
Yo-Sub Han
Kai Salomaa (Eds.)

 123

LN
CS

 9
70

5

21st International Conference, CIAA 2016
Seoul, South Korea, July 19–22, 2016
Proceedings

Implementation
and Application
of Automata

Lecture Notes in Computer Science 9705

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Yo-Sub Han • Kai Salomaa (Eds.)

Implementation
and Application
of Automata
21st International Conference, CIAA 2016
Seoul, South Korea, July 19–22, 2016
Proceedings

123

Editors
Yo-Sub Han
Yonsei University
Seoul
Korea (Republic of)

Kai Salomaa
Queen’s University
Kingston, ON
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-40945-0 ISBN 978-3-319-40946-7 (eBook)
DOI 10.1007/978-3-319-40946-7

Library of Congress Control Number: 2016941604

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the papers presented at the 21st International Conference on
Implementation and Application of Automata (CIAA 2016) organized by the Depart-
ment of Computer Science at Yonsei University during July 19–22, 2016, in Seoul,
Republic of Korea.

The CIAA conference series is a major international venue for the dissemination of
new results in the implementation, application, and theory of automata. The previous
20 conferences were held in various locations all around the globe: Umeå (2015),
Giessen (2014), Halifax (2013), Porto (2012), Blois (2011), Winnipeg (2010), Sydney
(2009), San Francisco (2008), Prague (2007), Taipei (2006), Nice (2005), Kingston
(2004), Santa Barbara (2003), Tours (2002), Pretoria (2001), London Ontario (2000),
Potsdam (WIA 1999), Rouen (WIA 1998), London Ontario (WIA 1997 and WIA
1996). As for its predecessors, the theme of CIAA 2016 was the implementation of
automata and applications in related fields. The topics of the presented papers include
characterizations of automata, computing distances between strings and languages,
implementations of automata and experiments, enhanced regular expressions, and
complexity analysis.

There were 49 submissions from 34 different counties: Argentina, Australia,
Belgium, Canada, China, Colombia, Czech Republic, Denmark, Finland, France,
Germany, Hungary, India, Iran, Italy, Japan, Republic of Korea, Latvia, New Zealand,
Poland, Portugal, Qatar, Russia, Singapore, Slovakia, South Africa, Spain, Sweden,
Taiwan, Thailand, Tunisia, Turkey, the UK, and the USA. Each submission was
reviewed by at least three reviewers and thoroughly discussed by the Program
Committee (PC). The committee decided to accept 26 papers for oral presentation. The
program also includes three invited talks by Oscar H. Ibarra, Bakhadyr Khoussainov,
and Ahyoung Sung.

It is a pleasure for the PC chairs to thank the members of the PC and the external
reviewers for reviewing the papers and participating in the selection process and
helping to maintain the high standard of the CIAA conferences. We are especially
grateful to all the invited speakers and all authors of submitted papers for making CIAA
2016 a scientific success. We appreciate the help of the EasyChair conference system
for making our work of organizing CIAA 2016 much easier.

We would furthermore like to thank the editorial staff at Springer, and in particular
Alfred Hofmann and Anna Kramer, for their guidance and help during the process of
publishing this volume. Last but not least, we are grateful to the conference sponsors
for their generous financial support and the local Organizing Committee members,
Da-Jung Cho, Shin-Dong Kang, Guen-Hae Kim, and Hwee Kim, for their help.

We are all looking forward to CIAA 2017 at Université Paris-Est Marne-la-Vallée,
Paris, in France.

July 2016 Yo-Sub Han
Kai Salomaa

VI Preface

Organization

CIAA 2016 was organized by the Department of Computer Science at Yonsei
University during July 19–22, 2016, in Seoul, Republic of Korea.

Invited Speakers

Oscar H. Ibarra University of California, Santa Barbara, USA
Bakhadyr Khoussainov University of Auckland, New Zealand
Ahyoung Sung Samsung Electronics, Republic of Korea

Program Committee

Marie-Pierre Béal Université Paris-Est Marne-la-Vallée, France
Bernd Burgstaller Yonsei University, Republic of Korea
Cezar Câmpeanu University of Prince Edward Island, Canada
Pascal Caron University of Rouen, France
Jean-Marc Champarnaud University of Rouen, France
Salimur Choudhury Algoma University, Canada
Michael Domaratzki University of Manitoba, Canada
Frank Drewes Umeå University, Sweden
Dominik Freydenberger Bayreuth University, Germany
Yo-Sub Han (Chair) Yonsei University, Republic of Korea
Markus Holzer University of Giessen, Germany
Oscar H. Ibarra University of California, Santa Barbara, USA
Sang-Ki Ko University of Liverpool, UK
Stavros Konstantinidis Saint Mary’s University, Canada
Andreas Malcher University of Giessen, Germany
Andreas Maletti University of Stuttgart, Germany
Sebastian Maneth University of Edinburgh, UK
Denis Maurel University of Tours, France
Cyril Nicaud Université Paris-Est Marne-la-Vallée, France
Alexander Okhotin University of Turku, Finland
Giovanni Pighizzini University of Milan, Italy
Bala Ravikumar Sonoma State University, USA
Daniel Reidenbach Loughborough University, UK
Rogério Reis University of Porto, Portugal
Michel Rigo University of Liège, Belgium
Kai Salomaa (Co-chair) Queen’s University, Canada
Shinnosuke Seki University of Electro-Communications, Japan
György Vaszil University of Debrecen, Hungary
Bruce Watson Stellenbosch University, South Africa
Hsu-Chun Yen National Taiwan University, Taiwan

Steering Committee

Jean-Marc Champarnaud University of Rouen, France
Markus Holzer University of Giessen, Germany
Oscar H. Ibarra University of California, Santa Barbara, USA
Denis Maurel University of Tours, France
Kai Salomaa (Chair) Queen’s University, Canada
Hsu-Chun Yen National Taiwan University, Taiwan

Additional Reviewers

Asarin, Eugene
Bedon, Nicolas
Beier, Simon
Borie, Nicolas
Bosma, Wieb
Bouchou, Béatrice
Broda, Sabine
Carayol, Arnaud
David, Julien
Delgado, Manuel
Djelloul, Ziadi
Egecioglu, Omer
Friburger, Nathalie
Gonze, François
Goodspeed, Ben

Guingne, Franck
Ittoo, Ashwin
Klimann, Ines
Kutrib, Martin
Lavado, Giovanna
Lombardy, Sylvain
Madonia, Maria
Manal, Mohammed
McQuillan, Ian
Mercas, Robert
Mereghetti, Carlo
Moreira, Nelma
Ng, Timothy
Nicart, Florent
Nouvel, Damien

Ouardi, Faissal
Palioudakis, Alexandros
Patrou, Bruno
Quernheim, Daniel
Rampersad, Narad
Reinhardt, Klaus
Roche, Abiel
Rondogiannis, Panos
Santocanale, Luigi
Sassolas, Mathieu
Seemann, Nina
Serre, Olivier
Wendlandt, Matthias
Yakaryilmaz, Abuzer
Young, Joshua

Organizing Committee

Da-Jung Cho
Yo-Sub Han (Chair)
Shin-Dong Kang
Guen-Hae Kim
Hwee Kim

Sponsoring Institutions

Department of Computer Science, Yonsei University
Yonsei Institute of Information and Communication Technology, Yonsei University
Office of Research Affairs, Yonsei University

VIII Organization

Invited Talks

Grammatical Characterizations of NPDAs
and VPDAs with Counters

Oscar H. Ibarra

Department of Computer Science, University of California,
Santa Barbara, CA 93106, USA

ibarra@cs.ucsb.edu

Abstract. We give a characterization of NPDAs with reversal-bounded counters
(NPCMs) in terms of context-free grammars with monotonic counters. We show
that the grammar characterization can be used to give simple proofs of previ-
ously known results such as the semilinearity of the Parikh map of any language
accepted by an NPCM. We prove a Chomsky-Schutzenberger-like theorem: A
language L is accepted by an NPCM if and only if there is a k � 1 and an
alphabet R containing at least k distinguished symbols, p1, …, pk, such that
L = h(D \ Ek(R)) for some homomorphism h, Dyck language D�R�, and
regular set R�R�, where EkðRÞ ¼ fw j w 2 R; wj jp1¼ � � � ¼ wj jpkg. We also
give characterizations of other machine models (such as NPDAs whose stack
makes only 1 reversal, NFAs, and VPDAs, i.e., visibly pushdown automata)
augmented with reversal-bounded counters. Finally, we investigate the com-
plexity of some decision problems for these grammatical models.

This research was supported, in part, by NSF Grant CCF-1117708.

Decision Problems for Finite Automata over
Infinite Algebraic Structures

Bakhadyr Khoussainov and Jiamou Liu

Department of Computer Science, University of Auckland, New Zealand
bmk@cs.auckland.ac.nz

jiamou.liu@auckland.ac.nz

Abstract. We introduce the concept of finite automata over algebraic structures.
We address the classical emptiness problem and its various refinements in our
setting. In particular, we prove several decidability and undecidability results.
We also explain the way our automata model connects with the existential first
order theory of algebraic structures.

What We Experience is What You Do

Ahyoung Sung

Software Quality Assurance Group,
Division of Visual Display, Samsung Electronics

Republic of Korea
ahyoung.sung@samsung.com

1 Introduction of Embedded Systems

Embedded systems are used to control a wide variety of dynamic and complex
applications, ranging from consumer products such as smart phones, smart televisions,
and wearable devices to safety-critical systems such as automobiles, airplanes, and
medical devices. Clearly, systems such these must be sufficiently dependable; how-
ever, there is ample evidence that often they are not. Toyota Corporation admitted that
a “software glitch” was to blame for braking problems in the 2010 Prius, in which cars
continued to move even when their brakes are engaged1. Other faults in embedded
systems led to the Ariane2, Therac-25 [1], and Mars Pathfinder [2]. Embedded systems
are typically designed to perform specific tasks in particular computational environ-
ments consisting of software and hardware components. A typical system is structured
in terms of four layers: the application layer, the Operating System (OS) layer, the
Hardware Adaptation Layer (HAL), and the underlying hardware substrate. Interfaces
between these layers provide access to, and observation points into, the internal
workings of each underlying layer. Due to the layered architecture, embedded appli-
cations are more compact and portable and can easily be written to directly execute on
hardware. Software development practices in the area of consumer electronics often
separate developers of application software from the engineers who develop lower
system layers. As an example, consider Apples App Store, which was created to allow
soft-ware developers to create and market iPhone applications. Apple provided the
iPhone Software Development Kit (SDK), the same tool used by Apples engineers to
develop core applications, to support application development by providing basic
interfaces that an application can use to obtain services from underlying software layer.
There were numerous reports that some applications created using the SDK caused
iPhone to exhibit unresponsiveness due to failures in the underlying layers that affected
operations of the devices3. These failures occurred because the developers used the
interfaces provided by the iPhone SDK in ways not anticipated by Apples engineers.
These applications use lower-level software components (runtime services and

1 CNN news report, February 4, 2010
2 https://www.ima.umn.edu/� arnold/disasters/ariane5rep.html
3 http://arstechnica.com/apple/2008/07/iphone-app-store-problems-causing-more-than-just-headaches/

https://www.ima.umn.edu/&hx223C;arnold/disasters/ariane5rep.html
https://www.ima.umn.edu/&hx223C;arnold/disasters/ariane5rep.html
http://arstechnica.com/apple/2008/07/iphone-app-store-problems-causing-more-than-just-headaches/

libraries) that must be developed or heavily customized by in-house software devel-
opers. In situations such as this the developers do know what scenarios underlying
services will be invoked in, but they still cannot safely treat lower level components as
black boxes in testing. Instead, developers and engineers need to specifically observe
the execution of each component and test the scenarios in which underlying compo-
nents are invoked by the application and in which tasks interact.

2 Continuous Integration and Software Testing

Continuous Integration (CI) is a development practice that requires various software
developers such as user-interface (UI) developer, video application developer, kernel
developer, and device-driver developer, to integrate their source codes into a shared
repository or a mainstream several times a day. Each check-in follows the process of an
automated build and software testing (e.g., developer’s code-level testing). During the
process of continuous integration, software testing is an essential activity of executing a
program with the intent of finding “software defects” in product development phase; it
validates and fixes potential software failure (e.g., buffer overflow) that consumers
might experience in advance. When the entire integration gets done (a developer
usually draws a line for the integration), now we have a software system or a product
prototype that spans across from application layer to HAL. Especially, in the system
deployment stage in massive productions, software test theories are rarely used for
testing due to scalability challenges and environmental factors. And yet, manufacturing
industry has adapted analytical testing theories such as: (a) failure analysis based on the
collected defects, (b) system modeling using finite-state machine (e.g., software module
analysis using state-transitions in order to verify the faulty user scenarios), (c) control-
flow and its data-flow analysis for UI testing, and (d) empirical strategies for effective
validation (e.g., impact analysis for regression testing in UI, test case selection for
massive multi-media files, test oracle4 design for detecting an audio-mute section).
Moreover, these techniques are evolving gradually to deliver a better product for our
potential customers. This talk focuses on how software engineers define a problem,
prove their hypothesis, and apply their test theories to the real products that we can
easily experience in our daily products

References

1. Leveson, N.G.: An investigation of the Therac-25 accidents. IEEE Comput. 26, 18–41 (1993)
2. Muchnick, S.S., Jones, N.D.: Program Flow Analysis: Theory and Application. Prentice Hall

Professional Technical Reference (1981)

4 Test oracle is a mechanism for determining whether a test has passed or failed.

XIV What We Experience is What You Do

Contents

Invited Paper

Decision Problems for Finite Automata over Infinite Algebraic Structures . . . 3
Bakhadyr Khoussainov and Jiamou Liu

Regular Papers

The Degree of Irreversibility in Deterministic Finite Automata 15
Holger Bock Axelsen, Markus Holzer, and Martin Kutrib

Deterministic Stack Transducers . 27
Suna Bensch, Johanna Björklund, and Martin Kutrib

Computing the Expected Edit Distance from a String to a PFA. 39
Jorge Calvo-Zaragoza, Colin de la Higuera, and Jose Oncina

Derived-Term Automata of Multitape Rational Expressions 51
Akim Demaille

Solving Parity Games Using an Automata-Based Algorithm 64
Antonio Di Stasio, Aniello Murano, Giuseppe Perelli,
and Moshe Y. Vardi

Ternary Equational Languages . 77
Zoltán Ésik

Problems on Finite Automata and the Exponential Time Hypothesis 89
Henning Fernau and Andreas Krebs

A Practical Algorithm for the Uniform Membership Problem of Labeled
Multidigraphs of Tree-Width 2 for Spanning Tree Automata 101

Akio Fujiyoshi

A Practical Simulation Result for Two-Way Pushdown Automata 113
Robert Glück

Nondeterministic Complexity of Operations on Closed and Ideal Languages . . . 125
Michal Hospodár, Galina Jirásková, and Peter Mlynárčik

On Bounded Semilinear Languages, Counter Machines,
and Finite-Index ET0L. 138

Oscar H. Ibarra and Ian McQuillan

http://dx.doi.org/10.1007/978-3-319-40946-7_1
http://dx.doi.org/10.1007/978-3-319-40946-7_2
http://dx.doi.org/10.1007/978-3-319-40946-7_3
http://dx.doi.org/10.1007/978-3-319-40946-7_4
http://dx.doi.org/10.1007/978-3-319-40946-7_5
http://dx.doi.org/10.1007/978-3-319-40946-7_6
http://dx.doi.org/10.1007/978-3-319-40946-7_7
http://dx.doi.org/10.1007/978-3-319-40946-7_8
http://dx.doi.org/10.1007/978-3-319-40946-7_9
http://dx.doi.org/10.1007/978-3-319-40946-7_9
http://dx.doi.org/10.1007/978-3-319-40946-7_10
http://dx.doi.org/10.1007/978-3-319-40946-7_11
http://dx.doi.org/10.1007/978-3-319-40946-7_12
http://dx.doi.org/10.1007/978-3-319-40946-7_12

Kuratowski Algebras Generated by Prefix-Free Languages 150
Jozef Jirásek Jr. and Juraj Šebej

A Logical Characterization of Small 2NFAs . 163
Christos A. Kapoutsis and Lamana Mulaffer

Experiments with Synchronizing Automata. 176
Andrzej Kisielewicz, Jakub Kowalski, and Marek Szykuła

Implementation of Code Properties via Transducers. 189
Stavros Konstantinidis, Casey Meijer, Nelma Moreira, and Rogério Reis

On Synchronizing Automata and Uniform Distribution 202
Emil Lerner

Looking for Pairs that Hard to Separate: A Quantum Approach 213
Aleksandrs Belovs, J. Andres Montoya, and Abuzer Yakaryılmaz

Prefix Distance Between Regular Languages . 224
Timothy Ng

Complexity of Sets of Two-Dimensional Patterns . 236
Daniel Průša

The Complexity of Fixed-Height Patterned Tile Self-assembly 248
Shinnosuke Seki and Andrew Winslow

Derivative-Based Diagnosis of Regular Expression Ambiguity 260
Martin Sulzmann and Kenny Zhuo Ming Lu

Regular Approximation of Weighted Linear Nondeleting Context-Free
Tree Languages . 273

Markus Teichmann

Derivatives for Enhanced Regular Expressions . 285
Peter Thiemann

Weighted Restarting Automata as Language Acceptors 298
Qichao Wang and Friedrich Otto

Enhancing Practical TAG Parsing Efficiency by Capturing Redundancy. 310
Jakub Waszczuk, Agata Savary, and Yannick Parmentier

Analyzing Matching Time Behavior of Backtracking Regular Expression
Matchers by Using Ambiguity of NFA . 322

Nicolaas Weideman, Brink van der Merwe, Martin Berglund,
and Bruce Watson

Author Index . 335

XVI Contents

http://dx.doi.org/10.1007/978-3-319-40946-7_13
http://dx.doi.org/10.1007/978-3-319-40946-7_14
http://dx.doi.org/10.1007/978-3-319-40946-7_15
http://dx.doi.org/10.1007/978-3-319-40946-7_16
http://dx.doi.org/10.1007/978-3-319-40946-7_17
http://dx.doi.org/10.1007/978-3-319-40946-7_18
http://dx.doi.org/10.1007/978-3-319-40946-7_19
http://dx.doi.org/10.1007/978-3-319-40946-7_20
http://dx.doi.org/10.1007/978-3-319-40946-7_21
http://dx.doi.org/10.1007/978-3-319-40946-7_22
http://dx.doi.org/10.1007/978-3-319-40946-7_23
http://dx.doi.org/10.1007/978-3-319-40946-7_23
http://dx.doi.org/10.1007/978-3-319-40946-7_24
http://dx.doi.org/10.1007/978-3-319-40946-7_25
http://dx.doi.org/10.1007/978-3-319-40946-7_26
http://dx.doi.org/10.1007/978-3-319-40946-7_27
http://dx.doi.org/10.1007/978-3-319-40946-7_27

Invited Paper

Decision Problems for Finite Automata
over Infinite Algebraic Structures

Bakhadyr Khoussainov(B) and Jiamou Liu

Department of Computer Science, University of Auckland, Auckland, New Zealand
bmk@cs.auckland.ac.nz, jiamou.liu@auckland.ac.nz

Abstract. We introduce the concept of finite automata over algebraic
structures. We address the classical emptiness problem and its various
refinements in our setting. In particular, we prove several decidability
and undecidability results. We also explain the way our automata model
connects with the existential first order theory of algebraic structures.

1 Introduction

Most computer programs rely on operations and queries on a priori defined data
types. An example of a such data type is the integers with the usual operations
of addition, multiplication and the comparison test. Another example is the
graph data type that encapsulates the operations of adding or deleting vertices
and edges as well as edge and subgraph queries. Algebraically, data types are
structures of the form (D; f1, . . . , fm, P1, . . . , Pn, c1, . . . , c�) where f1, . . . , fm are
atomic operations, P1, . . . , Pn are atomic relations and c1, . . . , c� are constants
on the domain D. A program can thus be viewed as a sequence of operations
and queries over a certain algebraic structure.

This view of programs motivated the definitions of many models of compu-
tation over structures. An example is the Blum-Shub-Smale (BSS) machines,
where the underlying structure is the ordered ring of the reals [2]. This model
builds a theoretical foundation of numerical algorithms on reals. Another exam-
ple is the work of O. Bournez, et al. [5] that generalises BSS machines to models
over arbitrary structures. Among several results, they prove that the set of all
recursive functions over arbitrary structure S is exactly the set of decision func-
tions computed by BSS machines over S. Other examples include various classes
of counter automata that use counters in different ways [6,9,12,15,17].

In this work we introduce finite automata models over algebraic structures.
The work fits into two lines of research: Firstly, one may view our models as finite
automata analogues of BSS machines over arbitrary structures. These automata
process finite sequences of elements from the domain of a given structure S, and
accept or reject these sequences. Such an automaton is a finite state machine
equipped with a fixed number of registers, a read only head that always moves
to the right in the tape and transitions between the states. For the structure S,
we use the term S-automata or extended S-automata that define two different
interpretations of this computation model on S. Secondly, one may view our
c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 3–11, 2016.
DOI: 10.1007/978-3-319-40946-7 1

4 B. Khoussainov and J. Liu

automata models as automata over an infinite alphabet when the underlying
structure S is infinite. Automata over infinite alphabet attracted considerable
interests due to connections to model checking and verification [1,3,4,10,21,23].
One goal here is to extend automata-theoretic techniques to words and trees
over data values. For example, Kaminsky and Francez in [13] proposed register
automata. These are finite state machines equipped with a fixed number of
registers which may hold values from an infinite domain D. The operations
allowed by the automata are equality comparisons between the input and the
register values and the copy operation. Another example is pebble automata
introduced by Neven, Schwentick and Vianu [20]. Their automata use a fixed set
of pebbles with a stack to keep track of values in the input data words. Operations
include equality comparisons of the current pebble values, and dropping and
lifting a pebble. Other examples of such automata models include Bojanczyk’s
data automata [3] and Alur’s extended data automata [1]. While all the above
automata allow only equality tests between data values, there has also been
automata model for linearly ordered data domains [22]. The existence of many
such models of automata calls for a general yet simple framework to formally
reason about such finite state automata. We suggest one such framework.

2 Two Automata Models Over Algebraic Structures

Let S = (D; f1, . . . , fm, P1, . . . , Pn, c1, . . . , c�) be an algebraic structure. We
assume that m = n and that all functions and predicate are binary. These are
not restrictions. For instance, when n < m we expand the structure by adding
the relation Pn to its signature to ensure that in the expanded structure the
number of atomic predicates and atomic operations are equal.

A D-word of length t is a sequence d1 . . . dt of elements of D. An automaton
over S has k updatable registers R1, . . . , Rk; each register Ri contains an n-
tuple ri = (ri,1, . . . , ri,n) from Dn, and the content of the register might change.
Furthermore, the automaton has � constant registers containing the constants
c1, . . . , c�; these values never change. We represent these values of registers as
matrices R and C.

R =

⎛
⎜⎜⎝

r1,1 . . . r1,n

r2,1 . . . r2,n

.
rk,1 . . . rk,n

⎞
⎟⎟⎠ and C =

⎛
⎜⎜⎝

c1,1 . . . c1,n

c2,1 . . . c2,n

.
c�,1 . . . c�,n

⎞
⎟⎟⎠

Let Op be the set of all atomic operations of S. The automaton is a finite state
machine where transitions are of the form (q, T1, T2, F, q′) where q, q′ are states,
T1, T2 are a pair of {0, 1}-valued matrices of sizes k × n and � × n respectively,
and F = (fi,j) ∈ Opk×n is a k × n matrix of atomic operation of S. Inputs
to the automaton are D-words written on a one-way read-only tape. When the
automaton is in state q and reads the next element x of an input D-word, the
automaton proceeds with two steps:

Decision Problems for Finite Automata over Infinite Algebraic Structures 5

1. (Testing) The automaton produces two k × n and � × n test matrices
Test(R, x) and Test(C, x) with entries 1 (true) or 0 (false), respectively:

⎛
⎜⎜⎝

P1(r1,1, x) . . . Pn(r1,n, x)
P1(r2,1, x) . . . Pn(r2,n, x)

.
P1(rk,1, x) . . . Pn(rk,n, x)

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

P1(c1,1, x) . . . Pn(c1,n, x)
P1(c2,1, x) . . . Pn(c2,n, x)

.
P1(c�,1, x) . . . Pn(c�,n, x)

⎞
⎟⎟⎠

The automaton then makes a transition (q, T1, T2, F, q′) where q is the current
state, T1 = Test(R, x) and T2 = Test(C, x).

2. (Updating) When making the transition (q, T1, T2, F, q′), the automaton
updates the values of registers using operations in F , transforming the matrix
R to the matrix F (R, x) as presented below:

R =

⎛
⎜⎜⎝

r1,1 . . . r1,n

r2,1 . . . r2,n

.
rk,1 . . . rk,n

⎞
⎟⎟⎠ =⇒ F (R, x) =

⎛
⎜⎜⎝

f1,1(r1,1, x) . . . f1,n(r1,n, x)
f2,1(r2,1, x) . . . f2,n(r2,n, x)

.
fk,1(rk,1, x) . . . fk,n(rk,n, x)

⎞
⎟⎟⎠

where fi,j the (i, j)-entry of F for all 1 ≤ i ≤ k, 1 ≤ j ≤ n.

After all elements on the input tape have been read, the S-automaton stops and
decides whether to accept the input depending on the last state.

In the following we put constraints on the register values R and the operation
matrix F and introduce two finite automata models over the structure S, namely,
the S-automata and extended S-automata.

– S-automata: We require the matrix F in each transition to be the same; fur-
thermore, each row in F is the tuple (f1, . . . , fn) ∈ Opk of all atomic operation
of S. Hence any transition will transform the ith register Ri = (ri,1, . . . , ri,n) to
(f1(ri,1, x), . . . , fn(ri,n, x)). Thus, a transition of an S-automaton can simply
be represented as (q, T1, T2, q

′).
– Extended S-automata: We require the columns in both the register matrix
R and the operation matrix F for each transition to be the same, that is:

R =

⎛
⎜⎜⎝

r1 . . . r1
r2 . . . r2
.
rk . . . rk

⎞
⎟⎟⎠ and F =

⎛
⎜⎜⎝

fi1 . . . fi1

fi2 . . . fi2

.
fik . . . fik

⎞
⎟⎟⎠

Thus we can simply write R as a tuple of elements (r1, r2, . . . , rk) ∈ Dk and
F as a tuple (fi1 , . . . , fik) ∈ Opk.

Definition 1. We define two types of automata:

1. An (S, k)-automaton is a tuple A = (Q,R,Δ, I, F) where Q is a finite set
of states, R = (r̄1, . . . , r̄k) is the initial values of the registers with each
r̄i ∈ Dn, I ⊆ Q is the initial states set, F ⊆ Q is the set of accepting states
and Δ ⊆ Q×{0, 1}n·(k+�) ×Q is the transition relation of A. The automaton
is deterministic if Δ determines the function Δ : Q × {0, 1}n·(k+�) → Q. An
S-automaton is an (S, k)-automaton for some k ∈ ω.

6 B. Khoussainov and J. Liu

2. An extended (S, k)-automaton is defined in the same way as an (S, k)-
automaton, with the following exceptions: the register R is (r1, . . . , rk) ∈ Dk,
and Δ ⊆ Q × {0, 1}(k+�)·n × Opk × Q is the transition relation. The automa-
ton is deterministic if Δ is a function Δ : Q × {0, 1}(k+�)·n → Opk × Q. An
extended S-automaton is an extended (S, k)-automaton for some k ∈ ω.

Let A = (Q,R,Δ, I, F) be an (extended) (S, k)-automaton. We define the runs
of the automaton on D-words as follows. A configuration of the automaton is a
pair (R, q), where q is a state of the automaton and R is the matrix of register
values. A run of A on a D-word d0 . . . dt is a sequence of configurations

(R0, s0), (R1, s1), . . . , (Rt+1, st+1)

such that where R0 = R, s0 ∈ I, the transition from si to si+1 is labeled with
the test matrices Test(Ri, di) and Test(C, di), and Ri+1 = F (Ri, di) for all i.
The run is accepting if st+1 ∈ F . We say that A accepts the D-word d0 . . . dt if
A has an accepting run on d0 . . . dt.

Definition 2. The language L(A) of the (extended) S-automaton A is the set
of all D-words accepted by A. We call such languages (extended) S-regular.

3 Decision Problems on S-Automata

Simple Properties of S-regular Languages. The class of S-regular lan-
guages is a natural generalisation from regular languages in the following sense.
Firstly, there is a natural connection between S-regular languages and regu-
lar languages. In particular, when the structure S is finite, then any S-regular
language is regular. Secondly, the class of S-regular languages is closed under
the Boolean operations. Thirdly, every S-regular language can be recognised by
a deterministic S-automaton. Furthermore, the class of (S, k)-recognisable lan-
guages can be a proper subclass of the class of (S, k +1)-recognisable languages.
This is true for the infinite structure S = (D; =,pr1) where pr1 is the projection:
pr1(x, y) = x.

The Emptiness Problem for S-automata. The emptiness problem asks for
an algorithm that given an S-automaton, detects if the language of the automa-
ton is non-empty. This problem has a positive solution for regular languages and
thus is decidable when S is finite. It turns out that for certain large class of
structures S, the emptiness problem is decidable.

Definition 3. An equivalence relation ≡k on the set MS(n, k) of matrices is
called smooth if the relation satisfies the following conditions:

1. The relation ≡k is of finite index.
2. For all R,R′ ∈ MS(n, k), matrices X and Y with 0, 1 entries, if R ≡k R′

then we have {z | Test(R, z) = X & Test(C, z) = Y } is the empty set if and
only if {z | Test(R′, z) = X & Test(C, z) = Y } is the empty set.

Decision Problems for Finite Automata over Infinite Algebraic Structures 7

As a simple example, assume ≡ is an equivalence relation of finite index on the
domain D such that all atomic predicates and operations are compatible with ≡.
This relation naturally defines the relation ≡k on the matrices MS(n, k): Two
matrices are ≡k-equivalent if the entries at the same positions of the matrices
are ≡-equivalent. Then the equivalence relation ≡k is smooth.

Here is another example. Let S be a structure (D; f1, . . . , fn,=). On the
set MS(n, k) consider the following relation ≡k: Two matrices R and R’
are ≡k-equivalent if for all two positions (i, j) and (s, t) of the matrices we
have ri,j = rs,t if and only if r′

i,j = r′
s,t. Then the relation ≡k is smooth.

Let {≡k}k>0 be a family of smooth equivalence relations on S. Assume that
for each k we can effectively represent the ≡k-classes by some finite objects. For
instance, when k = 2 and n = 2, the relation ≡2 considered in the paragraph
above has the following representatives:

(
a a
a a

)
,

(
a b
a a

)
,

(
a b
c a

)
,

(
a b
c d

)
,

where a, b, c, d are all pairwise distinct and fixed integers. We call these repre-
sentatives types of the equivalence classes. With this set-up, we have:

Definition 4. The structure S is nice if it satisfies the following two properties:

1. There is an algorithm that given a type of a matrix R ∈ MS(n, k), and
given two {0, 1}-valued matrices X, Y decides if the set {z | Test(R, z) =
X & Test(C, z) = Y } is empty or not.

2. There is an algorithm that given a type of a matrix R ∈ MS(n, k), computes
the types of all matrices F (R, x) where x satisfies the equations Test(R, z) =
X and Test(R, z) = Y for given X, Y .

In particular, let S be a structure (D; f1, . . . , fn,=). Assume that for each fi

there is a finite set Fi ⊂ D such that

1. For every d 	∈ Fi the function fi,d(x) = fi(d, x) is injection on D.
2. For each d ∈ Fi, the function fi,d(x) = fi(d, x) is a constant function, that

is, there is an a ∈ D such that fi,d(x) = a for all x ∈ D.

Then the smooth equivalence relation ≡k makes the structure S nice. For
instance, the structure (Z; +,×,=) satisfies the properties above.

Theorem 5. The emptiness problem over any nice structure is decidable. More
precisely, for any nice structure S over domain D, there is an algorithm that,
given an S-automaton A = (Q,R,Δ, I, F) and the type of R, detects if the
automaton accepts at least one D-word.

From the theorem above we immediately get the following corollary.

Corollary 6. The emptiness problem is decidable over the arithmetic (Z; +,×),
the fields of reals (R; +,×) and rational numbers (Q; +,×).
�

8 B. Khoussainov and J. Liu

4 Decision Problems on Extended S-Automata

Simple Properties of Extended S-regular Languages. Any S-regular lan-
guage is clearly extended S-regular. On the other hand, extended S-automata
recognise larger class of languages. The limitation of S-automata is that, when
processing a D-word, the sequence of updates to the registers are the same
regardless of which path the automaton take. In an extended S-automaton,
however, the operations performed on registers depends on the outcomes of the
tests. This leads to a lack of some crucial properties enjoyed by S-regular lan-
guages, such as determination. Furthermore, there exists extended S-regular lan-
guages whose complements are not recognisable by any extended S-automata.
On the other hand, the class of languages recognised by deterministic extended
S-automata is closed under the Boolean operations.

Validation Problem for Extended S-automata. We refine the emptiness
problem for finite automata as follows. Ddesign an algorithm that, given an S-
automaton over the structure S, and a path from an initial state to an accepting
state in the automaton, builds an input sequence from the structure S that
validates the path. We call this the validation problem for S-automata. We will
investigate the validation problem for extended S-automata and connect the
problem with the first order existential theory of the structure S.

We postulate that S is a computable structure, i.e., its domain D and all
of its atomic predicates P1, . . ., Pn and operations f1, . . ., fn are computable.
The validation problem for extended S-automata turns out to be equivalent to
deciding the existential theory (with parameters) Th∃(S) of the structure. For
the next theorem, we use S[pr1,pr2] to denote the structure obtained from S
upon expansion with two projection operations pr1 and pr2.

Theorem 7. Suppose S is a computable structure. The validation problem for
extended S[pr1,pr2]-automata is decidable if and only if Th∃(S) is decidable.

As a corollary, we see that the validation problem over computable structures
with undecidable existential theory, such as the arithmetic (ω; +,×,≤,), is unde-
cidable. Also, the validation problem over computable structures with decidable
first order theory, such as the Presburger arithmetic, is decidable.

The Emptiness Problem for Extended S-automata. On computable struc-
tures, the decidability of the emptiness problem implies decidability of the val-
idation problem. The converse is not true. We discuss the emptiness problem
on extended S-automata for two special cases: the first case assumes that the
transition graphs of the extended S-automata are acyclic. The second concerns
with fragments of the arithmetic (ω; +,×,≤, 0).

1. A state s is a sink if all outgoing transitions loop into s. All accepting (non-
accepting) sink states can be collapsed into one (non-accepting) accepting
sink state. Therefore we can always assume that every S-automaton has at
most 2 sink states. An extended S-automaton acyclic if its state space without
the sink states is an acyclic graph. If S is a computable structure, then the

Decision Problems for Finite Automata over Infinite Algebraic Structures 9

emptiness problem of acyclic extended S[pr1,pr2]-automata is equivalent to
the corresponding validation problem. Hence, by Theorem7, the emptiness
problem is decidable for acyclic extended automata over such structures as
(ω; +,≤), (ω;×,≤), (Q; +,≤) and finitely generated Abelian groups.

It is easy to find structures S with undecidable existential theory such that
the emptiness problem for acyclic extended (S, k)-automata is undecidable
for every k ≥ 1.

Let SZ = (Z; +,×,pr1,pr2, 0). One constructs, for any polynomial p(x̄) in
ω[x1, . . . , xk], an acyclic extended (SZ, k + 2)-automaton Ap that evaluates p
over a sequence (a1, . . . , ak) ∈ Z

k of input values. This reduces Hilbert’s tenth
problem to the emptiness problem of acyclic extended SZ-automata. Since
Hilbert’s tenth problem is undecidable for polynomials with bounded number
of variables (the currently known bound that guarantees undecidability is 9
[16]), we obtain that the emptiness problem for acyclic (SZ, 11)-automata is
undecidable.

2. Let S be the following structure (ω; +1,pr1, 0) where +1(x, y) = x + 1. One
constructs, given a 2-counter machine M, an extended S-automaton M′ with
4 registers such that M accepts some word iff M′ accepts some ω-word.
This reduces the emptiness problem for 2-counter machines, known to be
undecidable [17], to the emptiness problem for extended (S, 4)-automata.
Thus the emptiness problem for extended (S, 4)-automata is undecidable.

The above shows for many structures S, the emptiness problem for S-
automata is undecidable. We next present structures on which the emptiness
problem is decidable. For this we use a tool similar to the notion of nice struc-
tures introduced for S-automata; we recast Definition 4 in this setting:

Definition 8. An equivalence relation ≡k of finite index on the set Dk is smooth
if for all R,R′ ∈ Dk and all {0, 1}-valued matrices X,Y , the condition R ≡k R′

implies that the set {z | Test(R, z) = X & Test(C, z) = Y } is empty iff the set
{z | Test(R′, z) = X & Test(C, z) = Y } is empty.

Definition 9. The structure S is k-nice if we have:

(a) There is an algorithm that given a type of a tuple R ∈ Dk, and given two
{0, 1}-valued matrices X,Y decides if the set

{z | Test(R, z) = X & Test(C, z) = Y }
is empty or not.

(b) There is an algorithm that given a type of a tuple R ∈ Dk, matrices X,
Y , and a tuple F ⊆ Opk, computes the types of all tuples F (R, x) where x
satisfies the equation Test(R, z) = X and Test(R, z) = Y .

Theorem 10. The emptiness problem for extended (S, k)-automata over any
k-nice structure S is decidable.

Corollary 11. The emptiness problem for extended (S, 1)-automata is decidable
for the structure S = (ω; +,×,pr1,≤, c1, . . . , c�).

10 B. Khoussainov and J. Liu

5 Conclusion

Our models of automata over algebraic structure provide a general framework for
finite-state computation. Observe that: (1) we can vary the underlying structures
S thus connecting algebraic properties of S with finite state machines, (2) in cer-
tain precise sense our machines can simulate Turing machines, (3) many known
automata models (e.g., pushdown automata, Petri nets) can be simulated by our
models of automata, and (4) the class of languages recognised by a S-automata
is closed under the Boolean set-theoretic operations. This extends the finite
automata and tree automata models of computations. However, we note that it
remains to be seen whether our model of automata leads to a general framework
to decidability results for various models of automata (e.g., pushdown automata,
vector addition systems).

Apart from the mentioned references, we note that the current paper refines
and extends the approach taken in [11]. We also mention the papers [18,19] that,
motivated by the approach in [11], develop the theory of automata over the fields
of reals and complex numbers. We note that the current paper also addresses
some topics discussed in [14]. It could be interesting to address simulation issues
for our models of automata as for finite automata, as in [7,8].

References

1. Alur, R., Černý, P., Weinstein, S.: Algorithmic analysis of array-accessing pro-
grams. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 86–101.
Springer, Heidelberg (2009)

2. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines.
Bull. Am. Math. Soc. 21(1), 1–46 (1989)

3. Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable
logic on words with data. In: Proceedings of LICS 2006, pp. 7–16 (2006)

4. Bojanczyk, M., David, C., Muscholl, M., Schwentick, T., Segoufin, L.: Two-
variablelogic on data trees and XML reasoning. In: Proceedings of PODS 2006,
pp. 10–19 (2006)

5. Bournez, O., Cucker, F., de Naurois, P.J., Marion, J.-Y.: Computability over an
arbitrary structure. Sequential and parallel polynomial time. In: Gordon, A.D.
(ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 185–199. Springer, Heidelberg (2003)

6. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp.
577–588. Springer, Heidelberg (2006)

7. Calude, C., Calude, E., Khoussainov, B.: Deterministic automata: simulation and
minimality. Ann. Pure Appl. Logic 90(1–3), 263–276 (1997)

8. Calude, C., Calude, E., Khoussainov, B.: Finite nondeterministic automata: simu-
lation and minimality. Theor. Comput. Sci. 242(1–2), 219–235 (2000)

9. Comon, S., Jurski, Y.: Multiple counters automata, safety analysis and Presburger
arithmetic. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 268–
279. Springer, Heidelberg (1998)

10. Figueira, D.: Reasoning on words and trees with data. Ph.D. thesis, ENS Cachan,
France (2010)

Decision Problems for Finite Automata over Infinite Algebraic Structures 11

11. Gandhi, A., Khoussainov, B., Liu, J.: Finite automata over structures (Extended
Abstract). In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol.
7287, pp. 373–384. Springer, Heidelberg (2012)

12. Ibarra, O.: Reversal-bounded multicounter machines and their decision problems.
J. ACM 25(1), 116–133 (1978)

13. Kaminsky, M., Francez, N.: Finite memory automata. Theor. Comput. Sci. 134(2),
329–363 (1994)

14. Khoussainov, B., Nerode, A.: Open questions in the theory of automatic structures.
Bull. Eur. Assoc. Theor. Comput. Sci. (EATCS) (94):181–204 (2008)

15. Leroux, J., Sutre, G.: Flat counter automata almost everywhere!. In: Peled, D.A.,
Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg
(2005)

16. Matiyasevich, Y.: Hilbert’s Tenth Problem. MIT Press, Massachusetts (1993)
17. Minsky, M.: Recursive unsolvability of post’s problem of “Tag” and other topics

in theory of turing machines. Ann. Math. 74(3), 437–455 (1961)
18. Meer, K., Naif, A.: Generalised finite automata over real and complex numbers.

Theor. Comput. Sci. 591(C), 86–98 (2015)
19. Meer, K., Naif, A.: Periodic generalized automata over the reals. In: Dediu, A.-

H., et al. (eds.) LATA 2016. LNCS, vol. 9618, pp. 168–180. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-30000-9 13

20. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Logic 15(3), 403–435 (2004)

21. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In:
Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)

22. Segoufin, L., Torunczyk, S.: Automata based verification over linearly ordered data
domains. In: Proceedings of STACS, pp. 81–92. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2011)

23. Tan, T.: Graph reachability and pebble automata over infinite alphabets. In: Pro-
ceedings of LICS, pp. 157–166. IEEE Computer Society (2009)

http://dx.doi.org/10.1007/978-3-319-30000-9_13

Regular Papers

The Degree of Irreversibility in Deterministic
Finite Automata

Holger Bock Axelsen1, Markus Holzer2(B), and Martin Kutrib2

1 Department of Computer Science, University of Copenhagen,
Universitetsparken 5, Copenhagen, Denmark

funkstar@di.ku.dk
2 Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany

{holzer,kutrib}@informatik.uni-giessen.de

Abstract. Recently, Holzer et al. gave a method to decide whether
the language accepted by a given deterministic finite automaton (DFA)
can also be accepted by some reversible deterministic finite automa-
ton (REV-DFA), and eventually proved NL-completeness. Here, we
show that the corresponding problem for nondeterministic finite state
automata (NFA) is PSPACE-complete. The recent DFA method essen-
tially works by minimizing the DFA and inspecting it for a forbidden
pattern. We here study the degree of irreversibility for a regular language,
the minimal number of such forbidden patterns necessary in any DFA
accepting the language, and show that the degree induces a strict infi-
nite hierarchy of languages. We examine how the degree of irreversibility
behaves under the usual language operations union, intersection, com-
plement, concatenation, and Kleene star, showing tight bounds (some
asymptotically) on the degree.

1 Introduction

In computation theory, reversibility is the property that computations are both
forward and backward deterministic. In the context of finite state models,
reversibility can usually be verified by simple inspection of the transition func-
tion, ensuring that the induced computation step relation is an injective function
on configurations. Despite the apparent simplicity of reversible computations,
reversibility is an interesting property that has been studied in a wide array of
contexts, including the thermodynamics of computation [7], across a wide array
of automata models [9], and even in robotics [10].

It is well-known that the reversibly regular languages, i.e., the languages
accepted by reversible deterministic finite automata (REV-DFA), form a strict
subclass of the regular languages, see, e.g., [6]. However, the exact cost of
reversibility is still not well-understood: for example, changing from one-way

The authors acknowledge partial support from COST Action IC1405 Reversible
Computation. H.B. Axelsen was supported by the Danish Council for Independent
Research | Natural Sciences under the Foundations of Reversible Computing project,
and by a COST IC1405 STSM (short-term scientific mission) grant.

c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 15–26, 2016.
DOI: 10.1007/978-3-319-40946-7 2

16 H.B. Axelsen et al.

to two-way tapes is sufficient to collapse the classes [5]. Likewise, adding a
reversible transducer in front of the REV-DFA also collapses to the regular
languages [1]. This motivates further study into the relationship between the
regular and reversibly regular languages, and in particular towards developing
methods to understand and bridge the gap in terms of the internal structure
of deterministic finite automata (DFA). In this paper, we take steps in this
direction.

Recently, Holzer et al. showed a method for deciding if the language accepted
by a given DFA can also be recognized by some REV-DFA [4]. It was also shown
that this is an NL-complete problem, and a decision method was given, which
essentially works by minimizing the DFA and inspecting it for the presence of
a forbidden pattern. If this pattern is present in the minimal DFA, then there
is no REV-DFA that can accept the same language, and if not, then there is.
What makes this particularly interesting is that the pattern is structurally more
complex than the simplest violation of reversibility (see Sect. 2 for details). This
suggests that the forbidden pattern captures an essential aspect of irreversibility,
and offers an approach to studying the gap between the reversibly regular and
regular languages based on the absence, presence, and count of occurrences, of
this pattern.

Our contributions are as follows. We show that the generalization of the
problem studied in [4] to nondeterministic finite automata (NFA), i.e., the reg-
ular reversibility problem of whether the language accepted by a given NFA
is reversibly regular, is PSPACE-complete. Turning to DFAs, we introduce the
notion of degree of irreversibility for DFAs, essentially the number of occurrences
of the forbidden pattern in a given DFA, and extend this to (regular) languages
by minimizing over all DFAs accepting the language. Finally, we show that the
degree of irreversibility induces a strict, infinite hierarchy of languages. We then
proceed to show exact bounds on the degree of irreversibility under the common
language operations union, intersection, and complement, and asymptotically
tight bounds for concatenation and Kleene star.

The paper is organized as follows. Section 2 covers the necessary preliminar-
ies. In Sect. 3 we show that the regular reversibility problem is PSPACE-complete.
Section 4 defines the degree of irreversibility, and shows the related hierarchy. We
present the degree complexity results for common language operations in Sect. 5.
Most proofs are omitted due to space constraints, and will be given in the full
version of the paper.

2 Preliminaries

An alphabet Σ is a non-empty finite set, its elements are called letters or symbols.
We write Σ∗ for the set of all words over the finite alphabet Σ.

We recall some definitions on finite automata as contained, for example, in [3].
A deterministic finite automaton (DFA) is a 5-tuple A = (Q,Σ, δ, q0, F), where Q
is the finite set of internal states, Σ is the alphabet of input symbols, q0 ∈ S is
the initial state, F ⊆ Q is the set of accepting states, and δ : Q × Σ → Q is the

The Degree of Irreversibility in Deterministic Finite Automata 17

partial transition function. Note that here the transition function is not required
to be total. The language accepted by A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F },
where the transition function is recursively extended to δ : Q × Σ∗ → Q. By
δR : Q × Σ → 2Q, with δR(q, a) = { p ∈ S | δ(p, a) = q }, we denote the reverse
transition function of δ. Similarly, also δR can be extended to words instead of
symbols. Two devices A and A′ are said to be equivalent if they accept the same
language, that is, L(A) = L(A′).

Let A = (Q,Σ, δ, q0, F) be a DFA accepting the language L. The set of
words RA,q = {w ∈ Σ∗ | δ(q, w) ∈ F } refers to the right language of the state q
in A. In case RA,p = RA,q, for some states p, q ∈ Q, we say that p and q are
equivalent and write p ≡A q. The equivalence relation ≡A partitions the state
set Q of A into equivalence classes, and we denote the equivalence class of q ∈ S
by [q] = { p ∈ S | p ≡A q }. Equivalence can also be defined between states of
different automata: a state p of DFA A and a state q of DFA A′ are equivalent,
denoted by p ≡ q, if RA,p = RA′,q.

A state p ∈ Q is accessible in A if there is a word w ∈ Σ∗ such that δ(q0, w) =
p, and it is productive if there is a word w ∈ Σ∗ such that δ(p,w) ∈ F . If p is
both accessible and productive then we say that p is useful. In this paper we
only consider automata with all states useful. Let A and A′ be two equivalent
DFAs. Observe that if p is a useful state in A, then there exists a useful state p′

in A′, with p ≡ p′. A DFA is minimal (among all DFAs) if there does not exist
an equivalent DFA with fewer states. It is well known that a DFA is minimal if
and only if all its states are useful and inequivalent.

Next we define reversible DFAs. Let A = (Q,Σ, δ, q0, F) be a DFA.
A state r ∈ Q is said to be irreversible if there are two distinct states p and q
in Q and a letter a ∈ Σ such that δ(p, a) = r = δ(q, a). Then a DFA is reversible
if it does not contain any irreversible state. In this case the automaton is said
to be a reversible DFA (REV-DFA). Equivalently the DFA A is reversible, if
every letter a ∈ Σ induces an injective partial mapping from Q to itself via the
mapping δa : Q → Q with p �→ δ(p, a). In this case, the reverse transition func-
tion δR can be seen as a (partial) injective function δR : Q×Σ → Q. Notice that
if p and q are two distinct states in a REV-DFA, then δ(p,w) �= δ(q, w), for all
words w ∈ Σ∗. Finally, a REV-DFA is minimal (among all REV-DFAs) if there
is no equivalent REV-DFA with a smaller number of states.

In [4] the following structural characterization of regular languages that can
be accepted by REV-DFAs in terms of their minimal DFAs is given. The condi-
tions of the characterization are illustrated in Fig. 1.

Theorem 1. Let A = (Q,Σ, δ, q0, F) be a minimal deterministic finite automa-
ton. The language L(A) can be accepted by a reversible deterministic finite
automaton if and only if there do not exist useful states p, q ∈ Q, a letter a ∈ Σ,
and a word w ∈ Σ∗ such that p �= q, δ(p, a) = δ(q, a), and δ(q, aw) = q.

Finally we need some notations on computational complexity theory. We
classify problems on DFAs with respect to their computational complexity. Con-
sider the complexity class NL (PSPACE, respectively) which refers to the set

18 H.B. Axelsen et al.

r

p

q

a

a

w

r=q

p
a

a

w

r=p

q

a

a

w

Fig. 1. The “forbidden pattern” of Theorem1: the language accepted by a minimal
DFA A can be accepted by a REV-DFA if and only if A does not contain the structure
depicted on the left. Here the states p and q must be distinct, but state r could be
equal to state p or state q. The situations where r = q or r = p are shown in the middle
and on the right, respectively—here the word w and its corresponding path are grayed
out because they are not relevant: in the middle, the word w that leads from r to q is
not relevant since it can be identified with the a-loop on state r = q. Also on the right
hand side, word w is not important because we can simply interchange the roles of the
states q and r = p.

of problems accepted by nondeterministic logspace bounded (polynomial space,
respectively) Turing machines. Further, hardness and completeness is always
meant with respect to deterministic logspace bounded reducibility, unless other-
wise stated.

3 Complexity of the Regular Reversibility Problem

In [4] it was shown that the regular language reversibility problem—given a
DFA A, decide whether L(A) is accepted by any REV-DFA—is NL-complete. If
the regular language is given by an NFA or a regular expression, the problem
becomes intractable.

Theorem 2. The regular language reversibility problem is PSPACE-complete,
if the language is given as a nondeterministic finite automaton or a regular
expression.

Before we can prove this result we need a technical lemma, which will be
used in the PSPACE-hardness argument later.

Lemma 3. Let A = (Q,Σ, δ, q0, F) be a minimal DFA. If there is a state q ∈ Q,
other than the initial state, such that RA,q = Σ∗, then L(A) is irreversible. �	

Let L ⊆ Σ∗. Then the left derivative of L with respect to the letter a in Σ
is the set a−1 · L = {w | aw ∈ L }. This notation generalizes to words. By
this definition, there is an obvious relation between these left derivative set and
the states of the minimal finite automaton A accepting L. To be more precise,
the set u−1 · L, for u ∈ Σ∗, is a description of the state qu = δ(q0, u), where
A = (Q,Σ, δ, q0, F), and vice versa. Now we are ready to proof Theorem 2 in a
convenient way.

The Degree of Irreversibility in Deterministic Finite Automata 19

Proof (of Theorem 2). The containment within PSPACE is easily seen. For
the hardness we reduce the PSPACE-complete universality problem for regu-
lar expressions [8] to the reversibility problem for NFAs or regular expressions.
Let the regular expression r be an instance of the universality problem. We may
assume that r is an expression over the alphabet Σ = {a, b}. Then we construct
the expression

s = a · r + b · Σ∗ + λ

or equivalently the NFA depicted in Fig. 2 in deterministic logspace. Now assume
that L(r) = Σ∗. Then it is easy to see that L(s) = Σ∗, too, and therefore a
reversible language. On the other hand, if L(r) �= Σ∗, then there is a word u �∈
L(r). From this it follows that au �∈ L(s) but bu ∈ L(s). Thus we conclude that
the states a−1 ·L(s) and b−1 ·L(s) are not equivalent in the DFA accepting L(s).
Moreover, in that DFA states L(s) and b−1 · L(s) are not equivalent, too. Note
that the former state is the initial state of the DFA that accepts L(s). Since
the right language of the state b−1 · L(s) is equal to Σ∗ and it is not equal to
the initial state, Lemma 3 applies, and the language L(s) is not reversible. This
proves PSPACE-hardness. �	

q0

q1

q2

Ar

a

b
a, b

Fig. 2. Finite automaton that accepts the language L(s). It is built from the regular
expression r, where Ar is an NFA with initial state q1 that accepts the language L(r).

4 On the Degree of Irreversibility

For an automaton A we define its degree of irreversibility d(A) as the number of
irreversible states that are part of one of the forbidden patterns shown in Fig. 1.
Observe, that since our DFAs need not to be complete and only contain useful
states, the non-accepting sink state does not count for the degree of irreversibil-
ity. This notation is generalized to languages in the usual way. This means, for
a regular language L ⊆ Σ∗ we define its degree of irreversibility d(L) as the
minimum degree of irreversibility among all equivalent DFAs A, that is,

d(L) = min{ d(A) | A is a DFA with L(A) = L }.

The next example explains our notation.

20 H.B. Axelsen et al.

1 2 3 4 5

6

a a b a

b

a

a

b

Fig. 3. DFA which accepts aba∗ + a∗ba that has irreversibility degree one.

Example 4. Consider the following DFA depicted in Fig. 3, which accepts the
union of aba∗ and a∗ba. This automaton has irreversibility degree one by state 3.
Note that although state 4 has two ingoing b-transitions, this state does not yield
a forbidden pattern as shown in Fig. 1. There is no word that leads from state 4
to either state 1 or 3. Moreover, the language accepted by this automaton, which
is aba∗ + a∗ba is also of irreversibility degree one, since it is not reversible by
Theorem 1. �	

Next we consider the hierarchy on regular languages that is induced by the
irreversibility degree. To this end let

IREVk-DFA = {A | A is a DFA and d(A) ≤ k }.

We have IREV0-DFA = {A | A is a reversible DFA } and thus the equality
L (IREV0-DFA) = L (REV-DFA) holds, where the family of all languages
accepted by an automaton of some type X is denoted by L (X). Moreover, by
definition the inclusion IREVk-DFA ⊆ IREVk+1-DFA follows and therefore the
corresponding language classes satisfy L (IREVk-DFA) ⊆ L (IREVk+1-DFA),
for k ≥ 0. By the example above we have

L (REV-DFA) = L (IREV0-DFA) ⊂ L (IREV1-DFA).

Before we show that the degree of irreversibility induces an infinite strict hier-
archy we need some tool that allows us to determine the irreversibility degree
for an arbitrary regular language. Since for the degree of irreversibility of a lan-
guage L we quantify over all equivalent DFAs we have to show that we cannot
trade more states for less irreversibility. The following example shows that this
is in fact not the case in general.

Example 5. Consider the substructure of a DFA as depicted in Fig. 4. It is not
hard to see that this pattern may appear in a minimal DFA. Both states r1 and r2
in the substructure are irreversible. By splitting both of these states, we obtain a
connecting structure as shown in Fig. 5. The structure has one irreversible state
only. Thus, the irreversibility degree of a minimal DFA is not necessarily the
irreversibility degree of the language under consideration. �	

The Degree of Irreversibility in Deterministic Finite Automata 21

The Degree of Irreversibility in Deterministic Finite Automata

r1 s r2
a

c b

da b

Fig. 4. Substructure of a DFA containing two irreversible states r1 and r2.

r1 r1 s r2 r2
a

c

c b

b

d

da

Fig. 5. Substructure of a DFA with just one irreversible state s obtained after splitting
both irreversible states.

For a special class of finite automata, we can show that the minimal DFA
already gives the degree of irreversibility. A DFA is simply-irreversible if all
irreversible states are of the form depicted in the middle and right drawing shown
in Fig. 1. That is, the irreversibility state is entered by an a-transition and has
an a-self-loop, which is the simplest form of irreversibility. For the languages
accepted by these automata we can prove the next result.

Theorem 6. Let L be a regular language and A be its minimal deterministic
finite automaton. If A is simply-irreversible, then the degree of irreversibility
of A is equal to the irreversibility degree for L. That is d(L) = d(A). �	

Now we are ready to show that the strict hierarchy on regular languages
induced by the irreversibility degree is tight and infinite.

Theorem 7. For all k ≥ 0, L (IREVk-DFA) ⊂ L (IREVk+1-DFA).

Proof. Consider the languages Lk over the alphabet {a, b} defined as follows: for
k ≥ 0 set

L2k = (aa∗bb∗)k and L2k+1 = (aa∗bb∗)kaa∗.

The language Lk, for k ≥ 0, is accepted by the DFA Ak = (Qk, {a, b}, δk, q0, Fk)
with Qk = {1, 2, . . . , k + 1}, q0 = 1, Fk = {k + 1}, and

δ(i, a) =

{
i + 1 if i is odd and 1 ≤ i < k + 1
i if i is even and 1 < i ≤ k + 1

and

δ(i, b) =

{
i + 1 if i is even and 1 ≤ i < k + 1
i if i is odd and 1 < i ≤ k + 1.

22 H.B. Axelsen et al.

By construction the DFA Ak is minimal and simply-irreversible. Thus, by the
previous theorem the degree of irreversibility of Ak is equal to the irreversibility
degree of the language Lk. Since Ak contains exactly k irreversible states, we
have d(Lk) = k. This shows that Lk ∈ L (IREVk-DFA) \ L (IREVk−1-DFA),
for k ≥ 1. �	

Finally, we consider unary regular languages and their irreversibility degree.
It is not difficult to see that a unary complete DFA consists of a path, which
starts from the initial state, followed by a cycle of one or more states. Thus the
irreversibility degree of any unary DFA is at most one. Thus, the hierarchy on the
irreversibility degree collapses to its second level and L (IREV1-DFA) ∩ 2{a}∗

is
already equal to the class of all unary regular languages. Moreover, we conclude
that L (IREV0-DFA) ∩ 2{a}∗

is the class of languages that contains only finite
or cyclic unary regular languages. Here a unary regular language is cyclic if it is
accepted by a unary DFA which is a cycle of one or more states.

5 Operations on Languages and Degree of Irreversibility

In this section we study the descriptional complexity of the operation problem
for reversible languages. We start with the Boolean operations and continue with
the concatenation and Kleene star operation.

First we consider the union operation. For the union of two reversible lan-
guage, the increase of the degree of irreversibility is linear in the sum of the
number of states of the involved automata. This can be seen in the next
theorem.

Theorem 8. Let m,n ≥ 1 be two integers, A be an m-state and B be an n-state
reversible deterministic finite automaton. Then the degree m+n of irreversibility
for the language L(A) ∪ L(B) is sufficient and necessary in the worst case.

Proof. Let A = (QA, Σ, δA, q0,A, FA) and B = (QB , Σ, δB , q0,B , FB). In order
to accept the union of L(A) and L(B) we apply the standard cross-product
construction. To this end define C = (QC , Σ, δC , q0,C , FC), where

QC = (QA × QB) ∪ (QA × {−}) ∪ ({−} × QB),

q0,C = (q0,A, Q0,B), and FC = (QA×FB)∪(FA×QB)∪(FA×{−})∪({−}×FB).
The transition function δC is set to

δC((p, q), a) =⎧⎪⎨
⎪⎩

(δA(p, a), δB(q, a)) if both δA(p, a) and δB(q, a) are defined
(δA(p, a),−) if δA(p, a) is defined and δB(q, a) is undefined
(−, δB(q, a)) if δA(p, a) is undefined and δB(q, a) is defined

and furthermore δC((p,−), a) = (δA(p, a),−), if δA(p, a) is defined, as well as
δC((−, q), a) = (−, δB(q, a)), if δB(q, a) is defined, for a ∈ Σ. So we have

The Degree of Irreversibility in Deterministic Finite Automata 23

L(C) = L(A) ∪ L(B). From the m · n + m + n states of C at most m + n
are irreversible. To be more precise, none of the states from QA × QB are irre-
versible. This is seen as follows: consider a state (r, r′) ∈ QA × QB . Assume to
the contrary that (r, r′) is irreversible. Then there are different states (p, p′) and
(q, q′) with δC((p, p′), a) = (r, r′) = δC((q, q′), a), for some a ∈ Σ. Since (p, p′) is
not equal to (q, q′) we have p �= q or p′ �= q′. We only consider the case p �= q
by symmetric reasons. But then we find that r is an irreversible state, because
δA(p, a) = r = δA(q, a), for the letter a from above. This is a contradiction,
because automaton A is a reversible DFA. It is worth mentioning that a similar
argumentation does not apply to states of the form (r,−) or (−, r). This is seen
by the counterexample δC((r, p), a) = (r,−) = δC((r,−), a), for some a ∈ Σ,
which induces only δA(r, a) = r and δB(p, a) is undefined—an analogous exam-
ple can be given for state of the form (−, r). Hence, this does not contradict the
irreversibility of either A or B.

It remains to be shown that the bound m + n is tight. Define the reversible
DFA A = (QA, {a, b}, δA, q0, F) with QA = {1, 2, . . . ,m}, q0 = 1, F = {m}, and
the transition function is given by δ(i, a) = i + 1, for 1 ≤ i < m, and δ(i, b) = i,
for 1 ≤ i ≤ m. The automaton B is the same as A, but with n states, and
where the letters a and b are interchanged. The automaton C constructed above
is easily seen to be minimal.

Finally we show that all states of the form (i,−) and (−, j), for 1 ≤ i ≤ m
and 1 ≤ j ≤ n, are irreversible and yield a forbidden pattern as shown in Fig. 1.
The below given argument shows even more, namely that the automaton C is
simply-irreversible. We have already argued that the state (i, n) is accessible.
Then it is easy to see that from state (i, n) reading a b the automaton C enters
state (i,−), which has a b loop. Therefore state (i,−) is simply-irreversible.
A similar argument shows that state (−, j) is simply-irreversible as well. By
Theorem 6 the stated claim follows. �	

A careful inspection of the previous proof reveals that we can use parts of it
for the intersection of two reversible languages. For two reversible automata A
and B we construct an automaton C by the cross-product construction described
in the proof of Theorem8 but only using states of the form QA × QB and by
altering the set of accepting states to be F = FA×FB. Then L(C) = L(A)∩L(B).
It was shown that none of the states from QA × QB are irreversible. Hence C
does not contain any irreversible state. Thus, we have shown the following result.

Theorem 9. Let m,n ≥ 1 be two integers, A be an m-state and B be an n-state
reversible deterministic finite automaton. Then the language L(A) ∩ L(B) is
accepted by a reversible deterministic finite automaton. �	

Next we deal with the complementation operation, and show that the degree
of irreversibility can be increased by one.

Theorem 10. Let n ≥ 1 be an integers and A be an n-state reversible deter-
ministic finite automaton. Then the degree 1 of irreversibility for the complement
of L(A) is sufficient and necessary in the worst case. �	

24 H.B. Axelsen et al.

In the remainder of this section we investigate the effect of the concatenation
and the Kleene star operation on the degree of irreversibility. First we recall the
construction of DFAs for the concatenation [11]. Let A = (QA, Σ, δA, q0,A, FA)
and B = (QB , Σ, δB , q0,B , FB) be two DFAs. As in [11] we construct the DFA
C = (QC , Σ, δC , q0,C , FC), where

QC = (QA × 2QB) \ (FA × 2QB\{q0,B}),

the initial state is

q0,C =

{
(q0,A, ∅) if q0,A �∈ FA

(q0,A, {q0,B}) otherwise,

the final states are

FC = { (p, P) | (p, P) ∈ QC and P ∩ FB �= ∅ },

and the transition function is defined by δC((p, P), a) = (q,Q), for a ∈ Σ, where
q = δA(p, a) and

Q =

{
δB(P, a) ∪ {q0,B} if q ∈ FA

δB(P, a) otherwise.

Clearly, automaton C accepts L(A) ·L(B) and has at most m · 2n − 2n−1 states.
Thus, the construction gives rise to an exponential upper bound on the number
of irreversible states.

Theorem 11. Let m,n ≥ 2 be two integers, A be an m-state and B be an
n-state reversible deterministic finite automaton. Then the degree m · 2n − 2n−1

of irreversibility is sufficient for a deterministic finite automaton to accept the
language L(A) · L(B). �	

The next theorem gives an exponential lower bound on the degree of irre-
versibility for the concatenation operation.

Theorem 12. Let m,n ≥ 2 be two integers. There are a reversible m-state
deterministic finite automaton A and a reversible n-state deterministic finite
automaton B such that any deterministic finite automaton accepting L(A) ·L(B)
has at least the degree (3m − 2) · 2n−2 of irreversibility.

Proof. Define the left automaton to be A = (QA, {a, b, c, d}, δA, q0,A, FA) with
QA = {0, 1, . . . ,m − 1}, initial state q0,A = 0, final states FA = {m − 1}, and
the transition function

δA(i, a) =

{
i + 1 if 0 ≤ i < m − 1
0 otherwise

and δA(i, b) = δA(i, c) = δA(i, d) = i

for 0 ≤ i ≤ m − 1. The right automaton is B = (QB , {a, b, c, d}, δB , q0,B , FB)
with QB = {0, 1, . . . , n − 1}, initial state q0,B = 0, final states FA = {0}, and
the transition function

The Degree of Irreversibility in Deterministic Finite Automata 25

δB(i, a) = i, for 0 ≤ i ≤ n − 1, and δB(i, b) =

{
i + 1 if 0 ≤ i < n − 1
0 otherwise,

and

δB(i, c) = i, for 0 < i ≤ n − 1, and δB(i, d) = i, for i = 0 or 2 ≤ i ≤ n − 1.

Both reversible automata are depicted in Fig. 6.

0

1

m−1

a

b, c, d

a

b, c, d

a

a
b, c, d

0

1

2

n−1

b

a, d

b

a, c

b

a, c, d

b

b
a, c, d

Fig. 6. The reversible automata A (left) andB (right) withm and n states, respectively,
that witness the irreversibility degree lower bound for the concatenation operation.

We construct the DFA C for the concatenation L(A)·L(B) as described above.
In order to apply Theorem6 we need to show that C is minimal. Thus, one has to
verify that every state in C is useful and defines a distinct equivalence class.

Finally, it remains to determine the lower bound on the irreversibility degree
of C. We show that all states of C whose second component does not contain 0
and 1 at the same time are simply-irreversible. We have already seen that all
states of the form (p, P ∪{0}) and (p, P ∪{1}) are reachable in C. We distinguish
two cases:

1. Assume p = m − 1. Then 0 ∈ P , but then by assumption 1 �∈ P . We have
δC((p, P ∪ {1}), d) = (p, P) and δC((p, P), d) = (p, P). Thus (p, P) is simply-
irreversible.

2. Let p = i with 0 ≤ i < m − 1. If 0 �∈ P , then δC((p, P ∪ {0}), c) = (p, P) and
δC((p, P), c) = (p, P). Also in the case 1 �∈ P , the two transitions δC((p, P ∪
{1}), d) = (p, P) and δC((p, P), d) = (p, P) follow. In both cases the state
(p, P) is simply-irreversible.

Next we count the number of simply-irreversible states. The first item above
induces 2n−2 possibilities, and the second item 3(m−1) ·2n−2. There are (m−1)
choices for p and the number of different sets P that do not contain 0 or 1
is 3 · 2n−2. For each of the cases (i) both 0 and 1 are not in P , (ii) element 0 is

26 H.B. Axelsen et al.

in P but 1 is not, and (iii) element 0 is not in P but 1 is member of P , there
are 2n−2 possibilities. This results in 3(m−1)·2n−2 sets for the second item above.
Putting things together results in in at least (3m − 2) · 2n−2 simply-irreversible
states in C. By Theorem 6 the stated claim follows. �	

Finally, we consider the Kleene star operation. From [11] the tight worst case
bound for a DFA to accept the Kleene closure of an n-state DFA language is
2n−1 +2n−2. Thus, the upper bound for the irreversibility degree for the Kleene
closure is exponential.

Theorem 13. Let n ≥ 2 be an integers and A be an n-state reversible determin-
istic finite automaton. Then the degree 2n−1 +2n−2 of irreversibility is sufficient
for a deterministic finite automaton to accept the language L(A)∗. �	

As in the case of the concatenation operation we can provide an exponential
lower bound.

Theorem 14. Let n ≥ 3 be an integer. There is a reversible n-state determin-
istic finite automaton A such that any deterministic finite automaton accept-
ing L(A)∗ has at least the degree 3 · 2n−3 − 1 of irreversibility. �	

References

1. Axelsen, H.B., Kutrib, M., Malcher, A., Wendlandt, M.: Boosting reversible push-
down machines by preprocessing. In: RC 2016, LNCS. Springer (2016)

2. Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surv. 16, 1–53
(1961)

3. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Boston
(1978)

4. Holzer, M., Jakobi, S., Kutrib, M.: Minimal reversible deterministic finite
automata. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 276–287. Springer,
Heidelberg (2015)

5. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In:
FOCS 1997, pp. 66–75. IEEE (1997)

6. Kutrib, M.: Aspects of reversibility for classical automata. In: Calude, C.S.,
Freivalds, R., Kazuo, I. (eds.) Gruska Festschrift. LNCS, vol. 8808, pp. 83–98.
Springer, Heidelberg (2014)

7. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 3, 183–191 (1961)

8. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential time. In: SWAT 1972, pp. 125–129. IEEE (1972)

9. Morita, K.: Reversible computing and cellular automata–a survey. Theoret. Com-
put. Sci. 395(1), 101–131 (2008)

10. Schultz, U.P., Laursen, J.S., Ellekilde, L., Axelsen, H.B.: Towards a domain-specific
language for reversible assembly sequences. In: Krivine, J., Stefani, J.-B. (eds.) RC
2015. LNCS, vol. 9138, pp. 111–126. Springer, Switzerland (2015)

11. Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations
on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

Deterministic Stack Transducers

Suna Bensch1, Johanna Björklund1, and Martin Kutrib2(B)

1 Department of Computing Science, Ume̊a University, 90187 Ume̊a, Sweden
{suna,johanna}@cs.umu.se

2 Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
kutrib@informatik.uni-giessen.de

Abstract. We introduce and investigate stack transducers, which are
one-way stack automata with an output tape. A one-way stack automa-
ton is a classical pushdown automaton with the additional ability to
move the stack head inside the stack without altering the contents. For
stack transducers, we distinguish between a digging and a non-digging
mode. In digging mode, the stack transducer can write on the output tape
when its stack head is inside the stack, whereas in non-digging mode, the
stack transducer is only allowed to emit symbols when its stack head is
at the top of the stack. These stack transducers have a motivation from
natural language interface applications, as they capture long-distance
dependencies in syntactic, semantic, and discourse structures. We study
the computational capacity for deterministic digging and non-digging
stack transducers, as well as for their non-erasing and checking versions.
We finally show that even for the strongest variant of stack transducers
the stack languages are regular.

1 Introduction

Natural language interfaces are prevalent. We encounter them as automated
booking services, as question-answering systems, and as intelligent personal
assistants (Apple’s Siri and Microsoft’s Cortana belong to this category). As of
recent, Google can support natural-language queries and exploratory dialogues.
If the search engine is asked, in sequence, “Who is the president of the US?”,
“Where was he born?”, “Who is his wife?”, and finally “Where was she born?”,
it will interpret the questions as intended and perform the required anaphora
resolution. For example, it will understand that the subject of the last question
is the same entity as the second-to-last answer [13].

Natural language interfaces (NLI) have several advantages. They are fast
and intuitive to use, and inclusive for social groups such as children, illiterates,
and dyslectics. They allow for different modalities to input and output data, for
example, microphones, speakers, keyboards, and terminals. For this reason, NLIs
are accessible also while performing manual tasks, and open new possibilities for
the disabled. On the downside, more is required on the side of the computer
to process and represent natural language. In particular, efficient and reliable
methods are needed to translate between NL sentences and structured data.

c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 27–38, 2016.
DOI: 10.1007/978-3-319-40946-7 3

28 S. Bensch et al.

In natural language processing, translations are often done by transducers.
These are abstract devices that map input strings, trees, or graphs to some target
output domain. We find them in, for example, speech processing [12], machine
translation [3], and increasingly in dialog systems [9]. A disadvantage of the
currently used devices is that they cannot capture long-distance dependencies,
as they interpret input words in the context of a very restricted history. However,
the dependency structure is a determinative factor for syntactic, semantic and
discourse analyses. In response, we introduce what we believe is a promising
alternative, namely finite-state transducers with stacks that can be read, but
not written, in their entirety throughout the execution. The aim is a balance
between expressive power on the one hand, in particular the ability to model
long-distance dependencies, and computational efficiency on the other.

This paper initiates the investigation of stack transducers. We begin with
stack transducers in their unweighted and deterministic form, though as the
reader will see, this also produces results for more general devices in the passing.

Stack automata were introduced in [5] as a mathematical model of compila-
tion, with a computational power in between that of pushdown automata and
Turing machines. The stack automaton in [5] is a generalization of a pushdown
automaton, as its input pointer can move to the right or left while reading input
symbols, and its stack pointer can move inside the stack while reading stack sym-
bols. The interior part of the stack cannot be altered, the operations push and
pop are only allowed at the top of the stack. In [6] the authors restrict the stack
automaton model to a one-way automaton that moves only to the right while
reading input symbols. One-way nondeterministic stack automata can be simu-
lated by deterministic linear-bounded automata, so the accepted languages are
deterministic context sensitive [8]. Although compilation is a translation process
from source code to object code, the authors of [5] focus on the acceptance of
the input language.

We introduce stack transducers that are one-way stack automata with an out-
put tape, to compute relations between input and output words. Like in [5], our
devices are allowed to read information from the entire stack, but the operations
push and pop are only allowed at the top of the stack. The stack pointer can thus
move inside the stack, but the interior stack content cannot be altered. If the
stack pointer is inside the stack, we say that the stack transducer is in internal
mode. If the stack pointers scans the top most stack symbol, the transducer is
said to be in external mode. In external mode the stack transducers can push or
pop symbols from the top of the stack, or leave the stack unchanged, and are also
allowed to write on the output tape with each operation. For stack transducers
in internal mode, we distinguish between a digging and a non-digging1 mode: In
the former, the stack transducer can write on the output tape, whereas in the
latter, the stack transducer is not allowed to output symbols. We believe that
making the interior of the stack available as a read-only memory improves the
expressiveness and space-efficiency of the transduction model, at a relatively low
cost in terms of computational complexity.

1 The term ‘digging’ refers to the intuition of digging up soil from a deep hole.

Deterministic Stack Transducers 29

2 Definitions and Preliminaries

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and we set Σ+ = Σ∗ \{λ}. The reversal of a word w is denoted
by wR. For the length of w we write |w|. We denote the powerset of a set S
by 2S . We use ⊆ for inclusion, and ⊂ for proper inclusion.

A one-way stack automaton is a classical pushdown automaton with the
additional ability to move the stack head inside the stack without altering the
contents. In this way, it is possible to read but not to change the stored infor-
mation. Well-known variants are so-called non-erasing stack automata, that are
not allowed to pop from the stack, and checking stack automata, that are non-
erasing stack automata which cannot push any symbols once the head has moved
into the stack, even if it has then returned to the top. The devices are called
‘transducers’ if they are equipped with an output tape, to which they can append
symbols during the course of the computation. More formally:

A deterministic one-way stack transducer (abbreviated 1DSaT) is a system
M = 〈Q,Σ, Γ,Δ, δext, δint, q0,⊥, F 〉, where Q is the finite set of internal states, Σ
is the finite set of input symbols, Γ is the finite set of stack symbols, Δ is the finite
set of output symbols, q0 ∈ Q is the initial state, ⊥ ∈ Γ is the initial stack or
bottom-of-stack symbol, F ⊆ Q is the set of accepting states, δext is the external
transition function mapping Q× (Σ ∪{λ})×Γ to Q× (Γ ∗ ∪{−1})×Δ∗, (δext is
the next move mapping when the stack head is at the top of the stack. Here, −1
refers to the stack head moving down one symbol), δint is the internal transition
function mapping Q × (Σ ∪ {λ}) × Γ to Q × {−1, 0,+1} × Δ∗, (δint is the next
move mapping when the stack head is inside the stack. Here, 0 means that the
stack head does not move, and +1 means the stack pointer moves up one cell).

A configuration of a stack transducer M = 〈Q,Σ, Γ,Δ, δext, δint, q0,⊥, F 〉 at
some time t ≥ 0 is a quintuple (q, w, s, p, u) where q ∈ Q is the current state,
w ∈ Σ∗ is the unread part of the input, s ∈ Γ ∗ gives the current stack content
with the topmost symbol left, 1 ≤ p ≤ |s| gives the current position of the stack
pointer from the top of the stack, and u ∈ Δ∗ gives the content of the current
output tape. The initial configuration for input w is set to (q0, w,⊥, 1, λ).

During the course of its computation, M runs through a sequence of config-
urations. One step from a configuration to its successor configuration is denoted
by �, and the reflexive and transitive (resp., transitive) closure of � by �∗

(resp., �+). Let a ∈ Σ ∪ {λ}, x ∈ Σ∗, Z ∈ Γ , z, y ∈ Γ ∗, u, v ∈ Δ∗, and
p, q ∈ Q. We set

1. (q, ax, Zy, u, 1) � (p, x, zy, uv, 1) if δext(q, a, Z) = (p, z, v), (push/pop, stack
head on top),

2. (q, ax, Zy, u, 1) � (p, x, Zy, uv, 2) if δext(q, a, Z) = (p,−1, v), (go inside the
stack from ext mode),

3. (q, ax, Zy, u, i) � (p, x, Zy, uv, i − d) if δint(q, a, Z) = (p, d, v), 2 ≤ i ≤ |Zy|,
d ∈ {−1, 0,+1}, (inside the stack, up, down, stay).

To simplify matters, we require that the bottom-of-stack symbol ⊥ can nei-
ther be pushed onto nor be popped from the stack, and that the stack head

30 S. Bensch et al.

never moves below the bottom of the stack. This normal form is always avail-
able through effective constructions.

In accordance with the language acceptors, a stack transducer is said to
be non-erasing (1DNESaT) if it is not allowed to pop from the stack, that
is, δext maps Q × (Σ ∪ {λ}) × Γ to Q × (Γ+ ∪ {−1}) × Δ∗. A non-erasing
stack transducer is checking (1DCSaT) if it cannot push any further symbol
once the head has moved into the storage. In order to formalize this property, it
is sufficient to partition the state set into Q1 ∪Q2 with q0 ∈ Q1 so that once the
stack head is moved down, a state from Q2 is entered and there is no transition
from a state in Q2 to a state in Q1. That is, δext maps Q1 × (Σ ∪ {λ}) × Γ
to Q1 × Γ+ × Δ∗ or to Q2 × {−1} × Δ∗, and it maps Q2 × (Σ ∪ {λ}) × Γ to
Q2 × {−1, 0} × Δ∗, while δint is defined only for states from Q2.

Finally, we distinguish two modes of writing to the output tape. So far, the
stack transducers are allowed to write in any step, even if the stack head is not
at the top. These transducers are called digging stack transducer (or simply,
digger). In non-digging mode a stack transducer may only write when the stack
head is at the top. Formally, this means that δint maps to Q × {−1, 0,+1}.
Non-digging stack transducers and their non-erasing and checking versions are
abbreviated as ndi-1DSaT, ndi-1DNESaT, and ndi-1DCSaT.

A stack transducer halts if the transition function is not defined for the cur-
rent configuration. It transforms an input word w ∈ Σ∗ into an output word
v ∈ Δ∗. For a successful computation M has to halt in an accepting state after
having read the whole input, otherwise the output is not recorded: M(w) = v,
where (q0, w,⊥, 1, λ) �∗ (p, λ, y, i, v) with p ∈ F , 1 ≤ i ≤ |y|, and M halts in
configuration (p, λ, y, i, v). The transduction realized by M , denoted by τ(M), is
the set of pairs (w, v) ∈ Σ∗ × Δ∗ such that v = M(w). If we build the projec-
tion on the first components of τ(M), denoted by L(M), then the transducer
degenerates to a deterministic language acceptor.

The family of transductions realized by a device of type X is denoted by T (X).
In order to clarify our notion we continue with an example.

Example 1. The length-preserving transduction

τ1 = {(ananam$, an$aman) | m ≥ 0, n ≥ 1 }
is realized by the non-digging stack transducer

M = 〈{q0, q1, q2, q3, q+}, {a, $}, {A,⊥}, {a, $}, δext, δint, q0,⊥, {q+}〉,
where the transition functions are as follows.

(1) δext(q0, a,⊥) = (q0, A⊥, a)
(2) δext(q0, a, A) = (q0, AA, a)
(3) δext(q0, $, A) = (q1, A, $)
(4) δext(q1, a, A) = (q1,−1, λ)

(5) δint(q1, a, A) = (q1,−1, λ)
(6) δint(q1, $,⊥) = (q2,+1, λ)
(7) δint(q2, λ, A) = (q2,+1, λ)

(8) δext(q2, a, A) = (q2, A, a)
(9) δext(q2, $, A) = (q3, A, $)

(10) δext(q3, λ, A) = (q3, λ, a)
(11) δext(q3, λ,⊥) = (q+,⊥, $)

Deterministic Stack Transducers 31

Since δint never emits a symbol, M is non-digging.
Given an input ananam$, the ndi-1DSaT M starts to read the prefix an

with Transitions (1) and (2) whereby An is successively pushed onto the stack
and an is emitted. Then Transition (3) reads and writes the first $ and sends M
into state q1 without changing the stack. State q1 is used to move the stack head
to the bottom of the stack while the next sequence of a’s is read (Transitions (4)
and (5)). Nothing is written during this phase. If the next $ appears in the input
exactly when the stack head reaches the bottom, the input prefix is anan
and M enters state q2 with Transition (6). In state q2 the stack head is moved to
the top again (Transition (7)) whereby nothing is written to the output. At the
top of the stack transition function δext is applied again and M reads and emits
the suffix am$ with Transitions (8) and (9). The stack content is not changed
in this phase. Finally, in state q3 the stack is successively emptied with λ-moves
and an is appended to the output tape (Transition (10)). The last λ-move at the
bottom of the stack drives M into the accepting state q+ while the concluding $
is written (Transition (11)). �

3 Computational Capacity

We turn to consider the computational capacity of the stack transducers. In
particular, whenever two devices have different language acceptance power, then
the simple identity transduction applied to a language from their symmetric
difference would be a witness for separating also the power of the transduc-
ers. However, in the following we consider transductions of languages that are
accepted by both types of devices in question. In this way, we are separating in
fact the capabilities of computing transductions. First the relation with push-
down transducers (cf. [1]) is studied. A pushdown transducer (PDT) is a push-
down automaton equipped with a one-way write-only output tape. In our terms
this is a stack automaton whose internal transition function δint is completely
undefined. Our first result shows that pushdown transducers are strictly weaker
than ndi-1DSaT, even if the language transformed is deterministic context free.

Theorem 2. The length-preserving transduction

τ1 = {(ananam$, an$aman) | m ≥ 0, n ≥ 1 }

is a witness for the strictness of the inclusion T (PDT) ⊂ T (ndi-1DSaT).

The situation changes when the non-digging stack transducers are non-eras-
ing. Clearly, the deterministic context-free language { aman | m ≥ n ≥ 1 } is
also accepted by a deterministic one-way checking stack automaton.

Lemma 3. The transduction τ2 = {(aman, am−n) | m ≥ n ≥ 1 } belongs to
the difference T (PDT) \ T (ndi-1DNESaT).

32 S. Bensch et al.

Proof. A PDT realizing τ2 is constructed from a real-time deterministic push-
down automaton that accepts the language { aman | m ≥ n ≥ 1 }. First the
leading a’s are read and pushed on the stack. When the first $ appears, for every
further input symbol a, one symbol is popped. Finally, the remaining symbols
are popped and emitted.

In order to show that τ2 is not realized by any ndi-1DNESaT
we contrarily assume that it is realized by the ndi-1DNESaT M =
〈Q,Σ, Γ,Δ, δext, δint, q0,⊥, F 〉.

We consider the situation when M has processed an input prefix am$, for m
large enough. Up to that time nothing can have been written on the output tape.
Otherwise, assume M has already written some word ai with i ≥ 1. Then the
accepting computation on input amam would produce a pair (amam, aj), for
some j ≥ 1, belonging to the transduction realized, but not to τ2. Furthermore,
by the same argumentation it follows that M cannot emit anything until the
second $ appears in the input, that is, until the input has been read entirely.
Since M is non-erasing and non-digging, it has to write am−n on the tape with
λ-moves and with the stack head on top of the stack. In between several write
operations the stack head may move into the stack and back. The behavior of M
in these phases can entirely be described by a table that lists for every state in
which M moves the stack head into the stack what happens. This can either
be halting or moving the state head back to the top in some state. Altogether
there are only finitely many of such tables. We conclude that there are two
numbers n1 and n2 so that am$an1 and am$an2 drive M into the same state,
with the same topmost stack symbol, having the stack head on top, and the
same table describing the behavior while the head is in the stack. So, if am$an1$
is transformed into am−n1 , then so is am$an2$, a contradiction. �

Since ndi-1DCSaT accept non-context-free languages the incomparabilities of
the next corollary follow in general.

Corollary 4. The family T (PDT) is incomparable with each of the families
T (ndi-1DNESaT) and T (ndi-1DCSaT).

Moreover, the inclusion shown in Theorem 2 together with the transduc-
tion τ2 belonging to the difference T (PDT) \ T (ndi-1DNESaT) by Lemma 3
reveals the strictness of the following inclusions. The inclusions themselves fol-
lows for structural reasons.

Corollary 5. The family T (ndi-1DSaT) properly contains the two families
T (ndi-1DNESaT) and T (ndi-1DCSaT).

Since the language recognition power of ndi-1DNESaT are stronger than that
of ndi-1DCSaT there is a proper inclusion between the corresponding families
of transductions. However, it is currently an open problem whether there is
a ndi-1DNESaT M so that L(M) is accepted by some ndi-1DCSaT as well,
but τ(M) cannot be realized by any ndi-1DCSaT.

Deterministic Stack Transducers 33

3.1 Digging Versus Non-digging

We turn to show that all types of stack transducers that are able to write to the
output tape while the stack head is inside the stack are strictly stronger than
their corresponding non-digging variant. To this end, the witness transduction
τ3 = { (anbm, bmanan$) | m ≥ 0, n ≥ 1 } is exploited.

Example 6. The transduction τ3 is realized by the checking stack transducer

M = 〈{q0, q1, q2, q3, q+}, {a, b, $}, {A,⊥}, {a, b, $}, δext, δint, q0,⊥, {q+}〉,
where the transition functions are as follows.

(1) δext(q0, a,⊥) = (q0, A⊥, λ)
(2) δext(q0, a, A) = (q0, AA, λ)
(3) δext(q0, $, A) = (q1, A, λ)
(4) δext(q1, b, A) = (q1, A, b)
(5) δext(q1, $, A) = (q2, A, $)
(6) δext(q2, λ, A) = (q2,−1, a)

(7) δint(q2, λ, A) = (q2,−1, a)
(8) δint(q2, λ,⊥) = (q3, 0, $)
(9) δint(q3, λ,⊥) = (q3,+1, a)

(10) δint(q3, λ, A) = (q3,+1, a)

(11) δext(q3, λ, A) = (q+, A, $)
�

So, transduction τ3 is realized by the weakest type of digging stack trans-
ducers, where the language L(M) is regular. On the other hand, the next result
shows that τ3 is not even realized by the strongest type of non-digging stack
transducers.

Lemma 7. Transduction τ3 does not belong to the family T (ndi-1DSaT).

Example 6 and Lemma 7 show the following proper inclusions.

Theorem 8.

1. T (ndi-1DCSaT) ⊂ T (1DCSaT)
2. T (ndi-1DNESaT) ⊂ T (1DNESaT)
3. T (ndi-1DSaT) ⊂ T (1DSaT)

3.2 Relations Between Diggers

Here we compare the capacities of the three different types of stack transducers
that may emit symbols while the stack head is inside the stack. Our first result
separates the restricted families of non-erasing and checking transducers. Again,
the witness transduction relies on an input language that is accepted by the
weaker devices. We define τ4 = { (ananv$, vR$anan) | n ≥ 1, v ∈ {a, b}∗ }.
Transduction τ4 is realized by some non-erasing stack transducer.

Theorem 9. The length-preserving transduction τ4 is a witness for the strict-
ness of the inclusion T (1DCSaT) ⊂ T (1DNESaT).

With almost literally the same proof as in the previous theorem the next
corollary can be shown.

34 S. Bensch et al.

Corollary 10. The transductions { (ananv$, vR$an$) | n ≥ 1, v ∈ {a, b}∗ }
and { (amanv$, vR$am−n$) | m ≥ 1, n ≥ 0, v ∈ {a, b}∗ } do not belong to the
family T (1DCSaT). �

The final comparison separates the most general family T (1DSaT) of trans-
ductions considered here from the ‘next’ weaker family of transductions realized
by non-erasing transducers. As before, the witness transduction relies on an
input language that is accepted by the weaker devices. We define the transduc-
tion τ5 = { (amanv$, vR$am−n$) | m ≥ 1, n ≥ 0, v ∈ {a, b}∗ }.

Example 11. The transduction τ5 is realized by the stack transducer

M = 〈{q0, q1, . . . , q4, q+}, {a, b, $}, {A,B, $,⊥}, {a, b, $}, δext, δint, q0,⊥, {q+}〉,

where the transition functions are as follows. Let X ∈ {A,B, $}.

(1) δext(q0, a,⊥) = (q0, A⊥, λ)
(2) δext(q0, a, A) = (q0, AA, λ)
(3) δext(q0, $, A) = (q1, A, λ)

(4) δext(q1, a, A) = (q1, λ, λ)
(5) δext(q1, $,⊥) = (q2, $⊥, λ)
(6) δext(q1, $, A) = (q2, $A, λ)

(7) δext(q2, a,X) = (q2, AX, λ)
(8) δext(q2, b,X) = (q2, BX, λ)

(9) δext(q2, $, $) = (q4, λ, $)
(10) δext(q2, $, A) = (q3, λ, a)
(11) δext(q2, $, B) = (q3, λ, b)

(12) δext(q3, λ, A) = (q3, λ, a)
(13) δext(q3, λ,B) = (q3, λ, b)
(14) δext(q3, λ, $) = (q4, λ, $)

(15) δext(q4, λ, A) = (q4, λ, a)
(16) δext(q4, λ,⊥) = (q+,⊥, $)

Given an input amanv$, the 1DSaT M starts to read the prefix am with
the Transitions (1)–(3) whereby Am is successively pushed onto the stack and
nothing is emitted. Then Transition (4) reads the following a’s as long as n ≤ m,
whereby as many stack symbols are popped as input symbols are read. If n > m,
the computation blocks when the bottom-of-stack symbol appears. Otherwise,
Transitions (5) and (6) read the next $ and push it on the stack. Now the stack
content is $Am−n. Next, state q2 is used to read and push the input factor v by
Transitions (7)–(11). When the last $ appears in the input with a $ at the top
of the stack, then v is empty (Transition (9)). Finally, the stack content, that
is, vR$Am−n is emitted by Transitions (12)–(15). In the last step, the closing $
is emitted by Transition (16) that drives M into the accepting state q+. �

Based on transduction τ5 the next separation is shown.

Theorem 12. The transduction τ5 is a witness for the strictness of the inclusion
T (1DNESaT) ⊂ T (1DSaT).

Finally, we can derive the relationships between the family T (PDT) with all
families of stack automata transductions considered. Since T (PDT) is properly
included in T (ndi-1DSaT) (Theorem 2), it is properly included in T (1DSaT).
With all other families we obtain incomparabilities as follows. By Corollary 4
there is a transduction in T (ndi-1DCSaT) not belonging to T (PDT). On the

Deterministic Stack Transducers 35

other hand, the stack transducer of Example 11 is in fact a pushdown trans-
ducer, since δint is completely undefined. So, transduction τ5 belongs to T (PDT).
But by Theorem 12 it does not belong even to T (1DNESaT). This implies the
following corollary.

Corollary 13. The family T (PDT) is incomparable with each of the families
T (1DNESaT), T (1DCSaT), T (ndi-1DNESaT), and T (ndi-1DCSaT).

The inclusion structure of the families in question are depicted in Fig. 1.

(1DSaT) (1DNESaT) (1DCSaT)

(ndi-1DSaT) (ndi-1DNESaT) (ndi-1DCSaT)

(PDT)

Fig. 1. Inclusion structure of transduction families realized by stack automata with
different properties. The solid arrows indicate strict inclusions. The family T (PDT) is
incomparable with all families to which it is not connected by a path.

4 Regularity of Stack Languages

It is well known that the set of reachable pushdown contents in a pushdown
automaton is a regular language. Here we generalize this result to even the
strongest type of stack transducer in question. Clearly, this implies the same
result for stack automata as language acceptors.

The stack language of a stack transducer M is the set of all stack contents
that occur in some configuration of a successful computation of M .

Before we turn to the proof of the main result in this section, we consider
the notion of stack trees to model how the stack transducer transition function
interacts with the stack. Intuitively, a stack tree t stores the stack contents as
they appear in a computation, organized so that the right-most path from the
root to a leaf of t holds the current stack. Without loss of generality, we restrict
our attention to stack transducers that halt with an empty stack.

Definition 14 (Stack Tree). Let M be a stack transducer with stack alpha-
bet Γ , and ρ be a computation of M on some input string w. The stack tree tρ
of ρ is created as follows. At the start of the computation, the tree consists of a

36 S. Bensch et al.

single node labeled ⊥, and we place a pointer p at this node. This is the base case.
Assume now that we have a stack tree t for the prefix ρ′ of ρ, and that p marks
one of its nodes. Depending on the next operation in ρ, the tree t is updated
accordingly (see Figs. 2 and 3):

– If M pushes the symbol a ∈ Γ onto the stack, then
• if p points to a leaf v, then a new leaf v′ labeled a is created below it, an p

is set to point to v′, but
• if p points to a non-leaf v at which a tree t′ is rooted, then a new node v′ is

created below v, marked with the auxiliary symbol �, t′ is moved down and
placed as the left child of v′, and a new leaf v̂ labeled a is added and placed
as the right child of v′. The pointer p is set to v̂.

– If M pops a symbol, then p is moved towards the root of t, to the closest
ancestor node that is not an auxiliary node.

Since ρ is a valid computation, tρ is well defined, and from the construction
we know that it is binary.

(a)

v ← v

v′ ←

(b)
v ←

v

←
v′

v̂

Fig. 2. Stack trees associated to a push operation of the stack transducer. Figure(a)
shows a stack tree whose tree pointer points at a leaf node v, and after a push operation
on the stack, a new leaf v′ is created and p is set to point at v′. Figure(b) shows a
stack tree whose tree pointer points at a non-leaf v, and after a push operation on the
stack, a new node v′ is created and marked with �. The subtree that was rooted at v
becomes the left child of v′.

From here on, we denote by SΓ the set of all stack trees over the alphabet
Γ ∪ {�}.

Definition 15 (Composition Operators). Given t, s ∈ SΓ , we denote by

– t⊗s the stack tree obtained by adding the root of s as a child of the right-most
leaf of t, and

– t⊕s the stack tree obtained by creating a new node labeled with � and adding t
and s as its left and right subtree, respectively.

We denote by Γ⊕,⊗ the set of stack trees that can be built from the symbols in Γ ,
seen as trees of height 0, and the operators ⊕ and ⊗.

Deterministic Stack Transducers 37

v ← v

←

Fig. 3. Stack trees associated to a pop operation of the stack transducer. The figure
shows a stack tree whose tree pointer points at a leaf node v, and after a pop operation
on the stack, the tree pointer moves towards the root and to the closest ancestor node
that is not an auxiliary node �.

Lemma 16. For every stack alphabet Γ , we have SΓ = Γ⊕,⊗.

Proof. It is easy to see that every tree in Γ⊕,⊗ is the stack tree for some choice
of M , w, and ρ. So Γ⊕,⊗ ⊆ SΓ .

The fact that every tree in SΓ is in Γ⊕,⊗ can be shown by induction on the
height of the tree. The statement is true for all trees of height zero, that is, for Γ .
Assume then that the inclusion holds for all trees of height n or less. The root of
a tree t of height n + 1 is either � or in Γ . In the first case, t can be constructed
by applying the ⊕ operator to two trees of height at most n. In the second case, t
can be constructed by applying the ⊗ operator to one tree in Γ and one tree of
height at most n. By the induction hypotheses, all trees of height at most n can
be constructed from Γ using ⊕ and ⊗. �

With these considerations the main result of this section can be shown.

Theorem 17. The stack language of any stack transducer is regular.

Theorem 17 shows that a stack transducer M with a one-way read-only input
tape cannot be simulated by any stack transducer M ′ that receives its input
directly on the stack. This holds even if M is deterministic, but M ′ is allowed
to be nondeterministic. Moreover, since the intersection of regular languages is
regular, any of the following ways of providing input to a stack transducer in
place of the tape will cause the domain to be regular:

– the input is given on the stack,
– the machine guesses the input string and verifies its guess,
– the machine computes the input string on the stack, in such a way that the

entire string is on the stack at once.

References

1. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Compiling,
vol. I: Parsing. Prentice-Hall, Upper Saddle River (1972)

38 S. Bensch et al.

2. Bojanczyk, M.: Transducers with origin information. In: Invited Talk at the 3rd
International Workshop on Trends in Tree Automata and Tree Transducers, The
Queen Mary University of London (2015)

3. Braune, F., Seemann, N., Quernheim, D., Maletti, A.: Shallow local multi-bottom-
up tree transducers in statistical machine translation. In: Association for Computa-
tional Linguistics (ACL 2013), vol. 1, pp. 811–821. The Association for Computer
Linguistics (2013)

4. Drewes, F., van der Merwe, B.: Path languages of random permitting context tree
grammars are regular. Fundam. Inform. 82, 47–60 (2008)

5. Ginsburg, S., Greibach, S.A., Harrison, M.A.: Stack automata and compiling. J.
ACM 14, 172–201 (1967)

6. Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. J. ACM
14, 389–418 (1967)

7. Hibbard, T.N.: A generalization of context-free determinism. Inform. Control 11,
196–238 (1967)

8. Hopcroft, J.E., Ullman, J.D.: Sets accepted by one-way stack automata are context
sensitive. Inform. Control 13, 114–133 (1968)

9. Hori, C., Ohtake, K., Misu, T., Kashioka, H., Nakamura, S.: Weighted finite state
transducer based statistical dialog management. In: Automatic Speech Recognition
and Understanding (ASRU 2009), pp. 490–495. IEEE (2009)

10. Kutrib, M., Wendlandt, M.: On simulation cost of unary limited automata. In:
Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 153–164. Springer,
Heidelberg (2015)

11. Kutrib, M., Wendlandt, M.: Reversible limited automata. In: Durand-Lose, J.,
Nagy, B. (eds.) MCU 2015. LNCS, vol. 9288, pp. 113–128. Springer, Switzerland
(2015)

12. Mohri, M., Pereira, F.C.N., Riley, M.: Speech recognition with weighted finite-state
transducers. In: Benesty, J., Sondhi, M.M., Huang, Y. (eds.) Handbook on Speech
Processing and Speech Communication, Part E: Speech Recognition, pp. 559–584.
Springer, Heidelberg (2008)

13. Petrov, S.: Towards Universal Syntactic and Semantic Processing of Natural Lan-
guage. Invited talk at SLTC 2016, Uppsala University (2014)

14. Pighizzini, G., Pisoni, A.: Limited automata and regular languages. Int. J. Found.
Comput. Sci. 25, 897–916 (2014)

15. Pighizzini, G., Pisoni, A.: Limited automata and context-free languages. Funda-
menta Inform. 136, 157–176 (2015)

16. Wagner, K., Wechsung, G.: Computational Complexity. Reidel, Dordrecht (1986)

Computing the Expected Edit Distance
from a String to a PFA

Jorge Calvo-Zaragoza1, Colin de la Higuera2(B), and Jose Oncina1

1 DLSI, University of Alicante, Alicante, Spain
{jcalvo,oncina}@dlsi.ua.es

2 LINA Lab, UMR 6241, University of Nantes, Nantes, France
cdlh@univ-nantes.fr

Abstract. In a number of fields one is to compare a witness string with
a distribution. One possibility is to compute the probability of the string
for that distribution. Another, giving a more global view, is to compute
the expected edit distance from a string randomly drawn to the witness
string. This number is often used to measure the performance of a pre-
diction, the goal then being to return the median string, or the string
with smallest expected distance.

To be able to measure this, computing the distance between a hypoth-
esis and that distribution is necessary. This paper proposes two solutions
for computing this value, when the distribution is defined with a prob-
abilistic finite state automaton. The first is exact but has a cost which
can be exponential in the length of the input string, whereas the second
is a Fpras.

Keywords: Edit distance · Probabilistic finite state automata

1 Introduction

The edit or Levenshtein distance is often used to measure how close one string
is to another [14]. This distance has given rise to many questions: if one is given
a set instead of a string, the question may be to compute rapidly the distance
between the set and a string or between two sets [17,28]. In turn, a set defines
an empirical distribution which can be represented by a probabilistic finite state
automaton (Pfa), a hidden Markov model or a weighted automaton [17,27].

If the set is used as a learning sample, the distribution may be more general,
again represented by the above machines, but these may now contain cycles and
therefore define a distribution over all possible strings.

The following questions are then posed: what is the expected distance
between a given witness string and such a distribution? What could a rep-
resentative string be for this distribution? One possible answer to the second
question is the most probable string [10,11]. Another is the median string which
is the string minimizing the expected distance to the distribution, which in turn
contributes to make the first question relevant. These questions have not only a
c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 39–50, 2016.
DOI: 10.1007/978-3-319-40946-7 4

40 J. Calvo-Zaragoza et al.

precise mathematical interest, but they have been posed in very different settings
like bio-informatics [7], pattern recognition [19] or computational linguistics [24].

Alternative distances have been studied, such as the minimum cost obtaining
by summing the weight of a string and its distance to the witness string [2]. Balls
of strings, Levenshtein automata and other finite state machines linking regular
languages and the edit distance have been introduced, discussed and studied
[4,16,17,23].

We prove in this paper two results.
The first is that the expected edit distance can be computed, and that if the

weights of the Pfa are rational, then the result itself is rational. The construction
involves building a multiplicity automaton which can be of size exponential in
the length of the string w, but only increases polynomially with the number of
states of the Pfa or the size of the alphabet.

The second result is that the problem admits a fully polynomial time ran-
domized schema (Fpras), that is, a randomized algorithm which will return a
probably approximatively correct value in time polynomial with the length of the
string, the size of the automaton representing the distribution, and the inverse
of the accepted error.

Each algorithm has its advantages and inconveniences, as we will show in
the experimental section: the method involving the multiplicity automaton will
give an exact result, but only for small witness strings. The Fpras, on the other
hand, can only build an approximate result, but there is a guarantee on the error
bound and the method can handle long witness strings and large Pfa.

After introducing notations and definitions (Sect. 2), we prove in Sect. 3 that
the problem is decidable and provide an algorithm which gives the correct result;
Sect. 4 presents a polynomial randomized computation whose result is probably
approximately correct. Our experiments, described in Sect. 5, empirically confirm
the bounds in both error and complexity of the proposed strategies. Section 6
concludes the present work.

2 Preliminaries

2.1 Basic Notations

An alphabet Σ is a finite non-empty set of symbols called letters. A string w
over Σ is a finite sequence w = w1 . . . wm of letters. Letters will be indicated by
a, b, c, . . ., and strings by u, v, . . . , z. Let |w| denote the length of w. In this case
we have |w| = |w1 . . . wm| = m. The empty string is denoted by λ.

We denote by Σ∗ the set of all strings, by Σm the set of those of length m.
A probabilistic language D is a probability distribution over Σ∗. The proba-

bility of a string w ∈ Σ∗ under the distribution D is denoted as PrD(w). The
distribution must satisfy

∑
w∈Σ∗ PrD(w) = 1.

If the distribution is modelled by some syntactic machine M, the probabil-
ity of x according to the probability distribution defined by M is denoted by
Prx∼M(x) or simply PrM(x).

Computing the Expected Edit Distance from a String to a PFA 41

2.2 Multiplicity Automata

An n-state Multiplicity Automata (MA) M (also known as recognizable series [5]
or Stochastic Sequential Machines [20]) can be defined by a 4-tuple 〈Σ,S,M,F〉
here: Σ is the alphabet, S ∈ Q1×n, M = {Ma ∈ Qn×n : a ∈ Σ}, and F ∈ Qn×1.

M realizes a function from Σ∗ to Q such that:

M(x1 · · · xk) = S
k∑

i=1

Mxi
F

This machine can also be defined from a graph point of view as an n-state
machine 〈Σ,Q,S,F, δ〉 where Q = {q0, · · · , qn−1}, S : Q → Q are the initial
weights (S(qi) = S[i]), F : Q → Q are the final weights (F(qi) = F[i]), and
δ : Q × Σ × Q → Q are the transition weights (δ(qi, a, qj) = [Ma]i,j).

Given x ∈ Σ∗, ΠM(x) is the set of all paths accepting x: an accepting x-
path is a sequence π = qi0x1qi1x2 . . . xkqik where x = x1 · · · xk, ai ∈ Σ, and
∀j ∈ [1, k] such that δ(qij−1 , aj , qij) �= 0. Let π = qi0x1qi1x2 . . . xkqik , we denote
by δ(π) =

∏k
j=1 δ(qii−1 , aj , qij), α(π) = qi0 and ω(π) = qik .

M(x) =
∑

π∈ΠM(x)

S(α(π))δ(π)F(ω(π))

This can be computed efficiently using the Forward (or Backwards) algorithm.
Obviously, the two ways to compute M(x) are equivalent.

Probabilistic Finite Automata (Pfa) can be viewed as a special type of MA
that are restricted to describe probability distributions over sets of strings. Then
further restrictions should be applied. Let 1 ∈ Qn×1 : 1[i] = 1∀i, I ∈ Qn×n be
the identity matrix and MΣ =

∑
a∈Σ Ma, then:

– the components of S, M and F are interpreted as probabilities, that is, they
should be in [0, 1]

– S1 = 1: the sum of the starting probabilities should add one
– MΣ1 + F = 1: for any state, the sum of the outgoing probability plus the

ending probability should add one
– (I − MΣ) should be non-singular: this is a sufficient condition to assure the

non existence of absorbing states (or set of states).

2.3 The Edit Distance

The edit distance between two strings de(x, y) is the minimum number of edition
operations needed to transform x into y [14].

We will make use of the following generous bounds for the edit distance:

de(x, y) ≤ max{x, y} ≤ |x| + |y| (1)

The relative edit distance from x to y is dr(x, y) = de(x, y) − |y|. Notice that
this is not a metric.

42 J. Calvo-Zaragoza et al.

It follows from (1) that for a fixed string x the set of values that dr(x, y) can
take is finite, with values ranging from −|x| to |x|, even though the set of strings
from which y is chosen is infinite.

We extend the definitions to distributions over strings (string-distribution
edit distance):

de(w,D) =
∑

y∈Σ∗
de(w, y)PrD(y) =

∑
y∈Σ∗

dr(w, y)PrD(y) +
∑

y∈Σ∗
|y|PrD(y) (2)

When D is given by a Pfa A, we can also write de(w,A).

2.4 Complexity Issues

Let us recall that a decision problem is one for which the possible answers are
true and false. Such a problem is in class P if there is a deterministic Tur-
ing machine solving any instance in polynomial time, in NP if this machine is
non-deterministic, NP-complete if it as hard as any of the other NP-complete
problems.

An optimization problem asks for a numerical value to be computed given
an instance. This value can sometimes be approximated by a polynomial-time
approximation scheme (Ptas) which can compute a value within a factor 1+ε
of the optimum in time polynomial in the size of the approximation scheme.
If the runtime also depends polynomially of 1/ε, the scheme is called a fully
polynomial-time approximation scheme or Fptas. For more about approxima-
tion algorithms, see [26].

Sometimes, deterministic algorithms are unable to approximate, but random-
ized algorithms [18] can solve the problem in the following sense: an algorithm
A is a fully polynomial time randomized schema or Fpras if it can return a
solution which is at distance ε of the optimum, with confidence at least 1 − δ
and runs in time polynomial in the size of the instance, 1/ε and 1/δ.

The key problem in this work is called EDD:

Name: Computing the edit distance to a distribution (EDD)
Instance: A distribution D over an alphabet Σ. A string w over Σ.
Question: Compute de(w,D).

If we need to only consider the decision problem we will be also taking a
rational input r and asking if de(w,D) ≤ r. And the associated approximation
problem consists in computing a value x such |x − de(w,D)| < ε.

The exact status of EDD is an open question. We conjecture it is NP-hard.

3 EDD Is Decidable

We first prove that there exists an algorithm which takes a string w and a
Pfa AD and computes de(w,AD). The computation cannot be bounded by a
polynomial, but it terminates. The construction we propose follows three steps:

Computing the Expected Edit Distance from a String to a PFA 43

1. We first (Sect. 3.1) build from w an MA Aw which can compute dr(w, x).
2. We next (Sect. 3.2) build from AD and Aw an MA AD,w which computes the

product of the relative edit distance and the probability of the string.
3. Using the matrix representation of AD,w and AD we are able to compute the

values of the infinite series
∑

x∈Σ∗ |x|PrAD (x) and
∑

x∈Σ∗ dr(w, x)PrAD (x).

3.1 Building a Multiplicity Automaton Computing the Edit
Distance to a String (Step 1)

Given a string w, we build (with Algorithm 1 MA Build) an MA, Aw, which
will allow to parse any other string x and in linear time obtain dr(w, x).

The states of the MA are the different columns one may obtain when run-
ning the classical edit distance algorithm for strings w (used to index the lines)
and u (used to index the columns), and subtracting, in each cell, the length u,
i.e., computing dr(w, u), with w fixed and u being any string. The number of
states is finite, because dr(w, ·) ∈ [−|w|, |w|], so the number of possible columns
is bounded by (2|w|)|w|. Moreover, if we take into account that the difference
between two consecutive elements in a column is in {−1, 0, 1}, the number of
different columns, hence of states, is bounded by 3|w|.

There is a transition in the MA labelled by symbol a between the state
corresponding to the last column of dr(w, u) to the state corresponding to the
last column of dr(w, ua), for some string u.

