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Abstract This is an overview of some of the new directions we have taken
the space–time (ST) computational methods since 2010 in bringing solution
and analysis to different classes of challenging engineering problems. The new
directions include the variational multiscale (VMS) version of the Deforming-
Spatial-Domain/Stabilized ST method, using NURBS basis functions in temporal
representation of the unknown variables and motion of the solid surfaces and
fluid mechanics meshes, ST techniques with continuous representation in time,
ST interface-tracking with topology change, and the ST-VMS method for flow
computations with slip interfaces. We describe these new directions and present a
few examples.

1 Introduction

In computational engineering analysis, one frequently faces the challenges involved
in solving flow problems with moving boundaries and interfaces (MBI). This wide
class of problems include fluid–structure interaction (FSI), fluid–object interaction
(FOI), fluid–particle interaction (FPI), free-surface and multi-fluid flows, and flows
with solid surfaces in fast, linear, or rotational relative motion. The computational
challenges still being addressed include accurately representing the small-scale flow
patterns, which require a reliable multiscale method. They also include contact or
near contact between moving solid surfaces and other cases of topology change
(TC) or near TC, such as those in flapping-wing aerodynamics, wind-turbine
aerodynamics, cardiovascular fluid mechanics, and thermo-fluid analysis of ground
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vehicle tires. These four classes of problems played a key role in motivating
the development of the space–time (ST) computational methods discussed in this
article.

A method for flows with MBI can be viewed as an interface-tracking (moving-
mesh) technique or an interface-capturing (nonmoving-mesh) technique, or possibly
a combination of the two. In interface-tracking methods, as the interface moves,
the mesh moves to follow (i.e., “track”) the interface. The Arbitrary Lagrangian–
Eulerian (ALE) finite element formulation [1] is the most widely used moving-mesh
technique. It has been used for many flow problems with MBI, including FSI (see,
for example, [2–6]). The Deforming-Spatial-Domain/Stabilized ST (DSD/SST)
method [4, 7–11], introduced in 1992, is also a moving-mesh method. The costs
and benefits of moving the fluid mechanics mesh to track a fluid–solid interface
were articulated in many papers (see, for example, [8]).

Moving-mesh methods require mesh update methods. Mesh update consists of
moving the mesh for as long as possible and remeshing as needed. With the key
objectives being to maintain the element quality near solid surfaces and to minimize
frequency of remeshing, a number of advanced mesh update methods [9, 12, 13]
were developed in conjunction with the DSD/SST method, including those that
minimize the deformation of the layers of small elements placed near solid surfaces.

Perceived challenges in mesh update are quite often given as reasons for avoiding
interface-tracking methods in classes of problem that can be, and actually have
been, solved with such methods. A robust moving-mesh method with effective mesh
update can handle FSI or other MBI problems even when the solid surfaces undergo
large displacements (see, for example, FPI [14, 15] with the number of particles
reaching 1,000 [15], parachute FSI [9, 16], flapping-wing aerodynamics [17–22]),
and wind-turbine rotor and tower aerodynamics [21, 23]. It can handle FSI or other
MBI problems also even when the solid surfaces are in near contact or create near
TC, if the “nearness” is sufficiently “near” for the purpose of solving the problem.
Examples of such problems are FPI with collision between the particles [14, 15],
parachute-cluster FSI with contact between the parachutes of the cluster [16],
flapping-wing aerodynamics with the forewings and hindwings crossing each other
very close [17–21], and wind-turbine rotor and tower aerodynamics with the blades
passing the tower close [21, 23].

No method is a panacea for all classes of MBI problems. Some interfaces, such
as those in splashing, might be too complex for an interface-tracking technique,
requiring an interface-capturing technique. The Mixed Interface-Tracking/Interface-
Capturing Technique (MITICT) [15] was introduced for computations that involve
both fluid–solid interfaces that can be accurately tracked with a moving-mesh
method and fluid–fluid interfaces that are too complex to be tracked. Those fluid–
fluid interfaces are captured over the mesh tracking the fluid–solid interfaces. The
MITICT was successfully tested in 2D computations with solid circles and free
surfaces [24] and in 3D computation of ship hydrodynamics [25].

