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    Chapter 8   
 Stereotactic Body Radiation Therapy (SBRT) 
or Alternative Fractionation Schedules                     

     Aaron     M.     Laine     ,     Zabi     Wardak     ,     Michael     R.     Folkert     , 
and     Robert     D.     Timmerman    

    Abstract     The use of hypofractionated regimens for the treatment of tumors with 
radiation has come full circle. After the discovery of X-rays and their utilization for 
cancer treatment, the initial fractionation schemes were primarily hypofractionated 
in nature. However, due to technical limitations and associated toxicities, more pro-
tracted fractionated regimens eventually became the foundation for modern radia-
tion therapy. With the advance of imaging and radiation delivery systems, interest 
in more hypofractionated approaches was revived. Stereotactic ablative radiation 
therapy (SABR; also referred as stereotactic body radiation therapy, SBRT) is the 
most abbreviated form of hypofractionation, typically utilizing 1–5 fractions for 
treatment. Its strengths include high rates of tumor control via a convenient, nonin-
vasive outpatient procedure. Toxicities related to high, ablative radiation doses still 
are a potential concern; however, recent clinical trials for a variety of tumor sites 
have shown good outcomes in properly selected patients. This chapter will discuss 
the potential for SBRT/SABR to improve the therapeutic response. The use of 
SBRT/SABR regimens to treat lesions within the lung, liver, spine, and prostate will 
be reviewed. Due to more mature data in regard to the safety and effi cacy, cost- 
effectiveness of the treatment, and potential for immunomodulatory effects, SBRT/
SABR has become more wildly utilized in cancer treatment.  
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      Stereotactic Body Radiation Therapy (SBRT) or Stereotactic 
Ablative Body Radiosurgery (SABR)       

     Introduction      

 After the discovery of  X-rays   in 1895 and  radioactivity   in 1896, initial  radiation can-
cer treatments   were mostly  hypofractionated  . Treatments were limited in giving 
higher doses to the skin and superfi cial structures than to a deeper tumor target. 
Quality assurance measures were lacking to ensure accurate dose deposition. These 
approaches lead to tumor responses, however, with signifi cant late tissue  effects           . 
Despite these limitations,  hypofractionation   remained the  primary treatment sched-
ule   due to patient convenience and technical considerations with treatment delivery. 

 Early radiotherapy  pioneers  , including Friedrich Dessauer, identifi ed the prob-
lems with the state of technology for delivering  hypofractionated treatments  . In 
1905, Dessauer proposed that improvements could be achieved with the application 
of homogeneous dose to the tissue and eventually leading to the formulation of 
ideas of  multibeam   or  multisource irradiation   [ 1 ]. 

 At the same time, Claudius Regaud was performing his seminal experiments 
relating to the irradiation of the testis. He observed that cells undergoing  mitosis      
were more sensitive to radiation, whereas the more differentiated cells were less 
sensitive [ 2 ]. This work led to the  “Law of Bergonie and Tribondeau”   stating that 
the effects of irradiation on cells are more intense the greater their reproductive 
activity, the longer their mitotic phases, and the less differentiated, forming the 
 biological basis for fractionation [ 3 ]. 

 In 1932, Henri Coutard presented his groundbreaking fi ndings at the  American 
Congress of Roentgenology   demonstrating that protracted fractionated  radiotherapy      
had cured deep  tumors   with signifi cantly less  toxicity            previously seen [ 4 ]. Afterward, 
radiation  oncologists   across the world mostly abandoned  hypofractionated   as a method 
for curative treatment. Interestingly, Coutard believed in both approaches stating that 
choice of fractionation should depend on the initial volume of the  target            (small targets 
warrant hypofractionation, whereas large should be more protracted) [ 5 ]. 

 It took until the 1950s when Lars Leksell broke from the perceived rationale of 
 conventionally fractionated radiotherapy (CFRT)   by using large-dose single ses-
sions of radiation delivery in the central nervous system [ 6 ]. Although a single 
 large-dose radiation treatment   was historically prohibitive,  Leksell’s approach   
defi ed conventional wisdom by its technology and administration. Unlike  CFRT  , 
which often irradiates much larger volumes of normal tissue to the prescription dose 
than the tumor itself, Leksell’s  stereotactic radiosurgery (SRS)   went to great lengths 
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to avoid delivering high dose to nontargeted normal tissues. Whatever normal tissue 
was included, either by being adjacent to the target or by inferior  dosimetry  , was 
likely damaged. However, if this damaged tissue was small in volume or nonelo-
quent, the patient did not suffer clinically apparent toxicity, even as a late event. 

 Building upon these results, Lax and Blomgren at the Karolinska Institutet in 
Sweden separated from the established traditions of CFRT and began to explore the 
use of alternative hypofractionated radiation  treatment   regimens for  lung  ,  liver  , and 
selected other  malignant extracranial tumors     . They constructed a  stereotactic body 
frame   that would simultaneously enable comfortable and reliable immobilization 
and dampening of respiratory motion treating patients with extracranial, localized 
tumors  with ablative doses of radiation   that ranged from 7.7 to 45 Gy in 1–4 frac-
tions [ 7 ]. At the same time in Japan, Uematsu and colleagues developed technolo-
gies to deliver  stereotactic radiation               to lung  tumors   [ 8 ]. Initially the treatments were 
called  extracranial stereotactic radioablation   and later stereotactic body radiation 
therapy (SBRT) [ 9 ,  10 ]. More recently, the descriptive term stereotactic ablative 
radiotherapy (SABR) has been  used            [ 11 ]. 

 Defi ning  characteristics of SBRT/SABR      include the following [ 12 ]: (1) secure 
immobilization avoiding patient movement for the typical long treatment sessions; 
(2) accurate repositioning from simulation to treatment; (3) minimization of normal 
tissue exposure attained by using multiple (e.g., 10 or more) or large-angle arcing 
small aperture fi elds; (4) rigorous accounting of organ motion; (5) stereotactic reg-
istration (i.e., via fi ducial markers or surrogates) of tumor targets and normal tissue 
avoidance structures to the treatment delivery machine; and (6) ablative dose 
 fractionation delivered to the patient with subcentimeter  accuracy     .   

     Radiobiological Modeling of SBRT/SABR         

 Classical understanding of the mechanisms of radiation-induced tumor  cell   killing 
centers on the hypothesis that DNA is the main target of ionizing radiation, leading 
to single- and double-strand breaks. Different  mathematical models   have been 
developed to compare tumor control and normal tissue toxicity profi les for various 
radiation schedules and fraction sizes. Since the development of the  linear-quadratic 
(LQ) formalism   by Lea and Catcheside to describe the relationship between radia-
tion dose and the incidence of chromosomal translocations, it has served as the 
primary basis for modeling  radiation dose effects   [ 13 ]. The  LQ model   describes cell 
 killing   as a single-hit versus double-hit  hypothesis  , where the  linear cell kill   is 
expressed by the  α  component, while the  quadratic cell kill   is expressed by the 
 β  component [ 14 ]. The  α / β  ratio is obtained from isoeffect curves using the survival 
fractions of a cell line at different doses per fraction [ 15 ]. This ratio is primarily 
utilized to predict the  clinical effects   in response to changes in fraction size. With 
regard to tumors, a high   α / β  ratio   predicts higher  sensitivity to CFRT           , while a lower 
 α / β  ratio predicts lower sensitivity to CFRT. Most tumors typically possess a high 
 α / β  ratio (approximately 8–10) relative to most normal tissues, which demonstrate 
lower  α / β  ratios (approximately 1–4). 
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 Not all  hypofractionated radiotherapy   is ablative. In general, ablation occurs at 
dose levels that correspond to the exponential (linear region on a logarithmic scale) 
portion of the cell survival curve, which would generally involve daily dose levels 
of >8 Gy. Below this dose range, cells have more capacity to repair. The logarithm 
of cell  survival   as a function of dose in the lower-dose region exhibits a curviness 
called the  shoulder  . More conventional and  nonablative hypofractionated radio-
therapy      is delivered on the shoulder. The range of 2.25–8 Gy per fraction, still 
 considered hypofractionated, has mostly been used for palliation of metastatic dis-
ease. More recently, though, investigators treating common diseases like  breast   and 
 prostate cancer   have used nonablative hypofractionation in patients with curable 
tumors. This was partly for the cost savings associated with fewer overall fractions, 
but in some cases, such  hypofractionation   has a biological rationale for improving 
the  therapeutic ratio  . 