There is no guarantee that the construction terminates in polynomial time.
We give an example of this construction in Appendix A of [6] (Fig. 4) and in
Appendix B of [6] we provide a counter-example, i.e. a parameterized string
such that the size of Aw increases faster than any polynomial in |w|.

Yet even when exponential, the construction does terminate, and the follow-
ing result can be given:

Proposition 1. Given any string x, dr(w, x) = Aw(x).

3.2 Computing the Product Automaton (Step 2)

We are now given a Pfa AD = 〈Σ,QD,SD,FD, δD〉 and a multiplicity automaton
Aw = 〈Σ,Qw,Sw,Fw, δw〉.

The new machine, denoted by AD,w has as states pairs 〈q, q′〉 with q ∈ QD,
q′ ∈ Qw. AD,w = 〈Σ,QD,w,SD,w,FD,w, δD,w〉:
– δD,w(〈q, q′〉, a, 〈s, s′〉) = δD(q, a, s)δw(q′, a, s′),
– SD,w(〈q, q′〉) = SD(q)Sw(q′),
– FD,w(〈q, q′〉) = FD(q)FD(q′).

By construction, AD,w(x) = dr(w, x)PrA(x).
An example is proposed in Appendix A, Fig. 6 of [6].

44 J. Calvo-Zaragoza et al.

Algorithm MA Build(w)
Data: w = w1 . . . wm of length m
Result: a multiplicity automaton Aw = 〈Σ, Q, S,F, δ〉
q0 ← [0, 1, 2, . . . , m]; Q ← {q0}; S(q0) ← 1; F(q0) ← m;
unmarked ← {q0};
while unmarked �= ∅ do

Choose q in unmarked ;
unmarked ← unmarked − {q};
for a ∈ Σ do

q′[0] ← 0;
for i = 1 to m do

if wi = a then x ← 0 ;
else x ← 1 ;
q′[i] ← min{q[i], q[i − 1] + x − 1, q′[i − 1]};

if q′ ∈ Q then δ(q, a, q′) ← 1 ;
else

Q ← Q ∪ {q′}; δ(q, a, q′) ← 1; F(q′); ← q′[m]; S(q′) ← 0;
unmarked ← unmarked ∪ {q′};

Algorithm 1. Algorithm MA Build(w) computing, given a string w, the
deterministic MA Aw such that on input x, dr(w, x) is computed as Aw(x).

3.3 Computing the Distance (Step 3)

We have to compute de(w,AD) =
∑

x∈Σ∗ |x|PrA(x) +
∑

x∈Σ∗ dr(w, x)PrA(x).

Let (Σ,
D
S,

D
M,

D
F) be the matrix representation of the Pfa AD. Since (I −

D
M)

is non-singular by definition of Pfa, the average length of the strings generated
by AD can be computed as in [11]:

∑
x∈Σ∗

|x|PrA(x) =
∞∑

i=0

i PrA(Σi) =
∞∑

i=0

i
D
S

D
MΣ

i
D
F =

D
S

D
MΣ(I −

D
MΣ)−2

D
F

Let (Σ,
w

S,
w

M,
w

F) be the matrix representation of AD,w. Each addend of the
series

∑
x∈Σ∗ dr(w, x)PrA(x) can be computed as:

∑
x∈Σ∗

dr(w, x)PrA(x) =
∑

x∈Σ∗

w

S
w

Mx

w

F =
∞∑

i=0

w

S
w

Mi
w

F =
w

S(I −
w

M)−1
w

F

One point to check is that the matrix (I −
w

M) is non-singular.

By construction, [
w

M]i,j ≥ 0. Moreover, in any adjacency matrix, [Mk]i,j
is the sum of the weights of all the paths of length exactly n that goes from

node i to node j. In our case, by construction, [
D
Mk]i,j =

∑
q,s[

w

Mk]<i,q>,<j,s>

hence [
D
Mk]i,j ≥ [

w

Mk]<i,q>,<j,s>. We also know that (I −
D
M) is non-singular so

Computing the Expected Edit Distance from a String to a PFA 45

limk→∞[
D
Mk]i,j = 0. Summarising, we have that, 0 ≤ limk→∞[

w

Mk]<i,q>,<j,s> ≤
limk→∞[

D
Mk]i,j = 0, so limk→∞[

w

Mk]i,j = 0 and then, (I −
w

M) is non-singular.

Therefore, de(w,AD) =
D
S

D
MΣ(I −

D
MΣ)−2

D
F +

w

S(I −
w

M)−1
w

F. It follows:

Theorem 1. EDD is decidable and the edit distance between a witness string
and a Pfa with rational weights is rational.

The construction described here is not polynomially bounded. The final com-
putation is (with arbitrary precision and unit computation time for all arithmetic
operations) cubic in the size of the product finite state machine. In turn, the size
of this machine essentially depends on the length of the input string.

4 An FPRAS for EDD

As can be seen in the experiments (or in the theoretical analysis from Appendix B
of [6]), the method described in Sect. 3 may lead to a combinatorial explosion
during the construction of Aw. In this section we propose an Fpras to approx-
imate the value of de(w,AD).

Alternatively, the result can be seen as a Probably Approximate Correct
(PAC) algorithm [25]. The goal of this framework is to learn (in this case, to
compute) a concept for which, with high probability, we obtain a sufficiently
good approximation of it.

We are given a Pfa AD, a string w and two values ε > 0, δ > 0.
An Fpras would be an algorithm which, in time polynomial in |AD|, |w|, 1

ε , 1
δ

computes a value v such that, with probability at least 1 − δ,
∣∣∣∣v − de(w,AD)

∣∣∣∣ ≤ ε

Theorem 2. There exists an Fpras computing the expected distance between a
string and a distribution given by a Pfa.

Proof. A full description of Algorithm Compute Bounds is given in Appen-
dix C of [6]. This algorithm returns L which is the length at which the gen-
eration process of the Pfa should be stopped. The goal is to have a polyno-
mial limit to the length of the strings without this impacting the quality of the
result. Then, for this L a value N , also polynomial, is computed. These num-
bers are used by Algorithm Build Sample which with high probability and
complexity in O(NL) is going to return a correct sample. The main Algorithm
Expected Distance uses this sample and computes the distance.

The complexity of Algorithm Build Sample is in O(NL). There is a (non
null, but lower than δ

2) probability that the number of generated samples is less
than N . �

46 J. Calvo-Zaragoza et al.

Algorithm Build Sample(AD, L, N)
Data: a Pfa AD
Result: a sample S which, with probability > 1 − δ

2
, contains N strings

S ← ∅;
for i : 1 ≤ i ≤ N do

generate a string of length at most L, using AD and add it to S. If
during the generation the string becomes too long, generate nothing

return S

Algorithm 2. Algorithm Build Sample(AD)

Algorithm Expected Distance(w, AD, ε, δ)
Data: a string w, a Pfa AD, ε, δ
Result: the expected distance between w and AD

〈N, L〉 ← Compute Bounds(AD, ε, δ, w) ;
S ← Build Sample(AD, L, N);
Res ← 0;
for x ∈ S do Res ← Res + de(w, x);
return Res/N

Algorithm 3. Algorithm Expected Distance(w, AD, ε, δ)

5 Experiments

As a preliminary evaluation, we ran our Fpras with a fixed value of δ = 0.01
and varying values of ε on 100 pairs of Pfa and strings w. In all cases, the differ-
ence between the real value and the one computed with the Fpras was always
less than ε, which confirms that the values computed by Compute Bounds
represent a pessimistic lower bound.

In the series of experiments we want to empirically confirm the time com-
plexity of the algorithms. We showed that the MA-based method grows with
the size of the witness string, whereas the Fpras is bounded by N , the number
of necessary samples, which is closely related to the expected length of a string
from the Pfa. In order to focus these experiments on the most relevant issues,
we are using the small Pfa shown in Fig. 1. Parameter pf ∈ (0, 0.9) allows us to
tune the expected lengths nicely: the lower pf , the higher the length.

The first experiment examines the time complexity using the method
described in Sect. 3. Parameter pf varies so that the expected lengths of the
strings are 6.22, 7.75, 9.71, 12.33, and 16. For this experiment, we generate
strings randomly and uniformly of lengths ranging from 1 to 13 from an alpha-
bet of size 2. Then, we measure the execution time consumed to compute the
distance between the string and the Pfa, including the construction of the Aw.
The experiment is repeated 100 times for each Pfa and each witness string
length considered. Average results are shown in Fig. 2.

As expected, the complexity of the procedure grows very fast as the length
of the witness string is increased. Note that the y-axis is shown in logarithmic

Computing the Expected Edit Distance from a String to a PFA 47

q0 : pfstart q1 : 0

a : 0.1

b : 0.9 − pf

a : 0.8

b : 0.2

Fig. 1. Parametrizable Pfa used in the experiments.

0.01

0.1

1

10

100

1000

10000

100000

1e+06

2 3 4 5 6 7 8 9 10 11 12 13

C
om

pu
ta

tio
n

tim
e

in
 m

s
(lo

g
sc

al
e)

|w|

E[|X|] = 6.22
E[|X|] = 7.75
E[|X|] = 9.71
E[|X|] = 12.33
E[|X|] = 16

Fig. 2. Average execution time in milliseconds needed for the method based on a MA
to compute the distance between a witness string w and a Pfa.

scale, so the curve suggests an exponential growth. According to the empirical
curve shown in these experiments, computing the distance of a witness string
of length 50 would mean an execution time in the order of 107 years. Another
thing to remark is that this method is not dependent upon the configuration of
the Pfa, as long as its number of states does not change.

On the other hand, the same experiments is repeated using the Fpras for
ε and δ fixed to 0.01. The length of the witness strings are 4, 7, 10, 13 and 16.
The parameter pf is configured so that the expected length of the strings of the
Pfa are 7.75, 12.33, 16, 21.5, 30.66, 36.31, 44, and 49. Figure 3 illustrates the
average results of these experiments.

It can be noticed that the configuration of the Pfa is the most relevant
factor for the Fpras. As might be expected by the relationship between the size
of the Pfa measured by cA and the expected length of the strings, the empirical
growth seems to be polynomial [3]. It is also observed that the length of the
witness string is a factor that can vary the time complexity since the distances
to compute are more expensive. Nevertheless, it is important to emphasize that
the Fpras scales relatively well: for a Pfa whose expected length of strings is
100 and a witness string of length 100, the result (89.3235) was computed in
around 25 min fixing both ε and δ to 0.01.

48 J. Calvo-Zaragoza et al.

0

10000

20000

30000

40000

50000

60000

70000

80000

7.75 12.33 16 21.5 30.66 36.31 44 49

C
om

pu
ta

tio
n

tim
e

in
 m

s

E[|X|]

|w| = 4
|w| = 7
|w| = 10
|w| = 13
|w| = 16

Fig. 3. Average execution time in milliseconds needed for the Fpras method to com-
pute the distance between a witness string w and a Pfa.

6 Conclusion

Two algorithms have been proposed to deal with the question of computing the
expected edit distance from a witness string to a distribution given by a Pfa.
Whereas one is able to compute this value exactly, it is limited to cases where
the length of the witness string is short, as the construction involves building
a multiplicity whose size can increase in an exponential way with the length of
this string. The first one also shows that the question is decidable and that the
solution can be expressed with rational weights.

On the other hand we have a Fpras which will return with high confidence
a value (ε)-close to the correct result. It has been shown that its complexity
essentially depends on the expected length of the strings of the distribution.

The above results raise several extra questions:

– Computing the expected edit distance between two Pfa. In [17] a technique is
proposed for the special cases where these Pfa correspond to finite languages,
or can be determinized. A randomized technique in which strings are drawn
from both distributions is likely to work.

– The exact status of EDD remains unclear. The (decision) problem is decidable,
as witnessed by Theorem 1. But is it in NP?

– A more technical puzzling question concerns the size of the multiplicity
automaton built in Sect. 3. The experiments and the construction proposed in
Appendix B of [6] shows that polynomial bounds are not going to be met. But
the proof relies on an alphabet whose size increases with the length of string
w. Having a construction with a fixed size (ideally 2) is an open question.

More importantly, the really crucial question is that of computing the median
string, given a Pfa.

Computing the Expected Edit Distance from a String to a PFA 49

When given a distribution, a prediction system will often attempt to return
the most probable string in order to minimize the empirical risk by following a
maximum a posteriori probability (MAP) criterion.

Nevertheless, while this may be applicable in a large number of applica-
tions, other loss functions can be better suited than the 0/1 loss. For instance,
very often the final goal is to reduce the number of post-processing corrections
required to transform a hypothesis. This is usually counted by means of the
Levenshtein or edit distance (de), or a related metric like the Word Error Rate
(WER). Then, the empirical risk becomes

R(w|x) =
∑

v∈Σ∗
Pr(v|x)de(w, v)

In which case, the optimum string is the median string. Yet most often the most
probable string (or an approximation of it) is proposed instead of the median
string, whose search is related to a NP-hard problem [9] even in a finite case.
This inconsistency is well known [12], and there have been a number of studies
addressing this issue [8,21], with recently a specific analysis of the relation-
ship between 0/1 loss functions and other discrete loss functions [22]. Other
approaches include the introduction of heuristics to approximate the median
string [1,13,15].

This constitutes of course a real challenge.

Acknowledgements. The authors wish to acknowledge the help of Borja Balle in
establishing the proof of Theorem 2, and the comments of the 3 anonymous reviewers
of this paper. Also the financial help of the Spanish Ministerio de Educación, Cultura
y Deporte through a FPU grant (Ref. AP2012-0939) and the Spanish Ministerio de
Economı́a y Competitividad through Project No. TIN2013-48152-C2-1-R (supported
by UE FEDER funds). This work was partly done while the second author was sup-
ported by the University of Kyoto.

References

1. Abreu, J., Rico-Juan, J.R.: A new iterative algorithm for computing a quality
approximate median of strings based on edit operations. Patt. Rec. Lett. 36,
74–80 (2014)

2. Allauzen, C., Mohri, M.: Linear-Space Computation of the Edit-Distance Between
a String and a Finite Automaton (2009). CoRR abs/0904.4686

3. Balle, B.: Learning finite-state machines: algorithmic and statistical aspects. Ph.D.
thesis, Universitat Politécnica de Catalunya (2013)

4. Becerra-Bonache, L., de la Higuera, C., Janodet, J.C., Tantini, F.: Learning balls
of strings from edit corrections. J. Mach. Learn. Res. 9, 1841–1870 (2008)

5. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. Springer,
Heidelberg (1988)

6. Calvo-Zaragoza, J., de la Higuera, C., Oncina, J.: Computing the expected edit dis-
tance from a string to a PFA. Complete Version with Appendices (2016). https://
hal.archives-ouvertes.fr/hal-01308549

https://hal.archives-ouvertes.fr/hal-01308549
https://hal.archives-ouvertes.fr/hal-01308549

50 J. Calvo-Zaragoza et al.

7. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis:
Probalistic Models of Proteins and Nucleic Acids. Cambridge University Press,
Cambridge (1998)

8. Ehling, N., Zens, R., Ney, H.: Minimum Bayes risk decoding for BLEU. In: Pro-
ceedings of 45th Annual Meeting of the Association for Computational Linguistics
(ACL) (2007)

9. de la Higuera, C., Casacuberta, F.: Topology of strings: median string is NP-
complete. Theor. Comput. Sci. 230, 39–48 (2000)

10. de la Higuera, C., Oncina, J.: Computing the most probable string with a proba-
bilistic finite state machine. In: Proceedings of FSMNLP (2013)

11. de la Higuera, C., Oncina, J.: The most probable string: an algorithmic study. J.
Logic Comput. 24(2), 311–330 (2014)

12. Jelinek, F.: Statistical Methods for Speech Recognition. MIT Press, Cambridge
(1997)

13. Kruzslicz, F.: Improved greedy algorithm for computing approximate median
strings. Acta Cybernetica 14(2), 331–339 (1999)

14. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Dokl. Akad. Nauk SSSR 163(4), 845–848 (1965)

15. Mart́ınez-Hinarejos, C.D., Juan, A., Casacuberta, F.: Median strings for k-nearest
neighbour classification. Pattern Rec. Lett. 24(1–3), 173–181 (2003)

16. Mihov, S., Schulz, K.U.: Fast approximate search in large dictionaries. Comput.
Linguist. 30(4), 451–477 (2004)

17. Mohri, M.: Edit-distance of weighted automata: general definitions and algorithms.
Int. J. Found. Comput. Sci. 14(6), 957–982 (2003)

18. Motwani, R., Raghavan, P.: Randomized Algorithm. Springer, Berlin (1995)
19. Navarro, G., Raffinot, M.: Flexible Pattern Matching. Cambridge University Press,

Cambridge (2002)
20. Paz, A.: Introduction to Probabilistic Automata. Academic Press, New York (1971)
21. Schluter, R., Nussbaum-Thom, M., Ney, H.: On the relationship between Bayes

risk and word error rate in ASR. IEEE Trans. Audio Speech Lang. Process. 19(5),
1103–1112 (2011)

22. Schluter, R., Nussbaum-Thom, M., Ney, H.: Does the cost function matter in Bayes
decision rule? IEEE Trans. Pattern Anal. Mach. Intell. 34(2), 292–301 (2012)

23. Schulz, K.U., Mihov, S.: Fast string correction with Levenshtein automata. IJDAR
5(1), 67–85 (2002)

24. Stolcke, A., Konig, Y., Weintraub, M.: Explicit word error minimization in n-
best list rescoring. In: 5th European Conference on Speech Communication and
Technology (1997)

25. Valiant, L.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
26. Vazirani, V.: Approximation Algorithms. Springer, Berlin (2003)
27. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.C.: Prob-

abilistic finite state automata - part I and II. Pattern Anal. Mach. Intell. 27(7),
1013–1039 (2005)

28. Wagner, R.A.: Order-n correction for regular languages. Commun. ACM 17(5),
265–268 (1974)

Derived-Term Automata of Multitape Rational
Expressions

Akim Demaille(B)

EPITA Research and Development Laboratory (LRDE),
14-16, rue Voltaire, 94276 Le Kremlin-Bicêtre, France

akim@lrde.epita.fr

Abstract. We introduce (weighted) rational expressions to denote series
over Cartesian products of monoids. To this end, we propose the oper-
ator | to build multitape expressions such as (a+ | x + b+ | y)∗. We
define expansions, which generalize the concept of derivative of a ratio-
nal expression, but relieved from the need of a free monoid. We propose
an algorithm based on expansions to build multitape automata from
multitape expressions.

1 Introduction

Automata and rational (or regular) expressions share the same expressive power,
with algorithms going from one to the other. This fact made rational expressions
an extremely handy practical tool to specify some rational languages in a concise
way, from which acceptors (automata) are built. There are many largely used
implementations, probably starting with Thompson [15], the creator of Unix,
grep, etc.

There are numerous algorithms to build an automaton from an expres-
sion. We are particularly interested in the derivative-based family of algorithms
[3–5,7,10], because they offer a very natural interpretation to states (they
are labeled by an expression that denotes the future of the states, i.e., the
language/series accepted from this state). This allowed to support several exten-
sions: extended operators (intersection, complement) [4,5], weights [10], addi-
tional products (shuffle, infiltration), etc.

Multitape automata, including transducers, share many properties with
“single-tape” automata, in particular the Fundamental Theorem [14, Theo-
rem 2.1, p. 409]: under appropriate conditions, multitape automata and rational
(multitape) series share the same expressive power. However, as far as the author
knows, there is no definition of multitape rational expressions that allows expres-
sions such as E2 := (a+ |x+b+ |y)∗ (Example 5). To denote such a binary relation
between words, one had to build a (usual) rational expression in “normal form”,
without tupling of expressions but only tuples of letters such as a set of genera-
tors. So for instance instead of E2, one must use E′

2 := ((a|ε)+(ε|x)+(b|ε)+(ε|y))∗,
which is larger, as is its derived-term automaton.

The contributions of this paper are twofold: we define (weighted) multitape
rational expressions featuring a | operator, and we provide an algorithm to build
c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 51–63, 2016.
DOI: 10.1007/978-3-319-40946-7 5

52 A. Demaille

E1 = 〈5〉1|1 + 〈4〉a d e∗|x + 〈3〉b d e∗|x + 〈2〉a c e∗|x y + 〈6〉b c e∗|x y
〈5〉
c e∗|y

d e∗|1

e∗|1

〈2〉a|x, 〈6〉b|x

〈4〉a|x, 〈3〉b|x

c|y

d|ε

e|ε

Fig. 1. The derived-term automaton of E1 (see Examples 1 to 3) with E1 := 〈5〉1|1 +
〈4〉a d e∗|x + 〈3〉b d e∗|x + 〈2〉a c e∗|x y + 〈6〉b c e∗|x y.

an equivalent automaton. This algorithm is a generalization of the derived-term
based algorithms, freed from the requirement that the monoid is free.

We first settle the notations in Sect. 2, provide an algorithm to compute the
expansion of an expression in Sect. 3, which is used in Sect. 4 to propose an
alternative construction of the derived-term automaton.

The constructs exposed in this paper are implemented in Vcsn.1 Vcsn is a
free-software platform dedicated to weighted automata and rational expressions
[8]; its lowest layer is a C++ library, on top of which Python/IPython bindings
provide an interactive graphical environment.

2 Notations

Our purpose is to define (weighted) multitape rational expressions, such as
E1 := 〈5〉1|1 + 〈4〉a d e∗|x + 〈3〉b d e∗|x + 〈2〉a c e∗|x y + 〈6〉b c e∗|x y (weights are
written in angle brackets). It relates ade with x, with weight 4. We introduce an
algorithm to build a multitape automaton (aka transducer) from such an expres-
sion, e.g., Fig. 1. This algorithm relies on rational expansions. They are to the
derivatives of rational expressions what differential forms are to the derivatives
of functions. Defining expansions requires several concepts, defined bottom-up
in this section. The following figure presents these different entities, how they
relate to each other, and where we are heading to: given a weighted multitape
rational expression such as E1, compute its expansion:

Weight
︷︸︸︷

〈5〉

︸︷︷︸

Constant term

⊕
Label
︷︸︸︷

a|x
︸︷︷︸

First

�
[

〈2〉 �

Expression

(Sect. 2.2)
︷ ︸︸ ︷

ce∗|y
︸ ︷︷ ︸

Derived term

⊕
Monomial
︷ ︸︸ ︷

〈4〉 � de∗|1
]

⊕ b|x �
[

Polynomial (Sect. 2.3)
︷ ︸︸ ︷

〈6〉 � ce∗|y ⊕ 〈3〉 � de∗|1
]

︸ ︷︷ ︸

Proper part of the expansion
︸ ︷︷ ︸

Expansion (Sect. 2.4)

1 See the interactive environment, http://vcsn-sandbox.lrde.epita.fr, or its documenta-
tion, http://vcsn.lrde.epita.fr/dload/2.3/notebooks/expression.derived term.html,
or this paper’s companion notebook, http://vcsn.lrde.epita.fr/dload/2.3/notebooks/
CIAA-2016.html.

http://vcsn-sandbox.lrde.epita.fr
http://vcsn.lrde.epita.fr/dload/2.3/notebooks/expression.derived_term.html
http://vcsn.lrde.epita.fr/dload/2.3/notebooks/CIAA-2016.html
http://vcsn.lrde.epita.fr/dload/2.3/notebooks/CIAA-2016.html

Derived-Term Automata of Multitape Rational Expressions 53

from which we build its derived-term automaton (Fig. 1).
It is helpful to think of expansions as a normal form for expressions.

2.1 Rational Series

Series will be used to define the semantics of the forthcoming structures: they
are to weighted automata what languages are to Boolean automata. Not all
languages are rational (denoted by an expression), and similarly, not all series
are rational (denoted by a weighted expression). We follow Sakarovitch [14,
Chap. III].

In order to cope with (possibly) several tapes, we cannot rely on the tradi-
tional definitions based on the free monoid A∗ for some alphabet A.

Labels. Let M be a monoid (e.g., A∗ or A∗ × B∗), whose neutral element is
denoted εM , or ε when clear from the context. For consistency with the way
transducers are usually represented, we use m | n rather than (m,n) to denote
the pair of m and n. For instance εA∗×B∗ = εA∗ | εB∗ , and εM | a ∈ M × {a}∗.
A set of generators G of M is a subset of M such that G∗ = M . A monoid M is of
finite type (or finitely generated) if it admits a finite set of generators. A monoid
M is graded if it admits a gradation function | · | ∈ M → N such that ∀m,n ∈ M ,
|m| = 0 iff m = ε, and |mn| = |m| + |n|. Cartesian products of graded monoids
are graded, and Cartesian products of finitely generated monoids are finitely
generated. Free monoids and Cartesian products of free monoids are graded and
finitely generated.

Weights. Let 〈K,+, ·, 0K, 1K〉 (or K for short) be a semiring whose (possibly non
commutative) multiplication will be denoted by juxtaposition. K is commutative
if its multiplication is. K is a topological semiring if it is equipped with a topology,
and both addition and multiplication are continuous. It is strong if the product
of two summable families is summable.

Series. A (formal power) series over M with weights (or multiplicities) in K is
a map from M to K. The weight of m ∈ M in a series s is denoted s(m). The
null series, m �→ 0K, is denoted 0; for any m ∈ M (including εM), m denotes the
series u �→ 1K if u = m, 0K otherwise. If M is of finite type, then we can define
the Cauchy product of series. s · t := m �→ ∑

u,v∈M |uv=m s(u) · t(v). Equipped
with the pointwise addition (s + t := m �→ s(m) + t(m)) and · as multiplication,
the set of these series forms a semiring denoted 〈K〈〈M〉〉,+, ·, 0, ε〉.

The constant term of a series s, denoted sε, is s(ε), the weight of the empty
word. A series s is proper if sε = 0K. The proper part of s is the proper series sp

such that s = sε + sp.

Star. The star of a series is an infinite sum: s∗ :=
∑

n∈N
sn. To ensure semantic

soundness, we need M to be graded monoid and K to be a strong topological
semiring.

Proposition 1. Let M be a graded monoid and K a strong topological semiring.
Let s ∈ K〈〈M〉〉, s∗ is defined iff s∗

ε is defined and then s∗ = s∗
ε + s∗

εsps
∗.

54 A. Demaille

Proof. By [14, Proposition 2.6, p. 396] s∗ is defined iff s∗
ε is defined and then

s∗ = (s∗
εsp)∗s∗

ε = s∗
ε(sps

∗
ε)

∗. The result then follows directly from s∗ = ε + ss∗:
s∗ = s∗

ε(sps
∗
ε)

∗ = s∗
ε(ε + (sps

∗
ε)(sps

∗
ε)

∗) = s∗
ε + s∗

εsp(s∗
ε(sps

∗
ε)

∗) = s∗
ε + s∗

εsps
∗. �	

Tuple. We suppose K is commutative. The tupling of two series s ∈ K〈〈M〉〉, t ∈
K〈〈N〉〉, is the series s | t := m | n ∈ M × N �→ s(m)t(n). It is a member of
K〈〈M × N〉〉.
Proposition 2. For all series s, s′ ∈ K〈〈M〉〉 and t, t′ ∈ K〈〈N〉〉, (s + s′) | t =
s | t + s′ | t and s | (t + t′) = s | t + s | t′.

Proof. Let m|n ∈ M ×N . ((s+s′)|t)(m|n) = (s+s′)(m)·t(n) = (s(m)+s′(m))·
t(n) = s(m) · t(n)+s′(m) · t(n) = (s | t)(m |n) · (s′ | t)(m |n) = (s | t+s′ | t)(m |n).
Likewise for right distributivity. �	

From now on, M is a graded monoid of finite type, and K a commutative
strong topological semiring.

2.2 Weighted Rational Expressions

Contrary to the usual definition, we do not require a finite alphabet: any set of
generators G ⊆ M will do. For expressions with more than one tape, we required
K to be commutative; however, for single tape expressions, our results apply to
non-commutative semirings, hence there are two exterior products.

Definition 1 (Expression). A rational expression E over G is a term built
from the following grammar, where a ∈ G denotes any non empty label, and
k ∈ K any weight: E ::= 0 | 1 | a | E + E | 〈k〉E | E〈k〉 | E · E | E∗ | E | E.

Expressions are syntactic; they are finite notations for (some) series.

Definition 2 (Series Denoted by an Expression). Let E be an expression.
The series denoted by E, noted �E�, is defined by induction on E:

�0� := 0 �1� := ε �a� := a �E + F� := �E� + �F� �〈k〉E� := k�E�

�E〈k〉� := �E�k �E · F� := �E� · �F� �E∗� := �E�∗ �E | F� := �E� | �F�

An expression is valid if it denotes a series. More specifically, there are two
requirements. First, the expression must be well-formed, i.e., concatenation and
disjunction must be applied to expressions of appropriate number of tapes. For
instance, a + b|c and a(b|c) are ill-formed, (a | b)∗ | c + a | (b | c)∗ is well-formed.
Second, to ensure that �F�∗ is well defined for each subexpression of the form F∗,
the constant term of �F� must be starrable in K (Proposition 1). This definition,
which involves series (semantics) to define a property of expressions (syntax),
will be made effective (syntactic) with the appropriate definition of the constant
term dε(E) of an expression E (Definition 6).

Let [n] denote {1, . . . , n}). The size (aka length) of a (valid) expression E,
|E|, is its total number of symbols, not counting parenthesis; for a given tape

Derived-Term Automata of Multitape Rational Expressions 55

number i ∈ [k] the width on tape i, ‖E‖i, is the number of occurrences of labels
on the tape i, the width of E (aka literal length), ‖E‖ :=

∑
i∈[k] ‖E‖i is the total

number of occurrences of labels.
Two expressions E and F are equivalent iff �E� = �F�. Some expressions

are “trivially equivalent”; any candidate expression will be rewritten via the
following trivial identities. Any subexpression of a form listed to the left of a
‘⇒’ is rewritten as indicated on the right.

E + 0 ⇒ E 0 + E ⇒ E

〈0K〉E ⇒ 0 〈1K〉E ⇒ E 〈k〉0 ⇒ 0 〈k〉〈h〉E ⇒ 〈kh〉E
E〈0K〉 ⇒ 0 E〈1K〉 ⇒ E 0〈k〉 ⇒ 0 E〈k〉〈h〉 ⇒ E〈kh〉

(〈k〉E)〈h〉 ⇒ 〈k〉(E〈h〉) �〈k〉 ⇒ 〈k〉�
E · 0 ⇒ 0 0 · E ⇒ 0

(〈k〉?1) · E ⇒ 〈k〉?E E · (〈k〉?1) ⇒ E〈k〉?
0� ⇒ 1

(〈k〉?E) | (〈h〉?F) ⇒ 〈kh〉?E | F

where E is a rational expression, � ∈ G∪{1} a label, k, h ∈ K weights, and 〈k〉?�
denotes either 〈k〉�, or � in which case k = 1K in the right-hand side of ⇒. The
choice of these identities is beyond the scope of this paper (see [14]), however
note that they are limited to trivial properties; in particular linearity (“weighted
ACI”: associativity, commutativity and 〈k〉E+ 〈h〉E ⇒ 〈k +h〉E) is not enforced.
In practice, additional identities help reducing the automaton size [12].

2.3 Rational Polynomials

At the core of the idea of “partial derivatives” introduced by Antimirov [3],
is that of sets of rational expressions, later generalized in weighted sets by
Lombardy and Sakarovitch [10], i.e., functions (partial, with finite domain) from
the set of rational expressions into K \ {0K}. It proves useful to view such struc-
tures as “polynomials of expressions”. In essence, they capture the linearity of
addition.

Definition 3 (Rational Polynomial). A polynomial (of rational expressions)
is a finite (left) linear combination of expressions. Syntactically it is a term built
from the grammar P ::= 0 | 〈k1〉 � E1 ⊕ · · · ⊕ 〈kn〉 � En where ki ∈ K \ {0K}
denote non-null weights, and Ei denote non-null expressions. Expressions may
not appear more than once in a polynomial. A monomial is a pair 〈ki〉 � Ei.

We use specific symbols (� and ⊕) to clearly separate the outer polynomial
layer from the inner expression layer. Let P =

⊕
i∈[n] 〈ki〉 � Ei be a polynomial

of expressions. The “projection” of P is the expression expr(P) := 〈k1〉E1 + · · · +
〈kn〉En (or 0 if P is null); this operation is performed on a canonical form of the
polynomial (expressions are sorted in a well defined order). Polynomials denote
series: �P� := �expr(P)�. The terms of P is the set exprs(P) := {E1, . . . ,En}.

56 A. Demaille

Example 1. Let E1 := 〈5〉1|1+〈4〉a d e∗|x+〈3〉b d e∗|x+〈2〉a c e∗|x y+〈6〉b c e∗|x y.
Polynomial ‘P1,a|x := 〈2〉�ce∗ | y⊕〈4〉�de∗ | 1’ has two monomials: ‘〈2〉�ce∗ | y’
and ‘〈4〉 � de∗ | 1’. It denotes the (left) quotient of �E1� by a | x, and ‘P1,b|x :=
〈6〉 � ce∗ | y ⊕ 〈3〉 � de∗ | 1’ the quotient by b | x.

Let P =
⊕

i∈[n] 〈ki〉 � Ei,Q =
⊕

j∈[m] 〈hi〉 � Fi be polynomials, k a weight
and F an expression, all possibly null, we introduce the following operations:

P · F :=
⊕

i∈[n]

〈ki〉 � (Ei · F) 〈k〉P :=
⊕

i∈[n]

〈kki〉 � Ei P〈k〉 :=
⊕

i∈[n]

〈ki〉 � (Ei〈k〉)

P | 1 :=
⊕

i∈[n]

〈ki〉 � Ei | 1 1 | P :=
⊕

i∈[n]

〈ki〉 � 1 | Ei

P | Q :=
⊕

(i,j)∈[n]×[m]

〈ki · hj〉 � Ei | Fj

Trivial identities might simplify the result. Note the asymmetry between left and
right exterior products. The addition of polynomials is commutative, multipli-
cation by zero (be it an expression or a weight) evaluates to the null polynomial,
and the left-multiplication by a weight is distributive.

Lemma 1. �P · F� = �P�·�F� �〈k〉P� = 〈k〉�P� �P〈k〉� = �P�〈k〉 �P | Q� =
�P� | �Q�.

2.4 Rational Expansions

Definition 4 (Rational Expansion). A rational expansion X is a term X ::=
〈Xε〉⊕a1 � [Xa1]⊕· · ·⊕an � [Xan

] where Xε ∈ K is a weight (possibly null), ai ∈
G\{ε} non-empty labels (occurring at most once), and Xai

non-null polynomials.
The constant term is Xε, the proper part is Xp := a1 � [Xa1] ⊕ · · · ⊕ an � [Xan

],
the firsts is f(X) := {a1, . . . , an} (possibly empty) and the terms exprs(X) :=⋃

i∈[n] exprs(Xai
).

To ease reading, polynomials are written in square brackets. Contrary to expres-
sions and polynomials, there is no specific term for the null expansion: it is
represented by 〈0K〉, the null weight. Except for this case, null constant terms
are left implicit. Expansions will be written: X = 〈Xε〉⊕⊕

a∈f(X) a� [Xa]. When
more convenient, we write X(�) instead of X� for � ∈ f(X) ∪ {ε}.

An expansion X can be “projected” as a rational expression expr(X) by map-
ping weights, labels and polynomials to their corresponding rational expressions,
and ⊕/� to the sum/concatenation of expressions. Again, this is performed on a
canonical form of the expansion: labels are sorted. Expansions also denote series:
�X� := �expr(X)�. An expansion X is equivalent to an expression E iff �X� = �E�.

Example 2 (Example 1 continued). Expansion X1 := 〈5〉 ⊕ a|x � [P1,a|x] ⊕ b|x �
[P1,b|x] has X1(ε) = 〈5〉 as constant term, and maps the generator a|x (resp. b|x)
to the polynomial X1(a|x) = P1,a|x (resp. X1(b|x) = P1,b|x). X1 can be proved to
be equivalent to E1.

Derived-Term Automata of Multitape Rational Expressions 57

Let X,Y be expansions, k a weight, and E an expression (all possibly null):

X ⊕ Y := 〈Xε + Yε〉 ⊕
⊕

a∈f(X)∪f(Y)

a � [Xa ⊕ Ya] (1)

〈k〉X := 〈kXε〉 ⊕
⊕

a∈f(X)

a � [〈k〉Xa] X〈k〉 := 〈Xεk〉 ⊕
⊕

a∈f(X)

a � [Xa〈k〉] (2)

X · E :=
⊕

a∈f(X)

a � [Xa · E] with X proper: Xε = 0K (3)

X | Y := 〈XεYε〉 ⊕ 〈Xε〉
⊕

b∈f(Y)

(ε|b) � (1 | Yb) ⊕ 〈Yε〉
⊕

a∈f(X)

(a|ε) � (Xa | 1)

⊕
⊕

a|b∈f(X)×f(Y)

(a|b) � (Xa | Yb)
(4)

Since by definition expansions never map to null polynomials, some firsts might
be smaller that suggested by these equations. For instance in Z the sum of
〈1〉 ⊕ a � [〈1〉 � b] and 〈1〉 ⊕ a � [〈 − 1〉 � b] is 〈2〉.

The following lemma is simple to establish: lift semantic equivalences, such
as Proposition 2, to syntax, using Lemma 1.

Lemma 2. �X ⊕ Y� = �X� + �Y� �〈k〉X� = 〈k〉�X� �X〈k〉� = �X�〈k〉
�X · E� = �X� · �E� �X | Y� = �X� | �Y�

2.5 Finite Weighted Automata

Definition 5 (Weighted Automaton). A weighted automaton A is a tuple
〈M,G,K, Q,E, I, T 〉 where:

– M is a monoid,
– G (the labels) is a set of generators of M ,
– K (the set of weights) is a semiring,
– Q is a finite set of states,
– I and T are the initial and final functions from Q into K,
– E is a (partial) function from Q×G×Q into K \ {0K}; its domain represents

the transitions: (source, label , destination).

An automaton is proper if no label is εM .

A computation p = (q0, a0, q1)(q1, a1, q2) · · · (qn, an, qn+1) in an automaton
is a sequence of transitions where the source of each is the destination of the
previous one; its label is a0a1 · · · an ∈ M , its weight is I(q0) ⊗ E(q0, a0, q1) ⊗
· · ·⊗E(qn, an, qn+1)⊗T (qn+1) ∈ K. The evaluation of word u by A, A(u), is the
sum of the weights of all the computations labeled by u, or 0K if there are none.

58 A. Demaille

The behavior of an automaton A is the series �A� := m �→ A(m). A state q is
initial if I(q) �= 0K. A state q is accessible if there is a computation from an
initial state to q. The accessible part of an automaton A is the subautomaton
whose states are the accessible states of A. The size of an automaton, |A|, is its
number of states.

We are interested, given an expression E, in an algorithm to compute an
automaton AE such that �AE� = �E� (Definition 7). To this end, we first introduce
a simple recursive procedure to compute the expansion of an expression.

3 Expansion of a Rational Expression

Definition 6 (Expansion of a Rational Expression). The expansion of a
rational expression E, written d(E), is defined inductively as follows:

d(0) := 〈0K〉 d(1) := 〈1K〉 d(a) := a � [〈1K〉 � 1] (5)
d(E + F) := d(E) ⊕ d(F) (6)

d(〈k〉E) := 〈k〉d(E) d(E〈k〉) := d(E)〈k〉 (7)
d(E · F) := dp(E) · F ⊕ 〈dε(E)〉d(F) (8)

d(E∗) := 〈dε(E)∗〉 ⊕ 〈dε(E)∗〉dp(E) · E∗ (9)
d(E | F) := d(E) | d(F) (10)

where dε(E) := d(E)ε, dp(E) := d(E)p are the constant term/proper part of d(E).

The right-hand sides are indeed expansions. The computation trivially termi-
nates: induction is performed on strictly smaller subexpressions. These formulas
are enough to compute the expansion of an expression; there is no secondary
process to compute the firsts — indeed d(a) := a � [〈1K〉 � 1] suffices and every
other case simply propagates or assembles the firsts — or the constant terms.

Note that the firsts are a subset of the labels of the expression, hence of
G \ {ε}. In particular, no first includes ε.

Proposition 3. The expansion of a rational expression is equivalent to the
expression.

Proof. We prove that �d(E)� = �E� by induction on the expression. The equiv-
alence is straightforward for (5) to (7) and (10), viz., �d(E | F)� = �d(E) | d(F)�
(by (10)) = �d(E)� | �d(F)� (by Lemma 2) = �E� | �F� (by induction hypothesis)
= �E | F� (by Lemma 2). The case of multiplication, (8), follows from:

�d(E · F)� = �dp(E) · F ⊕ 〈dε(E)〉 · d(F)� = �dp(E)� · �F� + 〈dε(E)〉 · �d(F)�
= �dp(E)� · �F� + 〈dε(E)〉 · �F� = (�〈dε(E)〉� + �dp(E)�) · �F�

= �〈dε(E)〉 + dp(E)� · �F� = �d(E)� · �F�

= �E� · �F� = �E · F�

It might seem more natural to exchange the two terms (i.e., 〈dε(E)〉 · d(F) ⊕
dp(E) · F), but an implementation first computes d(E) and then computes d(F)
only if dε(E) �= 0K. The case of Kleene star, (9), follows from Proposition 1. �	

Derived-Term Automata of Multitape Rational Expressions 59

E

〈Eε〉〈Eε〉

Ea,1

Ea,n

Ez,1

Ez,m

〈ka,1〉a
〈ka,n〉a

〈kz,1〉z

〈kz,m〉z

. . .

. . .

. . .

d(E)(a)

d(E)(z)

dp(E)

d(E) = 〈Eε〉 ⊕ a � [

d(E)(a)︷

︸︸

︸︸ ︷

︷ ︷
〈ka,1〉 � Ea,1 ⊕ · · · ⊕ 〈ka,n〉 � Ea,n] ⊕ · · ·

dε(E)

⊕ z � [〈kz,1〉 � Ez,1 ⊕ · · · ⊕ 〈kz,m〉 � Ez,m]

dp(E)

Fig. 2. Initial part of AE, the derived-term automaton of E. This figure is somewhat
misleading in that some Ea,i might be equal to an Ez,j , or E (but never another Ea,j).

4 Expansion-Based Derived-Term Automaton

Definition 7 (Expansion-BasedDerived-TermAutomaton).Thederived-
termautomaton of an expression E over G is the accessible part of the automaton
AE := 〈M,G,K, Q,E, I, T 〉 defined as follows:

– Q is the set of rational expressions on alphabet A with weights in K,
– I = E �→ 1K,
– E(F, a,F′) = k iff a ∈ f(d(F)) and 〈k〉F′ ∈ d(F)(a),
– T (F) = k iff 〈k〉 = d(F)(ε).

Since the firsts exclude ε, this automaton is proper. It is straightforward to
extract an algorithm from Definition 7, using a work-list of states whose outgoing
transitions to compute. The Fig. 2 illustrates the process. This approach admits a
natural lazy implementation: the whole automaton is not computed at once, but
rather, states and transitions are computed on-the-fly, on demand, for instance
when evaluating a word [7]. However, we must justify Definition 7 by proving
that this automaton is finite (Theorem 1).

Example 3 (Examples 1 and 2 continued). With E1 := 〈5〉1|1 + 〈4〉a d e∗|x +
〈3〉b d e∗|x + 〈2〉a c e∗|x y + 〈6〉b c e∗|x y, one has:

d(E1) = 〈5〉⊕a|x� [〈2〉� ce∗ | y ⊕〈4〉�de∗ | ε]⊕ b|x� [〈6〉� ce∗ | y ⊕〈3〉�de∗ | ε]
= X1 (from Example 2)

Figure 1 shows the resulting derived-term automaton.

Theorem 1. For any k-tape expression E, |AE| ≤ ∏
i∈[k](‖E‖i + 1) + 1.

Proof. The proof goes in several steps. First introduce the true derived
terms of E, a set of expressions noted TD(E), and the derived terms of E,
D(E) := TD(E) ∪ {E}. TD(E) admits a simple inductive definition similar to [2,

60 A. Demaille

Def. 3], to which we add TD(E |F) := (TD(E) |TD(F))∪ ({1} |TD(F))∪ (TD(E) |
{1}), where for two sets of expressions E,F we introduce E|F := {E|F}(E,F)∈E×F .
Second, verify that |TD(E)| ≤ ∏

i∈[k](‖E‖i + 1) (hence finite). Third, prove that
D(E) is “stable by expansion”, i.e., ∀F ∈ D(E), exprs(d(F)) ⊆ D(E). Finally,
observe that the states of AE are therefore members of D(E), whose size is less
than or equal to 1 + |TD(E)|. �	
Theorem 2. Any expression E and its expansion-based derived-term automaton
AE denote the same series, i.e., �AE� = �E�.

Example 4. Let Ak be the derived-term
automaton of the k-tape expression a∗

1 | · · · |
a∗

k. The states of Ak are all the possible
expressions where the tape i features 1 or
a∗

i , except 1 | · · · | 1. Therefore |Ak| = 2k − 1,
and

∏
i∈[k](‖E‖i + 1) = 2k.

A3, the derived-term automaton of a∗ |
b∗ | c∗, is depicted on the right.

a∗ | b∗ | c∗ a∗ | 1 | 1

a∗ | b∗ | 11 | b∗ | 1

1 | b∗ | c∗

1 | 1 | c∗ a∗ | 1 | c∗

A3

a|b|c

ε|ε|c

ε|b|ε

ε|b|c a|ε|ε

a|ε|c

a|b|ε

ε|ε|c

ε|b|ε

ε|ε|c

ε|b|ε
ε|b|c a|ε|ε

ε|ε|c

a|ε|ε

a|ε|c

ε|b|ε

a|ε|ε

a|b|ε

Proof (Theorem 2). We will prove �AE�
(m) = �E�(m) by induction on m ∈ M . If
m = ε, then �AE�(m) = Eε = d(E)(ε) =
�d(E)�(ε) = �E�(ε).

If m is not ε, then it can be generated in a (finite) number of ways: let
F (E,m) := {(a,ma) ∈ f(d(E)) × M | m = ama}. F (E,m) is a function: for a
given a, there is at most one ma such that (a,ma) ∈ F (E,m). Figure 2 is helpful.

�AE�(m) =
∑

(a,ma)∈F (E,m)

∑
i∈[na]

〈ka,i〉�AEa,i
�(ma) by definition of AE

=
∑

(a,ma)∈F (E,m)

∑
i∈[na]

〈ka,i〉�Ea,i�(ma) by induction hypothesis

=
∑

(a,ma)∈F (E,m)

� ∑
i∈[na]

〈ka,i〉Ea,i

�
(ma) by Lemma 1

=
∑

(a,ma)∈F (E,m)

�d(E)(a)�(ma) =
∑

(a,ma)∈F (E,m)

�a � d(E)(a)�(ama)

=
∑

a∈f(d(E))

�a � d(E)(a)�(m) F (E,m) is a function

=
� ∑

a∈f(d(E))

a � d(E)(a)
�
(m) by Lemma 2

= �dε(E)�(m) by definition
= �d(E)�(m) since m �= ε

= �E�(m) by Proposition 3 �	

Derived-Term Automata of Multitape Rational Expressions 61

Example 5. Let E2 := (a+ | x + b+ | y)∗, where E+ := EE∗. Its expansion is

d(E2) = 〈1〉 ⊕ a|x � [
(a∗ | 1)(a+ | x + b+ | y)∗] ⊕ b|y � [

(b∗ | 1)(a+ | x + b+ | y)∗]

= 〈1〉 ⊕ a|x � [(a∗ | 1)E2] ⊕ b|y � [(b∗ | 1)E2]

Its derived-term automaton is:

E2 = (a+|x + b+|y)∗

(a∗|1)E2

(b∗|1)E2

a|x

b|y

a|ε, a|x

b|y
a|x

b|ε, b|y

5 Related Work

Multitape rational expressions
have been considered early [11],
but “an n-way regular expression
is simply a regular expression
whose terms are n-tuples of alphabetic symbols or ε” [9]. However, Kaplan and
Kay [9] do consider the full generality of the semantics of operations on rational
languages and rational relations, including ×, the Cartesian product of lan-
guages, and even use rational expressions more general than their definition.
They do not, however, provide an explicit automaton construction algorithm,
apparently relying on the simple inductive construction (using the Cartesian
product between automata). Our | operator on series was defined as the tensor
product, denoted ⊗, by Sakarovitch [14, Sect. III.3.2.5], but without equivalent
for expressions.

Brzozowski [4] introduced the idea of derivatives of expressions as a
means to construct an equivalent automaton. The method applies to extended
(unweighted) rational expressions, and constructs a deterministic automaton.
Antimirov [3] modified the computation to rely on parts of the derivatives
(“partial derivatives”), which results in nondeterministic automata. Lombardy
and Sakarovitch [10] extended this approach to support weighted expressions;
independently, and with completely different foundations, Rutten [13] proposed
a similar construction. Caron et al. [5] introduced support for (unweighted)
extended expressions. Demaille [7] provides support for weighted extended
expressions; expansions, originally mentioned by Brzozowski [4], are placed at
the center of the construct, replacing derivatives, to gain independence with
respect to the size of the alphabet, and efficiency. However, the proofs still relied
on derivatives, contrary to the present work.

Based on (10) one could attempt to define a derivative-based version, with
∂a|b(E | F) := ∂aE | ∂bF, however this is troublesome on several regards. First, it
would also require ∂a|ε and ∂ε|b, whose semantics is dubious. Second, from an
implementation point of view, that would lead to repeated computations of ∂aE
and of ∂bF, unless one would cache them, but that’s exactly what expansions do.
And finally observe that in the derived-term automaton in Example 5, the state
(a∗ | 1)(a+ | x + b+ | y)∗ accepts words starting with a on the first tape, and y
on the second, yet an outgoing transition on a|y would result in a more complex

62 A. Demaille

automaton. Alternative definitions of derivatives may exist2, but anyway they
would no longer be equivalent to taking the left-quotient of the corresponding
language: a|y is a viable prefix from this state.

Different constructions of the derived-term automaton have been discovered
[1,6]. They do not rely on derivatives at all. It is an open question whether these
approaches can be adapted to support a tuple operator.

6 Conclusion

Our work is in the continuation of derivative-based computations of the derived-
term automaton [3–5,10]. However, we replaced the derivatives by expansions,
which lifted the requirement for the monoid of labels to be free.

In order to support k-tape (weighted) rational expressions, we introduced a
tupling operator, which is more compact and readable than simple expressions
on k-tape letters. We demonstrated how to build the derived-term automaton
for any such expressions.

Vcsn (see footnote 1) implements the techniques exposed in this paper. Our
future work aims at other operators, and studying more closely the complexity
of the algorithm.

Acknowledgments. The author thanks the anonymous reviewers for their construc-
tive comments, and A. Duret-Lutz, S. Lombardy, L. Saiu and J. Sakarovitch for their
feedback during this work.

References

1. Allauzen, C., Mohri, M.: A unified construction of the Glushkov, follow, and
Antimirov automata. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS,
vol. 4162, pp. 110–121. Springer, Heidelberg (2006)

2. Angrand, P.-Y., Lombardy, S., Sakarovitch, J.: On the number of broken derived
terms of a rational expression. J. Autom. Lang. Comb. 15(1/2), 27–51 (2010)

3. Antimirov, V.: Partial derivatives of regular expressions and finite automaton con-
structions. TCS 155(2), 291–319 (1996)

4. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
5. Caron, P., Champarnaud, J.-M., Mignot, L.: Partial derivatives of an extended

regular expression. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA
2011. LNCS, vol. 6638, pp. 179–191. Springer, Heidelberg (2011)

6. Champarnaud, J.-M., Ouardi, F., Ziadi, D.: An efficient computation of the equa-
tion K-automaton of a regular K-expression. In: Harju, T., Karhumäki, J., Lepistö,
A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 145–156. Springer, Heidelberg (2007)

7. Demaille, A.: Derived-term automata for extended weighted rational expressions.
Technical report 1605.01530, arXiv, May 2016. http://arxiv.org/abs/1605.01530

2 Makarevskii and Stotskaya [11] define derivatives, but (i) in the case of expressions
over tuples of letters, and (ii) only when in so-called “standard form”, for which he
notes “no method of constructing [an] n-expression in standard form for a regular
n-expression is known”.

http://arxiv.org/abs/1605.01530

Derived-Term Automata of Multitape Rational Expressions 63

8. Demaille, A., Duret-Lutz, A., Lombardy, S., Sakarovitch, J.: Implementation con-
cepts in Vaucanson 2. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982,
pp. 122–133. Springer, Heidelberg (2013)

9. Kaplan, R.M., Kay, M.: Regular models of phonological rule systems. Comput.
Linguist. 20(3), 331–378 (1994)

10. Lombardy, S., Sakarovitch, J.: Derivatives of rational expressions with multiplicity.
TCS 332(1–3), 141–177 (2005)

11. Makarevskii, A.Y., Stotskaya, E.D.: Representability in deterministic multi-tape
automata. Cybern. Syst. Anal. 5(4), 390–399 (1969)

12. Owens, S., Reppy, J., Turon, A.: Regular-expression derivatives re-examined. J.
Funct. Program. 19(2), 173–190 (2009)

13. Rutten, J.J.M.M.: Behavioural differential equations: a coinductive calculus of
streams, automata, and power series. TCS 308(1–3), 1–53 (2003)

14. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press,
Cambridge (2009). Corrected English translation of Éléments de théorie des auto-
mates, Vuibert (2003)

15. Thompson, K.: Programming techniques: regular expression search algorithm.
Commun. ACM 11(6), 419–422 (1968)

Solving Parity Games Using
an Automata-Based Algorithm

Antonio Di Stasio1, Aniello Murano1, Giuseppe Perelli2(B),
and Moshe Y. Vardi3

1 Università di Napoli Federico II, Naples, Italy
2 University of Oxford, Oxford, UK
giuseppe.perelli@cs.ac.ox.uk
3 Rice University, Houston, USA

Abstract. Parity games are abstract infinite-round games that take an
important role in formal verification. In the basic setting, these games are
two-player, turn-based, and played under perfect information on directed
graphs, whose nodes are labeled with priorities. The winner of a play is
determined according to the parities (even or odd) of the minimal pri-
ority occurring infinitely often in that play. The problem of finding a
winning strategy in parity games is known to be in UPTime ∩ CoUP-
Time and deciding whether a polynomial time solution exists is a long-
standing open question. In the last two decades, a variety of algorithms
have been proposed. Many of them have been also implemented in a
platform named PGSolver. This has enabled an empirical evaluation of
these algorithms and a better understanding of their relative merits.

In this paper, we further contribute to this subject by implementing,
for the first time, an algorithm based on alternating automata. More pre-
cisely, we consider an algorithm introduced by Kupferman and Vardi that
solves a parity game by solving the emptiness problem of a correspond-
ing alternating parity automaton. Our empirical evaluation demonstrates
that this algorithm outperforms other algorithms when the game has a
small number of priorities relative to the size of the game. In many con-
crete applications, we do indeed end up with parity games where the
number of priorities is relatively small. This makes the new algorithm
quite useful in practice.

1 Introduction

Parity games [11,31] are abstract infinite-duration games that represent a pow-
erful mathematical framework to address fundamental questions in computer
science. They are intimately related to other infinite-round games, such as mean
and discounted payoff, stochastic, and multi-agent games [3,4,6,7].

Work supported by NSF grants CCF-1319459 and IIS-1527668, NSF Expeditions in
Computing project “ExCAPE: Expeditions in Computer Augmented Program Engi-
neering”, BSF grant 9800096, ERC Advanced Investigator Grant 291528 (“Race”)
at Oxford and GNCS 2016: Logica, Automi e Giochi per Sistemi Auto-adattivi.
G. Perelli—Part of the work has been done while visiting Rice University.

c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 64–76, 2016.
DOI: 10.1007/978-3-319-40946-7 6

Solving Parity Games Using an Automata-Based Algorithm 65

In the basic setting, parity games are two-player, turn-based, played on
directed graphs whose nodes are labeled with priorities (also called, colors) and
players have perfect information about the adversary moves. The two players,
Player 0 and Player 1, take turns moving a token along the edges of the graph
starting from a designated initial node. Thus, a play induces an infinite path
and Player 0 wins the play if the smallest priority visited infinitely often is even;
otherwise, Player 1 wins the play. The problem of deciding if Player 1 has a win-
ning strategy (i.e., can induce a winning play) in a given parity game is known
to be in UPTime ∩ CoUPTime [15]; whether a polynomial time solution exists
is a long-standing open question [30].

Several algorithms for solving parity games have been proposed in the last two
decades, aiming to tighten the known complexity bounds for the problem, as well as
come out with solutions that work well in practice. Among the latter, we recall the
recursive algorithm (RE) proposed by Zielonka [31], the Jurdziński’s small-progress
measures algorithm [16] (SP), the strategy-improvement algorithm by Jurdziński
and Vöge [28], the (subexponential) algorithm by Jurdzinki et al. [17], and the
big-step algorithm by Schewe [25]. These algorithms have been implemented in
the platform PGSolver, and extensively investigated experimentally [12,13]. This
study has also led to a few key optimizations, such as the decomposition into
strongly connected components, the removal of self-cycles on nodes, and the appli-
cation of a priority compression [2,16]. Specifically, the latter allows to reduce a
game to an equivalent game where the priorities are replaced in such a way they
form a dense sequence of natural numbers, 1, 2, . . . , d, for a minimal possible d.
Table 1 summarizes the mentioned algorithms along with their known worst-case
complexity, where the parameters n, e, and d denote the number of nodes, edges,
and priorities, respectively (see [12,13], for more).

Table 1. Parity algorithms along with their computational complexities.

Algorithm Computational complexity

Recursive (RE) [31] O(e · nd)

Small Progress Measures (SP) [16] O(d · e · (n
d
)
d
2)

Strategy Improvement (SI) [28] O(2e · n · e)
Dominion Decomposition (DD) [17] O(n

√
n)

Big Step (BS) [25] O(e · n 1
3 d)

In formal system design [8,9,21,24], parity games arise as a natural evaluation
machinery for the automatic synthesis and verification of distributed and reactive
systems [1,19,27], as they allow to express liveness and safety properties in a very
elegant and powerful way [22]. Specifically, in model-checking, one can check the
correctness of a system with respect to a desired behavior, by checking whether
a model of the system, that is, a Kripke structure, is correct with respect to a
formal specification of its behavior, usually described in terms of a modal logic
formula. In case the specification is given as a μ-calculus formula [18], the model
checking question can be rephrased, in linear-time, as a parity game [11]. So, a
parity game solver can be used as a model checker for a μ-calculus specification
(and vice-versa), as well as for fragments such as CTL, CTL*, and the like.

66 A. Di Stasio et al.

In the automata-theoretic approach to μ-calculus model checking, under a
linear-time translation, one can also reduce the verification problem to a question
about automata. More precisely, one can take the product of the model and an
alternating tree automaton accepting all tree models of the specification. This
product can be defined as an alternating word parity automaton over a singleton
alphabet, and the system is correct with respect to the specification iff this
automaton is nonempty [21]. It has been proved there that the nonemptiness
problems for nondeterministic tree parity automata and alternating word parity
automata over a singleton alphabet are equivalent and that their complexities
coincide. For this reason, in the sequel we refer to these two kinds of automata
just as parity automata. Hence, algorithms for the solution of the μ-calculus
model checking problem, parity games, and the emptiness problem for parity
automata can be interchangeably used to solve any of these problems, as they are
linear-time equivalent. Several algorithms have been proposed in the literature
to solve the non-emptiness problem of parity automata, but none of them has
been ever implemented under the purpose of solving parity games.

In this paper, we study and implement an algorithm, which we call APT, intro-
duced by Kupferman and Vardi in [20], for solving parity games via emptiness
checking of alternating parity automata, and evaluate its performance over the
PGSolver platform. This algorithm has been sketched in [20], but not spelled
out in detail and without a correctness proof, two major gaps that we fill here.
The core idea of the APT algorithm is an efficient translation to weak alternating
automata [23]. These are a special case of Büchi automata in which the set of
states is partitioned into partially ordered sets. Each set is classified as accepting
or rejecting. The transition function is restricted so that the automaton either
stays at the same set or moves to a smaller set in the partial order. Thus, each
run of a weak automaton eventually gets trapped in some set in the partition.
The special structure of weak automata is reflected in their attractive compu-
tational properties. In particular, the nonemptiness problem for weak automata
can be solved in linear time [21], while the best known upper bound for the
nonemptiness problem for Büchi automata is quadratic [5]. Given an alternating
parity word automaton with n states and d colors, the APT algorithm checks
the emptiness of an equivalent weak alternating word automaton with O(nd)
states. The construction goes through a sequence of d intermediate automata.
Each automaton in the sequence refines the state space of its predecessor and
has one less color to check in its parity condition. Since one can check in linear
time the emptiness of such an automaton, we get an O(nd) overall complexity
for the addressed problem. APT does not construct the equivalent weak automa-
ton directly, but applies the emptiness test directly, constructing the equivalent
weak automaton on the fly.

We evaluated our implementation of the APT algorithm over several random
game instances, comparing it with RE and SP algorithms. Our main finding is that
when the number of the priority in a game is significantly smaller (specifically,
logarithmically) than the number of nodes in the game graph, the APT algorithm
significantly outperform the other algorithms. We take this as an important
development since in many real applications of parity games we do get game

Solving Parity Games Using an Automata-Based Algorithm 67

instances where the number of priorities is indeed very small compared to the
size of the game graph. For example, coming back to the automata-theoretic
approach to μ-calculus model checking [21], the translation usually results in a
parity automaton (and thus in a parity game) with few priorities, but with a huge
number of nodes. This is due to the fact that usually specification formulas are
small, while the system is big. A similar phenomenon occurs in the application
of parity games to reactive synthesis [27].

Outline. The sequel of the paper is as follows. Section 2 gives preliminary con-
cepts on parity games. Section 3 introduces extended parity games and describes
the APT algorithm in detail, including a proof of correctness. Section 4 describes
the implementation of the APT algorithm in the tool PGSolver. Section 5 contains
the experimental results on runtime for APT over random benchmarks. Finally,
Sect. 6 gives some conclusions.

2 Preliminaries

In this section, we briefly recall some basic concepts regarding parity games. A
Parity Game (Pg, for short) is a tuple G � 〈Ps0,Ps1,Mv , p〉, where Ps0 and
Ps1 are two finite disjoint sets of nodes for Player 0 and Player 1, respectively,
with Ps = Ps0 ∪ Ps1, Mv ⊆ Ps × Ps, is the left-total binary relation of moves,
and p : Ps → N is the priority function1. Each player moves a token along nodes
by means of the relation Mv . By Mv(q) � {q′ ∈ Ps : (q, q′) ∈ Mv} we denote
the set of nodes to which the token can be moved, starting from node q.

5
q5

3
q0

2
q3

1
q1

5
q2

2
q4

2
q6

Fig. 1. A parity game.

As a running example, consider the Pg
depicted in Fig. 1. The set of players’s nodes is
Ps0 = {q0, q3, q4, q5} and Ps1 = {q1, q2, q6}; we
use circles to denote nodes belonging to Player 0
and squares for those belonging to Player 1. Mv
is described by arrows. Finally, the priority func-
tion p is given by p(q1) = 1, p(q3) = p(q4) =
p(q6) = 2, p(q0) = 3, and p(q2) = p(q5) = 5.

A play (resp., history) over G is an infinite
(resp., finite) sequence π = q1·q2·. . . ∈ Pth ⊆ Psω

(resp., ρ = q1 · . . . · qn ∈ Hst ⊆ Ps∗) of nodes that
agree with Mv, i.e., (πi, πi+1) ∈ Mv , for each natural number i ∈ N (resp.,
i ∈ [1, n − 1]). In the Pg in Fig. 1, a possible play is π = q1 · q5 · q2 · (q3)ω, while
a possible history is given by ρ = q1 · q5 · q2 · q3.

For a given play π = q1 ·q2 ·. . ., by p(π) = p(q1)·p(q2)·. . . ∈ N
ω we denote the

associated priority sequence. As an example, the associated priority sequence to
π is given by p(π) = 1 · 5 · 5 · (2)ω.

For a given history ρ = q1 · . . . · qn, by fst(ρ) � q1 and lst(ρ) � qn we denote
the first and last node occurring in ρ, respectively. For the example history, we
have that fst(ρ) = q1 and lst(ρ) = q3. By Hst0 (resp., Hst1) we denote the set of

1 Here, we mean the set of non-negative integers, excluding zero.

68 A. Di Stasio et al.

histories ρ such that lst(ρ) ∈ Ps0 (resp., lst(ρ) ∈ Ps1). Moreover, by Inf(π) and
Inf(p(π)) we denote the set of nodes and priorities that occur infinitely often in
π and p(π), respectively. Finally, a play π is winning for Player 0 (resp., Player
1) if min(Inf(p(π))) is even (resp., odd). In the running example, we have that
Inf(π) = {q3} and Inf(p(π)) = {2} and so, π is winning for Player 0.

A Player 0 (resp., Player 1) strategy is a function str0 : Hst0 → Ps (resp.,
str1 : Hst1 → Ps) such that, for all ρ ∈ Hst0 (resp., ρ ∈ Hst1), it holds that
(lst(ρ), str0(ρ)) ∈ Mv (resp., lst(ρ), str1(ρ)) ∈ Mv).

Given a node q , Player 0 and a Player 1 strategies str0 and str1, the play of
these two strategies, denoted by play(q, str0, str1), is the only play π in the game
that starts in q and agrees with both Player 0 and Player 1 strategies, i.e., for
all i ∈ N, if πi ∈ Ps0, then πi+1 = str0(πi), and πi+1 = str1(πi), otherwise.

A strategy str0 (resp., str1) is memoryless if, for all ρ1, ρ2 ∈ Hst0 (resp.,
ρ1, ρ2 ∈ Hst1), with lst(ρ1) = lst(ρ2), it holds that str0(ρ1) = str0(ρ2) (resp.,
str0(ρ1) = str1(ρ2)). Note that a memoryless strategy can be defined on the set
of nodes, instead of the set of histories. Thus we have that they are of the form
str0 : Ps0 → Ps and str1 : Ps1 → Ps.

We say that Player 0 (resp., Player 1) wins the game G from node q if there
exists a Player 0 (resp., Player 1) strategy str0 (resp., str1) such that, for all
Player 1 (resp., Player 0) strategies str1 (resp., str0) it holds that play(q, str0, str1)
is winning for Player 0 (resp., Player 1).

A node q is winning for Player 0 (resp., Player 1) if Player 0 (resp., Player 1)
wins the game from q . By Win0(G) (resp., Win1(G)) we denote the set of win-
ning nodes in G for Player 0 (resp., Player 1). Parity games enjoy determinacy,
meaning that, for every node q, either q ∈ Win0(G) or q ∈ Win1(G) [11]. More-
over, it can be proved that, if Player 0 (resp., Player 1) has a winning strategy
from node q, then it has a memoryless winning strategy from the same node [31].

3 Extended Parity Games

In this section we recall the APT algorithm, introduced by Kupferman and Vardi
in [20], to solve parity games via emptiness checking of parity automata. More
important, we fill two major gaps from [20] which is to spell out in details the
definition of the APT algorithm as well as to give a correctness proof. The APT
algorithm makes use of two special (incomparable) sets of nodes, denoted by V
and A, and called set of Visiting and Avoiding, respectively. Intuitively, a node
is declared visiting for a player at the stage in which it is clear that, by reaching
that node, he can surely induce a winning play and thus winning the game.
Conversely, a node is declared avoiding for a player whenever it is clear that, by
reaching that node, he is not able to induce any winning play and thus losing
the game. The algorithm, in turns, tries to partition all nodes of the game into
these two sets. The formal definition of the sets V and A follows.

An Extended Parity Game, (Epg, for short) is a tuple 〈Ps0,Ps1,V,A,Mv , p〉
where Ps0, Ps1, Mv are as in Pg. The subsets of nodes V,A ⊆ Ps = Ps0∪Ps1 are
two disjoint sets of Visiting and Avoiding nodes, respectively. Finally, p : Ps → N

is a parity function mapping every non-visiting and non-avoiding set to a color.

Solving Parity Games Using an Automata-Based Algorithm 69

The notions of histories and plays are equivalent to the ones given for Pg.
Moreover, as far as the definition of strategies is concerned, we say that a play
π that is in Ps · (Ps \ (V ∪ A))∗ · V · Psω is winning for Player 0, while a play π
that is in Ps · (Ps \ (V ∪ A))∗ · A · Psω is winning for Player 1. For a play π that
never hits either V or A, we say that it is winning for Player 0 iff it satisfies the
parity condition, i.e.,min(Inf(p(π))) is even, otherwise it is winning for Player 1.

Clearly, Pgs are special cases of Epgs in which V = A = ∅. Conversely,
one can transform an Epg into an equivalent Pg with the same winning set by
simply replacing every outgoing edge with loop to every node in V ∪A and then
relabeling each node in V and A with an even and an odd number, respectively.

In order to describe how to solve Epgs, we introduce some notation. By
Fi = p−1(i) we denote the set of all nodes labeled with i. Doing that, the
parity condition can be described as a finite sequence α = F1 · . . . · Fk of sets,
which alternates from sets of nodes with even priorities to sets of nodes with
odd priorities and the other way round, forming a partition of the set of nodes,
ordered by the priority assigned by the parity function. We call the set of nodes
Fi an even (resp., odd) parity set if i is even (resp., odd).

For a given set X ⊆ Ps, by force0(X) = {q ∈ Ps0 : X∩Mv(q)
= ∅}∪ {q ∈ Ps1

: X ⊆ Mv(q)} we denote the set of nodes from which Player 0 can force to move
in the set X. Analogously, by force1(X) = {q ∈ Ps1 : X ∩ Mv(q)
= ∅} ∪ {q ∈ Ps0

: X ⊆ Mv(q)} we denote the set of nodes from which Player 1 can force to move
in the set X. For example, in the Pg in Fig. 1, force1({q6}) = {q2, q4, q6}.

We now introduce two functions that are co-inductively defined that will be
used to compute the winning sets of Player 0 and Player 1, respectively.

For a given Epg G with α being the representation of its parity condition, V
its visiting set, and A its avoiding set, we define the functions Win0(α,V,A) and
Win1(α,A,V). Informally, Win0(α,V,A) computes the set of nodes from which
the player 0 has a strategy that avoids A and either force a visit in V or he wins
the parity condition. The definition is symmetric for the function Win1(α,A,V).
Formally, we define Win0(α,V,A) and Win1(α,A,V) as follows.

If α = ε is the empty sequence, then

– Win0(ε,V,A) = force0(V) and
– Win1(ε,A,V) = force1(A).

Otherwise, if α = F · α′, for some set F, then

– Win0(F · α′,V,A) = Ps \ μY(Win1(α′,A ∪ (F \ Y),V ∪ (F ∩ Y))) and
– Win1(F · α′,A,V) = Ps \ μY(Win0(α′,V ∪ (F \ Y),A ∪ (F ∩ Y))),

where μ is the least fixed-point operator2.
To better understand how APT solves a parity game we show a simple piece

of execution on the example in Fig. 1. It is easy to see that such parity game is

2 The unravellings of Win0 and Win1 have some analogies with the fixed-point formula
introduced in [29] also used to solve parity games. Unlike our work, however, the
formula presented there is just a translation of the Zielonka algorithm [31].

70 A. Di Stasio et al.

won by Player 0 in all the possible starting nodes. Then, the fixpoint returns the
entire set Ps. The parity condition is given by α = F1 · F2 · F3 · F4 · F5, where
F1 = {q1}, F2 = {q3, q4, q6}, F3 = {q0}, F4 = ∅, F5 = {q5, q6}. The repeated
application of functions Win0(α,V,A) and Win1(α,A,V) returns:

Win0(α, ∅, ∅) = Ps\μY1(Ps\μY2(Ps\μY3(Ps\μY4(Ps\μY5(Ps\force1(V6))))))

in which the sets Yi are the nested fixpoint of the formula, while the set V6 is
obtained by recursively applying the following:

– V1 = ∅, Vi+1 = Ai ∪ (Fi \ Yi), and
– A1 = ∅, Ai+1 = Vi ∪ (Fi ∩ Yi).

As a first step of the fixpoint computation, we have that Y1 = Y2 = Y3 =
Y4 = Y5 = ∅. Then, by following the two iterations above for the example in
Fig. 1, we obtain that V6 = {q0, q1, q2, q5}.

At this point we have that force1(V6) = {q0, q1, q5, q6}
= ∅ = Y5. This means
that the fixpoint for Y5 has not been reached yet. Then, we update the set Y5

with the new value and compute again V6. This procedure is repeated up to the
point in which force1(V6) = Y5, which means that the fixpoint for Y5 has been
reached. Then we iteratively proceed to compute Y4 = Ps\Y5 until a fixpoint for
Y4 is reached. Note that the sets Ai and Vi depends on the Yi and so they need
to be updated step by step. As soon as a fixpoint for Y1 is reached, the algorithm
returns the set Ps \ Y1. As a fundamental observation, note that, due to the fact
that the fixpoint operations are nested one to the next, updating the value of Yi

implies that every Yj , with j > i, needs to be reset to the empty set.
We now prove the correctness of this procedure. Note that the algorithm is

an adaptation of the one provided by Kupferman and Vardi in [20], for which a
proof of correctness has never been shown.

Theorem 1. Let G = 〈Ps0,Ps1,V,A,Mv , p〉 be an Epg with α being the parity
sequence condition. Then, the following properties hold.

1. If α = ε then Win0(G) = Win0(α,V,A) and Win1(G) = Win1(α,V,A);
2. If α starts with an odd parity set, it holds that Win0(G) = Win0(α,V,A);
3. If α starts with an even parity set, it holds that Win1(G) = Win1(α,V,A).

Proof. The proof of Item 1 follows immediately by definition, as α = ε forces
the two players to reach their respective winning sets in one step.

For Item 2 and 3, we need to find a partition of F into a winning set for Player
0 and a winning set for Player 1 such that the game is invariant w.r.t. the winning
sets, once they are moved to visiting and avoiding, respectively. We proceed by
mutual induction on the length of the sequence α. As base case, assume α = F
and F to be an odd parity set. Then, first observe that Player 0 can win only by
eventually hitting the set V, as the parity condition is made by only odd numbers.
We have that Win0(F,V,A) = μY(Ps \ Win1(ε,A ∪ (F \ Y),V ∪ (F ∩ (Y)))) =
μY(Ps \ force1(A ∪ (F \ Y))) that, by definition, computes the set from which
Player 1 cannot avoid a visit to V, hence the winning set for Player 0. In the
case the set F is an even parity set the reasoning is symmetric.

Solving Parity Games Using an Automata-Based Algorithm 71

As an inductive step, assume that Items 2 and 3 hold for sequences α of length
n, we prove that it holds also for sequences of the form F·α of length n+1. Suppose
that F is a set of odd priority. Then, we have that, by induction hypothesis, the
formula Win1(α,A ∪ (F \ Y),V ∪ (F ∩ Y)) computes the winning set for Player 1
for the game in which the nodes in F∩Y are visiting, while the nodes in F \Y are
avoiding. Thus, its complement Ps\Win1(α,A∪ (F\Y),V∪ (F∩Y)) returns the
winning set for Player 0 in the same game. Now, observe that, if a set Y′ is bigger
than Y, then Ps\Win1(α,A∪(F\Y′),V∪(F∩Y′)) is the winning set for Player 0 in
which some node in F\Y has been moved from avoiding to visiting. Thus we have
that Ps\Win1(α,A∪(F\Y),V∪(F∩Y)) ⊆ Ps\Win1(α,A∪(F\Y′),V∪(F∩Y′)).
Moreover, observe that, if a node q ∈ F∪A is winning for Player 0, then it can be
avoided in all possible winning plays, and so it is winning also in the case q is only
in F. It is not hard to see that, after the last iteration of the fixpoint operator, the
two sets F \Y and F∩Y can be considered in avoiding and winning, respectively,
in a way that the winning sets of the game are invariant under this update, which
concludes the proof of Item 2.

Also in the inductive case, the reasoning for Item 3 is perfectly symmetric to
the one for Item 2. ��

4 Implementation of APT in PGSolver

Fig. 2. APT algorithm

In this section we describe the
implementation of APT in the well-
known platform PGSolver developed
in OCaml by Friedman and Lange [13],
which collects the large majority of the
algorithms introduced in the literature
to solve parity games [14,16,17,25,26,
28,31].

We briefly recall the main aspects
of this platform. The graph data struc-
ture is represented as a fixed length
array of tuples. Every tuple has all
information that a node needs, such
as the owner player, the assigned pri-
ority and the adjacency list of nodes.
The platform implements a collection
of tools to generate and solve parity
games, as well as compare the per-
formance of different algorithms. The
purpose of this platform is not just
that of making available an environ-
ment to deploy and test a generic solu-
tion algorithm, but also to investigate
the practical aspects of the different

72 A. Di Stasio et al.

algorithms on the different classes of parity games. Moreover, PGSolver imple-
ments optimizations that can be applied to all algorithms in order to improve
their performance. The most useful optimizations in practice are decomposition
into strongly connected components, removal of self-cycles on nodes, and priority
compression.

We have added to PGSolver an implementation of the APT algorithm intro-
duced in Sect. 3. Our procedure applies the fixpoint algorithm to compute the
set of winning positions in the game by means of two principal functions that
implement the two functions of the algorithm core processes, i.e., function forcei

and the recursive function Wini(α, V,A). The pseudocode of the APT algorithm
implementation is reported in Fig. 2. It takes six parameters: the Player (0 or 1),
the game, the set of nodes, the condition α, the set of visiting and avoiding.
Moreover, we define the function min fp for the calculation of the fixed point.
The whole procedure makes use of Set and List data structures, which are avail-
able in the OCaml’s standard library, for the manipulation of the sets visiting
and avoiding, and the accepting condition α. The tool along with the implemen-
tation of the APT algorithm is available for download from https://github.com/
antoniodistasio/pgsolver-APT.

For the sake of clarity, we report that in PGSolver it is used the maximal
priority to decide who wins a given parity game. Conversely, the APT algorithm
uses the minimal priority. However, these two conditions are well known to be
equivalent and, in order to compare instances of the same game on different
implementations of parity games algorithms in PGSolver, we simply convert the
game to the specific algorithm accordingly. For the conversion, we simply use a
suitable permutation of the priorities.

5 Experiments

In this section, we report the experimental results on evaluating the performance
for the APT algorithm implemented in PGSolver over the random benchmarks
generated in the platform. We have compared the performance of the implemen-
tation of APT with those of RE and SP. We have chosen these two algorithms as
they have been proved to be the best-performing in practice [13].

All tests have been run on an AMD Opteron 6308 @2.40 GHz, with 224 GB
of RAM and 128 GB of swap running Ubuntu 14.04. We note that APT has
been executed without applying any optimization implemented in PGSolver [13],
while SP and RE are run with such optimizations. Applying these optimization
on APT is a topic of further research.

We evaluated the performance of the three algorithms over a set of games
that are randomly generated by PGSolver, in which it is possible to give the
number n of states and the number k of priority as parameters. We have taken
20 different game instances for each set of parameters and used the average time
among them returned by the tool. For each game, the generator works as follows.
For each node q in the graph-game, the priority p(q) is chosen uniformly between
0 and k − 1, while its ownership is assigned to Player 0 with probability 1

2 , and
to Player 1 with probability 1

2 . Then, for each node q , a number d from 1 to n
is chosen uniformly and d distinct successors of q are randomly selected.

https://github.com/antoniodistasio/pgsolver-APT
https://github.com/antoniodistasio/pgsolver-APT

Solving Parity Games Using an Automata-Based Algorithm 73

Table 2. Runtime executions with fixed priorities 2, 3 and 5

n 2 Pr 3 Pr 5 Pr

RE SP APT RE SP APT RE SP APT

2000 4.94 5.05 0.10 4.85 5.20 0.15 4.47 4.75 0.42

4000 31.91 32.92 0.17 31.63 31.74 0.22 31.13 32.02 0.82

6000 107.06 108.67 0.29 100.61 102.87 0.35 100.81 101.04 1.39

8000 229.70 239.83 0.44 242.24 253.16 0.5 228.48 245.24 2.73

10000 429.24 443.42 0.61 482.27 501.20 0.85 449.26 464.36 3.61

12000 772.60 773.76 0.87 797.07 808.96 0.98 762.89 782.53 6.81

14000 1185.81 1242.56 1.09 1227.34 1245.39 1.15 1256.32 1292.80 10.02

5.1 Experimental Results

Table 3. Runtime executions with
n = ek and n = 2k and n = 10k

n Pr RE SP APT
n = 2k

1024 10 1.25 1.25 8.58

2048 11 7.90 8.21 71.08

4096 12 52.29 52.32 1505.75

8192 13 359.29 372.16 abortT

16384 14 2605.04 2609.29 abortT

32768 15 abortT abortT abortT

n = ek

21 3 0 0 0

55 4 0 0 0.02

149 5 0.01 0.01 0.08

404 6 0.14 0.14 0.19

1097 7 1.72 1.72 0.62

2981 8 24.71 24.46 7.88

8104 9 413.2.34 414.65 35.78

22027 10 abortT abortT 311.87

n = 10k

10 1 0 0 0

100 2 0 0 0

1000 3 1.3 1.3 0.04

10000 4 738.86 718.24 4.91

100000 5 abortM abortM 66.4

We ran two experiments. First, we tested
games with 2, 3, and 5 priorities, where for
each of them we measured runtime perfor-
mance for different state-space sizes, rang-
ing in {2000, 4000, 6000, 8000, 10000, 12000,
14000}. The results are in Table 2, in which
the number of states is reported in col-
umn 1, the number of colors is reported
in the macro-column 2, 3, and 5, each of
them containing the runtime executions,
expressed in seconds, for the three algo-
rithms. Second, we evaluated the algorithms
on games with an exponential number of
nodes w.r.t. the number of priorities. More
precisely, we ran experiments for n = 2k,
n = ek and n = 10k, where n is the number
of states and k is the number of priorities.

The experiment results are reported in
Table 3. By abortT , we denote that the exe-
cution has been aborted due to time-out
(greater of one hour), while by abortM we
denote that the execution has been aborted
due to mem-out.

The first experiment shows that with a
fixed number of priorities (2, 3, and 5) APT
significantly outperforms the other algo-
rithms, showing excellent runtime execution
even on fairly large instances. For example, for n = 14000, the running time for
both RE and SP is about 20 min, while for APT it is less than a minute.

74 A. Di Stasio et al.

The results of the exponential-scaling experiments, shown in Table 3, give
more nuanced results. Here, APT is the best performing algorithm for n = ek and
n = 10k. For example, when n = 100000 and k = 5, both RE and SP memout,
while APT completes in just over one minute. That is, the efficiency of APT is
notable also in terms of memory usage. At the same APT underperforms for
n = 2k. Our conclusion is that APT has superior performance when the number
of priorities is logarithmic in the number of game-graph nodes, but the base of
the logarithm has to be large enough. As we see experimentally, e is sufficiently
large base, but 2 is not. This point deserve further study, which we leave to future
work. In Fig. 3 we just report graphically the benchmarks in the case n = ek. An
interested reader can find more detailed experiment results at https://github.
com/antoniodistasio/pgsolver-APT.

Fig. 3. Runtime executions with n = ek (Color figure online)

6 Conclusion

The APT algorithm, an automata-theoretic technique to solve parity games, has
been designed two decades ago by Kupferman and Vardi [20], but never consid-
ered to be useful in practice [12]. In this paper, for the first time, we fill missing
gaps and implement this algorithm. By means of benchmarks based on ran-
dom games, we show that it is the best performing algorithm for solving parity
games when the number of priorities is very small w.r.t. the number of states.
We believe that this is a significant result as several applications of parity games
to formal verification and synthesis do yield games with a very small number of
priorities.

The specific setting of a small number of priorities opens up opportunities for
specialized optimization technique, which we aim to investigate in future work.
This is closely related to the issue of accelerated algorithms for three-color parity
games [10]. We also plan to study why the performance of the APT algorithm is
so sensitive to the relative number of priorities, as shown in Table 3.

https://github.com/antoniodistasio/pgsolver-APT
https://github.com/antoniodistasio/pgsolver-APT

Solving Parity Games Using an Automata-Based Algorithm 75

References

1. Aminof, B., Kupferman, O., Murano, A.: Improved model checking of hierarchical
systems. Inf. Comput. 210, 68–86 (2012)

2. Antonik, A., Charlton, N., Huth, M.: Polynomial-time under-approximation of
winning regions in parity games. ENTCS 225, 115–139 (2009)

3. Berwanger, D.: Admissibility in infinite games. In: Thomas, W., Weil, P. (eds.)
STACS 2007. LNCS, vol. 4393, pp. 188–199. Springer, Heidelberg (2007)

4. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Generalized mean-payoff
and energy games. In: FSTTCS 2010. LIPIcs, vol. 8, pp. 505–516 (2010)

5. Chatterjee, K., Henzinger, M.: An O(n2) time algorithm for alternating Büchi
games. In: SODA 2012, pp. 1386–1399 (2012)

6. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean-payoff parity games. In:
LICS 2005, pp. 178–187 (2005)

7. Chatterjee, K., Jurdzinski, M., Henzinger, T.A.: Quantitative stochastic parity
games. In: SODA 2004, pp. 121–130 (2004)

8. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) LP 1981. LNCS, vol. 131,
pp. 52–71. Springer, Heidelberg (1982)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking (2002)
10. de Alfaro, L., Faella, M.: An accelerated algorithm for 3-color parity games with

an application to timed games. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 108–120. Springer, Heidelberg (2007)

11. Emerson, E.A., Jutla, C.: Tree automata, µ-calculus and determinacy. In: FOCS
1991, pp. 368–377 (1991)

12. Friedmann, O., Lange, M.: The PGSolver collection of parity game solvers.
University of Munich (2009)

13. Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z., Ravn, A.P.
(eds.) ATVA 2009. LNCS, vol. 5799, pp. 182–196. Springer, Heidelberg (2009)

14. Heljanko, K., Keinänen, M., Lange, M., Niemelä, I.: Solving parity games by a
reduction to SAT. J. Comput. Syst. Sci. 78(2), 430–440 (2012)

15. Jurdzinski, M.: Deciding the winner in parity games is in UP ∩ co-Up. Inf. Process.
Lett. 68(3), 119–124 (1998)

16. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, p. 290. Springer, Heidelberg (2000)

17. Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. SIAM J. Comput. 38(4), 1519–1532 (2008)

18. Kozen, D.: Results on the propositional µ-calculus. TCS 27(3), 333–354 (1983)
19. Kupferman, O., Vardi, M., Wolper, P.: Module checking. Inf. Comput. 164(2),

322–344 (2001)
20. Kupferman, O., Vardi, M.Y.: Weak alternating automata and tree automata empti-

ness. In: STOC, pp. 224–233 (1998)
21. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata theoretic approach to

branching-time model checking. J. ACM 47(2), 312–360 (2000)
22. Mogavero, F., Murano, A., Sorrentino, L.: On promptness in parity games. In:

McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol.
8312, pp. 601–618. Springer, Heidelberg (2013)

23. Muller, D.E., Saoudi, A., Schupp, P.E.: Weak alternating automata give a simple
explanation of why most temporal and dynamic logics are decidable in exponential
time. In: LICS 1988, pp. 422–427 (1988)

76 A. Di Stasio et al.

24. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982.
LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982)

25. Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)

26. Schewe, S.: An optimal strategy improvement algorithm for solving parity
and payoff games. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol.
5213, pp. 369–384. Springer, Heidelberg (2008)

27. Thomas, W.: Facets of synthesis: revisiting church’s problem. In: de Alfaro, L. (ed.)
FOSSACS 2009. LNCS, vol. 5504, pp. 1–14. Springer, Heidelberg (2009)

28. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving
parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 202–215. Springer, Heidelberg (2000)

29. Walukiewicz, I.: Pushdown processes: games and model checking. In: Alur, R.,
Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 62–74. Springer, Heidelberg
(1996)

30. Wilke, T.: Alternating tree automata, parity games, and modal µ-calculus. Bull.
Belg. Math. Soc. Simon Stevin 8(2), 359 (2001)

31. Zielonka, W.: Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theor. Comput. Sci. 200(1–2), 135–183 (1998)

Ternary Equational Languages

Zoltán Ésik(B)

Department of Computer Science, University of Szeged, Szeged 6720, Hungary
ze@inf.u-szeged.hu

Abstract. We present a general method for solving fixed point equa-
tions involving pseudo-complementation over complete ternary algebras
satisfying some infinite distributivity conditions as generalized truth val-
ues, and finitely decomposable algebras as data domains. When the alge-
bra of data domains is a word or a tree algebra, fixed point equations
may be interpreted as grammars and we obtain wide classes of (fuzzy)
languages and tree languages.

1 Introduction

A ternary algebra, introduced in [6], is a De Morgan algebra [2] equipped with an
additional constant satisfying certain natural equational laws. Ternary algebras
form a variety [13,14] and are closely related to Kleene algebras [2]. Moreover,
every ternary algebra is a normal distributive i-lattice as defined in [15]. The
initial (and only subdirectly irreducible, cf. [15]) ternary algebra is Kleene’s 3-
element lattice of the classical truth values and an intermediate truth value
which is the interpretation of the additional constant. In addition to the binary
infimum and supremum operations, it is equipped with the unary operation of
pseudo-complementation, or involution, which interchanges the classical truth
values and maps the intermediate truth value to itself.

Systems of fixed point equations over the 3-element Kleene algebra, called
stipulations, were considered already in [17]. In this paper, our aim is to describe
a method for solving systems of fixed point equations over fuzzy sets in TA,
where T is a complete ternary algebra of truth values satisfying certain infinite
distributivity conditions, and A is a finitely decomposable algebra (defined in
the paper) serving as data domain. The fixed point equations may involve the
anti-monotonic pseudo-complementation operation of the ternary algebra.

In order to obtain canonical solutions to fixed point equations, we show that
every complete ternary algebra satisfying the infinite distributivity conditions
may naturally be equipped with a new ordering (the uncertainty or informa-
tion order) turning the algebra into a complete partial order (cf. Theorem2).
Our proof of this fact uses a representation theorem for complete ternary alge-
bras satisfying the distributivity conditions (Theorem1). We then show that the
structure map associated with a system of fixed point equations over a complete

Z. Ésik—Partially supported by the NKFI grant no. 108488.

c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 77–88, 2016.
DOI: 10.1007/978-3-319-40946-7 7

78 Z. Ésik

ternary algebra T satisfying the distributivity conditions and a finitely decom-
posable algebra A is continuous with respect to the uncertainty order and thus
has a least fixed point which can be constructed in ω iterations (Theorem 3).
Our algebraic theorems are necessary for this result. The canonical solution of
a system is defined as this least fixed point. A ternary equational (fuzzy) set is
a component of the canonical solution of a finite system. Each finite system of
equations over TA (in normal form) can be seen as a sort of generalized grammar.
The canonical solution of the system provides the semantics of the grammar. By
specializing the algebra A to be a monoid of finite words or an algebra of trees,
we obtain various notions of grammars defining ternary equational (fuzzy) sets,
or languages, of words or trees over T .

2 Ternary Algebras and Symmetric Complete Lattices

Regarding partially ordered sets and lattices, we will use standard terminology,
see e.g. [9]. It is well-known that a lattice L can be viewed as a partially ordered
set such that the supremum x ∨ y and the infimum x ∧ y exist for all x, y ∈ L.
Alternatively, a lattice can be seen as an abstract algebra, equipped with binary
operations ∨ and ∧, subject to certain equational axioms. A lattice homomor-
phism preserves these operations and is (thus) monotonic, i.e., it preserves the
order relation. Moreover, a bijective function between lattices is a lattice iso-
morphism iff it is monotonic and its inverse is also monotonic, i.e., when it is
an order isomorphism. A lattice is bounded if it is equipped with distinguished
constants ⊥ and � which are the least and the greatest elements, respectively.
A bounded lattice homomorphism also preserves these distinguished constants.
A lattice L is called complete if each subset X of L has a supremum denoted∨

X. It then follows that each X ⊆ L also has an infimum
∧

X. In particular,
a complete lattice has a least and a greatest element and thus gives rise to a
bounded lattice.

An (order reversing) involution of a partially ordered set P = (P,≤) is a
function ∼: P → P such that for all x, y ∈ P ,

x ≤ y → ∼ x ≥ ∼ y and ∼∼ x = x.

Note that an involution of P is a bijective function, in fact an anti-
automorphism which is its own inverse. Moreover, for any X ⊆ P ,

∨
X exists iff∧ ∼ X does, and symmetrically,

∧
X exists iff

∨ ∼ X does, and if they exist,
then

∼
∨

X =
∧

∼ X and ∼
∧

X =
∨

∼ X.

Suppose that D is a bounded distributive lattice [2] with least and greatest
elements ⊥ and �, respectively. When D is equipped with an involution ∼,
also called pseudo-complementation, then it is a De Morgan algebra. A ternary
algebra T [6] is a De Morgan algebra endowed with a constant Φ which is a fixed
point of the function ∼ and satisfies

x ∧ ∼ x ≤ Φ (1)

Ternary Equational Languages 79

for all x ∈ T . Dually, it follows that Φ ≤ y ∨ ∼ y for all y ∈ L. Hence every
ternary algebra T satisfies Kleene’s law x ∧ ∼ x ≤ y ∨ ∼ y for all x, y ∈ L and is
thus a Kleene algebra [2], and by (1), also a centered Kleene algebra. Conversely,
every centered Kleene algebra is clearly a ternary algebra. Also, if T is a ternary
algebra (or equivalently, a centered Kleene algebra), then Φ is the only fixed point
of ∼, as if Φ′ is another fixed point, then Φ′ = Φ′ ∧ ∼ Φ′ ≤ Φ ≤ Φ′ ∨ ∼ Φ′ = Φ′.
For more information about ternary algebras, we refer to [1,5,10,13].

Homomorphisms of De Morgan algebras are bounded lattice homomorphisms
preserving the involution. A homomorphism of ternary algebras is a De Morgan
algebra homomorphism which preserves the constant Φ.

Example 1. Examples of ternary algebras include the 3-element ternary algebra
{⊥ < Φ < �} or {ff < Φ < tt} (mentioned in the introduction), equipped with
the (unique) involution interchanging the extremal elements and fixing Φ. The
extremal elements represent the classical truth values while Φ is an intermediate
truth value expressing uncertainty. Another example is the closed interval [0, 1],
ordered as usual, with involution ∼ x = 1 − x. The constant Φ is represented
by 1/2. This algebra is of course isomorphic to the ternary algebra given by the
closed interval [−1, 1], equipped with the usual order, and the function x �→ −x
as involution. The constant Φ is 0. Here, a point p ∈ [−1, 1] may represent
the level of confidence that a proposition holds or not. We denote this ternary
algebra by Q.

We now describe a general construction originating from [15], see also [8].
Suppose that L is a bounded distributive lattice. Then we can form another
bounded distributive lattice on the set L × L by defining (x1, x2) ≤ (y1, y2) iff
x1 ≥ y1 and x2 ≤ y2. Note that

(x1, x2) ∨ (y1, y2) = (x1 ∧ y1, x2 ∨ y2) ⊥ = (�,⊥)
(x1, x2) ∧ (y1, y2) = (x1 ∨ y1, x2 ∧ y2) � = (⊥,�)

By defining ∼ (x1, x2) = (x2, x1), we obtain a De Morgan algebra, denoted
D(L). Let T (L) consist of those elements (x1, x2) ∈ L × L with x1 ∧ x2 = ⊥.
Since T (L) is closed with respect to ∨,∧ and ∼ and contains (�,⊥) and (⊥,�),
it is also a De Morgan algebra. Moreover, equipped with the constant (⊥,⊥) as
Φ, it is a ternary algebra.

Example 2. When L is the lattice P (A) of all subsets of a set A, then T (L)
is called a subset pair algebra [5].1 The elements of T (L) are all ordered pairs
(X1,X2) of disjoint sets X1,X2 ⊆ A. The operations are (X1,X2) ∪ (Y1, Y2) =
(X1 ∩ X2, Y1 ∪ Y2) etc. The intuition for this algebra is that an ordered pair
(X1,X2) specifies those facts X1 that falsify a certain proposition P , while X2

specifies those which justify P .

Proposition 1. For every ternary algebra T there is a bounded distributive lat-
tice L such that T can be embedded into T (L) by an injective ternary algebra
homomorphism.
1 Actually [5] uses a dual construction.

80 Z. Ésik

Proof. For later reference, we outline the proof. Given T , let L = {x ∈ T : Φ ≤ x}.
Then L is a bounded distributive lattice equipped with the ∨ and ∧ operations
of T restricted to L, and with the elements Φ and � as distinguished constants.
The ternary algebra T can be embedded in T (L) by mapping each x ∈ T to
h(x) = (Φ ∨ ∼ x, Φ ∨ x). This function is injective and preserves the operations
and constants. Also, h(x) ∈ T (L) for all x ∈ T . ��
Remark 1. Since every bounded distributive lattice can be embedded by an injec-
tive homomorphism in some P (A), it follows that each ternary algebra can be
embedded in a subset pair algebra by some injective ternary algebra homomor-
phism. See [10], or [5] for the finite case.

We say that a ternary algebra is complete if it is a complete lattice. The
ternary algebras described above in Examples 1 and 2 are all complete. In fact,
all finite ternary algebras are complete.

Proposition 2. Suppose that L is a complete lattice satisfying the infinite dis-
tributivity conditions

x ∨
∧
i∈I

yi =
∧
i∈I

(x ∨ yi) and x ∧
∨
i∈I

yi =
∨
i∈I

(x ∧ yi), (2)

where I is any infinite set. Then T (L) is a complete ternary algebra satisfying
these conditions.

Proof. Indeed, if (xi1, xi2) ∈ T (L) for all i ∈ I, then
∨

i∈I xi1 ∧ ∧
i∈I xi2 =∨

i∈I(xi1 ∧ ∧
j∈I xj2) =

∨
i∈I

∧
j∈J(xi1 ∧ xj2) ≤ ∨

i∈I(xi1 ∧ xi2) = ⊥. Hence, if
(xi1, xi2) ∈ T (L) for all i ∈ I, then

∧
i∈I(xi1, xi2) = (

∨
i∈I xi1,

∧
i∈I xi2) exists

in T (L). Similarly,
∨

i∈I(xi1, xi2) = (
∧

i∈I xi1,
∨

i∈I xi2) also exists. Since the
infinite distributivity conditions hold in L, they also hold in T (L). To prove
this, suppose that yi = (yi1, yi2) ∈ T (L) for all i ∈ I and x = (x1, x2) ∈ T (L),
where I is infinite. Then

x ∨
∧
i∈I

yi = (x1, x2) ∨ (
∨
i∈I

yi1,
∧
i∈I

yi2)

= (x1 ∧
∨
i∈I

yi1, x2 ∨
∧
i∈I

yi2)

= (
∨
i∈I

(x1 ∧ yi1),
∧
i∈I

(x2 ∨ yi2))

=
∧
i∈I

(x1 ∧ yi1, x2 ∨ yi2) =
∧
i∈I

(x ∨ yi),

proving the first equation in (2). Since ∼ is an involution, the second holds
also. ��
Theorem 1. For any complete ternary algebra T satisfying the infinite distrib-
utivity conditions there is a complete lattice L which also satisfies the infinite
distributivity conditions such that T can be embedded in T (L) by an injective
ternary algebra homomorphism which preserves all suprema and infima.

Ternary Equational Languages 81

Proof. When T is complete and satisfies the infinite distributivity conditions,
then L = {x ∈ T : Φ ≤ x} is also complete and satisfies the infinite distributivity
conditions. Consider the ternary algebra embedding h of T into T (L) defined by
x �→ (Φ∨ ∼ x, Φ ∨ x) as above. If xi ∈ T for all i ∈ I, where I is infinite, then

h(
∨
i∈I

xi) = (Φ ∨ ∼
∨
i∈I

xi, Φ ∨
∨
i∈I

xi)

= (Φ ∨
∧

∼ xi, Φ ∨
∨
i∈I

xi)

= (
∧
i∈I

(Φ ∨ ∼ xi),
∨
i∈I

(Φ ∨ xi))

=
∨
i∈I

(Φ ∨ ∼ xi, Φ ∨ xi) =
∨
i∈

h(xi).

Hence, h preserves all suprema. Since h preserves ∼, it also preserves all
infima. ��

In [6], the 3-element ternary algebra {ff < Φ < tt} was equipped with another
partial order � given by Φ � ff and Φ � tt. The partial order was then extended
to direct powers of the 3-element ternary algebra in a pointwise manner. But
actually the partial order � can be defined on all ternary algebras.

Suppose that T is a ternary algebra. Following [4]2, we define, for all x, y ∈ T ,

x � y = (x ∨ y) ∧ ((x ∧ y) ∨ Φ)

and x � y ⇔ x � y = x. The following fact is stated in [4] in an equivalent
form. We give a simple proof based on Theorem1.

Proposition 3 ([4]). Let T be a ternary algebra. Then the relation � is a partial
order on T , and for each x, y ∈ T , x�y is the infimum of {x, y} w.r.t. this partial
order. Moreover, Φ is the least element of T w.r.t. �.

Proof. By Proposition 1, it suffices to prove our claim when T is a subalgebra of
T (L), where L is a bounded distributive lattice (with the extremal elements ⊥
and �). Assuming this, let x = (x1, x2) and y = (y1, y2) in T . Then

x � y = (x ∨ y) ∧ ((x ∧ y) ∨ Φ)
= (x1 ∧ y1, x2 ∨ y2) ∧ ((x1 ∨ y1, x2 ∧ y2) ∨ (⊥,⊥))
= (x1 ∧ y1, x2 ∨ y2) ∧ (⊥, x2 ∧ y2) = (x1 ∧ y1, x2 ∧ y2)

is in T . Hence (x1, x2) � (y1, y2) iff x1 ≤ y1 and x2 ≤ y2, so that � is just the
component-wise order on T (L), restricted to T . Moreover, x � y is the infimum
of x and y w.r.t. this order relation. The last claim is obvious. ��
Theorem 2. Suppose that T is a complete ternary algebra satisfying the infinite
distributivity conditions. Then the infimum

�
X of X w.r.t. � exists for all

nonempty subsets X of T . Moreover, with respect to the ordering �, every chain
has a supremum.
2 Actually a dual operation and a dual ordering are defined in [4].

82 Z. Ésik

Proof. Indeed, by Theorem1, it suffices to prove the claim when T is a ternary
subalgebra of T (L) for some complete lattice L satisfying the infinite distrib-
utivity conditions, moreover, T is closed under arbitrary infima and suprema.
Let X = {(xi1, xi2) : i ∈ I} ⊆ T , where I not empty. Then, denoting the least
element of L by ⊥,

∨
X ∧ (

∧
X ∨ Φ) = (

∧
i∈I

xi1,
∨
i∈I

xi2) ∧ ((
∨
i∈I

xi1,
∧
i∈I

xi2) ∨ (⊥,⊥))

= (
∧
i∈I

xi1,
∨
i∈I

xi2) ∧ (⊥,
∧
i∈I

xi2) = (
∧
i∈I

xi1,
∧
i∈I

xi2),

showing that (
∧

i∈I xi1,
∧

i∈I xi2) is in T . But then (
∧

i∈I xi1,
∧

i∈I xi2) is neces-
sarily

�
X in T (as in T (L)).

We now show that, with respect to the ordering �, every chain has a supre-
mum. So suppose that I is a linearly ordered set and (xi1, xi2) ∈ T for all
i ∈ I such that (xi1, xi2) � (xj1, xj2) whenever i ≤ j. Let x∞1 =

∨
i∈I xi1

and x∞2 =
∨

i∈I xi2. We prove that (x∞1, x∞2) ∈ T . First, note that for all
i ≤ j, (xi1, xj2) = (xi1, xi2) ∨ (xj1, xj2) ∈ T . Hence for each fixed i ∈ I,
(xi1, x∞2) = (xi1,

∨
i≤j xj2) =

∨
i≤j(xi1, xj2) is in T . But then, (x∞1, x∞2) =

(
∨

i∈I xi1, x∞2) =
∨

i∈I(xi1, x∞2) is also in T . It is now clear that (x∞1, x∞2) is
the least upper bound

⊔
i∈I(xi1, xi2) in T (as in T (L)). ��

Recall from [9] that a partial order P is called complete if each chain in P has
a supremum. Since this also applies for the empty chain, each complete partial
order has a least element. (It is known that every directed set has a supremum
in a complete partial order.) We have thus proved that if T is a complete ternary
algebra satisfying the infinite distributivity conditions, then (T,�) is a complete
partial order. We can strengthen Theorem 1.

Corollary 1. Suppose that T is a complete ternary algebra satisfying the infinite
distributivity conditions. Then there is a complete lattice L satisfying the infinite
distributivity conditions such that T can be embedded in T (L) by a ternary alge-
bra homomorphism which preserves all suprema and infima with respect to the
ordering ≤, all infima with respect to the ordering � and all suprema of chains
with respect to �.

Proposition 4. Suppose that T is a ternary algebra. Then all distributive laws
hold for the operations ∨,∧ and �. And when T is a complete ternary alge-
bra satisfying the infinite distributivity conditions, then all infinite distributivity
conditions hold in T for the operations ∨,∧,� and

∨
,
∧

,
�
.

Proof. We only prove the second claim. By Theorem 1, without loss of generality
we may assume that there is a complete lattice L satisfying the infinite distrib-
utivity conditions such that T is a subalgebra of T (L) closed under all infima
and suprema.

Suppose that xi ∈ T for all i ∈ I and y ∈ T , where I is infinite. Then we can
write each xi and y in the form xi = (xi1, xi2) and y = (y1, y2). Using Theorem 2
we have:

Ternary Equational Languages 83

y �
∨
i∈I

xi = (y1, y2) �
∨
i∈I

(xi1, xi2) = (y1, y2) � (
∧
i∈I

xi1,
∨
i∈I

xi2)

= (y1 ∧
∧
i∈I

xi1, y2 ∧
∨
i∈I

xi2) = (
∧
i∈I

(y1 ∧ xi1),
∨
i∈I

(y2 ∧ xi2))

=
∨
i∈I

(y1 ∧ xi1, y2 ∧ xi2) =
∨
i∈I

((y1, y2) � (xi1, xi2)) =
∨
i∈I

(y � xi).

This proves the infinite distributivity condition for � and
∨

. Similar argu-
ments prove the infinite distibutivity condition for the other cases. For ∨ and

∧
and for ∧ and

∨
, see also Proposition 2. ��

We now recall from [9] that a function f : P → Q between partially ordered
sets P and Q is continuous if it preserves the supremum of nonempty chains (or
equivalently, the supremum of nonempty directed sets).

Proposition 5. Suppose that T is a complete ternary algebra satisfying the infi-
nite distributivity conditions. Then the operations ∨,∧,� and ∼ are continuous
with respect to the partial order �.

Proof. It again suffices to prove our claim when T is a subalgebra of a ternary
algebra T (L), where L is a complete lattice satisfying the distributivity con-
ditions, which is closed under arbitrary suprema

∨
X and infima

∧
X. We

already know that suprema
⊔

X exist if X is a chain w.r.t. �. Moreover, all
these suprema are given as in T (L).

We prove that ∨ is continuous w.r.t. � in the second argument. To this end,
suppose that I is a nonempty chain ordered by the relation ≤ and (xi1, xi2) ∈ T
for all i ∈ I. Moreover, suppose that (xi1, xi2) � (xj1, xj2) whenever i ≤ j in I.
Then for all (y1, y2) ∈ T ,

(y1, y2) ∨
⊔
i∈I

(xi1, xi2) = (y1, y2) ∨ (
∨
i∈I

xi1,
∨
i∈I

xi2)

= (y1 ∧
∨
i∈I

xi1, y2 ∨
∨
i∈I

xi2)

= (
∨
i∈I

(y1 ∧ xi1),
∨
i∈I

(y2 ∨ xi2))

=
⊔
i∈I

(y1 ∧ xi1, y2 ∨ xi2) =
⊔
i∈I

((y1, y2) ∨ (xi1, xi2))

proving that ∨ is continuous w.r.t. �. Since ∨ is commutative, it is also continu-
ous in the first argument and hence continuous. The facts that ∧ and � are also
continuous can be proved similarly. Finally, ∼ is also continuous which can be
seen easily using the above representation of T . ��

3 Solving Systems of Fixed Point Equations

Let Σ be a ranked alphabet. A Σ-algebra A consists of a nonempty set, also
denoted A, and an operation σA : An → A for each symbol σ of rank n.

84 Z. Ésik

Call a Σ-algebra A finitely decomposable if for each a ∈ A and σ ∈ Σ of
rank n, there are only a finite number of decompositions of a in the form
a = σA(a1, . . . , an), where a1, . . . , an ∈ A.

For the rest of this section, suppose that T is a complete ternary algebra
satisfying the infinite distributivity conditions and A is a finitely decomposable
Σ-algebra. For each n ≥ 0, let Σn denote the set of symbols of rank n. We
introduce systems of fixed point equations over the complete ternary algebra
T of generalized truth values and the finitely decomposable algebra A as data
domain.

Since T is a complete ternary algebra satisfying the infinite distributivity
conditions, so is the set TA of all functions A → T w.r.t. the pointwise order,
given for f, g ∈ LA by f ≤ g iff f(a) ≤ g(a) for all a ∈ A. (A function f : A → T
is usually called a fuzzy set.) The supremum

∨
F and infimum

∧
F of a subset

F of TA are formed pointwise, so that (
∨

F)(a) =
∨

f∈F f(a) for all a ∈ A, and
similarly for

∧
F . The operation ∼ is also defined pointwise. It follows that the

partial order � on TA is also the pointwise order, so that for all f, g ∈ TA, f � g
iff f(a) � g(a) for all a ∈ A. Moreover, for any nonempty X ⊆ TA,

�
X can be

computed pointwise, and similarly for
⊔

X whenever X is a chain w.r.t. �. The
least and greatest elements of TA are the constant functions with value ⊥ and
�, respectively. The additional constant is the function mapping each element
of A to Φ. Below we will denote these functions by ⊥,� and Φ as well.

We now turn TA into a Σ-algebra. Let σTA

(f1, . . . , fn)(a) =
∨{∧n

i=1 fi(ai) :
a = σA(a1, . . . , an)}, for all σ ∈ Σn, n ≥ 0, f1, . . . , fn ∈ TA and a ∈ A. Note
that when n = 0, σTA

maps σA to � and all other elements of A to ⊥.

Proposition 6. For each σ ∈ Σ, σTA

is continuous w.r.t. the ordering �.

Proof. For simplicity we assume that σ is of rank 2. (When the rank is 0, our
claim is obvious.) It suffices to prove that σTA

is separately continuous w.r.t.
� in each argument. We prove it is continuous in the first argument. Suppose
that fi ∈ TA for all i ∈ I, where I is a nonempty linearly ordered set, such that
fi � fj whenever i ≤ j in I. Let g ∈ TA. We need to show that σTA

(
⊔

i∈I fi, g) =⊔
i∈I σTA

(fi, g). But for all a ∈ A, (σTA

(
⊔

i∈I fi, g))(a) =

=
∨

{(
⊔
i∈I

fi)(a1) ∧ g(a2) : a = σA(a1, a2)}

=
∨

{(
⊔
i∈I

fi(a1)) ∧ g(a2) : a = σA(a1, a2)}

=
∨

{
⊔
i∈I

(fi(a1) ∧ g(a2)) : a = σA(a1, a2)}

=
⊔
i∈I

∨
{fi(a1) ∧ g(a2) : a = σA(a1, a2)}

=
⊔
i∈I

(σTA

(fi, g)(a)) = (
⊔
i∈I

σTA

(fi, g))(a).

