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Abstract This chapter presents a novel software framework for T-spline based
isogeometric analysis (IGA), interfacing between computer aided design (CAD)
and finite element analysis environment for “design-through-analysis” concept. The
framework is built on Rhinoceros 3D (Rhino) and SIMULIA Abaqus (Abaqus). This
framework has three primary steps: creating CAD surface in Rhino with T-spline
Plugin, converting surface T-spline representations into volumetric T-spline, and
performing analysis with T-spline models in Abaqus through its user element
subroutine. Both 2D and 3D examples are provided in the end to demonstrate our
T-spline based IGA software framework.

1 Introduction

Non-uniform rational B-spline (NURBS) is the standard mathematical represen-
tation for geometry in most commercial computer aided design (CAD) software.
Finite element analysis (FEA) has been widely used in most commercial computer
aided engineering (CAE) software. Geometry designed in CAD software must
undergo an approximating discretization process known as meshing, so that it can
be used for analysis in CAE software. A seminal effort to integrate CAD and CAE,
termed isogeometric analysis (IGA) [1], gained great attention as a new “design-
through-analysis” methodology. It enabled direct analysis of the designed geometry
without meshing.

T-spline [2] was introduced as a generalization of NURBS allowing local
refinement. The introduction of the Autodesk T-Splines Plugin for Rhino in 2004
(http://www.tsplines.com/) provides designers the tool to create and manipulate
T-spline geometries. T-spline basis functions have been incorporated into IGA [3],
further generalizing the “design-through-analysis” framework. Analysis-suitable
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T-splines in IGA were characterized [4], and various methods were developed to
construct volumetric T-splines for IGA [5–9]. Open-source NURBS based IGA
implementations [10, 11] were introduced, but they are primarily used in research.
Recent efforts have increased accessibility of T-spline based IGA to industry. Data
structures for T-spline based IGA were developed [12, 13]. Moreover, NURBS
based IGA was implemented in Abaqus [14]. Although the improvements of IGA
are vast, it is still at the beginning stage in industry. So far, T-spline based IGA
implementations have not yet been available in many commercial software like
Abaqus.

In this chapter, we present a novel CAD-CAE software framework for T-spline
based IGA. Since Rhino and Abaqus are built for engineering design and analysis
specifically, here we develop a T-spline based IGA software framework upon them.
Users can benefit from the strengths of both software. This framework allows:

• Boundary value problem (BVP) specification on T-spline geometry;
• Volumetric T-spline construction from surface representation;
• Efficient and compact trivariate T-spline data structure; and
• Abaqus T-spline IGA user element subroutine based on Bézier extraction.

The reminder of this chapter is organized as follows. Section 1 overviews the
framework and the pipeline. Section 3 describes surface T-spline geometry creation
and BVP specification. Section 4 presents T-spline data structure. Section 5 explains
how volumetric T-splines are constructed from surface T-splines. Section 6 presents
our T-spline Abaqus user subroutine. Finally, section 7 shows numerical results and
draws conclusions.

2 Software Framework and Pipeline Overview

To integrate Rhino with Abaqus, the framework uses Rhino with the T-spline
plugin to create and manipulate T-spline geometries, and uses Abaqus for analysis
through its user element subroutines (UEL/UELMAT). The framework incorporates
two self-developed plugins as shown in Fig. 1, the Rhino plugin in the grey and
blue blocks and the Abaqus plugin in the red block. This framework requires the
following software environment:

• Rhinoceros 3D, Version 5 or newer;
• Autodesk T-splines Plugin for Rhino, Version 3.4 or newer;
• SIMULIA Abaqus Unified FEA, Version 6.0 or newer; and
• Intel FORTRAN, Version 11 or newer.