 Based on experimental and clinical data, the  LQ model   seems to predict  biologi-
cal effective dose (BED)   accurately for fraction sizes less than 3.25 Gy [ 16 ]. Due to 
the fact that typical doses for SBRT/SABR fall outside of this range, the LQ model 
breaks down as does not accurately predict the BED for extremely hypofractionated 
regimens [ 16 – 19 ]. The development of more accurate models to predict the 
responses of tumors  to hypofractionated radiotherapy   has been attempted. The  uni-
versal survival curve  , modifi ed  linear-quadratic model (LQL)  , and the generalized 
linear-quadratic model all have shown better radiobiological modeling of high dose 
per fraction than the LQ model, with moderate success at maintaining accuracy 
within the conventionally fractionated range [ 16 ,  18 ,  20 ]. In an attempt to address 
this discrepancy, a universal survival curve was constructed which hybridized the 
LQ model and the multitarget model [ 20 ]. The multitarget model better describes 
the survival curve for ablative doses beyond the shoulder or the transition dose D T . 
These models primarily predict the tumor control to hypofractionated  radiotherapy  ; 
however, better estimation of normal tissue toxicity with larger doses per fraction is 
required. 

 Limitations to predict clinically relevant endpoints exist in simple radiobiologi-
cal  modeling         due to the presence of additional factors, including dose rate, period of 
time over which treatment is delivered, tissue type irradiated, and competing cell 
death mechanisms besides DNA damage. These may include immunological activa-
tion mediated by the release of antigens, damage to cell membranes and organelles, 
and additional mechanisms related to ablative therapy [ 21 ]. 

 Several groups have described tissues and their radiation response according to 
the organization of the smallest functional subunit [ 22 ,  23 ]. Structurally defi ned  tis-
sues   can only repair radiation damage by recruiting their own  stem cells   and have a 
lower radiation tolerance per functional subunit. Generally, organs comprised of 
such structurally defi ned subunits, also called  parallel functioning tissues  , and are 
large organs like the peripheral lung and liver.  Parallel organs      display signifi cant 
redundancy in the number of subunits performing the same function to overcome 
the poor tolerance to damage. In contrast, tissues made up predominately of struc-
turally undefi ned subunits are much more tolerant of radiation damage per subunit 
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because of their ability to recruit clonogenic cells from neighboring tissues for 
repair. Organs made up of  structurally undefi ned subunits   like the esophagus, major 
ducts and airways, and spinal cord are referred as serially functioning tissues and 
perform critical functions acting as a conduit. Despite possessing a higher radiation 
tolerance, if a section of a serially functioning tissue is damage anywhere along its 
length, all downstream function may be effected [ 12 ]. The potential to elicit such 
tissue injury when utilizing ablative doses is a major consideration needed to be 
taken into account when developing treatment plans. 

 The underpinning of radiobiological understanding of  radiation therapy   is based 
on the differences of chromosomal damage within tumor versus normal cells resul-
ting from the relatively homogenous dose exposures of CFRT. It could then be 
expected that the large dose per fraction associated with SBRT/SABR would cause 
tremendous DNA damage within any tissue exposed to this dose. Therefore as men-
tioned above, it is critical to geometrically partition the dose levels received by the 
tumor and normal tissues. Additionally, SBRT/SABR dose  distributions   are typically 
engineered to be heterogeneous, allowing large variations of dose between tumor, 
adjacent normal tissue, and more removed normal  tissues        . Due to this dose variabil-
ity, comparisons between SBRT/SABR and CFRT can become complicated [ 24 ].  

    Immunological Effects of Ablative  Radiation      

 In addition to the  DNA damage effects   described above, a high  intratumoral dose   
achieved with SBRT/SABR might optimize  antitumor mechanisms   by stimulating 
local and direct immune responses in the local microenvironment and  antigen- 
presenting cells (APCs)   [ 25 ].  High-dose-per-fraction radiation   (>8 Gy per treatment 
fraction) may also generate  stromal effects   that are not accounted for in traditional 
radiobiological modeling [ 26 ,  27 ]. It has been suggested that higher doses per 
 fraction result in increased tumor endothelial apoptosis and vascular damage, a phe-
nomenon seen only in high-dose-per-fraction treatment  schedules  , may contribute 
signifi cantly to cell kill [ 26 ,  28 ]. Relatively radiation-insensitive tumor  stem cells      
may also compromise the ability of low-dose fractions to achieve durable tumor 
 control  ; it has been hypothesized that higher doses per fraction can overcome these 
 cells’      ability to repair sublethal damage [ 29 ]. Higher doses per fraction, as opposed 
to conventional 2 Gy doses, can also prime T cells in lymphatic  tissue     , leading to 
more signifi cant CD8+ T-cell-dependent eradication of disease, as well as the induc-
tion and expression of  effector cytokines   and other  infl ammatory mediators   [ 30 ]. 
Such a  pro-infl ammatory environment   laden with cytokine production can increase 
permeability of local vasculature and stimulate APCs to mature more effectively. 
More recently, increased interest in the potential ability of SBRT/SABR to promote 
an abscopal response in conjunction with  immunomodulatory agents   has been 
investigated. Two case reports of combination SBRT/SABR and ipilimumab (anti- 
CTLA- 4) have shown  abscopal effects   in metastatic melanoma and non-small cell 
lung cancer [ 31 ,  32 ]. A Phase I trial of SBRT/SABR and high-dose interleukin-2 for 
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patients with  metastatic melanoma   or  renal cell carcinoma   revealed abscopal 
responses in several patients [ 33 ]. The combination of greater degree and/or differ-
ent modes of DNA damage as well as injury to the tumor microenvironment arising 
from the use of  hypofractionated   or  single-fraction radiation therapy   may work syn-
ergistically to cause irreparable and lethal injuries to the irradiated cells [ 28 ,  34 ,  35 ].  

    SBRT/SABR  for Primary Management of NSCLC         

 Lung  cancer      is the second most diagnosed cancer and the leading cause of 
 cancer- related mortality in the United States [ 36 ]. Of patients newly diagnosed with 
 non- small cell lung cancer (NSCLC)           , 15–20 % are found to have stage I disease 
[ 37 ]. Surgical  resection   is the treatment of choice for these patients. However, up to 
30 % are deemed inoperable because of comorbidities [ 38 ]. SBRT/SABR has 
proven effi cacy in the treatment of patients with early-stage, medically inoperable 
NSCLC [ 39 ,  40 ] with an emerging indication in the setting of limited metastatic 
disease [ 41 – 52 ]. 

 For patients with medically inoperable NSCLC, dose escalation using  con-
ventional fractionation   was initially explored to improve the probability of local 
control.  Radiation Therapy Oncology Group (RTOG) Protocol 7301   investigated 
multiple dosing regimens for patients with T1-3 N0-2 disease, including 40 Gy 
delivered in a split regimen of two courses of 20 Gy delivered in 5 fractions (40 Gy 
total in 10 fractions) with a 2-week break between courses, and continuous regi-
ments escalating the dose from 40 to 60 Gy. The failure rate within the irradiated 
volume was 48 % in the 40 Gy continuous regimen, 38 % for the 40 Gy split course 
and 50 Gy regimen, and 27 % in the 60 Gy continuous regimen [ 53 ].  RTOG Protocol 
9311   then escalated doses from 65 to 90.3 Gy using 3D conformal  radiation therapy      
in inoperable patients and found that treatment could safely be delivered in daily 
fraction sizes of 2.15 Gy to a total dose of 77.4 Gy or 83.8 Gy provided that the 
volume of the lung receiving 20 Gy could be constrained to less than 25 % of the 
total lung volume. The study attained  locoregional control rates   at 2 years of 
55–78 % at the MTD [ 54 ]. 

