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      Immunology of Primary Sclerosing 
Cholangitis                     

     John     M.     Vierling     

      Abbreviations 

   aa    Amino acid   
  Ags    Antigens   
  AID    Autoimmune disease   
  APCs    Antigen-presenting cells   
  AutoAbs    Autoantibodies   
  AutoAg    Autoantigen   
  BSEP    Bile salt export protein   
  C’    Complement   
  CCL    Chemokine ligand for CC chemo-

kine receptors   
  CCR5Δ32    Chemokine receptor 5 with 32 base 

pair deletion   
  CD    Crohn’s disease   
  CFTR    Cystic fi brosis transmembrane con-

ductance regulator   
  CpG    Bacterial dinucleotide PAMP   
  CTL    Cytotoxic T lymphocyte   
  CTLA4    Cytotoxic T lymphocyte antigen-4   
  DCs    Dendritic cells   
  ERCP    Endoscopic retrograde 

cholangiopancreatography   
  FISH    Fluorescence in situ hybridization   
  GALT    Gut-associated lymphoid tissue   

  HLA    Human leukocyte antigen complex 
(designation for human MHC)   

  IBD    Infl ammatory bowel disease   
  ICAM-1    Intercellular adhesion molecule-1 

(CD54)   
  IFNγ    Interferon gamma   
  IL    Interleukin   
  IMID    Immune-mediated infl ammatory 

disease   
  LPS    Lipopolysaccharide   
  MADCAM-1    Mucosal vascular addressin 

cell adhesion molecule-1   
  Mdr2    Multidrug resistance gene product 2, 

the mouse homolog of human 
MDR3   

  MDR3    Multidrug resistance gene product 3, 
a human bile transporter   

  MHC    Major histocompatibility complex   
  MMPs    Matrix metalloproteinases   
  NK cell    Natural killer cell   
  NKT    Natural killer T cell   
  NSDC    Nonsuppurative destructive 

cholangitis   
  OLT    Orthotopic liver transplantation   
  PAMPs    Pathogen-associated molecular 

patterns   
  pANCAs    Perinuclear antineutrophil cytoplas-

mic antibodies   
  pANNAs    Peripheral antineutrophil nuclear 

antibodies   
  PBMC    Peripheral blood mononuclear cells   
  PDGF    Platelet-derived growth factor   
  PRRs    Pattern recognition receptors   

        J.  M.   Vierling ,  MD, FACP, FAASLD       
  Division of Abdominal Transplantation, 
Departments of Medicine and Surgery ,  Baylor 
College of Medicine, Baylor-St. Luke’s Medical 
Center ,   Houston ,  TX ,  USA   
 e-mail: vierling@bcm.edu  

  9

mailto:vierling@bcm.edu


112

  PSC    Primary sclerosing cholangitis   
  TCRs    T cell receptors for peptide antigens   
  TGFβ    Transforming growth factor-beta   
  Th    T helper   
  TLRs    Toll-like receptors   
  TNFα    Tumor necrosis factor-alpha   
  Treg    Regulatory CD4 T cell   
  UC    Ulcerative colitis   
  VAP-1    Vascular adhesion protein-1   
  VCAM-1    Vascular cell adhesion molecule-1   
  Vβ    Variable region of β-chain of TCR   

        Introduction 

 Primary sclerosing cholangitis (PSC) is a rare, 
chronic, progressive hepatobiliary disease of 
undefi ned etiology that affects macroscopic 
intrahepatic and/or extrahepatic bile ducts in the 
majority and microscopic proximal bile ducts in 
a minority (<10 %) [ 1 ,  2 ]. PSC is associated with 
infl ammatory bowel disease (IBD) of the colon in 
>75 % of cases; ulcerative colitis (UC) of a dis-
tinctive phenotype affl icts the majority and 
Crohn’s disease (CD) the minority [ 3 ]. In PSC, 

peribiliary infl ammation results in progressive 
circumferential fi brosis causing biliary strictures. 
Currently, PSC is classifi ed as an “atypical” auto-
immune disease (AID) because several features 
of PSC differ from those of a classical AID 
(Table  9.1 ) [ 4 ].

   A form of secondary sclerosing cholangitis 
associated with elevations of serum IgG4 and/or 
IgG4-secreting B and plasma cells may mimic 
PSC [ 5 ]. Retrospective studies indicate that 
approximately 10 % of patients diagnosed with 
PSC instead may have IgG4 cholangiopathy [ 6 ]. 
IgG4 cholangiopathy can be distinguished by a 
prior history of pancreatitis, stricturing of both 
intrahepatic and extrahepatic bile ducts, propen-
sity for jaundice, and the use of recently devel-
oped techniques [ 7 ]. 

 Multiple immunological features suggest 
involvement of innate and adaptive immune 
responses in immunopathogenesis, including sus-
ceptibility and resistance associations with HLA 
haplotypes and autoantibodies (autoAbs), and 
evidence that gut-primed T effector T cells medi-
ate peribiliary, fi brosing infl ammation [ 4 ,  8 ]. The 
homing and retention of these gut-primed T cells 
are facilitated by the activated cholangiocytes that 

   Table 9.1    Comparison of characteristic features of classical autoimmune diseases and primary sclerosing cholangitis   

 Features  Classical AID  PSC 

 Autoantigen(s)  Yes  Possibly 

 Autoantibody  Yes, pathogenetic  Yes, biomarker 

 Age  Children and adults  Children and adults 

 Gender predilection  Female > male  Male > female 

 Genetic factors  HLA, non-HLA  HLA, non-HLA 

 Tissue- or organ-specifi c disease  Yes  Yes 

 Infl ammatory cells  Autoreactive T cells  Gut-primed T cells, NK, NKT, 
macrophages, γδ T cells 

 Environmental factors  Yes  Yes 

 Associated AIDs  Yes  Yes 

 Response to immunosuppression  Yes  No 

 Examples  SLE 
 Myasthenia gravis 
 Graves’ disease 
 Pernicious anemia 
 Type 1 diabetes 
 AIH 
 PBC 

   Abbreviations :  AID  autoimmune disease,  HLA  human major histocompatibility complex,  NK  natural killer cells,  NKT  
natural killer T cells,  SLE  systemic lupus erythematosus,  AIH  autoimmune hepatitis,  PBC  primary biliary cholangitis  
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express ligands and receptors and secretion of 
infl ammatory cytokines and chemokines [ 9 ]. 
Thus, the cholangiocytes are not passive targets of 
the immune response but participate in the immu-
nopathogenesis of PSC [ 4 ]. 

 The goal of this chapter is to provide a prog-
ress report on the immunology of PSC. Emphasis 
is placed on immunological fi ndings advancing 
our understanding of the immunopathogenesis of 
PSC.  

    Biliary Anatomic Features and PSC 

 The branching network of bile ducts is lined by 
cholangiocytes with tight junctions that retain 
bile within the duct lumens (Fig.  9.1 ) [ 10 ,  11 ]. 
Each bile duct is accompanied by a branch of the 
hepatic artery of equal caliber that gives rise to a 
peribiliary capillary plexus surrounding each 
duct. Lymphatic channels adjacent to the peribili-
ary capillaries drain lymph formed in the space of 
Disse that contains cytokines and other constitu-
ents produced in the hepatic lobules. The portal 
venous blood from the small bowel and colon 

contains pathogen-associated molecular patterns 
(PAMPs) from the cell walls and unmethylated 
DNA of gut bacteria and fungi, metabolites pro-
duced by the gut microbiota, and viable micro-
bial pathogens when the gut mucosal barrier is 
breached. PSC markedly alters these homeostatic 
anatomic relationships.

       Pathology of PSC 

 The histopathology of PSC is unique among pri-
mary biliary tract diseases (Fig.  9.2 ) [ 12 ]. 
Lymphoplasmacytic infi ltrates of the portal tracts 
localize to the peribiliary space, where they pro-
mote peribiliary fi brosis without apoptotic 
destruction of the cholangiocytes. The density of 
portal infl ammation is scant, especially when 
compared to either autoimmune hepatitis (AIH) 
or primary biliary cholangitis (PBC). A key fea-
ture distinguishing PSC from PBC is the absence 
of effector cell-mediated apoptosis of cholangio-
cytes in PSC [ 13 ].

