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Abstract Sparse linear system of equations often arises after discretization of the
partial differential equations (PDEs) such as computational fluid dynamics, material
science, and structural engineering. There are, however, sparse linear systems
that are not governed by PDEs, some examples of such applications are circuit
simulations, power network analysis, and social network analysis. For solution of
sparse linear systems one can choose using either a direct or an iterative method.
Direct solvers are based on some factorization of the coefficient matrix such as the
LU, QR, or singular value decompositions and are known to be robust. Classical
preconditioned iterative solvers, on the other hand, are not as robust as direct
solvers and finding an effective preconditioner is often problem dependent. Due
to their sequential nature, direct solvers often have limited parallel scalability. In
this chapter, we present a new parallel recursive sparse direct solver that is based
on the sparse DS factorization. We implement our algorithm using MIT’s Cilk
programming language which is also a part of the Intel C++ compiler. We show the
scalability and robustness of our algorithm and compare it to Pardiso direct solver.

1 Introduction

The chip producers can no longer efficiently increase the clock frequency of a
processor. The Moore’s law which originally stated that the number of transistors
doubled every 2 years [18], is, however, still valid. The Moore’s law could be
translated as the number of cores double every 2 years today. As a result of
this paradigm shift, researchers have been working on parallelizing the existing
sequential algorithms in order to effectively use all the cores of the processors.
A more innovative approach is to design a completely parallel algorithm with
parallelism in mind.

Solution of sparse linear systems is required by many applications in science
and engineering. Often, the linear solution step is the main performance bottleneck.
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There are two main classes of linear system solvers, namely direct and iterative
methods. While iterative solvers are not as robust as direct solvers [19], iterative
solvers are considered to scale better on parallel computers. There are many parallel
sparse direct solver implementations some of the most well known of these are
SuperLU [5, 15], MUMPS [1], PARDISO [23–26], and WSMP [7, 8]. All of these
direct solvers, however, are based on some form of the classical LU factorization,
performed in parallel. After factorization, the system is solved using the computed
factors via forward and backward sweeps. For most sparse systems there are some
dependencies between unknowns, which limit the parallelism in factorization phase
and, due to fill in, this is even more pronounced during the triangular solution phase.

To alleviate these drawbacks of the existing direct solvers we have developed a
new general parallel sparse direct solver [2] based on the sparse DS factorization [3].
The idea of the DS factorization is first introduced in [20–22] for banded linear
systems which is called the SPIKE algorithm due the structure of the S matrix.
A recursive banded DS factorization is introduced in [21] which applies recursion
on the S matrix. Our approach, on the other hand, is to apply the recursion on the
smaller reduced system. A generalization of the banded DS factorization to sparse
linear systems and its hybrid (direct/iterative) implementation, in which the reduced
system is solved iteratively, is given in [16, 17].

Given a banded or sparse linear system of equations and number of blocks,

Ax D f (1)

The DS decomposition factors A into two matrices D and S such that,

A D DS (2)

where D is just the block diagonal of A. Hence the splitting A D D C R where R is
the remaining block off-diagonal entries of A. There is no computation to obtain D.
The S matrix, on the other hand, is obtained by S D D�1A or taking advantage of
the fact that the block diagonals of S is identity,

S D D�1.D C R/: (3)

We obtain S D I C G which involves solving independent systems in parallel to
obtain G D D�1R. After obtaining the DS factorization, if we multiply both sides
of the Equation (1) with D�1 from left,

D�1Ax D D�1f ; (4)

and obtain a new system

Sx D g (5)
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(a) An example sparse coefficient matrix. (b) D matrix corresponding to the sparse
matrix.

(c) R matrix such that A = D+R for the
small example.

(d) S matrix for the smaller example, light
color indicates the matrix entries can
be relatively small if the matrix is di-
agonally or block diagonally dominant.

Fig. 1 The coefficient matrix and the corresponding D, R, and S matrices using 4 partitions.

where g D D�1f . The new system in Equation (5) contains a smaller subsystem
which did not exist in the original system of equations. The reduced system is
obtained by identifying the indices, c, of the columns which contain nonzeros in
R matrix. Then, the reduced system is formed simply by selecting the rows and
columns, c, from the S matrix (i.e., S.c;c/).

For a small example the sparsity structure of A, D, R, S , and S.c;c/ is given in
Figures 1(a), 1(b), 1(c), 1(d), 2 respectively.

The reduced system could be formed

S.c;c/x.c/ D g.c/: (6)
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Fig. 2 Extracted reduced
system S.c;c/.

