
Decision Problems for Finite Automata
over Infinite Algebraic Structures

Bakhadyr Khoussainov(B) and Jiamou Liu

Department of Computer Science, University of Auckland, Auckland, New Zealand
bmk@cs.auckland.ac.nz, jiamou.liu@auckland.ac.nz

Abstract. We introduce the concept of finite automata over algebraic
structures. We address the classical emptiness problem and its various
refinements in our setting. In particular, we prove several decidability
and undecidability results. We also explain the way our automata model
connects with the existential first order theory of algebraic structures.

1 Introduction

Most computer programs rely on operations and queries on a priori defined data
types. An example of a such data type is the integers with the usual operations
of addition, multiplication and the comparison test. Another example is the
graph data type that encapsulates the operations of adding or deleting vertices
and edges as well as edge and subgraph queries. Algebraically, data types are
structures of the form (D; f1, . . . , fm, P1, . . . , Pn, c1, . . . , c�) where f1, . . . , fm are
atomic operations, P1, . . . , Pn are atomic relations and c1, . . . , c� are constants
on the domain D. A program can thus be viewed as a sequence of operations
and queries over a certain algebraic structure.

This view of programs motivated the definitions of many models of compu-
tation over structures. An example is the Blum-Shub-Smale (BSS) machines,
where the underlying structure is the ordered ring of the reals [2]. This model
builds a theoretical foundation of numerical algorithms on reals. Another exam-
ple is the work of O. Bournez, et al. [5] that generalises BSS machines to models
over arbitrary structures. Among several results, they prove that the set of all
recursive functions over arbitrary structure S is exactly the set of decision func-
tions computed by BSS machines over S. Other examples include various classes
of counter automata that use counters in different ways [6,9,12,15,17].

In this work we introduce finite automata models over algebraic structures.
The work fits into two lines of research: Firstly, one may view our models as finite
automata analogues of BSS machines over arbitrary structures. These automata
process finite sequences of elements from the domain of a given structure S, and
accept or reject these sequences. Such an automaton is a finite state machine
equipped with a fixed number of registers, a read only head that always moves
to the right in the tape and transitions between the states. For the structure S,
we use the term S-automata or extended S-automata that define two different
interpretations of this computation model on S. Secondly, one may view our
c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 3–11, 2016.
DOI: 10.1007/978-3-319-40946-7 1

4 B. Khoussainov and J. Liu

automata models as automata over an infinite alphabet when the underlying
structure S is infinite. Automata over infinite alphabet attracted considerable
interests due to connections to model checking and verification [1,3,4,10,21,23].
One goal here is to extend automata-theoretic techniques to words and trees
over data values. For example, Kaminsky and Francez in [13] proposed register
automata. These are finite state machines equipped with a fixed number of
registers which may hold values from an infinite domain D. The operations
allowed by the automata are equality comparisons between the input and the
register values and the copy operation. Another example is pebble automata
introduced by Neven, Schwentick and Vianu [20]. Their automata use a fixed set
of pebbles with a stack to keep track of values in the input data words. Operations
include equality comparisons of the current pebble values, and dropping and
lifting a pebble. Other examples of such automata models include Bojanczyk’s
data automata [3] and Alur’s extended data automata [1]. While all the above
automata allow only equality tests between data values, there has also been
automata model for linearly ordered data domains [22]. The existence of many
such models of automata calls for a general yet simple framework to formally
reason about such finite state automata. We suggest one such framework.

2 Two Automata Models Over Algebraic Structures

Let S = (D; f1, . . . , fm, P1, . . . , Pn, c1, . . . , c�) be an algebraic structure. We
assume that m = n and that all functions and predicate are binary. These are
not restrictions. For instance, when n < m we expand the structure by adding
the relation Pn to its signature to ensure that in the expanded structure the
number of atomic predicates and atomic operations are equal.

A D-word of length t is a sequence d1 . . . dt of elements of D. An automaton
over S has k updatable registers R1, . . . , Rk; each register Ri contains an n-
tuple ri = (ri,1, . . . , ri,n) from Dn, and the content of the register might change.
Furthermore, the automaton has � constant registers containing the constants
c1, . . . , c�; these values never change. We represent these values of registers as
matrices R and C.