   Progressive fi brosis leads to concentric, cir-
cumferential laminations around intact intrahe-

Bile
duct

Portal
vein Cholangioles

Artery

  Fig. 9.1    Biliary anatomic features involved in primary 
sclerosing cholangitis. An intralobular bile duct receives 
the bile secreted by hepatocytes through cholangioles at 
the periphery of the portal tract. Each intrahepatic bile 
duct is accompanied by a branch of the hepatic artery of 
equal caliber. The arteries supply a peribiliary capillary 
plexus surrounding each duct, while lymphatic channels 
lie adjacent to the peribiliary capillaries and drain lymph 

formed in the space of Disse that contains cytokines and 
other constituents produced in the hepatic lobules. The 
portal venous blood from the small bowel and colon con-
tains pathogen-associated molecular patterns (PAMPs) 
from the cell walls and unmethylated DNA of gut bacteria 
and fungi, metabolites produced by the gut microbiota, 
and viable microbial pathogens when the gut mucosal bar-
rier is breached       
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patic bile ducts, referred to as “onion skin” 
fi brosis, that displace the peribiliary capillary 
plexi, creating a physical and spatial barrier to 
oxygenation and maintenance of the cholehepatic 
countercurrent circulation between the bile duct 
and artery [ 14 ]. Thus, the pathogenesis of strictur-
ing, circumferential peribiliary fi brosis also 
involves relative arterial or capillary ischemia. 
Stimuli of periductal fi brosis include secretion of 
chemokines and cytokines by innate immune 
cells and activated cholangiocytes and the infl am-
matory and fi brotic response to toxic bile leaking 
between injured cholangiocytes [ 4 ,  15 ]. 
Proinfl ammatory cytokines and/or microbial mol-
ecules in lymph or blood induce cholangiocyte 
expression of chemokine receptors and secretion 
of chemokines and cytokines involved in the che-
moattraction of effector cells to the peribiliary 
space and promotion of fi brogenesis [ 4 ,  16 ].  

    Innate and Adaptive Immunity 

    Innate Immunity 

 Innate immunity provides immediate reactions 
against microbial pathogens and cells altered by 
stress, infection, or neoplasia [ 17 ,  18 ]. Innate 

immune responses are mediated by macrophages 
(including Kupffer cells), dendritic cells (DCs), 
natural killer (NK), and NKT cells. Macrophages 
and DCs constitutively express pattern recogni-
tion receptors (PRRs) for invariant microbial 
molecules, collectively called PAMPs, and for 
CD14 and activated complement (C’) molecules. 
Toll-like receptors (TLRs) are the most promi-
nent PRRs, expressed on innate immune cells 
and epithelial cells, including cholangiocytes and 
hepatocytes. Since PAMPs are molecular frag-
ments of microbes, innate immune responses do 
not require viable microbes. PAMPs relevant to 
the immunopathogenesis of PSC [ 11 ,  19 ] include 
(1) lipopolysaccharide (LPS, aka endotoxin), the 
signature cell wall component of all Gram- 
negative bacteria; (2) lipoteichoic acid, the signa-
ture cell wall component of Gram-positive 
bacteria; (3) peptidoglycans, essential cell wall 
components of all bacteria; and (4)  unmethylated, 
bacterial CpG dinucleotide motifs. Class I chain-
related MICA and MICB genes encode ligands 
expressed by cells damaged by stress, infection, 
or neoplasia that bind to NKG2D receptors on 
NK cells, NKT cells, macrophages, and γδT cells 
causing target cell lysis. In addition, MICA 
ligands also costimulate CD8 CTLs through their 
NKG2D receptors. 

Small
ducts

Medium
ducts

Pancreatic
duct

  Fig. 9.2    Histopathology 
of small duct and medium 
duct primary sclerosing 
cholangitis. The 
histopathology of PSC 
includes the small duct 
variant and the fi brous 
infl ammatory lesions of 
medium-caliber 
intrahepatic ducts. 
Compared to either AIH or 
PBC, the infl ammatory 
infi ltrates in PBC are 
sparse. Periductal, 
concentric fi brosis of the 
medium-caliber 
intralobular bile ducts 
pushes the peribiliary 
capillary plexi away from 
the basement membranes 
of the bile ducts       
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    Innate Immunity in PSC 
 Intense, unregulated innate immune responses are 
involved in PSC immunopathogenesis [ 4 ,  20 ]. The 
cholangiocytes of PSC patients express normal 
amounts of TLR4 and nucleotide-binding oligo-
merization domain-containing protein (NOD)-like 
receptor family pyrin domain- containing 3 
(NLRP3) but excessive TLR9 [ 21 ]. TLR9 

 expression correlated with fi brosis stages and 
greater risk for orthotopic liver transplantation 
(OLT). Cholangiocytes activated by TLRs, proin-
fl ammatory cytokines, and interferon-γ (IFNγ) 
produce cytokines and chemokines involved in the 
peribiliary localization of specifi c infl ammatory 
cells and peribiliary fi brogenesis (Fig.  9.3 , dis-
cussed below) [ 4 ,  9 ,  22 ].
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  Fig. 9.3    Activated cholangiocytes and gut-primed T cells 
in the immunopathogenesis of primary sclerosing 
 cholangitis. Cholangiocytes are activated by PAMPs and by 
proinfl ammatory cytokines TNFα, IL-1β, IL-6, and IFNγ. 
Activated gene expression leads to cholangiocyte produc-
tion of multiple immunological ligands and receptors, che-
mokines, cytokines, MMPs, PDGF, NO, and aberrant class 
II HLA. In PSC, cholangiocytes secrete the chemokine 
CCL25, the ligand for CCR9 on gut-primed T cells. Portal 
endothelial cells in PSC livers express VAP-1, whose amine 
oxidase function in the presence of proinfl ammatory 
 cytokines, especially TNFα, results in aberrant expression 
of MADCAM-1 and display of CCL25. This permits adhe-
sion and diapedesis of gut-primed memory T cells bearing 

the α1β7 integrin receptor for MADCAM-1 and the 
 chemokine receptor CCR9 for the CCL25. After transendo-
thelial migration, gut-primed memory T cells migrate along 
the gradients of chemokines secreted by activated cholan-
giocytes to congregate in the peribiliary space. The chemo-
kine CCL28 facilitates peribiliary recruitment of T cells 
bearing its chemokine receptor, CCR10, while VCAM-1 on 
the cell surface of cholangiocytes acts as ligand for the T 
cell integrin receptor α1β4. This postulated scheme does 
not require the presence of gut Ag(s) that originally primed 
the T cells in the GALT. The absence of cholangiocyte 
expression of the priming gut Ag(s) may explain the obser-
vation that peribiliary T cells do not cause apoptosis of 
cholangiocytes in PSC       
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        Adaptive Immunity 

 Adaptive immunity involves delayed immune 
responses of T cell receptors (TCRs) to processed 
peptide antigens (Ags, potentially including 
autoAgs) presented within Ag-binding grooves 
of class I and II major histocompatibility com-
plex molecules (MHC, designated HLA in 
humans) expressed by professional antigen- 
presenting cells (APCs) [ 23 ,  24 ]. Professional 
APCs include DCs of the innate immune system 
and activated B cells. CD4 T cell TCRs react with 
processed exogenous Ags presented by class II 
MHC molecules and stimulate Ag-specifi c CD4 
T cell TCRs, while CD8 TCRs are stimulated by 
endogenous (including viral) Ags presented by 
class I MHC molecules. MHC binding of specifi c 
peptide Ags is genetically determined [ 25 ,  26 ]. 
The non-polymorphic MHC class I-like mole-
cule, CD-1, presents lipid Ags to TCRs expressed 
by γδT cells. γδT cells are involved in mucosal 
immunity, surveillance of neoplastic changes, 
and protection from autoimmune diseases and 
microbial infections [ 27 ]. Class III MHC genes 
encode TNFα/β; C’ factors C4, C2, and Bf; as 
well as heat shock proteins [ 25 ,  26 ]. 

