
Enhancing Practical TAG Parsing Efficiency
by Capturing Redundancy

Jakub Waszczuk1(B), Agata Savary1, and Yannick Parmentier2

1 Laboratoire d’informatique, Université François-Rabelais Tours, Blois, France
{jakub.waszczuk,agata.savary}@univ-tours.fr
2 LIFO - Université d’Orléans, Orléans, France

yannick.parmentier@univ-orleans.fr

Abstract. The efficiency of parsing with tree adjoining grammars
(TAGs) depends not only on the size of the input sentence but also,
linearly, on the size of the input TAG, which can attain several thou-
sands of elementary trees. We propose a factorized, finite-state TAG
representation to cope with this combinatorial explosion. The associated
parsing algorithm shows a substantial performance gain on a real-size
French TAG.

Keywords: Parsing ·Tree-adjoining grammars ·Grammar compression ·
Finite-state automata · Hypergraphs

1 Introduction

High lexicalization and the so-called extended domain of locality1 of TAGs [9],
while beneficial for grammar development, are known to lead to very large gram-
mars with up to several thousands of elementary trees [16]. This poses problems
of practical nature – parsing algorithms for TAGs are polynomial in the size of
the input sentence but also at least linear in the size of the underlying grammar.
While many parsing algorithms for speeding up TAG parsing exist, we propose
a novel approach in which redundancy is captured by combining and optimiz-
ing several previously proposed techniques: grammar flattening, subtree sharing,
rule compression into a unique finite-state automaton, and adaptation of pars-
ing inference rules to this representation. Experiments show that these measures
lead to a substantial gain in space and time efficiency.

2 Tree Adjoining Grammars

Let Σ and N0 be disjoint sets of terminal and non-terminal symbols. An ini-
tial tree (IT) is a tree with non-terminals in non-leaf nodes and terminals/non-
terminals in leaf nodes. An auxiliary tree (AT) is similar to an IT but it has one

This work has been supported by the PARSEME European COST Action (IC1207)
and by the PARSEME-FR French ANR project (ANR-14-CERA-0001-01).

1 The former meaning that elementary grammar units are typically attached to one or
more lexical items, the latter that many syntactic phenomena can be conveniently
represented locally, at the level of individual elementary units.

c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 310–321, 2016.
DOI: 10.1007/978-3-319-40946-7 26



Enhancing Practical TAG Parsing Efficiency by Capturing Redundancy 311

distinguished leaf (usually marked with an asterisk), called a foot, containing
the same non-terminal as the root. For instance, in Fig. 2, t1, t5 and t6 are ITs,
while t2, t3 and t4 are ATs. A TAG is defined as a tuple (Σ,N0, I,A,S) where I
is the set of elementary initial trees (EITs), A is the set of elementary auxiliary
trees (EATs), and S is the start non-terminal.

A derived tree is created from EITs and EATs by substitution and adjunction.
Given an IT t, and any tree t′, substitution replaces a non-terminal leaf l in t′

by t provided that labels in l and in t’s root are equal. Given an AT t, and any
tree t′, adjunction replaces t’s foot by a subtree t′′ of t′ and then inserts this
modified t in place of t′′ in t′, provided that the root non-terminals in t and t′′

are identical, as shown in Fig. 1. A derivation tree keeps track of the operations
and the elementary trees (ETs) involved in the creation of a derived tree.

Fig. 1. Adjunction of the tree t2 to the
tree t5 from Fig. 2

A sequence of terminals obtained by
an in-order traversal of a tree t is called
a projection of t, written proj(t). We also
define projA(t), specialized to ATs, as a
pair of terminal sequences on the left and
on the right of the foot node, respectively.

We say that a tree t can be derived
from a non-trivial subtree2 t0 (auxiliary or
not) of an ET iff (i) tree t can be derived
from the grammar extended with t0 as an ET and (ii) a derivation tree d of
t exists such that t0 occurs in d’s root and, unless t0 is already part of the
grammar, nowhere else in d. We will also say that a non-auxiliary subtree t0
of an ET is recognized over a span (i, l) of the input sentence s iff a tree t can
be derived from t0 such that proj(t) = s(i,l), where s(i,l) is a part of sentence
s containing its words between positions i and l. Similarly, we will say that an
auxiliary subtree t0 of an ET is recognized over a span (i, j, k, l) iff a tree t can
be derived from t0 such that projA(t) = (s(i,j), s(k,l)).

3 Grammar Factorization

Consider the sentence in example (1) and the toy lexicalized TAG (LTAG) con-
taining trees t1,. . . ,t6 from Fig. 2 covering several competing interpretations for
the two initial words.

(1) Set points in tennis belong to official scoring.