 A later  dose-escalation study   conducted by Rosenzweig et al. treated patients 
with inoperable NSCLC using 3D conformal radiation therapy, with fraction sizes 
of 1.8 Gy for doses ≤81 Gy and 2 Gy for doses >81 Gy. Dose-escalation levels 
included 70.2, 75.6, 81.0, 84.0, and 90 Gy; unacceptable pulmonary toxicity 
occurred at 90 Gy, and the  maximum tolerated dose (MTD)   was established at 
84 Gy [ 55 ]. Long-term results of this study were reported by Sura et al. and included 
55 patients with stage I/II disease. They demonstrated that treating the primary 
lesion with escalated doses >80 Gy in 2 Gy  fractions   resulted in 5-year local control 
(LC) and overall survival (OS) outcomes of 67 % and 36 %      , respectively [ 56 ]. 

 In order to continue to improve LC and OS in this patient population, protocols 
have sought to improve the  therapeutic ratio   with the addition of  chemotherapy   or 
by changing the dose per fraction. Researchers at Indiana University reported a 
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Phase I study in which patients with T1–T2 N0  NSCLC      were treated with escalating 
doses of SBRT/SABR, starting at 24 Gy in 3 fractions and increasing to 60 Gy (for 
T1 lesions) or 72 Gy (for T2 lesions) in 3 fractions to determine the maximum toler-
ated dose (MTD). The MTD was not reached for T1 lesions at 60 Gy, and for T2 
lesions an MTD of 66 Gy was established based on bronchitis, pericardial effusion, 
hypoxia, and pneumonitis. Crude rates of local failure were 21 % in both the T1 and 
T2 cohorts, and a dose response was noted with only one local failure observed with 
fraction sizes of >16 Gy per fraction [ 10 ,  39 ]. These doses were calculated without 
correction for tissue  inhomogeneity  ; subsequent doses used inhomogeneity  correc-
tion   and as a result appear slightly lower. 

 A subsequent  Phase II multicenter trial   (RTOG 0236) further evaluated the toxic-
ity and effi cacy of stereotactic body radiation therapy in a high-risk population of 
patients with T1-2aN0 (lesions <5 cm in size) early-stage, medically inoperable 
NSCLC. Doses of 54 Gy in 3 fractions were delivered, and an estimated 3-year local 
control rate of 97.6 % was observed, with an overall survival rate of 55.8 % at 3 
years [ 40 ]. Based on this study, stereotactic body radiotherapy ( SBRT  ) is now the 
standard of care for medically inoperable early-stage  non-small cell lung cancer 
(NSCLC)   or those patients who refuse surgery. Further work is being done to opti-
mize dose delivery for early-stage NSCLC; the RTOG conducted  RTOG Protocol 
0915  , a randomized Phase II study that compared two different SBRT/SABR treat-
ment schedules for medically inoperable patients with  stage I peripheral NSCLC  , in 
which patients were randomized to receive 34 Gy in a single fraction or 48 Gy in 
four daily consecutive fractions of 12 Gy per  fraction     . This protocol is now closed 
to accrual, and fi nal results are pending; preliminary data suggest that 34 Gy may be 
more effi cacious with respect to local control and equivalent in toxicity profi le, and 
a comparison of 34 Gy in one fraction to 54 Gy in 3 fractions is planned. 

 Continued evaluation of dose response outside of trials has been performed. In a 
review of the  National Cancer Data Base (NCDB)     , 498 patients were identifi ed and 
evaluated for response to SBRT/SABR. These patients were treated with a range of 
dosing regimens, with the most common being 60 Gy in 3 fractions, 48 Gy in 4 frac-
tions, 54 Gy in 3 fractions, 45 Gy in 3 fractions, and 48 Gy in 3 fractions. Outcomes 
were evaluated with respect to  biologically effective dose (BED)   [ 57 ], which is 
calculated according to the simplifi ed formula:

  
BED = + ( )( )nd d1 / /a b

   

where  n  = number of treatment fractions,  d  = dose per fraction, and  α / β  is the ratio of 
the linear and quadratic components of the cell  survival curve  ; for the purposes of 
their study, an  α / β  ratio of 10 was assumed. For example, a regimen of 54 Gy in 
3 fractions would have a BED of  18 3 1 18 10× × +( )/

 
  or 151.2. They found that 

increasing BED to doses >150 Gy equivalent was associated with improved survival 
in patients undergoing SBRT/SABR for larger (T2) tumors [ 58 ]. 

 While local control rates with SBRT/SABR in  early-stage NSCLC   are excellent 
[ 40 ,  59 ], distant failure is common, occurring in 20–30 % of patients in 3–5 years 
[ 40 ,  60 – 62 ]. Future efforts in the treatment of early-stage NSCLC will naturally 
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include optimization of treatment delivery to safely and accurately deliver ablative 
doses to tumor while limiting normal tissue toxicity, but it is likely that incorpora-
tion of appropriately timed and administered cytotoxic, targeted, and  immunotherapy- 
based treatments   will be required to optimize outcomes in terms of out-of-fi eld 
tumor recurrence and overall patient survival after SBRT/ SABR        .  

    Specifi c  Issues Associated with SBRT/SABR for Targets 
in the Lung            

 Escalating the dose to the target in the lung has been shown to be effective in terms 
of killing the tumor cells, but the normal nearby tissues must be taken into account; 
tumor  control   does come at a price. The lung may be considered both a  parallel   and 
 serial organ  , in that there is some redundancy due to its paired nature and  parenchy-
mal reserve  , but injury to a central structure may impair function of a large down-
stream volume; one aspect of this is the  proximal bronchial tree  . Ablative doses 
given to a very proximal branch of the airway could cause injury that impairs down-
stream function and lead to signifi cant  patient pulmonary toxicity  ; additionally, 
large vessels run in close approximation to these large branches and could also 
potentially be a target for injury. In a study by Timmerman et al., building on an 
earlier  dose-escalation study   [ 10 ], 70 patients with T1-2 N0 medical inoperable 
NSCLC were treated with either 60 Gy in 3 fractions (for T1 disease) or 66 Gy in 3 
fractions (for T2 disease); these doses were also calculated without correction for 
tissue inhomogeneity, and there was no restriction on tumor location. Local tumor 
 control   remained very high, 95 % at 2 years; however, on follow-up, eight patients 
had serious grade 3 or 4 toxicities (declining pulmonary function, pneumonia, effu-
sion, apnea), and six patients died of possible grade 5 toxicities, including one fatal 
 hemoptysis      four  infectious pneumonias  , and one  pericardial effusion  . Tumor  loca-
tion   was associated with severe toxicity, and this study identifi ed that dose delivery 
to targets overlapping the  proximal bronchial tree   with a 2 cm expansion (consisting 
of the carina, the right and left main bronchi, the right and left upper lobe bronchi, 
the  bronchus intermedius  , the right middle  lobe bronchus   the  lingular bronchus     ;, 
and the right and left lower lobe bronchi) was most predictive of serious adverse 
effects. This area was defi ned as a  “no-fl y zone”   for SBRT/SABR in the lung of very 
high fraction sizes (>10 Gy per fraction) [ 63 ]. 

 Effective dose delivery for patients with “central tumors”    is an area of active 
investigation. The RTOG recently closed  RTOG Protocol 0813  , which was a Phase 
I/II study of SBRT/SABR for the treatment of  early-stage  , centrally located NSCLC 
in medically inoperable patients. They defi ned  central tumors   as those with any 
overlap with a 2 cm expansion from the previously defi ned  proximal bronchial tree  , 
as well as any lesions adjacent to the mediastinal or pericardial pleura. Dose was 
delivered in 5 fractions every other day, starting at 50 Gy in 5 fractions and escalat-
ing to 60 Gy in 5  fractions        .  

A.M. Laine et al.