In some MBI problems with contact between the solid surfaces, the “nearness”
that can be modeled with a moving-mesh method without actually bringing the
surfaces into contact might not be “near” enough for the purpose of solving the
problem. Cardiovascular FSI with heart valves is an example. The Fluid–Solid
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Interface-Tracking/Interface-Capturing Technique (FSITICT) [26] was motivated
by such FSI problems. In the FSITICT, we track the interface we can with a
moving mesh, and capture over that moving mesh the interfaces we cannot track,
specifically the interfaces where we need to have an actual contact between the
solid surfaces. Two versions of the FSITICT were proposed, one with fixed-
partitioning (FSITICT-FP), and one with adaptive-partitioning (FSITICT-AP). In
the FSITICT-FP, the tracked/captured partitioning of the fluid–solid interface will
be fixed during the computation. In the FSITICT-AP, the mesh will stop tracking the
parts that have become too difficult to track, leaving them to be captured. This does
not require remeshing. If any of the captured parts become suitable for tracking,
a new mesh that is boundary-conforming for those parts will be generated and the
tracking of those parts will start. An application of the FSITICT-FP was presented
in [27], where an ALE method was used for interface-tracking, and a fully Eulerian
approach for interface capturing, with some 2D test computations. This specific
application was extended in [28] to 2D FSI models with flapping and contact.
The FSITICT-FP was successfully extended in [29] to 3D FSI computation of a
bioprosthetic heart valve. In that case the interface-tracking technique was an ALE
method, and the interface-capturing technique was a variational immersed-boundary
method.

Since its inception, the DSD/SST method has been applied to some of the most
challenging flow problems with MBI. The classes of problems solved include the
free-surface and multi-fluid flows [7, 24], FOI [7, 24], aerodynamics of flapping
wings [17–22, 30], flows with solid surfaces in fast, linear, or rotational relative
motion [14, 15, 23], compressible flows [14, 31], shallow-water flows [15, 32],
FPI [14, 15], and FSI [16, 20, 30, 31, 33]. Much of the success with the DSD/SST
method in recent years has been due to the new directions we have taken the ST
methods in bringing solution and analysis to different classes of computationally
challenging engineering problems.

The original DSD/SST method is based on the SUPG/PSPG stabilization, where
“SUPG” and “PSPG” stand for the Streamline-Upwind/Petrov-Galerkin [34] and
Pressure-Stabilizing/Petrov-Galerkin [7] methods. Starting in its early years, the
DSD/SST method also included the “LSIC” (least-squares on incompressibility con-
straint) stabilization. The ST-VMS method [4, 10, 11] is the variational multiscale
version of the DSD/SST method. It was called “DSD/SST-VMST” (i.e., the version
with the VMS turbulence model) when it was first introduced in [10]. The VMS
components are from the residual-based VMS method given in [35, 36]. We have
been using the ST-VMS method since its inception in most of our computations. The
original DSD/SST method was named “DSD/SST-SUPS” in [10] (i.e., the version
with the SUPG/PSPG stabilization), which was also called “ST-SUPS” in [4].

The ST methods give us the option of using higher-order basis functions in
time, including the NURBS, which have been used very effectively as spatial
basis functions (see [37, 38]). We started using that option with the methods and
concepts introduced in [10]. This of course increases the order of accuracy in the
computations [39], and the desired accuracy can be attained with larger time steps,
but there are positive consequences beyond that. The ST context provides us better
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accuracy and efficiency in temporal representation of the motion and deformation of
the moving interfaces and volume meshes, and better efficiency in remeshing. This
has been demonstrated in a number of 3D computations, specifically, flapping-wing
aerodynamics [17–21], separation aerodynamics of spacecraft [40], and wind-
turbine aerodynamics [21, 23]. The mesh update method based on using NURBS
basis functions in mesh motion and remeshing was named “ST/NURBS Mesh
Update Method (STNMUM)” in [23].

There are some advantages in using a discontinuous temporal representation in
ST computations. For a given order of temporal representation, we can reach a
higher-order accuracy than one would reach with a continuous representation of
the same order. When we need to change the spatial discretization (i.e., remesh)
between two ST slabs, the temporal discontinuity between the slabs provides a
natural framework for that change. There are advantages also in continuous temporal
representation. We obtain a smooth solution, NURBS-based when needed. We
also can deal with the computed data in a more efficient way, because we can
represent the data with fewer temporal control points, and that reduces the computer
storage cost. These advantages motivated the development of the ST computation
techniques with continuous temporal representation (ST-C) [41].

