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Abstract The promise of “big data” for those who study cities is that it offers new

ways of understanding urban environments and processes. Big data exists within

broader national data economies, these data economies have changed in ways that

are both poorly understood by the average data consumer and of significant

consequence for the application of data to urban problems. For example, high

resolution demographic and economic data from the United States Census Bureau

since 2010 has declined by some key measures of data quality. For some policy-

relevant variables, like the number of children under 5 in poverty, the estimates are

almost unusable. Of the 56,204 census tracts for which a childhood poverty

estimate was available 40,941 had a margin of error greater than the estimate in

the 2007–2011 American Community Survey (ACS) (72.8% of tracts). For exam-

ple, the ACS indicates that Census Tract 196 in Brooklyn, NY has 169 children

under 5 in poverty �174 children, suggesting somewhere between 0 and 343 chil-

dren in the area live in poverty. While big data is exciting and novel, basic questions

about American Cities are all but unanswerable in the current data economy. Here

we highlight the potential for data fusion strategies, leveraging novel forms of big

data and traditional federal surveys, to develop useable data that allows effective

understanding of intra urban demographic and economic patterns. This paper out-

lines the methods used to construct neighborhood-level census data and suggests

key points of technical intervention where “big” data might be used to improve the

quality of neighborhood-level statistics.
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1 Introduction

The promise of “big data1” for those who study cities is that it offers new ways of

understanding urban environments and their affect on human behavior. Big data lets

one see urban dynamics at much higher spatial and temporal resolutions than more

traditional sources of data, such as survey data collected by national statistical

agencies. Some see the rise of big data as a revolutionary of mode of understanding

cities, this “revolution” holds particular promise for academics because, as argued

by Kitchin (2014), revolutions in science are often preceded by revolutions in

measurement. That is, big data could give rise to something even bigger, a new

science of cities. Others, such as Greenfield (2014) argue that real urban problems

cannot be solved by data and are deeply skeptical of the potential for information

technologies to have meaningful impacts on urban life. Here, we aim to contextu-

alize the enthusiasm about urban big data within broader national data economies,

particularly focusing on the US case. This paper argues that changes to national data

infrastructures, particularly in the US, have led to decline of important sources of

neighborhood-level demographic and economic data and that these changes com-

plicate planning and policymaking, even in a big data economy. We argue that in

spite of the shortcomings of big data, such as uncertainty over who or what is being

measured (or not measured), it is possible to leverage these new forms of data to

improve traditional survey based data from national statistical agencies.

The utility of data is contingent upon the context within which the data exist. For

example, one might want to know the median income in an area and the crime rate

in isolation these data are far less useful then they are in combination. Knowing that

place is high crime might help guide policy. However, policy might be much more

effectively targeted in one knew context within which crime was occurring. In a

general sense we might refer to the context within which data exist as the “data

economy.” For those who work on urban problems, the data economy has changed

in ways that are both poorly understood by the average data consumer and of

consequence to the application of big data to urban problems. Traditional sources

of information about cities in the US have recently changed in profound ways. We

argue that these changes create potential, and problems, for the application of data

to urban questions.

In particular, the data collected by the US Census Bureau has recently undergone

a series of dramatic changes, some of these changes are a result of the gradual

accrual of broader social changes and some have been abrupt, the result of changes

to federal policy. The National Research Council (2013) document a gradual long

term national trend of increases in the number of people who refuse to respond to

public (and private) surveys. Geographic and demographic patterns in survey

1Defining big data is difficult, most existing definitions, include some multiple of V’s (see Laney
2001). All are satisfactory for our purposes here. We use the term to distinguish between census/

survey data which we see as “designed” measurement instruments and big data which we see as

“accidental” measurement instruments.