179

     SBRT/SABR for Metastases to the Spine            

  Radiation therapy   has a role in the management of both primary and metastatic 
lesions of the spine, although the vast preponderance of metastatic disease has led 
to more extensive research and clinical evaluation of treatment techniques. 
Metastatic disease in the  spine   is common, accounting for up to 70 % of all metas-
tases to the bone and affecting up to 10 % of all cancer patients [ 35 ,  64 ]. Spine 
involvement can result in back pain (the most common presenting symptom) and 
deterioration in functional status and quality of life [ 65 ]. Compression or invasion 
of the spinal cord, cauda equina, or exiting nerve roots can lead to disabling or even 
life-threatening neurological symptoms [ 66 ]. 

 Conventionally  fractionated radiation therapy   for spine metastases is generally a 
 palliative therapy      and may not be suffi cient alone to restore and maintain neurologi-
cal function; in a study by Patchell et al., patients with epidural spinal  cord          com-
pression   were randomized to  conventional external beam radiation therapy   (30 Gy 
in 10 fractions) alone or  direct decompressive surgery   followed by radiation ther-
apy. Patients who underwent combined modality treatment had signifi cantly 
improved neurological outcomes, with more patients able to ambulate after treat-
ment (84 % vs 57 %,  P  = 0.001) and longer sustained ambulatory status (122 days vs 
13 days,  P  = 0.003). A small survival benefi t was also noted (126 days vs 100 days, 
 P  = 0.033) [ 67 ]. Conventional external beam therapy has been shown to achieve 
local control rates range less than 50 % [ 68 – 71 ]. Even in the postoperative setting, 
in a large retrospective study by Klekamp and Samii, patients receiving low-dose 
conventional external beam radiation therapy following surgery for spinal lesions 
had documented local failure as high as 58 % at 6 months, and these local failures 
led to neurologic deterioration in 69 % of the patients within 1 year and in 96 % of 
patients within 4 years [ 69 ]. 

 Multiple studies support the hypothesis that dose escalation, particularly in terms 
of dose per fraction, improves the likelihood of local control in lesions metastatic to 
the spine [ 72 – 75 ]. Hartsell et al. conducted a randomized trial in which 898 patients 
with painful bone lesions (patients with spinal cord or cauda equina compression 
were excluded) were treated with either 8 Gy in 1 fraction or 30 Gy in 10 fractions. 
The two regimens were equivalent in terms of pain and narcotic relief at 3 months, 
with less acute grade 2–4 toxicity in the 8 Gy arm (10 % vs 17 %); retreatment rates 
were doubled in the 8 Gy arm (18 % vs 9 %), suggesting that a single high-dose frac-
tion could provide comparable benefi t to a more protracted course [ 76 ]. With 
advances in radiation therapy delivery, fraction sizes above 8 Gy could be delivered 
to spinal targets while constraining dose to the  spinal cord   and/or  cauda equina   [ 77 ]. 
The use of SBRT/SABR techniques with precise target delineation allows for safe 
delivery of  radiation   while limiting dose to the nearby spinal cord; techniques for 
defi ning the spinal cord vary, with some institutions preferring a  CT-myelogram- 
defi ned cord   immediately prior to simulation [ 78 ,  79 ], while other institutions 
defi ne the  cord            on the basis of a registered and fused T1- and T2-weighted MRI, 
which is the method used in the current RTOG (now  NRG Oncology  ) 0631  protocol  . 
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A more conservative approach pursued at some institutions defi nes the organ at risk 
as the entire thecal sac or canal [ 80 ]; this approach is often used at the level of the 
 cauda equina   [ 74 ]. 

 A Phase I/II  non-dose-escalating study   was performed by Chang et al. using 
SBRT/SABR for spinal metastasis, pattern of failure analysis. In their initial Phase 
I report [ 81 ], they treated 15 patients with SBRT/SABR to a goal dose of 30 Gy in 
5 fractions, constraining the spinal cord to a maximum dose of 10 Gy. Five of the 
patients treated on the study had been previously irradiated. No neurotoxicity or 
grade 3–4 toxicities were observed. In the subsequent failure analysis report [ 82 ], a 
total of 63 patients with 74 tumors had been treated to doses of 30 Gy in 5 fractions 
or 27 Gy in 3 fractions; 1-year freedom from tumor progression was 84 %. Of the 
local recurrences, 47 % were located in the epidural space, where effective dose 
delivery was most constrained by the proximity of the spinal cord [ 81 ,  82 ]. The cor-
relation between failure to deliver maximal dose and increased risk of failure has 
received attention from multiple investigators. Lovelock et al. [ 83 ] reported a study 
of dosimetric coverage of target lesions and found that portions of  gross tumor vol-
umes (GTV)   receiving less than 15 Gy were at highest risk of failure. These defi cits 
in GTV dosimetry were often due to constraints placed on the radiation treatment 
planning process in terms of the maximum dose ( D  max ) permitted to the spinal cord. 

 A dose-escalation protocol initiated at  Memorial Sloan Kettering Cancer Center 
(MSKCC)   using image-guided single- fraction   high-dose radiotherapy for meta-
static disease established 24 Gy to the  planning target volume (PTV)   as an effective 
dose to achieve 85–95 % tumor control for spine lesions, osseous metastases, and 
soft-tissue/lymph node metastatic deposits (MSKCC Protocol 06-101) [ 77 ,  84 ]. 
Yamada et al. reported on 93 patients with 103  spinal metastases   treated with 
18–24 Gy in a single fraction. Using this regimen, 90 % overall actuarial local con-
trol was achieved at a median follow-up of 15 months; patients treated with the 
highest dose level of 24 Gy had superior local control (95 % vs 80 % for single- 
fraction  treatments            <24 Gy) [ 77 ]. 

 Some  tumors  , such as  renal carcinoma   and  sarcoma  , have been shown to be less 
sensitive to fractionated radiation than other histologies and also have limited sys-
temic treatment options. These tumor histologies provide a particularly useful 
model for testing the effi cacy of SBRT/SABR, as local control outcomes are not 
confounded by competing therapies [ 85 ]. Zelefsky et al. reported on tumor control 
outcomes after hypofractionated and single-dose SBRT/SABR for  extracranial 
metastases   from renal cell carcinoma; of the 105 lesions treated on the study, 59 
(56 %) were located in the spine. For patients who received 24 Gy in a single frac-
tion, 3-year local progression free survival was 88 %; for patients receiving single 
fractions of less than 24 Gy or hypofractionated regimens of 24–30 Gy in 3–5 frac-
tions, 3-year local progression free survival was 21 % and 17 %, respectively [ 75 ]. 
Folkert et al. reported on 88 patients with 120 discrete metastases from high-grade 
sarcoma to the spine, treated with hypofractionated or single-fraction SBRT/
SABR. Local control at 12 months was 88 %, with single-fraction treatments of 
24 Gy having superior outcomes (1-year local control of 91 %, compared to 84 % 
for hypofractionated courses of 24–26 Gy in 3–6 fractions) [ 73 ]. 
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 A currently open RTOG trial, RTOG  0631   (NCI designation NCT00922974), is 
comparing the relative benefi t of 2 single-fraction regimens: 8 Gy in 1 fraction 
delivered with conventional techniques and 16–18 Gy delivered in 1 fraction using 
SBRT/SABR techniques. Clinical response, in terms of pain reduction at 3 months, 
is the primary objective of the Phase III portion of the study. Initial Phase II results 
have been published demonstrating the feasibility and reproducibility of the tech-
nique [ 86 ]; while local control outcomes are not a specifi c objective of the study, the 
potential exists to provide a direct comparison of objective radiographic response to 
low- and high-dose single-fraction regimens.  

    Specifi c  Issues Associated with SBRT/SABR for Targets 
in the Spine            

 Treatment of targets in the spine can be particularly complex as the spine circumfer-
entially encloses critical neural structures. A critical toxicity that must be taken into 
account with treatments affecting the spinal cord is  radiation myelitis  .  Radiation 
myelopathy   is defi ned as clinical signs and/or symptoms of sensory or  motor defi cits  , 
with progressive loss of function or neuropathic pain, referable to a level of the spinal 
cord treated by radiation therapy and confi rmed by radiographic means [ 87 – 89 ]. 