The IT t1 represents set as a phrasal verb in imperative mode taking a direct
object and a prepositional complement governed by in. ATs t2, t3 and t4 consider
set as a nominal, adjectival and participle modifier of a head noun, respectively.
In the IT t5 points is a nominal phrase, while t6, having two terminals, corre-
sponds to the idiomatic interpretation of set points as an NN compound.

2 In the rest of this paper, by subtree we mean a non-trivial (of height > 0) subtree,
unless explicitly stated otherwise.



312 J. Waszczuk et al.

3.1 Grammar Flattening with Subtree Sharing

We propose to represent each ET as a set of flat production rules, so that common
subtrees are shared (cf. Fig. 2). Each non-terminal from an internal (non-root
and non-leaf) node receives a unique index, and each non-leaf node together
with its children yields a production rule. E.g., nodes VP and PP with their
children in t1 yield the rules VP1 → V2 NP PP3, PP3 → P4 NP , respectively.
Additionally, each node on the spine of an AT is marked by an asterisk, e.g., the
root of t2 becomes N∗ in the head of the rule N∗ → N5N

∗.
Note also that the non-terminal N , occurring twice in t6, yields two different

non-terminals N0 and N5 in order to prevent non-compatible rule combinations.
For instance, we should not admit an NN-compound points set, which would
be admitted if these two N terminals were not distinguished. Note, however,
also that as soon as some subtrees are common for different grammar trees, the
indexed non-terminals, and consequently the target rules, can be shared. For
example, the nominal interpretations of set and points common for t2, t5 and t6
can be shared via the common production rules N5 → set and N0 → points.

In what follows, we refer to such a grammar conversion as flattening with
subtree sharing (FSS), and to the conversion result as an FSS grammar (FSSG).

(t1) (t2) (t3) (t4)S

VP

PP

P PN

in

V PN

set

N

N* N

set

N

N* A

set

N

NtP *

set

N* → N5 N* N* → A7 N* N* → Pt9 N*
N5 → set A7 → set Pt9 → set
(t5) (t6)

S → VP1 NP

N

points

NP

N

points

N

set

VP1 → V2 NP PP3
V2 → set
PP3 → P4 NP
P4 → in

NP → N0 NP → N5 N0
N0 → points

Fig. 2. A toy LTAG grammar and its
FSSG.

0 5

4

6

3

2

13

7

9

10

14

8

12 11

1

set

poin
ts

in

N0

N5

Pt9

A7

P
4

V
2

VP
1

N0

N∗

N∗

NP

NP PP3

A
7

N
5

Pt
9

V
2

N
0

P
4

NP

N∗

PP3

V
P 1

S

Fig. 3. Compression of the FSSG from
Fig. 2 into an FSSA.

Formally, the FSSG constructed from a TAG G = (Σ,N0, I,A,S) is a set of
production rules α ∈ N ×(N ∪Σ)+ where the first and the second component rep-
resent the head and the non-empty body of the rule, respectively. N0 is the set of
FSSG non-terminals, i.e. triples X ∈ N0×(N∪{−})×{−, ∗} where ‘−’ indicates
that the corresponding value is unbound. Internal nodes are marked with unique
identifiers from the set of natural numbers N. A non-terminal (x, u, a) ∈ N is
alternatively written as xa

u and unbounded values (−) are ignored. For example,
(N,−, ∗) is equivalent to N∗, (V, 2,−) to V2 and (NP ,−,−) to NP .

The FSS conversion determines a bijection R0 between non-terminals origi-
nating from internal nodes (X ∈ N0 × N × {−, ∗}) and proper subtrees of ETs.



Enhancing Practical TAG Parsing Efficiency by Capturing Redundancy 313

A subtree common to several ETs (e.g., the subtree rooted at N dominating set
in trees t2 and t6 in Fig. 2) is represented, in the FSSG, by a single non-terminal
(here: N5). We define a 1-to-many correspondence R between non-terminals
(X = (x, u, a) ∈ N ) and TAG subtrees as an extension of this bijection:

R(X) =

⎧
⎪⎨

⎪⎩

{R0(X)} if u �= −
I|x if (u, a) = (−,−)

A|x if (u, a) = (−, ∗)

(1)

where I|x and A|x are the sets of all EITs and all EATs, respectively, rooted at
x ∈ N0. E.g., in Fig. 2, R(NP) = {t5, t6} and R(N∗) = {t2, t3, t4}.

