking equivalence for partial implementations. In:
ACM/IEEE Design Automation Conference (DAC), pp. 238–243. ACM Press, Las
Vegas, June 2001

25. Slivovsky, F., Szeider, S.: Computing resolution-path dependencies in linear time.
In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 58–71.
Springer, Heidelberg (2012)

26. Slivovsky, F., Szeider, S.: Quantifier reordering for QBF. J. Autom. Reasoning
56(4), 459–477 (2016)

27. Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes.
Theor. Comput. Sci. 612, 83–101 (2016)

28. Wimmer, R., Gitina, K., Nist, J., Scholl, C., Becker, B.: Preprocessing for DQBF.
In: Heule, M., et al. (eds.) SAT 2015. LNCS, vol. 9340, pp. 173–190. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-24318-4 13

29. Wimmer, R., Gitina, K., Nist, J., Scholl, C., Becker, B.: Preprocessing for DQBF.
Reports of SFB/TR 14 AVACS 110. http://www.avacs.org

http://www.easychair.org/publications/?page=2037484173
http://www.easychair.org/publications/?page=2037484173
http://dx.doi.org/10.1007/978-3-319-24318-4_13
http://www.avacs.org

Lifting QBF Resolution Calculi to DQBF

Olaf Beyersdorff1, Leroy Chew1(B), Renate A. Schmidt2, and Martin Suda2

1 School of Computing, University of Leeds, Leeds, UK
{o.beyersdorff,mm12lnc}@leeds.ac.uk

2 School of Computer Science, University of Manchester, Manchester, UK
{Renate.Schmidt,martin.suda}@manchester.ac.uk

Abstract. We examine existing resolution systems for quantified
Boolean formulas (QBF) and answer the question which of these cal-
culi can be lifted to the more powerful Dependency QBFs (DQBF). An
interesting picture emerges: While for QBF we have the strict chain of
proof systems Q-Res < IR-calc < IRM-calc, the situation is quite differ-
ent in DQBF. The obvious adaptations of Q-Res and likewise universal
resolution are too weak: they are not complete. The obvious adapta-
tion of IR-calc has the right strength: it is sound and complete. IRM-
calc is too strong: it is not sound any more, and the same applies to
long-distance resolution. Conceptually, we use the relation of DQBF to
effectively propositional logic (EPR) and explain our new DQBF calculus
based on IR-calc as a subsystem of first-order resolution.

1 Introduction

The logic of dependency quantified Boolean formulas (DQBF) [23] generalises
the notion of quantified Boolean formulas (QBF) that allow Boolean quantifiers
over a propositional problem. DQBF is a relaxation of QBF in that the quantifier
order is no longer necessarily linear and the dependencies of the quantifiers are
completely specified. This is achieved using Henkin quantifiers [16], usually put
into a Skolem form. DQBF is NEXPTIME-complete [1], compared to the PSPACE-
completeness of QBF [28]. Thus, unless the classes are equal, many problems that
are difficult to express in QBF can be succinctly represented in DQBF.

Recent developments in QBF proof complexity [5–11,17–19,27] have
increased our theoretical understanding of QBF proof systems and proof sys-
tems in general and have shown that there is an intrinsic link between proof
complexity and SAT-, QBF-, and DQBF-solving. Lower bounds in resolution-
based proof systems give lower bounds to CDCL-style algorithms. In proposi-
tional logic there is only one resolution system (although many subsystems have
been studied [24,29]), but in QBF, resolution can be adapted in different ways
to get sound and complete calculi of varying strengths [7,15,19,30].

The first and best-studied QBF resolution system is Q-Res introduced in [21].
For Q-Res there are two main enhanced versions: QU-Res [30], which allows res-
olution on universal variables, and LD-Q-Res [15], which introduces a process of
merging positive and negative universal literals under certain conditions. These
two concepts were combined into a single calculus LQU+-Res [5].
c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 490–499, 2016.
DOI: 10.1007/978-3-319-40970-2 30

Lifting QBF Resolution Calculi to DQBF 491

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

strictly stronger (p-simulates,
but exponentially separated)

incomparable (mutual
exponential separations)

expansion solving

CDCL solving

unsound in DQBF

sound and complete in DQBF

incomplete in DQBF

Fig. 1. The simulation order of QBF resolution systems [8] and soundness/complete-
ness of their lifted DQBF versions (Color figure online)

While these calculi model CDCL solving, another group of resolution systems
were developed with the goal to express ideas from expansion solving. The first
and most basic of these systems is ∀Exp+Res [19], which also uses resolution,
but is conceptually very different from Q-Res. In [7] two further proof systems
IR-calc and IRM-calc are introduced, which unify the CDCL- and expansion-
based approaches in the sense that IR-calc simulates both Q-Res and ∀Exp+Res.
The system IRM-calc enhances IR-calc and additionally simulates LD-Q-Res. The
relative strength of these QBF resolution systems is illustrated in Fig. 1.

The aim of this paper is to clarify which of these QBF resolution systems can
be lifted to DQBF. This is motivated both by the theoretical quest to understand
which QBF resolution paradigms are robust enough to work in the more powerful
DQBF setting, as well as from the practical perspective, where recent advances
in DQBF solving [12–14,31] prompt the question of how to model and analyse
these solvers proof-theoretically.

Our starting point is the work of Balabanov, Chiang, and Jiang [3], who show
that Q-Res can be naturally adapted to a sound calculus for DQBF, but they
show it is not strong enough and lacks completeness. Using an idea from [5] we
extend their result to QU-Res, thus showing that the lifted version of this system
to DQBF is not complete either. We present an example showing that the lifted
version of LD-Q-Res is not sound, and this transfers to the DQBF analogues of
the stronger systems LQU+-Res and IRM-calc.

While this rules out most of the existing QBF resolution calculi already—
and in fact all CDCL-based systems (cf. Fig. 1)—we show that IR-calc, lifted
in a natural way to a DQBF calculus D-IR-calc, is indeed sound and complete
for DQBF; and this holds as well for the lifted version of the weaker expansion
system ∀Exp+Res.

Conceptually, our soundness and completeness arguments use the known cor-
respondence of QBF and DQBF to first-order logic [25], and in particular to the
fragment EPR, also known as the Bernays-Schönfinkel class, the universal frag-

492 O. Beyersdorff et al.

ment of first-order logic without function symbols of non-zero arity. Similarly to
DQBF, EPR is NEXPTIME-complete [22]. In addition to providing soundness
and completeness this explains the semantics of both IR-calc and D-IR-calc and
identifies these systems as special cases of first-order resolution.

2 Preliminaries

A literal is a Boolean variable or its negation. If l is a literal, ¬l denotes the
complementary literal, i.e., ¬¬x = x. A clause is a set of literals understood
as their disjunction. The empty clause is denoted by ⊥, which is semantically
equivalent to false. A formula in Conjunctive Normal Form (CNF) is a conjunc-
tion of clauses. For a literal l = x or l = ¬x, we write var(l) for x and extend
this notation to var(C) for a clause C.

A Dependency Quantified Boolean Formula (DQBF) φ in prenex Skolem form
consists of a quantifier prefix Π and a propositional matrix ψ. QBF φ can also
be written as Π · ψ. Here we mainly study DQBFs where ψ is in CNF. The
propositional variables of ψ are partitioned into sets Y and X. We define Y as
the set of universal variables and X the set of existential variables. For every
y ∈ Y , Π contains the quantifier ∀y. For every x ∈ X there is a predefined subset
Yx ⊆ Y and Π contains the quantifier ∃x(Yx).

The semantics of DQBF is defined in terms of Skolem functions. A Skolem
function fx : {0, 1}Yx → {0, 1} describes the evaluation of an existential vari-
able x under the possible assignments to its dependencies Yx. Given a set F of
Skolem functions, where F = {fx | x ∈ X} for all the existential variables and
an assignment α : Y → {0, 1} for the universal variables, the extension of α
by F is defined as αF (x) = fx(α�Yx) for x ∈ X and αF (y) = α(y) for y ∈ Y . A
DQBF φ is true if there exist Skolem functions F = {fx | x ∈ X} for the exis-
tential variables such that for every assignment α : Y → {0, 1} to the universal
variables the matrix ψ propositionally evaluates to 1 under the extension αF

of α by F .
In QBF, the quantifier prefix is a sequence of standard quantifiers of the

form ∃x and ∀y. To see that this is a special case of DQBF, we use the sequence
from left to right to assign to every variable in the prefix a unique index ind :
X ∪ Y → N, and make every existential variable x depend on all the preceding
universal variables by setting Yx = {y ∈ Y | ind(y) < ind(x)}.

We now give a brief overview of the main existing resolution-based calculi
for QBF. We start by describing the proof systems modelling CDCL-based QBF
solving ; their rules are summarized in Fig. 2. The most basic and important
system is Q-resolution (Q-Res) by Kleine Büning et al. [21]. It is a resolution-
like calculus that operates on QBFs in prenex form with CNF matrix. In addition
to the axioms, Q-Res comprises the resolution rule S∃R and universal reduction
∀-Red (cf. Fig. 2).

Long-distance resolution (LD-Q-Res) appears originally in the work of Zhang
and Malik [32] and was formalized into a calculus by Balabanov and Jiang [4]. It
merges complementary literals of a universal variable u into the special literal u∗.

Lifting QBF Resolution Calculi to DQBF 493

(Axiom)
C

D ∪ {u}
(∀-Red)

D

D ∪ {u∗}
(∀-Red∗)

D

C is a clause in the matrix. Literal u is universal and ind(u) ≥ ind(l) for all l ∈ D.

C1 ∪ U1 ∪ {x} C2 ∪ U2 ∪ {¬x}
(Res)

C1 ∪ C2 ∪ U

We consider four instantiations of the Res-rule:

S∃R: x is existential. If z ∈ C1, then ¬z /∈ C2. U1 = U2 = U = ∅.
S∀R: x is universal. Otherwise same conditions as S∃R.
L∃R: x is existential. If l1 ∈ C1, l2 ∈ C2, var(l1) = var(l2) = z then l1 = l2 �= z∗.

U1, U2 contain only universal literals with var(U1) = var(U2). ind(x) < ind(u)
for each u ∈ var(U1). If w1 ∈ U1, w2 ∈ U2, var(w1) = var(w2) = u then
w1 = ¬w2, w1 = u∗ or w2 = u∗. U = {u∗ | u ∈ var(U1)}.

L∀R: x is universal. Otherwise same conditions as L∃R.

Fig. 2. The rules of CDCL-based proof systems

These special literals prohibit certain resolution steps. In particular, different
literals of a universal variable u may be merged only if ind(x) < ind(u), where x
is the resolved variable. LD-Q-Res uses the rules L∃R, ∀-Red and ∀-Red∗.

QU-resolution (QU-Res) [30] removes the restriction from Q-Res that the
resolved variable must be an existential variable and allows resolution of uni-
versal variables. The rules of QU-Res are S∃R, S∀R and ∀-Red. LQU+-Res [5]
extends LD-Q-Res by allowing short and long distance resolved literals to be
universal; however, the resolved literal is never a merged literal z∗. LQU+-Res
uses the rules L∃R, L∀R, ∀-Red and ∀-Red∗.

The second type of calculi models expansion-based QBF solving. These cal-
culi are based on instantiation of universal variables: ∀Exp+Res [20], IR-calc, and
IRM-calc [7]. All these calculi operate on clauses that comprise only existential
variables from the original QBF, which are additionally annotated by a substitu-
tion to some universal variables, e.g. ¬x0/u11/u2 . For any annotated literal lσ, the
substitution σ must not make assignments to variables at a higher quantification
index than that of l, i.e., if u ∈ dom(σ), then u is universal and ind(u) < ind(l).

To preserve this invariant we use the following definition. Fix a DQBF Π ·ψ.
Let τ be a partial assignment of the universal variables Y to {0, 1} and let x be
an existential variable. restrictx(τ) is the assignment where dom(restrictx(τ)) =
dom(τ) ∩ Yx and restrictx(τ)(u) = τ(u).

The simplest of the instantiation-based calculi we consider is ∀Exp+Res from
[19] (cf. also [7,8]). The system IR-calc extends ∀Exp+Res by enabling par-
tial assignments in annotations. To do so, we utilize the auxiliary operation
of instantiation. We define instτ (C) to be the clause containing all the literals

494 O. Beyersdorff et al.

(Axiom)
xrestrictx(τ) | x ∈ C, x is existential

C is a non-tautological clause from the matrix. τ = {0/u | u is universal in C}, where
the notation 0/u for literals u is shorthand for 0/x if u = x and 1/x if u = ¬x.

{xτ} ∪ C1 {¬xτ} ∪ C2
(Resolution)

C1 ∪ C2

C (Instantiation)
instτ (C)

τ is an assignment to universal variables with rng(τ) ⊆ {0, 1}.

Fig. 3. The rules of IR-calc [7] and of D-IR-calc (Sect. 4)

lrestrictvar(l)(σ), where lξ ∈ C and dom(σ) = dom(ξ) ∪ dom(τ) and σ(u) = ξ(u) if
u ∈ dom(ξ) and σ(u) = τ(u) otherwise.

The calculus IRM-calc from [7] further extends IR-calc by enabling annota-
tions containing ∗, similarly as in LD-Q-Res.

3 Problems with Lifting QBF Calculi to DQBF

There is no unique method for lifting calculi from QBF to DQBF. However, we
can consider ‘natural’ generalisations of these calculi, where we interpret index
conditions as dependency conditions. This means that when a proof system
requires for an existential variable x and a universal variable y with ind(y) <
ind(x), this should be interpreted as y ∈ Yx. Analogously ind(x) < ind(y) should
be interpreted as y /∈ Yx. This approach was followed when taking Q-Resolution
to D-Q-Resolution in Theorem 7 of [3]. Balabanov et al. showed there that D-Q-
Resolution is not complete for DQBF using some specific formula. This formula
is easily shown to be false, but no steps are possible in D-Q-Resolution, hence
D-Q-Resolution is not complete [3]. Consider now the following modification of
that formula where the universal variables are doubled:

∀x1∀x′
1∀x2∀x′

2∃y1(x1, x
′
1)∃y2(x2, x

′
2) (1)

{y1, y2, x1, x
′
1} {¬y1,¬y2, x1, x

′
1}

{y1, y2,¬x1,¬x′
1,¬x2,¬x′

2} {¬y1,¬y2,¬x1,¬x′
1,¬x2,¬x′

2}
{y1,¬y2,¬x1,¬x′

1, x2, x
′
2} {¬y1, y2,¬x1,¬x′

1, x2, x
′
2}.

The falsity of (1) follows from the fact that its hypothetical Skolem model would
immediately yield a Skolem model for the original formula using assignments
with x1 = x′

1, x2 = x′
2. But there is no such model because the original formula

is false. However, since we have doubled the universal literals we cannot perform
any generalised QU-Res steps to begin a refutation. This technique of doubling
literals was first used in [5].

Lifting QBF Resolution Calculi to DQBF 495

Now we look at another portion of the calculi from Fig. 1, namely the calculi
that utilise merging. As a specific example we consider LD-Q-Res and show that
it is not sound when lifted to DQBF in the natural way.

To do this we look at the condition of (L∃R) given in Fig. 2. Here instead
of requiring ind(x) < ind(u) as a condition for u becoming merged, we require
u /∈ Yx. This is unsound as we show by the following DQBF:

∀u∀v∃x(u)∃y(v)∃z(u, v).
{x, v, z} {¬x,¬v, z}
{y, u,¬z} {¬y,¬u,¬z}

Its truth is witnessed by the Skolem functions x(u) = u, y(v) = ¬v, and z(u, v) =
(u∧ v)∨ (¬u∧¬v). However, the lifted version of LD-Q-Res admits a refutation:

{x, v, z} {¬x,¬v, z}
{v∗, z}

{y, u,¬z} {¬y,¬u,¬z}
{u∗,¬z}

{u∗, v∗}
{u∗}
⊥

This shows that LD-Q-Res is unsound for DQBF. Likewise, since IRM-calc, LQU-
Res and LQU+-Res step-wise simulate LD-Q-Res, this proof would also be avail-
able, showing that these are all unsound calculi in the DQBF setting.

4 A Sound and Complete Proof System for DQBF

In this section we introduce the D-IR-calc refutation system and prove its sound-
ness and completeness for DQBF. The calculus takes inspiration from IR-calc,
a system for QBF [7], which in turn is inspired by first-order translations of
QBF. One such translation is to the EPR fragment, i.e., the universal fragment
of first-order logic without function symbols of non-zero arity (this means we
only allow constants). We broaden this translation to DQBF and then bring this
back down to D-IR-calc in a similar way as in IR-calc.

We adapt annotated literals lτ to DQBF, such that l is an existential literal
and τ is an annotation which is a partial assignment to universal variables in Yx.
In QBF, Yx contains all universal variables with an index lower than x, and this
is exactly the maximal range of the potential annotation to x literals. Thus our
definition of annotated literals generalises those used in IR-calc.

The definitions of restrict and inst were defined for QBF, but with dependency
already in mind. With these definitions at hand we can now define the new
calculus D-IR-calc. Its rules are exactly the same as the ones for IR-calc stated
in Fig. 3, but applied to DQBF.

Before analysing D-IR-calc further we present the translation of DQBF into
EPR. We use an adaptation of the translation described for QBF [25], which
becomes straightforward in the light of the DQBF semantics based on Skolem
functions. The key observation is that for the intended two valued Boolean
domain the Skolem functions can be represented by predicates.

To translate a DQBF Π ·ψ we introduce on the first-order side (1) a predicate
symbol p of arity one and two constant symbols 0 and 1 to describe the Boolean

496 O. Beyersdorff et al.

domain, (2) for every existential variable x ∈ X a predicate symbol x of arity |Yx|,
and (3) for every universal variable y ∈ Y a first-order variable y.

Now we can define a translation mapping tΠ . It translates each occurrence
of an existential variable x with dependencies Yx = {y1, . . . , yk} to the atom
tΠ(x) = x(y1, . . . , yk) (we assume an arbitrary but fixed order on the depen-
dencies which dictates their placement as arguments) and each occurrence of a
universal variable y to the atom tΠ(y) = p(y). The mapping is then homomor-
phically extended to formulas: tΠ(¬ψ) = ¬tΠ(ψ), tΠ(ψ1∨ψ2) = tΠ(ψ1)∨tΠ(ψ2),
and tΠ(ψ1 ∧ ψ2) = tΠ(ψ1) ∧ tΠ(ψ2). This means a CNF matrix ψ is mapped to
a corresponding first-order CNF tΠ(ψ). As customary, the first-order variables
of tΠ(ψ) are assumed to be implicitly universally quantified at the top level.

Lemma 1. A DQBF Π ·ψ is true if and only if tΠ(ψ)∧p(1)∧¬p(0) is satisfiable.

Proof (Idea). When the DQBF Π ·ψ is true, this is witnessed by the existence of
Skolem functions F = {fx | x ∈ X}. On the other hand, if tΠ(ψ)∧p(1)∧¬p(0) is
satisfiable then we can by Herbrand’s theorem assume it has a Herbrand model
H over the base {0, 1}. We can naturally translate between one and the other by
setting fx(v) = 1 iff x(v) ∈ H for every x ∈ X and v ∈ {0, 1}|Yx|. The lemma
then follows by structural induction over ψ. �

For the purpose of analysing D-IR-calc, the mapping tΠ is further extended
to annotated literals: tΠ(xτ) = tΠ(x)τ for an existential variable x. Here we con-
tinue to slightly abuse notation and treat τ , an annotation in the propositional
context, as a first-order substitution over the corresponding translated variables
in the first-order context (recall point (3) above).

We aim to show soundness and completeness of D-IR-calc by relating it via
the above translation to a first-order resolution calculus FO-res. This calculus con-
sists of (1) a lazy grounding rule: given a clause C and a substitution σ derive the
instance Cσ, and (2) the resolution rule: given two clauses C ∪ {l} and D ∪ {¬l},
where l is a first-order literal, derive C ∪ D. Note that similarly to propositional
clauses, we understand first-order clauses as sets of literals. Thus we do not need
any explicit factoring rule. Also note that we require the resolved literals of the two
premises of the resolution rule to be equal (up to the polarity). Standard first-order
resolution, which involves unification of the resolved literals, can be simulated in
FO-resby combining the instantiation and the resolution rule. It is clear thatFO-res
is sound and complete for first-order logic.

Our argument for the soundness of D-IR-calc is now the following. Given π =
(L1, L2, . . . , L�), a D-IR-calc derivation of the empty clause L� = ⊥ from DQBF
Π ·ψ, we show by induction that tΠ(Ln) is derivable from Ψ = tΠ(ψ)∧p(1)∧¬p(0)
by FO-res for every n ≤ �. Because tΠ(⊥) = ⊥ is unsatisfiable, so must Ψ be, by
soundness of FO-res and therefore Π · ψ is false by Lemma 1.

We need to consider the three cases by which a clause is derived in D-IR-
calc. First, it is easy to verify that D-IR-calc instantiation by an annotation τ
corresponds to FO-res instantiation by τ as a substitution, i.e., tΠ(instτ (C)) =
tΠ(C)τ. Also the D-IR-calc and FO-res resolution rules correspond one to one in
an obvious way. Thus the most interesting case concerns the Axiom rule.

Lifting QBF Resolution Calculi to DQBF 497

Intuitively, the Axiom rule of D-IR-calc removes universal variables from a
clause while recording their past presence (and polarity) within the applied anno-
tation τ . We simulate this step in FO-res by first instantiating the translated
clause by τ and then resolving the obtained clause with the unit p(1) and/or
¬p(0). Here is an example for a DQBF prefix Π = ∀u ∀v ∀w ∃x(u, v)∃y(v, w):

{x, y,¬u, v}
(D-IR-calc) {x1/u,0/v, y0/v}

{x(u, v), y(v, w),¬p(u), p(v)}
(FO-res) {x(1, 0), y(0, w)}

Theorem 2. D-IR-calc is sound.

We now show completeness. Let Π · ψ be a false DQBF and let us consider
G(tΠ(ψ)), the set of all ground instances of clauses in tΠ(ψ). Here, by a ground
instance of a clause C we mean the clause Cσ for some substitution σ : var(C) →
{0, 1}. By the combination of Lemma 1 and Herbrand’s theorem, G(tΠ(ψ)) ∧
p(1) ∧ ¬p(0) is unsatisfiable and thus it has a FO-res refutation. Moreover, by
completeness of ordered resolution [2], we can assume that (1) the refutation does
not contain clauses subsumed by p(1) or ¬p(0), and (2) any clause containing
the predicate p is resolved on a literal containing p. From this it is easy to see
that any leaf in the refutation gives rise (in zero, one or two resolution steps with
p(1) or ¬p(0)) to a clause D = tΠ(C) where C can be obtained by D-IR-calc
Axiom from a C0 ∈ ψ. The rest of the refutation consists of FO-res resolution
steps which can be simulated by D-IR-calc. Thus we obtain the following.

Theorem 3. D-IR-calc is refutationally complete for DQBF.

Although one can lift the above argument with ordered resolution to show
that the set {tΠ(C) | C follows by Axiom from some C0 ∈ ψ} is unsatisfiable for
any false DQBF Π · ψ, we have shown how to simulate ground FO-res steps
by D-IR-calc. That is because a lifted FO-res derivation may contain instan-
tiation steps which rename variables apart for which a subsequent resolvent
cannot be represented in D-IR-calc. An example is the resolvent {y(v), z(v′)}
of clauses {x(u), y(v)} and {¬x(u), z(v′)} which is obviously stronger than the
clause {y(v), z(v)}. However, only the latter has a counterpart in D-IR-calc.