There are different types of nonmoving-mesh methods that can compute MBI
problems involving an actual contact between solid surfaces or other cases of TC.
Some of those methods give up on the accurate representation of the interface, and
most give up on the consistent representation of the interface motion. The DSD/SST
formulation does not need to give up on either, even where we have an actual contact
or some other TC, provided that we can update the mesh even there. Using an ST
mesh that is unstructured both in space and time, as proposed for contact problems
in [15], would give us such a mesh update option. However, that would require a
fully unstructured 4D mesh generation, and that is not easy in computing real-world
problems. An ST interface-tracking method that can deal with TC was introduced
in [42], and it is called ST-TC. It is a practical alternative to using unstructured
ST meshes, but without giving up on the accurate representation of the interface
or the consistent representation of the interface motion, even where there is an
actual contact between solid surfaces or other TC. The ST-TC method is based on
special mesh generation and update, and a master–slave system that maintains the
connectivity of the “parent” mesh when there is a TC.

The ST Slip Interface (ST-SI) method [43] is the ST version of the ALE-VMS
sliding-interface method [44]. It is for FSI and other MBI problems where one
or more of the subdomains contain spinning structures, and the mesh covering a
spinning structure spins with it, thus maintaining the high-resolution representation
of the boundary layers near the structure. The subdomains are covered by meshes
that do not match at the interface and have slip between them, and the ST-SI
method carefully accounts for, in the ST context, the compatibility conditions for
the velocity and stress between the two sides.

In Section 2 we briefly review the ST basis functions. The ST-VMS method is
described in Section 3, and the STNMUM in Section 4. The ST-C, ST-TC, and ST-SI
methods are described in Sections 5, 6, and 7. The examples are given in Section 8,
and the concluding remarks in Section 9.



New Directions in Space–Time Computational Methods 163

2 ST Basis Functions

The concept of using NURBS basis functions, in conjunction with the ST methods,
in temporal representation of the unknown variables and motion of the solid surfaces
and fluid meshes was introduced in [10]. An ST basis function can be written as a
product of its spatial and temporal parts:

N˛
a D T˛ .�/ Na .�/ ; a D 1; 2; : : : ; nen;

˛ D 1; 2; : : : ; nent; (1)

where � 2 Œ�1; 1� is the temporal element coordinate, and nen and nent are
the number of spatial and temporal element nodes. Figure 1 shows an example.
Temporal NURBS basis functions can be used in an ST slab for the representation
of the unknown variables and test functions as well as the spatial coordinates.
As pointed out in [4, 10, 11, 23], different components (i.e., unknowns), and the
corresponding test functions, can be discretized with different sets of temporal basis
functions. This was shown in [4, 10, 11, 23] by introducing a secondary mapping
��.�/ 2 Œ�1; 1�, where ��.�/ is a strictly increasing function, and rewriting the
generalized ST basis function for the element indices .a; ˛/ as

�
N˛

a

�
�

D T˛
�
��.�/

�
Na .�/ : (2)

For example, we can discretize time and position as

t D
nentX

˛D1

T˛.�t.�//t˛; (3)

x D
nentX

˛D1

T˛.�x.�//x˛: (4)

Here �t.�/ and �x.�/ are the secondary mappings for time and position, and t˛ and
x˛ are the time and position values corresponding to the basis function T˛ .

Qn−1 Qntntn

T nent
n−1 T 1

n T 2
n · · · T nent

n T 1
n+1

Fig. 1 Temporal NURBS basis functions.
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3 ST-VMS Method