    HLA 
 HLA genes are inherited from each parent to 
form haplotype pairs [ 25 ,  26 ]. Class I HLA, 
expressed by HLA-A, HLA-B, and HLA-Cw 
loci, presents peptide Ags to TCRs of cytotoxic 
CD8 T cells. Class II HLA, expressed by 
HLA-DR, HLA-DQ, and HLA-DP loci, presents 
processed peptide Ags to TCRs of CD4 T cells. 
Polymorphic HLA class I and II Ag-binding 
grooves determine whether binding and presenta-
tion of specifi c peptide Ags occur, thus confer-
ring susceptibility or resistance to development 
of a disease like PSC. The class III locus encodes 
polymorphic immune response proteins, includ-
ing TNFα/β, complement (C’) factors, and heat 
shock proteins.  

    Effector T Cells and Cytokines 
 Ag activation of CD4 T helper (Th) cells triggers 
exclusive pathways of differentiation that 
 generate Ag-specifi c Th1, Th2, Th17, Th9, and T 

 follicular helper (Tfh) cells and T regulatory 
(Treg) subsets [ 28 ]. A milieu containing IL-12, 
IL-18, and INFγ favors CD4 differentiation into 
Th1 cells that secrete the signature cytokines of 
Th1 cells: IL-2, INFγ, and TNFα/β. Th1 cyto-
kines provide help for proliferation and differen-
tiation of CD8 T cells, also called cytotoxic T 
lymphocytes (CTLs), and activate macrophages. 
Th1 cytokines also induce B cell secretion of 
C’-fi xing IgG2a. In contrast, a milieu containing 
IL-4 favors CD4 differentiation into Th2 that 
secretes the signature cytokine profi le of Th2 
cells, IL, and activates eosinophils and mast cells. 
The signature cytokines of CD4 Th1 inhibit the 
proliferation of Th2 cells and vice versa, creating 
a dynamic balance between Th1 and Th2 subsets 
within infl ammatory infi ltrates. Transforming 
growth factor-beta (TGFβ), IL-6, IL-21, IL-23, 
and retinoic acid receptor-related orphan recep-
tors γ and α (RORγ, RORα) promote generation 
of Th17 cells that can become either protective or 
pathogenic. Both Th1 IFNγ and Th2 IL-4 inhibit 
Th17 differentiation. Pathogenic Th17 cells are 
induced by IL-23 and IL-1β to secrete IL-17A, 
IL-17F, IL-21, and IL-22. In autoimmunity, Th17 
effector cells intensify and perpetuate tissue 
infl ammation. Th9 cells have not been evaluated 
in PSC; however, several functions indicate that 
they may be relevant to immunopathogenesis 
[ 29 ]. For example, secretion of IL-9 increases gut 
permeability, activates mast cells, and increases 
leukocyte recruitment. Th9 cells also secrete 
IL-21, which promotes IFNγ production by NK 
cells and CD8 T cells, and IL-3, which enhances 
DC survival. Tfh cells localize within B cell fol-
licles in lymph nodes and Peyer’s patches, where 
they promote selection and survival of B cell 
clones by expression of CD40 ligand and secre-
tion of IL-4 and IL-21 [ 30 ]. 

 CD4 Treg cells mediate Ag-specifi c suppres-
sion of T cell responses by local secretion of 
IL-10 and transforming growth factor-beta 
(TGFβ) [ 28 ]. The protective Th17 subset of 
Treg17 cells is induced by IL-6 and TGFβ.  

    Adaptive Immunity in PSC 
 Recent studies have focused on the role and func-
tions of Tregs in PSC. Genome-wide association 
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studies (GWAS) identifi ed single nucleotide poly-
morphisms (SNPs) that could affect Treg cells, 
which led to studies of circulating and hepatic 
quantities of CD4 + -CD25 high -FOXP3 + -CD127 low  
Tregs [ 31 ]. Tregs were signifi cantly decreased in 
the blood and liver, and their suppressor function 
was reduced. Reduced Tregs in the blood signifi -
cantly correlated with homozygosity for the major 
allele of the SNP rs10905718 in the IL-2RA gene. 
These fi ndings provide a genetic basis for immune 
dysregulation caused by reduced Treg numbers in 
PSC. Another study of Tregs in peripheral blood 
mononuclear cells (PBMC) of patients with con-
current PSC and UC showed higher frequencies 
of Tregs compared to those in patients with UC 
alone [ 32 ]. 

 Among the autoAbs associated with PSC is an 
IgA anti-cholangiocyte Ab, which occurs at high 
frequency and is correlated with more rapid pro-
gression to death or OLT compared to PSC 
patients without this autoAb [ 33 ]. The signature 
cytokine of Th17 cells, IL-17A, promotes hepatic 
infl ammation and fi brosis [ 34 ]. To investigate 
Th17 immune responses to pathogens in PSC, 
hepatic bile obtained using endoscopic retro-
grade cholangiopancreatography (ERCP) was 
cultured, and liver biopsies were stained using 
16sRNA fl uorescence in situ hybridization 
(FISH) [ 34 ]. The bile grew multiple bacterial and 
fungal species and FISH detected microbes in 12 
of 13 (92 %) of portal tracts. Stimulation PBMC 
with microbes cultured from the bile generated 
high frequencies of Th17 cells, especially in 
response to  Candida albicans . Th17 cells 
expressing IL-17A were detected in the peribili-
ary space, indicating a pathogenic role in the gen-
eration of fi brosing infl ammation.  

    Transendothelial Leukocyte Traffi cking 
into Tissues 
 Activated, circulating leukocytes enter tissues by 
a multistep process of transendothelial migration 
[ 8 ,  9 ,  16 ]. Cellular injury or stress causes secre-
tion of chemokines that are taken up by endothe-
lial cells and displayed on their luminal surfaces 
along with adhesion molecules. As circulating, 
activated leukocytes expressing chemokine 
receptors and counter-receptors for adhesion 

molecules encounter activated endothelial cells, 
their leukocyte selectin receptors cause them to 
roll along the endothelium. Rolling ceases when 
fi rm leukocyte adhesion occurs due to binding of 
leukocyte chemokine receptors to chemokines 
displayed by endothelial cells and leukocyte inte-
grin adhesion molecules to endothelial cellular 
adhesion molecules. This initiates diapedesis of 
leukocytes through endothelial tight junctions 
and basement membranes into the tissue, where 
they are chemoattracted along the chemokine 
gradient toward the source of chemokine secre-
tion. Thus, both chemokines and adhesion mole-
cules expressed on the endothelium determine 
the composition of infl ammatory infi ltrates enter-
ing the tissue from the blood. As discussed below, 
this process appears to play a key role in the 
immunopathogenesis of PSC [ 8 ,  9 ,  16 ].    

    Progress Toward an Understanding 
of Immunopathogenesis 

    Genetics 

    Genome-Wide Association Studies 
(GWAS) 
 Genetic susceptibility to PSC was assessed in a 
GWAS of 443,816 single nucleotide polymor-
phisms (SNPs) in 285 Norwegian PSC patients 
and 298 healthy controls [ 35 ]. Detected associa-
tions were reassessed in independent case- control 
panels in 766 PSC patients and 2,935 controls 
from Scandinavia, Belgium, the Netherlands, and 
Germany. The strongest associations were near 
the HLA-B locus (rs3099844, OR −4.8, 95 % CI 
3.6–6.5,  p  = 2.6 × 10 −26 , and rs2844559, OR 4.7, 
95 % CI 3.5–6.4,  p  = 4.2 × 10 −26 ). Non-HLA 
rs9524260 on chromosome 13q31 was signifi -
cantly associated with three of four groups. This 
locus encodes glycan 6, and inhibition of glycan 
6 in a cholangiocyte cell line resulted in upregu-
lation of proinfl ammatory markers. 

 Subsequent dense genotyping of 130,422 SNPs 
in immune-related disease regions was performed 
in 3,789 PSC patients of European ancestry and 
compared with 2,079 controls [ 36 ]. In addition to 
confi rming three signifi cant non-HLA associa-
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tions, nine new non-HLA associations were 
detected. Six of the nine were more strongly asso-
ciated with PSC than with comorbid IBD. These 
studies have expanded the genetic risk map of PSC, 
providing a better understanding of the relationship 
of PSC and other immune- mediated diseases.  