We also remark that in a similar way we can also lift to DQBF the QBF cal-
culus ∀Exp+Res from [19]. It is easily verified that the simulation of ∀Exp+Res
by IR-calc shown in [7] directly transfers from QBF to DQBF. Hence Theo-
rem 2 immediately implies the soundness of ∀Exp+Res lifted to DQBF. Moreover,
because all ground instances are also available in ∀Exp+Res lifted to DQBF, this
system is also complete as can be shown by repeating the argument of Theorem 3.

Acknowledgments. This research was supported by grant no. 48138 from the John
Templeton Foundation, EPSRC grant EP/L024233/1, and a Doctoral Training Grant
from the EPSRC (2nd author).

Martin Suda was supported by the EPSRC grant EP/K032674/1 and the ERC
Starting Grant 2014 SYMCAR 639270.

498 O. Beyersdorff et al.

References

1. Azhar, S., Peterson, G., Reif, J.: Lower bounds for multiplayer non-cooperative
games of incomplete information. J. Comput. Math. Appl. 41, 957–992 (2001)

2. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 19–99. Elsevier and
MIT Press (2001)

3. Balabanov, V., Chiang, H.J.K., Jiang, J.H.R.: Henkin quantifiers and boolean for-
mulae: a certification perspective of DQBF. Theor. Comput. Sci. 523, 86–100
(2014)

4. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. For-
mal Methods Syst. Des. 41(1), 45–65 (2012)

5. Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof
complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169.
Springer, Heidelberg (2014)

6. Beyersdorff, O., Bonacina, I., Chew, L.: Lower bounds: from circuits to QBF proof
systems. In: Proceedings of ACM Conference on Innovations in Theoretical Com-
puter Science (ITCS 2016), pp. 249–260. ACM (2016)

7. Beyersdorff, O., Chew, L., Janota, M.: On unification of QBF resolution-based
calculi. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part
II. LNCS, vol. 8635, pp. 81–93. Springer, Heidelberg (2014)

8. Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF
calculi. In: Proceedings of Symposium on Theoretical Aspects of Computer Science,
pp. 76–89. LIPIcs series (2015)

9. Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Feasible interpolation for QBF
resolution calculi. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann,
B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 180–192. Springer, Heidelberg (2015)

10. Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Are short proofs narrow? QBF
resolution is not simple. In: Proceedings of Symposium on Theoretical Aspects of
Computer Science (STACS 2016) (2016)

11. Egly, U.: On sequent systems and resolution for QBFs. In: Cimatti, A., Sebastiani,
R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 100–113. Springer, Heidelberg (2012)

12. Finkbeiner, B., Tentrup, L.: Fast DQBF refutation. In: Sinz, C., Egly, U. (eds.)
[26], pp. 243–251

13. Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: iDQ: Instantiation-based DQBF
solving. In: Sinz, C., Egly, U. (eds.) [26], pp. 103–116

14. Gitina, K., Wimmer, R., Reimer, S., Sauer, M., Scholl, C., Becker, B.: Solving
DQBF through quantifier elimination. In: Nebel, W., Atienza, D. (eds.) Proceed-
ings of the 2015 Design, Automation & Test in Europe Conference & Exhibition,
DATE 2015, Grenoble, France, March 9–13, 2015. pp. 1617–1622. ACM (2015)

15. Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified boolean for-
mulas. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of
Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp.
761–780. IOS Press (2009)

16. Henkin, L.: Some remarks on infinitely long formulas. J. Symbolic Logic, pp. 167–
183 (1961). Pergamon Press

17. Heule, M.J., Seidl, M., Biere, A.: Efficient extraction of skolem functions from
QRAT proofs. In: Formal Methods in Computer-Aided Design (FMCAD), 2014,
pp. 107–114. IEEE (2014)

Lifting QBF Resolution Calculi to DQBF 499

18. Heule, M.J.H., Seidl, M., Biere, A.: A unified proof system for QBF preprocessing.
In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562,
pp. 91–106. Springer, Heidelberg (2014)

19. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution.
Theor. Comput. Sci. 577, 25–42 (2015)

20. Janota, M., Marques-Silva, J.: On propositional QBF expansions and Q-resolution.
In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 67–82.
Springer, Heidelberg (2013)

21. Büning, K.H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formu-
las. Inf. Comput. 117(1), 12–18 (1995)

22. Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput.
Syst. Sci. 21(3), 317–353 (1980)

23. Peterson, G.L., Reif, J.: Multiple-person alternation. In: 20th Annual Symposium
on Foundations of Computer Science, 1979, pp. 348–363, October 1979

24. Segerlind, N.: The complexity of propositional proofs. Bull. Symbolic Logic 13(4),
417–481 (2007)

25. Seidl, M., Lonsing, F., Biere, A.: qbf2epr: a tool for generating EPR formulas from
QBF. In: Fontaine, P., Schmidt, R.A., Schulz, S. (eds.) PAAR-2012. Third Work-
shop on Practical Aspects of Automated Reasoning. EPiC Series in Computing,
vol. 21, pp. 139–148. EasyChair (2013)

26. Sinz, C., Egly, U. (eds.): SAT 2014. LNCS, vol. 8561. Springer, Heidelberg (2014)
27. Slivovsky, F., Szeider, S.: Variable dependencies and Q-resolution. In: Sinz, C.,

Egly, U. (eds.) [26], pp. 269–284
28. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: prelim-

inary report. In: Aho, A.V., Borodin, A., Constable, R.L., Floyd, R.W., Harrison,
M.A., Karp, R.M., Strong, H.R. (eds.) Proceedings of the 5th Annual ACM Sym-
posium on Theory of Computing, April 30 – May 2, 1973, Austin, Texas, USA, pp.
1–9. ACM (1973)

29. Urquhart, A.: The complexity of propositional proofs. Bull. Symbolic Logic 1,
425–467 (1995)

30. Van Gelder, A.: Contributions to the theory of practical quantified boolean formula
solving. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 647–663. Springer,
Heidelberg (2012)

31. Wimmer, R., Gitina, K., Nist, J., Scholl, C., Becker, B.: Preprocessing for DQBF.
In: Heule, M., et al. (eds.) SAT 2015. LNCS, vol. 9340, pp. 173–190. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-24318-4 13

32. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability
solver. In: ICCAD, pp. 442–449 (2002)

http://dx.doi.org/10.1007/978-3-319-24318-4_13

Long Distance Q-Resolution with Dependency
Schemes

Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider(B)

Algorithms and Complexity Group, TU Wien, Vienna, Austria
{peitl,fslivovsky,sz}@ac.tuwien.ac.at

Abstract. Resolution proof systems for quantified Boolean formulas
(QBFs) provide a formal model for studying the limitations of state-of-
the-art search-based QBF solvers, which use these systems to generate
proofs. In this paper, we define a new proof system that combines two
such proof systems: Q-resolution with generalized universal reduction
according to a dependency scheme and long distance Q-resolution. We
show that the resulting proof system is sound for the reflexive resolution-
path dependency scheme—in fact, we prove that it admits strategy
extraction in polynomial time. As a special case, we obtain soundness
and polynomial-time strategy extraction for long distance Q-resolution
with universal reduction according to the standard dependency scheme.
We report on experiments with a configuration of DepQBF that gener-
ates proofs in this system.

1 Introduction

Quantified Boolean Formulas (QBFs) offer succinct encodings for problems from
domains such as formal verification, synthesis, and planning [5,10,13,27,33,37].
Although the combination of (more verbose) propositional encodings with SAT
solvers is still the state-of-the-art approach to many of these problems, QBF
solvers are gaining ground. An arsenal of new techniques has been introduced
over the past few years [8,9,11,18,19,21,23,26,29,30,32], and these advances
in solver technology have been accompanied by the development of a better
understanding of the underlying QBF proof systems and their limitations [4,6,
7,15,22,24,36].

Search-based solvers based on the QDPLL algorithm [12] represent one of
the principal state-of-the-art approaches in QBF solving. Akin to modern SAT
solvers, these solvers rely on successive variable assignments in combination with
fast constraint propagation and learning. Unlike SAT solvers, however, search-
based QBF solvers are constrained by the variable dependencies induced by the
quantifier prefix1: while SAT solvers can assign variables in any order, search-
based QBF solvers can only assign variables from the leftmost quantifier block

This research was partially supported by FWF grants P27721 and W1255-N23.
1 We consider QBFs in prenex normal form.

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 500–518, 2016.
DOI: 10.1007/978-3-319-40970-2 31

Long Distance Q-Resolution with Dependency Schemes 501

that contains unassigned variables, since the assignment of a variable further to
the right might depend on the variable assignment to this block. In the most
extreme case, this forces solvers into a fixed order of variable assignments, ren-
dering decision variable heuristics ineffective.

The search-based solver DepQBF uses dependency schemes to partially
bypass this restriction [8,28]. Dependency schemes can sometimes identify pairs
of variables as independent, allowing the solver to assign them in any order. This
gives decision heuristics more freedom and results in increased performance [8].

While this provides a strong motivation to use dependency schemes, their
integration with QDPLL poses challenges of its own. Soundness of the proof sys-
tem underlying QDPLL with the standard dependency scheme as implemented
in DepQBF was shown only recently [36], and combining other state-of-the-art
techniques with dependency schemes is often highly nontrivial. In this paper, we
focus on two such issues:

(a) Long distance Q-resolution permits the derivation of tautological clauses in
certain cases [2,39,40]. This system can be used in constraint learning as an
alternative to Q-resolution, leading to fewer backtracks during search and,
sometimes, reduced runtime [16]. In addition, clause learning based on long
distance Q-resolution is substantially easier to implement. Currently, how-
ever, DepQBF does not permit learning based on long distance Q-resolution
in conjunction with dependency schemes, as the resulting proof system is
not known to be sound.

(b) For applications in verification and synthesis, it is not enough for solvers
to decide whether an input QBF is true or false—they also have to gen-
erate a certificate. Such certificates can be efficiently constructed from Q-
resolution [2] and even long distance Q-resolution proofs [3]. However, it
is not clear whether this is possible for proofs generated by DepQBF with
the standard dependency scheme, and proof generation with the standard
dependency scheme is disabled by default.

We address (a) by showing that long distance Q-resolution combined with
universal reduction according to the reflexive resolution-path dependency
scheme [36] is sound. In fact, we prove that this proof system allows for certifi-
cate extraction in polynomial time, thus resolving (b). In particular, these results
hold for the standard dependency scheme, which is weaker than the reflexive
resolution-path dependency scheme.

Our proof of this result relies on an interpretation of Q-resolution refutations
as winning strategies for the universal player in the evaluation game [20]. Defin-
ing LDQ(D) as the proof system consisting of long distance Q-resolution with
universal reduction according to a dependency scheme D, we identify a natural
property of a dependency scheme D that not only allows for the interpretation
of an LDQ(D)-refutation as a winning strategy for the universal player, but even
implies certificate extraction in time O(|P| · n) from an LDQ(D)-refutation P
of a QBF with n variables. We then show that the reflexive resolution path
dependency scheme in fact has this property.

502 T. Peitl et al.

One of our motivations for studying the combination of long distance Q-
resolution and dependency schemes is that all of the required logic is already
implemented in DepQBF—it is simply that, by default, these features cannot
be enabled at the same time because it is unclear whether the resulting solver
configuration is sound. To complement our theoretical results, we bypassed these
checks and performed experiments with DepQBF and constraint learning based
on LDQ(D) with the standard dependency scheme. Our experiments show that
performance with this type of learning is on par with and—in some cases—even
surpasses the performance of DepQBF with other configurations of constraint
learning.

Due to space constraints, several proofs had to be omitted.

2 Preliminaries

Formulas and Assignments. A literal is a negated or unnegated variable. If x
is a variable, we write x = ¬x and ¬x = x, and let var(x) = var(¬x) = x.
If X is a set of literals, we write X for the set {x : x ∈ X }. A clause is a
finite disjunction of literals. We call a clause tautological if it contains the same
variable negated as well as unnegated. A CNF formula is a finite conjunction
of non-tautological clauses. Whenever convenient, we treat clauses as sets of
literals, and CNF formulas as sets of sets of literals. We write var(C) for the set
of variables occuring (negated or unnegated) in a clause C, that is, var(C) =
{ var(�) : � ∈ C }. Moreover, we let var(ϕ) =

⋃
C∈ϕ var(C) denote the set of

variables occurring in a CNF formula ϕ.
A truth assignment (or simply assignment) to a set X of variables is a map-

ping τ : X → {0, 1}. We write [X] for the set of truth assignments to X, and
extend τ : X → {0, 1} to literals by letting τ(¬x) = 1 − τ(x) for x ∈ X. Let
τ : X → {0, 1} be a truth assignment. The restriction C[τ] of a clause C by τ is
defined as follows: if there is a literal � ∈ C ∩ (X ∪ X) such that τ(�) = 1 then
C[τ] = 1. Otherwise, C[τ] = C \ (X ∪X). The restriction ϕ[τ] of a CNF formula
ϕ by the assignment τ is defined ϕ[τ] = {C[τ] : C[τ] �= 1 }.
PCNF Formulas. A PCNF formula is denoted by Φ = Q.ϕ, where ϕ is a CNF
formula and Q = Q1X1 . . . QnXn is a sequence such that Qi ∈ {∀,∃}, Qi �= Qi+1

for 1 ≤ i < n, and the Xi are pairwise disjoint sets of variables. We call ϕ the
matrix of Φ and Q the (quantifier) prefix of Φ, and refer to the Xi as quantifier
blocks. We require that var(ϕ) = X1 ∪ · · · ∪ Xn and write var(Φ) = var(ϕ). We
define a partial order <Φ on var(ϕ) as x <Φ y ⇔ x ∈ Xi, y ∈ Xj , i < j. We
extend <Φ to a relation on literals in the obvious way and drop the subscript
whenever Φ is understood. For x ∈ var(Φ) we let RΦ(x) = { y ∈ var(Φ) : x <Φ y }
and LΦ(x) = { y ∈ var(Φ) : y <Φ x } denote the sets of variables to the right
and to the left of x in Φ, respectively. Relative to the PCNF formula Φ, variable
x is called existential (universal) if x ∈ Xi and Qi = ∃ (Qi = ∀). The set of
existential (universal) variables occurring in Φ is denoted var∃(Φ) (var∀(Φ)).
The size of a PCNF formula Φ = Q.ϕ is defined as |Φ| =

∑
C∈ϕ |C|. If τ is

an assignment, then Φ[τ] denotes the PCNF formula Q′.ϕ[τ], where Q′ is the

Long Distance Q-Resolution with Dependency Schemes 503

quantifier prefix obtained from Q by deleting variables that do not occur in ϕ[τ].
True and false PCNF formulas are defined in the usual way.
Countermodels. Let Φ = Q.ϕ be a PCNF formula. A countermodel of Φ is an
indexed family {fu}u∈var∀(Φ) of functions fu : [LΦ(u)] → {0, 1} such that ϕ[τ] =
{∅} for every assignment τ : var(Φ) → {0, 1} satisfying τ(u) = fu(τ |LΦ(u)) for
u ∈ var∀(Φ).

Proposition 1. (Folklore) A PCNF formula is false if, and only if, it has a
countermodel.

3 Dependency Schemes and LDQ(D)-Resolution

In this section, we introduce the proof system LDQ(D), which combines Q(D)-
resolution [36] with long-distance Q-resolution [2]. Q-resolution is a generaliza-
tion of propositional resolution to PCNF formulas [25]. Q-resolution is of prac-
tical interest due to its relation to search based QBF solvers that implement
the QDPLL algorithm [12]: the trace of a QDPLL solver generated for a false
PCNF formula corresponds to a Q-resolution refutation [17]. QDPLL general-
izes the well-known DPLL procedure [14] from SAT to QSAT. In a nutshell,
DPLL searches for a satisfying assignment of an input formula by propagating
unit clauses and assigning pure literals until the formula cannot be simplified
any further, at which point it picks an unassigned variable and branches on
the assignment of this variable. Although any of the remaining variables can
be chosen for assignment, the order of assignment can have significant effects
on the runtime, and modern SAT solvers derived from the DPLL algorithm use
sophisticated heuristics to determine what variable to assign next [31].

In QDPLL, the quantifier prefix imposes constraints on the order of vari-
able assignments: a variable may be assigned only if it occurs in the leftmost
quantifier block with unassigned variables. Often, this is more restrictive than
necessary. For instance, variables from disjoint subformulas may be assigned in
any order. Intuitively, a variable can be assigned as long as it does not depend
on any unassigned variable. This is the intuition underlying a generalization
of QDPLL implemented in the solver DepQBF [8,28]. DepQBF uses a depen-
dency scheme [34] to compute an overapproximation of variable dependencies.
Dependency schemes are mappings that associate every PCNF formula with a
binary relation on its variables that refines the order of variables in the quantifier
prefix.2

Definition 1 (Dependency Scheme). A dependency scheme is a mapping D
that associates each PCNF formula Φ with a relation DΦ ⊆ { (x, y) : x <Φ y }
called the dependency relation of Φ with respect to D.

2 The original definition of dependency schemes [34] is more restrictive than the one
given here, but the additional requirements are irrelevant for the purposes of this
paper.

504 T. Peitl et al.

The mapping which simply returns the prefix ordering of an input formula can
be thought of as a baseline dependency scheme:

Definition 2 (Trivial Dependency Scheme). The trivial dependency
scheme Dtrv associates each PCNF formula Φ with the relation Dtrv

Φ =
{ (x, y) : x <Φ y }.

DepQBF uses a dependency relation to determine the order in which variables
can be assigned: if y is a variable and there is no unassigned variable x such that
(x, y) is in the dependency relation, then y is considered ready for assignment.
DepQBF also uses the dependency relation to generalize the ∀-reduction rule
used in clause learning [8]. As a result of its use of dependency schemes, DepQBF
generates proofs in a generalization of Q-resolution called Q(D)-resolution [36],
a proof system that takes a dependency scheme D as a parameter.

Dependency schemes can be partially ordered based on their dependency
relations: if the dependency relation computed by a dependency scheme D1 is a
subset of the dependency relation computed by a dependency scheme D2, then
D1 is more general than D2. The more general a dependency scheme, the more
freedom DepQBF has in choosing decision variables. Currently, (aside from the
trivial dependency scheme) DepQBF supports the so-called standard dependency
scheme [34].3 We will work with the more general reflexive resolution-path depen-
dency scheme [36], a variant of the resolution-path dependency scheme [35,38].
This dependency scheme computes an overapproximation of variable dependen-
cies based on whether two variables are connected by a (pair of) resolution
path(s).

Definition 3 (Resolution Path). Let Φ = Q.ϕ be a PCNF formula and let
X be a set of variables. A resolution path (from �1 to �2k) via X (in Φ) is a
sequence �1, . . . , �2k of literals satisfying the following properties:

1. For all i ∈ [k], there is a Ci ∈ ϕ such that �2i−1, �2i ∈ Ci.
2. For all i ∈ [k], var(�2i−1) �= var(�2i).
3. For all i ∈ [k − 1], {�2i, �2i+1} ⊆ X ∪ X.
4. For all i ∈ [k − 1], �2i = �2i+1.

If π = �1, . . . , �2k is a resolution path in Φ via X, we say that �1 and �2k are
connected in Φ (with respect to X). For every i ∈ {1, . . . , k} we say that π goes
through var(�2i).

One can think of a resolution path as a potential chain of implications: if each
clause Ci contains exactly two literals, then assigning �1 to 0 requires setting �2k

to 1. If, in addition, there is such a path from �1 to �2k, then �1 and �2k have
to be assigned the same value. Accordingly, the resolution path dependency
scheme identifies variables connected by a pair of resolution paths as potentially
dependent on each other.

3 Strictly speaking, it uses a refined version of the standard dependency scheme [28,
p. 49].

Long Distance Q-Resolution with Dependency Schemes 505

(input clause)
C

C1 ∨ e ¬e ∨ C2 (resolution)
C1 ∨ C2

An input clause C ∈ ϕ can be used as an axiom. From two clauses C1 ∨ e and ¬e ∨ C1,
where e is an existential variable, the (long-distance) resolution rule can derive the clause
C1 ∨ C2, provided that e < var() for every universal literal such that ∈ C1 and ∈ C2.

C (∀-reduction)
C \ {u, ¬u}

The ∀-reduction rule derives the clause C \ {u, ¬u} from C, where u ∈ var(C) is a universal
variable such that (u, e) /∈ DΦ for every existential variable e ∈ var(C).

Fig. 1. Derivation rules of LDQ(D)-resolution for a PCNF formula Φ = Q.ϕ.

Definition 4 (Dependency pair). Let Φ be a PCNF formula and x, y ∈
var(Φ). We say {x, y} is a resolution-path dependency pair of Φ with respect
to X ⊆ var∃(Φ) if at least one of the following conditions holds:

– x and y, as well as ¬x and ¬y, are connected in Φ with respect to X.
– x and ¬y, as well as ¬x and y, are connected in Φ with respect to X.

Definition 5. The reflexive resolution-path dependency scheme is the mapping
Drrs that assigns to each PCNF formula Φ = Q.ϕ the relation Drrs

Φ = {x <Φ

y : {x, y} is a resolution-path dependency pair in Φ with respect to RΦ(x) \
var∀(Φ) }.

Both Q-resolution and Q(D)-resolution only allow for the derivation of non-
tautological clauses, that is, clauses that do not contain a literal negated as
well as unnegated. Long-distance Q-resolution is a variant of Q-resolution that
admits tautological clauses in certain cases [2]. Variants of QDPLL that allow
for learnt clauses to be tautological [39,40] have been shown to generate proofs
in long-distance Q-resolution [16].

We combine long-distance resolution with Q(D)-resolution to obtain long-
distance Q(D)-resolution (LDQ(D)-resolution). The derivation rules of LDQ(D)-
resolution are shown in Fig. 1. Here, as in the rest of the paper, D denotes an
arbitrary dependency scheme.

A derivation in a proof system consists of repeated applications of the deriva-
tion rules to derive a clause from the clauses of an input formula. Here, deriva-
tions will be represented by node-labeled directed acyclic graphs (DAGs). More
specifically, we require these DAGs to have a unique sink (that is, a node without
outgoing edges) and each of their nodes to have at most two incoming edges. We
further assume an ordering on the in-neighbors (or parents) of every node with
two incoming edges—that is, each node has a “first” and a “second” in-neighbor.
Referring to such DAGs as proof DAGs, we define the following two operations
to represent resolution and ∀-reduction:

506 T. Peitl et al.

1. If � is a literal and P1 and P2 are proof DAGs with distinct sinks v1 and v2,
then P1 � P2 is the proof DAG consisting of the union of P1 and P2 along
with a new sink v that has two incoming edges, the first one from v1 and the
second one from v2. Moreover, if C1 is the label of v1 in P1 and C2 is the
label of v2 in P2, then v is labeled with the clause (C1 \ {�}) ∪ (C2 \ {�}).

2. If u is a variable and P is a proof DAG with a sink w labeled with C, then
P − u denotes the proof DAG obtained from P by adding an edge from w to
a new node v such that v is labeled with C \ {u,¬u}.

Definition 6. (Derivation). An LDQ(D)-resolution derivation (or LDQ(D)-
derivation) of a clause C from a PCNF formula Φ = Q.ϕ is a proof DAG P
satisfying the following properties. Source nodes are labeled with input clauses
from ϕ. If a node with label C has parents labeled C1 and C2 then C can be
derived from C1 and C2 by (long-distance) resolution. If a node labeled with a
clause C has a single parent with label C ′ then C can be derived from C ′ by
∀-reduction with respect to the dependency scheme D. We refer to these nodes
as input nodes, resolution nodes, and ∀ -reduction nodes, respectively.