3.2 Automaton-Based Grammar Compression

Despite subtree sharing applied to the FSSG in Fig. 2, it still shows some degree
of redundancy: the terminal set constitutes the body of 4 rules (headed by V2,
N5, A7 and Pt9), the non-terminal NP occurs in the head of 2 rules, and the spine
non-terminal N∗ appears in the head and in the suffix of 3 rules. This observation
leads to the idea of representing the FSSG as a minimal deterministic finite-state
automaton (DFSA), called here FSSA, as shown in Fig. 3. The FSSA’s alphabet
consists of terminals and non-terminals of the FSSG rules. Each path represents
the right-hand side of a rule followed by its head.3 For instance, the bottom path,
traversing nodes 0, 10, 12, 11 and 1, represents the rule VP1 → V2 NP PP3.
In this representation redundancy is largely avoided: the terminal set and the
head non-terminals NP and N∗, are represented by unique transitions (0, set, 2),
(4,NP , 1) and (14, N∗, 1), respectively. Additionally, transition (13, N∗, 14) is
shared by the suffixes of rules N∗ → A7N

∗ and N∗ → Pt9N
∗.

In what follows we extend the notion of an FSSA-based grammar compression
into the case when the grammar rules are possibly represented as a set of FSSAs
(with disjoint sets of node identifiers), according to the particular variant of the
compression technique. For instance, in [12] all grammar rules having the same
head non-terminal are compressed into a separate DFSA. One of the versions of
our parser tested in Sect. 5 implements a similar compression idea.

For a grammar represented as a set of FSSAs, and for any state q therein, let
P (q) be a set of sequences of labels leading from an initial state to q. For instance,
in Fig. 3, P (14) = {N5N

∗, P t9N
∗, A7N

∗}. Note that if q is non-final, sequences
in P (q) correspond to prefixes of rules’ bodies. In particular, P (q) ∈ (N ∪ T )∗.

4 Parser

We propose two Earley-style [6] bottom-up TAG parsing algorithms. The first
one, called an FSS parser, is inspired by [14], and differs from this seminal work
in that it uses an FSSG instead of the original TAG and ignores prediction. The
other one, called an FSSA parser and inspired by [12], is an extension of the FSS
3 Head non-terminals are distinguished from others, which is neglected in Fig. 3.



314 J. Waszczuk et al.

parser in that it uses the FSSG compressed into FSSAs. In both algorithms pars-
ing can be seen, after [11], as a dynamic construction of a hypergraph [8] whose
nodes are parsing chart items and whose hyperarcs represent applications of
inference rules. The hypergraph representation facilitates comparisons between
the two algorithms, and time efficiency estimations (the number of elementary
parsing steps can be approximated by the number of hyperarcs). It also provides
a compressed representation of all the derived trees for a given input sentence.

4.1 FSS Parser

Figure 4 shows the hypergraph created while parsing the two initial words of sen-
tence (1) by the FSS parser with the FSSG from Fig. 2. Due to space constraints,
we do not formally define the inference rules of the FSS parser here. They can
be seen as simplified versions of those defined in Sect. 4.4. Each item contains a
dotted rule and the span over which the symbols to the left of the dot have been
parsed. E.g., the hyperarc leading from (N5 → •set, 0, 0) to (N5 → set•, 0, 1)
means that the terminal set has been recognized from position 0 to 1. The latter
item can be combined with (NP → •N5N0, 0, 0) yielding (NP → N5 • N0, 0, 1),
etc. The sentence s has been parsed if a goal item has been reached (spanning
from 0 to |s|, with a rule headed by (S,−,−) and terminated by a dot).

(N5 → •set,
0, 0)

(A7 → •set,
0, 0)

(Pt9 → •set,
0, 0)

(V2 → •set,
0, 0)

(N5 → set•,
0, 1)

(NP → •N5N0, 0, 0)

(N∗ → •N5N
∗, 0, 0)

(A7 → set•,
0, 1)

(N∗ → •A7N
∗, 0, 0)

(Pt9 → set•,
0, 1)

(N∗ → •Pt9N
∗, 0, 0)

(N0 → •points, 1, 1)

(V2 → set•,
0, 1)

(V P1 → •V2NP PP3, 0, 0)

(NP → N5 • N0, 0, 1)

(N∗ → N5 • N∗,
0, 1)

(N∗ → A7 • N∗,
0, 1)

(N∗ → Pt9 • N∗,
0, 1)

(N0 → points•,
1, 2)

(NP → •N0, 1, 1)

(V P1 → V2 • NP PP3,
0, 1)

(NP → N5N0•,
0, 2)

(N∗ → N5N
∗•,

0, 1, 2, 2)

(N∗ → A7N
∗•,

0, 1, 2, 2)

(N∗ → Pt9N
∗•,

0, 1, 2, 2)

(NP → N0•, 1, 2)

(N0 → points•,
0, 2)

(NP → •N0,
0, 0)

(V P1 → V2NP • PP3,
0, 2)

(NP → N0•,
0, 2)

Fig. 4. Hypergraph created by the FSS parser while parsing the substring set points
with the FSSG from Fig. 2. The dashed and plain hyperarcs roughly correspond to
scanner and completer operations in a CFG Earley parser. The densely and loosely
dotted hyperarcs represent novel inference rules: foot adjoin and root adjoin.