R =

⎛
⎜⎜⎝

r1,1 . . . r1,n

r2,1 . . . r2,n

.
rk,1 . . . rk,n

⎞
⎟⎟⎠ and C =

⎛
⎜⎜⎝

c1,1 . . . c1,n

c2,1 . . . c2,n

.
c�,1 . . . c�,n

⎞
⎟⎟⎠

Let Op be the set of all atomic operations of S. The automaton is a finite state
machine where transitions are of the form (q, T1, T2, F, q′) where q, q′ are states,
T1, T2 are a pair of {0, 1}-valued matrices of sizes k × n and � × n respectively,
and F = (fi,j) ∈ Opk×n is a k × n matrix of atomic operation of S. Inputs
to the automaton are D-words written on a one-way read-only tape. When the
automaton is in state q and reads the next element x of an input D-word, the
automaton proceeds with two steps:

Decision Problems for Finite Automata over Infinite Algebraic Structures 5

1. (Testing) The automaton produces two k × n and � × n test matrices
Test(R, x) and Test(C, x) with entries 1 (true) or 0 (false), respectively:

⎛
⎜⎜⎝

P1(r1,1, x) . . . Pn(r1,n, x)
P1(r2,1, x) . . . Pn(r2,n, x)

.
P1(rk,1, x) . . . Pn(rk,n, x)

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

P1(c1,1, x) . . . Pn(c1,n, x)
P1(c2,1, x) . . . Pn(c2,n, x)

.
P1(c�,1, x) . . . Pn(c�,n, x)

⎞
⎟⎟⎠

The automaton then makes a transition (q, T1, T2, F, q′) where q is the current
state, T1 = Test(R, x) and T2 = Test(C, x).

2. (Updating) When making the transition (q, T1, T2, F, q′), the automaton
updates the values of registers using operations in F , transforming the matrix
R to the matrix F (R, x) as presented below:

R =

⎛
⎜⎜⎝

r1,1 . . . r1,n

r2,1 . . . r2,n

.
rk,1 . . . rk,n

⎞
⎟⎟⎠ =⇒ F (R, x) =

⎛
⎜⎜⎝

f1,1(r1,1, x) . . . f1,n(r1,n, x)
f2,1(r2,1, x) . . . f2,n(r2,n, x)

.
fk,1(rk,1, x) . . . fk,n(rk,n, x)

⎞
⎟⎟⎠

where fi,j the (i, j)-entry of F for all 1 ≤ i ≤ k, 1 ≤ j ≤ n.

After all elements on the input tape have been read, the S-automaton stops and
decides whether to accept the input depending on the last state.

In the following we put constraints on the register values R and the operation
matrix F and introduce two finite automata models over the structure S, namely,
the S-automata and extended S-automata.

– S-automata: We require the matrix F in each transition to be the same; fur-
thermore, each row in F is the tuple (f1, . . . , fn) ∈ Opk of all atomic operation
of S. Hence any transition will transform the ith register Ri = (ri,1, . . . , ri,n) to
(f1(ri,1, x), . . . , fn(ri,n, x)). Thus, a transition of an S-automaton can simply
be represented as (q, T1, T2, q

′).
– Extended S-automata: We require the columns in both the register matrix
R and the operation matrix F for each transition to be the same, that is:

R =

⎛
⎜⎜⎝

r1 . . . r1
r2 . . . r2
.
rk . . . rk

⎞
⎟⎟⎠ and F =

⎛
⎜⎜⎝

fi1 . . . fi1

fi2 . . . fi2

.
fik . . . fik

⎞
⎟⎟⎠

Thus we can simply write R as a tuple of elements (r1, r2, . . . , rk) ∈ Dk and
F as a tuple (fi1 , . . . , fik) ∈ Opk.