100 S.E. Spielman



non-response make it difficult for surveys to accurately describe populations and

create the need for complex statistical adjustments to ensure that the estimates

produced by the survey are representative of the target population. If for example,

low income immigrants do not respond to official surveys they would be invisible to

the data-centric urban analyst. More realistically, if they respond with a much lower

frequency than the average person then they would appear much less prevalent than

they actually are unless one accounts for their differential response rate when

producing estimates. However, efforts to reduce bias due to non-response can add

uncertainty to the final estimate creating large margins of error and complicating

data use.

In fact, high levels of uncertainty now plague almost all fine resolution2 urban

data produced by the United States Census Bureau (USCB). Neighborhood-level

data from the Census Bureau are terribly imprecise, for some policy-relevant vari-

ables, like the number of children in poverty, the estimates are almost unusable—of

the 56,204 tracts for which a poverty estimate for children under 5 was available

40,941 had a margin of error greater than the estimate in the 2007–2011 ACS

(72.8% of tracts). For example, the ACS indicates that Census Tract 196 in

Brooklyn, NY has 169 children under 5 in poverty �174 children, suggesting

somewhere between 0 and 343 children in the area live in poverty. Users of survey

data often face the situation in Table 1, which shows the ACS median income

estimates for African-American households for a contiguous group of census tracts

in Denver, Colorado. Income estimates range from around $21,000 to $60,000

(American Factfinder website accessed 7/15/2013). Without taking account of the

margin of error, it would seem that Tract 41.06 had the highest income, however,

when one accounts for the margin of error, the situation is much less clear—Tract

41.06 may be either the wealthiest or the poorest tract in the group.

The uncertainty in Table 1 is all but ignored by practicing planners, a voluntary

online survey of 180 urban planners that we conducted during 2013 found that most

planners (67%) simply delete or ignore information about the quality of estimates,

like the margin of error, when preparing maps and reports. This practice, according

to planners is driven by the “demands” of their “consumers.” That is, the audience

for their maps and reports would have difficulty incorporating the margins of error

into decision-making processes. This practice is further reinforced by federal

agencies, which use only the tract level estimates to determine eligibility for certain

programs (for example, see the eligibility guidelines for the Treasury’s New

Markets Tax Credit program). The problem with the margins of error is especially

pronounced for the Census Transportation Planning Package (CTTP), a key input

for transportation planning and travel demand models.

2We use the terms “fine” and “high” resolution to refer to census tract or smaller geographies,

these data are commonly conceived of as “neighborhood-scale” data. We conceive of resolution in

the spatial sense, higher/finer resolution means a smaller census tabulation unit. However, the

geographic scale high resolution of census units is a function of population density.
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The decline in the quality of neighborhood scale data in the United States began

in 2010, the year the American Community Survey (ACS) replaced the long form of

the United States decennial census as the principal source of high-resolution

geographic information about the U.S. population. The ACS fundamentally

changed the way data about American communities are collected and produced.

The long form of the decennial census was a large-sample, low frequency national

survey; the ACS is a high-frequency survey, constantly measuring the American

population using small monthly samples. One of the primary challenges for users of

the ACS is that the margins of error are on average 75% larger than those of the

corresponding 2000 long-form estimate (Alexander 2002; Starsinic 2005). This loss

in precision was justified by the increase in timeliness of ACS estimates, which are

released annually (compared to the once a decade long form). This tradeoff

prompted Macdonald (2006) to call the ACS a “warm” (current) but “fuzzy”

(imprecise) source of data. While there are clear advantages to working with

“fresh” data, the ACS margins of error are so large that for many variables at the

census tract and block group scales the estimates fail to meet even the loosest

standards of data quality.

Many of the problems of the American Community Survey are rooted in data

limitations. That is at critical stages in the creation of neighborhood-level estimates

the census bureau lacks sufficient information and has to make assumptions and/or

use data from a coarser level of aggregation (municipality or county). We argue that

one of the major potential impacts of big data for the study of cities is the reduction

of variance in more traditional forms demographic and economic information. To

support this claim, we describe the construction of the ACS in some detail, with the

hope that these details illuminate the potential for big data to improve federal and/or

state statistical programs.