Ternary Equational Languages 85

In the above argument, we used that by finite decomposability, the supremum∨
is over a finite set, and moreover, ∨ and ∧ are continuous w.r.t. � as shown

above. ��
Our aim is to provide a method for solving systems of fixed point equations

over TA involving the Σ-operations, the binary ∨ and ∧ operations, involution
∼, the elements of T including ⊥, � and Φ as constants, and possibly other
functions T → T , T × T → T , etc. which are continuous w.r.t. �. Let X be a
set of variables. A system of fixed point equations over TA is of the form

x = tx, x ∈ X (E)

where each tx is a well formed term composed of the variables in X, the symbols
in Σ and {∨,∧,∼} and the elements of T as constants.

Since TA is both a Σ-algebra and a complete ternary algebra, each term
t induces a function tT

A

: (TA)X → TA. This is defined by induction on the
structure of the term. Let t, t1, t2, . . . be terms and σ ∈ Σn.

– For each x ∈ X, xTA

is the corresponding projection (TA)X → TA, so that
(xTA

)(u)(a) = u(x)(a) for all u ∈ (TA)X and a ∈ A.
– (t1 ∨ t1)TA

= ∨ ◦ 〈tTA

1 , tT
A

2 〉, so that (t1 ∨ t2)TA

(u)(a) = tT
A

1 (u)(a) ∨ tT
A

2 (u)(a)
for all u ∈ (TA)X and a ∈ A.

– (t1 ∧ t1)TA

= ∧ ◦ 〈tTA

1 , tT
A

2 〉, so that (t1 ∧ t2)TA

(u)(a) = tT
A

1 (u)(a) ∧ tT
A

2 (u)(a)
for all u ∈ (TA)X and a ∈ A.

– (∼ t)TA

= ∼ ◦ tT
A

, so that (∼ t)TA

(u)(a) = ∼ (tT
A

(u)(a)), for all u ∈ (TA)X

and a ∈ A.
– (σ(t1, . . . , tn))TA

= σTA ◦ 〈tTA

1 , . . . , tT
A

n 〉, i.e.,

(σ(t1, . . . , tn))TA

(u)(a) =
∨

a=σA(a1,...,an)

n∧
i=1

tT
A

i (u)(ai)

for all σ ∈ Σn, u ∈ (TA)X and a ∈ A.
– When t = s ∈ T , tT

A

(u)(a) = s for all u ∈ (TA)X and a ∈ A.

Since TA is a complete ternary algebra satisfying the infinite distributivity
conditions, so is (TA)X . In particular, (TA)X is a complete partial order with
respect to the ordering � (which agrees with the pointwise � ordering).

Lemma 1. For each term t, tA : (TA)X → tA is continuous with respect to the
the partial order �.

Proof. This follows by a straightforward induction using that the projection func-
tions (TA)X → TA are continuous as are the operations σTA

and the pointwise
extensions of the functions ∨,∧,∼ and the constant functions associated with
elements of T , together with the fact that any composition or target tupling of
continuous functions is continuous. ��

Consider again the system of fixed point equations (E). The target tupling
ETA

= 〈tTA

x 〉x∈X maps (TA)X to itself, and solutions of (E) correspond to

86 Z. Ésik

fixed points of ETA

. We call (EA)X the structure map associated with E. From
Lemma 1 we immediately have:

Corollary 2. For any system of fixed point equations (E) as above, ETA

:
(TA)X → (TA)X is continuous w.r.t. �.

It is well-known that a continuous endofunction of a complete partial order
has a least fixed point which can be obtained in at most ω iterations. We thus
have:

Theorem 3. Any system of fixed point equations (E) has a unique least solution
w.r.t. � which can be obtained as

⊔
n≥0 un, where u0 = Φ and un+1 = ETA

(un)
for all n ≥ 0.

We call the least solution the canonical solution of E over TA. Moreover, we
call a function (or fuzzy set) in TA equational, if it is equal to some component
of the canonical solution of a finite system. Since ternary equational sets are
defined by least fixed points, the following result can be proved by standard
techniques [3]:

Proposition 7. Suppose that T is a complete ternary algebra satisfying the dis-
tributivity conditions and A is a finitely decomposable algebra. Then the equa-
tional sets in TA are closed under the operations ∨,∧,∼ and σTA

, where σ ∈ Σ.

Remark 2. There are several extensions. Since the operation � is also continuous,
we may also allow this operation (or the corresponding symbol) in terms. In
a similar vein, we can introduce additional �-continuous functions T → T ,
T × T → T etc. and use them in terms.

Certain systems of equations in normal form can be considered as grammars,
see the example below. As usual, the language generated by the grammar is then
defined as a selected component of the canonical solution of the system. We can
associate a �-continuous function T → T with each rule as the ‘contribution’ of
the application of the rule. This will be illustrated by an example below.

Remark 3. Every continuous function between partially ordered sets is
monotonic, and when P is complete and f : P → P , then for the existence
of the least fixed point of f it suffices that the function f is monotonic. (How-
ever, usually more than ω iterations are needed to reach the least fixed point.)
Now the structure map (EA)X is monotonic w.r.t. � without the assumption
that A is finitely decomposable, hence we can define the canonical solution as
the least solution of (E) for all algebras A.

Example 3. In this example, the underlying algebra is the free monoid Z∗ over
the alphabet Z = {a, b, c} equipped with the operation of concatenation and
constants denoting the letters of Z and the empty word ε. Consider the following
grammar from [21]:

S → AB&¬DC A → aA|ε B → bBc|ε
C → cC|ε D → aDb|ε

Ternary Equational Languages 87

As a system of equations, it is

S = AB ∧ ∼ (DC) A = aA ∨ ε B = bBc ∨ ε
C = cC ∨ ε D = aDb ∨ ε

Its semantics in [21] is given by L = L(S) = {ambncn : m,n ≥ 0, m �= n}.
Using the 3-element ternary algebra, it is the function that maps each word in
L to tt and all other words to ff, since this function is the canonical solution of
the corresponding system of equations. (This is actually the only solution.)

Let us now move to the ternary algebra Q. Let r be a constant 0 < r < 1,
and let fr map q ∈ [−1, 1] to rq ∈ [−1, 1]. Let us attach fr to the rules for A and
B. Technically this means that the equation corresponding to A becomes A =
fr(aA)∨fr(ε), and similarly for B. Let f denote the component of the canonical
solution of the system of equations corresponding to S, i.e. the ternary equational
set specified by the grammar. Then f(w) = rmax{m,n}+1 for all w = ambncn with
m �= n. For all other words, f(w) is negative.

4 Related Work

Fixed point equations over languages of words and trees and other struc-
tures have been studied since the 1960’s. When the functions involved are all
monotonic or continuous with respect to the subset ordering of languages, the
canonical solution of a system is usually defined as the least solution. In some
cases, the least solution is also the unique solution. In the presence of non-
monotonic operations such as complementation, a system of fixed point equations
may not have a solution, or several minimal solutions may exist. Such systems of
fixed point equations for word languages have been extensively studied in [18],
and more recently in [20]. A closely related concept is that of Boolean grammars,
introduced in [19]. For a recent survey on Boolean grammars, see [21].

Fixed point equations involving non-monotonic operations have traditionally
been considered in logic programming, see [12] for a survey. There is now a
common agreement that the meaning of a logic program involving negation can
be best described using 3-valued logic. Using methods from logic programming, a
novel 3-valued semantics to Boolean grammars is given in [16]. In order to specify
the meaning of a grammar, a system of fixed point equations over valuations in
the 3-element Kleene, or ternary algebra, is associated with the grammar, and
the language generated by the grammar is described as the unique 3-valued well-
founded fixed point solution of the associated system. An attempt to extend the
well-founded approach to a more general setting has been made in [11]. However,
as shown recently [7], the well-founded fixed point solution does not behave in
the expected way. For example, one cannot freely substitute the term tx on
the right hand side of an equation x = tx for some, or for all occurrences of
x. (In systems of equations corresponding to grammars, the terms tx are in a
certain normal form, this property is not preserved by arbitrary substitution.)
Motivated in part by this reason, in this paper we investigated another, more
classical way of defining the meaning of grammars, this time taking least fixed

88 Z. Ésik

points of the associated system of equations w.r.t. the information ordering. It
has the advantage that systems of equations can be manipulated as expected.
Also, the semantics is symmetric, whereas the well-founded semantics is not,
since the preferred default truth value is ff. But the well-founded semantics is
more precise, since the �-least fixed point is less than or equal to the well-founded
fixed point in the ordering �.

Acknowledgment. The author would like to thank the referees for useful suggestions.

References

1. Balbes, R.: Free ternary algebras. IJAC 10(6), 739–749 (2000)
2. Balbes, R., Dwinger, P.: Distributive Lattices. University of Missouri Press,

Columbia (1974)
3. Bloom, S.L., Ésik, Z.: Iteration Theories. Springer, Heidelberg (1993)
4. Brzozowski, J.A.: Involuted semilattices and uncertainty in ternary algebras. IJAC

14(3), 295–310 (2004)
5. Brzozowski, J.A., Lou, J.J., Negulescu, R.: A characterization of finite ternary

algebras. IJAC 7(6), 713–722 (1997)
6. Brzozowski, J.A., Seeger, C.J.: Asynchronous Circuits. Springer, Berlin (1995)
7. Carayol, A., Ésik, Z.: An analysis of the equational properties of the well-founded

fixed point, arXiv:1511.09423 (2015)
8. Cignoli, R.: The class of Kleene algebras satisfying the interpolation property and

Nelson algebras. Alg. Univ. 23, 262–292 (1986)
9. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-

bridge University Press, Cambridge (2002)
10. Ésik, Z.: A Cayley theorem for ternary algebras. IJAC 8(3), 311–316 (1998)
11. Ésik, Z., Kuich, W.: Boolean fuzzy sets. IJFCS 18(6), 1197–1207 (2007)
12. Fitting, M.: Fixpoint semantics for logic programming–a survey. TCS 278(1–2),

25–51 (2002)
13. Figallo, A.V., Gomes, C.M., Sarmiento, L.S., Videla, M.E.: Notes on the variety

of ternary algebras. Adv. Pure Math. 4, 506–512 (2014)
14. Jezek, J.: Universal Algebra, 1st edn. (2008). http://www.karlin.mff.cuni.cz/

∼jezek/
15. Kalman, J.A.: Lattices with involution. Trans. Amer. Math. Soc. 87, 485–491

(1958)
16. Kountouriotis, V., Nomikos, C., Rondogiannis, P.: Well-founded semantics for

Boolean grammars. Inf. Comput. 207(9), 945–967 (2009)
17. Kripke, S.: Outline of a theory of truth. J. Philos. 72, 690–716 (1975)
18. Leiss, E.L.: Language Equations. Springer, New York (1999)
19. Okhotin, A.: Boolean grammars. Inf. Comput. 194(1), 19–48 (2004)
20. Okhotin, A., Yakimova, O.: Language equations with complementation: expressive

power. TCS 416, 71–86 (2012)
21. Okhotin, A.: Conjunctive and Boolean grammars: the true general case of the

context-free grammars. Comput. Sci. Rev. 9, 27–59 (2013)

http://arxiv.org/abs/1511.09423
http://arXiv.org/abs/1511.09423
http://www.karlin.mff.cuni.cz/~jezek/
http://www.karlin.mff.cuni.cz/~jezek/

Problems on Finite Automata
and the Exponential Time Hypothesis

Henning Fernau1(B) and Andreas Krebs2(B)

1 Fachbereich 4 – Abteilung Informatik, Universität Trier, 54286 Trier, Germany
fernau@uni-trier.de

2 Wilhelm-Schickard-Institut für Informatik,
Universität Tübingen, Sand 13, 72076 Tübingen, Germany

krebs@informatik.uni-tuebingen.de

Abstract. We study several classical decision problems on finite
automata under the (Strong) Exponential Time Hypothesis. We focus
on three types of problems: universality, equivalence, and emptiness
of intersection. All these problems are known to be CoNP-hard for
nondeterministic finite automata, even when restricted to unary input
alphabets. A different type of problems on finite automata relates
to aperiodicity and to synchronizing words. We also consider finite
automata that work on commutative alphabets and those working on
two-dimensional words.

Keywords: Finite automata · Exponential Time Hypothesis · Univer-
sality problem · Equivalence problem · Emptiness of intersection

1 Introduction

Many computer science students will get the impression, at least when taught
about the Chomsky hierarchy, that finite automata are fairly simple devices, and
hence it is expected that typical decidability questions on finite automata are
easy ones. In fact, for instance, non-emptiness for finite automata is solvable in
polynomial time, as well as the uniform word problem.1

However, this impression is somewhat misled. Finite automata can be also
viewed as edge-labeled directed graphs, and as many combinatorial problems are
harder on directed graphs compared to undirected ones, it should not come as
such a surprise that many interesting questions are NP-hard for finite automata.

We study hard problems for finite automata under the perspective of the
Exponential Time Hypothesis (ETH) and variants thereof, as surveyed in [17]. In
particular, using the famous sparsification lemma [13], ETH implies that there is
no O(2o(n+m)) algorithm for Satisfiability (SAT) of m-clause 3CNF formulae
with n variables, or 3SAT for short. Occasionally, we will also use SETH (Strong
1 Even tighter descriptions of the complexities can be given within classical complexity

theory, but this is not so important for our presentation here, as we mostly focus on
polynomial versus exponential time.

c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 89–100, 2016.
DOI: 10.1007/978-3-319-40946-7 8

90 H. Fernau and A. Krebs

Table 1. Universality/Equivalence; functions refer to exponents of bounding functions

Universality/Equivalence

Σ Lower bound Upper bound

Unary o(3
√

q) O(
√

q log q) Theorem 6

Binary o(q) q Theorem 10

Unbounded o(q) q Theorem 10

ETH); this hypothesis implies that there is no O((2− ε)n) algorithm for solving
(CNF-)SAT with n variables for any ε > 0.

Let us now discuss the objects and questions that we are going to study in the
following. Mostly, we consider finite-state automata that read input words over
the input alphabet Σ one-way, from left to right, and they accept when entering
a final state upon reading the last letter of the word. We only consider determin-
istic finite automata (DFAs) and nondeterministic finite automata (NFAs). The
language (set of words) accepted by a given automaton A is denoted by L(A).
We are going to study the following three problems.

Problem 1 (Universality). Given an automaton A with input alphabet Σ, is
L(A) = Σ∗? Parameters are the number q of states of A and the size of Σ.

Problem 2 (Equivalence). Given two automata A1, A2 with input alphabet
Σ, is L(A1) = L(A2)? Parameters are an upper bound q on the number of states
of A1, A2 and the size of Σ.

Clearly, Universality reduces to Equivalence by choosing the automaton
A2 such that L(A2) = Σ∗. Also, all these problems can be solved by computing
the equivalent (minimal) deterministic automata, which requires time O∗(2q).2

Our results on these problems for NFAs are summarized in Table 1. The functions
refer to the exponents, so, e.g., in the first row, there is no 2o(3√q) algorithm for
Universality for q-state NFAs with unary input alphabets.

Problem 3 (Intersection). Given k automata A1, . . . , Ak, each with input
alphabet Σ, is

⋂k
i=1 L(Ai) = ∅? Parameters are the number of automata k,

an upper bound q on the number of states of the automata Ai, and the size of Σ.

For (Emptiness of) Intersection, our results are summarized in Table 2.
All these problems are already CoNP-hard for NFAs on unary inputs. Hence,

we will study these first, before turning towards larger input alphabets. The
classical complexity status of these and many more related problems is nicely
surveyed in [12].

In the second part of the paper, we are extending our research in two direc-
tions: we consider further hard problems on finite automata, more specifically,

2 Recall that the O∗ notation suppresses polynomial factors.

Problems on Finite Automata and the Exponential Time Hypothesis 91

Table 2. Intersection; functions refer to exponents of bounding functions

Intersection

of states Σ Lower bound Upper bound

2 O(1), i.e., in P

3 Unary O(1), i.e., in P

3 Binary O(1), i.e., in P

3 Unbounded o(k) k Proposition 11

q Unary o(min(k,
√

q/ log q)) min(k log q, q) Theorem8 & Proposition 9

q Binary o(min(k, 2q)) min(k log q, 22q log q) Propositions 12 & 13

q Unbounded o(k log q) k log q Proposition 11

the question of whether a given DFA accepts an aperiodic language, and ques-
tions related to synchronizing words, and we also look at finite automata that
work on objects different from strings.

2 Universality, Equivalence, Intersection: Unary Inputs

We first study Universality. Given an NFA A with input alphabet {a}, is
L(A) = {a}∗? In [23], the corresponding problem for regular expressions was
examined and shown to be CoNP-complete. As the reduction given in [23] starts
off from 3SAT, we can easily analyze the proof to obtain the following result.

Theorem 4. Unless ETH fails, for any ε > 0, there is no O∗(2o(q1/4−ε))-time
algorithm for deciding, given a tally NFA A on q states, whether L(A) = {a}∗.

We are now trying to strengthen the assertion of the previous theorem. There
are actually two weak spots in the mentioned reduction: (a) The ε-term in the
statement of the theorem is due to logarithmic factors introduced by encodings
with prime numbers; however, the encodings suggested in [23] leave rather big
gaps of numbers that are not coding any useful information. (b) The 4

√·-term
is due to writing down all possible reasons for not satisfying any clause, which
needs about Õ(mn3) many states (ignoring logarithmic terms) on its own; so,
we are looking for a problem that allows for cheaper encodings of conflicts. To
achieve our goals, we need the following theorem, see [5, Theorem 14.6].

Theorem 5. Unless ETH fails, there is no O∗(2o(m+n))-time algorithm for
deciding if a given m-edge n-vertex graph has a (proper) 3-coloring.

The previous result can be used to prove the following theorem. What is
important to know is that the NFA AG that can be associated to a graph instance
G of 3-Coloring, with n vertices and m edges, decomposes into 3m+1 compo-
nents Ai, each with O(n2) many states, one taking care of unary words that do
not encode graph colorings, and 3m expressing that one edge has two endpoints
with the same color. So, L(AG) =

⋃3m+1
i=1 Li (Li corresponding to Ai).

92 H. Fernau and A. Krebs

Theorem 6. Unless ETH fails, there is no O∗(2o(q1/3))-time algorithm for
deciding, given an NFA A on q states, whether L(A) = {a}∗.

How good is this? For the conversion of a q-state NFA on unary inputs into
an equivalent q′-state DFA, it is known that q′ = 2Θ(

√
q log q) is possible but also

necessary [4]. So, in a sense, the ETH bound poses the question if there are other
algorithms to decide universality for tally NFAs, not using DFA conversion first.
Conversely, it might be possible to tighten the upper bound.

We now turn to the equivalence problem for NFAs. From Theorem6, we
obtain:

Corollary 7. Unless ETH fails, there is no O∗(2o(q1/3))-time algorithm for
deciding equivalence of NFAs A1 and A2 on at most q states and input alpha-
bet {a}.

We are finally turning towards Tally-DFA-Intersection and also towards
Tally-NFA-Intersection. CoNP-completeness of this problem, both for
DFAs and for NFAs, was indicated in [16], referring to [10,23]. We make this
more explicit in the following, in order to also obtain some ETH-based results.

Theorem 8. Let k DFAs A1, . . . , Ak with input alphabet {a} be given, each with
at most q states. If ETH holds, then there is no algorithm with that decides if⋂k

i=1 L(Ai) = ∅ in time O∗(2o(min(k,
√

q/ log q))).

Proof. We revisit our previous reduction (from an instance G = (V,E) of 3-
Coloring with |V | = n and |E| = m to some NFA instance for Universality),
which delivered the union of many simple sets Li, each of which can be accepted
by a DFA Ai whose automaton graph is a simple cycle. These DFAs Ai have
O(n2) states each. The complements Li of the Li can be also accepted by DFAs
Ai of the same size. Ignoring constants, originally the union of O(n + m) many
such sets was formed. Considering now the intersection of the complements of
the mentioned simple sets, we obtain the result. ��
Proposition 9. Let k DFAs A1, . . . , Ak with input alphabet {a} be given, each
with at most q states. There is an algorithm that decides if

⋂k
i=1 L(Ai) = ∅ in

time O∗(2min(k log q,1.5·q)).

Proof. For the upper bound there are basically two algorithms; the natural app-
roach to solve this intersection problem would be to first build the product
automaton, which is of size qk, and then solve the emptiness problem in linear
time on this device. This gives an overall running time of O∗(qk) = O∗(2k log q);
also see [24, Theorem 8.3]. On the other hand, we can test all words up to length
q+21.5q. As each DFA has at most q states in each DFA, processing a word enters
a cycle in at most q steps. Also the size of the cycle in each DFA is bounded by
q. The least common multiple of all integers bounded by q, i.e., eψ(q), where ψ
is the second Chebyshev function, is bounded by 21.5q; see Propositions 3.2 and
5.1. in [6]. This yields an upper bound O∗(21.5q) of the running time. ��

Hence in the case where the exponent is dominated by k, the upper and lower
bound differ by a factor of log q, and in the other case by a factor of

√
q · log q.

Problems on Finite Automata and the Exponential Time Hypothesis 93

Fig. 1. A sketch of the NFA construction of Theorem 10

3 The Case of Non-unary Inputs

In the classical setting, the automata problems that we study are harder for
binary (and larger) input alphabet sizes (PSPACE-complete; see [15]). Also,
notice that the best-known algorithms are also slower in this case. This should
be reflected in the lower bounds that we can obtain for them (under ETH), too.

Theorem 10. Assuming ETH, there is no algorithm for solving Universality
for q-state NFAs with binary input alphabets that runs in time O(2o(q)).

Proof. Let G = (V,E) be an undirected graph, and V = {v1, . . . , vn}. Let Σ =
{a, b, c} represent three colors. Then there is a natural correspondence of a word
in Σn to a coloring of the graph, where the i-th letter in the words corresponds
to the color of vi. We construct an automaton with 3(n − 1) + 1 states, as
sketched in Fig. 1. Additionally, for each edge (vi, vj) with i < j in the graph,

we add three types of transitions to the automaton: qi
a−→ aj−i, qi

b−→ bj−i,
qi

c−→ cj−i. Inputs of length n encode a coloring of the vertices. First notice
that the automaton will accept every word of length not equal to n. Further, our
construction enables the check of an improper coloring. We should accept a word
w1 . . . wn iff i < j and (i, j) ∈ E and wi = wj . Pick such a word and assume,
without a loss of generality, that wi = a. Then the automaton will accept wi,
since the additional edge qi

a−→ aj−i allows for an accepting run terminating in
the state f . Note that the automaton accepts all words of length at most n− 1.

The converse direction is also easily seen. Hence, if there is a valid coloring
the automaton does not accept all words.

It is simple to change the construction given above to get away with binary
input alphabets (instead of ternary ones). ��

We are now turning towards DFA-Intersection and to NFA-
Intersection. In the classical perspective, both are PSPACE-complete
problems.

94 H. Fernau and A. Krebs

Fig. 2. The DFAs necessary to express a proper coloring

Proposition 11. Let now q � 3. There is no algorithm that, given k DFAs
(or NFAs) A1, . . . , Ak with arbitrary input alphabet, each with at most q states,
decides if

⋂k
i=1 L(Ai) = ∅ in time O∗(2log q·o(k)) unless ETH fails. The problems

can be also solved in time O∗(2log q·k).

Proof. The hardness is by adaptation of the the 3-Coloring reduction we
sketched for Universality. For parameters k and q, we take a graph with
|V | + |E| = k log3 q = Θ(k log q).3 For the DFAs, choose alphabet Σ = V × C,
C = {1, 2, 3}. The states are s, t,O. For each vertex v, we define the DFA Av; for
each edge uv and each color a, we define the DFA Auv,a, as described in Fig. 2.
As we can compute the intersection for each block of log3 q automata into a sin-
gle DFA in polynomial time and obtain an automaton with q states, we reduce
the number of DFAs to k = (|E| + |V |)/ log3 q. Hence we got k DFAs each
with q states. The claimed algorithm is via the well known product automaton
construction. ��

We can encode the large alphabet of the previous construction into the binary
one, but we get a weaker result. In particular, the DFAs Av and Auv,a in this
revised construction have O(log n) states, and not constantly many as before.

Proposition 12. There is no algorithm that, given k DFAs A1, . . . , Ak with
binary input alphabet, each with at most q states, decides if

⋂k
i=1 L(Ai) = ∅ in

time O∗(2o(k)) or O∗(2o(2q)) unless ETH fails.

The following proposition gives a matching upper bound:

Proposition 13. There is an algorithm that, given k DFAs with binary
input alphabet, each with � q states, decides Intersection in time
O∗(2log q·min(k,22q)).

Proof. We will actually give two algorithms that solve this problem. One has a
running time of O∗(2k log q) and one a running time of O∗(22

q·log q). The result
then follows.
(a) We can first construct the product automaton of the DFAs A1, . . . , Ak, which

3 In this proof, we neglect the use of some ceiling functions for the sake of readability.

Problems on Finite Automata and the Exponential Time Hypothesis 95

is a DFA with at most qk = 2k log q many states. In this automaton, one can test
emptiness in time linear in the number of states.
(b) Notice that there are only finitely many different DFAs with � q many states.
Intersection is easy to compute for DFAs with the same underlying labeled graph.
On binary alphabets, each state has exactly two outgoing edges. Thus, there are
q2 possible choices for the outgoing edges of each state. Hence in total there are
(q2)q = q2q different such DFAs. By merging first all DFAs with the same graph
structure we can assume that k � q2q. We now proceed as in (a). ��

4 Related Problems

Our studies so far only touched the peak of an iceberg. Let us mention and
briefly discuss at least some related problems for finite automata in this section.

4.1 The Aperiodicity Problem

Recall that a regular language is called star-free (or aperiodic) if it can be
expressed, starting from finite sets, with the Boolean operations and with con-
catenation. (So, Kleene star is disallowed in the set constructions.) We denote
the subclass of the regular languages consisting of the star-free languages by SF.

It is known that a language is star-free if and only it its syntactic monoid
is aperiodic [21], that is, it does not contain any nontrivial group. Here we will
use a purely automata-theoric characterization: A language accepted by some
minimum-state DFA A is star-free iff for every input word w, for every integer
r � 1 and for every state q, δ∗(q, wr) = q implies δ∗(q, w) = q.

This allows a minimal automaton of a star-free language to contain a cycle,
but if the word w along a cycle starting at q is a power of another word u, i.e.,
w = ur for some r, then u also forms a cycle starting at q.

For this class SF (and in fact for any other subregular language class), one can
ask the following decision problem. Given a DFA A, is L(A) ∈ SF? This problem
(called Aperiodicity in the following) was shown to be PSPACE-complete
in [2]. Recall the following characterization of aperiodicity: Cho and Huynh
present a reduction that first (again) proves that the DFA-Intersection-
Nonemptiness is PSPACE-complete (by giving a direct simulation of the com-
putations of a polynomial-space bounded TM) and then show how to alter this
reduction in order to obtain the desired result. Unfortunately, this type of reduc-
tions is not very useful for ETH-based lower-bound proofs. In an earlier paper,
Stern [22] proved that Aperiodicity is CoNP-hard. His reduction is from 3SAT
(on n variables and m clauses), and it produces a minimum-state DFA with
O(nm) many states. Hence, we can conclude a lower bound of O(2o(

√
q)) for

Aperiodicity on q-state DFAs. This can be improved:
The basic idea of the proof of the next proposition is to reduce the intersection

problem (in a restricted version) to aperiodicity. Given language L1, L2, . . . , Lk,
consider the language L = (L1$L2$. . . Lk)∗, and let A be its minimal automa-
ton. One direction is easy: if the intersection of the languages L1, . . . , Lk contains

96 H. Fernau and A. Krebs

a word u, then (u$)k forms a cycle in A starting at the initial state, but u does
not. This gives the idea to show that if there is a word w in the intersection,
then the language L is not aperiodic. The other direction is more involved.

Proposition 14. Assuming ETH, there is no algorithm for solving Aperiod-
icity for q-state DFAs on arbitrary input alphabets that runs in time O(2o(q)).

If we use the automaton over the binary alphabet from Proposition 13 in the
proof of the previous proposition, we get a bound for Aperiodicity over the
binary alphabet. Actually the resulting automaton in the reduction will be over
a ternary alphabet, but this can be recoded by at most tripling the number of
states.

Corollary 15. Under ETH, there is no algorithm to solve Aperiodicity for
q-state DFAs on binary input alphabets in time O(2o(q1−ε)) for any ε > 0.

We are not aware of any published exponential-time Aperiodicity algorithm.

Proposition 16. There is an algorithm for solving Aperiodicity that runs in
time O∗(qq) = O∗(2q log q) on a given q-state DFA with arbitrary input alphabet.

Another related problem asks whether, given a DFA A, the language L(A)
belongs to AC0. Analyzing the PSPACE-hardness proof from [1], we see that
the same lower bound result as stated for Aperiodicity holds for this question.

4.2 Synchronizing Words

A deterministic finite semi-automaton (DFSA) A is given by A = (Q,Σ, {μa |
a ∈ Σ}), where, for each a ∈ Σ, there is a mapping μa : Q → Q. Given a DFSA
A and a state set Qsync, a Qsync-synchronizing word w ∈ Σ∗ satisfies

∀p, p′ ∈ Qsync : μw(p) = μw(p′) .

The Qsync-Synchronizing Word (Qsync-SW) problem is the question, given
a DFSA A, a set of states Qsync and an integer k, whether there exists a
Qsync-synchronizing word w of length at most k for A. Correspondingly, the
Qsync-Synchronizing Word problem can be stated. Notice that while Q-SW is
NP-complete, Qsync-SW is even PSPACE-complete, see [20].

Theorem 17. There is an algorithm for solving Qsync-SW on bounded input
alphabets that runs in time O∗(2q) for q-state deterministic finite semi-automata.
Conversely, assuming ETH, there is no O∗(2o(q))-time algorithm for this task.

Proof. It was already observed in [7] that the algorithm given there for Q-
SW transfers to Qsync-SW, as this is only a breadth-first search algorithm on
an auxiliary graph (of exponential size, with vertex set 2Q). The PSPACE-
hardness proof contained in [20, Theorem 1.22], based on [19], reduces from
DFA-Intersection. Given k automata each with at most s states, with input
alphabet Σ, one deterministic finite semi-automaton A = (Q, {μa | a ∈ Σ})
is constructed such that |Q| � sk + 2. Hence, an O∗(2o(|Q|))-time algorithm for
Qsync-SW would result in an O∗(2o(sk))-time algorithm for DFA-Intersection,
contradicting Proposition 12. ��

Problems on Finite Automata and the Exponential Time Hypothesis 97

5 SETH-Based Bounds: Length-Bounded
Problem Variants

Cho and Huynh studied in [3] the complexity of a so-called bounded version of
Universality, where in addition to the automaton A with input alphabet Σ, a
number k (encoded in unary) is input, and the question is if Σ�k ⊆ L(A). This
problem is again CoNP-complete for general alphabets. The proof given in [3] is
by reduction from the n-Step Halting Problem for NTMs. Our reduction
from 3-Coloring also shows the mentioned CoNP-completeness result in a more
standard way.

In [7], another SETH-based was derived. Namely, it was shown that (under
SETH) there is no algorithm that determines, given a DFSA A = (Q,Σ, {μa |
a ∈ Σ}) and an integer �, whether or not there is a synchronizing word for A in
time O((|Σ| − ε)�) for any ε > 0. Here, Σ is part of the input; the statement is
also true for fixed binary input alphabets. We will use this result now.

Theorem 18. There is an algorithm with running time O∗(|Σ|�) that, given k
DFAs over the input alphabet Σ and an integer �, decides whether or not there
is a word w ∈ Σ�� accepted by all these DFAs. Conversely, there is no algorithm
that solves this problem in time O((|Σ| − ε)�) for any ε > 0 unless SETH fails.

Proof. The mentioned algorithm simply tests all words of length up to �. We
show how to find a synchronizing word of length at most � for a given DFSA
A = (Q,Σ, {μa | a ∈ Σ}) and an integer � that runs in time O((|Σ| − ε)�),
assuming that there is an algorithm with such a running time for Bounded
DFA-Intersection. From A, we build |Q|2 many DFAs As,f (with start state s
and with unique final state f , while the transition function of all As,f is identical,
corresponding to {μa | a ∈ Σ}). Let A� be the automaton that accepts any word
of length at most �. Now, we create |Q| many instances of If of Bounded DFA-
Intersection. If is given by {As,f | s ∈ Q}∪{A�}. A has a synchronizing word
of length at most � if and only if for some f ∈ Q, If is a YES-instance. ��

Clearly, we can use state complementation and a variant of the NFA union
construction to show the following result.

Corollary 19. There is an algorithm with running time O∗(|Σ|�) that, given
some NFA over the input alphabet Σ and an integer �, decides whether or not
there is a word w ∈ Σ�� not accepted by this NFA. Conversely, no algorithm
solves this problem in time O((|Σ| − ε)�) for any ε > 0 unless SETH fails.

Clearly, this implies a similar result for Bounded NFA-Equivalence.
From these reductions, we can borrow quite a lot of other results from [7],

dealing with inapproximability and parameterized intractability.

6 Two Further Ways to Interpret Finite Automata

Finite automata cannot be only used to process (contiguous) strings, but they
might also jump from one position of the input to another position, or they can
process two-dimensional words. We picked these two processing modes for the
subsequent analysis, as they were introduced quite recently [8,18].

98 H. Fernau and A. Krebs

6.1 Jumping Finite Automata

A jumping finite automaton (JFA) formally looks like a usual string-processing
NFA. However, the application of a word looks different: If p

a−→ p′ is a tran-
sition rule, then it can transform the input string u into u′ provided that u, u′

decompose as u = u1au2 and u′ = u1u2. This model was introduced in [18] and
further studied in [9]. It is relatively easy to see that the languages accepted
by JFAs are just the inverses of the Parikh images of the regular languages. In
particular, the emptiness problem for JFAs is as simple as for NFAs. On unary
input alphabets, JFAs and NFAs just work the same. Hence, Universality is
hard for JFAs, as well. Classical complexity considerations on these formalisms
are contained in [9,11,14] and the quoted papers; observe that mostly the input
is given in the form of Parikh vectors of numbers encoded in binary, while we will
consider the input given as words, since JFAs were introduced this way in [18].

Notice however that the uniform word problem for JFAs is NP-hard. Ana-
lyzing the proof given in [9, Theorem 54], we can conclude:

Theorem 20. Under ETH, there is no algorithm that, given a JFA A on q
states and a w ∈ Σ∗, decides if w ∈ L(A) in time O∗(2o(q)), O∗(2o(|w|)) nor
O∗(2o(|Σ|)).

There is a dynamic programming algorithm solving Universal Member-
ship for q-state JFAs (that is not improvable by Theorem 20). A word w allows
the transition from state p to state p′ iff for some decomposition w ∈ w1 w2,
p can transfer to p̂ by reading w1 and from p̂ one can go into p′ when reading
w2. For the correct implementation of the shuffle possibilities, we need to store
possible translations for all subsets of indices within the input word, yielding a
table (and time) complexity of O∗(2|w|). We have no other upper bound.

What about the three decidability questions that are central to this paper
for these devices? As the behavior of JFA is the same as that of NFA on unary
alphabets, we can borrow all results from Sect. 2.

Theorem 21. Let k = |Σ| be fixed. Unless ETH fails, there is no algorithm that

solves Universality for q-state JFAs in time O∗(2o(q
k

k+2)).

Notice that the expression that we claim somehow interpolates between the
third root of q (in the exponent of 2), namely, when k = 1, and then it also
coincides with our earlier findings, and q itself (if k tends to infinity). We can
obtain very similar results for Equivalence for JFAs.

Let us now discuss Intersection. Also the problem of detecting emptiness
of the intersection of two JFA languages is NP-hard. This and a related study
on ETH-based complexity can be found in [9]. For the intersection of k JFAs,
the proof of Proposition 11 actually shows the analogous result also in that case.
For bounded alphabets, we use the proof of Theorem21 to obtain:

Corollary 22. Let Σ be fixed. Unless ETH fails, there is no algorithm for solv-
ing JFA intersection in time O∗(2o(k)+o(q|Σ|/2)) for k JFAs with � q states.

Problems on Finite Automata and the Exponential Time Hypothesis 99

Namely, we can construct to a given 3-Coloring instance with n vertices
and m edges a collection of k = 3m + 1 many JFAs, each with n|Σ|/2 many
states.

6.2 Boustrophedon Finite Automata

Boustrophedon finite automata (BFAs) have been intro-
duced to describe a simple processing of rectangular-shaped
pictures with finite automata that scan these pictures as
depicted on the right side.

Without going into formal details, let us mention that
we have shown in [8] that the non-emptiness problem
for this type of finite automata is NP-hard. We reduced from Tally-DFA-
Intersection. From this (direct) construction, we can immediately deduce:

Proposition 23. There is no algorithm that, given some BFA A with at most
q states, decides if L(A) = ∅ in time O∗(2o(q1/3)) unless ETH fails.

First observe that although this problem is similar to the intersection prob-
lem, the only “communication” between the rows is via the state that is commu-
nicated and via the length information that is implicitly checked. In particular,
we can first convert a given BFA into one with unary input alphabet.

Proposition 24. Emptiness for q-state BFAs can be decided in time O∗(qq).

7 Conclusions

So far, there was no systematic study of hard problems for finite automata under
ETH. We are only aware of the papers [7,9] on these topics. Returning to the
survey of Holzer and Kutrib [12], it becomes clear that there are quite a many
hard problems related to finite automata and regular expressions that have not
yet been examined with respect to exact algorithms and ETH. This hence gives
ample room for future research. Also, there are quite a many modifications of
finite automata with hard decision problems. We are currently studying the
decidability status of Universality and similar problems for BFAs.

References

1. Beaudry, M., McKenzie, P., Thérien, D.: The membership problem in aperiodic
transformation monoids. J. ACM 39(3), 599–616 (1992)

2. Cho, S., Huynh, D.T.: Finite-automaton aperiodicity is PSPACE-complete. Theo-
ret. Comput. Sci. 88(1), 99–116 (1991)

3. Cho, S., Huynh, D.T.: The parallel complexity of finite-state automata problems.
Inf. Comput. 97(1), 1–22 (1992)

4. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47,
149–158 (1986)

100 H. Fernau and A. Krebs

5. Cygan, M., Fomin, F., Kowalik, �L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Heidelberg (2015)

6. Dusart, P.: Estimates of some functions over primes without R.H. Technical report
arXiv:1002.0442 [math.NT] (2010)

7. Fernau, H., Heggernes, P., Villanger, Y.: A multi-parameter analysis of hard prob-
lems on deterministic finite automata. J. Comput. Syst. Sci. 81(4), 747–765 (2015)

8. Fernau, H., Paramasivan, M., Schmid, M.L., Thomas, D.G.: Scanning pictures the
boustrophedon way. In: Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E. (eds.)
IWCIA 2015. LNCS, vol. 9448, pp. 202–216. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-26145-4 15

9. Fernau, H., Paramasivan, M., Schmid, M.L., Vorel, V.: Characterization, complex-
ity results on jumping finite automata. Technical report arXiv:1512.00482 [cs.FL]
(2015)

10. Galil, Z.: Hierarchies of complete problems. Acta Informatica 6, 77–88 (1976)
11. Haase, C., Hofman, P.: Tightening the complexity of equivalence problems for

commutative grammars. Technical report arXiv:1506.07774 [cs.FL] (2015)
12. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite

automata - a survey. Inf. Comput. 209(3), 456–470 (2011)
13. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential

complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)
14. Kopczyński, E.: Complexity of problems of commutative grammars. Logical Meth-

ods Comput. Sci. 11(1:9) (2015). http://www.lmcs-online.org/ojs/viewarticle.
php?id=1533

15. Kozen, D.: Lower bounds for natural proof systems. In: 18th Annual Symposium
on Foundations of Computer Science, FOCS, pp. 254–266. IEEE (1977)

16. Lange, K.-J., Rossmanith, P.: The emptiness problem for intersections of reg-
ular languages. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629,
pp. 346–354. Springer, Heidelberg (1992)

17. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the Exponential
Time Hypothesis. EATCS Bull. 105, 41–72 (2011)

18. Meduna, A., Zemek, P.: Jumping finite automata. Int. J. Found. Comput. Sci.
23(7), 1555–1578 (2012)

19. Rystsov, I.K.: Polynomial complete problems in automata theory. Inf. Process.
Lett. 16(3), 147–151 (1983)

20. Sandberg, S.: 1 Homing and synchronizing sequences. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005)

21. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control
8, 190–194 (1965). (now Information and Computation)

22. Stern, J.: Complexity of some problems from the theory of automata. Inf. Control
66(3), 163–176 (1985). (now Information and Computation)

23. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: prelim-
inary report. In: Proceedings of the 5th Annual ACM Symposium on Theory of
Computing, STOC, pp. 1–9. ACM (1973)

24. Wareham, H.T.: The parameterized complexity of intersection and composition
operations on sets of finite-state automata. In: Yu, S., Păun, A. (eds.) CIAA 2000.
LNCS, vol. 2088, pp. 302–310. Springer, Heidelberg (2001)

http://arxiv.org/abs/1002.0442
http://dx.doi.org/10.1007/978-3-319-26145-4_15
http://dx.doi.org/10.1007/978-3-319-26145-4_15
http://arxiv.org/abs/1512.00482
http://arxiv.org/abs/1506.07774
http://www.lmcs-online.org/ojs/viewarticle.php?id=1533
http://www.lmcs-online.org/ojs/viewarticle.php?id=1533

A Practical Algorithm for the Uniform
Membership Problem of Labeled Multidigraphs
of Tree-Width 2 for Spanning Tree Automata

Akio Fujiyoshi(B)

Department of Computer and Information Sciences, Ibaraki University,
4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan

akio.fujiyoshi.cs@vc.ibaraki.ac.jp

Abstract. This paper presents a practical algorithm for the uniform
membership problem of labeled multidigraphs of tree-width at most 2 for
spanning tree automata. Though it has been shown that the membership
problem is solvable in linear time for graphs of bounded tree-width, the
algorithm obtained in the previous study is unusable in practice because
of a big hidden constant.

1 Introduction

In this paper, we study tree automata recognizing labeled multidigraphs. We
define that a labeled multidigraph is accepted by a tree automaton if and only
if the graph has a spanning tree accepted by the tree automaton. We call this
automaton a spanning tree automaton. The membership problem of labeled
multidigraphs for a spanning tree automaton has been studied [8]. Though the
membership problem is NP-complete because the Hamiltonian path problem can
be easily reduced to it, there exists a linear-time algorithm for the membership
problem of labeled multidigraphs of bounded tree-width using a theorem of Cour-
celle [3,4]. However, the algorithm obtained by Courcelle’s theorem is unusable
in practice because of a big hidden constant. In addition, the tree automaton
itself should be a part of the input in practical situations. Thus this paper will
present a practical algorithm for the uniform membership problem of labeled
multidigraphs of tree-width at most 2 for spanning tree automata.

The motivation of this study is to establish a robust and efficient recognition
method for mathematical OCR [2,5,9]. As shown in Fig. 1, a mathematical OCR
system constructs a labeled multidigraph representing the adjacency relation of
mathematical symbols from a scanned image. The vertex labels represent math-
ematical symbols, while the edge labels represent types of the adjacency relation
of mathematical symbols. From the labeled multidigraph, we want to obtain the
spanning tree representing proper connections of mathematical symbols, which
should be syntactically reasonable. In order to define the syntax of mathematical
formulae and verify candidates of the spanning tree, we make use of spanning
tree automata.

c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 101–112, 2016.
DOI: 10.1007/978-3-319-40946-7 9

102 A. Fujiyoshi

Fig. 1. (a) A scanned image, (b) a labeled multidigraph representing the adjacency
relation of symbols, (c) the spanning tree representing proper connections of symbols,
and (d) a spanning tree of a misrecognition.

The algorithm presented in this paper can be seen as an extension of the
algorithm for directed acyclic graphs (DAGs) [6,7]. Since cycles and multiple
sources have to be considered here, the algorithm is more sophisticated.

The time complexity of the algorithm is O(n·m5 ·2w) time, where n is the size
of a graph, m the number and w the maximum width of transition rules of an
automaton. Since the maximum outdegree of spanning trees representing proper
connections of mathematical symbols is 7 (meaning the seven directions), w and
also 2w are bounded by a constant. Therefore, the algorithm works in polynomial
time. In addition, labeled multidigraphs of tree-width at most 2 are sufficient for
the application to mathematical OCR in most cases.

2 Labeled Multidigraphs

2.1 Definitions

A labeled multidigraph is a 8-tuple G = (V,E, tail, head,Σ,Δ, σ, δ), where V is
a finite set of vertices, E is a finite set of edges, tail : E → V is a function
assigning to each edge its tail, head : E → V is a function assigning to each
edge its head, Σ is a finite set of vertex labels, Δ is a finite set of edge labels,
σ : V → Σ is a function assigning to each vertex its label, and δ : E → Δ is
a function assigning to each edge its label. For a pair of edges e, e′ ∈ E, e and
e′ are multiple if tail(e) = tail(e′) and head(e) = head(e′), and e and e′ are
symmetric if tail(e) = head(e′) and head(e) = tail(e′). For a vertex v ∈ V , the
incoming edges of v is the set in(v) = {e ∈ E | head(e) = v}, the indegree of v
is |in(v)|, the outgoing edges of v is the set out(v) = {e ∈ E | tail(e) = v}, and
the outdegree of v is |out(v)|. A source is a vertex of indegree 0, and a sink is a
vertex of outdegree 0. We define the size of a labeled multidigraph G as |V ∪E|,
the number of vertices plus the number of edges.

Let E′ ⊆ E be a subset of edges. The edge-induced subgraph of G by E′,
denoted by G[E′], is the labeled multidigraph (V ′, E′, tail′, head′, Σ,Δ, σ′, δ′)

A Practical Algorithm for the Uniform Membership Problem 103

such that V ′ ⊆ V , tail′ ⊆ tail, head′ ⊆ head, σ′ ⊆ σ, δ′ ⊆ δ and every vertex
in V ′ has at least one incoming or outgoing edge in E′. The spanning subgraph
of G by E′, denoted by G〈E′〉, is the labeled multidigraph (V,E′, tail′, head′, Σ,
Δ, σ, δ′) such that tail′ ⊆ tail, head′ ⊆ head and δ′ ⊆ δ.

Let G = (V,E, tail, head,Σ,Δ, σ, δ) be a labeled multidigraph. G is acyclic
if there is not a subset of edges E′ ⊆ E such that E′ �= ∅ and every vertex of
G[E′] has indegree 1 and outdegree 1. For a pair of distinct vertices u, v ∈ V ,
a simple directed path of G from u to v is an edge-induced subgraph G[E′] for
some E′ ⊆ E such that G[E′] is acyclic and every vertex of G[E′] has indegree 1
and outdegree 1 except that u has indegree 0 and outdegree 1 and v has indegree
1 and outdegree 0.

A labeled rooted tree is a labeled multidigraph T = (V,E, tail, head,Σ,Δ, σ,
δ) such that T is acyclic, T has exactly one source, and there is a unique simple
directed path from the source to every other vertex. The source of a tree is also
called the root, while the sinks are also called leaves. An ordered tree can be
seen as a special labeled rooted tree such that Δ = {1, 2, . . . ,maxd}, maxd is
the maximum outdegree of vertices, and the outgoing edges of each vertex are
uniquely labeled as 1, 2, 3,

A labeled tree-pair is a labeled multidigraph P = (V,E, tail, head,Σ,Δ, σ, δ)
obtained as the disjoint union of two labeled rooted trees. When P is the disjoint
union of two labeled rooted trees T1 and T2, we write P = T1 ∪ T2.

Let G = (V,E, tail, head,Σ,Δ, σ, δ) be a labeled multidigraph. A spanning
tree of G is a spanning subgraph G〈E′〉 for some E′ ⊆ E such that G〈E′〉 is a
labeled rooted tree. A spanning tree-pair of G is a spanning subgraph G〈E′〉 for
some E′ ⊆ E such that G〈E′〉 is a labeled tree-pair.

2.2 The Base Graph of a Labeled Multidigraph and Reduction
Rules for Base Graphs of Tree-Width at Most 2

Let G = (V,E, tail, head,Σ,Δ, σ, δ) be a labeled multidigraph. The base graph
of G is the undirected simple graph G′ = (V,E′) such that E′ = {{v1, v2} | there
exists an edge e ∈ E such that tail(e) = v1 and head(e) = v2, or tail(e) = v2
and head(e) = v1}. We define the tree-width of a labeled multidigraph as the
tree-width [3,4] of its base graph.

We assign to each vertex and edge of G′ a set of original edges of G, called
representing edges, as follows:

– For each vertex v ∈ V , the set of representing edges is rep(v) = ∅.
– For each edge {v1, v2} ∈ E′, the set of representing edges is rep({v1, v2}) =

{e ∈ E | tail(e) = v1 and head(e) = v2, or tail(e) = v2 and head(e) = v1}.

It is known that any undirected simple graph of tree-width at most 2 can be
reduced to a single-vertex graph by the following reduction rules [1]:

1. If the graph has a vertex v2 incident to exactly 1 edge {v1, v2}, then remove
the vertex v2 and the edge {v1, v2}.

2. If the graph has a vertex v2 incident to exactly 2 edges {v1, v2}, {v2, v3} and
there is no edge between v1 and v3, then remove the vertex v2 and the edges
{v1, v2}, {v2, v3}, and connect the vertices v1 and v3 by a new edge.

104 A. Fujiyoshi

3. If the graph has a vertex v2 incident to exactly 2 edges {v1, v2}, {v2, v3} and
there is an edge between v1 and v3, then remove the vertex v2 and the edges
{v1, v2}, {v2, v3}.

During the reduction process using the above reduction rules, the sets of
representing edges of a base graph will be changed as follows:

1. When a vertex v2 and an edge {v1, v2} are removed, the set of representing
edges of v1 will be rep(v1) ∪ rep(v2) ∪ rep({v1, v2}).

2. When a vertex v2 and edges {v1, v2}, {v2, v3} are removed and a new edge
{v1, v3} is added, the set of representing edges of {v1, v3} will be rep({v1, v2})
∪ rep(v2) ∪ rep({v2, v3}).

3. When a vertex v2 and edges {v1, v2}, {v2, v3} are removed and there has
already been an edge between v1 and v3, the set of representing edges of
{v1, v3} will be rep({v1, v2}) ∪ rep(v2) ∪ rep({v2, v3}) ∪ rep({v1, v3}).

Example 1. A labeled multidigraph, its base graph, a reduction process, and
changes of the set of representing edges are illustrated in Fig. 2.

Fig. 2. (a) A labeled multidigraph, (b) its base graph and a reduction process to a
single-vertex graph, and (c) changes of the set of representing edges.

3 Spanning Tree Automaton

Spanning tree automata are similar to well-known nondeterministic top-down
tree automata for ordered trees, but the inputs are more general. Edge labels
can be arbitrarily specified for the transition rules of a spanning tree automaton.

3.1 Definitions

Let X = {x1, x2, . . .} be a fixed countable set of variables.

A Practical Algorithm for the Uniform Membership Problem 105

A spanning tree automaton over alphabets Σ and Δ is a quintuple A =
(Q,Σ,Δ, q0, R) where Q is a finite set of states, q0 ∈ Q is the initial state, and
R is a finite set of transition rules of the following form:

q(f(c1(x1), . . . , cn(xn))) → f(c1(q1(x1)), . . . , cn(qn(xn))),

where n ≥ 0, q, q1, . . . , qn ∈ Q, f ∈ Σ, c1, . . . , cn ∈ Δ, and x1, . . . , xn ∈ X . The
number n is called the width of a transition rule. When n = 0, we write q(f) → f
instead of q(f()) → f(). Since we assume widths of transition rules are bounded
by a constant in this paper, we define the size of a spanning tree automaton A
as |R|, the number of transition rules.

Let r : q(f(c1(x1), . . . , cn(xn))) → f(c1(q1(x1)), . . . , cn(qn(xn))) be a tran-
sition rule. We define l-state(r) = q, v-label(r) = f , width(r) = n, var(r) =
{x1, . . . , xn} and, for each 1 ≤ i ≤ n, r-state(r, i) = qi and e-label(r, i) = ci.

Let T = (V,E, tail, head,Σ,Δ, σ, δ) be a labeled rooted tree, and let vr ∈ V
be the root of T . A state mapping on T is a function μ : V → Q. A state mapping
μ on T is acceptable by A, if μ(vr) = q0 and, for each v ∈ V , a transition rule
q(f(c1(x1), . . . , cn(xn))) → f(c1(q1(x1)), . . . , cn(qn(xn))) is in R for some n ≥ 0,
μ(v) = q, σ(v) = f , and v has exactly n outgoing edges e1, . . . , en such that
δ(ei) = ci and μ(head(ei)) = qi for each 1 ≤ i ≤ n. A accepts T if there is an
acceptable state mapping on T .

Let G = (V,E, tail, head,Σ,Δ, σ, δ) be a labeled multidigraph. A accepts G
if G has a spanning tree T and A accepts T . A set S of labeled multidigraphs
is recognizable if there exists a spanning tree automaton A such that S = {G |
G is accepted by A}.

Example 2. The following is an example of a spanning tree automaton, which
accepts binary boolean expression trees with true value: A = (Q,Σ,Δ, qT , R),
where Q = {qT , qF }, Σ = {∧,∨,¬, T, F}, Δ = {1, 2}, and R consists of transition
rules:

r1 : qF (∧(1(x1), 2(x2))) → ∧(qF (1(x1)), qF (2(x2))),
r2 : qF (∧(1(x1), 2(x2))) → ∧(qT (1(x1)), qF (2(x2))),
r3 : qF (∧(1(x1), 2(x2))) → ∧(qF (1(x1)), qT (2(x2))),
r4 : qT (∧(1(x1), 2(x2))) → ∧(qT (1(x1)), qT (2(x2))),
r5 : qF (∨(1(x1), 2(x2))) → ∨(qF (1(x1)), qF (2(x2))),
r6 : qT (∨(1(x1), 2(x2))) → ∨(qT (1(x1)), qF (2(x2))),
r7 : qT (∨(1(x1), 2(x2))) → ∨(qF (1(x1)), qT (2(x2))),
r8 : qT (∨(1(x1), 2(x2))) → ∨(qT (1(x1)), qT (2(x2))),
r9 : qF (¬(1(x1))) → ¬(qT (1(x1))),

r10 : qT (¬(1(x1))) → ¬(qF (1(x1))),
r11 : qT (T) → T , and
r12 : qF (F) → F.

106 A. Fujiyoshi

Fig. 3. A labeled rooted tree and an acceptable state mapping on it for A.

Consider a labeled rooted tree T illustrated in Fig. 3. Because there exists an
acceptable state mapping μ, the labeled rooted tree T is accepted by A.

3.2 Partial Acceptance

The algorithm solving the uniform membership problem handles spanning trees
and spanning tree-pairs of subgraphs of an input graph. For spanning trees and
spanning tree-pairs of subgraphs, we need the notion of partial acceptance.

For a labeled rooted tree or a labeled tree-pair T = (V,E, tail, head,Σ,Δ, σ,
δ), a pair of vertices v1, v2 ∈ V , a pair of transition rules r1, r2 ∈ R and a pair
of subsets of variables X1 ⊆ var(r1),X2 ⊆ var(r2), T is (v1, r1,X1, v2, r2,X2)-
acceptable by A if there exists a state mapping μ : V → Q such that all of the
following four conditions hold:

1. If v is a source of T , v �= v1 and v �= v2, then μ(v) = q0.
2. For each v ∈ V , if v �= v1 and v �= v2, then a transition rule q(f(c1(x1), . . . ,

cn(xn))) → f(c1(q1(x1)), . . . , cn(qn(xn))) is in R for some n ≥ 0, μ(v) = q,
σ(v) = f , and v has exactly n outgoing edges e1, . . . , en such that δ(ei) = ci
and μ(head(ei)) = qi for each 1 ≤ i ≤ n.

3. If r1 is of the form q(f(c1(x1), . . . , cn(xn))) → f(c1(q1(x1)), . . . , cn(qn(xn)))
for some n ≥ 0, and X1 consists of k distinct variables {xi1 , . . . , xik} for some
0 ≤ k ≤ n, then μ(v1) = q, σ(v1) = f , and v1 has exactly k outgoing edges
e1, . . . , ek such that δ(ej) = cij and μ(head(ej)) = qij for each 1 ≤ j ≤ k.

4. If r2 is of the form q(f(c1(x1), . . . , cn(xn))) → f(c1(q1(x1)), . . . , cn(qn(xn)))
for some n ≥ 0, and X2 consists of k distinct variables {xi1 , . . . , xik} for some
0 ≤ k ≤ n, then μ(v2) = q, σ(v2) = f , and v2 has exactly k outgoing edges
e1, . . . , ek such that δ(ej) = cij and μ(head(ej)) = qij for each 1 ≤ j ≤ k.

For a labeled rooted tree T = (V,E, tail, head,Σ,Δ, σ, δ), a vertex v1 ∈ V , a
transition rule r1 ∈ R and a subset of variables X1 ⊆ var(r1), T is (v1, r1,X1)-
acceptable by A if T is (v1, r1,X1, v1, r1,X1)-acceptable by A.

Example 3. Consider the spanning tree automaton A and the state mapping μ
on T for A in Example 2. The following T1, T2, T3, T4, P1 and P2 are labeled
rooted trees and labeled tree-pairs, which are edge-induced subgraphs of T :

A Practical Algorithm for the Uniform Membership Problem 107

T1 = T [{e1, e3, e4, e5}], T2 = T [{e1, e2, e3, e4, e5}],
T3 = T [{e1, e2, e3, e4, e6}], T4 = T [{e3, e4}],
P1 = T [{e5, e7, e8}], and P2 = T [{e1, e2, e5, e6, e7, e8}].

According to the state mapping μ, T1 is (v1, r4, {x1})-acceptable, T2

is (v3, r6, ∅)-acceptable, (v3, r7, ∅)-acceptable and (v3, r8, ∅)-acceptable, T3 is
(v3, r6, {x1}, v4, r5, {x1})-acceptable and (v3, r8, {x1}, v4, r5, {x1})-acceptable,
T4 is (v2, r11, {x1}, v4, r5, {x1})-acceptable, P1 is (v3, r6, {x2}, v4, r5, {x2})-
acceptable and (v3, r7, {x2}, v4, r5, {x2})-acceptable, and P2 is (v2, r11, ∅,
v4, r5, {x2})-acceptable (Fig. 4).

Fig. 4. Partially acceptable labeled rooted trees and labeled tree-pairs.

4 Algorithm for the Uniform Membership Problem

In this section, we present an algorithm for uniform membership problem of
labeled multidigraphs of tree-width at most 2 for spanning tree automata. Let
G = (V,E, tail, head,Σ,Δ, σ, δ) be a labeled multidigraph, let G′ = (V,E′) be
the base graph of G, and let A = (Q,Σ,Δ, q0, R) be a spanning tree automaton.

The main task of the algorithm is to calculate sets: α[v], β[v] ⊆ R × 2X for
each v ∈ V , and A[v1, v2], B[v1, v2], C[v1, v2],D[v1, v2] ⊆ R × 2X × R × 2X for
each (v1, v2) ∈ V ×V provided that {v1, v2} ∈ E′. They are described as follows:

(r,X) ∈ α[v] if and only if a spanning tree of G[rep(v)] exists such that its root
is v and it is (v, r,X)-acceptable by A.

(r,X) ∈ β[v] if and only if a spanning tree of G[rep(v)] exists such that its root
is not v and it is (v, r,X)-acceptable by A.

(r1,X1, r2,X2) ∈ A[v1, v2] if and only if a spanning tree of G[rep({v1, v2})] exists
such that its root is v1 and it is (v1, r1,X1, v2, r2,X2)-acceptable by A.

(r1,X1, r2,X2) ∈ B[v1, v2] if and only if a spanning tree-pair of G[rep({v1, v2})]
exists such that its sources are v1 and v2, and it is (v1, r1,X1, v2, r2,X2)-
acceptable by A.

(r1,X1, r2,X2) ∈ C[v1, v2] if and only if a spanning tree of G[rep({v1, v2})]
exists such that its root is neither v1 nor v2, and it is (v1, r1,X1, v2, r2,X2)-
acceptable by A.

108 A. Fujiyoshi

(r1,X1, r2,X2) ∈ D[v1, v2] if and only if a spanning tree-pair of G[rep({v1, v2})]
exists such that one of its sources is v2, the other source is not v1, there is no
simple directed path from v2 to v1, and it is (v1, r1,X1, v2, r2,X2)-acceptable
by A.

An informal sketch of partially acceptable spanning trees and tree-pairs
related to the sets are illustrated in Fig. 5.

Fig. 5. Partially acceptable spanning trees and tree-pairs related to the sets.

The above sets are maintained to satisfy their requirement during a reduction
process of the base graph G′. When the base graph is reduced to a single-vertex
graph with the only vertex v, if (r, var(r)) ∈ β[v], or (r, var(r)) ∈ α[v] and
l-state(r) = q0, then a spanning tree of G accepted by A exists, or else no such
spanning tree exists.

4.1 Initial Setting of the Sets

Considering partially acceptable spanning trees and tree-pairs of G[rep(v)] and
G[rep({v1, v2})] for each v ∈ V and (v1, v2) ∈ V ×V provided that {v1, v2} ∈ E′,
the sets are initialized as follows:

α[v] := {(r, ∅) | v-label(r) = σ(v)},
β[v] := ∅,
A[v1, v2] := {(r1, {xi}, r2, ∅) | ∃e ∈ E such that tail(e) = v1 and head(e) = v2,

v-label(r1) = σ(v1), v-label(r2) = σ(v2), 1 ≤ i ≤ width(r1), r-state(r1, i) =
l-state(r2) and e-label(r1, i) = δ(e)},

B[v1, v2] := {(r1, ∅, r2, ∅) | v-label(r1) = σ(v1) and v-label(r2) = σ(v2)},
C[v1, v2] := ∅, and
D[v1, v2] := ∅.

A Practical Algorithm for the Uniform Membership Problem 109

4.2 Maintenace of the Sets During a Reduction Process
of the Base Graph

When a vertex v2 and an edge {v1, v2} are removed, α[v1] and β[v1] are updated
as follows:

α[v1] := {(r,X1 ∪ X2) | (r,X1) ∈ α[v1], (r,X2, r
′,X3) ∈ A[v1, v2], (r′,X4) ∈ α[v2],

X3 ∪ X4 = var(r′) and X3 ∩ X4 = ∅}, and
β[v1] := {(r,X1 ∪ X2) | (r,X1) ∈ β[v1], (r,X2, r

′,X3) ∈ A[v1, v2], (r′,X4) ∈ α[v2],
X3 ∪ X4 = var(r′) and X3 ∩ X4 = ∅}
∪ {(r,X1 ∪ X2) | (r,X1) ∈ α[v1], (r′,X3, r,X2) ∈ A[v2, v1], (r′,X4) ∈ β[v2],
X3 ∪ X4 = var(r′) and X3 ∩ X4 = ∅}
∪ {(r,X1 ∪ X2) | (r,X1) ∈ α[v1], (r,X2, r

′,X3) ∈ C[v1, v2], (r′,X4) ∈ α[v2],
X3 ∪ X4 = var(r′) and X3 ∩ X4 = ∅}
∪ {(r,X1 ∪ X2) | (r,X1) ∈ α[v1], (r′,X3, r,X2) ∈ A[v2, v1], (r′,X4) ∈ α[v2],
X3 ∪ X4 = var(r′), X3 ∩ X4 = ∅ and l-state(r′) = q0}.

Figure 6 shows all the possible combinations of partially acceptable spanning
trees to form new partially acceptable spanning trees for α[v1] and β[v1].

Fig. 6. Partially acceptable spanning trees to update α[v1] and β[v1].

110 A. Fujiyoshi

When a vertex v2 and edges {v1, v2}, {v2, v3} are removed, we have to think of
the existence of an edge between v1 and v3. If there has not been an edge between
v1 and v3, and a new edge {v1, v3} is added, then A[v1, v3], A[v3, v1], B[v1, v3],
B[v3, v1], C[v1, v3], C[v3, v1], D[v1, v3] and D[v3, v1] are newly initialized.

For instance, D[v1, v3] is newly initialized as follows:

D[v1, v3] := {(r,X1, r
′,X2) | (r′′,X3, r,X1) ∈ A[v2, v1], (r′′,X4, r

′,X2) ∈ B[v2, v3],
(r′′,X5) ∈ β[v2], X3 ∪ X4 ∪ X5 = var(r′′) and X3,X4,X5 are pairwise disjoint}
∪ {(r,X1, r

′,X2) | (r,X1, r
′′,X3) ∈ C[v1, v2], (r′′,X4, r

′,X2) ∈ B[v2, v3],
(r′′,X5) ∈ α[v2], X3 ∪ X4 ∪ X5 = var(r′′) and X3,X4,X5 are pairwise disjoint}
∪ {(r,X1, r

′,X2) | (r′′,X3, r,X1) ∈ A[v2, v1], (r′′,X4, r
′,X2) ∈ D[v2, v3],

(r′′,X5) ∈ α[v2], X3 ∪ X4 ∪ X5 = var(r′′) and X3,X4,X5 are pairwise disjoint}
∪ {(r,X1, r

′,X2) | (r,X1, r
′′,X3) ∈ D[v1, v2], (r′,X2, r

′′,X4) ∈ A[v3, v2],
(r′′,X5) ∈ α[v2], X3 ∪ X4 ∪ X5 = var(r′′) and X3,X4,X5 are pairwise disjoint}
∪ {(r,X1, r

′,X2) | (r′′,X3, r,X1) ∈ A[v2, v1], (r′′,X4, r
′,X2) ∈ B[v2, v3],

(r′′,X5) ∈ α[v2], X3 ∪ X4 ∪ X5 = var(r′′), X3,X4,X5 are pairwise disjoint
and l-state(r′′) = q0}.

Figure 7 shows all the possible combinations of partially acceptable spanning
trees and tree-pairs to form new partially acceptable spanning tree-pairs for
D[v1, v3]. The remaining sets can be newly initialized in a similar way.

Fig. 7. Partially acceptable spanning trees and tree-pairs to initialize D[v1, v3].

A Practical Algorithm for the Uniform Membership Problem 111

On the other hand, if there has already been an edge between v1 and v3,
then we first calculate A[v1, v3], A[v3, v1], B[v1, v3], B[v3, v1], C[v1, v3], C[v3, v1],
D[v1, v3] and D[v3, v1] of G[rep({v1, v2}) ∪ rep(v2) ∪ rep({v2, v3})]. Combin-
ing these sets with A[v1, v3], A[v3, v1], B[v1, v3], B[v3, v1], C[v1, v3], C[v3, v1],
D[v1, v3] and D[v3, v1] of G[rep({v1, v3})], the sets are updated.

Let Av1,v3 and Bv1,v3 be the sets A[v1, v3] and B[v1, v3] of G[rep({v1, v2}) ∪
rep(v2)∪rep({v2, v3})]. Combining Av1,v3 and Bv1,v3 with A[v1, v3] and B[v1, v3]
of G[rep({v1, v3})], A[v1, v3] is updated as follows:

A[v1, v3] := {(r,X1 ∪ X2, r
′,X3 ∪ X4) | (r,X1, r

′,X3) ∈ A[v1, v3], (r,X2, r
′,X4) ∈

Bv1,v3 , X1 ∩ X2 = ∅ and X3 ∩ X4 = ∅}
∪ {(r,X1 ∪ X2, r

′,X3 ∪ X4) | (r,X1, r
′,X3) ∈ B[v1, v3], (r,X2, r

′,X4) ∈ Av1,v3 ,
X1 ∩ X2 = ∅ and X3 ∩ X4 = ∅}.

Figure 8 shows all the possible combinations of partially acceptable spanning
trees and tree-pairs to form new partially acceptable spanning trees for A[v1, v3].
The remaining sets can be updated in a similar way.

Fig. 8. Partially acceptable spanning tree and tree-pairs to update A[v1, v3].

4.3 Correctness of the Algorithm

The correctness of the algorithm can be shown by confirming the following:

– When G′ is reduced to a single-vertex v, G[rep(v)] = G.
– The sets always satisfy their requirement during a reduction process of G′.
– The combinations of partially acceptable spanning trees and tree-pairs related

to the sets α, β, A, B, C and D are sufficient to update the sets.
– In the calculation of updated value of the each set, all the possible combina-

tions partially acceptable spanning trees and tree-pairs are considered.

To confirm the last point, all combinations of partially acceptable spanning
trees and tree-pairs related to the sets have been checked.

112 A. Fujiyoshi

4.4 Time Complexity of the Algorithm

Because at least one edge is removed from E′ for each iteration, the number of
iterations is O(n), where n is the size of a graph. The calculations of the sets
can be done in O(m5 · 2w) time, where m is the number and w the maximum
width of transition rules of an automaton. Since we assume widths of transition
rules are bounded by a constant in this paper, 2w is bounded by a constant.
Therefore, if inputs are restricted to graphs of tree-width at most 2, the uniform
membership problem of labeled multidigraphs for spanning tree automata is
solvable in O(n · m5) time, where n is the size of a graph, m the size of an
automaton.

5 Conclusion

A practical algorithm for the uniform membership problem of labeled multidi-
graphs of tree-width at most 2 for spanning tree automata was presented. Since
reduction rules that reduce any undirected simple graph of tree-width at most 3
to a single-vertex graph are also known [1], we think that the algorithm presented
in this paper can be extended for graphs of tree-width at most 3.

References

1. Arnborg, S., Proskurowski, A.: Characterization and recognition of partial 3-trees.
SIAM J. Algebraic Discrete Methods 7(2), 305–314 (1986)

2. Chan, K.F., Yeung, D.Y.: Mathematical expression recognition: a survey. Int. J.
Doc. Anal. Recogn. 3(1), 3–15 (2000)

3. Courcelle, B.: The monadic second-order logic of graphs I. Recognizable sets of
finite graphs. Inf. Comput. 85, 12–75 (1990)

4. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach, Encyclopedia of Mathematics and Its Applications,
vol. 138. Cambridge University Press, Cambridge (2012)

5. Eto, Y., Suzuki, M.: Mathematical formula recognition using virtual link network.
In: Proceedings of the 6th International Conference on Document Analysis and
Recognition (ICDAR 2001), pp. 430–437 (2001)

6. Fujiyoshi, A.: Recognition of a spanning tree of directed acyclic graphs by tree
automata. In: Maneth, S. (ed.) CIAA 2009. LNCS, vol. 5642, pp. 105–114. Springer,
Heidelberg (2009)

7. Fujiyoshi, A.: Recognition of directed acyclic graphs by spanning tree automata.
Theor. Comput. Sci. 411(38–39), 3493–3506 (2010)

8. Fujiyoshi, A.: Recognition of labeled multidigraphs by spanning tree automata. In:
Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 188–199. Springer,
Heidelberg (2014)

9. Fujiyoshi, A., Suzuki, M., Uchida, S.: Verification of mathematical formu-
lae based on a combination of context-free grammar and tree grammar. In:
Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.)
AISC/Calculemus/MKM 2008. LNCS (LNAI), vol. 5144, pp. 415–429. Springer,
Heidelberg (2008)

A Practical Simulation Result for Two-Way
Pushdown Automata

Robert Glück(B)

DIKU, Department of Computer Science, University of Copenhagen,

Copenhagen, Denmark

Abstract. The simulation of two-way deterministic and nondetermin-
istic pushdown automata is revisited. A uniform algorithm presented
herein decides on a random-access machine in linear time resp. cubic
time whether a given pushdown automaton accepts a word, while the
actual run of the automaton may take exponential time. The algorithm
is practical since it only explores reachable configurations, simulates a
class of quasi-deterministic decision problems in linear time even if the
pushdown automaton is nondeterministic, and iterates over a simple work
list. This is an improvement over previous simulation algorithms.

1 Introduction

This study revisits two classic results of pushdown automata. Cook proved the
surprising result [5] that on a random-access machine (RAM) it is possible
to decide in linear time whether a two-way deterministic pushdown automa-
ton (2DPDA) accepts a word, while the actual run of the automaton may take
exponential time. This insight was utilized by Knuth et al. [12, p. 339] to find a
linear-time solution for the left-to-right string-matching problem, which can eas-
ily be expressed as a 2DPDA. This solution has a wide range of applications. The
earlier method by Aho et al. [1] required O(n2) steps for simulating a 2DPDA,
which was improved to O(n) by Cook. However, whereas Cook’s construction
applies only to deterministic automata, the Aho et al. construction can decide in
cubic time whether a two-way nondeterministic pushdown automaton (2NPDA)
accepts a word (cf. [14]).

Unfortunately, both constructions are complicated in that they do not follow
the control flow of a pushdown automaton running on a word, but examine all
possible flows and thus trace many unreachable computation paths. This makes
the constructions not only difficult to follow, but also impractical because of
the large number of unreachable configurations given the initial configuration.
Jones clarified Cook’s construction by using a semantics-based simulator that
interprets a 2DPDA in linear time, following the actual control flow and avoiding
unreachable branches [10]; a similar solution was proposed by Rytter [13]. Jones’
construction simulates the stack of a deterministic pushdown automaton by the
call stack in a recursive Algol-like language.

However, to the best of the author’s knowledge, no algorithm has been
reported to simulate 2NPDA by exploring only the reachable configurations, nor
c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 113–124, 2016.
DOI: 10.1007/978-3-319-40946-7 10

114 R. Glück

one to simulate both, 2DPDA and 2NPDA, in linear resp. cubic time. The present
paper reports such an algorithm. Here we describe a uniform and straightfor-
ward algorithm that simulates both types of pushdown automata in linear and
cubic time, respectively, by exploring only the space of reachable configurations.
The algorithm has several practical advantages over previous constructions:

1. Constant factor : as only the set of reachable configurations is explored for
a given decision problem, which is usually much smaller than the set of all
possible configurations of the pushdown automaton for a given word, the
constant factor of the simulation is reduced;

2. Dynamic adaption: if a decision problem is quasi-deterministic, a notion
derived by inspection of the algorithm in this paper, it can be solved in
linear time regardless of whether the pushdown automaton is deterministic
or nondeterministic; there is no need for a static analysis of the automaton
before the simulation;

3. Iterative: the core of the algorithm is a single loop that iterates over a work
list; there is no need to rely on the call stack of a recursive implementation
language.

The algorithm has been applied to program staging by partial evaluation of
recursive flowchart programs and to solve Futamura’s challenge of linear-time
specialization of a naive string matcher into a linear-time matcher [8].

In Sect. 2, we review the standard move relation and a horizontal relation, the
latter being the key to our main technical result, i.e. the fast decision algorithm
presented in Sect. 3. Termination and correctness of the algorithm are proven
in Sect. 4, the complexity is analyzed in Sect. 5, and an application to program
staging by partial evaluation is outlined in Sect. 6. Section 7 discusses related
work, and Sect. 8 is the conclusion.

2 Pushdown Automata: Configuration Relations

A two-way pushdown automaton has a finite-state control attached to a push-
down stack and a read-only input tape with a two-way head. We review the
standard terminology and a relation for horizontal stack layers and terminators.

2.1 Preliminaries

Definition 1 (2NPDA). A two-way non-deterministic pushdown automaton
(2NPDA) is a tuple M = (Q,Σ, Γ, δ, q0, qf) where Q is a finite set of states, Σ
is a finite set of input symbols, Γ is a finite set of stack symbols including the
distinguished bottom-of-stack symbol Z, which marks the bottom of the stack, and

δ : Q × (Σ ∪ {�, �}) × Γ −→ P(Q × {−1, 0, 1} × Γ ∗)

is a transition function mapping into finite subsets. States q0, qf ∈ Q are the ini-
tial and final states, respectively. Integers d ∈ {−1, 0, 1} represent the directions
for moving the tape head: left, stay, right. The input of M is a word w ∈ Σ∗ that
is located on the tape between the left endmarker � and the right endmarker �.

A Practical Simulation Result for Two-Way Pushdown Automata 115

Notational conventions: states are denoted by p, q ∈ Q, tape symbols by
a, b ∈ Σ ∪ {�, �}, stack symbols by A,B ∈ Γ , stacks by α, β ∈ Γ ∗, and tape
positions for a word of length n by i, j ∈ Nn+1 = {0, 1, · · · , n + 1}. Without
loss of generality, assume that δ pushes and pops at most one stack symbol. We
assume that δ is always defined, that is δ(q, a,A) = ∅ if there is no move for
(q, a,A). If for no triple (q, a,A) in the domain of δ does δ(q, a,A) contain more
than one element, then M is said to be deterministic.

Let M = (Q,Σ, Γ, δ, q0, qf) be a 2NPDA and w ∈ Γ ∗ be an input word of
length n, fixed through the remainder of this presentation.

Definition 2 (Configuration, ID). A surface configuration (configuration,
for short) is a triple c = (q, i, A) ∈ C = (Q × Nn+1 × Γ) where q ∈ Q is a
state, i ∈ Nn+1 is a position, A = top(c) ∈ Γ is the symbol on top of the stack.
An instantaneous description (ID, for short) is a pair (c, α) = (C × Γ+) where
c ∈ C is a configuration and α ∈ Γ+ is a stack whose top (left-most symbol) is
top(c).

Note that an ID (c, α) contains a configuration c and a stack α. The choice of
the next move by δ depends only on c, not on α. The number of IDs is infinite,
due to the possibility of unbounded stacks, but the number of configurations is
finite. There are O(n) possible configurations for a word of length n.

Definition 3 (Computation). Let word w = a1a2 . . . an and a0 = � and
an+1 = �. A move from ID (c, α) to ID (d, β) in a single computation step,
written as (c, α) � (d, β), is defined for c = (p, i, A) and d = (q, j, B) by

(c, α) � ((q, j, B), Bα) if (q, j, B) ∈ ispush(c),
(c,Aα) � ((q, j, B), Bα) if (q, j, B) ∈ isop(c),
(c,ABα) � ((q, j, B), Bα) if (q, j, Z) ∈ ispop(c),

where
ispush((p, i, A)) = {(q, i + j, B) | (q, j, BA) ∈ δ(p, ai, A)},
isop((p, i, A)) = {(q, i + j, B) | (q, j, B) ∈ δ(p, ai, A)},

ispop((p, i, A)) = {(q, i + j, Z) | (q, j, ε) ∈ δ(p, ai, A)}.

As usual, we use the reflexive, transitive closure of � to define a sequence of
computation steps, and write (c, α) �∗ (d, β) if (c, α) leads to (d, β) in zero or
more moves. M halts if it reaches an ID for which there is no move. We say M
accepts if it halts in an ID (cf , Z) where cf is a final configuration and Z is the
bottom-of-stack symbol. A final configuration (qf , j, Z) has no move for any j.

It is convenient to denote the set of all configurations following a pop by

follow(c, d) = { e | (d, top(d)top(c)) � (e, top(e)) }.

Definition 4 (Acceptance). M accepts word w if started in ID (c0, Z) halts
in ID (cf , Z), where c0 = (q0, 0, Z) is the initial configuration and cf = (qf , j, Z)
is a final configuration. The language accepted by M is defined by

L(M) = { w | (c0, Z) �∗ (cf , Z) on w ∈ Σ∗ }.

116 R. Glück

Definition 5 (Reachable, Predecessors). M has for word w the set of
reachable configurations Rw and the set of predecessors Pw(d) of a configu-
ration d:

Rw = { c | (c0, Z) �∗ (c, α) on w },

Pw(d) = { c ∈ Rw | d ∈ ispush(c) ∨ d ∈ isop(c) on w }.

There are at most O(n) reachable configurations Rw for a word of length n.
All configurations in Rw that directly reach d without popping are predecessors
of d. This concludes the review of the terminology and assumptions used below.

2.2 Horizontal Layers and Terminators

Another, equivalent form of defining the language of a pushdown automaton can
can be given by relating the configurations on the same horizontal layer of the
stack and identifying the configurations that end a layer. This structuring of the
computation requires only two notions:

1. horizontal configuration relation, written c −→ d, and
2. terminator d of a configuration c, written term(c, d).

Definition 6 (Horizontal Layer). Two configurations c and d are on the same
horizontal stack layer, written c −→ d, iff there is a sequence of moves for m ≥ 0,

(c, top(c)) � (e1, α1) · · · � (em, αm) � (d, top(d)),

where each intermediate ID (ej , αj) has a stack height |αj | ≥ 2. If m = 0, then
(c, top(c)) � (d, top(d)). As usual, −→∗ is the reflexive, transitive closure of −→.

Definition 7 (Terminator). A configuration d is terminal, written isterm(d),
iff ispop(d) 	= ∅ or d is final. A terminator of a configuration c is a configuration d
(if it exists), written term(c, d), iff c −→∗ d and d is terminal.

The language defined by the horizontal relation for M is

L′(M) = {w | c0 −→∗ cf on w ∈ Σ∗}.

Theorem 8 (Equivalence). The languages defined by the standard relation �
and the horizontal relation −→ are identical, L(M) = L′(M).

Proof. Follows directly from the definition of how a 2NPDA accepts a word.
�
Figure 1 illustrates a computation sequence from an initial ID (c0, Z) to a

final ID (cf , Z). The top symbol of the stack (A,B, . . .) and the configuration
(a, b, . . .) of each intermediate ID is shown. The reader will detect the growing
and shrinking stack and the repetition of a sequence of moves from ID (b,Bα)
to ID (e,Bα). Although the moves on the surface are identical regardless of the
stack below, there is no way to shortcut the computation steps (�).

A Practical Simulation Result for Two-Way Pushdown Automata 117

Fig. 1. Standard computation sequence vs. horizontal relation of a PDA on some word

The situation is different if we consider the horizontal relation between the
configurations. It is immediately clear that the relations b −→ e and c −→ d can
be reused once they are known. The terminators are also indicated in the figure.
For example, cf is a terminator of c0 and g, but g is not a terminator of c0 (it
neither pops nor is it a final configuration). The sharing of horizontal relations
and terminators is key to the fast simulation algorithm in the following section.

3 An Agenda-Based Decision Algorithm

Using the stack-based computation relation � in Definition 3 may take expo-
nential time to reach a final configuration from the initial configuration. The
same computation steps may be repeated many times. The computation may
be nonterminating because the stack may grow forever without ever reaching a
final configuration. Both problems may be avoided by taking advantage of the
horizontal transition relation and memoizing all terminators of a configuration
because the stack below two configurations c and d that are in a horizontal rela-
tion does not matter. More formally, the computation sequence on the surface
between c and d is the same regardless of the particular stack below:

Lemma 9. If c −→ d then ∀α ∈ Γ ∗ . (c, top(c)α) �∗ (d, top(d)α).

For example, if c is reached again in the context of another stack, say β, the
intermediate steps between (c, top(c)β) and (d, top(d)β) need not be repeated.

118 R. Glück

Whenever we reach c, we can go directly to d. Moreover, if d has a terminator
t, and we find a horizontal relation c −→ d, then t is also a terminator of c.

Similarly, if t is a terminator of d, term(d, t), which means t triggers a pop
operation, and we find some configuration c that pushes into d, then the con-
figuration e directly following t at the next lower stack layer after the pop (the
follow configuration) will be in horizontal relation c −→ e. We see that it is an
advantage to memoize terminators found during the computation and to reuse
them whenever possible. The simulation algorithm makes use of the following
two lemmas to share known terminators.

Lemma 10. If c −→ d ∧ term(d, t) then term(c, t).

Lemma 11. If d ∈ ispush(c) ∧ term(d, t) ∧ e ∈ follow(c, t) then c −→ e.

The agenda-based simulation algorithm sim (Fig. 2) calculates all reachable
configurations and their terminators, and returns the terminator set of the ini-
tial configuration c0. The 2NPDA M and the input word w are global to the
algorithm. The language defined by the algorithm for M is

L′′(M) = {w | cf ∈ sim(c0) for M on w ∈ Σ∗}.

The algorithm works concurrently along all paths between reachable config-
urations. A forward step (↑↑) traverses a forward edge (a transition between two
configurations) and a return step (↓↓) propagates a terminator backward along
an edge. The rules are defined such that the algorithm (i) traverses each forward
edge just once, and (ii) returns the same terminator just once to each predeces-
sor of a configuration. For this the algorithm memoizes the predecessors (in an
array K) and the terminators (in an array T) of each reachable configuration.
(Relation K can be viewed as a representation of a reverse graph where the
edges point from configurations to their predecessors.)

The core of the algorithm is a while loop that iterates over an agenda A. A
step selected from A can be forward (↑↑) to a new configuration (as a result of
a push or op operation) or return (↓↓) a terminator. The forward steps (↑↑) and
return steps (↓↓) that can be on the agenda and their intended meaning:

step implies step implies

↑↑dc c −→ d ↓↓tc term(c, t)
↑↑ d
(c) d ∈ ispush(c) ↓↓ t

(c) e ∈ follow(c, t) ∧ c −→ e

In case of a ↑↑dc -step, the two configurations c and d are in a horizontal relation,
and in case of a ↑↑ d

(c)-step, configuration c pushes into d (“c is a stack layer below
d”). As a special case, the initial configuration c0 in the initial forward step ↑↑c0() is
in horizontal relation with an empty predecessor denoted by (). The information
about the type of the predecessor of d is important when we return a terminator.
In the case of a return step, ↓↓tc indicates that t is a terminator of a configuration
c and ↓↓ t

(c) indicates that t is a terminator returned to a configuration c that is
one layer below (and Lemma 11 is used to establish a new horizontal relation).

A Practical Simulation Result for Two-Way Pushdown Automata 119

procedure sim(c0: conf): confset
A := { ↑↑c0

() }; (* initial agenda *)

K := [∅, . . . , ∅]; (* initial predecessor table *)
while A �= ∅ do
case pick(A) of
↑↑c
k : if K[c] = ∅ then begin A ∪= steps(c); T [c] := ∅; K[c] ∪= k end else (Ia)

if k �∈ K[c] then begin A ∪= { ↓↓t
k | t ∈ T [c] }; K[c] ∪= k end; (Ib)

↓↓t
c : if t �∈ T [c] then begin A ∪= { ↓↓t

k | k∈ K[c] }; T [c] ∪= t end; (II)
↓↓ t
(c) :A ∪= { ↑↑e

c | e ∈ follow(c, t) } (III)

esac
end;
return T [c0] (* terminators of c0 *)

procedure steps(c: conf): stepset

return { ↑↑ d
(c) | d ∈ ispush(c) } ∪ { ↑↑d

c | d ∈ isop(c) } ∪ { ↓↓c
c | isterm(c) }

Fig. 2. Agenda-based decision algorithm

The three forms of predecessors, c, (c), and (), are collectively denoted by k in
the algorithm. For example, ↑↑dk can either be ↑↑dc or ↑↑ d

(c) or ↑↑ d
().

The algorithm starts with an initial agenda A and an empty K. The initial
forward step is ↑↑c0(). Each iteration of the loop selects and removes a step from
A by pick(A). New steps are added to A if one of the four branches (Ia,Ib,II,III)
applies to the step. If no branch applies, the only effect is that the step is
removed. Steps can be selected in any order and until A is empty (A can be a
list or a queue). We assume that no ↓↓ t

()-step is added to A.
(Ia) ↑↑ck: All steps that can be made from c are added to the agenda by

A ∪ = steps(c) if this was not done before, that is K[c] = ∅. The predecessor
k of c is recorded by adding k to K[c]. Note that each application of (Ia), as
well as of (Ib) and (II), disables the condition that enabled it (here, K[c] 	= ∅
afterwards). Shorthand notation like K[c] ∪= k is used for K[c] := K[c] ∪ { k }.

(Ib) ↑↑ck: If c is reached from a new predecessor k, that is k 	∈ K[c], all known
terminators t ∈ T [c] are returned to k, and k is recorded in K[c]. Even if no
terminator is available for c, that is T [c] = ∅, k is recorded in K[c], so that later,
when the first terminator is added to T [c], it is also be returned to k.

(II) ↓↓tc: A terminator t returned to c is only returned to the predecessors of
c in K[c] if t is a new terminator of c, that is t 	∈ T [c].

(III) ↓↓ t
(c): A terminator t returned to a configuration below means that the

next configuration is obtained by simulating a pop (Lemma 11 is used).
The initial role of K[c] is to indicate whether c was already visited. After the

first visit, K[c] records all predecessors of c. Thus, K represents the reverse graph
of configurations reached during the run of the algorithm. T [c] is initialized only
when c is reached. An unreachable configuration has no terminators.

120 R. Glück

4 Correctness and Termination of the Simulation

In this section we show that the decision algorithm correctly determines whether
or not an input word is accepted by the pushdown automaton.

Theorem 12 (Correctness). Algorithm sim in Fig. 2 correctly answers the
question “Is w ∈ L(M)?”.

Proof. At the end of the algorithm, cf ∈ T [c0] if and only if w ∈ L(M). First,
we will show that the algorithm terminates, then show its soundness and com-
pleteness. We outline the argument due to space constraints.

Termination. Each iteration of the while loop selects and removes an element
from A by pick(A). Depending on the form of the element (↑↑ck, ↓↓tc, ↓↓ t

(c)), one
of the cases is selected. Each branch (I-II) is guarded by a condition that is
disabled after the branch is run (e.g. if K[c] = ∅ at the entry of (Ia), then
K[c] 	= ∅ afterwards). It follows that no branch (I-II) can be selected more than
once for the same element, of which there is only a finite number (the number
of configurations is finite). Eventually every element is processed, which also
means that (I-II) cannot add more elements to A, including ↓↓ t

(c)-elements. This
limits how often (III) can turn the arrow of an element. So the algorithm always
terminates.

Soundness (⇒). It is easy to show simultaneously by induction on the num-
ber of iterations of the while loop that the following invariants hold after each
iteration. Invariants (1–3) are for the elements in the data structures A, T ,
and K.

(1) Agenda A: (a) ↓↓tc ∈ A ⇒ term(c, t), (b) ↓↓ t
(c) ∈ A ⇒ e ∈ follow(c, t) ∧ c −→ e,

(c) ↑↑dc ∈ A ⇒ c −→ d, (d) ↑↑ d
(c) ∈ A ⇒ d ∈ ispush(c),

(2) Terminators T : t ∈ T [c] ∧ K[c] 	= ∅ ⇒ term(c, t),
(3) Predecessors K: (a) c ∈ K[d] ⇒ c −→ d, (b) (c) ∈ K[d] ⇒ c ∈ ispush(d).

Before the first iteration, K is empty, so (2–3) hold. Also, (1a,b,d) are vacuously
true. The only element in A is ↑↑c0() which satisfies (1c) by definition for the initial
configuration c0 and its empty predecessor. For the induction step, we assume as
induction hypothesis that the invariants (1–3) are true after n iterations of the
loop, and show by case analysis that they are true after one more iteration. For
each element (↑↑ck, ↓↓tc, ↓↓ t

(c)) in A the corresponding branch (I-III) is considered,
and Lemmas 10 and 11 are used. We can conclude that (1–3) hold for all n ≥ 0.

Completeness (⇐): For the converse, we must show that if term(c, d) then the
algorithm eventually adds the terminator d to T [c]. The proof is by induction
on the length of the computation sequence (c, top(c)) �∗ (d, top(d)). We assume
as induction hypothesis that (c, top(c)) �n (d, top(d)) ∧ term(c, d) ∧ ↑↑ck ∈ A for
some k imply that the algorithm eventually performs T [c] ∪=d and A ∪= ↓↓dk.
For the induction step, let (c, top(c)) �1 (e, α) �n (d, top(d)) and assume that
the induction hypothesis holds up to n. Consider for each of the cases e ∈ isop(c)
and e ∈ ispush(c) the very first time the algorithm selects ↑↑ck from A, and sup-
pose the terminator d was already found resp. not yet found. Proceed by analy-
sis of all cases. Note when e ∈ isop(c), configurations b, f can be found such

A Practical Simulation Result for Two-Way Pushdown Automata 121

that (c, top(c)) � (e, top(e)top(c)) �i (b, top(b)top(c)) � (f, top(f)) �j (d, top(d))
where i, j ≤ n, term(e, b), term(f, d), and f ∈ follow(c, b). Finally, we can con-
clude that the induction hypothesis holds for all n ≥ 0.

The algorithm terminates, is sound and complete. It correctly solves the
decision problem.
�

5 Complexity of the Simulation

5.1 Cubic Time for 2NPDA

Theorem 13. The question “Is w ∈ L(M)?” about a 2NPDA M is answered
in time O(|w|3) on a RAM with a uniform cost model.

Proof. Assume that the simulation algorithm in Fig. 2 uses a data structure for
sets in which the union of two sets with cardinalities u and v takes at most time
O(u+v), the creation of a set from n elements takes time O(n), and membership
testing as well as selecting and removing an element from a set takes constant
time. Evaluation of steps and follow, which access M , takes constant time. The
correctness of the data collected by the algorithm was shown (Theorem 12).

There are at most n = O(|w|) reachable configurations. K and T have at
most O(n2) elements, K[c] and T [c] have at most O(n) elements, and there are
O(n2) possible steps of the form ↑↑ck and ↓↓tk. Steps can only be added to A if a
branch (I-III) applies to a step selected from A. (Ia) can only be applied once to
each of the n configurations, and each application adds O(1) steps. (Ib) and (II)
can only be applied once to each of the O(n2) possible steps, and each application
adds at most O(n) steps. (I-II) add at most O(n3) steps in total. (III) can only
be applied to a ↓↓-step added by (I-II), and each application adds O(1) ↑↑-steps.
The loop can be repeated at most O(n3) times until A = ∅. Thus, the time the
algorithm takes is cubic in the length of the input.
�

5.2 Polynomial Time for Multi-head 2NPDA

The number of reachable configurations of a j-head 2NPDA M depends on the
number of positions each of the j heads can take. If each head can take n = |w|+1
positions, there are at most O(nj) reachable configurations. The algorithm was
shown to be cubic time in the number of reachable configurations for a 1-head
2NPDA M (Theorem 13), and runs in polynomial time for a j-head 2NPDA M .
This coincides with the time required to simulate a 2NPDA with j heads on a
read-only input tape of length n [1].

5.3 Linear Time for Quasi-deterministic Problems and 2DPDA

We now consider the special case of a quasi-deterministic decision problem that
can be answered in linear time in the length of word w. It is characterized
by a set of reachable configurations Rw in which each reachable configuration
has O(1) terminators and O(1) predecessors, except for a constant number of

122 R. Glück

reachable configurations that have either O(n) terminators or O(n) predecessors.
Only a linear number of steps is required to collect all terminators of a quasi-
deterministic problem. The linear-time performance is a property of the decision
problem w, not of the pushdown automaton M in general. For the same M , some
decision problems may be solved in linear time and others in cubic time. A trivial
example is an automaton containing nondeterministic and deterministic sub-
automata whose selection depends on the input word. (In general, the control-
flow of an automaton may be more complex than that.)

Definition 14 (Quasi-deterministic). The set of reachable configurations Rw

of a 2NPDA M for a word w of length n is quasi-deterministic if it is the disjoint
union of three configuration sets, Rw = X�Y �Z, whose cardinalities are bounded
by O(1), O(1), and O(n), respectively, and each configuration x ∈ X, y ∈ Y ,
z ∈ Z have the following number of predecessors Pw(·) and terminators Tw(·).

x y z
Predecessors O(1) O(n) O(1)
Terminators O(n) O(1) O(1)

Theorem 15. The question “Is w ∈ L(M)?” about a 2NPDA M is answered
in time O(|w|) on a RAM with a uniform cost model if the set of reachable
configurations Rw is quasi-deterministic.

Proof. The time to run the simulation algorithm in Fig. 2 depends on the number
of steps added to A. Because the set of reachable configurations Rw is quasi-
deterministic, the number of predecessors and the number of terminators in K[c]
and T [c] of each c ∈ Rw = X � Y � Z are bounded according to Definition 14.
That is, each of the O(1) configurations x ∈ X has O(1) predecessors in K[x]. In
this case (II) can only add O(1) ↓↓tk-steps, k ∈ K[x], for each ↓↓tx-step. By similar
case analysis for the other branches and configurations, it is easy to verify that
the O(|w|) applications of (I-III) add at most O(|w|) steps to A. It follows that
the quasi-deterministic decision problem can be solved in linear time.
�

Because a quasi-deterministic decision problem has a bounded form of non-
determinism, it can be solved in linear time by the simulation algorithm. Due
to the determinism of the transition relation of a 2DPDA, all decision prob-
lems of such an automaton are quasi-deterministic and can be solved in linear
time by the simulation algorithm (every configuration has at most one termi-
nator). This coincides with the time required to simulate a 2DPDA by Cook’s
construction [5].

The characterization of quasi-deterministic problems was motivated by prac-
tical concerns. They occur during the partial evaluation of recursive flowchart pro-
grams, an application outlined below. For example, the maximally-polyvariant
partial evaluation [6] of a pushdown string matcher with a static pattern and a
dynamic string corresponds to a quasi-deterministic decision problem [8].

A Practical Simulation Result for Two-Way Pushdown Automata 123

6 Application: Maximally-Polyvariant Partial Evaluation

Recursive flowchart languages [3,6] exhibit characteristics that can be modeled
by two-way deterministic pushdown automata. Their call and return mechanism
correspond to the push and pop mechanism of pushdown automata, except that
label-store pairs are pushed and popped, not stack symbols.

Partial evaluation utilizes program transformation techniques [11] that
explore the state space of a program with partially known input. Some val-
ues of the variables in the store of a program are unknown (dynamic), meaning
not all control-flow decisions can be taken deterministically and a partial eval-
uator must explore all possible control flows. Therefore, the state exploration
of recursive programs can be modeled by two-way nondeterministic pushdown
automata.

A partial evaluator does not solve decision problems, but collects all reachable
configurations of a source program to generate a residual program. To collect all
reachable configurations fast and precisely, the author has employed the methods
in a maximally-polyvariant partial evaluator, which solved Futamura’s challenge
of linear-time specialization of a naive string matcher into a linear-time matcher.
It turned out that this corresponds to a quasi-deterministic decision problem [8].

7 Related Work

The classic simulation methods for two-way pushdown automata are not prac-
tical because they examine all possible configurations of a decision problem
including a large number of unreachable configurations [1,5]; exceptions are the
2DPDA simulations [2,10,13]. Our 2NPDA simulation examines only the con-
figurations that are actually reachable from the initial configuration and handles
all pushdown automata. The simulation [7] does not handle left-recursion, i.e.
requires a loop-free 2NPDA. The transitive closure of the horizontal relation
defines the set of Cook’s realizable pairs of surface configurations and is related
to path systems [4]. Parsing algorithms use sophisticated techniques to achieve
linear resp. cubic time performance for deterministic and general context-free
grammars (e.g., LR parsers, Earley’s algorithm). Generalized LR parsing in par-
ticular uses a related graph-structured representation of parsing stacks for shar-
ing derivations [9]. The algorithms usually rely on the one-way nature of parsing,
and cannot be adapted to two-way nondeterministic pushdown automata.

8 Conclusion and Further Work

The simulation algorithm presented here is a uniform way to prove two clas-
sic simulation results of two-way deterministic and nondeterministic pushdown
automata [1,5]. As a special case, the algorithm simulates one-way pushdown
automata, which represent the class of context-free grammar problems. A closer
inspection of the correspondence with known parsing algorithms will be interest-
ing and may reveal unexpected connections. The relation with Generalized LR

124 R. Glück

parsing appears closest due to the use of a graph-structured stack [15]. The class
of quasi-deterministic decision problems may correspond to current automata-
theoretic notions that could be productive to explore. Another direction of inves-
tigation is application to fast partial evaluation and program generation.

Acknowledgments. The author would like to thank Chung-chieh Shan and the
anonymous reviewers for their input. It is a great pleasure to thank Akihiko Takano
for providing the author with excellent working conditions at the National Institute of
Informatics, Tokyo, and Masami Hagiya, Zhenjiang Hu, and Kanae Tsushima for their
invaluable support in Japan.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Time and tape complexity of pushdown
automaton languages. Inf. Control 13(3), 186–206 (1968)

2. Amtoft-Hansen, T., Nikolajsen, T., Träff, J.L., Jones, N.D.: Experiments with
implementations of two theoretical constructions. In: Meyer, A.R., Taitslin, M.A.
(eds.) Logic at Botik 1989. LNCS, vol. 363, pp. 119–133. Springer, Heidelberg
(1989)

3. Christensen, N.H., Glück, R.: Offline partial evaluation can be as accurate as online
partial evaluation. ACM TOPLAS 26(1), 191–220 (2004)

4. Cook, S.A.: Characterizations of pushdown machines in terms of time-bounded
computers. J. ACM 18(1), 4–18 (1971)

5. Cook, S.A.: Linear time simulation of deterministic two-way pushdown automata.
In: Freiman, C.V., Griffith, J.E., Rosenfeld, J.L. (eds.) Information Processing 71,
pp. 75–80. North-Holland, Amsterdam (1972)

6. Glück, R.: A self-applicable online partial evaluator for recursive flowchart lan-
guages. Softw. Pract. Experience 42(6), 649–673 (2012)

7. Glück, R.: Simulation of two-way pushdown automata revisited. Electron. Proc.
Theor. Comput. Sci. 129, 250–258 (2013)

8. Glück, R.: Maximally-polyvariant partial evaluation in polynomial time. In: Maz-
zara, M., Voronkov, A. (eds.) Perspectives of System Informatics. LNCS, vol. 9609,
pp. 149–157. Springer, Heidelberg (2016)

9. Grune, D., Jacobs, C.J.H.: Parsing Techniques: A Practical Guide. Monographs in
Computer Science, 2nd edn. Springer, New York (2008)

10. Jones, N.D.: A note on linear time simulation of deterministic two-way pushdown
automata. Inf. Process. Lett. 6(4), 110–112 (1977)

11. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall, Upper Saddle River (1993)

12. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J.
Comput. 6(2), 323–350 (1977)

13. Rytter, W.: A simulation result for two-way pushdown automata. Inf. Process.
Lett. 16(4), 199–202 (1983)

14. Rytter, W.: Fast recognition of pushdown automaton and context-free languages.
Inf. Control 67(1–3), 12–22 (1985)

15. Tomita, M.: Efficient Parsing for Natural Language. Kluwer Academic Publishers,
Boston (1986)

Nondeterministic Complexity of Operations
on Closed and Ideal Languages

Michal Hospodár, Galina Jirásková(B), and Peter Mlynárčik

Mathematical Institute, Slovak Academy of Sciences, Grešaková 6,
040 01 Košice, Slovakia

hosmich@gmail.com, jiraskov@saske.sk, mlynarcik1972@gmail.com

Abstract. We study the nondeterministic state complexity of basic reg-
ular operations on the classes of prefix-, suffix-, factor-, and subword-
closed regular languages and on the classes of right, left, two-sided, and
all-sided ideal regular languages. For the operations of union, intersec-
tion, complementation, concatenation, square, star, and reversal, we get
the tight upper bounds for all considered classes.

1 Introduction

The nondeterministic state complexity of a regular language L, nsc(L), is the
smallest number of states in any nondeterministic finite automaton (NFA) with
a single initial state recognizing the language L. The nondeterministic state com-
plexity of a regular operation is defined as the maximal nondeterministic state
complexity of languages resulting from the operation, considered as a function
of nondeterministic state complexities of the operands.

The nondeterministic state complexity of basic operations on regular lan-
guages has been investigated in [8,9], and on prefix-free and suffix-free languages
in [6,7]. In this paper we continue this research and study the nondeterminis-
tic complexity of operations on closed and ideal languages. The (deterministic)
state complexity of operations on the classes of closed and ideal languages has
been studied by Brzozowski et al. in [2,3]. Čevorová in [4] examined the state
complexity of the square operation on these classes. The class of prefix-closed
languages has been investigated in [5].

In this paper we get the tight upper bounds on the nondeterministic state
complexity of operations of union, intersection, complementation, concatenation,
square, star, and reversal on the classes of prefix-, suffix-, factor-, and subword-
closed languages. We also study the operations on left, right, two-sided and all
sided ideals and get tight upper bounds for these classes as well.

To prove tightness, we use a fooling set method [1]. Although the gap between
a fooling set for a regular language and the size of a minimal NFA for this
language may be exponential [10], here this method is successfully used to get
tight upper bounds in all the cases. In most cases we describe witness languages
over a binary alphabet.

P. Mlynárčik—Research supported by VEGA grant 2/0084/15.

c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 125–137, 2016.
DOI: 10.1007/978-3-319-40946-7 11

126 M. Hospodár et al.

q0 q1 . . . qm−1 0 1 . . . n − 1
a

b

a

b

a

b

b

a

b

a

b

a

Fig. 1. The DFAs of subword closed languages K and L with nsc(K ∪ L) = m+ n+1.

2 Preliminaries

A language L is prefix (suffix, factor, subword)-closed iff for every w ∈ L every
prefix (suffix, factor, subword) of w is in L.

Let L be a language over an alphabet Σ. Then we have four classes of ideals.
The language L is a right ideal iff L = LΣ∗. The language L is a left ideal iff
L = Σ∗L. The language L is two-sided ideal iff L = Σ∗LΣ∗. The language L is
all-sided ideal iff L = L Σ∗, where operation is the shuffle operation.

In the paper we investigate the nondeterministic complexity of basic oper-
ations on the above mentioned subclasses of regular languages. To prove the
minimality of NFAs, we use a fooling set lower-bound technique [1,13].

Definition 1. A set of pairs of strings {(x1, y1), (x2, y2), . . . , (xn, yn)} is called
a fooling set for a language L if for all i, j in {1, 2, . . . , n},

(F1) xiyi ∈ L, and
(F2) if i �= j, then xiyj /∈ L or xjyi /∈ L.

Lemma 2 ([1,13]). Let F be a fooling set for a language L. Then every NFA
(with multiple initial states) for the language L has at least |F| states.

Lemma 3 ([11]). Let A and B be sets of pairs of strings and let u and v be
two strings such that A ∪ B, A ∪ {(ε, u)}, and B ∪ {(ε, v)} are fooling sets for
a language L. Then every NFA with a single initial state for L has at least
|A| + |B| + 1 states.

3 Closed Languages

We start with union and intersection on the class of closed languages.

Theorem 4. Let m,n ≥ 2. Let K and L be closed languages with nsc(K) = m
and nsc(L) = n. Then nsc(K ∪ L) ≤ m + n + 1. The bound is met by binary
subword closed languages.

Proof. The upper bound is the same as for regular languages. To prove tightness,
consider the binary subword-closed languages shown in Fig. 1.

Consider the following sets of pairs of strings:
A = {(bnai, am−1−ib) | 0 ≤ i ≤ m − 1}, B = {(abn−1−j , bjam) | 0 ≤ j ≤ n − 1}

Nondeterministic Complexity of Operations on Closed and Ideal Languages 127

q0 q1 . . . qm−1 0 1 . . . n − 1

b

a a a

c c

c b

a a a

c c

c

Fig. 2. The subword-closed witnesses K, L for concatenation meeting the bound m+n.

Let us show that A∪B is a fooling set. Condition (F1) is satisfied since for each
i, j, the strings bnai · am−1−ib and abn−1−j · bjam are in K ∪ L. To prove (F2),
we consider three cases:

(1) if 0 ≤ i < k ≤ m − 1, then bnak · am−1−ib is not in K ∪ L;
(2) if 0 ≤ j < � ≤ n − 1, then abn−1−j · b�am is not in K ∪ L;
(3) if 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1, then bnai · bjam is not in K ∪ L.
In addition, A ∪ {(ε, ambn−1)} and B ∪ {(ε, am−1bn)} are fooling sets for

K ∪ L. By Lemma 3, we have that nsc(K ∪ L) ≥ m + n + 1. This holds also for
classes of factor-, prefix-, and suffix-closed languages. ��
Theorem 5. Let m,n ≥ 2. Let K and L be closed languages with nsc(K) = m
and nsc(L) = n. Then nsc(K ∩ L) ≤ mn. The bound is met by binary subword-
closed languages.

Proof. The upper bound is the same as for regular languages. To prove tight-
ness, consider the binary subword-closed languages shown in Fig. 1. Consider the
following set of pairs of strings: F = {(aibj , am−1−ibn−1−j) | 0 ≤ i ≤ m − 1, 0 ≤
j ≤ n − 1}. Let us show that F is a fooling set for K ∩ L. Condition (F1) is
satisfied since for each i, j, the string aibj · am−1−ibn−1−j is in K ∩ L. To prove
(F2), let (i, j) �= (k, �). (1) If i < k, then akb� · am−1−ibn−1−j is not in K ∩ L.
(2) If i = k and j < �, then akb� · am−1−ibn−1−j is not in K ∩ L.
Hence F is a fooling set for K ∩ L, so nsc(K ∩ L) ≥ mn. ��

Let us continue with concatenation and square.

Theorem 6. Let K and L be closed languages with nsc(K) = m and nsc(L) =
n. Then nsc(KL) ≤ m + n. The bound is met by ternary subword-closed lan-
guages.

Proof. The upper bound is the same as for regular languages. To prove tightness,
consider the ternary subword-closed languages shown in Fig. 2.

Consider the following set of pairs of strings:
F = {(ai, am−1−icban−1) | 0 ≤ i ≤ m − 1} ∪ {(am−1cbaj , an−1−j) | 0 ≤ j ≤

n − 1}.
Let us show that F is a fooling set for KL. Condition (F1) is satisfied since

for each i, j, the strings ai · am−1−icban−1 and am−1cbaj · an−1−j are in KL. To
prove (F2), notice that KL is a subset of b∗a∗c∗b∗a∗c∗ and every string in KL
has at most m − 1 + n − 1 letters a. We consider three cases.

128 M. Hospodár et al.

(1) If 0 ≤ i < k ≤ m − 1, then ak · am−1−icban−1 is not in KL, because it
has more than m − 1 + n − 1 letters a.

(2) If 0 ≤ j < � ≤ n− 1, then am−1cba� · an−1−j is not in KL, because it has
more than m − 1 + n − 1 letters a.

(3) If 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1, then am−1cbaj · am−1−icban−1 is not
in KL, because this string is not in the form b∗a∗c∗b∗a∗c∗.

Hence F is a fooling set for KL, so nsc(KL) ≥ m + n. ��
If m = n, then K = L in the proof above, so we get the next result.

Corollary 7. Let L be a closed language with nsc(L) = n. Then nsc(L2) ≤ 2n.
The bound is met by a ternary subword-closed language.

Theorem 8. Let L be a closed language over Σ with nsc(L) = n. Then
(a) if L is prefix-closed, then nsc(L∗) ≤ n, and the bound is tight if |Σ| ≥ 2;
(b) if L is suffix-closed, then nsc(L∗) ≤ n, and the bound is tight if |Σ| ≥ 2;
(c) if L is factor- or subword-closed, then nsc(L∗) = 1.

Proof. If L is a closed language, then ε ∈ L. It follows that nsc(L∗) ≤ n. To prove
tightness, consider a prefix-closed language shown in Fig. 3 and a suffix-closed
language shown in Fig. 4. Lower bound for prefix-closed was proven in [5], lower
bound for suffix-closed is n because L = L∗. For factor- or subword-closed, let
Γ be set of letters present in any string of L. While L ⊆ Γ ∗, every single-letter
string from Γ is in L. It follows that L∗ = Γ ∗, hence nsc(L∗) = 1. ��

Theorem 9. Let n ≥ 3 and L be a closed language with nsc(L) = n. Then
nsc(LR) ≤ n + 1. The bound is met by a binary prefix-closed language, by a
ternary factor-closed language and by a subword-closed language over an alphabet
of size 2n − 2.