The ST-VMS method can be written as

Z

Qn

wh � �

�
@uh

@t
C uh � ruh � fh

�
dQ C

Z

Qn

".wh/ W � .uh; ph/dQ

�
Z

.Pn/h

wh � hhdP C
Z

Qn

qhr � uhdQ C
Z

˝n

.wh/C
n � �

�
.uh/C

n � .uh/�
n

�
d˝

C
.nel/nX

eD1

Z

Qe
n

�SUPS

�

�
�

�
@wh

@t
C uh � rwh

�
C rqh

�
� rM.uh; ph/dQ

C
.nel/nX

eD1

Z

Qe
n

�LSICr � wh�rC.uh/dQ �
.nel/nX

eD1

Z

Qe
n

�SUPSwh � �rM.uh; ph/ � ruh
�

dQ

�
.nel/nX

eD1

Z

Qe
n

�2
SUPS

�
rM.uh; ph/ � �rwh

� � rM.uh; ph/dQ D 0; (5)

where

rM.uh; ph/ D �

�
@uh

@t
C uh � ruh � fh

�
� r � � .uh; ph/; (6)

rC.uh/ D r � uh (7)

are the residuals of the momentum equation and incompressibility constraint. Here,
�, u, p, f, � , ", and h are the density, velocity, pressure, external force, stress
tensor, strain rate tensor, and the traction specified at the boundary. The test
functions associated with the velocity and pressure are w and q. A superscript “h”
indicates that the function is coming from a finite-dimensional space. The symbol
Qn represents the ST slice between time levels n and n C 1, .Pn/h is the part of
the lateral boundary of that slice associated with the traction boundary condition h,
and ˝n is the spatial domain at time level n. The superscript “e” is the ST element
counter, and nel is the number of ST elements. The functions are discontinuous in
time at each time level, and the superscripts “�” and “C” indicate the values of the
functions just below and just above the time level. There are various ways of defining
the stabilization parameters �SUPS and �LSIC. We use the following expressions:

�SUPS D
�

1

�2
SUGN12

C 1

�2
SUGN3

C 1

�2
SUGN4

�� 1
2

; (8)

�SUGN12 D
 

nentX

˛D1

nensX

aD1

ˇ̌
ˇ̌@N˛

a

@t
C uh � rN˛

a

ˇ̌
ˇ̌
!�1

; (9)
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�SUGN3 D h2
RGN�MIN

4�
; (10)

�SUGN4 D �
�ruh

�
��1

F ; (11)

�LSIC D h2
RGN�MIN

4�SUPS
; (12)

where nens and nent are the number of spatial and temporal element nodes, N˛
a is the

basis function associated with spatial and temporal nodes a and ˛, k � kF represents
the Frobenius norm,

hRGN�MIN D 2
��˚rN˛

a

	���1

2
� 2

 

	max

 
nentX

˛D1

nensX

aD1

rN˛
a rN˛

a

!!� 1
2

; (13)

and 	max.�/ represents the maximum eigenvalue of the symmetric tensor.

Remark 1. Most of these stabilization parameters originate from [8, 9].

Remark 2. The component �SUGN4, given by Eq. (11), was introduced in [45]. It
was introduced based on the reasoning that the �SUPSwh � �rM � ruh

�
term should not

overwhelm the wh � �.uh � ruh/ term.

Remark 3. A symmetric version of that �SUGN4 was also introduced in [45]:

�SUGN4 D k".uh/k�1
F : (14)

4 STNMUM

4.1 Mesh Computation and Representation

Given the fluid mechanics mesh on a moving solid surface, we compute the fluid
mechanics volume mesh using the mesh moving methods [9, 12, 13] developed in
conjunction with the DSD/SST method. As proposed in [46] and also described
in [4], these mesh moving methods are used in computing the meshes that will serve
as temporal control points. This allows us to do mesh computations with longer time
in between, but get the mesh-related information, such as the coordinates and their
time derivatives, from the temporal representation whenever we need. Of course this
also reduces the storage amount and access associated with the meshes.

Remark 4. Getting the meshes used in the computations from the temporal repre-
sentation can be done independent of which time direction was used in computing
the control meshes. For example, in flapping-wing aerodynamics, the control
meshes can be computed while the wings are flapping forward or backward in time.
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4.2 Remeshing

In many computations remeshing becomes unavoidable. Two choices were proposed
in [46] and also described in [4]. To explain those choices, let us assume that when
we try to move from control mesh Mˇ

c to MˇC1
c , we find the quality of MˇC1

c to be
less than desirable. In the first choice, called “trimming,” we remesh going back to
Mˇ�pC1

c , where p is the order of the NURBS basis functions. Then whenever our
solution process needs a mesh, depending on the time, we use the control meshes
belonging to either only the un-remeshed set or only the remeshed set (Figure 2). In
the second choice, we perform knot insertion p times in the temporal representation
of the surface at the right-most knot before the maximum value of the basis function
corresponding to tˇC1

c , making that knot a new patch boundary. Then we do the mesh
moving computation for the control meshes associated with the newly defined basis
functions, not only the one at the new patch boundary, but also going back .p � 1/

basis functions (Figure 3). We favor the second choice, because we believe that in
many cases the need for remeshing is generated by a topological change, which we
can avoid going over with a large step if we use the knot insertion process.