Definition 1. We define two types of automata:

1. An (S, k)-automaton is a tuple A = (Q,R,Δ, I, F) where Q is a finite set
of states, R = (r̄1, . . . , r̄k) is the initial values of the registers with each
r̄i ∈ Dn, I ⊆ Q is the initial states set, F ⊆ Q is the set of accepting states
and Δ ⊆ Q×{0, 1}n·(k+�) ×Q is the transition relation of A. The automaton
is deterministic if Δ determines the function Δ : Q × {0, 1}n·(k+�) → Q. An
S-automaton is an (S, k)-automaton for some k ∈ ω.

6 B. Khoussainov and J. Liu

2. An extended (S, k)-automaton is defined in the same way as an (S, k)-
automaton, with the following exceptions: the register R is (r1, . . . , rk) ∈ Dk,
and Δ ⊆ Q × {0, 1}(k+�)·n × Opk × Q is the transition relation. The automa-
ton is deterministic if Δ is a function Δ : Q × {0, 1}(k+�)·n → Opk × Q. An
extended S-automaton is an extended (S, k)-automaton for some k ∈ ω.

Let A = (Q,R,Δ, I, F) be an (extended) (S, k)-automaton. We define the runs
of the automaton on D-words as follows. A configuration of the automaton is a
pair (R, q), where q is a state of the automaton and R is the matrix of register
values. A run of A on a D-word d0 . . . dt is a sequence of configurations

(R0, s0), (R1, s1), . . . , (Rt+1, st+1)

such that where R0 = R, s0 ∈ I, the transition from si to si+1 is labeled with
the test matrices Test(Ri, di) and Test(C, di), and Ri+1 = F (Ri, di) for all i.
The run is accepting if st+1 ∈ F . We say that A accepts the D-word d0 . . . dt if
A has an accepting run on d0 . . . dt.

Definition 2. The language L(A) of the (extended) S-automaton A is the set
of all D-words accepted by A. We call such languages (extended) S-regular.

3 Decision Problems on S-Automata

Simple Properties of S-regular Languages. The class of S-regular lan-
guages is a natural generalisation from regular languages in the following sense.
Firstly, there is a natural connection between S-regular languages and regu-
lar languages. In particular, when the structure S is finite, then any S-regular
language is regular. Secondly, the class of S-regular languages is closed under
the Boolean operations. Thirdly, every S-regular language can be recognised by
a deterministic S-automaton. Furthermore, the class of (S, k)-recognisable lan-
guages can be a proper subclass of the class of (S, k +1)-recognisable languages.
This is true for the infinite structure S = (D; =,pr1) where pr1 is the projection:
pr1(x, y) = x.

The Emptiness Problem for S-automata. The emptiness problem asks for
an algorithm that given an S-automaton, detects if the language of the automa-
ton is non-empty. This problem has a positive solution for regular languages and
thus is decidable when S is finite. It turns out that for certain large class of
structures S, the emptiness problem is decidable.

Definition 3. An equivalence relation ≡k on the set MS(n, k) of matrices is
called smooth if the relation satisfies the following conditions:

1. The relation ≡k is of finite index.
2. For all R,R′ ∈ MS(n, k), matrices X and Y with 0, 1 entries, if R ≡k R′

then we have {z | Test(R, z) = X & Test(C, z) = Y } is the empty set if and
only if {z | Test(R′, z) = X & Test(C, z) = Y } is the empty set.

Decision Problems for Finite Automata over Infinite Algebraic Structures 7

As a simple example, assume ≡ is an equivalence relation of finite index on the
domain D such that all atomic predicates and operations are compatible with ≡.
This relation naturally defines the relation ≡k on the matrices MS(n, k): Two
matrices are ≡k-equivalent if the entries at the same positions of the matrices
are ≡-equivalent. Then the equivalence relation ≡k is smooth.

Here is another example. Let S be a structure (D; f1, . . . , fn,=). On the
set MS(n, k) consider the following relation ≡k: Two matrices R and R’
are ≡k-equivalent if for all two positions (i, j) and (s, t) of the matrices we
have ri,j = rs,t if and only if r′

i,j = r′
s,t. Then the relation ≡k is smooth.

