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Dedicated to Prof. Tayfun E. Tezduyar on the
occasion of his 60th birthday



Preface

This edited book contains chapters written by invited speakers of Advances in
Computational Fluid-Structure Interaction and Flow Simulation (AFSI) 2014 – a
conference that celebrated the 60th birthday of Prof. Tayfun E. Tezduyar. The
conference was held on March 19–21, 2014, in the Green Computing Systems
Research and Development Center at Waseda University, Tokyo, Japan. Over 70
people attended the birthday celebration conference, and over 60 presentations were
delivered as part of the conference technical program. This edited volume, much
like the AFSI 2014 conference, is dedicated to Tayfun Tezduyar and celebrates his
exemplary research achievements in computational fluid-structure interaction (FSI)
and flow modeling and simulation, and his impact in the computational mechanics
community at large.

This book has seven distinct parts arranged by thematic topics. The first three
parts are devoted to contributions in computational fluid dynamics (CFD) and cover
basic methods and applications, flows with moving boundaries and interfaces, and
phase-field modeling, the latter being a relatively new research direction in CFD.
The remaining four parts are focused on computer science and high-performance
computing (HPC) aspects of flow simulation, mathematical methods, biomedical
applications, and, last but not least, FSI. The book opens with a humorous yet
impressive account of Tayfun Tezduyar’s career, which is a printed version of the
laudation that Prof. Thomas J.R. Hughes delivered at the AFSI 2014 conference
banquet.

The editors would like to thank all the authors for choosing to submit their
contributions to this edited volume, for meeting the editor- and publisher-set
deadlines, and for being patient with the editors throughout this process.

La Jolla, CA, USA Yuri Bazilevs
Tokyo, Japan Kenji Takizawa
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Laudation at the AFSI 2014 Conference
Banquet Celebrating Tayfun Tezduyar’s
60th Birthday, Tokyo, Japan, March 2014

Thomas J.R. Hughes

1 Laudation

Thanks to Kenji Takazawa and Yuri Bazilevs for organizing this wonderful confer-
ence, and thank you to all the attendees who are here to honor Tayfun.

Let us begin with a little history.
1954 was an incredible year in world history:

Marilyn Monroe married Joe Dimaggio.
The first issue of Sports Illustrated was published in the USA.
Bill Haley and the Comets recorded “Rock Around the Clock” and Rock and Roll

was born.
Roger Bannister, in Oxford, England, was the first to run a mile in under four

minutes.

Famous people were born in 1954:

Oprah Winfrey, American actress, talk show host, publisher, producer, and
entrepreneur.

Socrates, Brazilian footballer (attacking midfielder, doctorate in medicine), medical
doctor, intellectual, and journalist.

François Hollande, President of France.
Shinzo Abe, Prime Minister of Japan.

T.J.R. Hughes (�)
Institute for Computational Engineering and Sciences, University of Texas at Austin, 201 East
24th St. Stop C0200, Austin, TX 78712, USA

Aerospace Engineering and Engineering Mechanics, University of Texas at Austin,
Austin, TX, USA
e-mail: hughes@ices.utexas.edu

© Springer International Publishing Switzerland 2016
Y. Bazilevs, K. Takizawa (eds.), Advances in Computational Fluid-Structure
Interaction and Flow Simulation, Modeling and Simulation in Science, Engineering
and Technology, DOI 10.1007/978-3-319-40827-9_1
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2 T.J.R. Hughes

Last but not least, the most famous of them all:

Tayfun Ersin Tezduyar, gentleman, scholar, engineer, researcher, author, editor, etc.,
etc., etc.

Not much happened in the world until 1977 when Tayfun arrived at Caltech from
Turkey and shortly thereafter became my PhD student. This is where I met Tayfun.
(Tayfun came to Caltech with no undergraduate degree. His professors in Turkey
indicated this would just be a waste of his time as he was ready to pursue the PhD.)
I do not remember our first meeting, but I do remember one of the Mechanical
Engineering professors at Caltech, Alan Acosta, telling me “He wants to work with
you” and “He might really do something”—prophetic words. Tayfun had almost
immediately established a reputation at Caltech as the brightest among many bright
students. He had impressed many of his professors. As we began to work together I
noted how thoroughly he would analyze every idea, his neat handwritten derivations,
and his meticulous organization. It was a pleasure to work with him and discuss
ideas. Everyone here knows about his accomplishments in fluids and fluid–structure
interaction, but what you might not be aware of was that, very early on, we co-
authored an important paper on a finite element for plate bending. It was the first
four-node quadrilateral element that did not lock but at the same time attained
full rank. It was immediately implemented in several commercial nonlinear finite
element codes (e.g., MARC, Abaqus). When I left Caltech for Stanford in 1980,
Tayfun came with me and worked on his PhD thesis there. I obtained support from
NASA Ames Research Center and NASA Langley Research Center to work on
finite elements for compressible flows. This was the topic of Tayfun’s PhD thesis
and he became the first person ever to solve the compressible Euler equations with
finite elements. The first time I gave a talk about this landmark accomplishment was
in Tokyo in 1982 at the Finite Element in Fluids conference organized by Professor
Tad Kawai, among others. My presentation created quite a stir and drew the attention
of French researchers from Dassault Aviation, namely Jacques Periaux and Pierre
Perrier whom soon after visited me at Stanford and began supporting my research,
which lasted for many years. After completing his thesis, Tayfun continued working
with me as a post-doc and then joined the faculty of the University of Houston,
subsequently moving to the University of Minnesota, and, finally, Rice University
where he is today. At the University of Minnesota he was named the Distinguished
McNight University Professor and became Principal Investigator and Director of the
Army High Performance Computing Research Center, and led it through a period
of intense activity, great accomplishment, and international recognition. He left
Minnesota to become James F. Barbour Professor of Mechanical Engineering and
Materials at Rice, and he chaired the department for six years.

Tayfun is famous for his groundbreaking research in computational fluid dynam-
ics and his fundamental contributions to the solution of complex fluid–object and
fluid–structure interaction problems, for which he has received a multitude of
honors. Some of the simulations he has performed of fluid–structure interaction are
among the most impressive calculations ever performed in any discipline. If I had
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to select one, as truly awe-inspiring, I would say it is the work he has performed for
the NASA Johnson Space Center on multiple interacting space parachutes.

Over the years Tayfun and I have become very good personal friends, and we
have interacted professionally in a variety of capacities. Tayfun maintains very high
professional standards, but is also a kind and generous individual and a loyal friend.
His strong support for young people has been mentioned, but I am personally happy
to say he also strongly supports old people . Tayfun has had a brilliant academic
career and achieved great things and I personally feel it is especially nice that we
are here to celebrate his 60th birthday in a country that he loves and where he has
many dear friends and admirers, and where his wife comes from.

60: The number 60 has mathematical and metaphysical significance. It is
divisible by 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, and 30. It is the smallest number
divisible by 1, 2, 3, 4, 5, and 6. The base-60 number system (i.e., “sexagesimal”)
was originated by the Sumerians in the third millennium BC and passed down to
the Babylonians. The legacy of this system remains with us today. For example, the
angles of an equilateral triangle are all 60ı, hours consist of 60 minutes, minutes
of 60 seconds, etc. Ptolemy’s Almagest, a treatise on mathematical astronomy, used
the base 60 system to express fractions. Book VIII of Plato’s Republic involves an
allegory of marriage centered on the number 604. The first fullerene molecule to
be discovered was the Buckminsterfullerene, C60, consisting of 60 carbon atoms,
known to some of us as a soccer ball.

Tayfun Tezduyar will be 60 in August of this year. What is the significance of
becoming 60 years old? It is a time to look back and take stock of one’s life, and in
the best of circumstances it is also a time to look ahead to the future and continue to
build upon one’s accomplishments. In the USA, retirement is an abstract concept.
Mandatory retirement is illegal. Discrimination because of age is likewise illegal.
One can retire if one chooses, or work as long as one is willing and able. I hope
Tayfun will continue with his work for a long time, because his work is scientifically
elucidating and of great importance to engineering. He is the true modern master at
developing technologies for solving the most complex engineering problems.

But most of all I hope to have him for my dear friend for many years to come.
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CFD: Methods and Applications



Numerical Comparison of the Particle Finite
Element Method Against an Eulerian
Formulation

Juan M. Gimenez, Pedro Morin, Norberto Nigro, and Sergio Idelsohn

Abstract The main goal of this paper is to validate experimentally the principal
conclusions previously published in [17]. Two manufactured test cases were
considered with their respective analytic solutions. First, a scalar transport equation
is considered written in such a way that several parameters are included to stress
the limiting situation where the Eulerian and the Lagrangian approaches behave
better. The results show conditions to be fulfilled in order to choose between both
formulations, according to the problem parameters. A brief discussion about the
projection needed for PFEM-2 method is included, specially due to its impact
on the error convergence rate. Lately, an extension to Navier-Stokes equations is
introduced using also a manufactured case to verify again the same conclusions.
This paper intends to establish the first steps towards a mathematical error analysis
for the particle finite element method which supports the preliminary theoretical and
experimental results presented here.
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8 J.M. Gimenez et al.

1 Introduction

Over the last decades, computer simulation of incompressible fluid flow has been
mainly based on the Eulerian formulation of the fluid mechanics equations on fixed
domains [3]. During this period, hardware has evolved considerably increasing the
speed performance of computations and allowing better facilities for data entry and
the display of results. However in these decades there have been no substantial
improvements on the numerical methods used concerning the efficiency of the
algorithm. In most practical engineering problems, very fine mesh and very small
time-steps are needed to reach acceptable results. This handicap exceeds most time
the efficiency of current powerful computers.

More recently, particle-based methods in which each particle is followed in
a Lagrangian manner have been used for fluid flow problems. Monaghan [21]
proposed the first ideas for the treatment of astrophysical hydrodynamic problems
with the so-called Smoothed Particle Hydrodynamics Method (SPH), which was
later generalized to fluid mechanics problems [6, 7, 21]. Koshizuka and coworkers
[18, 19] developed a similar method to SPH, named Moving Particle Simulation
(MPS). SPH and MPS belong to the family of the so-called meshless methods, as
well as the Finite Point Method [24–26]. Lately, the meshless ideas were generalized
to take into account the finite element type approximations in order to obtain more
accurate solutions [9]. This method was called the Meshless Finite Element Method
(MFEM) and uses the extended Delaunay tessellation [8] to build the mesh in
a computing time, which is linear with the number of nodal points. A natural
evolution of the last work was the Particle Finite Element Method (PFEM) [10]. The
PFEM combines the particle precept with the Finite Element Method (FEM) shape
functions using a background finite element mesh. This mesh may be quickly rebuilt
at each time-step (PFEM with moving mesh) or may be a fixed mesh (PFEM with
fixed mesh). In the last case, the results from the Lagrangian particles are projected
on a fixed mesh at each time-step. The idea of combining fixed meshes with moving
particles is not new. It was introduced for convection-diffusion problems in [22]
and was used in the so-called Particle in Cell method (PIC) [2] and later in its
extension called the Material Point Method (MPM) [29]. All these methods use
a Finite Element (FE) background mesh. Despite that both the PFEM and the MPM
use a fixed FE mesh and a set of Lagrangian particles, there are important differences
in the way the particles are employed: thus, while in the MPM all computations are
performed on the mesh, in the PFEM the aim is to calculate as much as possible on
the particles, leaving small corrections to be performed on the mesh. However, the
most important difference is that in the PFEM the particles do not represent a fixed
amount of mass, but rather material points that transport only intrinsic properties of
the fluid. This allows to use a variable number of particles and therefore simplifying
refinement.

The PFEM has been successfully used to solve the Navier-Stokes equations
[1, 20] and fluid–structure interaction problems [11, 12, 28] as well as solid
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mechanics problems [23]. The advantages of the PFEM concerning the tracking
of internal interfaces have also been explored and used to solve fluid mechanics
problems including multi-fluid flows [13].

The possibility to use the PFEM to solve non-linear problems with large time-
steps in order to obtain an accurate and fast solution was successfully explored
by the authors for the solution of the homogeneous incompressible Navier-Stokes
equations [5, 14, 15] and multi-fluid problems [4, 16]. This new strategy was named
PFEM-2.

In [17] the first trial of an error analysis for Lagrangian based methods like
PFEM and its comparison with an Eulerian formulation was presented in order to
demonstrate why the former is more accurate than the latter in certain particular
cases when large time-step and/or coarse meshes were used. There the authors claim
that nowadays, the best way to improve the efficiency of the algorithms in order
to take advantages of the increasing computer power is using this particle-based
method.

The goal of this paper is to demonstrate numerically the validity of that first
error analysis attempt for scalar transport problems and also for homogeneous
fluid flow problems. During this analysis the projection error arises as one of the
main limitations to reach that goal and a new proposal of projection algorithm is
presented. This projection shows to have several collateral benefits like having good
mathematical properties as the existence of reciprocity in the operation of going
back and forth between mesh and particles and also smoothing properties in the
computation of fluid flow forces.

The layout of the paper is the following. After a review of the main results
presented in [17] a numerical validation of these results for scalar transport problems
is shown highlighting the conditions under which a Lagrangian approximation
is preferred, in particular when using large time-steps. Next, the new projection
scheme is presented putting in evidence the possibility and the requirement of
reaching a second order approximation in space and time. Finally, an extension
to fluid flow problems is presented with a manufactured example that serves to
demonstrate the conclusions written in [17]. Some conclusions and future trends
are highlighted at the end.

2 Error Analysis Applied to a Scalar Transport Equation

Many problems in engineering may be mathematically expressed by transport equa-
tions written in Lagrangian or Eulerian reference frames. For such mathematical
models there is a strong division between transporting scalar fields or transporting
vector or tensor fields. Also the linear and non-linear approaches become another
important feature normally included in the modeling. Moreover, advection and
diffusion effects present very different behaviors from the physical, mathematical,
and numerical point of view. With such a complexity it is very difficult to find
analytic solutions to be used as reference for formal error analysis. In order to
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circumvent such a drawback in this paper manufactured test cases are developed
to be used as good candidates for getting exact solutions to our test problems.

Several control parameters for the exact solution are used to place the problem
in various conditions from some beneficial to Lagrangian schemes to other more
beneficial to an Eulerian one.

To begin, in this section a scalar transport equation is solved. The differential
equation associated to solve this problem may be written in an Eulerian (fixed)
frame as

@T

@t
C v � rT D Q.x/ (1)

where T D T.x; t/ D Tt.x/ is the scalar unknown, v is the velocity field, and
Q.x/ includes the source term q.x/, the diffusion term r � .krT/, and the linearized
version of a reactive source term cT , etc., being

Q.x/ D q.x/C r � .krT/ � cT C : : : (2)

To write Eq. 1 in the Lagrangian (mobile) frame, it is necessary to use the material
derivative D=Dt, which condenses the temporal derivative and the convective term
into a unique term. However, as it is well known for Lagrangian formulations not
only the respective field should be computed, but also the particle trajectories,
obtaining

8
ˆ̂
<̂

ˆ̂
:̂

DT

Dt
D Q.xp/

Dxp

Dt
D v

(3)

where T D T.xt
p; t/ D Tt.xt

p/ is the scalar unknown. Here the superscript t means
the time dependency and the subscript p represents the particle itself.

Eqns. (1) and (3) are integrated in time in an Eulerian frame using a linear method
named � -method:

TnC1.x/ D Tn.x/C
nC1Z

n

�
Qt � vtrTt

�
dt � Tn.x/C .Q � vrT/nC� �t (4)

where f nC� D .1��/f n C� f nC1 is the linear in time interpolation for any function f .
The time integration error of a function f t for � D 1=2 is proportional to the second
derivative of the function and �t2, i.e.,
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nC1Z

n

f t dt � f nC 1
2 �t ˙ � with � D Oh@

2f

@t2
�t2i�t: (5)

In the case of time integration in the Lagrangian frame, there are several options
to evaluate that integral [17]. An option is to perform the integration with the moving
particles following the streamlines (taking into account intermediate positions),
splitting the integration into an explicit part and an implicit part, or decoupling the
trajectory and temperature integrations employing two different values for � , i.e.,

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

TnC1.xnC1
p / � Tn.xn

p/C .1 � �1/
nC1Z

n

Qn.xt
p/ dt C �1Q

nC1.xnC1
p /�t

xnC1
p � xn

p C .1 � �2/
nC1Z

n

vn.xt
p/ dt C �2vnC1.xnC1

p /�t

(6)

The case of performing the unknown integration following streamlines with
�1 D 1=2, and the trajectory, also following streamlines, but with �2 D 0, has been
named X-IVAS+implicit correction [15]. On the other hand, if the choice for the
unknown integration is �1 D 1 the method is named X-IVS, which was presented
in [14]. The latter integration will be used in all the examples presented here when
using a Lagrangian frame. However, in the present study for the error analysis, the
standard � -method will be considered:

8

<̂

:̂

TnC1.xnC1
p / � Tn.xn

p/C QnC� .xnC�
p /�t

xnC1
p � xn

p C vnC� .xnC�
p / �t

(7)

This assumption is based on the fact that the X-IVAS integration improves the results
and decreases the integration errors. The evaluation of this difference is out of the
scope of this work.

2.1 Eulerian Errors

As presented in Equation (5), the linear � -method introduces a minimum error for
� D 1=2 which is proportional to the second derivative of the integrated function
and the square of the time-step, i.e.,

TnC1.x/ D Tn.x/C
nC1Z

n

�
Qt � vtrTt

�
dt � Tn.x/C

h
.Q � vrT/nC

1
2

i
�t ˙ �t (8)
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with the time integration error

�t D Oh @
2

@t2
ŒQ � vrT� �t2i�t D OhŒQ � vrT� R�t2i�t: (9)

On the other hand, the FEM approximation of the functions and the space
derivatives introduces spatial errors. As it was mentioned, this analysis only
considers linear finite element approximations of the unknown, therefore the spatial
errors are proportional to the second derivative of the functions and the square of
the mesh-size, i.e.,

TnC1.x/ D Tn.x/C
nC1Z

n

�
Qt � vtrTt ˙ �x

�
dt � Tn.x/C

h
.Q � vrT/nC 1

2 �t ˙ �x

i
�t˙�t

(10)

with the spatial discretization error

�x D Oh @
2

@x2
ŒQ � vrT� �x2i�t: (11)

Finally, avoiding higher order terms, the unknown function after a time-step using
the Eulerian framework is

TnC1.x/ D Tn.x/C .Q � vrT/nC
1
2 �t ˙ �x C �t D Tn.x/C .Q � vrT/nC

1
2 �t ˙ �E

(12)

with �E D �x C �t.

2.2 Lagrangian Errors

In this section first a general analysis taking into account the whole problem
involved in a Lagrangian formulation, i.e., solving not only for the scalar field, but
also for the particle trajectories, is done. Afterwards a specific analysis of projection
errors for PFEM-2 scheme due to the mapping of the field between particles and the
mesh is presented considering the importance of this projection stage in the global
error of the method.

2.2.1 General Analysis

In the case of the Lagrangian frame, the errors in the numerical evaluation of the
unknown function and the particle position are
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8
<

:

TnC1.xnC1
p / � Tn.xn

p/C QnC 1
2 .x

nC 1
2

p /�t ˙ OhQ00�x2i�t ˙ OhQR�t2i�t

xnC1
p � xn

p C vnC 1
2 .x

nC 1
2

p / �t ˙ Ohv00�x2i�t ˙ OhvR�t2i�t
(13)

The error in the evaluation of the particle position �p
x D Ohv00�x2i�t ˙

Ohv R�t2i�t introduces also an error in the evaluation of the unknown function.
Performing a series expansion around xnC1

p , i.e.,

TnC1.xnC1
p C �p

x / D TnC1.xnC1
p /C rT�p

x C OhT 00.�p
x /
2i (14)

and replacing in the first equation of (13), it is

TnC1.xnC1
p / � Tn.xn

p/C QnC 1
2 .x

nC 1
2

p /�t ˙ OhQ00�x2i�t ˙ OhQR�t2i�t ˙ rT�p
x

(15)

the expression for the Lagrangian error �L can be found

�L D ˙Oh�Q00 ˙ v00rT
�
�x2i�t ˙ Oh.QR ˙ vRrT/�t2i�t (16)

Comparing the Eulerian error expression in 12 with the Lagrangian one in 16,
the main differences are in the following terms:

ŒvrT�00�x2 ˙ ŒvrT� R�t2
„ ƒ‚ …

Eulerian

¤ v00rT�x2 ˙ vRrT�t2„ ƒ‚ …
Lagrangian

(17)

The difference presented in Equation (17) leads to a big advantage of the
Lagrangian framework against its Eulerian counterpart for some problems. For
instance, in the standard convection-diffusion problem of a non-constant unknown,
where the convective field is known and has a constant or nearly constant velocity,
Equation (17) reads

ŒvrT�00�x2 ˙ ŒvrT� R�t2 ¤ 0
„ ƒ‚ …

Eulerian

I v00rT�x2 ˙ vRrT�t2 D 0„ ƒ‚ …
Lagrangian

(18)

that is, the Lagrangian integration does not have any error because v00 D v R D 0,
but the Eulerian framework presents an error due to ŒvrT�00˙ ŒvrT� R D v ŒrT�00˙
v ŒrT� R ¤ 0.

2.2.2 Projection Errors

In order to complete the error analysis for the particular Lagrangian approximation
employed by PFEM-2, the projection errors should be taken into account. In [15]
PFEM-2 had been introduced as a hybrid method using particles and mesh in
order to exploit the advantages of Lagrangian and Eulerian methods. This duality
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between mesh and particles requires that data should be sent back and forth along
the whole computation several times. If this projection is not designed properly a
huge source of inaccuracies is introduced and the error degrades a lot. Moreover, the
projection is normally responsible of getting noisy values represented by the mesh,
like forces in a fluid–structure interaction problems. In [17] Idelsohn et al. conclude
that these errors depend on the distance between particles which is denoted by h.
Therefore, the importance to use a great amount of particles with h << �x becomes
obvious for decreasing projection errors. However this assumption relies on an ideal
projection strategy which consists in generating a mesh with the particles positions
guaranteeing that the projection error depends only on particle mesh-size h.

Even being an ideal strategy, the triangulation of the particle positions at each
time-step may be unaffordable because of the computational cost involved when
particles tend to grow in number.

Typical strategies employed by PFEM-2 [4] to project a given field � between
nodes using subindices .j/ and particles using subindices .p/ are of the following
form:

�j D ˘p!j�p D

X

P

�pWj.xp/

X

P

Wj.xp/
(19)

where the function Wj, associated with the node j, can be either the typical kernel
functions used in particle methods such as SPH[7] or the linear shape functions
raised to a power ˛ > 0 (it is Wj.x/ D Nj.x/˛), while xp is the position of the
particle p with state �p and P is the number of particles in a region around the
node j.

This projection algorithm does not preserve the global second order error
introducing a degradation of the solution accuracy proportional to the number of
projections done. This last variable depends on the time-step with a smaller impact
when the time step is large and a bigger one when the time-step tends to reduce.
This fact is observed experimentally in the next section.

On the other hand this family of projections algorithms is in general not
commutative, i.e., the projection does not satisfy the inverse property of operators:

˘p!j

�
˘p!j

��1 ¤ I (20)

This last statement strongly endangers the solution accuracy and may also be
responsible for excessive diffusion of the primal variables or for noisy secondary
(dual) fields computed on the mesh, like forces, heat fluxes, etc.

In order to circumvent this drawback in this paper a new projection is presented
overcoming most of the above cited weakness. Here only its definition and the main
idea behind this development are presented. The mathematical demonstration of its
incidence on the error analysis is still in elaboration.
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Fig. 1 Graphical example of
the target function ˚ and its
two possible FEM
approximations � and Ih

The idea is based on using least squares approximations to find the nodal values
from particles states.

More precisely, the idea is to find �j that realizes the following minimum:

min

2

6
4
1

2

X

p

0

@�p �
X

j

�jNj.xp/

1

A

2
3

7
5 (21)

Solving the Equation (21) leads to an equation system of J unknowns M� D f,
where J is the number of nodes, Mij D P

p Ni.xp/Nj.xp/ is a consistent mass matrix,
and fi D P

p Ni.xp/�p.
Figure 1 shows a graphic representation of the approximation of a target function

˚ where the particles look like quadrature points where the FEM solution is
evaluated. The function � is obtained minimizing (21), while the function Ih is the
Lagrange interpolator which takes the values of the function ˚ at nodal positions.
Because an approximation as Ih, which belongs to the same discretization space than
�, has an error proportional with the square of the mesh-size, i.e., � � C�x2, and
� has the lowest error among the functions of this space, then it follows that � has
also an error proportional with the square of the mesh.

Finally the projection error is introduced at each projection step independently
of the time-step size. Then, in a total period of time .tf � t0/ the Lagrangian error
can be extended to

�L D ˙Oh�Q00 ˙ v00rT
�
�x2i.tf � t0/˙ Oh.QR ˙ vRrT/�t2i.tf � t0/˙

˙ OhT 00�x2i .tf � t0/

�t

(22)

2.3 Validation Test

The differences presented in Equation (17) should be analyzed in depth. In the
Eulerian case the error formula includes the spatial and temporal derivative of
the product between the velocity and the scalar gradient, while in the Lagrangian
formula they only affect the velocity. It has important theoretical consequences,
which can be enumerated:
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1. Eulerian frames are better for diffusion dominant problems. In these cases, the
errors between the Lagrangian and Eulerian approaches are of the same order,
but in the Lagrangian frames the projection errors must be added.

2. Lagrangian frames are better for convective dominant problems when the con-
vective flow is constant or nearly constant in time v R � v00 � 0. The remaining
cases, when the convective flow presents high variations the Lagrangian or the
Eulerian frame will be better or worse depending on the projection errors.

3. Eulerian frames are better for stationary problems. In these cases, ŒrT�R D 0 and
there are no projection errors.

The aim of this section is to verify these facts experimentally, with numerical
simulations employing both frames. The modification of some parameters in these
tests will increase or decrease the terms which introduce errors in each formula,
being the objective to match the experimental and theoretical results. In order to do
this a particular 2D problem was tailored with an analytical solution to compare the
results.

The proposed domain is Œ�1;�1� � Œ1; 1�. The velocity field v D uOi C vOj has
variations both in time and space: a rigid rotation with a periodic temporal variation
of its angular velocity which is modulated in space by a parabola. The proposed
velocity field is

�
u.x; y; t/ D �!1y.1 � x2/.1 � y2/.1C C sin.!2t//
v.x; y; t/ D !1x.1 � x2/.1 � y2/.1C C sin.!2t//

(23)

where !1 is the mean angular velocity of the rotation field, !2 is the frequency at
which the field increases or decreases its rotation. The parameter C allows to control
the amplitude of the variation of the rotation direction, such as if jCj > 1 the rotation
is inverted for certain time, if C D 1 the movement vanishes at some instant, and
if jCj < 1 the field does not change its rotation direction. A source term q was
included such that the unknown function becomes

T.x; y; t/ D sin.!3t/ sin.�x/ sin.�y/ (24)

which is identically zero at boundaries and has four hills at points Œ˙0:5;˙0:5�.
A snapshot of the proposed scalar field is presented in Figure 2. An initial value of
T D 0 and Dirichlet boundary conditions T D 0were used. The diffusivity k and the
oscillation frequency !3 can take independent values allowing to analyze different
situations.

The reference grid used has 50 � 50 nodes conforming 4802 triangles, which
gives a mesh-size �x D H D 0:04. In the Eulerian case, Crank-Nicholson as time
discretization scheme was employed. For Lagrangian simulations four particles per
element were evenly seeded. The particle grid size h is defined as h D p

2A=Np,
where A is the area of the element containing Np particles. With this definition, the
area of the element is divided by the number of particles contained.
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Fig. 2 Snapshot for the
manufactured scalar field
solution

Table 1 Parameters for the
manufactured 2D scalar
transport case

Case C !1 !2 !3 k

1 1 2� 0 2� 0

2 1 2� 2� 2� 0

3 1 2� 2� 3� 0

4 1/2 2� 2� 2� 0

Four cases were designed to cover a wide range of problem types. Table 1
presents the parameters employed in each case. Two time-steps are employed in
order to simulate with small CFLmax � 1 and large CFLmax � 10, respectively,
being CFLD jvj�t=�x the Courant-Friedrich-Levy number.

In the following cases the root-mean-square (RMS) as an error measure is
employed, defined as

RMS.t/ D
v
u
u
t 1

N

NX

jD1

�
Tex

j .t/ � Tap
j .t/

�2

where N is the number of nodes on the mesh, Tex is the analytic reference solution,
and Tap is the numerical solution.

The results are presented in Figure 3. In the first case, which has a steady velocity
field (v R D 0) and no diffusion, as anticipated in previous section, the Lagrangian
framework has better results than the Eulerian one, being specially remarkable when
large Courant numbers are employed. In the mentioned case, the PFEM-2 error does
not depend on the time-step size showing a periodic variation due the spatial error
which is proportional to the temporal harmonic function rT . On the other hand,
FEM shows large errors when the time-step is increased as it is expected.

In the second case, the velocity field is unsteady having a harmonic variation in
its amplitude. Here v R ¤ 0, then the Lagrangian solution shows similar problems
to the Eulerian one. However, if the oscillation frequency of the solution is larger
than the amplitude variation of the velocity (!3 > !2), as happens in the third
Case, the temporal error term in the Eulerian case (ŒvrT� R�t2) increases, while
the Lagrangian one (v ŒrT� R ) remains almost equal. In this way, the second and
third case also prove experimentally the theoretical error formula presented in
Equation (17).
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a b

c d

Fig. 3 Case Four hills without diffusion. RMS error evolution for Eulerian and Lagrangian
simulations with steady (Figure 3(a)) and unsteady (Figures3(b), 3(c), and 3(d))) velocity fields.
The Lagrangian error is presented with black lines and the Eulerian with red lines

The second and the third cases use a velocity field which vanishes every T D
1=!2, this gives to the Eulerian formulation some advantages due the spatial error
term (ŒvrT�00�x2) also vanishes. That advantage is, in some cases, recovered by the
Lagrangian approach when the time-step is increased. The fourth case overcomes
this fact using another value for the constant C which avoids that v.t/ D 0 for any
t. Figure 3(d) shows that the error differences are more visible, proving again the
theoretical error formula.

As a preliminary conclusion, the results presented in Figure 3 confirm the
proposed error formula in [17], showing that the Lagrangian error using large time-
steps is affected by the unsteadiness of both, the velocity field and the source term.
As a footnote based on experimental facts, it can be mentioned that an X-IVAS
calculation of the unsteady source is mandatory to obtain accurate results, which
is not possible with the time-step selected (it only samples seven points inside the
source’s period). Regarding to Eulerian simulations, as expected, they show larger
errors when the CFL grows. Also, this error increases when high rT R are employed.

On the other hand, Figure 4 presents a convergence analysis for Case A. Three
mesh refinements were used �x D 2H, H, and H=2, modifying the �t in order to
keep the CFLmax in a constant value. The RMS error presented for each case is the
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LowCFL

a b

HighCFL

Fig. 4 Convergence of the RMS Error. Case A. CFLmax D 0:6 in 4(a) and CFLmax D 6 in 4(b)

average value of RMS from T D 0 to T D 2Œs� of simulation time. As presented
in Figure 3(a), using CFLmax � 0:6 the Lagrangian and Eulerian errors are almost
the same. However, when the dimensionless number is increased to CFLmax � 6,
the Lagrangian solution obtains better accuracy than Eulerian even using both time-
step and mesh-size twice larger. This fact represents a notable advantage of the
Lagrangian approach over the Eulerian in this type of problems, showing that
PFEM-2 simulation can obtain the same precision than FEM even solving a problem
eight times smaller.

Regarding to convergence orders, both Lagrangian and Eulerian solutions show
concordance with theoretical formula, presenting a second order convergence in
every case. In the Lagrangian approach this behavior is reached if the projection
operator fulfills this requirement.

3 An Extension to Viscous Incompressible Fluid
Flow Simulations

In this case the model to be solved is represented by the Navier-Stokes equations
added with the mass conservation that imposes a constraint on the velocity field to
be divergence free. This condition is enforced by the pressure acting as a Lagrange
multiplier. Inspecting the momentum equation and comparing this with the scalar
transport equation just analyzed, here the same unknown variable acts as the velocity
field that drives the convection term. This fact produces a non-linear term that is
responsible for the chaotic nature of the model that pretends to emulate the physical
effects produced by the turbulence.
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3.1 General Comments

In this case the error equation looks like the same [17], but the conclusions are
fundamentally different.

Generalizing Equation (17), the difference between the errors in the Eulerian and
Lagrangian frames for convective dominant problems (high Reynolds number) is

Œvrv�00�x2 ˙ Œvrv� R�t2
„ ƒ‚ …

Eulerian

¤ v00rv�x2 ˙ vRrv�t2„ ƒ‚ …
Lagrangian

(25)

In this case, it is not anymore possible to separate the case in which the convective
field is constant from the case in which the gradient of the transported field (rv) is
not constant. Nevertheless, some particular cases may be analyzed in order to draw
some conclusions:

• Eulerian frames are better for low Reynolds number. In these cases, the errors
between the Lagrangian and the Eulerian approaches are of the same order, but
on Lagrangian frames the projection errors must be added.

• Lagrangian frames are better for convective dominant problems when the
velocity has a smooth variation in time but the gradient of the velocity has high
spatial variations. This case is very common in fluid mechanics problems, such
as in shock waves. The remaining cases are better or worse depending on the
projection errors.

• Lagrangian frames are better for multi-fluid flows. This is because Eulerian
frames need to solve a level set equation to know the position of the interface.
The level set equation [27] is a convection equation that requires small time-
steps to yield accurate results due to the considerations concluded in the previous
section, i.e.,

vRrv < 1 and Œvrv� R � v Œrv� R � 1

3.2 Validation Test

Following the same criteria as the validation test in Section 2.3, a manufactured case
is employed where a solution is proposed and the external force f must be adapted
in order to satisfy the differential equation.

The case is adapted from the book of Donea & Huerta [3] where the authors
solved a stationary Stokes flow. In this work, the problem includes also a convective
term, leading to recalculation of the external force needed to satisfy the Navier-
Stokes equations. A two-dimensional problem in the square domain Œ0; 0�� Œ1; 1� is
considered, which possesses a closed-form analytical solution. The problem consists
in determining the velocity field v and the pressure p such that
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8
<

:

@v
@t C v � rv � r � .�rv/C rp D b in ˝

r � v D 0 in ˝
v D 0 in 	

(26)

where the fluid viscosity � can be changed in order to simulate for different
Reynolds numbers, being Re D jvjL=� with L D 1. In order to solve the previous
equation system, an analytical solution is proposed:

8
<

:

u.x; y; t/ D x2.1 � x/2.2y � 6y2 C 4y3/.1C 0:5 sin.!t//
v.x; y; t/ D �y2.1 � y/2.2x � 6x2 C 4x3/.1C 0:5 sin.!t//

p.x; y; t/ D x.1 � x/
(27)

which allows to find the expression for b. Varying � and ! is possible to modify
the Reynolds number and the unsteadiness of the solution, respectively. Cases were
solved using a 50 � 50 Cartesian mesh split into triangles and setting the time-step
such as CFLmax � 10. Figure 5 shows the shape of the proposed manufactured flow
for two different times.

Table 2 shows the configuration and the RMS errors at T D 1000Œs� of the
simulated cases.

Figure 6 presents graphically the evolution of the RMS for Cases 1 and 2. In
the first case, a low Reynolds number was selected, therefore the Eulerian solution
obtains better results although simulating with large CFL. This is an equivalent

Fig. 5 Manufactured velocity field solution of the Navier-Stokes equations. Snapshots for two
different times. Arrows indicating direction of the velocity field are colored by its magnitude

Table 2 Configuration and RMS � 103 errors. Every case was run with CFLmax � 10

Eulerian Lagrangian

Case ! Re RMS vx RMS vy RMS p RMS vx RMS vy RMS p

1 �=5000 10 0.75 0.73 0.036 2 1.9 0.058

2 �=5000 1000 0.012 0.011 0.014 0.0071 0.0062 0.013

3 �=50 10 0.8 0.82 0.026 0.83 0.85 0.023

4 �=50 1000 � 1 � 1 � 1 1.3 1.5 0.06
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vx with Re= 1000

vx with Re= 10

vy with Re= 1000

vy with Re= 10

p with Re= 1000

p with Re= 10

a b c

d e f

Fig. 6 RMS measured for a Navier-Stokes analytical solution using Lagrangian and Eulerian
schemes. Cases with ! D �=5000

problem to that diffusion dominated scalar transport problem. However, when the
Reynolds number is increased, the Lagrangian framework recovers its advantage.
In the third and fourth cases, the unsteadiness of the solution is increased, leading
to an increment of the temporal derivatives. In the Lagrangian approach the error
enlargement is lower than the Eulerian case, mainly because vRrv < Œvrv� R . This
fact is of extreme importance in the fourth case where the Eulerian solution diverges,
concluding that beyond the increasing of the Reynolds number, the growth of the
unsteadiness also affects the Eulerian simulations. On the other hand, Lagrangian
framework is not adequate in the case of low Reynolds number, which is also
consistent with the theoretical formula.

4 Conclusions

From the theoretical results published in [17] several conclusions were achieved
allowing to decide in which situation an Eulerian framework is preferred against
a Lagrangian one, and vice versa. In this paper the focus was on the experimental
validation of those statements with the main goal of beginning to write a formal
error analysis based on mathematical tools.
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After confirming the validity of those conclusions through the results presented
here not only for scalar problems, but also for vector systems like Navier-Stokes, the
next step is establishing the main baseline for writing some a priori error analysis
including not only the spatial and temporal approximations, but also the projection
error for the particle finite element method.

As a conclusion, when advective dominant flows were analyzed, the PFEM-2
methodology has shown several advantages over pure Eulerian strategies. Beyond
the possibility of enlarging time-steps, the Lagrangian method also allows to get
as accurate solutions as Eulerian ones even using coarser meshes. Last means a
significant saving of computational cost which is an invaluable feature in order to
solve the challenging problems of next decade
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An Implicit Gradient Meshfree Formulation
for Convection-Dominated Problems

M. Hillman and J.S. Chen

Abstract Meshfree approximations are ideal for the gradient-type stabilized
Petrov–Galerkin methods used for solving Eulerian conservation laws due to
their ability to achieve arbitrary smoothness, however, the gradient terms are
computationally demanding for meshfree methods. To address this issue, a
stabilization technique that avoids high order differentiation of meshfree shape
functions is introduced by employing implicit gradients under the reproducing
kernel approximation framework. The modification to the standard approximation
introduces virtually no additional computational cost, and its implementation
is simple. The effectiveness of the proposed method is demonstrated in several
benchmark problems.

1 Introduction

While Galerkin methods have proven successful in a variety of problems, the
application of standard versions of these methods can yield disastrous results for
non-self-adjoint problems, such as the Eulerian descriptions of conservation laws
with strong convection. In particular, when boundary layers are present, these
methods yield large oscillations that destroy the solution. A class of stabilized
Petrov–Galerkin methods [1–3] has been developed that provide stable solutions
for these problems.

Stabilized methods have been analyzed mathematically [2–4], can be justified by
the variational multiscale framework [5, 6], and can be constructed by static con-
densation of bubble functions [7–9]. In these methods, portions of the differential
operator, or the entire operator, are included in the test function. The stream-
line upwind Petrov–Galerkin (SU/PG) method [1] was motivated by performing
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stabilization in a consistent and streamline manner, and also put to rest notions
of artificial diffusion. The Galerkin/least squares (G/LS) method [2] gave a more
general framework to achieve stability by employing a weighted least squares of the
residual. The subgrid scale (SGS) method gave improved stability for higher order
elements [3] and reaction-dominated problems [7].

Though originally developed for finite elements, these approaches have been
applied to meshfree methods as well. The reproducing kernel particle method
(RKPM) with the standard stabilization approach has been applied to flow problems
[10]. Suitable stabilization parameters for meshfree methods have been discussed
[11], and stabilized meshfree and finite element coupled schemes have also been
proposed [12] to achieve a combination of the computational efficiency of finite
elements with the flexibility of handling difficult topological changes of the domain
such as moving obstacles. A higher order accurate time integration scheme [13]
has also been developed for meshfree methods for convection-dominated problems.
Although the higher order derivatives involved in the gradient-type stabilization
techniques can be calculated straightforwardly by taking advantage of the arbitrary
smoothness in the meshfree approximation functions, they are computationally
demanding.

The issue of computational efficiency of meshfree methods with gradient-type
stabilization for convection-dominated problems is the cost of constructing deriva-
tives of meshfree approximations. One remedy is to introduce implicit gradients
[14], which originated from the synchronized convergence approximation [15,
16], where the completeness properties of approximation derivatives are imposed
directly. Implicit gradients have been utilized for easing the computational cost of
meshfree collocation methods [14], which require higher order derivatives. Implicit
gradients have also been used to achieve gradient-type regularization for strain
localization problems [17] and avoid the issue of boundary conditions associated
with these methods.

In this work, the implicit gradient reproducing kernel particle method (IG-
RKPM) is introduced for convection-dominated problems. A gradient reproducing
condition is employed to construct the stabilizing gradient terms. This allows three
standard stabilization techniques to be performed under a unified framework without
the explicit computation of higher order derivatives of the shape functions. The
proposed technique is computationally efficient, and it also simplifies stabilization
procedures.

The remainder of this text is organized as follows. Section 2 reviews the
numerical difficulties associated with convection-dominated problems, and common
methods for stabilization. The implicit gradient reproducing kernel particle method
is then introduced in Section 3, and the selection of a suitable stabilization parameter
for meshfree methods is discussed. Several benchmark problems are solved in
Section 4 to demonstrate the effectiveness of the proposed method. Concluding
remarks are then given in Section 5.
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2 Stabilization for Convection-Dominated Problems

2.1 Advection–Diffusion Equation

The advection–diffusion equation is considered herein as a model problem for
convection-dominated problems. The strong form asks to find u such that

Lu D s in 


u D g on @
g

Bu D h on @
h

(1)

where s is a source term, @
g and @
h are the essential and natural boundaries of
the domain, respectively, the flux boundary conditions Bu D kru� n are considered
herein, and the operator L in (1) is

Lu D �r� .K� ru � au/ (2)

where a is the advection velocity and K is the diffusivity tensor. Without loss of
generality, we consider a divergence-free advection field and the case of isotropic
diffusion with K D Ik, where I is the identity tensor, and k is a constant scalar, for
which Lu D � �kr2u � a� ru

�
.

The weak form of (1) is to find u 2 U such that

B .v; u/ D L.v/ 8v 2 V (3)

where

B .v; u/ D .krv;ru/
 C .v; a� ru/
; (4)

L.v/ D .v; s/
 C .v; h/	h
: (5)

Here U D ˚
u 2 H1 .
/

ˇ
ˇ u D g on 	g

�
, V D ˚

v 2 H1 .
/
ˇ
ˇ v D 0 on 	g

�
, and

.�; �/
 and .�; �/	h
denote the L2 inner product on the domain and natural boundary,

respectively. The Galerkin method for solving (3) is to find uh 2 Uh that satisfies

B
�
vh; uh

� D L
�
vh
�
; 8vh 2 Vh (6)

where Uh � U and Vh � V are suitable finite-dimensional subspaces.
For discrete solutions of the advection–diffusion equation with grid dimension or

node spacing h, the critical value defining how the numerical solution will behave is
the grid Péclet number Peh D kak h=2k. When the grid Péclet number is greater than
unity, standard Bubnov–Galerkin methods lose coercivity and become unstable, and
the instability manifests as large oscillations in the presence of fine-scale features
such as boundary layers which can appear in the solution of the model problem (1).
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2.2 Stabilized Methods

The stabilized methods SU/PG, G/LS, and SGS can be phrased in terms of the
Galerkin form of the original problem with a modified test function expressed in
a unified fashion as:

Qvh D vh C �Lvh (7)

where � is a stabilization parameter, and L is a differential operator that varies
depending on the method:

L D Ladv SU=PG Œ1�

L D L G=LS Œ2�

L D �L� SGS Œ3�

(8)

In the above, L adv is the advective portion of L , and L� is the adjoint of L :

Ladv D a� r; (9)

L� D � �kr2 C a� r� : (10)

Stabilized methods are well justified [2–4], and can also be viewed as approxi-
mate variational multiscale methods [4, 6]. Stability estimates for SU/PG and SGS
require invoking inverse estimates for the shape functions, while for G/LS stability
follows directly. The stabilized form of the problem (6) can be stated as to find
uh 2 Uh � U such that

B
� Qvh; uh

� D L
� Qvh
�
; 8Qvh 2 Vh (11)

where Vh � V , and U and V are adequate Sobolev spaces.

3 Implicit Gradient RKPM for Stabilization
of Convection-Dominated Problems

3.1 Reproducing Kernel Approximation

The reproducing kernel (RK) approximation uh(x) of a function u(x) is constructed
by the product of a kernel function ˚� .x � xI/ and a correction function [18, 19]:

‰I .x/ D bT .x/H .x � xI/ ˚� .x � xI/ (12)
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where  I(x) is the RK shape function, H .x � xI/ D �
1 x y x2 : : : yn

	T
is a

column vector containing the complete nth order monomials, and bT(x) is a row
vector of coefficients to be determined. The correction function bT .x/H .x � xI/

allows the approximation to reproduce any linear combination of monomials
contained in H .x � xI/: The kernel function ˚� .x � xI/ has compact support
measure �, and the order of continuity of ˚� .x � xI/ determines the continuity of
 I(x).

The coefficient vector bT(x) is obtained by enforcing the following reproducing
conditions:

NPX

ID1
‰I .x/ xi

1Ix
j
2I D xi

1x
j
2 0 � i C j � n: (13)

Substituting (12) into (13), the RK shape functions are constructed as

‰I .x/ D H.0/TM.x/�1H .x � xI/ ˚� .x � xI/ (14)

where

M .x/ D
NPX

ID1
H .x � xI/HT .x � xI/ ˚� .x � xI/ (15)

is called the moment matrix.