Mβ
c

Mβ+1
c

Before Remesh

Mβ− p+1
c

After Remesh

1
5

2
5

3
5

4
5

0.0

0.5

1.0

0 1

Remeshing point

Basis Functions

Fig. 2 Remeshing and trimming NURBS. A set of un-remeshed meshes (top). A set of remeshed
meshes (middle). Common basis functions (bottom).
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Mc

M +1
c

1
5

2
5

3
5

4
5

0.0

0.5

1.0

0 1

New

NewNew

1
5

2
5

3
5

4
5

0.0

0.5

1.0

0 1

Remeshing point

J

b

b

Fig. 3 Remeshing with knot insertion. For the set of un-remeshed meshes, there are p newly
defined basis functions and the corresponding control points are marked “New.” We carry out
the mesh moving computations for those meshes.

5 ST-C Method

We describe, from [41], the version of the ST-C method used in extracting
continuous temporal representation from computed data. This is essentially a post-
processing method, and can also be seen as a data compression method. For
the version used in direct computation of the solution with continuous temporal
representation, see [41].

5.1 Least-Squares Projection for Full Temporal Domain

When we have the complete sequence of computed data, we can project that to a
smooth representation, with basis functions that provide us that smooth represen-
tation, such as NURBS basis functions. As an example, Figure 4 shows the goal
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Fig. 4 Continuous solution (top) and its basis functions (bottom); # is the parametric coordinate.

continuous data 
C and its basis functions, where # denotes the parametric temporal
coordinate. The projection for each spatial node can be done independently from
the other nodes. Consider the time-dependent, typically discontinuous computed
data 
D for a node. We define the basis functions as T˛

C, where ˛ D 0; 1; : : :, and the
coefficients to be determined in the projection as 
˛ . We use a standard least-squares
projection: given 
D, find the solution 
C 2 SC, such that for all test functions
wC 2 VC:

Z T

0

wC .
C � 
D/ dt D 0; (15)

where T represents time period of the computation, and SC and VC are the solution
and test function spaces constructed from the basis functions. This approach requires
that we store all the computed data before the projection, and that would be a
significant computer storage cost when the number of time steps is large.

5.2 Successive-Projection Technique

In ST-C with the successive-projection technique (ST-C-SPT), we extract the
continuous solution shown in Figure 4 without storing all the computed data. We
describe the technique here for the special case with quadratic B-splines. To explain
the successive nature of the SPT, let us suppose that we have the continuous solution
extracted up to tn D 4:0, as shown in Figure 5. We assume that this continuous
solution, which we will call 
C, has already replaced 
D up to tn D 4:0. With that,
we describe how we extract the continuous solution up to tnC1 D 5:0, as shown in
Figure 6. With the newly computed data 
D between tn D 4:0 and tnC1 D 5:0,
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Fig. 5 Continuous solution up to tn D 4:0 (top) and its basis functions (bottom).
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Fig. 6 Continuous solution up to tnC1 D 5:0 (top) and its basis functions (bottom). The bold part
of the top curve indicates the part of the solution that does not change. The empty squares denote
the temporal control values to be determined. The dashed lines denote the modified and new basis
functions, which correspond to those control values.

we solve the following projection equation: given 
D on t 2 .4:0; 5:0/, 
C on
t 2 Œ2:0; 4:0�, and 
˛

C, ˛ D 2; 3, find 
C 2 SC, such that 8wC 2 VC:

Z 4:0

2:0

wC
�

C � 
C

�
dt C

Z 5:0

4:0

wC .
C � 
D/ dt D 0: (16)

Equation (16) is essentially used for defining the coefficients 
˛
C, ˛ D 4; 5; 6,

which correspond to the basis functions T˛
C. How to deal with the initial part of the

extraction, description of the ST-C-SPT for the general case (i.e., beyond quadratic
B-splines), and comments on efficient implementation of the SPT can be found
in [41].
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6 ST-TC Method