Proof. The upper bound is the same as for regular languages. To prove tightness,
consider the binary prefix-closed language shown in Fig. 3. It was shown in [5]
that the reversal of this language requires n+1 states. Now consider the ternary
factor-closed language shown in Fig. 5. Consider the following sets of pairs of
strings: A = {(b, an−2c)} and B = {(bai, an−2−ic) | 1 ≤ i ≤ n−2} ∪ {(can−1, ε)}.
Let us show that A ∪ B, A ∪ {(ε, an−3c)}, and B ∪ {(ε, an−2c)} are fooling sets
for LR. Condition (F1) is satisfied since for each i, the string bai ·an−2−ic equals
ban−2c that is in LR since can−2b is in L. String can−1 is also in LR since an−1c
is in L. To prove (F2), notice that every string of L has at most n − 2 continual
occurences of a after any c. Thus we consider cases:

0 1 . . . n − 1
a a a

b

Fig. 3. The prefix-closed witness language L for star and reversal.

Nondeterministic Complexity of Operations on Closed and Ideal Languages 129

0 1 2 . . . n − 1

a

a a a

a

b

Fig. 4. The suffix-closed witness language L for star meeting the bound n.

(1) If 0 ≤ i < j ≤ n − 2, then baj · an−2−ic is not in LR, because it has
more than n − 2 continual occurences of a after c. (2) If 0 ≤ i ≤ n − 2, then
can−1 ·an−2−ic is not in LR, because it has more than n−2 continual occurences
of a after c.

Sets A ∪ {(ε, an−3c)} and B ∪ {(ε, an−2c)} are fooling sets for LR, because
the strings b · an−3c and bai · an−2c, i ≥ 1 are not in LR. Therefore by Lemma 3
nsc(LR) ≥ n + 1. This proof holds also for the class of suffix-closed languages
since every factor-closed language is also suffix-closed.

Finally consider the subword-closed language accepted by the DFA shown in
Fig. 6. Consider the following sets:
A = {(b2b3 · · · bn−1, a1)}, B = {(b1 · · · bi−1bi+1 · · · bn−1, ai) | 2 ≤ i ≤ n − 1} ∪
{(b1a2, ε)}. Let us show that A ∪ B, A ∪ {(ε, a2)} and B ∪ {(ε, a1)} are fool-
ing sets for LR. Condition (F1) for A ∪ B is satisfied because for every i the
string b1 · · · bi−1bi+1 · · · bn−1 · ai is in LR. Next, for every i �= j the string
b1 · · · bi−1bi+1 · · · bn−1 · aj is not in LR, because it has bj before aj . Hence (F2)
is satisfied. The condition (F1) for A∪{(ε, a2)} and for B ∪{(ε, a1)} is satisfied,
because the strings a2 and a1 are in LR. The proof of condition (F2) uses the
same strings as for A ∪ B. ��

We conclude this section with the complementation operation. In [5], a
ternary prefix-closed language meeting the upper bound 2n for complement was
described. Now we describe a binary witness language.

Theorem 10. Let L be a closed language over Σ with nsc(L) = n. Then
(a) if L is prefix-closed, then nsc(Lc) ≤ 2n, and the bound is tight if |Σ| ≥ 2;
(b) if L is suffix-closed, then nsc(Lc) ≤ 2n−1 + 1, and the bound is met by

a binary factor-closed language;

0 1 2 . . . n − 2 n − 1

a, b

a a a ac

c
c

c

b, c

Fig. 5. The factor-closed witness language L for reversal meeting the bound n + 1.

130 M. Hospodár et al.

1 2 . . . i . . . n − 10

B \ {b1} B \ {b2} B \ {bi} B \ {bn−1}B

a1

a2
ai

an−1

Fig. 6. The DFA of subword-closed language L where B = {b1, . . . , bn−1}.

1 2 3 . . . n − 1 n
a

b

a

b

a

b

a a

b

a

a

Fig. 7. The NFA of binary witness prefix-closed language L with nsc(Lc) = 2n.

(c) if L is subword-closed, then nsc(Lc) ≤ 2n−1 + 1, and the bound is tight if
|Σ| ≥ 2n.

Proof. (a) The upper bound is the same as for regular languages. To prove
tightness, let L be the binary language accepted by the NFA A shown in Fig. 7.
First, we prove the reachability of every subset of {1, 2, . . . , n} in the subset

automaton of A. Notice that we have {1} an−1

−−−→ {n} an−1

−−−→ {1, 2, . . . , n}. Next,
we can shift cyclically by one every subset S: we use the string a if n /∈ S or
if n ∈ S and n − 1 ∈ S, and we use the string ab otherwise. Finally, we can
remove state n from any subset containing n by b. It follows that every subset
of {1, 2, . . . , n} is reachable. Thus for every set S, there exists a string uS such
that uS leads the subset automaton from {1} to S.

Now, we define a fooling set for complement of L. For every set S we define
a string vS as follows. First we define σ(i), where i ∈ {1, 2, . . . , n} as

σ(i) =

{
ba, if i ∈ S,

a, if i �∈ S.

Let vS = σ(n)σ(n− 1) . . . σ(2)σ(1). We show, that such a string is rejected by A
from every i ∈ S and accepted from every i �∈ S. Let i /∈ S, then σ(i) = a, and

i
σ(n)−−−→ i + 1

σ(n−1)−−−−−→ i + 2
σ(n−2)−−−−−→ · · · σ(i+1)−−−−→ n

a−→ 1
σ(i−1)...σ(1)−−−−−−−−→ i,

so vS is accepted since every state is final. If i ∈ S, then σ(i) = ba, and i
σ(n)−−−→

{i + 1} σ(n−1)−−−−−→ {i + 2} σ(n−2)−−−−−→ · · · σ(i+1)−−−−→ {n},
and now A reads the first symbol of σ(i) which is b. However, transition on b is
not defined in state n, therefore the string vS is rejected.

Now we show that

Nondeterministic Complexity of Operations on Closed and Ideal Languages 131

1 2 . . . n − 2 n − 1

0
a, b

a, b a, b

a, b

b
b b

a a a a

a

Fig. 8. The factor-closed witness L for complement, with nsc(Lc) = 2n−1 + 1.

F = {(uS , vS) | S ⊆ {1, 2, . . . , n}} is a fooling set for Lc.
(F1) Let S ⊆ {1, 2, . . . , n}. The NFA A reaches subset S by uS , and from

every state q ∈ S the string vS is rejected. So uSvS is rejected by A, so uSvS ∈ Lc.
(F2) Let S, T ⊆ {1, 2, . . . , n} and S �= T . Without loss of generality, there

exists a state i, such that i ∈ S and i �∈ T . So vT is accepted from i. Hence uSvT

is accepted by A, and therefore uSvT �∈ Lc. This completes the proof of (a).
(b) We first prove the upper bound. Let A = (Q,Σ, δ, s, F) be a minimal

NFA, such that L(A) = L. Since A is a minimal NFA, every q in Q is reachable
from s and also some final state is reachable from q. Let a state q ∈ Q be
reachable from s by a string u. If a final state is reachable from q by string v,
then also uv reaches a final state, so uv is accepted. Since L is suffix-closed, the
string v reaches a final state from s. Therefore every subset of Q containing s is
equivalent to {s} in the subset automaton of NFA A. So subset automaton of A
has at most 2n−1 + 1, so nsc(Lc) ≤ 2n−1 + 1.

To prove tightness, consider the language L accepted by automaton in Fig. 8.
If there is an accepting computation from a state q on a string u such that

q
a(b)−−→ q′ u′

−→ f , where u = au′ or u = bu′ and f is a final state, then there is

a computation s
a(b)−−→ q′ u′

−→ f . It follows that L is suffix-closed. Therefore L is
factor-closed. First, we prove the reachability of every subset of {1, 2, . . . , n − 1}
in the subset automaton of A. Notice that we have {0} a−→ {1, 2, . . . , n−1}. Next,
we can shift cyclically by one every subset S by using the string a. Finally, we
can remove state n−1 from any subset containing n−1 by b. It follows that every
subset of {1, 2, . . . , n−1} is reachable. Thus for every set S, there exists a string
uS such that uS leads the subset automaton from {0} to S. Now, we define a
fooling set for complement of L. For every set S we define a string vS as follows.
First we define σ(i), where i ∈ {1, 2, . . . , n−1} as σ(i) = ba if i ∈ S, and σ(i) = a
if i /∈ S. Let vS = σ(n − 1)σ(n − 2) · · · σ(2)σ(1). Similarly as in proof in case of
prefix-closed in (a) we can show that such a string is rejected by A from every
i ∈ S and accepted from every i �∈ S. Let A = {(uS , vS) | S ⊆ {1, 2, . . . , n − 1}}.
We can show that F = A ∪ {(ε, (ba)n)} is a fooling set for Lc.

(c) Since subword-closed language is also factor-closed, the upper bound is
2n−1 + 1. To prove tightness consider an NFA A, defined as follows:
A = (Q,Σ, δ, s, F), where Q = {0, 1, 2, . . . , n − 1}, s = 0, F = Q and Σ =

132 M. Hospodár et al.

0

1

2

b∅, b1, b2, b12

a1

a12

a2

a12

b∅, b2

b∅, b1

Fig. 9. The subword-closed witness language L with nsc(L) = 3 and |Σ| = 2n.

{aS , bS | S ⊆ {1, 2, . . . , n − 1}}, δ(0, aS) = S, for i > 0 δ(i, aS) = ∅, δ(0, bS) = 0,
for i > 0: if i /∈ S, then δ(i, bS) = {i} and if i ∈ S, then δ(i, bS) = ∅ . Such an
NFA is shown in Fig. 9. Consider now the language L = L(A). Let w ∈ L. The
string w is accepted in a i ∈ S. Any substring of w is accepted also in the i.
Hence L is subword-closed. We can show that A = {(aS , bS) | S ⊆ {1, 2, . . . , n −
1}} ∪ {(ε, a∅} is fooling set for Lc. Therefore nsc(Lc) ≥ 2n−1 + 1. ��

In the end of this section we pay attention to unary closed languages. Con-
sider prefix-closed languages and two cases, finite languages and infinite lan-
guages. In the case of finite languages, there is a string with maximum length,
so every shorter string also must be in the language. In the case of infinite lan-
guages, for arbitrary positive integer i, there is a string w with length at least
i and with this string every its prefixes, so such a language is a∗. Moreover
suffix-closed, factor-closed and subword-closed coincide.

Theorem 11. Let K and L be two unary closed languages with nsc(K) = m
and nsc(L) = n. Then nsc(K ∪ L) ≤ max{m,n}, nsc(K ∩ L) ≤ min{m,n},
nsc(KL) ≤ m + n − 1, nsc(L2) ≤ 2n − 1, nsc(L∗) ≤ 1, nsc(LR) ≤ n, and
nsc(Lc) ≤ n + 1. All these bounds are tight.

4 Ideal Languages

Let us begin with a useful proposition about some features of automata for left
and right ideals.

Proposition 12. Let L be a regular language. (1) If L is a left ideal, then there
exists a minimal NFA A such that L(A) = L and there is a loop on each symbol
in the initial state and no transition goes to the initial state from any other state.
(2) If L is a right ideal, then there exists a minimal NFA A such that L(A) = L
and there is a unique final state in which there is a loop on each symbol and from
which no transition goes to any other state.

Theorem 13. Let m,n ≥ 1. Let K and L be ideal languages with nsc(K) = m
and nsc(L) = n. Then nsc(K ∩ L) ≤ mn. The bound is met by binary all-sided
ideals.

Nondeterministic Complexity of Operations on Closed and Ideal Languages 133

q0 q1 . . . qm−2 qm−1

0 1 . . . n − 2 n − 1

a a a
a

b

Σ

b b b
b

a

Σ

Fig. 10. Witnesses right ideals for union.

q0 q1 . . . qm−2 qm−1

0 1 . . . n − 2 n − 1

a a a a
b

Σ

b b b b
a

Σ

Fig. 11. Witnesses left ideals for union.

Theorem 14. Let m,n ≥ 3. Let K and L be ideal languages over an alphabet
Σ with nsc(K) = m and nsc(L) = n. Then

(a) if K,L are right ideals, then nsc(K ∪ L) ≤ m + n,
(b) if K,L are left ideals, then nsc(K ∪ L) ≤ m + n − 1,
(c) if K,L are two-sided or all-sided ideals, then nsc(K ∪ L) ≤ m + n − 2,

and all the bounds are tight if |Σ| ≥ 2.

Proof. (a) We first prove the upper bound. Let A be a minimal m-state NFA for
K and B be a minimal n-state NFA for L. Since K and L are right ideals, A and
B have exactly one final state which goes to itself on each symbol. We can get
an ε-NFA for K ∪L from NFAs A and B by merging the final states of A and B
and by adding a new initial state connnected to the initial states of A and B by
ε-transitions. The resulting ε-NFA has m + n states, so the corresponding NFA
for K ∪ L has also m + n states.

To prove tightness, consider the binary right ideals K and L shown in Fig. 10.
Now we show that minimal NFA for K ∪ L needs m + n states. To this aim let

A = {(am−1+i, am−2−ib) | 0 ≤ i ≤ m − 2} ∪ {(am−2b, ε)}, and
B = {(bn−1+j , bn−2−ja) | 0 ≤ j ≤ n − 2}.

The sets A ∪ B, A ∪ {(ε, bn−2a)} and B ∪ {(ε, am−2b)} are fooling sets. By
Lemma 3 we have nsc(K ∪ L) ≥ |A| + |B| + 1 = m + n.

(b) We first prove the upper bound. Let A be a minimal m-state NFA for
K and B be a minimal n-state NFA for L. Since K and L are left ideals, we
may assume by Proposition 12 that A and B have a loop on each symbol in the
initial state, and no transition from some other state goes to the initial state.

We can get an NFA for K ∪ L from NFAs A and B by merging the initial
states. All original transitions from initial states of NFAs A,B go from new

134 M. Hospodár et al.

merged state to states as before merging. The resulting NFA has m + n − 1
states, so nsc(K ∪ L) ≤ m + n − 1.

To prove tightness, consider two left ideals shown in Fig. 11. Now we show
that minimal NFA for K ∪ L needs m + n − 1 states. To this aim let A =
{(ai, am−1−i) | 0 ≤ i ≤ m − 1} and B = {(bj , bn−1−j) | 1 ≤ j ≤ n − 2} ∪
{(bn−1, abn−2)}. The set A ∪ B is fooling set for K ∪ L, so nsc(K ∪ L) ≥ m+n−1,
therefore nsc(K ∪ L) = m + n − 1.

(c) For upper bound, let A be a minimal m-state NFA for K and B be a
minimal n-state NFA for L. Since K and L are left ideals and also right ideals,
we may assume by Proposition 12 that A and B have properties claimed there.
We can get an NFA for K ∪L from NFAs A and B by merging the initial states,
and by merging the final states of A and B. The resulting NFA has m + n − 2
states and we leave to the reader to verify the correctness of the construction.
To prove tightness, consider languages K = {w ∈ {a, b}∗ | #a(w) ≥ m − 1} and
L = {w ∈ {a, b}∗ | #b(w) ≥ n − 1}, so K and L are all-sided ideals. Notice that
each string in K ∪ L has at least m − 1 symbols a or at least n − 1 symbols b.
The set {(ai, am−1−i) | 0 ≤ i ≤ m − 1} ∪ {(bj , bn−1−j) | 1 ≤ j ≤ n − 2} is fooling
set for K ∪ L and contains m + n − 2 pairs, so nsc(K ∪ L) ≥ n + m − 2. ��

In the next theorem we use unary languages to prove tightness.

Theorem 15. Let m,n ≥ 3. Let K and L be ideal languages over Σ with
nsc(K) = m and nsc(L) = n. Then nsc(KL) ≤ m + n − 1 and the bound is
tight if |Σ| ≥ 1. Moreover, nsc(L2) ≤ 2n − 1 and the bound is tight if |Σ| ≥ 1 .

Proof. First, let K,L be left ideals. Let A = (QA, Σ, δA, sA, FA) and B =
(QB , Σ, δB , sB , FB) be minimal NFAs for K,L. Since K and L are left ideals,
we may assume by Proposition 12 that A and B have a loop on each symbol
in the initial state, and no transition from some other state goes to the ini-
tial state. We can get an NFA C for KL from NFAs A and B as follows: For
every f in FA add a loop on every symbol and add transitions (f, a, q) when
there is a transition (sB , a, q) in B, where f ∈ FA, a ∈ Σ, q ∈ QB \ {sB}. Set
FC = FB, QC = QA ∪ QB \ {sB}. The resulting NFA has m + n − 1 states, so
nsc(KL) ≤ m + n − 1.

Now, let K,L be right ideals. Let A = (QA, Σ, δA, sA, {qf}) be a minimal
m-state NFA for K and B = (QB , Σ, δB , sB , {pf}) be a minimal n-state NFA
for L. Since K and L are right ideals, we may assume by Proposition 12 that
A and B have a loop on each symbol in a unique final state, and no transition
goes from the final state to some other state. We can get an NFA C for KL from
NFAs A and B by merging final state of A with initial state of B and excluding
of merged state from set of final states as follows: C = (QC , Σ, δC , sA, {pf}),
where QC = (QA \ {qf}) ∪ (QB \ {sB}) ∪ {nAB} and for every a in Σ we have
δC(nAB , a) = δA(qf , a) ∪ δB(sB , a). The resulting NFA has m + n − 1 states, so
nsc(KL) ≤ m + n − 1.

Two-sided and all-sided ideals are also right ideals, so upper bound is the
same as in that cases. To prove tightness, consider all-sided ideal languages
K = {am−1ak | k ≥ 0} and L = {an−1ak | k ≥ 0}, with nsc(K) = m and

Nondeterministic Complexity of Operations on Closed and Ideal Languages 135

nsc(L) = n. The set F = {(ai, am+n−2−i) | 0 ≤ i ≤ m + n − 2} is fooling set for
KL, so nsc(KL) ≥ |F| = m+n− 1. It remains to show the case for square. The
upper bound follows from general concatenation, when m = n. The tightness
follows from a coincidence of the forms of witness languages. ��
Theorem 16. Let n ≥ 2. Let L be ideal languages over Σ with nsc(L) = n.
Then nsc(L∗) ≤ n + 1 and the bound is met by a binary all-sided ideal.

Theorem 17. Let n ≥ 3. Let L be ideal languages over Σ with nsc(L) = n.
(a) If L is right or two-sided or all-sided ideal, then nsc(LR) ≤ n and the bound
is tight if |Σ| ≥ 1. (b) If L is left ideal, then nsc(LR) ≤ n + 1 and the bound is
tight if |Σ| ≥ 3.

Theorem 18. ([14]). Let n ≥ 3. Let L be language over Σ with nsc(L) = n.
(a) If L is a right or left ideal, then nsc(Lc) ≤ 2n−1. The bound is tight if |Σ| ≥ 2.
(b) If L is a two-sided ideal, then nsc(Lc) ≤ 2n−2. The bound is tight if |Σ| ≥ 2.
(c) If L is an all-sided ideal, then nsc(Lc) ≤ 2n−2. The bound is tight if |Σ| ≥
2n−2.

In the end we pay attention to unary ideal languages. Let Σ = {a}. If L is
a right ideal and ai is its shortest string, then L = aia∗. Moreover L = a∗ai =
a∗aia∗ = a∗ ai, hence left, right, two-sided and all-sided ideals coincide.

Theorem 19. Let m,n ≥ 2. Let K,L be unary ideals with nsc(K) =
m,nsc(L) = n. Then nsc(K ∩ L) = max{m,n}, nsc(K ∪ L) = min{m,n},
nsc(KL) = m + n − 1, nsc(L2) = 2n − 1, nsc(L∗) = n − 1, nsc(LR) = n,
nsc(Lc) = n − 1.

5 Conclusions

We investigated the nondeterministic state complexity of basic regular operations
on the classes of closed and ideal languages. For each class and for each operation,
we obtained the tight upper bounds. To prove tightness we usually used a binary
alphabet. In all the cases where we used a larger alphabet for describing witness
languages, we do not know whether the obtained upper bounds can be met also
by languages defined over smaller alphabets. For both closed and ideal languages,
we also considered the unary case. Our results are summarized in the following
tables.

136 M. Hospodár et al.

Class K ∩ L, Σ K ∪ L, Σ K · L, Σ

Prefix-closed mn, 2 m + n + 1, 2 m + n, 3

Suffix-closed mn, 2 m + n + 1, 2 m + n, 3

Factor-closed mn, 2 m + n + 1, 2 m + n, 3

Subword-closed mn, 2 m + n + 1, 2 m + n, 3

Unary closed min{m, n} max{m, n} m + n − 1

Right ideal mn, 2 m + n, 2 m + n − 1, 1

Left ideal mn, 2 m + n − 1, 2 m + n − 1, 1

Two-sided ideal mn, 2 m + n − 2, 2 m + n − 1, 1

All-sided ideal mn, 2 m + n − 2, 2 m + n − 1, 1

Unary ideal max{m, n} min{m, n} m + n − 1

Regular mn, 2 m + n + 1, 2 m + n, 2

Unary regular mn; gcd(m, n) = 1 m + n; gcd(m, n) = 1 m + n(−1)

Class L2, Σ L∗, Σ LR, Σ Lc, Σ

Prefix-closed 2n, 3 n, 2 n + 1, 2 2n, 2

Suffix-closed 2n, 3 n, 2 n + 1, 3 1 + 2n−1, 2

Factor-closed 2n, 3 1, 1 n + 1, 3 1 + 2n−1, 2

Subword-closed 2n, 3 1, 1 n + 1, 2n − 2 1 + 2n−1, 2n

Unary closed 2n − 1 1 n n + 1

Right ideal 2n − 1, 1 n + 1, 2 n, 1 2n−1, 2

Left ideal 2n − 1, 1 n + 1, 2 n + 1, 3 2n−1, 2

Two-sided ideal 2n − 1, 1 n + 1, 2 n, 1 2n−2, 2

All-sided ideal 2n − 1, 1 n + 1, 2 n, 1 2n−2, 2n−2

Unary ideal 2n − 1 n − 1 n n − 1

Regular 2n, 2 n + 1, 1 n + 1, 2 2n, 2

Unary regular 2n(−1) n + 1 n 2Θ(
√

n log n)

References

1. Birget, J.C.: Partial orders on words, minimal elements of regular languages, and
state complexity. Theoret. Comput. Sci. 119, 267–291 (1993)

2. Brzozowski, J., Jirásková, G., Li, B.: Quotient complexity of ideal languages. The-
oret. Comput. Sci. 470, 36–52 (2013)

3. Brzozowski, J., Jirásková, G., Zou, C.: Quotient complexity of closed languages.
Theor. Comput. Syst. 54, 277–292 (2014)

4. Čevorová, K.: Square on ideal, closed and free languages. In: Shallit, J., Okhotin,
A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 70–80. Springer, Heidelberg (2015)

5. Čevorová, K., Jirásková, G., Mlynárčik, P., Palmovský, M., Šebej, J.: Operations
on automata with all states final. In: Ésik, Z., Fülöp, Z. (eds.) Automata and
Formal Languages 2014 (AFL 2014). EPTCS, vol. 151, pp. 201–215 (2014)

Nondeterministic Complexity of Operations on Closed and Ideal Languages 137

6. Han, Y.-S., Salomaa, K.: Nondeterministic state complexity for suffix-free regular
languages. In: DCFS 2010, pp. 189–196 (2010)

7. Han, Y.-S., Salomaa, K., Wood, D.: Nondeterministic state complexity of basic
operations for prefix-free regular languages. Fundam. Inform. 90(1–2), 93–106
(2009)

8. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. Int. J. Found. Comput. Sci. 14, 1087–1102 (2003)

9. Jirásková, G.: State complexity of some operations on binary regular languages.
Theoret. Comput. Sci. 330, 287–298 (2005)

10. Jirásková, G.: Note on minimal automata and uniform communication protocols.
In: Grammars and Automata for String Processing: From Mathematics and Com-
puter Science to Biology, and Back, pp. 163–170. Taylor and Francis (2003)

11. Jirásková, G., Masopust, T.: Complexity in union-free regular languages. Int. J.
Found. Comput. Sci. 22(7), 1639–1653 (2011)

12. Jirásková, G., Mlynárčik, P.: Complement on prefix-free, suffix-free, and non-
returning NFA languages. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.)
DCFS 2014. LNCS, vol. 8614, pp. 222–233. Springer, Heidelberg (2014)

13. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic
finite automata. Inform. Process. Lett. 59, 75–77 (1996)

14. Mlynárčik, P.: Complement on free and ideal languages. In: Shallit, J., Okhotin,
A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 185–196. Springer, Heidelberg (2015)

15. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company,
Boston (1997)

On Bounded Semilinear Languages, Counter
Machines, and Finite-Index ET0L

Oscar H. Ibarra1 and Ian McQuillan2(B)

1 Department of Computer Science, University of California,
Santa Barbara, CA 93106, USA

ibarra@cs.ucsb.edu
2 Department of Computer Science, University of Saskatchewan,

Saskatoon, SK S7N 5A9, Canada
mcquillan@cs.usask.ca

Abstract. We show that for every trio L containing only semilinear lan-
guages, all bounded languages in L can be accepted by one-way nonde-
terministic reversal-bounded multicounter machines (NCM), and in fact,
even by the deterministic versions of these machines (DCM). This implies
that for every semilinear trio (where these properties are effective), it is
possible to decide containment, equivalence, and disjointness concerning
its bounded languages. We also provide a relatively simple condition for
when the bounded languages in a semilinear trio coincide exactly with
those accepted by DCM machines. This is applied to finite-index ET0L
systems, where we show that the bounded languages generated by these
systems are exactly the bounded languages accepted by DCM. We also
define, compare, and characterize several other types of languages that
are both bounded and semilinear.

1 Introduction

The notions of bounded languages and semilinear sets and languages are old ones
in the area of formal languages (see e.g. [5]), and they have been used and applied
extensively. A language L ⊆ Σ∗ is bounded if there exist words, w1, . . . , wk ∈
Σ+, such that L ⊆ w∗

1 · · · w∗
k. The formal definition of semilinear sets Q ⊆ N

k
0

appears in Sect. 2. A language is semilinear if its Parikh map is a semilinear
set. Many well-studied language families, such as the context-free languages,
and one-way nondeterministic reversal-bounded multicounter languages, only
contain languages that are semilinear.

There are various ways of combining these definitions, and in this paper,
we consider four. In particular, a language L ⊆ Σ∗ has been called bounded
semilinear if there exists a semilinear set Q ⊆ N

k
0 such that L = {w | w =

wi1
1 · · · wik

k , (i1, . . . , ik) ∈ Q} [11]. In this paper, we refer to these bounded semi-
linear languages as bounded Ginsburg semilinear to disambiguate with other

The research of O.H. Ibarra was supported, in part, by NSF Grant CCF-1117708.
The research of I. McQuillan was supported, in part, by Natural Sciences and Engi-
neering Research Council of Canada Grant 327486-2010.

c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 138–149, 2016.
DOI: 10.1007/978-3-319-40946-7 12

Bounded Semilinear Languages, Counter Machines, and Finite-Index ET0L 139

types. Similarly, here we define a language L to be called bounded Parikh semi-
linear if there exists a semilinear set Q such that L = {w | w = wi1

1 · · · wik
k ,

the Parikh map of w is in Q}. A bounded Ginsburg-Parikh semilinear language
is defined via two semilinear sets as a combination of the bounded Ginsburg
and bounded Parikh semilinear concepts. Lastly, we define a language L to be
bounded general semilinear if L is a bounded language and there is a semilinear
set Q such that the Parikh map of L is Q.

It is already known that every bounded Ginsburg semilinear language can be
accepted by a one-way nondeterministic reversal-bounded multicounter machine
(NCM) [10]. Furthermore, it is known that every NCM machine accepting a
bounded language can be converted to a deterministic machine (DCM) accepting
the same language [11].

Here, we compare all four notions, and show that bounded Parikh semilinear
languages are a strict subset of bounded Ginsburg semilinear languages, which
are equal to bounded Ginsburg-Parikh semilinear languages, which are a strict
subset of bounded general semilinear languages. In fact, we show that every fam-
ily whose languages are recursively enumerable cannot contain every bounded
general semilinear language (in contrast to the fact that all bounded Ginsburg
semilinear languages are in NCM which are all recursive languages). However,
we show that for every semilinear trio L (a family where all languages are semi-
linear, and is closed under λ-free homomorphism, inverse homomorphism, and
intersection with regular languages), every bounded language in L is bounded
Ginsburg semilinear. Hence, all bounded languages in L are in NCM, and hence
also in DCM. This immediately provides several nice algorithmic results for all
bounded languages in semilinear trios (where all these properties are effective)
such as the ability to test equality, containment, and disjointness, since these
are decidable for DCM. Examples of such language families are the context-free
languages, finite-index ET0L [12], linear indexed languages [3], multi-push-down
languages [2], and many others [7]. We also develop a criterion for when bounded
languages within a semilinear trio coincide exactly with those in NCM and DCM;
this occurs exactly when the family contains all distinct-letter-bounded Ginsburg
semilinear languages (i.e. all bounded Ginsburg semilinear languages over words
that are all distinct letters).

We apply our results to L systems to show that the bounded languages
in finite-index ET0L coincide exactly with those in NCM and DCM. This is
interesting given how different the two types of systems operate. Indeed, NCM is
a sequential machine model that operates with multiple independent stores, and
the other is a grammar system where rules are applied in parallel. The restriction
of finite-index on different types of grammar systems enforces that there is an
integer k such that, for every word in the language, there is a derivation that
uses at most k nonterminals in every sentential form (in particular, a bounded
number of active symbols for the case of ET0L). It is known that the family
of finite-index ET0L languages coincides with many other families of languages
generated by various types of grammar systems with the finite-index condition,
such as EDT0L, context-free programmed grammars, ordered grammars, and

140 O.H. Ibarra and I. McQuillan

matrix grammars [13]. Therefore, the bounded languages in these families are
equal to those in NCM and DCM as well, and this provides a deterministic
machine model accepting exactly the bounded languages in each of these families.

2 Preliminaries

We assume a familiarity with automata and formal languages. We will fix the
notation used in this paper. Let Σ be a finite alphabet. Then Σ∗ (respectively
Σ+) is the set of all words (non-empty words) over Σ. A word w is any element
of Σ∗, while a language is any L ⊆ Σ∗. The empty word is denoted by λ. Given
a language L ⊆ Σ∗, the complement of L with respect to Σ, Σ∗ − L is denoted
by L. A language L ⊆ Σ∗ is bounded if there exists (not necessarily distinct)
words w1, . . . , wk such that L ⊆ w∗

1 · · · w∗
k. L is letter-bounded if there exists (not

necessarily distinct) letters a1, . . . , ak such that L ⊆ a∗
1 · · · a∗

k. If a1, . . . , ak are
distinct, then we say L is distinct-letter-bounded. Given a language family L, the
subset of L consisting of all bounded languages in L, is Lbd.

Let N be the set of positive integers, and N0 the set of non-negative integers.
Let m ∈ N0. Then, π(m) is 1 if m > 0 and 0 otherwise. A subset Q of N

m
0

(m-tuples) is a linear set if there exist vectors v0, v1, . . . , vn ∈ N
m
0 such that

Q = {v0 + i1v1 + · · · + invn | i1, . . . , in ∈ N0}. Then v0 is called the constant,
and v1, . . . , vn are the periods. A finite union of linear sets is called a semilinear
set.

Let Σ = {a1, . . . , am} be an alphabet. The length of a word w ∈ Σ∗ is
denoted by |w|. For a ∈ Σ, |w|a is the number of a’s in w, and for any sub-
set X of Σ, |w|X =

∑
a∈X |w|a. The Parikh map of w is the vector ψ(w) =

(|w|a1 , . . . , |w|am
), which is extended to languages, by ψ(L) = {ψ(w) | w ∈ L}.

A language is semilinear if its Parikh map is a semilinear set. It is known that
a language L is semilinear if and only if it has the same Parikh map as some
regular language [8]. Furthermore, a language family is called semilinear if all
the languages in the family are semilinear.

A one-way k-counter machine [10] is a tuple M = (k,Q,Σ,�, δ, q0, F), where
Q,Σ,�, q0, F are respectively the finite set of states, input alphabet, right input
end-marker (this is needed for deterministic machines but not nondeterministic
machines [9]), initial state (in Q), and accepting states (a subset of Q). The tran-
sition function δ is a relation from Q×(Σ∪{�, λ})×{0, 1}k to Q×{−1, 0,+1}k,
such that if δ(q, a, c1, . . . , ck) contains (p, d1, . . . , dk) and ci = 0 for some i, then
di ≥ 0 (to prevent negative values in any counter). Then M is deterministic if
|δ(q, a, i1, . . . , ik)∪δ(q, λ, i1, . . . , ik)| ≤ 1, for all q ∈ Q, a ∈ Σ∪{�}, (i1, . . . , ik) ∈
{0, 1}k. A configuration of M is a k + 2-tuple (q, w, c1, . . . , ck) representing that
M is in state q, w ∈ Σ∗ � ∪{λ} is still to be read as input, and c1, . . . , ck ∈ N0

are the contents of the k counters. The derivation relation �M is defined between
configurations, whereby (q, aw, c1, . . . , ck) �M (p,w, c1 + d1, . . . , ck + dk), if
(p, d1, . . . , dk) ∈ δ(q, a, π(c1), . . . , π(ck)). Let �∗

M be the reflexive, transitive
closure of �M . A word w ∈ Σ∗ is accepted by M if (q0, w�, 0, . . . , 0) �∗

M

(q, λ, c1, . . . , ck), for some q ∈ F, c1, . . . , ck ∈ N0. Furthermore, M is l-reversal-
bounded if it operates in such a way that in every accepting computation, the

Bounded Semilinear Languages, Counter Machines, and Finite-Index ET0L 141

count on each counter alternates between increasing and decreasing at most l
times.

For a class of machines M, we use the notation L(M) to denote the family
of languages accepted by machines in M. A language family L is a trio [4] if it
is closed under λ-free homomorphism, inverse homomorphism, and intersection
with regular languages.

The class of k-counter l-reversal-bounded machines is denoted by NCM(k, l),
and NCM is the class of all reversal-bounded multicounter machines. Similarly,
the deterministic variant is denoted by DCM(k, l) and DCM.

An ET0L system [12] is a tuple G = (V,P, S,Σ), where V is a finite alphabet,
Σ ⊆ V is the terminal alphabet, S ∈ V is the axiom, and P is a finite set of
production tables, where each P ∈ P is a finite binary relation in V × V ∗. It
is typically assumed that for all production tables P and each variable X ∈ V ,
(X,α) ∈ P for some α ∈ V ∗. If (X,α) ∈ P , then we usually write X →P α.
Elements of V − Σ are called nonterminals.

Let x = a1a2 · · · an, ai ∈ V, 1 ≤ i ≤ n, and let y ∈ V ∗. Then x ⇒G y, if
there is a P ∈ P such that y = α1 · · · αn where ai → αi ∈ P, 1 ≤ i ≤ n. Then
⇒∗

G is the reflexive, transitive closure of ⇒G, and the language generated by G,
L(G) = {x ∈ Σ∗ | S ⇒∗

G x}. A letter X ∈ V is active if there exists a table
P ∈ P and a word α ∈ V ∗ such that X →P α and α
= X. Then AG are the
active symbols of G. Let k ∈ N. Then G is of index k if, for every word x ∈ L(G),
there exists a derivation x0 = S ⇒G x1 ⇒G · · · ⇒G xn = x such that, for each
i, 0 ≤ i ≤ n, |xi|AG

≤ k. Then G is of finite index if G is of index k for some
k ≥ 1. If L is an ET0L language, then L is of index k if there exists an ET0L
system G of index k such that L(G) = L, and L is of finite index if L is of index
k for some k ≥ 1.

The family of languages generated by ET0L systems is denoted by L(ET0L),
and the ET0L languages that are of finite index are denoted by L(ET0Lfin).

3 Bounded Languages and Counter Machines

Next, we define four different types of languages that are both bounded and
semilinear.

Definition 1. Let Σ = {a1, . . . , an}, w1, . . . , wk ∈ Σ+, and Q1 ⊆ N
k
0 and

Q2 ⊆ N
n
0 be semilinear sets.

1. If L = {w | w = wi1
1 · · · wik

k , (i1, . . . , ik) ∈ Q1}, then L is called the bounded
Ginsburg semilinear language induced by Q1.

2. If L = {w | w = wi1
1 · · · wik

k , i1, . . . , ik ∈ N0, (|w|a1 , . . . , |w|an
) ∈ Q2}, then L

is called the bounded Parikh semilinear language induced by Q2.
3. If L = {w | w = wi1

1 · · · wik
k , (i1, . . . , ik) ∈ Q1, (|w|a1 , . . . , |w|an

) ∈ Q2}, then
L is called the bounded Ginsburg-Parikh semilinear language induced by Q1

and Q2.
4. If L ⊆ w∗

1 · · · w∗
k, and ψ(L) = Q2, then L is called a bounded general semilinear

language induced by Q2.

142 O.H. Ibarra and I. McQuillan

Traditionally, bounded Ginsburg semilinear languages are referred to as sim-
ply bounded semilinear languages [11]. However, in this paper, we will use the
term bounded Ginsburg semilinear language to disambiguate with other types.
Note that a bounded Parikh semilinear language is a special case of bounded
general semilinear language.

Example 1. Consider the following languages:

– Let L1 = {w | w = (abb)i(bab)j(abb)k, 0 < i < j < k}. Here, with the
semilinear set Q1 = {(i, j, k) | 0 < i < j < k}, then L1 = {w | w =
(abb)i(bab)j(abb)k, (i, j, k) ∈ Q1}, and therefore L1 is bounded Ginsburg semi-
linear.

– Let L2 = {w | w = (abb)i(aba)j , i, j > 0, 0 < |w|a = |wb|}. Here, using the
semilinear set Q2 = {(n, n) | 0 < n}, it can be seen that L2 is bounded Parikh
semilinear.

– Let L3 = {w | w = (abbb)i(aab)j , 0 < i < j, 0 < |w|a < |wb|}. Using,
Q1 = {(i, j) | 0 < i < j}, and Q2 = {(n,m) | 0 < n < m}, then L2 is
bounded Ginsburg-Parikh semilinear. Hence, both Q1 and Q2 help define L3.
For example, if i = 2, j = 3, then w = (abbb)2(aab)3 ∈ L3 since 2 < 3 and
|w|a = 8 < |w|b = 9. But if i = 2, j = 4, then w = (abbb)2(aab)4 /∈ L3 despite
2 < 4 since |w|a = 10 = |w|b = 10.

– Let L4 = {a2ib | i > 0} ∪ {bai | i > 0}. Then L4 is bounded as it is a subset of
a∗b∗a∗, and has the same Parikh map as the regular language {bai | i > 0} and
is therefore semilinear, and hence bounded general semilinear. It will become
evident from the results in this paper that L4 is not bounded Ginsburg-Parikh
semilinear.

Note that given the semilinear sets and the words w1, . . . , wk in Definition 1,
there is only one bounded Ginsburg, bounded Parikh, and bounded Ginsburg-
Parikh semilinear language induced by the semilinear sets. But for bounded
general semilinear languages, this is not the case, as L4 in the example above
has the same Parikh map as the regular language {bai | i > 0}.

We need the following known results:

Proposition 1. Let Σ = {a1, . . . , an} and w1, . . . , wk ∈ Σ+.

1. [10] If L ⊆ w∗
1 · · · w∗

k is in L(NCM), then QL = {(i1, . . . , ik) | wi1
1 · · · wik

k ∈ L}
is a semilinear set (every bounded language in L(NCM) is bounded Ginsburg
semilinear).

2. [11] If Q ⊆ N
k
0 is a semilinear set, then LQ = {wi1

1 · · · wik
k | (i1, . . . , ik) ∈

Q} ∈ L(NCM) (every bounded Ginsburg semilinear language is in L(NCM)).
3. [10] If L ⊆ Σ∗ is in L(NCM), then ψ(L) is a semilinear set.

Proposition 2. [11] L(NCM)bd = L(DCM)bd.

Corollary 1. The same as Proposition 1 with NCM replaced by a DCM.

We will also need the following lemma, which is generally known (e.g., it can
be derived from the results in [9]). We give a short proof for completeness.

Bounded Semilinear Languages, Counter Machines, and Finite-Index ET0L 143

Lemma 1. Let Σ = {a1, . . . , an}. If Q ⊆ N
n
0 is a semilinear set, then LQ =

{w | w ∈ Σ∗, ψ(w) ∈ Q} ∈ L(NCM).

Proof. Since L(NCM) is closed under union, it is sufficient to prove the result
for the case when Q is a linear set. Let Q = {v | v = v0 + i1v1 + · · · + irvr ,
each ij ∈ N}, where v0 = (v01, . . . , v0n) is the constant and vj = (vj1, . . . , vjn)
(1 ≤ j ≤ r) are the periods. We construct an NCM M with counters C1, . . . , Cn

which, when given input w ∈ Σ∗, operates as follows:

1. M reads w and stores |w|ai
in counter Ci (1 ≤ i ≤ n).

2. On λ-moves, M decrements Ci by v0i for each i (1 ≤ i ≤ n).
3. For 1 ≤ j ≤ r, M , on λ-moves, decrements Ci (1 ≤ i ≤ n) by kjvji, where kj

is a nondeterministically chosen non-negative integer.
4. M accepts when all counters are zero.

Then, L(M) = LQ. ��
Next, we examine the relationship between bounded Ginsburg semilinear lan-

guages, bounded Parikh semilinear languages, bounded Ginsburg-Parikh semi-
linear languages, and bounded general semilinear languages.

To start, we need the following proposition:

Proposition 3. Let L be any family of languages which is contained in the fam-
ily of recursively enumerable languages. Then there is a bounded general semi-
linear language that is not in L.

Proof. Take any non-recursively enumerable language L ⊆ a∗. Let b, c be new
symbols, and consider L′ = bLc ∪ ca∗b. Then L′ is bounded, since it is a subset
of b∗a∗c∗a∗b∗. Clearly, L′ has the same Parikh map as the regular language ca∗b.
Hence, ψ(L′) = {(n, 1, 1) | n ≥ 0}, which is semilinear. But L′ cannot be recur-
sively enumerable, otherwise by intersecting it with the regular language ba∗c,
bLc would also be recursively enumerable. But bLc is recursively enumerable if
and only if L is recursively enumerable. We get a contradiction, since L is not
recursively enumerable. Thus, L′ /∈ L. ��

Therefore, there are bounded general semilinear languages that are not recur-
sively enumerable.

Next, we compare the four types of languages.

Proposition 4. The family of bounded Parikh semilinear languages is a strict
subset of the family of bounded Ginsburg semilinear languages, which is equal
to the family of bounded Ginsburg-Parikh semilinear languages, which is a strict
subset of the family of bounded general semilinear languages.

Proof. First note that every bounded Ginsburg semilinear language is a bounded
Ginsburg-Parikh semilinear language by setting Q2 = N

n
0 (in Definition 1). Also,

every bounded Parikh semilinear language is a bounded Ginsburg-Parikh semi-
linear language by setting Q1 = N

k
0 . So, both the families of bounded Ginsburg

144 O.H. Ibarra and I. McQuillan

semilinear languages and bounded Parikh semilinear languages are a subset of
the bounded Ginsburg-Parikh semilinear languages.

Next, we will see that every bounded Parikh semilinear language is a bounded
Ginsburg semilinear language. Let L be a bounded Parikh semilinear language,
induced by semilinear set Q2. Then L = {w | w = wi1

1 · · · wik
k , i1, . . . , ik ∈

N0, (|w|a1 , . . . , |w|an
) ∈ Q2}. Let Q1 = {(i1, . . . , ik) | w = wi1

1 · · · wik
k ∈ L}. If Q1

is a semilinear set, then L is bounded Ginsburg semilinear by Proposition 1 Part
2. To see that Q1 is semilinear: Let L1 = {w | w ∈ {a1, . . . , an}∗, ψ(w) ∈ Q2}.
Clearly, L = L1 ∩ w∗

1 · · · w∗
k. Then by Lemma 1, L1 is in L(NCM) and since

L(NCM) is closed under intersection with regular sets [10], L is also in L(NCM).
Then, by Proposition 1 Part 1, Q1 is a semilinear set, and we are done.

Then, notice that the bounded Ginsburg-Parikh semilinear language induced
by Q1, Q2 is the intersection of the bounded Ginsburg semilinear set induced by
Q1, with the bounded Parikh semilinear language induced by Q2. From the
proof above, every bounded Parikh semilinear language is in fact a bounded
Ginsburg semilinear language. Hence, every bounded Ginsburg-Parikh semilinear
language is the intersection of two bounded Ginsburg semilinear languages. As
every bounded Ginsburg semilinear language is in L(NCM) by Proposition 1 Part
2, and L(NCM) is closed under intersection [10], it follows that every bounded
Ginsburg-Parikh semilinear language is in L(NCM). By an application of Propo-
sition 1 Part 1 followed by Part 2, every Ginsburg-Parikh semilinear language
must therefore be a bounded Ginsburg semilinear language.

To show that bounded Parikh semilinear languages are properly contained
in bounded Ginsburg languages, consider the bounded Ginsburg semilinear lan-
guage L = {akbkak | k > 0} induced by semilinear set Q1 = {(k, k, k) | k > 0}.
Now the Parikh map of L is the semilinear set Q2 = {(2k, k) | k > 0}. Thus,
if the fixed words are a, b, a (whereby these are the words chosen to define the
bounded language), then the bounded Parikh semilinear language induced by
Q2 is L′ = {aibkaj | i + j = 2k > 0}, which is different from L. It is clear that
this is true for all fixed words.

It suffices to show that the family of bounded Ginsburg semilinear languages
is strictly contained in the family of bounded general semilinear languages. Con-
tainment can be seen as follows: Let L be a bounded Ginsburg language. We
know that every bounded Ginsburg language is in L(NCM) by Proposition 1
Part 2, and all L(NCM) languages are semilinear by Proposition 1 Part 3. Thus
L is semilinear, and L is also bounded. Hence, L is bounded general semilinear.
Strictness follows from Proposition 3 and the fact that all L(NCM) languages are
recursive [10]. ��

In fact, as long as a language family contains a simpler subset of bounded
Ginsburg semilinear languages, and is closed under λ-free homomorphism, then
it is enough to imply they contain all bounded Ginsburg semilinear languages.

Proposition 5. Let L be a language family that contains all distinct-letter-
bounded Ginsburg semilinear languages and is closed under λ-free homomor-
phism. Then L contains all bounded Ginsburg semilinear languages.

Bounded Semilinear Languages, Counter Machines, and Finite-Index ET0L 145

Proof. Let w1, . . . , wk ∈ Σ+, and let L ⊆ w∗
1 · · · w∗

k be a bounded Ginsburg
semilinear language induced by Q1. Let b1, . . . , bk be new distinct symbols. Con-
sider the bounded Ginsburg semilinear language L′ ⊆ b∗

1 · · · b∗
k induced by Q1.

Then L′ ∈ L by assumption. Finally, apply homomorphism h on L′ defined by
h(bi) = wi for each i. Then h(L′) = L, which must be in L, since L is closed
under λ-free homomorphism. ��

Furthermore, as long as a language family is a semilinear trio, all bounded
languages in the family are bounded Ginsburg semilinear languages.

Proposition 6. Let Σ = {a1, . . . , an}, w1, . . . , wk ∈ Σ+, let L be a semilinear
trio, and let L ⊆ w∗

1 · · · w∗
k ∈ L. Then there is a semilinear set Q1 such that L

is the bounded Ginsburg semilinear language induced by Q1.

Proof. Let b1, . . . , bk be new distinct symbols, and L1 = {bi11 · · · bikk | wi1
1 · · · wik

k ∈
L}. Then, since L is closed under λ-free finite transductions (every trio is closed
under λ-free finite transductions [4], Sect. 3.2, Corollary 2), L1 ∈ L, as a trans-
ducer can read w1, and output b1 some number of times (nondeterministically
chosen), followed by w2, etc. Let Q1 be the Parikh map of L1, which is semilinear
by assumption. It follows that L is the bounded Ginsburg semilinear language
induced by Q1. ��

Hence, all bounded languages in semilinear trios are “well-behaved” in the
sense that they are bounded Ginsburg semilinear. For these families, bounded
languages, and bounded Ginsburg semilinear languages coincide.

Corollary 2. Let L be a semilinear trio. Then L ∈ L is bounded if and only if
L is bounded Ginsburg semilinear. Hence, Lbd = {L | L ∈ L is bounded Ginsburg
semilinear}.

Note that this is not necessarily the case for non-semilinear trios. For
example, the language family L(ET0L) contains the non-semilinear language
{a2n | n > 0} which is bounded but not semilinear. Hence, L(ET0L) contains
languages that are bounded general semilinear, {a2n | n > 0}b ∪ ba∗, but not
bounded Ginsburg semilinear in a similar fashion to Proposition 3. But this can-
not happen within semilinear trios.

Then, for an arbitrary semilinear trio L, it is possible to compare all bounded
languages in L to the set of all bounded Ginsburg semilinear languages, which
are exactly the bounded languages in L(NCM).

Proposition 7. Let L be a semilinear trio. Then Lbd ⊆ L(NCM)bd =
L(DCM)bd and the following conditions are equivalent:

1. Lbd = L(NCM)bd = L(DCM)bd,
2. L contains all bounded Ginsburg semilinear languages,
3. L contains all bounded Parikh semilinear languages,
4. L contains all distinct-letter-bounded Ginsburg semilinear languages.

Proof. L(NCM)bd = L(DCM)bd follows from Proposition 2.
Also, all distinct-letter bounded Ginsburg semilinear languages are bounded

Parikh semilinear, and all bounded Parikh semilinear languages are bounded

146 O.H. Ibarra and I. McQuillan

Ginsburg semilinear languages by Proposition 4, and thus 2 implies 3 and 3
implies 4. The other direction follows from Proposition 5, and thus 4 implies 3
and 3 implies 2. Hence, 2, 3, and 4 are equivalent.

Consider any bounded language L ⊆ w∗
1 . . . w∗

n ∈ L. Then there is a semilin-
ear set Q such that L is the bounded Ginsburg semilinear language induced by
Q, by Corollary 2. By Proposition 1 Part 2, L ∈ L(NCM).

If L does not contain all distinct-letter-bounded Ginsburg semilinear lan-
guages, then containment is strict, as L(NCM) does, by Proposition 1 Part 2.
Otherwise, if L does contain all distinct-letter-bounded Ginsburg semilinear lan-
guages, then it contains all bounded Ginsburg semilinear languages by Propo-
sition 5, and then by Proposition 1, all bounded languages in L(NCM) are in L.
Hence, 4 is equivalent to 1. ��

Lastly, an important note is that for any bounded language L in any
semilinear trio L, where the trio properties are effective, and the family is
effectively semilinear (i.e. the constant and period vectors of each linear set
can be constructed), it is possible to effectively construct a DCM machine
accepting L.

Proposition 8. Let L be any language family that is effectively closed under the
trio operations, and is effectively semilinear. Then, for each bounded language
L ∈ L, it is possible to build a DCM machine accepting L.

This provides a deterministic machine model to accept all bounded lan-
guages from these language families defined by nondeterministic machines and
grammars. Moreover, DCM machines have many decidable properties, allowing
for algorithms to be used on them.

Corollary 3. Let L1 and L2 be two language families effectively closed under
the trio operations, and effectively semilinear. Then it is decidable, for L1 ∈ Lbd

1 ,
and L2 ∈ Lbd

2 , whether L1 ⊆ L2, whether L1 = L2, and whether L1 ∩ L2
= ∅.
Proof. This follows since every bounded language within both language families
are in L(DCM) (effectively) by Proposition 8, and containment, equality, and
disjointness are decidable for L(DCM) [10]. ��

4 Application to Finite-Index ET0L

It is known that the family of finite-index ET0L languages is a semilinear trio [12],
and therefore all bounded languages in it are DCM languages, by Proposition 8.
We will show that the bounded languages in the two families are identical.

Lemma 2. Let a1, . . . , ak be distinct symbols, and Q ⊆ N
k
0 be a semilinear set.

Then L = {ai1
1 · · · aik

k | (i1, . . . , ik) ∈ Q} ∈ L(ETOLfin).

Proof. Let L be a letter-bounded Ginsburg semilinear language of the form
above, and let Σ = {a1, . . . , ak}. Then ψ(L) is a finite union of linear sets. Con-
sider each of the linear sets, Q, where there exists v0, v1, . . . , vn ∈ N

k
0 (v0 the

Bounded Semilinear Languages, Counter Machines, and Finite-Index ET0L 147

constant, the rest the periods) with Q = {v0+i1v1+· · ·+invn | i1, . . . , in ∈ N0}.
Assume that n ≥ 1, otherwise the set is finite, where the case is obvious.

We create an ETOL system GQ = (V,P, S,Σ} as follows: P = {P0, P1},
V = Σ ∪ {Z} ∪ {Xi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ n}, and the productions are:

1. Add S →P1 a
v0(1)
1 X1,1a

v0(2)
2 X2,1 · · · av0(k)

k Xk,1 and S →P0 Z.
2. For all Xi,j ∈ V , add Xi,j →P0 a

vj (i)
i Xi,j .

3. For all Xi,j ∈ V, 1 ≤ j < n, add Xi,j →P1 Xi,j+1.
4. For all Xi,n ∈ V , add Xi,n →P1 λ.
5. a →P a is a production for every a ∈ Σ ∪ {Z}, and P ∈ P.

Claim. L(GQ) = {al1
1 · · · alk

k | (l1, . . . , lk) ∈ Q}, and GQ is of index k.

Proof. “⊆” Let w ∈ L(GQ). Thus, there exists S ⇒Q1 x1 ⇒Q2 · · · ⇒Qm
xm =

w ∈ Σ∗, Ql ∈ {P0, P1}, 1 ≤ l ≤ m. Then Q1Q2 · · · Qm must be of the form

P1P
i1
0 P1P

i2
0 P1 · · · P in

0 P1,

where ij ∈ N0, by the construction. We will show by induction that, for all
0 ≤ j < n, xi1+···+ij+j+1 (this is the sentential form after the (j+1)st application
of the production table P1) is equal to

a
v0(1)+i1v1(1)+···+ijvj (1)
1 X1,j+1 a

v0(2)+i1v1(2)+···+ijvj (2)
2 X2,j+1 · · ·

a
v0(k)+i1v1(k)+···+ijvj (k)
k Xk,j+1,

(1)

and for j = n, it is

a
v0(1)+i1v1(1)+···+invn (1)
1 a

v0(2)+i1v1(2)+···+invn (2)
2 · · · av0(k)+i1v1(k)+···+invn (k)

k .

The base case, j = 0, follows since x1 = a
v0(1)
1 X1,1a

v0(2)
2 X2,1 · · · av0(k)

k Xk,1

using the production of type 1.
Let 0 ≤ j < n and assume that xi1+···+ij+j+1 is equal to the string in Eq. (1).

Then, productions created in step 2 must get applied ij+1 times, followed by one
application created in step 3 if j + 1 < n, or one application created in step 4 if
j + 1 = n. Then it is clear that the statement holds for j + 1 as well.

It is also immediate that every sentential form in GQ has at most k active
symbols, and therefore it is of index k.

“⊇” Let w = al1
1 · · · alk

k , with (l1, . . . , lk) ∈ Q. Then (l1, . . . , lk) = v0 +
i1v1+ · · ·+ invn , for some i1, . . . , in ∈ N0. Then, by applying a production table
sequence of the form P1P

i1
0 P1 · · · P ik

0 P1, this changes the derivation as follows:

S ⇒ a
v0(1)
1 X1,1a

v0(2)
2 X2,1 · · · av0(k)

k Xk,1

⇒∗ a
v0(1)+i1v1(1)
1 X1,2a

v0(2)+i1v1(2)
2 X2,2 · · · av0(k)+i1v1(k)

k Xk,2

⇒∗ a
v0(1)+i1v1(1)+···+invn (1)
1 a

v0(2)+i1v1(2)+···+invn (2)
2 · · · av0(k)+i1v1(k)+···+invn (k)

k

= al1
1 · · · alk

k .

148 O.H. Ibarra and I. McQuillan

Hence GQ can generate all strings in {al1
1 · · · alk

k | (l1, . . . , lk) ∈ Q}. Since L
is semilinear, then it is the finite union of linear sets. Then L can be generated
in this manner since k-index ET0L is closed under union [12]. ��

Next, finite-index ET0L languages coincides with languages accepted by other
types of finite-index grammars, such as EDT0L, context-free programmed gram-
mars (denoted by CFP), ordered grammars (denoted by O), and matrix gram-
mars (denoted by M) (with the ‘fin’ subscript used for each family) [13].

Proposition 9. The bounded languages in the following families coincide,

– L(NCM),
– L(DCM),
– L(ET0Lfin) = L(EDT0Lfin) = L(CFPfin) = L(Ofin) = L(Mfin),
– the family of bounded Ginsburg semilinear languages.

Proof. ET0Lfin coincides with languages generated by all the other grammar
systems of finite-index [13], and so it follows that the bounded languages within
each coincide as well. The rest follows from Proposition 7 and Lemma 2. ��

From Proposition 9, we know the bounded languages within NCM and ET0Lfin
coincide (which are strictly included in the bounded languages within ET0L as
the non-semilinear language {a2n | n ≥ 0} is in ET0L). Next, we will address the
relationship between NCM and ET0Lfin (over non-bounded languages).

We observe that there are L(ET0Lfin) languages that are not in L(NCM).

Lemma 3. There exists a language L ∈ L(EDT0Lfin) − L(NCM).

Proof. Consider L = {x#x | x ∈ {a, b}+}. It is easy to construct an ET0L
system of finite index to generate L. We will show that L cannot be accepted by
any NCM.

It was shown in [1] that for any NCM M , there is a constant c (which depends
only on M) such that if w is accepted by M , then w is accepted by M within cn
steps, where n = |w|. So suppose L is accepted by M . Consider a string x#x,
where n = |x| ≥ 1. Then M ’s input head will reach # within cn steps. If M
has k counters, the number of configurations (state and counter values) when
M reaches # is O(s(cn)k), where s is the number of states (as each counter can
grow to at most cn in cn moves). Since there are 2n strings of the form x#x,
where x ∈ {a, b}+ and |x| = n, it would follow that for large enough n, there
are distinct strings x and y of length n such that x#y would be accepted by M .
This is a contradiction. Hence L cannot be accepted by any NCM. ��

We leave as open problem whether there are languages in L(NCM) that are
not in EDT0Lfin. We conjecture that over the alphabet Σk = {a1, . . . , ak}, the
language {w | |w|a1 = · · · = |w|ak

} is not in L(EDT0Lfin). A candidate witness
language that we initially thought of is the one-sided Dyck language on one letter
which is not in ET0Lfin [14]. However, this language cannot be accepted by any
blind counter machine, which is equivalent to an NCM [6].

Bounded Semilinear Languages, Counter Machines, and Finite-Index ET0L 149

5 Conclusions and Open Problems

Here, different restrictions of languages that are bounded and semilinear are
defined, and their capacity is studied. In particular, bounded Ginsburg semilinear
languages are particularly important as they are exactly the bounded languages
accepted by both NCM and DCM, and are also a superset of the bounded lan-
guages within every semilinear trio (such as the context-free languages). Thus,
they can all be accepted by DCM machines. This provides several decidability
properties via DCM machines. We also provide a property that can be used
to show that the bounded languages in semilinear trios are identical to those
accepted by DCM, and show that this holds for finite-index ET0L.

There are several open questions, such as whether there is an NCM language
that cannot be accepted by finite-index ET0L. Also, an investigation of bounded
languages in known semilinear trios would be of interest. In addition, there is no
known characterization such as Proposition 7 for non-semilinear families.

References

1. Baker, B.S., Book, R.V.: Reversal-bounded multipushdown machines. J. Comput.
Syst. Sci. 8(3), 315–332 (1974)

2. Breveglieri, L., Cherubini, A., Citrini, C., Reghizzi, S.: Multi-push-down languages
and grammars. Int. J. Found. Comput. Sci. 7(3), 253–291 (1996)

3. Duske, J., Parchmann, R.: Linear indexed languages. Theoret. Comput. Sci. 32(1–
2), 47–60 (1984)

4. Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Languages.
North-Holland Publishing Company, Amsterdam (1975)

5. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill
Inc., New York (1966)

6. Greibach, S.: Remarks on blind and partially blind one-way multicounter machines.
Theoret. Comput. Sci. 7, 311–324 (1978)

7. Harju, T., Ibarra, O., Karhumäki, J., Salomaa, A.: Some decision problems concern-
ing semilinearity and commutation. J. Comput. Syst. Sci. 65(2), 278–294 (2002)

8. Harrison, M.: Introduction to Formal Language Theory. Addison-Wesley Series in
Computer Science. Addison-Wesley Pub. Co., Boston (1978)

9. Ibarra, O., McQuillan, I.: The effect of end-markers on counter machines and com-
mutativity. Theoret. Comput. Sci. 627, 71–81 (2016)

10. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM 25(1), 116–133 (1978)

11. Ibarra, O.H., Seki, S.: Characterizations of bounded semilinear languages by one-
way and two-way deterministic machines. Int. J. Found. Comput. Sci. 23(6),
1291–1306 (2012)

12. Rozenberg, G., Vermeir, D.: On ET0L systems of finite index. Inf. Control 38,
103–133 (1978)

13. Rozenberg, G., Vermeir, D.: On the effect of the finite index restriction on several
families of grammars. Inf. Control 39, 284–302 (1978)

14. Rozoy, B.: The Dyck language D′∗
1 is not generated by any matrix grammar of

finite index. Inf. Comput. 74(1), 64–89 (1987)

Kuratowski Algebras Generated
by Prefix-Free Languages

Jozef Jirásek Jr. and Juraj Šebej(B)

Institute of Computer Science, Faculty of Science,
P. J. Šafárik University, Jesenná 5, 040 01 Košice, Slovakia

jirasekjozef@gmail.com, juraj.sebej@gmail.com

Abstract. We study Kuratowski algebras generated by prefix-free lan-
guages under the operations of star and complement. Our results are as
follows. Five of 12 possible algebras cannot be generated by any prefix-
free language. Two algebras are generated only by trivial prefix-free lan-
guages, the empty set and the language {ε}. Each of the remaining five
algebras can be generated, for every n ≥ 4, by a regular prefix-free lan-
guage of state complexity n, which meets the upper bounds on the state
complexities of all the languages in the resulting algebra.

1 Introduction

A language is prefix-free if it does not contain two distinct strings such that one
is a prefix of the other. Motivated by prefix codes, the class of prefix-free regular
languages has been recently investigated [3,5,6,12,14].

It is known that a minimal deterministic finite automaton (DFA) recognizes
a prefix-free language if it has exactly one final state, from which only the empty
string is accepted. Using this characterization, tight upper bounds on the deter-
ministic and nondeterministic state complexity of basic regular operations on
prefix-free languages have been obtained in [5,6,14].

In particular, if a prefix-free language is accepted by an n-state DFA, then the
star of this language is accepted by a DFA of at most n states. In the general case
of regular languages the tight upper bound for the star operation is 3/4 ·2n. The
simplicity of the star operation on prefix-free languages has been used several
times in the literature to get tight upper bounds for such operations as cyclic
shift [8], boundary [9], complement-star [3] and star-complement-star [15].

In this paper we continue this research and study Kuratowski algebras gener-
ated by prefix-free languages. The famous Kuratowski’s 14-theorem states that,
in a topological space, at most 14 sets can be produced by applying the oper-
ations of closure and complement to a given set [4,13]. Kuratowski’s theorem
in the setting of formal languages has been studied by Brzozowski, Grant, and
Shallit in [2]. It has been shown that at most 14 languages can be produced by
repeatedly applying the operations of Kleene closure and complement to a given

J. Šebej was supported by the Slovak Grant Agency for Science under contracts
VEGA 1/0142/15 and VEGA 2/0084/15.

c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 150–162, 2016.
DOI: 10.1007/978-3-319-40946-7 13

Kuratowski Algebras Generated by Prefix-Free Languages 151

language. All formal languages have been classified according to the structure of
the algebras they generate under star and complement. It has been proved that
there are precisely 12 such algebras, and each of them is generated by a regular
language.

We inspect these 12 algebras in detail, and ask which of them can be gener-
ated by a prefix-free language (whether regular or not). If an algebra is generated
by a prefix-free language, then our next question is whether it can be generated
by a regular prefix-free language of an arbitrarily large state complexity. Then
we ask what are the upper bounds on state complexities of languages in a par-
ticular algebra, and whether or not this algebra can be generated by a language
accepted by an n-state DFA meeting these upper bounds for all the languages
in the resulting algebra.

Our results are as follows. Five algebras, those in cases (2a), (3a), (3b),
(4), and (5) in Table 2 [2, p.312], cannot be generated by any prefix-free lan-
guage. Two algebras, those in cases (1a) and (1b), are generated only by trivial
prefix-free languages {ε} and the empty language, respectively. Any other alge-
bra can be generated by an n-state DFA prefix-free language that meets the
upper bounds on the state complexities of all the languages in the generated
algebra. To get these results, we use known results concerning the state com-
plexity of the operations of star, complement-star, and star-complement-star
[3,5,15], and a careful inspection of automata for these operations.

2 Preliminaries

We assume that the reader is familiar with basic concepts of regular languages
and finite automata. For details, we refer to [7,16,17].

If Σ is a finite alphabet, then Σ∗ is the set of strings over Σ, including the
empty string ε. A language is any subset of Σ∗. The complement of a language
L is the language Lc = Σ∗ \ L. The concatenation of languages K and L is the
language KL = {uv | u ∈ K and v ∈ L}. The Kleene closure, or star, of L is
defined as L∗ = ∪i≥0L

i, while the positive closure of L is L+ = ∪i≥1L
i, where

L0 = {ε} and Li+1 = LiL. To simplify the explanation, we use an exponent
notation, so for example, Lc∗ and L∗c∗ stand for (Lc)∗ and ((L∗)c)∗, respectively.

A language is positive-closed if it is closed under positive closure. It is
positive-open, if its complement is positive-closed, and it is clopen if it is both
closed and open. The terms Kleene-closed and Kleene-open are defined analo-
gously. The positive interior of a language L is L⊕ = Lc+c; The Kleene interior
is L� = Lc∗c. Notice that L is positive-open if L = L⊕. Next, L+ is closed and
L⊕ is open. We will use the following observation several times.

Lemma 1. The language L⊕ contains those strings of L that cannot be
expressed as a concatenation of strings of Lc.

Proof. Recall that L⊕ = Lc+c. We have Lc ⊆ Lc+, and therefore Lc+c ⊆ L.
The language Lc+ contains all strings w such that there exists a partition w =
w1w2 · · · wk with wi ∈ Lc. Hence in Lc+c we have all the strings in L that cannot
be partitioned as w = w1w2 · · · wk with wi ∈ Lc. ��

152 J. Jirásek Jr. and J. Šebej

Let B(L) be the family of all languages generated from L by positive clo-
sure and positive interior; see [2, Subsect. 4.1]. Let D(L) be the family of all
languages generated from L by complementation and Kleene closure. Let E(L)
be the family of all languages generated from L by Kleene closure and Kleene
interior. It is shown in [2, Lemma 20] that D(L) = E(L) ∪ {M | M c ∈ E(L)}.
Moreover, if L is neither open nor closed, then E(L) = {L} ∪ {M ∪ {ε} | M ∈
B(L) and M is closed} ∪ {M \ {ε} | M ∈ B(L) and M is open} [2, Lemma 22].

For each language L, the family D(L) has at most 14 distinct languages, and
Table 2 in [2, p. 312] describes 12 possible algebras, each of which is generated
by a regular language. Notice that there is an oversight in cases (2a) and (2b):
In case (2a) we should have ε /∈ L, |E(L) = 3|, |D(L) = 6|, and it is generated
by {a}. In case (2b) we should have ε ∈ L, |E(L) = 4|, |D(L) = 8|, and it is
generated by {ε, a} [1]. The corrected table is shown below.

Table 1. Classification of formal languages by the structure of (E(L),∗ ,�).

Case Necessary and Sufficient Conditions |E(L)| |D(L)| Example

(1a) L is clopen; ε ∈ L 2 4 a∗

(1b) L is clopen; ε /∈ L 2 4 a+

(2a) L is open but not clopen; ε /∈ L 3 6 a

(2b) L is open but not clopen; ε ∈ L 4 8 a ∪ ε

(3a) L is closed but not clopen; ε /∈ L 3 6 aaa∗

(3b) L is closed but not clopen; ε ∈ L 4 8 aaa∗ ∪ ε

(4) L is neither open nor closed; L+ is clopen
and L⊕+ = L+

4 8 a ∪ aaa

(5) L is neither open nor closed; L⊕ is clopen
and L+⊕ = L⊕

4 8 aa

(6) L is neither open nor closed; L+ is open but
L⊕ is not closed; L⊕+ �= L+

6 12 G := a ∪ abaa

(7) L is neither open nor closed; L⊕ is closed
but L+ is not open; L+⊕ �= L⊕

6 12 (a ∪ b)+ \ G

(8) L is neither open nor closed; L⊕ is not
closed and L+ is not open; L+⊕ = L⊕+

5 10 a ∪ bb

(9) L is neither open nor closed; L⊕ is not
closed and L+ is not open; L+⊕ �= L⊕+

7 14 a ∪ ab ∪ bb

A language is prefix-free if it does not contain two distinct strings, one of
which is a prefix of the other. It is known that a minimal DFA A accepts a
prefix-free language if and only if A has exactly one final state, from which all
the transitions go to the dead state, that is, to a non-final state from which
no string is accepted. In what follows we will assume that a regular prefix-
free language L with state complexity n is accepted by a minimal DFA A =
({s, 1, 2, . . . , n − 3, qf , qd}, Σ, ·, s, {qf}) in which qd is the dead state. Recall that

Kuratowski Algebras Generated by Prefix-Free Languages 153

the state complexity of a regular language L, sc(L), is the number of states in
the minimal DFA for L. It is well known that a DFA is minimal if all its states
are reachable and pairwise distinguishable; recall that a state q is reachable if
there exists a string w in Σ∗ such that q = s · w, and two states p and q are
distinguishable if there exists a string w such that exactly one of the states p · w
and q · w is final. Throughout the paper, we will use the following observations.

Proposition 2 [6,14]. Let A be a minimal DFA accepting a prefix-free language
L. ThenL+ is accepted by the DFAA+ obtained fromA by replacing each transition
(qf , a, qd) by the transition (qf , a, s · a). Moreover, if we make the state qf to be a
unique initial state of A∗, then the resulting DFA A∗ accepts L∗. ��
Proposition 3 [11]. Let L be a prefix-free language accepted by a minimal n-
state DFA A. Then n − 1 ≤ sc(L+) ≤ n and n − 2 ≤ sc(L∗) ≤ n. Next, if the
dead state can be reached from a state in {s, 1, 2, . . . , n − 3}, then sc(L+) = n.
If, moreover, the initial state s has an in-transition, then sc(L∗) = n. ��

Lemma 4 [15, Lemma 3,4]. Let L be a prefix-free language with sc(L) = n.
Then sc(L∗c∗) ≤ 2n−3+2, and this bound is met by the binary prefix-free language
accepted by the DFA shown in Fig. 1. ��

3 Constructions

Let A = ({s, 1, 2, . . . , n − 3, qf , qd}, Σ, ·, s, {qf}) be a minimal DFA for a prefix-
free language L, in which qd is the dead state. We will use the following automata
constructed from the DFA A as described below.

NFA N1 for L+c+:
(a) Replace each transition (qf , a, qd) in A with the transition (qf , a, s · a).
(b) Interchange the final and non-final states in the DFA A.
(c) Add ε-transitions from each state in {1, 2, . . . , n − 3} to the initial state s.

DFA D1 for L+c+:
Apply the subset construction to NFA N1 to get a DFA D1 for L+c+.

DFA D′
1 for L+c+c:

Interchange the final and non-final states in the DFA D1.

s 1 . . . n − 5 n − 4 n − 3 qf qd
a

b

a, b a, b a

b

a

b

b

a

a, b

a, b

Fig. 1. The binary prefix-free witness language L with sc(L∗c∗) = 2n−3 + 2.

154 J. Jirásek Jr. and J. Šebej

NFA N2 for Lc+:
(a) Interchange the final and non-final states of A.
(b) Add ε-transitions from each state in {1, 2, . . . , n − 3} to the initial state s.

DFA D2 for Lc+:
Apply the subset construction to the NFA N2 to get a DFA D2 for Lc+.

DFA D′
2 for Lc+c+:

(a) Interchange the final and non-final states in the DFA D2.
(b) Replace each transition ({qf}, a, {qd}) in D2 with transition ({qf}, a, {s}·a).

Now we examine the individual algebras given in Table 1.

3.1 Cases (1a) and (1b)

We start with cases (1a) and (1b). In case (1a), a language L should be clopen
with ε ∈ L; see the column Necessary and Sufficient Conditions in Table 1. The
resulting algebra B(L) in case (1a) is shown in Fig. 2 next to the conditions. The
algebra E(L) is also in this figure. In what follows we always give the necessary
and sufficient conditions for a particular case in the left part of a figure, and we
display the algebra (B(L),+ ,⊕) in its right part. Below the conditions, we give
the algebra (E(L),∗ ,�). To get E(L), we use [2, Lemmas 21, 22].

Case (1a)
L is clopen
ε ∈ L
E(L) = {L, L \ {ε}} L

+, ⊕
Case (1b)
L is clopen
ε /∈ L
E(L) = {L, L ∪ {ε}} L

+, ⊕

Fig. 2. The conditions and algebras B(L) and E(L) in cases (1a) (left) and (1b) (right).

In cases (1a) and (1b), we need clopen prefix-free languages. The next obser-
vation shows that only two prefix-free languages are closed.

Lemma 5. Let L be a closed prefix-free language. Then either L = ∅ or L = {ε}.
Both of these languages are also open. ��

Hence since we have only two clopen prefix-free languages — the empty
language and {ε} — we get the following results.

Theorem 6 (Case (1a)). The 4-element Kuratowski algebra in case (1a) with
E(L) = {L,L\{ε}} is generated by the prefix-free language {ε}. No other prefix-
free language generates this algebra. Hence we have E({ε}) = {{ε}, ∅}, and the
state complexities of languages in E({ε}) are (2,1). ��
Theorem 7 (Case (1b)). The 4-element Kuratowski algebra in case (1b) with
E(L) = {L,L ∪ {ε}} is generated by the prefix-free language ∅. No other prefix-
free language generates this algebra. Hence we have E(∅) = {∅, {ε}}, and the
state complexities of languages in E(∅) are (1,2). ��

Kuratowski Algebras Generated by Prefix-Free Languages 155

Case (2a)
L is open
L is not closed
ε /∈ L
E(L) = {L, L∗, L+}

Case (2b)
L is open
L is not closed
ε ∈ L
E(L) = {L, L \ {ε}, L∗, L∗ \ {ε}} L L+

+

⊕ +, ⊕

Fig. 3. The conditions and algebras B(L) and E(L) in cases (2a) and (2b).

3.2 Cases (2a) and (2b)

Now we consider cases (2a) and (2b) with conditions and algebras B(L) and
E(L) as shown in Fig. 3. In the first theorem we present a prefix-free language
that generates the Kuratowski algebra in case (2a). Then we continue with case
(2b).

Theorem 8 (Case (2a)). Let n ≥ 4. There exists a ternary prefix-free lan-
guage L with sc(L) = n which generates the 6-element Kuratowski algebra in
case (2a). In addition, all the languages in E(L) = {L,L∗, L+} meet the upper
bounds (n, n, n) on the state complexity of corresponding languages in this case.

Proof Let L be the ternary prefix-free language accepted by the DFA shown in
Fig. 5. We can show that L is open. Since the initial state s has an in-trasition
on b, and the dead state is reached from n − 3 by a, we have sc(L∗) = n and
sc(L+) = n by Proposition 3. ��
Theorem 9 (Case (2b)). The 8-element Kuratowski algebra in case (2b) can-
not be generated by any prefix-free language. ��
Proof. The only prefix-free language containing the empty string is {ε} which is
clopen by Lemma 5. ��

3.3 Cases (3a) and (3b)

Consider the cases (3a) and (3b) with conditions as shown in Fig. 4. Since by
Lemma 5, there are no prefix-free languages which are closed but not open, we
have the following result.

Theorem 10. The Kuratowski algebras in cases (3a) and (3b) cannot be gen-
erated by prefix-free languages. ��

Case (3a)
L is closed
L is not open
ε /∈ L
E(L) = {L, L , L ∪ {ε}}

Case (3b)
L is closed
L is not open
ε ∈ L
E(L) = {L, L ∪ {ε}, L , L ∪ {ε}} L L⊕⊕

+ +, ⊕

Fig. 4. The conditions and algebras B(L) and E(L) in cases (3a) and (3b).

156 J. Jirásek Jr. and J. Šebej

s 1 . . . n − 4 n − 3 qf qd

b

a

c

a, b

c

a, b a, b

c

c

a, b

a, b, c

a, b, c

Fig. 5. The ternary witness language L for case (2a) with sc(L∗) = n.

L is neither open nor closed
L+ is clopen
L⊕+ = L+

E(L) = {L, L+ ∪ {ε}, L+ \ {ε}, L⊕ \ {ε}}

L L+

L⊕

+

⊕

+, ⊕

+

⊕

Fig. 6. The conditions and algebras B(L) and E(L) in case (4).

3.4 Case (4)

Our next aim is to show that the Kuratowski algebra in case (4) with conditions
as shown in Fig. 6 cannot be generated by any prefix-free language. We start
with the following lemma; we omit its proof due to space constraints.

Lemma 11. Let K and L be prefix-free languages. If K+ = L+, then K = L.

Theorem 12. The Kuratowski algebra in case (4) cannot be generated by any
prefix-free language.

Proof. We show that there is no prefix-free language L such that L is not open
and L⊕+ = L+. Let L be a prefix-free language. By Lemma 1, the language L⊕

is a subset of L, therefore L⊕ is also prefix-free. Since L⊕+ = L+ and both L⊕

and L are prefix-free, we have L⊕ = L by Lemma 11. It follows that L is open.
This concludes the proof. ��

L is neither open nor closed
L⊕ is clopen
L+⊕ = L⊕

E(L) = {L, L∗, L⊕ ∪ {ε}, L⊕ \ {ε}}

L L+

L⊕

+

⊕

+

⊕
+, ⊕

Fig. 7. The conditions and algebras B(L) and E(L) in case (5).

Kuratowski Algebras Generated by Prefix-Free Languages 157

s 1 . . . n − 3 qf qd

b

a a

b

a

b

a a, b

a, b

Fig. 8. The binary witness language L with sc(Lc∗) = 2n−3 + 2.

3.5 Case (5)

Now consider the Kuratowski algebra in case (5) with conditions as shown in
Fig. 7. Let us start with the following observations.

Proposition 13. Let L be a prefix-free language over Σ such that L⊕ is closed.
Then for each symbol a in Σ, we have a /∈ L.

Proof. Suppose for a contradiction that there exists a symbol a in Σ such that
a ∈ L. Since a cannot be partitioned into strings in Lc, we have a ∈ L⊕,
and therefore aa ∈ L⊕+. Since L is prefix-free, we have aa /∈ L, and therefore
aa /∈ L⊕. Hence L⊕ is not closed, a contradiction. ��
Proposition 14. Let L be a language over Σ such that ε /∈ L and a /∈ L for
each symbol a in Σ. Then L⊕ = ∅ and L+⊕ = ∅.
Proof. Since ε ∈ Lc and a ∈ Lc for each symbol a in Σ, each string in L can be
partitioned into one-symbol strings in Lc. Hence L⊕ = ∅. The same argument
applies to L+ since ε /∈ L and a /∈ L imply ε /∈ L+ and a /∈ L+. ��
Theorem 15 (Case (5)). Let n ≥ 4. There exists a binary prefix-free lan-
guage L with sc(L) = n which generates the 8-element Kuratowski algebra in
case (5). In addition, all the languages in E(L) = {L,L∗, L⊕ ∪ {ε}, L⊕ \ {ε}}
meet the upper bounds (n, n, 2, 1) on the state complexity of corresponding lan-
guages in this case.

Proof. Let Σ = {a, b} and consider the language L = b∗an−2 over Σ accepted
by the DFA shown in Fig. 8. We can show that L satisfies all the conditions.
Now let us consider the complexities of languages in E(L). The upper bounds
are (n, n, 2, 1) since if a prefix-free language K generates case (5), then ε /∈ K
and K⊕ is closed. Then, by Propositions 13 and 14, we must have K⊕ = ∅. Since
in the DFA shown in Fig. 7 the initial state s has an in-transition, and the dead
state is reached from n − 3 by b, we have sc(L∗) = n by Proposition 3. Next
sc(L⊕ ∪ {ε}) = 2 and sc(L⊕ \ {ε}) = 1. ��

3.6 Case (6)

Next we consider the Kuratowski algebra in case (6) with conditions as shown
in Fig. 9. We start with three observations we will use for this case, and then
describe an n-state DFA prefix-free language generating this algebra, and pro-
ducing languages in E(L) with maximal possible complexities.

158 J. Jirásek Jr. and J. Šebej

L is neither open nor closed
L+ is open
L⊕ is not closed
L⊕+ = L+

L L+

L⊕ L+⊕

+

⊕

+, ⊕

⊕ +
+, ⊕

E(L) = {L, L+ ∪ {ε}, L+ \ {ε}, L⊕ \ {ε}, L⊕+ ∪ {ε}, L⊕+ \ {ε}}

Fig. 9. The conditions and algebras B(L) and E(L) in case (6).

Lemma 16. Let L be a prefix-free language over Σ such that L+ is open. Let
a ∈ Σ and u ∈ Σ∗. If ua ∈ L then a ∈ L.

Proof. Let ua ∈ L. Since L is prefix-free, we have u /∈ L. Moreover u ∈ L+c

because otherwise we would have ua = u1 · · · uka ∈ L+ with k ≥ 2 and u1 ∈ L,
a contradiction with prefix-freeness of L. Next if a /∈ L, then a ∈ L+c. Hence
u ∈ L+c and a ∈ L+c, but ua /∈ L+c, so L+c is not closed. This is a contradiction
with L+ open. ��
Lemma 17. Let L be a prefix-free language over Σ such that L+ is open. Let
Σf = {a ∈ Σ | ua ∈ L for some u ∈ Σ∗}. Then Lc+ = L+c+ ∪ Σ∗ΣfΣ+.

Proof. (⊆) Let w ∈ Lc+ then w = w1 · · · wk with wi ∈ Lc.
(a) If for each i, we have wi ∈ L+c, then w ∈ L+c+.
(b) Let there exist an i such that wi /∈ L+c, thus wi ∈ L+. Since wi ∈ Lc,
we have wi = ui1 · · · ui�, where � ≥ 2, uij ∈ L, uij
= ε. Then we have w =
w1 · · · wi−1u

′
i1 · aui2 · · · ui�wi+1 · · · wk for an a in Σf . Hence w ∈ Σ∗ΣfΣ+.

(⊇) Since L ⊆ L+, we have Lc+ ⊇ L+c+. Let w ∈ Σ∗ΣfΣ+. Then w = uav
where u ∈ Σ∗, a ∈ Σf , and v ∈ Σ+. Since a ∈ Σf , by Lemma 16 we have a ∈ L,
thus av ∈ Lc. If u ∈ Lc, then w = u · av ∈ Lc+. If u ∈ L and L is prefix-free,
then w = uav ∈ Lc ⊆ Lc+. In both cases w ∈ Lc+, which completes the proof. ��
Lemma 18. Let L be a prefix-free language satisfying all the conditions in
case (6). Then sc(Lc+) ≤ n.

Proof. Since L+ is open we have L+c+ = L+c. By Lemma 17, we get

Lc+ = L+c ∪ Σ∗ΣfΣ+.

Let A = ({s, 1, . . . , n − 3, qf , qd}, Σ, ·, s, {qf}) be a minimal n-state DFA for L.
Let B = ({q0, q1, q2}, Σ, ·, q0, {q2}) be a minimal 3-state DFA for Σ∗ΣfΣ+,
where for each σ ∈ Σ, we have q0 · σ = q0 if σ ∈ Σ \ Σf , q0 · σ = q1 if σ ∈ Σf ,
q1 · σ = q2, q2 · σ = q2. Construct a DFA A′ for L+c from A as follows:

(a) replace each transition (qf , a, qd) with the transition (qf , a, s · a), and
(b) interchange the final and non-final states.

Kuratowski Algebras Generated by Prefix-Free Languages 159

s 1 . . . n − 4 n − 3 qf qd

c

b

a

d

a, d a, d a, d

d

a

a, b, c, d

Fig. 10. The DFA A for case (6); all the undefined transitions go to the dead state qd.

Construct an NFA N for Lc+ = L(A′) ∪ L(B) from A′ and B by making states
s and q0 initial. Since A′ and B are deterministic, each reachable state in the
subset automaton of N is a two-element subset {p, qi}, where p is a state of
A′ and qi is state of B. Notice that each set {qd, qi} is equivalent to {qd, q2}.
Next, each set {p, q2} is equivalent to {qd, q2} as well. Moreover, each {p, q1}
with p
= qf is equivalent to {qd, q2}. Next, the set {qf , q0} is unreachable, and
the set {qf , q1} is the only reachable non-final set. So the subset automaton of
N , which accepts Lc+, has at most n reachable and pairwise distinguishable
subsets: {p, q0} with p ∈ {s, 1, . . . , n − 3}, {qf , q1}, and {qd, q2}. ��
Theorem 19. Let n ≥ 5. There exists a prefix-free language L over {a, b, c, d}
with sc(L) = n which generates the 12-element Kuratowski algebra in case (6).
In addition, all the languages in E(L) = {L,L+ ∪ {ε}, L+ \ {ε}, L⊕ \ {ε}, L⊕+ ∪
{ε}, L⊕+ \ {ε}} meet the upper the upper bounds (n, n, n, n, n, n) on the state
complexities of the corresponding languages in this case.

Proof. Let L be the language accepted by the DFA A shown in Fig. 10. We can
show that L satisfies all the conditions in case (6). Moreover all the languages
in E(L) have state complexities n. ��

3.7 Case (7)

Now we consider the Kuratowski algebra in case (7) with conditions as shown
in Fig. 11.

L is neither open nor closed
L⊕ is closed
L+ is not open
L+⊕ = L⊕

L L+

L⊕ L+⊕

+

⊕

+

⊕

+, ⊕ +, ⊕

E(L) = {L, L+ ∪ {ε}, L⊕ ∪ {ε}, L⊕ \ {ε}, L+⊕ ∪ {ε}, L+⊕ \ {ε}}

Fig. 11. The conditions and algebras B(L) and E(L) in case (7).

160 J. Jirásek Jr. and J. Šebej

L is neither open nor closed
L⊕ is not closed
L+ is not open
L+⊕ = L⊕+

L L+

L⊕ L+⊕

+

⊕

+

⊕

⊕ +
+, ⊕

E(L) = {L, L+ ∪ {ε}, L⊕ \ {ε}, L+⊕ ∪ {ε}, L+⊕ \ {ε}}

Fig. 12. The conditions and algebras B(L) and E(L) in case (8).

Theorem 20. The 12-element Kuratowski algebra in case (7) cannot be gener-
ated by any prefix-free language.

Proof. Let L be a prefix-free language different from ∅ and {ε}. Then ε /∈ L.
If there exists a symbol a in Σ such that a ∈ L, then L⊕ is not closed by
Proposition 13. If a /∈ L for each a in Σ, then L+⊕ = L⊕ = ∅ by Proposition 14.
Hence no prefix-free language satisfies the conditions in case (7). ��

3.8 Case (8)

Let us continue with the Kuratowski algebra in case (8) with conditions as shown
in Fig. 12. We get the following result, the proof of which is omitted.

Theorem 21 (Case (8)). Let n ≥ 4. There exists a prefix-free language L with
sc(L) = n which generates the 10-element Kuratowski algebra in case (8). In
addition, all the languages in E(L) = {L,L+∪{ε}, L⊕\{ε}, L+⊕∪{ε}, L+⊕\{ε}}
meet the upper bounds (n, n, 2n−3 +2, 2n−3 +2, 2n−3 +2) on the state complexity
on the corresponding languages in this case. ��

3.9 Case (9)

Finally, let us consider the Kuratowski algebra in case (9) with conditions as
shown in Fig. 13. We start with a simple language over {a, b} satisfying all the
conditions.

L is neither open nor closed
L⊕ is not closed
L+ is not open
L+⊕ = L⊕+

E(L) = {L, L+ ∪ {ε}, L⊕ \ {ε},
L+⊕ ∪ {ε}, L+⊕ \ {ε},
L⊕+ ∪ {ε}, L⊕+ \ {ε}}

L L+

L⊕ L⊕+

L+⊕+

⊕

+

⊕

⊕ +
+, ⊕

+, ⊕

Fig. 13. The conditions and algebras B(L) and E(L) in case (9).

Kuratowski Algebras Generated by Prefix-Free Languages 161

Proposition 22. The language {a, ba, bb} satisfies all the conditions in case (9).

Now we are going to describe a prefix-free languages over {a, b, c, d, e, f, g}
such that its intersection with {a, b}∗ will be the language {a, ba, bb} from the
lemma above. Since all the conditions in case (9) are given by some inequalities,
the new language will satisfy all of them. We can prove the following result.

Theorem 23 (Case (9)). Let n ≥ 6. There exists a prefix-free regular lan-
guage L over the alphabet {a, b, c, d, e, f, g} with sc(L) = n which generates the
14-element Kuratowski algebra in case (9). In addition, all the languages in
E(L) = {L,L+ ∪ {ε}, L⊕ \ {ε}, L+⊕ ∪ {ε}, L+⊕ \ {ε}, L⊕+ ∪ {ε}, L⊕+ \ {ε}}
meet the upper bounds (n, n, 2n−3 + 2, 2n−3 + 2, 2n−3 + 2, 2n−3 + 2, 2n−3 + 2) on
the state complexity of the corresponding languages in this case. ��

4 Conclusions

We investigated Kuratowski algebras generated by prefix-free regular languages
under the operations of star and complement. We showed that five of 12 possible
algebras described in [2, Cases(2a), (3a), (3b), (4), (5)] cannot be generated by
any prefix-free language (whether regular or not). Two algebras [2, Cases(1a),
(1b)] are generated only by trivial prefix-free languages, the language {ε} and
the empty language, respectively. Finally, we proved that each of the remaining
five algebras can be generated, for every n ≥ 4, by a regular prefix-free language
of state complexity n, which meets the upper bounds on the state complexities
of all the languages in the resulting algebra.

References

1. Brzozowski, J.: Kuratowski algebras generated from L by applying the operators
of Kleene closure and complement. Personal communication (2016)

2. Brzozowski, J., Grant, E., Shallit, J.: Closures in formal languages and Kura-
towski’s theorem. Int. J. Found. Comput. Sci. 22, 301–321 (2011)

3. Eom, H.-S., Han, Y.-S.: State complexity of boundary of prefix-free regular lan-
guages. Int. J. Found. Comput. Sci. 26, 697–708 (2015)

4. Fife, J.H.: The Kuratowski closure-complement problem. Math. Mag. 64, 180–182
(1991)

5. Han, Y.-S., Salomaa, K., Wood, D.: Nondeterministic state complexity of basic
operations for prefix-free regular languages. Fundam. Inform. 90, 93–106 (2009)

6. Han, Y.-S., Salomaa, K., Wood, D.: Operational state complexity of prefix-free
regular languages. In: Ésik, Z., Fülöp, Z. (eds.) AFL 2009. Institute of Informatics,
pp. 99–115. University of Szeged, Hungary (2009)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation, 1st edn. Addison-Wesley, Reading (1979)

8. Jirásek, J., Jirásková, G.: Cyclic shift on prefix-free languages. In: Bulatov, A.A.,
Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 246–257. Springer, Heidelberg
(2013)

162 J. Jirásek Jr. and J. Šebej

9. Jirásek, J., Jirásková, G.: The boundary of prefix-free languages. In: Potapov, I.
(ed.) DLT 2015. LNCS, vol. 9168, pp. 300–312. Springer, Heidelberg (2015)

10. Jirásek, J., Jirásková, G.: On the boundary of regular languages. Theoret. Comput.
Sci. 578, 42–57 (2015)

11. Jirásková, G., Palmovský, M., Šebej, J.: Kleene closure on regular and prefix-
free languages. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587,
pp. 226–237. Springer, Heidelberg (2014)

12. Jirásek, J., Jirásková, G., Krausová, M., Mlynárčik, P., Šebej, J.: Prefix-free lan-
guages: left and right quotient and reversal. Theoret. Comput. Sci. 610, 78–90
(2016)

13. Kuratowski, C.: Sur l’opration Ā de l’analysis situs. Fund. Math. 3, 182–199 (1922)
14. Krausová, M.: Prefix-free regular languages: closure properties, difference, and left

quotient. In: Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D.
(eds.) MEMICS 2011. LNCS, vol. 7119, pp. 114–122. Springer, Heidelberg (2012)

15. Palmovský, M., Šebej, J.: Star-complement-star on prefix-free languages. In:
Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 231–242. Springer,
Heidelberg (2015)

16. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company,
Boston (1997)

17. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. 1, pp. 41–110. Springer, Heidelberg (1997)

A Logical Characterization of Small 2NFAs

Christos A. Kapoutsis(B) and Lamana Mulaffer

Carnegie Mellon University in Qatar, Doha, Qatar
cak@cmu.edu, lamanamulaffer@gmail.com

Abstract. Let 2N be the class of families of problems solvable by fami-
lies of two-way nondeterministic finite automata of polynomial size. We
characterize 2N in terms of families of formulas of transitive-closure logic.
These formulas apply the transitive-closure operator on a quantifier-free
disjunctive normal form of first-order logic with successor and constants,
where (i) apart from two special variables, all others are equated to con-
stants in every clause, and (ii) no clause simultaneously relates these two
special variables and refers to fixed input cells. We prove that automata
with polynomially many states are as powerful as formulas with polyno-
mially many clauses and polynomially large constants. This can be seen
as a refinement of Immerman’s theorem that nondeterministic logarith-
mic space matches positive transitive-closure logic (NL=FO+pos TC).

1 Introduction

A formal machine M and a logical formula ϕ are equivalent if they determine the
same language: a string w is accepted by M iff it satisfies ϕ. Such comparisons
between machines and formulas are the topic of Descriptive Complexity The-
ory [4]. Its inaugural result was Fagin’s Theorem, which says that polynomial-
time nondeterministic Turing machines (ntms) are equivalent to formulas of
existential second-order logic (NP= ∃SO) [2]. An analogous result for space com-
plexity is Immerman’s theorem that logarithmic-space ntms are equivalent to
formulas of positive transitive-closure logic (NL=FO+posTC) [3]. Today we
know many such ‘logical characterizations’ of various computational complexity
classes [4].

When it comes to finite automata (on finite strings), an old result of this kind
is Büchi’s Theorem, that one-way nondeterministic finite automata (1ndfas) are
equivalent to formulas of monadic second-order logic with successor (mso[S]) [1] —
and thus so are, too, all automata recognizing the regular languages, including the
deterministic and/or two-way variants (1dfas, 2dfas, 2nfas). But this is a ‘com-
putability result’, in the sense that the equivalence involves no restriction on the
automata resources —as opposed to Fagin’s and Immerman’s ‘complexity results’,
where the ntms are restricted to use only polynomial time or logarithmic space,
respectively. What if we focus on automata where the main resource, the number
of states, is restricted to be polynomial (in a given parameter)?

L. Mulaffer—Supported by the CMUQ Student-Initiated Undergraduate Research
Program 2013.

c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 163–175, 2016.
DOI: 10.1007/978-3-319-40946-7 14

164 C.A. Kapoutsis and L. Mulaffer

We first asked this in [6], in the context of building a size-complexity theory of
two-way finite automata, or ‘Minicomplexity Theory’ [5]. Specifically, we asked:
What is an analog of Fagin’s Theorem when we replace ntms and time with
2nfas and size? Unfortunately, however, we failed to answer in full generality.
Instead, we proved such analogs only for the one-way, rotating, and sweeping
restrictions of 2nfas (where the input head can, respectively, only move forward;
or only move forward and jump to the start; or turn only on the end-markers).

The present paper contains the full answer to that question of [6]. In what
can be seen as a refinement of Immerman’s theorem from above, we prove that
polynomial-size 2nfas are equivalent to a certain class of formulas of FO+posTC.
Specifically, we focus on formulas consisting of a single, positive application of
the transitive-closure operator on a quantifier-free disjunctive normal form of
first-order logic with successor and constants, where (i) each of the conjunctive
clauses equates every variable, except for two special ones, to some constant, and
(ii) none of these clauses can both relate the two special variables and refer to a
fixed input cell. We call such formulas weak one-dimensional graph-accessibility
disjunctive-normal-forms (weak ga/dnf1s) and prove that they are equivalent
to polynomial-size 2nfas, if their clauses are only polynomially many and their
constants are only polynomially large. We thus complete our first step, started
in [6], into what one could call ‘Descriptive Minicomplexity Theory’.

2 Preparation

Let Z be all integers and Z
± := Z−{0}. If n ≥ 0, then we let [n] := {0, . . . , n−1},

Z
+
n := {1, . . . , n}, and Z

−
n := {−n, . . . ,−1}. If w ∈ Σ∗ is a finite string over some

alphabet Σ, then |w| and wx are its length and x-th symbol (if 1 ≤ x ≤ |w|).

2.1 Finite Automata

A two-way nondeterministic finite automaton is a tuple N = (S,Σ, δ, qs, qa) of a
set of states S, an alphabet Σ, a start state qs ∈ S, an accept state qa ∈ S, and
a set of transitions δ ⊆ S × (Σ ∪ {�,	}) × S × {l,r}, where �,	 /∈ Σ are the two
end-markers and l,r are the two directions of motion for the input head.

A word w ∈ Σ∗ is presented to N between the end-markers, as �w	. The
computation starts at qs on �. At each step, the next state and head motion may
be any of those derived from δ and the current state and symbol. End-markers
are never violated, except for 	 if the next state is qa. So, each branch of N ’s
computation can hang inside the input; or loop; or fall off 	 into qa, in which
case we call it accepting. If at least one branch is accepting, we say N accepts w.

Let n = |w|. A configuration of N on w is a pair (p, x) ∈ S × [n+3]; it means
N is at state p reading wx, if x ≤ n+1 (we let w0:= � and wn+1:=); or has
fallen off 	 into p, if x = n+2. The configuration graph GN,w of N on w (Fig. 1a)

A Logical Characterization of Small 2NFAs 165

q1

ca

w4w3w2w1w0

b

q2

q3

qa

(a)

qs

q1

a b c

w1 w2 w3

q2

q3

qa

(b)

qs

Fig. 1. (a) The configuration graph of a 5-state 2nfa N on a word w = abc. Bold arrows
show an accepting branch. (b) The inner configuration graph of N on w. Dashed arrows
are caused by computations on �w1 or w3�. E.g., (q3, 1) → (q1, 2) is caused by the path
(q3, 1) → (qa, 0) → (q2, 1) → (q1, 2) in (a).

is the directed graph where vertices are configurations of N on w and an edge
(p, x) → (q, y) exists iff N can switch from (p, x) to (q, y) in a single step, i.e., iff

y = x+1 & (p,wx, q,r) ∈ δ or y = x−1 & (p,wx, q, l) ∈ δ . (1)

Clearly, N accepts w iff GN,w has a path (qs, 0) � (qa, n+2).
When n ≥ 2, a denser representation is the inner configuration graph G′

N,w

(Fig. 1b), where now the vertices are only the inner configurations S × Z
+
n and

an edge, or inner step, (p, x) → (q, y) exists iff any of the following holds:
• N can switch from (p, x) to (q, y) in a single step, as in (1);
• x = 1, y = 2, and the switch can happen by a U-turn computation on �w1;
• x = n, y = n−1, and the switch can happen by a U-turn on wn	.
We will need to say that N accepts w iff G′

N,w has a path (qs, 1) � (qa, n).
But, in general, this is false; it becomes true, if N is in the form of Definition 1
(Fact 1ii). Conveniently, with two more states, every 2nfa can be put in this
form (Fact 1i).

Definition 1. A 2nfa N = (. , Σ, δ, qs, qa) is in inner normal form (inf) if

i. δ contains (qs,�, qs,r), but no other tuple (qs,�, . , .); and
ii. δ contains every (qa, a, qa,r) for a ∈ Σ ∪ {	}, but no other tuple (. , . , qa,r).

Fact 1.

i. Every s-state 2nfa is equivalent to a (s+2)-state 2nfa in inf.
ii. If N is in inf, then N accepts w iff G′

N,w has a path (qs, 1) � (qa, n).

2.2 Logical Formulas

In quantifier-free first-order logic with successor and constants over alphabet Σ
(q·fo+

Σ [S,Z±]), formulas are built out of first-order variables x0, x1, . . . , con-
stants ±1,±2, . . . ∈ Z

±, one cell predicate α(.) for each α ⊆ Σ, the equality
predicate . = . , the successor predicate S(. , .), and the connectives ¬,∧,∨.

166 C.A. Kapoutsis and L. Mulaffer

0

)b()c(

⊥
x1

x2

x5

⊥
x1

x2 0

a

1

⊥
x1

x2

b

0

0

0

5

a

0

0

0

4

b

1

0

0

3

0

1

a

0

1

a

0

0

1

2

b

0

0

54

a

0

0

3

b

1

01

0

1

a

2

a

0(a)

Fig. 2. (a) A column from Σ|V , for Σ = {a,b}, V = {x1, x2}. (b) A well-formed ŵ over
Σ|V ; here, ŵ(⊥) = aabab, ŵ(x2) = 3, ŵ(+1) = 1, ŵ(−1) = 5. (c) The word ŵ[x5/2].

A formula ϕ is either an atom, of the form α(t), t = t′, or S(t, t′), where each
of the terms t, t′ is either a variable or a constant; or compound, of the form
¬φ, φ ∧ ψ, or φ ∨ ψ, where φ, ψ are simpler formulas. An atom is either local,
of the form α(t); or relational, of the form t = t′ or S(t, t′). An atom or negation
of atom is a literal. A conjunction (resp., disjunction) of literals is an ∧-clause
(resp., an ∨-clause); a disjunction (resp., conjunction) of ≤ m such clauses is
an m-clause disjunctive normal form, or m-dnf (resp., an m-clause conjunctive
normal form, or m-cnf). A formula is non-trivial if it is not identically true or
identically false.

The length |ϕ| of a formula ϕ is the number of occurences of symbols in it,
ignoring punctuation and counting each variable, constant, and cell predicate as
a single symbol. More carefully, we define |ϕ| by structural induction on ϕ:

• for all α, t, t′: |α(t)| = 2 and |t = t′| = |S(t, t′)| = 3;
• for all φ, ψ: |¬φ| = 1 + |φ| and |φ ∧ ψ| = |φ ∨ ψ| = |φ| + 1 + |ψ|.
The margin of ϕ is the maximum absolute value of a constant in it; or 0, if ϕ has
no constants. We write ϕ(x2, x5, . . .) to indicate that all variables appearing in ϕ
are among x2, x5, . . . (note that all variables are free, as there are no quantifiers).

Semantics. For a set of variables V , let Σ|V be the alphabet of all functions
u : {⊥} ∪ V → Σ ∪ {0,1} which map ⊥ into Σ and variables into {0,1} (namely,
u(⊥) ∈ Σ and u(xi) ∈ {0,1} for all xi ∈ V). Intuitively, every such u is a column
of 1+|V | cells, labelled by the elements of {⊥} ∪ V and filled by the respective
values of u (Fig. 2a). Likewise, each word ŵ = ŵ1 · · · ŵn ∈ (Σ|V)∗ is a table of
n columns and 1+|V | rows: one row is labelled by ⊥ and hosts an n-long word
over Σ; the rest are labelled by variables and host n-long bitstrings (Fig. 2b).

We say ŵ is well-formed if n ≥ 2 and the row of each variable hosts exactly
one 1 (Fig. 2b). Then, ŵ(⊥) is the word ŵ1(⊥) · · · ŵn(⊥) ∈ Σ∗ hosted in the
⊥-row; ŵ(xi) is the index x of the one column ŵx which has a 1 in the xi-row;
and, for c ∈ Z

±, ŵ(c) is the index c of the c-th leftmost column, if c > 0, or the
index n−|c|+1 of the |c|-th rightmost column, if c < 0. Moreover, for any xi /∈ V
and index x ∈ Z

+
n , ŵ[xi/x] is the well-formed word over Σ|(V ∪ {xi}) derived

from ŵ by adding a row labelled xi with its x-th bit 1 and all others 0 (Fig. 2c).

A Logical Characterization of Small 2NFAs 167

Now, given a n-long well-formed ŵ over Σ|V and a formula ϕ whose variables
are all in V , we say ŵ satisfies ϕ and write ŵ |= ϕ, if what ϕ ‘says’ about ŵ(⊥)
is true when each variable xi is interpreted as in the xi-row, namely iff:

for ϕ ≡ α(t) : ŵ(⊥)ŵ(t) ∈ α for ϕ ≡ ¬φ : ŵ �|= φ

for ϕ ≡ t = t′ : ŵ(t) = ŵ(t′) for ϕ ≡ φ ∧ ψ : ŵ |= φ and ŵ |= ψ

for ϕ ≡ S(t, t′): ŵ(t) + 1 = ŵ(t′) for ϕ ≡ φ ∨ ψ : ŵ |= φ or ŵ |= ψ .

Transitive Closure. Let ϕ(x, y) be a q·fo+
Σ [S,Z±] formula over 2k+2 variables

x = x0, . . . , xk and y = y0, . . . , yk. Given an n-long w ∈ Σ∗, this defines a binary
relation Rϕ on k+1-tuples of indices in Z

+
n . As usual, the transitive closure of Rϕ

is the binary relation R∗
ϕ which contains a pair (u, v) iff there is a sequence of

tuples r0, r1, · · · , r� such that u = r0; every (ri, ri+1) is in Rϕ; and r� = v.
We augment our logic with the transitive closure operator ‘TC’, which checks

if two tuples of indices are in the relation R∗
ϕ defined by some ϕ(x, y): given ϕ and

two tuples of terms t, t′, the formula TCϕ(t, t′) (or, more legibly, TC[ϕ(x, y)](t, t′))
has length 1+|ϕ|+2k+2 and the following semantics, for all well-formed ŵ:

ŵ |= TCϕ(t, t′) iff
(
(ŵ(t0), . . . , ŵ(tk)), (ŵ(t′0), . . . , ŵ(t′k))

) ∈ R∗
ϕ .

Intuitively, let Gϕ,ŵ be the directed graph with vertex set (Z+
n)k+1 and all edges

(u, v) such that ŵ[x/u, y/v] |= ϕ(x, y); then ŵ |= TCϕ(t, t′) iff Gϕ,ŵ has a path
(ŵ(t0), . . . , ŵ(tk)) � (ŵ(t′0), . . . , ŵ(t′k)). We call this new logic q·fo+

Σ [S,Z±]+tc.

2.3 Finite Automata Versus Logical Formulas

A (promise) problem over alphabet Σ is any pair L = (L, L̃) of disjoint subsets
of Σ∗. An automaton N solves L if it accepts all w ∈ L but no w ∈ L̃. A formula
ϕ solves L if it is satisfied by all w ∈ L but no w ∈ L̃.

A family of automata N = (Nh)h≥1 (resp., of formulas F = (ϕh)h≥1) solves a
family of problems (Lh)h≥1 if every Nh (resp., ϕh) solves the respective Lh. The
automata of N (resp., the formulas of F) are small if every Nh has ≤ p(h) states
(resp., every ϕh has length ≤ p(h)), for some polynomial p. Therefore, the set

2N :=
{

(Lh)h≥1

∣∣∣∣
there exist 2nfas (Nh)h≥1 and a polynomial p
such that every Nh solves Lh with ≤ p(h) states

}

is the class of problem families which are solvable by families of small 2nfas.
A formula ϕ(x) of q·fo+

Σ [S,Z±]+tc is equivalent to a 2nfa N over Σ|x if for
all well-formed ŵ ∈ (Σ|x)∗: ŵ satisfies ϕ iff N accepts ŵ (note that |ŵ| ≥ 2).

3 Graph-Accessibility Sentences and Our Theorem

A formula of q·fo+
Σ [S,Z±] is local, if all its atoms are local (i.e., it talks only about

the contents of certain cells); quasi-local, if every relational atom in it uses at

168 C.A. Kapoutsis and L. Mulaffer

least one constant (i.e., it talks only about certain cells’ contents and distance
from the end-markers); and relational, if all its atoms are relational (i.e., it talks
only about the order of certain cells). Orthogonally, the formula is floating, if all
its terms are variables; quasi-floating, if every atom uses at least one variable; and
anchored, if all its terms are constants. Finally, inside an ∧-clause, a variable x
is anchored if it appears in at least one literal of the form x= c or c= x (without
negation), for some constant c; otherwise, it is floating.

Given a q·fo+
Σ [S,Z±] formula ϕ(x, y) with x = x0, . . . , xk and y = y0, . . . , yk,

a graph-accessibility sentence (gas) with core ϕ and arity k+1 is any formula

TC
[
ϕ(x, y)

]
(s, t) (2)

where s = s0, . . . , sk and t = t0, . . . , tk are constants. If ϕ is a dnf, namely

ϕ(x, y) ≡
m∨

i=1

ϕi(x, y)

where each ϕi is an ∧-clause and the degree m is ≥ 1, then we say (2) is a ga/dnf.
If x1, . . . , xk and y1, . . . , yk are all anchored in every ϕi (so that only x0, y0 may
be floating), then we say (2) is one-dimensional (ga/dnf1). Finally, we say (2) is
weak if no ϕi contains both anchored local atoms and floating relational ones.

Our theorem states that 2nfas of polynomial size are as powerful as weak
ga/dnf1s of polynomial degree and margin; and that this holds already when
the margin is 1 and we also require polynomial length and logarithmic arity.

Theorem 1. The following are equivalent, for every family of problems L:

1. L has small 2nfas.
2. L has small weak ga/dnf1s of small degree, margin 1, and logarithmic arity.
3. L has weak ga/dnf1s of small degree and small margin.

Proof. [(1) ⇒ (2)] By Lemma 1. [(2) ⇒ (3)] Trivial. [(3) ⇒ (1)] By Lemma 5. ��

4 From Automata to Formulas

The simpler conversion, from automata to formulas, is treated in the next lemma.

Lemma 1. Every s-state 2nfa is equivalent to a weak ga/dnf1 of degree O(s2),
margin 1, arity O(log s) and length O(s2 log s).

Proof. Pick any s-state 2nfa N . We first switch to an equivalent 2nfa Ñ which
is in inf (Definition 1) and has s̃ = 2r states, for some r; easily, s̃ ≤ 2s+2.
Without loss of generality, assume Ñ = ([s̃], Σ, δ̃, 0, s̃−1).