The smaller reduced subsystem can be solved independently and the complete
solution can be retrieved also in parallel using one of the following two methods:

x D g � G.W;c/x.c/ (7)

or equivalently

x D g � D�1.R.W;c/x.c//: (8)

The difference between these approaches is that the first one requires G matrix to be
formed completely, while in the second approach we only need to compute a partial
G just enough to form S.c;c/. However, it involves additional triangular solves which
are independent and completely parallel.

Note that the size of the reduced system is highly dependent on the initial
structure of the matrix. In fact sparse matrix partitioning tools that are designed to
minimize the communication volume in parallel sparse matrix vector multiplication
and load balance can be used in sparse DS factorization. The objective of the
partitioning in DS factorization is to decrease the size of the reduced system and,
hence, to improve the parallel scalability. Furthermore, for the factorization to exist,
D must be nonsingular. To achieve this, one can apply a nonsymmetric permutation
to strengthen the diagonal entries.

The rest of the chapter is organized as follows. In Section 2, we introduce
the new recursive sparse solver and its variations. Programming and computing
environments are described and numerical results on sparse linear systems obtained
from the University of Florida Sparse Matrix Collection are given in Section 3.
Finally, we conclude and summarize the results in Section 4.

2 The Recursive Sparse DS Factorization

Before we apply the recursive algorithm on the linear system, we apply symmetric
and nonsymmetric permutations as mentioned before. In the following pseudocode
the linear systems Ax D f are assumed to be the permuted system.
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Algorithm 1 The Algorithm
1: procedure RDS(A; x; f ; t) F to solve Ax D f with t number of threads
2: DC R A
3: Identify nonzero columns of R and store their indices in c
4: (a) ŒG; g� D�1ŒR; f �

5: (b) g D�1f
6: S I C G
7: if t � 4 then
8: RDS(S.c;c/; x.c/; g.c/; t=2)
9: else

10: x.c/  S�1
.c;c/g.c/

11: end if
12: (a) x g� G.W;c/x.c/

13: (b) x g� D�1.R.W;c/x.c//

14: end procedure

The pseudocode of the recursive DS factorization is given as follows:
Two options are indicated with (a) and (b). They are mathematically equivalent

but computationally not. If we choose option (a), the G matrix needs to be formed
explicitly which is expensive since linear systems with multiple right-hand sides
need to be solved in parallel where D is the coefficient matrix (Line 4). Obtaining
the final solution in option (a) is just a matrix vector multiplication (Line 12). Option
b, on the other hand, requires a matrix vector multiplication followed by a parallel
triangular solve with a single right-hand side (Line 13) and G is no longer need to
be computed (Line 5). In our implementation, in all variations, we are (sequentially)
using Pardiso direct solver for each of the diagonal blocks in D. Even if we choose
option (b), we still need to solve the reduced system. Note that the reduced system
is formed using only certain entries from G. The system we form to solve for G has
R matrix as the right-hand side. This allows us to use the feature that is provided
in Pardiso to allow one to compute only certain entries of the solution vector if
the right-hand side is sparse. Therefore, in order to keep the computational costs
lower, if we choose option (b) we use the sparse right-hand side feature of Pardiso
and compute just some entries of G that is required to form the reduced system.
Before factorization, we reorder and partition the initial matrix once, and since
the smaller reduced system maintains a similar sparsity structure as the reordered
original system we do not need to repartition at every recursive call.

3 Numerical Results

We implement our algorithms using the Intel Cilk Plus which is an extension of C
and C++ languages [11]. In our work it is used to ensure efficient multithreading
with recursion. Intel MKL is a library of mathematical subroutines such as BLAS,
LAPACK, ScaLAPACK, and sparse linear system solvers [12]. In our implementa-
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tions, all BLAS and Sparse BLAS operations are called from the available routines
in Intel MKL version 10.3 [10]. As the direct solver we use Pardiso version 4.1.2.