As shown in Fig. 1, surface geometry is created in Rhino first. With the Rhino
plugin, BVP problem is specified and the geometry is pre-processed, ending up with
Abaqus input files. Depending on whether a 2D or 3D geometry is needed, users can
choose whether to construct volumetric T-splines. For a 2D case, a Rhino .iga file is
directly converted into Abaqus .inp file and .bezier file. For a 3D case, .TSM files
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Fig. 1 Rhino 3D to Abaqus Software Pipeline Overview.

are saved and converted to our .STSP file for volumetric T-spline construction, and
then Abaqus .inp file and .bezier file are generated for analysis. When the analysis
is completed through the Abaqus plugin, a post-processing function is called in the
Abaqus plugin to generate the .odb file for visualization. Based on the results, the
user can go back to Rhino to refine or modify the geometry.

3 Geometry Generation and BVP Specification

Our software framework supports both surface and volumetric T-splines. Since
Rhino only supports surface modeling, surface T-splines must undergo a conversion
process to become volumetric T-splines. Currently, we support two types of
volumetric T-spline geometries. The first type is a 3D geometry created by sweeping
a surface T-spline patch, and the second type is the geometry with genus-zero cube
topology which can be created using the conformal parametric mapping method[7].
Fig. 2 shows three T-spline surface models designed in Rhino. (a) and (b) show 2D
open surfaces which can be used in analysis directly or converted to volumetric
T-spline via sweeping. (c) shows a structure with genus-zero topology and six
patches, which can be converted into volumetric T-spline via parametric mapping.

In Rhino, all the boundary conditions are applied on relevant control points. In the
pre-processing step, the Rhino plugin extracts the information of these control points
and writes to Abaqus .inp file. To apply boundary conditions, we use the T-Spline
plugin selection node sets [15] to choose desired control points. The platform is
currently limited to specifying Dirichlet boundary conditions, but extending to other
boundary conditions is straightforward. For the material properties, simple isotropic
material properties are supported currently. The users can specify the Young’s
Modulus E and the Poisson’s Ratio �.
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Fig. 2 (a) A 2D quarter of a plate with a hole; (b) a 2D notch structure prepared for sweeping; and
(c) a quarter cylinder with genus-zero cube topology.

Fig. 3 (a) A T-mesh with three representative faces/elements, the corner face F1, the edge face
F2, and the interior face F3; (b) a corner face in .TSM data format. Abbreviations are: l-link, v-
vertex, g-grip, F-face, e-edge; and (c) a corner element in .STSP data format. Abbreviations are:
AC-Associate Corner, DI-Duplicated Node Index, DN-Duplicated Node, F- Element, L-Parametric
Length, RL-Relative Location, RN-Regular Node, TJ-T-Junction.

4 T-Spline Data Structure

In this section, we first explain the commercial .TSM data structure used in Rhino.
Then, we introduce our .STSP/.VTSP data structure and explain the conversion
between them.

4.1 TSM Data Format

The .TSM file originated from “half edge” data structure[13] which contains
parametric and physical information of a T-spline control mesh (T-mesh). Fig. 3(a)
shows three representative faces or elements of a T-mesh. F1 is a corner face, F2 is
an edge face, and F3 is an interior face. Fig. 3(b) takes a corner face as an example
to show detailed components in a .TSM face, including links, vertices, grips, faces,
and edges.
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Link {previous, next, opposite, vertex, face, edge, type}. Links tie the topology
of a surface together. Every edge, face, or vertex refers to a link to determine its
location. The first 3 values indicate the id of the previous, next, and opposite links.
For example, in Fig. 3(b), the previous, next, and opposite links of l5 are l9, l6, and l0,
respectively. Each link has an associated vertex, face, and edge which are the three
values following the opposite link. For example, l5 originates from v0 and belongs
to F1, associating to e0. The type indicates what kind of node the link starts from,
either a regular node (Type 0), a T-junction (Type 1), or an L-junction (Type 2). For
example, the type of l5 is 0 since it starts from a regular node while the type of l8 is
1 since it starts from a T-junction. Note that the T-junction can break one edge into
multiple links. Here, the T-junction g8 breaks the edge e2 into l7 and l8.