We need a weak ga/dnf1 TC[ϕ(x, y)](s, t) such that, for all w of length n ≥ 2:

Ñ accepts w ⇐⇒ w |= TC[ϕ(x, y)](s, t) . (3)

A Logical Characterization of Small 2NFAs 169

By definition, the right-hand side holds iff the graph Gϕ,w induced by ϕ (cf. p. 5)
has a path (s0, s1, . . . , sk) � (t0, t1, . . . , tk), where k+1 the arity of ϕ. By Fact 1ii,
the left-hand side holds iff the inner configuration graph G′

Ñ,w induced by Ñ
has a path (0, 1) � (s̃−1, n). So, we simply need to pick ϕ so that Gϕ,w is
actually G′

Ñ,w, and then pick s, t so that they are actually (0, 1) and (s̃−1, n).
First, we must represent each vertex of G′

Ñ,w, namely each inner configuration
(p, x) ∈ [s̃] × Z

+
n , as a vertex of Gϕ,w, namely a tuple u = (u0, u1, . . . , uk) of

indices from Z
+
n . Of course, x can be represented by any component of u, say u0.

As for p, we represent it in ‘binary’ using the other components u1, . . . , uk: we
pick k := r = lg s̃ (to ensure we have enough ‘bits’) and use indices 1 and n
(which are distinct, as n ≥ 2) as 0 and 1, respectively. E.g., if s̃ = 16 (so, k = 4)
and n = 50, then the configuration (p, x) = (2, 22) maps to u = (22, 1, 1, 50, 1).
Note that (0, 1) and (s̃−1, n) map to (1, 1, . . . , 1) and (n, n, . . . , n), i.e., to the
interpretations of the tuples of constants (+1,+1, . . . ,+1) and (−1,−1, . . . ,−1).

Given this representation, we now need a ϕ(x, y) which states that the edge
(x, y) exists in G′

Ñ,w, namely that Ñ can switch in a single inner step from the
inner configuration (x0, x1, . . . , xk) to the inner configuration (y0, y1, . . . , yk).

As a start, for every state p ∈ [s̃] we need a formula ξp(u) which says that the
state of the inner configuration (u0, u1, . . . , uk) is p. E.g., if n = 50 and p = 2 as
above, then w |= ξp(u) should hold iff u is of the form (. , 1, 1, 50, 1), and thus
ξp(u) should be u1 = +1 ∧ u2 = +1 ∧ u3 =−1 ∧ u4 = +1. In general, we let

ξp(u) :=
k∧

i=1

(ui = pi) , (4)

where each pi is either +1 or −1 depending on whether the i-th most significant
bit in the k-bit binary representation of p is 0 or 1.

Additionally, for every two states p, q ∈ [s̃] and each direction of head motion,
we need the set of symbols which allow the corresponding transition:

αl
p,q := {a ∈ Σ | (p, a, q, l) ∈ δ̃} , αr

p,q := {a ∈ Σ | (p, a, q,r) ∈ δ̃} . (5)

Similarly, for every two states p, q ∈ [s̃] and each end-marker, we need the set of
symbols which, together with the end-marker, allow the corresponding U-turn:

α�
p,q := {a ∈ Σ | computing on �a from p on a, Ñ can exit right into q} ,

α�
p,q := {a ∈ Σ | computing on a	 from p on a, Ñ can exit left into q} .

(6)

Using the ∧-clauses of (4) and the cell predicates for the sets of (5) and (6),
we now build a formula ϕ(x, y) which says that, in a single inner step, Ñ can
switch from cell x0 and ‘state’ (x1, . . . , xk) to cell y0 and ‘state’ (y1, . . . , yk):

ϕ(x, y) :=
∨

p,q∈[s̃]

{ [
ξp(x) ∧ ξq(y) ∧ S(x0, y0) ∧ αr

p,q(x0)
]

(7)

∨ [
ξp(x) ∧ ξq(y) ∧ S(y0, x0) ∧ αl

p,q(x0)
]

(8)

∨ [
ξp(x) ∧ ξq(y) ∧ x0 = +1 ∧ S(x0, y0) ∧ α�

p,q(x0)
]

(9)

∨ [
ξp(x) ∧ ξq(y) ∧ x0 =−1 ∧ S(y0, x0) ∧ α�

p,q(x0)
] }

(10)

170 C.A. Kapoutsis and L. Mulaffer

Intuitively, ϕ says that there exist states p, q such that the state of inner
configuration x is p, the state of inner configuration y is q, and: y is exactly to
the right of x, and the symbol read in x allows a right-moving transition p →
q (line (7)); or y is exactly to the left of x, and the symbol read in x allows a
left-moving transition p → q (line (8)); or x, y are on cells 1, 2 and the symbol
read in x together with � allows a left U-turn from p to q (line (9)); or y, x are
on cells n−1, n and the symbol read in x together with 	 allows a right U-turn
from p to q (line (10)).

Overall, our gas is that of (3) with ϕ as in (7)–(10) and s = (+1, . . . ,+1) and
t = (−1, . . . ,−1). As promised, the margin is 1 (all constants are ±1) and the
arity is k+1 = O(log s). Also, each bracket in (7)–(10) is an ∧-clause of length
O(log s), as the conjunction of two ∧-clauses of length O(k) = O(log s) and two
or three atoms of length O(1); hence, ϕ is a disjunction of 4s̃2 = O(s2) ∧-clauses,
of total length O(s2 log s); and thus our gas in (3) is a ga/dnf of degree O(s2)
and length O(s2 log s), too. Finally, each bracket in (7)–(10) anchors each one
of x1, . . . , xk and y1, . . . , yk (inside ξp and ξq) and contains no anchored local
atoms, making our gas in (3) both one-dimensional and weak, as promised. ��

5 From Formulas to Automata

We now show how to convert a weak ga/dnf1 to a 2nfa. Facts 2–5 analyze the
structure of the given sentence and its sub-formulas; their proofs are straightfor-
ward and mostly syntactic. Lemmas 2–4 build two-way automata which simulate
those sub-formulas. The final 2nfa for the given sentence is built in Lemma 5.

Fact 2. Let ϕ(x, y)=
∨m

i=1 ϕi(x, y) be the core of a ga/dnf1 of arity k+1. Then
every ∧-clause ϕi(x, y) is equivalent to an ∧-clause of the form

(x1 = c1)∧ · · · ∧ (xk = ck) ∧ (y1 = d1)∧ · · · ∧ (yk = dk) ∧ ϕ̂(x0, y0) ,

for some constants c1, . . . , ck, d1, . . . , dk and some ∧-clause ϕ̂(x0, y0).

Proof. Pick any ϕi. By one-dimensionality, x1 is anchored in ϕi, so at least
one literal is of the form x1 = c1 or c1 = x1, for some constant c1. Consider the
following modifications: (1) if the literal is c1 =x1, change it to x1 = c1; (2) bring
the literal upfront; (3) replace any other occurence of x1 with c1. Easily, this
brings ϕi into the equivalent form (x1 = c1) ∧ ϑ1(x0, x2, x3, . . . , xk, y). Similarly,
x2 is also anchored in ϕi, so by repeating modifications (1)–(3) for it, we bring ϕi

to the equivalent form (x1 = c1)∧ (x2 = c2)∧ϑ2(x0, x3, x4, . . . , xk, y). Continuing
like this for all anchored variables, we eventually get the desired equivalent form
(x1 = c1) ∧ · · · ∧ (xk = ck) ∧ (y1 = d1) ∧ · · · ∧ (yk = dk) ∧ ϑ2k(x0, y0). ��
Fact 3. Every non-trivial ∧-clause ϕ(x, y) is equivalent to a formula of the form
φ ∧ χ(x) ∧ ψ(y) ∧ ω(x, y), where each of φ, χ, ψ, ω is an ∧-clause; φ is anchored
local; χ, ψ are quasi-floating quasi-local; and ω is floating relational.

A Logical Characterization of Small 2NFAs 171

Lemma 2. Suppose ϕ is an anchored local ∧-clause of margin τ . Then there
exists a O(τ)-state 2dfawhich, whenever run on a string w from the cell of �,
returns on that same cell and accepts iff w |= ϕ.

Proof. Formula ϕ is a conjunction of literals of the form α(c) and ¬α(c), where
α ⊆ Σ and c ∈ Z

+
τ ∪ Z

−
τ . We may assume that every such c appears in exactly

one literal of the form α(c): Indeed, if it appears in none, then we add the true
literal Σ(c); if it appears in exactly one, but of the form ¬γ(c), then we replace
this with the equivalent γ(c); if it appears in more than one, then we replace the
conjunction β1(c) ∧ · · · ∧ βr(c) ∧ ¬γ1(c) ∧ · · · ∧ ¬γs(c) of these literals with the
equivalent single literal α(c) where α := β1 ∩ · · · ∩ βr ∩ γ1 ∩ · · · ∩ γs.

So, ϕ is essentially a list of 2τ conditions, one for each of the τ leftmost and the
τ rightmost cells of w, and w |= ϕ iff all are true. To test this, a 2dfa M starting
from � scans the leftmost cells, counting up to τ and confirming all respective
conditions; then sweeps to 	; then scans the rightmost cells backwards, again
counting up to τ and confirming all respective conditions; then sweeps to � and
accepts —if any condition fails or any cell does not exist (because w is too short),
then M rejects. Easily, this can be implemented with O(τ) states. ��
Fact 4. Every quasi-local formula is equivalent to a formula in which every atom
is of the form α(.) or x= c, where α ⊆ Σ, x is a variable, and c is a constant.

Lemma 3. Suppose ϕ(x) is a quasi-floating quasi-local ∧-clause of margin τ .
Then there exists a O(τ)-state 2dfawhich, whenever run on a string w from a
cell 1 ≤ x∗ ≤ |w|, returns on that same cell and accepts iff w[x/x∗] |= ϕ(x).

Proof. By Fact 4, by the margin τ , and since ϕ is quasi-floating with x as the
only variable, we may assume that every atom is of the form α(x) or x= c, where
α ⊆ Σ and c ∈ Z

+
τ ∪ Z

−
τ .

So, each literal has the form α(x), ¬α(x), x= c, or ¬(x= c), for some α and c.
As in the proof of Lemma 2, we may assume the first two forms contribute exactly
one literal: the literal α(x), for α the intersection of Σ, of all β from occuring
literals β(x), and of all γ from occuring literals ¬γ(x). We may also assume that
the third form contributes at most one literal for collectively all c > 0 and at
most one literal for collectively all c < 0: if there are two literals x= c1, x= c2
for distinct c1, c2 > 0, then ϕ is always false, and thus the 2dfa is just the trivial
one which simply halts and rejects —similarly for c1, c2 < 0.

Overall, without loss of generality, we may assume that ϕ(x) consists of:
exactly one α(x) for α ⊆ Σ; an optional x= c for c ∈ Z

+
τ ; an optional x= c for

c ∈ Z
−
τ ; and zero or more ¬(x= c) for c ∈ Z

+
τ ∪ Z

−
τ .

To test w[x/x∗] |= ϕ, a 2dfa run on w from cell x∗ first verifies α(x) by
testing that wx∗ ∈ α. It then scans left counting down from τ , until its counter
is 0 or it sees � (whichever happens first), and then returns to cell x∗; during
this trip, it tests the optional x= c and the zero or more ¬(x = c) for c > 0.
It then performs a symmetric trip of ≤ τ steps to the right of cell x∗ and back,
during which it tests the optional x= c and the zero or more ¬(x = c) for c < 0.
Finally, it accepts if all tests succeeded. Easily, O(τ) states are enough. ��

172 C.A. Kapoutsis and L. Mulaffer

Fact 5. Every not-identically-false floating relational ∧-clause ϕ(x, y) is equiv-
alent to S(x, y), x= y, S(y, x), or a conjunction of ¬S(x, y), ¬(x= y), ¬S(y, x).

Lemma 4. Suppose ϕ(x, y) is an ∧-clause of margin τ which does not contain
both anchored local and floating relational atoms. Then there exists a O(τ)-state
2nfa which, whenever run on a string w from a cell 1 ≤ x∗ ≤ |w|, computes so
that, for all 1 ≤ y∗ ≤ |w|:

a computation path which
halts & accepts on cell y∗ exists ⇐⇒ w[x/x∗, y/y∗] |= ϕ(x, y) . (11)

Proof. If ϕ is trivial, then the 2nfa is also trivial. So, assume ϕ is non-trivial.
Let φ, χ(x), ψ(y), ω(x, y) be the ∧-clauses given by Fact 3. Since anchored local
and floating relational atoms cannot co-exist, at least one of φ and ω is empty.
Case 1. Suppose ω is empty. Then, when run on w from cell x∗, our 2nfa N
must create nondeterministic branches which collectively accept on every cell y∗

such that φ∧χ(x)∧ψ(y) holds if x = x∗ and y = y∗. For this, N first checks χ on
cell x∗; then resets its head (forgetting x∗) and reads the ends of w to check φ;
then sweeps w and, on every cell y∗, guesses and verifies that ψ is true on y∗.

Specifically, let Φ,X, Ψ be the O(τ)-state 2dfas given by Lemma 2 for φ and
by Lemma 3 for χ and ψ, respectively. Starting on cell x∗, N first simulates X.
This brings it back to x∗ having checked χ on x∗. Then N goes to � and starts
simulating Φ. This brings it back to � having checked φ. Then N scans w and,
on every cell y∗, spawns a new branch which simulates Ψ , eventually returning
to y∗ having checked ψ on y∗. Finally, N accepts (in that branch) iff all checks
succeeded. Easily, N satisfies (11) and has size O(|Φ|+|X|+|Ψ |) = O(τ).
Case 2. Suppose φ is empty. Then ϕ is equivalent to χ(x)∧ψ(y)∧ω(x, y), where
ω is not identically false (since ϕ is non-trivial), and thus is equivalent to one of
S(x, y), x= y, S(y, x), or to a conjunction of their negations (Fact 5).

2a. If ω is equivalent to S(x, y): Then the branches of N must collectively
accept on every cell y∗ such that χ(x) ∧ ψ(y) ∧ S(x, y) holds when x = x∗ and
y = y∗. Because of S(x, y), the only possible y∗ of this kind is x∗+1. So, N should
just accept on cell x∗+1 iff χ(x)∧ψ(y) holds when x = x∗ and y = x∗+1. Hence,
N starts on x∗ by simulating X. This brings it back to x∗ having checked χ
on x∗. Then it moves one cell to the right, checks that it is not 	, and starts
simulating Ψ , eventually returning to the cell, having checked ψ on x∗+1. In the
end, N accepts iff all checks succeeded. Note that N is, in fact, deterministic.

2b. If ω is equivalent to x= y: Then ϕ is equivalent to χ(x)∧ψ(y)∧x= y, so
the only possible y∗ is x∗. Hence, N works as in Case 2a, but without the one
step to the right between the simulations of X and of Ψ .

2c. If ω is equivalent to S(y, x): Then ϕ is equivalent to χ(x)∧ψ(y)∧S(y, x),
so the only possible y∗ is x∗−1. So, N works as in Case 2a, except that, between
the simulations of X and of Ψ , it moves left and checks that it does not read �.

2d. If ω is equivalent to a conjunction of ¬S(x, y),¬(x= y),¬S(y, x): Then
ω excludes a certain set of cells Yω ⊆ {x∗−1, x∗, x∗+1} from being accepted. So,
N must accept on cell y∗ iff χ(x)∧ψ(y) holds for x = x∗, y = y∗ and y∗ /∈ Yω. As
above, N starts on x∗ by simulating X, and returns on it after checking χ on x∗.

A Logical Characterization of Small 2NFAs 173

Then it spawns five branches, one for each of the five cases as to where cell y∗

is with respect to cell x∗: before x∗−1, on x∗−1, on x∗, on x∗+1, or after x∗+1.

• In the first branch: N moves left by two cells, checking that neither is �. It
then sweeps up to � and, on each cell y∗, spawns a branch which simulates Ψ
and eventually returns on y∗ having checked ψ on it.

• In the second branch: If x∗−1 ∈ Yω (i.e., if ω contains ¬S(y, x)), then N just
rejects. Otherwise, it moves left once, checks that it is not on �, then simu-
lates Ψ . This brings it back to the same cell x∗−1, having checked ψ on it.

• In the third and fourth branches: N works similarly to the second one. It
just rejects, if x∗ ∈ Yω (i.e., if ω contains ¬(x= y)) or if x∗+1 ∈ Yω (i.e., if
ω contains ¬S(x, y)), respectively. Otherwise, it simulates Ψ after, respectively,
not moving at all or moving once to the right.

• In the last branch: N works symmetrically to the first one. It moves right by
two cells checking against 	, and then simulates Ψ on each cell before 	.

In all cases, N accepts in a given branch iff all checks along it have succeeded.
Easily, in all four cases, N satisfies (11) and contains one copy of each of X

and Ψ , plus O(1) more states, for a total size of O(|X|+|Y |) = O(τ). ��
Lemma 5. Every weak ga/dnf1 of degree m and margin τ is equivalent to a
2nfa with O(mτ) states.

Proof. Let ψ = TC[ϕ(x, y)](s, t) be as in the statement. Let the arity be k+1.
Then s0, . . . , sk, t0, . . . , tk ∈ Z

+
τ ∪Z

−
τ and the core ϕ has the form

∨m
i=1 ϕi(x, y),

where (Fact 2) each ϕi is equivalent to:

(x1 = ci
1)∧ · · · ∧ (xk = ci

k) ∧ (y1 = di
1)∧ · · · ∧ (yk = di

k) ∧ ϕ̂i(x0, y0) , (12)

for some constants ci
1, . . . , c

i
k, di

1, . . . , d
i
k ∈ Z

+
τ ∪Z−

τ and an ∧-clause ϕ̂i of margin τ
where anchored local and floating relational atoms do not co-exist (as ψ is weak).

We build a 2nfa N which accepts an input w ∈ Σ∗ of length n ≥ 2 iff w |= ψ,
i.e., iff the graph Gϕ,w (see p. 5) has a path from vertex s to vertex t. To check
this, N nondeterministically guesses such a path in stages, in the standard way:
starting each stage, it remembers only the last vertex u of the path guessed so far
(originally, u := s); then it checks whether u = t and, if so, accepts; otherwise, it
nondeterministically selects a neighbor v of u and updates its memory to u := v,
completing the stage. Below, we describe how N implements this algorithm.

Central in this implementation is how N remembers u. Clearly, u will always
be a vertex reachable from s, so the following fact becomes important:

Claim. If u is reachable from s, then (u1, . . . , uk) = (s1, . . . , sk) or there is i =
1, . . . ,m such that (u1, . . . , uk) = (di

1, . . . , d
i
k); either way, u1, . . . , uk ∈ Z

+
τ ∪Z

−
τ .

Proof. If u = s, the claim is trivial. Suppose u �= s. Then the path s � u has
≥ 1 step. Let v → u be the last one. Then (v, u) is an edge in Gϕ,w, so w[x/v, y/u]
satisfies ϕ(x, y); hence, it satisfies some ϕi(x, y); so, it satisifes the corresponding
(y1 = di

1)∧ · · · ∧ (yk = di
k); which implies that (u1, . . . , uk) = (di

1, . . . , d
i
k). �

174 C.A. Kapoutsis and L. Mulaffer

So, N separates u into (1) its ‘bounded components’ u1, . . . , uk ∈ Z
+
τ ∪Z

−
τ ; and

(2) its ‘unbounded component’ u0 ∈ Z
+
n . To remember (1), it keeps in its state

an index 0 ≤ i ≤ m such that (u1, . . . , uk) = (di
1, . . . , d

i
k) —for convenience, let

(d01, . . . , d
0
k) := (s1, . . . , sk). To remember (2), it places its head on cell u0 of w.

Overall, each state of N is of the form (i, σ), where i identifies (as described)
the list u1, . . . , uk and σ shows the status of the current stage. As a special case,
σ = B means the stage has just begun. So, if N is in state (i, B) on cell u∗, then
it has reached vertex u = (u∗, di

1, . . . , d
i
k) and is now beginning the next stage.

With this representation, the search for a path s � t takes N through con-
figurations ((i0, B), u∗

0), ((i1, B), u
∗
1), . . . , ((il, B), u

∗
l), where u∗

0 = s0, i0 = 0; and
the search succeeds iff u∗

l = t0 and (dil
1 , . . . , dil

k) = (t1, . . . , tk). To complete the
description of N , we must explain how N navigates through these configurations.

In a special first stage, N alters its configuration from (qs, 0) to ((i0, B), u∗
0) =

((0, B), s0). For this, it moves its head to cell s0 (by counting s0 steps from �,
if s0 > 0; or by moving to 	 and counting s0 steps backwards, if s0 < 0) and
switches to state (0, B). Easily, this can be done with O(s0) = O(τ) states.

From then on, whenever at a configuration ((i, B), u∗), our N works as follows.
First, it checks if u = t, i.e., if (1) u∗ = t0 and (2) (di

1, . . . , d
i
k) = (t1, . . . , tk).

Check 2 is hardwired, so it needs no extra states. Check 1 involves a trip to the
left (if t0 > 0) or right (if t0 < 0) for t0 steps or up to the end-marker, and back
to cell u∗. There, if both checks succeeded, N accepts; otherwise, it switches to
a special state (i, C). Overall, this uses O(t0) = O(τ) states of the form (i, .).

State (i, C) means that N is about to choose the next vertex v among the out-
neighbors of u, so as to switch to the appropriate next configuration ((. , B), .).
Note that v is an out-neighbor of u iff (u, v) is an edge of Gϕ,w; i.e., iff w[x/u, y/v]
satisfies some ∧-clause ϕj(x, y) as in (12); i.e., iff there exists j such that

• the bounded components v1, . . . , vk of v are equal to the second tuple of
constants dj

1, . . . , d
j
k in one of the ϕj whose first tuple of constants cj

1, . . . , c
j
k

are the bounded components di
1, . . . , d

i
k of u, namely:

(di
1 = cj

1)∧ · · · ∧ (di
k = cj

k) ∧ (v1 = dj
1)∧ · · · ∧ (vk = dj

k) ; and

• the unbounded component v0 of v together with the unbounded component u∗

of u satisfy the respective ϕ̂: w[x0/u∗, y0/v0] |= ϕ̂j(x0, y0).

So, to nondeterministically choose such a v, our N works in two sub-stages:

• First, it chooses v1, . . . , vk, by simply choosing the index j of some ∧-clause
(if any) whose first tuple of constants is exactly di

1, . . . , d
i
k. This selection is

hardwired and takes N to a special state (j, D) still on cell u∗.
• Then, it chooses v0, by simulating the O(τ)-state 2nfa given by Lemma 4

for ϕ̂j , from cell u∗ up to every cell v∗ such that w[x0/u∗, y0/v∗] |= ϕ̂j(x0, y0).
This needs O(τ) states of the form (j, .) and ends at a state (j, B).

Overall, the result is a nondeterministic computation whose accepting branches
take N to all configurations ((j, B), v∗) such that v = (v∗, dj

1, . . . , d
j
k) is an out-

neighbor of u = (u∗, di
1, . . . , d

i
k). This concludes our description of a full stage.

A Logical Characterization of Small 2NFAs 175

In total, N uses O(τ) states for the special first stage and, for each i, another
O(τ) + O(1) + O(τ) = O(τ) states for every stage that starts after state (i, B).
So, the total number of states is O(τ) + (1+m) · O(τ) = O(mτ), as promised. ��

6 Conclusion

Completing [6], we descriptively characterized 2N. We can show that Theorem 1
is tight, in that its sentences can solve non-regular problems, if two-dimensional;
or problems outside 2N, if the core is in cnf. It would be nice to see descriptive
characterizations for other minicomplexity classes, too.

References

1. Büchi, R.J.: Weak second-order arithmetic and finite automata. Zeitschrift für math-
ematische Logik und Grundlagen der Mathematik 6(1–6), 66–92 (1960)

2. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.
In: Karp, R.M. (ed.) Complexity of Computation. AMS-SIAM Symposia in Applied
Mathematics, vol. VII, pp. 43–73 (1974)

3. Immerman, N.: Nondeterministic space is closed under complementation. SIAM J.
Comput. 17(5), 935–938 (1988)

4. Immerman, N.: Descriptive Complexity. Springer, New York (1998)
5. Kapoutsis, C.: Minicomplexity. J. Automata Lang. Comb. 17(2–4), 205–224 (2012)
6. Kapoutsis, C.A., Lefebvre, N.: Analogs of Fagin’s Theorem for small nondeterminis-

tic finite automata. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410,
pp. 202–213. Springer, Heidelberg (2012)

Experiments with Synchronizing Automata

Andrzej Kisielewicz, Jakub Kowalski, and Marek Szyku�la(B)

Department of Mathematics and Computer Science,
University of Wroc�law, Wroc�law, Poland

andrzej.kisielewicz@math.uni.wroc.pl, {jko,msz}@cs.uni.wroc.pl

Abstract. We have improved an algorithm generating synchronizing
automata with a large length of the shortest reset words. This has been
done by refining some known results concerning bounds on the reset
length. Our improvements make possible to consider a number of con-
jectures and open questions concerning synchronizing automata, check-
ing them for automata with a small number of states and discussing the
results. In particular, we have verified the Černý conjecture for all binary
automata with at most 12 states, and all ternary automata with at most
8 states.

1 Introduction

A deterministic finite automaton A is 〈Q,Σ, δ〉, where Q is the set of the states,
Σ is the input alphabet, and δ : Q×Σ → Q is the (complete) transition function.
Throughout the paper, by n we denote the number of states |Q|. If |Σ| = k then
A is called k-ary. The transition function δ is naturally extended to a function
2Q × Σ∗ → 2Q. The image of S ⊆ Q under the action of a word w ∈ Σ∗ is
Sw = {δ(q, w) | q ∈ S}. The rank of a word w ∈ Σ∗ is |Qw|, and the rank of A
is the minimal rank of a word over A. For a non-empty subset Σ′ ⊆ Σ, we may
define the automaton A′ = 〈Q,Σ′, δ′〉, where δ′ is the natural restriction of δ to
Σ′. In such a case A is called an extension of A′. The automata of rank 1 are
called synchronizing, and each word w with |Qw| = 1 is called a synchronizing
(or reset) word for A. An automaton is irreducibly synchronizing if it is not an
extension of a synchronizing automaton over a smaller alphabet.

We are interested in the length of a shortest reset word for A (there may
be more than one word of the same shortest length). We call it the reset length
of A. The famous Černý conjecture states that every synchronizing automaton
A with n states has a reset word of length ≤ (n − 1)2 [9]. This conjecture
was formulated by Černý in 1969 and is considered the longest-standing open
problem in combinatorial theory of finite automata. So far, the conjecture has

A. Kisielewicz—Supported in part by the National Science Centre, Poland under
project number 2012/07/B/ST1/03318.
J. Kowalski—Supported in part by the National Science Centre, Poland under
project number 2015/17/B/ST6/01893.
M. Szyku�la—Supported in part by the National Science Centre, Poland under project
number 2013/09/N/ST6/01194.

c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 176–188, 2016.
DOI: 10.1007/978-3-319-40946-7 15

Experiments with Synchronizing Automata 177

been proved only for a few special classes of automata, and a cubic upper bound
(n3−n)/6−1 [19] has been established, which was not improved for over 30 years
(see [15,24] for excellent surveys). The bound (n − 1)2 is met for every n by the
Černý automata [9], which is the only known infinite series of automata meeting
this bound (besides that, there are 8 known particular examples with n ≤ 6
states [22] also meeting the bound).

There were several efforts to check computationally the conjecture for all
automata with a small number of states. In particular, Ananichev et al. [3,4]
have checked all binary automata with at most n = 9 states, and the checking
for all automata with at most n = 10 states was reported in [22]. In [16], using
a dedicated algorithm, we have verified the conjecture for all binary automata
with n ≤ 11 states.

In this paper, first we describe improvements to our algorithm from [16],
which are aimed at making possible verifying the conjectures for larger automata.
While these are results of a rather technical nature, and may be not very interest-
ing from theoretical point of view, they make possible to restrict the computation
process to much smaller class of relevant automata, and thus to consider also
automata with a larger number of states.

We extend verification of the Černý conjecture up to 12 states and present
an extensive experimental study on important problems and conjectures closely
related to upper bounds on reset lengths. We consider known conjectures, and
restate or state new ones basing on our experiments. Most of them imply an
improvement for the general cubic bound, and hence are very hard but stand as
possible ways to attack the main problem. All of the conjectures are experimen-
tally confirmed for automata with a small number of states and/or letters.

2 Reset Lengths of Extensions

In this section we describe two theoretical results we apply in the improved algo-
rithm. We are interested mainly in estimating the reset length of synchronizing
automata that arise as extensions of non-synchronizing automata by one letter.
In some cases, we are able to provide better upper bounds than the general
bound (n3 − n)/6 − 1 [19].

In particular, we search for synchronizing automata with relatively large
reset length. We improve the algorithm from [16] which takes a set of (k − 1)-
ary automata with n states and generates all their nonisomorphic one-letter
extensions. To perform an exhaustive search over the k-ary automata with n
states with some property, we need to progressively run the algorithm k−1 times
starting from the complete set of non-isomorphic unary automata. However, in
each run, if we know that any extension of an automaton A cannot have the
desired property, we can safely drop A from further computations. Since the
number of generated automata grows rapidly, suitable knowledge saves a lot of
computational time and extends the class of the automata investigated. The
technical details of the algorithm and proofs can be found in [17].

A subset M ⊆ Q of the states is called compressible, if there is a word w
such that |Mw| < |M |. Let A = 〈Q,Σ, δ〉 be a finite automaton. We say that

178 A. Kisielewicz et al.

a sequence (Mi, xi, yi), (1 ≤ i ≤ �) of m-subsets (subsets of size m) Mi of Q
and pairs of states xi, yi ∈ Q is an m-subset Frankl-Pin sequence if the following
conditions are satisfied

1. xi, yi ∈ Mi for 1 ≤ i ≤ �;
2. either xi or yi is not in Mj for all 1 ≤ j < i ≤ �.

If all the pairs {xi, yi} belong to a set P of pairs, we will say that this sequence
is over P . Given a set P of compressible pairs, by the synchronizing height h(P)
of P we mean the minimal h such that for each pair {x, y} ∈ P there exists a
word w of length h such that xw = yw.

It is known that a shortest word compressing M cannot be longer than the
length of the Frankl-Pin sequence starting from M [12] (this, in fact, is used to
obtain the bound (n3 −n)/6 mentioned above). Our first technical improvement
is that if the synchronizing height is smaller than the maximal length of a Frankl-
Pin sequence over P , then we have

Theorem 1. Let P be a set of compressible pairs in A, h(P) the synchronizing
height of P , and p(P) the maximal length of a Frankl-Pin sequence over P .
Then, for every compressible m-subset M of Q (2 ≤ m ≤ n), there is a word
compressing M whose length does not exceed

(
n − m + 2

2

)
− p(P) + h(P).

This result improves the estimation in [12] by the negative summand (p(P)−
h(P)). It is to be combined and compared with the result by Pin [18] saying that
if w is a word of rank r and there exists a word of rank ≤ r − 1, then there is
such a word of length ≤ 2|w|+n−r+1. There are other results of this kind that
can be used for providing bounds for extensions, as that in [6]. Unfortunately,
for small values of n that are within our considerations, this does not overcome
the bound from Theorem1.

Recall that an automaton A = 〈Q,Σ, δ〉 is one-cluster, if it has a letter
a ∈ Σ such that for every pair q, s ∈ Q there are i, j ≥ 1 such that qai = saj .
This means that the graph of the transformation induced by a is connected. In
particular, it has a unique cycle C ⊆ Q with the property Cai = C for every
i ≥ 0, and there is � ≥ 0 such that Qa� = C. The least such � is called the level
of A. Steinberg [21] proved that if the length m of the cycle is prime, then the
one-cluster automaton A has a reset word of length at most

n − m + 1 + 2� + (m − 2)(n + �). (1)

We generalize this result to arbitrary lengths and get an additional negative
summand. We refine the proof of Steinberg [21] and the summand is expressed
in algebraic terms of the proof. Therefore, to present the result we have to recall
basic notations from [21].

Given a one cluster automaton with the notation as above, we consider the
matrix representation π : Σ∗ → Mn(Q) defined by π(w)q,r = 1 if qw = r, and

Experiments with Synchronizing Automata 179

0, otherwise. Given S ⊆ Q we define [S] to be the characteristic row vector of
S in Q

n, [S]T its transpose, and γS = [S]T − (|S|/|C|)[Q]T . By wγS we denote
the product of corresponding matrices; in particular, the word w represents the
matrix π(w), and the product is a vector in the space Q

n. We consider the
subspace WS = Span{a�+jγS ∈ Q

n | 0 ≤ j ≤ m − 1} (cf. [21]), and the cyclic
period qS of S, understood as the least number q such that Saq = S. Now, we
define D∗(m, k) to be the minimal value of m − qS + dimWS taken over all
vectors S with |S| = k. Then we prove the following:

Theorem 2. Let A = 〈Q,Σ, δ〉 be a synchronizing automaton with n states,
such that there exists a word w of length s inducing a one-cluster transformation
with level � and cycle C of length m > 1. Then A has a reset word of length at
most

s(� + m − 2)(m − 1) + (n + 1)(m − 1) + s� −
m−1∑
k=1

D∗(m, k).

One can demonstrate that this results generalizes and improves earlier
bounds in [8,21], and a careful estimation of the summand D∗(m, k) yields the
currently best general bound for reset lengths of one-cluster automata:

Corollary 3. A synchronizing one-cluster automaton A with n states and the
cycle of length m has a reset word of length at most

2nm − 4m ln
m + 3

2
+ 2m − n + 1 (2)

Nevertheless, for small values ofmwecan compute the exact values ofD∗(m, k),
and this yields considerably better bounds than the general estimation above.

3 Experiments and Conjectures

In this section we discuss the results of our experiments with the improved
algorithm concerning various conjectures and open problems in the area.

The Černý Conjecture. We have verified the Černý conjecture for several
cases. In particular, we confirmed it for all binary automata with n ≤ 12 states,
and for all ternary automata with n ≤ 8.

Verifying the Černý conjecture for binary automata with n = 12 states was
the most difficult computation that we have performed here. The total time
of a single processor core spent for this computation was about 100 years. We
performed this on a grid in parallel using mostly about 200 cores of Quad-Core
AMD Opteron(tm) Processor 8350, 2.0 GHz. The total number of automata
generated by our algorithm in this case was about 1015.

For ternary automata with n = 8 states the computation took 1.25 years
of a single processor core, and we had to generate and check about 2.1 × 1010

automata. One may compare these numbers with the numbers of non-isomorphic

180 A. Kisielewicz et al.

initially connected automata that one would need to generate applying the tech-
nique described in [3]. The corresponding numbers are: about 2.2 × 1017 for
binary automata with n = 12 states, and 5.7 × 1017 for ternary automata with
n = 8 states.

Within the range we have considered, the only automata meeting the bound
(n − 1)2 other than the Černý series are known examples with n ≤ 6 states that
were presented in [22].

Slowly Synchronizing Automata. For the case of binary automata n = 12
states, we have obtained also the complete list of strongly connected synchro-
nizing automata with reset length ≥ 94.

Table 1. The numbers of all non-isomorphic strongly connected synchronizing binary
automata with 12 states with reset length ≥ 94.

Reset length 94 95–98 99 100 101 102 103–109 110 111 112 113–120 121

Number of automata 3 0 3 21 9 2 0 2 1 1 0 1

Series Hn,Ḣn En,D′′
n Wn D′

n Cn

Table 1 shows the exact numbers of automata in this range, and the corre-
sponding series according to naming from [3,4,16]. Here, all automata with reset
length ≥ 99 has a similar structure of one long cycle and a small gadget (cf. [4]),
and they can be generalized to series of length n2 − O(n) as well. We confirm,
for n ≤ 12, [4, Conjecture 1], which is a generalization of the Černý conjecture,
describing all binary synchronizing automata with reset length ≥ n2 − 4n + 8
(104 for n = 12) and stating that up to isomorphism this list is complete.

As observed in [4,16,22], there are gaps in the set of possible reset lengths
near the Černý bound (n − 1)2. We confirm for binary automata that for n =
6, 7, 8 there is one gap, for n = 9, 10 there are two gaps, and for n = 11, 12 there
are three gaps.

There is no binary strongly connected automaton with 12 states and reset
length 95, but we have constructed such an automaton over a ternary alphabet
(Fig. 1). Similarly, we know an automaton for n = 9 with reset length 53 (second
gap), and for n = 11 with reset length 79 (third gap). This shows that the gaps,
except the first one, are not necessarily preserved over larger alphabets.

Extending Words in One-Cluster Automata. One-cluster automata are
an important class of synchronizing automata for which a quadratic bound on
reset length has been found [5,21].

Despite several attempts [5,8,10,20,21] at improving the bounds, so far, the
Černý conjecture has been proved only for one-cluster automata with a cycle of
length n (circular automata) or with a prime-length cycle. In [21] an algebraic
argument making use of ascending chain of linear subspaces and averaging trick
has been applied. The proof is based on the claim that any subset S ⊂ C on the

Experiments with Synchronizing Automata 181

12

3

4

5

6 7

8 9 10 11 12

b

b
a

a

c
c

a
a

b

b

a

a

b

b

b

a

a

b

b

a

a

b

b

b, c

c

c

c

a, c

c c c c a, c

Fig. 1. An irreducibly synchronizing strongly connected ternary automaton with 12
states and reset length 95.

cycle C can be extended on this cycle by a word of length at most � + n (we
apply here the notation of Sect. 2). It is demonstrated that this holds in the case
of prime length of C. Proving it for non-prime lengths would provide the proof
of the Černý conjecture for the whole class of one-cluster automata.

We have exhaustively searched for small examples of one-cluster automata
with a non-prime cycle length such that the length � + n of extending words is
exceeded for some subset S, but found out that � + n is sufficient in all tested
cases, instead of the value n + � + |C| − D∗(|C|, |S|) used to prove the bound
from Theorem 2. Also, we found out that we can always use an extending word
of the form wa� with |w| ≤ n, which is the form used in the proof for prime |C|.

Conjecture 1. Let A be a one-cluster synchronizing automaton with a one-
cluster letter a with the cycle C and level �. For any non-empty proper subset
S ⊂ C there is a word w such that |S(wa�)−1 ∩ C| > |S| and |w| ≤ n.

In all the cases tested, for any �, non-prime |C| < n, and |S| with 1 ≤ |S| <
|C|, we found an automaton for which we needed a word w of length exactly n.
So, it seems that the bound |w| ≤ n is tight.

Worst Cases for the Greedy Compressing Algorithm. The greedy com-
pressing algorithm is a well known approach for finding a reset word [11,19,24].
It starts from S = Q, and iteratively finds a shortest word w such that |Sw| < |S|
and uses Sw for next iteration, until |S| = 1. The concatenated words w form the
found reset word. The length of the resulted reset word can vary, since there is
ambiguity in selection of shortest words w. By bounding the length of the found
reset word we also obtain an upper bound for the reset length, and in fact, the
upper bound (n3 −n)/6 for the reset length is obtained by bounding the lengths

182 A. Kisielewicz et al.

of words w for |S| = 2, . . . , n and summing these bounds [19]. It is known that
this algorithm finds a word of length Ω(n2 log n) for the Černý automaton [15],
but it was not clear whether it is the worst case example.

We experimentally tested the greedy algorithm for the worst cases. Here, we
restricted the studied class to irreducibly synchronizing automata, as otherwise
we would get a lot of trivial examples derived from automata over a smaller
alphabet. By the worst case length we mean the maximum length of the found
word by the algorithm over all selections of shortest compressing words that can
be taken by the algorithm. For example, for automaton G1 from Fig. 2, the worst
case length is 19 and a sequence of subsets considered by the greedy algorithm
in the worst case can be the following:

Q = {1, 2, 3, 4, 5} b−→ {1, 2, 4, 5} aca−→ {3, 4, 5} bcbacb−→ {1, 4} acbbcbaca−→ {3}.

While this requires potentially very expensive computation, the worst case length
can be computed by a kind of dynamic algorithm and n−1 iterations of breadth-
first search in the power automaton.

It may be surprising that the Černý automata generally do not exhibit the
worst case length. We have observed that for some values n ≥ 10 the slowly
synchronizing series Wn, D ′′

n , and Gn (see [3,4]) exceed the worst case length
of the Černý automaton with the same number of states. In addition, we have
found out four particular ternary examples shown in Fig. 2 exceeding the worst
case length of the Černý automaton with the same number of states, which do
not seem generalizable to series. Up to isomorphism, there are no more such
examples within the range we have considered (Table 2).

The results we have collected do not allow to state a reasonable conjecture.
So far, Wn is the best candidate for the largest worst case lengths for n ≥ 10,
and the Černý automata for n ≤ 9, except G1 and G2 from Fig. 2 for n = 5, 6.

Problem 2. What are the largest worst case lengths of the greedy compressing
algorithm of automata with n states?

It is noticeable that the dual greedy extending algorithm, which starts from a
singleton and uses shortest extending words rather than compressing ones, seem
to have generally larger worst case lengths. For example, for the case of binary
n = 7 in the worst case it can find a reset word of length 48 for some strongly
connected automaton, whereas the greedy compressing algorithm finds a word
of length at most 43.

Aperiodic Synchronizing Automata. Recall that an automaton is aperiodic
if there is no word inducing a transformation with a cycle of length ≥ 2 (the
transition semigroup has only trivial subgroups). In [24] Volkov mentioned that
although a quadratic upper bound for the reset length of aperiodic synchronizing
automata has been proved, the largest reset length for known aperiodic automata
does not exceed n + �n/2� − 2. This length is reached by a series of binary
automata constructed by Ananichev [2]. In this connection, it may be interesting

Experiments with Synchronizing Automata 183

G1 :

1

3 4

2

5

a

b

bb

a, c a

c

c

c

c

a, b

a, b

G2 :

1

3 4

2

5 6

a

b

bb

a, c a

c

c

c

c

a, b

a

b

b

a, c

G3 :

1 2

3

4 5 6

a

a

a, b

a

a, b

a, b
b bb

c

c

c

c

c

c G4 :

1

4 5

2

6

3

a

b

bb

a, c a

c

c

c

c

a

a, b

b

b

a, c

Fig. 2. Automata G1, G2, G3, and G4, with the worst case length 19, 30, 28, and 28,
and reset lengths 15, 22, 20, and 20, respectively.

to know that the same bound is also reached for every n > 1 by a series of
irreducibly ternary aperiodic automata. It has a quite simple definition and an
easy proof for the reset length (comparing with [2]). Let An = 〈Q, {a, b, c}, δ〉,
where Q = {v1, . . . , vn}, δ(vi, a) = vi+1 for 1 ≤ i ≤ n − 2, δ(vi, b) = vi−1 for
2 ≤ i ≤ n − 1, δ(v�n/2�, c) = vn, and δ(vi, x) = vi, otherwise (x ∈ Σ) (shown
in Fig. 3).

Volkov1 has also pointed out that n−1 may be an upper bound for the reset
length in the class of strongly connected synchronizing aperiodic automata, but

v1 . . . v n/2 . . . vn−1

vn

a a a a

bbbb

c

b, c a, c

a, b, c

c c

Fig. 3. A ternary irreducibly synchronizing n-state aperiodic automaton with the reset
length n + �n/2� − 2.

1 Personal communication.

184 A. Kisielewicz et al.

there was not enough evidence. The bound can be met trivially if the underlying
digraph of the automaton is a bidirectional path: Q = 1, . . . , n, for every 1 ≤ i ≤
n − 1 there are the directed edges (i, i + 1) and (i + 1, i), and every edge that is
not a loop is of that form.

Since our verifications involve a huge number of aperiodic automata, we
experimentally support the following conjectures:

Conjecture 3 (cf. [24]). Every synchronizing aperiodic automaton with n > 1
states has a reset word of length at most ≤ n + n/2� − 2.

Conjecture 4 (Volkov). Every strongly connected synchronizing automaton
has a reset word of length at most n − 1. Moreover, if this bound is met, then
the underlying digraph of the automaton is a bidirectional path.

Avoiding States. In a recent short note [13] the authors state the following
problem related to the recent unsuccessful attempt of improving the general
upper bound on reset length [23]: Given a strongly connected synchronizing
automaton, what is the minimal length � such that for any q ∈ Q there is a word
w of length ≤ � and such that q �∈ Qw. If � ∈ O(n), then we would obtain a
better upper bound than (n3 − n)/6.

Experimentally, we have found out what the value of � for a given n might
be, and provided support for the following conjecture:

Conjecture 5. In a synchronizing strongly connected automaton, for any q ∈ Q
there is a word w of length ≤ 2n − 2 and such that q �∈ Qw. This bound is tight
for n ≥ 4 over a ternary alphabet.

Recently, Vojtěch Vorel2 discovered an infinite series of binary automata whose
minimal length in question is 2n−4, which is currently the best theoretical lower
bound for the problem.

New Rank Conjecture. Pin [19] proposed the following generalization of
the Černý conjecture: For every 0 < d, n, if there is a word of rank ≤ n − d,
then there is such a word of length ≤ d2. Pin proved this for d ≤ 3. However,
Kari [14] found a celebrated counterexample to this conjecture for d = 4, which
is a binary automaton K with 6 states (Fig. 4). As a consequence, a modification
of this generalized conjecture was proposed restricting it to d being the rank
of the considered automaton (see for example [1]). However this seems to be a
quite radical restriction.

In our computations, we have found no other counterexample to Pin’s con-
jecture except for trivial extensions and modifications. This may suggest that
Kari construction works due to the number of involved states small enough, and
is, in fact, an exception. By a trivial extension of an automaton over alphabet
Σ we mean one obtained by adding letters to Σ that acts either as the identity
transformation or as any letter in Σ. So a trivial extension has the same number
2 Personal communication, unpublished.

Experiments with Synchronizing Automata 185

K :

1 2 3

4 5 6

a a

a

a a

a

b b
b

b
b b

K :

1 2 3

4 5 6

a, c a, c

a, c

a, c a, c

a, c

b b
b

b
b b

7

8

9

b, c

b

b

c

a

a

a, c

Fig. 4. The Kari automaton K [14], and a Kari-like automaton K′.

of the states and the transition semigroup, and trivial extensions of the Kari
automaton K are counterexamples to the Pin’s conjecture, for d = 4, as well. By
a disjoint union of two automata A = 〈Q,Σ, δ〉 and A′ = 〈Q′, Σ, δ′〉 we mean
the construction where the automata have the same alphabet Σ, and disjoint
sets of states Q,Q′, and the union is simply A = 〈Q ∪ Q′, Σ, δ ∪ δ′〉. If we take a
disjoint union of K with any permutation automaton (one whose letters act like
permutations, or in other words, one of rank equal to its size), then again we get
a counterexample to the Pin’s conjecture, for d = 4. Yet, in all these automata
the failure is caused by the same Kari construction on the set of the 6 states.
In our experiments, we have discovered no other counterexample. This may be
treated as an evidence for the conjecture we state below.

Consider the smallest class of automata containing K and closed on tak-
ing trivial extension and disjoint union with permutation automata. Let us call
automata in this class Kari-like automata (see Fig. 4). Then we have

Conjecture 6. For every d, if an automaton A has a word of rank at most
n − d, then there is such a word of length at most d2, unless A is a Kari-like
automaton and d = 4 (in which case there is a word of rank n − 4 of length
d2 + 1 = 17).

Subset Synchronization. The last conjecture was posed by Ângela Cardoso:

Conjecture 7 (Cardoso [7]). In a synchronizing automaton, for any subset S
of states there is a word w with |Sw| = 1 of length at most

(n − 1)2 −
⌈

n − |S|
|S|

⌉(
2n − |S|

⌈
n

|S|
⌉

− 1
)

.

This is another generalization of the Černý conjecture, and it can be viewed
as a counterpart for the rank conjecture, where we bound the length of words
compressing Q to a subset of the given size, rather than a subset to a singleton.

186 A. Kisielewicz et al.

Conjecture 7 has been proved for several special classes of automata, and the
formula is tight for any subset size in the Černý series. Besides confirmation for
small automata, we identified 18 particular examples of irreducibly synchronizing
automata with n ∈ {3, 4, 5, 6} states meeting the bound for some subset S that
are not isomorphic to the Černý automata. Note that the conjecture is not true
in general for non-synchronizing automata, as Vorel [25] has constructed a series
of non-synchronizing strongly connected binary automata with subsets whose
shortest synchronizing words are of exponential length.

3.1 Summary

Table 2 summarizes the ranges for which the discussed conjectures have been
confirmed or the problems checked. The ranges vary due to different numbers of
automata that have to be checked, computational complexity of verification for
a single automaton, and computation time devoted for each of the problems.

Table 2. Experimental verification of conjectures. The numbers denote the size of the
alphabet up to which the given conjecture has been checked. The symbol ∞ denotes
that the problem has been verified for all automata with the given number of states
and any number of letters.

Problem Number of states n

≤ 4 5 6 7 8 9 10 11 12

Černý conjecture and [4, Conjecture 1] ∞ ∞ 6 4 3 2 2 2 2

Conjecture 1 (one-cluster) ∞ 5 4 3 2 2 2

Problem 2 (greedy algorithm) ∞ 6 4 3 2 2 2

Conjecture 3 (aperiodic) ∞ 5 3 3 2 2 2

Conjecture 4 (strongly connected aperiodic) ∞ 8 5 3 2 2 2 2

Conjecture 5 (avoiding states) ∞ 8 4 3 2 2 2

Conjecture 6 (new rank conjecture) ∞ ∞ 5 3 3 2 2

Conjecture 7 (subset synchronization) ∞ ∞ 5 4 3 2 2

Acknowledgments. We thank Mikhail Volkov for suggesting Conjecture 4, and
Mikhail Berlinkov for observing that the bound for one-cluster automata can be
improved for periodic subsets on the cycle, which leaded to an improvement of our
algorithm. We thank also Vojtěch Vorel for discussing the problem of avoiding states
and sharing the series. The main part of the computations was performed on a grid
that belongs to Institute of Computer Science of Jagiellonian University (thanks to
Adam Roman).

Experiments with Synchronizing Automata 187

References

1. Almeida, J., Steinberg, B.: Matrix mortality and the Černý-Pin conjecture. In:
Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 67–80. Springer,
Heidelberg (2009)

2. Ananichev, D.S.: The mortality threshold for partially monotonic automata. In: De
Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 112–121. Springer,
Heidelberg (2005)

3. Ananichev, D., Gusev, V., Volkov, M.: Slowly synchronizing automata and
digraphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 55–65. Springer, Heidelberg (2010)

4. Ananichev, D.S., Volkov, M.V., Gusev, V.V.: Primitive digraphs with large expo-
nents and slowly synchronizing automata. J. Math. Sci. 192(3), 263–278 (2013)

5. Béal, M.-P., Berlinkov, M.V., Perrin, D.: A quadratic upper bound on the size of
a synchronizing word in one-cluster automata. Int. J. Found. Comput. Sci. 22(2),
277–288 (2011)

6. Berlinkov, M., Szyku�la, M.: Algebraic synchronization criterion and computing
reset words. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015.
LNCS, vol. 9234, pp. 103–115. Springer, Heidelberg (2015)

7. Cardoso, Â.: The Černý Conjecture and Other Synchronization Problems. Ph.D.
thesis, University of Porto, Portugal (2014)

8. Carpi, A., D’Alessandro, F.: Independent sets of words and the synchronization
problem. Adv. Appl. Math. 50(3), 339–355 (2013)

9. Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami.
Matematicko-fyzikálny Časopis Slovenskej Akadémie Vied 14(3), 208–216 (1964)

10. Dubuc, L.: Sur les automates circulaires et la conjecture de C̆erný. Informatique
théorique et applications 32, 21–34 (1998)

11. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19,
500–510 (1990)

12. Frankl, P.: An extremal problem for two families of sets. Eur. J. Comb. 3, 125–127
(1982)

13. Gonze, F., Jungers, R.M., Trahtman, A.N.: A note on a recent attempt to improve
the Pin-Frankl bound. Discrete Math. Theor. Comput. Sci. 17(1), 307–308 (2015)

14. Kari, J.: A counter example to a conjecture concerning synchronizing word in finite.
EATCS Bull. 73, 146–147 (2001)

15. Kari, J., Volkov, M.V.: Černý’s conjecture and the road coloring problem. In:
Handbook of Automata. European Science Foundation (2013)

16. Kisielewicz, A., Szyku�la, M.: Generating small automata and the Černý conjecture.
In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982, pp. 340–348. Springer,
Heidelberg (2013)

17. Kisielewicz, A., Szyku�la, M.: Generating Synchronizing Automata with Large Reset
Lengths (2016). http://arxiv.org/abs/1404.3311

18. Pin, J.-E.: Utilisation de l’algèbre linéaire en théorie des automates. In: Actes du
1er Colloque AFCET-SMF de Mathématiques Appliquées II, pp. 85–92 (1978)

19. Pin, J.-E.: On two combinatorial problems arising from automata theory. In: Pro-
ceedings of the International Colloquium on Graph Theory and Combinatorics.
North-Holland Mathematics Studies, vol. 75, pp. 535–548 (1983)

20. Steinberg, B.: The averaging trick and the Černý conjecture. Int. J. Found. Com-
put. Sci. 22(7), 1697–1706 (2011)

http://arxiv.org/abs/1404.3311

188 A. Kisielewicz et al.

21. Steinberg, B.: The Černý conjecture for one-cluster automata with prime length
cycle. Theoret. Comput. Sci. 412(39), 5487–5491 (2011)

22. Trahtman, A.N.: An efficient algorithm finds noticeable trends and examples con-
cerning the Černy conjecture. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006.
LNCS, vol. 4162, pp. 789–800. Springer, Heidelberg (2006)

23. Trahtman, A.N.: Modifying the upper bound on the length of minimal synchroniz-
ing word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914,
pp. 173–180. Springer, Heidelberg (2011)

24. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008)

25. Vorel, V.: Subset synchronization of transitive automata. In: AFL, pp. 370–381
(2014)

Implementation of Code Properties
via Transducers

Stavros Konstantinidis1(B), Casey Meijer1, Nelma Moreira2, and Rogério Reis2

1 Saint Mary’s University, Halifax, NS, Canada
s.konstantinidis@smu.ca, dylanyoungmeijer@gmail.com

2 CMUP & DCC, Faculdade de Ciências da Universidade do Porto,
Rua do Campo Alegre, 4169-007 Porto, Portugal

{nam,rvr}@dcc.fc.up.pt

Abstract. The FAdo system is a symbolic manipulator of formal lan-
guage objects, implemented in Python. In this work, we extend its capa-
bilities by implementing methods to manipulate transducers and we go
one level higher than existing formal language systems and implement
methods to manipulate objects representing classes of independent lan-
guages (widely known as code properties). Our methods allow users to
define their own code properties and combine them between themselves
or with fixed properties such as prefix codes, suffix codes, error detecting
codes, etc. The satisfaction and maximality decision questions are solv-
able for any of the definable properties. The new online system LaSer
allows one to query about a code property and obtain the answer in
a batch mode. Our work is founded on independence theory as well as
the theory of rational relations and transducers, and contributes with
improved algorithms on these objects.

Keywords: Automata · Codes · FAdo · Implementation · Language
properties · Regular languages · Symbolic computation · Transducers ·
Program generation

1 Introduction

Several programming platforms are nowadays available, providing methods to
transform and manipulate various formal language objects: Grail/Grail+ [10,24],
Vaucanson 1 [5], Vaucanson-R [30], FAdo [1,9], JFLAP and OpenFST [22]. Some
of these systems allow one to manipulate such objects within simple script

Due to the page limit we chose to omit algorithmic details and proofs of correctness,
and focus on providing a somewhat comprehensive presentation on implementation
aspects and the new capabilities of FAdo. Details can be found in [17].
N. Moreira and R. Reis are partially supported by CMUP (UID/MAT/00144/2013),
which is funded by FCT with national and European structural funds through the
programs FEDER, under the partnership agreement PT2020. S. Konstantinidis and
C. Meijer are supported by NSERC, Canada.

c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 189–201, 2016.
DOI: 10.1007/978-3-319-40946-7 16

190 S. Konstantinidis et al.

environments. Grail for example, one of the oldest systems, provides a set of
filters manipulating automata and regular expressions on a UNIX command
shell. Similarly, FAdo provides a set of methods manipulating such objects on
a Python shell. Software environments for symbolic manipulation of formal lan-
guages are widely recognized as important tools for theoretical and practical
research. They allow easy prototyping of new algorithms, testing algorithm per-
formance with large datasets, corroborate or disprove descriptional complex-
ity bounds for manipulations of formal system representations, etc. Due to the
combinatorial nature of formal language representations, their calculations are
almost impossible without computational aid.

In this work, we extend the capabilities of FAdo and LaSer [8,19] by imple-
menting transducer methods and by going to the higher level of implementing
objects representing classes of independent formal languages, also known as code
properties. More specifically, the contributions of the present paper are as follows.
(a) Implementation of transducer objects and several transducer methods (var-
ious product constructions, rational operations, transducer functionality test)
(Sect. 3). (b) Definitions of objects representing code properties and methods
for their manipulation, which to our knowledge is a new development in soft-
ware related to formal language objects. In addition to some fixed code proper-
ties (such as prefix code, infix code, hypercode), these methods can be used to
construct new code properties and combine existing properties, including vari-
ous error-detecting properties (Sect. 4). (c) Enhancement and implementation of
decision algorithms for code properties of regular languages. In particular, such
algorithms have been implemented and enhanced so as to provide witnesses in
case of a negative answer (Sect. 5). To our knowledge such implementations are
not openly available. (d) A mathematical definition of what it means to simulate
(and hence implement) a hierarchy of properties and the proof that there is no
complete simulation of the set of error-detecting properties (Sect. 4). (e) Gener-
ation of executable Python code based on the requested question about a given
code property. This is mostly of use in the online LaSer, which receives client
requests and attempts to compute answers (Sect. 6). (f) All the above classes
and methods are open source (GPL). Our work is founded on independence
theory [15,29] as well as the theory of rational relations and transducers [3,26].

2 Terminology and Background

Sets, Alphabets, Words, Languages. If S is a set, then |S| denotes the
cardinality of S, and 2S denotes the set of all subsets of S. An alphabet is a
finite nonempty set of symbols. In this paper, we write Σ,Δ for any arbitrary
alphabets. The set of all words, or strings, over an alphabet Σ is written as Σ∗,
which includes the empty word ε. A language (over Σ) is any set of words. We
use standard operations and notation on words and languages [13,20,25].

Codes, Properties, Independent Languages. A code property, or indepen-
dence, [15], is a set P of languages for which there is n ∈ N ∪ {ℵ0} such that
L ∈ P, if and only if L′ ∈ P, for all L′ ⊆ L with 0 < |L′| < n. If L is in P

Implementation of Code Properties via Transducers 191

then we say that L satisfies P. Thus, L satisfies P exactly when all nonempty
subsets of L with less than n elements satisfy P. A language L ∈ P is called
P-maximal, or a maximal P code, if L ∪ {w} /∈ P for any word w /∈ L. We note
that every L satisfying P is included in a maximal P code [15]. As far as we
know, all code related properties in the literature [4,6,8,11,15,23,28] are code
properties as defined here. The focus of this work is on 3-independences that can
also be viewed as independences with respect to a binary relation in the sense
of [29].

Automata [26,32]. A nondeterministic finite automaton with ε-transitions, for
short automaton or ε-NFA, is a quintuple a = (Q,Σ, T, I, F) such that Q is the
finite set of states, Σ is an alphabet, I, F ⊆ Q are the sets of start (or initial)
states and final states, respectively, and T ⊆ Q × (Σ ∪ ε) × Q is the finite set of
transitions. The ε-NFA a is called trim, if every state appears in some accepting
path of a. The automaton a is called an NFA, if no transition label is ε, that is,
T ⊆ Q × Σ × Q.

Transducers and (Word) Relations [3,26,32]. A (word) relation over Σ and
Δ is a subset of Σ∗×Δ∗, that is, a set of pairs (x, y) of words over the two alpha-
bets (respectively). The inverse of a relation ρ, denoted by ρ−1, is the relation
{(y, x) | (x, y) ∈ ρ}. A (finite) transducer is a sextuple t = (Q,Σ,Δ, T, I, F)
such that Q, I, F are exactly the same as those in ε-NFAs, Σ is now called the
input alphabet, Δ is the output alphabet, and T ⊆ Q×Σ∗ ×Δ∗ ×Q is the finite
set of transitions. We write (p, x/y, q) for a transition – the label here is (x/y),
with x being the input and y being the output label. The size of (p, x/y, q) is
the number 1 + |x| + |y|. The size |t| of t is the sum of |Q| and the sizes of all
transitions. The relation R(t) realized by the transducer t is the set of labels in
all the accepting paths of t. We write t(x) for the set of possible outputs of t on
input x, that is, y ∈ t(x) iff (x, y) ∈ R(t). The domain of t is the set of all words
w such that t(w) �= ∅. The inverse of a transducer t, denoted as t−1, realizes the
inverse of the relation realized by t. The transducer t is said to be in standard
form, if each transition (p, x/y, q) is such that x ∈ (Σ ∪ ε) and y ∈ (Δ ∪ ε). If s
and t are transducers, then there is a transducer s ∨ t realizing R(s) ∪ R(t).

3 Transducer Object Classes and Methods

Here we discuss some aspects of the implementation of transducer objects and
related methods. These are contained in the module transducers.py and can
be imported as follows:

from FAdo.transducers import *

The FAdo class GFT, for General Form Transducer, is a subclass of NFA, which is
the FAdo class for ε-NFAs. A transducer t = (Q,Σ,Δ, T, I, F) is implemented
as an object t with six instance variables States, Sigma, Output, delta,
Initial, Final corresponding to the six components of t. Specifically, States
is a list of unique state names, meaning that each state name has an index which

192 S. Konstantinidis et al.

is the position of the state name in the list, with 0 being the first index value.
The variables Sigma, Output, Initial and Final are sets, where the latter
two are sets of state indexes. For efficiency reasons, the set of transitions T is
implemented as a Python dictionary

delta: {0, . . . , n − 1} → (Sigma → 2Output×{0,...,n−1}),
where n is the number of states. Thus, for any p ∈ {0, . . . , n − 1}, delta[p]
is a dictionary, and for any input label x, delta[p][x] is a set of pairs (y, q)
corresponding to all transitions {(p, x/y, q) ∈ T | y ∈ Output, q is a state index}.
Standard form transducers are objects of the FAdo class SFT, which is a subclass
of GFT. The class SFT is very important from an algorithmic point of view, as
most product constructions require a transducer to be in standard form. The
conversion from GFT to SFT is done using the method toSFT().

Example 1. The following code defines a string s containing a transducer
description, and then constructs an SFT transducer t from s via a method
of the module fio, which contains input/output methods for formal language
objects. On input x, t returns the set of all proper suffixes of x—see also Fig. 1.1

It has an initial state 0 and a final state 1, and deletes at least one of the input
symbols.

s = ’@Transducer 1 * 0\n’\
’0 a @epsilon 0\n0 b @epsilon 0\n’\
’0 a @epsilon 1\n0 b @epsilon 1\n’\
’1 a a 1\n1 b b 1\n’

t = fio.readOneFromString(s)

As usual, \n denotes the end of line character, so the string s consists of 7 lines:
the first indicates the type of object followed by the final states (in this case 1)
and the start states after * (in this case 0); the second line contains the transition
(0, a/ε, 0); the last line contains the transition (1, b/b, 1). Here t.Sigma={a,b}.

0 1

σ/ε

σ/ε

σ/σ

Fig. 1. On input x, the above transducer outputs any proper suffix of x.

Recall, for a transducer t and word w, t(w) is the set of possible outputs of t on
input w. Note that this set can be empty, finite, or even infinite. In any case, it
1 Note: In transducer figures, the input and output alphabets are equal. An arrow with

label σ/σ represents a set of transitions with labels σ/σ, for each alphabet symbol
σ; and similarly for an arrow with label σ/ε. An arrow with label σ/σ′ represents a
set of transitions with labels σ/σ′ for all distinct alphabet symbols σ, σ′.

Implementation of Code Properties via Transducers 193

is always a regular language. The FAdo method t.runOnWord(w) assumes that
t is an SFT object and returns an automaton accepting the language t(w).

Example 2. The following code is a continuation of Example 1. It prints the set
of all proper suffixes of the word ababb, which are all of length ≤ 4.

a = t.runOnWord(’ababb’)
n = len(’ababb’)
print a.enumNFA(n)

Assuming t is an SFT object, the following methods are available:
“t.inverse()” returns the inverse of t; “t.evalWordP((x,y))” returns True or
False, depending whether the pair (x,y) belongs to the relation realized by t;
“t.nonEmptyW()” returns some word pair (x, y) which belongs to the relation
realized by t, if nonempty; otherwise, it returns the pair (None, None).

Product Constructions [3,16,32]. The next methods are adaptations of the
standard product construction [13] between two NFAs which produces an NFA
accepting the intersection of the corresponding languages. Assume that t and
s are SFT objects and a is an NFA object: “t.inIntersection(a)” returns a
transducer realizing all word pairs (x, y) such that x is accepted by a and (x, y)
is realized by t; “t.outIntersection(a)” as above except that y is accepted
by a; “t.runOnNFA(a)” returns the NFA accepting the language

⋃
w∈L(a) t(w);

“t.composition(s)” returns a transducer realizing the composition R(t)◦R(s).

Rational Operations [3]. A relation ρ is a rational relation, if it is equal
to ∅, or {(x, y)} for some words x and y, or can be obtained from other ones
by using a finite number of times any of the three (rational) operators: union,
concatenation, Kleene star. A classic result on transducers says that a relation is
rational if and only if it can be realized by a transducer. The following methods
are now available in FAdo, where we assume that s and t are SFT transducers:
t.union(s); t.concat(s); t.star(). The implementation of these methods
mimics the implementation of the corresponding methods on automata.

Witness of Transducer Non-functionality. A transducer t is called func-
tional if |t(w)| ≤ 1, for every word w. Transducer functionality can be tested in
polynomial time [2]. A triple of words (w, z, z′) is called a witness of t’s non-
functionality, if z �= z′ and z, z′ ∈ t(w). We have implemented the SFT method
t.nonFunctionalW(), which returns a witness of t’s non-functionality, or the
triple (None,None,None) if t is functional. Our method is based on the decision
test and uses extra bookkeeping for producing the desired witness.

Theorem 1. The FAdo method t.nonFunctionalW() computes a size O(|t|2)
witness of t’s non-functionality, if and only if one exists.

The proof of correctness can be found in [17]. There is a sequence (tn) of trans-
ducers such that |tn| → ∞ and the minimal witness of each tn is of size Θ(|tn|2).

194 S. Konstantinidis et al.

4 Object Classes Representing Code Properties

In this section we discuss our implementation of objects representing code prop-
erties. We are interested in methods that allow one to formally describe code
properties. Three such formal methods are the implicational conditions of [14],
where a property is described by a first order formula of a certain type, the regu-
lar trajectories of [6], where a property is described by a regular expression over
{0, 1}, and the transducers of [8], where a property is described by a transducer.
These formal methods can describe most properties of practical interest. The
formal methods of regular trajectories and transducers are implemented here, as
the transducer formal method follows naturally our implementation of transduc-
ers, and every regular expression of the regular trajectory formal method can be
converted efficiently to a transducer object of the transducer formal method.

Input-Altering Transducer Properties [8]. A transducer t is input-altering
if, for all words w, w /∈ t(w). In this formal method such a transducer t describes
the code property Pal

t consisting of all languages L such that

t(L) ∩ L = ∅. (1)

With this formal method we can define the suffix code property: L is a suffix code
if no L-word is a proper suffix of an L-word. The transducer defined in Example 1
is input-altering and describes the suffix code property over the alphabet {a, b}.

Error-Detecting Properties via Input-Preserving Transducers [8,16].
A transducer t is input-preserving if, for all words w in the domain of R(t),
w ∈ t(w). Such a transducer t is also called a channel transducer, in the sense
that an input message w can be transmitted via t and the output can always be
w (no transmission error), or a word other than w (error). In this formal method
the transducer t describes the error-detecting for t property Ped

t consisting of
all languages L over the input alphabet of t such that

t(w) ∩ (L − w) = ∅, for all words w ∈ L. (2)

Every input-altering transducer property is an error-detecting property [8].

0t1sub : 1 0t1id : 1

σ/σ

σ/σ′

σ/σ

σ/ε

ε/σ

σ/σ σ/σ

Fig. 2. On input x, t1sub outputs either x, or any word that results by substituting
exactly one symbol in x. On input x, t1id outputs either x, or any word that results by
deleting, or inserting, exactly one symbol in x.

Implementation of Code Properties via Transducers 195

Example 3. Consider the property 1-substitution error-detecting code over {a,
b}, where error means the substitution of one symbol by another symbol. The fol-
lowing channel transducer defines this property—see also Fig. 2. The transducer
will substitute at most one symbol of the input word with another symbol.

s1 = ’@Transducer 0 1 * 0\n0 a a 0\n0 b b 0\n’\
’0 b a 1\n0 a b 1\n1 a a 1\n1 b b 1\n’

t1 = fio.readOneFromString(s1)

We note that the transducer approach to defining error-detecting code properties
is very powerful, as it allows one to model insertion and deletion errors, in
addition to substitution errors—see Fig. 2. Codes for such errors are actively
under investigation—see [23], for instance.

4.1 Implementation in FAdo

We have defined the Python classes TrajProp, IATProp and ErrDetectProp
corresponding to the types of properties discussed above. These property types
are described, respectively, by regular trajectory expressions, input-altering
transducers, and input-preserving transducers. In all cases, given a transducer
object, an object of the class is created. An object p of the class IATProp, say,
is defined via some transducer t and represents a particular code property, that
is, the class of languages satisfying Eq. (1). The class ErrDetectProp is a super-
class of the others. These classes and all related methods and functions are in
the module codes.py and can be imported as follows.

import FAdo.codes as codes

Although each of the above four classes requires a transducer to create an object
of the class, we have defined a set of what we call build functions as a user
interface for creating code property objects. These build functions are shown
next in use with specific arguments from previous examples.

Example 4. Consider again Examples 1, 3 in which the strings s and s1 are
defined containing, respectively, the proper suffixes transducer and the trans-
ducer permitting up to 1 substitution error. The following object definitions are
possible with the FAdo package

icp = codes.buildTrajPropS(’1*0*1*’, {’a’, ’b’})
scp = codes.buildIATPropS(s)
s1dp = codes.buildErrorDetectPropS(s1)
pcp = codes.buildPrefixProperty({’a’, ’b’})
icp2 = codes.buildInfixProperty({’a’, ’b’})

In the first statement, icp represents the infix code property over the alphabet
{a, b} and is defined via the trajectory expression 1*0*1*. In the next two
statements, scp, s1dp represent, respectively, the suffix code property and the
1-substitution error-detecting property. The last two statements are explained
below—pcp and icp2 represent the prefix code and infix code properties,
respectively.

196 S. Konstantinidis et al.

Fixed Properties. We have created specific classes for the well-known prop-
erties prefix, suffix, infix, outfix, and hypercodes. As before, users need only to
know about the build-interfaces for creating objects of these classes. For exam-
ple, buildPrefixProperty(Sigma) returns an object of the class PrefixProp
that represents all prefix codes over the alphabet Sigma.

4.2 Combining Code Properties

In many cases it is desirable to talk about languages satisfying more than one
property. For example, most of the practical 1-substitution error-detecting codes
are infix codes (in fact block codes, that is, those whose words are of the same
length). We have defined the operation & between any two error-detecting prop-
erties independently of how they were created. This operation returns an object
representing the class of all languages satisfying both properties. This object
is constructed via the transducer that results by taking the union of the two
transducers describing the two properties—see Rational Operations in Sect. 3.

Example 5. Using the properties icp, s1dp created above in Example 4, we can
create the conjunction p1 of these properties, and using the properties pcp, scp
we can create their conjunction bcp which is known as the bifix code property.

p1 = icp & s1dp
bcp = pcp & scp

The object p1 is of type ErrDetectProp. If, however, the two properties involved
are input-altering then our implementation makes sure that the object returned
is also of type input-altering—this is the case for bcp.

Our top Python superclass is ErrDetectProp. When viewed as a set of (poten-
tial) objects, this class implements the set of properties

Ped = {Ped
t | t is an input-preserving transducer}. (3)

In fact, we have also implemented the methods ‘&’ and ‘≤’ in a way that the triple
(ErrDetectProp,&,≤) constitutes a syntactic hierarchy (see further below).
This means that ‘&’ simulates intersection between properties and ‘≤’ simu-
lates subset relationship between two properties such that the following desirable
statements hold true, for any ErrDetectProp objects p, q

p & p returns p; p ≤ q if and only if p & q returns p

Our implementation associates to each ErrDetectProp object p a nonempty set
p.ID of names. If p is a fixed property object, p.ID has one hardcoded name. If
p is built from a transducer t, p.ID has one name, the name of t—this name is
based on a string description of t. If p = q&r, then p.ID is the union of q.ID and
r.ID minus any fixed property name N for which another fixed property name M
exists in the union such that the M -property is contained in the N -property—see
[17] for details.

Next we define what it means to simulate a set of code properties Q = {Qj |
j ∈ J} via a syntactic hierarchy (G,&,≤), which can ultimately be implemented

Implementation of Code Properties via Transducers 197

(as is the case here) in a programming language. The idea is that each g ∈ G
represents a property [g] = Qj , for some index j, and G is the set of generators of
the semigroup (〈G〉,&) whose operation ‘&’ simulates the process of combining
properties in Q, that is [x&y] = [x]∩[y], and the partial order ‘≤’ simulates subset
relation between properties, that is x ≤ y implies [x] ⊆ [y], for all x, y ∈ 〈G〉.
We show that there is an efficient simulation of the set of properties Ped in (3)
and that there can be no complete simulation of that set of properties.

Definition 1. A syntactic hierarchy is a triple (G,&,≤) where G is a non-
empty set and (a) (〈G〉,&) is the commutative semigroup generated by G with
computable operation ‘&’. (b) (〈G〉,≤) is a decidable partial order (reflexive,
transitive, antisymmetric). (c) For all x, y ∈ 〈G〉, we have that x ≤ y implies
x&y = x, and that x&y ≤ x.

Definition 2. Let Q = {Qj | j ∈ J} be a set of properties, for some index
set J . A (syntactic) simulation of Q is a quintuple (G,&,≤, [], ϕ) such that
(G,&,≤) is a syntactic hierarchy; [] : 〈G〉 → Q is a surjective mapping; ϕ :
J → 〈G〉 with [ϕ(j)] = Qj; for all x, y ∈ 〈G〉, x ≤ y implies [x] ⊆ [y]; and for
all x, y ∈ 〈G〉, [x&y] = [x] ∩ [y]. The simulation is called complete if, for all
x, y, [x] ⊆ [y] implies x ≤ y. The simulation is called linear if J has a size
function | · | and 〈G〉 has a size function ‖ · ‖ such that ‖ϕ(j)‖ = O(|j|), for all
j ∈ J , and for all x, y, ‖x&y‖ = O(‖x‖ + ‖y‖).

By a size function on a set X, we mean any function f of X into N0.

Theorem 2. There is a linear simulation of the set of properties Ped.

Theorem 3. There is no complete simulation of the set of properties Ped.

The above result implies that for any FAdo ErrDetectProp objects p, q defined
via transducers t and s with Ped

t ⊆ Ped
s it does not always hold that p ≤ q. On the

other hand, our implementation of the set of the five fixed properties constitutes
a complete simulation of these properties, when the same alphabet is used. Using
the notation of Example 4, this implies that

pcp & icp2 returns icp2

5 Methods of Code Property Objects

In the context of the research on code properties, we consider the following three
algorithmic problems as fundamental. Satisfaction problem: Given the descrip-
tion of a code property and the description of a language, decide whether the
language satisfies the property. In the witness version of this problem, a neg-
ative answer is also accompanied by an appropriate set of words showing how
the property is violated. Maximality problem: Given the description of a code
property and the description of a language L, decide whether the language is
maximal with respect to the property. In the witness version of this problem,
a negative answer is also accompanied by a word w that can be added to the

198 S. Konstantinidis et al.

language L. Construction problem: Given the description of a code property and
two positive integers n and �, construct a language that satisfies the property
and contains n words of length � (if possible). It is assumed that the code prop-
erty can be implemented as p via a transducer t and, in the first two problems,
the language is given via an NFA a. Next we discuss the implementation of
methods for the satisfaction problem, all of which work in polynomial time. Due
to the page limit we omit details on the maximality problems. Aspects of the
construction problem are discussed in [18].

Methods p.satisfiesP(a). Equation (1) implies that, if the property p is
described by an input-altering transducer t, the method p.satisfiesP(a) can
be implemented as follows, where & is NFA intersection

c = t.runOnNFA(a)
return (a & c).emptyP()

If p is an error-detecting property, the transducer t is input-preserving and
Eq. (2) is tested via transducer functionality. In FAdo this test can be done as
follows, where functionalP() returns whether a transducer is functional.

s = t.inIntersection(a)
return s.outIntersection(a).functionalP()

Methods with Witnesses: p.notSatisfiesW(a). For input-altering trans-
ducer and error-detecting properties, the witness version of p.satisfiesP(a)
returns either a pair of different words u, v ∈ L(a) violating the property, that
is, v ∈ t(u) or u ∈ t(v), or they return the pair (None, None). In the former
case, the pair (u, v) is called a witness of the non-satisfaction of p by the lan-
guage L(a). We accomplish this by changing appropriately the implementations
of p.satisfiesP(a) shown before—see [17] for details.

Example 6. The following Python interaction shows that a∗b is a prefix and 1-
error-detecting code. The strings st, s1 contain the descriptions of an NFA
accepting a∗b, and a transducer allowing up to 1 substitution error on the input
word.

>>> a = fio.readOneFromString(st)
>>> pcp = codes.buildPrefixProperty({’a’,’b’})
>>> s1dp = codes.buildErrDetectPropS(s1)
>>> p2 = pcp & s1dp
>>> p2.notSatisfiesW(a)
(None, None)

Uniquely Decipherable Codes. The property of unique decipherability, UD
code property for short, is probably the first historically property of interest in
coding theory from the points of view of both information theory [27] as well
as formal languages [21]. This property is not defined via a transducer and is

Implementation of Code Properties via Transducers 199

treated differently. In particular the witness version of the satisfaction problem
is solved based on the decision algorithm of [12]—see [17] for details. Next we
only show an example of how one can use the satisfaction method.

Example 7. The following Python interaction produces a witness of the non-
satisfaction of the UD code property by the finite language L = {ab, abba, bab}.

>>> a = L.toNFA()
>>> p = codes.buildUDCodeProp(a.Sigma)
>>> p.notSatisfiesW(a)
([’ab’, ’bab’, ’abba’, ’bab’], [’abba’, ’bab’, ’bab’, ’ab’])

The two word lists are different, but their concatenations form equal words.

6 LaSer and Program Generation

The first version of LaSer [8] was a limited and self-contained set of C++ automa-
ton and transducer methods with a web interface having the following func-
tionality: a user uploads a file containing an automaton and a file containing
either a trajectory automaton, or an input altering-transducer, and LaSer would
respond with an answer to the witness version of the satisfaction problem for
input-altering transducer properties. The new version discussed here is based
on the FAdo set of automaton and transducer methods and allows clients to
request a response about the witness versions of the satisfaction and maximal-
ity problems for input-altering transducer, error-detecting and error-correcting
properties. We call the above type of functionality, where LaSer computes and
returns the answer, the online service of LaSer. A feature of the new version of
LaSer, which we believe to be original in the community of software on automata
and formal languages, is the program generation service. This is the capability to
generate a self-contained Python program that can be downloaded on the client’s
machine and executed on that machine returning thus the desired answer. This
feature is useful as the execution of certain algorithms, even of polynomial time
complexity, can be quite time consuming for a server software.

7 Concluding Remarks

There are a few directions for future research. First, the existing implemen-
tation of transducers is not always efficient when it comes to describing code
properties. For example, the transducer defined in Example 3 consists of 6 tran-
sitions. In general, if the alphabet has size s, then that transducer would require
s+s(s−1)+s = s2 +s transitions. However, a symbolic notation for transitions
would be more compact and can possibly be used by modifying the appropriate
transducer methods—certain symbolic transducers are investigated in [31]. For-
mal methods for defining code properties need to be evolved further with the
aim of ultimately implementing these properties and answering efficiently the
satisfaction problem. These methods should be capable of allowing to express

200 S. Konstantinidis et al.

properties that cannot be expressed in the transducer methods. In particular, as
all transducer properties in this work are 3-independences, they do not include
properties like comma-free code property. The formal method of [14] is quite
expressive, using a certain type of first order formulae to describe properties.
We also note that if the defining method is too expressive then even the satis-
faction problem could become undecidable—see for example the method of [7].

References

1. Almeida, A., Almeida, M., Alves, J., Moreira, N., Reis, R.: FAdo and GUItar:
tools for automata manipulation and visualization. In: Maneth, S. (ed.) CIAA
2009. LNCS, vol. 5642, pp. 65–74. Springer, Heidelberg (2009)

2. Béal, M.P., Carton, O., Prieur, C., Sakarovitch, J.: Squaring transducers: an effi-
cient procedure for deciding functionality and sequentiality. Theoret. Comput. Sci.
292(1), 45–63 (2003)

3. Berstel, J.: Transductions and Context-Free Languages. B.G. Teubner, Stuttgart
(1979)

4. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press, New York (2009)

5. Claveirole, T., Lombardy, S., O’Connor, S., Pouchet, L.-N., Sakarovitch, J.: Inside
vaucanson. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS, vol.
3845, pp. 116–128. Springer, Heidelberg (2006)

6. Domaratzki, M.: Trajectory-based codes. Acta Informatica 40, 491–527 (2004)
7. Domaratzki, M., Salomaa, K.: Codes defined by multiple sets of trajectories. The-

oret. Comput. Sci. 366, 182–193 (2006)
8. Dudzinski, K., Konstantinidis, S.: Formal descriptions of code properties: decid-

ability, complexity, implementation. IJFCS 23(1), 67–85 (2012)
9. FAdo: Tools for formal languages manipulation. http://fado.dcc.fc.up.pt/

10. Grail: Grail+. http://www.csit.upei.ca/∼ccampeanu/Grail/
11. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J.

26(2), 147–160 (1950)
12. Head, T., Weber, A.: Deciding code related properties by means of finite trans-

ducers. In: Capocelli, R., De Santis, A., Vaccaro, U. (eds.) Sequences II, Meth-
ods in Communication, Security, and Computer Science, pp. 260–272. Springer,
New York (1993)

13. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

14. Jürgensen, H.: Syntactic monoids of codes. Acta Cybernetica 14, 117–133 (1999)
15. Jürgensen, H., Konstantinidis, S.: Codes. In: Rozenberg and Salomaa [25], pp.

511–607
16. Konstantinidis, S.: Transducers and the properties of error-detection, error-

correction and finite-delay decodability. JUCS 8, 278–291 (2002)
17. Konstantinidis, S., Meijer, C., Moreira, N., Reis, R.: Symbolic manipulation of

code properties. Computing Research Repository (2015). arXiv:1504.04715v1
18. Konstantinidis, S., Moreira, N., Reis, R.: Channels with synchroniza-

tion/substitution errors and computation of error control codes. Computing
Research Repository (2016). arXiv:1601.06312v1

19. LaSer: Independent LAnguage SERver. http://laser.cs.smu.ca/independence/

http://fado.dcc.fc.up.pt/
http://www.csit.upei.ca/~ccampeanu/Grail/
http://arxiv.org/abs/1504.04715v1
http://arXiv.org/abs/1504.04715v1
http://arxiv.org/abs/1601.06312v1
http://arXiv.org/abs/1601.06312v1
http://laser.cs.smu.ca/independence/

Implementation of Code Properties via Transducers 201

20. Mateescu, A., Salomaa, A.: Formal languages: an introduction and a synopsis. In:
Rozenberg and Salomaa [25], pp. 1–39

21. Nivat, M.: Elements de la théorie générale des codés. In: Automata Theory, pp.
278–294 (1966)

22. OpenFst: OpenFst Library. http://www.openfst.org/
23. Paluncic, F., Abdel-Ghaffar, K., Ferreira, H.: Insertion/deletion detecting codes

and the boundary problem. IEEE Trans. Info. Theory 59(9), 5935–5943 (2013)
24. Raymond, D., Wood, D.: Grail: a C++ library for automata and expressions. J.

Symbolic Comput. 17(4), 341–350 (1994)
25. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. I.

Springer-Verlag, Berlin (1997)
26. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press,

New York (2009)
27. Sardinas, A.A., Patterson, G.W.: A necessary and sufficient condition for the

unique decomposition of coded messages. IRE Int. Conven. Rec. 8, 104–108 (1953)
28. Shyr, H.J.: Free Monoids and Languages, 2nd edn. Hon Min Book Company,

Taichung (1991)
29. Shyr, H.J., Thierrin, G.: Codes and binary relations. In: Malliavin, M.P. (ed.)

Séminaire d’Algèbre Paul Dubreil Paris 1975–1976 (29ème Année). Lecture Notes
in Mathematics, vol. 586, pp. 180–188. Springer, Heidelberg (1977)

30. Vaucanson: The Vaucanson Project. http://vaucanson-project.org/
31. Veanes, M.: Applications of symbolic finite automata. In: Konstantinidis, S. (ed.)

CIAA 2013. LNCS, vol. 7982, pp. 16–23. Springer, Heidelberg (2013)
32. Yu, S.: Regular languages. In: Rozenberg and Salomaa [25], pp. 41–110

http://www.openfst.org/
http://vaucanson-project.org/

On Synchronizing Automata
and Uniform Distribution

Emil Lerner(B)

Faculty of Computational Mathematics and Cybernetics,
Lomonosov Moscow State University, Moscow, Russia

neex.emil@gmail.com

Abstract. Let m > 1, [m] = {0, 1, . . . ,m − 1}, [m]∞ be a set of all
one-side infinite sequences with elements from [m]. Consider a function
g : [m]∞ → [m]∞ which is a bijection defined by a deterministic finite
transducer (DFT) whose input/output alphabets are [m]. Denote the
prefix of length n of an infinite word w by w mod mn. A function f :
[m]∞ → [m]∞ is said to be compatible if from w1 mod mn = w2 mod mn

it follows f(w1) mod mn = f(w2) mod mn. It is known that all functions
defined by DFT are compatible. A function f is said to be a uniformly

distributed function over [m]∞ if the set
{

f(z) mod mn

mn : z ∈ [m]n
}

is uni-

formly distributed as n → ∞ (here f(z) mod mn stands for the num-
ber whose base-m expansion is first n symbols of f(z)). We prove a
necessary and sufficient condition for composite function f � g to be
uniformly distributed for any uniformly distributed compatible function
f : [m]∞ → [m]∞. The condition is based on a generalization of the
notion of synchronizing automaton.

Keywords: Deterministic finite transducer · Uniform distribution ·
Synchronizing automata · m-adic number

1 Introduction

Synchronizing automata are known to have tight relationship with many areas
of mathematics and applications (for survey, see [9]). Present paper reveals a
connection between the notion of synchronizing automaton and the theory of
uniform distribution of sequences.

Let m > 1, [m] = {0, 1, . . . ,m − 1}. Denote the set of words of length n with
elements from [m] by [m]n, denote the set of finite words of any length by [m]∗,
and denote the set of one-side infinite sequences by [m]∞.

The set [m]n can be naturally associated to {0, 1, . . . ,mn −1} by using little-
endian (i.e. least significant digits go first) base-m representations of numbers.
Let w ∈ [m]n. Denote by w the integer from {0, 1, . . . ,mn}, whose little-endian
base-m expansion is w (for example, if m = 10 and w is 0123456789, w is the
number 9876543210). Similarly, the set [m]∞ can naturally be considered as the
set of m-adic integers Zm, see [8].
c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 202–212, 2016.
DOI: 10.1007/978-3-319-40946-7 17

On Synchronizing Automata and Uniform Distribution 203

Suppose u ∈ [m]∞, n ∈ {1, 2, 3, . . .}. Denote by u mod mn initial segment
(prefix) of u of length n. Note that mod mn is the reduction modulo mn in
terms of m-adic numbers.

Denote a deterministic finite transducer (DFT) G by a four-tuple
(S, T,O, s0), where S is a finite set of states, T : S × [m] → S is a transition
function, O : S × [m] → [m] is an output function and s0 is initial state. The
input and output alphabet of the transducer are [m]. A directed graph whose
set of vertices is S and an edge goes from s1 to s2 if and only if there exists
c : T (s1, c) = s2 is called underlying graph of a DFT.

A DFT defines a mapping g : [m]∞ → [m]∞. It is known that the mapping g is
compatible; that is, for any x1, x2 ∈ [m]∞, n ∈ N from x1 mod mn = x2 mod mn

it follows that g(x1) mod mn = g(x2) mod mn. Vice versa, given a compatible
mapping g there exists a deterministic transducer (though not necessarily finite,
i.e., whose set of states is not necessarily finite) which defines the mapping g,
see e.g. [1].

Let f : [m]∞ → [m]∞ be a compatible function (but not necessary defined by
a DFT). Note that by compatibility the mapping f : [m]∗ → [m]∗ is well defined
(as mapping of finite initial parts of infinite strings). Suppose w ∈ [m]∗. Denote

Pn(f ;w) =
1

mn
· #

{
x ∈ [m]n :

w

m|w| ≤ f(x) mod mn

mn
<

w + 1
m|w|

}
,

where |w| stands for the length of the word w. Loosely speaking, Pn(f ;w) is the
probability of event “w is a suffix of f(x) mod mn” when x is chosen uniformly
from [m]n. Note that suffix is specified by the most significant digits in base-m
representation of f(x) mod mn, not by the least.

Definition 1. A compatible function f is called uniformly distributed if for any
word w ∈ [m]∗ it holds limn→∞ Pn(f ;w) = m−|w|.

For more detailed information on the theory of uniformly distributed
sequences we refer to [4].

Denote a deterministic finite automaton (DFA) A by a tuple (S, T, s0), where
S is a set of states, T : S × [m] → S is a transition function and s0 is initial
state. The input alphabet of the automaton is [m].

Definition 2. DFA A is called synchronizing if there exists a word w ∈ [m]∗

such that the state A reaches after being fed by word w does not depend on s0,
i.e. A reaches the same state after being fed by word w when the feeding starts
from state s for any s ∈ S.

The notion of synchronizing DFA was introduced in [3].
Let G = (S, T,O, s0) be a DFT. By s(w), s ∈ S,w ∈ [m]∗ we denote the state

the transducer reaches after being fed by the word w and the feeding starts when
G is at the state s. We say that the pair of states s1, s2 is simultaneously reachable
if there exist w1, w2 ∈ [m]∗, |w1| = |w2| such that s0(w1) = s1, s0(w2) = s2.

204 E. Lerner

Definition 3. A DFA is called cc-synchronizing if for any simultaneously reach-
able pair of states s1, s2 ∈ S there exists a word w0 ∈ [m]∗ such that s1(w0) =
s2(w0).

Here, “cc” is a reminder for “cyclic class”, the notion from the theory of
Markov chains [5, p. 405].

Recall that directed graph of Markov chain with finite number of states
determines possibility of transition between states. In case when the graph
has only one strongly connected component all states are split into c classes
S0, S1, . . . , Sc−1. Markov chain with one initial state will fall in one of states
of Si after n steps if and only if n mod c = i. In case of DFT with the same
underlying graph we have same partition for the set of states. The notion of
synchronizing DFA covers the case of c = 1 (if c > 1 the automaton is not syn-
chronizing). The notion of cc-synchronizing DFT covers the case of arbitrary c.
We will later define used notions of the theory of Markov Chains in more details.

The property of a DFT being cc-synchronizing is more general than the
property of a corresponding DFA (i.e. obtained from the DFT by omitting output
function) being syncrhonizing. That means, if the DFA obtained by omitting
output function from a DFT is synchronizing, then this DFT is cc-synchronizing.
The converse does not hold.

Consider a transducer function g; that is, g is a mapping g : [m]∞ → [m]∞

defined by a DFT. Let G be a minimal (in terms of number of states) DFT whose
function is g. The function g is called cc-synchronizing if G is cc-synchronizing.

The goal of this paper is to prove that being cc-synchronizing is a necessary
and sufficient condition for a bijective transducer function g : [m]∞ → [m]∞ to
preserve the uniform distribution, i.e. for any uniformly distributed compatible
f : [m]∞ → [m]∞ the function f � g is uniformly distributed as well.

The problem is motivated by theory of pseudorandom number generators:
a transducer h : [m]∞ → [m]∞ can be used to generate pseudorandom num-
bers by iterating h and dividing these values by mn: so x0/mn, h(x0) mod
mn/mn, h(h(x0)) mod mn/mn, . . . is considered as a sequence of pseudorandom
numbers from [0, 1).

Such sequences can be used for applications (e.g., for numerical methods like
Monte Carlo, or for cryptography) when the function h is uniformly distrib-
uted (see more on transducers which generate uniformly distributed sequences
in e.g. [2]). Therefore our main result can be used to construct a variety of
pseudorandom number generators out of a given one.

2 Markov Chain Facts

Recall some notions and facts from the theory of Markov chains.
Let Γ = (V,E) be directed graph, V is the set of vertexes and E is the set of

edges. Let Γ be such that exactly m edges come out from every vertex. C ⊂ V
is called strongly connected component (SCC) if following conditions hold:

1. for every v1, v2 ∈ C both v1 is reachable from v2 and v2 is reachable from v1;

On Synchronizing Automata and Uniform Distribution 205

2. for every v1 ∈ C, v2 �∈ C either v1 is not reachable from v2 or v2 is not
reachable from v1.

A strongly connected component C is called final if no other SCCs are reach-
able from any vertex of C.

Theorem 1. Let v be a vertex of final SCC of directed graph Γ . Then there
exists c, n0 ∈ N, ε > 0 such that a random walk which starts from vertex v and
chooses next edge with equal probability 1/m will return at vertex v at steps
nc, n ≥ n0 with probability at least ε.

Vertexes of a final SCC are called recurrent. From Theorem 1 it follows that
if v is recurrent then the number of ways (cycles) from v to v of length nc is at
least εmnc.

Theorem 2. Let Γ consist of exactly one SCC (which is obviously final). Let c
be greatest common divisor of lengths of all cycles of G. Then all vertexes are
split in c pairwise disjoint sets Vi : V = V0 ∪ V1 ∪ . . . ∪ Vc−1 such that all edges
from vertexes of Vi go to vertexes of class V(i+1) mod c.

Sets Vi are called cyclic classes.
For proofs of Theorems 1 and 2, see [5].

3 Sufficient Condition for Uniform Distribution

Lemma 1. Let g : [m]∞ → [m]∞ be a bijective transducer function such that
corresponding DFT G = (S, T,O, s0) is cc-synchronizing. Then a composite
function f � g is uniformly distributed for any uniformly distributed compati-
ble f : [m]∞ → [m]∞.

Proof. It follows from the Definition 3 that the underlying graph of G will have
only one final SCC.

First, we consider the case when the underlying graph of G has only one cyclic
class. In this case all pairs of recurrent states are simultaneously reachable. By Ak

denote the set of words a, |a| = k, such that for every simultaneously reachable
pair of states s1, s2 it holds s1(a) = s2(a). As G is cc-synchronizing Ak0 is not
empty for some k0 ∈ N. Obviously, for any a ∈ Ak and any c ∈ [m] words
c||a, a||c are contained in Ak+1 (here w1||w2 stands for concatenation of words
w1 and w2). So, if a ∈ Ak we have w1||a||w2 ∈ Ak+|w1|+|w2| for every finite words
w1, w2. Thus, we have limk→∞ m−k|Ak| = 1.

Denote by S(a) the state G reaches after being fed by input a, where a ∈ Ak

and the feeding starts from any state. It follows from the definition of set Ak

and from the fact that underlying graph of G has only one cyclic class that S(a)
is well defined (does not depend on the state from which the feeding starts).

Since g is a bijection, then for any state s the function defined by trans-
ducer (S, T,O, s) (i.e. the transducer obtained from G by choosing s as initial

206 E. Lerner

state) is a bijection as well. That means that for any state s and word w there
exists a word w−1

s such that w is output of G on input w−1
s starting from state s.

For all w ∈ [m]∗, k, n ∈ N, n ≥ k + |w|,

Pn(f � g;w) ≥
∑
a∈Ak

Pn(f ; a||w−1
S(a))

Here transducer G is fed first by n − k − |w| unknown symbols (which is
output of f), then by k symbols of a (and goes to the state S(a)) and then by
w−1

S(a) (and its output is w). Not all alternatives for probability Pn(f � g;w)
are present in the sum in the right part of inequality (that is why we get an
inequality rather than equality).

Since k is chosen arbitrarily, it follows that

lim inf
n→∞ Pn(f � g;w) ≥ lim

k→∞
|Ak| min

a∈Ak

lim
n→∞ Pn(f ; a||w−1

S(a)) = (∗)

As f is uniformly distributed, we have limn→∞ Pn(f ; a||w−1
S(a)) = m−|w|−k,

so

(∗) = lim
k→∞

|Ak|m−|w|−k = m−|w|

Since
∑

w∈[m]k Pn(f � g;w) = 1 for any k, n ∈ N, n ≥ k and |[m]k| = mk the
lower bound for limit inferior is actually the value of limn→∞ Pn(f � g;w).
That follows from the fact that if we have two sequences an, bn such that
lim infn→∞ an ≥ a, lim infn→∞ bn ≥ b and an + bn = a + b for every n
then limn→∞ an = a and limn→∞ bn = b (we use this fact for mk sequences
Pn(f � g;w), w ∈ [m]k).

So we have limn→∞ Pn(f �g;w) = m−|w| in case when the underlying graph
of G has only one cyclic class.

Now, let it have c, c > 1 cyclic classes.
Given a word w, we can prefix w with k = c−|w| mod c arbitrary symbols, so

that total length is divisible by c. Summing over all such prefixes for n ≥ k + |w|
we obtain

Pn(f � g;w) =
∑

w′∈[m]k

Pn(f � g;w′||w)

Thus, without loss of generality we can consider only w such that
|w| mod c = 0.

Let y ∈ [m]∗. Denote

Pn,y(f ;w) =
1

mn
· #

{
x ∈ [m]n :

w

m|w| ≤ f(x) mod mn

mn
<

w + 1

m|w| , x mod m|y| = y

}

Let r ∈ N. We have

Pn(f � g, w) =
∑

y∈[m]r

Pn,y(f � g, w)

On Synchronizing Automata and Uniform Distribution 207

Let y ∈ [m]r. Denote by G′
y the DFT whose input and output alphabet are

words from [m]c, the set of states is S, initial state is s0(y) and a transition goes
from s1 to s2 inputting wI ∈ [m]c and outputting wO if s1(wI) = s2 in original
transducer G, and wO is the concatenation of all outputs of transitions of path
from s1 to s2 labeled by wI .

The assumptions of previous paragraph hold for the reduced transducer G′
y,

so we have (for original transducer G)

lim
n→∞ Pnc+r,y(f � g;w) = m−|w|−r

Summing over all possible y and considering all r ∈ [c], we obtain
limn→∞ Pn(f � g;w) = m−|w|. Thus, f � g is uniformly distributed.

4 Necessity of the Condition and the Main Theorem

Let us consider an example in Fig. 1. The transducer is not cc-synchronizing. Let
x ∈ [2]∞, x0x1 . . . xi . . . be the corresponding sequence of elements of [2], and
f(x) = y0y1 . . . yi . . . be a uniformly distributed function, constructed as follows:

– yi = xi if i is not a power of 2;
– yi =

∑i−1
j=0 yj mod 2 if i is a power of 2 (all yj , j < i are already defined).

Fig. 1. “Bitwise sum” transducer. Label a(b) means the transition is performed on
input symbol a, outputting b. The output of the transducer after being fed by word
w = w0w1 . . . wn . . . is the word w′ = w′

0w
′
1 . . . w

′
n . . . such that w′

i =
∑i

j=0 wj mod 2.

Let us prove that f is uniformly distributed. Let w ∈ [2]∗ and n > 2|w|.
There exist no more than one t ∈ N : 2t ∈ [n − |w| + 1, n]. If no such t exist
Pn(f ;w) = 2−|w| obviously holds.

Otherwise 2t−1 < n − |w|. So, as
∑2t−1

i=0 yi mod 2 = 0, we have y2t =∑2t−1
i=2t−1+1 xi mod 2. If w is a suffix of x mod 2n then y2t is unambiguously

defined by x2t−1+1, . . . , xn−|w|, namely y2t = (
∑n−|w|

i=2t−1+1 xi + δ) mod 2, where δ

is sum of all elements of word (w mod 2|w|+2t−n). Note that the number of possi-
ble values for x mod mn is the same if

∑n−|w|
i=2t−1+1 xi mod 2 equal to 0 and 1 (this

208 E. Lerner

number is 2n−|w|−2t−1−1). So we have Pn(f ;w) = 2−|w| in this case too. As n is
arbitrary number greater than 2|w| that means that f is uniformly distributed.

However, f � g is not uniformly distributed. Let g(f(x)) = z, where z =
z0z1 . . . zi For every t ∈ N, z2t is zero for every x ∈ [2]∞. That means that
sequence Pn(f�g; 0) contains infinite number of ones and limn→∞ Pn(f�g; 0) =
1/2 does not hold.

Our proof generalizes this idea.
First of all, we introduce a concept of labeled directed graph of pairs, denoted

by G2 (see [3]). The vertexes of the graph are:

– all ordered pairs of different simultaneously reachable states (s1, s2);
– one special vertex T .

The set of edges of G2 is constructed as follows

– an edge labeled by c ∈ [m] goes from (s1, s2) to (s3, s4) if s1(c) = s3 and
s2(c) = s4 (s3 �= s4 as the set of vertexes contains only different pairs of
states);

– an edge labeled by c ∈ [m] goes from (s1, s2) to T if s1(c) = s2(c);
– an edge labeled by c goes from T to T for all c ∈ [m].

An example of graph of pairs is shown in Fig. 2.

Fig. 2. The graph of pairs for “bitwise sum” transducer (see Fig. 1). The graph contains
two SCCs. Note that if G2 contains multiple SCCs then G is not cc-synchronizing, and
vice versa.

Now, let us prove the remaining part of the main result.

Lemma 2. Let g : [m]∞ → [m]∞ be a bijective transducer function such
that minimal (in terms of number of states) corresponding DFT G is not cc-
synchronizing. Then there exists a uniformly distributed compatible f : [m]∞ →
[m]∞ such that the composite function f � g is not uniformly distributed.

Proof. Since G is not cc-synchronizing, it follows that there exists a pair of
simultaneously reachable states s1, s2 such that T is not reachable from (s1, s2)
in G2. We can choose s1, s2 such that (s1, s2) is recurrent in G2 as a recurrent
vertex is reachable from every vertex of the directed graph G2. Furthermore as G

On Synchronizing Automata and Uniform Distribution 209

is minimal transducer for g we can choose s1, s2 such that output functions are
not equal in this pair of states (that is, O(s1, x) �= O(s2, x) for some x ∈ [m]).
As g is a bijection, that means that there exist different symbols c1, c2 ∈ [m]
such that the output of G is the same when G is fed by c1 and feeding starts
from state s1 and G is fed by c2 and feeding starts from s2. Denote that output
symbol by cO (i.e. O(s1, c1) = O(s2, c2) = cO and c1 �= c2).

Let ki, i ∈ N be an increasing sequence of numbers such that for some ε > 0
and for every i ∈ N it holds

1
mki

· #
{
w : w ∈ [m]ki , s1(w) = s1, s2(w) = s2

} ≥ ε.

The fact that such sequence exists follows from that (s1, s2) is recurrent in G2

and every w of length ki that labels a loop from (s1, s2) to (s1, s2) satisfies the
condition. Denote the set {w : w ∈ [m]ki , s1(w) = s1, s2(w) = s2} by Wi.

Let l0 be such that there exist a pair of words u1, u2 ∈ [m]l0 : s0(u1) =
s1, s0(u2) = s2. Such l0 exists as s1, s2 are simultaneously reachable. Let U1

0 =
{u1}, U2

0 = {u2}.
As (s1, s2) is a recurrent state in G2, both s1 and s2 are recurrent in the

underlying graph of G. That means we can choose ε′ > 0 such that there exist
c, n0 ∈ N such that the number of ways from s0 to st of length n0 +nc is at least
ε′mnc. Without loose of generality let ε′ < m−l0 .

Let lj , j > 0 be sequence of natural numbers and U1
j , U2

j : U t
i ⊂ [m]lj two

sequences of sets which will be defined later.
Let x ∈ [m]∞, x0x1 . . . xi . . . be the corresponding sequence of elements of [m],

and let f , f(x) = y0y1 . . . yi . . . be the function [m]∞ → [m]∞ constructed as
follows:

1. yi = ct, t ∈ {1, 2} if i = lj + kj for some j ∈ N, U t
j contains the word

y0y1 . . . ylj−1 and Wj contains the word yljylj+1 . . . ylj+kj−1 and xlj+kj
∈

{c1, c2};
2. yi = xi otherwise.

Let’s choose lj and sets U t
j , t ∈ {1, 2} such that following properties hold:

1. lj > lj−1 + kj ;
2. for t ∈ {1, 2} and every w ∈ U t

j it holds s0(w) = st;
3. for t ∈ {1, 2} : m−lj#{x ∈ [m]lj : f(x) mod lj ∈ U t

j} > ε′;
4. #{x ∈ [m]lj : f(x) mod lj ∈ U1

j } = #{x ∈ [m]lj : f(x) mod lj ∈ U2
j }.

So, U t
j and lj is constructed iteratively: we choose lj and U t

j after lj−1 and
U t
j−1 are choosen. When using f in construction of sets U t

j , we assume that all
lj′ , j′ ≥ j are big enough such that f(x) mod mlj is defined.

The fact that such lj and U t
j exist (in particular, property 2 for U t

j holds)
on every step follows from Theorem 1, from the fact that s1, s2 are recurrent in
underlying graph of G and from the definition of ε′.

Now we need to prove that f is uniformly distributed. Let w ∈ [m]∗. Let i
be such that ki > |w| (such i exists as ki → ∞). For n > li we have Pn(f ;w) =

210 E. Lerner

m−|w|: it is obvious if none of lj + kj fall into [n − |w| + 1, n] and follows from
the property 3 of U t

j and the fact that no more than one such j exists otherwise.
Consider f � g. Let g(f(x)) be a sequence z0z1 . . . zi . . . of elements of [m].
Let j ∈ N. We have zlj+kj

= cO either if assumptions of case 4 in definition
of f hold or if it is case 4 and xlj+kj

= cO. Because of property 4 of U t
j and

m−kj |Wj | > ε, we obtain Plj+kj
(f � g; cO) > 1/m + ε′ε for every j ∈ N. That

contradicts the uniform distribution of f � g.
Thus we have the compatible uniformly distributed function f : [m]∞ →

[m]∞ such that f � g is not uniformly distributed.

Fig. 3. An example of DFT whose graph contains two SCCs. The output of the trans-
ducer after being fed by word w = w0w1 . . . wn . . . is the word w′ = w′

0w
′
1 . . . w

′
n . . .

such that w′
0 = w0 and w′

n = (w0 + wn) mod 2 for n > 0. The graph of pairs for this
DFT contains three separate vertexes: (s1, s2), (s2, s1) and T each having two loops
labeled by 0 and 1.

Let us trace the proof of Lemma 2 on another example shown in Fig. 3. This
is an example of DFT G whose underlying graph has two SCCs. That means
it is not cc-synchronizing. First, note that pair s1, s2 satisfies all requirements
imposed by the proof with c1 = 0, c2 = 1 and cO = 0.

Let ki = i. Every word in [2]i labels a cycle in G2 as it contains only loops.
Thus ε = 0.99, ki = i and Wi = [2]i satisfy appropriate conditions.

Let l0 = 1, u1 be the word “0”, u2 be the word “1”. For every w ∈ [2]∗ it
holds s0(0||w) = s1 and s0(1||w) = s2. So let ε′ = 0.499, li = li−1 + ki + 1 for
i > 0 and U1

i = {0||w,w ∈ [2]li−1}, U2
i = {1||w,w ∈ [2]li−1}.

Thus we have li = 1 + i(i + 3)/2 and following function f (as above,
f(x0x1 . . .) = y0y1 . . .):

– yi = x0 if i = lj + kj for some j ∈ N;
– yi = xi otherwise.

It is uniformly distributed, as for n > 2|w|2 each of yi, i ∈ [n − |w| + 1, n] is
equal some xi′ , and i′ is different for different i (actually, i′ = i for all i except
no more than one, and i′ = 0 it the latter case). However f � g is not uniformly
distributed: zli+ki

doesn’t depend on x and is always zero for every i (as above,
f(g(x)) = z0z1 . . .).

From Lemmas 1 and 2 the main result of this paper follows.

On Synchronizing Automata and Uniform Distribution 211

Theorem 3. Let g : [m]∞ → [m]∞ be a bijective transducer function, and let
G = (S, T,O, s0) be a minimal (in terms of number of states) corresponding
DFT. A composite function f � g is uniformly distributed for any uniformly
distributed compatible f : [m]∞ → [m]∞ if and only if G is cc-synchronizing.

5 Discussion

From Theorem 3 it follows that cc-synchronizing bijective DFT preserves uniform
distribution when composed with arbitrary compatible uniformly distributed
function f ; that is, a composition of a cc-synchronizing DFT (whose function is
bijective) with arbitrary uniformly distributed deterministic transducer produces
a uniformly distributed sequence. This fact is used to prove uniform distribution
of sequences generated by polynomials.

Consider a polynomial f with integer coefficients. For given prime p and
s ∈ N consider the following set

Ω(f ; s) =
{(

x mod pn

pn
,
f(x) mod pn

pn
, . . . ,

f (s)(x) mod pn

pn

)
, n ∈ N, x ∈ [pn]

}

Here, f (i) is the i-th iteration of f , and x mod pn is the least nonnegative residue
of x modulo pn. The coordinates of points of Ω(f ; s) are s successive values of a
pseudorandom generator, whose transition function is f .

If f is linear then Ω(f ; s) is known to be distributed non-uniformly, see [6].
Lemma 1 used in proof of the fact that Ω(f ; s) is uniformly distributed when
deg f ≥ 2, see [7].

Given a DFT G, if G2 introduced in the proof of Theorem3 contains only
one SCC then G is cc-synchronizing, and vice versa. The proof of this fact is
similar to that of the criterion that DFA is synchronizing, which could be found
at [3] (and follows from that single vertex T is always an SCC in G2).

Note that in case when m = pk we can consider input as k different inputs in
alphabet [p] (same for output). In terms of p-adic functions, that means that we
can superpose transducer function Z

k
p → Z

k
p with a function f : Zk

p → Z
k
p such

that f is uniformly distributed in the Euclidean hypercube [0, 1)k. This gives a
method to construct new generators of uniformly distributed sequences out of a
given such generator.

Further work includes generalization of Theorem3 for injective mappings g
and defining classes of generators of uniformly distributed sequences that can be
constructed out of known ones using this method.

Acknowledgment. The author is grateful to prof. Vladimir Anashin for constant
attention to this work and for useful discussions. This research was partially supported
by Russian Foundation for Basic Research, research project No. 16-01-00470.