2 Understanding the American Community Survey

Like the decennial long form before it, the ACS is a sample survey. Unlike

complete enumerations, sample surveys do not perfectly measure the characteristics

of the population—two samples from the same population will yield different

estimates. In the ACS, the margin of error for a given variable expresses a range

Table 1 2006–2010 ACS estimates of African-American median household income in a selected

group of proximal tracts in Denver County, Colorado

Tract number African-American median household income Margin of error

Census Tract 41.01 $28,864 $8650

Census Tract 41.02 $21,021 $4458

Census Tract 41.03 $43,021 $14,612

Census Tract 41.04 $36,092 $3685

Census Tract 41.06 $60,592 $68,846
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of values around the estimate within which the true value is expected to lie. The

margin of error reflects the variability that could be expected if the survey were

repeated with a different random sample of the same population. The statistic used

to describe the magnitude of this variability is referred to as standard error (SE).
Calculating standard errors for a complex survey like the ACS is not a trivial task,

the USCB uses a procedure called Successive Differences Replication to produce

variance estimates (Fay and Train 1995). The margins of error reported by the

USCB with the ACS estimates are simply 1.645 times the standard errors.

One easy way to understand the ACS Margin of Error is to consider the simple

case, in which errors are simply a function of the random nature of the sampling

procedure. Such sampling error has two main causes, the first is the sample size—

the larger the sample the smaller the standard error, intuitively more data about a

population leads to less uncertainty about its true characteristics. The second main

cause of sampling error is heterogeneity in the population being measured (Rao

2003). Consider two jars of U.S. coins, one contains U.S. pennies and the other

contains a variety of coins from all over the world. If one randomly selected five

coins from each jar, and used the average of these five to estimate the average value

of the coins in each jar, then there would be more uncertainty about the average

value in the jar that contained a diverse mixture of coins. If one took repeated

random samples of five coins from each jar the result would always be the same for

the jar of pennies but it would vary substantially in the diverse jar, this variation

would create uncertainty about the true average value.3 In addition, a larger handful

of coins would reduce uncertainty about the value of coins in the jar. In the extreme

case of a 100% sample the uncertainty around the average value would be zero.

What is important to realize is that in sample surveys the absolute number of

samples is much more important than the relative proportion of people sampled, a

5% sample of an area with a large population will provide a much better estimate

than a 5% sample of a small population. While the ACS is much more complicated

than pulling coins from a jar, this analogy helps to understand the standard error of

ACS estimates. Census Tracts (and other geographies) are like jars of coins. If a

tract is like the jar of pennies, then the estimates will be more precise, whereas if a

tract is like the jar of diverse coins or has a small population, then the estimate will

be less precise.

While the simple example is illustrative of important concepts it overlooks the

central challenge in conducting surveys; many people included in a sample will

choose not to respond to the survey. While a group’s odds of being included in the

3 The Census Bureau generally is not actually estimating the “average” value, they are estimating

the “total” value of coins in the jar. Repeatedly grabbing five coins and computing the average will

over many samples get you a very precise estimate of the average value, but it will give you no

information on the total value. To get the total value, you need a good estimate of the average AND

a good estimate of the total number of coins in the jar. The loss of cotemporaneous population

controls caused by decoupling the ACS from the Decennial enumeration means that the census

does not have information about the number of coins in the jar. This is discussed in more details

later.
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ACS sample are proportional to its population size, different groups of people have

different probabilities of responding. Only 65% of the people contacted by the ACS

actually complete the survey (in 2011, 2.13 million responses were collected from

3.27 million samples). Some groups are more likely to respond than others, this

means that a response collected from a person in a hard to count group is worth

more than a response from an easy to count group. Weighting each response

controls for these differential response rates. In the ACS each completed survey

is assigned a single weight through a complex procedure involving dozens of steps.

The important point, as far as this paper is concerned, is that these weights are

estimated and uncertainty about the appropriate weight to give each response is an

important source of uncertainty in the published data.