 The generally accepted dose limit for the  spinal cord   is 45 Gy at 1.8–2.0 Gy/
fraction [ 89 ]; 50 Gy is observed in otherwise healthy patients treated with curative 
intent where the tumor location prohibits limiting the cord to a lower dose, with an 
attendant 5 % risk of myelopathy at 5 years [ 87 ,  89 ]. For patients undergoing high- 
dose spinal cord radiosurgical procedures, spinal cord tolerance is defi ned as a cord 
maximal dose of 14 Gy or less than 10 Gy to 10 % volume of the spinal cord per 
level [ 77 ,  90 ]. In the event of failure, these limitations may preclude or impair the 
ability of radiation oncologists to offer effective  salvage therapy   with  external beam 
techniques  . Toxicity resulting from repeat irradiation is a subject of open investiga-
tion, with thresholds of 100–135 Gy in  biologically effective dose (BED)   proposed 
for late complications due to repeat irradiation of the spinal cord [ 91 – 93 ]. Outcomes 
were evaluated with respect to biologically effective dose (BED) [ 57 ], which is 
calculated according to the simplifi ed formula:

  
BED = + ( )( )nd d1 / /a b

   

where  n  = number of treatment fractions,  d  = dose per fraction, and  α / β  is the ratio of 
the linear and quadratic components of the cell survival curve; for the purposes of 
spine irradiation, an  α / β  ratio of 2 may be assumed. For example, a tolerance dose 
of 14 Gy in 1 fraction would have a  BED   of  14 1 1 14 2∗ ∗ +( )/

 
  or 112 Gy. 

 Preclinical data exists in  swine models  , as well as several published institutional 
experiences with multiply irradiated  patients  , that suggests that the tolerance of 
the human spinal  cord         to re-irradiation may be greater than currently assumed and 
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practiced. A study by Medin et al. [ 94 ] used a swine model in which two sets of pigs 
underwent single-fraction SRS at a series of increasing spinal cord  D  max  (approxi-
mately 15, 17, 19, 21, 23, and 25 Gy); one set had previously undergone irradiation 
of the spinal cord 1 year prior to SBRT/SABR, receiving 30 Gy in 10 fractions 
(BED = 75 Gy). No differences in the rates of spinal cord injury were noted in the 
previously irradiated swine cohort compared to the unirradiated cohort, and no neu-
rologic injuries were noted at spinal cord  D  max  <18.8 Gy. In humans, Katsoulakis 
et al. [ 95 ] studied a cohort of ten patients treated with three courses of radiation to 
the same site in the spine; the median spinal cord total  D  max  BED for the cohort was 
141.5 Gy BED (range 103.8–203.4 Gy BED). In this cohort, no cases of clinical 
 radiation myelopathy   were observed with a median total follow-up of 40 months 
from the fi rst course of radiation and 12 months from the third course of radiation. 
Additionally, no MRI spinal cord signal changes were noted. 

 Determining the re-irradiation tolerance of the  spinal cord   is the objective of a 
prospective Phase I clinical trial investigating the use of single-fraction re- irradiation 
following local progression of mobile spine and sacral lesions that have previously 
received radiation therapy. Patients on this trial will be treated with single-fraction 
SBRT/SABR at three cord tolerance levels, starting with a spinal cord/cauda  D  max  of 
14 Gy, escalating to 16 and then 18 Gy (NCI designation NCT02278744).  

    SBRT/SABR  for Primary Liver Cancer            

  Hepatocellular carcinoma (HCC)   is the sixth most common cancer worldwide and 
the third most common cause of cancer death [ 96 ]. Hepatocellular carcinoma most 
commonly arises within a background of  chronic liver disease   [ 97 ], and the most 
common risk factors for the development of HCC are alcohol use and viral infection 
with hepatitis B and/or hepatitis C [ 98 ]. In the United States, the incidence will 
continue to rise dramatically necessitating early diagnosis and defi nitive therapy 
[ 99 ]. Due to the increasing incidence of HCC, routine surveillance strategies are in 
place which allow for earlier detection of disease in patients at high risk [ 100 ]. 

 The current treatment schema for patients with HCC is defi ned by the  Barcelona 
Clinic Liver Cancer (BCLC)   strategy. This takes into account the quantity of tumors, 
the size of tumors, Child-Pugh’s score, and extent of invasion [ 101 ]. Potentially 
curative treatment for patients with HCC can be performed with  orthotopic liver 
transplantation (OLT)  , which treats both the underlying cirrhosis as well as the 
malignancy. Candidacy for  liver transplantation   is based on patients with  early- stage 
disease, consisting of  Child-Pugh score A–B  , a single nodule <5 cm or 3 nodules 
<3 cm, and candidacy for transplantation. 

 Aside from OLT,  surgical resection   and  percutaneous ablation   are the treatments 
which provided the highest potential of cure [ 100 ]. Percutaneous radiofrequency 
ablation is the treatment of choice for patients not candidates for surgical resection. 
During treatment, the tumor and a margin of adjacent hepatic tissue are treated with 
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results as effective as resection for small, solitary nodules of HCC [ 102 ].  Transarterial 
chemoembolization   is a procedure which takes advantage of the dual blood supply 
of the liver to deliver antineoplastics plus a gelatin sponge to arterial vasculature 
supplying the tumor [ 103 ]. The seminal meta-analysis of  TACE      versus  systemic 
therapy   found an improvement in the 2-year survival rate [ 104 ], and it is recom-
mended for patients with BCLC intermediate-stage disease. 

 For patients with BCLC  early-stage disease  , SBRT/SABR can be considered as 
an alternative for patients not amenable to RFA due to tumor size or proximity to 
vessels. A substantial proportion of patients present with disease outside of trans-
plant criteria or will progress outside of transplant criteria while on the waiting list, 
which necessitates the need for “bridging” therapies. It is here where modalities for 
downstaging or bridging can be aided by the utilization of SBRT/SABR. Furthermore, 
among patients with BCLC  intermediate-stage disease  , SBRT/SABR can be used 
following failure of TACE or as an alternative for TACE in patients who are not 
candidates for therapy. Follow-up of patients treated with SBRT/SABR with HCC 
includes dedicated liver imaging, ideally with MRI. There is considerable work 
being performed on characterizing imaging features in the cirrhotic liver post- 
SBRT/SABR, with Fig.  8.1  showing features of a treated lesion.

   Our commonly utilized dose regimen for patients with  HCC   is based on the 
Indiana University experience. In a Phase I feasibility trial, patients with HCC were 
treated with dose escalation from 36 Gy in 3 fractions to a total dose of 48 Gy in 3 
fractions if  dose-limiting toxicities   were not suffered [ 105 ]. Patients were eligible 
for this trial if they had Child-Pugh score A or  B  , a  solitary tumor      less than 6 cm in 
size or three lesions with total diameter less than 6 cm, and adequate liver function. 
In this trial, patients were treated in the  Elekta Stereotactic Body Frame   with 
abdominal compression to minimize diaphragmatic motion to less than 0.5 cm. 

  Fig. 8.1     HCC treated with SBRT     . Pathognomonic arterial enhancement and venous washout seen 
pretreatment, which gradually resolved representing tumor response. T2-weighted imaging shows 
progressive evolution of edema within irradiated volume ( a – e ) [ 145 ]       
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Patients had daily image guidance with cone-beam CT scans prior to the delivery of 
each fraction. The target volume was delineated based on CT-based imaging, with 
no clinical target volume expansion and a minimum of 5 mm axial and 10 mm cra-
niocaudal planning target volume expansion. Patients with  portal vein thrombosis   
were allowed on the protocol, and the entire length of the thrombus was treated with 
a 1 cm margin. Key normal tissue constraints were that 1/3 of the uninvolved liver 
received less than or equal to 10 Gy for Child-Pugh class A patients and that 1/3 of 
the uninvolved liver received less than or equal to 15 Gy for Child-Pugh class B 
patients. Renal constraints included less than 2/3 of the right kidney receiving 
greater than 15 Gy and 1/3 of the left kidney receiving greater than 15 Gy. The 
maximum bowel and stomach dose were 12 Gy. In this study, the dose was success-
fully escalated to patients with Child-Pugh class A to 48 Gy in 3 fractions without 
reaching dose-limiting toxicity. However, in patients with Child-Pugh class  B      cirrho-
sis, the maximum tolerated dose was 40 Gy in 5 fractions due to two patients suffering 
grade 3 liver toxicity. With long-term follow-up, the Indiana experience found posi-
tive rates of 2-year local control of 90 % among the treated population. There were no 
long-term grade 3 or higher non-hematologic toxicities, and 20 % of patients were 
found to experience progression in the Child-Pugh score at 3 months [ 106 ]. 