Items whose spans contain 4 integers (i1, i2, i3, i4) result from the FSS-based
inference rules related to adjunction: i1 and i4 represent the whole span of the
recognized sequence, while i2 and i3 indicate the gap, i.e., the part of the sequence
matched by the foot node of an AT. For instance, the hyperarc leading from



Enhancing Practical TAG Parsing Efficiency by Capturing Redundancy 315

(N∗ → N5 • N∗, 0, 1) and (N0 → points•, 1, 2) to (N∗ → N5N
∗•, 0, 1, 2, 2) puts

forward an adjunction hypothesis. The noun points has been recognized over
span (1, 2), and set recognized over (0, 1) might later be adjoined to it as a
modifier. Thus, points will fill the gap (from 1 to 2) corresponding to the foot
node N∗ in the body of rule N∗ → N5N

∗ (stemming from tree t2). Note further
that the combination of items (N∗ → N5N

∗•, 0, 1, 2, 2) and (N0 → points•, 1, 2)
yields (N0 → points•, 0, 2), which corresponds to stage 1 of the adjunction (see
Sect. 2). Stage 2 is then represented by the hyperarc leading to (NP → N0•, 0, 2).

4.2 FSSA Parser

The idea behind grammar compression is not only space efficiency but also reduc-
ing parsing time [12]. The latter is based on the observation that, whenever bod-
ies of some flat rules share common prefixes and/or suffixes (which is in close
relation to sharing sub-paths in the FSSA), partial parsing results can be shared
for them. Another related fact is that, for a given position of the dot in a flat
dotted rule, the history of the parsing on the left-hand side of the dot does
not influence the future parsing on the right-hand side of the dot. Therefore,
the position of the dot in a rule can be nicely represented by the FSSA state
achieved while parsing the rule, whatever the path which led us to this state.

(0, 0, 0)

(2, 0, 1)

(N5,0,1)

(Pt9,0,1)

(A7,0,1)

(V2,0,1) (10, 0, 1)

(0, 1, 1)

(13, 0, 1)

(5, 0, 1)

(3, 1, 2) (N0,1,2)

(4, 1, 2)

(14, 0, 1, 2, 2)

(NP,1,2)

(N*,0,1,2,2)

(12, 0, 2)

(N0,0,2)

(4, 0, 2)

(NP,0,2)

Fig. 5. Hypergraph representing the chart parsing of the substring set points with the
FSSA from Fig. 3. The double, plain, thick, dashed, densely dotted and loosely dotted
hyperarcs represent axioms, pseudo substitution, deactivate, scan, foot adjoin and root
adjoin inference rules, respectively (see Sect. 4.4). Passive states are highlighted in bold.

These observations may lead to a substantial reduction of the parsing hyper-
graph, as shown in Fig. 5. Here, dotted rules in the hypergraph items from
Fig. 4 are replaced by states of the FSSA from Fig. 3 (the resulting items are
called active). Firstly, all 9 initial items (i.e., having the dot at the begin-
ning of their rules’ bodies) over span (0, 0) in Fig. 4, e.g., (N5 → •set, 0, 0),
(NP → •N5N0, 0, 0), etc. – are replaced by a unique item (0, 0, 0) in Fig. 5 due
to the fact that they all share the same (empty) prefix on the left-hand side of
the dot, and the same span. The 10th remaining initial item (N0 → •points, 1, 1)
is replaced by (0, 1, 1). Further, rules having dots inside their bodies are replaced
by FSSA states, for instance items (N∗ → A7 •N, 0, 1) and (N∗ → Pt9 •N, 0, 1)
are replaced by the unique item (13, 0, 1) since their prefixes A7 and Pt9 lead
to the same state 13. Finally, complete items (i.e., having the dot at the end
of the rule), are replaced by two items, the one containing the arrival state,



316 J. Waszczuk et al.

and the other (called a passive item) in which the state is replaced by the
head of the fully recognized rule. For instance, items (N∗ → N5N

∗•, 0, 1, 2, 2),
(N∗ → A7N

∗•, 0, 1, 2, 2) and (N∗ → Pt9N
∗•, 0, 1, 2, 2) are merged into one

active item (14, 0, 1, 2, 2) since they share the same arrival state 14 and span.
This item is then followed by a passive item (N∗, 0, 1, 2, 2). The goal item is
(S, 0, |s|).