212 E. Lerner

References

1. Anashin, V.: The Non-Archimedean theory of discrete systems. Math. Comput. Sci.
6(4), 375–393 (2012)

2. Anashin, V., Khrennikov, A.: Applied Algebraic Dynamics. Walter de Gruyter,
Berlin (2009)

3. Černý, J.: Poznamka k homogennym eksperimentom s konecnymi automatami.
Matematicko-fyzikalny Casopis Slovensk. Akad. Vied 14(3), 208–216 (1964). (in
Slovak)

4. Drmota, M., Tichy, R.F.: Sequences, Discrepancies and Applications. LNM, vol.
1651. Springer-Verlag, Heidelberg (1997)

5. Kemeny, J., Snell, J.: Finite Markov Chains. D. van Nostrand Co. Inc., Princeton
(1960)

6. Knuth, D.: The Art of Computer Programming, vol. 2, 3rd edn. Addison-Wesley
Longman Publishing Co. Inc., Boston (1997)

7. Lerner, E.E.: Uniform distribution of sequences generated by iterated polynomials.
Doklady Math. 92(3), 704–706 (2015)

8. Mahler, K.: p-Adic Numbers and their Functions. Cambridge University Press,
Cambridge (1981)

9. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008)

Looking for Pairs that Hard to Separate:
A Quantum Approach

Aleksandrs Belovs1, J. Andres Montoya2(B), and Abuzer Yakaryılmaz3

1 CWI, Amsterdam, The Netherlands
stiboh@gmail.com

2 Universidad Nacional de Colombia, Bogotá, Colombia
jamontoyaa@unal.edu.co

3 National Laboratory for Scientific Computing, Petrópolis, RJ, Brazil
abuzer@lncc.br

Abstract. Determining the minimum number of states required by a
deterministic finite automaton to separate a given pair of different words
(to accept one word and to reject the other) is an important challenge.
In this paper, we ask the same question for quantum finite automata
(QFAs). We classify such pairs as easy and hard ones. We show that
2-state QFAs with real amplitudes can separate any easy pair with
zero-error but cannot separate some hard pairs even in nondetermin-
istic acceptance mode. When using complex amplitudes, 2-state QFAs
can separate any pair in nondeterministic acceptance mode, and here we
conjecture that they can separate any pair also with zero-error. Then,
we focus on (a more general problem) separating a pair of two disjoint
finite set of words. We show that QFAs can separate them efficiently in
nondeterministic acceptance mode, i.e., the number of states is two to
the power of the size of the small set.

Keywords: Quantum finite automaton · Zero-error · Nondeterminism ·
Succinctness · Promise problems

1 Introduction

Determining the minimum number of states required by a deterministic finite
automaton (DFA) to separate any given pair of words is one of the famous
open problems in automata theory [5]. We can generalize this question in a
straightforward way by considering different computational models (e.g. see [16]).

We focus on quantum finite automata (QFAs). We classify such pairs as easy
and hard ones. We show that 2-state QFAs with real amplitudes can separate
any easy pair with zero-error but cannot separate some hard pairs even in non-
deterministic acceptance mode. When using complex amplitudes, 2-state QFAs
can separate any pair in nondeterministic acceptance mode and here we con-
jecture that they can separate any pair also with zero-error. Then, we focus on
(a more general problem) separating a pair of two disjoint finite set of words.

c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 213–223, 2016.
DOI: 10.1007/978-3-319-40946-7 18

214 A. Belovs et al.

We show that QFAs can separate them efficiently in nondeterministic acceptance
mode, i.e., the number of states is two to the power of the size of the small set.

In the next section, we provide the necessary background. The results on
separating pairs are given in Sect. 3. The results on separating two finite sets are
presented in Sect. 4.

2 Background

We refer the reader to [13] for a pedagogical introduction to quantum finite
automata (QFAs), to [2] for a comprehensive survey on QFAs, and to [11] for a
complete reference on quantum computation.

We denote the alphabet by Σ, and we suppose that it does not contain the
right end-marker $. For any given word x ∈ Σ, |x| represents the length of x,
|x|σ represents the number of occurrences of symbol σ in x, and xj represents
the j-th symbol of x, where σ ∈ Σ and 1 ≤ j ≤ |x|. As a special case, if |Σ| = 1,
then the automaton and languages can be called unary.

2.1 Easy and Hard Pairs

Throughout the paper, a pair of words (x, y) refers to two different words defined
on the same alphabet. A pair of words (x, y) is called easy if x and y have different
numbers of occurrences of a symbol, i.e., ∃σ ∈ Σ (|x|σ �= |y|σ) . Otherwise, the
pair is called hard. Remark that any pair with different lengths (and so any
unary pair) is easy.

Any hard pair defined on an alphabet with at least three elements can be
mapped to a binary hard pair as follows. Let (x, y) be a hard pair defined on
{σ1, . . . , σk} for some k > 2. Since the pair is hard, we have

|x|σi
= |y|σi

for each 1 ≤ i ≤ k. Then, there should be an index j (1 ≤ j ≤ |x| = |y|) such
that xj = σi �= yj = σi′ for i �= i′. If we delete all the other symbols and keep
only σis and σi′s in x and y, we obtain two new words: x′ and y′, respectively. It
is clear that (x′, y′) is a hard pair. So, instead of separating the hard pair (x, y),
we can try to separate (x′, y′). Algorithmically, we apply the identity operators
on the symbols other than σi and σi′ . Hence, unless otherwise specified, we focus
on unary and binary words throughout the paper.

2.2 A Motivating Problem: Looking for Pairs that are Truly Hard
to separate

Let w, v be two words of length n. What is the size of a minimal DFA separating
those two words? The best upper bound is O

(
n

2
5 log

3
5 (n)

)
(see [12]), but we do

not know of a set of pairs requiring such a large number of states.

Looking for Pairs that Hard to Separate: A Quantum Approach 215

Recall that DFAs can perform modular counting, and modular counting can
be used to separate easy pairs using logarithmic number of states. Unfortunately
the best lower bound is also Ω (log (n)) (see [8]), which was given by using the
following set of pairs

S =
{(

0n−1, 0n−1+lcm(1,2,...,n)
)

: n ≥ 1
}

.

Thus, the hardest set of pairs registered in the literature is a set of easy pairs.
We call those pairs as GK pairs (the initials of Goralcik and Koubek [8]). There
are many reasons to believe that the set of GK pairs cannot be the hardest set of
pairs. We can provide some evidence concerning this issue by considering some
different models of automata for which it can be proved that the GK pairs are
not the hardest pairs. Perhaps, more interesting, we can get some clues that
could be used in the construction of a harder set of pairs, an infinite set of pairs
requiring a superlogarithmic number of states.

Previous to this work we studied alternating finite state automata. We proved
that easy pairs can be separated by those automata using O (log (log (n))) states.
And, on the other hand, it was proved that there exists an infinite set of pairs
requiring Ω

(√
log (n)

)
states. The proof of the lower bound is nonconstructive,

and we do not know which are the pairs that require Ω
(√

log (n)
)

states.
We have begun this work classifying pairs into two classes: easy and hard

pairs. It is a rough classification which should be refined. Remark that hard
pairs are not always hard to separate. Consider for instance a pair (x, y) such
that x1 �= y1. This pair can be separated by using a DFA with three states. We
believe that studying some other models of automata can help us to establish a
very much finer and pertinent classification.

In this work we consider quantum finite automata. We prove that easy pairs
can be separated by QFAs with real amplitudes using two states. On the other
hand, we prove that there are hard pairs that cannot be separated using only
two states. We also consider QFAs with complex amplitudes. We conjecture that
any pair can be separated by those automata using two states, and we prove that
such a conjecture (and our motivating problem) has unexpected relations with
some problems in the theory of Lie groups.

2.3 QFAs

Quantum finite automata (QFAs) are a non-trivial generalization of probabilistic
finite automata [9,18]. Here we give the definition of the known simplest QFA
model, called Moore-Crutchfield QFAs (MCQFAs) [10] since we can present our
results (and our conjecture) based on this model.

An n-state MCQFA M , which operates on n-dimensional Hilbert space (Hn,
i.e., Cn with the inner product) is a 5-tuple

M = (Q,Σ, {Uσ |σ ∈ Σ}, |u0〉, Qa),

216 A. Belovs et al.

where Q = {q1, . . . , qn} is the set of states, Uσ ∈ C
n×n is a unitary transition

matrix whose (i, j)th entry represent the transition amplitude from the state qj

to the state qi when reading symbol σ ∈ Σ (1 ≤ i, j ≤ n), |u0〉 ∈ C
n is the

column vector representing the initial quantum state, and Qa ⊆ Q is the set of
accepting states. The basis of Hn is formed by {|qj〉 | 1 ≤ j ≤ n} where |qj〉
has 1 at the j-th entry and 0 s in the remaining entries. At the beginning of
the computation, M is in |u0〉, either one of the basis states or a superposition
(a linear combination) of basis states. Let x ∈ Σ∗ be a given input word. During
reading the input x from left to right symbol by symbol, the quantum state of
M is changed as follows:

|uj〉 = Uxj
|uj−1〉,

where 1 ≤ j ≤ |x|. After reading the whole word, the quantum state is measured
to determine whether M is in an accepting state or not (a measurement on
computational basis). Let the final quantum state, represented as |ux

f 〉 or |uf 〉,
have the following amplitudes

|ux
f 〉 = |uf 〉 = |u|w|〉 =

⎛
⎜⎜⎜⎝

α1

α2

...
αn

⎞
⎟⎟⎟⎠ .

Since the probability of observing jth state is |αj |2, the input is accepted with
probability

∑
qj∈Qa

|αj |2.

2.4 Promise Problems

The disjoint languages X ⊆ Σ∗ and Y ⊆ Σ∗ are said to be separated by M
exactly or zero-error if any x ∈ X is accepted by M with probability 1 and any
y ∈ Y is accepted by M with probability 0, or vice versa. If |X| = |Y | = 1,
then it is said that the corresponding pair is separated by M exactly. In case
of one-sided bounded error, any x ∈ X is accepted with probability 1 and any
y ∈ Y is accepted with probability at most p < 1, or vice versa. If |X| = |Y | = 1,
then it is said that the pair is separated by M with one-sided bounded-error.

Nondeterministic QFA is a theoretical model and it is defined as a special
acceptance mode of a QFA, also known as recognition with cutpoint 0 [17].
The disjoint languages X ⊆ Σ∗ and Y ⊆ Σ∗ are said to be separated by a
nondeterministic MCQFA M if any x ∈ X is accepted by M with some nonzero
probability and any y ∈ Y is accepted by M with probability 0, or vice versa. If
|X| = |Y | = 1, then it is said that the pair is separated by nondeterministic M .

3 Separating Pairs with 2 States

In this section, we present our results on separating pairs.

Looking for Pairs that Hard to Separate: A Quantum Approach 217

3.1 MCQFAs with Real Amplitudes

First at all we prove that any easy pair can be separated by a 2-state MCQFA
with real amplitudes (all components of the initial states and the transition
matrices are real numbers).

Theorem 1. Any given pair of unary words (ad, ad+t) (d ≥ 0 and t > 0) can
be exactly separated by a MCQFA, say Rd,t.

Proof. We define a unary 2-state MCQFA denoted with the symbol Rd,t. Let
{q1, q2} be the set of states. Note that any possible quantum state of such
automaton is a point on the unit circle, where |q1〉 is (1, 0) and |q2〉 is (0, 1).
Automaton Rd,t is defined by the following specifications (remark that R stands
for rotation).

– The initial state is cos(dπ
2t) |q1〉 − sin(dπ

2t) |q2〉, the point on the unit circle
obtained by making a clockwise rotation with angle dπ

2t (d times π
2t) when

starting at the point |q1〉.
– The single unitary operator is a counter-clockwise rotation with angle π

2t .
– The single accepting state is q1.

After reading ad, the automaton is in |q1〉 and so it is accepted with proba-
bility 1, and, after reading ad+t, the automaton is in |q2〉 and so it is accepted
with probability 0. 	

Corollary 1. Any easy pair of words can be separated exactly by a 2-state
MCQFA with real amplitudes.

There exist hard pairs of words that can be exactly separated by a 2-state

MCQFA with real amplitudes, for instance, the pair (ab, ba): Let
(

1√
2

1√
2

)T

be the initial state, and we apply Ua and Ub when reading symbols a and b,
respectively, where

Ua =

(
1√
2

1√
2

1√
2

−1√
2

)
and Ub =

(
1 0
0 −1

)
.

Then, after reading the words ab and ba, we obtain the following final states:

∣∣uab
f

〉
=

(
1 0
0 −1

) (
1√
2

1√
2

1√
2

−1√
2

) (
1√
2
1√
2

)
=

(
1
0

)

and
∣∣uba

f

〉
=

(
1√
2

1√
2

1√
2

−1√
2

)(
1 0
0 −1

)(
1√
2
1√
2

)
=

(
0
1

)
.

Therefore, the pair (ab, ba) can be exactly separated by 2-state MCQFAs with
real amplitudes.

However, such automata cannot distinguish all pairs of words, as exemplified
by the following simple result.

218 A. Belovs et al.

Theorem 2. No 2-state non-deterministic MCQFA with real entries can sepa-
rate two words x, y ∈ {a2, b2}∗ provided that |x|a = |y|a and |x|b = |y|b.
Proof. Consider any such MCQFA, and let Ua and Ub be the transition matrices
corresponding to a and b, respectively. The operators U2

a and U2
b are rotations

in R
2, hence, they commute. Thus,

∣∣ux
f

〉
= U

|x|b
b U |x|a

a |u0〉 = U
|y|b
b U |y|a

a |u0〉 =
∣∣∣uy

f

〉
,

and no final measurement can distinguish these two identical final states. 	

Remark 1. It follows from the above results that GK pairs can be separated by
using 2 states. On the other hand, it was constructively proved that there exist
pairs requiring at least three states.

3.2 MCQFAs with Complex Amplitudes

In the previous section, we show that 2-state MCQFAs with real entries cannot
separate all pairs of words. We conjecture that 2-state MCQFAs with complex
entries (some components of the initial states and the transition matrices can
be complex numbers) can exactly separate any pair of words. This conjecture is
related to some problems in the theory of Lie groups (see below).

Theorem 3. Any pair of words can be separated by a 2-state MCQFA with
complex amplitudes in nondeterministic acceptance mode.

Proof. Now, we describe an explicit 2-state nondeterministic MCQFA that can
separate any given pair. For our purpose, we use an already known QFA algo-
rithm given in [1]. For a given binary word x ∈ {a, b}∗, Mx is a 3-state
({q1, q2, q3}) MCQFA. The initial state is |q1〉 and the accepting states are q2
and q3. The unitary operators for symbols a and b are given below:

Ua =
1
5

⎛
⎝

4 3 0
−3 4 0

0 0 5

⎞
⎠ and Ub =

1
5

⎛
⎝

4 0 3
0 5 0

−3 0 4

⎞
⎠

We define the initial state as follows:

|u0〉 = U−1
x1

U−1
x2

· · · U−1
x|x| |q1〉

Then, the final quantum state for x is
∣∣ux

f

〉
= Ux|x| · · · Ux2Ux1U

−1
x1

U−1
x2

· · · U−1
x|x| |q1〉 = |q1〉

So, the accepting probability of M on x is zero. i.e., fM (x) = 0. On the other
hand, for any given word y �= x, the final quantum state for y is different
from |q1〉:

∣∣∣uy
f

〉
= Uy|y| · · · Uy2Uy1U

−1
x1

U−1
x2

· · · U−1
x|x| |q1〉 = α1 |q1〉 + α2 |q2〉 + α3 |q3〉 , (1)

Looking for Pairs that Hard to Separate: A Quantum Approach 219

where |α1| is always less than 1 when x �= y [1]. Then, the accepting probability
of M on y is nonzero. i.e., fM (y) > 0.

Therefore, we can say that nondeterminsitic MCQFA Mx separates x from
any other word. Based on a conversion technique given in [1], we can convert Mx

into a 2-state ({p1, p2}) MCQFA, say Nx, defined on C
2 such that, after reading

the same word, the probability of observing q1 is 1 if and only if the probability
of observing p1 is 1. 	

We conjecture that any pair can be separated by a 2-state MCQFA with
complex amplitudes and zero-error. Let us discuss some facts concerning the
conjecture.

Let w ∈ {
a, b, a−1, b−1

}n, and let SU (2) be the group of 2 × 2 unitary
matrices whose determinant is equal to 1. Suppose that w = w1 · · · wn, and let
fw : SU (2) × SU (2) → SU (2) be the word map defined by

fw (M,N) =
∏
i≤n

Ai

where given i ≤ n, the matrix Ai ∈ SU (2) is defined as

Ai =

⎧⎪⎪⎨
⎪⎪⎩

M if wi = a
N if wi = b
M−1 if wi = a−1

N−1 if wi = b−1

.

Remark 2. The notion of word map can be extended in a straightforward way
to any group different of SU (2) . We are interested in the word maps that are
defined over the special unitary groups.

Given x, y ∈ {a, b}∗, if y = y1 · · · yn and x = x1 · · · xn, we set

yx−1 = yn · · · y1x−1
1 · · · x−1

n

Notice that if the matrix Rπ
2

=
(

i 0
0 − i

)
belongs to the image of fyx−1 (i.e.,

if the image of fyx−1 contains a rotation by π
2), then one can choose (M,N) ∈

f−1
yx−1

(
Rπ

2

)
, and use the pair (M,N) to built a 2-state MCQFA separating the

pair (x, y) with zero-error. Thus, the problem of separating any pair using two
quantum states is closely related to the problem of surjectivity of word maps in
the special unitary group SU (2) .

The word map fw is a continuous map defined over a topological space (the
Lie group SU (2)) that is compact and connected. Moreover, it satisfies the
following condition:

For all M,N,U ∈ SU (2) , the equality

fw

(
U†MU,U†NU

)
= U†fw (M,N) U

holds.

220 A. Belovs et al.

The above facts imply that the image of fw is of the form
{
V ∈ SU (2) : U has eigenvalues e±θ 0 ≤ θ ≤ α

}

for some real α = α (w) . Remark that if α
(
yx−1

) ≥ π
2 , then the pair (x, y) can

be separated with zero-error.
A famous result of Borel [4] implies that the image of fw is dense in the

Zariski topology. However, it does not imply that the image is dense in the
ordinary topology. Actually, it can be very far from that. As shown by Thom
[14], given ε > 0, there exists a word wε such that α (wε) < ε. The results
of Thom do not imply the existence of a pair (x, y) such that α

(
yx−1

)
< π

2 .
Actually, there are some additional results in the theory of word maps suggesting
that such a bad pair cannot exist.

Let F 2 be the free group with two generators, it consists of finite words
over

{
a, b, a−1, b−1

}∗ with the concatenation operation, modulo the relations
aa−1 = a−1a = bb−1 = b−1b = ε, where ε is the empty word. Notice that if
w and u are equal, as elements of F 2, then fw = fu. Given x, y ∈ F 2, the
commutator of x and y is the element xyx−1y−1, which we denote with the
symbol [x, y] . The derived subgroup of F 2, denoted with the symbol F (1)

2 , is
the subgroup generated by all the commutators. The second derived subgroup,
denoted with the symbol F (2)

2 , is the derived subgroup of F
(1)
2 . Elkasapy and

Thom [7] showed that if w /∈ F
(2)
2 , then the corresponding word map fw :

SU (n)×SU (n) → SU (n) is surjective for infinitely many n. We prove, below,
that for all pair (x, y) the word yx−1 /∈ F

(2)
2 . Notice that if for all w /∈ F

(2)
2 the

word map fw : SU (2) × SU (2) → SU (2) is surjective, then any pair can be
separated by using two qubits and zero-error. This last fact provides additional
motivation to study this type of word maps.

Theorem 4. For any two different words x, y ∈ {a, b}∗, the element xy−1 lies
outside of the second derived subgroup F

(2)
2 .

Proof. An element w ∈ F 2 lies in the first derived subgroup of F 2, if and only
if, the total degree of both a and b in w is equal to zero. That is, xy−1 /∈ F

(1)
2 if

and only if (x, y) is an easy pair.
Now assume that (x, y) is a hard pair. It is well known that F

(1)
2 is a free

group. A set of generators for F
(1)
2 is the set

T =
{[

ak, bl
]

: k, l > 0
}

Notice that
[
ak, bl

]−1 =
[
bl, ak

]
. Again, w ∈ F

(1)
2 lies in F

(2)
2 , if and only if,

the unique decomposition of w into the elements of T contains each
[
ak, bl

]
with

total degree 0.
Given x ∈ {a, b}∗

, we have a decomposition of the form

x =
∏

i

[
aki , bli

]εi · a|x|ab|x|b

Looking for Pairs that Hard to Separate: A Quantum Approach 221

where, for all i, we have ki + li > ki−1 + li−1 and εi = ±1. Now, it is not hard
to see that xy−1 ∈ F

(2)
2 , if and only if, x = y. 	

Remark 3. We say that (x, y) is a bad pair if α
(
yx−1

)
< π

2 . If there exist such
bad pairs, then it would be interesting to find the minimum number of states
that are necessary to separate such bad pairs by using a DFA. Recall that one
of our motivating problems is the construction of a set of pairs requiring a
superlogarithmic number of states to be separated. It would also be interesting
if this problem is related to the theory of word maps and Lie groups.

4 Separating Two Finite Sets

In this section, we focus on a more general problem: Separating two finite lan-
guages. Let X = {x1, . . . , xm} and Y = {y1, . . . , yn} be two disjoint set of binary
words by assuming that m ≤ n (the sets are exchanged, otherwise). We consider
the case of nondeterministic MCQFAs.

4.1 Nondeterministic MCQFAs

We use the MCQFA algorithm given at the end of the proof of Theorem 3. Let
N(X) = {Nx1 , Nx2 , . . . , Nxm

} be the set of 2-state MCQFAs mentioned there.
We can obtain a MCQFA, say NX , by tensoring all MCQFAs in N(X),

NX = Nx1 ⊗ Nx2 ⊗ · · · ⊗ Nxm
,

i.e., executing all of them in parallel. The tensor product is obtained in a straight-
forward way. The set of states of NX is {p1, p2}m. If |uj,0〉 is the initial state
of Nxj

and Uj,a (Uj,b) is the unitary operator for symbol a (b), then the initial
state of NX is

|u1,0〉 ⊗ |u2,0〉 ⊗ · · · ⊗ |um,0〉
and the unitary operator for symbol a (b) is

U1,a ⊗ U2,a ⊗ · · · ⊗ Um,a (U1,b ⊗ U2,b ⊗ · · · ⊗ Um,b),

where 1 ≤ j ≤ m. Similarly, if
∣∣∣uy

j,f

〉
is the final state of Nxj

and βj is the
amplitude of the state |p2〉 after reading binary word y, then the final state of
NX on y will be ∣∣∣uy

1,f

〉
⊗

∣∣∣uy
2,f

〉
⊗ · · · ⊗

∣∣∣uy
m,f

〉

and so the amplitude of |(p2, p2, . . . , p2)〉 will be

β = β1β2 · · · βm.

Therefore, it is clear that, if xj = y, then β will be zero since βj is zero.
More generally, β = 0 if and only if y ∈ X. Thus, by picking (p2, p2, . . . , p2) as
the single accepting state of MX , we can obtain the machine that separates any
given word from a word in X. Remark that the number of states of NX is 2m.

Theorem 5. The disjoint binary finite languages X and Y (1 ≤ |X| ≤ |Y |) can
be separated by nondeterministic MCQFAs with 2|X| states.

222 A. Belovs et al.

5 Concluding Remarks

The motivating problem of our research is the problem of quantifying the num-
ber of states that are required to separate a given pair of words using DFAs.
This problem has its roots in machine learning [16], and it has been intensively
studied, but in despite of all the efforts, so few is known about it. We believe
that we can shed some light on this elusive problem, by considering the same
kind of questions for different models of automata. In previous research we stud-
ied alternating finite state automata. In this work we studied QFAs, and in the
extended version of this paper [3] we consider the novel model of affine automata
[6,15]. We think that these questions are interesting in their own rigth, and that
they deserve further investigation.

Acknowledgement. We thank Andreas Thom for the discussions on our conjecture
and anonymous reviewers for their helpful comments. The first author acknowledges
the support provided by FP7 FET Proactive project QALGO. The second author
acknowledges the support provided by Universidad Nacional de Colombia project Her-
mes 32083. The third author acknowledges the support provided by CAPES, grant
88881.030338/2013-01. Moreover, some parts of the work were done while the third
author was visiting Bogotá, Colombia in December 2014.

References

1. Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical
states. Theor. Comput. Sci. 287(1), 299–311 (2002)

2. Ambainis, A., Yakaryılmaz, A.: Automata: from mathematics to applications. In:
Automata and Quantum Computing (to appear). arXiv:1507.01988

3. Belovs, A., Montoya, J.A., Yakaryılmaz, A.: Can one quantum bit separate any
pair of words with zero-error? Technical report (2016). arXiv:1602.07967

4. Borel, A.: On free subgroups of semisimple groups. L’Enseignement Mathématique
29, 151–164 (1983)

5. Demaine, E.D., Eisenstat, S., Shallit, J., Wilson, D.A.: Remarks on separating
words. In: Holzer, M. (ed.) DCFS 2011. LNCS, vol. 6808, pp. 147–157. Springer,
Heidelberg (2011)

6. Dı́az-Caro, A., Yakaryılmaz, A.: Affine computation and affine automaton. In:
Computer Science - Theory and Applications. LNCS, vol. 9691, pp. 1–15. Springer
(2016). arXiv:1602.04732

7. Elkasapy, A., Thom, A.: About Gotô’s method showing surjectivity of word maps.
Indiana Univ. Math. J. 63(5), 1553–1565 (2014). arXiv:1207.5596

8. Goralč́ık, P., Koubek, V.: On discerning words by automata. In: Kott, L. (ed.)
Automata, Languages and Programming. LNCS, vol. 226. Springer, Heidelberg
(1986)

9. Hirvensalo, M.: Quantum automata with open time evolution. Int. J. Nat. Comput.
1(1), 70–85 (2010)

10. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theor.
Comput. Sci. 237(1–2), 275–306 (2000)

11. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information, 10th
edn. Cambridge University Press, Cambridge (2010)

http://arxiv.org/abs/1507.01988
http://arxiv.org/abs/1602.07967
http://arxiv.org/abs/1602.04732
http://arxiv.org/abs/1207.5596

Looking for Pairs that Hard to Separate: A Quantum Approach 223

12. Robson, J.M.: Separating strings with small automata. Inf. Process. Lett. 30(4),
209–214 (1989)

13. Say, A.C.C., Yakaryılmaz, A.: Quantum finite automata: a modern introduction.
In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Gruska Festschrift. LNCS, vol.
8808, pp. 208–222. Springer, Heidelberg (2014)

14. Thom, A.: Convergent sequences in discrete groups. Can. Math. Bull. 56(2), 424–
433 (2013). arXiv:1003.4093

15. Villagra, M., Yakaryılmaz, A.: Language recognition power and succintness of affine
automata. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC 2015. LNCS, vol. 9252.
Springer, Heidelberg (2015)

16. Yakaryılmaz, A., Montoya, J.A.: On discerning strings with finite automata. In:
2015 Latin American Computing Conference, pp. 1–5. IEEE (2015)

17. Yakaryılmaz, A., Say, A.C.C.: Languages recognized by nondeterministic quantum
finite automata. Quantum Inf. Comput. 10(9&10), 747–770 (2010)

18. Yakaryılmaz, A., Say, A.C.C.: Unbounded-error quantum computation with small
space bounds. Inf. Comput. 279(6), 873–892 (2011)

http://arxiv.org/abs/1003.4093

Prefix Distance Between Regular Languages

Timothy Ng(B)

School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada
ng@cs.queensu.ca

Abstract. The prefix distance between two words x and y is defined
as the number of symbol occurrences in the words that do not belong
to the longest common prefix of x and y. We show how to model the
prefix distance using weighted transducers. We use the weighted trans-
ducers to compute the prefix distance between two regular languages by
a transducer-based approach originally used by Mohri for an algorithm
to compute the edit distance. We also give an algorithm to compute the
inner prefix distance of a regular language.

1 Introduction

Distance measures are used in a variety of applications to measure the simi-
larity of data. For instance, the Hamming distance counts the number of posi-
tions in which two words of equal length differ. Another common measure is the
Levenshtein distance, also called the edit distance, which counts the number of
insertion, deletion, and substitution operations that are needed to transform one
word to another. However, counting the number of edit operations to transform
one word into another is not the only relevant way to measure the similarity
between words. The prefix distance is defined in terms of the longest common
prefix of two words. For the words x and y, their prefix distance is the number
of symbols that do not belong to their longest common prefix. We can define the
suffix and subword distances in a similar way in terms of the longest common
suffix or subword of two words.

These distance measures can be extended in various ways to distances
between sets of words, or languages. A common extension of a distance function
for languages L1 and L2 takes the minimum distance between a word u in L1

and a word v in L2. An alternative extension is called the relative distance [4].
The relative distance from a language L1 to a language L2 is the supremum over
all words w in L1 of the smallest distance between w and L2. Another notion of
distance on languages is the inner distance of a language [11]. For a language L,
the inner distance is the smallest distance between two words u and v in L.

Much of the work on computing distances on languages has been focused
on the edit distance and its variants. Pighizzini [15] studied the hardness of
computing the edit distance between a word and a language. Mohri [14] showed
how to compute the edit distance and its variants between two regular lan-
guages in polynomial time. Benedikt et al. [1,2] showed how to compute the

c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 224–235, 2016.
DOI: 10.1007/978-3-319-40946-7 19

Prefix Distance Between Regular Languages 225

relative edit distance between regular languages. Han et al. [8] gave a polyno-
mial time algorithm for computing the edit distance between a regular language
and context-free language. Konstantinidis [11] gave an algorithm for computing
the inner edit distance of a regular language in quadratic time. Kari et al. [10]
gave a quadratic time algorithm for computing the inner Hamming distance of
a regular language. Konstantinidis and Silva [12] showed how to compute the
inner distance for variants of the edit distance.

Naturally, the same extensions to languages can be applied to the prefix,
suffix, and subword distances and some of these extensions have already been
studied. Bruschi and Pighizzini [3] studied the hardness of computing the prefix
distance between a word to a language in the context of intrusion detection.
Choffrut and Pighizzini [4] showed that the relative prefix distance between
two regular languages is computable. Kutrib et al. [13] considered a parameter-
ized prefix distance between languages to measure fault tolerance of finite-state
devices.

In this paper, we show how to compute the prefix distance between two
regular languages. We show how to model prefix distance using edit systems and
construct transducers which realize these models. We use these transducers to
compute distances using a similar approach to Mohri’s edit distance algorithm for
weighted automata from [14]. We also show how to use the weighted transducer
approach to compute the inner prefix distance of a given regular language. We
also give polynomial time algorithms based on the transducer-based approach
to compute the suffix distance and the subword distance between two regular
languages.

2 Preliminaries

Here we briefly recall some definitions and notation used in the paper. For all
unexplained notions on finite automata and regular languages the reader may
consult the textbook by Shallit [16] or the survey by Yu [17]. More on weighted
automata and transducers can be found in the textbook by Droste et al. [7]. A
survey of distances is given by Deza and Deza [6].

In the following, Σ is always a finite alphabet, the set of all words over Σ
is denoted Σ∗, and ε denotes the empty word. The reversal of a word w ∈ Σ∗

is denoted by wR. The length of a word w is denoted by |w|. The cardinality
of a finite set S is denoted |S| and the power set of S is 2S . A word w ∈ Σ∗

is a subword or factor of x if and only if there exist words u, v ∈ Σ∗ such that
x = uwv. If u = ε, then w is a prefix of x. If v = ε, then w is a suffix of x.

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ,Q0, F)
where Q is a finite set of states, Σ is an alphabet, δ is a multi-valued transition
function δ : Q × Σ → 2Q, Q0 ⊆ Q is a set of initial states, and F ⊆ Q is a set of
final states. We extend the transition function δ to Q × Σ∗ → 2Q in the usual
way. A word w ∈ Σ∗ is accepted by A if for some q0 ∈ Q0, δ(q0, w) ∩ F �= ∅ and
the language recognized by A consists of all words accepted by A. An ε-NFA is
the extension of an NFA where transitions can be labeled by the empty word ε.

226 T. Ng

It is known that every ε-NFA has an equivalent NFA without ε-transitions with
the same number of states. An NFA is a deterministic finite automaton (DFA)
if |Q0| = 1 and for all q ∈ Q and a ∈ Σ, δ(q, a) either consists of one state or
is undefined. The size of A, denoted |A|, is defined as the sum of the number of
states and transitions of A, |Q| + |δ|.

A weighted finite-state transducer [7] with weights in the (min,+)-semiring K

is a 6-tuple T = (Q,Σ,Δ, I, F,E) where Q is a finite set of states, Σ is the input
alphabet, Δ is the output alphabet, I ⊆ Q is the set of initial states, F ⊆ Q is
the set of final states, E ⊆ Q × (Σ ∪ {ε}) × (Δ ∪ {ε}) × K × Q is a finite set of
transitions with weights in K. The size of T , denoted |T |, is defined as the sum
of the number of states and transitions of T , |Q| + |E|.

A path or computation of T is a word π over the alphabet of transitions E

π = (p1, u1, v1, w1, q1) · · · (pn, un, vn, wn, qn)

with qi = pi+1 for 1 ≤ i < n. A path π from p to q is accepted if p ∈ I and q ∈ F .
Let ω : E∗ → K be a weight function for paths defined by ω(π) =

∑n
i=1 wi, the

sum of the weights of each transition in π. The label of a path π, denoted �(π) is
the pair of words (x, y) with x = u1 · · · un and y = v1 · · · vn. Let w : Σ∗×Σ∗ → K

be a weight function for labels (x, y) defined as the weight of the minimum weight
accepted path labeled by (x, y),

w(x, y) = min
π∈E∗

{ω(π) | �(π) = (x, y)}.

A function d : Σ∗ × Σ∗ → N∪ {0} is a distance if it satisfies for all x, y ∈ Σ∗

1. d(x, y) = 0 if and only if x = y,
2. d(x, y) = d(y, x),
3. d(x, z) ≤ d(x, y) + d(y, z) for z ∈ Σ∗.

A distance between words can be extended to a distance between a word w ∈ Σ∗

and a language L ⊆ Σ∗ by

d(w,L) = min{d(w,w′) | w′ ∈ L}.

We generalize this to a distance between two languages L1 and L2,

d(L1, L2) = min{d(w1, w2) | w1 ∈ L1, w2 ∈ L2}.

The inner distance of a language L (also called the self distance) is the minimal
distance between any two distinct words that both belong to L.

d(L) = min{d(w1, w2) | w1, w2 ∈ L,w1 �= w2}.

The prefix distance of x and y counts the number of symbols which do not
belong to the longest common prefix of x and y. It is defined by

dp(x, y) = |x| + |y| − 2 · max
z∈Σ∗

{|z| | x, y ∈ zΣ∗}.

Prefix Distance Between Regular Languages 227

Similarly, the suffix distance of x and y counts the number of symbols which do
not belong to the longest common suffix of x and y and is defined

ds(x, y) = |x| + |y| − 2 · max
z∈Σ∗

{|z| | x, y ∈ Σ∗z}.

The subword distance of x and y counts the number of symbols which do not
belong to the longest common subword of x and y and is defined

df (x, y) = |x| + |y| − 2 · max
z∈Σ∗

{|z| | x, y ∈ Σ∗zΣ∗}.

3 Edit Strings and Edit Systems

Edit systems, also called error systems, were first studied extensively by Kari
and Konstantindis in [9] as a formalization for errors in terms of formal lan-
guages. Informally, an edit system is a formal language over the alphabet of edit
operations and are used to model different types of errors. We present some basic
definitions for edit systems and model the prefix, suffix, and subword distances
using edit systems.

For an alphabet Σ, let EΣ be the alphabet of edit operations over Σ,

EΣ = {(a/b) | a, b ∈ Σ ∪ {ε}, ab �= ε}.

We use E whenever Σ is obvious from the context. An edit string or alignment of
two words is an element of E∗. For an edit string e = (a1/b1)(a2/b2) · · · (an/bn),
we call a1a2 · · · an the input part of e and b1b2 · · · bn the output part. We
define the edit morphism to be the morphism h : E∗ → Σ∗ × Σ∗ by h(e) =
(a1 · · · an, b1 · · · bn).

We can define subsets of the alphabet of edit operations which correspond
to the classical edit operations of substitution, insertion, and deletion and the
identity operation by

– the set of substitution operations S = {(a/b) | a �= b, a, b ∈ Σ},
– the set of insertion operations I = {(ε/a) | a ∈ Σ},
– the set of deletion operations D = {(a/ε) | a ∈ Σ},
– the set of identity operations E0 = {(a/a) | a ∈ Σ}.

We define a cost function c : E → N which assigns a cost to each element of the
edit alphabet. Note that the standard definition of edit distance assigns the cost
of every non-identity symbol (a/b) ∈ E \ E0 to be 1. However, the prefix, suffix,
and subword distances count each additional symbol in both words, so our cost
function c is defined

– c((a/a)) = 0, for all (a/a) ∈ E0,
– c((ε/a)) = 1, for all (ε/a) ∈ I,
– c((a/ε)) = 1, for all (a/ε) ∈ D,
– c((a, b)) = 2, for all (a/b) ∈ S.

228 T. Ng

The cost of an edit string e = e1e2 · · · en is then the sum of the cost of each
symbol

c(e) =
n∑

i=1

c(ei).

A language defined over E is called an edit system. A regular edit system can
be modeled by a finite automaton defined over E . Such an edit system may also
be realized as a finite-state transducer, where for each symbol (a/b) ∈ E , the
transitions on (a/b) are considered transition labels with a as the input part and
b as the output part. Thus, a computation path of a finite state transducer over
E corresponds with an edit string.

We now define the language of edit strings for the prefix distance Lp by

Lp = E∗
0 (E \ E0)∗.

Informally, this is the set of edit strings with a prefix of identity operations
followed by non-identity edit operations. We define the function d′

p : Σ∗ ×Σ∗ →
N on x, y ∈ Σ∗ by

d′
p(x, y) = min

e∈Lp

{c(e) | h(e) = (x, y)}.

In the following proposition, we show that d′
p(x, y) is exactly the prefix distance

of x and y.

Proposition 1. Let x, y ∈ Σ∗ be two words. Then d′
p(x, y) = dp(x, y).

Proof. Consider two words x and y with x = px′ and y = py′, where p is the
longest common prefix of x and y. By definition, we have dp(x, y) = |x| + |y| −
2|p| = |x′| + |y′|. Now consider an edit string e ∈ Lp with h(e) = (x, y). Since
e ∈ Lp, we split e into two parts e = e0e1, where e0 ∈ E∗

0 and e1 ∈ (E \ E0)∗.
To minimize the cost c(e), we require e0 to be as long as possible and minimize
the length of e1, since c(e0) = 0. Thus, e0 corresponds to a string of identity
operations for the longest common prefix p of x and y. This means that e1 is the
edit string such that h(e1) = (x′, y′). Thus, c(e) = c(e1) and since e′ ∈ (E \ E0)∗,
we have c(e′) = |x′| + |y′|.
�

We can similarly define the same notions for suffix and infix distances. Let
Ls = (E \ E0)∗E∗

0 be the language of edit strings for suffix distance and let
Lf = (E \ E0)∗E∗

0 (E \ E0)∗ be the language of edit strings for infix distance. We
define the functions

d′
s(x, y) = min

e∈Ls

{c(e) | h(e) = (x, y)},

d′
f (x, y) = min

e∈Lf

{c(e) | h(e) = (x, y)}.

The following result is proved analogously as Proposition 1

Proposition 2. Let x, y ∈ Σ∗ be two words. Then

1. ds(x, y) = d′
s(x, y), and

2. df (x, y) = d′
f (x, y).

Prefix Distance Between Regular Languages 229

4 Computing the Prefix Distance Between Regular
Languages

We give a polynomial time algorithm to compute the prefix distance between two
languages given by nondeterministic finite automata. Mohri [14] gave an algo-
rithm for computing the edit distance between two regular languages by using
weighted transducers. We use this approach by defining a weighted transducer
with paths which correspond to edit strings in Lp.

We define the transducer Tp = (Q,Σ,Δ, I, F,E), by setting Q = {0, 1},
Δ = Σ, I = {0}, F = {0, 1}, and the transition set E is given by

– (0, a, a, 0, 0) for all a ∈ Σ,
– (0, a, ε, 1, 1) for all a ∈ Σ,
– (0, ε, a, 1, 1) for all a ∈ Σ,
– (0, a, b, 2, 1), with a �= b for all a, b ∈ Σ,
– (1, a, ε, 1, 1) for all a ∈ Σ,
– (1, ε, a, 1, 1) for all a ∈ Σ,
– (1, a, b, 2, 1), with a �= b for all a, b ∈ Σ.

The transducer is shown with Σ = {a, b} in Fig. 1. We claim that the transducer
Tp takes as input some word w and outputs a word x such that any accepting
computation path of Tp on w corresponds to an edit string in Lp which transforms
w into x and that the weight of this path is the cost of the corresponding edit
string. We prove this in the following lemma.

0start 1

a/a : 0
b/b : 0

a/ε : 1
b/ε : 1
ε/a : 1
ε/b : 1
a/b : 2
b/a : 2

a/ε : 1
b/ε : 1
ε/a : 1
ε/b : 1
a/b : 2
b/a : 2

Fig. 1. The transducer Tp over the alphabet Σ = {a, b}.

Lemma 1. The set of accepting paths of the transducer Tp over Σ corresponds
to exactly the set of edit strings over Σ belonging to Lp. If π is an accepting path
of Tp and eπ is the corresponding edit string, then the weight of π is c(eπ).

Proof. Let ϕ be a morphism ϕ : E∗ → E∗ that maps a computation path of Tp

to an edit string over E defined by ϕ((p, a, b, i, q)) = (a/b). Consider an accepting
path π = π1 · · · πn of Tp. Since both states 0 and 1 are final states, an accepting

230 T. Ng

path may end in either state. If π ends in state 0, then π never leaves state 0
and π is of the form

π = (0, a1, a1, 0, 0) · · · (0, an, an, 0, 0),

where ai ∈ Σ for all 1 ≤ i ≤ n. Then ϕ(π) = (a1/a1) · · · (an/an) ∈ E∗
0 . Note

that every transition going from state 0 to itself has weight 0 and π therefore
has weight 0. The cost of ϕ(π) is also 0, as it consists only of identity operations,
which have a cost of 0.

Now consider when π ends in state 1. Then π can be decomposed into π =
π0π1 where for some k < n, we have

π0 = (0, a1, a1, 0, 0) · · · (0, ak−1, ak−1, 0, 0)
π1 = (0, ak, a′

k, ik, 1)(1, ak+1, a
′
k+1, ik+1, 1) · · · (1, an, a′

n, in, 1)

where ai ∈ Σ for 1 ≤ i < k and aj , a
′
j ∈ Σ ∪ {ε} with aj �= a′

j and ij ∈ {1, 2} for
k ≤ j ≤ n. As in above, π0 is a path which ends in state 0 and thus ϕ(π0) maps
to a word over E0 with cost 0. The first transition in π1 takes the machine to
state 1. Since there are no transitions of the form (1, a, a, 0, 1), the word ϕ(π1)
contains no symbols from E0. In other words, ϕ(π1) is a word over the alphabet
E \ E0.

Now consider an edit string e ∈ Lp. We can decompose e into two parts
e = e0e1 with e0 ∈ E∗

0 and e1 ∈ (E \ E0)∗. Then e0 corresponds to a computation
path that ends in state 0 and e1 corresponds to a path which begins with a
transition from state 0 to state 1 and ends on state 1. Thus any edit string in
Lp corresponds to an accepting path in Tp.

It remains to be shown that the cost of ϕ(π1) is the same as the weight of the
path π1. By definition of Tp, each transition with a label a/ε or ε/a has weight 1
for all a ∈ Σ and every transition with a label a/b with a �= b has weight 2. This
corresponds to the costs assigned by the cost function c and thus the weight of
π1 is exactly the cost of ϕ(π1).

Thus, we have ϕ(π) = ϕ(π0)ϕ(π1) ∈ E∗
0 (E \ E0)∗ = Lp and w(π) = w(π0) +

w(π1) = c(ϕ(π0)) + c(ϕ(π1)) = c(ϕ(π)).
�
Observe that if π is a minimum weight accepting path of Tp transforming a

word w into a word x, then the weight of π is dp(w, x). This leads to the following
result.

Proposition 3. Let x, y ∈ Σ∗. Then the weight w(x, y) of x and y in Tp is
exactly dp(x, y).

Proof. Recall that, by definition, the weight of a pair of words (x, y) in Tp is the
minimum weight of all accepting paths of Tp with label (x, y). By Lemma 1, each
path π in Tp corresponds to an edit string eπ in Lp and has weight equivalent
to c(eπ). Thus, we have

w(x, y) = min
e∈Lp

{c(e) | h(e) = (x, y)},

which is exactly dp(x, y) by Proposition 1.
�

Prefix Distance Between Regular Languages 231

Now we move to the main result. We wish to compute the prefix distance
of two given regular languages L1 and L2. To do this, we compute a transducer
for which pairs of words (x, y) with x ∈ L1 and y ∈ L2 have weight equal to
dp(x, y). Let A1 and A2 be finite automata recognizing regular languages L1

and L2, respectively. Recall that an unweighted finite automaton over Σ may
be viewed as a weighted transducer with input and output alphabets Σ and in
which each transition labeled by a ∈ Σ is labeled by a/a and has weight 0.

The composition T1 ⊗ T2 = (Q,Σ,Γ, I, F,E) of two weighted transducers
T1 = (Q1, Σ,Δ, I1, F1, E1) and T2 = (Q2,Δ,Γ, I2, F2, E2) is defined by Q = Q1×
Q2, I = I1×I2, F = Q∩(F1×F2), and the transition set E consists of transitions
of the form ((q1, q′

1), a, c, w1 + w2, (q2, q′
2)) for each transition (q1, a, b, w1, q2) ∈

E1 and (q′
1, b, c, w2, q

′
2) ∈ E2. The composition T1 ⊗ T2 can be computed in

O(|T1||T2|) time.
Now consider the weighted transducer T = A1 ⊗ Tp ⊗ A2. We show in the

following lemma that for x ∈ L1 and y ∈ L2, the weight of (x, y) in T is dp(x, y).

Theorem 1. Let L1 and L2 be regular languages recognized by NFAs A1 and
A2, respectively. If x ∈ L1 and y ∈ L2, then (x, y) is the label of an accepting
path of T = A1 ⊗ Tp ⊗ A2 and the weight of (x, y) in T is dp(x, y).

Proof. Consider two words x ∈ L1 and y ∈ L2. By definition of composition,
for any accepting path of T , the input part must be recognized by A1, the
output part must be recognized by A2, and the path must correspond to an edit
string in the language Lp. Thus, there is an accepting path π of T with label
�(π) = (x, y) which corresponds to an edit string eπ ∈ Lp with h(eπ) = (x, y).
By Proposition 3, the weight w(x, y) of T must be dp(x, y).
�

This result implies that the weight of the minimal weight path of A1⊗Tp⊗A2

is the prefix distance between L(A1) and L(A2). This leads us to an efficient
algorithm to compute the prefix distance between two regular languages.

Theorem 2. For given NFAs A1 and A2 recognizing the languages L1 and L2,
respectively, the value dp(L1, L2) can be computed in polynomial time.

Proof. Recall that the prefix distance between L1 and L2 is defined

dp(L1, L2) = min{dp(x, y) | x ∈ L1, y ∈ L2}.

By Theorem 1, for two words x ∈ L1 and y ∈ L2, the weight of (x, y) in the
weighted transducer T = A1 ⊗ Tp ⊗ A2 is dp(x, y). By definition, this is the
weight of the minimal weight path with label (x, y) accepted by T . Then the
weight of a minimal weight accepting path in T from the initial state to a final
state must be dp(L1, L2) by definition.

With Tp fixed, in the worst case, the composition of the weighted transducer
T = A1 ⊗ Tp ⊗ A2 can be computed in time O(|A1||A2|) and the size of T is
O(|A1||A2|) [7]. To compute dp(L1, L2), we compute T and find the shortest path
from the initial state of T to a final state of T . Since there are no negative cycles,
we use Dijkstra’s single-source shortest path algorithm, which has running time

232 T. Ng

O(|E| + |Q| log |Q|), where E is the transition set of T and Q is the state set of
T [5]. Thus, dp(L1, L2) can be computed in polynomial time.
�

In Proposition 2, we have characterized the suffix distance and the subword
distance, respectively, in terms of the edit systems Ls and Lf . By using a
weighted transducer based construction analogous to the one used for the prefix
distance in Theorem 2, we can get a polynomial time algorithm for computing
the suffix distance and subword distance between regular languages.

Theorem 3. For given NFAs A1 and A2 recognizing the languages L1 and L2,
respectively,

1. ds(L1, L2) can be computed in polynomial time, and
2. df (L1, L2) can be computed in polynomial time.

5 Computing the Inner Prefix Distance of a Regular
Language

Kari et al. [10] give an algorithm for computing the inner Hamming distance of
a regular language using a similar approach with NFAs over the edit alphabet.
In the development of the algorithm, a crucial observation was the necessity of
excluding all edit strings with cost 0, since d(x, y) = 0 if and only if x = y. Thus,
for our algorithm, we need to modify the language Lp to exclude all edit strings
with cost 0 and define a corresponding weighted transducer.

We define the language of edit strings for the prefix distance excluding all
edit strings which result in identity,

L(1)
p = E∗

0 (E \ E0)+.

The language L
(1)
p is almost exactly the same as the language Lp with the excep-

tion that no edit strings e ∈ E∗
0 are in L

(1)
p . That is, every edit string in L

(1)
p

must contain at least one symbol with nonzero cost.
Now, we define the transducer T

(1)
p = (Q,Σ,Δ, I, F,E) by choosing Q =

{0, 1}, Δ = Σ, I = {0}, F = {1}, and the transition set E is as in the definition
of Tp. The transducer T

(1)
p is the transducer Tp with the modification that state

1 is the sole final state. The transducer T
(1)
p defined over the alphabet {a, b} is

shown in Fig. 2. We show in the following lemma that T
(1)
p realizes L

(1)
p .

Lemma 2. The set of accepting paths of the transducer T
(1)
p over Σ corresponds

exactly to the language edit strings L
(1)
p . If π is an accepting path of of T

(1)
p and

eπ is the corresponding edit string, then the weight of π is c(eπ).

Proof. Consider an accepting path π = π1 · · · πn of T
(1)
p . Recall from the proof

of Lemma 1 the definition of ϕ and observe that since 0 is not a final state of
T

(1)
p , π must be of the form π = π0π1, with ϕ(π0) ∈ E∗

0 and ϕ(π1) ∈ (E \ E0)+.
Thus, ϕ(π) must contain at least one non-identity operation and c(ϕ(π)) > 0.

Prefix Distance Between Regular Languages 233

0start 1

a/a : 0
b/b : 0

a/ε : 1
b/ε : 1
ε/a : 1
ε/b : 1
a/b : 2
b/a : 2

a/ε : 1
b/ε : 1
ε/a : 1
ε/b : 1
a/b : 2
b/a : 2

Fig. 2. The transducer T
(1)
p over the alphabet Σ = {a, b}.

Now consider an edit string e ∈ L
(1)
p . We can decompose e into two parts

e = e0e1 with e0 ∈ E∗
0 and e1 ∈ (E \E0)+. Then e0 corresponds to a computation

path that ends in state 0 and e1 corresponds to a path which begins with a
transition from state 0 to state 1 and ends on state 1. Thus any edit string in
Lp corresponds to an accepting path in Tp.

By the same argument from the proof of Lemma 1, the weight of an accepting
path π of T

(1)
p is exactly the cost of the edit string ϕ(π).
�

As was the case for Tp, for each pair of words (x, y) with an accepting path
in T

(1)
p , the weight of (x, y) is exactly dp(x, y) by the same argument as in the

proof of Proposition 3. This leads us to the analogue of Theorem 1 for T
(1)
p .

Theorem 4. Let L be a regular language recognized by a finite automaton A.
Then for x, y ∈ L with x �= y, (x, y) is an accepting path of T = A ⊗ T

(1)
p ⊗ A

and the weight of (x, y) ∈ T is dp(x, y).

Proof. Let x, y ∈ L and consider the weighted transducer T = A ⊗ T
(1)
p ⊗ A. By

definition of composition, for any accepting path π of T , the input and output
labels must be words recognized by A and the path must correspond to an edit
string in L

(1)
p . Thus, there is an accepting path π of T with label �(π) = (x, y)

which corresponds to an edit string eπ ∈ L
(1)
p with h(eπ) = (x, y). Furthermore,

since eπ ∈ L
(1)
p , we have x �= y. Thus, by Lemma 2, the weight w(x, y) of T must

be dp(x, y).
�
From this it follows that can compute the inner prefix distance of a regular

language by computing the appropriate weighted transducer and finding the
minimal weight path from its initial state to one of its final states.

Theorem 5. For a given NFA A recognizing the language L, the value dp(L) is
computable in polynomial time.

Proof. By Theorem 4, for x, y ∈ L, the weight of (x, y) in the weighted transducer
T = A ⊗ T

(1)
p ⊗ A is dp(x, y). Then the weight of a minimal weight accepting

path in T must be dp(L) by definition.

234 T. Ng

Then, as in Theorem 2, the transducer T can be computed in time O(|A|2)
in the worst case and the size of T is O(|A|2) [7]. Since there are no negative
cycles, we can compute the minimal weight path of T in time O(|E|+|Q| log |Q|),
where E is the transition set of T and Q is the state set of T , by using Dijkstra’s
algorithm [5]. Thus, dp(L) can be computed in polynomial time.
�

We have shown how to compute the inner prefix distance of a regular lan-
guage. We can make similar modifications to the edit systems Ls and Lf and
construct transducers which model those edit systems. Such an edit system can
be defined for the suffix distance by

L(1)
s = (E \ E0)+E∗

0 .

The case of subword distance is slightly more complicated, as we require at least
one edit operation with nonzero weight. For an edit string e, such an operation
can occur as either a prefix or a suffix but we cannot require that there is a
symbol with nonzero weight in both the prefix and suffix. Thus, we can define
the edit system L

(1)
f by

L
(1)
f = ((E \ E0)∗E∗

0 (E \ E0)+) ∪ ((E \ E0)+E∗
0 (E \ E0)∗).

Then using an analogous approach as for the prefix distance, it is possible
to compute the inner suffix and subword distances of a regular language in
polynomial time.

Theorem 6. For a given NFA A recognizing the language L,

1. ds(L) is computable in polynomial time, and
2. df (L) is computable in polynomial time.

6 Conclusion

We have shown how to compute the prefix distance of two regular languages in
polynomial time by using weighted transducers. We have also used this algorithm
to compute the inner prefix distance of a regular language in polynomial time.
These algorithms can also be applied to compute the suffix and subword distances
for regular languages.

One direction for future research is computing prefix, suffix, and subword
distances between non-regular languages. It is known that computing distances
between context-free languages is undecidable [4]. However, Han et al. [8] gave
an algorithm for computing the edit distance between a regular language and a
context-free language. For prefix, suffix, and subword distances, the problem of
computing the distance between a regular language and a context-free language
or subclasses of context-free languages remains open.

Prefix Distance Between Regular Languages 235

References

1. Benedikt, M., Puppis, G., Riveros, C.: Bounded repairability of word languages.
J. Comput. Syst. Sci. 79(8), 1302–1321 (2013)

2. Benedikt, M., Puppis, G., Riveros, C.: The per-character cost of repairing word
languages. Theor. Comput. Sci. 539, 38–67 (2014)

3. Bruschi, D., Pighizzini, G.: String distances and intrusion detection: bridging
the gap between formal languages and computer security. RAIRO Informatique
Théorique et Appl. 40, 303–313 (2006)

4. Choffrut, C., Pighizzini, G.: Distances between languages and reflexivity of rela-
tions. Theor. Comput. Sci. 286(1), 117–138 (2002)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

6. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Berlin, Heidelberg
(2009)

7. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer,
Berline, Heidelberg (2009)

8. Han, Y.S., Ko, S.K., Salomaa, K.: The edit-distance between a regular language
and a context-free language. Int. J. Found. Comput. Sci. 24(07), 1067–1082 (2013)

9. Kari, L., Konstantinidis, S.: Descriptional complexity of error/edit systems. J.
Autom. Lang. Comb. 9(2/3), 293–309 (2004)

10. Kari, L., Konstantinidis, S., Perron, S., Wozniak, G., Xu, J.: Computing the ham-
ming distance of a regular language in quadratic time. WSEAS Trans. Inf. Sci.
Appl. 1(1), 445–449 (2004)

11. Konstantinidis, S.: Computing the edit distance of a regular language. Inf. Comput.
205(9), 1307–1316 (2007)

12. Konstantinidis, S., Silva, P.V.: Computing maximal error-detecting capabilities
and distances of regular languages. Fundam. Inform. 101, 257–270 (2010)

13. Kutrib, M., Meckel, K., Wendlandt, M.: Parameterized prefix distance between
regular languages. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M.
(eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 419–430. Springer, Heidelberg (2014)

14. Mohri, M.: Edit-distance of weighted automata: general definitions and algorithms.
Int. J. Found. Comput. Sci. 14(6), 957–982 (2003)

15. Pighizzini, G.: How hard is computing the edit distance? Inf. Computat. 165(1),
1–13 (2001)

16. Shallit, J.: A Second Course in Formal Languages and Automata Theory.
Cambridge University Press, Cambridge (2009)

17. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, pp. 41–110. Springer, Berlin, Heidelberg (1997)

Complexity of Sets of Two-Dimensional Patterns

Daniel Pr̊uša(B)

Faculty of Electrical Engineering, Czech Technical University,
Karlovo náměst́ı 13, 121 35 Prague 2, Czech Republic

prusapa1@fel.cvut.cz

Abstract. We study the two-dimensional pattern matching imple-
mented using the two-dimensional on-line tessellation automaton, which
is a restricted type of the cellular automaton able to simulate the Baker-
Bird algorithm, proposed as the first algorithm for the two-dimensional
pattern matching. We further explore capabilities of this automaton to
carry out the matching task against an arbitrary set of equally sized
patterns. To measure amount of resources needed to accomplish it, we
introduce the pattern complexity of a picture language. We show that
this complexity spreads in a wide range. It is demonstrated by giving
examples, deriving general techniques and proving some lower bounds.

Keywords: Two-dimensional pattern matching · Two-dimensional
on-line tessellation automaton · Picture languages · Descriptional
complexity

1 Introduction

The task of the exact two-dimensional pattern matching is to detect occurrences
of a two-dimensional pattern of symbols in a two-dimensional text array. The
interest in this natural extension of the well known one-dimensional pattern
matching problem dates back to the seventies of the past century. The first effi-
cient algorithm, reducing the problem to the one-dimensional pattern matching,
was independently found by Bird [5] and Baker [4]. Different types of algorithms
further improving worst case or average time complexity have appeared during
the intensive research in this area [2,3,8].

At about the same time when Bird and Baker published their results, Inoue
and Nakamura presented the two-dimensional on-line tessellation automaton for
picture recognition [7]. The computation of this model follows the principle of
dynamic programming – it fills a two-dimensional table where a value of a field
depends on values of the left and top neighboring fields and the input symbol
at the field’s position. This process is suitable for implementing the Baker-Bird
algorithm, as it has been shown by Toda et al. [11]. Moreover, a usage of the
nondeterministic version of the automaton for the exact and approximate two-
dimensional pattern matching was studied by Polcar and Melichar [10].

In this paper, we consider the two-dimensional pattern matching in a broader
sense. Instead of one pattern, we perform matching against an arbitrary set of
c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 236–247, 2016.
DOI: 10.1007/978-3-319-40946-7 20

Complexity of Sets of Two-Dimensional Patterns 237

equally sized patterns. In real applications, such a set can be generated by var-
ious formalism like templates or formulas specifying contents of the searched
patterns. For example, one can use wildcards allowing any symbol at some posi-
tions in a fixed pattern. The pattern matching in this setting can be implemented
efficiently if there is a two-dimensional on-line tessellation automaton with a
reasonable number of states detecting matches. Patterns of different size but
the same nature can be further grouped into a picture language. In accordance
with these thoughts, we define the pattern complexity of a picture language as
a function σ(n) giving the number of states of a state-minimal deterministic
two-dimensional on-line tessellation automaton which detects in a text array all
subarrays n × n that belong to the picture language. We study properties of the
defined measure.

The paper is structured as follows. In Sect. 2 we give basics on picture lan-
guages, the two-dimensional on-line tessellation automaton and Baker-Bird algo-
rithm. The pattern complexity of a picture language is introduced in Sect. 3.
It is demonstrated on several examples, including those cases handled by the
Baker-Bird algorithm. Some techniques allowing to prove lower bounds on the
complexity are exploited in Sect. 4. Effect of operations over picture languages
on the pattern complexity is explored in Sect. 5. Finally, a short summary and
open problems are given in Sect. 6.

2 Preliminaries

We use the common notation and terms on pictures and picture languages (see,
e.g., [6]). If Σ is a finite alphabet, then a picture P over Σ is a two-dimensional
array of symbols from Σ. If P has m rows and n columns, we say it is of size
m × n, and we write rows(P) = m and cols(P) = n. If P is a square picture of
size n × n, we shortly say P is of size n. Rows of P are indexed from 1 to m,
columns of P are indexed from 1 to n, P (i, j) denotes the symbol of P in the
i-th row and j-th column. In the graphical visualizations of pictures, the top-left
corner is associated with position (1, 1). A subpicture P [r, c; k, �] of size k × � is
defined iff 1 ≤ r ≤ m + 1 − k and 1 ≤ c ≤ n + 1 − �. Then, P [r, c; k, �](i, j) =
P (r−1+ i, c−1+ j) for all (i, j) ∈ {1, . . . , k}×{1, . . . , �}. The set of all pictures
of size m × n over Σ is denoted Σm,n. Moreover, Σ+,+ =

⋃
i≥1,j≥1 Σi,j is the

set of all non-empty pictures over Σ. If a picture is of size 1 × n or m × 1, we
treat it as a string.

N denotes the set of positive integers.
Let A = (Q,Σ, δ, q0, F) be a deterministic finite automaton (DFA), where Q

is a set of states, Σ is an input alphabet, δ : Q×Σ → Q is a transition function,
q0 ∈ Q is the initial state and F ⊆ Q is a set of accepting states. The extended
transition function δ̂ : Q × Σ∗ → Q is defined by δ̂(q, λ) = q, δ̂(q, a) = δ(q, a)
and δ̂(q, aw) = δ̂(δ(q, a), w) for all a ∈ Σ, w ∈ Σ∗ and q ∈ Q.

Let P ∈ Σm,n. Define strings wi,j = P [i, 1; 1, j] for all i = 1, . . . , m and j =
1, . . . , n (each wi,j is thus a prefix of a row of P). For a DFA A = (Q,Σ, δ, q0, F),
define PA

rows as the picture of size m × n over Q where PA
rows(i, j) = δ̂(q0, wi,j).

238 D. Pr̊uša

Analogously, define strings vi,j = P [1, j; i, 1] (prefixes of columns of P) and PA
cols

as the picture of size m × n over Q where PA
cols(i, j) = δ̂(q0, vi,j).

Let P ∈ Σ+,+ be an input picture and R ∈ Σ+,+ a pattern whose occurrences
in P have to be detected. The Baker-Bird algorithm works in two phases. During
the first phase, rows of P are scanned for occurrences of rows of R. This task
is solved by the well-known Aho-Corasick algorithm [1]. A so called dictionary-
matching finite automaton A is constructed for this purpose. The second phase
deals with a series of one-dimensional string matchings as it searches columns of
PA

rows for a sequence of final states of A encoding all the rows of the pattern R
in their order. An illustration of the whole algorithm is given in Fig. 1.

Fig. 1. The Baker-Bird algorithm creates a dictionary-matching automaton (b) for
rows of a pattern (a). The automaton processes rows of an input picture (c). Then
it searches columns of the processed input for substrings 32 encoding the rows of the
pattern. This results in a detection of the two highlighted matches.

Informally, the two-dimensional on-line tessellation automaton consists of
cells covering the input picture P ∈ Σm,n. Each cell at a position (i, j) performs
a transition exactly once, depending on final states of the left and top neighbor
and the symbol P (i, j). If there is no left or right neighbor, the blank symbol
is supplied to inform the cell that it is located at the left or top border,
respectively. Transitions of the cells can thus be computed when the cells are
processed e.g. row by row or column by column, using O(max(m,n)) space.

Definition 1. A deterministic two-dimensional on-line tessellation automaton
(2DOTA) A is a tuple (Q,Σ, δ, F), where

– Q is a finite set of states
– Σ is an input alphabet
– δ : (Q ∪ {#}) × Σ × (Q ∪ {#}) → Q is a transition function
– F ⊆ Q is a set of accepting states

Let P ∈ Σm,n be an input picture. We define PA as the picture of size m×n
representing final states of the A’s cells as follows.

PA(i, j) = δ(qL, P (i, j), qU) where

qL =
{

if j = 1,
PA(i, j − 1) otherwise, and qU =

{
if i = 1,

PA(i − 1, j) otherwise.

Complexity of Sets of Two-Dimensional Patterns 239

3 Pattern Complexity

Definition 2. Let L be a set of square pictures of size n ≥ 1 over Σ and
A = (Q,Σ, δ, F) be a 2DOTA. We say that A searches patterns of L if for any
input P ∈ Σ+,+ it holds PA(i, j) ∈ F if and only if i, j ≥ n and P [i − n + 1, j −
n + 1;n, n] ∈ L.

For k, � ∈ N and a picture language L over Σ, let Lk,� = L ∩ Σk,�.

Definition 3 (Pattern complexity of a picture language). Let L be a
picture language over Σ. For each n ∈ N, let An = (Qn, Σn, δn, Fn) be a state-
minimal 2DOTA that searches patterns of Ln,n. Pattern complexity of L is a
function σL : N → N fulfilling σL(n) = |Qn| for all n ∈ N.

For simplicity, all the patterns we consider are squares. We thus ignore all
non-square pictures in the definition. There is a straightforward extension of the
pattern complexity to rectangular patterns, which does not result in principally
different properties.

A simulation of the Baker-Bird algorithm by 2DOTA was described by Toda
et al. [11]. Here we present it in a more concise way.

Theorem 4. Let L be a picture language over Σ such that |Ln,n| = 1 for all
n ∈ N. Then, σL(n) = O(n2).

Proof. For n ∈ N, let R be the only picture in Ln,n. Consider a dictionary-
matching finite automaton A1 = (Q1, Σ, δ1,#, F) for rows of R. Since there are
at most n such rows, it holds |Q| ≤ n2 + 1. Let w = f1f2 . . . fn be the word over
F where fi is the final state of A1 representing the i-th row of R. Next, consider
a dictionary-matching finite automaton A2 = (Q2, F, δ2, q0, {qA}) for the only
word w. It holds |Q2| = n + 1. Assume that Q1 ∩ Q2 = ∅. For q ∈ Q2 � {q0}, let
s(q) denote the symbol of F whose reading is needed to reach q by the control
unit of A2 (i.e., there is q′ ∈ Q2 such that δ2(q′, s(q)) = q).

Construct a 2DOTA A = (Q,Σ, δ, {qA}) searching patterns of Ln,n = {R}.
Let Q = Q1 ∪ (Q2 � {q0}). Define mappings π : Q → Q1 and τ : Q → Q2 where

π(q) =
{

q if q ∈ Q1,
s(q) if q ∈ Q2 � {q0},

τ(q) =
{

q0 if q ∈ Q1,
q if q ∈ Q2 � {q0}.

States of Q are designed to represent progress of A1 as well as A2. For qL, qU ∈ Q
and a ∈ Σ, transitions of A are defined as follows.

δ(qL, a, qU) =

⎧⎨
⎩

δ1(π(qL), a) if δ1(π(qL), a) /∈ F or
δ2(τ(qU), δ1(π(qL), a)) = q0,

δ2(τ(qU), δ1(π(qL), a)) otherwise.

The obtained 2DOTA A reaches its accepting state qA at those positions of the
input where the Baker-Bird algorithm finds a match. Moreover, |Q| = O(n2) as
it has been required.
�

240 D. Pr̊uša

Example 5. Define L = {an,n | n ∈ N} over Σ = {a, b}. Then, σL(n) = O(n).
For a pattern an,n, denote the rows and columns dictionary-matching finite

automata as A1 = (Q1, Σ, δ1, q0, {qn}) and A2 = (Q2, Q1, δ2, p0, {pn}) where
Q1 = {q0, q1, . . . , qn}, Q2 = {p0, p1, . . . , pn} and, for convenience, q0 = #. An
example is given in Fig. 2. Following Theorem 4, we obtain 2DOTA A = (Q1 ∪
Q2 � {p0}, Σ, δ, {pn}) searching patterns of Ln,n = {an,n} where

– δ(qL, b, qU) = q0 for any qL and qU ,
– δ(qi, a, qU) = qi+1 for i = 0, . . . , n − 2 and any qU ,
– δ(qL, a, qi) = p1 for qL ∈ {qn−1} ∪ Q2 and i = 0, . . . , n − 1,
– δ(qL, a, pi) = pi+1 for qL ∈ {qn−1} ∪ Q2 and i = 1, . . . , n − 1,
– δ(qL, a, pn) = pn for qL ∈ {qn−1} ∪ Q2.

Fig. 2. (a) Rows and (b) columns dictionary-matching finite automaton for pattern
a3,3 where q3 represents states of Q1 � {q3} = {q0, q1, q2}.

The pattern complexity of the empty picture language is trivially Θ(1). The
following lemma describes it for the other corner case.

Lemma 6. Let L = Σ+,+ for some alphabet Σ. Then, σL(n) = O(log n).

Proof. Assume n ≥ 2. To accept all matches of patterns of Σn,n requires to
detect all positions (i, j) in the input where i, j ≥ n. We show, how to construct
a 2DOTA A with O(log n) states which localizes the cell at position (n, n).

Assume first that n = 2k ≥ 2. Let Q = {c, d, y, $} ∪ {ei, oi, xi | i = 1, . . . , k}
be the set of states of A where y is the only accepting state. The automaton fills
the cells in the following manner.

1. In the first row, A marks each odd position by state o1 and each even position
by state x1. In the i-th row, 1 < i ≤ k, A marks by xi each position which
is a multiple of 2i. To achieve this, A checks the previous row for cells in
state xi−1 and counts their number modulo 2 using states oi and ei (where oi

or ei indicates an odd or even number of occurrences of xi−1, respectively).
Moreover, this computation is performed only in the cells above the diagonal.

2. The first 2k − 1 cells of the diagonal enter state d. Moreover, all the cells
bellow the diagonal enter state $.

3. The cell at position (k, 2k) is the first one entering state xk. This state is
copied to all cells below (in the same column).

Complexity of Sets of Two-Dimensional Patterns 241

4. The diagonal and the 2k-th column meet at position (2k, 2k). When the cell
at this position detects this configuration, it enters the accepting state y. This
state is recursively taken over by cells at positions (i, j) where i, j ≥ 2k.

5. The remaining cells above the diagonal and bellow the k-th row enter state c.

An example of the computation is depicted in Fig. 3.
Now, let n be an arbitrary integer written as n =

∑k
i=0 ai2i where each

ai ∈ {0, 1} and ak = 1. Modify the set of states Q by removing states d, y
and adding states d0, d1, . . . , dk and y0, y1, . . . , yk. Let I = {i | ai = 1}. In this
case, the automaton computes position (2k, 2k) using the same procedure as
described above, however, it fills the diagonal by dk instead of d (this indicates
that k rows have to be processed using markers x1, . . . , xk), and fills the cell at
position (2k, 2k) by yk. Position (2k +1, 2k +1) is then filled by d� where � is the
second greatest element of I. It is done using the following transitions. If the left
neighbor of a cell is in state yk, the cell enters state yk. If the top neighbor of a
cell is in state yk and its left neighbor is not in state $, the cell enters state d�.
Then, A performs again the same procedure to compute position (2�, 2�) relative
to position (2k + 1, 2k + 1), locating thus position (2k + 2�, 2k + 2�). And this is
repeated for all elements of I in the descending order, entering finally state ym

at position (n, n) where m is the minimal element of I.
�

Fig. 3. Computation of position (23, 23) in a picture of size 8 × 9.

The next lemma generalizes the technique of DFAs simulation from
Theorem 4.

Lemma 7. Let A1 = (Q1, Σ, δ1, q
1
0 , F1) and A2 = (Q2, Q1, δ2, q

2
0 , F2) be DFAs.

There is a 2DOTA A = (Q,Σ, δ, F) with O(|Q1| · |Q2|) states such that, for any
input P ∈ Σ+,+, PA(i, j) ∈ F ⇔ (PA1

rows)
A2
cols(i, j) ∈ F2.

Proof. Define 2DOTA A = (Q,Σ, δ, F) where Q = Q1 × Q2, F = Q1 × F2 and δ
simulates computation of both, A1 and A2, as follows. Let π1 : Q ∪ {#} → Q1,
π2 : Q ∪ {#} → Q2 be mappings such that π1((q1, q2)) = q1, π1(#) = q1

0 ,
π2((q1, q2)) = q2 and π2(#) = q2

0 for all (q1, q2) ∈ Q. For qL, qU ∈ Q ∪ {#} and
a ∈ Σ, define

δ(qL, a, qU) = (δ1(π1(qL), a), δ2(π2(qU), δ1(π1(qL), a))) .
�

242 D. Pr̊uša

Example 8. For c ∈ Σ and P ∈ Σ+,+, let |P |c = |{(i, j) | P (i, j) = c}| denote
the number of occurrences of c in P . Let Σ = {a, b}. For k ∈ N, define Lk = {P ∈
Σ+,+ | |P |b = k}. Using Lemma 7, we show that σLk

(n) = O(n2(k+1) log n).
Consider square patterns in Lk of size n where n > k. Construct a finite

automaton A1 with states of the form (x1, . . . , xk+1) where each xi ∈ {1, . . . , n +
1} and x1 ≤ x2 ≤ . . . ≤ xk+1. These vectors serve to record relative positions
of the last k + 1 occurrences of b in the (at most) n previously read symbols of a
row. If the i-th component is of value n + 1, then there are no more than i − 1
occurrences of b in the (at most) n previously read symbols. See Fig. 4(a) for an
example. Take (n+1, . . . , n+1) as the initial state. For x ∈ {1, . . . , n+1}, define

x =
{

x + 1 if x < n + 1,
x if x = n + 1.

Transitions of A1 are defined as follows:

δ1((x1, . . . , xk+1), a) = (x1, . . . , xk+1)
δ1((x1, . . . , xk+1), b) = (1, x1, . . . , xk).

Analogously, construct a finite automaton A2 with states (y1, . . . , yk+1)
where yi ∈ {1, . . . , n+1} and y1 ≤ y2 ≤ . . . ≤ yk+1. For each position (i, j), such
states are used to record row positions of the last k + 1 occurrences of b in the
subpicture R = P [max(1, i − n + 1),max(1, j − n + 1);n, n], as it is illustrated
in Fig. 4(a). Hence, the transition function is defined by

δ2((y1, . . . , yk+1), (x1, . . . , xk+1)) = (1, . . . , 1, y1, . . . , yk+1−s)

where s = |{xi | xi < n+1, i ∈ {1, . . . , n+1}}|. A vector (y1, . . . , yk+1) is a final
state of A2 iff y1, . . . , yk < n + 1 and yk+1 = n + 1, indicating that there are
exactly k occurrences of b in the considered subpicture R.

Lemma 7 applied to A1 and A2 gives a 2DOTA A with O(n2(k+1)) states which
correctly detects pattern matches at positions (i, j) where i, j ≥ n, however, it
might also enter a final state at positions (i, j) for which i < n or j < n.
To suppress these false detections, it suffices to combine A with the automaton
constructed in the proof of Lemma 6 – a product automaton is created, resulting
in an automaton searching patterns of Ln,n

k with O(n2(k+1) log n) states.

Theorem 9. For any L ∈ Σ+,+, where |Σ| ≥ 2, it holds σL(n) = O(|Σ|n2
).

Proof. For n ∈ N, construct a 2DOTA An = (Qn, Σ, δn, Fn) whose states rep-
resent an enumeration of all pictures of size up to n × n so that, for an input
P ∈ Σ+,+, it holds PA(i, j) = P [max(1, i − n + 1),max(1, j − n + 1);n, n] for
all positions (i, j). This is achieved when Qn =

⋃
1≤i,j≤n Σi,j and δn(PL, a, PU)

produces a picture of size min(n, rows(PU) + 1) × min(n, cols(PL) + 1) specified
in Fig. 4(b).

Complexity of Sets of Two-Dimensional Patterns 243

Fig. 4. (a) Assuming we search for subpictures 4 × 4 containing k = 3 symbols b, the
bottom-right field is assigned by vectors (2, 4, 5, 5) and (1, 1, 2, 4) to represent positions
of the closest k +1 b’s in the last row suffix of length 4 and the subpicture 4×4 ending
at the position (4, 5), respectively. (b) The square subpictures PL, PU and the symbol
a determine uniquely the dotted square subpicture.

To estimate size of Qn, derive

|Qn| =
∑

1≤i,j≤n

|Σi,j | =
n∑

i=1

n∑
j=1

(|Σ|i)j
=

n∑
i=1

|Σ|i
|Σ|i − 1

(|Σ|in − 1
)

<

< 2
n∑

i=1

(|Σ|n)i = 2
|Σ|n

|Σ|n − 1

(
|Σ|n2 − 1

)
< 4|Σ|n2

= O
(
|Σ|n2

)
.

Finally, Fn equals the set of patterns to be detected, hence Fn = Ln,n.
�

4 Lower Bounds

For a picture language L over Σ, let θL,n : Σ+,+ → {0, 1}+,+ be a mapping
where θL,n(P) is of the same size as P , and θL,n(P)(i, j) = 1 iff i, j ≥ n and
P [i − n + 1, j − n + 1;n, n] ∈ Ln,n. Such a mapping assigns 1 to each field of
P which is the bottom-right corner of a n × n match against a pattern of Ln,n

(otherwise it assigns 0). The mapping extends to a picture language L′ ∈ Σ+,+

as follows: θL,n(L′) = {θL,n(P) | P ∈ L′}.

Lemma 10. Let L be a picture language over Σ. For n ∈ N, let Ln ⊆
Σn,2n−1 where for any P,R ∈ Ln, (i, j) ∈ ({1, . . . , n − 1} × {1, . . . , 2n − 1}) ∪
({n} × {n + 1, . . . , 2n − 1}) ⇒ P (i, j) = R(i, j). Then, σL(n) ≥ |θL,n(Ln)|.
Proof. Let A = (Q,Σ, δ, F) be a 2DOTA searching patterns of Ln,n. Pictures in
Ln are of the form depicted in Fig. 5(a). After processing a picture P ∈ Ln, A
can enter an accepting state only at positions (n, n), . . . , (n, 2n − 1). Since the
content of rows 1, . . . , n − 1 is fixed for all pictures in Ln, A enters the same
states r1, . . . , r2n−1 in the n − 1-st row (see Fig. 5(b)). Moreover, the suffix of
the last row is also fixed, hence states qn+1, . . . , q2n−1 are determined solely by
state qn. Since all elements of θL,n(Ln) have to be distinguished by qn, it holds
|Q| ≥ |θL,n(Ln)|.
�

244 D. Pr̊uša

Fig. 5. (a) Pictures in Ln of size n × (2n − 1) can differ only at the crossed positions.
(b) The last two rows of 2DOTA’s cells processing a picture from Ln.

We apply the lemma to show σL(n) = Ω(n) for the picture language L from
Example 5. For n ∈ N, define Ln consisting of all pictures P ∈ {a, b}+,+ where
rows(P) = n, cols(P) = 2n − 1, |P |b = 1 and the only symbol b is located at a
position (n, i) with 1 ≤ i ≤ n. Then, |θL,n(Ln)| = n, hence σL(n) = Ω(n).

Theorem 11. There is a picture language L over {0, 1} with σL(n) = 2Ω(n2).

Proof. For a binary string w, let K(w) be its Kolmogorov complexity [9]. It is
known that, for each n ∈ N, there is a string wn of length n such that K(wn) ≥ n.

For each m ∈ N, create a set Lm of selected square pictures of size m × m

as follows. Consider, w.l.o.g., m is even. For n = m2

2 · 2m2
2 , split wn into � = m2

2

strings of length 2
m2
2 . I.e., write wn = v1 . . . v� where |vi| = 2

m2
2 for all i. For

each i ∈ {1, . . . , �}, create a picture Pm,i of size m × m by filling the first half of
rows by the binary representation of i − 1 of length m2

2 and the second half of
rows by vi (both the considered strings are split into m

2 rows, each containing
m bits). The set Lm consists of all pictures Pm,i and L =

⋃
j≥1 Lj .

Let A = (Q,Σ, δ, F) be a 2DOTA searching patterns of Lm. This also means
A can be directly used to recognize whether a square picture P ∈ Σm,m is
in Lm or not. Construct a (one-dimensional) deterministic Turing machine M
outputting wn (where n = m2

2 ·2m2
2) when started over a blank tape by executing

procedure
for i = 0 to 2

m2
2 − 1 do

for all v ∈ {0, 1}m2/2 do
if A accepts S(str(i)v) then

print v
end if

end for
end for

where str(i) is the binary string of length m2

2 representing i and S(w) is the
square of size m filled row by row by bits of a binary string w of length m2.
It remains to describe how M simulates A. It uses m2 blocks of size �log2 |Q|�
tape fields. Blocks represent cells of A, collected row by row. To perform an
A’s cell transition requires to memorize states of the left and top neighbor cell.

Complexity of Sets of Two-Dimensional Patterns 245

This requires O(|Q|2) states of M. Furthermore, it is necessary to track the
position of M’s head with respect to the simulated two-dimensional array of
cells of A. The position is fully described by the row and column index and
offset within the scanned block. This itself can be represented using O(m2 log |Q|)
states. Printing out v can be realized by copying a bit by bit of v to the first empty
M’s tape cell to the right. This involves counting a position in v and a constant
number of states to perform the transfer. In total, M needs O(|Q|2m2 log |Q|) =
O(|Q|3m2) states. Hence, there is c ∈ N such that

c|Q|3m2 ≥ K(wn) ≥ m2

2
· 2

m2
2 implying |Q| ≥ (2c)− 1

3 · 2
m2
6 = 2Ω(m2).
�

5 Operations over Picture Languages

Theorem 12. Let L1 and L2 be picture languages over Σ. Define L∪ = L1 ∪L2

and L∩ = L1 ∩ L2. Then σL∪ = O(σL1σL2) as well as σL∩ = O(σL1σL2).
Moreover, there are picture languages L1, L2 such that σL1(n) = Ω(n), σL2(n) =
Ω(n) and σL∪ = Ω(σL1σL2).

Proof. For n ∈ N, let A1 = (Q1, Σ, δ1, F1) and A2 = (Q2, Σ, δ2, F2) be a state-
minimal 2DOTA searching for patterns of L1 and L2, respectively. We apply the
product automaton construction to obtain 2DOTA with the set of states Q1 ×Q2

and the set of final states (F1 ×Q2)∪ (Q1 ×F2) or F1 ×F2 searching for patterns
of L∪ or L∩, respectively.

Let Σ = {a1, b1} × {a2, b2}. Define L1 = {P | P ∈ {(a1, a2), (a1, b2)}+,+}
and L2 = {P | P ∈ {(a1, a2), (b1, a2)}+,+}. These picture languages over Σ
are extensions of the picture language of uniform pictures from Example 5. For
P ∈ L1 or P ∈ L2, the first or second component of each P (i, j) equals a1 or a2,
respectively. It is thus obvious that σL1(n) = Θ(n) and σL2(n) = Θ(n). We will
show that σL∪(n) = Ω(n2).

Apply Lemma 10. For n ∈ N, k = 1, . . . , �n
2 � and � = �n

2 �+1, . . . , n, construct
an input picture Pk,� over Σ of size n×(2n−1) where the first n−1 rows contain
only symbol (a1, a2) and the last row fulfills

P (n, j) =

⎧⎨
⎩

(b1, a2) if j = k or j = � 3
2n�,

(a1, b2) if j = �,
(a1, a2) otherwise.

As demonstrated in Fig. 6, the picture Pk,� contains bottom-right corners of
searched matches in its last row at column positions k + n, . . . , � 3

2n� − 1 and
� + n, . . . , 2n − 1. This means that θL∪,n(Pk,�) is unique for all considered Ω(n2)
pictures Pk,�, which implies σL∪(n) = Ω(n2).
�

Theorem 13. For every picture language L, it holds σL(n) = O(σL(n) log n)
and σL(n) = Ω(σL(n)/ log n).

246 D. Pr̊uša

Fig. 6. A row of length 2n − 1 where n is assumed to be even. Fields X1 and X2 at
positions k and 3

2
n, respectively, contain symbol (b1, a2), field Y at position � contains

(a1, b2), the other fields contain (a1, a2). Ends of substrings of length n containing at
most one of the fields X1, Y , X2 are marked by 1.

Proof. For n ∈ N, let A = (Q,Σ, δ, F) be a state-minimal 2DOTA searching
for patterns of Ln,n. Moreover, let A′ = (Q′, Σ, δ′, F ′) be the 2DOTA searching
for patterns of Σn,n constructed following the proof of Lemma 6. The product
2DOTA with the set of states Q × Q′ and the set of final states (Q � F) × F ′

searches for patterns of L
n,n

= Σn,n
� Ln,n.

For f, g : N → N, f = O(g) implies g = Ω(f), hence σL(n) = O(σL(n) log n)
implies σL(n) log n = Ω(σL(n)) and σL(n) = Ω(σL(n)/ log n).
�

6 Conclusion

We have presented basic results on the defined pattern complexity of picture
languages. It has been demonstrated that this complexity ranges from Θ(1)
to 2Θ(n2). In Lemma 7, we have shown that the idea of reducing the task
to the one-dimensional pattern matching is useful even for sets of patterns.
Lemma 6 suggests that the dynamic programming approach carried out by the
two-dimensional on-line tessellation automaton has benefits over processing rows
and tables separately in two phases. It is a question whether this advantage can
be utilized to a larger extent.

We have studied, how the pattern complexity is affected when performing
basic operations over picture languages. This can be understood as combining
templates producing patterns. Analysis of the complexity of more operations
over picture languages like rotation or mirroring could be a subject to future
work. This could even cover the task of the approximate pattern matching since
e.g. the Hamming distance can work as an operator over a picture language L
producing a set of those pictures whose Hamming distance to a picture from L
is bounded by a chosen k.

The pattern complexity has been based on 2DOTA, as it seems to be a suit-
able choice due to its ability to simulate the Baker-Bird algorithm. However, it
could be worth to explore the pattern complexity based on other computational
models.

Acknowledgement. This work was supported by the Czech Science Foundation
under grant no. 15-04960S.

Complexity of Sets of Two-Dimensional Patterns 247

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic
search. Commun. ACM 18(6), 333–340 (1975). http://doi.acm.org/10.1145/
360825.360855

2. Amir, A., Benson, G., Farach, M.: Alphabet independent two dimensional match-
ing. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of
Computing, STOC 1992, pp. 59–68. ACM, New York (1992). http://doi.acm.org/
10.1145/129712.129719

3. Baeza-Yates, R., Régnier, M.: Fast two-dimensional pattern matching. Inf.
Process. Lett. 45(1), 51–57 (1993). http://www.sciencedirect.com/science/article/
pii/002001909390250D

4. Baker, T.P.: A technique for extending rapid exact-match string matching to
arrays of more than one dimension. SIAM J. Comput. 7(4), 533–541 (1978).
http://dx.doi.org/10.1137/0207043

5. Bird, R.S.: Two dimensional pattern matching. Inf. Process. Lett. 6(5), 168–170
(1977). http://dx.doi.org/10.1016/0020-0190(77)90017-5

6. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G.,
Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer,
New York (1997)

7. Inoue, K., Nakamura, A.: Some properties of two-dimensional on-line tessellation
acceptors. Inf. Sci. 13(2), 95–121 (1977)

8. Kärkkäinen, J., Ukkonen, E.: Two and higher dimensional pattern matching
in optimal expected time. In: Sleator, D.D. (ed.) Proceedings of the Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms. 23–25 January 1994,
Arlington, Virginia, pp. 715–723. ACM/SIAM (1994). http://dl.acm.org/citation.
cfm?id=314464.314680

9. Li, M., Vitnyi, P.M.: An Introduction to Kolmogorov Complexity and its Applica-
tions, 3rd edn. Springer Publishing Company, Incorporated, New York (2008)

10. Polcar, T., Melichar, B.: Two-dimensional pattern matching by two-dimensional
online tessellation automata. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu,
S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 327–328. Springer, Heidelberg (2005).
http://dx.doi.org/10.1007/978-3-540-30500-2 38

11. Toda, M., Inoue, K., Takanami, I.: Two-dimensional pattern matching by two-
dimensional on-line tessellation acceptors. Theor. Comput. Sci. 24, 179–194 (1983).
http://dx.doi.org/10.1016/0304-3975(83)90048–8

http://doi.acm.org/10.1145/360825.360855
http://doi.acm.org/10.1145/360825.360855
http://doi.acm.org/10.1145/129712.129719
http://doi.acm.org/10.1145/129712.129719
http://www.sciencedirect.com/science/article/pii/002001909390250D
http://www.sciencedirect.com/science/article/pii/002001909390250D
http://dx.doi.org/10.1137/0207043
http://dx.doi.org/10.1016/0020-0190(77)90017-5
http://dl.acm.org/citation.cfm?id=314464.314680
http://dl.acm.org/citation.cfm?id=314464.314680
http://dx.doi.org/10.1007/978-3-540-30500-2_38
http://dx.doi.org/10.1016/0304-3975(83)90048--8

The Complexity of Fixed-Height
Patterned Tile Self-assembly

Shinnosuke Seki1 and Andrew Winslow2(B)

1 The University of Electro-Communications, Tokyo, Japan
s.seki@uec.ac.jp

2 Université Libre de Bruxelles, Brussels, Belgium
awinslow@ulb.ac.be

Abstract. We characterize the complexity of the PATSproblem for pat-
terns of fixed height and color count in variants of the model where seed
glues are either chosen or fixed and identical (so-called non-uniform and
uniform variants). We prove that both variants are NP-complete for pat-
terns of height 2 or more and admit O(n)-time algorithms for patterns
of height 1. We also prove that if the height and number of colors in the
pattern is fixed, the non-uniform variant admits a O(n)-time algorithm
while the uniform variant remains NP-complete. The NP-completeness
results use a new reduction from a constrained version of a problem on
finite state transducers.

Keywords: Tile self-assembly · DNA computing · Finite state
transducer

1 Introduction

Winfree [13] introduced the abstract tile assembly model (aTAM) to capture
nanoscale systems of DNA-based particles aggregating to form intricate crystals,
leading to an entire field devoted to understanding the theoretical limits of such
systems (see surveys by Doty [3] and Patitz [10]). Ma and Lombardi [9] intro-
duced the patterned self-assembly tile set synthesis (PATS) problem, of designing
a tile set of minimum size that assembles into a given n × h colored pattern by
attaching to an L-shaped seed.

Czeizler and Popa [2] were the first to provide a proof that the PATS problem
is NP-hard, thus establishing the problem as NP-complete. Subsequent work
studied the hardness of the constrained version where the patterns have at most
c colors, called the c-PATS problem. This line of work proved the 60-PATS [11],
29-PATS [6], 11-PATS [7], and finally the 2-PATS [8] problems NP-complete.

A full version of this paper can be found at http://arxiv.org/abs/1604.07190
S. Seki—Work supported in part by JST Program to Disseminate Tenure Tracking
System, MEXT, Japan, No. 6F36 and by JSPS Grant-in-Aid for Research Activity
Start-up No. 15H06212.

c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 248–259, 2016.
DOI: 10.1007/978-3-319-40946-7 21

http://arxiv.org/abs/1604.07190

Fixed-Height Patterned Self-assembly 249

Here we study the complexity of parameterized height-h PATS and c-PATS
problems where patterns have a specified fixed height h and increasing width
n. We consider both uniform and non-uniform model variants, where the glues
along the seed are fixed and identical or chosen in tandem with the tile set,
respectively. We characterize the computational complexity of these problems
via the following results:

– The height-2 PATS problem is NP-complete in both models (Sect. 4).
– The uniform height-2 3-PATS problem is NP-complete (Sect. 5).
– The non-uniform height-h c-PATS problem and uniform height-1 PATS prob-

lems admit cc
O(h)

n-time and O(n)-time algorithms, respectively (Sect. 6).

The NP-completeness results also apply to patterns of height greater than 2.
Thus the complexity of the PATS problem for all combinations of height, color,
and uniformity are characterized, except uniform height-2 2-PATS.

The NP-hardness reductions are based on a reduction for a new variant of
the minimum-state finite state transducer problem, originally proved NP-hard
by Angluin [1] and by Vazirani and Vazirani [12]. In this variant, any solution
transducer is also promised to satisfy additional constraints on its transitions.
The reduction is also substantially simpler than the reduction given in [1] and
uses input and output strings of just two symbols, rather than the three of [12].

2 Preliminaries

Patterns, Tiles, Assemblies, and Seeds. Define Nk = {1, 2, . . . , k}. A pattern
is a partial function P : N

2 → C, i.e. a function that maps a rectangular region
of lattice points to a set of colors. If dom(P) = Nw × Nh, then P is a width-
w height-h pattern. The codomain of P , i.e. the colors seen in the pattern, is
denoted color(P). A pattern P is c-color provided |color(P)| ≤ c.

A tile type t is a colored unit square with each edge labeled; these labels are
called glues. A tile type’s color is denoted color(t). For a direction d ∈ {N, W, S, E},
t[d] denotes the glue assigned to side d of t. A tile type is non-rotatable, and thus
is uniquely identified by its color and four glues. Instances of tile types, called
tiles, are placed with their centers in N

2.
An assembly is an arrangement of tiles from a set of tile types T ; formally

a partial function A : N
2 → T ∪ {∅}. A seed is an “L-shaped” assembly with

domain {(0, 0)} ∪ {(x, 0) : x ∈ Nw} ∪ {(0, y) : y ∈ Nh} for some w, h ∈ N.
The pattern of an assembly A is defined as PA((x, y)) = color(A((x, y))) for
(x, y) ∈ dom(A) ∩ N

2, i.e. the color pattern of A, excluding the seed.

RTASs. A rectilinear tile assembly system (RTAS) is a pair T = (T, σ), where
T is a set of tile types and σ is a seed. An assembly A yields an assembly A′

with dom(A′) = dom(A) ∪ {(x, y)} provided (x − 1, y), (x, y − 1) ∈ dom(A)
and A((x − 1, y))[E] = A′((x, y))[W], A((x, y − 1))[N] = A′((x, y))[S]. The set of
producible assemblies of an RTAS are those that can be yielded, starting with
the seed assembly σ. That is:

250 S. Seki and A. Winslow

RTAS Tiling Rule: A tile of type t can be added to an assembly A at location
(x, y) provided (x− 1, y), (x, y − 1) ∈ dom(A) and the east and north glues of
the tiles at (x − 1, y) and (x, y − 1) are the same as the west and south glues
of t, respectively.

As a result, tiling proceeds from southwest to northeast, i.e., a tile is first
placed at (1, 1), then at either (1, 2) or (2, 1), etc. The terminal assemblies of a
RTAS are the producible assemblies that do not yield other (larger) assemblies.
If every terminal assembly of the system has pattern P , the system is said to
uniquely self-assemble P . An RTAS (T, σ) is directed, i.e. deterministic, provided
that for any distinct tile types t1, t2 ∈ T , either t1[W] �= t2[W] or t1[S] �= t2[S].

Uniform RTASs. We also define a practical variant of a RTAS called a uniform
RTAS. An RTAS (T, σ) is uniform provided there exist two glues �E, �N such that
σ((x, 0))[E] = �E for all x ∈ Nw and σ((0, y))[N] = �N for all y ∈ Nh. In other
words, the seed glues cannot be programmed and are generic.

The PATS Problem. The pattern self-assembly tile set synthesis problem
(PATS) [9] asks for the minimum-size RTAS that uniquely self-assembles a given
rectangular color pattern, where the size of an RTAS (T, σ) is |T |, the number of
tile types. Bounding the number of colors or height of the input pattern yields
the following practically motivated special cases of PATS:

Problem 1 (c-colored PATS or c-PATS). Given a c-colored pattern P and inte-
ger t, does there exist an RTAS of size ≤ t that uniquely self-assembles P?

Problem 2 (Height-h PATS). Given a height-h pattern P and integer t, does
there exist an RTAS of size ≤ t that uniquely self-assembles P?

Restricting the system to be uniform gives rise to uniform variants as well,
contrasting with the conventional non-uniform variants (Fig. 1).

0

1
2 22 2

0

1

Pattern Non-uniform RTAS

2

2
1 0 1 0 1 0 1 0

0

3
1 00 1

2

0 2

4
0 0 0 0

4

3

Uniform RTAS

Fig. 1. A height-2 2-color pattern and minimum-size RTASs uniquely assembling the
pattern in the non-uniform and uniform models.

3 Minimum-State Finite State Transducer is NP-hard

The reduction is from 3-partition, a well-known NP-hard problem on integers,
to a problem on finite state transducers or FSTs: finite automata where each
transition is augmented with an output symbol and thus transduces an input
string into an output string of equal length.

Fixed-Height Patterned Self-assembly 251

Problem 3 (3-partition). Given a multiset of integers1 A = {a1, a2, . . . , a3n}
with

∑
ai∈A ai/n = p and p/4 < ai < p/2, does there exist a partition of A into

n sets, each with sum p?

Theorem 1 ([4]). 3-partition is NP-hard.

Formally, a FST is a 4-tuple T = 〈Σ,Q, s0, δ〉, where Σ is the alphabet, Q is
a finite set of states of T , s0 ∈ Q is the start state of T , and δ : Q × Σ → Q × Σ
is the transition function of T . The size of T is equal to |Q|. An input-output
quadruple δ(si, b) = (sj , b′) is a transition, i.e., a (b, b′)-transition or b-transition.

Problem 4 (Encoding by FST). Given two strings S, S′ and integer K, does
there exist a FST with at most K states that transduces S to S′?

Lemma 1. Encoding by FST is NP-hard.

Proof. We borrow from [12] the approach of constructing S and S′ by con-
catenating segments: pairs of input and output substrings of equal length that
enforce specific structure in a solution FST. An input string A and output string
B paired as a segment is denoted A → B.

The integer output by the reduction is K = 3pn + n + 1, where n is the
number of parts in the partition and p the size of each part. The first segment
is 0K−100K−1 → 0K−110K−1. This segment enforces that a solution FST must
have K states; label them s1, s2, . . . , sK . Then for all i < n, δ(si, 0) = (si+1, 0)
and δ(sK , 0) = (s1, 1).

The problem of partitioning integers of A into groups of size p is imple-
mented in the collection of 1-transitions that leave each state. Each state has
a 1-transition that either points to itself (a fixed singleton) or is one edge in a

Fig. 2. A solution FST for a toy reduction from an (invalid) 3-partition instance
with integers 1, 2, 1, 2 to Encoding by FST. The left-to-right states are s1 to sK ,
colored by their half-fixed interval (fixed singletons are gray). Transitions above the
states are (1, 1)-transitions. All others are (0, 0)-transitions except the lowermost, a
(0, 1)-transition.

1 3-partition is strongly NP-hard, meaning that the problem is NP-hard when the
elements of A are given in unary.

252 S. Seki and A. Winslow

3-cycle formed by two consecutive specified states and an unspecified third state
(a half-fixed triple). Half-fixed triples are further organized into half-fixed inter-
vals, each consisting of a group of 2ai consecutive specified states and a group of
ai consecutive unspecified states for some distinct ai. The states are partitioned
into three groups:

– States s1 through s2pn are the specified halves of the half-fixed intervals.
– n + 1 equally-spaced fixed singletons in states s2pn+1, . . . , sK .
– The remaining pn states in states s2pn+1, . . . , sK partitioned into n sets of p

consecutive states.

See Fig. 2 for a toy example of the reduction.
The unspecified halves of the half-fixed intervals can be assigned to the third

group of states if and only if the input 3-partition instance has a solution. All
that remains is to describe the segments that force the construction of a fixed
singleton, half-fixed triple, and half-fixed interval.

Fixed Singleton. The fixed singleton segment ensures that a given state si has
δ(si, 1) = (si, 1). This is done by moving the current state to si, transducing a 1
to a 1, and checking whether the current state is still si (see Fig. 3).

0
0

0
0

si

1
10i−110K−i0 →

0i−110K−i1

Fig. 3. The fixed single segment and corresponding FST structure enforced.

Half-fixed Triple. The half-fixed triple segment forces two specified fixed states si,
si+1 and an unspecified free third state sj to have δ(si, 1) = (si+1, 1), δ(si+1, 1) =
(sj , 1), and δ(sj , 1) = (si, 1) (see Fig. 4).

0
0

0
0

0
0

0
0

1
1

1

0
0

si

1
1
10i−110K−i−100i110K−i−10 →

0i−110K−i−110i110K−i−11
sj

Fig. 4. The half-fixed triple segment and corresponding FST structure enforced.

The segment consists of two subsegments that each ensures a portion of the
structure. The first, 0i−110K−i−10 → 0i−110K−i−11, and ensures that δ(si, 1) =
(si+1, 1). The second, 0i110K−i−10 → 0i110K−i−11, ensures that δ(si+1, 1) =
(sj , 1) and δ(sj , 1) = (si, 1). The state sj cannot be in a fixed state of another
half-fixed triple segment with fixed states s′

i, s′
i+1 and free state s′

j , as then either:

– sj = s′
i and thus δ(sj , 1) = (s′

i+1, 1) �= (si, 1) (and thus the segment
0i−110K−i−10 → 0i−110K−i−11 is not transduced).

– sj = s′
i+1 and (s′

j , 1) = δ(s′
i+1, 1) = (si, 1), so δ(s′

j , 1) = (si+1, 1) �= (s′
i, 1)

(and thus the segment 0i
′−110K−i′−10 → 0i

′−110K−i′−11 is not transduced).

Fixed-Height Patterned Self-assembly 253

0
0

0
0

0
0

0
0

1
1

1

0
0

si

1
1
1

0
0

0
0

1
11

1

0
0

0
0

0
0

0
0

1
1

1
1

1
1

(0i−111010K−i−10)(0i11010K−i−20) →
(0i−111010K−i−11)(0i11010K−i−21)

1
1

sj

Fig. 5. The half-fixed interval segment for three consecutive free states and correspond-
ing FST structure enforced.

Half-fixed Interval. The half-fixed interval forces a collection of half-fixed triples
with consecutive fixed states to also have consecutive free states. It does so by
a simple traversal of the free states, checking that each has the expected pair of
consecutive fixed states (see Fig. 5). �

Any solution transduction for the previous reduction uses an FST where
each state has at most one incoming 1-transition and 0-transition, since every
transition lies on a cycle (of length 1, 3, or K). Also, any solution transduction
by an FST with K states traverses 2K distinct transitions (with K − 1 (0, 0)-
transitions, 1 (0, 1)-transition, and K (1, 1)-transitions). Any other solution FST
must have at least 2K states and traverse at least 2K + 1 distinct transitions:
2K 0-transitions and at least one 1-transition. Thus the following problem is
also NP-hard by the prior reduction:

Problem 5 (Promise encoding by FST). Given two strings S, S′ and an inte-
ger K with the following promises about any FST T with at most K states
transducing S to S′, does such a T exist?

– Each state of T has at most one incoming 0-transition.
– Each state of T has at most one incoming 1-transition.
– When transducing S to S′:

• K − 1 distinct (0, 0)-transitions are used.
• K distinct (1, 1)-transitions are used.
• 1 distinct (0, 1)-transition is used.
• The transitions are traversed in a unique specified order given as part of

the input.

Corollary 1. The Promise encoding by FST problem is NP-hard.

4 Height-2 PATS is NP-complete

Göös and Orponen [5] establish that all the variations of the PATS problem
considered here are in NP. So we need only consider their NP-hardness.

254 S. Seki and A. Winslow

Theorem 2. The non-uniform height-2 PATS problem is NP-hard.

Proof. The pattern output by the reduction consists of a bottom row encoding S
and a top row encoding the sequence of transitions traversed when transducing
S to S′ (provided as part of the Promise encoding by FST instance). The
bottom row encoding uses two colors, pink and red, corresponding to the two
symbols in S. The top row encoding uses 2K colors, one for each transition used
in the transduction of S to S′. The number of tile types permitted is T = 2K+2:
one type per color.

The north glues of the bottom row either encode S (distinct north glues for
the pink and red tile types) or 0|S| (same glue). The latter is impossible, since
then the leftmost |S| locations of the top row are filled by many repetitions of
the same K transitions. So the north glues of the bottom row encode S.

A set of 2K tile types that assemble the top row is equivalent to a set of 2K
transitions transducing S to S′, with source and destination states corresponding
to west and east glues. So the top row can be assembled using 2K tile types
exactly when S can be transduced to S′ using 2K transitions of the specified
types traversed in the specified order. Thus the pattern can be assembled using a
tile set of at most 2K types exactly when the corresponding instance of Promise
encoding by FST has a solution transducer. �

Theorem 3. The uniform height-2 PATS problem is NP-hard.

The addition of more rows with a new common color and increasing T by 1
suffices to prove both the uniform and non-uniform variants NP-hard for greater
heights.

5 Uniform Height-2 3-PATS is NP-complete

Problem 6 (Modified promise encoding by FST). Given two strings S, S′

and an integer K �≡ 0 (mod 3) with the following promises about any FST T
with at most K states transducing S to S′, does such a T exist?

– The first and last symbols of S′ are 2.
– Each state of T has at most one incoming 0-transition.
– Each state of T has at most one incoming 1-transition.
– Every (1, 1)-transition lies on a 1-cycle or 3-cycle of (1, 1)-transitions.
– When transducing S to S′:

• K − 1 distinct (0, 0)-transitions are used.
• K − 1 distinct (1, 1)-transitions are used.
• 1 distinct (0, 1)-transition is used.
• 1 distinct (1, 2)-transition is used.
• The transitions are traversed in a unique specified order given as part of

the input.

Lemma 2. The Modified promise encoding by FST problem is NP-hard.

Fixed-Height Patterned Self-assembly 255

Theorem 4. The uniform height-2, 3-PATS problem is NP-hard.

Proof. Let P be the following width-(1+|S′|+K2), height-2 pattern over 3 colors
:

where, for 1 ≤ i ≤ K−1,

Notice that, for any 1 ≤ i < j ≤ K, wi and wj differ in the position of 1. Split
the pattern P into the leftmost |S′|+1 columns and the remainder, called the
transduction and FST-constructor gadgets, respectively. The FST-constructor
gadget is further partitioned into K rectangular subpatterns of width K.

Next, consider the constraints on RTASs with at most |S′|+2K +2 tile types
that uniquely self-assemble P . Lemma 1 of Göös and Orponen [5] states that
any smallest RTAS that uniquely self-assembles a pattern is directed. As we will
prove, directed RTASs uniquely self-assembling P have size at least |S′|+2K +2
tile types; thus we need only consider directed systems.

Let the north and east glues of the seed be 0. The leftmost |S′|+1 locations in
the bottom row of P are orange, with a cyan location following. So these positions
must be tiled with orange tiles of pairwise-distinct type; the need for |S′| + 1
distinct orange tile types thus arises. Similarly, the leftmost K−1 cyan locations
in the bottom row must use K−1 distinct cyan tile types. These tile types share
the south glue 0, and since the system is directed, their west glues are pairwise
distinct. Label these K−1 cyan tile types left-to-right t00,2, t00,3, . . . , t00,K and
the gray tile type immediately right t01, as seen below.2 The cyan tile in the
northwest corner of P cannot have the same type as any of these K−1 types,
since otherwise this tile can also appear in the southwest corner of P . Call this
type t0. There are K tile types to be colored yet (illustrated as a dotted square).

These K tile types will turn out to be necessary, implying (|S′|+1)+(K−1)+
2 + K−1+1 = S′+2K+2 types total with K−1 colored gray and one colored
2 In these later labels, the first subscript indicates the kind of transition of the FST
that the tile type will be shown to simulate, e.g., t00,i is a (0, 0)-transition, t01 and
(0, 1)-transition, etc.

256 S. Seki and A. Winslow

orange. For this, we claim that the bottom row of all blocks but the first assemble
identically by establishing that the gray tiles attaching to the southeast corner
of the first two blocks are identical. Suppose not. Then the bottom row of the
second block cannot reuse cyan tile types used in the bottom row of the first
block. So the uncolored K tile types must be one gray and K−1 cyan types with
south glue 0. Thus the complete tile set includes only two gray tile types with
the south glue 0.

Consider the gray tile attaching at the northeast corner of the first block.
Its south glue is 0 and its west glue is equal to the east glue of the gray tile
attaching to its immediate left. This contradicts the directedness of the system,
since a cyan tile is provided with the same pair of west and south glues. Indeed,
both gray tile types appear at the southeast corner of a block and to their east
are cyan tiles attaching.

The verified claim brings following properties for all but the first block:

Property 1: For any 1 ≤ i ≤ K−1, tiles attaching at the i-th top-row position
of any two blocks but the first one have the same south glue; tiles
attaching at the K-th top-row position (northeast corner) of any
two blocks including the first one have the same south glue.

Property 2: Any such pair of tiles have pairwise-distinct east glues (and types).
Property 3: The assembly of the bottom row is provided with at least two

different kinds of north glues.

Property 2 holds since a orange tile is placed in the northeast corner of only
the last block. Thus without Property 3, o(K2) tile types would be necessary to
place the orange tile. Observe that for each 1 ≤ i ≤ K−3, the i-th position of
exactly one block is gray and the counterpart of all other blocks are cyan; for
each K−2 ≤ i ≤ K, the i-th position of only the last block is orange and the
counterpart of all others are gray. Thus, Properties 1 and 2 imply that the tile
type set must contain one orange and K−1 gray tile types whose south glue
is equal to the north glue of t01 and one gray and K−2 cyan tile types with a
common south glue.

We claim these requirements enforce that the north glue of t01 is not 0.
Suppose otherwise. Then the former requirement implies K−2 extra gray tile
types with south glue 0. So at most 3 tile types, including t0, have the non-0
south glue, and Property 3 cannot be satisfied. Thus, the north glue of t01 is not
0; call it 1. Tiles attaching at the northeast corner of the blocks must all have
distinct types due to Property 2, and now also their south glues must be 1. The
K uncolored tile types thus have south glue 1, and one is colored orange and all
the others are colored gray.

Fixed-Height Patterned Self-assembly 257

Note that a t0 tile cannot attach anywhere in the blocks. Indeed, it causes glue
mismatch with the seed being placed on the bottom row, and in order for it to
attach on the top row, it must share its south glue with K−3 cyan tile types due
to Properties 1 and 2. In summary, any minimum tile set uniquely assembling P
consists of K cyan tile types, K gray ones, and |S′|+2 orange ones.

Now we prove constraints on the glues of these types. With only K−1
cyan tile types with south glue 0, even the first block must assemble its bot-
tom row as other blocks do. That is, the bottom row of all blocks assemble as
t00,2t00,3 · · · t00,Kt01. Thus, the east glue of t01 is equal to the west glue of t00,2,
that is, s1. Since t0 does not appear in any block, Property 2 implies that the
north glues of t00,2, t00,3, . . . , t00,K−2 are 0 and that the north glues of t00,K−1

and t00,K are 1.
The top row of the last block is and its last four

positions are assembled as t01t2t2t2. This imposes that both the east and
west glues of t2 must be equal to the east glue of t01, that is, s1. Since S′ begins
with 2, the east glue of t0 is s1.

