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Abstract Environmental pollution has significant impact on citizens’ health and

wellbeing in urban settings. While a variety of sensors have been integrated into

today’s urban environments for measuring various pollution factors such as air

quality and noise, to set up sensor networks or employ surveyors to collect urban

pollution datasets remains costly and may involve legal implications. An alternative

approach is based on the notion of volunteered citizens as sensors for collecting,

updating and disseminating urban environmental measurements using mobile

devices. A Big Data scenario emerges as large-scale crowdsourcing activities

tend to generate sizable and unstructured datasets with near real-time updates.

Conventional computational infrastructures are inadequate for handling such Big

Data, for example, designing a “one-fits-all” database schema to accommodate
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diverse measurements, or dynamically generating pollution maps based on visual

analytical workflows.

This paper describes a CyberGIS-enabled urban sensing framework to facilitate

the volunteered participation of citizens in sensing environmental pollutions using

mobile devices. Since CyberGIS is based on advanced cyberinfrastructure and

characterized as high performance, distributed, and collaborative GIS, the frame-

work enables interactive visual analytics for big urban data. Specifically, this

framework integrates a MongoDB cluster for data management (without requiring

a predefined schema), a MapReduce approach to extracting and aggregating sensor

measurements, and a scalable kernel smoothing algorithm using a graphics

processing unit (GPU) for rapid pollution map generation. We demonstrate the

functionality of this framework though a use case scenario of mapping noise levels,

where an implemented mobile application is used for capturing geo-tagged and

time-stamped noise level measurements as engaged users move around in urban

settings.

Keywords Volunteered Geographic Information • Urban sensing • Noise

mapping • CyberGIS • Mobile devices

1 Introduction

In today’s urban environments, various pollution problems have become significant

concerns to people’s health and well-being. Being able to monitor and measure the

status of environmental pollution with high spatiotemporal resolution for producing

accurate and informative pollution maps is crucial for citizens and urban planners to

effectively contribute to decision making for improving living quality of urban

environments. Traditionally, government agencies are responsible for measuring

and collecting urban pollution data, which is done either by employing surveyors

with specialized equipment or by setting up monitoring networks. For example,

under the EU environmental noise directive (2002/49/EC) (Directive 2002), some

cities commenced the installation of permanent ambient sound-monitoring net-

works. This approach is, however, subject to several limitations. For instance, it

is often costly to build such sensor networks and hire surveyors. Furthermore, such

sensors are statically placed and each can only cover an area or space of certain size.

The sensor measurements themselves are usually sampled and aggregated for a

period of time resulting in low update frequency.

Due to these limitations, alternative approaches have been investigated includ-

ing the utilization of citizens as sensors to contribute to collecting, updating and

disseminating information of urban environments, also known as crowdsourcing

(Howe 2006; Goodchild 2007). In particular, some previous studies have explored

the idea of encouraging participatory noise monitoring using mobile devices. For

example, the NoiseTube mobile application utilizes the combination of microphone

and embedded GPS receiver to monitor noise pollution at various sites of a city
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(Maisonneuve et al. 2009, 2010). This effort also showed some promising results

regarding the effectiveness of participatory noise mapping. Compared to the tradi-

tional noise monitoring approach that relies on centralized sensor networks, the

mobile approach is less costly; and with collective efforts, this approach using

humans as sensors can potentially reach a significantly larger coverage of the city.

With integrated environmental sensors,1 the new generation mobile devices can

instrument comprehensive environmental properties, such as ambient temperature,

air pressure, humidity, and sound pressure level (i.e., noise level). However, when

the involvement of a large number of participants engaging in crowdsourcing

activities becomes a realization, a large volume of, near real-time updated, unstruc-

tured datasets are produced. Conventional end-to-end computational infrastructures

will have difficulties in coping with managing, processing, and analyzing such

datasets (Bryant 2009), requiring support from more advanced cyberinfrastructure

regarding data storage and computational capabilities.