    Fucosyltransferase 2 (FUT2) 
 FUT2 introduces fucose into glycoproteins and 
glycolipids. FUT2 activity infl uences interac-
tions between the host and microbes [ 37 ]. The 
nonsense mutation G428A and missense muta-
tion A385T are the principal variants that cause 
20 % of people to be FUT2 “nonsecretors,” 
incapable of secreting fucose-containing Ags 
and lacking epithelial cell fucosylation. GWAS 
indicated that inactivating FUT2 variants were 
associated with PSC, Crohn’s disease, and 
 biochemical markers of biliary injury [ 37 ]. 
The microbiome of nonsecretors was character-
ized by reduced bifi dobacteria, increased 
 Firmicutes , and decreased  Proteobacteria  and 
 Actinobacteria . The bacterial content of the bile 
also differed from that of secretors. Lack of 
fucosylated glycans on the surface of cholangio-
cytes is potentially deleterious because it would 
interrupt the glycocalyx required for the protec-
tive biliary bicarbonate umbrella that shields 
cholangiocytes from hydrophobic bile salt 
toxicity.  

    HLA and Susceptibility to PSC 
 PSC susceptibility is most strongly associated 
with four distinct HLA haplotypes (Table  9.2 ) 
[ 35 ,  38 – 41 ]. The highest susceptibility is con-
ferred by homozygosity for MICA*008 (OR 
5.01), suggesting that this allele is closely linked 
to a true susceptibility allele [ 42 ]. The MICA*008 
allele contains the MICA5.1 microsatellite allele, 
which explains the microsatellite’s signifi cant 
association with PSC. It is possible that the 
NKG2D ligand produced by the MICA*008 
allele might explain the increased numbers of NK 
and γδT cells in PSC livers [ 43 ,  44 ]. The MICB 
microsatellite allele MICB24 is also signifi cantly 
associated with PSC. Of note, PSC associations 
with both MICA5.1 and MICB24 microsatellites 
are observed exclusively with the HLA-B8-DR3 
haplotype [ 45 ].

   The fact that the HLA-DR3 haplotype is 
absent from the other two HLA haplotypes asso-
ciated with the second greatest susceptibility risk 
(OR 3.80) has been interpreted as evidence of 
linkage disequilibrium among HLA-B8, 
MICA*008, TNFα promoter (TNFA*2), and a 
yet unidentifi ed susceptibility allele. Since DRB1 
alleles are present in all three extended suscepti-
bility HLA haplotypes, V or G at position 86 of 
the DRβ chain was analyzed. V86 was associated 
with susceptibility alleles DRB1*0301, 
DRB1*1301, and DRB1*1501 (OR 3.01), while 
G86 was associated with resistance alleles 
DRB1*0401 and DRB1*04 (OR 0.17). Modeling 
of susceptibility and resistance indicated that 
K87 and P55 in the DQB also could explain sus-
ceptibility (OR 2.78) or resistance (OR 0.28). 

 Of interest, one of the HLA susceptibility hap-
lotypes contains the TNFA*2 allele (Table  9.2 ). 
Autoimmunity is associated with TNF-2 allele 
-308A [ 46 ], but a G-308A substitution in the 
TNFα promoter is linked with susceptibility only 
with the DRB3*0101 haplotype [ 47 ]. PSC sus-
ceptibility was not associated with the A to G 
polymorphism of Fas (encoded by the TNFSF6 
gene) [ 48 ]. 

     Table 9.2    Immunogenetic associations of PSC with 
HLA and non-HLA alleles   

  Susceptibility haplotypes    Odds 
ratio  

 B8-MICA*008-TNFA*2-DRB3*0101- 
DRB1*0301-DQA1*0501 DQB1*0201 

 2.69 

 DRB3*0101-DRB1*1301-DQA1*0103- 
DQB1*0603 

 3.80 

 MICA*008-DRB5*0101-DRB1*1501- 
DQA1*0102-DQB1*0602 

 1.52 

 (MICA*008 homozygosity)  5.01 

  Resistance haplotypes  

 DRB4*-DRB1*0401-DQA1*0301- 
DQB1*0302 

 0.26 

 DRB4*-DRB1*0701-DQA1*0201- 
DQB1*0303 

 0.15 

 MICA*002  0.12 

  Non - MHC associations  

 ICAM-1  NA 

 MMP-1, MMP-3  NA 

 CTLA4  NA 

 CCR5Δ32 deletion  NA 

 CFTR  NA 
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 A single HLA susceptibility allele may exist in 
PSC, but it is more likely that PSC susceptibility 
is genetically complex, involving multiple HLA 
and non-HLA SNPs. Currently, PSC susceptibil-
ity can be explained for only 50 % of PSC cases 
on the basis of any allele, amino acid substitu-
tions in the DRβ peptide, or homozygosity for 
MICA*008 [ 38 ]. This is independent of IBD, 
since UC is unassociated with these HLA haplo-
types or MICA*008. Further investigations will 
require studies of SNPs identifi ed in GWAS. 

 Susceptibility associations of HLA-DR3 and 
class III TNFA*2 and the G-308A substitution in 
the TNFα promoter may explain the association 
of PSC with AIDs [ 49 ]. HLA-DR3 +  leukocytes 
secrete signifi cantly greater amounts of IL-2, 
IL-5, IL-12, and IFNγ than do HLA-DR3 −  leuko-
cytes, before and after mitogen stimulation 
in vitro [ 50 ]. In contrast, HLA-DR3 haplotype 
does not infl uence secretion of anti-infl ammatory 
Th2 cytokines IL-4 or IL-10. Susceptibility for 
PSC may refl ect overproduction of TNFα and 
IFNγ. If high levels of these cytokines are 
 obligatory for immunopathogenesis, it would be 
plausible that patients capable of generating sim-
ilar levels of cytokines might develop PSC in the 
absence of HLA-DR3.  

    Non-MHC Genes and Susceptibility 
to PSC 
 Polymorphic non-HLA gene products involved in 
infl ammation and immunoregulation may be bio-
markers of progression and severity of PSC. No 
susceptibility associations have been identifi ed for 
Nod2, IL-1, IL-1B, and IL-RN [ 19 ,  48 ]. CTLA4, a 
T cell receptor for costimulatory B7 ligands that 
downregulates T cell activation, is of great inter-
est, since CTLA4 polymorphisms increase the risk 
of multiple organ-specifi c AIDs [ 51 ]. Susceptibility 
for PSC remains controversial, being present in 
one study and not in another [ 48 ]. The mutant che-
mokine receptor 5 with a deletion of 32 base pairs 
(CCR5Δ32) has reduced expression and function. 
Although initial results were controversial, a 
recent study showed that PSC susceptibility was 
signifi cantly associated with CCR5Δ32 [ 52 ]. 
Fibrosis results from a dynamic imbalance 
between matrix metalloproteinases (MMPs) and 
inhibitors of metalloproteinases. The MMP-3 

gene, encoding stromelysin, exhibits a promoter 
sequence polymorphism (5A or 6A repeat). A 5A 
allelic association was observed in one study but 
was not confi rmed in another [ 53 ,  54 ]. The 5A 
allele was found more frequently in PSC patients 
with UC (60 %) than in PSC alone (45 %) [ 54 ]. 
The MMP-9 polymorphism R279Q was signifi -
cantly associated with susceptibility [ 55 ]. No asso-
ciation was noted with MMP-1 promoter 
polymorphisms [ 54 ]. The TGFB1 gene encoding 
the profi brotic and immunosuppressive cytokine 
TGFβ was not associated with PSC [ 48 ]. The 
absence of the murine bile transporter, Mdr2 
(Abcb4), caused regurgitation of toxic bile through 
leaky cholangiocyte tight junctions, resulting in 
PSC-like lesions. In contrast, PSC is characterized 
by normal bile acid transporter haplotypes for 
MDR3 (human homolog of murine Mdr2), 
ABCB4, and bile salt export protein (BSEP) 
ABCB11; thus, there is no evidence of a suscepti-
bility association [ 56 ]. Of note, claudin-1 gene 
mutations compromise tight  junctions and are 
associated with neonatal ichthyosis and sclerosing 
cholangitis [ 57 ]. PSC-like lesions in cystic fi brosis 
prompted testing for mutations in the cystic fi bro-
sis transmembrane conductance regulator (CFTR). 
One report indicated an increased prevalence of 
CFTR mutations and defective nasal CFTR Cl −  
channel function [ 58 ], but others failed to confi rm 
these fi ndings [ 59 ]. Induction of experimental 
colitis in cftr−/− knockout mice did cause PSC-
like lesions, suggesting that CFTR mutations 
might contribute to pathogenesis of PSC in the 
presence of active IBD [ 60 ].  