Since S′ ends with 2, no tile (necessarily of type t11,2, t11,3, . . . , t11,K by Prop-
erties 1 and 2) appearing at the northeast corner of a block has east glue s1.
Moreover, tiles attaching to their east are of type t00,2, . . . , t00,K or t01, thus
their east glues are in {s2, s3, . . . , sK}. Without loss of generality, assign them
as follows:

So the east glues of all tile types in the FST-construction gadget are in
{s1, . . . , sK}. The east glues of t11,2, . . . , t11,K are distinct and selected from
{s1, . . . , sK}. Since t11,2, . . . , t11,K share the south glue 1 with t2, the west glue
of t2 is s1, and the system is directed, the west glues are distinct and from
{s2, s3, . . . , sK}.

The only remaining flexibility in the design of the tile set is assigning west
glues to t11,2, . . . , t11,K , corresponding to the assignment of (1, 1)-transition

258 S. Seki and A. Winslow

sources in Modified promise encoding by FST. All that remains is to prove
this correspondence indeed holds.

The glue 0 is not in {s1, . . . , sK}, as otherwise a cyan or gray tile could appear
in the southwest corner of P . So none of the cyan, gray, or t2 tile types has east
glue 0 and thus a t0 tile cannot attach anywhere but the northwest corner of P .
Also, observe that the tile set constraints imply that the north glue of a tile in
the bottom row can be discerned by examining the color of the tile north and
(possibly) northeast (a cyan tile north implies a 0 glue, a gray tile north implies
a 0 or 1 glue if the color of the northeast tile is cyan or orange, respectively).

Finally, consider the tile types, excluding t0 and all orange tile types except
t2, as a set of transitions of an FST, with t00,i types as (0, 0)-transitions, t11,i
types as (1, 1)-transitions, t01 a (0, 1)-transition, and t2 a (1, 2)-transition. The
constraints induced on the resulting transitions (e.g. that there are K − 1 (1, 1)-
transitions because there are K −1 color-1 tile types with south glue 1) is found
as a constraint on the transitions in the statement of Lemma 2. In particular,
the choice of wi’s in consecutive blocks requires that every (1, 1)-transition lies
on a 1-cycle or 3-cycle of (1, 1)-transitions (the last constraint of Lemma 2).
Thus there exists a solution FST to the Modified promise encoding by
FST instance if and only if there exists a solution tile set. �

6 Efficiently Solvable PATS Problems

The non-uniform height-1 PATS problem is trivially solvable using one tile type
for each color. This idea can be generalized for all patterns of fixed height:

Theorem 5. The non-uniform height-h c-PATS problem can be solved in
cc

O(h)
n time.

As established in Sect. 5, a similar algorithm for the uniform model is impos-
sible unless P = NP. Nevertheless, the uniform height-1 PATS problem can be
solved in linear time using a pigeonhole argument and a DFS-based search for
the longest repetitive suffix of a given height-1 pattern:

Theorem 6. The uniform height-1 PATS problem can be solved in O(n) time.

7 Conclusion

Our work here extends the extensive prior work on the parameterized c-PATS
problem to also incorporate pattern height and uniformity, and finds a more
delicate complexity landscape: limited height and colors do not make the PATS
problem tractable, except when combined in the non-uniform model, or in degen-
erate cases (height-1 or 1-PATS). A single combination of parameters and model
remains unresolved; we conjecture the following:

Conjecture 1. The uniform height-2 2-PATS problem is NP-hard.

Fixed-Height Patterned Self-assembly 259

We encourage further parameterized analysis of problems in tile self-assembly
in support of recent efforts in developing a more complete understanding of the
structural complexity of tile self-assembly (see [14]).

Acknowledgements. We thank Yo-Sub Han for very fruitful discussions about finite
automata and tile self-assembly, and anonymous reviewers for comments that improved
the paper.

References

1. Angluin, D.: On the complexity of minimum inference of regular sets. Inf. Control
39, 337–350 (1978)

2. Czeizler, E., Popa, A.: Synthesizing minimal tile sets for complex patterns in the
framework of patterned DNA self-assembly. Theor. Comput. Sci. 499, 23–37 (2013)

3. Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55(12), 78–88
(2012)

4. Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling
under resource constraints. SIAM J. Comput. 4(4), 397–411 (1975)

5. Göös, M., Orponen, P.: Synthesizing minimal tile sets for patterned DNA self-
assembly. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp.
71–82. Springer, Heidelberg (2011)

6. Johnsen, A.C., Kao, M.-Y., Seki, S.: Computing minimum tile sets to self-assemble
color patterns. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Com-
putation. LNCS, vol. 8283, pp. 699–710. Springer, Heidelberg (2013)

7. Johnsen, A.C., Kao, M.-Y., Seki, S.: A manually-checkable proof for the NP-
hardness of 11-color pattern self-assembly tile set synthesis. J. Comb. Optim.
(2015) (In press)

8. Kari, L., Kopecki, S., Meunier, P.É., Patitz, M.J., Seki, S.: Binary pattern tile
set synthesis is NP-hard. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speck-
mann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 1022–1034. Springer, Heidelberg
(2015)

9. Ma, X., Lombardi, F.: Synthesis of tile sets for DNA self-assembly. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 27(5), 963–967 (2008)

10. Patitz, M.J.: An introduction to tile-based self-assembly. In: Durand-Lose, J.,
Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 34–62. Springer, Heidelberg
(2012)

11. Seki, S.: Combinatorial optimization in pattern assembly. In: Mauri, G., Dennunzio,
A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 220–231.
Springer, Heidelberg (2013)

12. Vazirani, U.V., Vazirani, V.V.: A natural encoding scheme proved probabilistic
polynomial complete. Theor. Comput. Sci. 24(3), 291–300 (1983)

13. Winfree, E.: Algorithmic self-Assembly of DNA. Ph.D. thesis, Caltech (1998)
14. Woods, D.: Intrinsic universality and the computational power of self-assembly.

Philos. Trans. R. Soc. A 373(2046) (2015)

Derivative-Based Diagnosis of Regular
Expression Ambiguity

Martin Sulzmann1(B) and Kenny Zhuo Ming Lu2

1 Faculty of Computer Science and Business Information Systems,
Karlsruhe University of Applied Sciences,

Moltkestrasse 30, 76133 Karlsruhe, Germany
martin.sulzmann@hs-karlsruhe.de

2 School of Information Technology, Nanyang Polytechnic, 180 Ang Mo Kio Ave 8,
Singapore 569830, Singapore

luzhuomi@gmail.com

Abstract. Regular expressions are often ambiguous. We present a novel
method based on Brzozowski’s derivatives to aid the user in diagnosing
ambiguous regular expressions. We introduce a derivative-based finite
state transducer to generate parse trees and minimal counter-examples.
The transducer can be easily customized to either follow the POSIX or
Greedy disambiguation policy and based on a finite set of examples it
is possible to examine if there are any differences among POSIX and
Greedy.

Keywords: Regular expressions · Derivatives · Ambiguity · POSIX ·
Greedy

1 Introduction

A regular expression is ambiguous if a string can be matched in more than one
way. For example, consider the expression x∗ +x where input string x can either
be matched against x∗ or x. Hence, this expression is ambiguous.

Earlier Works. There exist well-established algorithms to check for regular
expression ambiguity. However, most works report ambiguity in terms of an
automata which results from an ambiguity-preserving translation of the original
expression, e.g. see the work by Book, Even, Greibach and Ott [2]. From a user
perspective, it is much more useful to report ambiguity in terms of the original
expression. We are only aware of two works which like us perform the ambiguity
analysis on the original expression.

Brabrand and Thomsen [4] establish a structural relation to detect ambiguity
based on which they can provide minimal counter examples. They consider some
disambiguation strategies but do not cover the POSIX interpretation.

Borsotti, Breveglieri, Crespi-Reghizzi and Morzenti [3] show how to derive
parse trees based on marked regular expressions [8] as employed in the Berry-
Sethi algorithm [1]. They establish criteria to identify ambiguous regular expres-
sions. Like ours, their approach can be customized to support either the
c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 260–272, 2016.
DOI: 10.1007/978-3-319-40946-7 22

Derivative-Based Diagnosis of Regular Expression Ambiguity 261

POSIX [7] or Greedy [10] disambiguation policy. However, for POSIX/Greedy
disambiguation, their approach requires tracking of dynamic data based on the
Okui-Suzuki method [9]. Our approach solely relies on derivatives, no dynamic
tracking of data is necessary.

Our Work. Brzozowski’s derivatives [5] support the symbolic construction of
automata where expressions represent automata states. In earlier work [12], we
have studied POSIX matching based on derivatives. In this work, we show how to
adapt and extend the methods developed in [12] to diagnose ambiguous expres-
sions.

Contributions and Outline. In summary, our contributions are:

– We employ derivatives to compute all parse trees for a large class of (non-
problematic) regular expressions (Sect. 3).

– We can build a finite state transducer to compute these parse trees (Sect. 4).
– We can easily customize the transducer to either compute the POSIX or greedy

parse tree (Sect. 5).
– We can identify simple criteria to detect ambiguous expressions and to derive

a finite set of minimal counter-examples. Thus, we can statically verify if there
are any differences among POSIX and Greedy (Sect. 6).

The online version of this paper contains further details including proofs.1

Next, we introduce our notion of regular expression, parse trees and ambiguity.

2 Regular Expressions, Parse Trees and Ambiguity

The development largely follows [4,6]. We assume that symbols are taken from
a fixed, finite alphabet Σ. We generally write x, y, z for symbols.

Definition 1 (Words and Regular Expressions). Words are either empty
or concatenation of words and defined as follows: w :: = ε | x ∈ Σ | w · w.

We denote regular expressions by r, s, t. Their definition is as follows: r :: =
x ∈ Σ | r∗ | r · r | r + r | ε | φ The mapping to words is standard. L(x) = {x}.
L(r∗) = {w1 · ... · wn | n ≥ 0 ∧ wi ∈ L(r) ∧ i ∈ {1, .., n}}. L(r · s) = {w1 · w2 |
w1 ∈ L(r) ∧ w2 ∈ L(s)}. L(r + s) = L(r) ∪ L(s). L(ε) = {ε}. L(φ) = {}.

We say an expression r is nullable iff ε ∈ L(r).

As it is common, we assume that + and · are right-associative. That is, x + y +
x · y · z stands for x + (y + (x · (y · z))).

A parse tree explains which subexpressions match which subwords. We fol-
low [6] and view expressions as types and parse trees as values.

1 http://arxiv.org/abs/1604.06644.

http://arxiv.org/abs/1604.06644

262 M. Sulzmann and K.Z.M. Lu

Definition 2 (Parse Trees). Parse tree values are built using data construc-
tors such as lists, pairs, left/right injection into a disjoint sum etc. In case of
repetitive matches such as in case of Kleene star, we make use of lists. We use
Haskell style notation and write [v1, ..., vn] as a short-hand for v1 : ... : vn : [].

v :: = () | x | (v, v) | L v | R v | vs vs :: = [] | v : vs

The valid relations among parse trees and regular expressions are defined via a
natural deduction style proof system.

� [] : r∗ � v : r � vs : r∗

� (v : vs) : r∗
� v1 : r1 � v2 : r2

� (v1, v2) : r1 · r2

� v1 : r1

� L v1 : r1 + r2

� v2 : r2

� R v2 : r1 + r2
� () : ε

x ∈ Σ

� x : x

Definition 3 (Flattening). We can flatten a parse tree to a word as follows:

|()| = ε |x| = x |L v| = |v| |v : vs| = |v| · |vs|
|[]| = ε |(v1, v2)| = |v1| · |v2| |R v| = |v|

Proposition 4 (Frisch/Cardelli [6]). Let r be a regular expression. If w ∈
L(r) for some word w, then there exists a parse tree v such that � v : r and
|v| = w. If � v : r for some parse tree v, then |v| ∈ L(r).

Example 5. We find that x · y ∈ L((x · y + x + y)∗) where [L (x, y)] is a possible
parse tree. Recall that + is right-associative and therefore we interpret (x · y +
x + y)∗ as (x · y + (x + y))∗.

An expression is ambiguous if there exists a word which can be matched in
more than one way. That is, there must be two distinct parse trees which share
the same underlying word.

Definition 6 (Ambiguous Regular Expressions). We say a regular expres-
sion r is ambiguous iff there exist two distinct parse trees v1 and v2 such that
� v1 : r and � v2 : r where |v1| = |v2|.
Example 7. [L (x, y)] and [R (L x),R (R y)] are two distinct parse trees for
expression (x · y + x + y)∗ and word x · y.

Our ambiguity diagnosis methods will operate on arbitrary expressions. How-
ever, formal results are restricted to a certain class of ‘non-problematic’ expres-
sions.

Definition 8 (Problematic Expressions). We say an expression r is prob-
lematic iff it contains some sub-expression of the form s∗ where ε ∈ L(s).

For problematic expressions, the set of parse trees is infinite, otherwise finite.

Derivative-Based Diagnosis of Regular Expression Ambiguity 263

Example 9. Consider the problematic expression ε∗ where for the empty input
word we find the following (infinite) sequence of parse trees [], [()], [(), ()], ...

Proposition 10 (Frisch/Cardelli [6]). For non-problematic expressions, the
set of distinct parse trees which share the same underlying word is always finite.

Next, we consider computational methods based on Brzozowski’s derivatives
to compute parse trees.

3 Computing Parse Trees via Derivatives

Derivatives denote left quotients and they can be computed via a simple syntactic
transformation.

Definition 11 (Regular Expression Derivatives). The derivative of expres-
sion r w.r.t. symbol x, written dx(r), is computed by induction on r:

dx(φ) = φ dx(ε) = φ dx(r1 + r2) = dx(r1) + dx(r2) dx(r∗) = dx(r) · r∗

dx(y) =
{

ε if x = y
φ otherwise dx(r1 · r2) =

{
dx(r1) · r2 + dx(r2) if ε ∈ L(r1)
dx(r1) · r2 otherwise

The extension to words is as follows: dε(r) = r. dx·w(r) = dw(dx(r)).
A descendant of r is either r itself or the derivative of a descendant. We

write r � s to denote that s is a descendant of r. We write d(r) to denote the
set of descendants of r.

Proposition 12 (Brzozowski [5]). For any expression r and symbol x we find
that L(dx(r)) = {w | x · w ∈ L(r)}.

Thus, we obtain a simple word matching algorithm by repeatedly building the
derivative and then checking if the final derivative is nullable. That is, w ∈ L(r)
iff ε ∈ L(dw(r)). Nullability can easily be decided by induction on r. We omit
the straightforward details.

Example 13. Consider expression (x+y)∗ and input x ·y. We find dx((x+y)∗) =
(ε+φ) · (x+ y)∗ and dy(dx((x+ y)∗)) = (φ+φ) · (x+ y)∗ +(φ+ ε) · (x+ y)∗. The
final expression is nullable. Hence, we can conclude that x · y ∈ L((x + y)∗).

Based on the derivative method, it is surprisingly easy to compute parse trees
for some input word w. The key insights are as follows:

1. Build all parse trees for the final (nullable) expression.
2. Transform a parse tree for dx(r) into a parse tree for r by injecting symbol x

into dx(r)’s parse tree. Injecting can be viewed as reversing the effect of the
derivative operation.

264 M. Sulzmann and K.Z.M. Lu

Definition 14 (Empty Parse Trees). Let r be an expression. Then, allEpsr

yields a set of parse trees. The definition of allEpsr is by induction on r.

allEpsε = {()} allEpsφ = {} allEpsx = {}
allEpsr∗ = {[]} allEpsr1·r2 = {(v1, v2) | v1 ∈ allEpsr1 ∧ v2 ∈ allEpsr2}
allEpsr1+r2 = {L v1 | v1 ∈ allEpsr1} ∪ {R v2 | v2 ∈ allEpsr2}

If the expression is not nullable it is easy to see that we obtain an empty set.
For nullable expressions, allEpsr yields empty parse trees.

Proposition 15 (Empty Parse Trees). Let r be a nullable expression. Then,
for any v ∈ allEpsr we have that � v : r and |v| = ε.

Example 16. For the final (nullable) expression from Example 13 we find that
allEps(φ+φ)·(x+y)∗+(φ+ε)·(x+y)∗ = R (R (), []).

For nullable, non-problematic expressions r, we can state that allEpsr yields
all parse trees v for r where |v| = ε.

Proposition 17 (All Empty Non-problematic Parse Trees). Let r be a
non-problematic expression such that ε ∈ L(r). Let v be a parse tree such that
� v : r where |v| = ε. Then, we find that v ∈ allEpsr.

The non-problematic assumption is necessary. Recall Example 9.
What remains is to describe how to derive parse trees for the original expres-

sion. We achieve this by injecting symbol x into dx(r)’s parse tree.

Definition 18 (Injecting Symbols into Parse Trees). Let r be an expres-
sion and x be a symbol. Then, injsdx(r) is a function2 which maps dx(r)’s parse
tree to a set of parse trees of r. The definition is by induction on r.

injsdx (ε) = {} injsdx (φ) = {} injsdx (x) () = {x} injsdx (y) = {}
injsdx (r∗) (v , vs) = {v ′ : vs | v ′ ∈ injsdx (r) v}
injsdx ((r1·r2)) =

λv .case v of
(v1, v2) → {(v , v2) | v ∈ injsdx (r1) v1}
L (v1, v2) → {(v , v2) | v ∈ injsdx (r1) v1}
R v2 → {(v , v ′) | v ∈ allEpsr1 ∧ v ′ ∈ injsdx (r2) v2}

injsdx ((r1+r2)) =
λv .case v of

L v1 → {L v | v ∈ injsdx (r1) v1}
R v2 → {R v | v ∈ injsdx (r2) v2}

2 Additional arguments are x and r but we use notation injsdx(r) to highlight that
the definition is defined by pattern match over the various cases of the derivative
operation.

Derivative-Based Diagnosis of Regular Expression Ambiguity 265

In the above, we use Haskell style syntax such as lambda-bound functions
etc. The first couple of cases are straightforward. For brevity, we use the ‘don’t
care’ pattern and make use of a non-linear pattern in the third equation. In
case of Kleene star, the parse tree is represented by a sequence. We call the
injection function of the underlying expression on the first element. In case of
concatenation r1 · r2, we observe the shape of the parse tree of dx(r1 · r2). For
example, if we encounter R v2, the left component r1 must be nullable. Hence,
we apply allEpsr1

.
Via a straightforward inductive proof on r, we can verify that the injection

function yields valid parse trees.

Proposition 19 (Soundness of Injection). Let r be an expression, x be a
symbol and v be a parse tree such that � v : dx(r). Then, for any v′ ∈ injsdx(r)

we find that � v′ : r.

Example 20. Consider our running example where � R (R (), []) : dy(dx((x +
y)∗)). Then, injsdy(dx((x+y)∗)) (R (R (), [])) = {(L (), [y])} where � (L (), [y]) :
dx((x + y)∗) and dx((x + y)∗) = (ε + φ) · (x + y)∗.

As in case of allEpsr, we can only guarantee completeness for non-
problematic expressions.

Proposition 21 (Completeness of Non-problematic Injection). Let r
be a non-problematic expression and v a parse tree such that � v : r where
|v| = x · w for some letter x and word w. Then, there exists a parse tree v′ such
that (1) � v′ : dx(r) and (2) v ∈ injsdx(r) v′.

Definition 22 (Parse Tree Construction). Let r be an expression. Then,
the derivative-based procedure to compute all parse trees is as follows.

allParse r ε = allEpsr
allParse r x · w = {v | v ∈ injsdx (r) v ′ ∧ v ′ ∈ (allParse dx (r) w)}

Proposition 23 (Valid Parse Trees). Let r be an expression. Then, for each
v ∈ allParse r |v| we find that � v : r.

For non-problematic expressions, we obtain a complete parse tree construction
method.

Proposition 24 (All Non-problematic Parse Trees). Let r be a non-
problematic expression and v a parse tree such that � v : r. Then, we find
that v ∈ allParse r |v|.

In case of a fixed expression r, calls to allParse r repeatedly build the
same set of derivatives. We can be more efficient by constructing a finite state
transducer (FST) for a fixed expression r where states are descendants of r. The
outputs are parse tree transformation functions. This is what we will discuss
next.

266 M. Sulzmann and K.Z.M. Lu

4 Derivative-Based Finite State Transducer

The natural candidate for FST states are derivatives. That is, δ(r, x) = dx(r). In
general, descendants (derivatives) are not finite. Thankfully, Brzozowski showed
that the set of dissimilar descendants is finite.

Definition 25 (Similarity). We say two expressions r and s are similar,
written r ≈ s, if one can be transformed into the other by application of the
following rules.

(Idemp) r + r ≈ r (Comm) r1 + r2 ≈ r2 + r1

(Assoc) (r1 + r2) + r3 ≈ r1 + (r2 + r3) (Ctxt)
s ≈ t

R[s] ≈ R[t]

The (Ctxt) rules assumes expressions with a hole. We write R[s] to denote the
expression where the hole [] is replaced by s.

(Hole Expressions) R[] :: = [] | R[] · s | s · R[] | R[] + s | s + R[]

There is no hole inside Kleene star because the derivative operation will only
ever be applied on unfoldings of the Kleene star but never within a Kleene star
expression.

We write d(r)/≈ to denote the set of equivalence classes of d(r) w.r.t. the
equivalence relation ≈.

Proposition 26 (Brzozowski [5]). d(r)/≈ is finite for any expression r.

Based on the above, we build an automata where the set of states consists
of a canonical representative for all descendants of some expression r. A similar
approach is discussed in [13].

Definition 27 (Canonical Representative). For each expression r we com-
pute an expression C(r) by systematic application of the similarity rules: (1) Put
alternatives in right-associative normal form via rule (Assoc). (2) Remove dupli-
cates via rules (Idemp) where via rule (Comm) we push the right-most duplicates
to the left. (3) Repeat until there are no further changes.

Proposition 28 (Canonical Normal From). Let r be an expression. Then,
C(r) represents a canonical normal form of r.

Furthermore, alternatives keep their relative position. For example, C(r+s+
s1 + ...+sn +s+ t) = r+s+s1 + ...+sn + t. This is important for the upcoming
construction of POSIX and Greedy parse trees.

Proposition 29 (Finite Dissimilar Canonical Descendants). Let r be an
expression. Then, the set D(r) = {C(s) | r � s} is finite.

Like in case of injs , we need to maintain information how to transform parse
trees among similar expressions. Hence, we attach parse tree transformation
functions to the similarity rules.

Derivative-Based Diagnosis of Regular Expression Ambiguity 267

Definition 30 (Similarity with Parse Tree Transformation). We write

r
f
 s to denote that expressions r and s are similar and a parse tree of s can be

transformed into a parse tree of r via function f . In case the function returns a

set of parse trees we write r
fs
 s. We write r
 s if the parse tree transformation

is not of interest.

(Idemp)
fs(u) = {L u,R u}

r + r
fs� r

(Comm)

f(L u) = R u

f(R u) = L u

r1 + r2
f� r2 + r1

(Assoc)

f(L u1) = L (L u1)

f(R (L u2)) = L (R u2)

f(R (R u3)) = R u3

(r1 + r2) + r3
f� r1 + (r2 + r3)

(Lift)

r
f� s

fs(u) = {f(u)}
r

fs� s

(C1)

s
fs� t

gs(ur, ut) = {(ur, us) | us ∈ fs(ut)}
r · s gs� r · t

(C2)

s
fs� t

gs(ut, ur) = {(us, ur) | us ∈ fs(ut)}
s · r gs� t · r

(C3)

s
fs� t

gs(L ur) = {L ur}
gs(R ut) = {R us | us ∈ fs(ut)}

r + s
gs� r + t

(C4)

s
fs� t

gs(L ut) = {L us | us ∈ fs(ut)}
gs(R ur) = {R ur}

s+ r
gs� t+ r

The above rules are derived from the ones in Definition 25 by providing the
appropriate parse tree transformations. Due to the similarity rule (Idemp) we
may obtain a set of parse trees. Rules (C1-4) cover all the cases described by rule
(Ctxt). The attached (transformation) functions yield valid parse trees (sound-
ness) and every parse tree of a similar expression can be obtained (completeness).

Proposition 31 (Soundness of Transformation). Let r and s be two

expressions and fs a function such that r
fs
 s. Then, we find that (1) r ≈ s

and (2) for any parse tree v where � v : s we have that � v′ : r for any
v′ ∈ fs(v).

Proposition 32 (Completeness of Transformation). Let r and s be two

expressions and v be a parse tree such that � v : r and r ≈ s. Then, r
fs
 s

where v ∈ fs(v′) for some v′ such that � v′ : s.

The FST to compute parse trees for some expression r consists of states D(r).
Each state transition from s to C(dx(s)) yields as output a parse tree transformer

function which is a composition of injsdx(s) and fs where dx(s)
fs
 C(dx(s)).

Definition 33 (FST Construction). Let r be an expression. We define
FST (r) = (Q,Σ, δ, q0, F) where Q = D(r), q0 = r, F = {s ∈ Q | ε ∈ L(s)} and

for each s ∈ Q and x ∈ Σ we set δ(s, x) = (C(dx(s)), gs) where dx(s)
fs
 C(dx(s))

and gs(u) = {u2 | u1 ∈ fs(u) ∧ u2 ∈ injsdx(s) u1}.

268 M. Sulzmann and K.Z.M. Lu

The transition relation δ is inductively extended to words as follows. We
define δ(s, ε) = (s, λu.{u}) and δ(s, x · w) = (r, fs) where δ(s, x) = (t, gs) and
δ(t, w) = (r, hs) where fs(u) = {u2 | u1 ∈ hs(u) ∧ u2 ∈ gs(u1)}.
Proposition 34 (All Non-problematic Parse Trees via FST). Let r be a
non-problematic expression and v a parse tree such that � v : r. Let FST (r) =
(Q,Σ, δ, q0, F). Then, we find that v ∈ fs(allEpsr′) where δ(r, |v|) = (r′, fs).

5 Computing POSIX and Greedy Parse Trees

Based on our earlier work [12] we can immediately conclude that the ‘first’
(left-most) match obtained by executing FST (r) is the POSIX match.3 The
use of derivatives guarantees that the longest left-most (POSIX) parse tree is
computed.

Proposition 35 (POSIX). Let r be an expression and w be a word such
that w ∈ L(r). Let FST (r) = (Q,Σ, δ, q0, F). Let δ(r, w) = (r′, fs) for some
expression r′ and transformer fs. Then, fs(allEpsr′) = {v1, ..., vn} for some
parse trees vi where v1 is the POSIX match.

With little effort it is possible to customize our FST construction to compute
Greedy parse trees. The insight is to normalize derivatives such that they effec-
tively correspond to partial derivatives. Via this normalization step, we obtain
as the ‘first’ result the Greedy (left-most) parse tree. This follows from our ear-
lier work [11] where we showed that partial derivatives naturally yield greedy
matches.

We first define partial derivatives which are a non-deterministic generaliza-
tion of derivatives. Instead of a single expression, the partial derivative operation
yields a set of expressions.

Definition 36 (Partial Derivatives). Let r be an expression and x be a sym-
bol. Then, the partial derivative of r w.r.t. x is computed as follows:

pdx(φ) = {}
pdx(ε) = {} pdx(y) =

{{ε} if x = y
{} otherwise

pdx(r1 + r2) = pdx(r1) ∪ pdx(r2) pdx(r∗) = {r′ · r∗ | r′ ∈ pdx(r)}
pdx(r1 · r2) =

{{r′
1 · r2 | r′

1 ∈ pdx(r1)} ∪ pdx(r2) if ε ∈ L(r1)
{r′

1 · r2 | r′
1 ∈ pdx(r1)} otherwise

Let M = {r1, ..., rn} be a set of expressions. Then, we define +M = r1 + ...+
rn and +{} = φ.

To derive partial derivatives via derivatives, we impose the following addi-
tional similarity rules.
3 Technically, we treat the set of parse trees like a list. Recall that allEps· and the

simplification rule (Idemp) favor the left-most match. Alternatives keep their relative
position in an expression.

Derivative-Based Diagnosis of Regular Expression Ambiguity 269

Definition 37 (Partial Derivative Similarity Rules).

(Dist)

f(L (ur, ut)) = (L ur, ut)
f(R (us, tt)) = (R us, ut)

(r + s) · t
f
 r · t + s · t

(ElimPhi) φ · r
⊥
 φ

Rule (Dist) mimics the set-based operations performed by pd·(·) in case of
concatenation and Kleene star. Rule (ElimPhi) covers cases where the set is
empty. We use ⊥ to denote the undefined parse tree transformer function. As
there is no parse tree for φ this function will never be called.

Proposition 38 (Partial Derivatives as Normalized Derivatives). Let r
be an expression and x be a symbol. Then, we have that +pdx(r) is syntactically
equal to some expression s such that dx(r)
 s. We ignore the transformer
function which is not relevant here.

Based on the above and our earlier results in [11] we can immediately con-
clude the following.

Proposition 39 (Greedy). Let r be an expression and w be a word such
that w ∈ L(r). Let FST (r) = (Q,Σ, δ, q0, F) where we additionally apply the
similarity rules in Definition 37 such that canonical representatives satisfy the
property stated in Proposition 38. Let δ(r, w) = (r′, fs) for some expression r′

and transformer fs. Then, fs(allEpsr′) = {v1, ..., vn} for some parse trees vi

where v1 is the Greedy parse tree.

6 Ambiguity Diagnosis

We can identify three situations where ambiguity of r arises during the construc-
tion of FST (r). The first situation concerns nullable expressions. If we encounter
multiple empty parse trees for a nullable descendant (accepting state) then we
end up with multiple parse trees for the initial state. Then, the initial expression
is ambiguous.

The second situation concerns the case of injecting a symbol into the parse
tree of a descendant. Recall that the injs function from Definition 18 possibly
yields a set of parse trees. This will only happen if we apply the derivative
operation on some subterm t1 · t2 where t1 is a nullable expression with multiple
empty parse trees.

The final (third) situation ambiguous situation arises in case we build canon-
ical representatives. Recall Definition 30. We end up with multiple parse trees
whenever we apply rule (Idemp).

These are the only situations which may give rise to multiple parse trees.
That is, if none of these situations arises the expression must be unambiguous.
We summarize these observations in the following result.

270 M. Sulzmann and K.Z.M. Lu

Definition 40 (Realizable State). We say that s ∈ D(r) is realizable, if
there exists a path in FST (r) such that (1) we reach s and (2) along this path
all states (expressions) including s do not describe the empty language.

Proposition 41 (Ambiguity Criteria). Let r be a non-problematic expres-
sion. Then, r is ambiguous iff there exists a realizable s ∈ D(r) and some symbol
x where one of the following conditions applies:

A1. |allEpss| > 1, or
A2. s = R[t1 · t2]where |allEpst1 | > 1, or

A3. L(C(dx(s))) �= {}anddx(s)
fs
 C(dx(s))with rule (Idemp) applied.

The above criteria are easy to verify. In terms of the FST generated, criteria
A1 is always connected to a final state whereas criteria A2 and A3 are always
connected to transitions.

1

2

x
3

y

y|3

4

x

5
x

y|2-3
x|2-3

x

y

Fig. 1. FST ((x · x∗ + y · x + x · y · x)∗ · y)

Consider the following example taken from [3]. See Fig. 1. We find ambiguous
transitions due to A2 and A3. Such transitions are represented as dotted arrows
with labels to indicate A2 and A3. Ambiguity due to A1 does not arise for this
example.

Let us investigate the ambiguous transition from state 2 to state 3. We carry
out the constructions of states starting with the initial expression r · y where
r = (x · x∗ + y · x + x · y · x)∗. For brevity, we make use of additional similarity
rules such as ε·s ≈ s to keep the size of descendants manageable. In the following,
we write r

x→ s if s = dx(r).

r · y
x→ ((x∗ + y · x) · r) · y

y→ (x · r) · y + (x · r) · y + ε ≈ (x · r) · y + ε

In the last step, we apply rule (Idemp). Hence, the ambiguous transition from
state 2 to state 3.

State 3 is final, however, x·y is not yet a full counter-example to exhibit ambi-
guity. In essence, x·y is a prefix of the full counter-example x·y·x·y. For this exam-
ple, we obtain parse trees ([L (x, []),L (R (x, y))], y) and (R (R (x, (y, x))), y).
The first one is obtained via Greedy and the second one via POSIX.

Derivative-Based Diagnosis of Regular Expression Ambiguity 271

To summarize, from the FST it is straightforward to derive minimal prefixes
of counter-examples. To obtain actual counter-examples, minimal prefixes need
to be extended so that a final state is reached. Based on the FST, we could
perform a breadth-first search to calculate all such minimal counter-examples.
Alternatively, we can built (minimal) counter-examples during the construction
of the FST.

There is clearly much scope for more sophisticated ambiguity diagnosis based
on the information provided by the FST. An immediate application is to check
(statically) any differences among Greedy and POSIX. We simply check both
methods against the set of minimal counter-examples. It is clear that there are
only finitely many (minimal) counter-examples as there are a finite number of
states and transitions. Obtaining more precise bounds on their size is something
to consider in future work.

Acknowledgments. We thank Peter Thiemann and the reviewers for their comments.

References

1. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theoret.
Comput. Sci. 48(1), 117–126 (1986). http://dl.acm.org/citation.cfm?id=39528.
39537

2. Book, R., Even, S., Greibach, S., Ott, G.: Ambiguity in graphs and expres-
sions. IEEE Trans. Comput. 20(2), 149–153 (1971). http://dx.doi.org/10.1109/
T-C.1971.223204

3. Borsotti, A., Breveglieri, L., Crespi Reghizzi, S., Morzenti, A.: From ambiguous
regular expressions to deterministic parsing automata. In: Drewes, F. (ed.) CIAA
2015. LNCS, vol. 9223, pp. 35–48. Springer, Heidelberg (2015)

4. Brabrand, C., Thomsen, J.G.: Typed and unambiguous pattern matching on
strings using regular expressions. In: Proceedings of PPDP 2010, pp. 243–254.
ACM (2010)

5. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
6. Frisch, A., Cardelli, L.: Greedy regular expression matching. In: Dı́az, J.,

Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142,
pp. 618–629. Springer, Heidelberg (2004)

7. Institute of Electrical, Electronics Engineers (IEEE): Standard for information
technology - Portable Operating System Interface (POSIX) - Part 2 (Shell
and utilities), Section 2.8 (Regular expression notation), IEEE Standard 1003.2,
New York (1992)

8. McNaughton, R., Yamada, H.: Regular expressions and finite state graphs for
automata. IRE Trans. Electron. Comput. EC 9(1), 38–47 (1960)

9. Okui, S., Suzuki, T.: Disambiguation in regular expression matching via position
automata with augmented transitions. In: Domaratzki, M., Salomaa, K. (eds.)
CIAA 2010. LNCS, vol. 6482, pp. 231–240. Springer, Heidelberg (2011)

10. PCRE - Perl Compatible Regular Expressions. http://www.pcre.org/
11. Sulzmann, M., Lu, K.Z.M.: Regular expression sub-matching using partial deriva-

tives. In: Proceedings of PPDP 2012, pp. 79–90. ACM (2012)

http://dl.acm.org/citation.cfm?id=39528.39537
http://dl.acm.org/citation.cfm?id=39528.39537
http://dx.doi.org/10.1109/T-C.1971.223204
http://dx.doi.org/10.1109/T-C.1971.223204
http://www.pcre.org/

272 M. Sulzmann and K.Z.M. Lu

12. Sulzmann, M., Lu, K.Z.M.: POSIX regular expression parsing with derivatives. In:
Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 203–220. Springer,
Heidelberg (2014)

13. Watson, B.W.: A taxonomy of finite automata minimization algorithmes. Com-
puting Science Note 93/44. Eindhoven University of Technology, The Netherlands
(1993)

Regular Approximation of Weighted Linear
Nondeleting Context-Free Tree Languages

Markus Teichmann(B)

Department of Computer Science,
Technische Universität Dresden, 01062 Dresden, Germany

markus.teichmann@mailbox.tu-dresden.de

Abstract. We show how to train a weighted regular tree grammar
such that it best approximates a weighted linear nondeleting context-
free tree grammar concerning the Kullback-Leibler divergence between
both grammars.

1 Introduction

In the field of natural language processing (NLP), formal grammars play a
central role to model sentences of a natural language. There is the classical
compromise between modeling capabilities and computation costs. In the exist-
ing literature, the connection between computationally favorable regular string
grammars (REGs) and the more expressive context-free string grammars (CFGs)
is studied. It has been shown how to approximate a CFG by a REG [8] and how
to approximate weight structures in the weighted case [9].

Since context-free string grammars are not sufficient to capture all phenom-
ena of natural languages [15], more powerful extensions are investigated. Tree
grammars include additional information about the structure of sentences into
the formal representation of a natural language. One well-established class of tree
grammars is the class of tree adjoining grammars (TAGs) [5]. The approximation
result from the string case has been extended in [10] showing how to approxi-
mate a weighted TAG by a weighted regular tree grammar (wRTG). Since TAGs
are expressively equivalent to linear monadic context-free tree grammars [3,6],
it seems worthwhile to lift the approximation result to the more general case of
linear nondeleting context-free tree grammars (lnCFTGs, cf. [14]).

We show how a given weighted lnCFTG (wlnCFTG) can be approximated by
a wRTG where the underlying RTG-structure is given. For this, we extend the
string case, the result for TAGs, and use similar concepts as in the approximation
of weighted CFG given infinite tree corpora [1]. As a technical tool, we use the
intersection of the given wlnCFTG and an unambiguous RTG, which is done
similarly to the case for TAGs [10] and for synchronous lnCFTGs [11].

In detail, we proceed as follows. Given a wlnCFTG (G, pG) and an unam-
biguous RTG H, we will intersect (G, pG) and H to obtain a wlnCFTG (K, pK).
We then use (K, pK) to obtain an optimal weight assignment pH for H such that
the Kullback-Leibler divergence between (G, pG) and (H, pH) is minimized.

M. Teichmann—Financially supported by DFG Graduiertenkolleg 1763 (QuantLA).

c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 273–284, 2016.
DOI: 10.1007/978-3-319-40946-7 23

274 M. Teichmann

2 Preliminaries

Mathematical Notions. The set of natural numbers {0, 1, . . .} is denoted by N and
N+ = N \ {0}. The set of finite sequences over N+ is denoted by N

∗
+ (including

the empty sequence ε). For n ∈ N, we let [n] = {1, . . . , n}; hence [0] = ∅. An
alphabet is a nonempty and finite set. The set of words over the alphabet Σ is
denoted by Σ∗ with ε being the empty word. Let I and A be sets and f : I → A
a function. We call f an I-indexed family over A (for short: family), denoted by
f = (fi | i ∈ I) with fi = f(i) ∈ A. The powerset of A is denoted by P(A).

We fix an infinite list x1, x2, . . . of pairwise distinct variables. We write X =
{x1, x2, x3, . . .} and Xk = {x1, . . . , xk}. We abbreviate x1, . . . , xk to x1..k and
apply this abbreviation also to sequences of other objects.

In this paper, we use weights over R with usual sum and product. We denote
the logarithm in base 2 by log(·) and assume 0 · log 0

0 = 0 · log 0 = 0.

Trees. A ranked alphabet is a pair (Δ, rkΔ), where Δ is an alphabet and
rkΔ : Δ → N is a function. For every δ ∈ Δ, we call rkΔ(δ) the rank of δ.
We abbreviate the set rkΔ

−1(k) to Δ(k) and (Δ, rkΔ) to Δ assuming that rkΔ

is the rank function. In this paper, Δ denotes an arbitrary ranked alphabet.
We assume that Δ ∩ X = ∅ and write α instead of α() for each nullary symbol
α ∈ Δ(0).

Let U be a set. We denote the set of trees over Δ and U by TΔ(U) and
write TΔ for TΔ(∅). Positions in trees are identified by finite sequences over N+.
Formally, for each ξ ∈ TΔ(U), the set of positions of ξ, denoted by pos(ξ),
is defined inductively as follows: (i) if ξ ∈ Δ(0) ∪ U , then pos(ξ) = {ε}, and
(ii) if ξ = δ(ξ1, . . . , ξk) for some δ ∈ Δ(k), k ≥ 1, and ξ1, . . . , ξk ∈ TΔ(U), then
pos(ξ) = {ε} ∪ {iv | i ∈ [k], v ∈ pos(ξi)}. For a position w ∈ pos(ξ), the label of
ξ at w and the subtree of ξ at w are denoted by ξ(w) and ξ|w, respectively. For
every V ⊆ Δ ∪ U , we denote the set of positions of ξ labeled by an element of
V by posV (ξ); if V is a singleton {v}, then we simply write posv (ξ). We define
the yield of ξ, denoted by yield(ξ), as the string over Δ(0) ∪ U of all leaf nodes
read from left to right.

Let U be a finite set with Δ ∩ U = ∅. A context over Δ and U is a tree in
TΔ(U) in which each element u ∈ U occurs exactly once. The set of all such
contexts is denoted by CΔ(U).

Let k ∈ N, ξ ∈ TΔ(X), and ξ1..k ∈ TΔ(X). The tree concatenation of ξ with
ξ1..k at x1..k, denoted by ξ[ξ1..k], is obtained from ξ by simultaneously replacing
each xi by ξi for each i ∈ [k].

3 Weighted Context-Free Tree Languages and Weighted
Regular Tree Languages

A linear nondeleting context-free tree grammar1 (lnCFTG) is a tuple G =
(N,Δ,A0, R), where N and Δ are ranked alphabets (of nonterminals and ter-
minals, respectively) such that N ∩ Δ = ∅, A0 ∈ N (0) (initial nonterminal),
1 Sometimes called simple context-free tree grammars in the literature.

Weighted Linear Nondeleting Context-Free Tree Languages 275

and R is a finite set of rules of the form A(x1..k) → ξ with k ∈ N, A ∈ N (k),
and ξ ∈ CN∪Δ(Xk). In a rule r ∈ R of the form A(x1..k) → ζ the left-hand
side nonterminal of r is A, denoted by lhn (r). For each A ∈ N , we abbreviate
A(x1..rkN (A)) by A(x) and we define the A-restriction of R, denoted by R|A, as
R|A = {r ∈ R | lhn (r) = A}.

In the following, let G = (N,Δ,A0, R) be an arbitrary lnCFTG. The deriva-
tion relation ⇒ is defined as follows. For trees ξ, ξ′ ∈ TN∪Δ(X) and a rule r
of the form A(x1..k) → ζ in R, we have ξ ⇒r ξ′ if there is a position w ∈
posA (ξ) such that ξ′ is obtained from ξ by replacing the subtree at position w
by ζ[ξ|w1, . . . , ξ|wk]. Thus if ξ is a context, then so is ξ′. We write ξ ⇒ ξ′ if ξ ⇒r ξ′

for some r ∈ R, i.e., ⇒=
⋃

r∈R ⇒r. We denote the reflexive, transitive closure of
⇒ by ⇒∗. For v ∈ R∗, we inductively define ⇒v as follows. If v = ε, then ⇒ε is
the identity. If v = ru for some r ∈ R and u ∈ R∗, then ⇒v = ⇒r ◦⇒u.

Let k ∈ N and A ∈ N (k). A derivation of G starting in A is a sequence
ξ0 ⇒r1 ξ1 ⇒r2 . . . ⇒rn

ξn where n ∈ N, ξ0 = A(x), and for i ∈ [n], we have
ξi ∈ CN∪Δ(Xk) and ξi−1 ⇒ri

ξi. We call a derivation complete, if ξn ∈ CΔ(Xk),
i.e., there are no nonterminals in ξn. We call a derivation leftmost outermost if
always the leftmost and outermost (considering a tree as a term) nonterminal
occurrence is derived.

For k ∈ N and ζ ∈ CN∪Δ(Xk), the tree language induced by ζ on G is

L (G, ζ) = {ξ ∈ CΔ(Xk) | ζ ⇒∗ ξ}.

The tree language of G, denoted by L (G), is defined as L (G) = L (G,A0).

Tree-Shaped Derivations. Let G = (N,Δ,R,A0) be a lnCFTG. We consider R as
a ranked alphabet. Let r ∈ R be of the form A(x) → ζ. Then rkR(r) = |posN (ζ)|.
The nonterminal word of r, denoted by nt(r), is the word of nonterminal occur-
rences in ζ ordered lexicographically by their position. Note that nt(r) ∈ N∗

and that, considering ζ as a term, the order of nt(r) is leftmost outermost.
We simultaneously define an N -indexed family over P(TR), denoted by

(DG(A) | A ∈ N) as follows. Let A ∈ N , d ∈ TR, and r = d(ε). Then d ∈ DG(A)
if (i) lhn(r) = A and (ii) for each i ∈ [rkR(r)] we have d|i ∈ DG(Ai) where
Ai = nt(r)(i). We call each element in DG(A) a tree-shaped derivation starting
in A.

Observation 1. Let A ∈ N . There is a one-to-one correspondence between
DG(A) and the set of complete leftmost outermost derivations starting in A.

Let d ∈ DG(A) and d′ be the corresponding complete leftmost outermost deriva-
tion starting in A according to Observation 1. We write A ⇒d ξ instead of
A ⇒d′ ξ.

We abbreviate DG(A0) to DG. Furthermore, for each ξ ∈ TΔ and r ∈ R, we
define the sets

– DG(ξ) of derivations ending in ξ as DG(ξ) = {d ∈ DG | A0 ⇒d ξ} and
– DG(r) of derivations starting with r as DG(r) = {d ∈ DG(lhn(r)) | r = d(ε)}.

276 M. Teichmann

We are also interested in derivations where one occurrence of a nonterminal
is not derived. For A,B ∈ N , we define the set of B-partial derivations starting
in A denoted by DB

G(A) which are defined in the following. Let d ∈ CR(X1).
Then d ∈ DB

G(A) if there is dB ∈ DG(B) such that d[dB] ∈ DG(A).
We say that the lnCFTG G is unambiguous if, for each ξ ∈ TΔ, we have that

|DG(ξ)| ∈ {0, 1}, i.e., if ξ is in L (G), then there is exactly one derivation for ξ.
A regular tree grammar (RTG) is a lnCFTG in which each nonterminal has

rank 0. A tree language L ⊆ TΔ is regular over Δ if there is a RTG G =
(N,Δ,A0, R) such that L (G) = L. We may say that a tree language is regular
if it is regular over Δ for some Δ.

Weighted lnCFTGs. A weighted linear nondeleting context-free tree grammar
over R (wlnCFTG) is a tuple (G, pG) where G = (N,Δ,A0, R) is a lnCFTG
and pG is a mapping pG : R → R, which we call weight assignment for G.

Let (G, pG) be a wlnCFTG, A,B ∈ N , and d ∈ DG(A) ∪ DB
G(A).

Then the weight of d in (G, pG), denoted by pG(d), is defined as pG(d) =∏
w∈posR(d) pG(d(w)). For each ξ ∈ TΔ, we define the weight of ξ in (G, pG),

denoted by pG(ξ), as pG(ξ) =
∑

d∈DG(ξ) pG(d).
We call pG proper if for each A ∈ N we have

∑
r∈R|A pG(r) = 1. Furthermore,

pG is called consistent if
∑

ξ∈TΔ
pG(ξ) = 1. We call (G, pG) proper (consistent)

if pG is proper (consistent). The support of (G, pG), denoted by supp(G, pG), is
defined as supp(G, pG) = {ξ ∈ TΔ | pG(ξ) �= 0}.

A weighted regular tree grammar (wRTG) is a wlnCFTG (H, pH) where H
is a RTG.

Normal Forms Let G = (N,Δ,A0, R) be a lnCFTG. We say that G is in
nonterminal form if every rule is of one of the following two forms:

– Type I: A(x1..k) → ξ with ξ ∈ CN (Xk), or
– Type II: A(x1..k) → δ(x1..k) for some δ ∈ Δ.

A wlnCFTG (G, pG) is in nonterminal form if G is. The following lemma is
proven in [13, p. 113]. The weighted version follows from a simple extension.

Lemma 2. For every lnCFTG G, there is a lnCFTG G′ in nonterminal form
such that L (G) = L (G′).

For every wlnCFTG (G, pG), there is a wlnCFTG (G′, pG′) in nonterminal
form such that, for each ξ ∈ TΔ, we have pG(ξ) = pG′(ξ). The construction
preserves properness and consistency.

Let H = (NH ,Δ,B0, RH) be a RTG. We say that H is producing2 if each
rule is of the form B → δ(B1..k) for some δ ∈ Δ and B,B1, . . . , Bk ∈ NH . A
wRTG (H, pH) is producing if H is.

Lemma 3. [4, Chapter II, Lemma 3.4] For each RTG H, there is a producing
RTG H ′ such that L (H) = L (H ′).
2 In the existing literature about RTG, producing is called normal form. In the litera-

ture about CFTG, the nonterminal form is also called normal form. Thus, the term
normal form is avoided in this paper.

Weighted Linear Nondeleting Context-Free Tree Languages 277

(a) A0 → A

Aα Aα

1.0

A(x1, x2) →

A

Aγ

Aγ

x1

Aγ

x2

0.3 ∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Aκ

x1 x2

0.7

(b) B0 →
κ

B1 B1

Aκ(x1, x2) → κ

x1 x2

1.0

Aγ(x1, x2) → γ

x1

1.0

Aα → α
1.0 B1 →

γ

B1

∣
∣

α

Fig. 1. (a) Example wlnCFTG (G, pG). (b) Example RTG H.

4 Approximation of a WlnCFTG by a wRTG

As main result, we show how to approximate a wlnCFTG (G, pG) by a wRTG
(H, pH). We will assume that we are given the unambiguous and producing
RTG H, and find the best possible proper weight assignment pH according to
the Kullback-Leibler divergence. Note that each RTG can be made unambiguous
by the following steps. First, construct the associated nondeterministic finite
tree automaton. Then determinize it using standard techniques [4, Chapter II,
Theorem 2.6] and finally transform it back to an RTG.

The approximation is similar to the approach of [9,10] and we will need two
intermediate concepts. First, we show how to intersect a (w)lnCFTG with a
(w)RTG. Second, we define the notion of the expected frequency of a rule in a
wlnCFTG. Then, the intersection of (G, pG) with (H,1) (1 is a trivial weight
assignment) is used to define expected frequencies for the rules in H. These
frequencies are used to obtain a weight assignment pH such that (H, pH) best
approximates (G, pG).

As a running example, we consider the wlnCFTG (G, pG) from Fig. 1(a) and
the RTG from Fig. 1(b). Note that G is in nonterminal form and H is producing.
By considering the rules, it can be seen that L (G) = {κ(γ(2n)(α), γn(α)) |
n ∈ N} and L (H) = {κ(γn(α), γm(α)) | n,m ∈ N} and thus, H is a superset
approximation of G. Note that the rules of H cannot ensure that the number
of γ’s in the left subtree of κ is larger than in the right subtree.

4.1 Intersection of a lnCFTG and a RTG

The class of context-free tree languages is closed under intersection with regular
tree languages [13, p. 114]. In the original proof, Theorem 7 of [14] is applied
which introduces copies and deletion. It is possible to exchange Theorem 7 of
[14] by a construction which preserves linearity and nondeletion (cf., e.g., [12,
Lemma 3] for the more general case of linear and nondeleting one-state weighted
pushdown-extended tree transducers). A complete construction for the intersec-
tion is described in [11, p. 60], which, given a (synchronous) lnCFTG G and
RTG H, yields a (synchronous) lnCFTG K such that the language of K is the
intersection of the languages of G and H.

278 M. Teichmann

Here, we show a slightly modified version of the construction in [11] and
identify properties of the constructed grammar which we will use in the rest
of the paper. The main idea is, as in both [11,12], to annotate nonterminals
of G with nonterminals of H. In contrast to [11] and since we require G to be
in nonterminal form and H to be producing, we can describe the intersection
similar to the string case [9]. Each nonterminal in G is annotated with all possible
combinations of nonterminals from H. Terminal symbols can only be generated
if the guess was correct. In [11] this checking is partly done using additional
RTGs.

Let G = (NG,Δ,A0, RG) be a lnCFTG in nonterminal form and H =
(NH ,Δ,B0, RH) be a producing RTG. We let

N ′ =
⋃

k∈N

NH × N
(k)
G × (NH)k

be a ranked alphabet where rkN ′((B,A,B1. . .Bk)) = rkNG
(A) = k.

For each right hand side ζ of a rule from G of Type I, we represent the choice
of corresponding nonterminals by an assignment τ that assigns one state to each
position in ζ. Formally, for every ζ ∈ TNG

(X) and function τ : pos(ζ) → NH ,
we define ζτ ∈ TN ′(X) as follows. For each w ∈ pos(ζ) we have

ζτ (w) =

{(
τ(w), ζ(w), τ(w1) . . . τ(w�)

)
if ζ(w) ∈ N

(�)
G ,

ζ(w) if ζ(w) ∈ X.

We define the lnCFTG K = (N ′,Δ,A0
′, R′), where A0

′ = (B0, A0, ε) and R′

is defined as follows. For each Type I rule rG ∈ RG of the form A(x1..k) → ζ,
B,B1, . . . , Bk ∈ NH , and τ : pos(ζ) → NH such that (i) τ(ε) = B and (ii) for
each i ∈ [k] and wi ∈ posxi

(ζ), it holds that τ(wi) = Bi, we let

r′ : (B,A,B1. . .Bk)(x1..k) → ζτ (1)

be in R′. Note that r′ is a rule of Type I. We call rG the corresponding rule to r′,
denoted by cor(r′) = rG.

For each Type II rule rG ∈ RG of the form A(x1..k) → δ(x1..k) and each
rH ∈ RH of the form B → δ(B1..k), we let

r′ : (B,A,B1 . . . Bk)(x1..k) → δ(x1..k) (2)

be in R′. Note that r′ is a rule of Type II. We call rG and rH the corresponding
rules to r′, denoted by cor(r′) = (rG, rH).

Note that the function cor(·) formally consists of two functions: One mapping
Type-I-rules of R′ to RG, the other mapping Type-II-rules of R′ to RG×RH . We
do not distinguish between the two, since the choice is clear from the context.

Figure 2 depicts some of the useful rules of K which is obtained as the
intersection of G and H. Note that there are also some useless rules from
which no terminal symbol can be created, e.g., the rule (B0, A,B0B1)(x1, x2) →
(B0, Aκ, B0B1)(x1, x2).

We proof L (K) = L (G) ∩ L (H) by relating the derivations of K, G, and H
in the following two lemmas (we omitted the proofs due to space limitations).

Weighted Linear Nondeleting Context-Free Tree Languages 279

(B0, A0, ε)
r′
1→

(B0, A, B1B1)

(B1, Aα, ε) (B1, Aα, ε)

(B0, A, B1B1)

x1 x2

r′
2→

(B0, Aκ, B1B1)

x1 x2

(B0, A, B1B1)

x1 x2

r′
3→

(B0, A, B1B1)

(B1, Aγ , B1)

(B1, Aγ , B1)

x1

(B1, Aγ , B1)

x2

(B1, Aγ , B1)

x1

r′
4→

γ

x1

(B1, Aα, ε)
r′
5→ α

Fig. 2. Some rules of the lnCFTG K which is the intersection of G and H.

Lemma 4. Let ξ ∈ TΔ and n = |ξ|. For each d ∈ DK(ξ) there are unique
derivations dG ∈ DG(ξ) and dH ∈ DH(ξ) such that the following holds:

– pos(d) = pos(dG),
– for each w ∈ pos(d) where w is not a leaf, we have that cor(d(w)) = dG(w),
– n = |ξ| = |dH | = |yield(d)|, and
– there is a one-to-one correspondence ϕ between the positions in yield(d) and

positions in dH such that for each i ∈ [n], we have that

cor
(
yield(d)(i)

)
=

(
yield(dG)(i), dH(ϕ(i))

)
.

(The formal proof of this lemma centers around the construction of K.)

Let d ∈ DK , dG ∈ DG, and dH ∈ DH be the unique derivations according to
Lemma 4. We denote this fact by cor(d) = (dG, dH).

Lemma 5. Let ξ ∈ TΔ, dG ∈ DG(ξ), and dH ∈ DH(ξ). There is a unique
d ∈ DK(ξ) such that cor(d) = (dG, dH). (The proof relies on the fact that the
labels in dG and dH uniquely determine the labels in d).

Lemma 6. For each lnCFTG G and RTG H, there is a lnCFTG K in nonter-
minal form such that L (K) = L (G) ∩ L (H).

Proof. By Lemmas 2 and 3 we can assume that G is in nonterminal form
and H is producing. Then, we apply the construction of this section. L (K) ⊆
L (G) ∩ L (H) follows from Lemma 4. L (K) ⊇ L (G) ∩ L (H) is a consequence
of Lemma 5. Considering (1) and (2), it can be seen that K is in nonterminal
form. �

Weighted Intersection. We extend the result to the weighted case. Let (G, pG)
be a wlnCFTG in nonterminal form and (H, pH) be a producing wRTG. We let
K be the lnCFTG obtained by intersecting G and H according to Lemma 6. We
extend K to a wlnCFTG (K, pK) as follows. For each r ∈ R′, we define

pK(r) =

{
pG(cor(r)) if r is of Type I,
pG(rG) · pH(rH) if r is of Type II and cor(r) = (rG, rH).

280 M. Teichmann

Lemma 7. For each wlnCFTG (G, pG) and producing wRTG (H, pH), there is
a wlnCFTG (K, pK) in nonterminal form such that pK(ξ) = pG(ξ) · pH(ξ) for
each ξ ∈ TΔ.

Proof. By Lemma 2, we can assume that (G, pG) is in nonterminal form. As
described in this section, we let (K, pK) be the wlnCFTG obtained by intersect-
ing (G, pG) and (H, pH). By Lemma 6, we have L (K) = L (G)∩L (H) and K is
in nonterminal form. For each ξ ∈ TΔ \ L (K), it holds that pG(ξ) = 0. Hence,
it remains to prove that, for each ξ ∈ L (K), we have pK(ξ) = pG(ξ) · pH(ξ).

From Lemmas 4 and 5, we get that there is a one-to-one connection between
each d ∈ DK(ξ) and (dG, dH) where dG ∈ DG(ξ) and dH ∈ DH(ξ) such that
cor(d) = (dG, dH). From the proof of Lemma 5, we get the connection between
the rule occurrences in the three derivations. Since we have commutativity, the
order of multiplication does not matter. Hence, the lemma holds. �
Corollary 8. For each ξ ∈ TΔ and each d ∈ DK(ξ) such that cor(d) = (dG, dH)
we have pK(d) = pG(dG) · pH(dH).

4.2 Expected Frequencies

Let (G, pG) be a consistent wlnCFTG with G = (N,Δ,A0, R). For each r ∈ R
where lhn(r) = A, we define the expected rule frequency of r as

E(r) =
∑

d1∈DA
G

d2∈DG(r)

pH(d1[d2]). (3)

For each r′ ∈ R and d ∈ DG, we let �r′(d) denote the number of occurrences
of r′ in d, or formally, �r′(d) = |posr′ (d)|. Then, we have

E(r) =
∑

d∈DG

pG(d) · �r(d). (4)

Another way of representing the expected rule frequency is using inner and
outer values. Assume that nt(r) = A1. . .Ak. Then it holds that

E(r) = outer(A) · pG(r) ·
∏

i∈[k]
inner(Ai), (5)

where, for each A′ ∈ N , we define

outer(A′) =
∑

d∈DA′
G

pG(d) and inner(A′) =
∑

d∈DG(A′)
pG(d).

We define, for every A′ ∈ N , the value d(A′ = A0) to be 1 if A′ = A0 and 0
otherwise. Then, we rephrase inner and outer values as

outer(A′) = d(A′ = A0) +
∑

r′∈R(�), j∈[rkR(r′)]
nt(r′)=A′

1...A′
�, A′=A′

j

outer(lhn(r′)) · pG(r′)

·
∏

i∈([�]\{j}) inner(A′
i) and (6)

inner(A′) =
∑

r′∈R|A′ (�)

nt(r′)=A′
1...A′

�

pG(r′) ·
∏

i∈[�]
inner(A′

i).

Weighted Linear Nondeleting Context-Free Tree Languages 281

In the string case [9], the initial nonterminal may not occur in any right-hand
side and, by definition, outer(A0) = 1. We do not impose this restriction in the
tree case and allow for A0 to occur in right-hand sides. To account for A0 as the
initial nonterminal, we add the value d(A′ = A0). Hence, if A0 does not occur
in any right-hand side, then outer(A0) = 1. Otherwise, outer(A0) ≥ 1.

As in the string case (cf. [9, p. 5]), the values for inner(A) and outer(A) can
be approximated by fixed-point iteration.

4.3 Approximation

In [1] it is shown how to train a weighted CFG based on an infinite set of
derivation trees or an infinite set of strings. We extend the result to the realm
of trees similar to [10] as follows. Given an unambiguous and producing RTG
H, we will approximate a wlnCFTG (G, pG) by means of the wRTG (H, pH).
We construct the intersection wlnCFTG (K, pK) of (G, pG) and (H,1). Then,
the training data is the set of derivations from K from which we will calculate
expected frequencies for the rules in K and use them to obtain an optimal pH .

In the following, we let (G, pG) be a consistent wlnCFTG where G =
(NG,Δ,A0, RG). Furthermore, we let H = (NH ,Δ,B0, RH) be an unambigu-
ous and producing RTG such that supp (G, pG) ∩ L (H) �= ∅. As described in
Sect. 4.1, we choose (K, pK) to be the wlnCFTG obtained by intersecting (G, pG)
and (H,1), where 1(rH) = 1 for every rH ∈ RH . We denote the ingredients
of K as K = (NK ,Δ,A0

′, R′) and according to Lemma 7, we have, for each
ξ ∈ L (G) ∩ L (H), that pK(ξ) = pG(ξ) · 1(ξ), i.e., pK(ξ) = pG(ξ). Since not
all trees of L (G) must occur in L (H), we normalize pG such that only trees in
L (H) are assigned a non-null weight. We define pG|H for each ξ ∈ TΔ as

pG|H(ξ) =

⎧⎪⎨
⎪⎩

pG(ξ)∑
ξ′∈L(H) pG(ξ′)

if ξ ∈ L (H),

0 otherwise.

We note that pG|H = pG if supp(G, pG) ⊆ L (H).

Lemma 9. For each ξ ∈ TΔ we have pG|H(ξ) = pK(ξ)∑
ξ′∈TΔ

pK(ξ′) .

Proof. We observe that
∑

ξ′∈TΔ
pK(ξ′) > 0 since in this section we required that

supp (G, pG) ∩ L (H) �= ∅ holds. We show the following for each ξ ∈ L (H).

pG(ξ) =
∑

dG∈DG(ξ)
pG(dG)

=
∑

dG∈DG(ξ),dH∈DH(ξ)
pG(dG) · 1(dH) (H is unambiguous)

=
∑

d∈DK(ξ)
pK(d) (Lemma 5, Corollary 8)

= pK(ξ)

282 M. Teichmann

Let ξ ∈ TΔ. If ξ /∈ L (H), then we have pG|H(ξ) = 0 and, since pH(ξ) = 0, we
also have pK(ξ)∑

ξ′∈TΔ
pK(ξ′) = 0. If ξ ∈ TL(H), then we have

pG|H(ξ) =
pG(ξ)∑

ξ′∈TL(H)
pG(ξ′)

=
pK(ξ)∑

ξ′∈TL(H)
pK(ξ′)

=
pK(ξ)∑

ξ′∈TΔ
pK(ξ′)

.

Note that since (G, pG) is consistent, Lemma 9 implies that pG|H is consistent.
�

In the following we obtain pH such that (H, pH) best approximates (G, pG).
We measure the quality of such an approximation using the Kullback-Leibler
(KL) divergence. Note that the notion of cross-entropy of two distributions is
closely connected to the KL divergence. In general, the KL divergence of two
distributions pG and pH , denoted by KL(pG || pH), is given by (cf. [7, Eq. 2.4])

KL(pG || pH) =
∑

ξ∈TΔ

pG(ξ) · log
pG(ξ)
pH(ξ)

.

Formally, we let PH be the set of all proper weight assignments for H, i.e.,
PH = {p′

H | p′
H : RH → R, p′

H is proper} and determine pH such that we have
pH = argminp′

H∈PH
KL(pG|H || p′

H). We abbreviate
∑

ξ′∈TΔ
pK(ξ′) to Z.

argminp′
H∈PH

KL(pG|H || p′
H) = argminp′

H∈PH

∑
ξ∈TΔ

pG|H(ξ) · log
pG|H(ξ)
p′

H(ξ)

= argminp′
H∈PH

∑
ξ∈TΔ

pK(ξ)
Z

· log
pK(ξ)

p′
H(ξ) · Z

(Lemma 9)

= argminp′
H∈PH

(∑
ξ∈TΔ

pK(ξ)
Z

· log
pK(ξ)

Z

)

−
(1

Z
·
∑

ξ∈TΔ

pK(ξ) · log p′
H(ξ)

)

= argminp′
H∈PH

−
∑

ξ∈TΔ

pK(ξ) · log p′
H(ξ) (7)

Equation (7) holds, since Z and pK are independent of p′
H .

For each rH ∈ RH , we define the subset of R′ corresponding to rH as

R′|rH
= {r′ ∈ R′ | cor(r′) = (rG, rH) for some rG ∈ RG}.

In [1] it is shown how to use a weighted CFG to approximate an infinite corpus
of trees. The corpus is regarded as set of derivations of the weighted CFG and is
given as a probability distribution pT over the derivations. Using the technique of
Lagrange Multipliers, it is shown how to choose a weight assignment pmin such
that the cross-entropy between pT and pmin is minimized. The cross-entropy
corresponds to (7). Informally, pmin is defined for every rule r of the CFG as (cf.
Eq. (9) of [1])

pmin(r) =
∑

derivation tree d pT (d) · �r(d)∑
derivation tree d

∑
r′ with lhn(r′)=lhn(r) pT (d) · �r′(d)

. (8)

Weighted Linear Nondeleting Context-Free Tree Languages 283

This result cannot be straightforwardly applied to our scenario for two rea-
sons. First, we are not given a distribution over derivations of H and second, in
contrast to (8), our setting would require an unsupervised training (similar to
[1, Sect. 7.2]). However, using the intersection grammar (K, pK), we can infer
derivations for H. This approach corresponds to the string case [9] and the case
of TAGs [10]. For the trick to work, we consider for each rule rH ∈ RH the
set of corresponding rules R′|rH

. This allows the reconstruction of the Lagrange
multipliers in [1, Sect. 3] for our scenario as follows.

Lemma 10. We define pH , for each rH ∈ RH , as

pH(rH) =

∑
r′∈R′|rH

∑
d∈DK

pK(d) · �r′(d)∑
r∈RH |lhn(rH)

∑
r′∈R′|r

∑
d∈DK

pK(d) · �r′(d)
. (9)

Then it holds that pH = argminp′
H∈PH

KL(pG|H || p′
H).

Using expected frequencies from Sect. 4.2, we rewrite (9) and get

pH(rH) =

∑
r′∈R′|rH

E(r′)∑
r∈RH |lhn(rH)

∑
r′∈R′|r E(r′)

. (10)

Since RH and R′ are finite sets, we can calculate pH based on E(r′) for each
rH ∈ RH and r′ ∈ R′|rH

. Since r′ is of Type II, we have E(r′) = outer(lhn(r′)) ·
pK(r′). Furthermore, because inner and outer values can be approximated to
an arbitrary precision (cf. Sect. 4.2), we can effectively obtain an approximation
of pH .

Theorem 11. For each consistent wlnCFTG (G, pG) and each unambiguous
and producing RTG H such that L (G) ∩ L (H) �= ∅, the weight assignment pH

from (10) is such that pH = argminp′
H∈PH

KL(pG|H || p′
H) holds.

Proof. By Lemma 7, we obtain (K, pK) as intersection of (G, pG) and (H,1).
Then Lemma 10 applies and defines the minimal pH . �

Consider some rules of K depicted in Fig. 2. It is easy to see that r′
1

and r′
2 occur exactly once in each derivation and thus E(r′

1) = E(r′
2) = 1.

The rule r′
3 occurs n times in a derivation of κ(γ(2n)(α), γn(α)) and we get

E(r′
3) =

∑
n∈N

0.3n · 0.7 · n = 3
7 . Since r′

4 occurs three times as often as r′
3, we

get E(r′
4) = 3 · E(r′

3) = 9
7 . The rule r′

5 occurs exactly twice, so E(r′
5) = 2.

We denote the rules of H from Fig. 1(b) by r1, r2, and r3. We note that r2
and r3 correspond to r′

3 and r′
5, respectively. Hence, we obtain an optimal pH as

pH(r1) = 1, pH(r2) =
9
7

2 + 9
7

=
9
23

≈ 0.39, pH(r3) =
2

2 + 9
7

=
14
23

≈ 0.61.

Although pH is the optimal weight assignment for H, there is a consider-
able approximation error since probability mass is lost on trees of shape
κ(γn1(α), γn2(α)) where n1 �= 2 · n2. Improved approximation results can be
obtained by considering other RTGs with a nonterminal structure that bet-
ter approximates the structure of trees in L (G). Such RTGs usually have an
increased parsing time, since they contain more nonterminals and rules.

284 M. Teichmann

5 Further Research

This work motivates to extend the approximation result to the full class of
CFTG. A grammar in this class might be nonlinear and deleting, and the deriva-
tion mode (cf. [2]) influences the induced language.

References

1. Corazza, A., Satta, G.: Probabilistic context-free grammars estimated from infinite
distributions. IEEE Trans. Pattern anal. Mach. Intell. 29(8), 1379–1393 (2007)

2. Fischer, M.: Grammars with macro-like productions. Ph.D. thesis. Harvard Uni-
versity, Massachusetts (1968)

3. Gebhardt, K., Osterholzer, J.: A direct link between tree-adjoining and context-
free tree grammars. In: Proceedings of the 12th International Conference on Finite-
State Methods and Natural Language Processing (2015)

4. Gécseg, F., Steinby, M.: Tree automata. In: Kiadó, A. (ed.). Reissued 2015.
Akadémiai Kiadó, Budapest (1984). arXiv:1509.06233 [cs.FL]

5. Joshi, A., Schabes, Y.: Tree-adjoining grammars. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, vol. 3, pp. 69–123. Springer, Heidelberg
(1997)

6. Kepser, S., Rogers, J.: The equivalence of tree adjoining grammars and monadic
linear context-free tree grammars. J. Logic Lang. Inf. 20(3), 361–384 (2011)

7. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1),
79–86 (1951)

8. Nederhof, M.-J.: Regular approximation of CFLs: a grammatical view. In: Bunt,
H., Nijholt, A. (eds.) Advances in Probabilistic and Other Parsing Technologies.
Text, Speech and Language Technology, vol. 16, pp. 221–241. Springer, Netherlands
(2000)

9. Nederhof, M.-J.: A general technique to train language models on language models.
Comput. Linguist. 31(2), 173–186 (2005)

10. Nederhof, M.-J.: Weighted parsing of trees. In: Proceedings of the 11th Interna-
tional Conference on Parsing Technologies, IWPT 2009, pp. 13–24. Association for
Computational Linguistics (2009)

11. Nederhof, M.-J., Vogler, H.: Synchronous context-free tree grammars. In: Proceed-
ings of the 11th International Workshop on Tree Adjoining Grammar and Related
Formalisms (TAG+11), pp. 55–63 (2012)

12. Osterholzer, J.: Pushdown machines for weighted context-free tree translation. In:
Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 290–303. Springer,
Heidelberg (2014)

13. Rounds, W.C.: Tree-oriented proofs of some theorems on context-free and indexed
languages. In: Proceedings of Second Annual ACM Symposium on Theory of Com-
puting, STOC 1970, pp. 109–116. ACM, New York (1970)

14. Rounds, W.C.: Mappings and grammars on trees. Math. Syst. Theor. 4(3), 257–287
(1970)

15. Shieber, S.: Evidence against the context-freeness of natural language. Linguist.
Philos. 8, 333–343 (1985)

http://arxiv.org/abs/1509.06233

Derivatives for Enhanced Regular Expressions

Peter Thiemann(B)

University of Freiburg, Freiburg im Breisgau, Germany
thiemann@informatik.uni-freiburg.de

Abstract. Regular languages are closed under a wealth of formal lan-
guage operators. Incorporating such operators in regular expressions
leads to concise language specifications, but the transformation of such
enhanced regular expressions to finite automata becomes more involved.
We present an approach that enables the direct construction of finite
automata from regular expressions enhanced with further operators that
preserve regularity. Our construction is based on an extension of the the-
ory of derivatives for regular expressions. To retain the standard results
about derivatives, we develop a derivability criterion for the compatibil-
ity of the extra operators with derivatives.

Some derivable operators do not preserve regularity. Derivatives pro-
vide a decision procedure for the word problem of regular expressions
enhanced with such operators.

Keywords: Automata and logic · Regular languages · Derivatives

1 Introduction

Brzozowski derivatives [4] and Antimirov’s partial derivatives [2] are well-known
tools to transform regular expressions to automata and to define algorithms for
equivalence and containment on them [1,9]. Brzozowski’s automaton construc-
tion relies on the finiteness of the set of iterated derivatives when considered up to
similarity (commutativity, associativity, and idempotence for union). Derivatives
had quite some impact on the study of algorithms for regular languages on finite
words and trees [5,12].

While derivative-based algorithms have been deprecated for performance rea-
sons [16], there has been renewed interest in the study of derivatives and partial
derivatives. On the practical side, Owens and coworkers [11] report a functional
implementation that revives many features. Might and coworkers [10] implement
parsing for context-free languages using derivatives.

A common theme on the theory side is the study of derivative structures for
enhancements of regular expressions. While Brzozowski’s original work covered
extended regular expressions, partial derivatives were originally limited to simple
expressions without intersection and complement. It is a significant effort to
define partial derivatives for extended regular expressions [5].

Derivatives have also been used to study various shuffle operators for appli-
cations in modeling concurrent programs [13]. Later extensions consider forkable
expressions with a new operator that abstracts process creation [14].
c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 285–297, 2016.
DOI: 10.1007/978-3-319-40946-7 24

286 P. Thiemann

Caron and coworkers [6] study derivatives for multi-tilde-bar expressions. The
tilde (bar) operator adds (removes) ε from a language. Multi-tilde-bar applies
to a list of languages and (roughly) defines a selective concatenation operation
that can be configured to include or exclude certain languages of the list.

Champarnaud and coworkers [8] consider derivatives of approximate regular
expressions (ARE). AREs extend regular expressions with a family of unary
operators Fk, for k ∈ N, which enhance their argument language L with all
words u such that d(u,w) ≤ k, for some word w ∈ L. Here, d is a suitable
distance function, for example, Hamming distance or Levenshtein distance.

Traytel and Nipkow [15] obtain decision procedures for MSO using a suitably
defined derivative operation on regular expressions with a projection operation.

The general framework of Caron and coworkers [7] generalizes the syntactic
structure underlying a derivative construction to a support. A support gener-
alizes expressions (for constructing Brzozowski derivatives), sets of expressions
(for Antimirov’s partial derivatives), and sets of clausal forms over sets of reg-
ular expressions, and thus yields an encompassing framework in which different
kinds of derivative constructions can be formalized and compared. The authors
give a sufficient criterion for a support to generate a finite number of iterated
derivatives from a given expression along with automata constructions for deter-
ministic, nondeterministic, and alternating finite automata. Their work applies
to extended regular expressions with arbitrary boolean functions.

Contributions

In this work, we identify a pattern in the definition of (standard) derivatives for
enhancements of regular expressions that go beyond boolean functions. Con-
cretely, we consider regular expressions enhanced with further operators on
languages (e.g., shuffle, homomorphism, approximation). Then we propose left
derivability and ε-testability as a sufficient condition for the set of operators such
that a syntactic derivative operation is definable for enhanced expressions. This
condition gives rise to a decision procedure for the membership test for enhanced
expressions via expression derivation.

A refinement, linear left derivability, is a sufficient condition to guarantee
finiteness of the set of dissimilar derivatives of an enhanced expression. The finite-
ness condition enables the direct construction of a deterministic finite automa-
ton. We show that every linear left derivable operator can be defined by a rational
finite state transducer and thus preserves regularity.

A technical report with proofs and further examples will be available on arxiv
https://arxiv.org/abs/1605.00817.

2 Preliminaries

We write N for the set of natural numbers, B = {0,1} for the set of booleans, and
X � Y for the disjoint union of sets X and Y . We sometimes write (Ek

k=1,...,n
)

for the tuple (E1, . . . , En) where Ek is some entity depending on k.

https://arxiv.org/abs/1605.00817

Derivatives for Enhanced Regular Expressions 287

An alphabet Σ is a finite set of symbols. The set Σ∗ denotes the set of finite
words over Σ, ε ∈ Σ∗ stands for the empty word, and Σ+ = Σ∗ \ {ε}. For
u, v, w ∈ Σ∗, we write |u| ∈ N for the length of u, u · v (or just uv) for the
concatenation of words, and w � v if v is a proper suffix of w, that is, ∃u ∈ Σ+

such that w = u · v.
Given languages U, V,W ⊆ Σ∗, concatenation extends to languages as usual:

U · V = {u · v | u ∈ U, v ∈ V }. The Kleene closure is defined as the smallest set
U∗ ⊆ Σ∗ such that U∗ = {ε}∪U ·U∗. We write the left quotient as U\W = {v |
v ∈ Σ∗,∃u ∈ U : uv ∈ W} and the right quotient as W/U = {v | v ∈ Σ∗,∃u ∈
U : vu ∈ W}. For a singleton language U = {u}, we write u\W (W/u) for the
left (right) quotient.

A ranked alphabet F is a finite set of operator symbols with a function # :
F → N that determines the arity of each symbol. We write F (n) = {F ∈ F |
#(F) = n} for the symbols of arity n. The set TF (X) of F-terms over a set
X is defined inductively. If x ∈ X, then x ∈ TF (X). If n ∈ N, F ∈ F (n), and
t1, . . . , tn ∈ TF (X), then F (t1, . . . , tn) ∈ TF (X).

An F-algebra consists of a carrier set M and an interpretation function
I : (n : N) → F (n) → Mn → M . Given a function I0 : X → M , the
term interpretation Î(t), for t ∈ TF (X), is defined inductively as follows.
If x ∈ X, then Î(x) = I0(x). If F ∈ F (n) and t1, . . . , tn ∈ TF (X), then
Î(F (t1, . . . , tn)) = I(n)(F)(Î(t1), . . . , Î(tn)). We often write TF in place of
TF (∅).

To avoid notational clutter, we fix an arbitrary alphabet Σ.

Definition 1. The regular alphabet is defined by R = Σ � {0,1, ·,+, ∗} with
arities #(x) = 0, for x ∈ Σ, #(1) = #(0) = 0, #(∗) = 1, and #(·) = #(+) = 2.

Similarity is defined as the smallest equivalence relation ≡ ⊆ TR × TR that
enforces left and right unit, idempotence, commutativity, and associativity for
the + operator. For all r, s, t ∈ TR, the relation ≡ contains the pairs:

r + 0 ≡ r 0 + s ≡ s r + r ≡ r r + s ≡ s + r (r + s) + t ≡ r + (s + t)

The set R of regular expressions over Σ is defined as the quotient term algebra
R = TR/(≡).

The language of r ∈ R is defined by L(r) = Î(r), that is, the interpretation
of the term in the R-algebra with carrier set ℘(Σ∗) and interpretation function

I(0)(0) = {}
I(0)(1) = {ε}
I(0)(x) = {x}

I(1)(∗) = U → U∗

I(2)(·) = (U, V) → U · V
I(2)(+) = (U, V) → U ∪ V

The interpretation function I is compatible with the definition of R as a quo-
tient term algebra because the interpretation of + maps equivalent expressions
to the same language. We usually work with a unique representative for each
equivalence class computed by a function nf (see [9]). We use parenthesized infix
notation for the binary operators · and + and postfix superscript for the unary ∗.
We adopt the convention that · binds stronger than + to omit parentheses. The
overloading of 0 and 1 as regular expressions and boolean values is deliberate.

288 P. Thiemann

Definition 2. The operations �,⊕ : R × R → R are smart concatenation and
union constructors for regular expressions. Operator � binds stronger than ⊕.

r � s =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 r = 0 ∨ s = 0
r s = 1
s r = 1
(r · s) otherwise.

r ⊕ s = nf(r + s)

Lemma 3. For all r, s: L(r � s) = L(r · s); L(r ⊕ s) = L(r + s).

Definition 4. A regular expression r is nullable if ε ∈ L(r). The function N :
R → {0,1} detects nullable expressions: N(1) = 1. N(0) = 0. N(x) = 1.
N(r · s) = N(r) � N(s). N(r + s) = N(r) ⊕ N(s). N(r∗) = 1.

Lemma 5. For all r ∈ R. N(r) = 1 iff ε ∈ L(r).

Definition 6. The Brzozowski derivative [4] is a function D : Σ × TR → TR
defined inductively for a �= b ∈ Σ and r, s ∈ TR.

D(a,0) = 0 D(a, r + s) = D(a, r) ⊕ D(a, s)
D(a,1) = 0 D(a, r · s) = D(a, r) � s ⊕ N(r) � D(a, s)
D(a, a) = 1 D(a, r∗) = D(a, r) � r∗

D(a, b) = 0

It extends to a function on words and languages D : Σ∗ × TR → TR and D :
℘(Σ∗) × TR → ℘(TR) as usual (a ∈ Σ, w ∈ Σ∗, U ⊆ Σ∗):

D(ε, r) = r D(a · w, r) = D(w,D(a, r)) D(U, r) = {D(w, r) | w ∈ U}.

Theorem 7 ([4]). For all w ∈ Σ∗, r ∈ TR, L(D(w, r)) = w \ L(r).

Theorem 8 ([4]). For all r ∈ TR, L(r) = L
(
N(r) +

∑
a∈Σ D(a, r)

)
.

Definition 9. A (nondeterministic) finite automaton (NFA) is a tuple A =
(Q,Σ, δ, q0, F) where Q is a finite set of states, Σ an alphabet, δ : Q×Σ → ℘(Q)
the transition function, q0 ∈ Q the initial state, and F ⊆ Q the set of final states.

Let n ∈ N. A run of A on w = a0 . . . an−1 ∈ Σ∗ is a sequence q0 . . . qn ∈ Q∗

such that, for all 0 ≤ i < n, qi+1 ∈ δ(qi, ai). The run is accepting if qn ∈ F . The
language L(A) = {w ∈ Σ∗ | ∃ accepting run of A on w} is recognized by A.

The automaton A is total deterministic if |δ(q, a)| = 1, for all q ∈ Q, a ∈ Σ.

3 Enhanced Derivatives

An operation on languages takes one or more languages as arguments and yields
another language. In this section, we enhance the syntax and semantics of regular
expressions with extra operations and consider conditions for the existence of a
syntactic derivative for such enhanced expressions. Many examples can be drawn
from the closure properties of regular languages.

Derivatives for Enhanced Regular Expressions 289

Definition 10. A function f : (Σ∗)n → Σ∗ is regularity-preserving if for all
regular languages R1, . . . , Rn the image f(R1, . . . , Rn) is a regular language.

Example 11. We give a range of examples for operators on languages. All oper-
ators, except shuffle closure, are regularity-preserving. Proofs may be found in
textbooks on formal languages unless otherwise indicated. We let U, V, L ⊆ Σ∗

range over regular languages; a, b ∈ Σ range over symbols.

1. The intersection U ∩ V and the complement ¬U of regular languages are
regular.

2. The shuffle of two regular languages is defined by U‖V =
⋃{u‖v | u ∈ U, v ∈

V } where ε‖v = {v}, u‖ε = {u}, and au‖bv = {a} · (u‖bv) ∪ {b} · (au‖v), is
regular.
The shuffle closure operation L‖ = {ε}∪L∪ (L‖L)∪ (L‖L‖L)∪ . . . does not
preserve regularity.

3. The inverse homomorphism, i.e., h−1(U) = {w ∈ Σ∗ | h(w) ∈ U} is regular
for a function h : Σ → Σ∗ that is extended homomorphically to a function
Σ∗ → Σ∗ (for simplicity, we do not consider homomorphisms between dif-
ferent alphabets, which can be simulated by using the disjoint union of the
alphabets).
The non-erasing homomorphism h(L) = {h(w) | w ∈ L} is regular where
h : Σ → Σ+.

4. The language of every k-th symbol starting from position i from words in a
regular language L is regular: for k > 0 and 0 < i ≤ k
fi,k(L) = {aiai+kai+2k · · · ai+k�(n−i)/k� | n ∈ N, a1 . . . an ∈ L}.

5. The left quotient \ and the right quotient / of regular languages are regular.
6. Functions suffixes(L) = Σ∗ \ L and prefixes(L) = L/Σ∗ preserve regularity.
7. The function reverse(L) = {an · · · a1 | n, i ∈ N, 1 ≤ i ≤ n, ai ∈ Σ, a1 . . . an ∈

L} preserves regularity.
8. For each k ∈ N, the function Hk(L) = {v | v ∈ Σ∗,∃u ∈ L.d(u, v) ≤ k}

is regularity preserving where the Hamming distance of words a1 · · · an and
b1 · · · bm is defined by h = d(a1 · · · an, b1 · · · bm). If m = n, then h = |{i | 1 ≤
i ≤ n, ai �= bi}|. Otherwise h = ∞.
Analogously, Lk(L) is a regularity preserving approximation that uses the
Levenshtein distance (see [8]).

9. The tilde and bar operators defined by L̃ = L ∪ {ε} and L̄ = L \ {ε} preserve
regularity (they are the primitive building blocks of multi-tilde-bar expres-
sions [6], which we do not consider to save space).

The notion of a nullable expression is an important ingredient in the definition
of the derivative (Definition 6). Nullability can be computed by induction on
a regular expression because each regular operator corresponds to a boolean
function on the nullability of the operator’s arguments. The following definition
imposes exactly this condition on the extra operators in regular expressions.

Definition 12. A function f : (Σ∗)n → Σ∗ is ε-testable, if there is a boolean
function Bf : Bn → B such that ε ∈ f(L1, . . . , Ln) iff Bf ((ε ∈ L1), . . . , (ε ∈ Ln)).

290 P. Thiemann

Example 13. Some of the functions from Example 11 are ε-testable.

1. intersection, complement: B∩ = ∧, B¬ = ¬;
2. shuffle: B‖ = ∧; the shuffle closure operation L‖ is ε-testable using B‖(b) = 1;
3. inverse homomorphism: Bh−1(b) = b, for b ∈ B; homomorphism h: if h is non-

erasing, then Bh(b) = b; erasing homomorphism is not ε-testable: consider
L1 = {a}, L2 = {b}, and an erasing homomorphism h defined by h(a) = ε
and h(b) = b. Thus, h(L1) = {ε} and h(L2) = {b}. If there was a boolean
function fh to vouch for ε-testability of h, then L1 shows that fh(0) = 1 and
L2 yields fh(0) = 0, a contradiction.

4. k-th letter extraction: ε ∈ fi,k(L) if ∃w ∈ L such that |w| < i, so fi,k is not
ε-testable. To see this let i = k = 2, L1 = {a}, and L2 = {aa} and assume
that Bf is the boolean function required for ε-testability. Now f2,2(L1) = {ε}
and f2,2(L2) = {a}, so that Bf (0) = 1 (by L1) and Bf (0) = 0 (by L2), a
contradiction.

5. The left quotient is not ε-testable because ε ∈ U\W iff U ∩ W �= ∅: consider
U = Σ∗ with a ∈ Σ, W1 = ∅, and W2 = {a} so that U\W1 = ∅ and
U\W2 = {ε, a}. A binary boolean function B\ for ε-testability would have
to satisfy B\(0,0) = 0 (for W1) and B\(0,0) = 1 (for W2), a contradiction.
The same reasoning applies, mutatis mutandis, to the right quotient.

6. The suffixes function is not ε-testable by the proof for the left quotient. The
proof for prefixes is analogous to the one for the right quotient.

7. The reverse function is ε-testable: Breverse(b) = b.
8. The approximation for Hamming distance is ε-testable by BHk

(b) = b . The
approximation for Levenshtein distance Lk is not ε-testable for k > 0. The
argument here is similar as for erasing homomorphism because a word at
distance k from a given word w may be up to k symbols shorter than w.

9. The tilde and bar operators are obviously ε-testable with the constants 1 and
0, respectively.

Definition 14 (Enhanced Regular Expression). Let F ⊇ R be a ranked
alphabet, an enhanced regular alphabet. Let further J be an interpretation func-
tion for F on the carrier ℘(Σ∗) extending the regular interpretation I from Defi-
nition 1. The set of F-regular expressions over a set X is the set of terms TF (X).
For t ∈ TF (X) we define its language L(t) = Ĵ (t). The resulting F-algebra
(℘(Σ∗),J) is a regular enhancement if every symbol F ∈ F (n) is interpreted by
a regularity-preserving function J (n)(F).

Example 15. To extend regular expressions with a shuffle operator, consider
F‖ = R ∪ {‖} with #‖ = 2.

To extend expressions with kth-letter extraction, we consider Fx−k = R ∪
{fi,k | 0 < i ≤ k} with #fi,k = 1.

Lemma 16. If J (F) is ε-testable, for each F ∈ F , then the nullability function
N can be extended to F .

To obtain syntactic derivability for an enhanced regular expression, it must be
possible to express the derivative of an operator in terms of a regular expression

Derivatives for Enhanced Regular Expressions 291

that applies the derivative to the arguments of the operator. We first define a
suitable property semantically as an algebraic property of a regular enhancement.

Definition 17. Let F be an enhanced regular alphabet and J an extension of
the regular interpretation I. The F-algebra (℘(Σ∗),J) is left derivable if, for
each F ∈ F (k) and a ∈ Σ, there exists a finite subset X ⊂ {xv,j | v ∈ Σ∗, 1 ≤
j ≤ k} and an F-regular expression r ∈ TF (X) such that, for all L1, . . . , Lk ⊆
Σ∗ the left quotient a\(J (F)(L1, . . . , Lk)) can be expressed as Ĵ (r) using the
interpretation J0(xv,j) = v\Lj.

Example 18. We revisit the previous examples of functions on languages and
examine them for being left derivable.

1. Intersection is left derivable: a\(L1 ∩ L2) = Ĵ (xa,1 ∩ xa,2) = a\L1 ∩ a\L2.
For negation ¬, the pattern is the same.

2. Shuffle is left derivable:
a\(L1‖L2) = (a\L1)‖L2 ∪ L1‖(a\L2) = Ĵ (xa,1‖xε,2 + xε,1‖xa,2);
shuffle closure is also left derivable:

a\L‖ = (a\L)‖L‖ = Ĵ (xa,1‖xε,2 + x
‖
ε,1)

3. Inverse homomorphism is left derivable:
a\(h−1(L)) = h−1(h(a)\L) = Ĵ (h−1(xh(a),1)).
Non-erasing homomorphism is left derivable:
a\(h(L)) =

⋃
b∈Σ,h(b)=av v · h(b\L) = Ĵ (

∑
b∈Σ,h(b)=av v · h(xb,1)).

4. For k > 1, the set {fi,k | 0 < i ≤ k} is left derivable.
a\(fi,k(L)) = fk(

⋃
|w|=i−1 wa\L) = Ĵ (

∑
|w|=i−1 fk(xwa,1)).

5. The left and right quotients are left derivable.
a\(L1\L2) = (L1 · a)\L2 = Ĵ ((xε,1 · a)\xε,2).
a\(L1/L2) = (a\L1)/L2 = Ĵ (xa,1/xε,2).

6. The function suffixes is not left derivable because a\suffixes(L) = {w |
∃u.uaw ∈ L} = (Σ∗ · a)\L cannot be finitely expressed using just deriva-
tives, the suffixes function, and the regular operators.
To see this, consider the family of languages Ln = w∗

n where wn = (abab2 ·
abn)∗, for all n ∈ N, and find that

L′
n = a\suffixes(Ln) = bab2 · abnw∗

n + b2 · abnw∗
n + · · · + bnw∗

n

Suppose there is a suffixes-enhanced regular expression r for a\L that only
depends on a and Σ and that refers to finitely many derivatives, say,
v1\L, . . . , vm\L. Considering r for L′

n, we find that r cannot contain the
suffixes function because that would introduce words starting with a, which
cannot be in L′

n and which cannot be amended by prepending a fixed word
without breaking the a-b pattern. There must exist some v ∈ w∗

n such that
each vj is either a prefix of v that ends with an a or it is not a prefix of v.
Now, if we consider Lk where k = max(n, |v1|, . . . , |vm|) + 1 then none of the
vj\Lk can contain bkw∗

k. Note that if vj is not a prefix of wn∗, then it is not
a prefix of w∗

k, for any k ≥ n, either. Hence, r cannot describe L′
k.

292 P. Thiemann

If we assume that F contains suffixes and the left quotient operator, then
we could consider suffixes(L) as an abbreviation for Σ∗\L and we would
regain left derivability. Furthermore, with a suitable variation of Definition 17,
suffixes is right derivable:
suffixes(L)/a = {v | ∃u.uv ∈ L}/a = {v | ∃u.uva ∈ L} = suffixes(L/a).
The function prefixes is left derivable:
a\prefixes(L) = a\{v | ∃u.vu ∈ L} = prefixes(a\L) = Ĵ (prefixes(xa,1)).

7. The function reverse is neither left derivable nor right derivable, but swaps
between left and right quotients:
a\reverse(L) = reverse(L/a).
To see that reverse is no left derivable, consider the language L = b∗a. Clearly,
reverse(L) = ab∗ and a\reverse(L) = b∗. Now suppose we can obtain b∗ by
a regular expression with reverse on arbitrary derivatives of L. There are
only two distinct derivatives: a\(b∗a) = {ε} and b\(b∗a) = b∗a. Hence, for
any w ∈ {a, b}∗, w\(b∗a) will be either empty, {ε}, or b∗a. Now consider
a language U constructed from these derivatives by application of regular
operators or reverse. It can be shown that any word in U is either ε or it
contains the symbol a. Thus, U cannot be equal to b∗.

8. The enhancement with the approximation operators Hk,Hk−1, . . . ,H1,H0

operators (for Hamming distance) is left derivable because

a\Hk(L) = Hk(a\L) +
∑
k>0
x
=a

Hk−1(x\L)

For approximation with operators Lk, . . . ,L0 that rely on Levenshtein dis-
tance, we also obtain left closure (assuming that L−1(L) = ∅):

a\Lk(L) =
∑

w∈Σ∗
|w|≤k
k>0

(
Lk−|w|(wa\L) +

∑
x
=a

Lk−|w|−1(wx\L) + Lk−|w|−1(w\L)
)

The terms correspond to the actions “delete w, then match a”, “delete w,
then substitute a by some x”, and “delete w, then insert a”.

9. Tilde and bar are trivially left derivable: a\L̃ = a\L and a\L̄ = a\L.

4 Word Problem

To obtain a decision procedure for the word problem of left derivable enhanced
regular expressions, we first define the corresponding syntactic derivative and
then extend Brzozowski’s result that w ∈ L(r) iff ε ∈ L(D(w, r)) (which follows
from Theorem 7). It is interesting to remark that, for example, we obtain a
decision procedure for the word problem for the language of regular expressions
enhanced with the shuffle-closure operator is no longer regular.

Theorem 19. If (℘(Σ∗),J) is a left derivable F-algebra which is ε-testable,
then there is a syntactic derivative function D : Σ × TF → TF such that
Ĵ (D(a, t)) = a\Ĵ (t), for all a ∈ Σ and t ∈ TF .

Derivatives for Enhanced Regular Expressions 293

D+(0) = {0}
D+(1) = {0}
D+(a) = 0,1

D+(r + s) = D+(r) ⊕ D+(s)
D+(r · s) = D+(r) � s ⊕ D+(s)
D+(r∗) = D+(r) r∗

Fig. 1. Iterated Brzozowski derivatives for TR

Proof. Define D inductively as an extension of Definition 6 for F ∈ F \ R:

D(a, F (r1, . . . , rn)) = R(F, a)[xv,j → D(v, rj) | xv,j ∈ X(F, a)]

where N extends to TF by Lemma 16 and where D extends to words as before.
The statement about the semantics follows by induction on the augmented term
using the definition of left derivability. ��
Theorem 20. If (℘(Σ∗),J) is a left derivable F-algebra which is ε-testable,
then the word problem for Ĵ (t) is decidable, for any t ∈ TF .

Proof. By Theorem 19, there is a nullability function N and a derivative D
for TF . By induction on the length of w ∈ Σ∗, we obtain that w ∈ Ĵ (t) iff
ε ∈ Ĵ (D(w, t)) iff N(D(w, t)). ��

5 Finiteness

For classical derivatives on TR (cf. Definition 6), Brzozowski showed that the set
of iterated derivatives D(Σ∗, r) of a given regular expression r is finite, when
considered modulo similarity (i.e., associativity, commutativity, and idempotence
of union). Hence, we now look for conditions such that the set of dissimilar
iterated derivatives is finite for enhanced regular expressions. First, we set up a
framework for reasoning about finiteness.

Recent work on determining the number of iterated partial derivatives starts
with an inductive definition for the set of iterated partial derivatives [3]. We
transfer that definition to the classical case and define an upper approximation
D+(r) of the set of iterated derivatives of expression r in Fig. 1 by induction on
r. In the definition, we lift � and ⊕ to sets of expressions (i.e., if R,S ⊆ TR,
then R � S = {r � s | r ∈ R, s ∈ S} and R ⊕ S = {r ⊕ s | r ∈ R, s ∈ S). We
further write

⊕
S for the set {s1 ⊕ · · · ⊕ sn | n ∈ N, si ∈ S} of finite sums of

elements drawn from S where the nullary sum stands for 0 and where we assume
sums to be identified modulo associativity, commutativity, and idempotence to
obtain the following results1.

Theorem 21. The set D+(r) is finite, for all r ∈ TR.

Clearly, the set D∗(r) = {r} ∪ D+(r) is also finite for all r.

1 See the technical report for auxiliary lemmas and proofs.

294 P. Thiemann

Theorem 22. (Closure Under Derivation).

1. For all r and a, D(a, r) ∈ D+(r).
2. For all r and a, if t ∈ D+(r), then D(a, t) ∈ D+(r).

Corollary 23. The set {D(w, r) | w ∈ Σ+} ⊆ D+(r), for all r.

To obtain finiteness for enhanced regular expressions, we strengthen the
notion of left derivability. Essentially, we restrict the form of a derivative to a
linear combination of enhancement functions applied to derivatives of the argu-
ments.

Definition 24. Let F = {F1, . . . , Fm} be a ranked alphabet. The F-algebra
(℘(Σ∗),J) is linear left derivable if, for each n ∈ N, F ∈ F (n), and a ∈ Σ, there
exists a finite index set J such that, for each j ∈ J , there is a word vj ∈ Σ∗,
an index ij ∈ {1, . . . , m} of an element of F with arity #(Fij) = nj, and, for
1 ≤ k ≤ nj, words wj

k ∈ Σ∗ and indexes αj
k ∈ {1, . . . , n} of left-hand-side lan-

guages, such that for all L1, . . . Ln ⊆ Σ∗, the left quotient can be expressed by:

a\(J (F)(L1, . . . , Ln)) =
⋃
j∈J

vj · J (Fij)(w
j
k\(Lαj

k
))

k=1,...,nj

) (1)

Of the standard regular operators, only union (and in fact all boolean functions)
is linear left derivable. Concatenation U ·V does not fit the pattern because it has
a summand which is conditional on ε ∈ U . The Kleene star does not fit, either,
because it concatenates the derivative of the argument with the original term
(Definition 6). But many useful operators are linear left derivable (Example 28).

Theorem 25. Suppose that F = {F1, . . . , Fm}∪R is an enhanced regular alpha-
bet with interpretation J such that (℘(Σ∗),J|{F1,...,Fm}) is linear left derivable.

Then, for all n ∈ N, F ∈ F (n), and a ∈ Σ there exists a finite index set J ,
for each j ∈ J , there is a word vj ∈ Σ∗, an index ij ∈ {1, . . . , m} of an element
of F \ R with arity #(Fij) = nj, for each 1 ≤ k ≤ nj, a word wj

k ∈ Σ∗, and an
index αj

k ∈ {1, . . . , n} that selects one of the left-hand-side regular expressions
as an argument. Then, for each r1, . . . , rn ∈ TF , the syntactic derivative of
F (r1, . . . , rn) by a is given in the form

D(a, F (r1, . . . , rn)) =
∑

j∈J(F,a)

vj · Fij (D(wj
k, rαj

k
)
k=1,...,nj

) (2)

In this setting, the set of iterated derivatives of any F-regular expression r
is finite. Specifically, in extension of the definition in Fig. 1, we claim that for
each F ∈ F \ R, the set of iterated derivatives

D+(F (r1, . . . , rn)) =
⊕

{v · G(r′
i) | V � v,G ∈ F \ R, r′

i ∈
⋃
j

D∗(rj)} (3)

is finite. Here V = {vj | j ∈ J, F ∈ F , a ∈ Σ}, and we write V � v for
∃v′ ∈ V.v′ � v.

Derivatives for Enhanced Regular Expressions 295

Corollary 26. Let F be an enhanced regular alphabet and (℘(Σ∗),J) be an ε-
testable, linear left derivable F-algebra. Then any F-regular expression defines
a regular language.

Proof. Let r ∈ TF and let Qr be the set of dissimilar derivatives of r. As Qr ⊆
D∗(r), Qr is finite. Hence M = (Qr, Σ,D, r, F) with F = {q ∈ Qr | N(q)} is a
total deterministic finite automaton that recognizes L(r), which is thus regular. ��
Corollary 27. Let F be an enhanced regular alphabet and (℘(Σ∗),J) be an
ε-testable, linear left derivable F-algebra. Then, for each F ∈ F , the operation
J (F) preserves regularity.

Proof. Let F ∈ F (n), for some n ∈ N. Let R1, . . . , Rn be regular lan-
guages defined by regular expressions r1, . . . , rn ∈ TR ⊆ TF . By Corollary 26,
Ĵ (F (r1, . . . , rn)) is regular. Hence J (F) preserves regularity. ��
Example 28. Many operators are in fact linear left derivable.

1. Intersection and complement are linear left derivable.
2. The shuffle operation is linear left derivable, but the derivative of the shuffle

closure contains a nested application of shuffle closure.
3. Inverse and non-erasing homomorphism are linear left derivable.
4. For k > 0, the set {fi,k | 0 < i ≤ k} is linear left derivable.
5. The left quotient is not linear left derivable, but the right quotient is linear

left derivable.
6. The function suffixes is not left derivable; the function prefixes is linear left

derivable.
7. The function reverse is not left derivable.
8. Both, Hk and Lk are linear left derivable.
9. Tilde and bar are linear left derivable.

By Corollary 26, regular languages are closed under ε-testable operators that are
linear left derivable: ∩, ¬, ‖, h−1, non-erasing h, Hk, tilde, bar.

For a set of unary operators, linear left derivability amounts to definability
by a rational finite state transducer.

Theorem 29. Let F = F (1) = {F1, . . . , Fm} be a ranked alphabet of unary
operators and (℘(Σ∗),J) be a linear left derivable F-algebra which is ε-testable
using the identity function. Then, for each 1 ≤ l ≤ m and L ⊆ Σ∗, J (Fl)(L) is
equal to T (L) where T is a rational finite state transducer.

The reverse implication does not hold because transducers may, in general,
consume an unbounded amount of input before producing an output. The trans-
ducers resulting from Theorem 29 only consume bounded input before producing
at least one output symbol.

296 P. Thiemann

6 Conclusion

We introduce a framework for constructing derivatives for regular expressions
enhanced with new operators. If these operators are left derivable, we obtain an
algorithm for the word problem; if they are linear left derivable, we can construct
a DFA from an enhanced expression. In fact, unary operators with this property
are rational transductions.

Some of the operators considered in this paper are known to be regularity
preserving, yet, they fail to be linear left derivable or to be ε-testable. In future
work, we plan to address these restrictions by generalizing linear derivability as
well as the nullability test.

References

1. Antimirov, V.M.: Rewriting regular inequalities. In: Reichel, H. (ed.) FCT 1995.
LNCS, vol. 965, pp. 116–125. Springer, Heidelberg (1995)

2. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci. 155(2), 291–319 (1996)

3. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Study of the average size of
Glushkov and partial derivative automata, October 2011

4. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
5. Caron, P., Champarnaud, J.-M., Mignot, L.: Partial derivatives of an extended

regular expression. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA
2011. LNCS, vol. 6638, pp. 179–191. Springer, Heidelberg (2011)

6. Caron, P., Champarnaud, J.-M., Mignot, L.: Multi-tilde-bar derivatives. In:
Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 321–328. Springer,
Heidelberg (2012)

7. Caron, P., Champarnaud, J., Mignot, L.: A general framework for the derivation
of regular expressions. RAIRO Theor. Inf. Appl. 48(3), 281–305 (2014)

8. Champarnaud, J.-M., Jeanne, H., Mignot, L.: Approximate regular expressions and
their derivatives. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol.
7183, pp. 179–191. Springer, Heidelberg (2012)

9. Grabmayer, C.: Using proofs by coinduction to find “Traditional” proofs. In:
Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005.
LNCS, vol. 3629, pp. 175–193. Springer, Heidelberg (2005)

10. Might, M., Darais, D., Spiewak, D.: Parsing with derivatives: a functional pearl.
In: Proceedings of ICFP 2011, pp. 189–195. ACM (2011)

11. Owens, S., Reppy, J., Turon, A.: Regular-expression derivatives reexamined. J.
Funct. Program. 19(2), 173–190 (2009)

12. Roşu, G., Viswanathan, M.: Testing extended regular language membership incre-
mentally by rewriting. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp.
499–514. Springer, Heidelberg (2003)

13. Sulzmann, M., Thiemann, P.: Derivatives for regular shuffle expressions. In: Dediu,
A.-H., Formenti, E., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol.
8977, pp. 275–286. Springer, Heidelberg (2015)

14. Sulzmann, M., Thiemann, P.: Forkable regular expressions. In: Dediu, A.-H.,
Janoušek, J., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618,
pp. 194–206. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30000-9 15

http://dx.doi.org/10.1007/978-3-319-30000-9_15

Derivatives for Enhanced Regular Expressions 297

15. Traytel, D., Nipkow, T.: Verified decision procedures for MSO on words based on
derivatives of regular expressions. J. Funct. Program. 25, e18 (2015)

16. Watson, B.W.: FIRE lite: FAs and REs in C++. In: Raymond, D.R., Yu, S., Wood,
D. (eds.) WIA 1996. LNCS, vol. 1260, pp. 167–188. Springer, Heidelberg (1997)

Weighted Restarting Automata
as Language Acceptors

Qichao Wang and Friedrich Otto(B)

Fachbereich Elektrotechnik/Informatik, Universität Kassel, 34109 Kassel, Germany
{wang,otto}@theory.informatik.uni-kassel.de

Abstract. We use weighted restarting automata to define classes of
formal languages by combining the acceptance condition of a restart-
ing automaton with a condition on the weight of its accepting computa-
tions. Specifically, we consider the tropical semiring Z∞ and the semiring
REG(Δ) of regular languages over a finite alphabet Δ. We show that by
using the tropical semiring, we can avoid the use of auxiliary symbols.
Further, a certain type of (word-) weighted restarting automata turns
out to be equivalent to non-forgetting restarting automata, and another
class of languages accepted by (word-) weighted restarting automata is
shown to be closed under intersection.

Keywords: Weighted restarting automaton · Non-forgetting restarting
automaton · Language class · Closure property

1 Introduction

The restarting automaton was introduced as a formal model for the analysis by
reduction, which is a linguistic technique that is used to check the correctness of
sentences of natural languages through sequences of local simplifications [1,2,8].
In order to study quantitative aspects of computations of restarting automata,
the authors introduced weighted restarting automata in [9]. These automata are
obtained by assigning an element of a given semiring S as a weight to each
transition of a restarting automaton M . The product (in S) of the weights of
all transitions that are used in a computation then yields a weight for that
computation, and the sum over all weights of all accepting computations of M
for a given input word w ∈ Σ∗ yields a value from S. In this way, a partial
function f : Σ∗ → S is obtained. By placing a condition T on the value f(w),
we can define a subset LT (M) of the language L(M) that is accepted by M .

Here we study the case that the semiring S is the tropical semiring Z∞ =
(Z∪ {∞},min,+,∞, 0) and the case that S is the semiring of regular languages
REG(Δ) = (REG(Δ),∪, ·, ∅, {λ}) over a given finite alphabet Δ. In the latter case
we restrict our attention to the word-weighted restarting automata introduced
in [10], that is, the weight of each transition is taken to be a singleton. In [10]
these automata were studied as transducers, while here we use them as language
acceptors.
c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 298–309, 2016.
DOI: 10.1007/978-3-319-40946-7 25

Weighted Restarting Automata as Language Acceptors 299

We present the following results. First we show that, for each type of restart-
ing automaton, the use of auxiliary symbols can be replaced by a condition on the
weights of accepting computations in the semiring Z∞, that is, each restarting
automaton of type RWW or RRWW can be simulated by a weighted restarting
automaton of type RW or RRW with weights in Z∞. Then we prove that, for each
type X of restarting automata, the word-weighted restarting automata of type
X are equivalent to the non-forgetting restarting automata of the same type,
where a non-forgetting restarting automaton is not required to reset its state
to its initial state on executing a restart operation [4,5,7]. Finally, we present
some closure properties for the classes of languages that are defined by weighted
restarting automata. In particular, we prove that the class of languages that are
defined by a certain type of word-weighted restarting automata is closed under
intersection, which is only the second time that closure under intersection is
established for a class of languages accepted by restarting automata that does
not coincide with the class of regular languages [6].

2 Definitions and Examples

We assume that the reader is familiar with the standard notions and concepts of
theoretical computer science, such as monoids, finite automata, and semirings.
Throughout the paper we use |w| to denote the length of a word w and λ to
denote the empty word. Further, P(X) denotes the power set of a set X, and
Pfin(X) denotes the set of all finite subsets of X.

A restarting automaton (or RRWW-automaton) is a nondeterministic
machine with a finite-state control, a flexible tape with endmarkers, and
a read/write window [1,2]. Formally, it is described by an 8-tuple M =
(Q,Σ, Γ, c, $, q0, k, δ), where Q is a finite set of states, Σ is a finite input alpha-
bet, Γ is a finite tape alphabet containing Σ, the symbols c, $ �∈ Γ are used as
markers for the left and right border of the work space, respectively, q0 ∈ Q is
the initial state, k ≥ 1 is the size of the read/write window, and δ is the (partial)
transition relation that associates finite sets of transition steps to pairs of the
form (q, u), where q is a state and u is a possible content of the read/write win-
dow. There are four types of transition steps. A move-right step (MVR) causes
M to shift its read/write window one position to the right and to change the
state. A rewrite step causes M to replace the content u of the read/write window
by a shorter string v, thereby reducing the length of the tape, and to change
the state. Further, the read/write window is placed immediately to the right
of the string v. However, occurrences of the delimiters c and $ can neither be
deleted nor newly created by a rewrite step. A restart step causes M to place its
read/write window over the left end of the tape, so that the first symbol it sees
is the left sentinel c, and to reenter the initial state q0, and, finally, an accept
step causes M to halt and accept. A non-forgetting restarting automaton M has
extended restart steps, which are combined with a change of state just like the
move-right and rewrite operations [5,7]. The prefix nf- is used to denote types
of non-forgetting restarting automata.