This paper describes a CyberGIS-enabled urban sensing framework to facilitate

the participation of volunteered citizens in monitoring urban environmental pollu-

tion using mobile devices. CyberGIS represents a new-generation GIS (Geographic

Information System) based on the synthesis of advanced cyberinfrastructure, GIS

and spatial analysis (Wang 2010). It provides abundant cyberinfrastructure

resources and toolkits to facilitate the development of applications that require

access to, for example, high performance and distributed computing resources and

massive data storage. This framework enables scalable data management, analysis,

and visualization intended for massive spatial data collected by mobile devices. To

demonstrate its functionality, we focus on the case of noise mapping. In general,

this framework integrates a MongoDB2 cluster for data storage, a MapReduce

approach (Dean and Ghemawat 2008) to extracting and aggregating noise records

collected and uploaded by mobile devices, and a parallel kernel smoothing algo-

rithm using graphics processing unit (GPU) for efficiently creating noise pollution

maps frommassive collection of records. This framework also implements a mobile

application for capturing geo-tagged and time-stamped noise level measurements

as users move around in urban settings.

The remainder of this paper is organized as follows: Section “Participatory

Urban Sensing and CyberGISParticipatory Urban Sensing and CyberGIS”

describes the related work in the context of volunteered participation of citizens

in sensing urban environment. We focus on the research challenges in terms of data

management, processing, analysis, and visualization. In particular, CyberGIS is

argued to be suitable for addressing these challenges. Section “System Design and

Implementation” illustrates the details of the design and implementation of the

CyberGIS-enabled urban sensing framework. Section “User Case Scenario” details

a user case scenario for noise mapping using mobile devices. Section “Conclusions

and Future Work” concludes the paper and discusses future work.

1 http://developer.android.com/guide/topics/sensors/index.html
2 http://www.mongodb.org/
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2 Participatory Urban Sensing and CyberGIS

To monitor and study urban environmental pollution, data collection and

processing are two major steps in our framework. In terms of data collection

from citizens engaged in reporting noise levels around a city, researchers found a

low cost solution of using the microphone of mobile device to record and calculate

the sound levels, such as the SPL android application.3 Combining the embedded

GPS receiver on mobile devices, the noise-level measurements are geo-tagged with

geographic locations, which allow researchers to generate heatmap like noise maps

(Maisonneuve et al. 2009; Stevens and DHondt 2010). In addition to appending the

geo-location as a tag to the measurement, other applications, such as NoiseTube

also encourages the appending of environmental tags, such as the type of noise

(e.g., cars and aircraft) as additional attributes to the records. To encourage partic-

ipants to contribute to the sensing activity as much as possible, such measurement

can even take place whenever a user posts a social media message using their

mobile device. However, since the availability of sensors varies in different

devices, the collection of users’ measurements can seem to be “unstructured”,

which makes it difficult to design a “one-fits-all” database schema to accommodate

all the user inputs. Furthermore, when a large number of citizens participate in

sensing urban environments using mobile devices simultaneously, it poses chal-

lenges for efficient data management, processing and visualizations. A Big Data

scenario emerges in large-scale crowdsourcing activities, which requires an inno-

vative system to support scalable data handling, such as data storage with flexible

data schema and efficient database querying. Many applications, such as

NoiseTube, use a relational database for data storage and processing. Relational

databases, with a rigidly defined, schema-based approach, make it difficult to

incorporate new types of data (Stonebraker et al. 2007) and achieve dynamic

scalability while maintaining the performance users demand (Han et al. 2011).

The large volume and dynamic nature of the datasets also causes visualization

problems for noise map generation. Existing GIS libraries, such as heatmap.js4 and

map servers (e.g., GeoServer5) provide inadequate support for this type of data. In

particular, the ability to perform visualization based on customized queries regard-

ing, e.g., a specified time window or an individual user (or a particular group of

users) from the accumulated large volume of data, is limited in the existing

applications. To embrace the characteristics of Big Data from large-scale

crowdsourcing activities and accommodate the geographic attributes of the user

generated content, CyberGIS integrates high performance computing resources and

scalable computing architecture to support data intensive processing, analysis and

visualization (Ghosh et al. 2012; Wang et al. 2012). CyberGIS represents a

new-generation of GIS based on the synthesis of advanced cyberinfrastructure

3 http://play.google.com/store/apps/details?id¼com.julian.apps.SPLMeter&hl¼en
4 http://www.patrick-wied.at/static/heatmapjs/
5 http://geoserver.org/