Let P be an LDQ(D)-derivation from a PCNF formula Φ. The (clause) label of
the sink node is called the conclusion of P, denoted Cl(P). If the conclusion of
P is the empty clause then we refer to P as an LDQ(D)-refutation of Φ. For a
node v of P, the subderivation (of P) rooted at v is the proof DAG induced by
v and its ancestors in P. It is straightforward to verify that the resulting proof
DAG is again an LDQ(D)-derivation from Φ. For convenience, we will identify
(sub)derivations with their sinks. The size of P, denoted |P|, is the total number
of literal occurrences in clause labels of P.

4 Soundness of and Strategy Extraction for LDQ(Drrs)

A PCNF formula can be associated with an evaluation game played between an
existential and a universal player. These players take turns assigning quantifier
blocks in the order of the prefix. The existential player wins if the matrix eval-
uates to 1 under the resulting variable assignment, while the universal player
wins if the matrix evaluates to 0. One can show that the formula is true (false)
if and only if the existential (universal) player has a winning strategy in this
game, and this winning strategy is a (counter)model.

Goultiaeva, Van Gelder and Bacchus [20] proved that a Q-resolution refu-
tation can be used to compute winning moves for the universal player in the
evaluation game. The idea is that universal maintains a “restriction” of the
refutation by the assignment constructed in the evaluation game, which is a
refutation of the restricted formula.

For assignments made by the existential player, the universal player only
needs to consider each instance of resolution whose pivot variable is assigned:
one of the premises is not satisifed and can be used to (re)construct a refutation.

When it is universal’s turn, the quantifier block for which she needs to pick
an assignment is leftmost in the restricted formula. This means that ∀-reduction

Long Distance Q-Resolution with Dependency Schemes 507

of these variables is blocked by any of the remaining existential variables and can
only be applied to a purely universal clause. In a Q-resolution refutation, these
variables must therefore be reduced at the very end, and because Q-resolution
does not permit tautological clauses, only one polarity of each universal variable
from the leftmost block can appear in a refutation. It follows that universal can
maintain a Q-resolution refutation by assigning variables from the leftmost block
in such a way as to map the associated literals to 0, effectively deleting them
from the remaining Q-resolution refutation.

In this manner, the universal player can maintain a refutation until the end
of the game, when all variables have been assigned. At that point, a refutation
can consist only of the empty clause, which means that the assignment chosen
by the two players falsifies a clause of the original matrix and universal has won
the game.

Egly, Lonsing, and Widl [16] observed that this argument goes through even
in the case of long-distance Q-resolution, since a clause containing both u and
¬u for a universal variable u can only be derived by resolving on an existential
variable to the left of u, but no such existential variable exists if u is from the
leftmost block.

In this section, we will prove that this argument can be generalized
to LDQ(Drrs)-refutations. We illustrate this correspondence with an example:

Example 1. Consider the PCNF formula

Φ = ∃x ∀u ∃e, y (x ∨ u ∨ y) ∧ (x ∨ u ∨ y) ∧ (x ∨ y) ∧ (x ∨ e) ∧ (u ∨ y) ∧ (y ∨ e)

Figure 2 shows an LDQ(Drrs)-refutation of Φ. The only universal variable is u, so
a strategy for the universal player in the evaluation game associated with Φ has
to determine an assignment to u given an assignment to x, the only (existential)
variable preceding u. The figure illustrates how to compute the assignment to
u for the two possible assignments τ : {x} → {0, 1} from the restriction of the
refutation by τ . In both cases, only one polarity of u occurs in the restricted
refutation and therefore it is easy for universal to determine the correct assign-
ment. Notice that in one of the cases, a generalized ∀-reduction node remains
present in the restriction—this shows that we cannot limit ourselves to looking
at the final reduction step in the proof when looking for the variables to assign
(as is the case with ordinary Q-resolution refutations, cf. [20]).

In all of the above cases, the key property that allows universal to maintain a
refutation is that universal variables from a leftmost quantifier block may appear
in at most one polarity. We will show that, indeed, this property is sufficient for
soundness of LDQ(D) when combined with a natural monotonicity property of
dependency schemes.

Definition 7. Let D be a dependency scheme. We say that D is monotone, if for
every PCNF formula Φ and every assignment τ to a subset of varΦ, DΦ[τ] ⊆ DΦ.
We say that D is simple, if for every PCNF formula Φ = ∀XQ.ϕ, every LDQ(D)-
derivation P from Φ, and every universal variable u ∈ X, u or u does not appear
in P. We say that D is normal if it is both monotone and simple.

508 T. Peitl et al.

Fig. 2. An LDQ(Drrs)-refutation of the formula Φ from Example 1 and two restrictions.

As in the case of Q-resolution, universal’s move for a particular quantifier block
can be computed from the assignment corresponding to the previous moves and
the refutation in polynomial time. Since every polynomial-time algorithm can be
implemented by a family of polynomially-sized circuits, and because these cir-
cuits can even be computed in polynomial time [1, p. 109], it follows that LDQ(D)
admits polynomial-time strategy extraction when D is normal. While the strat-
egy extraction algorithm based on these general considerations is unlikely to
be efficient, the algorithm for computing winning moves for universal is simple
enough to be amenable to efficient simulation by a Boolean circuit. In Sect. 4.1,
we give a direct construction that leads to the following result.

Theorem 1. Let D be a normal dependency scheme. Then, there is an algorithm
that computes a countermodel of a PCNF formula Φ with n variables from an
LDQ(D)-refutation P of Φ in time O(|P| · n).

As an application of this general result, we will prove that the reflexive resolution-
path dependency scheme is normal in Sect. 4.2.

Theorem 2. Drrs is normal.

Corollary 1. There is an algorithm that computes a countermodel of a PCNF
formula Φ with n variables from an LDQ(Drrs)-refutation P of Φ in time O(|P| ·
n).

This result immediately carries over to the less general standard dependency
scheme:

Corollary 2. There is an algorithm that computes a countermodel of a PCNF
formula Φ with n variables from an LDQ(Dstd)-refutation P of Φ in time O(|P| ·
n).

Long Distance Q-Resolution with Dependency Schemes 509

In combination with Proposition 1, these results imply soundness of both proof
systems.

Corollary 3. The systems LDQ(Dstd) and LDQ(Drrs) are sound.

4.1 Certificate Extraction for Normal Dependency Schemes

We begin by formally defining the “restriction” of an LDQ(D)-derivation by
an assignment, which is a straightforward generalization of this operation for
Q-resolution derivations [20].4 The result of restricting a derivation is either a
derivation or the object �, which can be interpreted as representing the tauto-
logical clause containing every literal. Accordingly, we stipulate that � ∈ � for
every literal �.

Definition 8. (Restriction). Let Φ be a PCNF formula and let P be an
LDQ(D)-derivation from Φ. Further, let X ⊆ var(Φ) and let τ : X → {0, 1}
be a truth assignment. The restriction of P by τ , in symbols P[τ], is defined as
follows.

1. If P is an input node there are two cases. If Cl(P)[τ] = 1 then P[τ] = �.
Otherwise, P[τ] is the proof DAG consisting of a single node labeled with
Cl(P)[τ].

2. If P = P1 � P2, that is, if P is a resolution node, we distinguish four cases:
(a) If � /∈ Cl(P1[τ]) then P[τ] = P1[τ].
(b) If � ∈ Cl(P1[τ]) and � /∈ Cl(P2[τ]) then P[τ] = P2[τ].
(c) If � ∈ Cl(P1[τ]), � ∈ Cl(P2[τ]), and P1[τ] = � or P2[τ] = �, we let

P[τ] = �.
(d) If � ∈ Cl(P1[τ]), � ∈ Cl(P2[τ]), P1[τ] �= �, and P2[τ] �= �, we define

P[τ] = P1[τ] � P2[τ].
3. If P = P ′ − u, that is, if P is a ∀-reduction node, we distinguish three cases:

(a) If P ′[τ] = � then P[τ] = �.
(b) If P ′[τ] �= � and u /∈ var(Cl(P ′[τ])) then P[τ] = P ′[τ].
(c) If P ′[τ] �= � and u ∈ var(Cl(P ′[τ])) then P[τ] = P ′[τ] − u.

If D is a monotone dependency scheme, LDQ(D)-refutations are preserved under
restriction by an existential assignment (cf. [20, Lemma4]). This is stated in the
following lemma, which can by proved by a straightforward induction on the
structure of the LDQ(D)-derivation.

Lemma 1. Let D be a monotone dependency scheme, let P be an LDQ(D)-
derivation from a PCNF formula Φ, let E ⊆ var∃(Φ), and let τ : E → {0, 1} be
an assignment. If P[τ] = � then Cl(P)[τ] = 1. Otherwise, P[τ] is an LDQ(D)-
derivation from Φ[τ] such that Cl(P[τ]) ⊆ Cl(P)[τ].

4 Our definition slightly differs from the original for the resolution rule: if restriction
removes the pivot variable from both premises, we simply pick the (restriction of
the) first premise as the result (rather than the clause containing fewer literals).
This simplifies the certificate extraction argument given below.

510 T. Peitl et al.

Above, we argued that the universal player can use an LDQ(D)-refutation
for a normal dependency scheme D in order to compute winning moves in the
evaluation game associated with a PCNF formula and that this can be used to
compute a countermodel of the formula in polynomial time. We now prove this
directly, by showing how to construct a circuit implementing a countermodel
from an LDQ(D)-refutation.

We begin by describing auxiliary circuits simulating the restriction operation.
Let Φ = Q1X1 . . . QkXk.ϕ be a PCNF formula and let P be a refutation of Φ.
For each quantifier block Xi, each subderivation S of P, and each literal �, we
will construct circuits topi

S and containsi
S,� with inputs from X =

⋃
j<i Xj

such that, for every assignment σ : X → {0, 1},

topi
S [σ] = 1 ⇐⇒ S[σ] = � (1)

containsi
S,�[σ] = 1 ⇐⇒ � ∈ Cl(S[σ]) (2)

We first describe our construction and then prove that it satisfies the above
properties in Lemma 2. Let S be an input node. We let

top1S :=
∨

{Cl(S) ∩ (X1 ∪ X1) },

and define topi
S for 1 < i ≤ k as

topi
S := topi−1

S ∨
∨

{Cl(S) ∩ (Xi ∪ Xi) }.

Moreover, for 1 ≤ i ≤ k we define containsi
S,� as

containsi
S,� =

{
1 if � ∈ Cl(S) \ (X ∪ X),
topi

S otherwise.

For non-input nodes, we proceed as follows. If S = S1 q S2, we define topi
S as

topi
S = (containsi

S1,q ∧ topi
S2

) ∨ (containsi
S2,q ∧ topi

S1
),

and if S = S ′ − u, we let

topi
S := topi

S′ .

For the containsi
S,� circuit, we distinguish two cases. Let � be a literal and S a

derivation. If � /∈ Cl(S) we simply let

containsi
S,� := topi

S .

Long Distance Q-Resolution with Dependency Schemes 511

Otherwise, if � ∈ Cl(S), we have to consider two cases. First, if S = S1 q S2,
we let

containsi
S,� =topi

S ∨
(¬containsi

S1,q ∧ containsi
S1,�) ∨

(containsi
S1,q ∧ ¬containsi

S2,q ∧ containsi
S2,�) ∨

(containsi
S1,q ∧ containsi

S2,q ∧ (containsi
S1,� ∨ containsi

S2,�)).

Second, if S = S ′ − u, then

containsi
S,� := containsi

S′,�.

To implement the winning strategy for universal sketched above, we further
construct circuits polarityS,u for each node S of P and each universal variable
u ∈ var∀(Φ), such that, for each assignment τ : LΦ(u) → {0, 1},

polarityS,u[τ] = 1 ⇐⇒ u occurs in S[τ]. (3)

Let u ∈ Xi be a universal variable from the ith quantifier block. If S is an input
node, we simply define

polarityS,u := containsi
S,u,

and if S = S ′ − u is a ∀-reduction node, we let

polarityS,u := polarityS′,u.

If S = S1 q S2, then

polarityS,u :=(¬containsi
S1,q ∧ polarityS1,u) ∨

(containsi
S1,q ∧ ¬containsi

S2,q ∧ polarityS2,u) ∨
(containsi

S1,q ∧ containsi
S2,q ∧
(polarityS1,u ∨ polarityS2,u)).

Lemma 2. Let Φ = Q1X1 . . . QkXk.ϕ be a PCNF formula and let P be an
LDQ(D)-derivation from Φ. For each 1 ≤ i ≤ k, each literal �, every u ∈
var∀(Φ) ∩ Xi, and every truth assignment σ :

⋃i−1
j=1 Xj → {0, 1}, topi

P sat-
isfies (1), containsi

P,� satisfies (2), and polarityP,u satisfies (3).

These auxiliary circuits can be efficiently constructed in a top-down manner,
from the input nodes to the conclusion. By a careful analysis, we obtain the
following:

Lemma 3. There is an algorithm that, given a PCNF formula Φ and an
LDQ(D)-derivation P from Φ, computes the circuits polarityP,u for every uni-
versal variable u in time O(|P| · n), where n = |var(Φ)|.

512 T. Peitl et al.

Using Lemma 1, we can spell out the argument sketched at the beginning
of this section and prove that for normal dependency schemes D, the universal
player can maintain an LDQ(D)-refutation throughout the evaluation game by
successively restricting an initial LDQ(D)-refutation by both players’ moves and
assigning universal variables from the leftmost remaining block X so as to falsify
the (unique) literals from X remaining the refutation. Lemma 2 tells us that the
polarity circuits can be used to implement this strategy, which leads to the
following lemma.

Lemma 4. Let D be a normal dependency scheme, let P be an LDQ(D)-
refutation of a PCNF formula Φ. Then the family {fu}u∈var∀(Φ) of functions
fu = ¬polarityP,u is a countermodel of Φ.

Theorem 1 immediately follows from from Lemmas 3 and 4.

4.2 The Reflexive Resolution-Path Dependency Scheme is Normal

In order to prove Theorem2 and show that Drrs is normal, we will need some
insight into the relationship between resolution paths and LDQ(D)-derivations.
We begin by observing that no clause derived by LDQ(D) from a PCNF formula
∀XQ.ϕ can contain both u and ¬u if u ∈ X, as such a clause would have to be
derived by resolving on a variable to the left of u.

Lemma 5. Let P be an LDQ(D)-derivation from a PCNF formula Φ = ∀XQ.ϕ
and let u ∈ X. Then Cl(P) cannot contain both u and ¬u.

Let P be an LDQ(D)-refutation of a PCNF formula Φ and let u be a universal
variable such that both u and ¬u appear in P. Since P is a refutation, both u
and ¬u have to be eventually removed by ∀-reduction. By the preceding lemma,
u and ¬u cannot occur together in a clause. Now, if C is a purely universal
clause appearing in P, then C must be followed by a sequence of ∀-reduction
steps that lead to the empty clause. Since P contains only a single node labeled
with the empty clause, this means that each purely universal clause appearing
in P must be part of a single final sequence of ∀-reduction steps concluding the
refutation, so that C ⊆ C ′ or C ′ ⊆ C holds for every pair C,C ′ of such clauses.
It follows that we cannot have a purely universal clause C with u ∈ C and a
purely universal clause C ′ with ¬u ∈ C ′ such that C and C ′ both occur in P.
So at least one of u and ¬u must be reduced from a clause which still contains
an existential variable. We will prove that (u, e) ∈ Drrs

Φ for some such variable e.
To show this, we establish a connection between resolution paths and the

structure of LDQ(D)-refutations: resolution paths can be used to determine
whether two literals may occur together in a clause derived by LDQ(D). The
following statement can be proved by a simple induction on the structure of
P (cf. [35,38]).

Lemma 6. Let P be an LDQ(D)-derivation from a PCNF formula Φ and let
�, �′ be literals in Cl(P). Then � and �′ are connected in Φ with respect to the set
of variables appearing as pivots in P.

Long Distance Q-Resolution with Dependency Schemes 513

If a clause C ′ appears in the derivation of a clause C and C � C ′, then C
cannot be derived from C ′ by ∀-reduction alone, and some existential variable
e ∈ var(C ′) must be resolved on in the derivation of C. It follows that there
have to be resolution paths connecting literals in C ′ with literals in C \ C ′ that
go through an existential variable appearing in C ′. This is made precise in the
following lemma.

Lemma 7. Let P be an LDQ(D)-derivation from a PCNF formula Φ, let P ′ be
a node of P, and let �′ ∈ Cl(P ′). For each literal � ∈ Cl(P) \Cl(P ′), there is an
existential variable e ∈ var(Cl(P ′)) and a resolution path from �′ to � in Φ via
the set of pivots in P that goes through e.

Together, the two preceding lemmas can be used to show that an LDQ(D)-
refutation that contains both u and ¬u from an outermost universal quantifier
block induces a resolution path from u to ¬u through an existential variable e
such that u and e or ¬u and e occur together in a clause.

Lemma 8. Let P be an LDQ(D)-refutation of a PCNF formula Φ = ∀XQ.ϕ
and let u ∈ X be a universal variable such that P contains nodes P1 and P2

with u ∈ Cl(P1) and ¬u ∈ Cl(P2). Then there is an existential variable e ∈
var(Cl(P1) ∪ Cl(P2)) and a resolution path in Φ from u to ¬u via variables
resolved on in P that goes through e.

Proof (of Theorem2). We first prove that Drrs is simple. Let P be an LDQ(Drrs)-
refutation of a PCNF formula Φ = ∀XQ.ϕ and let u ∈ X. Suppose that u and
¬u both appear in P. Since P is a refutation, there have to be ∀-reduction nodes
P1 = P ′

1 − u such that u ∈ Cl(P ′
1) and P2 = P ′

2 − u such that ¬u ∈ Cl(P ′
2). By

Lemma 8, there has to be a resolution path π from u to ¬u via variables resolved
on in P such that π goes through an existential variable e ∈ var(Cl(P1)∪Cl(P2)).
We can think of π as the concatentation of two resolution paths π1 and π2,
where π1 is a resolution path from u to � and π2 is a resolution path from �
to ¬u, where � is a literal with var(�) = e. That is, {u, e} is a resolution-path
dependency pair of Φ with respect to variables resolved on in P. Since u is
leftmost in the quantifier prefix, P only resolves on existential variables to the
right of u and thus (u, e) ∈ Drrs

Φ . But (u, e) /∈ Drrs
Φ for each existential variable

e ∈ var(Cl(P ′
1) ∪ Cl(P ′

2)) by definition of LDQ(Drrs), a contradiction. To see
that Drrs is monotone, note that a resolution path in any restriction Φ[τ] of a
PCNF formula Φ is also a resolution path in Φ. ��

5 Experiments

To gauge the potential of clause learning based on LDQ(Dstd), we ran exper-
iments with the search-based solver DepQBF.5 By default, DepQBF supports
proof generation only in combination with the trivial dependency scheme—in

5 http://lonsing.github.io/depqbf/

http://lonsing.github.io/depqbf/

514 T. Peitl et al.

that case, it generates Q-resolution or long distance Q-resolution proofs (depend-
ing on whether long distance resolution is enabled). However, by uncommenting
a few lines in the source code, proof generation can also be enabled with the stan-
dard dependency scheme, and this option can even be combined with long dis-
tance resolution. For false formulas, the resulting proofs are Q(Dstd)-resolution
or LDQ(Dstd)-resolution refutations.

We compared the performance of DepQBF in four configurations,6 each using
a different proof system for constraint learning:

1. Long distance Q-resolution with ∀/∃-reduction according to Dstd (LDQD).
2. Long distance Q-resolution with ordinary ∀/∃-reduction (LDQ).
3. Q-resolution with ∀/∃-reduction according to Dstd (QD).
4. Ordinary Q-resolution (Q).

These experiments were performed on a cluster with Intel Xeon E5649 processors
at 2.53 GHz running 64-bit Linux. We set time and memory limits of 900 seconds
and 4 GB, respectively.

Instances were taken from two tracks of the QBF Gallery 2014: the applica-
tions track consisting of 6 instance families and a total of 735 formulas, and the
QBFLib track consisting of 276 formulas.

For our first set of experiments, we disabled dynamic QBCE (Quanti-
fied Blocked Clause Elimination), a technique introduced with version 5.0 of
DepQBF [29]. We further used bloqqer7 with default settings as a preproces-
sor. Since LDQ(Dstd) generalizes both long distance Q-resolution and Q(Dstd)-
resolution, we were expecting a performance increase with LDQ(Dstd)-learning
compared to learning based on the other proof systems. However, all four con-
figurations showed virtually identical performance on both the application and
QBFlib benchmark sets in terms of total runtime and instances solved within
the time limit.

To get a more detailed picture, we broke down the results for the applica-
tion track by instance family, limiting ourselves to instances that were solved
by at least one configuration. The barplot in Fig. 3 shows that there are con-
siderable differences in performance between solver configurations for individual
instances families, with each solver configuration being outperformed by another
configuration on at least one family.

For our second set of experiments, we turned on dynamic QBCE. This led to
a significant performance increase both in terms of number of instances solved
within the time limit and total runtime for both benchmark sets, a result that
is consistent with the findings in [29]. However, as far as the performance of
LDQ(Dstd)-learning is concerned, the application and QBFlib tracks differed
significantly for this experiment.

While LDQ(Dstd)-learning fared worst among the configurations both with
respect to instances solved and total runtime on the application track, it was

6 As a sanity check, we verified that all configurations that were able to solve a par-
ticular instance returned the same result.

7 http://fmv.jku.at/bloqqer/

http://fmv.jku.at/bloqqer/

Long Distance Q-Resolution with Dependency Schemes 515

0

50

100

150

bomb complexity dungeon hardness planning testing

Configuration

LDQ

LDQD

Q

QD

Fig. 3. Average runtime in seconds (y-axis) for instances from the application track for
each instance family (x-axis), by solver configuration (with preprocessing, but without
dynamic QBCE). Here, we only considered instances that were solved by at least one
configuration.

0

250

500

750

80 100 120 140

Configuration LDQ LDQD Q QD

Fig. 4. Solved instances from the
QBFLib track (x-axis) sorted by
runtime (y-axis), by solver con-
figuration (with preprocessing and
dynamic QBCE).

Table 1. Number of solved instances,
solved true instances, solved false instances,
and total runtime in seconds (including
timeouts) for the application track, with
QBCE (but without preprocessing)

Configuration Solved True False Time

LDQD 440 223 217 287012

LDQ 435 223 212 291574

QD 440 225 215 291661

Q 437 221 216 337141

the best configuration for the QBFlib track in both respects. As Fig. 4 shows,
using the standard dependency scheme was beneficial both with and without
long distance resolution for the QBFlib instances.

For our final set of experiments, we left dynamic QBCE enabled but dis-
abled preprocessing for the application track, as this was shown to lead to a
performance increase in the case of learning with ordinary Q-resolution [29]. As
expected, this resulted in a performance increase across the board (see Table 1).
Moreover, LDQ(Dstd)-learning was the best configuration in terms of instances
solved (on par with Q(Dstd)-resolution) as well as in terms of overall runtime.

516 T. Peitl et al.

6 Discussion

The experiments in Sect. 5 show that DepQBF can benefit from learning based
on LDQ(Dstd). This benefit is essentially “for free”, in that it does not require
any changes to the implementation, but soundness of the resulting solver con-
figuration is not immediate. The results of Sect. 4 contribute to a soundness
proof, but they remain partial in two respects: first, soundness of LDQ(Dstd)
only implies that we can trust the solver when it outputs “false”. To prove that
“true” answers can be trusted as well, one has to show soundness of quantified
term resolution when combined with the standard dependency scheme and long
distance resolution. Alternatively, one could use LDQ(Dstd) for clause learning
only, in combination with ordinary long distance Q-resolution for cube learn-
ing. Second, we observed synergies only when dynamic QBCE was activated,
and it remains to show that clause learning based on LDQ(Dstd) is sound in
combination with this technique.