Vertex {link, direction}. A vertex is the origin of a link. The direction that the
link points away from the vertex is stored as one of the North (N), South (S), East
(E), and West (W). For example, v0, v1, v2, and v3 are four vertices of the corner
face F1 in Fig. 3(b).

Grip {x, y, z, weight}. A grip, equivalent to a control point, is defined by its x,
y, z coordinates and weight. A grip may be parent of one or more other grips. This
kind of grips is also known as compound grips. For example, in Fig. 3(b), g0 is a
compound grip which is the parent of g4, g5, and g6.

Face {start link, flag}. A face is used to represent an element in the T-mesh, and
it is defined by a start link and a flag. The connectivity of a face is given by the
counter-clockwise cycle of links at its borders, starting from its start link. The flag
of a face stores various properties of this face like if the face is hidden or not.

Edge {link, interval}. An edge connects vertices in the T-mesh. It is defined by
a link and an interval. Its link is one of the two links running along it, while the
“interval” is its parametric length.

4.2 STSP/VTSP Data Format and Conversion

Let us first define four types of control points for our T-spline data structure,
including the regular node, the duplicated node, the T-junction node, and the
extraordinary node. A regular node is a control point with valence 4. A duplicated
node is a duplication of its neighbor, see the green dots in Fig. 3(c). A T-junction is
a control point that is analogical to the hanging nodes in classical finite elements,
see the orange dot. For T-junction nodes, we record the edge it locates as well as
its index. An extraordinary node is an interior control point with valence other
than 4, and not a T-junction. In our data structure, regular node, T-junctions, and
extraordinary nodes are used to describe the connectivity of elements. Regular nodes
are often the parents of duplicated nodes. A corner regular node is the parent of three
duplicated nodes while a boundary regular node is the parent of one duplicated node.
For example, in Fig. 3(c), RN1 is the parent of DN1, DN2, and DN3, and RN2 is the
parent of DN4. According to the algorithm introduced in [16], extraordinary nodes
cannot be the parents of duplicated nodes.
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The .STSP/.VTSP data structure is efficient in storing surface and volumetric
T-spline information. This data structure is designed especially for the convenience
of extracting knot vectors. It is compact, concise, and easy to interpret and fit into the
commercial software. Our data format contains two types of data, the control point
data and the element data. The former contains the basic information of T-spline
control points, and the latter contains connectivity, parametric length, T-junctions,
and duplicated nodes in the element.

1. Control Point {x, y, z, weight, type}. A control point is defined by its x, y, z
coordinates, weight, and type. For the type, we use 0 to represent the regular
node, 1 for duplicated node, 2 for T-junction node, and 3 for extraordinary node.

2. Element {Corner ID1�4, Parametric Length1�2, T-junction ID1�4, Number
of Duplicated Nodes, (Duplicated Node ID, Associated Corner, Relative
Location)1�totalnumber}. The first four values are the indices of the four corners
of this element. The next two values specify the parametric length of the edges.
The following four values are the T-junction indices for each edge. If there is
a T-junction on one edge, we record its index at the corresponding position,
otherwise we put “-1” there. For example, in Fig. 3(c), there is a T-junction on the
third edge. Assuming its index is TJ3, we record the T-junctions as “-1 -1 TJ3 -1”.
Following the T-junctions, the next value indicates the total number of duplicated
nodes, which is 5 for a corner element and 2 for an edge element. The remaining
values specify the relative location of the duplicated nodes with respect to the
associated corner of this element. A duplicated node has three consecutive values,
the global index, the corner in the T-mesh to which it belongs, and the relative
location of this node to the corner.