4.3 Items

Let s = s0s1 . . . sn−1 be the input sentence and Pos(s) = {0, . . . , n} the set of
positions between the words in s, before s0 and after sn−1. We define two kinds
of items. A passive item is a tuple (X, i, j, k, l) where: X ∈ N , i, l ∈ Pos(s),
j, k ∈ Pos(s) ∪ {−}, i ≤ l, and i ≤ j ≤ k ≤ l if (j, k) �= (−,−). Item (X, i, j, k, l)
asserts that X can be matched over the span (i, j, k, l), where (i, l) and (j, k)
denote the whole span of a matched sequence and the gap, respectively. Formally,
a passive item (X, i,−,−, l), or (X, i, l) for short, asserts that an IT t ∈ R(X),
a subtree of an ET in G, can be recognized (cf. Sect. 2) over the span (i, l).
E.g., item (N0, 1, 2) in Fig. 5 indicates that points in sentence (1) can be a noun
by the subtree rooted at N in t5 and t6 in Fig. 2. A passive item (X, i, j, k, l)
where (j, k) �= (−,−) and X = (x, u, a) asserts that (i) an AT t ∈ R(X), a
subtree of some ET in G, can be recognized over (i, j, k, l), and (ii) a subtree
t′ of an ET4, with x ∈ N0 in its root, can be recognized over (j, k). Thus, the
item (N∗, 0, 1, 2, 2) in Fig. 5 means that set can be a modifier adjoined to the
noun points. Here: t ∈ {t2, t3, t4} and t′ is the subtree rooted at N in t5 and
t6. An active item is a tuple (q, i, j, k, l), where i, j, k, and l specify the span,
as previously, and q is a state in one of the underlying FSSAs. An active item
(q, i, j, k, l) asserts that there exists a (not necessarily proper) prefix ω ∈ P (q)
(of a grammar rule’s body) which can be matched over (i, j, k, l), i.e., that the
individual elements of ω can be consecutively matched over the adjacent spans
of the input sentence, together spanning over (i, l), and that, if (j, k) �= (−,−),
one of the elements of ω, marked with an asterisk, is matched against the item’s
gap (j, k). E.g., (12, 0, 2) and (14, 0, 1, 2, 2) in Fig. 5 correspond to matching set
points with ω = V2NP and ω ∈ {N5N

∗, P t9N
∗, A7N

∗}, respectively.

4.4 Inference Rules

We now formally specify the FSSA parser using the deductive framework [15]. As
shown in Table 1, each of the inference rules, whose applications correspond to
hyperarcs in the parsing hypergraph, takes zero, one or two chart items on input
(premises, presented above the horizontal line) and yields a new item (conclu-
sion, presented below the line) to be added to the chart if the conditions given on
the right-hand side are met. The axiom rule (AX, cf. the double hyperarcs with
empty inputs leading to (0, 0, 0) and (0, 1, 1) in Fig. 5) fills the initially empty

4 t′ must not be an EAT (see the root adjoin inference rule in Sect. 4.4 for explana-
tions).



Enhancing Practical TAG Parsing Efficiency by Capturing Redundancy 317

Table 1. Inference rules of the FSSA parser

AX:
(q0,i,−,−,i)

i∈Pos(s)\{n} PS: (q,i,j,k,l) (X,l,−,−,l′)
(δ(q,X),i,j,k,l′) δ(q,X) defined

SC: (q,i,j,k,l)
(δ(q,sl),i,j,k,l+1)

δ(q,sl) defined FA: (q,i,−,−,l) (X,l,j,k,l′)
(δ(q,Y ),i,l,l′,l′)

(x,u,a)=X
(u,a) �=(−,∗)
Y =(x,−,∗)

δ(q,Y )defined

DE: (q,i,j,k,l)
(X,i,j,k,l)

X∈heads(q) IA: (q,i,−,−,l) (X,l,j,k,l′)
(δ(q,X),i,j,k,l′)

δ(q,X) defined
(j,k) �=(−,−)