3.2 Implicit Gradient Reproducing Kernel Particle Method

The stabilization method SU/PG requires constructing second order derivatives
of the approximation functions in (14), and for GL/S and SGS, third order
derivatives are required, and construction of higher order derivatives of meshfree
shape functions can be particularly expensive due to the need to take derivatives
of M.x/�1. To avoid this computational expense, the implicit gradient reproducing
kernel particle method is introduced. The basic idea is to achieve the same form
of stabilized test functions (7) without explicit differentiation. To accomplish this,
the following modification to the reproducing condition (13) is introduced for
construction of the test functions:

NPX

ID1
Q‰˛

I .x/ xi
1Ix

j
2I D xi

1x
j
2 C �L

�
xi
1x

j
2

�
; 0 � i C j � n (16)
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where Q‰˛
I is the IG-RKPM shape function and L is the operator in (8). The

reproducing condition (16) can be expressed in a generalized fashion as

NPX

ID1
Q‰˛

I .x/ xi
1Ix

j
2I D xi

1x
j
2 C �

nX

iCjD0
˛ijDij

�
xi
1x

j
2

�
; 0 � i C j � n (17)

where Dij D @iCj=@xi
1@xj

2 and the coefficients ˛ij are determined based on the
operator L. The above can then be recast as [17]:

NPX

ID1
Q‰˛

I .x/ .x1 � x1I/
i.x2 � x2I/

j D
ıi0ıj0 C �˛ij.�1/iCjiŠjŠ; 0 � i C j � n:

(18)

Consider now the implicit gradient shape function in the following form:

Q‰˛
I .x/ D bT

˛ .x/H .x � xI/ ˚� .x � xI/ (19)

where bT
˛(x) is a row vector of coefficients which satisfy (17). Following the

same procedure as the previous sub-section, the coefficients bT
˛(x) can be obtained,

resulting in the following construction for the implicit gradient approximation:

Q‰˛
I .x/ D HT

˛M.x/�1H .x � xI/ ˚� .x � xI/ (20)

where H˛ is a matrix containing terms from the right-hand side of (18). The values
in this matrix are presented in Table 1.

Remark Comparing (20) to (14), it can be seen that the first term on the right-
hand side of (20) is the only modification of the standard RK approximation.
Stabilization using IG-RKPM is thus very straightforward compared to the explicit
version, can be added to existing codes easily, and introduces virtually no additional
cost. This is in contrast to explicit differentiation, which requires considerable more
computational expense and implementation effort.

An important component of meshfree formulations is the selection of domain
integration. For Gaussian integration, high order rules are necessary in order to
ensure solution accuracy, while nodal integration yields poor accuracy and is
unstable without special treatment [20, 21]. Herein we employ higher order SCNI
[22, 23] which provides accurate and stable solutions and avoids the need of
expensive high order quadrature.

Table 1 Implicit gradient
RKPM vector.

Method HT
˛

SU/PG [1] Œ1; ��a1;��a2; 0; : : : ; 0�

G/LS [2] Œ1; ��a1;��a2;�2�k;�2�k; 0; : : : ; 0�

SGS [3] Œ1; ��a1;��a2; 2�k; 2�k; 0; : : : ; 0�
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3.3 Selection of the Stabilization Parameter

The selection of the stabilization parameter was traditionally based on obtain-
ing the exact solution at nodes in the one-dimensional Dirichlet problem of
(1) in the absence of a source term [1]. The exact solution for this particular
case is

ue.x/ D C1 C C2e
ax=k (21)

where C1 and C2 depend on the prescribed boundary conditions. Consider the trial
and test functions approximated by

uh D
NPX

ID1
‰IuI ;

Qvh D
NPX

ID1
Q‰IuI ;

(22)

where f‰IgNP
ID1 is the set of standard trail shape functions, e.g., finite element or RK

approximations,
˚ Q‰I

�NP

ID1 is the set of corresponding stabilized test shape functions,
and NP is the number of approximation functions.

Substitution of (22) into (11) yields

NPX

JD1
B
� Q‰I ; ‰J

�
uJ D 0; 8I: (23)

Due to the lack of Kronecker delta property in the RKPM shape functions, the
relationship between the generalized coordinates ue

I and the exact nodal values
bue

I 	 ue .xI/ D A C BeaxI=k must be considered:

ue
I D

NPX

JD1
ƒIJ
�1bue

I (24)

where ƒIJ D ‰J .xI/. Note that for linear finite elements, ƒIJ D ıIJ . Substitution of
the above into (23), and considering the partition of unity in the trial functions, the
constants associated with the boundary conditions disappear:

NPX

JD1

8
<

:

Z




k Q‰I;x‰J;xd
C
Z




a Q‰I‰J;xd


9
=

;
EJ D 0; 8I (25)
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where EI D
XNP

JD1ƒIJ
�1eaxJ=k. Using a stabilized shape function with nodal

stabilization parameter � I :

Q‰I D ‰I C �IL‰I (26)

we have, picking row I in (25):

�I D �

Z




k‰I;xEd
C
Z




a‰IEd


Z




kfL‰Ig;xEd
C
Z




aL‰IEd

(27)

where EI.x/ D
XNP

JD1‰J;xEJ . For linear finite element methods in uniform
discretizations, the above equation is not a function of nodal index, and yields the
classical stability parameter for SU/PG [1]:

� D h

2a




coth .Peh/ � 1

Peh

�

: (28)

In [11] it has been discussed that for RKPM, parameters in the form of (27)
depend on the approximation functions on the global level due to the transformation
between generalized values uI and nodal values uh(xI) and cannot be simplified to a
form such as (28). Thus, the generalization of the condition (27) for higher spatial
dimensions is not straightforward. Herein, we employ the classical parameter (28)
which is often generalized to higher spatial dimensions as [1]:

� D h

2a




coth .Peh;a/ � 1

Peh;a

�

(29)

where Peh;a D kak ha=2k, and ha is the grid (or element) dimension along the
direction of advection. For RKPM, the spacing ha may be taken as the length of
a representative nodal domain in the direction of the advection. The parameter (29)
has been shown to be suitable for RKPM with linear basis, so long as the support
parameter is not larger than roughly three times the nodal spacing [11].

4 Numerical Examples

In all numerical examples, RK approximations with linear basis and quartic B-spline
kernels with a normalized support of two are employed. In this case, all stabilization
methods with implicit gradients are identical due to the order of the basis vector
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used. In the comparisons made, “RKPM” denotes RKPM with no stabilization,
“SU/PG RKPM” denotes RKPM with standard (explicit) SU/PG stabilization, and
“IG-RKPM” denotes implicit gradient RKPM. For domain integration, high order
SCNI [20] is employed with 2nd order Gaussian quadrature in each nodal cell.

4.1 One-dimensional Model Problem

Consider the one-dimensional homogenous version of the model problem (1) on a
unit domain with a=k D 200:0, and s D 1:0, giving a grid Péclet number of 5.0 with
21 nodes employed. RKPM, RKPM with SU/PG stabilization, and IG-RKPM are
compared in Fig. 1. RKPM without stabilization yields large spurious oscillations in
the solution. The two stabilized methods give solutions which agree with the exact
solution, and very little difference between the two is observed, indicating that a
large increase in efficiency can be obtained with little lost by employing implicit
stabilization.

4.2 Advection Skew to the Discretization with Outflow
Boundary

Here a two-dimensional Dirichlet version of (1) with advection skew to the
discretization is considered, as shown in Fig. 2, where the jump in inflow boundary
condition along x D 0:0 is located at y D 0:2. A characteristic of this problem is that
both internal layers and boundary layers exist in the solution. The boundary layers
cause difficulty for numerical methods, just as in the one-dimensional case. Constant
advection and isotropic diffusion parameters are chosen as a D .cos ™; sin ™/ and
k D 10�6, respectively, and the domain is taken to be Œ0:0; 1:0��Œ0:0; 1:0� so that the
flow is convection-dominated. The domain is discretized by 31 � 31 nodes, which
gives a grid Péclet number much larger than unity.

Fig. 1 Comparison between
RKPM, explicit SU/PG, and
IG-RKPM in the model
problem. Markers indicate the
solution at nodal locations.
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Fig. 2 Problem statement for
advection skew to the
discretization.

Fig. 3 Advection skew to the discretization with ™ D atan.0:5/ for (a) RKPM, and (b) IG-RKPM.

First, the case of ™ D atan.0:5/ is considered, with RKPM and IG-RKPM
employed. As seen in Fig. 3, the magnitude of the RKPM solution is several
orders of magnitude greater than the exact solution (essentially pure advection of
the boundary condition), while IG-RKPM gives a stable solution. The values of
™ D atan.1:0/ and ™ D atan.2:0/ are then considered with IG-RKPM, where the
method exhibits stability in the presence of the fine boundary layers as shown in
Fig. 4. The slight overshoots in the solution are expected in linear methods which
do not have the variation diminishing property.
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Fig. 4 Advection skew to the discretization with IG-RKPM for (a) ™ D atan.1:0/, and (b) ™ D
atan.2:0/:

Fig. 5 Thermal boundary
layer problem statement.

4.3 Thermal Boundary Layer Problem

Consider the problem statement shown in Fig. 5 with linearly distributed advection
a D .2:0y; 0:0/, and diffusivity k D 7:0 � 10�4. The domain is taken as
Œ0:0; 1:0� � Œ0:0; 0:5� and is discretized by 31 � 16 nodes. This problem can be
interpreted as one exhibiting a thermal boundary layer on a steady flow between
two plates, where the top plate has unit velocity and the bottom plate is fixed. The
grid Péclet number calculated from the advection speed at the top surface of the
domain and the chosen nodal spacing is larger than unity. The RKPM and IG-RKPM
methods are considered, with the results shown in Fig. 6. Again, RKPM gives an
oscillatory solution while IG-RKPM gives a stable solution.

5 Conclusion

Meshfree methods offer smooth approximation spaces suitable for the gradient-type
stabilization employed for convection-dominated problems. While for linear finite
elements, all of the standard stabilization methods coincide due to vanishing higher
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Fig. 6 Solutions for the thermal boundary layer problem for (a) RKPM and (b) IG-RKPM.

order derivatives on element interiors, these methods can be properly constructed
by the RK approximation using linear basis. Gradient terms necessary, however,
are computationally expensive, due to the moment matrix inversion involved in the
gradients of meshfree shape functions. This problem is particularly exacerbated in
the G/LS and SGS methods where third order derivatives appear in the weak form
of the problem.

In this work, a new approach to construct a stable RKPM method for convection-
dominated problems is presented. Terms for the gradient-type stabilized methods are
implicitly introduced into the reproducing conditions under a unified framework that
can include the SU/PG, G/LS, and SGS methods. The implicit gradients completely
circumvent the costly derivatives otherwise necessary for stabilization. The only
deviation from the standard RKPM method is the modification of the constant vector
in the RK approximation for the test functions, and thus virtually no additional
computational cost is introduced, and implementation is simple. The benchmark
problems tested showed good performance of the proposed method and agreement
with solutions by explicit stabilization.
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Flow Analysis of a Wave-Energy Air Turbine
with the SUPG/PSPG Method and DCDD

Lucio Cardillo, Alessandro Corsini, Giovanni Delibra, Franco Rispoli,
and Tayfun E. Tezduyar

Abstract We present flow analysis of a wave-energy air turbine, specifically
a Wells turbine. The analysis is based on the Streamline-Upwind/Petrov-
Galerkin (SUPG) and Pressure-Stabilizing/Petrov-Galerkin (PSPG) methods
and discontinuity-capturing directional dissipation (DCDD). The DCDD,
first introduced to complement the SUPG/PSPG method in computation of
incompressible flows in the presence of sharp solution gradients, was also
shown to perform well in turbulent-flow test computations when compared to
the Smagorinsky large eddy simulation model. Our computational analysis of the
Wells turbine here, with results that compare favorably to the available experimental
data, shows that the DCDD method performs well also in turbomachinery flows.

1 Introduction

Computational flow analysis of renewable-energy systems has reached a level of
sophistication where it can now play a significant role in performance and design
studies. Recent advances in aerodynamic and fluid–structure interaction analysis
of wind turbines (see, for example, [1–11]) is a good illustration of that. Here we
focus on flow analysis of a wave-energy air turbine, specifically a Wells turbine [12],
which has been the subject of a number of computational studies [13–16]. The Wells
turbine rotor consists of multiple symmetrical airfoil blades arranged around a hub.
The baseline blade profile mostly comes from the NACA four-digit series [17].

Design of a Wells turbine is challenging because of the strong dependence of
the bidirectional flow rate on the actual sea conditions. Rotating at fixed speed, the
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turbine is capable of operating with acceptable efficiency only within a limited range
of flow rate around the peak-efficiency point. This is due to aerodynamic instabilities
linked to the onset of blade stall. For an accurate representation of the unsteady
flow behavior, the computational method used in flow analysis of Wells turbines,
and most turbomachinery for that matter, needs to be effective in addressing the
turbulent-flow nature of the problem.

Many computational challenges involved in analysis of complex flow problems
with turbulence have been addressed with a number of advanced numerical meth-
ods, including large eddy simulation (LES) models and stabilized and multiscale
methods. In turbomachinery research, LES-based methods have been proven to be
effective in increasing the solution accuracy compared to the Reynolds-averaged
Navier–Stokes (RANS) models and being still affordable. Tucker [18] reviewed
the LES and hybrid LES models in turbomachinery applications, focusing on the
Reynolds number effects on coarse grids. Jakirlic et al. [19] studied the flow in
a swirl combustor with a zonal LES–RANS approach. Borello et al. [20] used
advanced LES models to compute the aerodynamics of an axial fan. Krappel et
al. [21] investigated hydraulic turbines by means of a hybrid LES–RANS model
to predict the complex unsteady separation at partial-load conditions, proving the
approach to perform well where RANS models failed.

In finite element computation of flow problems, the Streamline-Upwind/Petrov-
Galerkin (SUPG) formulation of incompressible flows [22, 23], the SUPG formu-
lation of compressible flows [24–26], and the Pressure-Stabilizing/Petrov-Galerkin
(PSPG) formulation of incompressible flows [23, 27] are some of the most prevalent
stabilized methods. They are the predecessors of the variational multiscale (VMS)
[28–31] and space–time VMS (ST-VMS) [32, 33] methods. The VMS and ST-VMS
methods serve also as turbulence models and have been successful in computational
analysis of many complex flow problems (see, for example, [7, 9–11, 34–42]).

The discontinuity-capturing directional dissipation (DCDD) stabilization was
introduced in [23] to complement the SUPG/PSPG method in computation of flow
fields with sharp gradients. The DCDD stabilization takes effect where there is a
sharp gradient in the velocity field and introduces dissipation in the direction of that
gradient. The way the DCDD stabilization is added to the finite element formulation
precludes augmentation of the SUPG effect by the DCDD effect when the advection
and discontinuity directions coincide. The DCDD stabilization, together with the
SUPG/PSPG method, was also shown, first in [43–45], to perform well in turbulent-
flow test computations when compared to the Smagorinsky LES model. The test
computations for turbulent channel flow reported in [43–45] were preliminary and
at friction Reynolds number Re� D 395. A more detailed computational analysis of
turbulent channel flow, at Re� D 180, was reported in [46], with the DCDD again
performing well compared to the Smagorinsky LES model. Here we perform the
flow analysis of the Wells turbine based on the SUPG/PSPG method and DCDD
stabilization.

We provide the governing equations in Section 2, and describe the SUPG/PSPG
method in Section 3. The DCDD stabilization, together with validation results from
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[46], is presented in Section 4. Computational analysis of the Wells turbine is
reported in Section 5, and the concluding remarks are given in Section 6.

2 Governing Equations

Let ˝ � Rnsd be the spatial domain with boundary 	 , and .0;T/ be the time
domain. The Navier–Stokes equations of incompressible flows can be written on
˝ and 8t 2 .0;T/ as

�



@u
@t

C u � ru � f
�

� r � � D 0; (1)

r � u D 0; (2)

where �, u, and f are the density, velocity, and the external force, respectively. The
stress tensor � is defined as

� .p;u/ D �pI C 2�".u/: (3)

Here p is the pressure, I the identity tensor, � D �� the viscosity, � the kinematic
viscosity, and ".u/ is the strain-rate tensor:

".u/ D 1

2

�
.ru/C .ru/T

�
: (4)

The essential and natural boundary conditions for Eq. (1) are represented as

u D g on �g; n � � D h on �h; (5)

where 	g and 	h are complementary subsets of the boundary 	 , n is the unit normal
vector, and g and h are given functions. A divergence-free velocity field u0.x/ is
specified as the initial condition.

3 SUPG/PSPG Method

3.1 Stabilized Formulation

Given Eqs. (1)–(2), we form some suitably defined finite-dimensional trial solution
and test function spaces for velocity and pressure: S h

u , V h
u , S h

p , and V h
p D S h

p .
The stabilized finite element formulation of Eqs. (1)–(2) can be written as follows:
find uh 2 S h

u and ph 2 S h
p such that 8wh 2 V h

u and 8qh 2 V h
p :
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where

Ł.qh;wh/ D �
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C uh � rwh

�

� r � � .qh;wh/; (7)

� SGS D ��SGSE : (8)

Here nel is the number of elements and �SUPG and �PSPG are the SUPG and PSPG
stabilization parameters. The last term in Eq. (6) represents the subgrid scale (SGS)
turbulence model, which will be either the DCDD stabilization or the Smagorinsky
LES model in this paper. The symbols � SGS, �SGS, and E denote the SGS stress
tensor, effective SGS kinematic viscosity, and the SGS strain-rate tensor. We will
define �SGS and E in Section 4.

3.2 Stabilization Parameters

Various ways of calculating the stabilization parameters for incompressible flows
can be found in detail in [23, 47]. In this section we focus on the versions of the
stabilization parameters denoted by the subscript “UGN,” namely the “UGN/RGN”-
based stabilization parameters. For that, we first define the unit vectors s and r:

s D uh

kuhk ; (9)

r D rkuhk
krkuhkk : (10)

The components of .�SUPG/UGN corresponding to the advection-, transient-, and
diffusion-dominated limits were defined in [23] as follows:

�SUGN1 D
 

nenX

aD1
juh � rNaj

!�1
; (11)

�SUGN2 D �t

2
; (12)
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�SUGN3 D h2RGN

4�
; (13)

where nen is the number of element nodes, Na is the interpolation function associated
with node a, �t is the time-step size, and the “element length” hRGN is defined as

hRGN D 2

 
nenX

aD1
jr � rNaj

!�1
: (14)

Based on Eq. (11), the “element length” hUGN is defined as

hUGN D 2kuhk�SUGN1: (15)

Although writing a direct expression for �SUGN1 as given by Eq. (11) was pointed
out in [23], the element length definition one obtains by combining Eq. (11) and
Eq. (15) was first introduced (as a direct expression for hUGN) in [48]. The expression
for hRGN as given by Eq. (14) was first introduced in [23]. It was noted in [23]
that hUGN and hRGN can be viewed as the local length scales corresponding to the
advection- and diffusion-dominated limits, respectively. We now define .�SUPG/UGN

and .�PSPG/UGN as follows:

.�SUPG/UGN D



1

� r
SUGN1

C 1

� r
SUGN2

C 1

� r
SUGN3

�� 1r
; (16)

.�PSPG/UGN D .�SUPG/UGN: (17)

Equation (16) is based on the inverse of .�SUPG/UGN being defined as the r-norm of
the vector with components 1

�SUGN1
, 1
�SUGN2

and 1
�SUGN3

. We note that the higher the
integer r is, the sharper the switching between �SUGN1, �SUGN2, and �SUGN3 becomes.
This “r-switch” was introduced in [47]. Typically, r = 2. The expression for �SUGN3

given by Eq. (13) was proposed in [23]. The “SUPG viscosity” �SUPG is defined as

�SUPG D �SUPGkuhk2: (18)

The ST versions of �SUGN1, �SUGN2, �SUGN3, .�SUPG/UGN, and .�PSPG/UGN, given
respectively by Eqs. (11), (12), (13), (16), and (17), were defined in [23].

4 DCDD Stabilization

The DCDD stabilization was proposed in [23]. In describing it, we first define the
“DCDD viscosity” �DCDD and the DCDD stabilization parameter �DCDD:
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�DCDD D �DCDDkuhk2; (19)

�DCDD D hDCDD

2uref

krkuhkkhDCDD

uref
; (20)

where

hDCDD D hRGN: (21)

Here uref is a reference velocity (such as kuhk at the inflow, or the difference between
the estimated maximum and minimum values of kuhk). Combining Eqs. (19) and
(20), we obtain

�DCDD D 1

2


kuhk
uref

�2

.hDCDD/
2krkuhkk: (22)

Then the DCDD stabilization is defined as

SDCDD D
nelX

eD1

Z

˝e
�rwh W �Œ�DCDDrr � �CORR� � ruh

�
d˝; (23)

where �CORR is defined as

�CORR D �DCDD.r � s/2ss: (24)

4.1 Comparison of the DCDD and LES Models

Table 1 is a summary of how the DCDD stabilization and Smagorinsky LES model
compare. In the DCDD stabilization, the DCDD viscosity depends on the local

Table 1 DCDD stabilization and Smagorinsky LES model. Here l0, t�10 , and fd are
the length scale, time scale, and damping function of the model, and CSMAG is the
Smagorinsky coefficient

�SGS
1
2
.fDCDDhDCDD/

2kr kuhkk .fSMAGCSMAG�SMAG/
2
�
2".uh/ W ".uh/

� 1
2

l0 hDCDD D 2
�Pnen

aD1 jr � r Naj��1 CSMAG�SMAG D CSMAG .�x�y�z/
1
2

t�10 kr kuhkk �
2".uh/ W ".uh/

� 1
2

fd fDCDD D kuh
k

uref
fSMAG D

"

1� e



yC

26

�#

E
h

rr� .r � s/2 ss
i

� r uh 2".uh/



Flow Analysis of a Wave-Energy Air Turbine with the SUPG/PSPG Method and DCDD 45

Table 2 DCDD validation. Reynolds numbers, dimensions of the com-
putational domain (scaled by ı), number of grid points in x, y, and z
directions, and other features of the spatial discretization. The mesh is
uniform in the x and z directions for the LES and DCDD computations
and is made of hexahedral elements

DNS [49] LES DCDD

Re� 180 174.6 176.2

Reb � 5,600 5,600 5,600

Lx � Ly � Lz 4� � 2� 2� 2� � 2� 4=3� 2� � 2� 4=3�
nx � ny � nz 192� 129� 160 33� 119� 33 33� 119� 33
.�yC/min 0.05 0.96 0.97

.�yC/max 4.4 3.67 3.70

�xC � 12 34.3 34.6

�zC � 7 22.9 23.1

solution gradient, the velocity profile, and the element length in the direction of the
solution gradient. The way the DCDD stabilization is added precludes augmentation
of the SUPG effect by the DCDD effect when the advection and discontinuity
directions coincide.

4.2 DCDD Validation

The validation we present here is a summary of the computation reported in
[46]. The test problem is a fully developed unidirectional 3D plane channel flow
characterized by a friction Reynolds number of Re� D hu� ixztı=� D 180. The
channel walls are at y D ˙ı, the flow is in x direction, and h� � � ixzt denotes averaging
over x, z, and t. The Reynolds number based on the bulk velocity (ub), defined as
Reb D ub2ı=�, is 5,600. We compare the results obtained with the LES model
and DCDD stabilization to direct numerical simulation (DNS) results from [49].
Table 2 shows the Reynolds numbers, dimensions of the computational domain,
and the features of the spatial discretization. The boundary conditions are no-slip
at the channel walls and spatial periodicity in the x and z directions. In the LES
computation, CSMAG D 0:15.

Table 3 shows various flow parameters averaged over x, z, and t, including hucixzt,
which is the averaged value of the velocity at the center plane (y D 0), and the skin
friction coefficient, Cf D 2

�hu� ixzt

�2
=u2b. Table 3 also shows some experimental

values from [50]. For all parameters, the DCDD values are the ones very slightly
closer to the DNS and experimental values.
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Table 3 DCDD validation. Flow parameters averaged over x, z, and t

Dean’s correlation [50] DNS [49] LES DCDD

ub=hu� ixzt – 15.63 15.91 15.78

hucixzt=hu� ixzt – 18.20 18.36 18.32

hucixzt=ub 1.158 1.164 1.154 1.161

Cf 8:44� 10�3 8:18� 10�3 7:90� 10�3 8:03� 10�3

Table 4 Wells turbine.
Design parameters and
geometry details

Design parameters

Blade profile NACA0015

Flow rate (m3/s) 0.85

Rotor speed (rpm) 3,000

Wave specific power (kW/m) 5

Wave height (m) 0.8

Wave period (s) 4

Geometry details

Casing diameter (mm) 500

Hub-to-casing diameter ratio 0.75

Blade count 9

Blade chord (mm) 109

Blade height (mm) 60

Tip clearance (mm) 2.5

5 Computation

5.1 Problem Description

The equations are solved in the rotating reference frame of the turbine rotor.
Consequently, the computations are based on the version of Eq. (6) that includes the
non-inertial terms coming from using such a reference frame. In the implementation
of the stabilized formulations, the non-inertial terms are just added to the other
source terms. Alternatively, the rotation can be handled with moving-mesh methods
such as the arbitrary Lagrangian–Eulerian (ALE) methods (see, for example,
[1, 4, 5, 7]) or the ST methods (see, for example, [1–3, 6–11]). We compute the flow
in a Wells turbine originally designed for low flow rates, typical of Mediterranean
conditions [51]. The design power is 1.5 kW at 3,000 rpm. Design parameters and
geometry details are given in Table 4. A full-scale prototype was tested in laboratory
in steady-state operation, using a centrifugal fan to drive the air to the turbine.
The characteristic curves from measurements at 8 different flow rates are shown
in Figure 1.

The computational domain encompasses the annular passage between the casing
and the hub, bounded laterally by the two periodicity boundaries. These two
boundaries are located at 38% of the blade chord from the leading and trailing
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Fig. 1 Wells turbine.
Characteristic curves of
torque and efficiency from
measurements [51]
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Fig. 2 Wells turbine. Surface
mesh near the blade
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edges at mid-span radius. In the flow direction, the domain stretches one chord
length upstream and three chord lengths downstream from the blade section.
We use a structured mesh consisting of about 3 million hexahedral elements. The
distribution of the nodes in the axial direction is 26% upstream of the blade, and 74%
downstream. The mesh has increased refinement near the solid surfaces, including
the blade tip, casing wall, and the blade surfaces. Near those surfaces, the minimum
grid spacing (scaled by the blade chord) is 2 � 10�3. The maximum aspect ratio for
the elements is 64, and the average aspect ratio is 5. From a posteriori calculations,
the maximum yC value for the nodes closest to the solid surfaces is less than 5.
Figure 2 shows the surface mesh near the blade. Mesh independence was checked
by computing with 1.2M, 1.8M, and 2.7M nodes, using the rotor torque as the
convergence parameter. The torque difference between the computations with 1.8M
and 2.7M nodes was less than 1%. The hexahedral mesh we use for the computation
reported here has 2.7M nodes.

As the boundary conditions, we specify the relative velocity at the inflow section,
no-slip conditions on all solid surfaces, flow periodicity at the matching periodicity
boundaries, and zero stress at the outflow section. The velocity we specify at the
inflow boundary was obtained from the measured inlet velocity profile reported in
[52] by a modification making it consistent with the sea conditions observed at a
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Mediterranean location [53]. The inlet distributions of the turbulence quantities were
extracted from flow simulation [54] of an industrial ducted turbomachinery with
identical hub-to-casing diameter ratio and an upstream spinner cone. The simulation
is carried out during an interval of the expiration phase of the breathing cycle, when
the water column rise forces airflow through the turbine. The computation is carried
out at a flow rate of 0.93 m3/s, which is 9.4% above the design condition. The air
density and kinematic viscosity are 1.2 kg/m3 and 1:51 � 10�5 m2/s. The Reynolds
number based on the tip speed is 2:594 � 106.

The time integration is a second-order implicit Runge–Kutta method, with a time-
step size of 1:38�10�5 s, which translates to 4:34�10�3 radians per time step. The
number of nonlinear iterations per time is 6. In solving the linear equation systems,
we use 5 GMRES iterations with SOR preconditioning. The computation is carried
out for 3 rotor revolutions.

5.2 Results

Table 5 shows the turbine performance obtained experimentally [51] and with the
DCDD stabilization. The comparison indicates a very reasonable accuracy.

Figure 3 shows the instantaneous velocity magnitude behind the blade, displayed
on three meridional planes with locations given as a percentage of the blade chord.
The planes S1, S2, and S3 are at 5% from the leading edge, at the mid-chord, and
at 5% from the trailing edge. The flow evolves on the blade suction side under
the influence of a number of aerodynamic factors. On S1, we see a significant
acceleration at the leading edge due to the flow turning around the thick leading
edge. Notably, the flow does not accelerate uniformly along the radius but undergoes
a more intense pressure drop at the blade tip. At about mid-chord, two regions of
flow separation appear, one at the hub and the other at the tip. As shown on S2,
the blade boundary layer flow is already fully separated and the swirling flow area
extends to mid-span, as expected in near-stall operation. On S3, the instantaneous
velocity field shows clearly two co-rotating vortex systems, one at each end wall.

Figure 4 shows the isosurfaces of Q D 1
2

�k˝.uh/k2 � k".uh/k2� [20, 55], where
˝.uh/ D 1

2

�
.ruh/ � .ruh/T

�
. The isosurfaces shown are for a scaled value of

3,000. The scaling is based on the tip velocity and casing diameter. The vortex
patterns we see in Figure 4 are consistent with the observations we made for the
velocity magnitude, including the flow acceleration at the leading edge and the
vortex streams at the hub end wall and blade tip. The vortex visualization provides

Table 5 Wells turbine.
Performance

Experiment [51] DCDD

Torque (Nm) 5.2 5.1

Efficiency 0.59 0.62
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Fig. 3 Wells turbine. Instantaneous velocity magnitude behind the blade, displayed on three
meridional planes

Fig. 4 Wells turbine. Isosurfaces for a scaled Q value of 3,000. The isosurfaces are colored with
the scaled pressure, where the scaling is based on the tip velocity
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Fig. 5 Wells turbine. Instantaneous distribution of �DCDD=� on S1, S2, and S3

a more vivid picture of the complexity of the vortical structures, such as those at the
blade tip, which are the precursors of the blade stall at higher flow rates.

Figure 5 shows the instantaneous distribution of �DCDD=� on S1, S2, and S3.
The distribution provides hints on the inner workings of the DCDD stabilization.
The model adapts the �DCDD=� values from 5 to 10 in the undisturbed flow regions,
to 100 in the blade boundary layer strained by the acceleration at the leading edge,
to 200 in the swirling cores driven by the hub and tip flow separation. In that sense,
the DCDD stabilization functions like a hybrid LES–RANS model [56] suitable for
unsteady flow structures in turbomachinery.

6 Concluding Remarks

We have presented computational flow analysis of a Wells turbine used in wave-
energy conversion. The analysis was based on the SUPG/PSPG method and DCDD
stabilization. We have also provided an overview of the SUPG/PSPG method and
the DCDD. The DCDD was originally introduced to complement the SUPG/PSPG
method in computation of incompressible flows with sharp solution gradients. It
was also shown earlier to perform well in turbulent-flow test computations when
compared to the Smagorinsky LES model. Those test computations were for 3D
plane channel flow at a friction Reynolds number of Re� D 180. The computational
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analysis we presented here for a Wells turbine near-stall conditions, with an outcome
that is quite consistent with the experimental data, showed that the DCDD, in
combination with the SUPG/PSPG method, performs well also in turbomachinery
flows. We believe that in this class of turbulent-flow problems, the DCDD acts like
a hybrid LES–RANS model, giving us a computational analysis method that has
reasonable accuracy and is still affordable.
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The Advection–Diffusion Analysis of Smoke
Flows Around a Body

Takashi Nomura, Hiroshi Hasebe, and Takehiro Kobayashi

Abstract The corrosion due to airborne sea salt is among significant problems for
bridges located in coastal area. In order to evaluate its advection diffusion behavior,
a special wind tunnel experiment is conducted in which the flow around a square
cylinder is visualized by smoke. The brightness data of each frame recorded by a
mono-chromatic high-speed camera is digitized and transformed to concentration
of the smoke. The SUPG finite element analysis of the advection diffusion equation
is conducted and compared with the experimental data. Consequently, the results of
the isotropic diffusion analysis is not satisfactory, but the turbulent diffusion analysis
gives the result closest to the experiment.

1 Introduction

Maintenance of infrastructures has become important in our modern society in order
to keep our level of life satisfactorily within a limited public budget. In case of
bridge maintenance, one of the key issues is to prevent its corrosion. The corrosion
due to airborne sea salt is among significant problems for the bridges located in
coastal area. Especially, it is a serious problem in Japan because many land traffics
concentrate in narrow coastal area due to the mountainous topography. In order
to make reasonable maintenance plan against the corrosion by airborne sea salt, it
is necessary to evaluate the amount of the airborne sea salt which is flying to the
bridges as well as adhered on their surfaces.

On-site measurement of the amount of airborne sea salt is conducted in Japan.
There are two methods which are widely used in order to measure the amount of
airborne sea salt. One is the Doken (Public Works Research Institute) tank method,
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the other is the dry gauze method (JIS-Z2382) [1]. The Doken tank method uses the
special sampler tank called “Doken tank” to capture the airborne sea salt. The dry
gauze method exposes a dry gauze-patch near a bridge surface. However, because
we can measure the amount of airborne sea salt only at the position in which
these apparatuses located, it is difficult to reveal the advection diffusion behavior
of airborne sea salt around a bridge girder. Therefore, various methods to predict
the detailed behavior of airborne sea salt have been developed.

For example, Iwasaki et al. [2] proposed a method to evaluate partial corrosion
level from the observation data of a bridge exposed in airborne sea salts. Moreover,
Iwasaki et al. [3] conducted a numerical simulation to compare the simulation
data to his observation data. Chen et al. [4] proposed a prediction model for
the distribution of airborne sea salts in the coastal region of northern Taiwan
based on the result of several on-site measurements. Noguchi et al. [5] evaluated
the amount of airborne sea salts adhered to surfaces of bridges by using the
CFD method considering deposition and collision mechanisms of airborne sea salt
particles.

We are developing an experimental method to evaluate the advection diffusion
behavior of airborne sea salt around bridge girders [6]. In our method, a wind
tunnel experiment is conducted using a special flow visualization technique. From
each frame of the motion pictures of the smoke flow around cylindrical specimens,
the distribution of smoke concentration is evaluated through the image processing
technique described in the following section.

The present article describes another approach of ours based on the numerical
flow analysis. We have tried to simulate the advection diffusion phenomena of the
visualized smoke flow around a square cylinder.

2 The Objective Visualized Flow

2.1 The Experimental Apparatus

Figure 1 shows schematically our experimental method for the flow visualization
around a cylindrical specimen. A fog generator is deployed at the upwind end of
an open circuit wind tunnel. The smoke for the flow visualization is once stored
in a chamber and poured to the wind tunnel. The smoke flow around a test body
is illuminated by a laser sheet and the visualized flow images are recorded by a
monochromatic high-speed camera. The free stream velocity is 0.5 m/s. The frame
rate is 250 frames per second. The injection time of the smoke is 5 s.
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Fig. 1 Experimental setup of the smoke flow visualization.

Fig. 2 An instantaneous image of smoke flow and its brightness digits.

2.2 Image Processing Technique

Each recorded frame has a resolution of 640 pixels � 640 pixels of 8 bit dots to
represent the brightness of the dot as shown in Figure 2. We assume that the
brightness represents the concentration of smoke. By converting these digits to
smoke concentration, we can obtain a series of digital data to represent unsteady
advection–diffusion process of smoke flow around the test body.

Since the laser sheet spreads like a fan from the probe tip of laser sheet
generator, the brightness of the laser sheet attenuates as the distance from the tip
increases. Therefore, each frame image of the visualized smoke flow is corrected
by multiplying a correction factor to each pixel digit as shown in Figure 3. This
distribution of correction factor is obtained from the time-averaged image of the
visualized smoke flow without test body.
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Fig. 3 Correction of the laser light attenuation in the brightness image.

3 The Advection–Diffusion Analysis

3.1 The Basic Equation and the Numerical Method

The basic equation of the advection–diffusion analysis is given as follows:

@�

@t
C r .ui� � Kr�/ D 0 (1)

where � is the concentration, ui is the advection velocity, and K is the coefficient of
diffusivity.

The basic equation was discretized by the Streamline Upwind/Petrov–Galerkin
method (SUPG method) [7] using the hexahedral finite element. The time integra-
tion method is the forward Euler method.

3.2 The Advection Velocity

For the advection velocity of the advection–diffusion analysis, we have conducted a
turbulent flow analysis of the flow around a square cylinder at the Reynolds number
2000 which is identical to our flow visualization experiment.

The modified k-© model using the Kato–Launder model is employed as the basic
equations of the turbulent flow analysis. The transport equations of the turbulent
kinetic energy k and the dissipation rate © are converted to the logarithmic form [8].
The SUPG method is employed for discretization.

The finite element mesh and a snap shot of the computed streamlines are shown
in Figure 4. The computed vortex shedding period was 0.85 s which is close to the
experimental value 0.9 s.
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Fig. 4 The finite element mesh of the turbulent flow analysis around a square cylinder and a
snapshot of the computed streamlines.

3.3 The Boundary Condition of the Advection–Diffusion
Analysis

The same finite element mesh as Figure 4 is used for the advection–diffusion
analysis of the smoke flow. Figure 5 shows the boundary conditions. The time
history of concentration along the upstream boundary �.t/ is given as the parabolic
function of time t for 0 � t � 6:7s and �.t/ D 0 for t > 6:7s as shown in Figure 6.
This parabolic function is a simplified curve of the measured time history at the
point A of Figure 6. The point A is located at the distance of D=2 in the upstream of
the square cylinder where D .D 6 cm/ is the side length of the square section. This
time history �.t/ is specified to the all nodes along the line at the distance of D=2
in the upstream in the analysis as shown in Figure 5. Therefore, the upstream region
beyond this line is out of consideration in the present advection–diffusion analysis.

Fig. 5 The boundary conditions of the advection diffusion problem (DD 6 cm is the side length
of the square cylinder).
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4 The Computed Results

4.1 The Isotropic Diffusion Analysis

We have conducted a series of analysis by changing the value of the diffusivity K
in Equation (1) under the assumption that K is uniform all over the flow field. The
cases of four different values of K D 0:1; 1:0; 5:0; and 10:0 cm2=s are computed.

Figure 7 shows two instantaneous spatial distributions of the computed smoke
concentration for the case of K D 1:0 cm2=s. At t D 4:0s, the smoke concentration
at the upstream boundary is high and most of the supplied smoke flows with main
streams towards the downstream open boundary. At t D 9:0s, the supply of the
smoke at the upstream boundary has ended at t D 6:7s as shown in Figure 6 and
smoke in the main stream region has already flowed out through the downstream
open boundary. Some smoke is left around the square cylinder since the flow speed
in this area is relatively slow.

Figure 8 shows the four cases of computed time histories of the nodal concen-
tration at the two points indicated in Figure 8 in comparison with the experimental
time histories. At point C, the time histories of the four cases of diffusivity K are

Fig. 6 The time history of concentration along the upstream boundary; the measured time history
at the point A is simplified to �.t/:

Fig. 7 The computed distribution of smoke concentration of the case of isotropic diffusion K D
1:0 cm2=s at t D 4:0s and 9:0s:



The Advection–Diffusion Analysis of Smoke Flows Around a Body 61

Fig. 8 The computed time histories of smoke concentration at the point B and C of the isotropic
diffusion cases.

almost identical since this location is outside of the separation shear layer from
the leading corner of the square cylinder. The four time histories reasonably follow
the experimental time history. The fine fluctuation in the experiment is not shown
in the computation because the flow analysis is the Reynolds averaged turbulence
model.

On the contrary, at point B which is inside the separation shear layer, the
computed time histories are different for different values of diffusivity K. The time
history of K D 1:0 cm2=s follows the experimental history well from the initiation
to the highest value thought the duration is much longer than the experiment.

4.2 The Turbulent Diffusion Analysis

As the computations of the isotropic diffusion are not satisfactory, we have
introduced the turbulent diffusivity to the advection–diffusion analysis. A typical
turbulent diffusivity Kt is given as follows:

Kt D �t

Sct
(2)
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Fig. 9 The distribution of
turbulent diffusivity Kt at
tD 0.9 s.

where �t is the eddy viscosity and Sct is the turbulent Schmidt number. The standard
value of Sct is 0.9.

The eddy viscosity �t can be defined as follows:

�t D C�
k2

"
(3)

where k is the turbulent kinetic energy, " is the dissipation rate, and C� D 0:09 is
the k � " model constant.

The eddy viscosity �t can be computed from the k � " model analysis. Figure 9
shows an example distribution of turbulent diffusivity Kt in our computation. The
turbulent diffusivity Kt is high at the region where two separation shear layers
encounter in the wake of the square cylinder.

Figure 10 shows the computed time histories of smoke concentration at the same
two points as Figure 8. The time history at point B of the case of turbulent diffusivity
Kt shows improved duration though the maximum value is a little higher than that
of the experiment.

Figure 11 shows the computed instantaneous distribution of smoke concentration
around the square cylinder in the cases of turbulent diffusivity Kt and isotropic
diffusivity K D 1:0 cm2=s at t D 9:0s. In case of the isotropic diffusion, the smoke
still remains along the upper and lower side of the cylinder. On the contrary, in
case of the turbulent diffusivity, the smoke becomes faint because of harder mixing
process than the isotropic diffusivity.

5 Concluding Remarks

A finite element analysis of the advection–diffusion equation is conducted to
simulate smoke concentration around a square cylinder. The analysis is compared
with a digitized data of smoke flow visualization of a wind tunnel experiment. The
modified k � " model is used to obtain the advection velocity data.



The Advection–Diffusion Analysis of Smoke Flows Around a Body 63

Fig. 10 The computed time histories of smoke concentration at the point B and C of the isotropic
diffusion case.

Fig. 11 The computed smoke concentration around the square cylinder at tD 9.0 s. (a) Turbulent
diffusivity Kt. (b) Isotropic diffusivity KD 1.0 cm2/s.

For the diffusivity of the advection–diffusion equation, the isotropic diffusivity
and the turbulent diffusivity are employed and the computed results are compared.
It revealed that the analysis using the turbulent diffusivity gives the concentration
behavior closest to the experiment.
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Finite Element Computation of Buzz Instability
in Supersonic Air Intakes

V.M. Krushnarao Kotteda and Sanjay Mittal

Abstract An intake is a duct designed to provide sufficient amount of air at low
speed to the engine face, at high efficiency and with little distortion. The physical
shape of the intake is fundamentally the same as that of a convergent-divergent
nozzle. Inlets may have different shape and size depending on the speed of the
aircraft. An inlet must be able to sustain high pressure that exists at the engine
face. Supersonic intakes may be associated with flow instability at relatively high
back pressure at the engine face. The buzz instability involves periodic filling and
discharge of the plenum chamber, complex shock-boundary layer interaction, shear
layer/slip stream-boundary layer interaction, transient shock movement and flow
separation. It adversely affects the mass flow entering the engine and may lead to
combustion instability, engine surge and flame out. It can also lead to deterioration
of the performance of propulsion system, thus causing catastrophic loss in thrust. In
this article we describe our computational efforts in understanding flows in intakes
of supersonic vehicles. The flow instabilities in a Y-intake and mixed compression
intake are studied numerically via a stabilized finite element method.

1 Introduction

Supersonic flow entering an aircraft engine needs to be slowed down to low
subsonic speed for efficient functioning of the compressor, turbine and combustor.
A supersonic intake slows down the flow by efficiently converting its kinetic
energy to higher temperature and pressure. The intake can be one of the various
types: external, internal and mixed compression intake [1, 2]. The simplest external
compression intake is of the pitot type. In this intake, the compression of the flow
takes place via a normal shock. As a result, the flow downstream of the shock is
subsonic. However, the pressure loss across the normal shock is rather high. This
leads to relatively large loss of thrust by the engine for high flight Mach number.
Therefore, despite its simplicity, a pitot intake is generally used only if the flight
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Mach number (M1) is below 1.6. For M1 > 1:6, a multi-shock system inlet is used
where the compression takes place through a series of oblique shocks followed by
a normal shock outside the inlet duct. It is also possible to design an intake where
the compression takes place within the duct. The internal compression intakes are
associated with starting-up problems and require a complex shock control system
for starting the inlet. For M1 > 2:5, a mixed compression intake is preferred
where the compression takes place inside as well as outside the inlet. The mixed
compression intake is characterized by multiple reflected oblique shocks in the
convergent portion and a weak terminal normal shock immediately downstream of
the throat. Mixed compression intakes are less susceptible to unstarting problem
compared to internal compression intakes.

Owing to the curved shape of the fuselage and to meet the requirement of
compactness the shape of an external intake, operating at M1 < 1:6, is generally
curved with increasing area from inlet to exit. Two types of commonly used intakes
are: Y-intake and S-intake. Y-intakes consist of a pair of ducts in the wing root or on
the two sides of a fuselage, feeding a single engine via a common section of duct.
They are also referred to as twin intakes or bifurcated intakes. As the sideslip angle
(ˇ) increases, the mass flow through the windward duct increases while it decreases
in the leeward duct. Buzz instability may appear in a Y-duct for relatively large
values of back pressure at the engine face [3–8]. The instability is accompanied by
an asymmetry of the flow in which one limb operates at a higher mass flow than the
other. Asymmetric flow in the two ducts of the Y-intake produces an imbalance of
pressure forces on the airplane which may lead to severe problems with the stability
and control of the aircraft [9].

A typical mixed compression inlet [1, 10] consists of two parts: supersonic
diffuser just upstream of the throat and a subsonic diffuser that lies downstream
of the throat section. A mixed compression intake may also be associated with
buzz instability for relatively large pressure at engine face. The instability was
first reported by Oswatitsch [11]. The tests were conducted for supersonic missile
flights for Mach number in the range of 2.5–3.0. He observed buzz during his
experiments, but disregarded it. Later (1945–1955), buzz was observed in many
of the extensive experiments that were conducted at NASA, Langley on external
compression inlets. Ferri and Nucci [12] conducted detailed experiments on an
axisymmetrical external compression air intake. The occurrence of buzz instability
was attributed to the velocity discontinuity across vortex sheet originating at the
intersection of conical shock and strong shock ahead of the intake entrance. The
fluctuations began when this vortex sheet approached the inner surface of cowling.
This type of oscillations is referred to as Ferri type buzz. Dailey [13] conducted
experiments on an axisymmetrical external compression intake with an engine
incorporated in the design. He attributed the origin of the buzz oscillations to a
random pressure pulse from subsonic diffuser. This type of oscillations is referred
to as Dailey type buzz.