.TSM to .STSP Conversion. To obtain a logical order of the duplicated nodes,
we introduce an STSP plane to help extract the T-spline information from the .TSM
patch in Rhino. Fig. 4(a) shows the STSP plane with the center point labeled as 8.
This plane is a designed pattern to store the relative location of duplicated nodes with
respect to their associated corners. The edge interval length between a duplicated
node and its associated corner is zero. This information is further used in extracting
knot vectors. For open surface topologically equivalent to a unit square, there are
four types of corner elements. Thus, the STSP plane has four subsquares, each
of which can be applied to one certain type of corner element or edge element to
store the duplicated nodes information. For example, the green square in Fig. 4(a)
can be applied to the corner element in Fig. 4(b) while the orange square can be
applied to the corner element in Fig. 4(c). In Fig. 4(b), there are three nodes that
have duplicated nodes, g0, g1, and g3. Since g0 has three duplicated nodes g4, g5,
and g6, we first put g0 at the center of the STSP plane which is position 8. In this way,
g4, g5, and g6, are located at positions 3, 4, and 5 in the STSP plane, respectively.
This indicates g4 is associated with the corner 0 at the relative location of 3 in the
STSP plane. Thus, we record the relative location of this duplicated node as “4 0 3”.
Similarly for g5 and g6, we record them as “5 0 4” and “6 0 5,” respectively. We can
apply the same rule to the remaining g1 and g3 with only one duplicated node each.
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Fig. 4 (a) The STSP plane; (b) a corner element applied to the green square in (a); and (c) another
corner element applied to the orange square in (a). The red edges have zero length.

Fig. 5 Sample element data line for the T-mesh element in Fig. 4(a).

We put g1 and g3 at the center of STSP plane and g7 and g8 can be recorded as “7
1 5” and “8 3 3,” respectively. Similarly, Fig. 4(c) shows the relative location of all
duplicated nodes in another corner element.

To convert the .TSM data to the .STSP data, we first follow the face link loop to
find all the vertices and grips of this element. The four grips at the corners determine
the connectivity of this element. They are also the first four values in our data format.
With the links, we extract the edge interval associated with the links and record them
as parametric length. Then we loop through each grip to order the information of
duplicated nodes. We count the total number of duplicated nodes and then record
the relative position using the STSP plane. Suppose this element has an edge length
of 100 in both parametric directions and has no T-junction, its representation “ 0 1
2 3 100 100 -1 -1 -1 -1 5 4 0 3 5 0 4 6 0 5 7 1 5 8 3 3 ” is shown in Fig. 5.

After .TSM to .STSP data format conversion, we obtain all the information of the
T-mesh. If only a 2D geometry is required for analysis, we directly extract the knot
vectors and calculate the T-spline surface. If there are extraordinary nodes in the
T-mesh. We use the interval duplication method [16] to deal with it. If 3D geometry
is needed for analysis, we convert .TSM file to .VTSP file.

.TSM to .VTSP Conversion. We extend the designed pattern from STSP plane
to VTSP cube in 3D case. Fig. 6(a) shows the VTSP cube and its labels. In 3D, we
put each corner of this element to the center of the cube and for each duplicated
node we record its relative location in the cube using the same way as in 2D
case. As the example shown in Fig. 6(b), g6 is associated with corner 1 in the
element. After putting corner 1 to the center of the cube which is position 17, g6



278 Y. Lai et al.

Fig. 6 (a) The VTSP cube; and (b) a corner element applied to the green cube in (a). The red edges
have zero length.

is located at position 23 automatically. Thus we record the duplicated node g6 as
“6 1 23”. Other duplicated nodes can be recorded in the same way. With everything
recorded, the information is then used in knot vector extraction and volumetric T-
spline construction.

5 Volumetric T-Spline Construction

After data structure conversion, we perform volumetric T-spline construction, using
the parametric mapping algorithm [7]. The algorithm first identifies the eight corner
nodes on the boundary surface and then maps the surface patch to a unit cube. The
interior domain is adaptively subdivided using octree subdivision until each face
or edge contains at most one T-junction. Two boundary layers are inserted between
the input boundary and subdivision results using the pillowing technique to preserve
the input boundary representation. Then, templates are applied around extraordinary
nodes to build a valid T-mesh. Finally, the knot vectors are extracted and volumetric
T-splines are constructed.