86 J. Yin et al.

http://play.google.com/store/apps/details?id=com.julian.apps.SPLMeterandhl=en
http://play.google.com/store/apps/details?id=com.julian.apps.SPLMeterandhl=en
http://play.google.com/store/apps/details?id=com.julian.apps.SPLMeterandhl=en
http://www.patrick-wied.at/static/heatmapjs/
http://geoserver.org/


GIS and spatial analysis (Wang 2010). As illustrated in Fig. 1 for the overview of

the CyberGIS architecture, CyberGIS provides a range of capabilities for tackling

the data and computation-intensive challenges, where the embedded middleware

can link different components to form a holistic platform tailored to specific

requirements.

In particular, our framework utilizes several components within this architec-

ture. In the “distributed data management” component, we deploy a MongoDB

cluster over multiple computing nodes for monitoring data intake and storage,

which is scalable to the growth of collected data volume. Compared to a relational

database, the NoSQL database supports more flexible data models with easy scale-

out ability and high performance advantages (Han et al. 2011; Wang et al. 2013b).

In the “high performance support” layer, we rely on the MapReduce functionality

of the MongoDB cluster for data processing, such as individual user trajectory

extraction, which is used to visualize the pollution exposure to a particular partic-

ipant; and aggregation of data provided by all participants to a 1-h (this value is

defined for the ease of implementation and can be changed according to user

specifications) time window. This is then used to dynamically produce noise

maps for the monitored environment. And finally, in the “data and visualization”

layer, we apply a parallel kernel smoothing algorithm for rapid noise map gener-

ation using GPUs. Specific design and implementation details will be discussed in

the following section.

Fig. 1 An overview of the CyberGIS architecture. Source: Wang et al. (2013a)
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3 System Design and Implementation

The framework is designed and implemented to include two main components: a

dedicated mobile application (for Android devices) for participants and a CyberGIS

workflow for data management, processing and pollution map generation. A dia-

gram for the overall architecture is shown in Fig. 2. For this framework, we employ

a service-oriented architecture for the integration between mobile devices and a

CyberGIS platform. Specifically, the mobile application utilizes the combination of

GPS receivers and environmental sensors on mobile devices to produce geo-tagged

and time-stamped environmental measurements. In addition, this application pro-

vides a background service that allows user to choose to store or append the

measurement to other apps a user is interacting with in the mobile device. It is up

to participants to decide when to upload their records to the CyberGIS platform via

the implemented RESTful (Representational state transfer) web service interface.

CyberGIS workflow filters and parses the input data (into JSON6 format) and stores

them into the MongoDB cluster. It also extracts a trajectory of each individual

participant to visualize the pollution exposure along the trajectory. For pollution

map generation from the measurements that are uploaded by all of the participants,

the data aggregation process is carried out using a specified time window. A

pollution map is dynamically generated as a GeoTIFF7 image via a parallel kernel

smoothing method using GPU, which will be displayed as a map overlay on top of

the ESRI world street map.8

3.1 CyberGIS Workflow

The workflow first filters out invalid data records (e.g., records without valid

coordinates) and then parses each record as a JSON object before saved to the

MongoDB cluster. The MongoDB cluster is chained in a master-slave style in order

to achieve scalability as datasets are accumulated into significant size, which is one

of the significant advantages over the existing relational databases. Another advan-

tage brought by the MongoDB cluster is the embedded mechanism for performing

MapReduce tasks. Since there is no predefined data schema and the input data are

simply raw documents with the only structure of <key, value> pairs, the

MapReduce function can efficiently sort the “unstructured” records based on the

specified keys, e.g. timestamp, unique user id or even geographical coordinates

(or a combination of these). More importantly, the data are stored in a distributed

fashion, meaning multiple instances of computing nodes can perform such tasks

simultaneously, which is otherwise nearly impossible for conventional database

6 http://json.org/
7 http://en.wikipedia.org/wiki/GeoTIFF
8 http://www.esri.com/software/arcgis/arcgisonline/maps/maps-and-map-layers
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queries. To visualize the pollution exposure to each individual user, we utilize

MapReduce to simply use the device ID as the key to extract the trajectory of a

specific user from the database.