For symmetric and nonsymmetric permutations we use METIS and HSL MC64,
respectively. METIS is a collection of algorithms for graph partitioning, finite
element mesh partitioning, and fill-reducing ordering for sparse matrices [13, 14].
It is used in our work to gather the nonzero values in the diagonal blocks as much
as possible by setting it to minimize the communication volume. METIS finds a
symmetric permutation of matrices and works on undirected graphs. In order to
obtain a partitioning for nonsymmetric matrices, we use a symmetric matrix that
matches to the structure of our nonsymmetric matrix (i.e., using .jAjT C jAj/).
Version 5.1.0 of METIS is used in our work. Some of the matrices that are used
in our experiments have zero values on their main diagonals. Since having even one
zero value in the main diagonal means that our matrix is indefinite and the diagonal
blocks could be singular, we apply a nonsymmetric permutation. HSL MC64 is a
collection of Fortran codes to find a column permutation vector to ensure that the
matrix will have only nonzero entries on its main diagonal [9]. The permutation
vector created by HSL MC64 is used if the matrix is indefinite.

In addition to two recursive variations of the DS factorization based sparse solver,
we have also implemented two nonrecursive variations where the reduced system is
directly solved via Pardiso. For comparison there are many available parallel sparse
direct solvers, in this chapter we compared our results with multithreaded Pardiso
direct solver. For many problem types, Pardiso has been shown to be one of most
efficient direct solvers available today [6]. Furthermore, Pardiso is provided as a part
of Intel MKL.

In summary, we implemented 4 variations of the DS factorization based sparse
solver:

• Nonrecursive DS factorization using the sparse right-hand side feature of PAR-
DISO in its computations (DS-NR-SP)

• Nonrecursive DS factorization without using the sparse right-hand side feature
of PARDISO (DS-NR-NS)

• Recursive DS factorization using the sparse right-hand side feature of PARDISO
(DS-RE-SP)

• Recursive DS factorization without using the sparse right-hand side feature of
PARDISO (DS-RE-NS)

In our naming convention RE, NR, SP, and NS stand for recursive algorithm,
nonrecursive algorithm, using the sparse right-hand side feature (i.e., not computing
the G matrix explicitly) and not using the sparse right-hand side feature (i.e.,
computing the G matrix), respectively.

For all runs using the sparse DS factorization based solver, we set the number
of partitions to be equal to the number of threads. The matrices used for testing are
retrieved from University of Florida Sparse Matrix collection [4]. The properties of
matrices are given in Table 1. We use a right-hand side vector that consists of all
ones.
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Table 1 Properties of test matrices, n, nnz, and dd stand for the number of
rows and columns and the number of nonzeros, respectively.

# Matrix Name n nnz Problem domain

1 ASIC_320k 321,821 1,931,828 Sandia, circuit simulation

2 ASIC_680ks 682,712 1,693,767 Circuit simulation

3 crashbasis 160,000 1,750,416 Optimization

4 ecology2 999,999 4,995,991 2D=3D

5 Freescale1 3,428,755 17,052,626 Circuit simulation

6 hvdc2 189,860 1,339,638 Power network

7 Kaufhold 160,000 1,750,416 Counter-example

8 Lin 256,000 1,766,400 Structural

9 majorbasis 160,000 1,750,416 Optimization

10 Raj1 263,743 1,300,261 Circuit simulation

11 rajat21 411,676 1,876,011 Circuit simulation

12 scircuit 170,998 958,936 Circuit simulation

13 stomach 213,360 3,021,648 2D=3D

14 torso3 259,156 4,429,042 2D=3D

15 transient 178,866 961,368 Circuit simulation

16 xenon2 157,464 3,866,688 Materials

For all numerical experiments, we use a single node of the Nar cluster. Nar is
the High Performance Computing Facility of Middle East Technical University
Department of Computer Engineering. A single node of Nar contains 2 x Intel
Xeon E5430 Quad-Core CPU (2.66 GHz, 12 MP L2 Cache, 1333 MHz FSB) and
16 GB Memory. Nar uses an open source Linux distribution developed by Fermi
National Accelerator Laboratory (Fermilab) and European Organization for Nuclear
Research (CERN), Scientific Linux v5.2 64bit, as its operating system. Since each
node has 8 cores, we run the algorithms using up to 8 threads.

In Table 2, the speed improvement of the recursive DS factorization algorithm
(RDS) and multithreaded Pardiso is compared to single threaded Pardiso runs.
Timings include the total time to reorder, factorize, and solve the given linear
system. We ran all the variations of the RDS algorithm. In the table, due to limited
space, all RDS runs presented are using DS-RE-SP variation of the algorithm except
for three cases. For matrix #6 we are using DS-RE-NS, for matrices #10 and #15
we are using DS-NR-SP variations of the algorithm since DS-RE-SP does not give
a comparable relative residual to multithreaded Pardiso. Also note that the recursive
versions of the solver is defined when the number of partitions is equal to or greater
than 4. Hence, we are using the nonrecursive DS-NR-SP for all cases if the number
of threads is 2. In Table 3, 2-norm of the final relative residuals are given. Based on
the results of the runs, the proposed algorithm is faster than Pardiso using 8 threads
for 10 cases out of 16 obtaining comparable relative residuals. We note that for the
cases where RDS performs worse than multithreaded Pardiso, sequential solution
time is very short and hence we could not expect much improvement to begin with.
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Table 2 Speedup of
multithreaded Pardiso and
RDS algorithms compared to
the Sequential Pardiso time
for all test matrices using 2,4,
and 8 threads.