Flow in an intake involves complex flow features such as shock emanating
from the engine cowl, multiple shock reflections, terminal/bow shock and shock-
boundary layer interactions and associated flow separations. In this work, we
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investigate buzz instability in Y-duct and mixed compression intakes. The effect of
sideslip angle on the performance of the Y-intake is studied at various back pressure
ratios. The effect of bleed [14, 15] and its locations on the performance of the mixed
compression intake is also investigated. The equations governing the flow are the
compressible Navier-Stokes equations in the conservation law form. A stabilized
finite element formulation based on conservation variables is used to solve the flow
equations. The SUPG (Streamline-Upwind/Petrov-Galerkin) stabilization method
[16–20] is employed to stabilize the computations against spurious numerical
oscillations due to advection dominated flows. A shock capturing term is added
to the formulation to provide stability to the computations in the presence of
discontinuities and large gradients in the flow [20–24].

2 The Governing Equations

The Navier-Stokes equations governing the fluid flow, in the conservation form, are
given as
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where �, u, p, � , e, h and q are the density, velocity, pressure, viscous stress tensor,
total energy per unit mass, enthalpy per unit mass and heat flux vector, respectively.
The viscous stress tensor is defined as
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where � is the coefficient of viscosity and ıij is the Kronecker delta. It is assumed
that � is related to � by the Stokes hypothesis as � D � 2

3
�. The total energy per

unit mass is defined as e D cv� where � is the temperature and cv is the specific
heat at constant volume. The enthalpy per unit mass is defined as h D cp� where
cp is the specific heat at constant pressure. The fluid is assumed to be calorifically
perfect. The equation of state, for the ideal gas, is p D �R� where R is the ideal
gas constant. Assuming the medium to be isotropic, the heat flux vector is related
to the temperature gradient as qj D �� @�

@xj
, where � is the heat conductivity. The

Prandtl number, Pr D cp�

�
, relates the heat conductivity to the fluid viscosity, and is

assumed to be a constant (D 0:72). The coefficient of dynamic viscosity depends on
the temperature and is assumed to follow the Sutherland’s law.
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2.1 The Quasi-Linear Form of Flow Equations

The flow equations (1)–(3) can be rewritten in the following form:
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where U D .�; �u1; �u2; �e/T is the vector of conservation variables in two
dimensions. Fi and Ei are the Euler and viscous flux vectors, respectively, defined as
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Equation (5) is rewritten in a quasi-linear form:
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where Ai D @Fi
@U is the Euler Jacobian matrix, and Kij is the diffusivity matrix such

that Kij
@U
@xj

D Ei. The boundary conditions are represented as U D g on 	g and
n � E D h on 	h where n is the unit normal to the boundary of the domain. The
initial condition on the U is specified as U.x; 0/ D U0 on ˝.

3 Finite Element Formulation

Consider a finite element discretization of the domain ˝ into sub-domains ˝e; e D
1; 2; 3; : : : ; nel, where nel is the number of elements. Based on this discretization,
we define the finite element trial function space S h and weighting function space
V h for conservation variables. These function spaces are selected by taking the
Dirichlet boundary condition into account as subsets of ŒH1h.˝/�ndof , where H1h.˝/

is the finite dimensional function space over ˝ and ndof is the number of degrees of
freedom.

The stabilized finite element formulation of equation (8) is given as follows: find
Uh 2 S h W 8 Wh 2 V h the following is satisfied:
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In the variational formulation given by Eq. (9), the first two terms together with
the right-hand side term constitute the Galerkin formulation of the problem. The
first series of element level integrals in Eq. (9), and involving � , are the SUPG
stabilization terms. They stabilize the computations against node-to-node spatial
oscillations in the advection dominated flows. The SUPG formulation for the
convection dominated flows was introduced by Hughes and Brooks [16] and Brooks
and Hughes [17]. The SUPG method for the compressible Euler equations was
developed by Tezduyar and Hughes [18] and Hughes and Tezduyar [19].

The SUPG stabilizations may not be able to effectively control the localized
oscillations that arise due to sharp layers and discontinuities. Hughes et al. [21]
introduced a discontinuity-capturing term that senses the sharp layers in the solution
and acts only in the local region. In that sense, unlike the SUPG, it is a non-
linear method even when it is applied to a linear advection-diffusion equation. The
SUPG formulation along with the discontinuity-capturing term was recast in the
entropy variables formulation and can be found in the work by Hughes et al. [22].
It was shown in Le Beau and Tezduyar [23] and Le Beau et al. [24] that the
accuracy of the SUPG formulation in conservation variables when supplemented
with the discontinuity-capturing term, introduced originally for entropy variables
formulation, gives comparable accuracy. The second series of element level integrals
in the formulation given by Eq. (9) are the shock capturing terms that stabilize the
computations in the presence of sharp gradients [23]. The stabilization parameters
� and ı are the ones that were used in our earlier work [15, 20, 25–27] and
similar to those employed by Aliabadi and Tezduyar [28]. The application of this
formulation to compute various internal and external flows can be found in our
earlier articles [14, 15, 20, 25–27, 29–32]. The time discretization of the variational
formulation given by Eq. (9) is done via the generalized trapezoidal rule. For
unsteady computations, we employ a second-order accurate-in-time procedure.

4 Flow in a Y-Intake

The geometry of the intake used for the present computations is adapted from the
one used by Jolly et al. [8] for their laboratory experiments. We have considered
the Y-duct geometry obtained by the intersection of the duct with a plane passing
through its half height. The details of the geometry can be found in our other
work [32]. The length of the intake duct up to the merger section is used as the
characteristic length to non-dimensionalize all the length scales. At larger values of
back pressure (pb), flow reversal might occur at the exit of the intake. This poses
numerical difficulty in terms of mass entering the computational domain through a
boundary on which outflow conditions are imposed. To circumvent this situation a
duct of length 0.6 units is attached at the exit of the intake. pb is specified at the end
of this duct except when the flow is supersonic. The width of the duct at the inlet is
0.1156 units. The ratio of the outlet to inlet area is 1.15. The spacing between the left
and right limb at the inflow is 0.4 units. The length of the splitter plate at the lip of
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the inlet is 0.0572 units. An important quantity that governs the flow in the intake is
pb=pi. This represents the ratio of the back pressure to the free stream static pressure
(pi). The free stream Mach number is 1.5. The Reynolds number (Re), based on the
width of the duct at the inlet, the free stream speed and viscosity, is 1 � 105.

The performance of the intake is studied for 2:1 � pb=pi � 3:44 and
0ı � ˇ � 5ı. Various flow regimes are observed. The onset of instability occurs at
pb=pi D 3:122 for ˇ D 5ı. It is associated with flow separation inside the leeward
limb of the Y-intake. The nature of this flow separation is periodic in time and causes
alternate filling and discharge of the plenum. It is also associated with asymmetry in
the movement of the bow shock upstream of the windward and leeward limbs. The
onset of instability occurs at relatively high back pressure ratio for low ˇ. Beyond
a certain pb=pi, the bow shock moves far upstream and leads to unstarting of the
intake. The intake unstarts at pb=pi D 3:36 for ˇ D 5ı. The critical pb=pi for unstart
of the intake decreases with increase in ˇ.

The onset of buzz instability in the intake is observed at pb=pi D 3:122 for
ˇ D 5ı. The flow and the related parameters for this case are shown in Fig. 1. The
first three frames show a buzz cycle. In the first and last flow frames, the bow
shocks are at their most downstream locations while they are at their most upstream
locations in the second frame. The net flow in the windward limb is always positive.
However, the leeward limb experiences a reverse flow during part of the buzz cycle
as also seen in the time history of the mass flow rate. Streamlines as well as vorticity
fields are shown in the right column of Fig. 1. The upstream movement of the
bow shock can be seen in the second frame. It is accompanied with an upstream
movement of the vortex, located in the duct beyond the merger section, and the
reverse flow in the leeward limb. The negative mass flow rate in the leeward limb
corresponding to the second frame can be seen in the time history. The bow shocks
upstream of the windward and leeward limbs move back and forth leading to very
large amplitude oscillations in the mass flow rate delivered to the engine face. The
buzz cycle is fairly periodic and repeats itself. Interestingly, the net mass flow rate
through the intake is still positive and the engine continues to receive air flow, but
at a reduced level. More details and a large range of flow parameters can be seen in
other work [32].

5 Flow in a Mixed Compression Intake

The geometry used in the computation is the one utilized by Anderson and Wong
[33] for their experimental investigations. The details of the geometry can be found
in earlier papers [14, 15, 27, 30, 31]. The length of the intake is used as the
characteristic length to non-dimensionalize all the length scales. The throat area of
the original geometry used by Anderson and Wong [33] is not sufficient to start the
intake without boundary layer bleed. The separation of the boundary layer is fuelled
by the shocks associated with the ramp and cowl surfaces. The thick boundary layer
reduces the effective throat area that is not enough to allow the start-up shock to



Finite Element Computation of Buzz Instability in Supersonic Air Intakes 71

-0.05

0.00

0.05

0.10

0.15

100 120 140 160 180 200

• m
m

t

Leeward limb
Windward limb

2.8

3.2

3.6

100 120 140 160 180 200

p m
 /p

i

t

Leeward limb
Windward limb

t = 149.0

t = 160.0

t = 140.0

0 0.5 1.51.0 −10.0 0.0 10.0

Fig. 1 M
1

D 1:5, Re D 1 � 105, ˇ D 5ı, pb=pi D 3:122 flow in the Y-intake: Mach number
field (left) and vorticity along with streamlines (right) at various time instants during onset of
buzz instability. Time histories of the mass flow rate in the windward and leeward limb (left) and
pressure at the middle of the windward and leeward limb (right) at the merger section are shown in
the last row. The time instants at which the flow is shown are marked on these plots.

pass through. Therefore, the intake unstarts. Anderson and Wong [33] had to utilize
bleed in the original geometry for starting the flow. Bleed is utilized to control
the boundary layer separation and, therefore, to overcome the start-up problem of
the intake. A certain percentage of the intake capture mass flow is bled out through
two sections on each of the ramp and inner surface of the cowl wall. The free stream
Mach number of the flow entering the inlet is 3.0. Re, based on the length of the
inlet, the free stream speed and viscosity, is 1 � 106. A duct is attached at the exit
of the intake and the back pressure is specified at the end of this duct. The length of
the duct is twice that of the intake. Back pressure is specified at the exit of the duct
except when the outflow is supersonic. As back pressure ratio increases, the normal
shock moves upstream toward the throat. At the critical condition, it is located at
the throat of the intake, at least in a time-averaged sense. Further increase in the
pb=pi pushes the normal shock upstream of the throat leading to sub-critical state.
In certain cases the sub-critical operation of the intake can lead to unsteady flow, also
known as buzz. Two kinds of unsteady oscillations are observed: little buzz [12] and
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big buzz [13]. The little buzz arises out of shear layer instabilities of the separated
boundary layer or due to slip stream as a result of shock interactions. It occurs for
low sub-critical condition. The big buzz arises due to the shock-induced boundary
layer separation on the compression ramps. It usually occurs for high sub-critical
conditions.

The performance of the intake has been studied for various pb=pi and amounts
of bleed. Different combinations of mass flow bled from various regions have been
tested. The bleed velocity is calculated for the captured mass flow of air, which is
bled from the intake walls, over a finite length. This velocity is specified on the
entire bleed boundary. It is found that a minimum of 6% bleed of the captured
mass flow rate, upstream of the throat, is needed to start the intake. This bleed
reduces the boundary layer separation enough to allow sufficient mass flow to enter
the engine face. Little buzz is observed for pb=pi D 10:36 and big buzz occurs
for pb=pi D 11:2. Increase in bleed to 15% causes the flow separation to become
milder. The little and big buzz are delayed and occur for pb=pi D 12:6 and 13.86,
respectively, for this case. More details on this flow and a larger range of flow
parameters can be found in our earlier work [14, 15, 30, 31].

5.1 Little Buzz

The Mach number field at various time instants during one oscillation of little buzz
oscillation is shown in Fig. 2. The flow at t D 33:45 corresponds to, approximately,
the maximum mass flow rate through the throat. It is also associated with the lowest
pressure at the inlet of the intake in the buzz cycle. The separated shear layer
becomes unstable downstream of the throat. A jet-like flow structure is formed that
constricts the flow in the subsonic portion of the diffuser. As a result, the shock is
pushed upstream of the throat leading to a sub-critical situation. It is well known
that the location of shock upstream of the throat in the convergent part of the intake
is unstable. The separated boundary layer on the cowl wall plays an important role
in determining the position of the normal shock. This can be observed clearly in
the figure. The growth of the separated boundary layer causes the normal shock to
move further upstream. Consequently, the mass flow entering the intake reduces.
The increase in the angle of the oblique shock on the first ramp can be clearly
observed at t D 33:45. The flow at t D 34:15 corresponds to low mass flow rate
through the throat. It is also associated with close to the highest pressure at the inlet
of the intake in the buzz cycle. Once sufficient pressure builds up at the inlet of the
intake, the flow once again begins and the normal shock moves toward the throat
and inside the intake. The cycle is again repeated. The oscillation cycle includes
expelling of shock from throat region, increasing the shock angle of first ramp and
returning of shock back to the throat region. The cyclic nature of the flow separation
at the cowl lip can also be seen in the figure.
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D 3:0, Re D 1 � 106, pb=pi D 12:6 flow in the air intake with 15% bleed: the Mach
number field for the unsteady flow at various time instants during one little buzz cycle. Also shown
in the bottommost row are the time histories of the pressure at a point located at (0.2, 0.1) and the
mass flow rate at the throat. The time instants at which the flow is shown are marked on these plots.

 0

 5

 10

 15

 20

 44  44.5  45  45.5

 p
/p

i

t

-0.10

 0.00

 0.10

 0.20

 44  44.5  45  45.5

• m
t

t

3

0

1

2

t = 45.1

t = 45.2

t = 44.7

t = 44.9

Fig. 3 M
1

D 3:0, Re D 1 � 106, pb=pi D 11:2 flow in the air intake with 6% bleed: the Mach
number field for the unsteady flow at various time instants during one big buzz cycle. Also shown
in the bottommost row are the time histories of the pressure at a point located at (0.2, 0.1) and the
mass flow rate at the throat. The time instants at which the flow is shown are marked on these plots.

5.2 Big Buzz

The Mach number field at various time instants during one cycle of big buzz is
shown in Fig. 3. The shock in the convergent part of the intake is unstable and moves
upstream causing the boundary layer on the cowl and ramp surfaces to separate. The
separated regions block the flow in the intake. A bow shock forms upstream of the
first ramp can be seen at t D 44:7. At t D 44:9, vortices due to flow separation
in the intake spill over outside the cowl and carried by the flow. As the bow shock
moves downstream, the oblique shock at the first ramp reappears and its intersection
with the bow shock leads to the formation of a lambda shock, which also moves
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downstream toward the throat. In the meantime, a pressure pulse originating in the
subsonic diffuser moves upstream. It can be seen at t D 45:1. It hits the moving
lambda shock and moves further upstream through the separated boundary layer
along the ramp wall and causes flow separation on the first ramp. In addition to the
earlier shock structure, the flow separation at the ramp results in a new bow shock
as seen at t D 45:2. The buzz cycle is self-sustained and repeats itself.

6 Conclusions

A stabilized finite element method is used to investigate the buzz instability in two
types of supersonic intakes. The viscous flow in a Y-intake in two dimensions is
studied for 2:1 � pb=pi � 3:44 and 0ı � ˇ � 5ı. The free stream Mach number of
the flow entering the intake is 1.5 and the Reynolds number, based on the width
of the duct at the inlet, is 1 � 105. The flow is unsteady at low back pressure
ratios and becomes steady at moderate back pressure ratio. At relatively high back
pressure ratio, the flow loses stability leading to buzz. It unstarts beyond a certain
back pressure ratio. In the buzz instability the bow shocks oscillate back and forth
upstream of the limbs of the intake. It is associated with flow separation inside
the leeward limb of the Y-intake leading to reversal of flow. The flow separation is
periodic in time and causes alternate filling and discharge of the plenum. The intake
unstarts without undergoing buzz instability as the back pressure ratio is increased
for zero sideslip angle.

The viscous flow in a mixed compression intake is studied for various bleed
configurations. The free stream Mach number is 3.0 and the Reynolds number, based
on the captured area of the intake, is 1 � 106. The back pressure is applied at the
downstream end of the duct and progressively increased to study the flow for various
values of back pressures. As the back pressure is increased, the normal shock moves
upstream toward the throat. At the critical condition it is located at the throat of the
intake, at least in a time-averaged sense. Further increase in the back pressure pushes
the intake to sub-critical state and leads to one of the two situations. In the first case,
the normal shock is completely expelled out of the intake leading to spillage of flow
over the cowl and unstarting of intake. In the second situation, buzz is observed. This
corresponds to oscillation of the normal shock as well as the flow in the convergent
part of the intake. It is also associated with cyclic filling and discharging of the
intake.
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SUPG/PSPG Computational Analysis of Rain
Erosion in Wind-Turbine Blades

Alessio Castorrini, Alessandro Corsini, Franco Rispoli, Paolo Venturini,
Kenji Takizawa, and Tayfun E. Tezduyar

Abstract Wind-turbine blades exposed to rain can be damaged by erosion if not
protected. Although this damage does not typically influence the structural response
of the blades, it could heavily degrade the aerodynamic performance, and therefore
the power production. We present a method for computational analysis of rain
erosion in wind-turbine blades. The method is based on a stabilized finite element
fluid mechanics formulation and a finite element particle-cloud tracking method.
Accurate representation of the flow would be essential in reliable computational
turbomachinery analysis and design. The turbulent-flow nature of the problem
is dealt with a RANS model and SUPG/PSPG stabilization, the particle-cloud
trajectories are calculated based on the flow field and closure models for the
turbulence–particle interaction, and one-way dependence is assumed between the
flow field and particle dynamics. The erosion patterns are then computed based on
the particle-cloud data.

1 Introduction

Wind turbines operating at high latitudes or off-shore are exposed to heavy rain.
In large horizontal-axis wind turbines (HAWT), at normal operating conditions, the
blade-tip velocity range is 90–110 m/s, causing rain-driven erosion that influences
the overall turbine performance. Various field studies [1, 2] show that the maximum
power in a turbine with deeply eroded blades could be down as much as 20% of
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the rated nominal power. Wood [3] and 3M [2] reported that, in severe climates,
serious damage to the blade leading edge can be seen after two years of operation.
These findings indicate the critical role erosion could play in the scheduling of the
wind-turbine maintenance and even in the early stages of the wind-turbine design.

As in any turbomachinery erosion problem, the dynamics of the dispersed
phase carried by the turbulent flow is affected by the inertia and drift velocity of
the particles, and the physical and chemical properties of both the particles and
the target surface play a role. Therefore accurate representation of the particle-
laden flow is essential in reliable computational turbomachinery analysis and design,
together with case-specific erosion models [4, 5].

Motivated by in-service erosion in aero-engines, in 1970s several researchers
started developing methods for computing the particle trajectories and related
erosion in gas turbine components. For example, Tabakoff and coworkers [6–8]
carried out particle-trajectory computations in axial and centrifugal turbomachinery,
substantiating the interaction between the particle dynamics and the inertial forces
in rotating cascades. Later numerical studies [9, 10] focused on various modeling
aspects of sand erosion. In simulation of particle-laden flows, Corsini et al. [11]
pointed out turbulence–particle closure modeling as one of the main computational
challenges. In wind-turbine erosion, on the other hand, most work reported in the
open literature focused on maintenance and technology issues related to protective
coatings [1, 2, 12–17]. While rain erosion in wings has been studied systematically
in dedicated experimental test rigs [13, 18, 19], for wind turbines the experiments
have been performed on blade specimens rather than the whole blade [1, 12].

In this paper, we present a computational method for simulation of particle-laden
flows in turbomachinery. The emphasis here is on the turbulence–particle interaction
and rain-driven erosion in a HAWT designed with a rated power of 6 MW [20].
The method is based on a stabilized finite element fluid mechanics formulation
and a finite element particle-cloud tracking (PCT) method. The PCT method was
originally formulated by Baxter and Smith [21], and then further developed [22, 23]
and improved to obtain statistically independent results [24]. One-way dependence
is assumed between the flow field and particle dynamics, that is, particle (and cloud)
motion is driven by the flow but the flow does not see the particles. The trajectory
of the particle-cloud center is calculated with a finite element method. The discrete
representation of the cloud is based on the elements of the particle mesh inside
the cloud with trajectory-dependent radius. The tracking method accounts for the
drifting-velocity gradient in the near-wall regions [22, 25].

The turbulent-flow nature of the problem is dealt with a 3D Reynolds-
Averaged Navier–Stokes (RANS) model and the Streamline-Upwind/Petrov-
Galerkin (SUPG) [26] and Pressure-Stabilizing/Petrov-Galerkin (PSPG) [27, 28]
stabilizations. These are complemented with the “DRDJ” stabilization [29–33].
The stabilization and discontinuity-capturing parameters to be used with the SUPG
and PSPG formulations received much attention (see, for example, [29, 34–54]).
Here we use the ones given in [39]. The particle-cloud trajectories are calculated
based on the flow field and a closure model for the turbulence–particle interaction.
The closure model utilizes the scale-separation feature of the variational multiscale
(VMS) method [55]. We use an in-house parallel finite element solver [56].



SUPG/PSPG Computational Analysis of Rain Erosion in Wind-Turbine Blades 79

In Section 2, we provide an overview of the mathematical model, including the
RANS and PCT models. The SUPG/PSPG stabilized formulations for the Navier–
Stokes and RANS closure equations are described in Section 3. In Section 4, we
describe the discretized particle equations, including the turbulence–particle inter-
action. The rain-drop erosion model is described in Section 5. The computations are
presented in Section 6, and the concluding remarks are given in Section 7.

2 Mathematical Model

2.1 Fluid-Phase RANS Model for Incompressible
Turbulent Flows

Let˝ � Rnsd be the spatial domain with boundary 	 , and .0;T/ be the time domain.
The unsteady RANS equations of incompressible turbulent flows can be written on
˝ and 8t 2 .0;T/ as

�



@u
@t

C u � ru � F

�

� r � � D 0; (1)

r � u D 0; (2)

�



@�

@t
C u � r� � Bk"� � F k"

�

� r � .�.r�/�k"/ D 0; (3)

where �, u, and � D .k; Q"/T are the density, velocity, and turbulence closure
variables, and k and Q" are the turbulent kinetic energy and homogeneous dissipation.
The symbols F and F k" represent the vector of external forces and the source
vector of turbulence closure equations.

As given in Corsini and Rispoli [57], F accounts for the volume sources related
to the second- and third-order terms in the non-isotropic stress–strain relation [58].
The force vector reads as

F D r �
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Table 1 Turbulence closure
coefficients C�

0:3.1�exp.�0:36= exp.�0:75max.Oe; O!////

1C0:35.max.Oe; O!//
1:5

f� 1� exp
�

� .Ret=90/
0:5 � .Ret=400/

2
�

C"1 1.44

C"2 1.92

f"2 1� 0:3 exp
��Re2t

�

�" 1.3

�k 1.0

Here ".u/ D .ru/ C .ru/T is twice the strain-rate tensor, ! D .ru/ � .ru/T

is twice the vorticity tensor, �t is the turbulent kinematic viscosity defined as �t D
c�f��k, and � D k=Q" is the turbulence time scale, with c� and f� and other closure
coefficients for the turbulence model [58] used given in Table 1. In Table 1, Ret D
k2=.� Q"/ is the turbulence Reynolds number, with � being the molecular viscosity,
and Oe and O! are, respectively, the strain-rate and vorticity invariants defined as
Oe D �

p
0:5".u/ W ".u/ and O! D �

p
0:5!.u/ W !.u/.

The source vector F k" is defined as

F k" D
�

Pk � D
c"lPk

Q"
k C E



; (5)

where Pk D R W ru is the production of turbulent kinetic energy, with R being the
Reynolds stress tensor, D D 2�krp

kk2, and E D 0:0022Oek��tjjr � .ru/jj2.
The stress tensor is defined as

� .p;u/ D �



p C 2

3
�k

�

I C ��u".u/; (6)

with �u D � C �t.
The diffusion terms in the turbulence closure equations are represented with the

diffusivity matrix defined as

�k" D
"
� C �t

�k
0

0 � C �t
�"

#

; (7)

with the values of the coefficients �k and �" given in Table 1.
The reaction terms, absorption like in Eq. (3), account for the dissipation-

destruction matrices and are defined as

Bk" D
�

Bk 0

0 B"



; (8)

with

Bk D Q"
k
; B" D c"2f"2

Q"
k
; (9)

and the values of the coefficients c"2 and f"2 are given in Table 1.
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The essential and natural boundary conditions for Eqs. (1) and (2) are

u D g on 	g and � D gk" on 	gk"; (10)

n � � D h on 	k and n � .�.r�/�k" D 0 on 	hk"; (11)

where 	g, 	gk", 	h, and 	hk" are the subsets of the boundary 	 , n is the direction
normal to the boundary, and g, gk", and h are given functions representing the
essential and natural boundary conditions.

2.2 Dispersed-Phase Model

Particle trajectories are simulated in a Lagrangian reference frame. Since particle
concentration in this kind of applications is very small (i.e., less than 10�6 in the
particle volume fraction), a one-way dependence approach can be used [59]. That
is, the flow field affects particle motion but particles do not affect the flow field. The
concept of one-way dependence has been used in other computational engineering
analyses. For example, in [60], the concept was used for computing the aerodynamic
forces acting on the suspension lines of spacecraft parachutes, where the suspension
lines are assumed to have no influence on the flow field. We use the PCT model [61]
to simulate a large number of particles without tracking them individually. The PCT
approach was used in turbulent particle dispersion [21, 24, 62–64] and validated in
turbomachinery and biomass furnaces [65, 66]. In the PCT model, each trajectory
is not related to a particle, but to a group of particles (a “cloud”), thus representing
the evolution of the cloud position at time t:

xc D
Z t

0

vcdt0 C .xc/0: (12)

Here, subscript c refers to the cloud, vc is the velocity of the cloud, and .xc/0 is the
initial position of the cloud, which is at the inflow boundary in our computations.

The equation of motion for the cloud is given by the Basset–Boussinesq–Oseen
formulation, which, with one-way dependence hypothesis according to Armenio
and Fiorotto [67], reads as

dvc

dt
D ��1R .hui � vc/C hfi C




1 � �

�p

�

g; (13)

where h i denote ensemble average of the enclosed quantity (defined later), f is
the centrifugal and Coriolis forces, �p is the particle material density, and �R is the
particle relaxation time, which, for spherical particles, reads as

��1R D 3

4dp
CD

�

�p
khui � vck: (14)
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Here, dp is the particle diameter and CD is the drag coefficient based on the particle

Reynolds number Rep D jjhui�vcjjdp

�
, first introduced in [68]. The initial condition

for vc is given as vc.0/ D huijtD0.
The ensemble average for the dispersed phase within the cloud is defined

according to the hypothesis of independent statistical events, and for any quantity �
it reads as

h�i D
R
˝c
�PDF.x; t/d˝

R
˝c

PDF.x; t/d˝
: (15)

Here, � is ensemble-averaged quantity, ˝c is the cloud domain, and PDF.x; t/ is
the multi-variate probability density function of the dispersed phase. This definition
of the ensemble average is appropriate for stationary and non-stationary quantities,
and also for both continuous and discontinuous quantities.

The PCT approach assumes that particle position distribution within a cloud is
Gaussian, and the cloud size varies in time according to the properties of the flow.
To this end, the PDF describing the particle distribution within the cloud reads as

PDF.x; t/ D 1

.2�/1=2�
exp

 

�1
2


kx � xck
�

�2
!

: (16)

Here, � is the square root of the variance of particle position, which accounts for
the turbulent dispersion of particles. We will define it in Section 4. The cloud size
(i.e., cloud radius) is taken as 3� , and that gives us ˝c. Each cloud is assumed
to consist of perfectly spherical particles with the same chemical and physical
characteristics.

Combining Eqs. (13) and (14), we obtain

dvc

dt
D C0Dkhui � vck .hui � vc/C hfi C




1 � �

�p

�

g; (17)

where

C0D D 3

4dp
CD

�

�p
: (18)

3 SUPG/PSPG Formulation of Fluid Mechanics Equations
of Turbulent Flows

3.1 Stabilized Formulations

In describing the SUPG/PSPG formulation of Eqs. (1), (2), and (3), we assume that
we have constructed some suitably defined finite-dimensional trial solution and test
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function spaces Sh
u, Sh

p, Sh
� and Vh

u , Vh
p , Vh

� . The SUPG/PSPG formulation reads as

follows: find uh 2 Sh
u, ph 2 Sh

p, �h 2 Sh
� , such that 8wh 2 Vh

u , 8qh 2 Vh
p , and

8 h 2 Vh
� :
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where
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where

Łk�.�
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k��
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� r � .�.r�h/�h
k�/: (22)

In calculation of F h
k� , we calculate r � .ruh/ in the E term by first calculating the

nodal values of ruh by least-squares projection and then taking the divergence of
the interpolated value of ruh.

In Eqs. (19), (20), (21), and (22), Pstab, Pk�
stab, and Kk�

DC are the SUPG/PSPG
stabilization operators and the discontinuity-capturing (DC) matrix of the DRDJ
stabilization. The vectors Pstab and Pk�

stab take the forms

Pstab.wh; qh/ D �SUPG.uh � r/wh C �PSPG

�
rqh; (23)
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Pstab
k� . 

h/ D
�
�SUPG�k 0

0 �SUPG��



.uh � r/ h: (24)

Here �SUPG and �PSPG are the SUPG and PSPG stabilization parameters. These are
defined in Section 3.2.

The DC matrix terms are defined as

�
�DRDJ�k 0

0 �DRDJ��



: (25)

Here �DRDJ�k and �DRDJ�� are the DRDJ diffusivities (see [29–33]).

3.2 Stabilization Parameters

We first define the element length [29] in the advection-dominated limit:

hUGN D 2

 
nenX

a

js � rNaj
!�1

; (26)

where s is the unit vector in direction of the velocity, nen is the number of element
nodes, and Na is the interpolation function associated with node a.

In the diffusion-dominated limit, the element lengths [39] are defined as follows:

hRGN D 2

 
nenX

a

jr � rNaj
!�1

; (27)

hRGN�k D 2

 
nenX

a

jrk � rNaj
!�1

; (28)

hRGN�" D 2

 
nenX

a

jr� � rNaj
!�1

; (29)

where r, rk, and r� are the unit vectors in the direction of the solution gradient:

r D rkuk
krkukk ; rk D r jkj

kr jkjk ; r� D r j Q�j
kr jQ�jk : (30)

The components of �SUPG corresponding to the advection-, transient-, and diffusion-
dominated limits were defined in [39, 45] as follows:
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�SUGN1 D
 

nenX
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ju � rNaj
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D hUGN

2kuk ; (31)

�SUGN2 D �t

2
; (32)

�SUGN3 D h2RGN

4�
; �SUGN3�k D h2RGN�k

4�k
; �SUGN3�� D h2RGN��

4��
: (33)

From these, the stabilization parameters are defined by using the r-switch [37]:

�SUPG D
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rs
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SUGN3

�� 1
rs

; (34)

�PSPG D �SUPG; (35)

�SUPG�� D
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rs
SUGN1

C 1

�
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SUGN2

C 1

�
rs
SUGN3��

!� 1
rs

: (36)

Subscript � generates the expressions corresponding to k and Q�. Typically, rs D 2.

4 Discretized Particle Equations

In the discretized particle equations, ensemble averaging is carried out over the
discretized cloud domain ˝c D Snelc

eD1.˝c/e, where .˝c/e is the cloud element, and
nelc is the number of elements. The cloud elements come from a fixed mesh, which
we call “particle mesh,” and consist of the elements of that fixed mesh within the
radius � D 3. With that, the discretized version of ensemble averaging is written as

h�ih D
Pnelc

eD1
R
.˝c/e

�PDF.x; t/d˝
Pnelc

eD1
R
.˝c/e

PDF.x; t/d˝
; (37)

where the element-level integration is performed by Gaussian quadrature.

4.1 Trajectory Calculation

Spatially discretized version of Eq. (17) is written as

dvc
h

dt
D ah

c ; (38)
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where

ah
c D C0Dkhuih � vh

ck �huih � vh
c

�C hfih C



1 � �

�p

�

g: (39)

Time discretization of Eq. (38) is done with a predictor–multicorrector algorithm.
Predictor stage:

.vh
c/
0
nC1 D .vh

c/n C .ah
c/n�t: (40)

Multicorrector stage:

.vh
c/

iC1
nC1 D .vh

c/n C �
.ah

c/n C .ah
c/

i
nC1
� �t

2
: (41)

Here the superscript n is the time level, and the superscript i is the counter for the
multiple corrections. We stop the corrections when

.vh
c/

iC1
nC1 � .vh

c/
i
nC1

.vh
c/

iC1
nC1

� 2 � 10�2: (42)

At each time step, the PCT model requires the computation of the cloud mean
position and radius, and the identification of the elements contained within the cloud
volume. This is done with the search algorithm described in [25].

4.2 Turbulence–Particle Interaction Parameters

The variance is taken to be dependent upon the Lagrangian time scale of the particle-
laden flow, �L, and, according to Baxter [61], its Markovian approximation reads as

�2 D 2.v0/2c�2L



t

�L
� .1 � e�t=�L/

�

C �20 ; (43)

where �L is defined as

�L D max.�; �p/ D max.�; �R/; (44)

with �p given as �p D �R and � is defined below. The fluctuating component of the
particle velocity for the cloud, driven by the turbulence–particle interaction [69],
reads as

.v0/2c D .u0/2c
�
1 � e��=�p

�
: (45)
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We adopt the definitions for .u0/2c and � based on the VMS approach first proposed
in [55] and further developed for RANS computations [31, 45, 70]. The definition
for .u0/2c is based on the VMS scale separation u D uh Cu0, where uh is the resolved
flow velocity and u0 is the fine-scale flow velocity modeled as

u0 D �1
�
�SUPG

�
Ł.ph;uh/ � �F h� : (46)

Then the definitions of the VMS turbulence–particle interaction parameters become

.u0/2c�VMS D ˝ku0k2˛h ; (47)

� D �SUPG: (48)

5 Rain-Drop Erosion Model

Based on the computed data from the flow and particle computations, we can
compute the erosion rate on the blade surface. Keegan et al. [71] provide a review
of the available models for rain-erosion prediction. According to Evans et al. [72],
a threshold damage velocity can be computed as

vD � 1:41



K2

mcm

�2wc2wdw

�1=3

: (49)

Here �w and cw are the density of the water and the compressional wave speed in
water, and dw is the droplet diameter; Km is the fracture toughness of the target
material, and cm is the Rayleigh wave velocity of the target material, defined as

cm D


0:862C 1:14�m

1C �m

�

Em

2.1C �m/�m

�

; (50)

with �m, �m, and Em being the density, Poisson’s ratio, and Young’s modulus for the
target material.

The threshold damage velocity is the minimum impact velocity of a rain drop
that causes erosion damage to the blade. In quantifying the damage, we will use vD

in combination with other computed data. As a first approximation, one can write
the impact force of a droplet as

Fi D mwv
2
i

dw
; (51)
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with mw representing the mass of a water droplet, and vi its impact velocity.
Combining Eqs. (49) and (51), the minimum impact force that causes damage to
the blade, FD, can be computed. Assuming that the damage is proportional to the
impact force and the number of droplets impacting, the damage during the time step
�t can be predicted as

�D D �nw
Fi

FD
H



Fi

FD
� 1

�

; (52)

where�nw is the number of droplets impacting during�t, per unit surface area, and
H.�/ is the Heaviside step function. We use Eq. (52) to predict the erosion patterns.
The impact count, nw, and damage, D, are calculated by summing�nw and�D over
the number of time steps the PCT computation is carried out.

6 Computations

The equations are solved in the rotating reference frame of the turbine rotor.
Consequently, the computations are based on the version of Eq. (1) that includes
the non-inertial terms, and in the implementation of the stabilized formulations
these terms are just added to the other source terms. Alternatively, the arbitrary
Lagrangian–Eulerian (ALE) techniques as in [73–76], or the space–time technique
as in [52, 53, 73, 76–81], can be employed to handle the rotation. We solve the
Navier–Stokes and turbulence closure equations in a fully coupled fashion. The
linear solver uses 5 outer and 5 inner GMRES iterations, with SOR preconditioning.

6.1 Description of the Wind Turbine

In this study, we design and use a blade for a 6MW, 3-blade HAWT rotor. The main
characteristics of the rotor are given in Table 2. Table 3 provides the airfoil cross-
sections used in the chord and twist design, which is based on the Blade Element

Table 2 Rotor
characteristics, where “TSR”
is the tip-speed ratio

Rated wind speed (m/s) 12

Design rated power (kW) 6,000

Rotor radius (m) 61

Number of blades 3

Rated rotor speed (rpm) 15

Nominal TSR 8

Hub radius (m) 3
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Table 3 Airfoil
cross-sections of the blade

Radial position (m) Airfoil

10.0 DU 99-W-405

17.5 DU 99-W-350

22.5 DU 97-W-300

29.0 DU 91-W2-250

37.0 DU 93-W-210

46.0–60.0 NACA 64-618

Momentum (BEM) theory with tip and root loss correction factors [82]. Specifically,
we use the same airfoils as those in the 5MW NREL [83] wind turbine.

In the flow computation the mesh is unstructured, with 4.76 million nodes, 4.24
million hexahedral elements, 2.28 million tetrahedral elements, and 0.09 million
pyramidal elements. The mesh is structured in the PCT computation, with 1.24
million nodes and 1.20 million hexahedral elements. The PCT domain surrounding
the blade extends 3 mean chords from the leading-edge side, and 2 mean chords
from the other sides. This domain size for the PCT computation is sufficient in
using a large-enough portion of the already computed flow field around the blade.
Globally, 50 million droplets, each having a 2 mm diameter, enter the domain in 10
identical clouds (see Fig. 1). Each cloud has an initial radius of 7.5 m, with the initial
positions arranged in such a way that we have a uniform rain-drop distribution along
the blade. The initial velocity of each cloud is equal to the flow velocity at the cloud
center. Droplet and target-material properties are given in Table 4.

6.2 Results

6.2.1 Comparison to BEM Computation

We first compare, at the nominal operating point, the result from the SUPG/PSPG
computation to data from a standard BEM computation with NREL FAST[84].
Table 5 shows the out-of-plane force and torque acting on the blade, obtained from
the SUPG/PSPG and BEM computations.

The difference between the torques predicted is less than 3%, and the difference
between the out-of-plane forces is even less. Table 6 shows, for the SUPG/PSPG
computation, the components of the forces and moments acting on a single blade,
together with the rotor thrust and power output.

6.2.2 Erosion Patterns

Fig. 2 shows the normalized damage rate, and thus the erosion patterns, on the blade
surface, while Fig. 3 provides the same data at three different blade sections. The
normalization is with respect to the maximum value computed on the blade surface.
Erosion is mainly concentrated on the leading edge, in particular at the blade tip,
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Fig. 1 Mesh for the PCT
computation. The arrows
represent the cloud initial
velocities

Table 4 Droplet and
target-material properties

Water density (kg/m3) 1,000

Droplet diameter (mm) 2

Compressional wave speed in water (m/s) 1,490

Density of target material (kg/m3) 1,150

Fracture toughness of target material (MPa m1=2) 1.0

Young’s modulus of target material (GPa) 3.32

Poisson ratio of target material 0.38

where flow (and droplet) speed is maximum. Flow separation is seen mainly in the
root region, however, because the relative flow velocity is very low there, the effect
of these flow instabilities on the erosion patterns is minimal. These findings match
those observed in actual applications, where the zone most affected is usually the
leading edge, in the mid-tip span region.
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Table 5 Out-of-plane force and torque acting on
a single blade, obtained from the SUPG/PSPG and
BEM computations

SUPG/PSPG BEM

Out-of-plane force (kN) 280 278

Torque (kN m) 1; 282 1; 316

Table 6 Components of the
forces and moments acting on
a single blade, together with
the rotor thrust and power
output, obtained from the
SUPG/PSPG computation

X Y Z

Pressure forces (kN) 4.3 �39.7 279.9

Pressure moments (kN m) �38.8 �11,069.4 �1,355.4

Viscous forces (kN) 0.1 1.9 0.4

Viscous moments (kN m) �0.4 �11.9 73.7

Rotor thrust (kN) 840.9

Rotor power output (kW) 6,039.9

Fig. 2 Normalized erosion rate on the blade surface. Suction side, pressure side, and zoom on the
maximum-damage region

7 Concluding Remarks

We have extended the method we developed for computational analysis of particle-
laden flows in turbomachinery to computational analysis of rain erosion in wind-
turbine blades. The two main components of the method are a stabilized finite
element fluid mechanics formulation and a finite element PCT method. Accurate
simulation of the flow would be essential in reliable computational wind-turbine



92 A. Castorrini et al.

Fig. 3 Normalized erosion rate at 30%, 55%, and 90% of the blade span, as a function of the
distance from the leading edge (LE). The positive and negative distance values are for the suction
and pressure sides, respectively

analysis and design. The turbulent-flow nature of the problem is dealt with a
3D RANS model and the SUPG, PSPG, and DRDJ stabilizations. The particle-
cloud trajectories are calculated based on the flow field and closure models for the
turbulence–particle interaction, and one-way dependence is assumed between the
flow field and particle dynamics. The erosion patterns are then computed based on
the particle-cloud data. Using a PCT model of the rain-droplet dynamics enables
rain-erosion analysis with a low computational cost. We have tested our method on
predicting the rain-erosion patterns on the surface of a 6MW HAWT blade, showing
that the numerical solution is in good agreement with what can be directly observed
in actual applications.
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The Multi-Moment Finite Volume Solver
for Incompressible Navier-Stokes Equations
on Unstructured Grids

Bin Xie and Feng Xiao

Abstract This chapter presents a robust and accurate finite volume method (FVM)
for incompressible viscous fluid dynamics on unstructured grids. Different from
conventional FVM where the volume integrated average (VIA) value is the only
computational variable, the present formulation treats both VIA and the point value
(PV) as the computational variables which are updated separately at each time
step. The VIA is computed from a finite volume scheme of flux form, and is
thus numerically conservative. The PV is updated from the differential form of
the governing equation that does not have to be conservative but can be solved in
a very efficient way. Including PV as the additional variable enables us to make
higher-order reconstructions over compact mesh stencil to improve the accuracy,
and moreover, the resulting numerical model is more robust for unstructured grids.
The presented numerical framework provides an easy and straightforward approach
to design schemes that well balance the numerical accuracy and computational cost.

Numerical results of several benchmark tests are also presented to verify the
proposed numerical method as an accurate and robust solver for incompressible
flows on unstructured grids.

1 Introduction

The finite volume method (FVM) has become the main-stream approach in com-
putational fluid dynamics (CFD). Due to its rigorous numerical conservativeness
and flexibility to adapt both structured and unstructured grids, FVM has been
applied to a wide spectrum of engineering applications in the presence of complex
geometric configurations. However, developing high-order finite volume model on
unstructured grids is not a trivial task. Conventional FVM requires wide stencil
to generate high-order reconstructions as in the k-exact finite volume method
[1] and the weighted essentially non-oscillatory method [7, 9]. As mentioned in
[7], particular attention must be paid to choose the admissible stencils, or the
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reconstruction on unstructured grids might be of illness otherwise. On the other
hand, numerical schemes with compact stencil and more locally defined degrees
of freedom (DOFs), such as the discontinuous Galerkin (DG) method [3, 4]
and the spectral finite volume (SV) method [17], have gained great success in
solving convection-dominated flows. However, not as many as implementations
of these methods are found for the incompressible Navier-Stokes equations due to
algorithmic complexity.

In this chapter, we present a novel numerical formulation, volume integrated
average and point value based multi-moment (VPM) method, to solve incom-
pressible unsteady Navier-Stokes equations. Adding the point value (PV) of the
velocity field at the cell vertices as a new DOF in addition to the volume integrated
average (VIA), we can construct higher-order polynomials over compact stencils for
unstructured grids of arbitrary element shape. In comparison with the conventional
FVM, with a modest increase in algorithmic complexity and computational cost,
the VPM method achieves significant improvements in numerical accuracy and
robustness.

2 Multi-Moment Reconstructions on Unstructured Grids

The computational domain is divided into non-overlapping elements ˝i .i D
1; 2; � � � ; I/ of different types, shown in Fig. 1 in 2 and 3 dimensions, for example.
We denote the vertices at .xik; yik; zik/ by �ik, k D 1; 2; � � � ;K, and K being
the total number of vertices. The vertices are connected by boundary segments
	ij .j D 1; 2; � � � ; J/ which are either a straight line (2D) or a plane (3D) separating
elements ˝i and ˝ij, where the cell index “ij” is re-numbered in respect to the
target cell ˝i. The topological relation with its global index is realized through a
connection table. We also denote the outward normal unit vector of segment 	ij by
nij D .nxij; nyij; nzij/.

Being the computational variables in the present formulation, the volume inte-
grated average (VIA) and point value (PV) at the cell vertices, which are considered
as different moments of physical field �.x; y; z; t/, are defined as

3iθ3iθ
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iΩ 1iΓ
2iΓ 1iΓ

3iΓ

2iΓ

3iΓ
1iθ

1iθ 2iθ
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Fig. 1 Typical unstructured elements (from left to right): triangular, quadrilateral, tetrahedral, and
hexahedral elements
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� i.t/ 	 1

j˝ij
Z

˝i

�.x; y; z; t/d˝; (1)

�ij.t/ 	 �.xik; yik; zik; t/; k D 1; 2; � � � ;K:
The piecewise reconstruction polynomial ˚.x; y:z/ for physical field �.x; y; z/ on

cell ˝i is written in a form of basis function with respect to different moments as

˚i.x; y; z/ D
KX

kD1
�ik ik C � i i C

X

˛Dx;y;z

�˛i ˛i C
X

˛;ˇDx;y;z

�˛ˇi ˛ˇi; (2)

where the PVs at the vertices, �ij, and the VIA, � i, as defined in (1), are the
computational variables which are updated at every step. The derivatives at the cell
center, �˛i and �˛ˇi, are computed from the PVs and VIAs of the neighboring cells
(see [20, 21] for details).