3 Sampling

Before 1940, the census was a complete enumeration; each and every housing

unit (HU) received the same questionnaire. By 1940 the census forms had become

a long, complicated set of demographic and economic questions. In response, the

questionnaire was split in 1940 into a short set of questions asked of 100% of the

population and an additional “long form” administered to a subset of the popu-

lation. Originally, this long form was administered to a 5% random sample, but

in later years it was sent to one HU in six (Anderson et al. 2011). Before 1940

any error in the data could be attributed either to missing or double counting a

HU, to incorrect transcription of a respondent’s answer, or to intentional/

unintentional errors by the respondent. After 1940, however, the adoption of

statistical sampling introduced new sources of uncertainty for those questions

on the long form.

Up until 2010 the sample based (long form) and the complete enumeration (short

form) of the census were administered at the same time. In 2010 the ACS replaced

the sample based long form. The American Community Survey constantly mea-

sures the population; it does not co-occur with a complete census. The lack of

concurrent complete count population data from the short form is a key source of

uncertainty in the ACS. Prior to the rise of the ACS, short form population counts

could serve as controls for long-form based estimates. The decoupling of the

sample from the complete enumeration accounts for 15–25% of the difference in

margin of error between the ACS and the decennial long form (Navarro 2012).

Population controls are essential to the ACS sample weighting process, now

population controls are only available for relatively large geographic areas such

as municipalities and counties. This is a key data gap which as discussed later might

be addressed with big data.
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4 Spatial and Temporal Resolution of Census Estimates

Prior to the advent of sampling, the complete count census data could, in principle,

be tabulated using any sort of geographic zone. Tract based census data has become

a cornerstone of social science and policy making. the decennial census by the late

twentieth century. However, users of the once a decade census were increasingly

concerned about the timeliness of the data (Alexander 2002). A solution to this

problem was developed by Leslie Kish, a statistician who developed the theory and

methods for “rolling” surveys (Kish 1990).

Kish’s basic idea was that a population could be divided into a series of

non-overlapping annual or monthly groups called subframes. Each subframe

would then be enumerated or sampled on a rolling basis. If each subframe were

carefully constructed so as to be representative of the larger population, then the

annual estimates would also be representative, and eventually, the entire population

would be sampled. The strength of this rolling framework is its efficient use of

surveys. The decennial census long form had to sample at a rate appropriate to make

reasonable estimates for small geographic areas such as census tracts, which

contain on average 4000 people. Therefore, citywide data released for a munici-

pality of, say, one million people would be based on considerably more samples

than necessary. Spreading the samples over time lets larger areas receive reasonable

estimates annually, while smaller areas wait for more surveys to be collected. The

rolling sample therefore increases the frequency of data on larger areas. The

primary cost comes in the temporal blurring of data for smaller areas. The advent

of sampling made census data for small geographic areas less precise. Since there

are a finite number of samples in any geographic area, as tabulation zones become

smaller sample sizes decline, making estimates more uncertain. The rise uncer-

tainty is greater for small populations; for instance the effects of reducing a sample

size from 200 to 100 is much greater than the effect of reducing a sample size from

20,000 to 10,000. The USCB counteracts this decline in sample size by pooling

surveys in a given area over multiple years, thus diluting the temporal resolution of

the estimates.

Rolling sampling is straightforward in the abstract. For example, suppose that

there are K¼ 5 annual subframes, that the population in a tract is known

(N¼ 1000), that the sampling rate is r¼ 1/6, and that the response rate is 100%;

then one would sample n¼N/(K*1/r) people per year. Over a 5-year period 1/6 of

the population would be sampled and each returned survey would represent w¼
(N/n)/K people, where w is the weight used to scale survey responses up to a

population estimate. In this simple case, the weight assigned to each survey would

be the same. For any individual attribute y, the tract level estimate would be

yt¼Σwiyi (equation 1), a weighted summation of all i surveys collected in tract t.
If the weights are further adjusted by ancillary population controls X, then the

variance of the estimate is Σwi
2VAR[yi|X] (equation 2; Fuller 2011, assuming

independence.). If the rolling sample consisting of long-form-type questions were

administered simultaneously with a short form census, then all the parameters in

our simple example (N,K, X) would be known.
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However, in the ACS good population controls are not available for small areas

(N and X are unknown) because, unlike the long form, the survey is not contempo-

raneous with the complete enumeration decennial census. Thus weights (w) for
each response must be estimated and this is an important source of uncertainty in

the ACS.