We take Theorem 1 as proof that, in principle, efficient certificate extrac-
tion from LDQ(Drrs)-refutations is possible. For practical purposes, the time
bound of O(|P| · n) is not good enough. For LDQ(Dstd), a modified extraction
algorithm achieves a runtime of O(|P| · k), where k is the number of quantifier
alternations of the input formula. A proof-of-concept implementation currently
does not scale to proofs larger than a few megabytes, but we are confident that
further improvements will lead to an efficient enough algorithm for practical use.

Acknowledgments. We would like to thank Florian Lonsing for helpful discussions
and for pointing out how to modify DepQBF so that it generates LDQ(Dstd) proofs.

References

1. Arora, S., Barak, B.: Computational Complexity - A Modern Approach. Cambridge
University Press, New York (2009)

2. Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. Formal
Methods Syst. Des. 41(1), 45–65 (2012)

3. Balabanov, V., Jiang, J. R., Janota, M., Widl, M.: Efficient extraction of QBF
(counter)models from long-distance resolution proofs. In: Bonet, B., Koenig, S.
(eds.), Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelli-
gence, January 25–30, Austin, Texas, USA, pp. 3694–3701. AAAI Press (2015)

4. Balabanov, V., Widl, M., Jiang, J.H.R.: QBF resolution systems and their proof
complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169.
Springer, Heidelberg (2014)

5. Benedetti, M., Mangassarian, H.: QBF-based formal verification: Experience and
perspectives. J. Satisfiability, Boolean Model. Comput. 5(1–4), 133–191 (2008)

6. Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF
calculi. In: Mayr, E.W., Ollinger, N. (ed.), 32nd International Symposium on The-
oretical Aspects of Computer Science, STACS 2015, March 4–7, 2015, Garching,
Germany, vol. 30 of LIPIcs, pp. 76–89. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2015)

Long Distance Q-Resolution with Dependency Schemes 517

7. Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Feasible interpolation for QBF
resolution calculi. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann,
B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 180–192. Springer, Heidelberg (2015)

8. Biere, A., Lonsing, F.: Integrating dependency schemes in search-based QBF
solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–
171. Springer, Heidelberg (2010)

9. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 101–115.
Springer, Heidelberg (2011)

10. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs.
In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1–20.
Springer, Heidelberg (2014)

11. Bubeck, U.: Model-based transformations for quantified Boolean formulas. Ph.D.
thesis, University of Paderborn (2010)

12. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate
Quantified Boolean Formulae and its experimental evaluation. J. Autom. Reason-
ing 28(2), 101–142 (2002)

13. Cashmore, M., Fox, M., Giunchiglia, E.: Partially grounded planning as Quantified
Boolean Formula. In: Borrajo, D., Kambhampati, S., Oddi, A., Fratini, S. (eds.),
23rd International Conference on Automated Planning and Scheduling, ICApPS.
AAAI (2013)

14. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5, 394–397 (1962)

15. Egly, U.: On sequent systems and resolution for QBFs. In: Cimatti, A., Sebastiani,
R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 100–113. Springer, Heidelberg (2012)

16. Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: Proof generation and
strategy extraction in search-based QBF solving. In: McMillan, K., Middeldorp,
A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 291–308. Springer,
Heidelberg (2013)

17. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning
in the evaluation of Quantified Boolean Formulas. J. Artif. Intell. Res. 26, 371–416
(2006)

18. Goultiaeva, A., Bacchus, F.: Exploiting QBF duality on a circuit representation.
In: Fox, M., Poole, D. (eds.), Proceedings of the Twenty-Fourth AAAI Conference
on Artificial Intelligence, AAAI . AAAI Press (2010)

19. Goultiaeva, A., Seidl, M., Biere, A.: Bridging the gap between dual propagation
and CNF-based QBF solving. In: Macii, E. (ed.) Design. Automation and Test in
Europe. EDA Consortium San Jose, pp. 811–814. ACM DL, CA, USA (2013)

20. Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for generating
proofs and strategies for both true and false QBF formulas. In Walsh, T. (ed),
Proceedings of IJCAI, pp. 546–553. IJCAI/AAAI (2011)

21. Heule, M., Seidl, M., Biere, A.: A unified proof system for QBF preprocessing. In:
Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp.
91–106. Springer, Heidelberg (2014)

22. Janota, M., Chew, L., Beyersdorff, O.: On unification of QBF resolution-based
calculi. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part
II. LNCS, vol. 8635, pp. 81–93. Springer, Heidelberg (2014)

23. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)

518 T. Peitl et al.

24. Janota, M., Marques-Silva, J.: On propositional QBF expansions and Q-
Resolution. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962,
pp. 67–82. Springer, Heidelberg (2013)

25. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean
formulas. Inf. Comput. 117(1), 12–18 (1995)

26. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver
with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS,
vol. 6175, pp. 128–142. Springer, Heidelberg (2010)

27. Kronegger, M., Pfandler, A., Pichler, R.: Conformant planning as benchmark for
QBF-solvers. In: International Workshop on Quantified Boolean Formulas - QBF
(2013). http://fmv.jku.at/qbf2013/

28. Lonsing, F.: Dependency Schemes and Search-Based QBF : Theory and Practice.
Ph.D. thesis, Johannes Kepler University, Linz, Austria, Apr 2012

29. Lonsing, F., Bacchus, F., Biere, A., Egly, U., Seidl, M.: Enhancing search-based
QBF solving by dynamic blocked clause elimination. In: Davis, M. (ed.) LPAR-
20 2015. LNCS, vol. 9450, pp. 418–433. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48899-7 29

30. Lonsing, F., Egly, U., Van Gelder, A.: Efficient clause learning for quantified
boolean formulas via QBF pseudo unit propagation. In: Järvisalo, M., Van Gelder,
A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 100–115. Springer, Heidelberg (2013)

31. Marques-Silva, J.: The impact of branching heuristics in propositional satisfiability
algorithms. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI), vol.
1695, pp. 62–74. Springer, Heidelberg (1999)

32. Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based cer-
tificate extraction for QBF. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS,
vol. 7317, pp. 430–435. Springer, Heidelberg (2012)

33. Rintanen, J.: Asymptotically optimal encodings of conformant planning in QBF.
In: 22nd AAAI Conference on Artificial Intelligence, pp. 1045–1050. AAAI (2007)

34. Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom.
Reasoning 42(1), 77–97 (2009)

35. Slivovsky, F., Szeider, S.: Computing resolution-path dependencies in linear time.
In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 58–71.
Springer, Heidelberg (2012)

36. Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes.
Theor. Comput. Sci. 612, 83–101 (2016)

37. Staber, S., Bloem, R.: Fault localization and correction with QBF. In: Marques-
Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 355–368. Springer,
Heidelberg (2007)

38. Van Gelder, A.: Variable independence and resolution paths for quantified boolean
formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer, Hei-
delberg (2011)

39. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability
solver. In: Pileggi, L.T. Kuehlmann, A. (eds.), Proceedings of the IEEE/ACM
International Conference on Computer-aided Design, ICCAD, San Jose, California,
USA, November 10–14, pp. 442–449. ACM/IEEE Computer Society (2002)

40. Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts
in quantified boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002.
LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002)

http://fmv.jku.at/qbf2013/
http://dx.doi.org/10.1007/978-3-662-48899-7_29
http://dx.doi.org/10.1007/978-3-662-48899-7_29

Tools

BEACON: An Efficient SAT-Based Tool
for Debugging EL+ Ontologies

M. Fareed Arif1, Carlos Menćıa2(B), Alexey Ignatiev3,6, Norbert Manthey4,
Rafael Peñaloza5, and Joao Marques-Silva3

1 University College Dublin, Dublin, Ireland
muhammad.arif.1@ucdconnect.ie

2 University of Oviedo, Oviedo, Spain
cmencia@gmail.com

3 University of Lisbon, Lisbon, Portugal
{aignatiev,jpms}@ciencias.ulisboa.pt

4 TU Dresden, Dresden, Germany
norbert.manthey@tu-dresden.de

5 Free University of Bozen-Bolzano, Bolzano, Italy
rafael.penaloza@unibz.it

6 ISDCT SB RAS, Irkutsk, Russia

Abstract. Description Logics (DLs) are knowledge representation and
reasoning formalisms used in many settings. Among them, the EL family
of DLs stands out due to the availability of polynomial-time inference
algorithms and its ability to represent knowledge from domains such as
medical informatics. However, the construction of an ontology is an error-
prone process which often leads to unintended inferences. This paper
presents the BEACON tool for debugging EL+ ontologies. BEACON
builds on earlier work relating minimal justifications (MinAs) of EL+

ontologies and MUSes of a Horn formula, and integrates state-of-the-art
algorithms for solving different function problems in the SAT domain.

1 Introduction

The importance of Description Logics (DLs) cannot be overstated, and impact a
growing number of fields. The EL-family of tractable DLs in particular has been
used to build large ontologies from the life sciences [34,35]. Ontology devel-
opment is an error-prone task, with potentially critical consequences in the
life sciences; thus it is important to develop automated tools to help debug-
ging large ontologies. Axiom pinpointing refers to the task of finding the pre-
cise axioms in an ontology that cause a (potentially unwanted) consequence
to follow [25]. Recent years have witnessed remarkable improvements in axiom
pinpointing technologies, including for the case of the EL family of DLs [1,2,5–
7,20,21,30,31]. Among these, the use of SAT-based methods [1,2,30] was shown
to outperform other alternative approaches very significantly. This is achieved
by reducing the problem to a propositional Horn formula, which is then analyzed
with a dedicated decision engine for Horn formulae.
c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 521–530, 2016.
DOI: 10.1007/978-3-319-40970-2 32

522 M.F. Arif et al.

This paper describes a tool, BEACON, that builds on recent work on efficient
enumeration of Minimal Unsatisfiable Subsets (MUSes) of group Horn formulae,
which finds immediate application in axiom pinpointing of EL ontologies [2]. In
contrast to earlier work [2], which used EL+SAT [30,31] as front-end, this paper
proposes an integrated tool to perform analysis on ontologies, offering a number
of new features.

The rest of the paper is organized as follows: Sect. 2 introduces some prelim-
inaries. Section 3 describes the organization of BEACON. Experimental results
are given in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Preliminaries

2.1 The Lightweight Description Logic EL+

EL+ [4] is a light-weight DL that has been successfully used to build large
ontologies, most notably from the bio-medical domains. As with all DLs, the
main elements in EL+ are concepts. EL+ concepts are built from two disjoint
sets NC and NR of concept names and role names through the grammar rule
C :: = A | � | C � C | ∃r.C, where A ∈ NC and r ∈ NR. The knowledge
of the domain is stored in a TBox (ontology), which is a finite set of general
concept inclusions (GCIs) C � D, where C and D are EL+ concepts, and role
inclusions (RIs) r1 ◦ · · · ◦ rn � s, where n ≥ 1 and ri, s ∈ NR. We will often
use the term axiom to refer to both GCIs and RIs. As an example, Appendix
� ∃partOf.Intestine represents a GCI.

The semantics of this logic is based on interpretations, which are pairs of the
form I = (ΔI , ·I) where ΔI is a non-empty set called the domain and ·I is the
interpretation function that maps every A ∈ NC to a set AI ⊆ ΔI and every
r ∈ NR to a binary relation rI ⊆ ΔI × ΔI . The interpretation I satisfies the
GCI C � D iff CI ⊆ DI ; it satisfies the RI r1 ◦ · · · ◦ rn � s iff rI

1 ◦ · · · ◦ rI
n ⊆ sI ,

with ◦ denoting composition of binary relations. I is a model of T iff I satisfies
all its GCIs and RIs.

The main reasoning problem in EL+ is to decide subsumption between con-
cepts. A concept C is subsumed by D w.r.t. T (denoted C �T D) if for every
model I of T it holds that CI ⊆ DI . Classification refers to the task of deciding
all the subsumption relations between concept names appearing in T . Rather
than merely deciding whether a subsumption relation follows from a TBox, we
are interested in understanding the causes of this consequence, and repairing it
if necessary.

Definition 1 (MinA, diagnosis). A MinA for C � D w.r.t. the TBox T is
a minimal subset (w.r.t. set inclusion) M ⊆ T such that C �M D. A diagnosis
for C � D w.r.t. T is a minimal subset (w.r.t. set inclusion) D ⊆ T such that
C
�T \D D.

MinAs and diagnoses are closely related by minimal hitting set duality [19,29].

BEACON: An Efficient SAT-Based Tool for Debugging EL+ Ontologies 523

BEACON

Classification +
Horn encodingT

T ′

H
Group Horn

formula generation
and reduction

C �T D

HG

HGMUS
MinAs

diagnoses

FORQES
Smallest
MinAs

Fig. 1. BEACON organization

Example 2. Consider the TBox Texa = {A � ∃r.A,A � Y,∃r.Y � B, Y � B}.
There are two MinAs for A � B w.r.t. Texa, namely M1 = {A � Y, Y � B},
and M2 = {A � ∃r.A,A � Y,∃r.Y � B}. The diagnoses for this subsumption
relation are {A � Y }, {A � ∃r.A, Y � B}, and {∃r.Y � B, Y � B}.

2.2 Propositional Satisfiability

We assume familiarity with propositional logic [9]. A CNF formula F is defined
over a set of Boolean variables X as a finite conjunction of clauses, where a
clause is a finite disjunction of literals and a literal is a variable or its negation.
A truth assignment is a mapping μ: X → {0, 1}. If μ satisfies F , μ is referred
to as a model of F . Horn formulae are those composed of clauses with at most
one positive literal. Satisfiability of Horn formulae is decidable in polynomial
time [12,15,24]. Given an unsatisfiable formula F , the following subsets are of
interest [19,22]:

Definition 3 (MUS, MCS). M ⊆ F is a Minimally Unsatisfiable Subset
(MUS) of F iff M is unsatisfiable and ∀c ∈ M,M \ {c} is satisfiable. C ⊆ F is
a Minimal Correction Subset (MCS) iff F\C is satisfiable and ∀c ∈ C,F\(C\{c})
is unsatisfiable.

MUSes and MCSes are related by hitting set duality [8,10,28,33]. Besides, these
concepts have been extended to formulae where clauses are partitioned into
groups [19].

Definition 4 (Group-MUS). Given an explicitly partitioned unsatisfiable
CNF formula F = G0 ∪ ... ∪ Gk, a group-MUS of F is a set of groups G ⊆
{G1, ...,Gk}, such that G0 ∪ G is unsatisfiable, and for every Gi ∈ G, G0 ∪ (G \ Gi)
is satisfiable.

3 The BEACON Tool

The main problem BEACON is aimed at is the enumeration of the MinAs and
diagnoses for a given subsumption relation w.r.t. an EL+ TBox T . BEACON

524 M.F. Arif et al.

consists of three main components: The first one classifies T and encodes this
process into a set of Horn clauses. Given a subsumption to be analyzed, the
second component creates and simplifies an unsatisfiable group Horn formula.
Finally, the third one computes group-MUSes and group-MCSes, correspond-
ing to MinAs and diagnoses resp. Figure 1 depicts the main organization of
BEACON. Each of its components is explained below.

3.1 Classification and Horn Encoding

During the classification of T , a Horn formula H is created according to the
method introduced in EL+SAT [30,31]. To this end, each axiom ai ∈ T is initially
assigned a unique selector variable s[ai]. The classification of T is done in two
phases [4,6].

First, T is normalized so that each of its axioms are of the form (i) (A1 �
... � Ak) � B (k ≥ 1), (ii) A � ∃r.B, (iii) ∃r.A � B, or (iv) r1 ◦ ... ◦ rn � s
(n ≥ 1), where A,Ai, B ∈ NC and r, ri, s ∈ NR. This process results in a TBox
TN where each axiom ai ∈ T is substituted by a set of axioms in normal form
{ai1, ..., aimi

}. At this point, the clauses s[ai] → s[aik], with 1 ≤ k ≤ mi, are
added to H.

Second, TN is saturated through the exhaustive application of the completion
rules shown in Table 1, resulting in the extended TBox T ′. Each of the rows in
Table 1 constitute a completion rule. Their application is sound and complete for
inferring subsumptions [4]. Whenever a rule r can be applied (with antecedents
ant(r)) leading to inferring an axiom ai, the Horn clause (

∧
{aj∈ant(r)} s[aj]) →

s[ai] is added to H.
As a result, H will eventually encode all possible derivations of completion

rules inferring any axiom such that X �T Y , with X,Y ∈ NC.

3.2 Generation of Group Horn Formulae

After classifying T , some axioms C � D may be included in T ′ for which a justi-
fication or diagnosis may be required. Each of these queries will result in a group
Horn formula defined as: HG = {G0,G1, ...,G|T |}, where G0 = H ∪ {(¬s[C�D])}
and for each axiom ai (i > 0) in the original TBox T , group Gi = {(s[ai])} is
defined with a single unit clause. HG is unsatisfiable and, as shown in [1,2], its

Table 1. EL+ completion rules

Preconditions Inferred axiom

A � Ai, 1 ≤ i ≤ n A1 � � An � B A � B

A � A1 A1 � ∃r.B A � ∃r.B

A � ∃r.B, B � B1 ∃r.B1 � B2 A � B2

Ai−1 � ∃ri.Ai, 1 ≤ i ≤ n r1 ◦ ... ◦ rn � r A0 � ∃r.An

BEACON: An Efficient SAT-Based Tool for Debugging EL+ Ontologies 525

Algorithm 1. eMUS [26] / MARCO [18]
Input: F a CNF formula
Output: Reports the set of MUSes (and MCSes) of F

1 〈I,Q〉 ← 〈{pi | ci ∈ F}, ∅〉 // Variable pi picks clause ci
2 while true do
3 (st, P) ← MaximalModel(Q)
4 if not st then return
5 F ′ ← {ci | pi ∈ P} // Pick selected clauses

6 if not SAT(F ′) then
7 M ← ComputeMUS(F ′)
8 ReportMUS(M)
9 b ← {¬pi | ci ∈ M} // Negative clause blocking the MUS

10 else
11 ReportMCS(F \ F ′)
12 b ← {pi | pi ∈ I \ P} // Positive clause blocking the MCS

13 Q ← Q ∪ {b}

group-MUSes correspond to the MinAs for C �T D. Equivalently, due to the
hitting set duality for MinAs/diagnoses, which also holds for MUSes/MCSes,
group-MCSes of HG correspond to diagnoses for C �T D.

BEACON simplifies HG with the techniques introduced in [30,31], which
often reduce the formulas to a great extent.

3.3 Computation of Group-MUSes/Group-MCSes

For enumerating group-MUSes and group-MCSes of the formula HG defined
above, BEACON integrates the state-of-the-art HgMUS enumerator [2].
HgMUS exploits hitting set dualization between (group) MCSes and
(group) MUSes and, hence, it shares ideas also explored in MaxHS [11],
EMUS/MARCO [17,26], among others. As shown in Algorithm 1, these methods
rely on a two (SAT) solvers approach. Formula Q is defined over a set of selector
variables corresponding to clauses in F , and it is used to enumerate subsets of F .
Iteratively, the algorithm computes a maximal model P of Q and tests whether
the subformula F ′ ⊆ F containing the clauses associated to P is satisfiable. If
it is, F \ F ′ is an MCS of F . Otherwise, F ′ is reduced to an MUS. MCSes and
MUSes are blocked adding clauses to Q.

HgMUS shares the main organization of Algorithm 1, with F = G0 and Q
defined over selector variables for groups Gi of HG, with i > 0. It also includes
some specific features. First, it uses the Horn satisfiability algorithhm LTUR [24].
Besides, it integrates a dedicated insertion-based MUS extractor as well as an
efficient algorithm for computing maximal models based on a reduction to com-
puting MCSes [23].

526 M.F. Arif et al.

3.4 BEACON’s Additional Specific Features

Besides computing MinAs/diagnoses, BEACON offers additional functionalities.

Diagnosing Multiple Subsumption Relations at a Time. After classifying
T , there could be several unintended subsumption relations Ci �T Di that
need to be removed. BEACON allows for diagnosing this multiple unintended
inferences at the same time. By adding the unit clauses (¬s[Ci�Di]) to G0 in HG,
each computed group-MCS corresponds to a diagnosis that would eliminate all
the indicated subsumption relations.

Computing Smallest MinAs. Alternatively to enumerating all the possible
MinAs, one may want to compute only those of the minimum possible size. To
enable this functionality, BEACON integrates a state-of-the-art solver for the
smallest MUS problem (SMUS) called Forqes [14]. The decision version of the
SMUS problem is known to be ΣP

2 -complete (e.g. see [13,16]). As HgMUS,
Forqes is based on the hitting set dualization between (group) MUSes and
(group) MCSes. The tool iteratively computes minimum hitting sets of a set
of MCSes of a formula detected so far. While these minimum hitting sets are
satisfiable, they are grown into an MSS, whose complement is an MCS which
is added to the set of MCSes. The process terminates when an unsatisfiable
minimum hitting set is identified, representing a smallest MUS of the formula.

4 Experimental Results

This section reports a summary of results that illustrates the performance of
BEACON1 w.r.t. other EL+ axiom pinpointing tools in the literature. It also
provides information on its capability of computing diagnoses and enumerating
smallest MinAs.

The experiments were run on a Linux cluster (2 Ghz) with a limit of
3600 s and 4Gbyte, considering 500 subsumption relations from five well-known
EL+ bio-medical ontologies: GALEN [27] (FULL-GALEN and NOT-GALEN),
Gene [3], NCI [32] and SNOMED-CT [34]. The experiments use Horn formulae
encoded by EL+SAT [30,31] applying the reduction techniques that BEACON
incorporates by default. These formulae are fed to BEACON’s engines, namely
HgMUS and Forqes.

The results reported focus on HgMUS and Forqes. Due to lack of space,
running times for classifying the ontologies and formula reduction are not
reported. Classification is done in polynomial time once for each ontology, so
it is amortized among all queries for the ontology. Formula reduction usually
takes very short time. Detailed results are available with the distribution of
BEACON, including an analysis on the size of the Horn formulae and the reduc-
tions achieved.

1 Available at http://logos.ucd.ie/web/doku.php?id=beacon-tool.

http://logos.ucd.ie/web/doku.php?id=beacon-tool

BEACON: An Efficient SAT-Based Tool for Debugging EL+ Ontologies 527

0 2000 4000 6000 8000 10000 12000
MinAs

0

500

1000

1500

2000

2500

3000

3500

C
PU

tim
e
(s
)

BEACON

SATPin

EL+SAT

10−2 10−1 100 101 102 103 104

BEACON

10−2

10−1

100

101

102

103

104

JU
ST

3600 sec. timeout

36
00

se
c.

tim
eo
ut

Fig. 2. Plots comparing BEACON to EL+SAT, SATPin and JUST

Axiom Pinpointing. BEACON shows significant improvements over the exist-
ing tools EL+SAT [30,31], SATPin [21], EL2MCS [1], CEL [5] and Just [20].
BEACON often achieves remarkable reductions in the running times, and
exhibits a clear superiority in enumerating MinAs for 19 very hard instances
that cannot be solved by a time limit of 3600 s. This is illustrated in Fig. 2. The
cactus plot shows the number of MinAs reported over time. BEACON computes
much more MinAs faster than other tools. The scatter plot compares BEACON
with Just regarding the running times on a subset of the instances Just can
cope with. BEACON shows a significant performance gap. Similar results have
been observed for EL2MCS and CEL [2].