It is noted that the number of cell-wisely available DOFs might be different for
different cell shapes. So, the reconstructed function (2) varies depending on the
type of grid element. The reconstructed functions for the elements shown in Fig. 1
are given in [20, 21] with the basis function in local coordinates.

Once the multi-moment reconstruction function is made, we can use it to
approximate the operators of the governing equations.

3 Numerical Formulation for Incompressible
Navier-Stokes Equations

We consider the incompressible unsteady Navier-Stokes equations,

r � u D 0; (3)

@u
@t

C r � .u ˝ u/ D �1
�

rp C �r2u; (4)

where u D .u; v;w/ is the velocity vector with components u, v, and w in x, y,
and z directions, respectively. p is the pressure, � the density, and � the kinematic
viscosity.

The projection method of Chorin [2] provides a simple and robust solution pro-
cedure for incompressible flow and is adopted in this paper. We briefly summarize
the numerical steps to update the velocity from time level m (t D tm) to m C 1

(t D tm C�t) as follows:

1. Given the velocity field um at step m, compute the intermediate velocity u� from
the momentum equation (4) without the pressure gradient term,

@u
@t

D �r � .um ˝ um/C �r2um: (5)
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2. The intermediate velocity u� usually does not satisfy the mass conservation
equation (3), and must be corrected by the projection shown in the next step.
For that purpose, we solve the pressure field at step .m C 1/ from the following
Poisson equation,

r �


1

�
rpmC1

�

D 1

�t
r � u�: (6)

3. Correct the velocity by the projection step,

umC1 � u�

�t
D �1

�
rpmC1: (7)

It is straightforward to show that the updated velocity satisfies r � umC1 D 0.
Our major interest is to develop an approach for the spatial discretization for

the solution procedure by using multi-moment reconstruction formulation shown
above.

3.1 The Scheme for Advection-Diffusion Equation

We write (5) as an advection-diffusion equation,

@�

@t
D �r � .�u/C �r2�; (8)

where � is the physical quantity, which stands for either u, v, or w in Navier-Stokes
equations.

Making use of the underlying idea of the CIP (Constrained Interpolation Profile)
method [22, 23] where different moments are updated simultaneously in time,
two types of moments, i.e., the volume integrated average (VIA) and the point
value (PV) of the physical field �, are treated as the prognostic variables and
updated separately. Their governing equations can be immediately obtained from
definition (1) and (8), i.e.,

d� i

dt
D � 1

j˝ij
I

	i

.�u � n/ d	 C �

j˝ij
I

	i

.n � r�/ d	 (9)

for VIA moment and

d�ij

dt
D �uij � .r�/ij C �.r2�/ij; (10)

for PV moment. Note that we have used Gauss divergence theorem and assumed a
constant kinematic viscosity to yield (9).
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Next, we describe the spatial discretization for the terms on the right-hand sides
of (9) and (10).

The total advection flux in (10) is approximated by summing up the fluxes across
each boundary segments,

I

	i

.�u � n/ d	 D
JX

jD1

�
j	ijj�u	ij

� nij

�
�

JX

jD1

�
j	ijj�	ij

u	ij � nij

�
; (11)

where j	ijj represents the area of cell surface 	ij, �	ij
the average value of � on 	ij,

and u	ij D .u	ij ; v	ij ;w	ij/ the corrected divergence-free velocity.

�	ij
D 1

j	ijj
Z

	ij

˚iup.x; y; z/d	; (12)

where ˚iup denotes the reconstruction function in (2) over the upwinding cell, i.e.,

iup D
(

D i; for nij � u	ij > 0I
D ij; otherwise:

(13)

The total diffusion flux in (10) for cell ˝i is approximated by

I

	i

.n � r�/ d	 D
JX

jD1

�
j	ijj

�
�x	ij

nxij C �y	ij
nyij C �z	ij

nzij

��
; (14)

where
�
�x	ij

; �y	ij
; �z	ij

�
represent the averaged values of

�
�x; �y; �z

�
on surface

	ij, which are computed from the reconstruction functions ˚i and ˚ij over two
neighboring cells sharing surface segment 	ij, i.e.,

�˛	ij
D 1

2

 
1

j	ijj
Z

	ij

˚˛i.x; y; z/d	 C 1

j	ijj
Z

	ij

˚˛ij.x; y; z/d	

!

(15)

where ˛ denotes either x, y, or z.
The PV moment at the vertices (�ik) is predicted from the differential form

equation (10), where the gradients of the advection terms are computed from a
weighted upwinding scheme,



@�

@˛

�

ik

D
LX

lD1
!ikl˚˛ikl.�ik/; (16)

for derivative with respect to ˛ D x; y, or z.˝ikl (l D 1; 2; � � � ;L) represent the union
of cells that share vertex �ik, and ˚ikl the reconstruction functions (2) on cell ˝ikl.
The weight !ikl is computed by



102 B. Xie and F. Xiao

!ikl D
max

�
0;uik � ����!

�cikl�ik

�

PL
lD1 max

�
0;uik � ����!

�cikl�ik

� ; (17)

where
����!
�cikl�ik denotes the vector from the center of cell ˝ikl to vertex �ik. It is clear

from (17) that the gradient computed in the upwinding cell is used.
Using (16), the PVs can be computed very efficiently once the piecewise

reconstructions (2) are made.
Given the net diffusion fluxes calculated by (14) for all cells, ˝ikl, which share

vertex �ik, the point-wise value of the diffusion term at �ik can be simply obtained
from the time-evolution converting (TEC) formula described in [18, 19].

To be more precise, the time tendency of VIA in this case is computed by

ıt� i D �

j˝ij
I

	ij

.n � r�/ d	; (18)

which is already obtained by (14). The time tendency of the PV due to the Laplace
operator is then computed from the TEC formula described in [18, 19], which reads

�.r2�/ik D ıt�ik D TEC.ıt� ikl/: (19)

3.2 The Scheme for Pressure Poisson Equation

In the present formulation, we only use the VIA moment for pressure. The Poisson
equation (6) is recast in an integral form,

I

	i



1

�
n � rp

�

d	 D 1

�t

I

	i

�
n � u�

�
d	: (20)

Discretizing (20) over cell ˝i yields

JX

jD1

 
j	ijj
�ij



@p

@r

�

ij

eij � nij

!

D 1

�t

JX

jD1

�
j	ijj.u�	ij

nxij C v�	ij
nyij C w�	ij

nzij/
�
; (21)

where .u�	ij
; v�	ij

;w�	ij
/ on the right-hand side is calculated as

�	ij
D 1

2

 
1

j	ijj
Z

	ij

�i.x; y; z/d	 C 1

j	ijj
Z

	ij

�ij.x; y; z/d	

!

(22)

where � denotes u�; v�, or w� component of immediate velocity u�. The pressure
gradient is approximated by a linear interpolation spanned over two neighboring
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cells sharing edge 	ij. We denote . @p
@r /ijeij as the pressure gradient along line segment

rij D r.�cij/�r.�ci/ with r.�cij/ D .xcij; ycij; zcij/ and r.�ci/ D .xci; yci; zcij/ being the
position vectors of the centroids of cells ˝ij and ˝i, respectively. The unit vector of
rij is denoted by eij D .exij; eyij; ezij/ D rij=jrijj.

As derived in [21], we calculate the orthogonal component implicitly using the
values at level m C 1 and the non-orthogonal correction explicitly with the values at
level m,



@p

@r

�

ij

eij � nij � 1

eij � nij



@p

@r

�mC1

ij

C


@p

@r

�m

ij

eij � nkij (23)

D 1

eij � nij

.pmC1
ij � pmC1

i /

exij.xcij � xci/C eyij.ycij � yci/C ezij.zcij � zci/

C .pm
ij � pm

i /

exij.xcij � xci/C eyij.ycij � yci/C ezij.zcij � zci/
nkij � eij:

Thus, Poisson equation (21) for pressure is finally written as

JX

jD1

˛ijj	ijj
eij � nij

.pmC1
ij � pmC1

i / D ˇi (24)

where

˛ij D 1

�ij
�
exij.xcij � xci/C eyij.ycij � yci/C ezij.zcij � zci/

�

and

ˇi D
JX

jD1



ˇ
ˇ	ij

ˇ
ˇ



1

�t
.u�	ij

nxij C v�	ij
nyij C w�	ij

nzij/ � 1

�ij
˛ij.p

m
ij � pm

i /nkij � eij

��

:

Equation (24) is a simultaneously linked linear algebraic equation for pressure
pmC1

i and can be solved by iterative solvers.

3.3 Projection of the Velocity Field

As the final step in the solution procedure, the velocity field must be projected onto a
divergence-free subset. From the pressure field computed above, we firstly evaluate

the pressure gradients on cell surfaces
�
rp
�

	ij

, and then find the volume-averaged

pressure gradient
�
rp
�

i
D
�
@p
@x ;

@p
@y ;

@p
@z

�

i
to update the VIA of velocity field.
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According to [6, 8], the volume-average pressure gradient
�
rp
�

i
should be

calculated from surrounding surface pressure gradient
�
rp
�

	ij

by surface-volume

weighted least square method that minimizes

JX

jD1


�
rp
�

i
� nij �

�
rp
�

	ij

� nij

�2 ˇ
ˇ	ij

ˇ
ˇ ;

which yields

JX

jD1

ˇ
ˇ	ij

ˇ
ˇ

0

@
nxijnxij nxijnyij nxijnzij

nxijnyij nyijnyij nyijnzij

nxijnzij nyijnzij nzijnzij

1

A �

0

B
B
@

@p
@x
@p
@y
@p
@z

1

C
C
A

i

D
JX

jD1

0

B
B
B
B
B
@

ˇ
ˇ	ij

ˇ
ˇ nxij

�
@p
@x

�mC1
	ij

ˇ
ˇ	ij

ˇ
ˇ nyij

�
@p
@y

�mC1
	ij

ˇ
ˇ	ij

ˇ
ˇ nzij

�
@p
@z

�mC1
	ij

1

C
C
C
C
C
A

:

The volume-average pressure gradients
�
@p
@x ;

@p
@y ;

@p
@z

�

i
are then obtained.

Given the pressure gradients, we updated the volume average velocity as

umC1
i D u�i � �t

�

 
@p

@x

!

i

; (25)

vmC1
i D v�i � �t

�

 
@p

@y

!

i

; (26)

wmC1
i D w�i � �t

�

 
@p

@z

!

i

: (27)

Once the time increments of VIA for velocity field are known, we update the PVs
of velocity at the cell vertices by the time-evolution converting (TEC) formula [21],

umC1
ik D u�ik C TEC

�
umC1

ikl � u�ikl

�
; (28)

vmC1
ik D v�ik C TEC

�
vmC1

ikl � v�ikl

�
: (29)

wmC1
ik D w�ik C TEC

�
wmC1

ikl � w�ikl

�
: (30)
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4 Numerical Results

Numerical experiments were carried out to evaluate the numerical method presented
in this chapter. We quantify the numerical errors by following norms:

E.L1/ D
PNe

iD1.j�ni � �eijj˝ij/
PNe

iD1.j�eijj˝ij/
and E.L2/ D

v
u
u
t
PNe

iD1..�ni � �ei/2j˝ij/
PNe

iD1.�2eij˝ij/
; (31)

where �ni and �ei denote numerical and exact solutions, respectively.
To evaluate the convergence rate of the advection scheme presented in sec-

tion 3.1, we computed the advection transport of a sine function as in [9] with
gradually refined grids. A 3rd-order Runge-Kutta time integration scheme [14] was
used. The L1 and L2 errors and the convergence rates are given in Table 1 for grids
of different resolutions. We see a uniform 3rd-order convergence rate on different
unstructured grids.

To evaluate the accuracy of the whole incompressible fluid solver, we computed
the Taylor vortex problem [6, 13]. Numerical errors and convergence rates for both
velocity and pressure fields are shown in Fig. 2 in comparison with the results
with conventional finite volume method with QUICK[12], superbee-TVD [15], and
MUSCL [16] schemes. We observe that VPM method is much more accurate than
the conventional FVM models. For example, VPM results on a coarse mesh with
3604 cells have less numerical errors than those of FVM models computed on a
much finer grid (57670 cells). We also show the comparison of computational cost in
Table 2, which reveals that VPM model gains significant improvement in numerical
accuracy at a modest increase of computational cost in terms of both elapse time
and required memory.

As a three-dimensional test, we simulated viscous flows passing a sphere with
different Reynolds numbers, which is widely used to evaluate numerical codes for
incompressible viscous flows. We plot the streamlines on the cross section cutting
through the sphere center for different Reynolds numbers in Fig. 3 which visually
agree well with those in [10]. The quantitative verification is given in Table 3 for
the Reynolds numbers of 250 and 300 over which the flow transits from a steady
non-axisymmetric regime to an unsteady periodical regime. It is observed that the
drag and lift coefficients for both cases are in excellent agreement with the existing
researches, and so is Strouhal number for 300 Reynolds number case.

Table 1 Numerical errors and convergence orders of the advection scheme

Triangle element Quadrilateral element

Cell number L1 error L1 order Cell number L1 error L1 order

226 1:288� 10�1 – 100 1:429� 10�1 —

894 1:767� 10�2 2.89 400 1:815� 10�2 2.98

3588 2:183� 10�3 3.01 1600 2:261� 10�3 2.99

14412 2:732� 10�4 2.99 6400 2:821� 10�4 3.00

57518 3:513� 10�5 2.96 25600 3:536� 10�5 3.00
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Fig. 2 The numerical error and convergence rate of velocity (left) and pressure (right) for Taylor
vortex problem

5 Summary

We have developed and tested a novel numerical solver for incompressible Navier-
Stokes equations on unstructured grids of different shapes of elements. The
numerical formulation, the so-called volume integrated average and point value
based multi-moment (VPM) method, adds the point values at the vertices of each
grid element as new computational variables besides the volume average values
in the conventional finite volume method. The present formulation gains a great
deal in numerical accuracy and robustness at a modest increase in computational
complexity and cost in comparison with the conventional finite volume method.
Being well balanced among solution quality and computational cost, the present
formulation can be expected as a promising framework for practical applications.



Multi-Moment Finite Volume Solver on Unstructured Grids 107

Ta
bl

e
2

C
om

pa
ri

so
ns

be
tw

ee
n

V
PM

an
d

co
nv

en
tio

na
l

FV
M

m
od

el
s

in
te

rm
s

of
co

m
pu

ta
tio

na
l

co
st

an
d

nu
m

er
ic

al
ac

cu
ra

cy

E
le

m
en

ts
Q

U
IC

K
V

PM

D
O

Fs
T

im
e(

s)
E

rr
or

of
U

E
rr

or
of

p
D

O
Fs

T
im

e(
s)

E
rr

or
of

U
E

rr
or

of
p

90
2

90
2

4.
24

5
:3
7
9
�1

0
�
2

5
:7
8
1
�1

0
�
1

13
94

5.
03

7:
8
5
1
�1

0
�
3

2
:8
1
9
�1

0
�
2

36
04

36
04

12
.4

3
2
:2
1
9
�1

0
�
2

2
:4
3
6
�1

0
�
1

54
87

16
.2

7
1
:4
1
0
�1

0
�
3

6
:6
0
3
�1

0
�
3

14
36

2
14

36
2

47
.7

8
6
:9
2
0
�1

0
�
3

6
:7
4
3
�1

0
�
2

21
70

4
68

.2
5

2
:1
8
3
�1

0
�
4

1
:1
9
4
�1

0
�
3

57
67

0
57

67
0

22
6.

32
1
:6
4
2
�1

0
�
3

2
:5
8
2
�1

0
�
2

86
82

6
31

7.
6

4
:1
2
1
�1

0
�
5

3
:7
7
9
�1

0
�
4



108 B. Xie and F. Xiao

,

Fig. 3 Streamlines of 3D viscous flows passing a sphere for Re=100 (left) and 200 (right)

Table 3 Comparison of the
numerical results for viscous
flows of different Reynolds
numbers passing a sphere

Re CD CL St
Present scheme 250 0.698 0.060

300 0.654 0.065 0.135
Ref. [11] 250 0.701 0.059

300 0.657 0.067 0.134
Ref. [10] 250 0.70 0.062

300 0.656 0.069 0.137
Ref. [5] 250 0.70 0.062

300 0.655 0.065 0.136
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Abstract In this chapter we summarize a recently proposed immersogeometric
method for the simulation of incompressible flow around geometrically complex
objects. The method immerses the objects into unfitted tetrahedral finite elements
meshes and weakly enforces Dirichlet boundary conditions on the surfaces of the
objects. Adaptively refined quadrature rules are used to faithfully capture the flow
domain geometry in the discrete problem without modifying the unfitted finite
element mesh. A variational multiscale formulation which provides accuracy and
robustness in both laminar and turbulent flow conditions is employed. We assess
the accuracy of the method by analyzing the flow around an immersed sphere for
a wide range of Reynolds numbers. We show that flow quantities of interest are in
very good agreement with reference values obtained from standard boundary-fitted
approaches. Our results also show that the faithful representation of the geometry
in intersected elements is critical for accurate flow analysis. We demonstrate the
potential of our proposed method for high-fidelity industrial scale simulations by
performing an aerodynamic analysis of a full-scale agricultural tractor.
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1 Introduction

Immersed methods approximate the solution of boundary value problems on anal-
ysis meshes that do not necessarily conform to the boundary of the domain. Such
methods have greater geometric flexibility than their boundary-fitted counterparts
and circumvent the meshing obstacles that frequently impede analysis of problems
posed on geometrically complex domains. In the context of finite elements [1],
several variants of immersed methods for fluids have been explored over the last
decade. Löhner et al. [2] adapted kinetic and kinematic enforcement of boundary
conditions used in immersed boundary methods [3–5] for use in adaptive nodal
finite element grids. Glowinski et al. [6] simulated viscous flow interacting with
rigid particles by forcing the rigid body motion in each particle subdomain onto the
overlapping fluid field via a distributed Lagrange multiplier field. Zhang et al. [7]
proposed the immersed finite element method (IFEM) to use a flexible Lagrangian
solid mesh that moves on top of a background Eulerian fluid mesh.

In addition, several researchers designed immersed methods that resolve
immersed boundaries and introduce weak coupling schemes for velocity and stress
fields directly at the interface. Baaijens [8] and Parussini [9] combined the fictitious
domain approach with Lagrange multiplier fields at the interface for immersed
thin and volumetric structures. Gerstenberger and Wall [10] combined Lagrange
multiplier fields with interface enrichments of the velocity and pressure fields in
the sense of the extended finite element method [11] to ensure the separation of
physical and fictitious domains. Rüberg and Cirak [12, 13] combined weak Nitsche-
type coupling methods at the interface with Cartesian B-spline finite elements for
moving boundary and FSI problems.

This work presents an immersed method for solving incompressible flow on
tetrahedral finite element meshes. The proposed method combines a variational
multiscale (VMS) formulation of incompressible flow [14, 15], consistent weak
enforcement of boundary conditions [16, 17], and a geometrically accurate represen-
tation of the fluid domain in the integration of the variational problem on elements
that straddle the domain boundary. We emphasize the implications of the latter,
highlighting the importance of accurately describing the geometry in intersected
elements for obtaining accurate flow solutions. We follow our previous work [18] in
denoting immersed methods that accurately represent the geometry of the domain
as immersogeometric methods.

A pioneering instantiation of the immersogeometric concept is the finite cell
method (FCM) [19, 20]. The FCM represents the geometry of the domain in
intersected elements by adaptive quadrature points, such that the geometric accuracy
can be increased by adding additional levels of quadrature points, if needed. Since
its inception, significant efforts have been invested to further develop the FCM.
Technical improvements include the weak imposition of boundary and coupling
conditions [21], local refinement schemes [22], large deformation analysis [23], and
improved quadrature rules for intersected elements [24]. A concise summary of the
FCM and related developments and applications can be found in [25].
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This chapter is organized as follows. In Sect. 2, we describe the variational
problem under consideration and its discrete formulation. We also detail the
implementation of a key technical component—the tetrahedral FCM. Section 3
focuses on the canonical benchmark of the flow around a sphere. In Sect. 4, we apply
our method to the flow analysis of the full-scale tractor, illustrating the potential
of immersogeometric methods for high-fidelity aerodynamic analysis of complex
geometry problems. Section 5 draws conclusions and motivates future work.

2 Variational Problem and Implementations

2.1 Variational Multiscale Formulation with Weakly Enforced
Boundary Conditions

Consider a collection of disjoint elements f˝eg, [e˝
e � R

d, with closures covering
the fluid domain: ˝ � [e˝e. Note that ˝e is not necessarily a subset of ˝. Let
V h

u and V h
p be the discrete velocity and pressure spaces of functions supported on

these elements. The VMS discretization of incompressible Navier–Stokes equations
is stated as: Find uh 2 V h

u and ph 2 V h
p such that for all wh 2 V h

u and qh 2 V h
p :

BVMS
�fwh; qhg; fuh; phg� � FVMS

�fwh; qhg� D 0; (1)

where

BVMS
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and
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wh � � fd˝ C
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In (2), u0 is defined as

u0 D ��M




�



@uh

@t
C uh � ruh � f

�

� r � � �uh; ph
�
�

(4)

and p0 is given by

p0 D �� �C r � uh: (5)

In the above equations, the terms integrated over element interiors may be inter-
preted both as stabilization and as a turbulence model [15, 26–30]. �M; �C, and �
are the stabilization parameters. Their detailed expression used in this work can be
found in [31].

The standard way of imposing Dirichlet boundary conditions in (1) is to enforce
them strongly by ensuring that they are satisfied by all trial solution functions. This
is not feasible in immersed methods. We replace the strong enforcement by weakly
enforced Dirichlet boundary conditions in the sense of Nitsche’s method proposed
by Bazilevs et al. [16, 32]. The semi-discrete problem becomes

BVMS
�fwh; qhg; fuh; phg� � FVMS

�fwh; qhg�

�
Z

	 D
wh � ��ph n C 2� ".uh/n

�
d	 �

Z

	 D

�
2� ".wh/n C qh n

� � �uh � g
�

d	

�
Z

	 D;�
wh � � �uh � n

� �
uh � g

�
d	

C
Z

	 D
�B

TAN

�
wh � �

wh � n
�

n
� � ��uh � g

� � ��
uh � g

� � n
�

n
�

d	

C
Z

	 D
�B

NOR

�
wh � n

� ��
uh � g

� � n
�

d	 D 0: (6)

In the above equation, 	 D;� is the inflow part of 	 D, on which uh � n < 0. �B
TAN

and �B
NOR are stabilization parameters that need to be chosen element-wise as a

compromise between the following two requirements. If they are too large, they
assume a penalty-type character, affecting the conditioning of the stiffness matrix
and overshadowing the variational consistency. If they are too small, the solution
of (6) is unstable.

An advantage of weakly enforced Dirichlet boundary conditions is the release
of the point-wise no-slip condition at the boundary of the fluid domain. Although
maybe counter-intuitive at first sight, this violation of the no-slip boundary condition
is in fact desirable, as it imitates the presence of a boundary layer [17, 32]. For
immersogeometric methods, weakly enforced boundary conditions are particularly
attractive as the additional Nitsche terms in (6) are formulated independently of the
mesh. In contrast to strong enforcement, which relies on boundary-fitted meshes to
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impose Dirichlet boundary conditions on the discrete solution space, the Nitsche
terms in (6) also hold for intersected elements, where the domain boundary does not
coincide with element boundaries.

2.2 Implementation of the Tetrahedral Finite Cell Method

Our immersogeometric method largely draws on the FCM [25], which is based
on the fictitious domain concept illustrated in Fig. 1. Its main idea is to extend
the original fluid domain to a more tractable shape then discretize the embedding
domain into elements irrespective of the geometric boundary of potentially complex
embedded objects. This introduces elements that are intersected by the geometric
boundary, which creates complex integration domains in intersected elements. The
present contribution applied the FCM with unstructured meshes of tetrahedral
elements to simulations of incompressible flow, where the flexibility of unstructured
tetrahedral meshes is useful for boundary layer refinement.

To ensure the geometrically accurate evaluation of volume integrals in intersected
elements, we adapt the sub-cell based adaptive quadrature scheme of the Cartesian
FCM [20] to the tetrahedral case. The basic concept is to increase quadrature
points around immersed geometric boundaries, so that arbitrary integration domains
resulting from the intersecting boundary can be taken into account accurately. This
is achieved by recursively splitting intersected cells into sub-tetrahedra. At each
level, only those sub-tetrahedra intersected by the boundary are further split. For
clarity, we illustrate the quadrature scheme based on adaptive sub-cells for triangles
in 2D in Fig. 1. We emphasize that splitting is performed on the quadrature level
only and does not affect the basis functions, which are still defined on the original
tetrahedral element.

Ω

Ω

phys

fict

Fig. 1 The concept of physical and fictitious domains and quadrature scheme based on adaptive
sub-cells (blue lines). Quadrature points within the fluid domain (marked in pink) are used in the
numerical integration. Quadrature points outside (marked in green) are discarded
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3 Benchmark Example: Flow Around a Sphere

We use the flow around a sphere at Reynolds numbers Re D 100 and 3700 as a
benchmark to assess the accuracy of our immersogeometric method in both laminar
and turbulent flow regimes. We compute reference results using the same variational
framework with standard boundary-fitted tetrahedral meshes that are comparable
in terms of overall mesh resolution and boundary layer mesh grading. Figure 2
illustrates the dimensions of the computational domain, the location and size of the
immersed sphere, and the boundary conditions. The radius of the sphere, the inflow
velocity, and the fluid density are all one, and the Reynolds number is the inverse
of the viscosity. The inlet boundary condition and the slip boundary condition on
the lateral faces are strongly enforced, while the no-slip/no-penetration condition u
= 0 on the surface of the sphere is enforced weakly. The element sizes used in the
immersogeometric and boundary-fitted mesh generations for laminar and turbulent
flow cases are shown in Table 1.

10
10

10
20

Lateral wall 

(no penetration) 

2.5 10

5

1.25 6

2.5d=1

Outer box 

Outer  

refinement box Inner  

refinement box 

Fig. 2 Computational domain, boundary conditions, and the immersed sphere. The refinement
boxes, where finer element sizes are used, are also shown in the figure

Table 1 Element sizes in the immersogeometric and boundary-fitted meshes for laminar
and turbulent flow around a sphere

Near sphere
element size

Inner refinement
box element size

Outer refinement
box element size

Outer box element
size

Laminar 0.005 0.05 0:2=
p
2 0.8

Turbulent 0.004 0.04 0:16=
p
2 0.8
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3.1 Immersogeometric Results for Laminar Flow

Figure 3 shows the drag coefficient CD, computed with our immersogeometric
method and different levels of adaptive quadrature sub-cells, for flow around a
sphere at Re D 100. The results are compared with the boundary-fitted reference
value. Taking more sub-cell levels into account increases the accuracy of the domain
integration, which is directly linked to geometric accuracy. From the results in Fig. 3,
we clearly see that an increased geometric resolution is crucial to achieve accurate
flow solutions.

Increasing the number of adaptive sub-cell levels becomes expensive for larger l,
because the number of quadrature points increases exponentially [23]. We observe
that from l D 0 to l D 1 there is a significant improvement. We still obtain an
improvement from l D 1 to l D 2, but the difference between l D 2 and l D 4

is very small. Taking into account the increase in computing time (see Fig. 3), we
conclude that l D 2 levels of adaptive sub-cells represent a good balance between
computational cost and geometric accuracy for the present immersogeometric
method.

3.2 Immersogeometric Results for Turbulent Flow

For assessing the accuracy of our immersogeometric method for turbulent flows, we
carry out the computation of flow around a sphere at Re D 3700. Figure 4 shows
a visualization of the immersogeometric result of instantaneous vortical structures,
which illustrates the three-dimensional chaotic nature of turbulent flow in the wake
of the sphere. Time-averaged quantities of interest are reported in Table 2, computed

Levels of adaptive quadrature
0 1 2 3 4

C
D

1.08

1.09

1.1

1.11

1.12
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Levels of adaptive quadrature
0 1 2 3 4

T
im

e
(s

)

0

800

1600

2400

3200

4000

Immersogeometric

Boundary-fitted

Fig. 3 Drag coefficient CD and computing time required to run 50 steps computed with different
levels of adaptive quadrature sub-cells for flow around a sphere at Re D 100. Dashed line is the
reference CD computed with boundary-fitted mesh
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Fig. 4 Visualization of the instantaneous vortical structures for flow at Re D 3700, colored by
velocity magnitude

Table 2 Comparison of the time-averaged drag coefficient CD,
Strouhal number St, non-dimensional length L=d of the recircu-
lation bubble, and pressure coefficient Cpb at an azimuthal angle
of 180°for turbulent flow around a sphere at Re D 3700

CD L=d St Cpb

Immersogeometric (l D 0) 0.399 2.26 0.205 �0.254

Immersogeometric (l D 1) 0.397 2.26 0.208 �0.258

Immersogeometric (l D 2) 0.393 2.27 0.218 �0.217

Boundary-fitted 0.393 2.27 0.217 �0.215

DNS (Rodriguez et al. [33]) 0.394 2.28 0.215 �0.207

VMS (Bazilevs et al. [34]) 0.392 2.28 0.221 �0.207

with our immersogeometric and boundary-fitted methods, and compare them with
reference values in [33, 34]. We observe that the immersogeometric results converge
to the boundary-fitted reference values when l is increased from 0 to 2, i.e., under the
refinement of adaptive quadrature sub-cells. We also find that all quantities obtained
with l D 2 are in good agreement with the values reported in the literature.

Figures 5 shows the distribution of the time-averaged pressure coefficient over
the upper crown line of the sphere along the main flow direction. The pressure
coefficient distribution obtained with l D 2 levels of adaptive quadrature sub-
cells fits the boundary-fitted reference curve significantly better than the other
two cases. This confirms that a faithful representation of the geometry in terms
of accurate volume quadrature in intersected elements is a key requirement for
obtaining accurate turbulent flow results with our immersogeometric method.

4 Industrial Scale Example: Turbulent Flow Around
a Tractor

Typical vehicle designs lead to very complex fluid domain boundaries. This
constitutes a major obstacle for the transfer of fluid domains into boundary-fitted
computational meshes. An example is the agricultural tractor shown in Fig. 6,
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Fig. 5 Distribution of
pressure coefficient over the
upper crown line of a sphere
at Re D 3700
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Fig. 6 Time-averaged pressure distribution over the tractor surface, computed with the immerso-
geometric mesh

which incorporates many geometrically complex details. In this section, we use the
tractor to demonstrate how immersion of complex geometries into an unfitted mesh
can alleviate many challenges of standard boundary-fitted mesh generation in the
context of large-scale industrial applications.

4.1 Generating Immersogeometric and Boundary-Fitted
Meshes

We generate an adaptive immersogeometric mesh of the tractor using an open-
source mesh generator Gmsh [35], leveraging its refinement capability. A zoom of
the final immersogeometric mesh is shown in Fig. 7. We locally refine the tetrahedral
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mesh close to the tractor surface for capturing boundary layers. In all intersected
elements we add two levels of adaptive quadrature sub-cells to accurately integrate
the volume integrals. To obtain simulation results based on standard boundary-fitted
meshes for comparison, we use a commercial mesh generator ANSA [36] due to its
robustness in generating boundary-fitted meshes for complex geometries. We ensure
that the local refinement pattern close to the tractor and ground surfaces and in the
wake of the tractor is comparable to the immersogeometric mesh. A zoom of our
boundary-fitted mesh can be seen in Fig. 7.

We note that a significant advantage of the immersogeometric workflow is its
geometric flexibility. For example, it enables us to impose a uniform mesh size
along the immersed tractor surface regardless of fine-scale geometric features. We
can therefore easily control the mesh size resolution independently of the geometry,
for example, to obtain a coarser mesh for fast preliminary design studies. This is
not possible in boundary-fitted analysis, where a coarser mesh requires geometry
operations first to remove all geometric features that are of finer scale than the
targeted minimum element length.

4.2 Comparison of Immersogeometric and Boundary-Fitted
Results

We specify a uniform inflow with a streamwise velocity of 11.176 m/s ahead of the
tractor. The air density and dynamic viscosity are 1.177 kg/m3 and 1:846 � 10�5
kg/.m�s/, respectively. The Reynolds number, based on the streamwise length of the
tractor, is approximately 3�106. Figure 8 shows the instantaneous vortical structures
of the highly turbulent flow around the tractor. Snapshots of the velocity magnitude
on planar cuts at different heights above the ground are shown in Figure 9. Detailed
flow features such as flow around the pipe and mirrors can be clearly seen. Figure 6
shows the static pressure over the tractor surface. We observe that the pressure
distribution over geometric details of the tractor surface is captured well.

Fig. 7 Locally refined tetrahedral meshes of the fluid domain for aerodynamic analysis of the
tractor. Left: immersogeometric mesh. Right: standard boundary-fitted mesh



An Immersogeometric Method for Flow Around Complex Geometries 121

Fig. 8 Visualization of the immersogeometric result of instantaneous vortical structures for
turbulent flow around the tractor, colored by velocity magnitude

Fig. 9 Snapshots of the instantaneous velocity magnitude at different heights above the ground

To assess the accuracy of the immersogeometric results, we plot the distribution
of the time-averaged pressure coefficient CP D 2.P � P1/=�U2 along curves over
the tractor top and bottom surfaces in Fig. 10. Overall good agreement between
the immersogeometric and boundary-fitted methods is observed. This shows that
our immersogeometric method is able to achieve accurate flow solutions near the
boundary of an immersed object, where all elements are intersected, for high
Reynolds number turbulent flow problems.

The use of integration sub-cells improves the immersogeometric solution quality,
but comes at the cost of additional computation during the finite element assembly
procedures. The additional computations are in the form of quadrature over
elements, and do not require any communication between subdomains. The impact
of this additional cost on wall clock time may therefore be mitigated by simply
partitioning the mesh into more subdomains (each assigned to a processor core).
To demonstrate this, we perform a scalability study of our immersogeometric
method using the tractor example presented in this section. The computations are
carried out on the Lonestar Linux cluster [37]. The results are shown in Figure 11
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Fig. 10 Time-averaged pressure coefficient CP plotted along two curves over the tractor top (left)
and bottom (right) surfaces

Fig. 11 Scalability study for
the example of turbulent flow
around a tractor

Number of cores
102 103

T
im

e
(s

)

103

104

120

252

504 (2921 s)

840 (1840 s)

1008Boundary-fitted (504 cores): 1833 s

Ideal
Immersogeometric

and demonstrate nearly ideal scaling. Although the immersogeometric case takes
more wall clock time than the boundary-fitted case when 504 partitions are used for
both, equivalent times may be achieved by simply partitioning the immersogeomet-
ric mesh into more subdomains. As the cost of access to supercomputing resources
drops, it is not computer time but rather the time of human analysts—which is often
spent on mesh design—that dominates overall analysis cost. We therefore believe
that it is useful to investigate numerical methods that require moderate increases in
computation but drastically simplify mesh generation.
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5 Conclusions and Future Work

In this chapter, we presented an immersogeometric framework for analyzing
incompressible flows around geometrically complex objects immersed in unfitted
tetrahedral finite element meshes. The main components of this framework are the
variational multiscale method, the weak enforcement of boundary conditions, an
adaptive quadrature scheme for the integration of intersected elements, and the local
refinement of areas with boundary layers. We examined in detail two representative
example problems: flow around a sphere and aerodynamic analysis of a tractor.
We showed that the immersogeometric solutions were in good agreement with
reference solutions. We also demonstrated that such agreement is not achieved
without the faithful representation of surface geometry provided by our approach.
The tractor analysis indicates that our immersogeometric method can greatly
simplify the mesh generation process for industrial turbulent flow problems without
sacrificing accuracy.

Some future research directions in immersogeometric CFD include development
of advanced quadrature schemes for intersected elements that are geometrically
faithful and computationally efficient, improved weak boundary and coupling
conditions that limit the dependence on stabilization parameters and maintain
a good conditioning of the system matrix, boundary layer refinement strategies
with anisotropic meshes, and efficient treatment of moving immersed boundaries.
The last of these points is of particular importance to immersogeometric FSI
analysis [18, 38–40].
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Numerical Simulation of the Behavior
of a Rising Bubble by an Energy-Stable
Lagrange-Galerkin Scheme

Masahisa Tabata

Abstract We consider two-fluid flow problems, where each fluid is governed by
the Navier-Stokes equations and the surface tension proportional to the curvature
acts on the interface. The domain which each fluid occupies is unknown, and
the interface moves with the velocity of the particle on it. We have developed
an energy-stable Lagrange-Galerkin finite element scheme for the two-fluid flow
problems. It maintains not only the advantages of Lagrange-Galerkin method of the
robustness to high-Reynolds numbers and of the symmetry of the resultant matrix
but also the property of energy-stability under the condition of the smoothness of the
interface. Here we perform numerical simulation of the behavior of a rising bubble
by the scheme.

1 Introduction

We consider two-fluid flow problems, where each fluid is governed by the Navier-
Stokes equations and the surface tension proportional to the curvature acts on the
interface. The domain which each fluid occupies is unknown, and the interface
moves with the velocity of the particle on it. While numerical solution of one-
fluid flow problems governed by the Navier-Stokes equations has been successfully
established from the point of stability and convergence, it is still not an easy task
to construct numerical schemes solving the two-fluid flow problems. To the best
of our knowledge there are no numerical schemes whose solutions are proved to
converge to the exact one and there is very little discussion even for the stability
of schemes [1]. As for the study from the engineering point of view we refer to
[6, 12] and the bibliography therein. Recently we have developed an energy-stable
Lagrange-Galerkin finite element scheme for the two-fluid flow problems [11]. The
scheme is an extension of the energy-stable finite element scheme proposed by us
[9, 10] to the Lagrange-Galerkin method. It maintains not only the advantages of
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Lagrange-Galerkin method of the robustness to high-Reynolds numbers and of the
symmetry of the resultant matrix but also the property of energy-stability under the
condition of the smoothness of the interface. Here we perform numerical simulation
of the behavior of a rising bubble by the scheme.

2 An Energy-Stable Lagrange-Galerkin Scheme

Let ˝ be a bounded domain in R2 with piecewise smooth boundary 	 , and .0;T/
a time interval. The domain ˝ is occupied by m C 1 immiscible incompressible
viscous fluids. Each fluid k, whose density and viscosity are �k and �k, occupies
an unknown domain ˝k.t/ at time t. Fluid k.D 1; � � � ;m/ is surrounded by fluid 0,
and the surface tension acts on the interface 	k.t/. Let the coefficient of the surface
tension be �k. 	k.t/ is expressed as a closed curve,

	k.t/ D f�k.s; t/I s 2 Œ0; 1/g;

where

�k W Œ0; 1/ � .0;T/ ! R
2; �.1; t/ D �.0; t/ .t 2 .0;T//

is a function to be determined.˝k.t/, k D 1; � � � ;m, is the interior of 	k.t/, and fluid
0 occupies

˝0.t/ D ˝ n
[

f N̋ k.t/I k D 1; � � � ;mg:

Unknown functions .u; p/, velocity and pressure,

u W ˝ � .0;T/ ! R
2; p W ˝ � .0;T/ ! R

and �k satisfy the system of equations,

�k

�
@u

@t
C .u � r/u

�

� r
h
2�kD.u/

i
Crp D �kf ; x 2 ˝k.t/; t 2 .0;T/ (1a)

r � u D 0; x 2 ˝k.t/; t 2 .0;T/ (1b)

Œu� D 0; Œ � pn C 2�D.u/n� D �k�n; x 2 	k.t/; t 2 .0;T/ (1c)

@�k

@t
D u.�k; t/; s 2 Œ0; 1/; t 2 .0;T/ (1d)

u � n D 0; D.u/n k n; x 2 	; t 2 .0;T/ (1e)

u D u0; x 2 ˝; t D 0 (1f)
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�k D �0k ; s 2 Œ0; 1/; t D 0; (1g)

where k D 0; � � � ;m in (1a) and (1b), k D 1; � � � ;m in (1c), (1d), and (1g), and

f W ˝ � .0;T/ ! R
2; u0 W ˝ ! R

2; �0k W Œ0; 1/ ! R
2

are given functions; f is an acceleration, u0 is an initial velocity, �0k is a function
showing the initial interface position. Œ�� means the difference of the values
approached from both sides to the interface, � is the curvature of the interface,
and n is the unit normal. On the boundary of ˝ the slip boundary condition (1e)
is imposed.

Let X, V , Q, and ˚ be function spaces defined by

X D f� 2 H1.0; 1/2I�.1/ D �.0/g; ˚ D L1.˝/;

V D fv 2 H1.˝/2I v � n D 0 .x 2 	 /g; Q D L20.˝/:

Let Xh,˚h, Vh, and Qh be finite-dimensional approximation spaces of X,˚ , V and Q.
Let �t be a time increment and NT D bT=�tc. We seek approximate solutions �n

h,
�n

h, �n
h, un

h, and pn
h at t D n�t in Xh,˚h,˚h, Vh, and Qh, respectively. More precisely,

these approximate function spaces are constructed as follows. Dividing the domain
˝ into a union of triangles, we use P0, P2, and P1 finite element spaces for ˚h, Vh,
and Qh, respectively. They are fixed for all time steps n. On the other hand, Xh is
composed of functions obtained by the parameterization of polygons. We denote by
fsn

i 2 Œ0; 1�I i D 0; � � � ;Nn
x g the set of parameter values such that sn

0 D 0 and sn
Nn

x
D 1

and that f�n
h.s

n
i /I i D 0; � � � ;Nn

x � 1g are vertices of a polygon. The number Nn
x may

change depending on n. Our scheme is to find

f.�n
h; �

n
h; �

n
h; u

n
h; p

n
h/ 2 Xh � ˚h � ˚h � Vh � QhI n D 1; � � � ;NTg

satisfying

Q�n
h � �n�1

h

�t
D
(

un�1
h .�n�1

h /; 8sn�1
i ; n D 1

3
2
un�1

h .�n�1
h / � 1

2
un�2

h .�n�1
h ��tun�1

h .�n�1
h //;8sn�1

i ; n 
 2;
(2a)

�n
h D Xh. Q�n

h/; �n
h D Rh.�

n
h/; �n

h D Mh.�
n
h/; (2b)

��n
hun

h �
q

�n
h�

n�1
h un

h ı Xn�1
h

q

�n�1
h

�t
; vh

�
C a1.�

n
h; u

n�1
h ; un

h; vh/C a0.�
n
h; u

n
h; vh/

C b.vh; p
n
h/C�t dh.u

n
h; vhIC n

h / D �
�n

h˘hf n; vh
� � dh.�

n
h; vhIC n

h /;

8vh 2 Vh; (2c)

b.un
h; qh/ D 0; 8qh 2 Qh (2d)

subject to the initial conditions
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�0h D ˘h�
0; u0h D ˘hu0; (3)

where the symbol ı stands for the composition of two functions, Xn�1
h is a mapping

defined by

Xn�1
h .x/ D x ��tun�1

h .x/;

�n�1
h is the Jacobian of the mapping, and ˘h is the Lagrange interpolation operator

to the corresponding finite-dimensional space. The linear forms a1, a0, b, and dh are
defined by

a1.�;w; u; v/ D
Z

˝

1

2
�
n
Œ.w � r/u� � v � Œ.w � r/v� � u

o
dx; (4)

a0.�; u; v/ D
Z

˝

2�.�/D.u/ W D.v/ dx; b.v; q/ D �
Z

˝

.r � v/q dx;

dh.�; vICh/ D
NxX

iD1
�0 ND�s�i � ND�svi

.si � si�1/2

j�i � �i�1j ;

where C n
h is a polygon associated with �n

h, ND�s is the backward difference with
respect to the parameter s, Xh is an operator which adjusts the position of the
interface, Rh and Mh are operators which define average constants on each element.
For the details of the linear forms and the operators refer to [10].

The Lagrange-Galerkin method has nice features for the approximation of
material derivative terms [2–5, 7, 8]. Since the basic idea is to approximate the
particle path along characteristic curves, the method is robust for high Reynolds
number problems. The scheme (2) has the following advantages:

• It is stable in the sense of energy if an integral of the square of approximate
curvature of the interface remains bounded.

• Since the resultant matrix is symmetric, we can use efficient solvers for symmet-
ric system of linear equations, e.g., MINRES.

• Since we use the interface-tracking method, we can distribute much more nodes
on the interface than the level-set method.

• When it is applied to incompressible viscous one-fluid flow problems, the
stability and convergence are assured.

• Since the main computation part is similar to that of the Stokes problem, the
computation is light.

We apply this scheme to simulate the behavior of a rising bubble in fluids of
different viscosities.