5 Weighting

In the ACS each completed survey is assigned a weight (w) that quantifies the

number of persons in the total population that are represented by a sampled

household/individual. For example, a survey completed by an Asian male earning

$45,000 per year and assigned a weight of 50 would in the final tract-level

estimates represent 50 Asian men and $2.25 million in aggregate income. The

lack of demographically detailed population controls, and variations in response

rate all necessitate a complex method to estimate w. The construction of ACS

weights is described in the ACS technical manual (which runs hundreds of pages,

U.S. Census Bureau 2009a). Individually these steps make sense but they are so

numerous and technically complex that in the aggregate they make the ACS

estimation process nearly impenetrable for even the most sophisticated data users.

The cost of extensive tweaking of weights is more than just lack of transparency

and complexity. Reducing bias by adjusting weights carries a cost. Any procedure

that increases the variability in the survey weights also increases the uncertainty

in tract-level estimates (Kish 2002). Embedded in this process is a trade-off

between estimate accuracy (bias) and precision (variance/margin of error), refin-

ing the survey weights reduces bias in the ACS but it also leads to variance in the

sample weights.

6 Big Data and Public Statistics

Without traditional survey data from national statistical agencies, like the USCB, it

is difficult to contextualize big data, its hard to know who is (and who is not)

represented in big data. It is difficult to know if there are demographic, geographic,

and or economic biases in the coverage of big data without traditional census data

as a baseline. Ironically, as this baseline data declines in quality, many of the

populations most in need of urban services are least well served by the traditional

census data and quite possibly the big data as well—consider the example of young

children in poverty discussed in the introduction.
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In the preceding sections we identified several key data gaps and methodological

decisions that might be addressed with big data:

1. Sampling is constrained by a lack of detailed high geographic and demographic

resolution population data.

2. Small area geographies are not “designed” and this leads to degradation in the

quality of estimates and the utility of the published data.

3. Weights are complex and difficult to accurately estimate without additional data.

In this section we outline how big data might be used to address these issues.

This section is by no means exhaustive, the aim more to draw attention to the

potential for new forms of data to mitigate emerging problems with neighborhood

statistics. It is also important to note that, for reasons discussed in the conclusion,

this section is largely speculative, that is, very few of the ideas we propose have

seen implementation.

So far this paper has emphasized the mechanics of the construction of the ACS—

sampling, the provision of small area estimates, the provision of annual estimates,

and the estimate of survey weights. The prior discussion had a fair amount of

technical detail because such detail is necessary in order to understand how novel

forms of “big” data might be integrated into the production process. Directly

integrating big data into the production of estimates is not the only way to use

new forms of data concurrently with traditional national statistics, but in this paper

the emphasis is on such an approach.

It should be apparent that the data gaps and methodological choices we have

identified thus far are intertwined. For example, the use of sampling necessitates the

estimation of survey weights which are complicated to estimate when very little is

known about the target population in the areas under investigation. Spatial and

temporal resolution are related because the reliability of the estimate depends on the

number of surveys, which accrue over time, and the size (population) and compo-

sition of the area under investigation.