In producing pollution maps for the measured environmental properties, many

existing applications provide the visualization based on individual points. However,

such an approach is subject to two major challenges. (1) When dealing with a

massive collection of measurements in the form of geographical points, the visu-

alization process will experience longer processing time, which may not be able to

provide an effective response to dynamic user requests. (2) Since the framework is

intended for a large group of people’s collected measurements, visualizing the

measurements (even calibrated) collected at the same location (or locations nearby)

at different times will provide confusing results. In this regard, we aggregate all

users inputs based on a predefined time window and kernel band-width and

calibrate according to factors such as the sound decay distance. To simplify the

process, we define a 1-h time window and 50-m kernel bandwidth. In other words,

we assumed that each measurement will last for 1 h and covers an area of 50-m

radius. The value of this assumption needs to be more carefully determined based

on the real-world measurements once there are enough data collected by multiple

GPS

Internet

Mobile devices

Senor
measurements

RESTful
Web Service Interfaces

Web Server

MongoDB cluster

Data processing with
MapReduce

(data aggregation, trajectory
extraction, time window)

Pollution map generation
(KDE, CUDA)

Pollution map
visualization

Fig. 2 The overall architecture of the framework
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users. The aggregation is implemented also using the MapReduce method, where

the device ID is treated as the map key and the reduction process is based on the

timestamps that fall in a specified 1-h time window.

The pollution map is dynamically generated by using a kernel smoothing

method. Kernel smoothing is used to estimate a continuous surface of environmen-

tal measures (e.g. noise level) from point observations. The estimated measurement

at each location (target location) is calculated as a weighted average of the

observations within a search window (or bandwidth). The weight of each observa-

tion is decided by applying a kernel function to the distance between the target

location and that observation. The kernel function is typically a distance decay

function with a maximum value when the distance is zero and with a zero value

when the distance exceeds the bandwidth. The formula of kernel smoothing is

shown below, where K( ) is the kernel function, h is the bandwidth, (Xi, Yi) is the
location of observation i, and Zi is the environmental measures of observation i.

Xn

i¼1
K x�Xi

h , y�Yi

h

� �
ZiXn

i¼1
K x�Xi

h , y�Yi

h

� �
Performing kernel smoothing with a massive number of observations from

multiple users is extremely computationally intensive. Hence, a parallel kernel

smoothing algorithm is implemented based on CUDA9 (Compute Unified Device

Architecture) to exploit the computational power of GPUs. Multiple parallel

threads are launched simultaneously, each of which estimates the measurement at

one location (one cell for the output raster). Each thread searches through each of

the observations, calculates the weight of this observation to its cell, and outputs the

weighted average of these observations as an estimated measurement of its cell. In

this case, the 50-m kernel bandwidth distance is also incorporated as the bandwidth

of the kernel smoothing method, and the output is a GeoTIFF image, which is

overlaid on top of ESRI world street map for visualization purposes.

4 User Case Scenario

A noise mapping user case is investigated by collecting data of sound pressure using

a mobile application. The application utilizes the microphone of a mobile device to

measure sound pressure with the noise level calculated in decibels (dB) using the

following equation (Bies and Hansen 2009; Maisonneuve et al. 2009):

9 http://www.nvidia.com/object/cudahome new.html

90 J. Yin et al.

http://www.nvidia.com/object/cudahome%20new.html


Lp ¼ 10log10
prms

2

pref
2

 !
¼ 20log10

prms
pref

 !
dB

where pref is the reference sound pressure level with a value of 0.0002 dynes/cm2

and prms is the measured sound pressure level. According to the World Health

Organization Night Noise Guidelines (NNGL) for Europe,10 the annual average

noise level of 40 dB is considered as equivalent to the lowest observed adverse

effect level (LOAEL) for night noise, whereas a noise level above 55 dB can

become a major public health concern and over 70 dB can cause severe health

problems. This calculated value is also calibrated by users according to physical

environment conditions and the type of mobile device.