Numerical Simulation of a Rising Bubble 133

3 Numerical Results

Let m D 1 and set

˝ D .0; 1/ � .0; 4/;

˝1 D f.x1; x2/I .x1 � a/2 C .x2 � 2a/2 < a2g; a D 1

5
;

�0 D 100; �0 D 5:0; 0:5; 0:05; 0:005; �1 D 0:1; �1 D 1:0;

f D .0;�1/T ; �1 D 2:0:

When the viscosity �0 of fluid 0 varies, we observe the change of the bubble
movement depending on �0. We set the time increment �t D 1=16. Figs. 1, 2, 3,
and 4 show the time histories of the interfaces and streamlines when �0 D
5:0; 0:5; 0:05, and 0:005. When �0 D 5:0, that is, the viscosity is large, the rising
speed of the bubble is slow and any wakes are hardly visible after the bubble. When
�0 D 0:5, that is, the viscosity decreases, the rising speed of the bubble increases
and there appear wakes after the bubble. When �0 D 0:05, that is, the viscosity
is small, the rising speed of the bubble becomes high and there appears oscillation
when the bubble rises up. When �0 D 0:005, that is, the viscosity becomes smaller,
the rising speed increases and the wake becomes larger. The wake has a pattern
similar to the Kármán vortex street in the flow past a circular cylinder. Fig. 5 shows
the trace of the centroid of the bubble in each case. Although the change of the
position of the centroid of the bubble is not so remarkable compared to the shape,
we can observe the increase of the distance from the center-line x1 D 1=2 when �0
decreases.
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Fig. 1 Interfaces and streamlines, �0 D 5:0; t D 0; 4; � � � ; 28.
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Fig. 2 Interfaces and streamlines, �0 D 0:5; t D 0; 2; � � � ; 14.
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Fig. 3 Interfaces and streamlines, �0 D 0:05; t D 0; 2; � � � ; 14.
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Fig. 4 Interface and streamlines, �0 D 0:005; t D 0; 2; � � � ; 14.
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Fig. 5 Traces of the centroid of the bubble, �0 D 5; 0:5; 0:05; 0:005 (from left to right).
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A Numerical Review of Multi-Fluid SPH
Algorithms for High Density Ratios

Jan-Philipp Fürstenau, Bircan Avci, and Peter Wriggers

Abstract The smoothed particle hydrodynamics (SPH) method is a recent
numerical technique and particularly well suited for the simulation of free surface
flows. The SPH method is also a good technique for the simulation of multi-fluid
problems, as in that approach the fluid interface is resolved by freely moving
particles. Due to high density gradients at the interface, the SPH multi-fluid models
generally show instabilities for high density ratios. In the current work, the multi-
fluid models of Monaghan and Rafiee [7], Colagrossi and Landrini [2], and Hu and
Adams [6] are reviewed and benchmarked. The focus of this work is to survey the
implementations with regard to stability, accuracy, and computational effort.

1 Introduction

Many technical fluid problems involve multi-fluid flows, examples can be found,
for instance, in naval or process engineering, like the oil loss of a tanker or the
gas–liquid flows in pipes. For the prediction or simulation of these flows, a multi-
fluid flow solver is required that is usually implemented by extending a single-fluid
solver. Especially in this context, the well known but relatively new smoothed
particle hydrodynamics (SPH) method demonstrates its flexibility. Since through
its particle nature the main routines of the SPH method can be extended easily to
result in a free surface multi-fluid flow model, that can directly simulate multi-
fluid interactions within the particle scale. However, numerical experiments on
the resulting multi-fluid flows show stability problems for density ratios greater
than 2 [2]. The instabilities in these cases result from the density gradients at the
interfaces. In the current work multi-fluid models were implemented in the GPU-
based open-source SPH framework DualSPHysics [3] that is basically designed for
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oceanographic problems. The focus of this work is to review and evaluate three
multi-fluid SPH approaches with regard to stability and computational effort in an
implementation on GPU.

2 SPH Basics

For isothermal problems the flow of a weakly compressible viscous fluid can be
obtained by the following form of the Navier–Stokes equations:

dv
dt

D �1
�

rp C �r2v C f (1)

with the continuity equation

d�

dt
D ��r � v; (2)

where �, p, �, v, and f are fluid density, pressure, kinematic viscosity, velocity, and
body force of an arbitrary point in the described fluid. For weakly compressible
fluids commonly the following equation of state is evaluated to calculate the
pressure with respect to the density [7]:

p.�/ D �0c2

�

�

�

�0

��

� 1


; (3)

where �0 is the reference density of the fluid. The constant � is a parameter
depending on the compressibility of the fluid, where for a fluid like water or air
a value � D 7 and � D 1:4 is chosen, respectively, according to the isentropic
exponent of the fluid [2]. Within the SPH framework the speed of sound of the fluid
c is used more as a numerical parameter, that has to be at least 10 times bigger than
the maximum fluid speed to keep the density fluctuations below 1 % [7].

2.1 Discretization

The central idea of the SPH method is to introduce a kernel interpolant W to evaluate
a field quantity A at a certain point in space r [4]

A.r/ D
Z

W.r � r0/A.r0/dr0: (4)
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As the field around the point is commonly unknown the continuum is discretized
with movable particles that carry each field quantity of the fluid. This way, on the
one hand, each particle represents an amount of fluid, which is moving in space,
and on the other hand, an interpolation support for its neighbors. Thus, the particles
appear like the scattered points in the Monte Carlo method [4]. In the SPH method,
the integration for each particle i can be interpolated by a sum over its neighboring
particles j. Finally, as discrete interpolation of the quantity A in (4) one obtains

hA.r/ii D
X

j

A.rj/W.ri � rj/Vj D
X

j

A.rj/W.ri � rj/
mj

�j
; (5)

where rj, Vj, and mj are positions, assigned volumes, and masses of the neighboring
particles (see [4] for details). The kernel is also used for the calculation of the spatial
derivatives of the field quantity A at point i

hrA.r/ii D
X

j

A.rj/riW.ri � rj/Vj D
X

j

A.rj/riW.ri � rj/
mj

�j
: (6)

In the following, for a better overview the field quantities are rewritten as A.ri/ D Ai

and the kernel function between i and j is rewritten as W.ri � rj/ D Wij. With this
notation equations (5) and (6) take the form

hAii D
X

j

mj

�j
AjWij and hrAii D

X

j

mj

�j
AjriWij: (7)

For computational reasons the kernel must have a compact form and its global
integral must yield “1”. Many kernel functions are designed in a way that they fulfill
these criteria, and in this paper the Wendland kernel is used as presented in [11]

Wij D ˛

( �
1 � rij

2h

�4� 2rij

h C 1
�

for rij � 2h
0 for rij > 2h

(8)

where rij is the scalar particle distance and h is the constant delimiter of the kernel
function for a compact kernel and is called the smoothing length. The parameter
˛ depends on the dimensions of the problem, where ˛ D 7=.4�h2/ for 2D and
˛ D 21=.16�h3/ for 3D problems.

2.2 Equation of Motion

The pressure term of the Navier–Stokes momentum equation (1) for particle i can
directly be interpolated with the kernel derivative (7) as
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�
1

�
rp

�

i

D 1

�i

X

j

mj

�j
pjriWij: (9)

This equation is certainly not symmetrical, what results in an unphysical behavior
[9]. For the symmetrization of the equation commonly the identity is used in the
following form:

1

�
rp D r



p

�

�

C p

�2
r� (10)

that can be interpolated as

�
1

�
rp

�

i

D
X

j

mj

 
pi

�2i
C pj

�2j

!

riWij: (11)

This formulation is symmetrical and represents the common form for the calculation
of the pressure interaction between particles.

Also for the calculation of the viscous forces several formulations have been
presented in the literature. In this work the viscosity approach of Monaghan [7] is
consistently used, where the viscosity reads

˘ij D � 16�i�j

�i�i C �j�j

vij � rij
ˇ
ˇrij

ˇ
ˇ h
: (12)

Herein, vij and rij are defined as vij D vi � vj and rij D ri � rj, �i and �j are
the kinematic viscosities of the interacting fluids. After calculating ˘ij the viscous
forces can be obtained by evaluating

˝
�r2v

˛

i D �
X

j

mj˘ijriWij; (13)

which represents the discretized form of the viscosity part in equation (1) (for details
see [1, 7]).

2.3 Continuity Equation

In the framework of the SPH method, the continuity equation (2) can be interpolated
by using the kernel derivative

d�i

dt
D �i

X

j

mj

�j
vijriWij: (14)
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Another possibility for the calculation of the density is the direct evaluation of the
kernel function (7) around particle i

�i D
X

j

mj

�j
�jWij D

X

j

mjWij: (15)

However, equation (14) is used more often, as the temporal density evolution can
be evaluated together with the particle acceleration whereas equation (15) has to be
evaluated before the rest of the computations.

3 Multi-Fluid Implementations

The possibility of simulating multiple fluids is already included in the basic SPH
formulations (13) and (14) or (15). Certainly, these equations expect a continuous
field of variables without jumps. However, for multi-fluid implementations the
continuity of the density field h�i is disturbed at the fluid interfaces. Also the density
gradient hr�i is affected by these discontinuities. The main tasks in simulating
multi-fluid problems with high density ratios are

• to keep the density jump from being smoothed out,
• to stabilize the interface.

In this work, the multi-fluid approaches of Monaghan and Rafiee [7], Colagrossi
and Landrini [2], and Hu and Adams [6] are implemented and compared. The
approach of Grenier et al. [5] has also been taken into account, but due to its
high computational effort, as already noticed in [7] and [9], it is not further
considered here.

3.1 Monaghan and Rafiee Formulation

The simplest implementation in this paper concerning additional formulations
and computational effort per particle and time step is based on the approach of
Monaghan and Rafiee [7]. They propose an extended momentum equation with a
modified pressure part which reads

�
1

�
rp

�

i

D �
X

j

mj



pi C pj

�i�j
C Rij

�

riWij: (16)

In the modified pressure part a repulsive force Rij, which is driven by the density
ratio, is introduced to stabilize the interface
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Rij D ˛

ˇ
ˇ
ˇ
ˇ
�0i � �0j

�0i C �0j

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
pi C pj

�i�j

ˇ
ˇ
ˇ
ˇ : (17)

Here, the parameter ˛ is of empirical type. In Monaghan and Rafiee [7] the
continuity equation (14) is chosen as it can directly be used in the analysis without
any alteration.

3.2 Colagrossi and Landrini Formulation

In the approach of Colagrossi and Landrini [2] a very similar pressure formulation
as given in (16) is proposed which reads

�
1

�
rp

�

i

D � 1

�i

X

j

mj

�j

�
pi C pj

�riWij: (18)

As continuity equation the authors employ equation (14). For the handling of high
density ratios they propose a surface tension force. This surface tension is affecting
the equation of state (3)

p.�/ D �0c2

�

�

�

�0

��

� 1


� Na�2 (19)

and the pressure term (18)

�
1

�
rp

�

i

D � 1

�i

X

j

mj

�j

�
pi C pj

�riWij � Na
�i

X

j

mj

�j

�
�2i C �2j

�riWij: (20)

Herein, Na is an empirical constant chosen according to the problem type [2].

3.3 Hu and Adams Formulation

The approach of Hu and Adams [6] differs from the aforementioned approaches as
in this case, the density is evaluated directly with the kernel based on equation (15).
However, to handle the density jump at the interface, the masses of the neighboring
particles are neglected and the sum only contains the kernel values. This is called
the number density or specific volume � , which is used to calculate the density by

�i D mi

X

j

Wij D mi�i: (21)
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The specific volume is also used to calculate the pressure term by evaluating

�
1

�
rp

�

i

D � 1

mi

X

j

 
pi

�2i
C pj

�2j

!

riWij: (22)

In this approach, as stabilization for high density ratio interactions a surface tension
is used in terms of a continuous surface force model. At first, a color function c of
each phase a is defined for each particle

ca
i D

�
1 if particle i belongs to phase a;
0 if particle i does not belong to phase a:

(23)

This color field also has a gradient which exists when a particle i of phase a has
a neighboring particle j of phase b. Then the gradient between phase a and b at
particle i can be evaluated as follows:

rcab
i D �i

X

j

 
cb

i

�2i
C cb

j

�2j

!

rW; a ¤ b: (24)

This color gradient acts as an interface normal. A surface stress tensor ˘S can then
be calculated by using the following expression:

˘ ab
S D �ab

1

jrcabj


1

d
Ijrcabj2 � rcabrcab

�

; a ¤ b; (25)

where d is the number of dimensions of the problem and �ab is the surface tension
parameter of phase a with respect to phase b. This variable can differ for all phases,
and �ab must not be equal to �ba. For this reason the summation of the color gradient
has to be performed for all phases separately. Finally all stress tensors can be
summed up to

˘S D
X

b

˘ ab
S ; a ¤ b: (26)

The force resulting from the surface tension on particle i is then obtained in a similar
manner like for the pressure and one ends up with

�
1

�
rp

�

i

D � 1

mi

X

j

 
pi

�2i
C pj

�2j

!

riWij � 1

mi

X

j

 
˘Si

�2i
C ˘Sj

�2j

!

� riWij: (27)
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4 Numerical Simulations

To evaluate the multi-fluid approaches, two benchmark tests are performed. The first
is the Rayleigh–Taylor instability test to examine the multi-fluid flow with a low
density ratio (�2=�1 D 1:8). The second benchmark is the rising bubble example.
In this case the density ratio of the fluid phases is high (�1=�2 D 1000), and the
governing multi-fluid SPH equations require stabilization to ensure robustness. The
used time integration scheme in the benchmarks is the Verlet algorithm [10], and
the system boundaries are discretized by means of SPH boundary particles.

4.1 Rayleigh–Taylor Instability

The Rayleigh–Taylor instability test consists of two fluids that are placed on each
other like shown in Fig. 1. The fluid domain is discretized by 120 x 240 particles.
The parameters used in the numerical simulations are listed in the Appendix.

The obtained results for the three approaches are shown in Fig. 2. While
performing the simulations it turned out that the approaches of Monaghan and
Rafiee [7] and Colagrossi and Landrini [2] are rather stable regarding the time step
size, whereas the approach of Hu and Adams [6] responds very sensitive in this
regard. Fig. 3 shows the results when increasing the speed of sound of both fluids,
c1 and c2, by a factor of 5. As one can see, with the approach of Hu and Adams [6]
the fluids nearly did not move, because the fluid motion is totally damped out by
oscillations of the particle velocities and densities.

In Table 1, the execution results of the computations are shown. The approaches
of Monaghan and Rafiee [7] and Colagrossi and Landrini [2] result in the same
numerical effort, as the basics of the methods are quite similar. The approach of Hu
and Adams [6], on the other side, performs less time steps, but requires about 25%
more simulation time.

Fig. 1 Initial configuration
of the fluids in the
Rayleigh–Taylor instability
benchmark. The initial
interface is represented by
y D R Œ1� 0:15 sin .2�x=R/�.

r2 = 1800 kg
m3

r1 = 1000 kg
m3

2R

R

y
x
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Fig. 2 Simulation results at
t D 5
p

R=g [9] obtained with
the approaches of Monaghan
and Rafiee [7] (left),
Colagrossi and Landrini [2]
(middle), and Hu and Adams
[6] (right) (Compared with
level-set results of Grenier
et al. [5] [black dots])

Fig. 3 Simulation results at
t D 5
p

R=g [9] with a 5
times higher speed of sound
of both fluids obtained with
the approaches of Monaghan
and Rafiee [7] (left),
Colagrossi and Landrini [2]
(middle), and Hu and Adams
[6] (right) (Compared with
level-set results of Grenier
et al. [5] [black dots])

Table 1 Execution results of the Rayleigh–Taylor instability carried out on a GeForce 840M

Approach Monaghan and Rafiee [7] Colagrossi and Landrini [2] Hu and Adams [6]

Number of time steps 18,961 18,960 18,456

Simulation runtime [s] 115.72 117.95 145.93

4.2 Rising Bubble

The second test case is the rising bubble benchmark. In this case a bubble of air
with radius R is placed in a box of water like shown in Fig. 4. The fluid domain is
discretized by 121 x 201 particles. The used parameters for the simulations can
also be found in the Appendix. As one can see in Fig. 5, all three approaches
are capable of representing the rising bubble problem, but the effort for finding
suitable stabilization parameters varies strongly from model to model. In the case of
the approach of Hu and Adams [6], no parameter could be found in reasonable time
which ensures both good stability and good accuracy.
All the stabilization parameters and the execution results related to this benchmark
analysis are given in Table 2. As in the previous benchmark the approach of Hu
and Adams [6] performs less time steps, but it requires about 75% more simulation
runtime compared to the other two. Mainly, this is due to the numerical extensive
calculation of the surface tension force.
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Fig. 4 Initial configuration
of the rising bubble
benchmark r1 = 1000 kg

m3

10R

6R

r2 = 1 kg
m3

2R

Fig. 5 Simulation results at
t D 4
p

R=g obtained with the
approaches of Monaghan and
Rafiee [7] (left), Colagrossi
and Landrini [2] (middle),
and Hu and Adams [6] (right)
(Compared with level-set
results of Sussman et al. [8]
[black dots])

Table 2 Execution results of the rising bubble benchmark carried out on a GeForce GTX TITAN
Black

Approach Monaghan and Rafiee [7] Colagrossi and Landrini [2] Hu and Adams [6]

Stabilization parameters ˛ D 0:03 Na1 D 0 �12 D 0

Na2 D 3500 �21 D 500

Number of time steps 128,583 129,246 123,991

Simulation runtime [s] 217.73 242.64 376.17

5 Summary and Outlook

In the present work, three multi-fluid approaches for high density ratios were
reviewed and realized in the GPU-based open-source SPH code DualSPHysics
[3]. The resulting codes were investigated within two benchmarks, to expose their
physical and numerical capabilities. The numerical simulations showed up some
strengths and weaknesses of the basic equations and stabilization strategies of the
approaches. In the next step the implementations will be applied to larger problems.
As a first idea an oil leaking tanker was simulated to show the capabilities of
the actually used GPUs. The tanker problem shown in Fig. 6 consists of about 44
million particles. The simulation was carried out on a GeForce GTX TITAN Black
where the simulation runtime for 103,786 time steps was about 90.87 hours with
the approach of Monaghan and Rafiee [7]. For the simulation of further and even
more complex technical problems, it will be examined how the strengths of the
three approaches can be combined to obtain a stable code for massively parallelized
computing of multi-fluid flows with high density ratios.
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Fig. 6 Simulation results of the oil leaking tanker problem at two different points in time

Appendix

The parameters used for the simulations shown in Section 4 are shown in Tables 3
and 4, where the parameters �1 and c2 can be calculated using Re D p

R3g=�1 [9]
and c2 D p

.�1�2/ = .�2�1/ c1 [2]. In Table 4 �2 is calculated using �2 D 128�1 [9].

Table 3 Parameters used for the Rayleigh–Taylor instability benchmark

Re g R �1 D �2 �1 D �2 [9] c1 c2
420 9:81

kgm
s2 1 m 7 � 0:0075 m2

s � 66:44 m
s � 49:5227 m

s

Table 4 Parameters used for the rising bubble benchmark

Re g R �1 �2 �1 �2 c1 c2
1000 9:81

kgm
s2 1 m 7 1:4 � 0:0089 m2

s � 1:1339 m2

s � 148:94 m
s � 2106:32 m

s
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Self-Propulsion of a Killifish
from Impulsive Starts

Yoichi Ogata and Takayuki Azama

Abstract The present study discusses an acceleration of a swimming killifish-like
small fish by fluid force, using three-dimensional simulations with CIP method in
combination with an immersed boundary method. Simulation results have indicated
that time variation of a small fish speed in small Reynolds number can be estimated
as a free fall model of a sphere, that is, the fluid force can be separated into
positive part (thrust) and negative part (viscous drag). Thrust is almost independent
of Reynolds number, but a coefficient of viscous drag is a decreasing function of
Reynolds number when a swimming motion of a fish with a shape is determined.

1 Introduction

Applications of fish morphology and motion to robots have been attracting the
attention as new underwater propelling systems which do not use screws in recent
years. For example, robots which are simulative such as a dolphin and a turtle have
been studied and developed [1, 2]. A lot of knowledge have been found from fish
swimming so that we can design propelling systems and develop their swimming
performances. For example, bending rules in natural propulsors as well as fish
during steady motion have been found by a lot of observations; mean flexion ratio
and angle are 0.65 and 26.5 deg, respectively [3], and the Strauhal number of most
of the swimming animals is in the range of 0:25 < St < 0:35 [4].

Lighthill [5] has indicated the fundamental theory of fish swimming and Newman
has also proposed a generalized-slender body theory and fluid force for fish-like
body [6]. These studies have suggested optimized Froude efficiency depending on
motions of a slender body placed in a uniform potential flow.

Flow velocity fields around and behind a fish have been gradually made clear
by measurements using such as particle image velocimetry [7], and robotic fish of
which a tail dye tubes to visualize vortex structures in its wake can also obtain
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hydrodynamic force by inner strain gauge [8]. On the contrary, numerical studies
have also helped us in understanding the mechanism of fish swimming. For example,
flow fields induced by a deforming fish-like body placed in a uniform flow have been
simulated using moving grid system in two dimensions [9, 10]. Recent studies by
three-dimensional simulations have shown correlation between fish acceleration and
wake structure generated by a swimming fish [11, 12].

One of the authors has also investigated self-propulsion of a two-dimensional
deforming NACA foil on the assumption of a small fish in not so large Reynolds
number [13]. The present paper is extended to a three-dimensional small fish like
a killifish accelerated by fluid forces in swimming. The constrained interpolation
profile (CIP) method [14, 15] with an immersed boundary method [16, 17] is used to
simulate interactions between a laminar flow and a deforming body accurately even
in cartesian coordinate system. The CIP method has been applied to a lot of fluid–
structure interaction (FSI) and successful results have been introduced [18, 19].

Basic equations and approaches for an accelerated fish are briefly introduced in
Section 2. Section 3 displays flow fields arisen by a fish which impulsively starts
deforming, and discusses fish acceleration. Concluding remarks are in Section 4.

2 Basic Equations and Approaches for an Accelerated Fish

Figure 1 shows a fish shape which we have used referring to a real killifish for
three-dimensional simulation [20]. The fish is covered with triangle meshes for
an immersed boundary method. Equation (1) is a function of the wavy lateral
oscillation of the midline of the fish h .x; t/ with an amplitude H .x/ as follows:

h .x; t/ D H .x/ cosf2�
�
.X � f�t/g; (1)

H .x/ D 0:1f13
8

X2 � 33

40
X C 0:2g (2)

D 0:1f� .X � 1/2 C 1g; (3)

where �, f , and X D x � x0 are a wavelength, swimming frequency, and distance
from the fish head located at x0, respectively; the coordinate is normalized by fish
length L, thus, the head and tail correspond to X D 0 and X D 1, respectively.
Amplitude functions H .x/ of Eqs. (2) and (3) were suggested by Dong [21] and
Akimoto [9], respectively.

Equation (2) is carangiform as the model (A) and Eq. (3) is anguilliform with
larger deformation than Eq. (2) as the model (B) in Fig. 1. In the present paper, the
fish is assumed to move in only x-direction by thrust Fx generated by cosine-wave
deformation because time averages of lifts Fy and Fz during a period are negligible
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Fig. 1 Cross sections in lateral and top views of a killifish covered with triangle meshes for an
IB method. Models (A) and (B) in the top view of xy-plane are snapshots of Eqs. (2) and (3),
respectively

owing to the symmetry of the deformation. Therefore, the horizontal fish speed U .t/
is assumed to follow the Newton’s law as follows:

M
dU .t/

dt
D Fx 	 CD

1

2
�f U

2
0L2; (4)

where M D �bV is mass of the fish with volume V; �f and �b are density of fluid
and the fish body, respectively. Thus, Eq. (4) is normalized using a fish length L and
a reference velocity U0 as follows:

� OV d OU .t/
dOt D 1

2
CD; (5)

where Ot D U0t=L is normalized time, and OU D U=U0, OV D V=L3 and � 	 �b=�f

are speed, volume, and the specific gravity of a fish, respectively. Here, � D 5:0

is considered like a fish robot, and the volume OV is 0.009 for the present model.
From now on, the O sign to represent dimensionless variables is dropped for simple
notation. Drag coefficient CD can be obtained by surface integral of pressure and
viscous shear stress on the fish body, and then the fish speed U is also obtained by
time integral of dU=dt in Eq. (5). Note that both CD and dU=dt will be negative
when a fish is accelerated in Fig. 1.

The virtual boundary (VB) method [16, 17] is employed to identify a deforming
body in a fluid, and a non-inertial coordinate in which the swimming fish is fixed
at a position. Therefore, the fluid velocity u is replaced with u

0 D u � U .t/, where
U .t/ D .U; 0; 0/, and the dimensionless incompressible Navier–Stokes equations
in the coordinate system for the VB method can be described as follows:

r � u
0 D 0; (6)

@u
0

@t
C
�

u
0 � r

�
u

0 D �rp C 1

Re
r2u

0 C G
0 � dU

dt
; (7)
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thus, the inflow boundary is u
0

.x D 0; t/ D �U .
 0/. Since there is no char-
acteristic flow speed for impulsive start in stationary fluid, we take a reference
phase speed of the fish c0 D f0� as a reference speed to define Reynolds number
Re 	 c0L=� D f0L2=� in � D L. For example, Re Š 5000 when a fish with
the body length L D 7cm and frequency f0 D 1:0Hz is considered in water
� D 1:0� 10�6m2=s. The last term in the right-hand side of Eq. (7) can be obtained
by Eq. (5). The additional force G

0

is added not only at points near the boundary but
also inside the body [13, 17].

3 Acceleration Model of a Small Fish

Next, we consider an acceleration model of a three-dimensional killifish-like
deforming model. The fish begins to deform at t D 0 in stationary fluid,
following Eq. (1) with H .x/ of Eqs. (2) and (3). Each direction of the compu-
tational region is divided into nonuniform sections with minimum mesh sizes
.�xmin; �ymin; �zmin/ D �

2:0 � 10�2; 8:7 � 10�3; 8:0 � 10�3� around the fish, and
they become gradually large near boundaries of the region.

3.1 Vortical Structure on Wake of a Small Fish

Figure 2 displays snapshots of wake structure of both Eqs. (2) and (3) for Re D
5000 and f D 3:0. The structure is represented by isosurface of the second
invariant Q 	 �

˝ij˝ij � SijSij
�
=2 D 0:1; Sij D �

@ui=@xj C @uj=@xi
�
=2 and

˝ij D �
@ui=@xj � @uj=@xi

�
=2 are symmetric and asymmetric parts of the velocity

gradient, respectively.

Fig. 2 Comparison of wake structure Q D 0:1 during swimming from different views. (A) :
Eq. (2), (B) : Eq. (3)
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The fish with Eq. (3) is accelerated faster than the one with Eq. (2) at the same
number of kicks to swim. It is seen that strong vortex and clear vortex rings are
generated on wake of the fish with Eq. (3) due to the deformation on the whole
body. The strong vortex is considered to be the source of propulsion as reversed
Karman vortex in two-dimensions.

3.2 Estimation of a Small Fish Speed; Re Dependence

It has been found in two-dimensional simulations of our previous study that the
right-hand side of Eq. (5) can be estimated using the similar model to free fall of a
sphere as follows [13]:

�V
dU

dt
D 1

2
CD 	 a � bU � cU2; (8)

where .a; b; c/ are undetermined positive coefficients. The study has shown that the
third term of inertial drag is much smaller than the second term of viscous drag in
Eq. (8) because the viscous drag dominates and the coefficient c is found to be very
small in low Reynolds number. Therefore, it is also assumed in three-dimensions
that the third term is negligible as c D 0 in Eq. (8).

The exact solution of Eq. (8) with c D 0 can be easily obtained as follows:

U .t/exa D a

b

h
1 � exp




� b

�V
t

�i
; (9)

where coefficients .a; b/ could be also estimated using least squares method so
that Uexa by Eq. (9) is fit with numerical solutions Ucal in three-dimensions as two-
dimensions.

Figure 3 shows dependence of time variation of fish speed U and coefficients
.a; b/ on Re from 300 to 12000, respectively, for the model (A) with f D 1:0. Dots
and dash lines in Fig. 3(a) are Ucal and Uexa, respectively; each dot of Ucal is time
average in each deformation period.

Figure 3(a) has indicated that Eq. (9) agrees with Ucal very well by finding
appropriate coefficients .a; b/ for each Re. The fish speed is large for large Re, and
will converge a terminal speed U1 D a=b as time goes on.

It is found in Fig. 3(b) that the coefficient a is almost independent of Re, while
the coefficient b decreases and becomes an asymptotic value with increasing Re. The
coefficient a which corresponds to the thrust part is considered to be determined by
fish shape and deformation. On the other hand, the coefficient b can be expressed as
a function of Re as follows:

b D C1p
Re

�
1C C2

p
Re
�
; (10)
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Fig. 3 (a) Time history of fish speed U for Eq. (2) with f D 1:0. Dots are simulation results and
dash lines are Eq. (9) with appropriate .a; b/. (b)dependence of .a; b/ on Re

where .C1;C2/ are almost .0:65; 0:002/ in the present condition. Figure 3 implies
that, if we could find the pair .a; b/ obtained by numerical solutions for two Re
in which fish conditions such as swimming motion are determined, dependence of
.a; b/ on Re can be found and then, fish speed U for any small Re can be predicted
using Eqs. (9) and (10).

4 Conclusion

An acceleration of a three-dimensional fish model of small size or low speed is
discussed through FSI simulations, and a prediction model of fish speed is proposed.

Fluid force generated by fish deformation is decomposed to thrust part (positive
term) and drag part (negative term). The model to predict fish speed is the same
as our previous study of a deforming NACA foil in two-dimensions, and in good
agreement with simulation results. However, the model might be applied to only
small Re for laminar flow because of turbulent flows for larger Re, such as a fast fish
like a dolphin. In addition, a fish actually has not only a caudal fin but also some fins,
which also play very important roles for acceleration including a turn. Dependence
of not only fish speed but also efficiency to save energy to swim on swimming
frequency, amplitude function, and fish shape will be shown and discussed in detail
in our future papers.
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New Directions in Space–Time
Computational Methods

Kenji Takizawa and Tayfun E. Tezduyar

Abstract This is an overview of some of the new directions we have taken
the space–time (ST) computational methods since 2010 in bringing solution
and analysis to different classes of challenging engineering problems. The new
directions include the variational multiscale (VMS) version of the Deforming-
Spatial-Domain/Stabilized ST method, using NURBS basis functions in temporal
representation of the unknown variables and motion of the solid surfaces and
fluid mechanics meshes, ST techniques with continuous representation in time,
ST interface-tracking with topology change, and the ST-VMS method for flow
computations with slip interfaces. We describe these new directions and present a
few examples.

1 Introduction

In computational engineering analysis, one frequently faces the challenges involved
in solving flow problems with moving boundaries and interfaces (MBI). This wide
class of problems include fluid–structure interaction (FSI), fluid–object interaction
(FOI), fluid–particle interaction (FPI), free-surface and multi-fluid flows, and flows
with solid surfaces in fast, linear, or rotational relative motion. The computational
challenges still being addressed include accurately representing the small-scale flow
patterns, which require a reliable multiscale method. They also include contact or
near contact between moving solid surfaces and other cases of topology change
(TC) or near TC, such as those in flapping-wing aerodynamics, wind-turbine
aerodynamics, cardiovascular fluid mechanics, and thermo-fluid analysis of ground
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vehicle tires. These four classes of problems played a key role in motivating
the development of the space–time (ST) computational methods discussed in this
article.

A method for flows with MBI can be viewed as an interface-tracking (moving-
mesh) technique or an interface-capturing (nonmoving-mesh) technique, or possibly
a combination of the two. In interface-tracking methods, as the interface moves,
the mesh moves to follow (i.e., “track”) the interface. The Arbitrary Lagrangian–
Eulerian (ALE) finite element formulation [1] is the most widely used moving-mesh
technique. It has been used for many flow problems with MBI, including FSI (see,
for example, [2–6]). The Deforming-Spatial-Domain/Stabilized ST (DSD/SST)
method [4, 7–11], introduced in 1992, is also a moving-mesh method. The costs
and benefits of moving the fluid mechanics mesh to track a fluid–solid interface
were articulated in many papers (see, for example, [8]).

Moving-mesh methods require mesh update methods. Mesh update consists of
moving the mesh for as long as possible and remeshing as needed. With the key
objectives being to maintain the element quality near solid surfaces and to minimize
frequency of remeshing, a number of advanced mesh update methods [9, 12, 13]
were developed in conjunction with the DSD/SST method, including those that
minimize the deformation of the layers of small elements placed near solid surfaces.

Perceived challenges in mesh update are quite often given as reasons for avoiding
interface-tracking methods in classes of problem that can be, and actually have
been, solved with such methods. A robust moving-mesh method with effective mesh
update can handle FSI or other MBI problems even when the solid surfaces undergo
large displacements (see, for example, FPI [14, 15] with the number of particles
reaching 1,000 [15], parachute FSI [9, 16], flapping-wing aerodynamics [17–22]),
and wind-turbine rotor and tower aerodynamics [21, 23]. It can handle FSI or other
MBI problems also even when the solid surfaces are in near contact or create near
TC, if the “nearness” is sufficiently “near” for the purpose of solving the problem.
Examples of such problems are FPI with collision between the particles [14, 15],
parachute-cluster FSI with contact between the parachutes of the cluster [16],
flapping-wing aerodynamics with the forewings and hindwings crossing each other
very close [17–21], and wind-turbine rotor and tower aerodynamics with the blades
passing the tower close [21, 23].

No method is a panacea for all classes of MBI problems. Some interfaces, such
as those in splashing, might be too complex for an interface-tracking technique,
requiring an interface-capturing technique. The Mixed Interface-Tracking/Interface-
Capturing Technique (MITICT) [15] was introduced for computations that involve
both fluid–solid interfaces that can be accurately tracked with a moving-mesh
method and fluid–fluid interfaces that are too complex to be tracked. Those fluid–
fluid interfaces are captured over the mesh tracking the fluid–solid interfaces. The
MITICT was successfully tested in 2D computations with solid circles and free
surfaces [24] and in 3D computation of ship hydrodynamics [25].

In some MBI problems with contact between the solid surfaces, the “nearness”
that can be modeled with a moving-mesh method without actually bringing the
surfaces into contact might not be “near” enough for the purpose of solving the
problem. Cardiovascular FSI with heart valves is an example. The Fluid–Solid
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Interface-Tracking/Interface-Capturing Technique (FSITICT) [26] was motivated
by such FSI problems. In the FSITICT, we track the interface we can with a
moving mesh, and capture over that moving mesh the interfaces we cannot track,
specifically the interfaces where we need to have an actual contact between the
solid surfaces. Two versions of the FSITICT were proposed, one with fixed-
partitioning (FSITICT-FP), and one with adaptive-partitioning (FSITICT-AP). In
the FSITICT-FP, the tracked/captured partitioning of the fluid–solid interface will
be fixed during the computation. In the FSITICT-AP, the mesh will stop tracking the
parts that have become too difficult to track, leaving them to be captured. This does
not require remeshing. If any of the captured parts become suitable for tracking,
a new mesh that is boundary-conforming for those parts will be generated and the
tracking of those parts will start. An application of the FSITICT-FP was presented
in [27], where an ALE method was used for interface-tracking, and a fully Eulerian
approach for interface capturing, with some 2D test computations. This specific
application was extended in [28] to 2D FSI models with flapping and contact.
The FSITICT-FP was successfully extended in [29] to 3D FSI computation of a
bioprosthetic heart valve. In that case the interface-tracking technique was an ALE
method, and the interface-capturing technique was a variational immersed-boundary
method.

Since its inception, the DSD/SST method has been applied to some of the most
challenging flow problems with MBI. The classes of problems solved include the
free-surface and multi-fluid flows [7, 24], FOI [7, 24], aerodynamics of flapping
wings [17–22, 30], flows with solid surfaces in fast, linear, or rotational relative
motion [14, 15, 23], compressible flows [14, 31], shallow-water flows [15, 32],
FPI [14, 15], and FSI [16, 20, 30, 31, 33]. Much of the success with the DSD/SST
method in recent years has been due to the new directions we have taken the ST
methods in bringing solution and analysis to different classes of computationally
challenging engineering problems.

The original DSD/SST method is based on the SUPG/PSPG stabilization, where
“SUPG” and “PSPG” stand for the Streamline-Upwind/Petrov-Galerkin [34] and
Pressure-Stabilizing/Petrov-Galerkin [7] methods. Starting in its early years, the
DSD/SST method also included the “LSIC” (least-squares on incompressibility con-
straint) stabilization. The ST-VMS method [4, 10, 11] is the variational multiscale
version of the DSD/SST method. It was called “DSD/SST-VMST” (i.e., the version
with the VMS turbulence model) when it was first introduced in [10]. The VMS
components are from the residual-based VMS method given in [35, 36]. We have
been using the ST-VMS method since its inception in most of our computations. The
original DSD/SST method was named “DSD/SST-SUPS” in [10] (i.e., the version
with the SUPG/PSPG stabilization), which was also called “ST-SUPS” in [4].

The ST methods give us the option of using higher-order basis functions in
time, including the NURBS, which have been used very effectively as spatial
basis functions (see [37, 38]). We started using that option with the methods and
concepts introduced in [10]. This of course increases the order of accuracy in the
computations [39], and the desired accuracy can be attained with larger time steps,
but there are positive consequences beyond that. The ST context provides us better
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accuracy and efficiency in temporal representation of the motion and deformation of
the moving interfaces and volume meshes, and better efficiency in remeshing. This
has been demonstrated in a number of 3D computations, specifically, flapping-wing
aerodynamics [17–21], separation aerodynamics of spacecraft [40], and wind-
turbine aerodynamics [21, 23]. The mesh update method based on using NURBS
basis functions in mesh motion and remeshing was named “ST/NURBS Mesh
Update Method (STNMUM)” in [23].

There are some advantages in using a discontinuous temporal representation in
ST computations. For a given order of temporal representation, we can reach a
higher-order accuracy than one would reach with a continuous representation of
the same order. When we need to change the spatial discretization (i.e., remesh)
between two ST slabs, the temporal discontinuity between the slabs provides a
natural framework for that change. There are advantages also in continuous temporal
representation. We obtain a smooth solution, NURBS-based when needed. We
also can deal with the computed data in a more efficient way, because we can
represent the data with fewer temporal control points, and that reduces the computer
storage cost. These advantages motivated the development of the ST computation
techniques with continuous temporal representation (ST-C) [41].

There are different types of nonmoving-mesh methods that can compute MBI
problems involving an actual contact between solid surfaces or other cases of TC.
Some of those methods give up on the accurate representation of the interface, and
most give up on the consistent representation of the interface motion. The DSD/SST
formulation does not need to give up on either, even where we have an actual contact
or some other TC, provided that we can update the mesh even there. Using an ST
mesh that is unstructured both in space and time, as proposed for contact problems
in [15], would give us such a mesh update option. However, that would require a
fully unstructured 4D mesh generation, and that is not easy in computing real-world
problems. An ST interface-tracking method that can deal with TC was introduced
in [42], and it is called ST-TC. It is a practical alternative to using unstructured
ST meshes, but without giving up on the accurate representation of the interface
or the consistent representation of the interface motion, even where there is an
actual contact between solid surfaces or other TC. The ST-TC method is based on
special mesh generation and update, and a master–slave system that maintains the
connectivity of the “parent” mesh when there is a TC.

The ST Slip Interface (ST-SI) method [43] is the ST version of the ALE-VMS
sliding-interface method [44]. It is for FSI and other MBI problems where one
or more of the subdomains contain spinning structures, and the mesh covering a
spinning structure spins with it, thus maintaining the high-resolution representation
of the boundary layers near the structure. The subdomains are covered by meshes
that do not match at the interface and have slip between them, and the ST-SI
method carefully accounts for, in the ST context, the compatibility conditions for
the velocity and stress between the two sides.

In Section 2 we briefly review the ST basis functions. The ST-VMS method is
described in Section 3, and the STNMUM in Section 4. The ST-C, ST-TC, and ST-SI
methods are described in Sections 5, 6, and 7. The examples are given in Section 8,
and the concluding remarks in Section 9.
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2 ST Basis Functions

The concept of using NURBS basis functions, in conjunction with the ST methods,
in temporal representation of the unknown variables and motion of the solid surfaces
and fluid meshes was introduced in [10]. An ST basis function can be written as a
product of its spatial and temporal parts:

N˛
a D T˛ .�/Na .�/ ; a D 1; 2; : : : ; nen;

˛ D 1; 2; : : : ; nent; (1)

where � 2 Œ�1; 1� is the temporal element coordinate, and nen and nent are
the number of spatial and temporal element nodes. Figure 1 shows an example.
Temporal NURBS basis functions can be used in an ST slab for the representation
of the unknown variables and test functions as well as the spatial coordinates.
As pointed out in [4, 10, 11, 23], different components (i.e., unknowns), and the
corresponding test functions, can be discretized with different sets of temporal basis
functions. This was shown in [4, 10, 11, 23] by introducing a secondary mapping
��.�/ 2 Œ�1; 1�, where ��.�/ is a strictly increasing function, and rewriting the
generalized ST basis function for the element indices .a; ˛/ as

�
N˛

a

�

�
D T˛

�
��.�/

�
Na .�/ : (2)

For example, we can discretize time and position as

t D
nentX

˛D1
T˛.�t.�//t

˛; (3)

x D
nentX

˛D1
T˛.�x.�//x˛: (4)

Here�t.�/ and�x.�/ are the secondary mappings for time and position, and t˛ and
x˛ are the time and position values corresponding to the basis function T˛ .

Qn−1 Qntntn

T nent
n−1 T 1

n T 2
n · · · T nent

n T 1
n+1

Fig. 1 Temporal NURBS basis functions.
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3 ST-VMS Method

The ST-VMS method can be written as

Z

Qn

wh � �


@uh

@t
C uh � ruh � fh

�

dQ C
Z

Qn

".wh/ W � .uh; ph/dQ
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Z
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Z
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eD1

Z

Qe
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�2SUPS

�
rM.uh; ph/ � �rwh

� � rM.uh; ph/dQ D 0; (5)

where

rM.uh; ph/ D �



@uh

@t
C uh � ruh � fh

�

� r � � .uh; ph/; (6)

rC.uh/ D r � uh (7)

are the residuals of the momentum equation and incompressibility constraint. Here,
�, u, p, f, � , ", and h are the density, velocity, pressure, external force, stress
tensor, strain rate tensor, and the traction specified at the boundary. The test
functions associated with the velocity and pressure are w and q. A superscript “h”
indicates that the function is coming from a finite-dimensional space. The symbol
Qn represents the ST slice between time levels n and n C 1, .Pn/h is the part of
the lateral boundary of that slice associated with the traction boundary condition h,
and ˝n is the spatial domain at time level n. The superscript “e” is the ST element
counter, and nel is the number of ST elements. The functions are discontinuous in
time at each time level, and the superscripts “�” and “C” indicate the values of the
functions just below and just above the time level. There are various ways of defining
the stabilization parameters �SUPS and �LSIC. We use the following expressions:

�SUPS D



1

�2SUGN12

C 1

�2SUGN3

C 1

�2SUGN4

�� 12
; (8)

�SUGN12 D
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˛D1

nensX
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ˇ
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ˇ
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@t
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a

ˇ
ˇ
ˇ
ˇ

!�1
; (9)
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�SUGN3 D h2RGN�MIN

4�
; (10)

�SUGN4 D �
�ruh

�
��1

F ; (11)

�LSIC D h2RGN�MIN

4�SUPS
; (12)

where nens and nent are the number of spatial and temporal element nodes, N˛
a is the

basis function associated with spatial and temporal nodes a and ˛, k � kF represents
the Frobenius norm,

hRGN�MIN D 2
�
�
˚rN˛

a

��
��1
2

	 2

 

�max

 
nentX

˛D1

nensX

aD1
rN˛

a rN˛
a

!!� 12
; (13)

and �max.�/ represents the maximum eigenvalue of the symmetric tensor.

Remark 1. Most of these stabilization parameters originate from [8, 9].

Remark 2. The component �SUGN4, given by Eq. (11), was introduced in [45]. It
was introduced based on the reasoning that the �SUPSwh � �rM � ruh

�
term should not

overwhelm the wh � �.uh � ruh/ term.

Remark 3. A symmetric version of that �SUGN4 was also introduced in [45]:

�SUGN4 D k".uh/k�1F : (14)

4 STNMUM

4.1 Mesh Computation and Representation

Given the fluid mechanics mesh on a moving solid surface, we compute the fluid
mechanics volume mesh using the mesh moving methods [9, 12, 13] developed in
conjunction with the DSD/SST method. As proposed in [46] and also described
in [4], these mesh moving methods are used in computing the meshes that will serve
as temporal control points. This allows us to do mesh computations with longer time
in between, but get the mesh-related information, such as the coordinates and their
time derivatives, from the temporal representation whenever we need. Of course this
also reduces the storage amount and access associated with the meshes.

Remark 4. Getting the meshes used in the computations from the temporal repre-
sentation can be done independent of which time direction was used in computing
the control meshes. For example, in flapping-wing aerodynamics, the control
meshes can be computed while the wings are flapping forward or backward in time.
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4.2 Remeshing

In many computations remeshing becomes unavoidable. Two choices were proposed
in [46] and also described in [4]. To explain those choices, let us assume that when
we try to move from control mesh Mˇ

c to MˇC1
c , we find the quality of MˇC1

c to be
less than desirable. In the first choice, called “trimming,” we remesh going back to
Mˇ�pC1

c , where p is the order of the NURBS basis functions. Then whenever our
solution process needs a mesh, depending on the time, we use the control meshes
belonging to either only the un-remeshed set or only the remeshed set (Figure 2). In
the second choice, we perform knot insertion p times in the temporal representation
of the surface at the right-most knot before the maximum value of the basis function
corresponding to tˇC1c , making that knot a new patch boundary. Then we do the mesh
moving computation for the control meshes associated with the newly defined basis
functions, not only the one at the new patch boundary, but also going back .p � 1/

basis functions (Figure 3). We favor the second choice, because we believe that in
many cases the need for remeshing is generated by a topological change, which we
can avoid going over with a large step if we use the knot insertion process.

Mβ
c

Mβ+1
c

Before Remesh

Mβ− p+1
c

After Remesh

1
5

2
5

3
5

4
5

0.0

0.5

1.0

0 1

Remeshing point

Basis Functions

Fig. 2 Remeshing and trimming NURBS. A set of un-remeshed meshes (top). A set of remeshed
meshes (middle). Common basis functions (bottom).
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Fig. 3 Remeshing with knot insertion. For the set of un-remeshed meshes, there are p newly
defined basis functions and the corresponding control points are marked “New.” We carry out
the mesh moving computations for those meshes.

5 ST-C Method

We describe, from [41], the version of the ST-C method used in extracting
continuous temporal representation from computed data. This is essentially a post-
processing method, and can also be seen as a data compression method. For
the version used in direct computation of the solution with continuous temporal
representation, see [41].