Computing Diagnoses. For all solved instances (481 out of 500), BEACON
enumerates all diagnoses, where its number ranges from 2 to 565409. Interest-
ingly, for the 19 aborted instances, the number of reported diagnoses ranges
from 1011164 to 1972324. These numbers illustrate the efficiency of BEACON
at computing diagnoses, and explain the difficulty of these aborted instances.
Of the other tools, only EL2MCS reports diagnoses, which, for hard instances,
computes around 33 % fewer diagnoses.

Computing Smallest MinAs. The last experiments consider the 19 instances
for which BEACON is unable to enumerate all MinAs. Notably, BEACON is very
efficient at computing the smallest MinAs using Forqes. In all cases, each set
of smallest MinAs is computed in negligible time (less than 0.1 s). The sizes of
the smallest MinAs range from 5 to 13 axioms, and their number ranges from 1
to 7.

5 Conclusions

This paper describes BEACON, an axiom pinpointing tool for the EL-family
of DLs. BEACON integrates HgMUS [2], a group MUS enumerator for

528 M.F. Arif et al.

propositional Horn formulae, with a dedicated front-end, interfacing a target
ontology, and generating group Horn formulae for HgMUS. Besides enumer-
ating MinAs (and associated diagnoses), BEACON enables the simultaneous
diagnosis of multiple inferences, and the computation of the smallest MinA (or
smallest MUS [14]). The experimental results indicate that the computation of
the smallest MinA is very efficient in practice, in addition to the already known
top performance of HgMUS.

Acknowledgement. This work was funded in part by SFI grant BEACON (09/IN.1/-
I2618), by DFG grant DFG HO 1294/11-1, and by Spanish grant TIN2013-46511-C2-
2-P. The contribution of the researchers associated with the SFI grant BEACON is
also acknowledged.

References

1. Arif, M.F., Menćıa, C., Marques-Silva, J.: Efficient axiom pinpointing with
EL2MCS. In: Hölldobler, S., Krötzsch, M., Peñaloza, R., Rudolph, S., Edelkamp,
S., Edelkamp, S. (eds.) KI 2015. LNCS, vol. 9324, pp. 225–233. Springer, Heidel-
berg (2015). doi:10.1007/978-3-319-24489-1 17

2. Arif, M.F., Menćıa, C., Marques-Silva, J.: Efficient MUS enumeration of Horn
formulae with applications to axiom pinpointing. In: Heule, M., Weaver, S. (eds.)
SAT 2015. LNCS, vol. 9340, pp. 324–342. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-24318-4 24

3. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.,
Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al.: Gene ontology: tool for
the unification of biology. Nat. Genet. 25(1), 25–29 (2000)

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: IJCAI, pp. 364–369
(2005)

5. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL — a polynomial-time reasoner for
life science ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 287–291. Springer, Heidelberg (2006)

6. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL+ . In: KI, pp. 52–67 (2007)

7. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+ . In: KR-MED (2008)

8. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL
2004. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005)

9. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

10. Birnbaum, E., Lozinskii, E.L.: Consistent subsets of inconsistent systems: structure
and behaviour. J. Exp. Theor. Artif. Intell. 15(1), 25–46 (2003)

11. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT
instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Hei-
delberg (2011)

12. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability
of propositional Horn formulae. J. Log. Program. 1(3), 267–284 (1984)

http://dx.doi.org/10.1007/978-3-319-24489-1_17
http://dx.doi.org/10.1007/978-3-319-24318-4_24
http://dx.doi.org/10.1007/978-3-319-24318-4_24

BEACON: An Efficient SAT-Based Tool for Debugging EL+ Ontologies 529

13. Gupta, A.: Learning Abstractions for Model Checking. Ph.D. thesis, Carnegie Mel-
lon University, June 2006

14. Ignatiev, A., Previti, A., Liffiton, M., Marques-Silva, J.: Smallest MUS extraction
with minimal hitting set dualization. In: Pesant, G. (ed.) CP 2015. LNCS, vol.
9255, pp. 173–182. Springer, Heidelberg (2015)

15. Itai, A., Makowsky, J.A.: Unification as a complexity measure for logic program-
ming. J. Log. Program. 4(2), 105–117 (1987)

16. Liberatore, P.: Redundancy in logic I: CNF propositional formulae. Artif. Intell.
163(2), 203–232 (2005)

17. Liffiton, M.H., Malik, A.: Enumerating infeasibility: finding multiple MUSes
quickly. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp.
160–175. Springer, Heidelberg (2013)

18. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUs enu-
meration. Constraints (2015). Online version: http://link.springer.com/article/10.
1007/s10601-015-9183-0

19. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)

20. Ludwig, M.: Just: a tool for computing justifications w.r.t. ELH ontologies. In:
ORE (2014)

21. Manthey, N., Peñaloza, R.: Exploiting SAT technology for axiom pinpointing.
Technical report LTCS 15–05, Chair of Automata Theory, Institute of Theoret-
ical Computer Science, Technische Universität Dresden, April 2015. https://ddll.
inf.tu-dresden.de/web/Techreport3010

22. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing
minimal correction subsets. In: IJCAI, pp. 615–622 (2013)

23. Menćıa, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In:
IJCAI, pp. 1973–1979 (2015)

24. Minoux, M.: LTUR: A simplified linear-time unit resolution algorithm for Horn
formulae and computer implementation. Inf. Process. Lett. 29(1), 1–12 (1988)

25. Peñaoza, R.: Axiom pinpointing in description logics and beyond. Ph.D. thesis,
Dresden University of Technology (2009)

26. Previti, A., Marques-Silva, J.: Partial MUS enumeration. In: AAAI, pp. 818–825
(2013)

27. Rector, A.L., Horrocks, I.R.: Experience building a large, re-usable medical ontol-
ogy using a description logic with transitivity and concept inclusions. In: Workshop
on Ontological Engineering, pp. 414–418 (1997)

28. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

29. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: IJCAI, pp. 355–362 (2003)

30. Sebastiani, R., Vescovi, M.: Axiom pinpointing in lightweight description logics
via Horn-SAT encoding and conflict analysis. In: Schmidt, R.A. (ed.) CADE-22.
LNCS, vol. 5663, pp. 84–99. Springer, Heidelberg (2009)

31. Sebastiani, R., Vescovi, M.: Axiom pinpointing in large EL+ ontologies via SAT
and SMT techniques. Technical report DISI-15-010, DISI, University of Trento,
Italy, Under Journal Submission, April 2015. http://disi.unitn.it/∼rseba/elsat/
elsat techrep.pdf

32. Sioutos, N., de Coronado, S., Haber, M.W., Hartel, F.W., Shaiu, W., Wright, L.W.:
NCI thesaurus: A semantic model integrating cancer-related clinical and molecular
information. J. Biomed. Inform. 40(1), 30–43 (2007)

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10601-015-9183-0
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10601-015-9183-0
https://ddll.inf.tu-dresden.de/web/Techreport3010
https://ddll.inf.tu-dresden.de/web/Techreport3010
http://disi.unitn.it/~rseba/elsat/elsat_techrep.pdf
http://disi.unitn.it/~rseba/elsat/elsat_techrep.pdf

530 M.F. Arif et al.

33. Slaney, J.: Set-theoretic duality: A fundamental feature of combinatorial optimi-
sation. In: ECAI, pp. 843–848 (2014)

34. Spackman, K.A., Campbell, K.E., Côté, R.A.: SNOMED RT: a reference termi-
nology for health care. In: AMIA (1997)

35. Stefan, S., Ronald, C., Spackman, K.A.: Consolidating SNOMED CT’s ontological
commitment. Appl. Ontol. 6, 111 (2011)

HordeQBF: A Modular and Massively Parallel
QBF Solver

Tomáš Balyo1 and Florian Lonsing2(B)

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2 Knowledge-Based Systems Group, Vienna University of Technology,

Vienna, Austria
florian.lonsing@tuwien.ac.at

Abstract. The recently developed massively parallel satisfiability
(SAT) solver HordeSAT was designed in a modular way to allow the
integration of any sequential CDCL-based SAT solver in its core. We
integrated the QCDCL-based quantified Boolean formula (QBF) solver
DepQBF in HordeSAT to obtain a massively parallel QBF solver—
HordeQBF. In this paper we describe the details of this integration and
report on results of the experimental evaluation of HordeQBF’s perfor-
mance. HordeQBF achieves superlinear average and median speedup on
the hard application instances of the 2014 QBF Gallery.

1 Introduction

HordeSAT [3] is a modular massively parallel SAT solver which allows the inte-
gration of any sequential CDCL-based SAT solver in its core. This enables the
transfer of advancements in CDCL SAT solving to a parallel setting. Experiments
showed that HordeSAT can achieve superlinear average speedup on hard bench-
marks.

The logic of quantified Boolean formulas (QBFs) extends SAT by explicit
quantification of propositional variables. Problems in complexity classes beyond
NP, particularly PSPACE-complete problems in domains like, e.g., formal veri-
fication, reactive synthesis, or planning, can naturally be encoded as QBFs.

QBF solvers based on QCDCL, the QBF-specific variant of CDCL, apply
techniques similar to CDCL SAT solvers. Thanks to this fact, it is possible to
replace the SAT solver in the core of HordeSAT by any QCDCL QBF solver.
Thereby, it is not necessary to change the framework of HordeSAT which controls
the sharing of learned information and the execution of the core solver instances.

We integrated the latest public version 5.0 of the QCDCL-based solver
DepQBF [18] in HordeSAT to obtain the massively parallel QBF solver Horde-
QBF. We present the implementation of HordeQBF, which is not tailored

T. Balyo—Supported by DFG project SA 933/11-1.
F. Lonsing—Supported by the Austrian Science Fund (FWF) under grant S11409-
N23.

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 531–538, 2016.
DOI: 10.1007/978-3-319-40970-2 33

532 T. Balyo and F. Lonsing

towards the use of DepQBF as a core solver, and evaluate its scalability on a
computer cluster with 1024 processor cores. Experiments using the application
benchmarks of the 2014 QBF Gallery show that HordeQBF achieves superlinear
average and median speedup for hard instances.

2 Preliminaries

We consider closed QBFs ψ := Π.φ in prenex CNF (PCNF) consisting of
a quantifier-free CNF φ over a set V of variables and a quantifier prefix
Π := Q1v1 . . . Qnvn in which Qi ∈ {∃,∀} and vi ∈ V . QBF solving with clause
and cube learning (QCDCL) [9,15,27], also called constraint learning, is a gen-
eralization of conflict-driven clause learning (CDCL) for SAT. The variables in
a PCNF ψ are assigned by decision making, unit propagation, and pure literal
detection. Assignments by decision making have to follow the prefix ordering
from left to right. If a clause is falsified under the current assignment A, then a
learned clause C is derived from ψ by Q-resolution [14] and added conjunctively
to ψ. If all clauses are satisfied under A, then a learned cube is constructed from
A and added disjunctively to ψ. Learned cubes may also be derived by term res-
olution [9], a variant of Q-resolution applied to previously learned cubes. After a
new clause or cube has been learned, assignments are retracted during backtrack-
ing. QCDCL terminates if and only if the empty clause (resp. cube) is derived
during learning, indicating that ψ is unsatisfiable (resp. satisfiable).

3 Related Work

Approaches to parallel QBF solving are based on shared and distributed memory
architectures. PQSolve [7] is an early parallel DPLL [5] solver without knowl-
edge sharing. It comes with a dynamic master/slave framework implemented
using the message passing interface (MPI) [10]. Search space is partitioned
among master and slaves by variable assignments. QMiraXT [16] is a multi-
threaded QCDCL solver with search space partitioning. PAQuBE [17] is an
MPI-based parallel variant of the QCDCL solver QuBE [8]. Clause and cube
sharing in PAQuBE can be adapted dynamically at run time. Search space is
partitioned like in the SAT solver PSATO based on guiding paths [25]. The MPI-
based solver MPIDepQBF [13] implements a master/worker architecture with-
out knowledge sharing. A worker consists of an instance of the QCDCL solver
DepQBF [19]. The master balances the workload by generating subproblems
defined by variable assignments (assumptions), which are solved by the workers.
Parallel solving approaches have also been presented for quantified CSPs [24]
and non-PCNF QBFs [21].

HordeQBF is a parallel portfolio solver with clause and cube sharing.
Whereas sequential portfolio solvers like AQME [23] include different QBF
solvers, HordeQBF integrates instances of the same QCDCL solver (i.e.,
DepQBF). Unlike MPIDepQBF, HordeQBF does not rely on search space par-
titioning. Instead, the parallel instances of DepQBF are diversified by different
parameter settings.

HordeQBF: A Modular and Massively Parallel QBF Solver 533

4 The HordeSAT Parallelization Framework

HordeSAT is a portfolio SAT solver with clause sharing [3]. It can be viewed as
a multithreaded program running several instances of a sequential SAT solver
and communicating via MPI with other instances of the same program.

The parallelization framework has three main tasks: to ensure that the core
solvers are diversified, to handle the clause exchange, and to stop all the solvers
when one of them has solved the problem. To communicate with the core solvers
it uses an API which is described in detail in the HordeSAT paper [3]. Since the
HordeQBF interface is identical, we only briefly list the most relevant methods:
void diversify(int rank, int size): This method tells the core solver to diver-
sify its settings. The specifics of diversification are left to the solver. The descrip-
tion for DepQBF is given in the following section.
void addLearnedClause(vector<int> clause):This method is used to import
learned clauses (and cubes) received from other solvers of the portfolio.
void setLearnedClauseCallback(LCCallback* callback): This method
sets a callback class that will process the clauses (and cubes) shared by this
solver.

5 QBF Solver Integration

In parallel QCDCL-based QBF solving, learned cubes may be shared among the
solver instances in addition to learned clauses. Although HordeSAT does not
provide API functions dedicated to cube sharing, its available API readily sup-
ports it. We describe the integration of the QCDCL-based QBF solver DepQBF1

in HordeQBF, which applies to any QCDCL-based QBF solver.
We rely on version 5.0 of DepQBF which comes with a dynamic variant

of blocked clause elimination (QBCE) [18] for advanced cube learning. QBCE
allows to eliminate redundant clauses from a PCNF [11]. Dynamic QBCE is
applied frequently during the solving process. If all clauses in the PCNF are
satisfied under the current assignment or removed by QBCE, then a cube is
learned.

DepQBF features a sophisticated analysis of variable dependencies in a
PCNF [19,20] to relax the linear ordering of variables in the prefix. For the
experiments in this paper, however, we disabled dependency analysis for both
HordeQBF and the sequential variant of DepQBF since the use of dependency
information causes run time overhead (during clause/cube learning) in addition
to overhead already caused by dynamic blocked clause elimination (QBCE) [18].

We modified DepQBF as follows to integrate it in HordeQBF. Learned con-
straints are exported to the master process right after they have been learned.
The master does not distinguish between learned clauses and cubes but treats
them as sorted lists of literals. We add special marker literals to learned clauses

1 http://lonsing.github.io/depqbf/.

http://lonsing.github.io/depqbf/

534 T. Balyo and F. Lonsing

Fig. 1. Cactus plots for the benchmarks solved under 900 s by DepQBF and various
configurations of HordeQBF. The left regions of the plots (containing easy instances)
are omitted.

and cubes to distinguish between them at the time when the master provides
the workers with sets of shared learned constraints.

In DepQBF we check whether shared constraints are available for import
after a restart has been carried out. To this end, we modified the restart policy
of DepQBF to always backtrack to decision level zero. This is different from the
original restart policy of DepQBF [19], where the solver backtracks to higher
decision levels depending on the current assignment. After a restart, available
shared constraints are imported, the watched data structures are updated, and
QCDCL continues by propagating unit literals resulting from imported con-
straints.

Every instance of DepQBF receives a random seed from the master and diver-
sifies the solving process as follows. The values of variables in the assignment

HordeQBF: A Modular and Massively Parallel QBF Solver 535

Table 1. The speedup of HordeQBF configurations relative to DepQBF. The second
column is the number of instances solved by HordeQBF, the third is the number of
instances solved by both DepQBF (in 50000 s) and the HordeQBF (in 900 s). The
following six columns contain the average, total, and median speedups for either all the
instances solved by HordeQBF or only big instances (solved after 10×#cores seconds
by DepQBF). The last column is the parallel efficiency (median speedup/#cores).

Core Parallel Both Speedup all Speedup big

Solvers Solved Solved Avg. Tot. Med. Avg. Tot. Med. Eff.

2×4×4 513 483 622 107.30 0.82 3328 127.36 303.26 9.48

4×4×4 516 484 667 137.36 0.92 3893 176.27 458.34 7.16

8×4×4 523 492 748 128.35 0.96 4655 175.26 553.53 4.32

16×4×4 527 493 754 140.37 0.96 5154 236.18 1449.28 5.66

32×4×4 531 496 780 132.41 0.96 6282 269.87 2461.84 4.81

64×4×4 532 496 762 141.99 0.89 6702 307.29 2557.54 2.49

cache [22] are initialized at random. In general, decision variables are assigned to
the cached value (if any). The assignment cache is updated with values assigned
by unit propagation and pure literal detection. As an effect of random initial-
ization, the first value assigned to a decision variable is always a random value.
Parameters of variable activity scaling are set at random. DepQBF implements
variable activities similar to MiniSAT [6]. Additionally, the amount (percentage)
of learned constraints that are removed periodically is initialized at random.
DepQBF stores learned clauses and cubes in separate lists with certain capaci-
ties. If a list has been filled during learning then less frequently used constraints
are removed and the capacity of the list is increased. DepQBF implements a
nested restart scheme similar to PicoSAT [4], the parameters of which are ran-
domly selected. Variants of dynamic QBCE [18] are enabled at random, including
switching off dynamic QBCE at all, or applying QBCE only as a preprocessing
or inprocessing step. Finally, applications of long-distance resolution [1,26], an
extension of traditional Q-resolution [14] used to derive learned constraints, are
toggled at random.

6 Experimental Evaluation

To examine our portfolio-based parallel QBF solver HordeQBF we performed
experiments using all the 735 benchmark problems from the application track
of the 2014 QBF Gallery [12]. We compared HordeQBF with DepQBF, which is
the QBF solver in the core of HordeQBF.

The experiments were run on a cluster with nodes having two octa-core
2.6 GHz Intel Xeon E5-2670 processors (Sandy Bridge) and 64 GB of main mem-
ory. Each node has 16 cores and we used 64 nodes which amounts in the total of
1024 cores. The nodes communicate using an InfiniBand 4X QDR Interconnect
and use the SUSE Linux Enterprise Server 11 (x86 64) (patch level 3) operating

536 T. Balyo and F. Lonsing

Fig. 2. Distribution of speedups on the “big instances” (solved after 10×#cores seconds
by DepQBF – the data corresponding to Columns 7–9 of Table 1).

system. HordeQBF was compiled using the icpc compiler version 15.0.2. The
complete source code and detailed experimental results are available at http://
baldur.iti.kit.edu/hordesat/.

We ran experiments using 2, 4, . . . , 64 cluster nodes. On each node we ran
four processes with four threads each, which amounts to 16 core solver (DepQBF)
instances per node. The results are summarized in Fig. 1 using cactus plots. We
can observe that increasing the number of cores is beneficial for both SAT and
UNSAT instances since the number of solved instances steadily increases and
runtimes are reduced.

However, it is not easy to see from a cactus plot whether the additional
performance is a reasonable return on the invested hardware resources. Therefore
we include Table 1 in order to quantify the overall scalability of HordeQBF. We
compute speedups for all the instances solved by the parallel solver. We ran
DepQBF with a time limit T = 50 000 s and for the instances it did not solve
we use the runtime of T in speedup calculation. The parallel configurations
have a time limit of 900 s. Columns 4, 5, and 6 of Table 1 show the average,
total (sum of sequential runtimes divided by the sum of parallel runtimes) and
median speedup values respectively. While the average and total speedup values
are high, the median speedup is below one.

Nevertheless, these figures treat HordeQBF unfairly since the majority of the
benchmarks is easy (solvable under a minute by DepQBF) and it makes no sense
to use large computer clusters to solve them. In parallel computing, it is usual
to analyze the performance on many processors using weak scaling where one
increases the amount of work involved in the considered instances proportionally
to the number of processors. Therefore in columns 7–9 we restrict ourselves to
“big instances” – where DepQBF needs at least 10×(the number of cores used by
HordeQBF) seconds to solve them. The average, total and median speedup values
get significantly larger and in fact we obtain highly superlinear average and
median speedups. Figure 2 shows the distribution of speedups for these instances,
it also reveals how many instances (x-axis) qualify as “big instances”.

http://baldur.iti.kit.edu/hordesat/
http://baldur.iti.kit.edu/hordesat/

HordeQBF: A Modular and Massively Parallel QBF Solver 537

7 Conclusion

We showed that QBF solving can be successfully parallelized using the same tech-
niques as for massively parallel SAT solving. Our parallel QBF solver HordeQBF
achieved superlinear total and median speedups for hard instances, i.e., instances
where parallelization makes sense.

As future work it would be interesting to consider further variants of Q-
resolution systems [2] (apart from traditional [14] and long-distance resolu-
tion [1,26]) as a means of diversification in HordeQBF, which would amount
to a combination of QBF proof systems with different power. Further, it may
be promising to equip HordeQBF with search space partitioning as in MPI-
DepQBF [13].