 A second key Phase I/II trial was performed by Princess Margaret University and 
the University of Toronto [ 107 ]. In this trial, patients with Child-Pugh score A with 
no more than fi ve liver tumors with a maximal dimension of 15 cm were enrolled. 
Patients in this trial were treated to a dose of 30–54 Gy in six fractions, with the 
maximum effective irradiated liver volume of 60 %. No patients in this trial suffered 
classic RILD or dose-limiting toxicity, with a decline in Child-Pugh score at 3 
months occurring in 29 % of the cohort. Like the Indiana experience, the local tumor 
control was excellent at 87 % at 1 year. These two trials provide data for the effi cacy 
for SBRT in the setting of well-controlled and designed clinical trials. 

 While these studies were limited to patients with preserved to mildly elevated 
liver function, there is evidence for the treatment of patients with Child-Pugh B7 or 
B8 with SBRT/SABR as well. The Princess Margaret group performed a prospec-
tive study with patients with Child-Pugh B7 or 8 with less than 10 cm of HCC tumor 
[ 108 ]. Patients received a median dose of 30 Gy in 5 fractions; however, as expected 
with their more fragile liver function, 63 % of the cohort had a decline in their Child- 
Pugh score at 3 months.  Sorafenib   is a  tyrosine kinase inhibitor   which is used in 
patients with advanced HCC, showing an improvement in overall survival com-
pared to placebo. Currently an  RTOG   trial (RTOG 1112) is enrolling patients with 
 advanced-stage HCC   to daily sorafenib versus SBRT/SABR alone followed by 
daily sorafenib. The primary endpoint of the trial is overall survival with secondary 
endpoints evaluating the safety profi le of SBRT/SABR plus sorafenib. This trial will 
potentially further expand the utilization of SBRT/SABR patients with advanced 
HCC.  

A.M. Laine et al.



185

    SBRT/SABR for the Treatment of Liver  Metastases            

 Because of its rich blood supply,  hematogenous metastases   to the liver are common 
among patients with  solid organ malignancies   [ 109 ].  Colorectal cancers   are the 
most common primary malignancy to metastasize to the liver due to drainage via the 
portal circulation, with up to 50 % of patients suffering hepatic metastases within 
5 years [ 110 ]. A subset of patients with metastatic disease present with oligometas-
tases, a hypothesis popularized in 1995 by Hellman and Weichselbaum. It states that 
 metastatic disease   occurs in a stepwise manner, with limited metastases initially 
followed by progression to widespread disease [ 111 ]. Early in the spectrum, metas-
tases may be limited in number and location [ 112 ]. Improvements in imaging 
including PET/CT and MRI have allowed for identifi cation of isolated metastatic 
deposits with higher sensitivity and specifi city than ever before. A signifi cantly 
greater proportion of patients may be identifi ed early in the metastatic spectrum and 
offered potentially curative local treatment with liver metastases. 

 Treatment of  oligometastases   was fi rst performed via  surgical metastasectomy   
with surgical resection of hepatic, pulmonary, or adrenal metastases having imp-
roved rates of survival with resection [ 113 – 115 ]. Furthermore,  systemic therapy   
may convert patients with widely metastatic disease to a limited volume metastatic 
state, increasing the proportion of patients who may be candidates for early treat-
ment of oligometastatic disease.  Surgical metastasectomy   is the standard of care in 
patients who are candidates; however, this is available only to approximately a quar-
ter of patients with hepatic metastases due to the extent of disease or comorbidities 
[ 116 ]. RFA and TACE, much like utilized in  hepatocellular carcinoma  , are treat-
ment options for patients with hepatic metastases as well. 

 Noninvasive treatment of hepatic  metastases      is also possible with external beam 
 radiotherapy        .  Stereotactic body radiotherapy      has allowed the delivery of high doses 
of therapy in single and multiple fractions with excellent rates of local control. 
A multi-institutional Phase I/II trial from the University of Colorado enrolled 
patients with 1–3 liver metastases from any solid tumor, cumulative maximum 
tumor diameter <6 cm, adequate liver and kidney function, and no chemotherapy 
14 days before or after SBRT [ 47 ]. In the Phase I portion, the SBRT/SABR dose 
was escalated from 36 to 60 Gy in 3 fractions. Thirteen patients were treated with a 
dose of less than 60 Gy and 36 patients treated at 60 Gy, for a total of 63 hepatic 
 lesions        . Volume delineation was similar to that in the lung oligometastases trial, 
with the PTV defi ned as GTV expanded by 5 mm radially and 10 mm craniocau-
dally and 7 mm radially and 15 mm craniocaudally, with active breathing control 
and abdominal compression, respectively. At least 700 cc of normal liver had to 
receive a total dose <15 Gy, and the sum of the left and right kidney volume receiv-
ing 15 Gy had to be less than 35 %. With a median follow-up of 16 months, the 
2-year actuarial in-fi eld local control was 92 % with a median overall survival of 
20.5 months. Treatment was well tolerated with one patient suffering grade 3 soft-
tissue toxicity, no grade 4 or 5 toxicity, and no instances of  radiation-induced liver 
dysfunction (RILD)  . 
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 Recently, interest has been increased in the delivery of  single-fraction liver 
SBRT/SABR  . Wulf et al. demonstrated that single-fraction doses of 26 Gy improved 
local control at 12 months to approximately 100 % with no grade 3 or higher toxic-
ity [ 117 ]. More recently, SBRT/SABR was successfully escalated to 40 Gy in a 
single  fraction         with no grade 3 or higher toxicities related to treatment observed 
[ 118 ]. Furthermore, the 36-month rate of local control was 100 % showing an excel-
lent opportunity to control liver  metastases        . Figure  8.2  shows dosimetry and beam 
geometry for  single-fraction liver SBRT/SABR              .

  Fig. 8.2    Stereotactic body 
radiation therapy (SBRT) 
of a colorectal liver 
 metastasis  . ( a ) Beam 
arrangements for treatment 
of liver dome lesion. 
Diaphragmatic motion was 
limited by the use of a 
compression plate on the 
abdomen. ( b ) Dose 
distributions for treatment 
of large lesion in liver 
dome in axial, sagittal, and 
coronal  planes  , receiving 
35 Gy in a single fraction       
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       Specifi c Issues Associated with SBRT/SABR for Targets 
in the  Liver         

 Liver SBRT/SABR for metastatic disease is often performed in patients without 
concomitant cirrhosis. Nonetheless, normal liver reserve, much like  surgical resec-
tion  , is a key consideration with treatment planning, with a minimal residual func-
tional volume of approximately 700 cc desired. In patients with HCC, the doses 
delivered, as seen above, are lower than for metastatic disease due to the sensitive, 
cirrhotic liver. 

 Traditional SBRT/SABR is delivered via  photon beams   with energies between 6 
and 18 MV. Patient immobilization is a key factor in the delivery of stereotactic 
treatment, with stereotactic frames with reference to the  stereotactic coordinate sys-
tem  , a commonly utilized system.  Motion management for treatment of the liver   is 
essential, given the considerable motion of the organ and diaphragm. During CT 
simulation, the movement of the dome of the diaphragm should be visualized via 
fl uoroscopy or alternative means with techniques to limit motion including breath- 
hold and abdominal compression. Target volume delineation of liver  lesions   is ide-
ally done with registration of an abdominal MRI, done in the treatment planning 
position with motion management, if possible. Planning can be performed with 
noncoplanar 3D-conformal techniques, intensity-modulated radiation therapy, or 
volumetric-modulated arc  therapy           . Prescription isodose lines covering the PTV are 
between 60 and 90 %, and suggested dose constraints for adjacent normal structures 
for 1, 3, and 5 fractions are shown below in Table  8.1 .