The lack of detailed small area population controls is makes it very difficult to

estimate the weight for each survey. Since the US Census Bureau does not know

how many low income Caucasian males live in each census tract it is difficult to

know if the number of surveys returned by low income Caucasian males higher or

lower than expected—this affects the weight assigned to a response. For example,

imagine a hypothetical census tract with 2000 housing units and a population of

4000 people. 10% of the population is low-income white males and this tract was

sampled at a 5% rate, one would expect 10% of the completed surveys to be filled

in by low-income white males. However, if this group is less likely than others to

respond perhaps the only 2% of the completed surveys would be completed by

low-white males. If the number of low-income white males was known in advance

one could “up-weight” these responses to make sure that in the final data low

income-white males represented 10% of the population. However, the census

bureau has no idea how many low-income white males are in each census tract.

This is where big data might help.
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If, for example, the number of low-income white males could be estimated by

using credit reporting data, social media profiles, or administrative records from

other government agencies, then a lot of the guesswork in deciding how to weight

survey responses could be eliminated. It’s important to realize that these forms of

“big” data might not be of the highest quality. However, they could be used to

establish meaningful benchmarks for sub-populations making simple comparisons

of “big” and traditional data possible. While it would be difficult to say which data

was “correct” it is reasonable to suggest that large discrepancies would warrant

closer inspection and would highlight key differences in the coverage of the various

data sets. These coverage differences are not especially well understood at the time

of writing.

A more sophisticated strategy would be to employ what is called are called

“model assisted estimation” strategies (see Särndal 1992). Model assisted estima-

tion is a set of strategies for using ancillary data and regression models to estimate

survey weights. Currently, the ACS uses a model assisted strategy called “Gener-

alized Regression Estimator” (GREG). In the ACS GREG takes advantage of

person-level administrative data on age, race, and gender of residents from auxil-

iary sources such as the Social Security Administration, the Internal Revenue

Service, and previous decennial census tabulations. The procedure builds two

parallel datasets for each census tract: one using the administrative data on all

people in the tract, and the second using administrative data for only the surveyed

housing units. The second dataset can be viewed, and tested, as an estimate of the

demographic attributes of the first—e.g., proportions of males aged 30–44,

non-Hispanic blacks, etc. A weighted least squares regression is then run on the

second dataset, in which the dependent variable is weighted HU counts and the

independent variables are the various weighted attribute counts.

The strength of model assisted estimation procedure depends entirely on the

quality of the regression. A well-fit regression should reduce overall uncertainty in

the final ACS estimates by reducing the variance of the weights, while a poorly fit

regression can actually increase the margin of error. The data used in models

assisted estimation in the ACS is terrible for its intended purpose, that is age, sex,

and race are only loosely correlated with many of the economic and demographic

characteristics of most interest to urban planners and policy makers. In spite of

these weaknesses Age, Sex, and Race data are used because they are available to the

USCB from other Federal agencies, more sensitive data, like income, is not

incorporated into estimates.

However, data on homeownership, home values, spending patterns, employ-

ment, education and many other attributes may be obtainable through big data sets

and this could be used to improve the quality of estimates through model assisted

estimation. For example, housing data from cadastral records and home sales could

be (spatially) incorporated into the ACS weighting strategy. The exact home value

of each house is unknown, so they are unusable as hard benchmarks. But, it is

possible to approximate the value of each house based upon location, characteris-

tics, and nearby sales. Even if it was not possible to directly match survey respon-

dent to records in other datasets, it might be possible to geospatially impute such
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characteristics. For example, recent nearby home sales might be used to estimate

the value of a respondents’ home. This approximation is used to great effect by the

mortgage industry and by local governments for property tax assessments. Since

these models are approximations, the data may enter the weighting phase as “soft”

benchmarks (i.e. implemented a mixed effects models). It is not appropriate for the

weights to exactly duplicate the estimated home value, but it is appropriate for the

weights to approximate the estimated home value. For example, Porter et al. (2013)

use the prevalence of Spanish language Google queries to improve census estimates

of the Hispanic population. Carefully chosen controls have the potential to dramat-

ically reduce the bias and margin of error in ACS estimate for certain variables. The

estimates most likely to be impacted are socioeconomic variables, which are poorly

correlated with the currently available demographic benchmarks, and thus have a

disproportionately large margin of error.