References

1. Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. Formal
Meth. Syst. Des. 41(1), 45–65 (2012)

2. Balabanov, V., Widl, M., Jiang, J.H.R.: QBF resolution systems and their proof
complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169.
Springer, Heidelberg (2014)

3. Balyo, T., Sanders, P., Sinz, C.: HordeSat: A massively parallel portfolio SAT
solver. In: Heule, M. (ed.) SAT 2015. LNCS, vol. 9340, pp. 156–172. Springer,
Heidelberg (2015)

4. Biere, A.: PicoSAT essentials. JSAT 4(2–4), 75–97 (2008)
5. Cadoli, M., Giovanardi, A., Schaerf, M.: An algorithm to evaluate quantified

boolean formulae. In: AAAI, pp. 262–267. AAAI Press / The MIT Press (1998)
6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,

A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
7. Feldmann, R., Monien, B., Schamberger, S.: A distributed algorithm to evaluate

quantified boolean formulae. In: AAAI, pp. 285–290. AAAI Press / The MIT Press
(2000)

8. Giunchiglia, E., Marin, P., Narizzano, M.: QuBE7.0. JSAT 7(2–3), 83–88 (2010)
9. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/Term resolution and learning

in the evaluation of quantified boolean formulas. JAIR 26, 371–416 (2006)
10. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable imple-

mentation of the MPI message passing interface standard. Parallel Comput. 22(6),
789–828 (1996)

11. Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for
SAT and QSAT. J. Artif. Intell. Res. (JAIR) 53, 127–168 (2015)

12. Janota, M., Jordan, C., Klieber, W., Lonsing, F., Seidl, M., Van Gelder, A.: The
QBF Gallery 2014: The QBF competition at the FLoC olympic games. JSAT 9,
187–206 (2016)

13. Jordan, C., Kaiser, L., Lonsing, F., Seidl, M.: MPIDepQBF: Towards parallel QBF
solving without knowledge sharing. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 430–437. Springer, Heidelberg (2014)

14. Kleine Büning, H., Karpinski, M., Flögel, A.: A resolution for quantified boolean
formulas. Inf. Comput. 117(1), 12–18 (1995)

538 T. Balyo and F. Lonsing

15. Letz, R.: Lemma and model caching in decision procedures for quantified boolean
formulas. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol.
2381, pp. 160–175. Springer, Heidelberg (2002)

16. Lewis, M., Schubert, T., Becker, B.: QMiraXT - a multithreaded QBF solver.
In: Methoden und Beschreibungssprachen zur Modellierung und Verifikation von
Schaltungen und Systemen (MBMV) (2009)

17. Lewis, M., Schubert, T., Becker, B., Marin, P., Narizzano, M., Giunchiglia, E.:
Parallel QBF solving with advanced knowledge sharing. Fundamenta Informaticae
107(2–3), 139–166 (2011)

18. Lonsing, F., Bacchus, F., Biere, A., Egly, U., Seidl, M.: Enhancing search-based
QBF solving by dynamic blocked clause elimination. In: Davis, M. (ed.) LPAR-20
2015. LNCS, vol. 9450, pp. 418–433. Springer, Heidelberg (2015)

19. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. JSAT 7(2–3),
71–76 (2010)

20. Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF
solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–
171. Springer, Heidelberg (2010)

21. Mota, B.D., Nicolas, P., Stéphan, I.: A new parallel architecture for QBF tools. In:
Proceedings of the International Conferference on High Performance Computing
and Simulation (HPCS 2010), pp. 324–330. IEEE (2010)

22. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-
isfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 294–299. Springer, Heidelberg (2007)

23. Pulina, L., Tacchella, A.: AQME’10. JSAT 7(2–3), 65–70 (2010)
24. Vautard, J., Lallouet, A., Hamadi, Y.: A parallel solving algorithm for quantified

constraints problems. In: ICTAI, pp. 271–274. IEEE Computer Society (2010)
25. Zhang, H., Bonacina, M.P., Hsiang, J.: PSATO: A distributed propositional prover

and its application to quasigroup problems. J. Symb. Comput. 21(4), 543–560
(1996)

26. Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability
solver. In: ICCAD, pp. 442–449. ACM / IEEE Computer Society (2002)

27. Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts
in quantified boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002.
LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002)

LMHS: A SAT-IP Hybrid MaxSAT Solver

Paul Saikko, Jeremias Berg, and Matti Järvisalo(B)

Helsinki Institute for Information Technology HIIT,
Department of Computer Science, University of Helsinki, Helsinki, Finland

matti.jarvisalo@cs.helsinki.fi

Abstract. We describe LMHS, an open-source weighted partial
maximum satisfiability (MaxSAT) solver. LMHS is a hybrid SAT-IP
MaxSAT solver that implements the implicit hitting set approach to
MaxSAT. On top of the main algorithm, LMHS offers integrated pre-
processing, solution enumeration, an incremental API, and the use of a
choice of SAT and IP solvers. We describe the main features of LMHS,
and give empirical results on the influence of preprocessing and the choice
of the underlying SAT and IP solvers on the performance of LMHS.

1 Introduction

LMHS is a weighted partial maximum satisfiability (MaxSAT) solver. Weighted
partial MaxSAT is a common generalization of maximum satisfiability that
allows some clauses to be designated as mandatory and assigns weights to clauses
that may be left unsatisfied. LMHS implements the so-called implicit hitting set
approach [16,18] for weighted partial MaxSAT, and can be viewed as an inde-
pendent from-scratch re-implementation of the MaxHS solver [8–10]. On top
of the main algorithm, LMHS integrates MaxSAT preprocessing [3–6] into the
solver, and offers solution enumeration, an incremental API, as well as the use
of a choice of SAT and IP solvers. The solver entered the 2015 MaxSAT Evalua-
tion [2], where it solved the most problems (among non-portfolio solvers) in the
crafted and industrial weighed partial MaxSAT categories. This paper gives an
overview of key features of the LMHS solver as well as the effects of preprocess-
ing and the choice of the SAT and IP solvers on its performance.

2 Overview of LMHS

LMHS implements an instantiation of an implicit hitting set algorithm [16]
for weighted partial MaxSAT, following MaxHS [8–10]. Given an unsatisfiable
CNF formula F , the MaxSAT problem is to identify a minimum (minimum-cost

Work funded by Academy of Finland, grants 251170 COIN, 276412, and 284591; and
Doctoral School in Computer Science DoCS and Research Funds of the University
of Helsinki.

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 539–546, 2016.
DOI: 10.1007/978-3-319-40970-2 34

540 P. Saikko et al.

Algorithm 1. The MaxHS implicit hitting set algorithm for MaxSAT [8].
1: function MaxHS(Fh, Fs, c)
2: K ← ∅, H ← ∅
3: (sat, κ, τ) ← SolveSAT(Fh ∪ Fs)
4: while not sat do
5: K ← K ∪ {κ}
6: H ← SolveMCHS(K, c)
7: (sat, κ, τ) ← SolveSAT(Fh ∪ (Fs\H))

8: return τ

for weighted problems) set H of (soft) clauses such that F\H is satisfiable. A
connection to implicit hitting set problems comes from the unsatisfiable subsets
of clauses, or cores κ, or the formula. The set of clauses H must hit a clause from
each core κ, so an optimal MaxSAT solution can be obtained by computing a
minimum-cost hitting set (MCHS) over the set of all cores. When the set of all
cores is not known, this becomes an implicit hitting set problem.

The implicit hitting set approach for weighted partial MaxSAT, given hard
clauses Fh, soft clauses Fs, and cost function c : Fs → R

+, is described in more
detail in Algorithm 1 and Fig. 1. It uses both a SAT and an IP solver. During
the solving process it accumulates a set K of cores and stores a MCHS of K in
H. Starting with H = ∅, the algorithm tests the satisfiability of F\H using the
SAT solver. If satisfiable, the variable assignment τ returned by the SAT solver
is optimal. If unsatisfiable, a new core κ of F\H is obtained from the SAT solver
and added to K. Finally, the IP solver is used to update H to a new hitting set
by computing a MCHS of K.

In practice, every soft clause Ci ∈ Fs is augmented with a unique auxiliary
variable ai so that if ai = 1, then Ci need not be satisfied, i.e., creating the clause
Ci ∨ ai. Arbitrary sets of soft clauses can then be excluded from the formula by
assuming ai = 1 for the corresponding auxiliary variables in a SAT solver call.
To obtain a MCHS of K, the IP solver minimizes

∑
Ci∈Fs

ai · c(Ci) subject to
the constraint

∑
Ci∈κ ai ≥ 1 for each core κ ∈ K, enforcing that each core in K

is hit.
Besides the features elaborated on in Sect. 3, some design choices differen-

tiate LMHS from the MaxHS solver of Davies and Bacchus (http://maxhs.
org). LMHS never enforces the equivalence ¬ai ↔ Ci of auxiliary variables and
clauses explicitly in CNF. Instead, the value of each ai is fixed via the assump-
tions interface for every SAT solver call, which ensure that ¬ai ↔ Ci implicitly
holds. In terms of heuristic optimizations, by default LMHS finds a maximal
disjoint set of cores on each iteration and uses a greedy hitting set algorithm in
place of an IP solver call whenever possible. At each iteration, the greedy hitting
set algorithm is used in place of an IP solver call as long as this results in an
unsatisfiable formula (i.e., a core is produced). When the greedy method does
not yield a core, the IP solver is used to compute a minimum-cost hitting set.
The 2015 MaxSAT Evaluation versions LMHS-I and LMHS-C differ slightly in
this regard: LMHS-I did not use the greedy algorithm, while LMHS-C finds a set

http://maxhs.org
http://maxhs.org

LMHS: A SAT-IP Hybrid MaxSAT Solver 541

Fig. 1. Information flow in the implicit hitting set approach to MaxSAT

of possibly overlapping cores at each iteration. Furthermore, as a consequence
of the integration of SAT-based preprocessing, auxiliary variables may not be
limited to a single unique ai per soft clause.

3 Features

Here we give an overview of the main features offered by LMHS on top of the
main algorithm it implements.
Integrated Preprocessing. The use of SAT preprocessing techniques for
MaxSAT [4] is integrated into LMHS using the Coprocessor 2.0 SAT preproces-
sor [17]. Many SAT preprocessing techniques, such as bounded variable elimina-
tion [11], are not sound for MaxSAT on their own [4]. However, they can be made
sound by introducing a layer of auxiliary variables (labels) and forbidding their
removal during preprocessing [3,4]. Concretely, a new variable li is introduced
for each soft clause Ci prior to applying preprocessing. The original soft clause
replaced by a hard clause (Ci ∨ li) with the restriction that the variable li may
not be eliminated from the formula. After preprocessing, soft clauses (¬li) with
the weights of the original clauses Ci are added to the formula.

Efficient integration of SAT-based preprocessing in LMHS is enabled by
the observation that the MaxHS algorithm is sound even in cases where an
assumption variable is shared between clauses or a clause contains more than one
assumption variable [5]. This allows LMHS to re-use the variables li introduced
by preprocessing in place of the auxiliary variables ai, avoiding the introduction
of a new layer of assumption variables for SAT-based core extraction within the
main algorithm.

Following [6], we further avoid the addition of unnecessary auxiliary variables
in LMHS by detecting variables in the original instance which can be reused
already in the preprocessing phase. Any literal l ∈ {x,¬x} which occurs only

542 P. Saikko et al.

Algorithm 2. Enumeration of optimal solutions.
1: function Enumerate(Fh, Fs, c)
2: K ← ∅,H ← ∅
3: while true do
4: while true do
5: (sat, κ, τ) ← SolveSAT(Fh ∪ (Fs\H))
6: if not sat then
7: K ← K ∪ {κ}
8: H ← SolveMCHS(K, c)
9: else break

10: if opt is undefined then opt ← cost(τ)

11: if cost(τ) > opt then break
12: else
13: yield τ
14: Fh ← Fh ∪ {∨τ(x)=1 ¬x ∨∨τ(x)=0 x

}

in a single unit soft clause (¬l) and some hard clauses (C1 ∨ l), . . . , (Cn ∨ l) of
the input instance is detected by simple pattern matching and re-used by the
preprocessor and thereafter by the main algorithm. Such variables are introduced
by, e.g., a straightforward encoding of group constraints [13].
Solution Enumeration. LMHS offers command-line options for enumerating
MaxSAT solutions. The solver can enumerate the k best solutions or all optimal
solutions. Enumeration can be based on variable assignments or satisfied clauses.
In the latter case, only solutions which satisfy a unique set of soft clauses are
considered. Solution enumeration in LMHS is implemented as Algorithm 2. The
MaxHS algorithm is enclosed within the loop on Line 3. When the first solution
is found, Line 10 records its cost as the optimal cost. On subsequent optimal
solutions, Line 14 adds a single clause which forbids the latest obtained optimal
solution. The termination condition on Line 11 is met when all optimal solutions
have been found.

To enumerate unique solutions in terms of satisfied clauses, the refinement of
F on Line 14 is replaced by adding the constraint

∑
Ci∈H ai−

∑
Ci∈Fs\H ai < |H|

to the hitting set IP, followed by a re-computation of the hitting set. A fixed
number of best solutions can be found by modifying the condition of Line 11 to
only break after enough solutions have been found. An application of the solution
enumeration interface—and the incremental API described next—is presented
in [19], where LMHS is used for MaxSAT to deriving cutting planes in an IP-
based approach to learning optimal Bayesian network structures.
Incremental API. LMHS also implements a more general type of incremen-
tality. Through a C or C++ API, the working formula can be incrementally
extended with arbitrary clauses and the solver subsequently incrementally used
for finding optimal solutions to the altered formula without starting search from
scratch. In terms of Algorithm 2, operations performed through the API in effect
replace Line 14. An overview of the interface follows.

LMHS: A SAT-IP Hybrid MaxSAT Solver 543

– reset Resets the internal state of LMHS, allowing a new instance to be
started.

– initialize Initializes LMHS and its components. Three variants of this
method are offered. An instance can be initialized from a file, from clauses
in memory, or as an empty instance to be built using the API.

– getNewVariable Requests a new variable from the internal SAT solver.
– addHardClause Adds a hard clause to the working MaxSAT instance.
– addSoftClause Adds a soft clause to the working MaxSAT instance. This

automatically internally creates a blocking (auxiliary) variable for the clause.
This variable is returned by the function in case the user wishes to make use
of it. As a rule, the blocking variable created will always have a larger index
number than the last variable created with getNewVariable.

– addCoreConstraint If a subset of soft clauses is known to be unsatisfiable,
it can be explicitly added to the set of cores, expressed using the blocking
variables of the soft clauses.

– forbidLastModel Internally creates a SAT constraint forbidding the previ-
ously found variable assignment.

– forbidLastSolution Internally creates an IP constraint forbidding the pre-
viously found set of satisfied soft clauses.

– getOptimalSolution Optimally solves the current MaxSAT instance.

Choice of SAT and IP Solvers. A lightweight interface between LMHS and
its SAT solver component allows for flexibility in the choice of solver. Any solver
which provides an assumption-based incremental interface can be integrated into
LMHS by implementing a small interface class and making minor modifications
to the build process. Interfaces for two such solvers, MiniSat 2.2 [12] and the
inprocessing [15] SAT solver Lingeling [7], are included in the current release
of LMHS. Similarly, LMHS was also designed to allow for the use of different
IP solvers. Currently LMHS includes interfaces to the state-of-the-art commer-
cial IP solver IBM CPLEX [14] and the open-source non-commercial IP solver
SCIP [1].
Input Format. In addition to adhering to the DIMACS WCNF input format
for weighted partial MaxSAT, LMHS also supports the use of floats (without
preprocessing) in the input WCNF, i.e., MaxSAT with cost functions associating
real-valued non-negative weights to clauses. Within the solver, the costs are
handled by the IP solver.

4 Performance Overview

This section examines some interesting aspects of the performance of LMHS.
We evaluate the solver on the complete set of 2209 crafted and industrial
partial and weighted partial benchmarks of the 2015 MaxSAT Evaluation [2].
The experiments were run on machines with 32-GB memory and Intel Xeon
E5540 processors under Ubuntu Linux 12.04. A per-instance time limit of 1800
seconds (30 min) was enforced. Figure 2 is a plot of the number of instances

544 P. Saikko et al.

Fig. 2. Effect of integrated preprocessing on LMHS on 2015 MaxSAT evaluation
instances.

Fig. 3. A comparison of SAT (right) and IP (left) solver components within LMHS.

solved at different per-instance timeouts, showing the impact of integrating pre-
processing into the solver by reusing auxiliary variables. It shows an interest-
ing effect, in that the ordinary application of MaxSAT preprocessing to the
instance (LMHS+pre) degrades solver performance compared to no preprocess-
ing (LMHS), but the tighter integration of preprocessing by reusing variables
(LMHS+pre+reuse) produces a clear improvement. While the reasons for this
effect are not entirely clear at present, we suspect it to be at least in part due to
the larger search space resulting from the added auxiliary variables. The extra
layer of variables can also be detrimental in terms of potential additional con-
straints available for the IP solver; see [5, Example 1].

Figure 3 compares the use of the SCIP 3.0.1 IP solver to CPLEX 12.6.0 (left)
and the MiniSat 2.2 solver to Lingeling (right) as the MIP and SAT components,
respectively, in LMHS. The combination of CPLEX and MiniSat was mainly
used during the development of LMHS, so these components can be expected to
perform better in the default configuration. Figure 3 plots per-instance runtimes

LMHS: A SAT-IP Hybrid MaxSAT Solver 545

for solved instances, and clearly shows better results with CPLEX and MiniSat.
However, although SCIP and Lingeling results in worse performace overall com-
pared to CPLEX and MiniSat, there is significant number of instances which
they enable solving faster. This suggests that choosing a combination of a SAT
solver and an IP solver on a per-instance basis could result in improved perfor-
mance. Additionally, more in-depth analysis of which instances are best suited
to each solver component could yield interesting further insights.

5 Availability and Conclusions

LMHS is competitive with the current state-of-the-art in MaxSAT solvers,
recently having reached top positions in the 2015 MaxSAT Evaluation. LMHS
integrates MaxSAT preprocessing into the solver. LMHS was designed to be
flexible in allowing for integrating different SAT and IP solvers. The solver is
open source and released under the MIT license at http://www.cs.helsinki.fi/
group/coreo/lmhs/.

References

1. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Com-
put. 1(1), 1–41 (2009)

2. Argelich, J., Li, C.M., Manyá, F., Planes, J.: Max-SAT 2015: Tenth Max-SAT
Evaluation (2015). http://www.maxsat.udl.cat/15/

3. Belov, A., Järvisalo, M., Marques-Silva, J.: Formula preprocessing in MUS extrac-
tion. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 108–123. Springer, Heidelberg (2013)

4. Belov, A., Morgado, A., Marques-Silva, J.: SAT-based preprocessing for MaxSAT.
In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol.
8312, pp. 96–111. Springer, Heidelberg (2013)

5. Berg, J., Saikko, P., Järvisalo, M.: Improving the effectiveness of SAT-based pre-
processing for MaxSAT. In: Proceedings of IJCAI, pp. 239–245. AAAI Press (2015)

6. Berg, J., Saikko, P., Järvisalo, M.: Re-using auxiliary variables for MaxSAT pre-
processing. In: Proceedings of ICTAI, pp. 813–820. IEEE (2015)

7. Biere, A.: Yet another local search solver and Lingeling and friends entering the
SAT competition 2014. In: Proceedings of SAT Competition 2014, vol. B-2014-2,
pp. 39–40. Department of Computer Science Series of Publications B, University
of Helsinki (2014)

8. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT
instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer,
Heidelberg (2011)

9. Davies, J., Bacchus, F.: Exploiting the power of MIP solvers in MaxSAT. In:
Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181.
Springer, Heidelberg (2013)

10. Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT solving.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 247–262. Springer, Heidelberg
(2013)

http://www.cs.helsinki.fi/group/coreo/lmhs/
http://www.cs.helsinki.fi/group/coreo/lmhs/
http://www.maxsat.udl.cat/15/

546 P. Saikko et al.

11. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569,
pp. 61–75. Springer, Heidelberg (2005)

12. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

13. Heras, F., Morgado, A., Marques-Silva, J.: MaxSAT-based encodings for group
MaxSAT. AI Commun. 28(2), 195–214 (2015)

14. IBM ILOG: CPLEX optimizer 12.6.0 (2014). http://www-01.ibm.com/software/
commerce/optimization/cplex-optimizer/

15. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer,
Heidelberg (2012)

16. Karp, R.M.: Implicit hitting set problems and multi-genome alignment. In:
Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 151–151. Springer,
Heidelberg (2010)

17. Manthey, N.: Coprocessor 2.0 – a flexible CNF simplifier. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 436–441. Springer, Heidelberg
(2012)

18. Moreno-Centeno, E., Karp, R.M.: The implicit hitting set approach to solve com-
binatorial optimization problems with an application to multigenome alignment.
Oper. Res. 61(2), 453–468 (2013)

19. Saikko, P., Malone, B., Järvisalo, M.: MaxSAT-based cutting planes for learning
graphical models. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 347–356.
Springer, Heidelberg (2015)

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

OpenSMT2: An SMT Solver for Multi-core
and Cloud Computing

Antti E.J. Hyvärinen(B), Matteo Marescotti, Leonardo Alt,
and Natasha Sharygina

Università della Svizzera italiana, Lugano, Switzerland
antti.hyvarinen@gmail.com

Abstract. This paper describes a major revision of the OpenSMT solver
developed since 2008. The version 2 significantly improves its predecessor
by providing a design that supports extensions, several critical bug fixes
and performance improvements. The distinguishing feature of the new
version is the support for a wide range of parallelization algorithms both
on multi-core and cloud-computing environments. Presently the solver
implements the quantifier free theories of uninterpreted functions and
equalities and linear real arithmetics, and is released under the MIT
license.

1 Introduction

SMT solvers constitute an attractive approach for constraint programming that
combines the efficiency of the solvers for propositional formulas with the expres-
siveness of higher-order logics. While the underlying principle of SMT solvers is
simple, the state-of-the-art SMT solvers are wonderfully complex software that,
while offering superior performance, are challenging to approach for developers
new to the code. In this paper we present the OpenSMT2 SMT solver. The new
release puts a particular emphasis to easy approachability by being compact but
still supporting the important quantifier-free theories of uninterpreted functions
and equalities (QF UF) and linear real arithmetics (QF LRA). The solver is
available at http://verify.inf.usi.ch/opensmt, is open source under the relatively
liberal MIT license, and uses the MiniSat 2.0 SAT solver as the search engine.
Compared to the previous version [2] the major improvements are the complete
re-design of the data structure used for representing terms to allow extensibility
to new theories; a modular framework for building expressions in different logics
matched with a similarly modular framework for logic solvers; and several critical
bug fixes. We have also improved the performance of the solver in particular on
the instances of QF LRA. The system supports scalability through parallel SMT
solving on both multi-core and cloud computing environments with impressive
increase in performance for cloud computing.

2 OpenSMT2

This section gives an overview of the implementation of OpenSMT2. For a more
detailed and generic description the reader is referred to [3]. Figure 1 describes
c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 547–553, 2016.
DOI: 10.1007/978-3-319-40970-2 35

http://verify.inf.usi.ch/opensmt

548 A.E.J. Hyvärinen et al.

to CNF

SMT parser Theory solvers
SAT solver

APIProgram

Theory specific

simplification

results

smt2 file

results

translation
c

c′φs
φCNF

φ

σ

Fig. 1. Overview of the OpenSMT2 architecture.

Logic

SAT solverTHandler

TSolverHandler

UFTHandler LRATHandler

TSolver

Egraph LRASolver

Theory

UFTheory LRATheory

LRALogicEL

ES

ET

Fig. 2. The architecture of the theory framework in OpenSMT2. The element EL con-
tains the logic implementation, ES contains the solver implementation, and ET contains
the theory elements that glue the logic to the solvers.

the functionality of OpenSMT2 on a high-level. The solver supports reading
an smt-lib file and interacting through an application-program-interface. The
problem is then converted into an SMT formula φ and simplified into φs using
both simplifications working on the propositional level, where for example nested
conjunctions are flattened and Boolean constraints removed, as well as on the
theory level, where for instance asserted equalities are used to compute vari-
able substitutions. These simplifications are fairly standard in SMT solvers. The
resulting formula is translated into conjunctive normal form φCNF. The formula
φCNF is fed to the SAT solver which initializes the theory solvers based on the
variables seen by the solver. The SAT solver then provides the theory solvers
with assignments σ satisfying φCNF. If a theory solver deems σ unsatisfiable
it returns a clause c that prevents the SAT solver from reproducing similar
inconsistent assignments. The clauses are simplified to learned clauses c′ using
resolution guided by the conflict graph [9] and the CNF formula is updated to
φCNF := φCNF ∧ c′. The process finishes when either φCNF becomes unsatisfiable
or the SAT solver finds a theory-consistent truth assignment σ.

Figure 2 shows an abstraction the framework OpenSMT2 uses for implement-
ing theories together with two concrete examples, QF UF [3] and QF LRA [4].
The figure follows a UML-style representation where the boxes with rounded cor-
ners represent abstract classes that cannot be instantiated, and sharp-cornered
boxes represent concrete classes. The dashed arrows point to base classes while

OpenSMT2: An SMT Solver for Multi-core and Cloud Computing 549

Table 1. Abstract methods that must be overridden in the classes described in Fig. 2
to implement new theories.

Method Description

Theory

simplify Entry point for theory specific simplifications.

Logic

mkConst Create logic-specific constants.

isUFEquality Check whether a given equality is uninterpreted.

isTheoryEquality Check whether a given equality is from a theory.

insertTerm Insert a theory term.

retrieveSubstitutions Get the substitutions based on the logic.