RA: (X,i,j,k,l) (Y,j,j′,k′,k)
(Y,i,j′,k′,l) (x,−, ∗) = X, (y, u, a) = Y, (u, a) �= (−, ∗), x = y

chart with active items representing the claim that any rule α from the FSSG can
be used to parse s starting from any non-final position, for each initial state q0 of
one of the FSSAs. The scan rule (SC, cf. the dashed hyperarcs in Fig. 5) matches
the FSSAs’ terminal symbols with words from the input. Deactivation (DE,
cf. the thick hyperarcs) transforms an active item into the corresponding passive
item, based on the q-outgoing head non-terminals, where heads(q) is the set of
symbols over transitions (representing rule heads) from state q to final states
of the FSSAs. Pseudo substitution (PS, cf. the plain hyperarcs) is similar to
scan, but instead of matching FSSA terminals against input words, automaton
non-terminals are matched against already inferred non-terminals represented
by passive items. Pseudo substitution handles regular TAG substitution, i.e.,
replacing a leaf non-terminal X by an IT rooted by X (cf. the hyperarc lead-
ing from (10, 0, 1) and (NP , 1, 2) to (12, 0, 2)), as well as matching two adja-
cent fragments of the same ET (cf. the hyperarc from (5, 0, 1) and (N0, 1, 2) to
(4, 0, 2)). The foot adjoin rule (FA, cf. the densely dotted hyperarcs) identifies
ranges over which adjunction could possibly occur. It ensures that the resulting
item is considered only if an elementary (sub)tree, recognized starting from l,
and to which the corresponding AT(s) could be adjoined, exists. For the hyper-
arc from (5, 0, 1) and (N0, 1, 2) to (14, 0, 1, 2, 2), we have X = N0 = (N, 0,−),
Y = (N,−, ∗) = N∗, (j, k) = (−,−) and δ(5, Y ) = 14. The internal adjoin
rule (IA, with no instance in Fig. 5) combines an elementary (sub)tree, partially
recognized over (i,−,−, l), with its spine subtree, recognized starting from posi-
tion l. Internal adjoin is similar to pseudo substitution but must be handled by
a separate rule because the span of gap in the conclusion stems from the pas-
sive rather than the active premise. The root adjoin rule (RA, cf. the loosely
dotted hyperarcs) represents the actual adjoining of a fully recognized EAT t
into the root of a recognized subtree t′ of an ET. Information that t′ is recog-
nized (with a modified span), is preserved in the conclusion and can be reused
in order to recognize the full ET of which t′ is a part. E.g., for the hyperarc
from (N∗, 0, 1, 2, 2) and (N0, 1, 2) to (N0, 0, 2), we have X = N∗ = (N,−, ∗),
Y = N0 = (N, 0,−), x = y = N , (u, a) = (0,−), (j′, k′) = (−,−), t ∈ {t2, t3, t4}
and t′ is the subtree of t5 rooted at N .5

5 Note that the additional constraint imposed on the modified node is that it must
not be a root of an AT ((u, a) �= (−, ∗)). Otherwise, it would be possible to adjoin
one AT to a root of another not yet adjoined AT. We block this derivation path, so
that adjunction can only be carried out on top of an AT which has already been
adjoined to some particular IT.



318 J. Waszczuk et al.

5 Experimental Results

We performed experiments on the FrenchTAG meta-grammar [5] compiled into a
set of 9043 non-lexicalized ETs. After removing feature structures (not supported
by our parser) 3065 unique trees where obtained. Since no compatible lexicon is
available, we lexicalized the grammar with part-of-speech (POS) tags. Namely,
to each anchor (i.e., the node meant to receive a terminal from an associated
lexicon) in each ET a special terminal, containing the same POS value as the
anchor, was attached. Thus, we obtained a grammar which models sentences with
regular terminals (e.g., il ‘it‘, de ‘of‘, qui ‘who‘) and POS tags (e.g., v, n, adj )
interleaved. Such (inevitably, due to the missing lexicon) artificial lexicalization
is not fully satisfactory in the context of TAGs, but it gives us an approximate
upper bound on the possible gain from our compression-based approach.

Figure 6(a) shows the total numbers of automaton states and transitions
depending on the compression method used to encode the resulting grammar.
In the baseline, the grammar is represented as a list of flat rules (encoded as a
separate automaton each) but no subtree sharing takes place. With this repre-
sentation, parsing is roughly equivalent to the Earley-style TAG algorithm [14].
The FSS and FSSA encoding methods were described in Sects. 3.1 and 3.2.

Since treebanks compatible with existing TAGs (especially those generated
from metagrammars) are hardly available, parsing evaluation was done on a
synthetic corpus. Namely, ∼13000 sentences of length 1 to 30, of up to 500 sen-
tences per length, were used to measure performance in terms of the number of
hyperarcs explored while parsing a sentence (deactivate operations are ignored).
The results are presented in Fig. 6(b), which includes two additional grammar
compression methods similar to those in [12] for CFGs: (i) a trie, in which the
list of rules is transformed into a prefix tree instead of a DFSA, (ii) a set of
FSSAs, where a separate DFSA is constructed for each rule head.