300 Q. Wang and F. Otto

If δ(q, u) is undefined for some pair (q, u), then M necessarily halts in a
corresponding situation, and we say that M rejects. Finally, if each rewrite step
is combined with a restart step into a joint rewrite/restart operation, then M is
called an RWW-automaton. An RRWW-automaton is called an RRW-automaton
if its tape alphabet Γ coincides with its input alphabet Σ, that is, if no auxiliary
symbols are available. It is an RR-automaton if it is an RRW-automaton for
which the right-hand side v of each rewrite step (q′, v) ∈ δ(q, u) is a scattered
subword of the left-hand side u. Analogously, we obtain the RW-automaton and
the R-automaton from the RWW-automaton.

A configuration of M is a string αqβ, where q ∈ Q, and either α = λ and
β ∈ {c} ·Γ ∗ · {$} or α ∈ {c} ·Γ ∗ and β ∈ Γ ∗ · {$}; here q is the current state, and
αβ is the current content of the tape, where it is understood that the window
contains the first k symbols of β or all of β when |β| ≤ k. A restarting configu-
ration is of the form q0cw$. If w ∈ Σ∗, then q0cw$ is an initial configuration.

Any computation of M consists of certain phases. A phase, called a cycle, starts
in a restarting configuration, the head moves along the tape performing move-
right operations and a single rewrite operation until a restart operation is per-
formed and thus a new restarting configuration is reached. If no further restart
operation is performed, the computation necessarily finishes in a halting configu-
ration – such a phase is called a tail. It is required that in each cycle M performs
exactly one rewrite step. A word w ∈ Σ∗ is accepted by M , if there is an accept-
ing computation which starts from the initial configuration q0cw$. By L(M) we
denote the language consisting of all (input) words that are accepted by M .

For studying quantitative aspects of computations of restarting automata, the
weighted restarting automaton has been introduced in [9]. A weighted restarting
automaton of type X, a wX-automaton for short, is a pair (M,ω), where M is a
restarting automaton of type X, and ω is a weight function from the transitions of
M into a semiring S, that is, ω assigns an element ω(t) ∈ S as a weight to each
transition t of M . The product (in S) of the weights of all transitions that are used
in a computation then yields a weight for that computation, and the sum over all
weights of all accepting computations of M for a given input word w ∈ Σ∗ yields
a value from S. In this way, a partial function fM

ω : Σ∗ → S is obtained. Here we
use weighted restarting automata to define sublanguages of the language that is
accepted by the underlying (unweighted) restarting automaton.

Definition 1. Let M = (Q,Σ, Γ, c, $, q0, k, δ) be a restarting automaton, let ω
be a weight function from M into a semiring S, and let M = (M,ω). For a
subset T of S, LT (M) = {w ∈ L(M) | fM

ω (w) ∈ T } is the language accepted
by M relative to T , that is, a word w ∈ Σ∗ belongs to the language LT (M) iff
w ∈ L(M) and fM

ω (w) ∈ T .

Definition 2. Let X be a type of restarting automaton, let S be a semiring, and
let H be a family of subsets of S. Then

L(X, S,H) = { LT (M) | M is a weighted restarting automaton of type X, and T ∈ H }
is the class of languages that are accepted by weighted restarting automata of
type X relative to H.

Weighted Restarting Automata as Language Acceptors 301

We continue with an example that illustrates our definitions.

Example 3. Let M1 = (Q,Σ, Γ, c, $, q0, k, δ) be the R-automaton that is defined
by taking Q := {q0, qr}, Γ := Σ := {a, b}, and k := 4, where δ is defined as
follows:

t1 : (q0, caaa) → (q0,MVR), t7 : (q0, abb$) → (qr, b$),
t2 : (q0, aaaa) → (q0,MVR), t8 : (q0, abb$) → (qr, $),
t3 : (q0, aaab) → (q0,MVR), t9 : (q0, cab$) → Accept,
t4 : (q0, aabb) → (q0,MVR), t10 : (q0, c$) → Accept,
t5 : (q0, abbb) → (qr, bb), t11 : (q0, caab) → (q0,MVR),
t6 : (q0, abbb) → (qr, b), t12 : (q0, cabb) → (q0,MVR),
t13,x : (qr, x) → Restart for all admissible x.

It is easily seen that L(M1) = { ambn | 0 ≤ m ≤ n ≤ 2m }. Further, for anbn

and for anb2n, M1 has just a single accepting computation.
Let (REG(Δ),∪, ·, ∅, {λ}) be the semiring of regular languages over Δ =

{c, d}, let ω1 be the weight function that assigns the set {c} to the transitions
t5, t7 and t9, that assigns the set {d} to the transitions t6 and t8, and that
assigns the set {λ} to all other transitions. Finally, let M1 = (M1, ω1), and let

T1 = { {cm} | m ≥ 0 } ∪ { {dn} | n ≥ 0 }.

Then fM1
ω1

(w) ∈ T1 iff w ∈ L(M1), and |w|a = |w|b or 2 · |w|a = |w|b, which yields

LT1(M1) = { anbn | n ≥ 0 } ∪ { anb2n | n ≥ 0 }.

It is known that the language LT1(M1) is not even accepted by any RW-
automaton [2]. Hence, we see that the notion of relative acceptance increases
the expressive power of R-automata.

3 On the Classes of Languages Accepted Relative to the
Tropical Semiring Z∞

Here we consider the languages that are accepted by weighted restart-
ing automata relative to subsets of the tropical semiring Z∞ = (Z ∪
{∞},min,+,∞, 0). Our first result states that by using the notion of accep-
tance relative to the family H0 = {{0}}, we can avoid auxiliary symbols.

Theorem 4. For all X ∈ {RRW,RW}, L(XW) ⊆ L(X,Z∞,H0).

For proving this result, we need the following technical lemma.

Lemma 5. For each R(R)WW-automaton M , there exists an R(R)WW-auto-
maton M ′ accepting only on empty tape such that L(M) = L(M ′).

Proof. Let M = (Q,Σ, Γ, c, $, q0, k, δ) be an R(R)WW-automaton. We construct
an R(R)WW-automaton M ′ that simulates M as follows. In each cycle M ′ first
guesses whether to simulate a cycle of M or whether M has already accepted.

302 Q. Wang and F. Otto

– In the former case, another cycle is simulated, in which M ′ performs the same
move-right, rewrite, and restart steps as M . However, each accept transition
of M is simulated by a rewrite transition of M ′ that replaces the content of
the window by a special symbol @, which indicates that the corresponding
computation of M has accepted. If during the simulation of a cycle of M , the
symbol @ is encountered by M ′, then M ′ halts without accepting.

– In the latter case, on seeing the symbol @, M ′ simply erases its left-hand
neighbour and restarts - if, however, the symbol @ is not encountered, then
M ′ halts without accepting.

This process is repeated until a tape content of the form c@α$ is reached, which
M ′ then deletes symbol by symbol from right to left. After deleting the last
symbol, M ′ halts and accepts. It should be clear that L(M) = L(M ′). �

Proof of Theorem 4. Let M = (Q,Σ, Γ, c, $, q0, k, δ) be an R(R)WW-automaton
with input alphabet Σ. In order to prove the above inclusion, we construct
an R(R)W-automaton M ′ and a weight function ω from M ′ to Z∞ such that
L{0}((M ′, ω)) = L(M). By Lemma 5, we can assume without loss of generality
that M always accepts on empty tape. Let M ′ = (Q,Γ, Γ, c, $, q′

0, k
′, δ′) be the

R(R)W-automaton that is obtained from M by simply taking all symbols as
input symbols. Now we define the weight function ω as follows. To each rewrite
transition of the form (q′, v) ∈ δ(q, u), we assign the weight |v|Γ\Σ−|u|Γ\Σ , where
|x|Γ\Σ denotes the number of occurrences of symbols from the set Γ\Σ in x,
that is, the number of occurrences of auxiliary letters in x, and we take ω(t) = 0
for all other transitions t. Then, for each accepting computation AC of M ′ on
input w ∈ Γ+, ω(AC) is the number of auxiliary symbols that are written onto
the tape during this computation minus the number of auxiliary symbols that
are removed from the tape during this computation. Since M ′ (just as M) always
accepts on empty tape, we see that ω(AC) = −|w|Γ\Σ . Hence, fM ′

ω (w) = 0 iff w
does not contain any auxiliary symbols, that is, L{0}((M ′, ω)) = L(M). �

It remains open whether the inclusion in Theorem 4 is a proper one. We
complete this section with a closure property for the language classes of the
form L(RRWW,Z∞,H).

Corollary 6. The language class L(RRWW,Z∞,H) is closed under the opera-
tion of reversal for each family H of subsets of Z∞.

This result follows immediately from the proof that the class of languages that
are accepted by RRWW-automata is closed under the operation of reversal [3]
and the fact that the tropical semiring Z∞ is commutative.

4 On the Classes of Languages Accepted
by Word-Weighted Restarting Automata

Now we study the classes of languages that are accepted by weighted
restarting automata relative to subsets of a semiring of regular languages

Weighted Restarting Automata as Language Acceptors 303

REG(Δ) = (REG(Δ),∪, ·, ∅, {λ}). In general, the weight of a transition of a
restarting automaton M can be any regular language over Δ. However, some
more restricted types of weighted restarting automata were introduced in [10].
Here we only consider the so-called word-weighted restarting automata that are
defined as follows.

Definition 7. A weighted restarting automaton M = (M,ω) is called a word-
weighted restarting automaton of type X (a wwordX-automaton for short), if M
is a restarting automaton of type X and ω is a weight function from M into a
semiring of the form REG(Δ) such that the weight ω(t) of each transition t of
M is a singleton set, that is, it is of the form ω(t) = {v} for some v ∈ Δ∗.

For these word-weighted restarting automata, we define the following notion
of relative acceptance.

Definition 8. Let M = (M,ω) be a wwordX-automaton with input alphabet Σ,
where ω maps the transitions of M to singleton sets over Δ.

(a) For a set T ∈ REG(Δ), L̂T (M) = {w ∈ L(M) | fM
ω (w) ∩ T �= ∅ } is the

language accepted by M relative to the set T , that is, a word w ∈ Σ∗

belongs to the language L̂T (M) iff w ∈ L(M) and fM
ω (w) contains at least

one element of T .
(b) Let H be a family of subsets of REG(Δ). Then

L̂(X,REG(Δ),H) = { L̂T (M) | M is a wwordX -automaton and T ∈ H}
is the class of languages that are accepted by wwordX-automata relative to H.

For word-weighted restarting automata we have the following inclusion result.

Lemma 9. For all types X ∈ {R,RR,RW,RRW,RWW, RRWW},
L(nf-X) ⊆ L̂(X,REG(Δ),REG(Δ)).

Proof. Let M = (Q,Σ, Γ, c, $, q0, k, δ) be a non-forgetting restarting automaton
of type X. In order to prove the above inclusion, we construct a wwordX-automaton
M′ = (M ′, ω) and we define a set T ∈ REG(Δ) such that L(M) = L̂T (M′). The
main problem in simulating M is the fact that, when executing a restart step, M
can enter any state, while M ′ must return to its initial state q0. To overcome this
problem, for each restart transition t : (q,Restart) ∈ δ(p, u) of M , the automaton
M ′ will have a restart transition t′ : Restart ∈ δ′(p, u) with associated weight
ω(t′) = {q}. Further, when starting from a restarting configuration, M ′ guesses
the state q of M with which M begins the current cycle, and it then proceeds to
simulate the next cycle of M starting in this state. In addition, the corresponding
transition is given the weight {q}. If in each cycle, M ′ guesses the correct state
of M , then the weight of the resulting accepting computation of M ′ is of the
form {q0q1q1q2q2 . . . qnqn} for some q1, q2, . . . , qn ∈ Q and n ≥ 0. Accordingly,
we take Δ = Q and T = { q0q1q1q2q2 . . . qnqn | q1, q2, . . . , qn ∈ Q,n ≥ 0 }.
To realize the above simulation, we take M ′ = (Q′, Σ, Γ, c, $, q0, k, δ′), where
Q′ = Q ∪ { (q, q1, q2) | q, q1, q2 ∈ Q }, and the transition relation δ′ and the
weight function ω are defined as shown below:

304 Q. Wang and F. Otto

1. First, in order to allow M ′ to guess the state with which M begins the current
cycle, δ′ contains the transition t′ : ((p, q, q′), op) ∈ δ′(q0, cu) with associated
weight {q} for each transition t : (p, op) ∈ δ(q, cu) of M and each q, q′ ∈ Q.
Here the first state component is the current state of M , the second com-
ponent is the guessed state with which the current cycle of M begins, and
the third component is the guessed state that M will enter through the next
restart step (if any).

2. In a state of the form (p, q, q′), M ′ proceeds just as M proceeds in state p,
leaving state components 2 and 3 untouched, until it reaches a restart tran-
sition. All these move-right, rewrite and accept steps of M ′ have weight {λ}.

3. Finally, for each restart transition of the form (q′,Restart) ∈ δ(q, u), δ′ con-
tains the transitions tq1 : Restart ∈ δ′((q, q1, q′), u) for all q1 ∈ Q, which all
have weight {q′}.

For an input w ∈ Σ∗, M ′ may have many more accepting computations than M .
In fact, in general, L(M ′) will be a proper superset of L(M). However, fM ′

ω (w)∩
T �= ∅, iff M ′ has an accepting computation AC on input w such that ω(AC) ∈ T .
This means that within this computation, M ′ always guesses the correct state
after each restart step, which shows that AC is the correct simulation of an
accepting computation of M . It follows that L̂T (M) = L(M). �

In fact, also the converse inclusions hold.

Lemma 10. For all types X ∈ {R,RR,RW,RRW,RWW, RRWW},

L̂(X,REG(Δ),REG(Δ)) ⊆ L(nf-X).

Proof. Let Δ be a finite alphabet, let M = (M,ω) be a wwordX-automaton,
where M = (Q,Σ, Γ, c, $, q0, k, δ) is a restarting automaton of type X, and ω is a
weight function that assigns to each transition of M a subset of Δ∗ of cardinality
one, and let T ∈ REG(Δ). In order to prove the above inclusion we provide a
non-forgetting restarting automaton M ′ of type X such that L(M) = L̂T (M).
For each w ∈ Σ∗, we have w ∈ L̂T (M) iff w ∈ L(M) and fM

ω (w) ∩ T �= ∅.
As the set T is regular, there exists a deterministic finite automaton (DFA)
A = (QA,Δ, δA, qA

0 , FA) such that L(A) = T , where QA is a finite set of states,
Δ is the input alphabet for A, δA : QA × Δ → QA is the transition function,
qA
0 is the initial state, and FA is a set of accepting states. For an input w ∈ Σ∗,

M ′ has to check whether w ∈ L(M) and whether fM
ω (w)∩L(A) �= ∅. Therefore,

M ′ needs to simulate both M and A simultaneously. Accordingly, each state
of M ′ is a pair (p, q), where p ∈ Q and q ∈ QA, and when simulating a step
of M , M ′ needs to ensure that A has a transition that is applicable to the weight
of this step. As it is non-forgetting, M ′ can always remember the actual state
of A, even after executing a restart step. If M accepts, then M ′ also accepts,
provided that A reaches a final state by reading the weight of the current accept
step. �

Together, Lemmas 9 and 10 yield the following characterization.

Weighted Restarting Automata as Language Acceptors 305

Theorem 11. For all types X ∈ {R,RR,RW,RRW, RWW,RRWW},

L(nf-X) = L̂(X,REG(Δ),REG(Δ)).

Based on this result a characterization of the class CFL of context-free lan-
guages in terms of word-weighted restarting automata can be derived from a
corresponding result for non-forgetting restarting automata [7]. Also this section
closes with a look at some closure properties.

Theorem 12. The class L̂(X,REG(Δ),REG(Δ)) is closed under the operation
of union for each X ∈ {R,RR,RW,RRW,RWW,RRWW}.
Proof. Let M1 = (M1, ω1) and M2 = (M2, ω2) be wwordX-automata, and let
T1, T2 ∈ REG(Δ). By Theorem 11, there exist non-forgetting restarting automata
M ′

1 and M ′
2 of type X such that L(M ′

1) = LT1(M1) and L(M ′
2) = LT2(M2).

Thus, in order to prove the above closure property, it suffices to construct a non-
forgetting restarting automaton M of type X such that L(M) = L(M ′

1)∪L(M ′
2).

At the start, M nondeterministically chooses an index i ∈ {1, 2}, and then it
simply works exactly like M ′

i . As M is non-forgetting, it can store its guess
within its finite-state control. If M ′

i accepts, then M also accepts. Thus, M
accepts on input w iff at least one of M ′

1 or M ′
2 accepts on input w. It follows

that L(M) = L(M ′
1) ∪ L(M ′

2). �

In [3] it is shown that the language classes L(RWW) and L(RRWW) are
closed under the operation of concatenation. This result also holds for the class
of languages that are defined by word-weighted restarting automata.

Theorem 13. The class L̂(X,REG(Δ),REG(Δ)) is closed under the operation
of concatenation for each X ∈ {RWW,RRWW}.
Proof. The proof for RWW- and RRWW-automata given in [3] proceeds as fol-
lows. On input a word w, a factorization w = uv is guessed such that u is
accepted by the first automaton and v is accepted by the second. To fix this
guess, the last symbol a of u and the first symbol b of v are rewritten into a
special symbol [a, b], and then the first automaton is simulted on u. If and when
it accepts, then the second automaton is simulated on v. In the same way, we
can proceed for non-forgetting RWW- and RRWW-automata. By Theorem 11
this yields the intended closure property for L̂(X,REG(Δ),REG(Δ)). �

Finally, we return to the operation of reversal. In [3] it is shown that the class
of languages that are accepted by RRWW-automata is closed under reversal.
As the proof carries over to non-forgetting RRWW-automata, we immediately
obtain the following result from Theorem 11.

Corollary 14. The class L̂(RRWW,REG(Δ),REG(Δ)) is closed under the oper-
ation of reversal.

306 Q. Wang and F. Otto

5 A Stronger Restriction for Word-Weighted
Restarting Automata

A word w ∈ Σ∗ is an element of the language L̂T (M) for a word-weighted
restarting automaton M = (M,ω) and a set T ∈ REG(Δ), if w ∈ L(M) and the
weight ω(AC) is an element of T for at least one accepting computation AC of
M on input w. Thus, there may be other accepting computations of M on this
very input that have an associated weight that does not belong to the set T . The
following definition requires that ω(AC) must belong to T for each accepting
computation AC of M on input w.

Definition 15. Let M = (M,ω) be a wwordX-automaton with input alpha-
bet Σ, where ω maps the transitions of M to singleton sets over Δ. For a set
T ⊆ Pfin(Δ∗), LT (M) = {w ∈ L(M) | fM

ω (w) ∈ T } is the language strongly
accepted by M relative to the set T , that is, a word w ∈ Σ∗ belongs to the
language LT (M) iff w ∈ L(M) and fM

ω (w) coincides with an element of T .

Actually, this definition is exactly in the spirit of Definition 2. Indeed, let S be
the semiring of regular languages over Δ. For a wwordX-automaton M = (M,ω)
and an input w ∈ Σ∗, the value fM

ω (w) is a finite subset of Δ∗. Thus, it suffices
to consider subsets of S that consist of finite languages. Accordingly, if T is a
collection of finite subsets of Δ∗, then an input word w ∈ Σ∗ belongs to the
language LT (M) iff w ∈ L(M) and fM

ω (w) is an element of T .
Concerning the classes of languages that are defined using this stronger

notion, we have the following important closure property.

Theorem 16. Let M1 = (M1, ω1) and M2 = (M2, ω2) be wwordX-automata,
where X ∈ {RWW,RRWW} and ω1 and ω2 map the transitions of M1 and M2 to
singleton sets over Δ, and let T1, T2 ⊆ Pfin(Δ∗). Then there are an alphabet Δ′, a
wwordX-automaton M = (M,ω), where ω maps the transitions of M to singleton
sets over Δ′, and a set T ⊆ Pfin(Δ′∗) such that LT (M) = LT1(M1) ∩ LT2(M2).

Proof. For i = 1, 2, let Mi = (Mi, ωi), where Mi = (Qi, Σ, Γi, c, $, q
(i)
0 , ki, δi) is

an RRWW-automaton, ωi is a weight function that maps the transitions of Mi

to singleton sets over Δ, and let Ti ⊆ Pfin(Δ∗). We construct an alphabet Δ′, a
word-weighted RRWW-automaton M = (M,ω), where ω maps the transitions
of M to singleton sets over Δ′, and a subset T ⊆ Pfin(Δ′∗) such that LT (M) =
LT1(M1) ∩ LT2(M2), that is, for all w ∈ Σ∗, w ∈ LT (M) iff w ∈ LT1(M1) and
w ∈ LT2(M2).

On input a word w ∈ Σ∗, the automaton M will be able to simulate M1 as
well as M2. Essentially, the simulation of an accepting computation of M1 on
input w should give the same weight as the corresponding computation of M1,
and analogously, the simulation of an accepting computation of M2 on input w
should give the same weight as the corresponding computation of M2. However,
as the elements of T1 and T2 are subsets of Δ∗, it could happen that fM1

ω1
(w)

is an element of T2, although w �∈ LT1(M1). Thus, we must ensure that the set
of weights of the simulations of all accepting computations of M1 for an input

Weighted Restarting Automata as Language Acceptors 307

word w cannot be an element of T2, and analogously for simulations of accepting
computations of M2 and T1.

For this purpose, we define the following sets and mappings. Let Δ1 = Δ ∪
{@}, Δ̂ = { â | a ∈ Δ }, Δ2 = Δ̂ ∪ {@̂}, and let Δ′ = Δ1 ∪ Δ2. Further, let
σ1, σ2, and σ′ be the mappings that are given through

σ1(w) = w@ for w ∈ Δ∗,
σ2(w) = â1â2 . . . ân@̂ for w = a1a2 . . . an ∈ Δ∗,
σ′(λ) = λ,
σ′(w) = â1â2 . . . ân for w = a1a2 . . . an ∈ Δ+,

which are extended to sets by simply applying them to all elements of a given
set. Finally, let ω′

1 and ω′
2 be the weight functions that are defined as follows:

ω′
1(t) = {u@} for each accept transition t ∈ δ1,where ω1(t) = {u},

ω′
1(t) = ω1(t) for all other transitions t ∈ δ1,

ω′
2(t) = {σ′(u)@̂} for each accept transition t ∈ δ2,where ω2(t) = {u},

ω′
2(t) = σ′(ω2(t)) for all other transition t ∈ δ2.

Now let M′
1 = (M1, ω

′
1) and M′

2 = (M2, ω
′
2), and let T ′

1 = {σ1(V) | V ∈ T1 } and
T ′
2 = {σ2(V) | V ∈ T2 }. Then LT1(M1) = LT ′

1
(M′

1) and LT2(M2) = LT ′
2
(M′

2).
It is easily seen that fM1

ω′
1

(w) ⊆ Δ+
1 and fM2

ω′
2

(w) ⊆ Δ+
2 for each w ∈ Σ∗.

The RRWW-automaton M and the weight function ω are defined as follows,
where M = (Q,Σ, Γ, c, $, q0, k, δ). If max{k1, k2} = 1, we take k = 2; otherwise,
we take k = max{k1, k2}. Starting from the initial configuration on input w ∈
Σ∗, M first guesses whether to simulate M1 or M2. In order to remember its
guess, δ contains some transitions that allow M to combine the first two symbols
a1 and a2 of w into a special auxiliary symbol of the form [a1, a2, i], where
i ∈ {1, 2} is the above guess. The weight function ω assigns the set {λ} to these
transitions. In the subsequent cycles, M simulates the machine Mi on seeing the
symbol [a1, a2, i]. Of course, the symbol [a1, a2, i] leads to some adjustments in
the construction of the transitions of M that simulate M1 and M2. However,
this technique has already been presented in detail in the proof of Theorem 6
of [9]. The simulation of an accepting computation AC of Mi on input w will
yield an accepting computation of M that has exactly weight ω′

i(AC). Finally,
let T = {V1 ∪ V2 | V1 ∈ T ′

1 and V2 ∈ T ′
2 }. Then, for each w ∈ Σ∗, w ∈ LT (M)

iff w ∈ L(M1) ∪ L(M2) and it holds that fM
ω (w) ∈ T . The latter means that

there exist a subset V1 ∈ T ′
1 and a subset V2 ∈ T ′

2 such that fM
ω (w) = V1 ∪ V2.

This, however, implies that fM1
ω′

1
(w) = V1 and fM2

ω′
2

(w) = V2, which means in
particular that both, M1 and M2, accept on input w. If follows that LT (M) =
LT ′

1
(M′

1) ∩ LT ′
2
(M′

2). For RWW-automata, the result can be proved in exactly
the same way. �

This is the first result that shows that a class of languages defined in terms
of a quite general class of restarting automata is closed under the operation
of intersection. Using essentially the same technique also the following closure
property can be derived.

308 Q. Wang and F. Otto

Theorem 17. Let M1 = (M1, ω1) and M2 = (M2, ω2) be wwordX-automata,
where X ∈ {RWW,RRWW} and ω1 and ω2 map the transitions of M1 and M2 to
singleton sets over Δ, and let T1, T2 ⊆ Pfin(Δ∗). Then there are an alphabet Δ′, a
wwordX-automaton M = (M,ω), where ω maps the transitions of M to singleton
sets over Δ′, and a set T ⊆ Pfin(Δ′∗) such that LT (M) = LT1(M1) ∪ LT2(M2).

In fact, we also have the following result.

Theorem 18. Let M1 = (M1, ω1) and M2 = (M2, ω2) be wwordX-automata,
where X ∈ {RWW,RRWW} and ω1 and ω2 map the transitions of M1 and M2 to
singleton sets over Δ, and let T1, T2 ⊆ Pfin(Δ∗). Then there are an alphabet Δ′, a
wwordX-automaton M = (M,ω), where ω maps the transitions of M to singleton
sets over Δ′, and a set T ⊆ Pfin(Δ′∗) such that LT (M) = LT1(M1) · LT2(M2).

Proof. It is known that the language classes L(RWW) and L(RRWW) are closed
under the operation of concatenation [3]. The central idea of the proof is to guess
a factorization w = uv for an input w, to combine the last symbol a of u and
the first symbol b of v into a special symbol [a, b] in order to fix this guess, and
to simulate the first automaton on u and the second on v. Using the alphabets
and mappings from the proof of Theorem 16, and by taking T = {V1 · V2 | V1 ∈
T ′
1 and V2 ∈ T ′

2 }, the simulation technique from [3] can be used. �

6 Conclusions

We have introduced the notion of acceptance relative to a subset of a semiring to
use the weight function of a weighted restarting automaton to specify a language.
This language is obtained from the language that is accepted by the underlying
(unweighted) restarting automaton by restricting the weight associated to a given
input word through an additional requirement. Here we have only considered the
case of the tropical semiring Z∞ and that of the semiring of regular languages
REG(Δ) over a finite alphabet Δ. We have seen that by using the semiring Z∞, we
can simulate the computations of a restarting automaton with auxiliary symbols
by an automaton without auxiliary symbols. For the notion of acceptance relative
to a regular language, we have shown that our notion of relative acceptance
just corresponds to the non-forgetting restarting automata. Finally, in a more
restricted setting we have even presented a class of languages that is specified by
general restarting automata, but which is nevertheless closed under the operation
of intersection.

Actually, it can be shown that also the latter two types of relative acceptance
can be used to replace restarting automata with auxiliary symbols by automata
without auxiliary symbols. However, many problems remain open. Most impo-
rantly, we do not yet have a characterization for the classes of languages that
are accepted by the various types of weighted restarting automata relative to
subsets of the associated semiring.

Weighted Restarting Automata as Language Acceptors 309

References

1. Jancar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H.
(ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995)

2. Jancar, P., Mráz, F., Plátek, M., Vogel, J.: On monotonic automata with a restart
operation. J. Auto. Lang. Comb. 4(4), 287–312 (1999)

3. Jurdziński, T., Lorys, K., Niemann, G., Otto, F.: Some results on RWW- and
RRWW-automata and their relation to the class of growing context-sensitive lan-
guages. J. Autom. Lang. Comb. 9(4), 407–437 (2004)

4. Messerschmidt, H., Otto, F.: Cooperating distributed systems of restarting
automata. Int. J. Found. Comput. Sci. 18, 1333–1342 (2007)

5. Messerschmidt, H., Stamer, H.: Restart-Automaten mit mehreren Restart-
Zuständen. In: Bordihn, H. (ed.) Workshop “Formale Methoden in der Linguistik”
und 14. Theorietag “Automaten und Formale Sprachen”. pp. 111–116. Institut für
Informatik, Universität Potsdam, Potsdam (2004)

6. Messerschmidt, H.: CD-Systems of restarting automata. Ph.D. thesis, Fachbereich
Elektrotechnik/Informatik, Universität Kassel (2008)

7. Messerschmidt, H., Otto, F.: On nonforgetting restarting automata that are deter-
ministic and/or monotone. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR
2006. LNCS, vol. 3967, pp. 247–258. Springer, Heidelberg (2006)

8. Otto, F.: Restarting automata. In: Ésik, Z., Mart́ın-Vide, C., Mitrana, V. (eds.)
Recent Advances in Formal Languages and Applications, vol. 25, pp. 269–303.
Springer, Heidelberg (2006)

9. Otto, F., Wang, Q.: Weighted restarting automata. Soft Computing (2016).
Accepted. The results of this paper have been announced at WATA 2014 in Leipzig.
doi:10.1007/s00500-016-2164-4

10. Wang, Q., Hundeshagen, N., Otto, F.: Weighted restarting automata and push-
down relations. In: Maletti, A. (ed.) Algebraic Informatics. LNCS, vol. 9270, pp.
196–207. Springer, Switzerland (2015)

http://dx.doi.org/10.1007/s00500-016-2164-4

Enhancing Practical TAG Parsing Efficiency
by Capturing Redundancy

Jakub Waszczuk1(B), Agata Savary1, and Yannick Parmentier2

1 Laboratoire d’informatique, Université François-Rabelais Tours, Blois, France
{jakub.waszczuk,agata.savary}@univ-tours.fr
2 LIFO - Université d’Orléans, Orléans, France

yannick.parmentier@univ-orleans.fr

Abstract. The efficiency of parsing with tree adjoining grammars
(TAGs) depends not only on the size of the input sentence but also,
linearly, on the size of the input TAG, which can attain several thou-
sands of elementary trees. We propose a factorized, finite-state TAG
representation to cope with this combinatorial explosion. The associated
parsing algorithm shows a substantial performance gain on a real-size
French TAG.

Keywords: Parsing ·Tree-adjoining grammars ·Grammar compression ·
Finite-state automata · Hypergraphs

1 Introduction

High lexicalization and the so-called extended domain of locality1 of TAGs [9],
while beneficial for grammar development, are known to lead to very large gram-
mars with up to several thousands of elementary trees [16]. This poses problems
of practical nature – parsing algorithms for TAGs are polynomial in the size of
the input sentence but also at least linear in the size of the underlying grammar.
While many parsing algorithms for speeding up TAG parsing exist, we propose
a novel approach in which redundancy is captured by combining and optimiz-
ing several previously proposed techniques: grammar flattening, subtree sharing,
rule compression into a unique finite-state automaton, and adaptation of pars-
ing inference rules to this representation. Experiments show that these measures
lead to a substantial gain in space and time efficiency.

2 Tree Adjoining Grammars

Let Σ and N0 be disjoint sets of terminal and non-terminal symbols. An ini-
tial tree (IT) is a tree with non-terminals in non-leaf nodes and terminals/non-
terminals in leaf nodes. An auxiliary tree (AT) is similar to an IT but it has one

This work has been supported by the PARSEME European COST Action (IC1207)
and by the PARSEME-FR French ANR project (ANR-14-CERA-0001-01).

1 The former meaning that elementary grammar units are typically attached to one or
more lexical items, the latter that many syntactic phenomena can be conveniently
represented locally, at the level of individual elementary units.

c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 310–321, 2016.
DOI: 10.1007/978-3-319-40946-7 26

Enhancing Practical TAG Parsing Efficiency by Capturing Redundancy 311

distinguished leaf (usually marked with an asterisk), called a foot, containing
the same non-terminal as the root. For instance, in Fig. 2, t1, t5 and t6 are ITs,
while t2, t3 and t4 are ATs. A TAG is defined as a tuple (Σ,N0, I,A,S) where I
is the set of elementary initial trees (EITs), A is the set of elementary auxiliary
trees (EATs), and S is the start non-terminal.

A derived tree is created from EITs and EATs by substitution and adjunction.
Given an IT t, and any tree t′, substitution replaces a non-terminal leaf l in t′

by t provided that labels in l and in t’s root are equal. Given an AT t, and any
tree t′, adjunction replaces t’s foot by a subtree t′′ of t′ and then inserts this
modified t in place of t′′ in t′, provided that the root non-terminals in t and t′′

are identical, as shown in Fig. 1. A derivation tree keeps track of the operations
and the elementary trees (ETs) involved in the creation of a derived tree.

Fig. 1. Adjunction of the tree t2 to the
tree t5 from Fig. 2

A sequence of terminals obtained by
an in-order traversal of a tree t is called
a projection of t, written proj(t). We also
define projA(t), specialized to ATs, as a
pair of terminal sequences on the left and
on the right of the foot node, respectively.

We say that a tree t can be derived
from a non-trivial subtree2 t0 (auxiliary or
not) of an ET iff (i) tree t can be derived
from the grammar extended with t0 as an ET and (ii) a derivation tree d of
t exists such that t0 occurs in d’s root and, unless t0 is already part of the
grammar, nowhere else in d. We will also say that a non-auxiliary subtree t0
of an ET is recognized over a span (i, l) of the input sentence s iff a tree t can
be derived from t0 such that proj(t) = s(i,l), where s(i,l) is a part of sentence
s containing its words between positions i and l. Similarly, we will say that an
auxiliary subtree t0 of an ET is recognized over a span (i, j, k, l) iff a tree t can
be derived from t0 such that projA(t) = (s(i,j), s(k,l)).

3 Grammar Factorization

Consider the sentence in example (1) and the toy lexicalized TAG (LTAG) con-
taining trees t1,. . . ,t6 from Fig. 2 covering several competing interpretations for
the two initial words.

(1) Set points in tennis belong to official scoring.

The IT t1 represents set as a phrasal verb in imperative mode taking a direct
object and a prepositional complement governed by in. ATs t2, t3 and t4 consider
set as a nominal, adjectival and participle modifier of a head noun, respectively.
In the IT t5 points is a nominal phrase, while t6, having two terminals, corre-
sponds to the idiomatic interpretation of set points as an NN compound.

2 In the rest of this paper, by subtree we mean a non-trivial (of height > 0) subtree,
unless explicitly stated otherwise.

312 J. Waszczuk et al.

3.1 Grammar Flattening with Subtree Sharing

We propose to represent each ET as a set of flat production rules, so that common
subtrees are shared (cf. Fig. 2). Each non-terminal from an internal (non-root
and non-leaf) node receives a unique index, and each non-leaf node together
with its children yields a production rule. E.g., nodes VP and PP with their
children in t1 yield the rules VP1 → V2 NP PP3, PP3 → P4 NP , respectively.
Additionally, each node on the spine of an AT is marked by an asterisk, e.g., the
root of t2 becomes N∗ in the head of the rule N∗ → N5N

∗.
Note also that the non-terminal N , occurring twice in t6, yields two different

non-terminals N0 and N5 in order to prevent non-compatible rule combinations.
For instance, we should not admit an NN-compound points set, which would
be admitted if these two N terminals were not distinguished. Note, however,
also that as soon as some subtrees are common for different grammar trees, the
indexed non-terminals, and consequently the target rules, can be shared. For
example, the nominal interpretations of set and points common for t2, t5 and t6
can be shared via the common production rules N5 → set and N0 → points.

In what follows, we refer to such a grammar conversion as flattening with
subtree sharing (FSS), and to the conversion result as an FSS grammar (FSSG).

(t1) (t2) (t3) (t4)S

VP

PP

P PN

in

V PN

set

N

N* N

set

N

N* A

set

N

NtP *

set

N* → N5 N* N* → A7 N* N* → Pt9 N*
N5 → set A7 → set Pt9 → set
(t5) (t6)

S → VP1 NP

N

points

NP

N

points

N

set

VP1 → V2 NP PP3
V2 → set
PP3 → P4 NP
P4 → in

NP → N0 NP → N5 N0
N0 → points

Fig. 2. A toy LTAG grammar and its
FSSG.

0 5

4

6

3

2

13

7

9

10

14

8

12 11

1

set

poin
ts

in

N0

N5

Pt9

A7

P
4

V
2

VP
1

N0

N∗

N∗

NP

NP PP3

A
7

N
5

Pt
9

V
2

N
0

P
4

NP

N∗

PP3

V
P 1

S

Fig. 3. Compression of the FSSG from
Fig. 2 into an FSSA.

Formally, the FSSG constructed from a TAG G = (Σ,N0, I,A,S) is a set of
production rules α ∈ N ×(N ∪Σ)+ where the first and the second component rep-
resent the head and the non-empty body of the rule, respectively. N0 is the set of
FSSG non-terminals, i.e. triples X ∈ N0×(N∪{−})×{−, ∗} where ‘−’ indicates
that the corresponding value is unbound. Internal nodes are marked with unique
identifiers from the set of natural numbers N. A non-terminal (x, u, a) ∈ N is
alternatively written as xa

u and unbounded values (−) are ignored. For example,
(N,−, ∗) is equivalent to N∗, (V, 2,−) to V2 and (NP ,−,−) to NP .

The FSS conversion determines a bijection R0 between non-terminals origi-
nating from internal nodes (X ∈ N0 × N × {−, ∗}) and proper subtrees of ETs.

Enhancing Practical TAG Parsing Efficiency by Capturing Redundancy 313

A subtree common to several ETs (e.g., the subtree rooted at N dominating set
in trees t2 and t6 in Fig. 2) is represented, in the FSSG, by a single non-terminal
(here: N5). We define a 1-to-many correspondence R between non-terminals
(X = (x, u, a) ∈ N) and TAG subtrees as an extension of this bijection:

R(X) =

⎧
⎪⎨
⎪⎩

{R0(X)} if u �= −
I|x if (u, a) = (−,−)

A|x if (u, a) = (−, ∗)

(1)

where I|x and A|x are the sets of all EITs and all EATs, respectively, rooted at
x ∈ N0. E.g., in Fig. 2, R(NP) = {t5, t6} and R(N∗) = {t2, t3, t4}.

3.2 Automaton-Based Grammar Compression

Despite subtree sharing applied to the FSSG in Fig. 2, it still shows some degree
of redundancy: the terminal set constitutes the body of 4 rules (headed by V2,
N5, A7 and Pt9), the non-terminal NP occurs in the head of 2 rules, and the spine
non-terminal N∗ appears in the head and in the suffix of 3 rules. This observation
leads to the idea of representing the FSSG as a minimal deterministic finite-state
automaton (DFSA), called here FSSA, as shown in Fig. 3. The FSSA’s alphabet
consists of terminals and non-terminals of the FSSG rules. Each path represents
the right-hand side of a rule followed by its head.3 For instance, the bottom path,
traversing nodes 0, 10, 12, 11 and 1, represents the rule VP1 → V2 NP PP3.
In this representation redundancy is largely avoided: the terminal set and the
head non-terminals NP and N∗, are represented by unique transitions (0, set, 2),
(4,NP , 1) and (14, N∗, 1), respectively. Additionally, transition (13, N∗, 14) is
shared by the suffixes of rules N∗ → A7N

∗ and N∗ → Pt9N
∗.

In what follows we extend the notion of an FSSA-based grammar compression
into the case when the grammar rules are possibly represented as a set of FSSAs
(with disjoint sets of node identifiers), according to the particular variant of the
compression technique. For instance, in [12] all grammar rules having the same
head non-terminal are compressed into a separate DFSA. One of the versions of
our parser tested in Sect. 5 implements a similar compression idea.

For a grammar represented as a set of FSSAs, and for any state q therein, let
P (q) be a set of sequences of labels leading from an initial state to q. For instance,
in Fig. 3, P (14) = {N5N

∗, P t9N
∗, A7N

∗}. Note that if q is non-final, sequences
in P (q) correspond to prefixes of rules’ bodies. In particular, P (q) ∈ (N ∪ T)∗.

4 Parser

We propose two Earley-style [6] bottom-up TAG parsing algorithms. The first
one, called an FSS parser, is inspired by [14], and differs from this seminal work
in that it uses an FSSG instead of the original TAG and ignores prediction. The
other one, called an FSSA parser and inspired by [12], is an extension of the FSS
3 Head non-terminals are distinguished from others, which is neglected in Fig. 3.

314 J. Waszczuk et al.

parser in that it uses the FSSG compressed into FSSAs. In both algorithms pars-
ing can be seen, after [11], as a dynamic construction of a hypergraph [8] whose
nodes are parsing chart items and whose hyperarcs represent applications of
inference rules. The hypergraph representation facilitates comparisons between
the two algorithms, and time efficiency estimations (the number of elementary
parsing steps can be approximated by the number of hyperarcs). It also provides
a compressed representation of all the derived trees for a given input sentence.

4.1 FSS Parser

Figure 4 shows the hypergraph created while parsing the two initial words of sen-
tence (1) by the FSS parser with the FSSG from Fig. 2. Due to space constraints,
we do not formally define the inference rules of the FSS parser here. They can
be seen as simplified versions of those defined in Sect. 4.4. Each item contains a
dotted rule and the span over which the symbols to the left of the dot have been
parsed. E.g., the hyperarc leading from (N5 → •set, 0, 0) to (N5 → set•, 0, 1)
means that the terminal set has been recognized from position 0 to 1. The latter
item can be combined with (NP → •N5N0, 0, 0) yielding (NP → N5 • N0, 0, 1),
etc. The sentence s has been parsed if a goal item has been reached (spanning
from 0 to |s|, with a rule headed by (S,−,−) and terminated by a dot).

(N5 → •set,
0, 0)

(A7 → •set,
0, 0)

(Pt9 → •set,
0, 0)

(V2 → •set,
0, 0)

(N5 → set•,
0, 1)

(NP → •N5N0, 0, 0)

(N∗ → •N5N
∗, 0, 0)

(A7 → set•,
0, 1)

(N∗ → •A7N
∗, 0, 0)

(Pt9 → set•,
0, 1)

(N∗ → •Pt9N
∗, 0, 0)

(N0 → •points, 1, 1)

(V2 → set•,
0, 1)

(V P1 → •V2NP PP3, 0, 0)

(NP → N5 • N0, 0, 1)

(N∗ → N5 • N∗,
0, 1)

(N∗ → A7 • N∗,
0, 1)

(N∗ → Pt9 • N∗,
0, 1)

(N0 → points•,
1, 2)

(NP → •N0, 1, 1)

(V P1 → V2 • NP PP3,
0, 1)

(NP → N5N0•,
0, 2)

(N∗ → N5N
∗•,

0, 1, 2, 2)

(N∗ → A7N
∗•,

0, 1, 2, 2)

(N∗ → Pt9N
∗•,

0, 1, 2, 2)

(NP → N0•, 1, 2)

(N0 → points•,
0, 2)

(NP → •N0,
0, 0)

(V P1 → V2NP • PP3,
0, 2)

(NP → N0•,
0, 2)

Fig. 4. Hypergraph created by the FSS parser while parsing the substring set points
with the FSSG from Fig. 2. The dashed and plain hyperarcs roughly correspond to
scanner and completer operations in a CFG Earley parser. The densely and loosely
dotted hyperarcs represent novel inference rules: foot adjoin and root adjoin.

Items whose spans contain 4 integers (i1, i2, i3, i4) result from the FSS-based
inference rules related to adjunction: i1 and i4 represent the whole span of the
recognized sequence, while i2 and i3 indicate the gap, i.e., the part of the sequence
matched by the foot node of an AT. For instance, the hyperarc leading from

Enhancing Practical TAG Parsing Efficiency by Capturing Redundancy 315

(N∗ → N5 • N∗, 0, 1) and (N0 → points•, 1, 2) to (N∗ → N5N
∗•, 0, 1, 2, 2) puts

forward an adjunction hypothesis. The noun points has been recognized over
span (1, 2), and set recognized over (0, 1) might later be adjoined to it as a
modifier. Thus, points will fill the gap (from 1 to 2) corresponding to the foot
node N∗ in the body of rule N∗ → N5N

∗ (stemming from tree t2). Note further
that the combination of items (N∗ → N5N

∗•, 0, 1, 2, 2) and (N0 → points•, 1, 2)
yields (N0 → points•, 0, 2), which corresponds to stage 1 of the adjunction (see
Sect. 2). Stage 2 is then represented by the hyperarc leading to (NP → N0•, 0, 2).

4.2 FSSA Parser

The idea behind grammar compression is not only space efficiency but also reduc-
ing parsing time [12]. The latter is based on the observation that, whenever bod-
ies of some flat rules share common prefixes and/or suffixes (which is in close
relation to sharing sub-paths in the FSSA), partial parsing results can be shared
for them. Another related fact is that, for a given position of the dot in a flat
dotted rule, the history of the parsing on the left-hand side of the dot does
not influence the future parsing on the right-hand side of the dot. Therefore,
the position of the dot in a rule can be nicely represented by the FSSA state
achieved while parsing the rule, whatever the path which led us to this state.

(0, 0, 0)

(2, 0, 1)

(N5,0,1)

(Pt9,0,1)

(A7,0,1)

(V2,0,1) (10, 0, 1)

(0, 1, 1)

(13, 0, 1)

(5, 0, 1)

(3, 1, 2) (N0,1,2)

(4, 1, 2)

(14, 0, 1, 2, 2)

(NP,1,2)

(N*,0,1,2,2)

(12, 0, 2)

(N0,0,2)

(4, 0, 2)

(NP,0,2)

Fig. 5. Hypergraph representing the chart parsing of the substring set points with the
FSSA from Fig. 3. The double, plain, thick, dashed, densely dotted and loosely dotted
hyperarcs represent axioms, pseudo substitution, deactivate, scan, foot adjoin and root
adjoin inference rules, respectively (see Sect. 4.4). Passive states are highlighted in bold.

These observations may lead to a substantial reduction of the parsing hyper-
graph, as shown in Fig. 5. Here, dotted rules in the hypergraph items from
Fig. 4 are replaced by states of the FSSA from Fig. 3 (the resulting items are
called active). Firstly, all 9 initial items (i.e., having the dot at the begin-
ning of their rules’ bodies) over span (0, 0) in Fig. 4, e.g., (N5 → •set, 0, 0),
(NP → •N5N0, 0, 0), etc. – are replaced by a unique item (0, 0, 0) in Fig. 5 due
to the fact that they all share the same (empty) prefix on the left-hand side of
the dot, and the same span. The 10th remaining initial item (N0 → •points, 1, 1)
is replaced by (0, 1, 1). Further, rules having dots inside their bodies are replaced
by FSSA states, for instance items (N∗ → A7 •N, 0, 1) and (N∗ → Pt9 •N, 0, 1)
are replaced by the unique item (13, 0, 1) since their prefixes A7 and Pt9 lead
to the same state 13. Finally, complete items (i.e., having the dot at the end
of the rule), are replaced by two items, the one containing the arrival state,

316 J. Waszczuk et al.

and the other (called a passive item) in which the state is replaced by the
head of the fully recognized rule. For instance, items (N∗ → N5N

∗•, 0, 1, 2, 2),
(N∗ → A7N

∗•, 0, 1, 2, 2) and (N∗ → Pt9N
∗•, 0, 1, 2, 2) are merged into one

active item (14, 0, 1, 2, 2) since they share the same arrival state 14 and span.
This item is then followed by a passive item (N∗, 0, 1, 2, 2). The goal item is
(S, 0, |s|).

4.3 Items

Let s = s0s1 . . . sn−1 be the input sentence and Pos(s) = {0, . . . , n} the set of
positions between the words in s, before s0 and after sn−1. We define two kinds
of items. A passive item is a tuple (X, i, j, k, l) where: X ∈ N , i, l ∈ Pos(s),
j, k ∈ Pos(s) ∪ {−}, i ≤ l, and i ≤ j ≤ k ≤ l if (j, k) �= (−,−). Item (X, i, j, k, l)
asserts that X can be matched over the span (i, j, k, l), where (i, l) and (j, k)
denote the whole span of a matched sequence and the gap, respectively. Formally,
a passive item (X, i,−,−, l), or (X, i, l) for short, asserts that an IT t ∈ R(X),
a subtree of an ET in G, can be recognized (cf. Sect. 2) over the span (i, l).
E.g., item (N0, 1, 2) in Fig. 5 indicates that points in sentence (1) can be a noun
by the subtree rooted at N in t5 and t6 in Fig. 2. A passive item (X, i, j, k, l)
where (j, k) �= (−,−) and X = (x, u, a) asserts that (i) an AT t ∈ R(X), a
subtree of some ET in G, can be recognized over (i, j, k, l), and (ii) a subtree
t′ of an ET4, with x ∈ N0 in its root, can be recognized over (j, k). Thus, the
item (N∗, 0, 1, 2, 2) in Fig. 5 means that set can be a modifier adjoined to the
noun points. Here: t ∈ {t2, t3, t4} and t′ is the subtree rooted at N in t5 and
t6. An active item is a tuple (q, i, j, k, l), where i, j, k, and l specify the span,
as previously, and q is a state in one of the underlying FSSAs. An active item
(q, i, j, k, l) asserts that there exists a (not necessarily proper) prefix ω ∈ P (q)
(of a grammar rule’s body) which can be matched over (i, j, k, l), i.e., that the
individual elements of ω can be consecutively matched over the adjacent spans
of the input sentence, together spanning over (i, l), and that, if (j, k) �= (−,−),
one of the elements of ω, marked with an asterisk, is matched against the item’s
gap (j, k). E.g., (12, 0, 2) and (14, 0, 1, 2, 2) in Fig. 5 correspond to matching set
points with ω = V2NP and ω ∈ {N5N

∗, P t9N
∗, A7N

∗}, respectively.

4.4 Inference Rules

We now formally specify the FSSA parser using the deductive framework [15]. As
shown in Table 1, each of the inference rules, whose applications correspond to
hyperarcs in the parsing hypergraph, takes zero, one or two chart items on input
(premises, presented above the horizontal line) and yields a new item (conclu-
sion, presented below the line) to be added to the chart if the conditions given on
the right-hand side are met. The axiom rule (AX, cf. the double hyperarcs with
empty inputs leading to (0, 0, 0) and (0, 1, 1) in Fig. 5) fills the initially empty

4 t′ must not be an EAT (see the root adjoin inference rule in Sect. 4.4 for explana-
tions).

Enhancing Practical TAG Parsing Efficiency by Capturing Redundancy 317

Table 1. Inference rules of the FSSA parser

AX:
(q0,i,−,−,i)

i∈Pos(s)\{n} PS: (q,i,j,k,l) (X,l,−,−,l′)
(δ(q,X),i,j,k,l′) δ(q,X) defined

SC: (q,i,j,k,l)
(δ(q,sl),i,j,k,l+1)

δ(q,sl) defined FA: (q,i,−,−,l) (X,l,j,k,l′)
(δ(q,Y),i,l,l′,l′)

(x,u,a)=X
(u,a) �=(−,∗)
Y =(x,−,∗)

δ(q,Y)defined

DE: (q,i,j,k,l)
(X,i,j,k,l)

X∈heads(q) IA: (q,i,−,−,l) (X,l,j,k,l′)
(δ(q,X),i,j,k,l′)

δ(q,X) defined
(j,k) �=(−,−)

RA: (X,i,j,k,l) (Y,j,j′,k′,k)
(Y,i,j′,k′,l) (x,−, ∗) = X, (y, u, a) = Y, (u, a) �= (−, ∗), x = y

chart with active items representing the claim that any rule α from the FSSG can
be used to parse s starting from any non-final position, for each initial state q0 of
one of the FSSAs. The scan rule (SC, cf. the dashed hyperarcs in Fig. 5) matches
the FSSAs’ terminal symbols with words from the input. Deactivation (DE,
cf. the thick hyperarcs) transforms an active item into the corresponding passive
item, based on the q-outgoing head non-terminals, where heads(q) is the set of
symbols over transitions (representing rule heads) from state q to final states
of the FSSAs. Pseudo substitution (PS, cf. the plain hyperarcs) is similar to
scan, but instead of matching FSSA terminals against input words, automaton
non-terminals are matched against already inferred non-terminals represented
by passive items. Pseudo substitution handles regular TAG substitution, i.e.,
replacing a leaf non-terminal X by an IT rooted by X (cf. the hyperarc lead-
ing from (10, 0, 1) and (NP , 1, 2) to (12, 0, 2)), as well as matching two adja-
cent fragments of the same ET (cf. the hyperarc from (5, 0, 1) and (N0, 1, 2) to
(4, 0, 2)). The foot adjoin rule (FA, cf. the densely dotted hyperarcs) identifies
ranges over which adjunction could possibly occur. It ensures that the resulting
item is considered only if an elementary (sub)tree, recognized starting from l,
and to which the corresponding AT(s) could be adjoined, exists. For the hyper-
arc from (5, 0, 1) and (N0, 1, 2) to (14, 0, 1, 2, 2), we have X = N0 = (N, 0,−),
Y = (N,−, ∗) = N∗, (j, k) = (−,−) and δ(5, Y) = 14. The internal adjoin
rule (IA, with no instance in Fig. 5) combines an elementary (sub)tree, partially
recognized over (i,−,−, l), with its spine subtree, recognized starting from posi-
tion l. Internal adjoin is similar to pseudo substitution but must be handled by
a separate rule because the span of gap in the conclusion stems from the pas-
sive rather than the active premise. The root adjoin rule (RA, cf. the loosely
dotted hyperarcs) represents the actual adjoining of a fully recognized EAT t
into the root of a recognized subtree t′ of an ET. Information that t′ is recog-
nized (with a modified span), is preserved in the conclusion and can be reused
in order to recognize the full ET of which t′ is a part. E.g., for the hyperarc
from (N∗, 0, 1, 2, 2) and (N0, 1, 2) to (N0, 0, 2), we have X = N∗ = (N,−, ∗),
Y = N0 = (N, 0,−), x = y = N , (u, a) = (0,−), (j′, k′) = (−,−), t ∈ {t2, t3, t4}
and t′ is the subtree of t5 rooted at N .5

5 Note that the additional constraint imposed on the modified node is that it must
not be a root of an AT ((u, a) �= (−, ∗)). Otherwise, it would be possible to adjoin
one AT to a root of another not yet adjoined AT. We block this derivation path, so
that adjunction can only be carried out on top of an AT which has already been
adjoined to some particular IT.

318 J. Waszczuk et al.

5 Experimental Results

We performed experiments on the FrenchTAG meta-grammar [5] compiled into a
set of 9043 non-lexicalized ETs. After removing feature structures (not supported
by our parser) 3065 unique trees where obtained. Since no compatible lexicon is
available, we lexicalized the grammar with part-of-speech (POS) tags. Namely,
to each anchor (i.e., the node meant to receive a terminal from an associated
lexicon) in each ET a special terminal, containing the same POS value as the
anchor, was attached. Thus, we obtained a grammar which models sentences with
regular terminals (e.g., il ‘it‘, de ‘of‘, qui ‘who‘) and POS tags (e.g., v, n, adj)
interleaved. Such (inevitably, due to the missing lexicon) artificial lexicalization
is not fully satisfactory in the context of TAGs, but it gives us an approximate
upper bound on the possible gain from our compression-based approach.

Figure 6(a) shows the total numbers of automaton states and transitions
depending on the compression method used to encode the resulting grammar.
In the baseline, the grammar is represented as a list of flat rules (encoded as a
separate automaton each) but no subtree sharing takes place. With this repre-
sentation, parsing is roughly equivalent to the Earley-style TAG algorithm [14].
The FSS and FSSA encoding methods were described in Sects. 3.1 and 3.2.

Since treebanks compatible with existing TAGs (especially those generated
from metagrammars) are hardly available, parsing evaluation was done on a
synthetic corpus. Namely, ∼13000 sentences of length 1 to 30, of up to 500 sen-
tences per length, were used to measure performance in terms of the number of
hyperarcs explored while parsing a sentence (deactivate operations are ignored).
The results are presented in Fig. 6(b), which includes two additional grammar
compression methods similar to those in [12] for CFGs: (i) a trie, in which the
list of rules is transformed into a prefix tree instead of a DFSA, (ii) a set of
FSSAs, where a separate DFSA is constructed for each rule head.

The results show that the baseline version of the parser is only of a theoretical
interest. It requires generating on average more than 4 × 104 hyperarcs even
for sentences of length 1 (notably due to the POS-based lexicalization). The
FSS parser is already a reasonable choice for parsing short sentences. FSSA
compression leads, averaging over sentences of length from 1 to 15, to a farther
reduction of ∼24× in terms of the number of visited hyperarcs. Using a set of
FSSAs instead of a single FSSA is ∼2.25 times less efficient on average.

Figure 6(c) compares the FSS and FSSA parsers in terms of speed. In both
versions, parsing time is almost linear w.r.t. the number of generated hyperarcs.
However, the FSSA version proves more efficient, most likely due to the number
of generated hypernodes which is, consistently, significantly higher in the FSS
version (e.g., 95666 hypernodes in FSS against 1193 in FSSA for sentences of
length 15). This, in turn, is related to the fact that a large number of (trivial)
automata is used in the FSS parser, thus a large number of initial states have to
be handled by the the axiom rule at the very beginning of the parsing process.

Surprisingly, the FSSA compression does not bring significant improvements
in comparison to the prefix tree version. This is probably related to the fact that
the active/passive distinction already provides a form of suffix sharing – items

Enhancing Practical TAG Parsing Efficiency by Capturing Redundancy 319

Fig. 6. (a) Results of the compression experiments, (b) Impact of grammar encoding
methods on parsing performance, measured as an average number of hyperacs explored
by the parser on ∼13000 sentences randomly generated from the FrenchTAG grammar,
(c) Average parsing time as a function of the number of generated hyperarcs.

referring to pre-final states in the prefix tree are automatically transformed into
the corresponding passive items. In particular, the number of passive items which
can be potentially constructed over a given span equals 1123 in both versions,
while the number of potential active items per span diminishes merely from 430
to 301 in the FSSA version. Moreover, due to the left-to-right parsing strategy,
prefix sharing impacts parsing performance more visibly than suffix sharing.

6 Related Work

A bottom-up Earley-like algorithm based on flattening is one of the TAG parsing
schemata proposed in [2]. While, conversely to our approach, it does not allow
multiple adjunctions at the same node, it is similar to our baseline algorithm.
Our enhancements of this baseline with subtree sharing and grammar FSA-
compression substantially influence space and time efficiency (cf. Sect. 5).

FSA-based grammar encoding considerably speeds up CFG parsing [12] but
it is not straightforwardly applicable to TAGs (which consist of trees rather than
flat rules). It is, however, enabled by the flattening transformation proposed in
this paper. Previous proposals of applying FSA-based compression to TAGs
are manifold. [10,13] describe LR parsers for TAGs, in which predictions are
pre-compiled off-line into an FSA. Each state of this FSA is a set of dotted
production rules closed under prediction. Thus, the FSA represents the parser,
while in our approach the FSSA represents the grammar (and the inferences
rules of the parser are adapted to this representation).

Another automata-based solution for LTAGs and related lexicalized for-
malisms has been proposed by [4,7]. The traversal of an ET, starting from its
anchor (lexical unit), is represented there as an automaton. Sets of trees attached
to common anchors are then converted to automata, merged and minimized
using standard techniques. As a result, structure sharing occurs only within tree

320 J. Waszczuk et al.

families, while in our solution all ETs are represented with a single automaton
which provides sharing between rules assigned to different lexical units. Another
potential advantage of our solution lies in the subtree-sharing it enables, which
allows different rules – even when represented by completely different paths in
the automaton – to share common middle elements if these middle elements rep-
resent common subtrees. Finally, our method can be used for TAGs in general,
not only for lexicalized TAGs. [4] report state-level compression ratios equal to
18 for come, 18.2 for break, and 30 for give, over a lexicalized English grammar.
We converted the XTAG grammar [1] into an FSSA, obtaining a global, state-
level compression of 22.7 (10751 states in the baseline representation vs. 472 in
the FSSA). It is, however, difficult to compare these numbers: (i) their grammar
is considerably larger than XTAG, (ii) they did not report the compression ratio
over the entire grammar, (iii) they use one automaton per input word While
they did not measure the impact of their encoding on parsing performance, we
believe that our FSSA-based solution is more scalable w.r.t. the input length.

[16] proposes a method of grammar compression directly at stage of its defi-
nition. A linguist uses a formal language including factoring operators (e.g., dis-
junctions over tree fragments, Kleene-star-alike repetitions, optional or shuffled
fragments, etc.) and the resulting grammar is then converted into a Logic Push-
Down Automaton for parsing. The price to pay for this highly compact resource
is its high potential overgeneration. Moreover, grammar description and parsing
are not separated, hence large unfactorized TAGs can be hardly coped with.
Our solution abstracts away from how the TAG is represented, compression is
automatic and the FSSA is strongly equivalent to the original TAG.

Linear indexed grammars (LIGs) compare to our grammar flattening in that
they contain flat production rules and are weakly equivalent to TAGs [10]. How-
ever, LIGs are more generic than TAGs, thus more specialized and efficient
parsers can be potentially designed for TAGs [3]. Also, the TAG-to-LIG conver-
sion does not preserve the extended domain of locality (EDL) ensured by TAGs,
which is for us an eliminating criterion. Namely, in future we wish our parser to
be driven by the knowledge about possible occurrences of multi-word expressions
[17], whose elegant representation in TAGs is precisely due to the EDL property.

7 Conclusions

Our contribution is to design a parsing architecture coping with large TAGs
(notably produced from metagrammars). We build on previous work so as to
capture redundancy: (i) we flatten TAGs, (ii) we share common subtrees, (iii) we
compress the flat grammar into an FSA, (iv) we adapt an Earley-based algorithm
to this representation, (v) we show the influence of these steps on the parsing
efficiency. To the best of our knowledge this is the first attempt to combine all
these steps within one framework. Our parser and evaluation corpus are available
under open licenses.6 This solution does not affect the theoretical complexity of
TAG parsing but it greatly improves the practical parsing performance.
6 https://github.com/kawu/partage4xmg/tree/0.1.

https://github.com/kawu/partage4xmg/tree/0.1

Enhancing Practical TAG Parsing Efficiency by Capturing Redundancy 321

References

1. Alahverdzhieva, K.: XTAG using XMG, Master Thesis, Nancy Université (2008)
2. Alonso, M., Cabrero, D., de la Clergerie, E.V., Vilares, M.: Tabular algorithms for

TAG parsing. In: EACL 1999, pp. 150–157 (1999)
3. Alonso, M.A., de La Clergerie, É.V., Diaz, V.J., Vilares, M.: Relating tabular

parsing algorithms for LIG and TAG. In: Text, Speech and Language Technology,
vol. 23, pp. 157–184. Kluwer Academic Publishers (2004)

4. Carroll, J., Nicolov, N., Shaumyan, O., Smets, M., Weir, D.: Grammar com-
paction and computation sharing in automaton-based parsing. In: Proceedings of
the TAPD 1998 Workshop, Paris, France, pp. 16–25 (1998)

5. Crabbé, B.: Représentation informatique de grammaires d’arbres fortement lexi-
calisées: le cas de la grammaire d’arbres adjoints. Ph.D. thesis, Université Nancy
2 (2005)

6. Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13(2), 94–
102 (1970)

7. Evans, R., Weir, D.: Automaton-based parsing for lexicalized grammars. In: Pro-
ceedings of the IWPT 1997 Workshop, Boston, MA, pp. 66–76 (1997)

8. Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and appli-
cations. Discrete Appl. Math. 42(2–3), 177–201 (1993)

9. Joshi, A., Schabes, Y.: Tree-adjoining grammars. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, pp. 69–123. Springer, Heidelberg (1997)

10. Kallmeyer, L.: Parsing Beyond Context-Free Grammars. Springer, Heidelberg
(2010)

11. Klein, D., Manning, C.D.: Parsing and hypergraphs. In: Proceedings of the IWPT
2001 Workshop, Tsinghua University Press (2001)

12. Klein, D., Manning, C.D.: Parsing with treebank grammars: empirical bounds,
theoretical models, and the structure of the penn treebank. In: Proceedings of
ACL 2001, pp. 338–345 (2001)

13. Prolo, C.A.: Fast LR parsing using rich (tree Adjoining) grammars. In: Proceedings
of EMNLP 2002, pp. 103–110 (2002)

14. Schabes, Y.: Left to right parsing of lexicalized tree adjoining grammars. Comput.
Intell. 10(4), 506–524 (1994)

15. Shieber, S., Schabes, Y., Pereira, F.: Principles and implementation of deductive
parsing. J. Logic Program. 24(1), 3–36 (1995)

16. de La Clergerie, É.V.: Building factorized TAGs with meta-grammars. In: Pro-
ceeding of the TAG+10 Conference (2010)

17. Waszczuk, J., Savary, A.: Towards a MWE-driven A* parsing with LTAGs. In:
PARSEME 6th General Meeting, Struga, FYR Macedonia (2016)

Analyzing Matching Time Behavior
of Backtracking Regular Expression Matchers

by Using Ambiguity of NFA

Nicolaas Weideman1,4(B), Brink van der Merwe1, Martin Berglund2,
and Bruce Watson3

1 Department of Computer Science,
Stellenbosch University, Stellenbosch, South Africa

nhweideman@gmail.com
2 Department of Computer Science, Ume̊a University, Ume̊a, Sweden

3 FASTAR Research, Information Science,
Stellenbosch University, Stellenbosch, South Africa

4 Center for AI Research, CSIR, Stellenbosch University, Stellenbosch, South Africa

Abstract. We apply results from ambiguity of non-deterministic finite
automata to the problem of determining the asymptotic worst-case
matching time, as a function of the length of the input strings, when
attempting to match input strings with a given regular expression, where
the matcher being used is a backtracking regular expression matcher.

Keywords: Regular expression · Backtracking matcher · Ambiguity

1 Introduction

Catastrophic backtracking is a phenomenon that causes extended matching time,
when attempting to match certain input strings with so-called vulnerable regu-
lar expressions, when using backtracking regular expression matchers found in
programming languages such as Java, Perl and Python. It can be used to launch
regular expression denial of service (ReDoS) attacks, and there are numerous
online accounts (some listed at [2]) of the occurrence of catastrophic backtrack-
ing. Catastrophic backtracking often occurs (although not necessarily or exclu-
sively) when matching with a regular expression R, containing a subexpression
S∗ (or S+), where S could match some non-empty input string w in multiple
ways. Thus an input string containing wk (i.e. k copies of w) as substring, may
potentially be matched (or attempted to be matched) in exponentially (in k)
many ways by R, in cases where the matcher tries most of the possible ways
(one after the other, i.e. not using the subset construction) in which the sub-
string wk can be matched, in an attempt to obtain an overall match. Even
though some regular expression matcher implementations do not match input
strings in a backtracking fashion [8], these alternative implementations typically
do not support all extended regular expression functionality that programmers
have become accustomed to, such as back references.
c© Springer International Publishing Switzerland 2016
Y.-S. Han and K. Salomaa (Eds.): CIAA 2016, LNCS 9705, pp. 322–334, 2016.
DOI: 10.1007/978-3-319-40946-7 27

Analyzing Matching Time Behavior 323

Although catastrophic backtracking is typically regarded as being synony-
mous with exponential worst-case matching time, non-linear polynomial worst-
case matching time might still be unsatisfactory from a performance or security
point of view. We regard non-linear matching time, vulnerable regular expres-
sions and catastrophic backtracking to be all equivalent. We even point out cases
with constant backtracking or matching time, where the constant is so large that
the regular expression should be regarded as being vulnerable (from a practical
point of view). Non-linear worst-case matching time often occurs when match-
ing with a regular expression R, where R contains one or more occurrences of
subexpressions of the form S∗U∗ (or more generally S∗TU∗), where S and U
(S, T and U) matches some common non-empty input string, say w. Similar to
the exponential case, an input string containing wk as substring, may now be
matched (or attempted to be matched) in at least linearly (in k) many ways.
The degree of the polynomial describing the worst-case number of ways in which
an input string (of a given length) can be matched, depends on the number of
occurrences of subexpressions of the form S∗U∗ or S∗TU∗, where it is possible to
move from one of these subexpressions (in the corresponding non-deterministic
finite automaton) to the next while reading some input string. For example, a
regular expression containing a subexpression S∗

1U∗
1S∗

2U∗
2 , where Si and Ui, for

i = 1, 2, matches some non-empty input string wi, could potentially attempt to
match an input string containing wk

1wk
2 , as substring, in quadratic (in k) differ-

ent ways, leading to cubic matching time. To better understand the relationship
between polynomial backtracking and matching time, consider a regular expres-
sion of the form S∗U∗, where S and U match some common non-empty input
string w, but not any string of the form wkx, for some suffix x. The matcher will
first try to obtain an overall match by matching all of wk with S∗, then back-
track and match only wk−1 with S∗, and continue this process of attempting
to obtain an overall match by matching fewer and fewer of the repetitions of w
with S∗, until S∗ matches only the empty string. Thus since U∗ first matches
the empty string, then the last repetition of w, then the last two repetitions of
w, etc., until it matches all of wk, the matching time is quadratic in k, and thus
in the length of wkx.

A necessary condition to have exponential worst-case matching time is that
the non-deterministic finite automaton (NFA), corresponding to the regular
expression under consideration, contains a state with at least two loops that
can be followed while processing the same substring (in a given input string).
This condition is necessary and sufficient (under the additional assumptions that
the NFA is trim and does not contain ε-loops) for an NFA to be exponentially
ambiguous, i.e. to have input strings that can be matched in exponentially many
ways in terms of their length [5]. A necessary condition to have non-linear poly-
nomial worst-case matching time, is that the corresponding NFA contains one
or more pairs of states, such that for each pair of states p, q, there exists a string
wp,q and loops on p and q and a path from p to q, all that can be followed
while reading wp,q. Let d be the length of the longest sequence of pairs of states,
with the above properties, obtained by ordering the pairs of states such that

324 N. Weideman et al.

there exists a path from the second state in a pair of states, to the first state in
the next pair of states. Then (d + 1) is the maximum degree of the polynomial
describing the worst-case matching time. Again, if the NFA under consideration
is not exponentially ambiguous, these conditions are necessary and sufficient for
the NFA to have polynomial ambiguity of degree d [5].

In the exponential matching time case, we refer to the part of the input string
that can be matched in multiple ways while following these loops, as a pump, a
string prefixed to the pump to ensure that the NFA reaches one of these states
with two or more loops, as the prefix, and the string that is appended after the
pump to ensure that the matcher attempts to match the pump in all possible
ways, as the suffix. Thus exploit strings will be of the form pwks, with p the
prefix, w the pump and s the suffix. In the non-linear polynomial matching time
case, we have a pump for each subexpression of the form S∗U∗ (or S∗TU∗). The
strings required to move from the second state of a pair of states to the first
state of the next pair of states, are referred to as the pump separators. Exploit
strings will thus be of the form s0w

k
1s1w

k
2 . . . sn−1w

k
nsn, k ≥ 0, where the wi’s are

the pumps, s0 the prefix, s1, . . . , sn−1 the separators, and sn the suffix. Again,
the exploit strings correspond to strings exhibiting ambiguity, of a given form,
in the underlying NFA (although strictly speaking, an additional sink accept
state, having ε incoming transitions from all states, should be added to the
underlying NFA, to make the correspondence between worst-case matching time
and ambiguity precise).

As an example of a vulnerable regular expression, consider the following
expression used to validate email addresses [4]:

R:=^([a-zA-Z0-9_\.\-])+\@(([a-zA-Z0-9\-])+\.)+([a-zA-Z0-9]{2,4})+

In the case of R, the subexpression S := ([a-zA-Z0-9]{2,4})+ can match
the input string aaaa in two ways, either by matching aaaa by using the +
in S once, or by using + twice by matching each time only aa. Note that this
vulnerable regular expression is of a slightly different form than those described

earlier, since in this case it is S and not ([a-zA-Z0-9]{2,4}) , that matches
some input string in more than one way. We construct an input string capable
of exploiting this vulnerability as follows. First, we construct a prefix capable
of taking the matcher to the vulnerable subexpression, for example a@a. should
suffice. Next, we add multiple repetitions of the pump aaaa. Finally, we force the
matcher to reject our specifically crafted string. For this we append, for example,
a ‘$’ to the end of the input string. Strings of the form a@a.(aaaa)k$ can thus
be used as exploit strings.

For backtracking regular expression matchers, the different paths which can
be traversed to possibly obtain an overall match, are prioritized, and also
explored in this prioritized order, one after the other. Also, the matcher will
not continue exploring alternative ways of matching the input string, after a
match has been found. Consequently, regular expressions that seem very simi-
lar, even that match precisely the same language, may have completely different

Analyzing Matching Time Behavior 325

matching time behavior. Consider for example regular expressions of the form
R1 := S | .∗ and R2 := .∗ | S, where S has exponential worst-case matching time
and ‘.’ is the wild card symbol that matches any single input symbol. These reg-
ular expressions are equivalent in terms of languages matched, but not in terms
of matching time, due to the fact that in R1, matching will first be attempted
with S, while in R2, the subexpression .∗ will be used first and S will be ignored.
A slightly more complicated example is obtained by changing .∗ to . {m, }, i.e. an
expression that matches strings of length m or more, with m a positive integer
constant, in the regular expressions R1 and R2. In R′

2 := . {m, } | S, the subex-
pression S with exponential worst-case matching time will now be reachable (in
the corresponding non-deterministic finite automaton), but only for input strings
of length shorter than m, leading to a regular expression with linear matching

time. A non-trivial example of a similar type is \&d[0-9]{2}=.*?)+) , discussed
in Sect. 4.

This paper extends results from [6]. We also consider how to determine the
degree of the polynomial describing the worst-case matching time of a regular
expression (if worst-case matching time is polynomial), which is listed as future
work in [10]. The outline of the paper is as follows. In the next section we give
the required definitions. After that, we provide our main results on deciding
worst-case matching time behavior of a given regular expression, when using a
backtracking regular expression matcher. Finally, we discuss our experimental
results and conclude with a discussion on future work.

2 Definitions

In this section we introduce the notation and definitions required for the remain-
der of the paper. We denote by Σ a non-empty finite alphabet, which is used as
input alphabet for automata and also an alphabet over which regular expressions
are defined. As usual, ε denotes the empty word, and Σε is used for Σ ∪ {ε}.
Also, Σ∗ is the Kleene closure applied to Σ, thus the set of finite words over Σ.
For Σ1 ⊆ Σ and w = a1 . . . an ∈ Σ∗, with ai ∈ Σ, we let πΣ1(w) be the word
b1 . . . bn ∈ Σ∗

1 , with bi = ai if ai ∈ Σ1, and bi = ε otherwise. For a function
f : A → B, and a ∈ A and b ∈ B, we have that fa�→b : A → B is the function
such that fa�→b(a) = b and fa�→b(x) = f(x) for all x ∈ A\{a}. Also, bA : A → B,
with b ∈ B, denotes the constant function with f(x) = b for all x ∈ A. We use
N for the set natural numbers, excluding 0. We denote by |Q| the cardinality of
the set Q and P(Q) the power set of Q.

A regular expression over an alphabet Σ (where ε, ∅ /∈ Σ) is either an element
of Σ∪{ε, ∅} or an expression of one of the forms (E |E′), (E ·E′), or (E∗), where
E and E′ are regular expressions. Some parentheses can be dropped with the
rule that ∗ (Kleene closure) takes precedence over · (concatenation), which takes
precedence over | (union). Further, outermost parentheses can be dropped, and
E · E′ can be written as EE′. The language of a regular expression E, denoted
L(E), is obtained by evaluating E as usual. When we say that E matches a
string w, we mean that w ∈ L(E), as opposed to vwv′ ∈ L(E), for v, v′ ∈

326 N. Weideman et al.

Σ∗. Some of our examples of expressions will use operators other than just
union, concatenation and Kleene star, but we will refer to all regular expressions,
including the extended expressions, simply as regexes in the remainder of the
paper.

A tree with labels in a set Σ is a function t : V → Σ, where V ⊆ N
∗ is a non-

empty, finite set of vertices (or nodes) which are such that (i) V is prefix-closed,
i.e., for all v ∈ N

∗ and i ∈ N, vi ∈ V implies v ∈ V , and (ii) V is closed to the
left, i.e., for all v ∈ N

∗ and i ∈ N, v(i + 1) ∈ V implies vi ∈ V . The vertex ε is
the root of the tree and vertex vi is the ith child of v. We let |t| = |V | be the
size of t. We denote by t/v the tree t′ with vertex set V ′ = {w ∈ N

∗ | vw ∈ V },
where t′(w) = t(vw) for all w ∈ V ′. Given trees t1, . . . , tn and a symbol α, we let
α[t1, . . . , tn] denote the tree t with t(ε) = α and t/i = ti for all i ∈ {1, . . . , n}.

Next we define non-deterministic finite automata (and runs for them), fol-
lowed by the prioritized finite automata from [6,7], which are used to model
regex matching behaviors exhibited by typical software implementations. In the
definition of an NFA below, the transition function δ is defined to allow for paral-
lel transitions on the same symbol between a pair of states. By δ(p, α, q) = i > 0,
we indicate that there are i transitions on α between p and q. It is assumed that
the transitions (if any) between p and q on α are numbered from 1 to δ(p, α, q).
We indicate by p →α(j) q (or pα(j)q) that the jth-transition on α between p and
q is taken. In our investigation, all parallel edges will be on ε, and we simply
use ε1, ε2, . . . εn, instead of ε(1), ε(2), . . . ε(n). Although parallel transitions do
not influence the language accepted by an NFA, they do influence the number
of accepting paths of a given input string, and thus play a role in our setting.

Definition 1. A non-deterministic finite automaton (NFA) is a tuple A =
(Q,Σ, q0, δ, F) where: (i) Q is a finite set of states; (ii) Σ is the input alphabet;
(iii) q0 ∈ Q is the initial state; (iv) the partial function δ : Q × Σε × Q → N is
the transition function; and (v) F ⊆ Q is the set of final states.

Also, |A|Q := |Q| and |A|δ :=
∑

q1,q2∈Q,α∈Σε δ(q1, α, q2) is the state and
transition size respectively.

Definition 2. For an NFA A = (Q,Σ, q0, δ, F) and w ∈ Σ∗, a run for w is
a string r = s0α1(j1)s1 · · · sn−1αn(jn)sn, with s0 = q0, si ∈ Q and αi ∈ Σε

such that δ(si, αi+1, si+1) ≥ ji+1 for 0 ≤ i < n, and πΣ(r) = w. A run is
accepting if sn ∈ F . The language accepted by A, denoted by L(A), is the subset
{πΣ(r) | r is an accepting run in A} of Σ∗.

Definition 3. ([7]). A prioritized non-deterministic finite automaton (pNFA)
is a tuple A = (Q1, Q2, Σ, q0, δ1, δ2, F), where if Q := Q1 ∪ Q2, we have: (i)
Q1 and Q2 are disjoint finite sets of states; (ii) Σ is the input alphabet; (iii)
q0 ∈ Q is the initial state; (iv) δ1 : Q1 × Σ → Q is the deterministic, but not
necessarily total, transition function; (v) δ2 : Q2 → Q∗ is the non-deterministic
prioritized transition function; and (vi) F ⊆ Q1 are the final states.

Given a pNFA A, nfa(A) denotes the NFA associated with A, which is
obtained by ignoring the priorities of the δ2 transitions of A. Thus for nfa(A),

Analyzing Matching Time Behavior 327

δ(p, a, q) = 1 if δ1(p, a) = q for p ∈ Q1 and a ∈ Σ, and δ(p, ε, q) = j for p ∈ Q2,
if δ2(p) = q1 . . . qn, and q appears j > 0 times in the sequence q1 . . . qn.

Definition 4. ([7]). For a pNFA A = (Q1, Q2, Σ, q0, δ1, δ2, F), a path of
w ∈ Σ∗ in A, is a run s0α1(j1)s1 · · · sn−1αn(jn)sn of w in nfa(A), such that
if αi = αi+1 = . . . = αm−1 = αm = ε, with i ≤ m, then (sk−1, jk, sk) =
(sl−1, jl, sl), with i ≤ k, l ≤ m, implies k = l – i.e. a path is not allowed
to repeat the same transition in a sequence of ε-transitions. For two paths
p = s0α1(j1)s1 · · · sn−1αn(jn)sn and p′ = s′

0α
′
1(j

′
1)s

′
1 · · · s′

m−1α
′
m(j′

m)s′
m we say

that p is of higher priority than p′, p > p′, if p 	= p′, πΣ(p) = πΣ(p′) and either
p′ is a proper prefix of p, or if k is the first index such that (jk)sk 	= (j′

k)s′
k,

then δ2(sk−1) = · · · sk · · · s′
k · · · if sk 	= s′

k, or sk = s′
k and jk < j′

k. An accept-
ing run for A on w is the highest-priority path p = s0α1(j1)s1 · · · αn(jn)sn such
that πΣ(p) = w and sn ∈ F . The language accepted by A, denoted by L(A), is
the subset of Σ∗ defined by {πΣ(r) | r is an accepting run in A}. Note that
L(A) = L(nfa(A)).

Infinite loops are avoided in backtracking matchers by disallowing the rep-
etition of the same transition in a sequence of ε-transitions, as specified in the
definition above. In [6], the input directed depth-first search algorithm, typically
used by backtracking regex matchers to find accepting runs in pNFA, was given,
and it was observed that the running time of this algorithm can be described by
the size of the backtracking run, defined next. It should be noted that although
L(A) = L(nfa(A)) for a pNFA A, the purpose of a pNFA is to associate a run
deterministic NFA (i.e. an input string can have at most one accepting run) to a
regex, and thus to make it possible to define regex extensions such as capturing
groups [7].

Definition 5. ([6]). Let A = (Q1, Q2, Σ, q0, δ1, δ2, F) be a pNFA, q ∈ Q1 ∪Q2,
w = α1 · · · αn ∈ Σ∗, and C : Q2 → N ∪ {0}. Then the (q, w,C)-backtracking
run of A is a tree over Q1 ∪ Q2 ∪ {Acc,Rej} (Acc,Rej 	∈ Q1 ∪ Q2). It succeeds
if and only if Acc occurs in it. We denote the (q, w,C)-backtracking run by
btrA(q, w,C) and inductively define it as follows. If q ∈ F and w = ε then
btrA(q, w,C) = q[Acc]. Otherwise, we distinguish between two cases:

– If q ∈ Q1, then btrA(q, w,C) equals
{

q[btrA(δ1(q, α1), α2 · · · αn, 0Q2)] if n > 0 and δ1(q, α1) is defined,
q[Rej] otherwise.

– If q ∈ Q2 with δ2(q) = q1 · · · qk, let i0 = C(q) + 1 and ri = btrA(qi, w, Cq �→i)
for i0 ≤ i ≤ k. Then btrA(q, w,C) equals

⎧⎨
⎩

q[Rej] if i0 > k,
q[ri0 , . . . , rk] if i0 ≤ k but no ri(i0 ≤ i ≤ k) succeeds,
q[ri0 , . . . , ri] if i ∈ {i0, . . . , k} is the least index such that ri succeeds.

328 N. Weideman et al.

The backtracking run of A on w is btrA(w) = btrA(q0, w, 0Q2). If btrA(w) suc-
ceeds, then the accepting run of A on w contains the sequence of states on the
right-most path in btrA(w).

It should be noted that the argument C, in the definition of btrA(q, w,C),
enforces the condition that a path is not allowed to repeat the same transition
in a sequence of ε-transitions in Definition 4. For pNFA without ε-loops, the
argument C and corresponding conditions can be removed from the definition
of btrA(q, w,C).

Definition 6. For a pNFA A = (Q1, Q2, Σ, q0, δ1, δ2, F), the matching time of
an input string w with A, is defined to be |btrA(w)|. Let f(n) = max{|btrA(w)| |
w ∈ Σ∗, |w| ≤ n} for all n ∈ N. We say that A has exponential worst-case
matching time if f ∈ 2Ω(n) (or equivalently, if f(n) ∈ 2Θ(n)) and polynomial
matching time of degree k, for k ∈ N ∪ {0}, if f ∈ Θ(nk).

Fig. 1. pNFA corresponding to (a) E1 · E2, (b) E1 |E2, (c) E1∗ and (d) E1∗?

We use a regex to pNFA construction, similar to the one implicitly used in
the Java regex matching engine. We denote this pNFA constructed from the
regex E, by using inductively the constructions in Fig. 1 (described in [6]), by
Jp(E). In Fig. 1(d), E∗?

1 denotes the reluctant Kleene star operator applied to
E1, which match as few input symbols as possible with E1, in contrast to greedy
Kleene star in Fig. 1(c), which matches as many as possible with E1. Recall that
the subscripts of ε indicates the priority of the transition, with ε1 having the
highest priority.

Fig. 2. (a) Jp((a∗)∗), i.e. the Java pNFA for the regex (a∗)∗. (b) The backtracking run
of Jp((a∗)∗) on input ax. The tree is rotated anticlockwise by 90◦ and highest priority
paths are at the bottom. Leaves are marked with R instead of Rej.

Analyzing Matching Time Behavior 329

The degree of ambiguity for w ∈ Σ∗, with respect to the NFA A, is the
number of accepting runs for w in A. The degree of ambiguity of A is the
maximum degree of ambiguity over all w ∈ Σ∗, which might be infinite, in
which case we say A has infinite degree of ambiguity (IDA). When A has IDA,
we consider the rate at which the maximum number of accepting runs grow
in proportion to the length of the input strings, which might be exponential,
described by saying A has exponential degree of ambiguity (EDA), or polynomial,
described as A being polynomially ambiguous. Since we determine worst-case
matching time of a regex E by using the type of ambiguity of an NFA related
to E in a way described in Sect. 3, the next result is of importance to us.

Theorem 1. ([5]). Let A be a trim ε-loop free finite automaton. Then

– It is decidable in time O((|A|δ + |A|2Q)3) whether A is infinitely ambiguous,
and in time O(|A|2δ) whether A is exponentially ambiguous.

– If A is polynomially ambiguous, the degree of polynomial ambiguity of A can
be computed in O(|A|3δ).

3 Deciding Worst-Case Matching Time

We start this section by defining for a pNFA A, potentially with ε-loops, a pNFA
flat(A), with matching time behavior very similar to that of A, but without
ε-loops. To use ambiguity of NFA to analyze worst-case matching time, we first
have to remove ε-loops from an pNFA associated to a regex, and this is the main
purpose of defining flat(A). For a pNFA A, let rA(Q2) be the subset of Q2 defined
by Q2 ∩ ({q0} ∪ {δ1(q, α) | q ∈ Q1, α ∈ Σ}), i.e. all Q2 states reachable from a
Q1 state in one transition, and possibly also q0. A sequence p1j2p2 · · · pn−1jnpn,
with p1 ∈ rA(Q2), p2, . . . , pn−1 ∈ Q2, pn ∈ Q1, ji ∈ N, is a δ2-path if δ2(pi) =
· · · pi+1 · · · , δ2(pi) has at least ji+1 occurrences of pi+1, and (pi, ji+1, pi+1) =
(pk, jk+1, pk+1) only if i = k. Thus δ2-paths are maximum length subsequences
of ε-transitions only, obtained from paths in a pNFA. For a pNFA A, we define
a pNFA flat(A) next, such that the paths for flat(A) are obtained from those for
A, by replacing each δ2-path with a single ε-transition. This ensures that A and
flat(A) have the same matching time behavior up to a constant.

Definition 7. For δ2-paths P := p1j2 · · · jnpn and P ′ := p′
1j

′
2 · · · j′

mp′
m, with

p1 = p′
1, we define P > P ′ if the least i such that jipi 	= j′

ip
′
i is such that

δ2(pi−1) = · · · pi · · · p′
i · · · with pi 	= p′

i, or pi = p′
i but ji < j′

i. We let flat(A)
be (Q1, rT (Q2), Σ, q0, δ1, δ

′
2, F), where δ′

2 is defined as follows. For q ∈ Q′
2, let

P1, . . . , Pn be all δ2-paths, ordered according to priority, starting at q and ending
at a state in Q1. Then δ′

2(q) := q1 · · · qn, where qi is the last state in Pi.

An example of going from a pNFA A to flat(A), is given in Fig. 3.
We now describe two algorithms to analyze worst case matching time of

regexes. Due to space limitations, these algorithms are not described in-depth.
Simple analysis is a procedure for determining an upper bound for the worst-case

330 N. Weideman et al.

matching time of a regex. We start with a regex E and turn it into Jp(E), the
Java version of the pNFA for E. Next, we remove ε-loops by going from Jp(E) to
J ′ := flat(Jp(E)), and then consider the NFA N := nfa(J ′). Finally, the NFA N ′

is obtained from N by adding an additional sink accept state z to N . We place
incoming ε-transitions from all other states to z, and make z the only accept
state. Going from N to N ′, turns the problem of counting all possible transitions
that can be taken while attempting to match w ∈ Σ∗ with N , into counting the
number of accepting paths in N ′ for w. Thus for a given input string w, the size
of the backtracking run of w in J ′ is bounded by the number of accepting paths
of w in N ′, and we have equality if w 	∈ L(N). Thus if w′ ∈ Σ∗ exists such that
ww′ 	∈ L(N) for all w ∈ Σ∗, then the worst-case matching time of J ′ and thus
J , is precisely the ambiguity of N ′, otherwise the ambiguity for N ′ is only an
upper bound for the worst-case matching time of E.

The unprioritized pNFA (upNFA), up(A), is an NFA obtained from the pNFA
A, by not simply ignoring priorities of ε-transitions of A, but doing a type of
subset construction that keeps in a given state also track of the states that are
reachable with higher priority paths (on the same input). In the construction of
up(A), we assume A has no ε-loops, otherwise replace A by flat(A). For an NFA
B and Q′ a subset of the states of B, let Q′ be the ε-closure of Q′. For a pNFA
A, up(A) is defined next.

Definition 8. Let A := (Q1, Q2, Σ, q0, δ1, δ2, F), then up(A) is the NFA given
by (Q′, Σ, q′

0, δ
′, F ′), where:

(i) Q′ = ((Q1 ∪ Q2) × P(Q1)) \ Q′′, where Q′′ is the set of states (p, P) such
that for all w ∈ Σ∗, there is a p′ ∈ P , such that w has an accepting path
in nfa(A) starting at p′;

(ii) q′
0 = {(q0, ∅)} and F ′ = (F × P(Q1)) ∩ Q′;

(iii) for a ∈ Σ, δ′((p, P), a, (p′, P ′)) = 1 if δ1(p, a) = p′ and δ1(P, a) ∩ Q1 = P ′,
where δ1 is extended to be defined on sets of states in the obvious way;

(iv) δ′((p, P), ε, (pi, P ∪ {p1, . . . , pi−1} ∩ Q1)) = ij, for 1 ≤ i ≤ n, if p ∈ Q2

and δ2(p) = p1 . . . pn, where ij is the number of indices i′ with pi = pi′ and
P ∪ {p1, . . . , pi−1} ∩ Q1 = P ∪ {p1, . . . , pi′−1} ∩ Q1.

Note that the states of up(A) are of the form (p, P), with p ∈ Q and P ⊆ Q1.
The states from P in (p, P) are those reachable with higher priority paths on
the same input. By removing states (p, P) such that for all w ∈ Σ∗, there is a
p′ ∈ P , such that w has an accepting path in nfa(A) starting at p′, we ensure
that only paths explored in A on any input w is kept in up(A). Just as in our
simple analysis, we add a sink accept state z to up(A) to obtain an NFA B′, and
then perform ambiguity analysis on B′. We refer to the process of constructing
B := up(flat(Jp(E))) from a regex E, adding the sink accept state z to B to get
B′, and then determining the ambiguity of B′, as doing a full analysis of E. At
the cost of going form polynomial to exponential time (in the size of the regular
expression), full analysis provides a precise answer.

Analyzing Matching Time Behavior 331

Fig. 3. (a) Jp(.∗ | (a∗)∗) and (b) flat(Jp(.∗ | (a∗)∗))

Fig. 4. The unprioritized pNFA for Jp(.∗ | (a∗)∗). Dashed states indicate the states
Q′′ in Definition 8, that should be removed.

Example 1. Next we consider the regex E given by .*|(a*)* , which has EDA,
but only linear worst-case matching time, although the subexpression (a*)*

has exponential worst-case matching time (with input a . . . ab). However, due to
priorities, only the subexpression .* is used during matching. The main steps
taken in our full analysis are shown in Figs. 3 and 4. Since up(flat(Jp(E))) has
constant ambiguity, E has linear worst-case matching time.

4 Experimental Results

All experiments were performed on a machine with a 3.1GHz, 4 cores and a cache
size of 6144KB. We performed simple analysis on the Snort rule-set version 2.9.31
([3]; 12499 expressions) and RegExLib ([1]; 2994 expressions) repositories. Simple
analysis only checks for EDA and IDA, yielding one of six results: EDA; IDA
(but not EDA); No IDA; whether the regex contains illegal syntax or requires
unhandled functionality (indicated as “Skipped”); or if the analysis takes an
inordinate (10 s in our experiments) amount of time (indicated as “Timeout
in EDA”, or “Timeout in IDA”). Both analyses construct exploit strings with
properties, as explained in the Introduction. If EDA or IDA is present in simple
analysis, full analysis is performed to determine whether a regex indeed has

332 N. Weideman et al.

Table 1. A breakdown of the simple analysis results.

Repository EDA IDA No IDA Skipped Timeout in EDA Timeout in IDA

Snort 11 824 8381 3108 103 72

RegExLib 145 217 1617 912 16 87

Table 2. The matching time behavior, as determined by full analysis, of the 156 and
1041 regexes shown to have EDA and IDA, respectively, by simple analysis.

Simple Analysis Full Analysis

EDA Exponential Polynomial Linear Timeout in EDA Timeout in IDA

156 122 0 2 32 0

IDA Exponential Polynomial Linear Timeout in EDA Timeout in IDA

1041 0 692 24 0 325

exponential or non-linear polynomial matching time (although this is strictly
speaking only necessary in cases where the exploit strings obtained in simple
analysis do not point out the expected behavior). Simple analysis determined
that, in total, 156 regexes have EDA, 1041 have IDA, and 9998 have neither.
The remaining 4298 regexes were either skipped, or timed out. Full analysis was
performed on the 156 and 1041 regexes with EDA and IDA (in simple analysis),
respectively. The results of the full analysis is shown in Table 2, which shows
whether the matching time of a regex is exponential, polynomial or linear; or
whether the analysis timed out. All exponentially vulnerable regexes were tested
against the Java regex matcher with their respective exploit strings, as generated
by the full analysis. All but two of these regexes did indeed exhibit exponential
matching time. The reason for the full analysis producing faulty exploit strings
in these two cases warrants further investigation [2].

As mentioned before, if an NFA for a regex contains EDA, it does not nec-

essarily imply that the regex is vulnerable. The regex (\&d[0-9]{2}=.*?)+
from the Snort repository match any input string with a prefix starting with &d,
followed by two digits and an equals sign. In order to build an exploit string, we
can use ε as prefix and &d00=&d00= as pump. Since .*? matches all strings,
two copies of the string &d00= can be matched in two ways – either once with the
\&d[0-9]{2}= and once with the .*? , or twice with the + operator. But every

time the matcher can not match part of the input string with (\&d[0-9]{2}=) ,
it will backtrack and match one character with .*? , and thus all strings will
be matched in linear time. In the simple analysis, the analyzer detected that
the (NFA of the) regex has EDA, but when the full analysis is performed, the
analyzer detected that it cannot construct a valid exploit string and therefore
classified the regex as not being vulnerable.

Analyzing Matching Time Behavior 333

Regexes with large constant matching time, might also be regarded as being
vulnerable (at least from a practical point of view). Next, we describe an app-
roach that worked well in practice to identify some these regexes. If a regex has
a large counted closure, such as R: = (S | T){0, n}, for large n, the regex can be
approximated (in terms of language accepted and matching time) with a Kleene
star, as in (S | T)∗. The Snort repository contains an expression of this form,

namely \x20\x00([^\x00].|.[^\x00]){255} . Although the counted closure
is of the form {n}, and not {0, n}, we can still approximate the regex with
\x20\x00([^\x00].|.[^\x00])+ for the purpose of approximating worst-case

matching time. By using this approximation approach, our analysis was able to
point out that this regex is indeed vulnerable with the exploit string \x20\x00
as prefix, aa as pump and \x00\x00 as suffix.

Our analyzer does not yet support all extensions found in Java regexes.
Unsupported extensions include possessive quantifiers and back references.

5 Conclusions and Future Work

We developed an analyzer to identify regexes vulnerable to ReDoS. The analysis
was run on two repositories of commonly used regexes, and numerous regexes
with non-linear worst-case matching time were discovered. We plan to extend
our analysis so that most features found in extended regexes are supported,
and also to develop techniques to identify regexes with non-constant worst-case
memory usage. One interesting extension to consider is that of possessive quan-
tifiers, allowing the matcher to throw away certain backtracking positions, and
creating the possibility to remove some matching time vulnerabilities. To ana-
lyze regexes with possessive quantifiers in terms of time and space, we plan to
describe the matching of an input string by a pNFA, in terms of a 2-way deter-
ministic pushdown automaton [9]. A further goal is to investigate the complexity
of our worst-case matching-time analysis techniques as discussed in Sect. 3.

References

1. Regexlib. http://www.regxlib.com. Accessed 06 Oct 2015
2. Regular expression static analysis project page. http://www.cs.sun.ac.za/∼abvdm/

regex.html. Accessed 30 Apr 2016
3. Snort. http://www.snort.org. Accessed 06 Oct 2015
4. Adam, B.: Regular expression dos and node.js (2014). https://blog.liftsecurity.io/

2014/11/03/regular-expression-dos-and-node.js
5. Allauzen, C., Mohri, M., Rastogi, A.: General algorithms for testing the ambi-

guity of finite automata. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS,
vol. 5257, pp. 108–120. Springer, Heidelberg (2008). http://dx.doi.org/10.1007/
978-3-540-85780-8 8

http://www.regxlib.com
http://www.cs.sun.ac.za/~abvdm/regex.html
http://www.cs.sun.ac.za/~abvdm/regex.html
http://www.snort.org
https://blog.liftsecurity.io/2014/11/03/regular-expression-dos-and-node.js
https://blog.liftsecurity.io/2014/11/03/regular-expression-dos-and-node.js
http://dx.doi.org/10.1007/978-3-540-85780-8_8
http://dx.doi.org/10.1007/978-3-540-85780-8_8

334 N. Weideman et al.

6. Berglund, M., Drewes, F., van der Merwe, B.: Analyzing catastrophic backtracking
behavior in practical regular expression matching. In: Ésik, Z., Fülöp, Z. (eds.) Pro-
ceedings 14th International Conference on Automata and Formal Languages, AFL
2014, EPTCS, vol. 151, Szeged, Hungary, 27–29 May 2014, pp. 109–123 (2014).
http://dx.doi.org/10.4204/EPTCS.151.7

7. Berglund, M., van der Merwe, B.: On the semantics of regular expression parsing in
the wild. In: Drewes, F. (ed.) CIAA 2015. LNCS, vol. 9223, pp. 292–304. Springer,
Heidelberg (2015). http://dx.doi.org/10.1007/978-3-319-22360-5 24

8. Cox, R.: Implementing regular expressions (2007). http://swtch.com/∼rsc/
regexp/. Accessed 26 Feb 2016

9. Gray, J., Harrison, M.A., Ibarra, O.H.: Two-way pushdown automata. Inf. Control
11(1/2), 30–70 (1967). http://dx.doi.org/10.1016/S0019-9958(67)90369-5

10. Rathnayake, A., Thielecke, H.: Static analysis for regular expression exponential
runtime via substructural logics. CoRR abs/1405.7058 (2014). http://arxiv.org/
abs/1405.7058

http://dx.doi.org/10.4204/EPTCS.151.7
http://dx.doi.org/10.1007/978-3-319-22360-5_24
http://swtch.com/~rsc/regexp/
http://swtch.com/~rsc/regexp/
http://dx.doi.org/10.1016/S0019-9958(67)90369-5
http://arxiv.org/abs/1405.7058
http://arxiv.org/abs/1405.7058

Author Index

Axelsen, Holger Bock 15

Belovs, Aleksandrs 213
Bensch, Suna 27
Berglund, Martin 322
Björklund, Johanna 27

Calvo-Zaragoza, Jorge 39

de la Higuera, Colin 39
Demaille, Akim 51
Di Stasio, Antonio 64

Ésik, Zoltán 77

Fernau, Henning 89
Fujiyoshi, Akio 101

Glück, Robert 113

Holzer, Markus 15
Hospodár, Michal 125

Ibarra, Oscar H. 138

Jirásek Jr., Jozef 150
Jirásková, Galina 125

Kapoutsis, Christos A. 163
Khoussainov, Bakhadyr 3
Kisielewicz, Andrzej 176
Konstantinidis, Stavros 189
Kowalski, Jakub 176
Krebs, Andreas 89
Kutrib, Martin 15, 27

Lerner, Emil 202
Liu, Jiamou 3
Lu, Kenny Zhuo Ming 260

McQuillan, Ian 138
Meijer, Casey 189
Mlynárčik, Peter 125
Montoya, J. Andres 213
Moreira, Nelma 189
Mulaffer, Lamana 163
Murano, Aniello 64

Ng, Timothy 224

Oncina, Jose 39
Otto, Friedrich 298

Parmentier, Yannick 310
Perelli, Giuseppe 64
Průša, Daniel 236

Reis, Rogério 189

Savary, Agata 310
Šebej, Juraj 150
Seki, Shinnosuke 248
Sulzmann, Martin 260
Szykuła, Marek 176

Teichmann, Markus 273
Thiemann, Peter 285

van der Merwe, Brink 322
Vardi, Moshe Y. 64

Wang, Qichao 298
Waszczuk, Jakub 310
Watson, Bruce 322
Weideman, Nicolaas 322
Winslow, Andrew 248

Yakaryılmaz, Abuzer 213

	Preface
	Organization
	Invited Talks
	Decision Problems for Finite Automata over Infinite Algebraic Structures
	What We Experience is What You Do

	Contents
	Invited Paper
	Decision Problems for Finite Automata over Infinite Algebraic Structures
	1 Introduction
	2 Two Automata Models Over Algebraic Structures
	3 Decision Problems on S-Automata
	4 Decision Problems on Extended S-Automata
	5 Conclusion
	References

	Regular Papers
	The Degree of Irreversibility in Deterministic Finite Automata
	1 Introduction
	2 Preliminaries
	3 Complexity of the Regular Reversibility Problem
	4 On the Degree of Irreversibility
	5 Operations on Languages and Degree of Irreversibility
	References

	Deterministic Stack Transducers
	1 Introduction
	2 Definitions and Preliminaries
	3 Computational Capacity
	3.1 Digging Versus Non-digging
	3.2 Relations Between Diggers

	4 Regularity of Stack Languages
	References

	Computing the Expected Edit Distance from a String to a PFA
	1 Introduction
	2 Preliminaries
	2.1 Basic Notations
	2.2 Multiplicity Automata
	2.3 The Edit Distance
	2.4 Complexity Issues

	3 EDD Is Decidable
	3.1 Building a Multiplicity Automaton Computing the Edit Distance to a String (Step 1)
	3.2 Computing the Product Automaton (Step 2)
	3.3 Computing the Distance (Step 3)

	4 An FPRAS for EDD
	5 Experiments
	6 Conclusion
	References

	Derived-Term Automata of Multitape Rational Expressions
	1 Introduction
	2 Notations
	2.1 Rational Series
	2.2 Weighted Rational Expressions
	2.3 Rational Polynomials
	2.4 Rational Expansions
	2.5 Finite Weighted Automata

	3 Expansion of a Rational Expression
	4 Expansion-Based Derived-Term Automaton
	5 Related Work
	6 Conclusion
	References

	Solving Parity Games Using an Automata-Based Algorithm
	1 Introduction
	2 Preliminaries
	3 Extended Parity Games
	4 Implementation of APT in PGSolver
	5 Experiments
	5.1 Experimental Results

	6 Conclusion
	References

	Ternary Equational Languages
	1 Introduction
	2 Ternary Algebras and Symmetric Complete Lattices
	3 Solving Systems of Fixed Point Equations
	4 Related Work
	References

	Problems on Finite Automata and the Exponential Time Hypothesis
	1 Introduction
	2 Universality, Equivalence, Intersection: Unary Inputs
	3 The Case of Non-unary Inputs
	4 Related Problems
	4.1 The Aperiodicity Problem
	4.2 Synchronizing Words

	5 SETH-Based Bounds: Length-Bounded Problem Variants
	6 Two Further Ways to Interpret Finite Automata
	6.1 Jumping Finite Automata
	6.2 Boustrophedon Finite Automata

	7 Conclusions
	References

	A Practical Algorithm for the Uniform Membership Problem of Labeled Multidigraphs of Tree-Width 2 for Spanning Tree Automata
	1 Introduction
	2 Labeled Multidigraphs
	2.1 Definitions
	2.2 The Base Graph of a Labeled Multidigraph and Reduction Rules for Base Graphs of Tree-Width at Most 2

	3 Spanning Tree Automaton
	3.1 Definitions
	3.2 Partial Acceptance

	4 Algorithm for the Uniform Membership Problem
	4.1 Initial Setting of the Sets
	4.2 Maintenace of the Sets During a Reduction Process of the Base Graph
	4.3 Correctness of the Algorithm
	4.4 Time Complexity of the Algorithm

	5 Conclusion
	References

	A Practical Simulation Result for Two-Way Pushdown Automata
	1 Introduction
	2 Pushdown Automata: Configuration Relations
	2.1 Preliminaries
	2.2 Horizontal Layers and Terminators

	3 An Agenda-Based Decision Algorithm
	4 Correctness and Termination of the Simulation
	5 Complexity of the Simulation
	5.1 Cubic Time for 2NPDA
	5.2 Polynomial Time for Multi-head 2NPDA
	5.3 Linear Time for Quasi-deterministic Problems and 2DPDA

	6 Application: Maximally-Polyvariant Partial Evaluation
	7 Related Work
	8 Conclusion and Further Work
	References

	Nondeterministic Complexity of Operations on Closed and Ideal Languages
	1 Introduction
	2 Preliminaries
	3 Closed Languages
	4 Ideal Languages
	5 Conclusions
	References

	On Bounded Semilinear Languages, Counter Machines, and Finite-Index ET0L
	1 Introduction
	2 Preliminaries
	3 Bounded Languages and Counter Machines
	4 Application to Finite-Index ET0L
	5 Conclusions and Open Problems
	References

	Kuratowski Algebras Generated by Prefix-Free Languages
	1 Introduction
	2 Preliminaries
	3 Constructions
	3.1 Cases (1a) and (1b)
	3.2 Cases (2a) and (2b)
	3.3 Cases (3a) and (3b)
	3.4 Case (4)
	3.5 Case (5)
	3.6 Case (6)
	3.7 Case (7)
	3.8 Case (8)
	3.9 Case (9)

	4 Conclusions
	References

	A Logical Characterization of Small 2NFAs
	1 Introduction
	2 Preparation
	2.1 Finite Automata
	2.2 Logical Formulas
	2.3 Finite Automata Versus Logical Formulas

	3 Graph-Accessibility Sentences and Our Theorem
	4 From Automata to Formulas
	5 From Formulas to Automata
	6 Conclusion
	References

	Experiments with Synchronizing Automata
	1 Introduction
	2 Reset Lengths of Extensions
	3 Experiments and Conjectures
	3.1 Summary

	References

	Implementation of Code Properties via Transducers
	1 Introduction
	2 Terminology and Background
	3 Transducer Object Classes and Methods
	4 Object Classes Representing Code Properties
	4.1 Implementation in FAdo
	4.2 Combining Code Properties

	5 Methods of Code Property Objects
	6 LaSer and Program Generation
	7 Concluding Remarks
	References

	On Synchronizing Automata and Uniform Distribution
	1 Introduction
	2 Markov Chain Facts
	3 Sufficient Condition for Uniform Distribution
	4 Necessity of the Condition and the Main Theorem
	5 Discussion
	References

	Looking for Pairs that Hard to Separate: A Quantum Approach
	1 Introduction
	2 Background
	2.1 Easy and Hard Pairs
	2.2 A Motivating Problem: Looking for Pairs that are Truly Hard to separate
	2.3 QFAs
	2.4 Promise Problems

	3 Separating Pairs with 2 States
	3.1 MCQFAs with Real Amplitudes
	3.2 MCQFAs with Complex Amplitudes

	4 Separating Two Finite Sets
	4.1 Nondeterministic MCQFAs

	5 Concluding Remarks
	References

	Prefix Distance Between Regular Languages
	1 Introduction
	2 Preliminaries
	3 Edit Strings and Edit Systems
	4 Computing the Prefix Distance Between Regular Languages
	5 Computing the Inner Prefix Distance of a Regular Language
	6 Conclusion
	References

	Complexity of Sets of Two-Dimensional Patterns
	1 Introduction
	2 Preliminaries
	3 Pattern Complexity
	4 Lower Bounds
	5 Operations over Picture Languages
	6 Conclusion
	References

	The Complexity of Fixed-Height Patterned Tile Self-assembly
	1 Introduction
	2 Preliminaries
	3 Minimum-State Finite State Transducer is NP-hard
	4 Height-2 PATS is NP-complete
	5 Uniform Height-2 3-PATS is NP-complete
	6 Efficiently Solvable PATS Problems
	7 Conclusion
	References

	Derivative-Based Diagnosis of Regular Expression Ambiguity
	1 Introduction
	2 Regular Expressions, Parse Trees and Ambiguity
	3 Computing Parse Trees via Derivatives
	4 Derivative-Based Finite State Transducer
	5 Computing POSIX and Greedy Parse Trees
	6 Ambiguity Diagnosis
	References

	Regular Approximation of Weighted Linear Nondeleting Context-Free Tree Languages
	1 Introduction
	2 Preliminaries
	3 Weighted Context-Free Tree Languages and Weighted Regular Tree Languages
	4 Approximation of a WlnCFTG by a wRTG
	4.1 Intersection of a lnCFTG and a RTG
	4.2 Expected Frequencies
	4.3 Approximation

	5 Further Research
	References

	Derivatives for Enhanced Regular Expressions
	1 Introduction
	2 Preliminaries
	3 Enhanced Derivatives
	4 Word Problem
	5 Finiteness
	6 Conclusion
	References

	Weighted Restarting Automata as Language Acceptors
	1 Introduction
	2 Definitions and Examples
	3 On the Classes of Languages Accepted Relative to the Tropical Semiring Z
	4 On the Classes of Languages Accepted by Word-Weighted Restarting Automata
	5 A Stronger Restriction for Word-Weighted Restarting Automata
	6 Conclusions
	References

	Enhancing Practical TAG Parsing Efficiency by Capturing Redundancy
	1 Introduction
	2 Tree Adjoining Grammars
	3 Grammar Factorization
	3.1 Grammar Flattening with Subtree Sharing
	3.2 Automaton-Based Grammar Compression

	4 Parser
	4.1 FSS Parser
	4.2 FSSA Parser
	4.3 Items
	4.4 Inference Rules

	5 Experimental Results
	6 Related Work
	7 Conclusions
	References

	Analyzing Matching Time Behavior of Backtracking Regular Expression Matchers by Using Ambiguity of NFA
	1 Introduction
	2 Definitions
	3 Deciding Worst-Case Matching Time
	4 Experimental Results
	5 Conclusions and Future Work
	References

	Author Index