The mobile application assigns a pair of geographic coordinates (in the format of

latitude and longitude) to each measured value together with a timestamp. The

update time interval for each recording is set to every 5 s. The recorded measure-

ments are saved directly on the mobile device and we let users decide when to

upload their data to the server, whether immediately after taking the measurements

or at a later time. An example of the data format of the measurements is shown in

Fig. 3. Note that the measurements of other sensors on a mobile device can be

included. Given the diversity of sensors on different devices, we use a flexible data

management approach based on MongoDB.

In this user case scenario, we choose the campus of University of Illinois at

Urbana—Champaign and its surroundings as the study area and asked the partic-

ipants to go around the campus to collect the noise level measurements. The user

interface of the mobile application is shown in Fig. 4, where users have the options

to record, upload and interact with noise maps. The mobile application is

implemented as a background service on the device and therefore participants are

free to engage in other activities.

From a generated noise map, we can identify those spots at which the noise level

exceeds such ranges. In Fig. 5, we can examine the visualization of the noise

exposure to an individual participant along their trajectory. At the current stage,

we have not quantitatively estimated accumulated noise exposure, which will be

taken into account in our future work. Figure 6 shows the noise map of a specified

hour using a 50-m kernel bandwidth, which is generated from the measurements

uploaded by all of the participants during this period. From the visualized results,

we can identify the spots where the noise pollution occurs (shown in red) within the

specified hour. A new feature to be evaluated for providing in-depth information

about what causes such noise pollution is to allow users to append descriptive text

when they carry out monitoring using their mobile devices (Maisonneuve

et al. 2009). Figure 7 is the noise map of the same hour but using 100-m kernel

bandwidth, which demonstrates the effects of choosing different sound decay

distance since the value can be changed in framework.

10 http://www.euro.who.int/data/assets/pdf file/0017/43316/E92845.pdf
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Fig. 3 An example of recorded noise measurements saved on a mobile device

Fig. 4 The user interface of

the mobile application
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Fig. 5 Noise mapping along the trajectory of an individual participant

Fig. 6 The generated noise map using a 100-m kernel bandwidth during a specified hour
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5 Conclusions and Future Work

The availability of a variety of affordable mobile sensors is fostering volunteered

participation of citizens in sensing urban environments using mobile devices. By

utilizing embedded GPS receivers to append geographic coordinates to sensor

measurements, the collective efforts from participatory urban sensing activities

can provide high-resolution spatiotemporal data for creating pollution maps of

large cities. In relation to the big data collected from such crowdsourcing activities,

CyberGIS provides high performance computing and participatory computing

architecture to support scalable user participation and data-intensive processing,

analysis and visualization.

In this paper, we present a framework that utilizes several components of the

CyberGIS platform to facilitate citizens in engaging with environmental monitoring

using mobile devices. This framework is intended to incorporate readings from the

environmental sensors on the mobile device. As the availability of sensors varies on

different devices, this framework chooses a MongoDB (without the requirement for

Fig. 7 The generated noise map using a 100-m kernel bandwidth during a specific hour
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a predefined schema) cluster for data storage. A MapReduce approach is used to

filter and extract trajectories of each individual participant to visualize the pollution

exposure. It is also used for dynamically generating pollution maps by aggregating

the collected sensor measurements using a time window. The pollution maps are

rapidly generated by using kernel method via paralleled GPU. In this study, we only

demonstrate the functionality of the framework using the case for dealing with the

geo-tagged and timestamped noise level measurements, which is collected from our

dedicated prototype mobile application using the combination of an integrated GPS

receiver and a microphone on a mobile device.

At the current stage, there are still some limitations regarding the implementa-

tion of the framework. For example, the selection of the kernel method assumes the

measured values stay the same within the kernel bandwidth, which may not be the

case in real-world scenarios. Also, the kernel method may not be suitable for

generating other pollution maps, for example, air pressure. Therefore, some domain

knowledge is required for future improvement of the framework. In relation to

trajectory extraction for visualizing pollution exposure to individual participants,

quantitative methods for estimating actual exposure need to be explored. Further-

more, we plan to acquire environmental measurements from pertinent government

agencies to validate the results that are produced based on data from volunteered

participants. Finally, the current MapReduce method relies on the MongoDB

cluster, where Apache Hadoop is being explored to improve computational

performance.
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