Let {≡k}k>0 be a family of smooth equivalence relations on S. Assume that
for each k we can effectively represent the ≡k-classes by some finite objects. For
instance, when k = 2 and n = 2, the relation ≡2 considered in the paragraph
above has the following representatives:

(
a a
a a

)
,

(
a b
a a

)
,

(
a b
c a

)
,

(
a b
c d

)
,

where a, b, c, d are all pairwise distinct and fixed integers. We call these repre-
sentatives types of the equivalence classes. With this set-up, we have:

Definition 4. The structure S is nice if it satisfies the following two properties:

1. There is an algorithm that given a type of a matrix R ∈ MS(n, k), and
given two {0, 1}-valued matrices X, Y decides if the set {z | Test(R, z) =
X & Test(C, z) = Y } is empty or not.

2. There is an algorithm that given a type of a matrix R ∈ MS(n, k), computes
the types of all matrices F (R, x) where x satisfies the equations Test(R, z) =
X and Test(R, z) = Y for given X, Y .

In particular, let S be a structure (D; f1, . . . , fn,=). Assume that for each fi

there is a finite set Fi ⊂ D such that

1. For every d 	∈ Fi the function fi,d(x) = fi(d, x) is injection on D.
2. For each d ∈ Fi, the function fi,d(x) = fi(d, x) is a constant function, that

is, there is an a ∈ D such that fi,d(x) = a for all x ∈ D.

Then the smooth equivalence relation ≡k makes the structure S nice. For
instance, the structure (Z; +,×,=) satisfies the properties above.

Theorem 5. The emptiness problem over any nice structure is decidable. More
precisely, for any nice structure S over domain D, there is an algorithm that,
given an S-automaton A = (Q,R,Δ, I, F) and the type of R, detects if the
automaton accepts at least one D-word.

From the theorem above we immediately get the following corollary.

Corollary 6. The emptiness problem is decidable over the arithmetic (Z; +,×),
the fields of reals (R; +,×) and rational numbers (Q; +,×).
�

8 B. Khoussainov and J. Liu

4 Decision Problems on Extended S-Automata

Simple Properties of Extended S-regular Languages. Any S-regular lan-
guage is clearly extended S-regular. On the other hand, extended S-automata
recognise larger class of languages. The limitation of S-automata is that, when
processing a D-word, the sequence of updates to the registers are the same
regardless of which path the automaton take. In an extended S-automaton,
however, the operations performed on registers depends on the outcomes of the
tests. This leads to a lack of some crucial properties enjoyed by S-regular lan-
guages, such as determination. Furthermore, there exists extended S-regular lan-
guages whose complements are not recognisable by any extended S-automata.
On the other hand, the class of languages recognised by deterministic extended
S-automata is closed under the Boolean operations.

Validation Problem for Extended S-automata. We refine the emptiness
problem for finite automata as follows. Ddesign an algorithm that, given an S-
automaton over the structure S, and a path from an initial state to an accepting
state in the automaton, builds an input sequence from the structure S that
validates the path. We call this the validation problem for S-automata. We will
investigate the validation problem for extended S-automata and connect the
problem with the first order existential theory of the structure S.

We postulate that S is a computable structure, i.e., its domain D and all
of its atomic predicates P1, . . ., Pn and operations f1, . . ., fn are computable.
The validation problem for extended S-automata turns out to be equivalent to
deciding the existential theory (with parameters) Th∃(S) of the structure. For
the next theorem, we use S[pr1,pr2] to denote the structure obtained from S
upon expansion with two projection operations pr1 and pr2.

Theorem 7. Suppose S is a computable structure. The validation problem for
extended S[pr1,pr2]-automata is decidable if and only if Th∃(S) is decidable.

As a corollary, we see that the validation problem over computable structures
with undecidable existential theory, such as the arithmetic (ω; +,×,≤,), is unde-
cidable. Also, the validation problem over computable structures with decidable
first order theory, such as the Presburger arithmetic, is decidable.

The Emptiness Problem for Extended S-automata. On computable struc-
tures, the decidability of the emptiness problem implies decidability of the val-
idation problem. The converse is not true. We discuss the emptiness problem
on extended S-automata for two special cases: the first case assumes that the
transition graphs of the extended S-automata are acyclic. The second concerns
with fragments of the arithmetic (ω; +,×,≤, 0).