    MHC Genes and Resistance to PSC 
 Three HLA haplotypes reduce the risk of PSC 
(Table  9.2 ). HLA-DR4 is the most protective; 
however, when PSC occurs in HLA-DR4-
positive patients, they paradoxically have poorer 
prognosis and an increased risk of cholangiocar-
cinoma [ 61 ]. One copy of either the MICA*002 
allele or its satellite allele MICA9 also confers 
signifi cant resistance [ 42 ,  45 ]. Given the strong 
susceptibility risk of PSC bestowed by 
MICA*008, the resistance association with 
MICA*002 strongly suggests that MICA-
encoded ligands for the NKG2D receptors of 
innate immune-responsive cells and CD8 CTLs 
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are determinants of the immunopathogenesis of 
PSC. MICA allelic associations also imply 
involvement of innate immune effector cells and 
microbial PAMPs in immunopathogenesis.  

    Non-MHC Genes and Resistance to PSC 
 PSC patients have signifi cantly lower frequencies 
for both ICAM-1 (CD54)-E469E homozygosity 
and its extended G241-E469/G241-E469 haplotype 
[ 62 ]. E469E homozygosity may protect against 
PSC by altering the adhesion required for transen-
dothelial migration and target cell engagement. 
Resistance occurs with or without coexistent IBD.   

    Immunogenetics of Disease 
Progression and Complications 
of PSC 

 HLA and non-HLA alleles appear to be involved 
in PSC progression, severity, and complications. 
A study of HLA class II alleles in 265 PSC 
patients from fi ve European countries reported 
that heterozygosity for the DRB1*03- 
DQA1*0501-DQB1*02 (HLA-DR3, HLA-DR2 
extended haplotype) signifi cantly increased the 
risk of death or liver transplantation (HR 1.63, 
95 % CI 1.06–2.52) [ 63 ]. In the absence of 
HLA-DR3 and HLA-DR2, a HLA-DQ6 allele 
encoding DQB1*0603 or DQB1*0602 signifi -
cantly reduced both risks (HR 0.57, 95 % CI 
0.36–0.88). HLA-DR4 and HLA-DQ8 showed a 
nonsignifi cant trend for an increased risk of chol-
angiocarcinoma. The CCR5Δ32 genotype was 
more prevalent in advanced PSC (45 %) than in 
mild disease (21 %), suggesting that it promotes 
progression [ 52 ]. In MMP-3 gene encoding 
stromelysin, homozygosity for the 5A polymor-
phism was a signifi cant risk for portal hyperten-
sion, indicative of a role in fi brogenesis [ 53 ].  

    Autoantibodies in PSC 

    Nuclear Envelope Autoantigens 
and Bacterial Mimicry 
 PSC is associated with a wide variety of autoAbs, 
many of which may be immunologic 
 epiphenomena [ 64 ]. The most studied of the 

autoAbs in PSC are the atypical perinuclear anti-
neutrophil cytoplasmic antibodies (pANCAs), 
which occur in ≤88 % of PSC patients, with or 
without UC [ 55 ,  65 ,  66 ]. In PSC, IBD, and AIH, 
pANCA autoAbs rarely react with the classical 
pANCA Ags: cytoplasmic actin, catalase, or eno-
lase [ 67 ]. Instead, the atypical pANCAs in PSC 
react with nuclear envelope Ags in neutrophils 
rather than cytoplasmic Ags. This changed their 
designation to peripheral antineutrophil nuclear 
antibodies (pANNAs) [ 67 ]. 

 Analyses of pANNA epitope specifi city 
showed that 92 % of atypical pANNAs from 
patients with IBD or hepatobiliary diseases react 
with a 50 kDa myeloid-specifi c nuclear envelope 
protein [ 68 ] and subsequently identifi ed a tubulin- 
beta isotype 5 [ 69 ]. Alpha and beta tubulins are 
highly conserved proteins that share 40 % aa 
sequence homology, undergo multiple posttrans-
lational modifi cations, and have multiple iso-
types [ 70 ]. pANNAs against tubulin-beta isotype 
5 were not PSC specifi c, but also occurred in AIH 
[ 69 ]. Subsequent studies showed that pANNAs 
react with the highly conserved bacterial cell 
division protein FTsZ and that preabsorption of 
PSC sera with FTsZ abolished pANNA reactiv-
ity. This indicates molecular mimicry between 
bacterial FTsZ and nuclear Ags of human neutro-
phils [ 71 ]. Of note, pANNA titers do not decrease 
after transplantation or colectomy for UC [ 67 ]. 
pANNAs also may be correlated with biliary 
complications [ 72 ], intrahepatic rather than 
extrahepatic strictures [ 73 ], and cirrhosis at high 
titers [ 74 ]. Unfortunately, these studies were not 
powered suffi ciently to reach fi rm conclusions. 

 Future studies of circulating and liver- 
infi ltrating CD4 and CD8 T cell TCR reactions 
against tubulin-beta isotype 5 with appropriate 
healthy and diseased controls should clarify the 
importance of this autoAg/bacterial molecular 
mimic in PSC pathogenesis. Computer modeling 
of the binding affi nities of putative autoAg(s) for 
HLA class II molecules associated with PSC sus-
ceptibility and resistance may help defi ne their 
Ag specifi cities. 

 IgG ANCA in the bile is correlated signifi -
cantly with PSC risk and formation of dominant 
strictures, but not with risk of death, OLT, or chol-
angiocarcinoma [ 75 ]. The frequency of pANCA 
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is also signifi cantly higher in UC than Crohn’s 
disease [ 76 ]. Moreover, the combination of typi-
cal multi-Ag-specifi c ANCA, ANA, and SMA is 
67 % sensitive for the diagnosis of PSC [ 76 ]. 

 AutoAbs reacting with cholangiocytes have 
multiple consequences. The majority of PSC 
patients have serum IgA autoAbs that bind to cul-
tured human cholangiocytes, while they are 
absent in the sera of healthy controls [ 33 ]. High 
titers correlated with total serum IgA levels and 
were clinically correlated with faster disease pro-
gression. IgG autoAbs in PSC sera also reacted 
against cultured human cholangiocytes and 
induced expression of TLR4 and TLR9 [ 77 ]. The 
addition of the LPS ligand for TLR4 and the CpG 
DNA ligand for TLR9 induced cholangiocytes to 
secrete copious amounts of proinfl ammatory 
cytokines, TNFα, Il-1β, and IL-6, along with 
IFNγ, TGFβ, and granulocyte-macrophage 
colony- stimulating factor. Bile ducts stained for 
TLR4 and TLR9 in biopsies of 58 % of PSC 
patients with IgG anti-cholangiocyte autoanti-
bodies, indicating concordance between the 
in vitro observation and pathophysiology. 

 Induction of murine colitis by bacterial Ags and 
production of pANCA support the hypothesis that 
immune responses to bacterial Ags or other Ags 
cross-reactive with enteric Ags can induce pANNA 
in PSC [ 78 ,  79 ]. The fact that up to 81 % of PSC 
patients have antibodies against enterobacterial 
proteins also supports the hypothesis [ 65 ]. 
Bacterial/permeability-increasing protein (BPI), 
an endotoxin-binding neutrophil leukocyte-granu-
lar protein with antibacterial and antiendotoxin 
activity [ 80 ], is also an ANCA Ag in PSC, IBD, 
cystic fi brosis, and vasculitis [ 81 ]. Titers of BPI-
ANCA correlate with infl ammation and tissue 
damage, suggesting that BPI-ANCA might retard 
clearance of LPS, promoting infl ammation and 
LPS stimulation of biliary TLR4 [ 77 ].  