Sequential PARDISO RDS
# Time (s) 2 4 8 2 4 8

1 13,88 1,92 2,74 3,39 1,93 2,71 3,52

2 104,30 1,99 3,91 7,18 1,99 3,84 7,04

3 3,74 1,89 3,34 3,60 1,96 3,90 7,33

4 7,49 1,89 3,39 4,57 1,92 3,82 7,57

5 7,64 1,84 3,03 3,37 1,91 3,78 6,42

6 0,45 1,29 1,55 1,96 - 5,63 11,25

7 0,04 1,33 2,00 2,00 0,31 0,40 0,27

8 81,50 1,90 3,37 3,35 0,93 2,59 6,17

9 14,50 1,90 3,42 4,41 1,99 3,61 5,27

10 0,84 1,83 2,80 4,42 1,65 2,47 4,00

11 1,05 1,88 3,00 1,67 1,78 2,69 3,75

12 1,02 1,06 1,52 1,28 0,68 0,92 0,97

13 10,73 1,95 3,55 5,09 1,96 3,78 5,80

14 59,32 1,89 3,54 3,16 1,96 3,66 3,11

15 0,43 1,79 2,69 3,91 1,48 1,95 2,39

16 15,95 1,91 3,56 4,68 1,95 3,68 5,86

Table 3 Relative residual norms for RDS and Pardiso using 2, 4, and 8
threads.

PARDISO RDS
# 2 4 8 2 4 8

1 1,41E-10 9,03E-11 5,31E-11 1,12E-15 1,47E-15 1,16E-15

2 9,45E-08 9,45E-08 9,45E-08 6,19E-10 8,40E-10 8,13E-10

3 2,20E-15 2,20E-15 2,19E-15 2,20E-15 2,01E-14 2,44E-14

4 1,31E-16 1,31E-16 1,29E-16 1,32E-16 2,04E-16 1,71E-16

5 1,79E-10 1,79E-10 1,85E-10 4,47E-15 7,11E-15 1,03E-15

6 2,80E-09 2,80E-09 2,85E-09 - 9,51E-11 1,24E-10

7 9,72E-15 9,72E-15 9,72E-15 1,26E-16 3,14E-04 6,51E-16

8 8,81E-16 8,07E-16 7,16E-16 5,63E-16 3,70E-13 6,13E-13

9 1,71E-15 1,71E-15 1,70E-15 1,09E-16 9,61E-05 2,91E-11

10 6,16E-10 4,50E-10 6,47E-10 4,67E-07 1,21E-08 1,04E-08

11 7,97E-06 8,38E-06 1,16E-05 4,93E-07 3,18E-04 9,96E-05

12 2,03E-09 1,60E-09 1,59E-09 4,63E-15 1,73E-15 1,44E-15

13 7,71E-16 7,64E-16 7,52E-16 7,65E-16 3,20E-15 3,27E-15

14 1,02E-15 1,01E-15 9,93E-16 4,80E-15 2,11E-15 8,59E-16

15 1,42E-06 1,56E-06 1,68E-06 1,96E-10 1,80E-10 1,47E-10

16 4,39E-12 4,37E-12 4,35E-12 9,41E-12 2,21E-11 5,23E-11
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Fig. 3 The average and the best speed improvements obtained using RDS and Pardiso compared
to the sequential time with Pardiso.

In Figure 3(a), the average speed improvement of RDS is compared against the
average speed improvement for Pardiso for all problems. The improvement of RDS
more pronounced as the number of threads (i.e., cores) is increased from 4 to 8.

In Figure 3(b), we plot the best speed improvement for both RDS and Pardiso.
Again, the improvement is more pronounced as the number of threads increase.

4 Conclusions

We present a recursive sparse DS factorization based direct solver. The results
show that on a multicore environment, the scalability of the proposed algorithm
is better than the classical LU factorization based solvers in most examples. The
improvement is more pronounced if the number of cores is large.
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