TSolverHandler

assertLit special Assert literals in the simplification phase.

TSolver

assertLit Assert a theory literal.

pushBacktrackPoint,
popBacktrackPoint

Incrementally add and remove asserted theory literals.

check Check theory consistency of the asserted literals.

getValue obtain a value of a theory term once a model has been
found.

computeModel compute a concrete model for the theory terms once the
theory solver finds a model consistent.

getConflict return a compact explanation of the theory-
inconsistency in the form of theory literals.

getDeduction get theory literals implied under the current assignment.

declareTerm inform the theory solvers about a theory literal.

solid arrows point to instances held by a particular class. The framework imple-
ments the interactions in Fig. 1 related to the API, theory specific simplifications,
and the theory solvers. The architecture is divided into three elements: the Logic
element EL implementing the logical language, the Solver element ES that imple-
ments the solver, and the Theory element ET which combines the logic and the
solver. Extending the solver with new theories is done by introducing classes for
the new theory solver and theory solver handler to ES , the new logic to EL and
the new theory to ET . Table 1 provides a brief overview of the most important
methods that need to be implemented for the classes in new theories.

Figure 3 compares the solver performance to other solvers and the previous
version OpenSMT1 in the QF UF and QF LRA categories of smt-lib. The solver
is competitive in particular in the logic QF UF compared to other solvers, and
is a clear improvement over the previous version in QF LRA.

550 A.E.J. Hyvärinen et al.

6100

6200

6300

6400

6500

6600

6700

1 10 100 1000

N
um

be
r
of

so
lv
ed

in
st
an

ce
s

Time (s)

OpenSMT1
OpenSMT2

CVC4
MathSAT5

Z3
Yices

800
900
1000
1100
1200
1300
1400
1500
1600
1700

1 10 100 1000

N
um

be
r
of

so
lv
ed

in
st
an

ce
s

Time (s)

OpenSMT1
OpenSMT2

CVC4
MathSAT5

Z3
Yices

Fig. 3. Number of solved instances in a given timeout for OpenSMT1, OpenSMT2,
and certain other solvers for the logics QF UF (left) and QF LRA (right) (Color figure
online).

3 The Parallel Solvers

This section describes two parallel SMT solvers based on OpenSMT2. Section 3.1
details an implementation designed to run on a distributed cloud computing
environment, and Sect. 3.2 describes a thread-based parallel SMT solver. The
implementation of both parallel solvers is based on the safe partitioning algo-
rithm [7,8] where an input formula φCNF is partitioned into φ1

CNF . . . φn
CNF that

are pairwise unsatisfiable (φi
CNF ∧ φj

CNF is unsatisfiable whenever i �= j) and
whose disjunction is equisatisfiable with φCNF (

∨n
i=1 φi ≡ φCNF). Each partition

is then solved with a set Si of SMT solvers each using different random seeds.
When a partition φi

CNF is shown satisfiable the parallel solver terminates show-
ing also φCNF satisfiable, whereas if φi

CNF is shown unsatisfiable for all i, also
φCNF is unsatisfiable. In case φi

CNF is shown unsatisfiable, the parallel implemen-
tations reallocate the solvers Si evenly for solving the yet unsolved partitions.
We also consider an important special case of safe partitioning where n = 1
called the portfolio approach [6].

3.1 OpenSMT2 for Cloud Computing

This tool consists of a framework using OpenSMT2 to provide an SMT solver
designed to run on distributed cloud computing environments. The design fol-
lows a client-server model based on native TCP/IP message passing. The server
receives input instances in the smt-lib format from the user, handles the con-
nection with the clients, and acts as a front-end to the user. Both client disap-
pearance and asynchronous connection of new clients at run-time are handled
transparently by the server making the system more user-friendly and maintain-
ing the soundness of the result also in case of disappearing clients. The clients are
OpenSMT2 solvers whose task is to solve the instance φCNF received from the
server. Depending on the configuration of the server the system runs either in the
safe partitioning or portfolio mode. Figure 4 gives an overview of the framework.

OpenSMT2: An SMT Solver for Multi-core and Cloud Computing 551

...

FIFO Channel

Filter
Heuristic

Server

Clause DB

Selection
Heuristic

Cluster
Head node

Client

SMT Solver

Client

SMT Solver

Client

SMT Solver

C , C , ... ,C1 2 nC , C , ... ,C1 2 nC , C , ... ,C1 2 n

Partition
Heuristic

Input
instances

Fig. 4. The distributed SMT solver framework with clause sharing

The cloud computing implementation supports learned clause sharing among
the clients Si working on the same partition φi

CNF. During the solving task, each
client periodically sends new learned clauses through a FIFO channel which acts
as a light push mechanism to the server. The clauses are stored to the Clause
DB (see Fig. 4) where the clients periodically query new clauses. Heuristics for
filtering promising clauses are used both when storing clauses to the Clause
DB and when answering the client queries. In the current implementation the
heuristics prefer short clauses over longer clauses. The connection required to
update the clients is bidirectional since it is not possible to foresee when a client
is ready to accept new clauses. The bidirectional connections are shown with
dashed lines with double arrows.

In order to partition and share clauses the system must ensure that the inter-
nal clausal representation of each instance is the same in every client. The smt-lib
format does not guarantee this since small changes in the input formula might
result in optimizations that will dramatically change the formula φCNF. Instead
OpenSMT2 uses a custom binary format storing its state. This format is used
both for data transfers between each client and the server, and for initializing
the solvers in the multi-threaded implementation.

The Clause DB and the FIFO queue are implemented with the in-memory
database REDIS1. We chose REDIS since it supports both the publisher / sub-
scriber messaging paradigm used as FIFO channel for clauses exchange, and
the hash set feature which is useful to store clauses and handling sets opera-
tions used by both the filter and the selection heuristics. The use of the cloud
implementation is explained in the source code repository.

Figure 5 reports an experimental evaluation of the cloud computing version
on randomly selected, hard instances from QF UF (left) and QF LRA (right).
The server is executed with six different configurations: partitioning the input
instance into one (portfolio), two and eight partitions and spreading them among

1 http://redis.io.

http://redis.io

552 A.E.J. Hyvärinen et al.

0

10

20

30

40

50

60

70

1 10 100 1000

N
um

be
r
of

so
lv
ed

in
st
an

ce
s

Time (s)

OSMT2
s1
s2
s8

s1 CS
s2 CS
s8 CS

0

10

20

30

40

50

60

1 10 100 1000

N
um

be
r
of

so
lv
ed

in
st
an

ce
s

Time (s)

OSMT2
s1
s2
s8

s1 CS
s2 CS
s8 CS

Fig. 5. OpenSMT2 cloud version comparison between partitioning in 1,2 and 8 parti-
tions with and without clause sharing on QF UF (left) and QF LRA (right). sn stands
for partitioning into n, and CS stands for using clause sharing and filtering clauses that
contain more than 5 literals (Color figure online).

the 64 solvers in the cloud, with and without clause sharing. As a reference we
also report the corresponding result with OpenSMT2. Clause sharing with 64
solvers results in a significant two-fold speed-up compared to not using clause
sharing, and a three-fold speed-up compared to the sequential solver. The safe
partitioning approach works better on QF UF than on QF LRA, suggesting that
the role of the partitioning heuristic in QF LRA might be more critical.

3.2 Multi-threaded OpenSMT2

OpenSMT2 supports also multi-threaded solving. The client dispatching in this
case is similar to the cloud-computing version. A main thread partitions the input
instance, creates the requested number of POSIX threads, and starts clients on
the threads for solving the partitions. The communication between the main
thread and the solver threads are handled with the efficient POSIX pipes.

The multi-threading feature of OpenSMT2 can be activated by setting the -p
and -t arguments to, respectively, the number of partitions and solving threads.
For example solving instance.smt2 by partitioning the instance into two and
using four threads is done by executing opensmt -p2 -t4 instance.smt2.

4 Conclusions

This work presents the SMT solver OpenSMT2, its architecture, two parallel
variants, and a brief performance evaluation. The solver is used as the back-end
in model-checking tools eVolCheck [5], FunFrog [11], and PeRIPLO [1,10]. We
are currently working on improving the solver performance and its capabilities
in theory interpolation.

Acknowledgements. This work was financially supported by Swiss National Science
Foundation (SNSF) project number 153402.

OpenSMT2: An SMT Solver for Multi-core and Cloud Computing 553

References

1. Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: A proof-sensitive app-
roach for small propositional interpolants. In: Gurfinkel, A., Seshia, S.A. (eds.)
VSTTE 2015. LNCS, vol. 9593, pp. 1–18. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-29613-5 1

2. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The openSMT solver. In:
Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153.
Springer, Heidelberg (2010)

3. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005)

4. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

5. Fedyukovich, G., Sery, O., Sharygina, N.: eVolCheck: incremental upgrade checker
for C. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 292–307. Springer, Heidelberg (2013)

6. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard com-
putational problems. Science 275(5296), 51–54 (1997)

7. Hyvärinen, A.E.J., Marescotti, M., Sharygina, N.: Search-space partitioning for
parallelizing SMT solvers. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol.
9340, pp. 369–386. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24318-4 27

8. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Partitioning search spaces of a ran-
domized search. In: Cucchiara, R., Serra, R. (eds.) AI*IA 2009. LNCS, vol. 5883,
pp. 243–252. Springer, Heidelberg (2009)

9. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

10. Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO:
a framework for producing effective interpolants in SAT-based software verification.
In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol.
8312, pp. 683–693. Springer, Heidelberg (2013)

11. Sery, O., Fedyukovich, G., Sharygina, N.: FunFrog: bounded model checking with
interpolation-based function summarization. In: Chakraborty, S., Mukund, M.
(eds.) ATVA 2012. LNCS, vol. 7561, pp. 203–207. Springer, Heidelberg (2012)

http://dx.doi.org/10.1007/978-3-319-29613-5_1
http://dx.doi.org/10.1007/978-3-319-29613-5_1
http://dx.doi.org/10.1007/978-3-319-24318-4_27

SpyBug: Automated Bug Detection
in the Configuration Space of SAT Solvers

Norbert Manthey1 and Marius Lindauer2(B)

1 Technische Universität Dresden, Dresden, Germany
norbert.manthey@tu-dresden.de

2 University of Freiburg, Freiburg, Germany
lindauer@cs.uni-freiburg.de

Abstract. Automated configuration is used to improve the performance
of a SAT solver. Increasing the space of possible parameter configurations
leverages the power of configuration but also leads to harder maintain-
able code and to more undiscovered bugs. We present the tool SpyBug
that finds erroneous minimal parameter configurations of SAT solvers
and their parameter specification to help developers to identify and nar-
row down bugs in their solvers. The importance of SpyBug is shown by
the bugs we found for four well-known SAT solvers that won prices in
international competitions.

1 Introduction

Recently, algorithm configuration [12] has shown to considerably improve the
performance of SAT solvers by tuning their parameters, e.g. in the Configurable
SAT Solver Challenge (CSSC; [13]). As a consequence, SAT solvers became
highly flexible and configurable such that their performance can be optimized
for broad range of different SAT formulas. One well-known example is the solver
Lingeling [4] that exposes 323 parameters to the user and gave rise to 101341 pos-
sible parameter configurations in the CSSC’14. In combination with its already
strong default performance, Lingeling won the industrial track of the CSSC’14.

This flexibility of solvers comes with a price: as it is infeasible to assess the
performance of all possible parameter settings, it is also infeasible to verify the
correctness of all these settings. The high number of parameters of SAT solvers
motivated this work, as we expect to find untested (possibly buggy) configura-
tions when searching long enough. Since the components of a SAT solver highly
interact with each other and due to their increasing size and complexity, it is
hard to apply traditional methods aiming at formally proving SAT solver to
be bug free (see Sect. 2). Therefore, we propose a new tool, called SpyBug (see
Sect. 3) that searches in the space of possible parameter settings and instances

N. Manthey—Supported by the DFG grant HO 1294/11-1.
M. Lindauer—Supported by the DFG under Emmy Noether grant HU 1900/2-1.

c© Springer International Publishing Switzerland 2016
N. Creignou and D. Le Berre (Eds.): SAT 2016, LNCS 9710, pp. 554–561, 2016.
DOI: 10.1007/978-3-319-40970-2 36

SpyBug: Automated Bug Detection in the Configuration Space 555

to find erroneous solver runs that unexpectedly terminated or returned a wrong
proof. Since SAT solvers have many parameters and in most cases only a few
parameters actually trigger the bug (often 2–10 out of hundreds of parame-
ters), we furthermore use a heuristic to minimize the parameter configuration
by removing all parameters that are not necessary for the bug. This automatic
procedure helps the developer to narrow down the reason of the bug. In Sect. 4,
we demonstrate the effectiveness of SpyBug on the participants of the industrial
track of the CSSC 2014 and show that in 4 out of the 6 participants we were able
to find bugs which can be often explained by less than 10 parameters. With a
few modifications, SpyBug could also be applied to other problem domains, e.g.
mixed integer programming (MIP), maximum satisfiability (MaxSAT), quanti-
fied Boolean formula (QBF) or SAT modulo theory (SMT).

2 Related Work: Bug Detection in Software

Bugs in software are found in several ways. On one hand, formal methods can be
used to verify the software with respect to a specification, or to formally prove
that certain error states cannot be reached. Typically recognizable states are
assertions in the code, numerical overflows, or passing memory bounds. Similar
bugs are found with symbolic execution, or by fuzz testing. Finally, we can use
unit tests to test single components of a software system. A survey on formal
methods for software verification can be found in [20].

Depending on the size of the software system under test, certain methods
are not feasible due to their computational complexity. Unit tests are possible as
soon as there are single components in a system. Here, for example the solvers
data structures could be tested. Fuzz testing executes the software binary many
times and checks each run for errors. For SAT solvers, there exists the fuzz
testing suite [1,7], whose latter versions also support passing parameters to the
used SAT solver and minimizing faulty combinations. However, the required
feature to parse parameters from the formulas is not supported by many solvers.
The approach of SpyBug treats the software under examination as a black box.
Instead of the binary, the API of a solver library can be tested [7].

Formal methods have been applied to write verified SAT solvers with clause
learning: F. Marić [16] specified a SAT solver in the Isabelle interactive theorem
prover and then a solver implemented in Haskell is created. The SAT solver
versat [17] is created and verified by using the language Guru and translating
the code to C. In both projects, many techniques of recent systems have not
been implemented, and there is a performance gap to modern systems.

For symbolic execution and proving the reachability of erroneous states it is
hard to add assertions that check whether a solver state is valid. Therefore, we
currently focus on improved fuzz testing, as we want to check the correctness of
a highly configurable system without modifying the tool itself. With fuzz testing,
we only require that there exists a formal specification of the parameters of the
solver, and a standard input format and output format.

Hutter et al. [10] implemented a similar approach as used in SpyBug to
identify bugs in two MIP solvers. They modified the algorithm configurator

556 N. Manthey and M. Lindauer

SpyBug

Solver A with
Configuration

Space C

Instances I

Budget

Randomly
sample i ∈ I
and c ∈ C

Run A(c) on i

Minimize bug
configuration

Forbid config-
uration cmin

No Bug Bug found

Minimized
Bugs

Fig. 1. Workflow of SpyBug

ParamILS [12] to record erroneous configurations and to minimize them. The
main difference to SpyBug is that ParamILS will find bugs mostly in well-per-
forming areas of the configuration space since its goal is not to find bugs but to
optimize the performance of a solver. As ParamILS aims at optimization, it is
more complicated to set up ParamILS compared to setting up SpyBug.

3 SpyBug’s Framework

The tool SpyBug is supposed to help developers by finding bugs in large con-
figuration spaces. We require only a parameter specification, the solver binary
and a list of formulas to perform testing.1 In the following sections, we explain
the internals of SpyBug and present a use case. The tool is open-source under
GPLv2 and available at http://www.ml4aad.org/spybug/.

3.1 Workflow

Since the idea of SpyBug is to search in the space of parameter configurations, it
is built upon a simplified subset of the already well-known interfaces of the state-
of-the-art algorithm configurators ParamILS [12] and SMAC [11] that was also
used in the Configurable SAT Solver Challenge [13]. Hence, developers already
using algorithm configuration can use SpyBug directly out-of-the-box. As illus-
trated in Fig. 1, the input of SpyBug is a solver with its configuration space, a
set of instances to run the solver on, and a budget how long SpyBug runs (i.e., a
wall clock time budget or a maximal number of solver runs). In the end, SpyBug
returns a list of all minimized found erroneous configurations of the given solver.

The main workflow of SpyBug consists of a loop:

1. It samples an instance and a valid configuration uniformly at random.
2. It runs the solver with the configuration on the instance with some resource

limits (i.e., the used runtime cutoff or memory limit). The solver is wrapped
by the so-called generic wrapper, which was used in the CSSC and which

1 Such a collection could be generated with fuzzing tools [7].

http://www.ml4aad.org/spybug/

SpyBug: Automated Bug Detection in the Configuration Space 557

is responsible to determine whether it was a valid run or not. In a valid
run, the solver either returned SATISFIABLE with a corresponding model or
UNSATISFIABLE – to verify the output, we check the returned model – or it
violated the resource limits. Hence, segmentation faults or failed assertions
are also considered as bugs.

3. If it was a valid run, we continue with Step 1. Otherwise, we first minimize
the found bug and then forbid the minimized configuration (or any super set
of this configuration) to be sampled again. If the minimized configuration is
empty (i.e., the bug is also triggered by the default configuration), we remove
the instance from the instance set because we assume that the solver will
always fail to run on this instance.

The generic wrapper judges a run based on the output of the solver, and the
report of the runsolver tool [19]. By replacing the SAT-specific component of
this script, SpyBug can easily be adapted to other types of solvers, for example
MaxSAT solvers, Pseudo-Boolean solvers, QBF solver or SMT solvers.

3.2 Bug Minimization

The minimization of a configuration that triggered a bug is important to narrow
down the reason for this bug. In the end, we are interested in the changed error-
prone parameters with respect to the default configuration of a solver since the
default configuration is often well tested and well studied by the developers. We
therefore apply two iterations of a backward elimination, i.e., we iterate over all
changed parameters and flip them to the default if the bug remains. The second
iteration is done in reversed order of the parameters because a single traversal of
the parameters could keep many non-relevant parameters. In preliminary tests,
many further non-relevant parameters were removed with the help of a reverse
traversal. To not spend too much time on the minimization, we do not use a full
minimization procedure.

In this minimization process, we have to consider that the parameter con-
figuration space (pcs) of a solver could be structured. According to the used
pcs-format2, the configuration space can consist of forbidden parameter com-
binations and conditional parameter clauses. For the first, we simply have to
ensure that we do not violate these forbidden combinations. In contrast, condi-
tional parameter clauses define when a parameter is active (e.g., a parameter of
a heuristic is only active if this heuristic is indeed used). If we flip a parameter
value we check which parameters are inactive and which ones need to be acti-
vated. Since a parameter will be set to its default value when it gets activated,
the number of parameters to activate does not increase by flipping parameters
during minimization.

In order to not find the same faulty configuration twice, the obtained com-
bination of parameters is disallowed for all further solver calls. We furthermore
remove all continuous parameters from this parameter configuration, as for such

2 http://www.cs.ubc.ca/labs/beta/Projects/SMAC/v2.08.00/manual.pdf.

http://www.cs.ubc.ca/labs/beta/Projects/SMAC/v2.08.00/manual.pdf

558 N. Manthey and M. Lindauer

Table 1. Overview of participants of the industrial track of the Configurable SAT
Solver Challenge 2014. For illustration, the number of configurations refers to a dis-
cretized version of the configuration space where each parameter has at most 8 possible
values.

Solver # Parameters # Configurations Reference

Minisat-HACK-999ED 10 8 · 105 [18]

Cryptominisat 36 3 · 1024 [21]

Clasp-3.0.4-p8 75 1 · 1049 [9]

Riss-4.27 214 5 · 1086 [15]

SparrowToRiss 222 1 · 10112 [2]

Lingeling 323 2 · 101341 [5]

a kind of parameter there might be too many other values that would lead to
the same fault in the solver.

3.3 An Exemplary Use Case

We present a small use case for the solver Riss-4.27 [15] (riss) with its 214
parameters (specified in the file riss.pcs). We use the solver and parameter
specification that were submitted to the CSSC 2014 [13]. As a benchmark set,
we use Circuit Fuzz formulas [7].

When starting SpyBug for the submitted version of Riss-4.27 with the above
setup, the following lines will be printed.

found a bug in -agil-r no -probe yes [...] on fuzz_100_20562.cnf
[...]
Minimal bug config: -cp3_strength no [...] -inprocess yes

The example highlights the major properties of SpyBug: when it finds a bug, it
reports the full parameters that have been passed to the solvers wrapper script.3

Furthermore, the formula that triggered the bug is printed (SAT dat.k50.cnf).
Next, the minimized list of parameters is printed. For the given example, the
parameter -agil-r is not set any longer in the minimized set, as the bug is repro-
ducible with the default value for this parameter. This combination is reported
to the user, as shown in the example above.

4 Case Study: Configurable SAT Solver Challenge

To demonstrate the usefulness of SpyBug, we evaluated the 6 solvers that have
been submitted to industrial track of the CSSC 2014 [13]. We independently
analyze the solvers on the three benchmark families, i.e., hardware verification
3 When reproducing the buggy configuration with the native binary, the parameters
that might be added to the solver call in the wrapper script must be considered.

SpyBug: Automated Bug Detection in the Configuration Space 559

Table 2. Number of found bugs and their minimized average sizes (± standard devia-
tion) in the configuration space after 4 independent runs of SpyBug for at most 2 days
or 10.000 randomly sampled configuration-instance pairs.

Bugs ∅ Bugs

IBM CF BMC IBM CF BMC

Minisat-HACK-999ED 0 0 0 − − −
Cryptominisat 2 0 7 2 ± 0 − 3 ± 2

Clasp-3.0.4-p8 0 0 0 − − −
Riss-4.27 3 5 2 5 ± 1 13 ± 6 6 ± 4

SparrowToRiss 0 0 1 − − 7 ± 0

Lingeling 0 2 0 − 8 ± 2 −

(IBM [22]), circuit fuzz (CF [7]), and bounded model checking (BMC [6]). Sim-
ilar to automated configuration, we repeat the analysis for the combination of a
solver and a benchmark family four times. The execution of a solver on a formula
is limited to 300 CPU seconds and 3 GB RAM. We stop the analysis as soon as
we tested 10 000 random configurations, or when reaching 2 days wall clock time.
We communicated the found erroneous configurations to the solver developers.

The experiment has been executed on a cluster with 64 GB RAM that is
shared among two Intel Xeon E5-2650v2 8-core CPUs with 20 MB L2 cache;
running Ubuntu 14.04 LTS 64 bit. Table 1 presents the 6 solvers of the analysis
and their number of parameters. While larger configuration spaces might yield
better configurations, verifying the absence of bugs becomes harder.

Next, we present a summary of the bugs we found during the analysis in
Table 2. For Minisat-HACK-999ED and Clasp-3.0.4-p8 , we did not find a bug
during our experiments. Lingeling has two misbehaving configurations for the CF
family and SparrowToRiss shows bugs for the BMC family. For Cryptominisat
and Riss-4.27 , more than 5 bugs could be revealed on different families. The
table furthermore presents how many parameters have to be changed from the
default configuration to reach the faulty configuration. We note that SpyBug
minimized the erroneous configurations of Lingeling with 323 parameters down
to 8 parameters on average which drastically reduces the possible reasons of the
responsible bugs. SpyBug got the best narrowing of responsible parameters for
Cryptominisat for which only 2 or 3 parameters on average were necessary.