5.1 Least-Squares Projection for Full Temporal Domain

When we have the complete sequence of computed data, we can project that to a
smooth representation, with basis functions that provide us that smooth represen-
tation, such as NURBS basis functions. As an example, Figure 4 shows the goal
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Fig. 4 Continuous solution (top) and its basis functions (bottom); # is the parametric coordinate.

continuous data �C and its basis functions, where # denotes the parametric temporal
coordinate. The projection for each spatial node can be done independently from
the other nodes. Consider the time-dependent, typically discontinuous computed
data �D for a node. We define the basis functions as T˛C, where ˛ D 0; 1; : : :, and the
coefficients to be determined in the projection as �˛ . We use a standard least-squares
projection: given �D, find the solution �C 2 SC, such that for all test functions
wC 2 VC:

Z T

0

wC .�C � �D/ dt D 0; (15)

where T represents time period of the computation, and SC and VC are the solution
and test function spaces constructed from the basis functions. This approach requires
that we store all the computed data before the projection, and that would be a
significant computer storage cost when the number of time steps is large.

5.2 Successive-Projection Technique

In ST-C with the successive-projection technique (ST-C-SPT), we extract the
continuous solution shown in Figure 4 without storing all the computed data. We
describe the technique here for the special case with quadratic B-splines. To explain
the successive nature of the SPT, let us suppose that we have the continuous solution
extracted up to tn D 4:0, as shown in Figure 5. We assume that this continuous
solution, which we will call �C, has already replaced �D up to tn D 4:0. With that,
we describe how we extract the continuous solution up to tnC1 D 5:0, as shown in
Figure 6. With the newly computed data �D between tn D 4:0 and tnC1 D 5:0,
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Fig. 5 Continuous solution up to tn D 4:0 (top) and its basis functions (bottom).

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Time t

D
at
a

φ

1
8

2
8

3
8

4
8

5
8

6
8

7
8

0.0

0.5

1.0

0 1
ϑ

Fig. 6 Continuous solution up to tnC1 D 5:0 (top) and its basis functions (bottom). The bold part
of the top curve indicates the part of the solution that does not change. The empty squares denote
the temporal control values to be determined. The dashed lines denote the modified and new basis
functions, which correspond to those control values.

we solve the following projection equation: given �D on t 2 .4:0; 5:0/, �C on
t 2 Œ2:0; 4:0�, and �˛C, ˛ D 2; 3, find �C 2 SC, such that 8wC 2 VC:

Z 4:0

2:0

wC
�
�C � �C

�
dt C

Z 5:0

4:0

wC .�C � �D/ dt D 0: (16)

Equation (16) is essentially used for defining the coefficients �˛C, ˛ D 4; 5; 6,
which correspond to the basis functions T˛C. How to deal with the initial part of the
extraction, description of the ST-C-SPT for the general case (i.e., beyond quadratic
B-splines), and comments on efficient implementation of the SPT can be found
in [41].
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6 ST-TC Method

6.1 TC

We consider two hypothetical cases of two bars to provide a context for TC. In the
first case, shown in Figure 7, the bars are initially coinciding, with just one hole
in the fluid mechanics domain. Then the red bar starts moving upward, creating a
second hole. In the second case, shown in Figure 8, the bars are initially aligned
with connected ends, again with a single hole in the domain. Then the red bar starts
a flapping motion, up and down, creating a second hole in the domain, except when
their ends become connected periodically during the flapping motion. When the red
bar is in the upper position, the part of the domain below it is connected to the part
of the domain above the blue bar. When the red bar is in the lower position, the part
of the domain above it is connected to the part of the domain below the blue bar.
These two cases are representatives of the typical TC challenges we expect to see in
the classes of MBI problems we are targeting. Especially the first case is really not
possible to treat in a consistent way without using an ST method.

6.2 Master–Slave System

We propose a very simple technique in the ST context. Having a constraint between
nodes in a finite element formulation is quite common. These constraints reduce the
number of unknowns, but in our implementation we delay that unknown elimination

Fig. 7 Hypothetical case of two bars that are initially coinciding, with one hole in the domain
(left). The red bar starts moving upward, creating a second hole in the domain (right).

Fig. 8 Hypothetical case of two bars that are initially aligned with connected ends, with one hole
in the domain (left). The red bar starts a flapping motion, up (middle) and down (right), creating a
second hole in the domain, except when their ends become connected periodically.
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until the iterative solution of the linear systems encountered at nonlinear iterations
of a time step. The iterative solution of the linear systems is performed with reduced
number of unknowns. The technique is easy to manage in a parallel-computing
environment, especially if the preconditioner is simple enough. Typically we assign
a master node to each slave node, and we use only the unknowns of the master
nodes in iterative solution of the linear systems. We can use different master–
slave relationships at different time levels. This is a practical alternative to, but
less general than, using ST meshes that are unstructured in time. Still, we can use
this concept to deal with the TC cases considered above, and the important point
is that the connectivity of the “parent” mesh does not change. Consequently, the
distribution model in the parallel-computing environment does not change during
the computations.

With this technique, we need to implement one more functionality. We exclude
certain elements from the integration of the finite element formulation. The exclu-
sion principles are given below.

• Exclude all spatial elements with zero volume from the spatial integration.
• Exclude all ST elements with zero ST volume from the ST integration.
• We assume that checking if an ST element has zero ST volume is equivalent to

checking if all the spatial elements associated with that ST element have zero
volume. Therefore, for this purpose, we check the spatial-element volumes.

• To identify the spatial elements with zero volume, which should have zero
Jacobian at all the integration points, instead of evaluating the Jacobians, we
make the determination for a given spatial element from the master–slave
relationship of its nodes. The method is explained more in [42].

7 ST-SI Method

In describing the ST-SI formulation, we will use the labels “Side A” and “Side B”
to represent the two sides of the SI. In the ST-SI version of the formulation given by
Eq. (5), we will have added boundary terms corresponding to the SI. The boundary
terms for the two sides will be added separately, using test functions wh

A and qh
A and

wh
B and qh

B. Here we give only the boundary terms for Side B:

�
Z

.Pn/SI

qh
BnB � uh

BdP �
Z

.Pn/SI

�wh
B � �nB � �uh

B � vh
B

��
uh

BdP

C
Z

.Pn/SI

qh
BnB � 1

2

�
uh

B C uh
A

�
dP

C
Z

.Pn/SI

�wh
B � 1
2

��
nB � �uh

B � vh
B

�C ˛h
�

uh
B � �
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�C ˛h
�
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A

�
dP
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�
Z

.Pn/SI

wh
B � 1
2

�
nB � � h

B � nA � � h
A

�
dP �

Z

.Pn/SI

nB � �" �wh
B

� � �uh
B � uh

A

�
dP

C
Z

.Pn/SI

�C

h
wh

B � �uh
B � uh

A

�
dP; (17)

where

˛h D max
�ˇ
ˇnB � �uh

B � vh
B

�ˇ
ˇ ;
ˇ
ˇnA � �uh

A � vh
A

�ˇ
ˇ
�
; (18)

h D min.hB; hA/; (19)

hB D 2

 
nentX

˛D1

nensX

aD1

ˇ
ˇnB � rN˛

a

ˇ
ˇ

!�1
.for Side B/; (20)

hA D 2

 
nentX

˛D1

nensX

aD1

ˇ
ˇnA � rN˛

a

ˇ
ˇ

!�1
.for Side A/: (21)

Here, .Pn/SI is the SI in the ST domain, n is the unit normal vector, and v is the
mesh velocity. Side A counterpart of Eq. (17) can be written by simply interchanging
subscripts A and B.

Remark 5. The first and third integrations set the volumetric flow rate at the
boundary to nB � 1

2

�
uh

B C uh
A

�
.

Remark 6. The second and fourth integrations set the advective flux at the boundary
to the Lax–Friedrichs flux.

Remark 7. The fifth integration contains the average traction.

Remark 8. The sixth integration is the adjoint consistent term [47].

Remark 9. The seventh integration is a penalty term, where C is a nondimensional
penalty constant, and usually C D 1 is large enough for stability.

For notation convenience, we introduce the symbols

F h
B D nB � �uh

B � vh
B

�
; (22)

F h
A D nA � �uh

A � vh
A

�
: (23)

With that, we replace the momentum flux as follows:

�
Z

.Pn/SI

qh
BnB � uh

BdP �
Z

.Pn/SI

�wh
B � F h

Buh
BdP

C
Z
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2

�
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B C uh
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�
dP
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dP: (24)

Remark 10. Assuming that the discrete boundaries on the two sides of the interface
are the same, nB D �nA. With that, we see the traction hh

B 	 �hh
A as

hh
B D �1

2

�
ph

B C ph
A

�
nB C 1

2
nB � �2�".uh

B/C 2�".uh
A/
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h

�
uh

B � uh
A

�
: (25)

8 Examples

The first two examples are from [48] for the ST-TC method and from [45] for the
ST-C method. The third example is a 2D test computation based on the combination
of ST-TC and ST-SI methods. For all computations presented, the core technology
is the ST-VMS method. More examples for the ST-TC method can be found in
[22, 42, 48]. Examples for the STNMUM can be found in [17–21] for flapping-wing
aerodynamics, in [40] for separation aerodynamics of spacecraft, and in [21, 23] for
wind-turbine aerodynamics. Examples for the ST-SI method can be found in [43].

8.1 Aortic-Valve Model with Coronary Arteries

We created a typical aortic-valve model, which has three leaflets with two outlets,
corresponding to coronary arteries, and one main outlet, corresponding to the
beginning of the aorta. Figure 9 shows the velocity magnitude when the valve is
open and is about to close. For more on this computation, see [48].

8.2 Thermo-Fluid Analysis of a Ground Vehicle and Its Tires

First the thermo-fluid computation is carried out over the full domain, with a
reasonable mesh refinement. The large amount of time-history data from that
computation is stored using the ST-C-SPT method. This is followed by a higher-
resolution computation over the local domain containing the tires we focus on.
This gives us increased accuracy in the thermo-fluid analysis, including increased
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Fig. 9 Aortic-valve model with coronary arteries. Volume rendering of the velocity magnitude
(m/s) at t=T = 0.4 and 0.5, where T is the cardiac period.

Fig. 10 Thermo-fluid analysis of a ground vehicle and its tires. Temperature volume rendering
from the local computation. Colors from red to yellow indicate temperature from low to high.

accuracy in the heat transfer rates from the tires. Figure 10 shows the temperature
patterns from the local computation. Figure 11 shows the Nusselt number from the
global and local computations. For more on this computation, see [45].
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Fig. 11 Time and circumferentially averaged Nusselt number from the global (left) and local
(right) computations.

8.3 2D Model of Flow Past a Tire in Contact with the Road

This is an example of how the ST-TC and ST-SI methods can be used in combination
for computational analysis of a challenging problem. The computation is challeng-
ing because the tire does not have circular symmetry and is in rotational contact with
the road. The first challenge is addressed with the ST-SI method, which enables
flow computations with spinning structures while maintaining the high-resolution
representation of the boundary layers near the structure. The second challenge is
addressed with the ST-TC method, which enables flow computations with contact
between moving solid surfaces while maintaining the high-resolution representation
of the boundary layers near the solid surfaces. Figure 12 shows the mesh and the
velocity magnitude. More on this type of computations and the combined method
and its implementation will be presented in a future paper.

9 Concluding Remarks

We have presented an overview of some of the new directions we have taken the
ST methods since 2010 in bringing solution and analysis to different classes of
computationally challenging engineering problems. The new directions include a)
the VMS version of the DSD/SST method, which is called ST-VMS, b) ST methods
based on using NURBS basis functions in temporal representation of the unknown
variables and motion of the solid surfaces and fluid meshes, including the mesh
update method STNMUM, c) ST techniques with continuous representation in time,
which is called ST-C, d) ST interface-tracking with topology change, which is called
ST-TC, and e) ST-VMS method for flow computations with slip interfaces, which is
called ST-SI. We described the new directions and presented a few examples.
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Fig. 12 2D model of flow past a tire in contact with the road. Velocity magnitude superimposed
over the mesh. Colors from blue to red indicate values from low to high.
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Interfacial Instability of a Non-magnetized Drop
in Ferrofluids Subjected to an Azimuthal Field:
A Diffuse-Interface Approach

Ching-Yao Chen and Ting-Shiang Lin

Abstract We perform direct numerical simulations of a non-magnetic drop
immersed in immiscible ferrofluids in a confined Hele-Shaw cell under an azimuthal
field by a diffuse-interface method. The interface is unstable in such a condition
because of the inward attraction of the ferrofluids induced by the magnetic field
gradient. We focus on the fingering onset and pattern influenced by the coupling
viscous effect with different viscously stable conditions, which is achieved by
varying the viscosity contrast of the ferrofluids and non-magnetic drop. In a
viscously stable condition, in which the viscosity of the ferrofluids is greater
than the immersed drop, the fingering onset takes place earlier because of the
higher mobility of drop. The fingering pattern is simpler with numerous straightly
developed fingers. On the other hand, a viscously unstable interface of less viscous
ferrofluids results in ramified fingering pattern associated with the secondary
phenomena, e.g., competitions and tip-splits of fingers. However, the fingering
onset is delayed because the drop is less mobile.

1 Introduction

Ferrofluids conveniently combine the fluidity of liquids and the magnetic prop-
erties of solids. They are stable colloidal suspensions of magnetic nano-particles
suspended in a non-magnetic carrier fluid, which has been a fascinating field of
research for several decades [1, 2]. The pronounced superparamagnetic property
of ferrofluids allows distant manipulation of their flow and interfacial behavior
with external magnetic fields. Consequently, the phenomena of interfacial pattern
formation in ferrofluids has received considerable attention. One striking example of
pattern-forming systems in ferrofluids is the famous Rosensweig instability [3–7] in
a uniform perpendicular field to an initially flat, ferrofluid free surface, which leads
to the development of 3-dimensional hexagonal array of peaks. Another type of
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remarkable patterns is associated with the so-called labyrinthine instability [8–13],
where highly branched structures are formed when a ferrofluid droplet is trapped
in the effectively 2-dimensional configuration of a Hele-Shaw cell [14] under a
perpendicular uniform magnetic field. These two instabilities can co-exist to form a
new hybrid instability if the confining upper plate of the Hele-Shaw cell is replaced
by a free fluid surface [15]. Besides the two well-known interfacial instabilities
under a uniform field, a non-uniform azimuthal field has also been demonstrated
to stabilize a rotating heavier ferrofluid droplet surrounded by non-magnetic fluids,
in which the interfacial instability is triggered by the centrifugal forces [16, 17].
This stabilizing effect is expected to reverse if an azimuthal field is applied to a non-
magnetic drop immersed in ferrofluids, which is confirmed by a recent theoretical
analysis [18]. In this paper we perform direct numerical simulations of this de-
stabilizing effect by a highly accurate diffuse-interface method. In this context,
our aim is to consider the coupling between capillary force and magnetic effects,
and study how they give rise to still unexplored interfacial shapes and interesting
dynamical behaviors.

2 Physical Problem and Governing Equations

We investigate the interfacial instability of a circular non-magnetized drop (fluid 2)
with an initial radius R0 surrounded by immiscible ferrofluids (fluid 1) in a Hele-
Shaw cell, as the principle sketch shown in Fig. 1. The Hele-Shaw cell has gap
spacing h. An azimuthal magnetic field H is generated by a wire carrying electric
current strength I placed at the center of the drop. The viscosities of ferrofluids
and the non-magnetic drop are denoted by �1 and �2, respectively. We focus on the
magneto-induced motion, but allow the inner drop to be either more or less viscous
than the outer ferrofluids. The governing equations of such an immiscible interface
approached by diffuse-interface method are based on the model proposed by Cahn
and Hilliard [19]. In the context of a Hele-Shaw cell system [20–25] incorporating
with magnetic stress [16–18], the equations can be written as

@�

@t
C r � .�u/ D 0; (1)

rp D �12�
h2

u C �0MrH � �r � Œ�.rc/.rc/T �; (2)

�



@c

@t
C u�rc

�

D ˛r2�; (3)

� D @f0
@c

� �

�
r � .�rc/ � p

�2
d�

dc
; (4)

f0 D f �c2.1 � c/2: (5)
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Fig. 1 A non-magnetized
drop (bright color) inside
ferrofluids (dark color)
confined in a Hele-Shaw cell
with width h subjected to an
azimuthal field H generated
by a current-carrying
(strength I) wire.

Here, u denotes the fluid velocity vector and p the pressure. The viscosity and
the density of the binary fluid system are represented by � and �, respectively.
The phase-field variable is represented by c, so that c D 1 in the ferrofluid, and
c D 0 in the drop. �0, M, and H are the permeability in vacuum, magnitudes of
magnetization, and field strength, respectively. The coefficients of capillarity and
mobility are denoted by � and ˛. The chemical potential is denoted by �, and
f0 is a free energy (or, the Helmholtz free energy) with a characteristic specific
energy f �. Equations (1)–(5) define the so-called Hele-Shaw-Cahn-Hilliard (HSCH)
model [20–25], and result in a surface free energy given by

E D �

Z �
f0 C �

2
.rc/2

�
dV; (6)

where V is the volume of the fluid domain.
The magnetic field H generated by a wire with electric current I perpendicular to

the cell is expressed by [16–18]

H D I

2�r
e� ; (7)

where r is the radial position, and e� represents the unit vector along the azimuthal
direction. A proportional magnetization strength of the ferrofluids to the field
associated with a constant susceptibility � can be approximated, so that

M.c/ D �Hc: (8)

A correlation of viscosity (�) with the phase-field variable c is are required by
the present approach. To take advantage of the highly accurate scheme previously
developed for Hele-Shaw flows [26–28], we assume that
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�.c/ D �1e
ŒR.1�c/�; R D ln



�2

�1

�

: (9)

Here, R is the logarithmic viscosity contrast parameter. We further assume the flow
incompressible, so that density � is constant. In order to render the governing
equations dimensionless, the initial radius of the fluid drop R0 and viscosity of
ferrofluid �1 are taken as characteristic scales. In conjunction with a characteristic
velocity �0h2I2=48�1�2R30, a characteristic pressure �0I2=4�2R20, and a character-
istic specific free energy f0�, the dimensionless HSCH equations associated with
Eq. (1)–(5) can be written as

r � u D 0; (10)

rp D ��u � �c

r
r.1

r
/ � C

Mg
r � Œ.rc/.rc/T �; (11)

@c

@t
C u�rc D 1

Pe
r2�; (12)

� D @f0
@c

� Cr2c; (13)

f0 D c2.1 � c/2: (14)

Dimensionless parameters, such as the Peclet number Pe, the Atwood number
(normalized viscosity contrast) A, the Cahn number C, and magnetic strength Mg,
are defined as

Pe D �0h2I2

48�2˛�1f �R20
; A D eR � 1

eR C 1
; C D �

f �R20
; Mg D �0I2

4�2�f �R20
:

Moreover, the dimensionless free interfacial energy corresponding to Eq. (6) can be
obtained accordingly as

E D 1

Mg

Z 


f0 C C

2
.rc/2

�

dV: (15)

In order to solve the governing equations numerically, we recast the governing
equations into the well-known streamfunction-vorticity formulation (�, !) [26],
yielding

u D @�

@y
; v D �@�

@x
(16)

r2� D �!; (17)
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where

! D �R
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Boundary conditions are prescribed as follows:

x D ˙1 W � D 0;
@c

@x
D 0;

@2c

@x2
D 0; (18)

y D ˙1 W � D 0;
@c

@y
D 0;

@2c

@y2
D 0: (19)

To reproduce the extremely fine structures of the fingers, a highly accurate
pseudospectral method is employed. As a result, the actual boundary conditions
applied in the numerical code are @�=@y D 0 at y D ˙1. However, at the present
situation where no concentration gradient is generated on the boundaries, the above
conditions automatically lead to � D 0. To ensure this condition, all the simulations
are terminated when the inner fluid reaches a certain distance away from the
computational boundaries. Both c and � are expanded in a cosine series in the x-
direction. In the y-direction, discretization is accomplished by sixth order compact
finite differences. Time integration is fully explicit and utilizes a third order Runge–
Kutta procedure. The evaluation of the nonlinearity at each time level is performed
in a pseudospectral manner. The procedures reported in Refs. [23–25] are followed,
in which Pe D 3000 and C D 10�5 are applied to approach an immiscible interface.
The simulations are terminated when the fastest penetrating fingers reach near
the origin to avoid numerical instability. For a more detailed account about these
numerical schemes the reader is referred to Refs. [23–28].

3 Numerical Results and Discussion

In the following simulations, we present the fingering patterns induced by the de-
stabilizing magnetic field. Influences of the magnetic effects, e.g., the magnetic
strength Mg and the magnetic susceptibility �, coupled with the viscosity contrast
A will be analyzed systematically. It is noticed that a positive/negative A represents
more/less viscous non-magnetic drop than the surrounding ferrofluids, respectively.
For the case of A D 0, the drop and ferrofluids are with the same viscosity.

Shown in Fig. 2 are three representative cases for Mg D 2 and � D 1 for
various viscosity contrast A D �0:462, 0, and 0.462. The presence of magnetic
field gradient triggered vigorous fingering instability. The negative radial field
gradient attracts the ferrofluids to penetrate into the drop toward the origin, and
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t=0.700 t=0.900 t=1.100

A=0 t=1.100 t=1.400 t=1.700

A=0.462 t=2.000 t=2.400

A=−0.462

t=2.900

Fig. 2 Fingering patterns for A D �0:462 [top row], A D 0 [middle row], and A D 0:462 [bottom
row]. The remaining parameters are: Mg=2 and � D 1. For better observation of the interfacial
instability, the non-magnetic drop is shown by dark color in the present figures. The left, middle,
and right columns show the patterns of (1) immediately after the emergences of fingers, (2) fully
developed fingers, and (3) shortly before the most inward finger reaching the core, respectively.

squeeze partial mass of the drop to stretch outwardly. For easier identification,
the penetrating ferrofluid fingers and stretching fingers of non-magnetic drop are
denoted as inward fingers and outward fingers, respectively. For various Atwood
numbers, the fingering patterns show apparent distinctions. For a negative Atwood
number of A D �0:462 as the fingering pattern shown in the top row of Fig. 2,
in which the viscosity of non-magnetic drop is smaller than the ferrofluids, the
fingering pattern is very regular without strong finger competition, i.e., most of
the fingers emerging compatibly. Both the outward and inward fingers develop in
a nearly identical path to preserve circular inward and outward fingering fronts.
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Nevertheless, because extremely significant field gradient near the origin as shown
in Eq. (7), a few dominant fingers eventually emerge to reach the origin. Noted
that the emergences of a few faster dominant fingers are similar to the fingering
patterns of radial suction flow [24]. On the other hand, if the viscosity of the drop is
increased to match the ferrofluids as the case of A D 0 shown in the middle row of
Fig. 2, the fingering instability is enhanced. Some tips of outward fingers are seen
to emerge secondary instability, e.g., fingertip split. The circular inward fingering
front is no longer preserved, which indicates apparent fingering competition. If the
viscosity of the drop is further increased to outmatch the ferrofluids, e.g., A D 0:462

as the pattern shown in the bottom row of Fig. 2, fingering competitions of the
inward fingers and tip-split of the outward fingers are very prominent. The fingering
patterns appear very different with variation of the viscosity contrast. These distinct
fingering patterns can be realized by the underlining mechanism of well-developed
viscous fingering phenomena. For the case of a negative A D �0:462, the interface
is viscously stable, in which a more viscous ferrofluids penetrating (or displacing)
a less viscous drop. The fingering pattern of viscously stable condition usually
appears less fingering competition associated with a nearly circular fingering front
as demonstrated in similar fingering patterns driven by centrifugal forces [23]. On
the contrary, the less viscous ferrofluids penetrate inwardly into the more viscous
drop in a positive A D 0:462, which is the typical instability of viscous fingering, so
that the emergences of inward fingers appear very prominent with active secondary
phenomena, e.g., fingering competitions and tip-split. As a result, the coupling
effects of viscosity contrast with the de-stabilizing magnetic force can lead to
entirely distinct patterns of interfacial instability. These coupling effects can be
further enhanced by increasing the absolute magnitude of viscosity contrast to
A D �0:635 and 0.635, as their fingering patterns shown in Fig. 3. The inward
fingering competitions and outward tip-split are seen more prominent for these cases
with stronger viscous influences.

As discussed in the previous paragraph, the fingering patters depend strongly
on the viscous effect. It is also worthy to observe the onset and evolution of the
fingering instability. The onset times of finger emergences for various Atwood
numbers are shown in the left column of Figs. 2 and 3. It is interesting to discover
that the onset of fingers occurs earlier for the condition, in which the ferrofluid
is more viscous than the drop, e.g., onset at t D 0:5; 0:7; 1:1; 2:0, and 2.3 for
A D �0:635;�0:462; 0; 0:462, and 0.635, respectively. The delay of fingering
onset for less viscous ferrofluids penetrating into more viscous drop, in which
the fingering pattern is more ramified as the fully evolved patterns shown in the
middle and right columns of Figs. 2 and 3, suggests a contradict behavior in the
measure of instability prominence. Considering the driven fluids are the ferrofluids,
it is much easier for more viscous ferrofluids to displace the stationary less viscous
drop whose mobility is higher. Consequently, the fingering onset occurs at earlier
time. Nevertheless, since the interface is viscously stable, the fingering pattern
appears simpler with primary straight inward fingers. On the contrary, it takes longer
time to drive less viscous ferrofluids penetrating into the more viscous drop with
less mobility. Afterward, the viscously unstable interface starts to evolve those
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A=−0.635 t=0.500 t=0.700 t=0.800

A=0 t=1.100 t=1.400 t=1.700

A=0.635 t=2.300 t=3.100 t=3.700

Fig. 3 Fingering patterns for A D �0:635 [top row], A D 0 [middle row], and A D 0:635 [bottom
row]. The remaining parameters are: Mg=2 and � D 1.

secondary fingering phenomena and form more ramified pattern. As a result, the
onset and pattern of fingering instability shows opposite trend with the viscosity
contrast.

The effect of magnetic field is straightforward, such that stronger field strength
shortens the onset of fingering instability, and results in a more vigorous fingering
pattern. Quantitative measures will be presented in a latter paragraph. In Fig. 4, we
show the patterns of Mg D 4 and � D 0:5 for A D �0:635; 0, and 0.635. It is
noticed that they can be directly compared with the patterns shown in Fig. 3 with
identical value of product for �Mg D 2. By the present dimensionless scaling, the
main difference between Figs. 3 and 4 is the model dissipation. In general, even the
evolution of the fingers is slower to allow longer simulating time period, the overall
patterns show resemblances, e.g., same number of emerging fingers for A D �0:635
and similar fingering patterns for A D 0:635. These observations confirm that the
model dissipation does not alter fingering patters significantly.
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A=−0.635 t=1.200 t=1.600 t=1.880

A=0 t=2.080 t=2.720 t=3.240

A=0.635 t=5.400 t=6.400 t=7.080

Fig. 4 Fingering patterns for A D �0:635 [top row], A D 0 [middle row], and A D 0:635 [bottom
row]. The remaining parameters are: Mg=4 and � D 0:5.

To conclude this section, a quantitative measure of interfacial length L, which
is capable to represent the prominence of the fingering instability, is presented for
various control parameters. The interfacial length is approximated as [5]:

Ln.t/ D
Z

x

Z

y

s

.
@c

@x
/2 C .

@c

@y
/2dxdy: (20)

The fingering onset can be clearly identified at the time when the interfacial length
starts to deviate from the base value of circular shape as shown in Fig. 5. In addition,
longer interfacial length generally indicates more vigorous fingering pattern. In
line with the earlier discussion, earlier fingering onset occurs for the cases of less
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A=0, χ=1, Mg=2
A=0.462, χ=1, Mg=2
A=0.635, χ=1, Mg=2
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A=0, χ=0.5, Mg=4
A=0.635, χ=0.5, Mg=4
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Fig. 5 Interfacial lengths for various parameters. Faster growth of interfacial length generally
represents more unstable instability. Interfacial instability is in favor of the conditions with negative
viscosity contrast and stronger magnetic effect.

viscous drop (negative A), stronger magnetic effect (higher Mg or �). Nevertheless,
the results for interfacial length appear contradictory. For Mg D 2 and � D 0:5,
longer interfacial length at terminated simulating time is observed in the case of
A D �0:635, which is viscously stable. Nevertheless, opposite results are found
for case of Mg D 2 and � D 1, in which longer interfacial length appears for
A D 0:635. This contradict behavior is resulted from the competitions of earlier
fingering onset for a negative A and vigorous fingering pattern for a positive A. On
the one hand, the interfacial length starts to growth after the onset time. On the
other hand, the secondary fingering formation intensifies the growth of interfacial
length. As a result, it leads to inconsistency to solely consider the interfacial length
at the terminated time. Instead, it is more appropriate to consider the growth rate.
All the cases clearly show higher growth rates of the interfacial lengths right before
the terminated time for positive A, which indicates intensified secondary fingering
behaviors in viscously unstable conditions.
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4 Concluding Remarks

Direct numerical simulations of the interfacial instability of a non-magnetic drop
surrounded by immiscible ferrofluids, confined in a Hele-Shaw cell, and subjected to
an azimuthal field, are performed by a diffuse-interface method incorporating with
highly accurate numerical schemes. The interface is unstable because of the inward
attraction of the ferrofluids induced by the magnetic field gradient. The onset and
pattern of interfacial fingering instability is analyzed to realize the coupling effects
of the magnetic force and viscous contrast. If viscosity of the ferrofluids is greater
than the immersed drop, in which the interface is viscously stable, the fingering
onset takes place earlier because of the higher mobility of penetrated drop fluid.
Nevertheless, the fingering pattern appears simpler with straightly emerging fingers.
On the other hand, the viscously unstable interface, i.e., less viscous ferrofluids
penetrating more viscous drop, results in more ramified pattern associated with
the secondary fingering phenomena, e.g., competitions and tip-splits of fingers.
However, the onset is delayed because less mobile drop fluid.

To quantify the prominence of fingering instability, development of the interfacial
length is calculated as a global measure. In general, longer interfacial length
indicates more unstable interface. We confirm the occurrences of earlier fingering
onset and vigorous secondary phenomena both enhance growth of the interfacial
length. Nevertheless, these two behaviors are favorable in opposite conditions, i.e.,
earlier onset and secondary phenomena in condition of more and less viscous
ferrofluids, respectively, so that inconsistent evolutions of the interfacial length
are observed. As a result, instead of the interfacial length, its growth rate is more
appropriate for the consideration of the measure of instability. The earlier onset
for cases of more viscous ferrofluids usually leads to greater growth rate in the early
envelopment of fingering instability. On the contrary, the growth rate is dramatically
enhanced at the later period when the secondary fingering phenomena are active for
conditions of less viscous ferrofluids.

Acknowledgements support by R.O.C. MOST 104-2221-E-009-142-MY3 is acknowledged.

References

1. Rosensweig, R.E.: Ferrohydrodynamics. Cambridge University Press, Cambridge (1985) and
references therein

2. Blums, E., Cebers, A., Maiorov, M.M.: Magnetic Fluids. De Gruyter, New York (1997) and
references therein

3. Cowley, M.D., Rosensweig, R.E.: J. Fluid Mech. 30, 671 (1967)
4. Friedrichs, R., Engel, A.: Phys. Rev. E 64, 021406 (2001)
5. Chen, C.-Y., Cheng, Z.-Y.: Phys. Fluids E 20, 054105 (2008)
6. Chen, C.-Y., Li, C.-S.: Phys. Fluids E 22, 054105 (2010)
7. Chen, C.-Y., Wu, W.-L., Miranda, J.A.: Phys. Rev. E 82, 056321 (2010)
8. Tsebers, A.O., Maiorov, M.M.: Magnetohydrodynamics (N.Y.) 16, 21 (1980)



192 C.-Y. Chen and T.-S. Lin

9. Langer, S.A., Goldstein, R.E., Jackson, D.P.: Phys. Rev. A 46, 4894 (1992)
10. Jackson, D.P., Goldstein, R.E., Cebers, A.O.: Phys. Rev. E 50, 298 (1994)
11. Pacitto, G., Flament, C., Bacri, J.-C., Widom, M.: Phys. Rev. E 62, 7941 (2000)
12. Chen, C.-Y., Wu, H.-J.: Phys. Fluids 17, 042101 (2005)
13. Wen, C.-Y., Chen, C.-Y., Kuan, D.-C.: Phys. Fluids 19, 084101 (2007)
14. Saffman, P.G., Taylor, G.I.: Proc. R. Soc. Lond. Ser. A 245, 312 (1958)
15. Chen, C.-Y., Tsai, W.-K., Miranda, J.A.: Phys. Rev. E 77, 056306 (2008)
16. Miranda, J.A.: Phys. Rev. E 62, 2985 (2000)
17. Chen, C.-Y., Wu, S.-Y., Miranda, J.A.: Phys. Rev. E 75, 036310 (2007)
18. Dias, E., Miranda, J.A.: Phys. Rev. E 91, 023020 (2015)
19. Cahn, J.W., Hilliard, J.E.: J. Chem. Phys. 28, 258 (1958)
20. Lowengrub, J., Truskinovsky, L.: Proc. R. Soc. Lond. A 454, 3617 (1998)
21. Lee, H.-G., Lowengrub, J., Goodman, J.: Phys. Fluids 14, 492 (2002)
22. Lee, H.-G., Lowengrub, J., Goodman, J.: Phys. Fluids 14, 514 (2002)
23. Chen, C.-Y., Huang, Y.-S., Miranda, J.A.: Phys. Rev E 84, 046302 (2011)
24. Chen, C.-Y., Huang, Y.-S., Miranda, J. A.: Phys. Rev E 89, 053006 (2014)
25. Huang, Y.-S., Chen, C.-Y.: Comput. Mech. 55(2), 407–420 (2015)
26. Chen, C.-Y., Meiburg, E.: J. Fluid Mech. 371, 233 (1998)
27. Ruith, M., Meiburg, E.: J. Fluid Mech. 420, 225 (2000)
28. Meiburg, E., Chen, C.-Y.: SPE J. 5, 2 (2000)



Numerical Analysis of Backward Erosion
of Soils by Solving the Darcy–Brinkman
Equations

Kazunori Fujisawa

Abstract The backward erosion of soils, which is induced by seepage flows, is
numerically simulated. To the end, the following three aspects need to be computed:
Water flow fields, onset and speed of erosion and boundary tracking between the soil
and the water phases. The authors employ the Darcy–Brinkman equations as the
governing equations for the water flow fields around the soils, which easily enable
the simultaneous analysis of the seepage flows in the porous media and the water
flows in the fluid domain. The onset and the speed of the seepage-induced erosion
is predicted by an empirical formula constructed from the flow velocity and the
pressure gradient of the seepage water. The boundary tracking scheme based on
the phase-field equation is applied for tracking the soil boundary changing with the
erosion. This paper shows that the combination of the above three aspects achieves
the stable computation of the seepage-induced backward erosion of soils.

1 Introduction

When erosion occurs around soil surface where a seepage water flow comes out, the
erosion develops in the opposite direction to the water flow. This type of erosion is
known as backward erosion, which leads to piping of soils. Recently, the damages
and failures of soil structures, such as levees and small embankment dams for
irrigation reservoirs, have occurred more frequently because of a greater chance of
severe typhoons and localized heavy rains. The piping phenomenon, induced by the
soil erosion due to the seepage flows, is known as a primary cause of embankment
breaks. Actually, Foster et al. [1] statistically investigated the failures and the
incidents involving embankment dams around the world, and reported that the soil
piping accounted for approximately 45 % of these incidents. Therefore, the soil
erosion is considered to be a major threat to the structures made of earth materials
and the objective of this paper is to develop a numerical method to compute the
seepage-induced erosion, especially the backward erosion.

K. Fujisawa (�)
Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
e-mail: fujik@kais.kyoto-u.ac.jp

© Springer International Publishing Switzerland 2016
Y. Bazilevs, K. Takizawa (eds.), Advances in Computational Fluid-Structure
Interaction and Flow Simulation, Modeling and Simulation in Science, Engineering
and Technology, DOI 10.1007/978-3-319-40827-9_15

193

mailto:fujik@kais.kyoto-u.ac.jp


194 K. Fujisawa

To this end, this article begins with the simultaneous computation of seepage
flows in porous media and regular flows in fluid domains, because the erosion of
soils is affected by water flows inside and outside the soils, and these two flow fields
need to be grasped for predicting how the erosion develops. As described in the
next section, the authors employ the Darcy–Brinkman equations as the governing
equations for this problem and propose a numerical method to simultaneously solve
the Navier–Stokes flow in the fluid domains and the Darcy flow in the porous
media. Combining the boundary tracking with the simultaneous analysis of the
Darcy and the Navier–Stokes flows, the computation of the seepage-induced erosion
is carried out. In order to determine the moving speed of the soil boundary due
to the erosion, an empirical formula predicting the discharge rate of the soils is
utilized. The numerical method proposed by Sun and Beckermann [4] is applied to
tracking the soil boundary changing with the erosion. The method enables the sharp
interface tracking based on the phase-field equation. The numerical results presented
in the end of this article show that the combination of the above numerical methods
achieves the stable computation of the seepage-induced erosion.

2 Governing Equations

2.1 Water Flow Field

The Darcy–Brinkman equations are adopted as the governing equations for the
coupled analysis of the Navier–Stokes and the Darcy flows:

@ui

@xi
D 0 (1)

@ui

@t
C @

@xj

�uiuj

�

�
D ��

�

@p

@xi
C �

@ui

@xj@xj
� �g

k
ui (2)

where ui, p, �, �, �, k, g, t, and xi denote the flow velocity, the piezometric pressure,
the density of water, the kinematic viscosity of water, the porosity, the hydraulic
conductivity, the gravitational acceleration, time, and Cartesian coordinates, respec-
tively.

Eq. (2) can describe the Navier–Stokes equations in the fluid phase by giving
� D 1:0 and 1=k D 0, and can approximate the Darcy’s law in the Darcy phase when
the hydraulic conductivity is sufficiently small. Therefore, the Darcy–Brinkman
equations allow us to simulate the Darcy and the Navier–Stokes flows without
employing the different governing equations between the fluid and the Darcy phases.
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2.2 Boundary Tracking

The governing equation based on the phase-field equation is used for boundary
tracking. This method regards the zero contour of the phase-field variable � as
the interface between two different phases, and the phase-field variable � has a
hyperbolic tangent profile across the interface. The usual phase-field method allows
us to track the interface by solving the following equation derived from the general
interface advection equation:

@�

@t
C ajr�j D b

�

r2� C �.1 � �2/
W



(3)

where �, a, b, and W denote the phase-field variable, the moving velocity normal to
the interface, the curvature coefficient, and a measure of the width of the hyperbolic
tangent profile, respectively. However, this equation provides not only the normal
interface motion but also the curvature-driven motion which is not necessary for the
alteration of the soil-water interface caused by the seepage-induced erosion. Hence,
the following equation developed by Sun and Beckermann [4] below is employed,
which can avoid the curvature-driven interface motion.

@�

@t
C ajr�j D b

�

r2� C �.1 � �2/
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jr�j
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(4)

In the right-hand side of Eq. (4), the curvature term included in the right-hand side
of Eq. (3), r2� C �

�
1 � �2� =W, is cancelled out by the counter term, jr�jr �

.r�=jr�j/, whereby the interface motion is driven only by the velocity normal to
the interface, denoted by a.

3 Numerical Method

The numerical method developed by the authors, which achieves the stable com-
putation of the Darcy–Brinkman equations, is explained. The detailed numerical
procedures for the boundary tracking by Eq. (4) are well described in [4]. The
method presented in this section is based on the one proposed by Kim and Choi
[3], which can solve the Navier–Stokes equations for incompressible fluids by the
finite volume method with unstructured grids. Their method is characterized by the
grid system shown in Fig. (1). The velocity and the pressure are stored at the center
of the finite volume cells and the flux U is additionally computed at the mid-point
of each cell face, which has the following definition:

U D .ui/face ni (5)
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Fig. 1 Finite volume cell and
variables: the velocity and the
pressure are placed at the
center of the cell, and the flux
is defined at each of the cell
edges

U

U

UU

u1
p

u2

Control volume

where .ui/face and ni denote the flow velocity and outward normal unit vector on the
cell face, respectively. Applying a fractional step method and the Crank–Nicolson
method to the time integration of Eq.(2), and spatially integrating it over the finite
volume cells, the following equations are obtained:
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where A, l, ni, and �t denote the area of the cell, the length of the cell faces, the
outward normal unit vector at the cell faces, and the time step size, respectively, and
the superscript m implies the number of time steps. u0i, Oui, and u�i are the intermediate
velocities between um

i and umC1
i . U� is also the intermediate flux defined at the cell

edges. The numerical procedures for solving the Darcy–Brinkman equations are to
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conduct computation of Eqs. (6) to (11) in the above order. Eqs. (7) and (9) result in
the linear systems for Oui and pmC1, which require the inversion of the matrices.

In order to compute the integrals appearing in Eqs. (6) to (11), the velocities, the
pressure, and their directional derivatives need to be evaluated at the mid-point of
each cell face. The values of the velocities and the pressure are interpolated from
those at the centers of neighboring cells. Then, the manner of interpolating these
variables plays an important role in the stable computation at the interface between
the porous and the fluid domains. The simple linear interpolation of the variables
may induce the physically unrealistic oscillations at the interface of the two different
domains. In order to avoid the oscillations, the interpolation scheme described by
the following equations is applied to the rectangular finite volume cells:

pf D
ka
ıa

pa C kb
ıb

pb

ka
ıa

C kb
ıb

(12)

@p

@n

ˇ
ˇ
ˇ
ˇ
a

D pb � pa

ıa C ıb
;

@p

@n

ˇ
ˇ
ˇ
ˇ
b

D pa � pb

ıa C ıb
(13)

ui;f D
kb
ıa

ui;a C ka
ıb

ui;b

kb
ıa

C ka
ıb

(14)

@ui

@n

ˇ
ˇ
ˇ
ˇ
a

D ui;f � ui;a

ıa
;

@ui

@n

ˇ
ˇ
ˇ
ˇ
b

D ui;f � ui;b

ıb
(15)

where pf and ui;f denote the values of the pressure and the velocity at the interface,
respectively, and ı is the distance from the cell center to the interface. The subscripts
a and b mean the indexes for neighboring cells (See Fig. 2 or 3). Eq. (12) means that
when a cell face is located on the interface between the porous and the fluid domains,
the value of the pressure stored in the cell of the fluid domain is given to the interface
(See Fig. 2 and note kb D 1). On the other hand, the velocity is interpolated in an
opposite manner by Eq. (14), i.e., the velocity of the porous domain is given to the
interface (See Fig. 3). While the cell face is located in either domain, the pressure
and the velocity are linearly interpolated onto the cell face.

4 Numerical Result

The moving speed of the interface denoted by a in Eq. (4) corresponds to the
discharge rate of soils. The interface speed a can be estimated by the following
formula:

a D un
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(16)
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Fig. 2 Interpolation of
pressure between the porous
and the fluid domains
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Fig. 4 Geometry and boundary conditions for numerical analysis of backward erosion

where un, X, and f denote the outward normal seepage flow velocity at the interface,
the coordinate normal to the interface, and the maximum resisting force exerted onto
the soil particles. Eq. (16) is derived from the experiments by Fujisawa et al. [2] and
is based on the equilibrium of the forces exerted onto the soil particles in a direction
perpendicular to the interface. Eq. (16) assumes that the effective stress of soils
vanishes when the soil particles discharge, so it is applicable for the seepage erosion
occurring on the soil surface. The profile of the boundary between the porous and
the fluid domains can be updated by solving Eq. (4) at each time step after the values
of a are calculated from the numerical solutions of the Darcy–Brinkman equations.

The numerical results of the backward erosion are presented herein. Fig. 4 shows
the geometry and the boundary conditions. The porous domain of a 125 mm long
soil block was installed at the middle of the computational domain and the rightward
water flow was induced by the imposed boundary conditions. The right side of the
porous domain was made concave, which intended to accelerate the seepage flow to
the exit and to concentrate the seepage-induced erosion to the center of the porous
domain. The other region was occupied by water, i.e., the fluid domain.

As for the boundary conditions, the horizontal velocity of 0.0016 m/s was given
to the left side of the computational domain and the free outflow boundary condition
was set on the right side. The free-slip condition was imposed on both the upside
and the downside. The hydraulic conductivity and the porosity of the porous domain
were assumed to be 1.0�10�3 m/s and 0.4, respectively. After the initial flow
velocity and the initial water pressure were set to zero, the numerical computation
was carried out until the penetration of the soil block occurred.

Figure 5 shows the profile of the computed interface between the porous and the
fluid domains changing due to the erosion. As seen in the figure, the boundary moves
in a direction opposite to the seepage flow and the backward seepage erosion can be
observed. Fig 6 shows the contour plots of the horizontal flow velocity 10 seconds
after the erosion started and after the penetration, respectively. These results show
that the flow velocity in the region where the soil is eroded became even greater
than the other region, which concentrated the water flow into the eroded region
and developed the seepage-induced erosion straightly upstream. After the soil block
was penetrated, the erosion no longer proceeded because the water flow almost fully
concentrated to the connected fluid domain (Fig. 7).



200 K. Fujisawa

0.1 0.15 0.2 0.25 0.3
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Length (x1): m

W
id

th
 (x

2)
: m

Initial10 s20 sFinal 30 s

Fig. 5 The profile of the interface altering with elapsed time due to the backward erosion
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Fig. 6 Horizontal velocity 10 s after the start of erosion (Unit: m/s)

0.1 0.15 0.2 0.25 0.3
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

-2

2

6

10

14

18
x10-3

Length (x1): m

W
id

th
 (x

2)
: m

Fig. 7 Final horizontal velocity after penetration (Unit: m/s)

5 Conclusions

This article has proposed a numerical method for the computation of the soil
erosion induced by seepage flows. This method is built from the three parts,
i.e., the simultaneous analysis of the Darcy and the Navier–Stokes flows, the
estimation of the erosion rate, and the computation of the boundary tracking. The



Numerical Analysis of Backward Erosion 201

authors employed the Darcy–Brinkman equations as the governing equations to
achieve the simultaneous analysis of the Darcy and the Navier–Stokes flows. The
erosion rate was estimated by the experimental formula of [2] and the tracking of
the interface between the Darcy and the fluid phases was conducted by solving the
phase-field equation modified by Sun and Beckermann [4]. The backward seepage
erosion was computed by the proposed method, which has revealed that it can
numerically predict the typical behavior of the seepage-induced erosion, which
straightly develops upstream.
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A Diffuse Interface Model for Incompressible
Two-Phase Flow with Large Density Ratios

Yu Xie, Olga Wodo, and Baskar Ganapathysubramanian

Abstract In this chapter, we explore numerical simulations of incompressible and
immiscible two-phase flows. The description of the fluid–fluid interface is intro-
duced via a diffuse interface approach. The two-phase fluid system is represented
by a coupled Cahn–Hilliard Navier–Stokes set of equations. We discuss challenges
and approaches to solving this coupled set of equations using a stabilized finite
element formulation, especially in the case of a large density ratio between the
two fluids. Specific features that enabled efficient solution of the equations include:
(i) a conservative form of the convective term in the Cahn–Hilliard equation which
ensures mass conservation of both fluid components; (ii) a continuous formula
to compute the interfacial surface tension which results in lower requirement on
the spatial resolution of the interface; and (iii) a four-step fractional scheme to
decouple pressure from velocity in the Navier–Stokes equation. These are integrated
with standard streamline-upwind Petrov–Galerkin stabilization to avoid spurious
oscillations. We perform numerical tests to determine the minimal resolution of
spatial discretization. Finally, we illustrate the accuracy of the framework using the
analytical results of Prosperetti for a damped oscillating interface between two fluids
with a density contrast.