In our approach, instead of inserting two boundary layers, we pillow the 6 patches
one by one, resulting in one boundary layer. The reason is that for CAD model
with sharp edges, the original method may generate elements with bad quality
and introduce unnecessary extraordinary nodes. Our modified method improves
the quality and no new extraordinary node is introduced. We use a 16�16 cube
to show the difference between these two methods. Fig. 7(a) shows the original
input boundary representation. Fig. 7(b) shows the constructed T-splines in Bézier
representations using the original algorithm, and Fig. 7(c) shows the results in Bézier
representations using the modified algorithm. Note that in the modified method, the
one layer inserted is used as the zero-length layer, so they are not extracted for
Bézier representations. Finally, the Bézier operators [12] are calculated, which are
used for IGA in Abaqus.
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Fig. 7 Comparison between the original method and the modified method. (a) The boundary
representation of the cube; (b) the constructed volumetric T-splines using the original method [7];
and (c) the T-splines using our modified method.

6 Abaqus IGA and Visualization

With the surface or constructed volumetric T-spline, the plugin generates an Abaqus
.inp file and a .bezier file. The Abaqus .inp file contains T-spline control point
coordinates, element connectivities, and the BVP information. The .bezier file
is our self-defined file format containing information of T-spline control point
weight and Bézier operators. Both files are read into the UELMAT through the
User EXTERNAL DataBase (UEXTERNALDB) in Abaqus. The T-spline based
UELMAT uses Bézier operator to compute the T-spline basis functions, we then
build the stiffness matrix and force vector for the analysis[12].

Abaqus does not support the visualization of user-defined elements. So post-
processing is necessary to project the results to a finite element mesh for visual-
ization. In addition to Abaqus, other software like ParaView can also be used for
visualization. For linear elastic problems, the displacement can be extracted from the
.fil file generated by Abaqus. Then, the nodal values of each element are computed
based on the analysis results.

7 Numerical Results and Conclusion

Using the three geometries in Fig. 2, linear elastic problems with a Young’s modulus
of 10,000 and a Poisson ratio of 0.3 are solved here, see Fig. 8. The first example
shows the displacement and normal strain of a quarter of plate with a hole, which
was designed directly in Rhino. The quarter plate is constrained from moving
along the horizontal direction at the right edge and vertical direction at the bottom
edge. The second example shows the displacement and normal strain of a notch
structure under bending, which was created by sweeping the geometry in Fig. 2(b).
The generated 2D notch model has one extraordinary node. After dealing with it
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Fig. 8 Analysis results. (a-c) 2D plate with a hole; (d-f) 3D notch structure; and (g-i) 3D quarter
cylinder.

with the interval duplication method [16], we sweep the geometry to obtain the
volumetric T-spline. There is no further requirements for dealing the generated
partial extraordinary nodes and we can directly obtain the Bézier extraction matrix.
The geometry is fixed at the top and bottom while a load is applied at the tip of the
notch structure. The third example shows the deformation and strain of a quarter
cylinder, which was created using the conformal parametric mapping method [7].
The cylinder is fixed at one end and the load is applied at the other end.

In conclusion, this chapter presented a novel integrated CAD-CAE T-spline IGA
software framework based on Rhino and Abaqus. The framework can solve both
surface and volumetric T-spline problems. In particular, this framework realizes
the transformation from Rhino surface T-splines to volumetric T-splines based on
efficient STSP/VTSP data structures. Three examples were given to demonstrate our
software framework. Generalizing this platform to arbitrary topology geometry is
possible [6]. We are planning to implement this algorithm, enabling a more general
set of geometries in the future.
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