    Cholangiocyte-Specifi c Autoantigens 
and CD44 
 Serum autoAbs reacting with human intrahepatic 
cholangiocytes from a healthy person were 
detected in 63 % of patients with PSC, 37 % with 
PBC, 16 % with AIH, and 8 % of healthy controls 
[ 82 ]. Western blotting showed that PSC patients 
exclusively had autoAbs reacting with a 40 kDa 

Ag. Anti-cholangiocyte antibodies from PSC and 
PBC patients, but not AIH patients, induced chol-
angiocyte secretion of proinfl ammatory IL-6, 
which stimulates cholangiocyte proliferation and 
inhibits apoptosis. 

 In PSC, but not PBC or AIH, both IgG and 
IgM autoAbs induced cholangiocyte expression 
of the CD44 cell adhesion receptor for the extra-
cellular matrix ligand, hyaluronic acid, which 
also plays roles in cell proliferation, 
 differentiation, presentation of cytokines, chemo-
kines, and growth factors to their receptors, pro-
tease docking to cell membranes, and 
angiogenesis [ 83 ]. Blocking of the CD44v7 iso-
form on T cells and activated macrophages in an 
experimental murine model of IBD caused apop-
tosis of effector cells and clinical recovery [ 84 ]. 
Anti-CD44 reduced induction of experimental 
arthritis by collagen or proteoglycan PAMPs by 
preventing pathological interactions of synovial-
like fi broblasts and cartilaginous matrix [ 85 ]. 
Thus, PSC-specifi c autoAbs against cholangio-
cyte autoAgs stimulate PSC- specifi c expression 
of CD44 isoforms potentially capable of reduc-
ing recruitment of effector leukocytes to the 
peribiliary space, suggesting the possibility of 
therapeutic inhibition of CD44 in PSC.  

    Nonspecifi c Autoantibodies 
 Multiple nonspecifi c autoAbs observed in PSC 
are likely epiphenomena related to chronic 
infl ammation and immunogenetics favoring vig-
orous immune responses [ 64 ]. Frequencies of 
nonspecifi c autoAbs included antinuclear anti-
bodies in 7–77 %, smooth muscle antibodies in 
13–20 %, antimitochondrial antibodies in 0–9 %, 
anti-cardiologic antibodies in 4–66 %, anti- 
thyroperoxidase antibodies in 7–16 %, anti- 
thyroglobulin antibodies in 4 %, and anti-Ig 
rheumatoid factor in 15 %. AutoAbs against 
tropomycin found in either UC or PSC mediated 
antibody-dependent cellular cytotoxicity of cells 
expressing the HLA-DPw9 allele [ 86 ].   

    Immunological Epiphenomena 

 In addition to nonspecifi c autoAbs, multiple 
immunological abnormalities described in PSC 
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also appear to be epiphenomena consistent with 
the concept that PSC is associated with disor-
dered immunoregulation [ 55 ,  64 ,  66 ]. These 
abnormalities include evidence of:(1) Decreased 
proportions of peripheral blood T cells and CD8 
T cells [ 87 ,  88 ](2) Increased proportions of circu-
lating B cells [ 89 ](3) Decreased T suppressor cell 
function [ 90 ](4) Increased autologous mixed 
lymphocyte reactivity [ 91 ](5) C’ activation with 
increased levels of C3b and C4d [ 92 ](6) Deposits 
of C3d on hepatic arteries, but not bile ducts [ 93 ]
(7) Immune complexes in the blood and bile [ 94 ]
(8) Diminished clearance of artifi cial immune 
complexes by Kupffer cells in vivo [ 95 ] and (9) 
Aberrant expression of blood group antigens on 
biliary and colonic epithelia [ 96 ]  

    Cholangiocytes in the Immuno-
pathogenesis of PSC 

    Cholangiocytes as Immunological 
Targets in PSC 
 Ductopenia occurs in PSC; however, 
infl ammatory- mediated apoptosis of cholangio-
cytes is absent in PSC [ 13 ]. In contrast, apoptosis 
is the hallmark of CD8 T cell-mediated nonsup-
purative destructive cholangitis (NSDC) leading 
to ductopenia in PBC, chronic graft-versus-host 
disease (GVHD), and hepatic allograft rejection 
(HAR) [ 11 ]. The near absence of NSDC in PSC 
[ 97 ] is intriguing, since PSC cholangiocytes 
express an activated phenotype of increased class 
I HLA, aberrant class II HLA, and ICAM-1 that 
would facilitate recognition by Ag-specifi c CD8 
CTLs. Portal infi ltrates in PSC also differ from 
those in PBC by containing neutrophils, CD4 T 
> > CD8 T cells, macrophages, NK, and γδT cells 
[ 44 ,  87 ,  88 ,  98 ,  99 ]. Evidence of a paucity of 
peribiliary CD8 CTLs in the precirrhotic stages 
of PSC strongly argues against cholangiocytes as 
primary target cells [ 88 ].  

    Immunomodulatory Roles 
of Cholangiocytes 
 It is now clear that cholangiocytes, rather than 
being passive target cells or innocent bystanders, 
play a seminal role in determining the  composition 

of peribiliary infl ammatory infi ltrates and likely 
participate in periductular fi brogenesis in PSC 
(Fig.  9.3 ) [ 4 ,  8 ,  11 ,  100 ,  101 ]. Activated cholan-
giocytes express TLR4 and TLR9 for the PAMP 
ligands LPS and unmethylated CpG DNA mole-
cules, respectively. Cholangiocytes also have 
receptors for proinfl ammatory cytokines TNFα, 
IL-1β, IL-6, as well as IFNγ. These stimuli induce 
cholangiocyte expression of  chemokine recep-
tors and secretion of multiple chemokines, cyto-
kines, matrix metalloproteinases, and growth 
factors that immunomodulate infl ammation and 
fi brogenesis (Fig.  9.3 ). Cholangiocyte secretion 
of multiple chemokines in PSC (Fig.  9.3 ) dictates 
the composition of peribiliary infl ammatory infi l-
trates containing innate immune cells and T cells 
bearing specifi c chemokine receptors, including 
a pathogenetic population of PSC-specifi c T cells 
primed in the gut (discussed below) [ 8 ,  102 ]. 
Secretions of profi brotic TGFβ by activated chol-
angiocytes, along with profi brogenic cytokines 
secreted by peribiliary infl ammatory cells, are 
likely causes of the concentric layers of circum-
ferential fi brosis characteristic of PSC.  