1 Introduction

Simulation of multiphase flows involving interface evolution has long been an
interesting and challenging topic. Accurate and efficient methods of computing the
position of the interface between immiscible fluid components, particularly in cases
of surface tension driven fluid flow, are of particular interests. There are broadly
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two families of methods of simulating such immiscible, multiphase fluid systems.
The first class of methods track/capture the interface between two components.
Examples of this class include marker (or front-tracking) methods ([19]), which
interpolate the interface with a set of connected marker points; volume of fluid
methods ([10]), which represent the fluid portion in a natural way with a color
function; level set methods ([16]), which capture the interface as the zero level curve
of a continuous function; and many of their variants based on this idea.

Instead of explicitly tracking the sharp interface, an alternative approach is based
on the idea of smearing the interface and calculating its evolution by embedding
it into a field. This class of methods are called diffuse interface methods. The
idea of diffuse interface methods has been widely used and is reviewed in [1].
Diffuse interface methods represent the interface using the phase field variable
that changes smoothly across the interface that has non-zero thickness. Various
interfacial properties, like the surface tension, can be directly computed from the
phase field without reconstructing the interface first.

Numerical algorithm using diffuse interface approaches has been the focus of
several investigations. Hohenberg and Halperin [11] derived an abstract model
for simulating interfacial flows of incompressible fluids with matched densities
by coupling hydraulic equation with the Cahn–Hilliard equation, which is well
known as model H. Lowengrub et al. [14] pointed out that binary fluids with
incomprehensible components may be actually compressible, and they derived
a quasi-incompressible formula for the flows of binary mixture with a density
contrast. Yue et al. [23] proposed a 2D fully adaptive finite element model
for simulating interfacial dynamics in incompressible viscoelastic fluids. A 3D
numerical scheme was later developed [25] based on the 2D model. Ceniceros et al
[5] decoupled the discrete model H system with a semi-implicit time discretization,
and solved the linear system with a multigrid method combining a mesh refinement
algorithm. Ding [8] derived a finite volume scheme for simulating binary mixture
flows with large density ratios. Caginalp [3] mathematically verified the existence
of sharp interface limit for the phase field model. Numerical investigations of
the convergence of phase field model to sharp interface limit can be found in [14]
and [23]. Yue et al. [24] and [22] later extended the study of sharp interface limit on
the moving contact line problem.

Regardless of impressive advancement in the diffuse interface approaches, there
are several important questions on the application of diffuse interface model,
especially for surface tension mediated flows and for large density contrast. These
include designing: (i) thermodynamically consistent models for two-phase flows
( [9, 18]), (ii) methods that ensure mass conservation of fluid components regardless
of the density ratio, (iii) approaches to accurately incorporate surface tension ( [12]),
as well as (iv) questions related to the spatial resolution requirements of the diffuse
interface and designing scalable numerical scheme for such models. These questions
motivate the developments in this chapter.

This chapter describes an efficient and robust framework that utilizes a stabilized
finite element formulation for the simulation of incompressible and immiscible two-
phase flows with a large density contrast. Our contributions include the following:
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(1) a semi-coupled, mass-conserved Cahn–Hilliard Navier–Stokes equation system
with an accurate continuous approximation of the surface tension for two-phase
flows; (2) a four-step fractional scheme combined with a stabilized finite element
method. The ensuing decoupling of pressure from the momentum equation enables
scaling up of the framework; (3) comparison of the method with analytical results
for two-phase flow under large density ratios; and (4) grid resolution studies of the
combined Cahn–Hilliard Navier–Stokes system, which provides a guidance for grid
size selection to ensure physically meaningful results.

This chapter is organized as follows: In section 2, we introduce the governing
equations, discuss evaluation of surface tension, and strategy for dealing with large
density ratios. Then the numerical schemes are discussed in section 3. Validations
of the method and further analysis are discussed in section 4.

2 Governing Equations

Consider a finite domain, ˝, occupied by two immiscible fluids (fluidC and fluid�)
with density (�C, ��) and viscosity (�C, ��). A phase field variable � is defined
over the domain that essentially serves as an indicator function to the fluids. That
is, �.x/ D 1, when x lies in fluidC, and �.x/ D �1 when x lies in fluid�.
Alternatively, � can also be considered to be a measure of the volume fraction of the
immiscible fluid components. At the fluid–fluid interface the value of � smoothly
varies from �1 to 1 over a finite distance (hence, the term “diffuse interface”). The
fluid properties can now be written in terms of the individual properties and the
phase field variable as

�.�/ D ��
1 � �
2

C �C
1C �

2
; �.�/ D ��

1 � �
2

C �C
1C �

2
; (1)

The motion of the two fluids is governed by the transient incompressible Navier–
Stokes equation with an additional surface tension f s (that depends on the interface,
and hence is described by the phase field function �)

�

�
@u
@t
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where g is the gravitational acceleration, 	 is the stress tensor given as
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where I is the identity tensor. The boundary conditions for Eqn. 3 are given as

u D g.x/; x 2 	1; and 	 � n D h.x/; x 2 	2; (5)

where 	1 and 	2 are the essential boundary (or Dirichlet boundary) and natural
boundary (or Neumann boundary), respectively, and 	1 [ 	2 D @˝, 	1 \ 	2 D ;.

The diffuse interface model assumes a non-zero thickness of the interface, as
a smooth transition between the two fluid components. Evolution of the interface
is described by the Cahn–Hilliard equation [4], which is derived by minimizing
the free energy of the system given by the Ginzburg–Landau form H.�/ D
R
˝

h
f .�/C 1

2
�2jr�j2

i
d˝, where � is the constant (interfacial parameter) that

encodes the interfacial thickness (or the relative energy required to form an
interface). The total energy consists of the bulk energy density f .�/ and interfacial
energy 1

2
�2jr�j2. Function f .�/ is written as a double-well function, f .�/ D

1
4
.1 � �2/2 with two minima for � 2 Œ�1; 1�, corresponding to the two equilibrium

states of the binary fluid components. The advective Cahn–Hilliard equation is
represented as

@�

@t
C r � .�u/ D r � ŒMr�.�/� ; (6)

�.�/ D ıH.�/

ı�
D �3 � � � �2��; (7)

where u is the velocity, M is the mobility, and �.�/ is the chemical potential. Here
we set M as a constant over the whole domain.1

The governing equation (Eqn 7) is supplemented by the following boundary
condition:

n � r� D 0 x 2 @˝; n � r� D 1p
2�

cos.�S/.1 � �2/ x 2 @˝; (8)

where �S is the static contact angle. The boundary condition for � acts as the no-
flux condition for the fluid components. The condition for � determines the contact
angle of the liquid(s) with the substrate [13].

The Navier–Stokes equation and Cahn–Hilliard equation are coupled by the
convective term r � .�u/ in the Cahn–Hilliard equation and by the surface tension
f s D f s.�/ in the Navier–Stokes equation. We choose the conservative form of the
advection term [15] to ensure numerical mass conservation.

The surface tension f s in the momentum equation (Eqn 3) is a numerical
approximation of the continuum surface force formula [2], which converts the

1[20] also suggests a degenerate form of M, M D D.1��2/, where D is the diffusivity. We obtain
identical results for the results presented here, with the constant mobility case converging faster
(iterations per time step).
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surface tension into a continuous body force as a function of �. Kim [12] discussed
the various forms of the surface function. We choose the following form of f s (which
is an approximation of the force term also used in level set method [6]):

f s D ��r �

 r�

jr�j
�

�˛jr�j2 r�
jr�j ; (9)

where r �
� r�
jr�j

�
represents the interface curvature �, �˛jr�j2 approximates the

Dirac delta function ı.�/, r�jr�j is the normalized gradient of �, and ˛ D 2
p
2

3
. With

this choice, the curvature � can be easily solved from a Poisson type of equation,
without introducing higher order derivatives of �. This enables computationally
efficient FEM solutions using linear basis functions.

We write the governing equations in dimensionless form by scaling the variables
using the characteristic velocity magnitude U, length L, density �C:

u� D u
U
; x� D x=L; t� D t

L=U
; p� D p

�CU2
(10)

The dimensionless governing equations are (after dropping the superscript “*” in
the sequel)

Q�


@u
@t

C u � ru
�

C rp � 1

Re
r � � Q� �ru C .ru/T

�	

D Q�g0
Fr

� 2
p
2

3

Cn

We
r �


 r�
jr�j

�

jr�j2 r�
jr�j ; (11)

r � u D 0; (12)

@�

@t
C r � .�u/ D 1

Pe
r � ŒMr�.�/� ; (13)

�.�/ D �3 � � � Cn2��; (14)

where Q� D ��=�C is the density ratio, Q� D ��=�C is the viscosity ratio, and g0
indicates the gravitational direction unit vector. The dimensionless numbers are:
Reynolds number, Re, defined as Re D �CUL=�C, representing the ratio between
inertia force and viscous force; Froude number Fr, defined as Fr D U2=gL, with
g the magnitude of gravitational acceleration, is the ratio of inertia to external
forces; Weber number, We, defined as We D �CU2L=� , representing the ratio
between inertial force and surface tension; Cahn number, Cn, defined as Cn D �=L,
representing the relative interface thickness; and Pe is the Péclet number, Pe D
LU=.M�/, where M and � are the characteristic mobility and chemical potential.
For most numerical simulations, the Péclet number is set to be proportional to the
inverse of Cahn number ([5, 8]), i.e., Pe D O.1=Cn/. We take Pe D 1=Cn. for the
results presented in this chapter.
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3 Numerical Schemes

The phase field and chemical potential at time step tnC1 are obtained by solving
Cahn–Hilliard equation with a Crank–Nicolson scheme

�nC1 � �n

�t
C 1

2
r � .�nun/C 1

2
r � ��nC1unC1� D 1

2

1

Pe
r � r�n C 1

2

1

Pe
r � r�nC1;

(15)

�nC1 D .�nC1/3 � �nC1 � Cn2r � r�nC1: (16)

The curvature �nC1 is then calculated using the solved field function �nC1:

�nC1 D r �

 r�nC1

jr�nC1j
�

: (17)

Velocity and pressure are solved by a four-step fractional step method ([7]),
where pressure is decoupled from the momentum equation and solved by a Poisson
type equation. The four-step fractional method incorporated with surface tension
and varying density/viscosity is given by:

Q�nC1

 Ou � un

�t
C 1

2
. Ou � r Ou C un � run/

�

C rpn � 1

2

1

Re
r � � Q� �run C .run/T

�	

�1
2

1

Re
r �

h
Q�
�
runC1 C .runC1/T

�i
D Q�nC1

Fr
g0 � 2

p
2

3

Cn

We
�nC1jr�nC1jr�nC1;

(18)

Q�nC1 u� � Ou
�t

D rpn; (19)

r � rpnC1 D Q�nC1

�t
r � u�; (20)

Q�nC1 unC1 � u�

�t
D �rpnC1: (21)

In the above equations, Ou and u� are the intermediate velocities obtained based on
pressure pn from the previous time step. Pressure pnC1 is updated via Eqn. 20 with
the intermediate velocities. Notice that the intermediate velocities do not satisfy the
incompressible condition, i.e., r � u� ¤ 0. So the last step corrects the velocity with
the latest pressure field pnC1 to guarantee the incompressibility condition. We apply
a Crank–Nicolson representation for the convective term and diffusive term in the
momentum equation.
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Fig. 1 Flowchart of the
iteration solver for the
semi-coupled Cahn–Hilliard
Navier–Stokes equation
system.

Given solution un, pn, φ n, and μn

Initialize iterations: i= 0;
un+1

(0) = un, pn+1
(0) = pn, φ n+1

(0) = φ n, and μn+1
(0) = μn

i= i+1

Solve Cahn-Hilliard equation with un+1
(i−1) and pn+1

(i−1);
Obtain φ n+1

(i) and μn+1
(i) ; Evaluate curvature κn+1

(i)

Solve Navier-Stokes equation with φ n+1
(i) and κn+1

(i) ;
Obtain un+1

(i) and pn+1
(i)

φn+1
(i) −φn+1

(i−1) 2

φn+1
(i−1) 2

> 0.001

Obtain solution:
un+1 = un+1

(i) , pn+1 = pn+1
(i) , φ n+1 = φ n+1

(i) , and μn+1 = μn+1
(i)

yes

no

Eqns. 15–21 form a coupled system of �nC1, �nC1, unC1, and pnC1. Instead of
directly solving the whole system in one step, we perform an iterative algorithm
to solve a semi-decoupled equation system, shown by the flowchart in figure 1.
In all simulations shown, the convergence is achieved within two or three iterations.
A streamline-upwind Petrov–Galerkin stabilized finite element framework is used
to solve this set of equations.

Evaluation of density and viscosity given by Eqn. 1 is valid with the assumption
that � is a scalar with value in Œ�1; 1�. However, the numerical scheme does not
restrict � strictly between �1 and 1. Notice that Eqn (1) gives a negative � when a
lower bound of � is reached, i.e., � < �.1 C Q�/=.1 � Q�/. To ensure positivity of
density and viscosity, a normalization procedure is applied on � only for computing
� and � [9],
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O� D
�
� j�j <D 1

sign.�/ otherwise;
(22)

and O� is used for evaluating density and viscosity

� D ��
1 � O�
2

C �C
1C O�
2

; � D ��
1 � O�
2

C �C
1C O�
2

: (23)

Notice that Eqn. 22 is employed only for calculating the physical properties, �
and �, appearing in Navier–Stokes equation to avoid numerical instability. The
phase field � obtained from Cahn–Hilliard equation is actually not modified by
Eqn. 22. Therefore applying Eqn. 22 will not compromise mass conservation of fluid
components.

4 Numerical Results

4.1 Convergence Tests

In this sub-section, we test the numerical method by using a manufactured solution
suggested by Dong and Shen [9]

u D sin.�x/ cos.�y/ sin t; v D � cos.�x/ sin.�y/ sin t;
p D sin.�x/ sin.�y/ cos t; � D cos.�x/ cos.�y/ sin t:

(24)

The above expressions satisfy the continuity equation (Eqn. 13). However, they do
not satisfy the momentum equation (Eqn. 12) and Cahn–Hilliard equation (Eqn. 14).
To remedy this issue, an artificial source term to the right-hand sides of both
equation (Eqn. 12) and (Eqn. 14) is added.

The simulation is performed in a rectangular domain, ˝ D Œ0; 2� � Œ�1; 1�
with Dirichlet conditions for velocity components u and v (set using the analytical
solution (24) ) applied on all boundaries. Quadrilateral elements with bilinear basis
functions are used. The simulations are run with the following parameters:

Re D 100; Cn D 0:1; Pe D 10; We D 100; and Fr D 0: (25)

The time step �t is fixed at 1 � 10�4.
Figure 2 (left) shows mesh convergence results for velocity and phase field

parameter. The relative L2 error is computed:

errora D kanumeric � aanalyticalk2
kaanalyticalk2 (26)
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Fig. 2 Temporal and spatial convergence tests. Dashed lines reflect the estimated convergence
rates. (a) Convergence of element numbers on one edge; (b) Convergence of time step �t.

for a D fu; p; �g. The log–log slopes for all variables are around 2, indicating
consistent second order spatial convergence rate. Decrease in the slope for large
element size is probably due to the saturation from the temporal error due to
constant �t.

Figure 2 (right) shows the temporal convergence results. The spatial grid is fixed
at 300 � 300 linear quadrilateral elements. The slope for all three variables is close
to 1. Note that the error is evaluated at t D 1 (the last time step).

4.2 Damped Oscillation of a Capillary Wave

We study the damped oscillation of an interface between two incompressible viscous
fluids with the lighter fluid placed on top of the heavier one. The interface is initially
perturbed by sinusoidal function with a small amplitude H0 and wave number k.
The analytical solution [17] is derived for two fluids having the same kinematic
viscosity �, but different density. It describes the evolution of the amplitude of
the interface, H.t/, and is given in [17]. This serves as a good benchmark test for
the computational framework.

The motion of interface is simulated in a rectangular domain. The initial shape
of the interface is set using sinusoidal function, yc D 0:01 cos.2�x/, where
the wave length of interface oscillation is chosen as the characteristic length.
The computational domain is chosen as Œ0; 0:5� � Œ�1; 1�. In this way, the top
and bottom boundaries are far enough from the interface to eliminate end effects.
No-slip boundary condition for velocity components is applied on top and bottom
boundaries. No-flux condition is applied on the two side walls. Reynolds number Re,
Weber number We, and Froude number Fr are chosen as 100, 1, and 1, respectively.
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Fig. 3 Evolution of interface
oscillation magnitude with
various number of elements
per interface. The Cahn
number Cn is fixed at 0.005
for this test.

t

H

0 0.5 1 1.5 2 2.5 3-0.015

-0.01

-0.005

0

0.005

0.01

0.015
analytical
3 elements
4 elements
5 elements
6 elements

Cn = 0.005

Table 1 Relative L1 and
relative L2 errors for the
interface discretization tests.

elements per interface relative L1 error relative L2 error

3 0.677 0.983

4 0.0729 0.110

5 0.0266 0.0423

6 0.0132 0.0203

Spatial discretization plays an important role in determining the accuracy of
diffusive interface model. Wodo et al. [20] showed that at least four elements across
the interface (where � is approximately between �0:9 and 0.9) are necessary for
accurate results of the Cahn–Hilliard model. However, this analysis was performed
without the convective term or coupling with the Navier–Stokes equation. We extend
the analysis in [20] to investigate how the diffuse interface model is affected by the
element size. We fix the time step increment�t to a small value, i.e.,�t D 1�10�4.
Density and viscosity ratios are both set to unity. Cahn number Cn is selected as
0.005, which results in Péclet number Pe D 200. Below, we report results for 3, 4,
5, and 6 elements per interface.

Figure 3 shows the evolution of amplitude H.t/ for different spatial resolutions
overlaid with the analytical result. The plot clearly shows that 3 elements per
interface is not enough to capture the physical properties. Table 1 details the relative
errors for all 4 cases. Our analysis clearly show that the simulations with at least 4
elements per interface have significant smaller errors than case with 3 elements per
interface. This result is in agreement with previous recommendation [20], where no
fluid flow was accounted for, but both phase separation and coarsening were studied.

An important highlight of the presented numerical scheme is its capability to
simulate flows behavior of fluids with large density and viscosity ratios. Here,
we consider three density ratio: 10, 100, and 1000. We choose a discretization
corresponding to six elements per interface and time step �t D 1 � 10�4. Results
are shown in figure 4. As expected the oscillation for larger density ratio reduces the
damping effect thus has longer oscillating period and slower damping rate. These
features are accurately captured by the proposed model.
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Fig. 4 Evolution of interface oscillation with different density and viscosity ratios. (a) Same
density/viscosity ratio; (b) �
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W �
�

D �
C
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�
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(d) �
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W �
�

D �
C

W �
�

D 1000 W 1;

5 Conclusions

In this chapter, we develop a finite element framework to model two-phase flows
using a diffuse interface model. A four-step fractional temporal discretization
is employed to decoupled the pressure and momentum equations. The coupling
terms between the Navier–Stokes equation and Cahn–Hilliard equation are carefully
investigated to guarantee that the scheme respects conservation of mass and
accurately captures the effects of surface tension, especially for fluids with a
large density contrast. Coupling between the two equations is treated iteratively.
Validations are then performed to test the accuracy of the numerical scheme. We
use a manufactured solution to illustrate order of convergence. Finally, we report
the excellent agreement with the analytical solution for the damped oscillation
of an interface between two incompressible fluids. We report the agreement
for the whole range of density ratios. This framework has utility for modeling
two-phase flows involving surface tension effects which exhibit a large density
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contrast (e.g., air-water, air-solvent systems). Specifically, we intend to leverage this
framework to explore the effects of geometrical patterning on spreading behavior
during manufacturing of polymer blend thin films [21].
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Isogeometric Phase-Field Simulation of Boiling

Ju Liu and Thomas J.R. Hughes

Abstract In this work we consider the Navier–Stokes–Korteweg equations, a
diffuse-interface model describing liquid–vapor phase transitions. A numerical
scheme for this model is constructed based on functional entropy variables and a
new time integration concept. The fully discrete scheme is unconditionally stable
in entropy and second-order time-accurate. Isogeometric analysis is utilized for
spatial discretization. The boiling problem is numerically investigated by making
proper assumptions on transport parameters and boundary conditions. Compared
with traditional multiphase solvers, the dependence on empirical data is significantly
reduced, and this modeling approach provides a unified predictive tool for both
nucleate and film boiling. Both two- and three-dimensional simulation results are
provided.

1 Introduction

Boiling is a thermally induced phase transition process in which new liquid–vapor
interfaces are generated in a bulk liquid region [2]. It is an extremely effective
mechanism in energy transfer and is widely used in energy conversion facilities.
Despite its importance in industry, the fundamental mechanism of boiling is still
not well understood [2]. A predictive model for boiling is highly desired for
engineering designs. Film boiling is regarded as most amenable to modeling, since
its governing mechanism is principally the Rayleigh–Taylor instability. However,
existing simulations all start with a preexisting perturbed flat interface as the initial
condition [8]. In other words, none of those methods captured the film generation
process. On the other side, very few simulations of nucleate boiling have been
performed because more physical mechanisms are involved in this phenomenon.
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Traditional interface-tracking and interface-capturing methods are designed
based on geometrical information of existing interfaces. This is perhaps the reason
why these methods become intractable for phase transition phenomena. Phase-field
or diffuse-interface methods were proposed as an alternative interface-capturing
method, that use thermodynamic state variables to distinguish different phases [1].
The solid mathematical and thermodynamic foundations of phase-field models
allow them to describe these complicated phenomena without resorting to modeling
“tricks.” The initial instantiation of phase-field methods is the Navier–Stokes–
Korteweg equations, which are constructed based on the van der Waals theory
[1, 4]. In the past decades, this theory has been developed further [3], and a rational
thermomechanical framework for the Navier–Stokes–Korteweg equations has been
presented very recently [10].

For phase-field problems, the non-convexity of the entropy function precludes
the possibility of directly applying many existing robust numerical methodologies
[6, 11]. To overcome the challenges posed by the non-convexity of the entropy,
first, functional entropy variables are introduced to construct an entropy-stable
spatial discretization [9, 10]. Second, to develop a stable temporal scheme, we adopt
the methodology based on special quadrature rules [5, 9]. This time integration
concept can be viewed as a second-order modification to the mid-point rule. The
modifications are designed so that the temporal approximation is provably entropy
dissipative. Since this temporal scheme does not require convexity for the entropy
function, it is anticipated to be applicable to many more general problems.

2 The Navier–Stokes–Korteweg Equations

We consider a fixed, connected, and bounded domain ˝ � R
3. The time interval of

interest is denoted .0;T/, with T > 0. The dimensionless Navier–Stokes–Korteweg
equations are considered in the space-time domain ˝ � .0;T/ as

@�

@t
C r � .�u/ D 0; (1)

@.�u/
@t

C r � .�u ˝ u/C rp � r � 	 � r � & D �b; (2)

@.�E/

@t
C r � ..�E C p/u � .	 C &/u/C r � q C r �˘ D �b � u C �r: (3)

In the above equations, � is the density, u is the velocity, E is the total energy, p is
the thermodynamic pressure, 	 is the viscous stress, & is the Korteweg stress, q is
the heat flux;˘ is the interstitial working flux [3, 10], b is the prescribed body force
per unit mass, and r is the heat source per unit mass. The constitutive relations are
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p D 8��

27.1 � �/ � �2; 	 D 1

Re




ru C ruT � 2

3
r � uI

�

; q D ��r�;

& D 1

We





���C 1

2
jr�j2

�

I � r�˝ r�
�

; �loc D ��C 8

27.� � 1/�;

� D �loc C 1

2We�
jr�j2; E D �C 1

2
juj2; ˘ D 1

We
�r � ur�;

wherein � is the temperature, � is the conductivity, Re is the Reynolds number, We
is the Weber number, � is the heat capacity ratio, and � is the internal energy density
per unit mass. The mathematical entropy function H and the local Helmholtz free
energy loc are defined as

H WD 8

27
� ln



�

1 � �
�

� 8

27.1 � �/� ln .�/ ;

loc.�; �/ WD ��C 8

27.� � 1/� C 8

27
� ln



�

1 � �
�

� 8

27.1 � �/� ln �:

In three dimensions, the vector of conservation variables is

UT D ŒU1;U2;U3;U4;U5� WD Œ�; �u1; �u2; �u3; �E�:

Due to the appearance of the gradient-squared term, the mathematical entropy
function H is no longer just an algebraic function of the conservation variables, but
rather it is a functional of the conservation variables. We define the entropy variables
VT D ŒV1;V2;V3;V4;V5� as the functional derivatives of H with respect to U:

ViŒıvi� D ıH

ıUi
Œıvi�; i D 1; : : : ; 5;

wherein ıvT D Œıv1; ıv2; ıv3; ıv4; ıv5� are the test functions. The entropy variables
V can be written explicitly as

V1Œıv1� D 1

�




�loc � juj2
2

�

ıv1 C 1

We

1

�
r� � rıv1;

ViŒıvi� D ui�1
�
ıvi; i D 2; 3; 4; V5Œıv5� D � 1

�
ıv5;

wherein

�loc D �2�C 8

27
� ln



�

1 � �
�

� 8

27.� � 1/� .ln .�/ � 1/C 8�

27.1 � �/



220 J. Liu and T.J.R. Hughes

is the local electrochemical potential. Inspired from the form of V1, we introduce a
new independent variable V as

V WD 1

�




�loc � juj2
2

�

� 1

We
r �


r�
�

�

:

The fundamental thermodynamic relation between p and �loc allows us to express p
in terms of V as

p D �V� � �loc C �juj2
2

C 1

We
��r �


r�
�

�

: (4)

Making use of the relation (4), the original strong-form problem (1)–(3) can be
rewritten as

@�

@t
C r � .�u/ D 0; (5)

@.�u/
@t

C r � .�u ˝ u/C r



�V� C �juj2
2

C 1

We
��r �


r�
�

��

�



V� C juj2
2

C 1

We
�r �


r�
�

��

r� � Hr� � r � 	 � r � & D �b; (6)

@.�E/

@t
C r �





�V� � �H C 1

2We
jr�j2 C �juj2 C 1

We
��r �


r�
�

��

u
�

�r � ..	 C &/u/C r � q C r �˘ D �b � u C �r; (7)

V D 1

�




�loc � juj2
2

�

� 1

We
r �


r�
�

�

: (8)

The new strong-form problem (5)–(8) is an equivalent statement of the original
Navier–Stokes–Korteweg equations (1)–(3).

3 The Fully Discrete Scheme

The time interval .0;T/ is divided into Nts subintervals .tn; tnC1/, n D 0; � � � ;Nts �1,
of size �tn D tnC1 � tn. We use the notation

Yh
n WD

"

�h
n;

uh
1;n

�h
n

;
uh
2;n

�h
n

;
uh
3;n

�h
n

;
�1
�h

n

;Vh
n

#T

to represent the fully discrete solutions at the time level n. We define the jump of
density, linear momentum, and total energy over each time step as
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��h
n� WD �h
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nuh
n� WD �h
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nC1 � �h

nuh
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�h

nE.�h
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n; �
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n /
	 WD .�loc/.�
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; �h
nC1/ � .�loc/.�

h
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h
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nC 1
2

/ � .�loc/.�
h
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h
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/

��h
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2

�
H.�h

nC1; �h
nC1/ � H.�h
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h
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��
h
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n

2

�
H.�h
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nC1/C H.�h

nC 1
2
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�

C .�h
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n /
3
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@2H

@�2
.�h

nC 1
2

; �h
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C1

2

�
�h

nC1juh
nC1j2 � �h

njuh
nj2�C 1

2We

�jr�h
nC1j2 � jr�h

nj2� :

With the jump operators defined above, the fully discrete scheme can be stated as
follows. In each time step, given Yh

n and the time step �tn, find Yh
nC1 such that for

all wh
1 2 V h, wh D .wh

2I wh
3I wh

4/
T 2 �V h

�3
, wh

5 2 V h, and wh
6 2 V h,

BM.wh
1I Yh
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In our work, Non-Uniform Rational B-Splines (NURBS) basis functions are used to
define V h as well as the computational domain. Consequently, this approach may
be considered as isogeometric analysis method [7]. The main results of the fully
discrete scheme (9)–(12) are stated in the following two theorems:

Theorem 1. The solutions of the fully discrete scheme (9)–(12) satisfy
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��h
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@�3
.�h

nC�1 ; �
h
nC 1

2

/ � ��h
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24

@3H

@�3
.�h

nC 1
2

; �h
nC�2 /

�

dVx � 0:

Theorem 2. The local truncation error in time �.t/ D �
��.t/I�T

u.t/I�E.t/
�T

can be bounded by j�.tn/j � K�t2n15 for all tn 2 Œ0;T�, where K is a constant
independent of �tn and 15 D .1I 1I 1I 1I 1/T .

The proofs of the above two theorems can be found in [10]. Theorem 1 states
that the method is unconditionally entropy stable, because @3�loc=@�

3 
 0 and
@3H=@�3 � 0, which follow from properties of the van der Waals fluid. Theorem 2
establishes the second-order time-accuracy of the method.

4 Boiling

To obtain successful boiling simulations, there are several additional modeling
considerations. First, the transport parameters need to be density dependent in order
to differentiate the properties of the liquid and vapor phases. In our simulations,
the dimensionless viscosity coefficient and the dimensionless conductivity are
modeled as

N� D Cboil
� �; � D Cboil

� �;
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with Cboil
� and Cboil

� being constants independent of �. Second, the gravity effect need
to be taken into account to generate buoyancy. The dimensionless body force b is
chosen as b D .0I 0I �0:025/T for the three-dimensional case and b D .0I �0:025/T
for the two-dimensional case. Third, the ninety-degree contact angle boundary
condition is used for the density variable, and the slip boundary condition is applied
to the velocity. To specify the boundary condition for Y5 D �1=� , the boundary @˝
is divided into three non-overlapping parts:

@˝ D 	t [ 	b [ 	v; 	t D fx 2 @˝jn.x/ � b < 0g ;
	b D fx 2 @˝jn.x/ � b > 0g ; 	v D fx 2 @˝jn.x/ � b D 0g :

With the above partition, the boundary condition for Y5 is

Y5 D � 1

0:950
C ıY5;h.x/; on 	b � .0;T/;

Y5 D � 1

0:775
C ıY5;c.x/; on 	t � .0;T/;

�q � n D 0; on 	v � .0;T/;
wherein ıY5;h.x/ and ıY5;c.x/ are small scalar perturbation functions that mimic the
uneven temperature distribution on the solid surface. The initial conditions represent
a static free surface, with liquid in the bottom region and vapor in the top region.
It is worth emphasizing that, in contrast to the existing boiling models, there is no
artificial manipulation used to serve as boiling onset in this model; the initial liquid
and vapor densities are uniform with no perturbations.

4.1 Two-Dimensional Nucleate Boiling

In this example, we simulate boiling flows in a two-dimensional rectangular domain
˝ D .0; 1/ � .0; 0:5/. The material parameters are chosen as We D 8:401 � 106,
� D 1:333, Cboil

� D 1:150 � 10�4, and Cboil
� D 1:725 � 10�5. The initial conditions

for this problem are

�0.x/ D 0:3660 � 0:2971 tanh



x2 � 0:35

2

p
We

�

;

u0.x/ D 0;

�0.x/ D 0:775:

The perturbations for the temperature on the boundary ıY5;h.x/ and ıY5;c.x/ are
uniform random distributions and satisfy

ıY5;h.x/ 2 Œ�5:0 � 10�2; 5:0 � 10�2�; ıY5;c.x/ 2 Œ�5:0 � 10�3; 5:0 � 10�3�:
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Fig. 1 Two-dimensional nucleate boiling simulation: Density profiles at (a) t D 0:0, (b) t D 1:25,
(c) t D 18:75, (d) t D 31:25, (e) t D 62:5, and (f) t D 100:0.

The spatial mesh consists of 2048�1024 quadratic NURBS elements. The problem
is integrated up to the final time T D 100:0 with time step fixed as�t D 5:0�10�4.
In Figure 1, snapshots of the density are depicted at different time steps. It can be
observed that tiny vapor bubbles are generated at discrete sites of the heated wall
surface during the initial times. The increase of bubble size leads to the increase of
buoyancy. At about t D 18:75, the first three bubbles get detached from the bottom.
More bubbles are generated on the bottom surface subsequently. Interestingly, small
droplets can be observed at t D 62:5 and t D 100:0 as a result of the breakage of
the liquid film when the vapor bubbles reach the free surface. There are 30 bubbles
formed in the time interval of 0 < t < 100.

4.2 Two-Dimensional Film Boiling

In the second example, the same two-dimensional problem considered in the
preceding section is simulated again with a different parameter Cboil

� . Here, the
parameter Cboil

� is chosen to be 4:600 � 10�4, which is four times larger than
that of the previous example. Since the fluid motion in this example is slower,
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Fig. 2 Two-dimensional film boiling simulation: Density profiles at (a) t D 0:0, (b) t D 100:0,
(c) t D 175:0, (d) t D 200:0, (e) t D 225:0, and (f) t D 500:0. The generation of the thin vapor
film is visible at t D 100:0.

the simulation is integrated in time up to T D 500:0. All the other conditions
are identical to those of the previous case. In Figure 2, snapshots of the density
at different time steps are depicted. A thin vapor film is gradually generated at
the bottom during the early stage of the simulation. As time evolves, the interface
becomes unstable and there are vapor bubbles formed. From t D 200:0 to t D 225:0,
the first two vapor bubbles pinch off from the vapor film and rise upward in
ellipsoidal shapes. This process repeats itself periodically. By final time t D 500:0,
there are seven bubbles detached from the vapor film.

4.3 Three-Dimensional Boiling

As the last example, we simulate the Navier–Stokes–Korteweg equations in a three-
dimensional domain ˝ D .0; 1/ � .0; 0:5/ � .0; 0:25/. The material properties are
chosen as We D 6:533 � 105, � D 1:333, Cboil

� D 1:289 � 10�4, and Cboil
� D

7:732 � 10�5. The initial conditions for this three-dimensional problem are
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�0.x/ D 0:33565 � 0:26675 tanh



x3 � 0:15

2

p
We

�

;

u0.x/ D 0;

Y5;0.x/ D �1:2334 � 0:0569 tanh



x3 � 0:15

2

p
We

�

:

The perturbations of the temperature on the boundary ıY5;h.x/ and ıY5;c.x/ are
uniform random distributions and satisfy

ıY5;h.x/ 2 Œ�5:0 � 10�2; 5:0 � 10�2�; ıY5;c.x/ 2 Œ�5:0 � 10�3; 5:0 � 10�3�:

The spatial mesh consists of 600 � 300 � 150 quadratic NURBS elements. The
problem is integrated in time up to T D 20:0 with a fixed time step size �t D
2:0�10�3. In Figure 3, snapshots of density isosurfaces and velocity streamlines are
presented. At the initial stage, there is an unstable vapor film formed over the heated
wall surface. This film soon separates into isolated vapor bubbles located at random
sites. Since the simulation domain is very shallow in the vertical direction, these
bubbles reach the free surface before they get fully detached from the bottom. When
these high-temperature vapor bubbles reach the cooled top surface, they condense
into liquid droplets instantaneously (see Fig. 3 (e)). At t D 20:0, a second round of
vapor bubbles is clearly generated on the bottom and the liquid droplets on the top
surface merge together.

5 Conclusion

In this work, we presented theoretical and numerical methodologies for the study
of boiling, capable of describing complicated phase transition phenomena without
resorting to empirical assumptions. Our algorithm is provably entropy-stable and
second-order accurate in time. It provides a unified predictive framework for
nucleate and film boiling in two and three dimensions. In the future, the presented
methodologies will be applied to the study of other important phase transition
phenomena, such as cavitation, spray and mist formation.

Acknowledgements This work was partially supported by the Office of Naval Research under
contract number N00014-08-1-0992.
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Fig. 3 Three-dimensional boiling simulation: Density isosurfaces and velocity streamlines at (a)
t D 0:0, (b) t D 0:6, (c) t D 5:0, (d) t D 11:0, (e) t D 14:0, and (f) t D 20:0.
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How to Generate Effective Block Jacobi
Preconditioners for Solving Large Sparse
Linear Systems

Yao Zhu and Ahmed H. Sameh

Abstract We present a procedure for creating effective block Jacobi precondi-
tioners for solving large sparse linear systems using Krylov subspace methods.
Such preconditioners are constructed using two techniques. The first is a reorder-
ing scheme based on weighted graph partitioning which strengthens the block
diagonal structure of the coefficient matrix while simultaneously accommodating
load balancing on distributed memory architectures. The second technique is
the factorization of the resulting diagonal blocks, or the factorization of slightly
perturbed diagonal blocks to guard against possible singularity. Focusing on a set
of linear systems arising in several computational fluid dynamics applications,
we demonstrate the effectiveness of our enhanced block Jacobi preconditioners.
Compared to a well-known sparse direct linear system solver, our parallel solver
(block Jacobi preconditioned Krylov subspace method) proves to be equally robust
and achieves appreciable speed improvements on a distributed memory parallel
computing platform.

1 Introduction

Block Jacobi preconditioners enjoy the perfect coarse-grain parallelism when they
are used in conjunction with Krylov subspace methods for solving large sparse
linear systems of equations. In general, the existence of a nonsingular block Jacobi
preconditioner is questionable at best. Further, even if one exists, the effectiveness of
such a preconditioner is equally questionable. In this paper, we present a procedure
for generating enhanced block Jacobi preconditioners, and experimentally demon-
strate: (1) their effectiveness in realizing robust Krylov subspace solvers of large
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sparse linear systems that arise from computational fluid dynamics applications;
and (2) the parallel speed improvement realized by our solver over a state-of-the-
art direct sparse linear system solver (PARDISO) on a distributed memory parallel
architecture.

In Section 2, we outline the classical procedures for preconditioned Krylov
subspace methods for solving large sparse linear systems of equations. In Sec-
tion 3, we present an algorithm for creating effective block Jacobi preconditioners.
Specifically, we describe: (i) a reordering scheme of the sparse coefficient matrix
involving weighted graph partitioning, and (ii) a perturbed factorization scheme for
constructing the enhanced block Jacobi preconditioners. In Section 4, we present
numerical experiments that demonstrate the robustness and parallel scalability of
our resulting block Jacobi preconditioned BiCGstab solver.

2 Background

We consider the problem of solving the sparse linear system of equations

Ax D f (1)

on a parallel computing platform using a Krylov subspace method (e.g., BiCGstab),
where A 2 R

n�n is nonsingular. In order to improve the robustness of Krylov
subspace methods, it is critical to construct an effective preconditioner M to the
linear system (1) [2]. A right-preconditioned linear system is given by

AM�1y D f (2)

where

y D Mx

The choice of the preconditioner M is mainly constrained by two objectives

1. Either the eigenvalues of AM�1 are well clustered around 1, or at least the
condition number �.AM�1/ � �.A/, and

2. Solving systems involving the preconditioner, i.e., solving

Mz D r (3)

is much easier than solving Ax D f and much more amenable for efficient
implementation on parallel architectures..

In this paper, we focus on techniques for generating effective block Jacobi
preconditioners for solving sparse linear systems. A block Jacobi preconditioner M
is a block diagonal matrix consisting of diagonal blocks M1; : : : ;Mp, where p is the
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Fig. 1 A block Jacobi preconditioner and the correspondingly partitioned RHS, with p D 4.

number of blocks, e.g., see, Figure 1 for p D 4. The block diagonal structure of M
leads to perfect coarse-grain parallelism when solving the preconditioning step (3),
which consists of p independent sub-systems

Mkzk D rk (4)

for k D 1; : : : ; p.

3 Enhanced Block Jacobi Preconditioners

In this section, we describe two techniques for generating effective block Jacobi
preconditioners. The first technique is a reordering scheme that insures that the
constructed block Jacobi preconditioner M encapsulates as many of the heaviest
elements of the coefficient matrix A as possible without sacrificing load balancing
on a distributed memory parallel architecture. The second consists of obtaining an
LU-factorization of M or of a slightly perturbed M should one (or more) of the
diagonal blocks be singular or close to singular. We refer to the resulting block
Jacobi preconditioner as the Enhanced Block Jacobi (E-BJacobi) preconditioner.

3.1 Load Balancing

Given that the p independent sub-systems (4) can be solved in perfect parallelism
(one sub-system per a multicore node), the load balancing of the work involved in
the LU-factorization of each Mk (or a slightly perturbed Mk) as well as the following
triangular solves using the nonsingular factors Lk and Uk becomes a critical issue.
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If the work is not load-balanced, the performance of the entire solver will be
adversely affected. Let Wk denote the work pertaining to the k-th block for solving
the sub-system (4), and the average work W D .W1 C � � � C Wp/=p. We enforce load
balancing by constraining the imbalance ratio

max1;:::;p Wk

W
� 1C ı (5)

where the parameter ı specifies the tolerance of load imbalance. As a coarse (but
reasonable) approximation of Wk, we use the number-of-nonzeros (nnz) of Mk as an
estimate of Wk.

3.2 Weighted Graph Partitioning Reordering

It has been demonstrated in [7] that the maximum product traversal permutation
improves the convergence of iterative solution methods based on matrix splitting and
ILU-preconditioned Krylov subspace schemes. Thus, in the following, we assume
that the coefficient matrix A has already been column-permuted (e.g., via using
the HSL MC64 subroutine) to satisfy the maximum product traversal property [7].
Our target is to derive a symmetric reordering1 P such that the block Jacobi
preconditioner M D diag.M1; : : : ;Mp/ extracted from the reordered matrix PAP

T

will encapsulate as many of the heaviest elements of A as possible, while satisfying
the load balancing constraint (5). This is essentially the weighted graph partitioning
problem [8, 9] defined below.

Definition 1 (p-GPES). Given an undirected and weighted graph G D .V ;E /
with weight function w.i; j/ W E ! R

C, then the problem of p-way graph
partitioning by edge separators (p-GPES) is given by: partition V into p disjoint
subsets V D V1 [ � � � [ Vp, such that the total weight of edges crossing different
subsets is minimized while keeping the volumes of the subsets vol.Vk/; k D 1; : : : ; p
balanced.

Let the coefficient matrix A be of order n. We define its associated graph G ŒA� D
.V ŒA�;E ŒA�/ with the weight function as follows:

V ŒA� D f1; : : : ; ng
E ŒA� D f.i; j/ W jAjij C jAjji 6D 0g (6)

w.i; j/ D jAjij C jAjji
2

1Note that a symmetric reordering preserves the maximum product traversal property.
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From a p-GPES result of G ŒA�, we define a block Jacobi preconditioner M of which
the k-th diagonal block is given by

Mk D A.Vk;Vk/ (7)

for k D 1; : : : ; p, where A.Vk;Vk/ is that submatrix of A with row and column
indices in Vk.

Ideally when applying the p-GPES to G ŒA�, we should define the volume function
vol.Vk/ D Wk, i.e., the work involved in factorization and triangular solve of Mk.
We use the number of nonzeros (nnz) of Mk as an estimate of Wk. Thus, we define
the volume function of Vk as follows:

vol.Vk/ D
X

i2Vk

ˇ
ˇ
ˇ
ˇ

˚
j 6D i W jAjij C jAjji 6D 0

�
ˇ
ˇ
ˇ
ˇ

Note that a more accurate estimate of Wk depends on the amount of fill-ins
incurred during the factorization of Mk (or a slightly perturbed Mk). Such a more
accurate estimate, however, is hard to predict without performing actual fill-reduce
reordering and symbolic factorization [12].

A p-GPES result induces a family of reorderings under which the indices in the
same subset Vk are numbered contiguously. We call a reordering of such a kind the
Weighted Graph Partitioning Reordering (WGPR).

Definition 2 (WGPR). Let P be a reordering matrix. We call P a weighted graph
partitioning reordering that respects the graph partitioning result V D V1[� � �[Vp,
if for any k 6D l either �P.i/ < �P.j/ for all i 2 Vk and all j 2 Vl; or �P.i/ > �P.j/ for
all i 2 Vk and all j 2 Vl, where �P is the permutation represented by the reordering
matrix P.

In a recent study, [15], it is proposed that one should also incorporate matrix values
into graph partitioning for constructing effective block Jacobi preconditioners.
Unlike our reordering WGPR, this study, however, considers only preconditioning
symmetric positive definite systems. The approach in [15] is based on recursive
spectral bisection in which each step requires solving a generalized eigenvalue
problem that could be very time consuming on its own. In contrast, our formulation
based on p-GPES admits very efficient algorithms and implementations [8, 9].