A second mechanism for using big data to improve estimates is through zone

design. Census geographies are designed to be stable over time, that is, local

committees at some point designed them in the past (often 3o years ago) and they

have only evolved through splits and merges with other census tracts. Splits and

merges can only occur when the tract population crosses some critical threshold.

The size and shape of census fundamentally affects the quality of estimates. Larger

population census tracts, because they generally have more surveys supporting

estimates have higher quality data. However, as geographies grow in size there is

potential to loose information on intra urban variation. However, information loss

does not necessarily occur as a result of changes in zone size. Consider two adjacent

census tracts that are very similar to each other in terms of ethnic composition,

housing stock, and economic characteristics. The cost of combining these two

census tracts into a single area is very small. That is, on a thematic map these

two adjacent areas would likely appear as a single unit (because they would be the

same legend color because they would likely have the same value). Combining

similar places together boosts the number of completed surveys and thus reduces

the margin of error. The challenge is how does one tell if adjacent places are similar

(or not) when the margins of error on key variables are very large? Again, big data,

if it provides a reasonable approximation of the characteristics of the places at high

spatial resolutions it maybe possible to combine lower level census geographies

into units large enough to provide high quality estimates. For example, Spielman

and Folch (2015) develop an algorithm to combine existing lower-level census

geographies, like tracts and block groups, into larger geographies while producing

new estimates for census variables such that the new estimates leverage the larger

population size and have smaller margins of error. For example, they demonstrate

that even for variables like childhood poverty, it is possible to produce usable

estimates for the city of Chicago by intelligently combining census geographies

into new “regions”. This strategy results in some loss of geographic detail, but the

loss is minimized by ensuring that only similar and proximal geographies are

merged together
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7 Conclusion

Little (2012) argues that a fundamental philosophical shift is necessary within both

federal statistical agencies and among data users, “we should see the traditional

survey as one of an array of data sources, including administrative records, and

other information gleaned from cyberspace. Tying this information together to

yield cost-effective and reliable estimates. . .” However, Little also notes that for

the Census “combining information from a variety of data sources is attractive in

principle, but difficult in practice” (Little 2012, p. 309). By understanding the

causes of uncertainty in the ACS the implications of Little’s statement become

clear, there is enormous potential to mash-up multiple forms of information to

provide a more detailed picture of US cities.

However, there are major barriers to incorporating non-traditional forms of data

into official neighborhood statistics. The reasons for this range from organizational

to technical. Institutionally, there is a resistance to barriers to the adoption of

non-standard forms of data in public statistics. This resistance stems from the fact

such data sources are outside of the control of the agencies producing the estimates

are relying on such data, that may be subject to changes in quality and availability,

poses a problem for the tight production schedules faced by national statistical

agencies. Technically, it is often unclear how to best leverage such information,

while we have outlined some possibilities they are difficult to test given the

sensitive and protected nature of census/survey data itself. Very few people have

access to this protected data, it is protected by statute, and thus must be handled in

very cumbersome secure computing environments. This makes it difficult to

“prove” or “test” concepts. In the US and UK there are some efforts underway to

publish synthetic data to allow research on/with highly detailed micro data without

releasing the data itself. The barriers to innovative data fusion are unlikely to be

resolved and until clear and compelling examples are developed that push national

statistical agencies away from their current practices.

To summarize, the growing enthusiasm over big data makes it easy to disre-

gard the decline of traditional forms of public statistics. As these data decline in

quality it becomes difficult to plan, provide services, or understand changes in

cities. The enthusiasm over big data should be tempered by a holistic view of the

current data economy. While it is true that many new data systems have come

online in the last 10 years, it is also true that many critical public data sources are

withering. Is big data a substitute for the carefully constructed, nationally repre-

sentative, high resolution census data that many practicing planners and

policymakers rely upon? I think not, and while federal budgets are unlikely to

change enough to yield a change to the quality of federal statistical programs, the

use of new forms of data to improve old forms of data is a promising avenue for

investigation.
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