    Endothelial Cells and the Role 
of Arterial Ischemia in PSC 
 Direct injury of hepatic arteries or arterioles 
causes secondary ischemic sclerosing cholangitis 
[ 103 – 105 ]. While there is no evidence of an 
immunological attack against endothelial cells of 
hepatic arteries or peribiliary capillary plexi in 
PSC [ 14 ,  97 ], it is now clear that concentric lay-
ers of circumferential peribiliary fi brosis progres-
sively push peribiliary capillary plexi away from 
the basement membranes of bile ducts [ 14 ]. An 
experimental mouse model [ 106 ] suggests that a 
microcirculatory barrier to diffusion of O 2  and 
nutrients and disruption of the cholehepatic cir-
culation created by fi brous displacement of the 
peribiliary capillary plexi might explain the atro-
phic, senescent appearance of cholangiocytes in 
PSC. An unsubstantiated but correlative hypoth-
esis postulated that biliary ischemia resulted 
from aberrant production of angiotensin II or 
endothelin by PSC cholangiocytes, leading to 
vasoconstriction of peribiliary capillary plexi and 
arterioles [ 107 ].  
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    Emerging Role of Gut Microbiota 
 Gut microbiota play essential roles in health and 
disease. Published studies are limited but indicate 
that gut microbial profi le in PSC is distinctly dif-
ferent than that in UC without PSC or healthy 
controls [ 108 ]. Specifi cally, PSC patients have 
signifi cantly reduced bacterial diversity com-
pared with healthy controls and a different micro-
bial composition compared to either controls or 
patients with UC alone. Microbiota were similar 
for PSC patients, regardless of the presence or 
absence of IBD. Eleven of 12 microbial genera 
were reduced in PSC, while the  Veillonella  genus 
(anaerobic, Gram-negative cocci) was signifi -
cantly increased compared with controls of 
patients with UC. Of potential importance, the 
 Veillonella  genus is associated with other chronic 
infl ammatory and fi brotic conditions. A study of 
ileocecal biopsies confi rmed the low microbial 
diversity in the gut microbiota of PSC patients 
and noted signifi cantly lower abundance of 
uncultured  Clostridiales II  compared with con-
trols or patients with UC [ 109 ]. As noted above, 
FUT2 nonsecretors have low abundance of fecal 
bifi dobacteria,  Proteobacteria , and  Actinobacteria  
and an increase in  Firmicutes  [ 37 ]. Finally, a 
study of the microbiota of the bile showed 
 Helicobacter pylori  DNA in microdissected hilar 
bile ducts in 9 of 56 (16 %) end-stage PSC 
patients, suggesting that bile refl ux can carry  H. 
pylori  into the distal biliary tract from the duode-
num [ 110 ]. Further studies of the microbiota 
should lead to an understanding of the gut-liver 
axis in health and disease [ 111 ].   

    Immunopathogenic Role of Gut- 
Primed T Cells, Aberrant Expression 
of Adhesion Molecules, Chemokines, 
and Cytokines 

 A series of elegant studies have brought the 
immunomodulatory roles of cholangiocytes and 
the portal venous and arterial endothelia to the 
forefront of studies of PSC immunopathogenesis 
[ 8 ,  102 ]. Collectively, these studies demonstrated 
that hepatic infl ammatory infi ltrates in PSC con-
tain T cells primed by Ags in gut-associated lym-

phoid tissues (GALT). These studies also link the 
immunopathogenesis of PSC to that of IBD [ 101 , 
 112 – 116 ]. Early studies of extraintestinal mani-
festations of IBD in the eye, skin, and synovial 
tissues showed that infl ammation was mediated 
by gut-primed lymphocytes that had inappropri-
ately migrated to these tissues [ 9 ]. A similar 
pathogenetic mechanism in PSC did not appear 
likely, since PSC can occur in the absence of 
active gut infl ammation, may be present years 
before the onset of IBD, or may even begin after 
total colectomy for UC. This led to the hypothe-
sis that PSC is mediated by memory T cells 
primed in the gut that migrated into the peribili-
ary space as a result of aberrant expression of 
gut-specifi c adhesion molecules and cholangio-
cyte secretion of gut-specifi c chemokines [ 114 , 
 116 ,  117 ]. Ag-specifi c activation of naïve T cells 
by gut DCs in Peyer’s patches and mesenteric 
lymph nodes produces a gut-specifi c T cell phe-
notype (Fig.  9.3 ) characterized by expression of 
α4β7 and α4β1 integrins and chemokine recep-
tors CCR9 and CCR10 [ 118 ,  119 ]. Hepatic DCs 
are incapable of imprinting this gut-specifi c 
phenotype. 

 Normally, circulating memory T cells of this 
phenotype interact only with gut endothelial 
cells, due to exclusive endothelial expression of 
the gut addressin mucosal vascular address cell 
adhesion molecule-1 (MADCAM-1) and the che-
mokine ligand CCL25, which bind to gut-primed 
T cell α4β7 and CCR9, respectively. Evidence 
that portal venous endothelial cells in PSC, but 
not other infl ammatory liver diseases, aberrantly 
express MADCAM-1 and CCL25 provided a 
novel mechanism for the homing of gut-primed T 
cells into the portal tracts. 

 Further studies showed that the aberrant 
expression of MADCAM-1 on hepatic endothe-
lial cells was caused by the physiologic interac-
tion of natural dietary and microbial amines and 
vascular adhesion protein-1 (VAP-1) present on 
hepatic endothelial cells. VAP-1 functions as an 
adhesion molecule for the VAP-1 receptor 
(VAP-1R) and as an amine oxidase. The amine 
oxidase function of endothelial VAP-1 activates 
endothelial cell production of H 2 O 2 , which, in the 
presence of proinfl ammatory cytokines 
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(e.g., TNFα), leads to activation of NFkB and 
ultimately aberrant expression of MADCAM-1 
and CCL25 by portal venous endothelial cells. In 
accord with VAP-1 roles in adhesion and amine 
metabolism, the absence of hepatic endothelial 
VAP-1 in VAP-1 −/−  knockout mice signifi cantly 
reduced both portal infl ammation and fi brosis in 
murine models of hepatic injury [ 8 ]. As discussed 
above, PSC cholangiocytes activated by cyto-
kines, PAMPs, or autoAbs also secrete the 
CCL25 chemokine required for transendothelial 
migration of gut-primed T cells into the portal 
tracts (Fig.  9.3 ). Cholangiocyte secretion of 
CCL25 explains migration of gut-primed CCR9- 
positive T cells along the concentration gradient 
to the peribiliary space. 

 Peribiliary localization and survival of gut- 
primed T cells also involve cholangiocyte expres-
sion of additional adhesion molecules and 
chemokines [ 8 ]. Cholangiocyte expressions of 
CCL28 and vascular cell adhesion molecule-1 
(VCAM-1) appear to play critical roles for 
peribiliary recruitment of gut-primed T cells 
expressing the α4β1 integrin receptor for 
VCAM-1 and the CCL28 ligand for the chemo-
kine receptor CCR10. Since cholangiocyte 
expression of CCL28 has been observed in other 
chronic infl ammatory liver diseases, its role in 
chemoattraction of CCR10-positive T cells is 
nonspecifi c. However, stimulation of cholangio-
cyte TLR4 with LPS and the proinfl ammatory 
cytokine IL-1β, both shown to be present in PSC, 
induces secretion of CCL28, augmenting the 
α4β1 interaction of T cells with cholangiocyte 
VCAM-1. In contrast, neither TNFα nor IFNγ 
induces cholangiocyte secretion of CCL28. Thus, 
the innate immune response of the cholangio-
cytes to LPS in a proinfl ammatory cytokine 
milieu appears necessary for transendothelial 
migration and peribiliary recruitment of gut- 
primed T cells. 

 Gut-primed T cells appear to be activated by 
enteric Ags or Ags that cross-react with entero-
cytes. T cell lines propagated from the infl amed 
common bile ducts of two PSC patients expressed 
oligoclonal TCRs, indicating recruitment of T 
cells activated by a limited number of Ags [ 120 ]. 
Since TCR oligoclonality was unchanged in a 

second biopsy performed more than a year later, 
it appeared that extrahepatic T cells expressing 
oligoclonal TCRs were repopulating the periduc-
tal tissue, possibly from mesenteric lymph nodes 
or Peyer’s patches. These T cells proliferated in 
response to human enterocytes and mediated 
enterocyte cytotoxicity, consistent with gut- 
specifi c Ag stimulation. T cells from other PSC 
livers also preferentially expressed Vβ3 TCR 
[ 121 ], which did not correlate with the histopath-
ological stage of disease. 

 Other studies showed that liver-infi ltrating 
lymphocytes in PSC contain T cells that prolifer-
ate poorly to mitogens, have intracytoplasmic 
IL-1β and TNFα, and secrete copious amounts of 
IL-1β and TNFα and lower levels of IL-2, IL-10, 
and IFNγ in vitro [ 122 ]. Neither hepatic T cells 
nor NK cells were cytotoxic in vitro. Anti-TNFα 
antibodies partially restored the proliferation and 
cytotoxicity of PSC liver-infi ltrating lympho-
cytes, suggesting an immunopathogenic role for 
high portal tract concentrations of TNFα. The 
fact that Kupffer cells in PSC are threefold greater 
in number than in other liver diseases [ 123 ] may 
increase the amounts of IL-1β and TNFα in 
peribiliary lymphatics. Serum levels of the major 
profi brotic cytokine TGFβ are also signifi cantly 
increased in PSC, presumably due to secretion by 
Kupffer cells, portal macrophages, and cholan-
giocytes chronically stimulated by proinfl amma-
tory cytokines [ 123 ]. 