       SBRT/SABR for the Treatment of Prostate  Cancer            

 Prostate cancer is the most common cancer in Western males after non- melanomatous 
skin cancer [ 36 ]. Among males,  prostate carcinoma   was the second leading cause of 
cancer mortality behind lung cancer. About 60 % of prostate cancer is diagnosed in 
men age 65 or older which impacts therapy options as a result of competing comorbidi-
ties. With introduction of PSA screening, the majority of prostate cancer is diagnosed 
in organ-confi ned disease, which is typically treated with  radical prostatectomy   or 
 radiotherapy   [ 119 ]. Dose escalation of  conventionally fractionated external beam radi-
ation therapy (CF-EBRT)   has demonstrated improved biochemical control and even a 
survival advantage for patients with intermediate and high-risk disease [ 120 – 122 ]. 
These results can be achieved with acceptably low toxicity using modern conformal 
techniques, however, at the increased cost and inconvenience of delivering a large 
number of fractions, 5 days a week over 8–9 weeks. Additionally, the potential unusual 
radiobiological characteristics of prostate cancer suggest that it may be more sensitive 
to larger fractions of radiation. More hypofractionated regimens have been proposed to 
improve the effi cacy and convenience of treatment for prostate cancer. 
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   Table 8.1    Proposed dose constraints for  SBRT  / SABR   treatments of 1, 3, and 5 fractions   

 Serial tissue  Volume (cc) 
 Volume max 
(Gy) 

 Max point 
dose (Gy) a   Endpoint (≥grade 3) 

  One fraction  
 Spinal cord and medulla  <0.35  10  14  Myelitis 
 Esophagus b   <5  11.9  15.4  Stenosis/fi stula 
 Heart/Pericardium  <15  16  22  Pericarditis 
 Rib  <5  28  33  Pain or fracture 
 Skin  <10  25.5  27.5  Ulceration 
 Stomach  <5  17.4  22  Ulceration/fi stula 
 Bile duct  30  Stenosis 
 Duodenum b   <5  11.2  17  Ulceration 

 <10  9 
 Jejunum/ileum b   <30  12.5  22  Enteritis/obstruction 
 Colon b   <20  18  29.2  Colitis/fi stula 
  Parallel tissue    Critical 

volume (cc)  
  Critical 
volume dose 
max (Gy)  

 Liver  700  11  Basic liver function 
 Renal cortex (right 
and left) 

 200  9.5  Basic renal function 

  Serial tissue    Volume 
(cc)  

  Volume max 
(Gy)  

        

  Three fractions  
 Spinal cord and medulla  <0.35  15.9  22.5  Myelitis 
 Esophagus b   <5  17.7  25.2  Stenosis/fi stula 
 Heart/pericardium  <15  24  30  Pericarditis 
 Rib  <5  40  50  Pain or fracture 
 Skin  <10  31  33  Ulceration 
 Stomach  <5  22.5  30  Ulceration/fi stula 
 Bile duct  36  Stenosis 
 Duodenum b   <5 

 <10 
 15.6 
 12.9 

 22.2  Ulceration 

 Jejunum/ileum b   <30  17.4  27  Enteritis/obstruction 
 Colon b   <20  24  34.5  Colitis/fi stula 
  Parallel tissue    Critical 

volume (cc)  
  Critical 
volume dose 
max (Gy)  

 Liver  700  17.1  Basic liver function 
 Renal cortex (right 
and left) 

 200  15  Basic renal function 

  Serial tissue    Volume 
(cc)  

  Volume max 
(Gy)  

(continued)
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 CF-EBRT schemes employing fraction sizes of 1.8–2.0 Gy are based on the 
 premise that tumors are less responsive to faction size than are late-responding nor-
mal tissues. The   α / β  ratio   is a measure of fractionation response with low ratio typi-
cally associated with late-responding tissues (normal tissues) and higher ratios 
associated with acute-responding tissues (tumors)   . Convention states that a low  α / β  
ratio is consistent with a higher capacity for repair between fractions with an accom-
panying greater relative sparing with smaller fraction sizes. Therefore under these 
conditions, an improved  therapeutic ratio   would be achieved with multiple small 
fractions for most tumor types. However, if a tumor has a lower  α / β  ratio than 
 surrounding organs, decreasing dose per fraction preferentially spares the tumor, sug-
gestion that for tumors with a low  α / β , hypofractionation may be more effective [ 57 ]. 

 Recent analysis and review of clinical outcomes, primarily after treatment with 
 brachytherapy  , argue for a low  α / β  for prostate cancer of approximately 1.5 [ 123 – 127 ]. 
Several recent clinical trials were designed with the explicit assumption of this low 
  α / β  ratio   by utilizing more hypofractionated regimens in comparison with conven-
tional  schedules         [ 128 – 133 ]. Altogether, these trials show that the treatment can be 
delivered much more quickly and conveniently using equivalent effective doses 
with  hypofractionation   without compromising PSA control or signifi cant toxicity so 
long as careful technique and normal tissue dose tolerance are respected. Building 
upon this premise, even more extreme hypofractionated approaches (6.5–10 Gy per 
fraction) have been investigated. 

Table 8.1 (continued)

 Serial tissue  Volume (cc) 
 Volume max 
(Gy) 

 Max point 
dose (Gy) a   Endpoint (≥grade 3) 

  Five fractions  
 Spinal cord and medulla  <0.35  22  28  Myelitis 
 Esophagus b   <5  19.5  35  Stenosis/fi stula 
 Heart/pericardium  <15  32  38  Pericarditis 
 Rib  <5  45  57  Pain or fracture 
 Skin  <10  36.5  38.5  Ulceration 
 Stomach  <5  26.5  35  Ulceration/fi stula 
 Bile duct  41  Stenosis 
 Duodenum b   <5  18.5  26  Ulceration 

 <10  14.5 
 Jejunum/ileum b   <30  20  32  Enteritis/obstruction 
 Colon b   <20  28.5  40  Colitis/fi stula 
  Parallel tissue    Critical 

volume (cc)  
  Critical 
volume dose 
max (Gy)  

 Liver  700  21  Basic liver function 
 Renal cortex (right 
and left) 

 200  18  Basic renal function 

   a “Point” defi ned as 0.035 cc or less 
  b Avoid circumferential irradiation  

8 Stereotactic Body Radiation Therapy (SBRT) or Alternative Fractionation Schedules



190

 Madsen et al. published one of the fi rst experiences with  prostate   SABR describing 
their results from a Phase I/II trial at the Virginia Mason Medical Center [ 134 ]. 
Forty men with low-risk disease (Gleason score ≤6, PSA <10 ng/mL, and clinical 
stage ≤T2a) were treated with 5 fractions of 6.7 Gy per fraction for a total dose of 
33.5 Gy. The target was the prostate plus a 4–5 mm margin. Daily image guidance 
was used using implanted fi ducial markers. Median follow-up was 41 months. 
There was one acute grade 3 urinary toxicity (urinary retention requiring catheter-
ization) and no acute grade 4–5 toxicities. Late grade 2 GU and GI toxicity rates 
were 20 % and 7.5 %, respectively, with no grade 3 or higher toxicities. Four-year 
actuarial freedom from biochemical recurrence (FFBR) was 90 %. 

 The feasibility of increasing SBRT/SABR  dose   was investigated by King et al. at 
Stanford University in a Phase II trial [ 135 ]. 36.25 Gy in 5 fractions of 7.25 Gy 
was delivered to the prostate plus a 3–5 mm margin. In 67 patients with low- to 
intermediate- risk features (Gleason score 3 + 3 or 3 + 4, PSA ≤10 ng/mL, and clini-
cal stage ≤T2b), there were no grade 4 or higher toxicities. Late grade 2 and 3 GU 
toxicity rates were 5 % and 3.5 %, respectively. Late grade 2 GI toxicity was 2 % 
with no grade 3 or higher toxicities seen. Patients who received  QOD treatments   
were less likely to experience grade 1–2 GI and GU toxicities than those who 
received  QD treatments  . Four-year PSA relapse-free su rvival was 94 %. 