6.1 TC

We consider two hypothetical cases of two bars to provide a context for TC. In the
first case, shown in Figure 7, the bars are initially coinciding, with just one hole
in the fluid mechanics domain. Then the red bar starts moving upward, creating a
second hole. In the second case, shown in Figure 8, the bars are initially aligned
with connected ends, again with a single hole in the domain. Then the red bar starts
a flapping motion, up and down, creating a second hole in the domain, except when
their ends become connected periodically during the flapping motion. When the red
bar is in the upper position, the part of the domain below it is connected to the part
of the domain above the blue bar. When the red bar is in the lower position, the part
of the domain above it is connected to the part of the domain below the blue bar.
These two cases are representatives of the typical TC challenges we expect to see in
the classes of MBI problems we are targeting. Especially the first case is really not
possible to treat in a consistent way without using an ST method.

6.2 Master–Slave System

We propose a very simple technique in the ST context. Having a constraint between
nodes in a finite element formulation is quite common. These constraints reduce the
number of unknowns, but in our implementation we delay that unknown elimination

Fig. 7 Hypothetical case of two bars that are initially coinciding, with one hole in the domain
(left). The red bar starts moving upward, creating a second hole in the domain (right).

Fig. 8 Hypothetical case of two bars that are initially aligned with connected ends, with one hole
in the domain (left). The red bar starts a flapping motion, up (middle) and down (right), creating a
second hole in the domain, except when their ends become connected periodically.
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until the iterative solution of the linear systems encountered at nonlinear iterations
of a time step. The iterative solution of the linear systems is performed with reduced
number of unknowns. The technique is easy to manage in a parallel-computing
environment, especially if the preconditioner is simple enough. Typically we assign
a master node to each slave node, and we use only the unknowns of the master
nodes in iterative solution of the linear systems. We can use different master–
slave relationships at different time levels. This is a practical alternative to, but
less general than, using ST meshes that are unstructured in time. Still, we can use
this concept to deal with the TC cases considered above, and the important point
is that the connectivity of the “parent” mesh does not change. Consequently, the
distribution model in the parallel-computing environment does not change during
the computations.

With this technique, we need to implement one more functionality. We exclude
certain elements from the integration of the finite element formulation. The exclu-
sion principles are given below.

• Exclude all spatial elements with zero volume from the spatial integration.
• Exclude all ST elements with zero ST volume from the ST integration.
• We assume that checking if an ST element has zero ST volume is equivalent to

checking if all the spatial elements associated with that ST element have zero
volume. Therefore, for this purpose, we check the spatial-element volumes.

• To identify the spatial elements with zero volume, which should have zero
Jacobian at all the integration points, instead of evaluating the Jacobians, we
make the determination for a given spatial element from the master–slave
relationship of its nodes. The method is explained more in [42].

7 ST-SI Method

In describing the ST-SI formulation, we will use the labels “Side A” and “Side B”
to represent the two sides of the SI. In the ST-SI version of the formulation given by
Eq. (5), we will have added boundary terms corresponding to the SI. The boundary
terms for the two sides will be added separately, using test functions wh

A and qh
A and

wh
B and qh

B. Here we give only the boundary terms for Side B:
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�
Z

.Pn/SI

wh
B � 1

2

�
nB � � h

B � nA � � h
A

�
dP �

Z

.Pn/SI

nB � �"
�
wh

B

� � �uh
B � uh

A

�
dP

C
Z

.Pn/SI

�C

h
wh

B � �uh
B � uh

A

�
dP; (17)

where

˛h D max
�ˇ̌

nB � �uh
B � vh

B

�ˇ̌
;
ˇ̌
nA � �uh

A � vh
A

�ˇ̌�
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h D min.hB; hA/; (19)

hB D 2

 
nentX
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.for Side B/; (20)

hA D 2

 
nentX

˛D1

nensX
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ˇ̌
nA � rN˛

a

ˇ̌
!�1

.for Side A/: (21)

Here, .Pn/SI is the SI in the ST domain, n is the unit normal vector, and v is the
mesh velocity. Side A counterpart of Eq. (17) can be written by simply interchanging
subscripts A and B.

Remark 5. The first and third integrations set the volumetric flow rate at the
boundary to nB � 1

2

�
uh

B C uh
A

�
.