The results show that the baseline version of the parser is only of a theoretical
interest. It requires generating on average more than 4 × 104 hyperarcs even
for sentences of length 1 (notably due to the POS-based lexicalization). The
FSS parser is already a reasonable choice for parsing short sentences. FSSA
compression leads, averaging over sentences of length from 1 to 15, to a farther
reduction of ∼24× in terms of the number of visited hyperarcs. Using a set of
FSSAs instead of a single FSSA is ∼2.25 times less efficient on average.

Figure 6(c) compares the FSS and FSSA parsers in terms of speed. In both
versions, parsing time is almost linear w.r.t. the number of generated hyperarcs.
However, the FSSA version proves more efficient, most likely due to the number
of generated hypernodes which is, consistently, significantly higher in the FSS
version (e.g., 95666 hypernodes in FSS against 1193 in FSSA for sentences of
length 15). This, in turn, is related to the fact that a large number of (trivial)
automata is used in the FSS parser, thus a large number of initial states have to
be handled by the the axiom rule at the very beginning of the parsing process.

Surprisingly, the FSSA compression does not bring significant improvements
in comparison to the prefix tree version. This is probably related to the fact that
the active/passive distinction already provides a form of suffix sharing – items



Enhancing Practical TAG Parsing Efficiency by Capturing Redundancy 319

Fig. 6. (a) Results of the compression experiments, (b) Impact of grammar encoding
methods on parsing performance, measured as an average number of hyperacs explored
by the parser on ∼13000 sentences randomly generated from the FrenchTAG grammar,
(c) Average parsing time as a function of the number of generated hyperarcs.

referring to pre-final states in the prefix tree are automatically transformed into
the corresponding passive items. In particular, the number of passive items which
can be potentially constructed over a given span equals 1123 in both versions,
while the number of potential active items per span diminishes merely from 430
to 301 in the FSSA version. Moreover, due to the left-to-right parsing strategy,
prefix sharing impacts parsing performance more visibly than suffix sharing.

6 Related Work

A bottom-up Earley-like algorithm based on flattening is one of the TAG parsing
schemata proposed in [2]. While, conversely to our approach, it does not allow
multiple adjunctions at the same node, it is similar to our baseline algorithm.
Our enhancements of this baseline with subtree sharing and grammar FSA-
compression substantially influence space and time efficiency (cf. Sect. 5).

FSA-based grammar encoding considerably speeds up CFG parsing [12] but
it is not straightforwardly applicable to TAGs (which consist of trees rather than
flat rules). It is, however, enabled by the flattening transformation proposed in
this paper. Previous proposals of applying FSA-based compression to TAGs
are manifold. [10,13] describe LR parsers for TAGs, in which predictions are
pre-compiled off-line into an FSA. Each state of this FSA is a set of dotted
production rules closed under prediction. Thus, the FSA represents the parser,
while in our approach the FSSA represents the grammar (and the inferences
rules of the parser are adapted to this representation).

Another automata-based solution for LTAGs and related lexicalized for-
malisms has been proposed by [4,7]. The traversal of an ET, starting from its
anchor (lexical unit), is represented there as an automaton. Sets of trees attached
to common anchors are then converted to automata, merged and minimized
using standard techniques. As a result, structure sharing occurs only within tree



320 J. Waszczuk et al.

families, while in our solution all ETs are represented with a single automaton
which provides sharing between rules assigned to different lexical units. Another
potential advantage of our solution lies in the subtree-sharing it enables, which
allows different rules – even when represented by completely different paths in
the automaton – to share common middle elements if these middle elements rep-
resent common subtrees. Finally, our method can be used for TAGs in general,
not only for lexicalized TAGs. [4] report state-level compression ratios equal to
18 for come, 18.2 for break, and 30 for give, over a lexicalized English grammar.
We converted the XTAG grammar [1] into an FSSA, obtaining a global, state-
level compression of 22.7 (10751 states in the baseline representation vs. 472 in
the FSSA). It is, however, difficult to compare these numbers: (i) their grammar
is considerably larger than XTAG, (ii) they did not report the compression ratio
over the entire grammar, (iii) they use one automaton per input word While
they did not measure the impact of their encoding on parsing performance, we
believe that our FSSA-based solution is more scalable w.r.t. the input length.

[16] proposes a method of grammar compression directly at stage of its defi-
nition. A linguist uses a formal language including factoring operators (e.g., dis-
junctions over tree fragments, Kleene-star-alike repetitions, optional or shuffled
fragments, etc.) and the resulting grammar is then converted into a Logic Push-
Down Automaton for parsing. The price to pay for this highly compact resource
is its high potential overgeneration. Moreover, grammar description and parsing
are not separated, hence large unfactorized TAGs can be hardly coped with.
Our solution abstracts away from how the TAG is represented, compression is
automatic and the FSSA is strongly equivalent to the original TAG.