1. A state s is a sink if all outgoing transitions loop into s. All accepting (non-
accepting) sink states can be collapsed into one (non-accepting) accepting
sink state. Therefore we can always assume that every S-automaton has at
most 2 sink states. An extended S-automaton acyclic if its state space without
the sink states is an acyclic graph. If S is a computable structure, then the

Decision Problems for Finite Automata over Infinite Algebraic Structures 9

emptiness problem of acyclic extended S[pr1,pr2]-automata is equivalent to
the corresponding validation problem. Hence, by Theorem7, the emptiness
problem is decidable for acyclic extended automata over such structures as
(ω; +,≤), (ω;×,≤), (Q; +,≤) and finitely generated Abelian groups.

It is easy to find structures S with undecidable existential theory such that
the emptiness problem for acyclic extended (S, k)-automata is undecidable
for every k ≥ 1.

Let SZ = (Z; +,×,pr1,pr2, 0). One constructs, for any polynomial p(x̄) in
ω[x1, . . . , xk], an acyclic extended (SZ, k + 2)-automaton Ap that evaluates p
over a sequence (a1, . . . , ak) ∈ Z

k of input values. This reduces Hilbert’s tenth
problem to the emptiness problem of acyclic extended SZ-automata. Since
Hilbert’s tenth problem is undecidable for polynomials with bounded number
of variables (the currently known bound that guarantees undecidability is 9
[16]), we obtain that the emptiness problem for acyclic (SZ, 11)-automata is
undecidable.

2. Let S be the following structure (ω; +1,pr1, 0) where +1(x, y) = x + 1. One
constructs, given a 2-counter machine M, an extended S-automaton M′ with
4 registers such that M accepts some word iff M′ accepts some ω-word.
This reduces the emptiness problem for 2-counter machines, known to be
undecidable [17], to the emptiness problem for extended (S, 4)-automata.
Thus the emptiness problem for extended (S, 4)-automata is undecidable.

The above shows for many structures S, the emptiness problem for S-
automata is undecidable. We next present structures on which the emptiness
problem is decidable. For this we use a tool similar to the notion of nice struc-
tures introduced for S-automata; we recast Definition 4 in this setting:

Definition 8. An equivalence relation ≡k of finite index on the set Dk is smooth
if for all R,R′ ∈ Dk and all {0, 1}-valued matrices X,Y , the condition R ≡k R′

implies that the set {z | Test(R, z) = X & Test(C, z) = Y } is empty iff the set
{z | Test(R′, z) = X & Test(C, z) = Y } is empty.

Definition 9. The structure S is k-nice if we have:

(a) There is an algorithm that given a type of a tuple R ∈ Dk, and given two
{0, 1}-valued matrices X,Y decides if the set

{z | Test(R, z) = X & Test(C, z) = Y }
is empty or not.

(b) There is an algorithm that given a type of a tuple R ∈ Dk, matrices X,
Y , and a tuple F ⊆ Opk, computes the types of all tuples F (R, x) where x
satisfies the equation Test(R, z) = X and Test(R, z) = Y .

Theorem 10. The emptiness problem for extended (S, k)-automata over any
k-nice structure S is decidable.

Corollary 11. The emptiness problem for extended (S, 1)-automata is decidable
for the structure S = (ω; +,×,pr1,≤, c1, . . . , c�).

10 B. Khoussainov and J. Liu

5 Conclusion

Our models of automata over algebraic structure provide a general framework for
finite-state computation. Observe that: (1) we can vary the underlying structures
S thus connecting algebraic properties of S with finite state machines, (2) in cer-
tain precise sense our machines can simulate Turing machines, (3) many known
automata models (e.g., pushdown automata, Petri nets) can be simulated by our
models of automata, and (4) the class of languages recognised by a S-automata
is closed under the Boolean set-theoretic operations. This extends the finite
automata and tree automata models of computations. However, we note that it
remains to be seen whether our model of automata leads to a general framework
to decidability results for various models of automata (e.g., pushdown automata,
vector addition systems).