Remark 6. The second and fourth integrations set the advective flux at the boundary
to the Lax–Friedrichs flux.

Remark 7. The fifth integration contains the average traction.

Remark 8. The sixth integration is the adjoint consistent term [47].

Remark 9. The seventh integration is a penalty term, where C is a nondimensional
penalty constant, and usually C D 1 is large enough for stability.

For notation convenience, we introduce the symbols

F h
B D nB � �uh

B � vh
B

�
; (22)

F h
A D nA � �uh

A � vh
A

�
: (23)

With that, we replace the momentum flux as follows:
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Remark 10. Assuming that the discrete boundaries on the two sides of the interface
are the same, nB D �nA. With that, we see the traction hh

B � �hh
A as

hh
B D �1

2

�
ph
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2
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8 Examples

The first two examples are from [48] for the ST-TC method and from [45] for the
ST-C method. The third example is a 2D test computation based on the combination
of ST-TC and ST-SI methods. For all computations presented, the core technology
is the ST-VMS method. More examples for the ST-TC method can be found in
[22, 42, 48]. Examples for the STNMUM can be found in [17–21] for flapping-wing
aerodynamics, in [40] for separation aerodynamics of spacecraft, and in [21, 23] for
wind-turbine aerodynamics. Examples for the ST-SI method can be found in [43].

8.1 Aortic-Valve Model with Coronary Arteries

We created a typical aortic-valve model, which has three leaflets with two outlets,
corresponding to coronary arteries, and one main outlet, corresponding to the
beginning of the aorta. Figure 9 shows the velocity magnitude when the valve is
open and is about to close. For more on this computation, see [48].

8.2 Thermo-Fluid Analysis of a Ground Vehicle and Its Tires

First the thermo-fluid computation is carried out over the full domain, with a
reasonable mesh refinement. The large amount of time-history data from that
computation is stored using the ST-C-SPT method. This is followed by a higher-
resolution computation over the local domain containing the tires we focus on.
This gives us increased accuracy in the thermo-fluid analysis, including increased
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Fig. 9 Aortic-valve model with coronary arteries. Volume rendering of the velocity magnitude
(m/s) at t=T = 0.4 and 0.5, where T is the cardiac period.

Fig. 10 Thermo-fluid analysis of a ground vehicle and its tires. Temperature volume rendering
from the local computation. Colors from red to yellow indicate temperature from low to high.

accuracy in the heat transfer rates from the tires. Figure 10 shows the temperature
patterns from the local computation. Figure 11 shows the Nusselt number from the
global and local computations. For more on this computation, see [45].



New Directions in Space–Time Computational Methods 175

Fig. 11 Time and circumferentially averaged Nusselt number from the global (left) and local
(right) computations.

8.3 2D Model of Flow Past a Tire in Contact with the Road

This is an example of how the ST-TC and ST-SI methods can be used in combination
for computational analysis of a challenging problem. The computation is challeng-
ing because the tire does not have circular symmetry and is in rotational contact with
the road. The first challenge is addressed with the ST-SI method, which enables
flow computations with spinning structures while maintaining the high-resolution
representation of the boundary layers near the structure. The second challenge is
addressed with the ST-TC method, which enables flow computations with contact
between moving solid surfaces while maintaining the high-resolution representation
of the boundary layers near the solid surfaces. Figure 12 shows the mesh and the
velocity magnitude. More on this type of computations and the combined method
and its implementation will be presented in a future paper.

9 Concluding Remarks

We have presented an overview of some of the new directions we have taken the
ST methods since 2010 in bringing solution and analysis to different classes of
computationally challenging engineering problems. The new directions include a)
the VMS version of the DSD/SST method, which is called ST-VMS, b) ST methods
based on using NURBS basis functions in temporal representation of the unknown
variables and motion of the solid surfaces and fluid meshes, including the mesh
update method STNMUM, c) ST techniques with continuous representation in time,
which is called ST-C, d) ST interface-tracking with topology change, which is called
ST-TC, and e) ST-VMS method for flow computations with slip interfaces, which is
called ST-SI. We described the new directions and presented a few examples.
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Fig. 12 2D model of flow past a tire in contact with the road. Velocity magnitude superimposed
over the mesh. Colors from blue to red indicate values from low to high.
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