Linear indexed grammars (LIGs) compare to our grammar flattening in that
they contain flat production rules and are weakly equivalent to TAGs [10]. How-
ever, LIGs are more generic than TAGs, thus more specialized and efficient
parsers can be potentially designed for TAGs [3]. Also, the TAG-to-LIG conver-
sion does not preserve the extended domain of locality (EDL) ensured by TAGs,
which is for us an eliminating criterion. Namely, in future we wish our parser to
be driven by the knowledge about possible occurrences of multi-word expressions
[17], whose elegant representation in TAGs is precisely due to the EDL property.

7 Conclusions

Our contribution is to design a parsing architecture coping with large TAGs
(notably produced from metagrammars). We build on previous work so as to
capture redundancy: (i) we flatten TAGs, (ii) we share common subtrees, (iii) we
compress the flat grammar into an FSA, (iv) we adapt an Earley-based algorithm
to this representation, (v) we show the influence of these steps on the parsing
efficiency. To the best of our knowledge this is the first attempt to combine all
these steps within one framework. Our parser and evaluation corpus are available
under open licenses.6 This solution does not affect the theoretical complexity of
TAG parsing but it greatly improves the practical parsing performance.
6 https://github.com/kawu/partage4xmg/tree/0.1.

https://github.com/kawu/partage4xmg/tree/0.1


Enhancing Practical TAG Parsing Efficiency by Capturing Redundancy 321

References

1. Alahverdzhieva, K.: XTAG using XMG, Master Thesis, Nancy Université (2008)
2. Alonso, M., Cabrero, D., de la Clergerie, E.V., Vilares, M.: Tabular algorithms for

TAG parsing. In: EACL 1999, pp. 150–157 (1999)
3. Alonso, M.A., de La Clergerie, É.V., Diaz, V.J., Vilares, M.: Relating tabular

parsing algorithms for LIG and TAG. In: Text, Speech and Language Technology,
vol. 23, pp. 157–184. Kluwer Academic Publishers (2004)

4. Carroll, J., Nicolov, N., Shaumyan, O., Smets, M., Weir, D.: Grammar com-
paction and computation sharing in automaton-based parsing. In: Proceedings of
the TAPD 1998 Workshop, Paris, France, pp. 16–25 (1998)

5. Crabbé, B.: Représentation informatique de grammaires d’arbres fortement lexi-
calisées: le cas de la grammaire d’arbres adjoints. Ph.D. thesis, Université Nancy
2 (2005)

6. Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13(2), 94–
102 (1970)

7. Evans, R., Weir, D.: Automaton-based parsing for lexicalized grammars. In: Pro-
ceedings of the IWPT 1997 Workshop, Boston, MA, pp. 66–76 (1997)

8. Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and appli-
cations. Discrete Appl. Math. 42(2–3), 177–201 (1993)

9. Joshi, A., Schabes, Y.: Tree-adjoining grammars. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, pp. 69–123. Springer, Heidelberg (1997)

10. Kallmeyer, L.: Parsing Beyond Context-Free Grammars. Springer, Heidelberg
(2010)

11. Klein, D., Manning, C.D.: Parsing and hypergraphs. In: Proceedings of the IWPT
2001 Workshop, Tsinghua University Press (2001)

12. Klein, D., Manning, C.D.: Parsing with treebank grammars: empirical bounds,
theoretical models, and the structure of the penn treebank. In: Proceedings of
ACL 2001, pp. 338–345 (2001)

13. Prolo, C.A.: Fast LR parsing using rich (tree Adjoining) grammars. In: Proceedings
of EMNLP 2002, pp. 103–110 (2002)

14. Schabes, Y.: Left to right parsing of lexicalized tree adjoining grammars. Comput.
Intell. 10(4), 506–524 (1994)

15. Shieber, S., Schabes, Y., Pereira, F.: Principles and implementation of deductive
parsing. J. Logic Program. 24(1), 3–36 (1995)

16. de La Clergerie, É.V.: Building factorized TAGs with meta-grammars. In: Pro-
ceeding of the TAG+10 Conference (2010)

17. Waszczuk, J., Savary, A.: Towards a MWE-driven A* parsing with LTAGs. In:
PARSEME 6th General Meeting, Struga, FYR Macedonia (2016)


	Enhancing Practical TAG Parsing Efficiency by Capturing Redundancy
	1 Introduction
	2 Tree Adjoining Grammars
	3 Grammar Factorization
	3.1 Grammar Flattening with Subtree Sharing
	3.2 Automaton-Based Grammar Compression

	4 Parser
	4.1 FSS Parser
	4.2 FSSA Parser
	4.3 Items
	4.4 Inference Rules

	5 Experimental Results
	6 Related Work
	7 Conclusions
	References