 It remains unknown whether transendothelial 
migration of gut-primed T cells into the portal 
tracts can be mediated solely by hepatic endothe-
lial cells expressing VAP-1 and aberrantly 
expressing MADCAM-1 and CCL25 or also 
requires expression of the original priming Ag(s). 
The absence of gut-primed T cell-mediated cytol-
ysis of cholangiocytes suggests that cholangio-
cyte HLA molecules do not express priming 
antigenic peptides [ 13 ]. Chronic portal and 
peribiliary infl ammation may be intensifi ed by 
Th17 cells, and expression of multiple cholangio-
cyte adhesion molecules and chemokines induced 
by PAMPs and proinfl ammatory cytokines likely 
determines the composition of portal infl amma-
tory infi ltrates in PSC [ 34 ]. This may explain the 
fact that only 20 % of portal infl ammatory cells 
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are gut-primed T cells [ 8 ]. However, the compo-
sition of the portal infl ammatory infi ltrates does 
not adequately explain why lesions of fi brous 
obliterative cholangitis associated with periduc-
tal concentric fi brosis occur only sporadically 
along the lengths of individual bile ducts and are 
absent in the small duct variant of PSC.  

    Key Unanswered Questions 
About PSC Immunopathogenesis 

 It remains unknown if circulating gut-primed, 
memory T cells provide immunological surveil-
lance of both the liver and gut prior to initiation 
of PSC or only after hepatobiliary injury and pro-
infl ammatory cytokines facilitate VAP-1 induc-
tion of aberrant hepatic expression of 
MADCAM-1 and CCL25. Were livers of patients 
susceptible to PSC to express aberrant 
MADCAM-1 and CCL25 prior to the onset of 
PSC, it would suggest that the development of 
PSC requires a “second hit” such as cholangio-
cyte activation by PAMPs and proinfl ammatory 
IL-1β to induce VCAM-1 and secretion of CCL25 
and CCL28 for recruitment and migration of gut- 
primed T cells to the peribiliary space. 

 Conversely, if VAP-1-mediated aberrant 
expression of hepatic endothelial MADCAM-1 
and CCL25 were to occur only as an initial mani-
festation of overt PSC, then the etiopathogenesis 
of PSC would require a “multi-hit” hypothesis. 
Recurrence of PSC in transplanted liver allografts 
strongly suggests that aberrant expression of 
MADCAM-1 and CCL25 is not a primary 
expression of susceptibility but instead can be 
induced in a previously non-susceptible allograft. 
The role of the gut in posttransplant recurrence 
remains intriguing, since colectomy performed 
prior to or at the time of transplant protects 
against recurrence of PSC in UC patients. 
Colectomy performed later after transplant has 
no protective effect. 

 Animal studies support the key roles for 
PAMPs and proinfl ammatory cytokines in PSC 
immunopathogenesis [ 124 ]. PAMP-induced 
colitis with muramyl peptide [ 125 ] and 
 Escherichia coli  chemotactic peptide N-formyl 

L-leucine L-tyrosine (fMLT) [ 126 ] was compli-
cated by PSC-like hepatic lesions. In genetically 
susceptible rats, the PAMP peptidoglycan-poly-
saccharide produced by small bowel bacterial 
overgrowth in a surgically created blind loop 
caused PAMP production, portal infl ammation, 
bile ductular proliferation, and strictures of both 
intra- and extrahepatic bile ducts [ 127 ,  128 ]. 
Injury was correlated signifi cantly with TNFα 
production by Kupffer cells. Mutanolysin cleav-
age of peptidoglycan- polysaccharide, palmitate 
blockade of Kupffer cell phagocytosis, and pent-
oxifylline inhibition of TNFα secretion by 
Kupffer cells prevented hepatobiliary infl amma-
tion and biliary strictures. These data are in 
accord with evidence that PSC susceptibility is 
associated with the class III HLA TNFA*2 allele 
and that patients with extended HLA-DR3 hap-
lotypes secrete excessive amounts of TNFα. 
PAMPs and proinfl ammatory cytokines appear 
to play seminal roles in the immunopathogenesis 
of PSC.  

    Bile Regurgitation into the Peribiliary 
Space and Consequences of Biliary 
Obstruction 

 Bile contains noxious constituents, including 
toxic hydrophobic bile acids, PAMPs, and glyco-
proteins. Regurgitation of the bile into the peribil-
iary space as a result of disruption of the tight 
junctions between cholangiocytes results in toxic 
bile injury and periductal concentric fi brosis in 
the Mdr2 (Abcb4) −/−  knockout mouse model [ 15 ]. 
Regurgitation of the bile into the peribiliary space 
induces neutrophilic infl ammation, followed by 
lymphocytic infi ltration and production of both 
proinfl ammatory cytokines and profi brotic TGFβ. 
As observed in PSC, progressive laminations of 
periductal fi brous tissue displace peribiliary cap-
illary plexi, and cholangiocytes became atrophic, 
presumably due to microcirculatory ischemia and 
nutrient deprivation. Biliary casts showed focal, 
macroscopic strictures and ectasias similar to 
those seen in PSC. However, PSC is not associ-
ated with abnormal haplotypes for MDR3, the 
human homolog of murine Mdr2. 
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 Although the bile in the Mdr2 (Abcb4) −/−  
knockout mouse contains increased proportions 
of hydrophobic bile acids, it is important to note 
that the bile also contains other constituents with 
potential roles in immunopathogenesis. For 
example, fMLT, a chemotactic peptide of 
 Escherichia coli  in portal venous blood, is also 
secreted by hepatocytes into the bile [ 129 ]. 
CD66a, also known as biliary glycoprotein, is 
also present in the human bile [ 130 ]. As the 
human homolog of rat cell adhesion molecule, it 
is expressed by neutrophils, monocytes, ductular 
epithelia, endothelial cells, gut intraepithelial 
lymphocytes, and myoepithelial cells within 
infi ltrative scars and sclerosing adenosis of the 
breast [ 131 ]. CD66a binds to E-selectin, galectin-
 3, and bacterial type 1 fi mbriae and CD66b/66c 
and inhibits the cytotoxic function of gut intraep-
ithelial lymphocytes [ 132 ]. Thus, several constit-
uents of the bile may modulate infl ammation and 
possibly fi brogenesis if they were regurgitated 
into the portal tracts.  

    Contribution of Biliary Obstruction 
to Pathogenesis 

 Obstruction of the biliary tract results in increased 
proximal intraluminal pressures, increasing the 
potential for bile regurgitation. Experimental 
obstruction results in increased LPS concentra-
tions in portal tracts; innate immune activation of 
Kupffer cells and portal tract macrophages by 
LPS and/or other PAMPs; secretion of proinfl am-
matory cytokines IL-1β, TNFα, IL-6, TGFα/β, 
and leukotrienes by macrophages; leaky cholan-
giocyte tight junctions; and regurgitation of the 
bile into the peribiliary space [ 133 ,  134 ]. 
Accumulation of LPS inhibits cholangiocyte 
HCO 3  −  secretion (required for the protective bili-
ary bicarbonate umbrella) and compromises cho-
lehepatic cycling between cholangiocytes and 
displaced peribiliary capillaries that may prevent 
removal of noxious molecules from the peribili-
ary space. A peribiliary milieu of proinfl amma-
tory cytokines, chemokines, and LPS recruits and 
activates neutrophils, monocytes, and T cells. 
Biliary obstruction also induces ductular 

 proliferation of cholangiocytes lining canals of 
Hering at the margin of the portal tracts [ 97 ]. 
Proliferating ductules secrete platelet-derived 
growth factor (PDGF) [ 133 ], a potent mitogen for 
activated stellate cells, that promotes results in 
projections of fi brous septa into the parenchyma 
and, ultimately, secondary biliary cirrhosis.      
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