Apart from the mentioned references, we note that the current paper refines
and extends the approach taken in [11]. We also mention the papers [18,19] that,
motivated by the approach in [11], develop the theory of automata over the fields
of reals and complex numbers. We note that the current paper also addresses
some topics discussed in [14]. It could be interesting to address simulation issues
for our models of automata as for finite automata, as in [7,8].

References

1. Alur, R., Černý, P., Weinstein, S.: Algorithmic analysis of array-accessing pro-
grams. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 86–101.
Springer, Heidelberg (2009)

2. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines.
Bull. Am. Math. Soc. 21(1), 1–46 (1989)

3. Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable
logic on words with data. In: Proceedings of LICS 2006, pp. 7–16 (2006)

4. Bojanczyk, M., David, C., Muscholl, M., Schwentick, T., Segoufin, L.: Two-
variablelogic on data trees and XML reasoning. In: Proceedings of PODS 2006,
pp. 10–19 (2006)

5. Bournez, O., Cucker, F., de Naurois, P.J., Marion, J.-Y.: Computability over an
arbitrary structure. Sequential and parallel polynomial time. In: Gordon, A.D.
(ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 185–199. Springer, Heidelberg (2003)

6. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp.
577–588. Springer, Heidelberg (2006)

7. Calude, C., Calude, E., Khoussainov, B.: Deterministic automata: simulation and
minimality. Ann. Pure Appl. Logic 90(1–3), 263–276 (1997)

8. Calude, C., Calude, E., Khoussainov, B.: Finite nondeterministic automata: simu-
lation and minimality. Theor. Comput. Sci. 242(1–2), 219–235 (2000)

9. Comon, S., Jurski, Y.: Multiple counters automata, safety analysis and Presburger
arithmetic. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 268–
279. Springer, Heidelberg (1998)

10. Figueira, D.: Reasoning on words and trees with data. Ph.D. thesis, ENS Cachan,
France (2010)

Decision Problems for Finite Automata over Infinite Algebraic Structures 11

11. Gandhi, A., Khoussainov, B., Liu, J.: Finite automata over structures (Extended
Abstract). In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol.
7287, pp. 373–384. Springer, Heidelberg (2012)

12. Ibarra, O.: Reversal-bounded multicounter machines and their decision problems.
J. ACM 25(1), 116–133 (1978)

13. Kaminsky, M., Francez, N.: Finite memory automata. Theor. Comput. Sci. 134(2),
329–363 (1994)

14. Khoussainov, B., Nerode, A.: Open questions in the theory of automatic structures.
Bull. Eur. Assoc. Theor. Comput. Sci. (EATCS) (94):181–204 (2008)

15. Leroux, J., Sutre, G.: Flat counter automata almost everywhere!. In: Peled, D.A.,
Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg
(2005)

16. Matiyasevich, Y.: Hilbert’s Tenth Problem. MIT Press, Massachusetts (1993)
17. Minsky, M.: Recursive unsolvability of post’s problem of “Tag” and other topics

in theory of turing machines. Ann. Math. 74(3), 437–455 (1961)
18. Meer, K., Naif, A.: Generalised finite automata over real and complex numbers.

Theor. Comput. Sci. 591(C), 86–98 (2015)
19. Meer, K., Naif, A.: Periodic generalized automata over the reals. In: Dediu, A.-

H., et al. (eds.) LATA 2016. LNCS, vol. 9618, pp. 168–180. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-30000-9 13

20. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Logic 15(3), 403–435 (2004)

21. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In:
Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)

22. Segoufin, L., Torunczyk, S.: Automata based verification over linearly ordered data
domains. In: Proceedings of STACS, pp. 81–92. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2011)

23. Tan, T.: Graph reachability and pebble automata over infinite alphabets. In: Pro-
ceedings of LICS, pp. 157–166. IEEE Computer Society (2009)

http://dx.doi.org/10.1007/978-3-319-30000-9_13

	Decision Problems for Finite Automata over Infinite Algebraic Structures
	1 Introduction
	2 Two Automata Models Over Algebraic Structures
	3 Decision Problems on S-Automata
	4 Decision Problems on Extended S-Automata
	5 Conclusion
	References