5 Conclusion

State-of-the-art SAT solvers contain many different techniques such as simplifi-
cation during search. Combining only a few of these techniques can already result
in unsound sequential systems [14]. Implementing competitive SAT solvers is a
difficult task, especially if the system should be tuned for different applications.
We presented the tool SpyBug, which orthogonally to existing tools finds bugs in

560 N. Manthey and M. Lindauer

the configuration space of the SAT solver. One specific use-case of SpyBug is to
reveal bugs in solvers, before tuning them with many expensive resources. We
reported bugs for four SAT solvers that won first prices in international competi-
tions in 2014. For the future, we plan to integrate SpyBug into the framework of
SpySMAC [8], i.e., an automatic framework to tune and analyse of SAT solvers.

References

1. Artho, C., Biere, A., Seidl, M.: Model-based testing for verification back-ends. In:
Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942, pp. 39–55. Springer,
Heidelberg (2013)

2. Balint, A., Manthey, N.: SparrowToRiss. In: Belov et al. [3], pp. 77–78
3. Belov, A., Diepold, D., Heule, M., Järvisalo, M. (eds.): Proceedings of SAT Compe-

tition 2014: Solver and Benchmark Descriptions, Department of Computer Science
Series of Publications B, vol. B-2014-2. University of Helsinki (2014)

4. Biere, A.: Lingeling, plingeling and treengeling entering the sat competition 2013.
In: Proceedings of SAT Competition 2013, pp. 51–52 (2013)

5. Biere, A.: Yet another local search solver and Lingeling and friends entering the
SAT competition. In: Belov et al. [3], pp. 39–40 (2014)

6. Biere, A., Cimatti, A., Claessen, K.L., Jussila, T., McMillan, K., Somenzi, F.:
Benchmarks from the 2008 hardware model checking competition (HWMCC 2008)
(2008). http://fmv.jku.at/hwmcc08/benchmarks.html

7. Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT
and QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175,
pp. 44–57. Springer, Heidelberg (2010)

8. Falkner, S., Lindauer, M., Hutter, F.: SpySMAC: automated configuration and
performance analysis of SAT solvers. In: Heule, M., Weaver, S. (eds.) SAT
2015. LNCS, vol. 9340, pp. 215–222. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-24318-4 16

9. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from
theory to practice. Artif. Intell. 187–188, 52–89 (2012)

10. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed inte-
ger programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010.
LNCS, vol. 6140, pp. 186–202. Springer, Heidelberg (2010)

11. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011)

12. Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. JAIR 36, 267–306 (2009)

13. Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H.H., Leyton-Brown, K.:
The configurable SAT solver challenge. CoRR (2015). http://arxiv.org/abs/1505.
01221

14. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer,
Heidelberg (2012)

15. Manthey, N.: Riss 4.27. In: Belov et al. [3], pp. 65–67
16. Maric, F.: Formal verification of a modern SAT solver by shallow embedding into

isabelle/hol. Theor. Comput. Sci. 411(50), 4333–4356 (2010)

http://fmv.jku.at/hwmcc08/benchmarks.html
http://dx.doi.org/10.1007/978-3-319-24318-4_16
http://dx.doi.org/10.1007/978-3-319-24318-4_16
http://arxiv.org/abs/1505.01221
http://arxiv.org/abs/1505.01221

SpyBug: Automated Bug Detection in the Configuration Space 561

17. Oe, D., Stump, A., Oliver, C., Clancy, K.: versat: a verified modern SAT solver. In:
Kuncak, V., Rybalchenko, A. (eds.) Verification, Model Checking, and Abstract
Interpretation. LNCS, vol. 7148, pp. 363–378. Springer, Heidelberg (2012)

18. Oh, C.: MiniSat HACK 999ED, MiniSat HACK 1430ED and SWDiA5BY. In:
Belov et al.[3], p. 46

19. Roussel, O.: Controlling a solver execution with the runsolver tool. J. Satisfiability
Boolean Model. Comput. 7(4), 139–144 (2011)

20. Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques for
formal software verification. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 27(7), 1165–1178 (2008)

21. Soos, M.: CryptoMiniSat v4. In: Belov et al. [3], p. 23
22. Zarpas, E.: Benchmarking SAT solvers for bounded model checking. In: Bacchus,

F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 340–354. Springer, Heidelberg
(2005)

Author Index

Alt, Leonardo 547
Arif, M. Fareed 521
Audemard, Gilles 87

Balabanov, Valeriy 453
Balyo, Tomáš 531
Becker, Bernd 473
Berend, Daniel 60
Berg, Jeremias 539
Beyersdorff, Olaf 490
Bogaerts, Bart 104
Brayton, Robert K. 212, 453
Bruynooghe, Maurice 104

Candeago, Lorenzo 284
Chew, Leroy 490
Cuong, C.K. 196
Czarnecki, Krzysztof 123

De Micheli, Giovanni 212
de Oliveira Oliveira, Mateus 13
Denecker, Marc 104
Devriendt, Jo 104

Egly, Uwe 419, 435
Elffers, Jan 160

Fichte, Johannes K. 45
Fremont, Daniel J. 141

Ganesh, Vijay 123

Heule, Marijn J.H. 196, 228
Hyvärinen, Antti E.J. 547

Ienne, Paolo 212
Ignatiev, Alexey 342, 521
Inala, Jeevana Priya 302

Janota, Mikoláš 402
Järvisalo, Matti 539
Jiang, Jie-Hong Roland 453

Johannsen, Jan 160
Jonáš, Martin 267

Khasidashvili, Zurab 361
Korovin, Konstantin 361
Kullmann, Oliver 228

Larraz, Daniel 284
Lauria, Massimo 160
Liang, Jia Hui 123
Lindauer, Marius 554
Lodha, Neha 179
Lonsing, Florian 435, 531

Magnard, Thomas 160
Manthey, Norbert 521, 554
Marek, Victor W. 228
Marescotti, Matteo 547
Marques-Silva, Joao 342, 521
Meier, Arne 45
Mencía, Carlos 342, 521
Mengel, Stefan 3
Mishchenko, Alan 212, 453
Mull, Nathan 141

Nordström, Jakob 160

Oliveras, Albert 284
Oparin, Vsevolod 77
Ordyniak, Sebastian 179

Peitl, Tomáš 500
Peñaloza, Rafael 521
Petkovska, Ana 212
Poupart, Pascal 123
Previti, Alessandro 342

Rabe, Markus N. 375
Reger, Giles 323
Rodríguez-Carbonell, Enric 284
Rubio, Albert 284
Rümmer, Philipp 249

Saikko, Paul 539
Scharpfenecker, Patrick 29
Schindler, Irina 45

Schmidt, Renate A. 490
Scholl, Christoph 453, 473
Seidl, Martina 435
Seshia, Sanjit A. 141, 375
Sharygina, Natasha 547
Simon, Laurent 87
Singh, Rohit 302
Slivovsky, Friedrich 500
Soeken, Mathias 212
Solar-Lezama, Armando 302
Sterin, Baruch 212
Strejček, Jan 267
Suda, Martin 323, 490
Szeider, Stefan 179, 500

Tentrup, Leander 393
Torán, Jacobo 29
Twitto, Yochai 60

Vinyals, Marc 160
Voronkov, Andrei 323

Wimmer, Karina 473
Wimmer, Ralf 473
Wintersteiger, Christoph M. 249

Zeljić, Aleksandar 249

564 Author Index

	Preface
	Organization
	Invited Talks
	Coping with Inconsistent Databases: Semantics, Algorithms, and Complexity
	From SAT to ASP and Back!?
	Satisfiability Testing, a Disruptive Technology in Program Verification?

	Contents
	Complexity
	Parameterized Compilation Lower Bounds for Restricted CNF-Formulas
	1 Introduction
	2 Preliminaries
	3 Statement of the Main Results and Preparation of the Proof
	4 Accepting Codes by CNF Formulas
	4.1 The Naive Approach
	4.2 Bounding Modular Treewidth
	4.3 Bounding Neighborhood Diversity

	5 Completing the Proof
	6 Connections to Model Counting and Affine Decision Trees
	7 Conclusion
	References

	Satisfiability via Smooth Pictures
	1 Introduction
	2 Preliminaries
	3 Pictures
	3.1 Smooth Pictures

	4 Satisfiability of Smooth Pictures in Polynomial Time
	5 Pigeonhole Pictures
	6 From Pictures to Constant Width CNF Formulas
	7 Lower Bound for Bounded Depth Frege Proofs
	References

	Solution-Graphs of Boolean Formulas and Isomorphism
	1 Introduction
	2 Preliminaries
	2.1 Solution Graphs of Boolean Formulas

	3 Isomorphism for Solution Graphs
	4 Structure of Solution Graphs of Horn Formulas
	5 Iso(2CNF) and the number of perfect matchings
	References

	Strong Backdoors for Default Logic
	1 Introduction
	2 Preliminaries
	2.1 Default Logic
	2.2 The Implication Problem

	3 Strong Backdoors
	4 Backdoor Evaluation
	5 Backdoor Detection
	6 Conclusion
	References

	The Normalized Autocorrelation Length of Random Max r-Sat Converges in Probability to (1-1/2r)/r
	1 Introduction
	2 Main Results
	3 Proofs
	4 Discussion
	References

	Tight Upper Bound on Splitting by Linear Combinations for Pigeonhole Principle
	1 Introduction
	2 Preliminaries
	3 Upper Bound for the Pigeonhole Principle
	4 Upper Bound on the Perfect Matching Principle
	5 Open Question
	References

	Satisfiability Solving
	Extreme Cases in SAT Problems
	1 Introduction
	2 SAT Benchmarks: On Dealing with Many Extreme Cases
	2.1 Outliers Everywhere
	2.2 A Few Other Measures
	2.3 Synthesis: Choosing the Proper Strategy

	3 Playing with the Phase
	3.1 A Phase for SAT, a Phase for UNSAT
	3.2 Comparing Phase Cache Values with the Final Models
	3.3 A First Attempt for SAT�that Failed
	3.4 Refining the Phase for UNSAT, When Restarting

	4 Experimentations
	5 Discussion
	6 Conclusion
	References

	Improved Static Symmetry Breaking for SAT
	1 Introduction
	2 Preliminaries
	3 Compact CNF Encodings of the Lex-Leader Constraint
	4 Exploiting Row Interchangeability
	4.1 Row Interchangeability Detection Algorithm

	5 Generating Binary Symmetry Breaking Clauses
	6 Putting it all Together as BreakID
	6.1 BreakID's High Level Algorithm

	7 Experiments
	7.1 Compact Symmetry Breaking Clauses
	7.2 Row Interchangeability and Binary Clauses
	7.3 Comparison to Shatter and Performance on the 2014 SAT Competition

	8 Conclusion
	References

	Learning Rate Based Branching Heuristic for SAT Solvers
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Simple Average and Exponential Moving Average
	2.2 Multi-Armed Bandit (MAB)
	2.3 Clause Learning
	2.4 The VSIDS Branching Heuristic

	3 Contribution I: Branching Heuristic as Learning Rate (LR) Optimization
	4 Contribution II: Abstracting Online Variable Selection as a Multi-Armed Bandit (MAB) Problem
	5 Contribution III: Learning Rate Branching (LRB) Heuristic
	5.1 Exponential Recency Weighted Average (ERWA)
	5.2 Extension: Reason Side Rate (RSR)
	5.3 Extension: Locality
	5.4 Putting it all Together to Obtain the Learning Rate Branching (LRB) Heuristic

	6 Experimental Results
	6.1 Setup
	6.2 Experiment: Efficacy of Extensions to ERWA
	6.3 Experiment: LRB vs VSIDS vs CHB
	6.4 Experiment: LRB and Learning Rate
	6.5 Experiment: LRB vs State-of-the-Art CDCL

	7 Related Work
	8 Conclusions and Future Work
	References

	On the Hardness of SAT with Community Structure
	1 Introduction
	2 Background
	2.1 SAT
	2.2 Resolution and CDCL
	2.3 Random SAT Instances
	2.4 Community Structure
	2.5 SAT and Community Structure

	3 Worst-Case Hardness
	3.1 A Class of ``Modularity-Like'' Graph Metrics
	3.2 Hardness of PCM-Modular Instances

	4 Average-Case Hardness
	4.1 Defining the New Distribution
	4.2 Comparing the Distribution to the Community Attachment Model
	4.3 Transferring Subformula-Inherited Properties
	4.4 Proving the Resolution Lower Bounds
	4.5 Deducing a Lower Bound on CDCL Runtime

	5 Discussion
	References

	Trade-offs Between Time and Memory in a Tighter Model of CDCL SAT Solvers
	1 Introduction
	2 Modelling CDCL as a Proof System
	3 Overview of Time-Space Trade-Off Results
	4 Concluding Remarks
	References

	Satisfiability Applications
	A SAT Approach to Branchwidth
	1 Introduction
	2 Preliminaries
	3 Partition-Based Reformulation of Branchwidth
	4 Encoding
	4.1 Encoding of a Derivation of a Hypergraph
	4.2 Encoding of a Derivation of Bounded Width

	5 Local Improvement
	6 Experimental Results
	6.1 Single SAT Encoding
	6.2 SAT-Based Local Improvement
	6.3 Discussion

	7 Final Remarks
	References

	Computing Maximum Unavoidable Subgraphs Using SAT Solvers
	1 Introduction
	2 Unavoidable Subgraphs and Motivation
	3 SAT Encoding of Unavoidable Subgraph Problems
	4 Computing Unavoidable Subgraphs Using SAT Solvers
	4.1 Breaking Symmetries
	4.2 Enumerating Unavoidable Subgraphs
	4.3 Results on Single-Component Unavoidable Subgraphs

	5 Computing Multi-component Unavoidable Subgraphs
	6 Deriving Symmetry-Breaking Predicates from Unavoidable Subgraphs
	7 Conclusions
	References

	Heuristic NPN Classification for Large Functions Using AIGs and LEXSAT
	1 Introduction
	2 Preliminaries
	2.1 Boolean Functions
	2.2 NPN Equivalence
	2.3 Lexicographic SAT

	3 Heuristic NPN Classification
	3.1 Flip-Swap Heuristic
	3.2 Sifting Heuristic

	4 Implementations
	4.1 Truth Table Based Implementation
	4.2 AIG Based Implementation Using LEXSAT

	5 Experiments
	5.1 Quality Evaluation
	5.2 Scalability Evaluation

	6 Possible Improvements
	7 Conclusions
	References

	Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer
	1 Introduction
	2 Preliminaries
	3 Proofs of Unsatisfiability
	4 Cube-and-Conquer Solving
	5 Solving the Boolean Pythagorean Triples Problem
	5.1 Encode
	5.2 Transform
	5.3 Split
	5.4 Details Regarding the Heuristics
	5.5 Solve
	5.6 Validate

	6 Results
	6.1 Heuristics
	6.2 Cube and Conquer
	6.3 Extreme Solutions

	7 Conclusions
	References

	Satisfiability Modulo Theory
	Deciding Bit-Vector Formulas with mcSAT
	1 Introduction
	1.1 Motivating Examples
	1.2 Related Work

	2 Preliminaries: Bit-Vector Constraints
	3 mcSAT with Projections
	3.1 A Calculus with Projections

	4 Searching for Models with mcBV
	4.1 Efficient Representation of Partial Model Assignments
	4.2 Maintaining Partial Domain Over-Approximations

	5 Conflicts and Explanations
	5.1 Greedy Generalization
	5.2 Greedy Bit-wise Generalization
	5.3 Greedy Arithmetic Generalization

	6 Experiments and Evaluation
	7 Conclusion
	References

	Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams
	1 Introduction
	2 Preliminaries
	2.1 Quantified Bit-Vector Formulas
	2.2 Model-Based Quantifier Instantiation
	2.3 Binary Decision Diagrams

	3 Our Approach
	3.1 Formula Simplifications
	3.2 Bit Variable Ordering
	3.3 Approximations
	3.4 The Algorithm

	4 Implementation and Experimental Results
	5 Conclusions
	References

	Speeding up the Constraint-Based Method in Difference Logic
	1 Introduction
	2 Background
	3 Proving Safety of Difference Programs
	3.1 Specialization of the Constraint-Based Method
	3.2 Experiments

	4 Finding Invariant Subsets
	4.1 General Case
	4.2 Difference Logic Case

	5 Experiments
	6 Conclusions and Future Work
	References

	Synthesis of Domain Specific CNF Encoders for Bit-Vector Solvers
	1 Introduction
	2 Synthesis of Encoders
	2.1 CNF Encoders and Templates
	2.2 Problem Formulation
	2.3 Synthesis-Friendly Propagation Completeness
	2.4 Introducing Auxiliary Variables
	2.5 Clause Minimization
	2.6 Guarantees of the Synthesized Solution

	3 Pattern Finding
	4 Encoder Code Generation
	5 Auto-Tuning Encoders
	6 Evaluation
	6.1 Experimental Setup
	6.2 Domains and Benchmarks
	6.3 Experiments

	7 Related Work
	8 Conclusion
	References

	Beyond SAT
	Finding Finite Models in Multi-sorted First-Order Logic
	1 Introduction
	2 Preliminaries
	3 MACE-Style Finite Model Finding in an Unsorted Setting
	3.1 DC-Models
	3.2 The SAT Encoding
	3.3 Reducing the Number of Variables
	3.4 Symmetry Breaking
	3.5 Determining Unsatisfiability

	4 Previous Work in the Multi-sorted Setting
	5 A Framework for the Multi-sorted Setting
	5.1 Using Sorts in the SAT Encoding
	5.2 A Search Strategy
	5.3 Encoding the Search Problem
	5.4 An Example
	5.5 Using Monotonicity

	6 Detecting Constraints Between Sorts
	7 Getting More Sorts
	8 An Alternative Growing Search
	9 Experimental Evaluation
	10 Conclusions and Further Work
	References

	MCS Extraction with Sublinear Oracle Queries
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 MCS Extraction with Linear Oracle Calls
	5 MCS Extraction with Sublinear Oracle Calls
	5.1 Uniform Spliting with Binary Search
	5.2 Literal-Oriented Geometric Progression

	6 Experimental Results
	6.1 Performance Comparison
	6.2 Analysis of the VBS

	7 Conclusions
	References

	Predicate Elimination for Preprocessing in First-Order Theorem Proving
	1 Introduction
	2 Preliminaries
	3 Predicate Elimination
	4 Predicate Elimination for Preprocessing
	5 Implementation and Evaluation
	References

	Quantified Boolean Formula
	Incremental Determinization
	1 Introduction
	2 Quantified Boolean Formulas
	3 Algorithm
	4 Propagation and Conflicts
	4.1 Checking for Determinicity
	4.2 Local Under-Approximation of Determinicity
	4.3 Pure Literals
	4.4 Checking for Conflicts
	4.5 Local Over-Approximation for Conflict Detection
	4.6 The Propagation Procedure

	5 Decisions
	6 Conflict Analysis
	7 Correctness, Termination, Certificates
	8 Implementation and Experimental Evaluation
	9 Related Work
	10 Conclusions
	References

	Non-prenex QBF Solving Using Abstraction
	1 Introduction
	2 Quantified Boolean Formulas
	3 Algorithm
	4 Case Study: Reactive Synthesis
	5 Related Work
	6 Conclusion and Future Work
	References

	On Q-Resolution and CDCL QBF Solving
	1 Introduction
	2 Preliminaries
	2.1 Quantified Boolean Formulas
	2.2 Q-Resolution
	2.3 CDCL and SDCL Solving

	3 Formula
	3.1 Lower Bounds for Level-Ordered Q-Resolution

	4 Properties of Propagation on CRn
	5 Exponential Lower Bound for CDCL QBF Learning
	6 Short Tree-Like Q-Resolution Refutation of CRn
	7 Discussion
	7.1 SDCL
	7.2 Pure Literals
	7.3 Other Work on Separation

	8 Summary and Future Work
	References

	On Stronger Calculi for QBFs
	1 Introduction
	2 Preliminaries
	3 Different Translations of QBFs to First-Order Logic
	4 Different Calculi Based on Resolution
	5 Polynomial Simulations of Calculi
	6 Exponential Separation of Resolution Calculi
	7 Conclusion
	References

	Q-Resolution with Generalized Axioms
	1 Introduction
	2 Preliminaries
	3 QCDCL-Based QBF Solving
	4 Generalizing the Axioms of QRES
	5 An Abstraction-Based Clause Axiom
	6 Case Study and Experiments
	6.1 Axiom Applications in Practice
	6.2 Experimental Results

	7 Conclusion
	References

	2QBF: Challenges and Solutions
	1 Introduction
	2 Preliminaries
	3 Overview of Prior Work
	4 Heuristics for CNF and Circuit 2QBF Solving
	4.1 Improvements for CNF-based 2QBF Solving
	4.2 Improvements for AIG-based 2QBF Solving

	5 CNF Versus Circuit Solvers
	6 Certificate Generation for 2QBF
	6.1 Construction Procedure
	6.2 Certificate Optimization

	7 Experimental Results
	7.1 2QBF Solving
	7.2 Certificate Derivation

	8 Conclusions and Future Work
	References

	Dependency QBF
	Dependency Schemes for DQBF
	1 Introduction
	2 Foundations
	3 Dependency Schemes
	3.1 Monotonicity of Dependency Schemes
	3.2 Adding Dependencies
	3.3 Manipulation of Dependencies Using Functional Definitions

	4 Experiments
	5 Conclusion
	References

	Lifting QBF Resolution Calculi to DQBF
	1 Introduction
	2 Preliminaries
	3 Problems with Lifting QBF Calculi to DQBF
	4 A Sound and Complete Proof System for DQBF
	References

	Long Distance Q-Resolution with Dependency Schemes
	1 Introduction
	2 Preliminaries
	3 Dependency Schemes and LDQ(D)-Resolution
	4 Soundness of and Strategy Extraction for LDQ(Drrs)
	4.1 Certificate Extraction for Normal Dependency Schemes
	4.2 The Reflexive Resolution-Path Dependency Scheme is Normal

	5 Experiments
	6 Discussion
	References

	Tools
	BEACON: An Efficient SAT-Based Tool for Debugging EL+ Ontologies
	1 Introduction
	2 Preliminaries
	2.1 The Lightweight Description Logic EL+
	2.2 Propositional Satisfiability

	3 The BEACON Tool
	3.1 Classification and Horn Encoding
	3.2 Generation of Group Horn Formulae
	3.3 Computation of Group-MUSes/Group-MCSes
	3.4 BEACON's Additional Specific Features

	4 Experimental Results
	5 Conclusions
	References

	HordeQBF: A Modular and Massively Parallel QBF Solver
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 The HordeSAT Parallelization Framework
	5 QBF Solver Integration
	6 Experimental Evaluation
	7 Conclusion
	References

	LMHS: A SAT-IP Hybrid MaxSAT Solver
	1 Introduction
	2 Overview of LMHS
	3 Features
	4 Performance Overview
	5 Availability and Conclusions
	References

	OpenSMT2: An SMT Solver for Multi-core and Cloud Computing
	1 Introduction
	2 OpenSMT2
	3 The Parallel Solvers
	3.1 OpenSMT2 for Cloud Computing
	3.2 Multi-threaded OpenSMT2

	4 Conclusions
	References

	SpyBug: Automated Bug Detection in the Configuration Space of SAT Solvers
	1 Introduction
	2 Related Work: Bug Detection in Software
	3 SpyBug's Framework
	3.1 Workflow
	3.2 Bug Minimization
	3.3 An Exemplary Use Case

	4 Case Study: Configurable SAT Solver Challenge
	5 Conclusion
	References

	Author Index