 The largest prospective study of prostate SBRT/SABR is from Katz et al. at the 
Winthrop University Hospital [ 136 ]. Three hundred four patients (69 % low-risk, 
27 % intermediate-risk, 4 % high-risk) were treated. The fi rst 50 patients received 
35 Gy in 5 fractions of 7 Gy with the subsequent 254 patients receiving 36.25 Gy in 
5 fractions of 7.25 Gy. Lower-dose  patients         had a median follow-up of 30 months 
and the higher-dose patients a median follow-up of 17 months. There were no grade 
3–4 acute complications. Late grade 2 GU and GI toxicities were 14 % and 7 %, 
respectively. Five patients had late grade 3 GU toxicity with no late grade 4–5 
 toxicities. For patients that were potent prior to treatment, 75 % stated that they 
remained sexually potent. Actuarial 5-year biochemical recurrence-free survival 
was 97 % for low-risk, 90.7 % for intermediate-risk, and 74.1 % for high-risk 
patients. 

 A recent pooled analysis of 1100 patients from prospective Phase II trials using 
SBRT/SABR for the treatment of prostate cancer in which a median dose of 
36.25 Gy was delivered in 4–5 fractions demonstrated a 93 % 5-year biochemical 
relapse-free survival rate for all  patients   (95 % for low-risk, 84 % for  intermediate- risk, 
and 81 % for high-risk) with favorable long-term patient-reported outcomes with 
respect to urinary and bowel functions [ 137 ,  138 ]. 

 Compared to the prior studies using similar dose fractionation regimens, we 
commenced a multicenter Phase I/II trial investigating using signifi cantly higher 
 doses   [ 139 ]. We chose to start at a dose similar to the biologic equivalent margin 
dose of the HDR  brachytherapy   experience (i.e., 45 Gy in 5 fractions) and escalate 
to 50 Gy in 5 fractions. In the Phase I portion, 45 patients, in 3 cohorts of 15, were 
treated with 45, 47.5, and 50 Gy in 5 equal fractions, respectively. Forty percent had 
low-risk disease (Gleason score ≤6, PSA <10 ng/mL, and clinical stage ≤T2a) and 
60 % with intermediate-risk (Gleason score = 7 or PSA >10 ng/mL, <15 ng/mL, or 
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clinical stage T2b). No dose-limiting toxicities (grade 3–5) occurred within the fi rst 
90 days posttreatment. GI grade ≥2 and grade ≥3 toxicity occurred in 18 % and 2 %, 
respectively, and GU grade ≥2 and grade ≥3 toxicity occurred in 31 % and 4 %, 
respectively. Initial PSA control was 100 %. These encouraging results led to the 
further enrollment on the Phase II trial at the 50 Gy dose level studying late toxicity. 
An additional 46 patients were enrolled for a total of 91 (64 % intermediate-risk and 
36 % low-risk). With a median follow-up of 42 months, PSA control remained at 
99 % [ 140 ]. One patient with unfavorable intermediate-risk disease, who was treated 
on the 45 Gy arm, demonstrated failure to  therapy        .  

    Specifi c Issues Associated with SBRT/SABR for Targets 
in the  Prostate      

 Ultimately, dose escalation to treat  prostate cancer   is limited by toxicity to the 
 bladder or rectum. As reported in an update by Kim et al., the toxicity profi le was 
favorable in the initial Phase I results; however, in the Phase II portion, the profi le 
changed and fi ve  patients   (10.6 %) developed high-grade rectal toxicity [ 141 ]. 
Injury was primarily to the anterior rectal wall and required a diverting colostomy 
for resolution. 

  Dosimetric analysis   was performed on treatment planning data to determine pre-
dictors for rectal tolerance when using SBRT/SABR [ 141 ]. We predicted that the 
key to tolerance for SBRT/SABR would relate to the degree of damage infl icted and 
the success of normal tissue injury repair permitted. The most successful surgical 
repair of radiation-induced rectal injury with deep ulceration and/or fi stula is by 
inserting a myocutaneous graft. A myocutaneous graft provides both a blood supply 
to devascularized areas via transferred muscle (i.e., the myo-component) as well as 
epithelial stem  cells   via skin and mucosal grafting (i.e., the cutaneous component) 
capable of proliferation over the denuded areas. We hypothesized that the two 
 primary physiological requirements learned from surgical repair studies, a robust 
blood supply and adequate stem cells capable of repairing mucosal injury, are 
impaired by high dose of radiation therapy, and therefore, injuries would primarily 
fall into two categories: (1) mucosal damage including injury to stem cells and/or 
(2) vascular/stromal damage leading to devitalization of tissues. In turn, the inabil-
ity to heal may be due to (1) stem cell (crypt cell) depletion at the site of injury and 
inability to effi ciently recruit neighboring viable stem cells, due to excessive dis-
tance required to migrate to the site of injury, and/or (2) signifi cant destruction of 
stroma and vasculature by excess volume of rectal wall being irradiated to an abla-
tive dose of radiation. In line with this hypothesis, high-grade rectal events were 
correlated with the volume of rectal wall receiving 50 Gy >3 cm 3  and treatment of 
>35 % of rectal wall to 39 Gy (Fig.  8.3a, b ). Additionally, a high rate of acute grade 
≥2 rectal injury occurred if more than 50 % of the rectal mucosa was irradiated 
beyond 24 Gy. Therefore, strategies of limiting percent rectal circumference (PRC) 
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treated to 24 Gy may reduce risk of acute grade ≥2 rectal events, whereas reducing 
PRC treated to 39 Gy may reduce the risk of high-grade late rectal  toxicity      
(Fig.  8.3c ).

   In an attempt to optimize treatment planning and reduce rectal toxicity, we are 
currently investigating the use of a biodegradable spacer to increase the distance 
between the target organ (prostate) and the tissue at risk (rectum). This spacer has 
been shown to be well tolerated and able to reduce patients experiencing declines in 
bowel and urinary quality of life when used with conventionally fractionated image- 
guided radiation therapy [ 142 – 144 ]. These spacers would likely be particularly 

  Fig. 8.3    Determination of rectal  toxicity   when treating the prostate with ablative doses. 
Representative treatment plans of patients treated with 50 Gy in 5 fractions. ( a ) Experienced grade 
2 acute and grade 3 late rectal toxicity. ( b ) Only experienced grade 1 acute/late rectal toxicity. ( c ) 
Potential biological consequence of rectal wall irradiation. (Reprinted with permission from [ 141 ])       
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effective at reducing the high  dose   associated with vascular/stromal injury and will 
likely lead to signifi cant reduction of high-grade rectal toxicity events while allow-
ing the highly effective tumor ablative dose to be delivered, thereby increasing the 
 therapeutic ratio   (Fig.  8.4 ).

       Conclusions 

 Through advances in imaging and radiation delivery techniques, the use of stereo-
tactic radiation in the body has become a common treatment approach in a relatively 
quick fashion. Well-conducted clinical studies have shown that SBRT/SABR can be 
utilized for a broad scope of indications, especially for the eradication for gross 

  Fig. 8.4    Increased separation with the use of a  biodegradable spacer   (SpaceOAR system; 
Augmenix, Waltham, MA). ( a ) Planning computer tomography (CT) axial imaging prior to spacer 
placement. ( b ) T2-weighted axial magnetic resonance images and ( c ) planning CT axial imaging 
post spacer placement       
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primary disease. In addition, due to its oligofractionation approach, SBRT/SABR 
can easily integrate into systemic therapeutic regimens without causing signifi cant 
delays or disruptions. Further investigation of the potential immunological stimula-
tion of ablative radiation could lead to more effi cacious therapies, especially for the 
treatment of metastatic disease. Going forward, ablative therapies utilizing particles 
will be of increased interest due to the potential for increased sparing of normal 
 tissue dose and higher radiobiological potency.     
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