3.3 Perturbed Factorization of Diagonal Blocks

We solve the sub-system (4) using a direct sparse solver [5, 10, 14]. It is possible,
however, that a certain diagonal block Mk is singular or near singular. This is handled
through diagonal pivot perturbation, e.g., as implemented in PARDISO [14]. During
the process of the LU-factorization of Mk, if the diagonal pivot jLk.i; i/j < �kMkk1,
then we set
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Lk.i; i/ D sgn.Lk.i; i// � �kMkk1 (8)

where sgn.�/ is the sign function, and � is a user specified parameter. Such perturbed
factorization results in the nonsingular factors Lk and Uk such that

ePkMkeQ
T

k C Ek D LkUk

where the perturbation matrix Ek is possibly of low rank with kEkk1 � kMk1,
andePk (eQk) being row (column) permutations. We define

eMk D Mk CeP
T

k EkeQk (9)

3.4 The Parallel Implementation of E-BJacobi

In our parallel implementation of E-BJacobi, we use the state-of-the-art parallel
graph partitioning tool ParMETIS2 [9] to solve the p-GPES problem for deriving a
reordering matrix P via WGPR. For the LU-factorization of Mk with pivot pertur-
bation, we use the state-of-the-art parallel sparse direct solver PARDISO3 [14]. Let
eMk be Mk with possible perturbation as given in (9). The E-BJacobi preconditioner
is then defined to be

eM D diag.eM1; : : : ; eMk/ (10)

We summarize the algorithm using E-BJacobi to precondition the BiCGstab method
for solving a large sparse linear system in parallel in Algorithm 1. We point out that
the column-permutation in the HSL subroutine MC64 is the only major serial step
of the entire E-BJacobi scheme.

4 Numerical Experiments

Our parallel implementation of E-BJacobi is written in FORTRAN 90 and uses
Intel’s Math Kernel Library (MKL). All the numerical experiments in this section
are conducted on a distributed memory platform consisting of 8 nodes with each
node containing 24 cores (Intel Xeon E5-4617 processor) with 64 GB memory.
Each node is assigned at most 1 MPI process, with 16 OpenMP threads as well as
16 MKL threads. For a given input coefficient matrix, we generate the RHS of the
linear system by taking the all-one vector as the solution of the sparse linear system.

2http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
3http://www.pardiso-project.org/

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://www.pardiso-project.org/
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Algorithm 1 E-BJacobi .A; f ; p; �;maxit/
Require: Nonsingular coefficient matrix A 2 R

n�n; the RHS f ; the number of blocks in the
E-BJacobi preconditioner p; the stopping criterion � and the maximum number of iterations
maxit of the BiCGstab method.

1: Apply MC64 column-permutation Q to A for maximum product traversal.
2: Construct the undirected weighted G ŒAQ

T
� according to (6).

3: Solve the p-GPES problem on G ŒAQ
T
� in parallel using ParMETIS. Let an induced WGPR be

P.
4: Apply the WGPR reordering P to get the reordered matrix PAQ

T
P

T
.

5: Extract from PAQ
T
P

T
the block Jacobi preconditioner M D diag.M1; : : : ;Mp/, where the k-th

block is given by (7).
6: Each diagonal block Mk (k D 1; : : : ; p) is assigned to the k-th multicore node. Each of the

p nodes factors Mk with pivot perturbation according to (8) using PARDISO in parallel. The
E-BJacobi preconditioner is then given byeM of (10).

7: Solve the reordered linear system .PAQ
T
P

T
/.PQx/ D Pf using BiCGstab with the E-BJacobi

preconditionereM, on a cluster of multicore nodes, given the parameters � and maxit.
8: Either an approximate solution x is found, or FAILURE is reported.

4.1 Robustness

In this section, we demonstrate the robustness of our solver E-BJacobi using the
WGPR reordering by comparing it with: (i) block Jacobi preconditioner after only
column-permutations using MC64 (referred to as MC64-BJacobi in what follows),
and (ii) ILUTP preconditioners [13]. Following [3, 4], we apply the MC64 column-
permutation and the symmetric RCM reordering before forming a particular ILUTP
preconditioner. In our case, we select the relative numerical drop tolerance, droptol,
to 10�2, with no limit on the resulting fill-in.

We chose, from the University of Florida sparse matrix collection [6], 24
matrices all arising from different applications in computational fluid dynamics,
as summarized in Table 1. In Table 2, we report the number of BiCGstab iterations
preconditioned by E-BJacobi, MC64-BJacobi, and ILUTP, respectively, with the
stopping criterion of BiCGstab (relative residual) being set to � D 10�4. From
Table 2, we see that E-BJacobi improves the success rate to 83% as compared to the
67% of MC64-BJacobi. If we strengthen the stopping criterion to be � D 10�10,
then as shown in Table 34, the success rate of E-BJacobi (75%) is more than
20% higher than that of MC64-BJacobi (54%). And for those systems for which
both E-BJacobi and MC64-BJacobi converge, E-BJacobi significantly reduces the
number of BiCGstab iterations, especially for the linear systems cfd2, af23560,
poisson3Db, venkat25, and venkat50.

4Given the poor performance of ILUTP in Table 2 when � D 10�4, we did not include ILUTP for
� D 10�10.
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Table 1 Linear systems for robustness experiments.

Linear system n nnz Application

StocF-1465 1,465,137 21,005,389 Flow in porous media

shallow_water1 81,920 327,680 Weather shallow water equations

shallow_water2 81,920 327,680 Weather shallow water equations

cfd1 70,656 1,825,580 Pressure equation

cfd2 123,440 3,085,406 Pressure equation

lung2 109,460 492,564 Coupled temperature and water vapor
transport in a lung

atmosmodd 1,270,432 8,814,880 Atmospheric modeling

atmosmodj 1,270,432 8,814,880 Atmospheric modeling

atmosmodl 1,489,752 10,319,760 Atmospheric modeling

af23560 23,560 460,598 Flow over airfoils

poisson3Db 85,623 2,374,949 3D Poisson problem

venkat01 62,424 1,717,792 Unstructured 2D Euler solver

venkat25 62,424 1,717,763 Unstructured 2D Euler solver

venkat50 62,424 1,717,777 Unstructured 2D Euler solver

Ill_Stokes 20,896 191,368 Ill-conditioned matrix from a Stokes
problem

ns3Da 20,414 1,679,599 3D Navier–Stokes

parabolic_fem 525,825 3,674,625 Parabolic FEM problem

raefsky3 21,200 1,488,768 Fluid-structure interaction turbulence
problem

rma10 46,835 2,329,092 3D CFD model

water_tank 60,740 2,035,281 3D fluid flow of water in a tank

bbmat 38,744 1,771,722 2D airfoil exact Jacobian

invextr1_new 30,412 1,793,881 POLYFLOW flat die

mixtank_new 29,957 1,990,919 POLYFLOW mixing tank

rim 22,560 1,014,951 Fluid mechanics problem

In Figure 2(a), we plot the sparsity pattern with magnitude of Ill_Stokes
after only the MC64 column-permutation, and in Figure 2(b) the sparsity pattern
after applying both MC64 column-permutation and WGPR reordering with p D 8.
Clearly, the block diagonal structure in Figure 2(b) is much more dominant than
that in Figure 2(a). The dominant block diagonal structure resulting from the WGPR
reordering explains the robustness of E-BJacobi. Note also that the 8 diagonal blocks
in Figure 2(b) are well load-balanced.
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Table 2 Number of
BiCGstab iterations
preconditioned by E-BJacobi,
MC64-BJacobi, and ILUTP,
respectively. For E-BJacobi
and MC64-BJacobi, we set
the number of diagonal
blocks p D 8. For ILUTP, we
set the relative
droptol D 10�2. The
stopping criterion of
BiCGstab (achieved relative
residual) set as � D 10�4,
with the maximum number of
BiCGstab iterations set as
maxit D 500. Here, “-”
indicates a failure to
converge.

Linear system E-BJacobi MC64-BJacobi ILUTP

StocF-1465 28 17.5 -

shallow_water1 2 2.5 1

shallow_water2 3.5 4 1.5

cfd1 50.5 85.5 -

cfd2 56.5 37 -

lung2 2 2 1

atmosmodd 25.5 18 11
atmosmodj 23.5 16.5 8.5
atmosmodl 13.5 28.5 5
af23560 37 133 108.5

poisson3Db 19 95.5 -

venkat01 4.5 7.5 3.5

venkat25 13 22.5 -

venkat50 14 23 -

Ill_Stokes 47.5 - -

ns3Da 58 - -

parabolic_fem 93 - 46.5

raefsky3 0.5 0.5 -

rma10 55 - -

water_tank 32 38 -

bbmat - - -

invextr1_new - - -

mixtank_new - - -

rim - - -

Success rate 83% 67% 38%

4.2 Parallel Scalability

We demonstrate the parallel scalability of E-BJacobi on the linear systems in
Table 4. The coefficient matrix Nastran_2 is the stiffness matrix of a Nastran
benchmark for car body dynamics [11]. For each linear system, we profile the total
time of the entire E-BJacobi algorithm as outlined in Algorithm 1. The total time
(TE-BJacobi) includes the times of: MC64 column-permutation (TMC64), weighted
graph partitioning (TWGPR), setting up the E-BJacobi preconditioner (Tsetup), and the
preconditioned BiCGstab iterations (TBiCGstab). As preprocessing steps, the times
of TMC64, TWGPR, and Tsetup can be amortized when solving for a sequence of right-
hand sides with the same coefficient matrix. Nevertheless in the following we still
use TE-BJacobi to measure the parallel scalability of E-BJacobi when solving for
just one RHS. We fix the stopping criterion of BiCGstab to � D 10�4, and the
maximum number of iterations to maxit D 500. For comparison, we also solve each
linear system directly using PARDISO (under the default parameter setting) on one
node with 16 threads, and denote the time PARDISO consumes by TPARDISO.
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Table 3 The first and second columns list the number of BiCGstab itera-
tions as preconditioned by E-BJacobi and MC64-BJacobi, respectively, with
the number of diagonal blocks p D 8, the stopping criterion of BiCGstab
� D 10�10, and the maximum number of iterations maxit D 500. Here,
“-” indicates a failure to reach the stopping criterion. In the last column, we
report the relative residual achieved by the sparse direct solver PARDISO
(under the default parameter setting).

Linear system E-BJacobi MC64-BJacobi PARDISO rel. res.

StocF-1465 - - 1:9� 10�14

shallow_water1 6 6.5 4:0� 10�16

shallow_water2 8.5 10 8:4� 10�16

cfd1 128 152.5 1:4� 10�15

cfd2 293.5 411.5 6:9� 10�16

lung2 5.5 6 6:6� 10�16

atmosmodd 45.5 37 8:5� 10�15

atmosmodj 53.5 35 7:1� 10�15

atmosmodl 34.5 63.5 5:6� 10�15

af23560 74.5 193.5 5:4� 10�14

poisson3Db 42 224.5 4:1� 10�15

venkat01 13.5 20.5 9:4� 10�16

venkat25 46 92 8:4� 10�16

venkat50 52.5 122.5 8:3� 10�16

Ill_Stokes 130.5 - 5:5� 10�15

ns3Da 120.5 - 9:0� 10�15

parabolic_fem 176 - 2:2� 10�11

raefsky3 197.5 - 6:1� 10�16

rma10 158.5 - 2:1� 10�15

water_tank - - 9:3� 10�16

bbmat - - 1:8� 10�12

invextr1_new - - 1:8� 10�12

mixtank_new - - 2:9� 10�4

rim - - 1:1� 10�2

Success rate 75% 54% 92%

In Figure 3(a)–3(c) we plot the speed improvement of E-BJacobi vs. PARDISO
(TPARDISO=TE�BJacobi) for different number of nodes (same as the number of
blocks) pD2, 4, and 8. From Figure 3(a) we see that on atmosmodl E-BJacobi
achieves almost superlinear speed improvement over PARDISO. Even though the
effectiveness of the block Jacobi preconditioner decreases as the number of diagonal
blocks increases, the observed superlinear speed improvement may be due to the
significant reduction in time consumed by the factorization and triangular solves
on each node. In contrast, the speed improvements realized for StocF-1465
and Nastran2 are much more modest. On Nastran2 the parallel efficiency
TPARDISO/(p � TE-BJacobi) is about 0.5 for 8 nodes. The main cause of such modest
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Table 4 Linear systems for parallel scalability experiments.

Linear system n nnz nnz/n Application

atmosmodl 1,489,752 10,319,760 7 Atmospheric modeling

StocF-1465 1,465,137 21,005,389 14 Flow in porous media

Nastran_2 7,234,582 417,297,732 58 Car body dynamics

parallel performance on Nastran2 is the sequential nature of the MC64 column-
permutation. In Table 5, we report the percentage of TMC64=TE-BJacobi for the
number of blocks pD2, 4, 8. We see that for atmosmodl and StocF-1465, the
time of MC64 column-permutation TMC64 is no more than 10% of the total time
TE-BJacobi, which implies that the sequential nature of MC64 is not an impediment
to parallel scalability for these two linear systems. However, for Nastran2 the
percentage of TMC64=TE-BJacobi is almost 40% when pD8, which explains the
deterioration of parallel performance as p increases. We suspect the dramatic
increase of TMC64 on Nastran2 is due to its much higher density (i.e., nnz=n) than
that of atmosmodl and StocF-1465, as shown in Table 4.

5 Conclusion

In this paper, we present a procedure for constructing effective block Jacobi precon-
ditioners. Two primary techniques for constructing such preconditioners include: (a)
a reordering scheme based on weighted graph partitioning (WGPR) which leads to
a dominant block diagonal structure, and hence of the E-BJacobi preconditioner, by
encapsulating as many of the heaviest elements of the coefficient matrix as possible,
while simultaneously maintaining load balancing on a distributed memory parallel
architecture, and (b) factorization with diagonal pivot perturbation, which ensures
the actual E-BJacobi preconditioner eM is nonsingular. Our experiments on linear
systems arising from applications in computational fluid dynamics demonstrate
the robustness of E-BJacobi preconditioners. Compared to solving sparse linear
systems using a direct method, the parallel implementation of E-BJacobi achieves
appreciable speed improvement on a distributed memory platform. We observe that
the sequential nature of the MC64 column-permutation will compromise the parallel
performance of E-BJacobi when the density of the coefficient matrix is high. In
this respect, for future work, we propose to study parallel algorithms for maximum
product traversal (e.g., [1]).

Acknowledgements This work was supported by the Army Research Office, ARO grant number
7W911NF-11-1-0401.
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Fig. 2 Sparsity pattern of Ill_Stokes. The nonzeros are colored based on their magnitudes.
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Fig. 3 E-BJacobi speed
improvement vs. PARDISO.

Number of nodes
2 3 4 5 6 7 8

Sp
ee

d 
im

pr
ov

em
en

t v
s.

 P
A

R
D

IS
O

0

2

4

6

8

10

12

(a) atmosmodl

Number of nodes
2 3 4 5 6 7 8

Sp
ee

d 
im

pr
ov

em
en

t v
s.

 P
A

R
D

IS
O

1.5

2

2.5

3

3.5

4

4.5

(c) Nastran_2

Number of nodes
2 3 4 5 6 7 8

Sp
ee

d 
im

pr
ov

em
en

t v
s.

 P
A

R
D

IS
O

1.5

2

2.5

3

3.5

4

4.5

5

5.5

(b) StocF-1465



244 Y. Zhu and A.H. Sameh

Table 5 TMC64=TE-BJacobi
for different number of
blocks p.

Linear system p D 2 p D 4 p D 8

atmosmodl 1.2% 2.8% 6.9%

StocF-1465 1.8% 3.0% 6.4%

Nastran_2 16.6% 27.3% 39.5%
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Parallel Analysis System for Fluid–Structure
Interaction with Free-Surfaces Using
ADVENTURE_Solid and LexADV_EMPS

Naoto Mitsume, Tomonori Yamada, Shinobu Yoshimura, and Kohei Murotani

Abstract In this chapter, we present a parallel analysis system for fluid–structure
interaction (FSI) analysis with free-surfaces. It is based on a method that uses
the moving-particle semi-implicit/simulation (MPS) method for flow computations
and the finite element (FE) method for structural computations. The MPS-FE
method is an efficient and robust approach for FSI problems involving free-surface
flow. To develop the system presented herein, we use two existing open-source
software modules: ADVENTURE_ Solid, a large-scale FE solver for structural
computations; and LexADV_ EMPS, a library for large-scale MPS computations
for free-surface flow. The explicitly represented polygon (ERP) wall boundary
model employed in LexADV_ EMPS is accurate and stable, and it expresses wall
boundaries as a set of arbitrarily shaped triangular polygons with appropriately
imposed boundary conditions. Thus, when the ERP is used, in both the fluid and the
structure computations, the fluid–structure interfaces are matched, and therefore,
preprocessing of the data for FSI analysis is greatly facilitated. We demonstrate
the applicability of the developed system by solving a dam-break problem with an
elastic obstacle.

1 Introduction

As seen with the Great East Japan Earthquake and Tsunami on March 11, 2011, a
large tsunami can inflict devastating damage. This has led to an increased awareness
of the vital importance of designing safe, tsunami-resistant structures, including
the buildings and machinery of electric power, energy, and chemical plants, and
evacuation facilities in coastal regions. The damage done by a tsunami is caused not
only by the direct force of the wave, but also by such forces as, for example, elastic
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and plastic deformation, collisions with floating objects, and buoyancy [26]; these
all must be considered when developing tsunami-resistant designs, but it is difficult
to predict them when using conventional processes based on empirical knowledge.
Because of this, numerical simulations can be a powerful and important part of the
design process.

There have been many researches into prevention and mitigation of water-related
disasters, such as tsunamis, floods, and storm surges. In these studies, shallow
water equations are solved to predict the areas that will be inundated and the
variation in water level in coastal areas [21], and the Navier–Stokes equations are
solved to evaluate the wave forces exerted on affected structures [3]. However,
few studies have used numerical simulation to evaluate water-related damage from
various fluid–structure interactions (FSIs). A versatile analysis system has not yet
been developed for this, because the phenomena involve free-surfaces and moving
boundaries, which are difficult to deal with in a robust way.

In order to be able to better analyze potential damage due to these factors,
we developed the MPS-FE method [13], which is an efficient and robust method
for FSI problems with free-surfaces and moving boundaries; it uses a mesh-free
particle method, the moving-particle semi-implicit/simulation (MPS) method [7] for
free-surface flow computations, and the finite element (FE) method for structural
computations. By taking advantage of both methods, the MPS-FE method has
good robustness when dealing with free-surfaces and moving boundaries in flow
computations, and it gives highly reliable solutions to various constitutive equations.
Subsequently, we proposed an improved MPS-FE method [12] that used a polygon
wall boundary method [5] to express the wall boundaries as a set of arbitrarily
shaped triangular polygons instead of as conventional wall particles. In that paper
[12], we indicated that preprocessing of the data was greatly facilitated, because in
both the fluid and structure computations, the fluid–structure interfaces are matched.
The improved MPS-FE method is thus more accurate and more stable than other
existing methods [8, 13, 23]. We have proposed a stable and efficient model, the
explicitly represented polygon (ERP) wall boundary model [14], which is based on
polygon wall boundary models and other models that can treat arbitrarily shaped
boundaries [15, 16].

To develop a large-scale parallel algorithm and system for analysis, it is important
to solve an actual engineering problem. In this chapter, we present a parallel analysis
system for FSI with free-surfaces; it is based on the MPS-FE method and uses exist-
ing modules for large-scale parallel computations: ADVENTURE_ Solid [1, 25],
a large-scale parallel FE solver for the structural computations; LexADV_ EMPS
[9, 17], a domain decomposition and interdomain communication library for MPS
computations with free-surface flow; and HDDM_ EMPS, a large-scale parallel
solver that uses LexADV_ EMPS [9, 17]. To exchange physical values between
these solvers, the MPSFE_ Coupler module was newly developed and used. In the
following sections, we will explain this system, and then we will demonstrate its
applicability by solving a dam-break problem with an elastic obstacle.
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2 Large-Scale Parallel FE Solver

The domain decomposition method (DDM) is a well-known and widely used
approach for parallel FE computations. In the DDM, the area to be analyzed is
split into a number of non-overlapping subdomains, and the unknowns in the
interiors of the subdomains are eliminated; this transforms the global linear system
into a Schur complement system on the unknowns associated with the interfaces
between the subdomains. ADVENTURE_ Solid, the large-scale parallel FE solver
used in our system, employs the hierarchical domain decomposition method [22]
(HDDM) and the balancing domain decomposition (BDD) preconditioner [10].
ADVENTURE_ Solid is one of the modules developed by the ADVENTURE
project [1], which has the aim of developing a computational mechanics system
for large-scale analysis and design; development of this project is led by Shinobu
Yoshimura. This project is open source and includes many modules, such as fluid,
thermal, and magnetic solvers, a mesh generator, an IO data formatter, and a
post-processor. ADVENTURE_ Solid decomposes the area to be analyzed into a
two-level hierarchy of subdomains; the top level is called the part, and the second
is called the subdomain. This is performed by a module for domain decomposition,
ADVENTURE_ Metis, which is based on ParMETIS [19], a library for the parallel
computation of minimal-cut partitions of graphs and meshes. Adventure_ Solid can
obtain excellent parallel efficiency and convergence rates, even when solving very
large-scale problems, such as those with over 100 million degrees of freedom.We
note that ADVENTURE_ Solid has been used for simulations of various engineering
applications involving coupled systems [2, 6, 11, 24, 27].

3 Large-Scale Parallel MPS Solver

There have been several studies on the use of distributed-memory parallel com-
putation for mesh-free particle methods. In contrast to the domain decomposition
approach of the finite element method, it is extremely difficult for mesh-free particle
methods to obtain good parallel efficiency by using static domain decomposition
because the particles move in a Lagrangian fashion. Murotani et al. [17, 18] pro-
posed a dynamic domain decomposition approach for the explicit MPS method [20].
This approach uses ParMETIS so that the number of particles in each domain is
equalized and communication between domains is minimized; this results in a good
load balance. In addition, an open-source library for dynamic domain decomposition
and interdomain communication, LexADV_ EMPS [9], has been developed. In
the system proposed in this paper, for the free-surface flow computations, we
use a large-scale parallel MPS solver that is based on LexADV_ EMPS and
HDDM_ EMPS.
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4 Parallel Analysis System for FSI with Free-Surfaces

4.1 Model of Wall Boundary Used in MPS Computations

As mentioned in the Introduction, we propose an accurate and practicable system
for FSI analysis, and we do this by ensuring that the fluid–structure interface is
consistent. We accomplished this by using the polygon wall boundary model [5],
which represents wall boundaries as a set of arbitrarily shaped triangular polygons
[12]. However, the existing polygon wall boundary model has problems in terms
of accuracy and stability, so we proposed the ERP as a more accurate and stable
model [14].

We are currently developing a library for the ERP model for large-scale parallel
MPS computations. An example of a simulation of a breaking dam and three
rectangular columns is shown in Fig. 1; the HDDM_ EMPS with the ERP model
was used, and colors indicate the domain of each particle. The wall boundaries were
represented by 44 polygons. Six message-passing interface (MPI) processes (flat
MPI) were used, and the calculation area was split into six domains. As can be seen
in Fig. 1, the domains are dynamically decomposed as the particles move. Although
the conventional approach of using particles for MPS computations requires several
layers at a wall boundary, the ERP model does not use particles, and in areas
where a boundary is flat, it can be discretized by course polygons, with no loss of
accuracy. Because of this, when the wall boundaries are relatively flat, as in Fig. 1,
the computational cost can be significantly reduced.

4.2 Fluid–Structure Interaction Model for the MPS-FE
Method Using the ERP Model

In the ERP model, the force exerted on a polygon wall by a particle is defined as
the reaction to the force exerted on the particle by the walls. The force on particle i,
f wall

i , in the ERP model is (Fig. 2)

Fig. 1 Dynamic domain decomposition by LexADV_ EMPS in a dam-break simulation
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Fig. 2 Force exerted on polygon wall by particle i, and corresponding equivalent nodal forces on
finite element nodes
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where mi is the mass of particle i, �0 is the constant fluid density, and � is the
kinetic viscosity. Here, hrpiwall

i and
˝r2v

˛wall

i are the contributions from the wall
of the pressure gradient and the velocity Laplacian, respectively, when the pressure
Neumann and slip/no-slip boundary conditions are imposed. The force that particle
i exerts on the polygon wall, that is, the force from the fluid to the structure, f F!S

i ,
is regarded as the reaction force of f wall

i ,

f F!S
i D �f wall

i ; (2)

acting on the nearest point xwall
i as the point load. With this assumption, the total

distributed load, qF!S, can be written as the summation of the point loads on each
of the particles:

qF!S D
X

i

ı
�
x � xwall

i

�
f F!S

i ; (3)

where ı is the Dirac delta function. By Eq. (3), the equivalent nodal forces on the
FE node j at the fluid–structure interface 	I , f node

j , can be written as follows:

f node
j D

Z

	I

qF!SNg
j .x/d	 (4)

D �
X

i

f wall
i Ng

j .x
wall
i /; (5)

where Ng
j is the global shape function of node j.
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On the other hand, the process of expressing the contribution from the structure
to the fluid is now simplified significantly, since the interfaces are matched in the
fluid and structure computations, due to the use of the ERP model. The displacement
(current position), velocity, and acceleration for each polygon node can be updated
using their value on the corresponding FE node; no interpolation is necessary.

4.3 Coupler for Exchanging Physical Values
Between Two Existing Solvers

The existing solvers introduced above were connected by the FSI model discussed
in Sec. 4.2 and a partitioned coupling approach [4]. We needed to exchange physical
values between different parallel solvers, so we developed MPSFE_ Coupler, i.e., a
coupler for ADVENTURE_ Solid and HDDM_ EMPS.

A schematic view of the developed FSI system is shown in Fig. 3. As indicated in
Fig. 3, since the polygon wall data for the wall boundary can be obtained by a surface
extraction of the finite element data, the preprocessing is considerably simplified.
The data exchanged by MPSFE_ Coupler (the sets of node and corresponding part
numbers for each polygon, the subdomain numbers, and the local node numbers
for the subdomain of the FE nodes) can be obtained easily. Other studies that
performed FSI simulations using the mesh-free particle method and the finite
element method [8, 13, 23] used particles to express the wall boundaries; as a result,
they had difficulties when dealing with complicated surface shapes. In addition, we
pointed out in [12] that in the existing studies, spurious injections or dissipations

Fig. 3 Schematic view of the large-scale parallel FSI system using ADVENTURE_ Solid and
HDDM_ EMPS
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Fig. 4 Image of data distribution and communication in the FSI system

of momentum and energy occur on the interface, and this makes the computation
unstable, since it makes it difficult to maintain a consistent force at the fluid–
structure interface. In contrast to the existing studies, the approach adopted in this
study does not have these problems, because the fluid–structure interface is matched
by using the ERP model and the forces are consistent in the FSI model introduced
in Sec. 4.2.

The distribution of data between the solvers and the communications by
MPSFE_ Coupler for two MPI processes is shown in Fig. 4. In HDDM_ EMPS
with the ERP model in the present version, each process has one domain containing
particles and all processes have complete data for the polygon walls. On the other
hand, in ADVENTURE_ Solid, each process has one part that contains subdomains.
MPSFE_Coupler exchanges the physical values between the polygons and the FE
nodes.

5 Example of FSI Simulation

To demonstrate the applicability of our system for large-scale parallel FSI analysis,
we solved a dam-break problem with an elastic obstacle, as shown in Fig. 5. The
water column was a Newtonian fluid, discretized with 105;000 particles set in a
cubic grid with 0:02Œm� spacing. The fluid density was 1:0 � 103Œkg=m3�, and the
kinetic viscosity was 1:0 � 10�6Œm2=s�. The obstacle was a linear elastic body
discretized with 17;915 second-order tetrahedron elements and 27;328 FE nodes;
there was a surface constraint on the bottom. The density was 1:2 � 103Œkg=m3�,
Young’s modulus was 1:0 � 106Œkg=s2m�, and Poisson’s ratio was 0:4. A total of
3;592 polygon walls and 7;186 polygon nodes were obtained by surface extraction
from the FE data; these were used as the wall boundary on the fluid–structure
interface in the free-surface flow computation. The nodal corresponding data for
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Fig. 5 Initial configuration
of dam-break problem with
an elastic obstacle (units: Œm�)
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MPSFE_ Coupler were obtained simultaneously. The outer cuboid wall boundary
was expressed by ten polygon walls, and these were used only the fluid compu-
tations. In both the fluid and structure computations, the gravitational acceleration
was 9:8Œm=s2�, and the time step was 1:0�104Œs�. The conventional serial staggered
method with a linear predictor [4] was used as the coupling method for the partitions.

The simulation was conducted with six MPI processes on a single PC with six-
core CPU (Intel Core i7-3970X, 3:50ŒGHz�). The particles and FEs were split into
six domains in HDDM_ EMPS and into six parts in ADVENTURE_ Solid; each
part had 70 subdomains. The computation times for each time step varied between
0:8Œs� and 7:1Œs�; the time required depended on the number of particles close to
the polygon walls. Obviously, this was due to calculations of the distance between
polygon walls and particles, and this algorithm should be made more efficient.

The results of this simulation are shown in Fig. 6; the velocity is indicated by
color. As can be seen in Fig. 6, the wave force due to the dam break deforms the
elastic obstacle, and the deformation of the obstacle affects the motion of the fluid.
Although complicated free-surface and boundary motions occur, our system was
able to perform the simulation robustly. This simulation example is unrealistic in
terms of actual disaster prevention and mitigation, but we emphasize that the results
indicate that our system can be used to simulate various situations, and it can include
the effects of forces due to elastic and plastic deformation, uplift by buoyancy, and
other factors. In addition, this system simplifies the preprocessing phase, and so it is
especially practical for resistant and resilient designs that require the consideration
of a variety of potential situations.
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Fig. 6 Simulation results for dam-break problem with an elastic obstacle; velocity contours are
shown by color (min: 0:0Œm=s�, max: 5:0Œm=s�)

6 Conclusions

In this chapter, we presented a parallel analysis system for FSI with free-surfaces;
it is based on the MPS-FE method and uses ADVENTURE_ Solid, a parallel FEM
solver for structural computations with HDDM and the BDD preconditioner, and
LexADV_ EMPS, a domain decomposition and interdomain communication library
for the MPS computation of free-surface flows. We incorporated the ERP wall
boundary model, which is a polygon-based model, to improve the accuracy and
stability of our FSI model, and we developed a large-scale parallel FSI analysis
system that uses a coupler to exchange values between the solvers. In this system,
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the fluid–structure interfaces are matched in both the fluid and the structure
computations, and therefore, the preprocess of the data is facilitated considerably.
Finally, we used our proposed system to analyze the FSI of a dam-break problem
with an elastic obstacle. The results indicate that the system is sufficiently robust
when dealing with complicated free-surface and boundary motions, and therefore,
it will be a useful and practical tool for the design of resistant and resilient structure.

Although we only demonstrated our method on a relatively small-scale problem
with simple boundaries, we intend to more thoroughly investigate the accuracy
and stability of the proposed method, to evaluate the parallel efficiency and the
computational cost, and to demonstrate its applicability to actual problems.
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Abstract The partitioned simulation of fluid–structure interactions offers great
flexibility in terms of exchanging flow and structure solver and using existing
established codes. However, it often suffers from slow convergence and limited
parallel scalability. Quasi-Newton or accelerated fixed-point iterations are a very
efficient way to solve the convergence issue. At the same time, they stabilize and
speed up not only the standard staggered fluid–structure coupling iterations, but
also the variant with simultaneous execution of flow and structure solver that is
fairly inefficient if no acceleration methods for the underlying fixed-point iteration
are used. In this chapter, we present a review on combinations of iteration patterns
(parallel and staggered) and of quasi-Newton methods and compare their suitability
in terms of convergence speed, robustness, and parallel scalability. Some of these
variants use the so-called manifold mapping that yields an additional speedup by
using an approach that can be interpreted as a generalization of the multi-level idea.
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1 Introduction

The simulation of fluid–structure interactions (FSI) is a prominent example of multi-
physics simulations where multiple physical fields are involved. FSI alone or in
combination with further physical fields is, for example, needed in aero-elasticity
[15], arterial flow simulation [10], airbag deployment [21], parachute systems [23],
wind turbines [3], tidal power plants, and air conditioning devices. Typically, the
simulations are required to be finished in a limited time but, at the same time, with
a high accuracy.

In addition, many of these coupled multi-physics simulations are still evolving,
i.e. they work with models that might have to be enhanced by further physical fields,
use a discretization approach or equation solvers that might have to be replaced by a
different method, or focus on the fast development of a new simulation environment.
In these cases, the partitioned coupling approach going back to [16] using existing
single-field solvers and combining them in a modular way to a coupled simulation
environment is favourable over the monolithic approach. The latter allows the
development and implementation of highly efficient solvers [1, 19, 24], but requires
the explicit or implicit assembly of a large overall system of equations and, thus, a
reimplementation of the whole solver. For a modular, partitioned approach, concepts
for its efficient and robust realization are extremely valuable, but have to fulfil the
important requirement to use only little information on the solvers, in other words,
to be able to deal with black-box solvers exposing only input and output values of
the respective single-field simulation.

In the remainder of this paper, we present state-of-the-art and new combinations
of partitioned iteration patterns with quasi-Newton variants that we developed
during the last 3 years [4–6, 20, 26] and compare the resulting convergence
speed, robustness, and parallel scalability. For some cases, we add an additional
improvement by using the so-called manifold mapping, a generalization of the
multi-level idea.

2 Quasi-Newton or Fixed-Point Acceleration Schemes

Before presenting quasi-Newton and fixed-point acceleration methods, we shortly
recapitulate the introduction of fixed-point equations realizing the coupling at the
wet surface between fluid and structure for different execution orders of the flow
and structure solvers.
The serial implicit coupling scheme (S-System) is used in most fluid–structure
coupling approaches. The solvers are executed in a staggered way, i.e. the flow
solver (F) first computes stresses or forces from wet surface displacements and
velocities (xd). These forces are communicated to the structure solver (S) that after-
wards computes new wet surface displacements or velocities. The corresponding
interface equation reads
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xd
ŠD S ı F.xd/ : (1)

The parallel implicit coupling scheme (V-System) was developed due to sub-
stantial drawbacks of the above serial implicit coupling scheme regarding efficient
parallelization. There is a significant mismatch of work load between the structure
and the fluid solver, which does not allow for an efficient parallelization using the
S-system. The only way to overcome these limitations in parallel efficiency is to
evaluate the fluid and the structure solver in parallel. Hereby, the V-system uses the
original input/output relation for both solvers but the boundary values are exchanged
after each simultaneous solving of flow and structure. This leads to the vectorial
fixed-point equation



xf

xd

�
ŠD


0 F
S 0

�

xf

xd

�

: (2)

The vectorial system results in two independent instances of the S-system if solved
by a pure fixed-point iteration, but quasi-Newton solvers turn out to be powerful
enough such that one iteration of the V-system is comparable to one iteration of the
S-system (cf. [8, 26]).

We describe two quasi-Newton schemes, which can be applied to both the
aforementioned fixed-point equations (1) and (2). For the sake of clarity, we
introduce a unified notation for the two types of fixed-point equations presented
above:

H.x/ D x , R.x/ WD H.x/ � x D 0 (3)

with H D S ı F and x D xd or H D


0 F
S 0

�

and x D



xf

xd

�

.

A pure fixed-point iteration for both systems, the S-system and the V-system,
tends to be unstable and, in particular, is two times slower for the V-system than for
the S-system [22]. Therefore, we accelerate the fixed-point iteration by a subsequent
Newton step

xkC1 D H.xk/
„ƒ‚…
DW Qxk

�J�1I�H�1 . H.xk/ � xk

„ ƒ‚ …
D Qxk � H�1.Qxk/

/ (4)

with QR WD I � H�1 mapping Qxk to the residual R.xk/ D QR.Qxk/ D H.xk/ � xk.
This Newton step requires the Jacobian and the solution of the respective linear

system (inversion of the Jacobian). For our black-box approach, the Jacobian is
inaccessible and we use an approximation

bJQR
�1.Qxk/ � J�1QR .Qxk/:
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For this purpose, we collect input–output data throughout our iterations within a
time step and generate the following matrices:

Wk D �
�Qxk

0; �Qxk
1; � � � ; �Qxk

k�1
	
; with �Qxk

i D Qxk � Qxi ;

Vk D �
�Rk

0; �Rk
1; � � � ; �Rk

k�1
	
; with �Rk

i D R.xk/ � R.xi/ :

This yields the secant equation

bJQR
�1.Qxk/Vk D Wk : (5)

for the approximate inverse Jacobian of QR. As k is in general much smaller than
the number of degrees of freedom at the coupling interface, Wk and Vk are tall
and skinny matrices and the system (5) is underdetermined. In the following, we
present two approaches to regularize this system based on different additional norm
minimization conditions for bJQR�1.Qxk/.

The interface quasi-Newton least squares (IQN-LS) method presented in [12]
uses the norm minimization

�
�
�bJQR
�1.Qxk/

�
�
�

F
! min (6)

with the Frobenius norm k � kF. With this, we get the approximate inverse Jacobian

bJQR
�1.xk/ D Wk .V

T
k Vk/

�1VT
k„ ƒ‚ …

D V�
k

with the pseudo-inverse V�
k of Vk and the update formula

xkC1 D Qxk C Wk V�
k

��R.xk/
�

„ ƒ‚ …
DW ’

:

We do not have to explicitly compute the inverse Jacobian, but can restrict ourselves
to compute only the vector ˛. This can be realized very efficiently by solving the
least squares problem

min˛2Rk kVk˛ C R.xk/k2 with the Euclidian norm k � k2:

The convergence properties of the IQN-LS method can be greatly improved, if
the input/output informations from previous time steps are incorporated into the
secant equation, i.e. into Wk and Vk. However, the optimal number R of reused
time steps is highly problem dependent and cannot be determined analytically.
Thus, in practice, R has to be determined based on experiences and in a costly try-
and-error process. Also, linear dependencies and contradicting information within
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the accumulated difference matrices need to be handled properly. The alternative
quasi-Newton approach presented in the next paragraph provides an automatic
implicit incorporation of information from passed time steps and, thus, avoids these
drawbacks of the IQN-LS method. However, it requires to explicitly compute bJQR�1
instead of only the short vector ˛ 2 R

k.1

The interface quasi-Newton multiple vector Jacobian (IQN-MVJ) method pre-
sented here is a newly developed quasi-Newton fluid–structure coupling approach.
It combines the idea of approximating the Newton iteration (4) based on the
secant equation (5) with the ideas presented in [7] for Jacobian approximations
in the context of a block-iterative Newton method. To implicitly use information
from previous time steps, the IQN-MVJ method uses a norm minimization for the
difference between the current time step’s inverse Jacobian approximation and the
last time step’s approximation:

�
�
�bJQR
�1.Qxk/ � bJQR

�1
prev

�
�
�

F
! min ; (7)

where bJQR�1prev denotes the inverse Jacobian approximation of the previous time step.
Thus, our approximations always stay as close as possible to the approximation
from the last time step. This automatically guaranties that we profit from past
information without having to explicitely use old W and V matrices again. We get
the approximate inverse Jacobian

bJQR
�1.Qxk/ D bJQR

�1
prev C

�
Wk � bJQR

�1
prevVk

�
V�

k

and the update formula

xkC1 D Qxk C
�
bJQR
�1
prev C

�
Wk � bJQR

�1
prevVk

�
V�

k

� ��R.xk/
�
:

There is a close relation of the IQN-MVJ update scheme to the Broyden method:
The Broyden method also minimizes distances between successively computed
Jacobian approximations within a Newton iteration. However, Broyden minimizes
the distance of approximations between two successive iterations, whereas we
minimize the distance between Jacobian approximations in two successive time
steps.

1Note that the update formula for xkC1 also shows that skipping the fixed-point iteration step
(computing Qxk D H.xk/) before using a quasi-Newton step would have led to linearly dependent
columns in Wk: We then would always correct xk to xkC1 by adding multiples of differences xk� xi

from previous iterations as we would have to use Wk D .�xk
0; �xk

1; : : : ; �xk
k�1/with�xk

i D xk�xi

in this case. Using induction over the iterations, we see that all columns of Wk would be in the space
spanned by x0 and x1 � x0.
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3 Manifold Mapping

Manifold mapping is a surrogate-based optimization technique, i.e. the approxima-
tion quality a low-fidelity model is iteratively improved. The goal of a surrogate-
based optimization technique is to decrease the computational time of an optimiza-
tion process. For FSI simulations the coupling represents the optimization problem.

In the following subsection, the basic terminology is introduced and the manifold
mapping is explained. The reader is referred to Echeverría and Hemker [14] for the
theoretical basis of the technique.

Fine and Coarse Models. Two types of models are distinguished: a fine model
and a coarse model. It is assumed that the fine model is accurate, but requires a high
computational cost to evaluate. The coarse model, on the contrary, is considered
to be computationally less costly, but also less accurate in comparison to the fine
model. The fine model response for FSI problems is the interface residual as already
used above, i.e.

R.x/ D H.x/ � x

with the fixed-point mapping H either from the S- or from the V-system. The
optimization problem is the minimization of the residual norm, i.e. we have to solve

x?fine D arg min
x

kR.x/k : (8)

The coarse model response is denoted by c.z/, where z represents the control
variable of the coarse model, e.g. a coarser representation of x. Correspondingly,
c.z/ is a coarse representation of the fine model residual R.x/. The coarse model
optimization problem is defined as

x?coarse D arg min
x

�
�p�1.c.p.x/// � qk

�
� (9)

with a suitable mapping p from the fine model design space to the coarse model
design space. In this work, we use radial basis function interpolation for the mapping
p. The design specification qk of the coarse model is iteratively updated during
the minimization process of the fine model. k represents the iteration counter of
the manifold mapping algorithm. In the remainder of this work, we use the short
notation

Rc.x/ WD p�1.c.p.x///:

The manifold mapping algorithm (IQN-ILS-MM) [13] is based on the obser-
vation that the solution of the fine model optimization problem can be computed
based on the coarse model and a suitable mapping S between fine and coarse model
response:
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x?fine D arg min
x

jjSRc.x/jk (10)

The mapping S has the properties that Rc.x?fine/ is mapped to R.x?fine/ and that the
tangent plane for Rc at Rc.x?fine/ is mapped to the tangent plane for R at R.x?fine/. Such
a mapping is called a manifold mapping and can be defined as an affine mapping

S.Rc.x// D R.x?fine/C NS.Rc.x/ � Rc.x
?
fine// with NS D JR.x/J

�
Rc
.x/ (11)

where JR is the Jacobian of the fine model and J�Rc
the pseudo-inverse of the Jacobian

of the coarse model. JR and J�Rc
are, however, unavailable for black-box solvers

used in the FSI problem such that we have to use approximations and solve the
respective approximative version of (10) several times in an iterative manner. Using
the definition (11), we can rewrite the optimization problem and get

x?fine D arg min
x

�
�Rc.x/ � Rc.xk/C NS�R.xk/

�
� (12)

where NS� is the pseudo-inverse of NS. Instead of approximating JR and JRc , we directly
approximate the mapping NS� by a sequence NS�k similar to the approximation of the
inverse Jacobians in the quasi-Newton approaches presented in the previous section.
That is, we use the matrices

Fk D �
�Rk

k�1; � � � ; �Rk
0

	
with �Rk

j D R.xk/ � R.xj/ and (13)

Ck D �
�Rk

c;k�1; � � � ; �Rk
c;0

	
with �Rk

c;j D Rc.x
k/ � Rc.x

j/: (14)

The approximation of the pseudo-inverse of the manifold mapping function NS� is
given by

NS�k D CkF�k (15)

as described in [13]2. This results in the iteration

xkC1 D arg min
x

�
�
�Rc.x/ � Rc.xk/C NS�kR.xk/

�
�
� :

Each iteration requires the evaluation of a fine-model response R.xk/. The manifold
mapping procedure is started with an extrapolation step of the solutions of the
previous time steps in order to initialize the algorithm with a good initial guess.
The number n of degrees of freedom on the fluid–structure interface is in general

2For the computation of CkF�k , we can either use a QR decomposition of Fk as we do in our quasi-

Newton approaches to compute V�
k or singular value decompositions of Ck and Fk as described

in [5]
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much larger than the number of columns of Ck and Fk. Therefore, the computational
cost of the manifold mapping technique is limited. In order to reduce the number
of coarse model optimizations, the matrices Ck and Fk can be combined with the
information from r previous time steps as in the IQN-ILS.r/ approach [12].

Each coarse optimization problem requires one execution of the fine model to
compute R.xk/. The coarse optimization problem can be solved with a coupling
scheme of the users choice. We use the quasi-Newton methods described in
the previous section. Note that the coupling scheme needs to meet the design
specification qk, which can be included in the formulation of the residual for the
FSI problem.

4 Comparison of the Methods — Numerical Results

In this section, we present results for the coupling approaches presented in the
previous section and two FSI scenarios, a two-dimensional flow around a cylinder
flap and a three-dimensional flow through a flexible tube.

The cylinder flap test case is referred to as FSI3 benchmark scenario in [25] and
simulates a two-dimensional flow around a fixed cylinder with attached flexible
cantilever, placed in the middle of the flow channel with a small vertical offset
to foster oscillations. The geometry and simulation results are shown in Fig. 1 (a).
The computational domain is 2:5 m � 0:41 m in size. The fluid flow is driven by
a parabolic velocity profile v with mean inflow velocity Nv =0:2 m s�1 at the left
boundary and free outflow at the right boundary. An incompressible fluid with
density �f D 1 � 103 kg m�3, a dynamic viscosity of �f D 1 � 10�3 m2 s�1, and
a Reynolds number Re D 200 is considered. The flexible cantilever is modeled
using the Saint-Venant–Kirchhoff material model with a Young’s modulus of
E D1:4 � 106 N m�2, a Poisson’s ratio of �s D 0:4, and a density of �s D

Fig. 1 Geometry and results for the simulated scenarios. (a) Two-dimensional flow around fixed
cantilever. Velocity magnitude and pressure contours in the fluid domain at t D 0:697 s. (b) Wave
propagation in a three-dimensional elastic tube. Geometry and pressure contours on the fluid–
structure interface at t D 3:0 � 10�1 s
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1 � 103 kg m�3. The flow solver uses a mesh with 23 924 cells, the solid mesh
consists of 328 cells. A time frame of T D2 s is simulated in steps of 1 � 10�3 s after
the flow is fully developed without structure movement. The dynamic movement of
the cantilever converges to a periodic oscillation with an average period of 128 time
steps, i. e., 0:128 s.

The flexible tube example [2, 11, 17] simulates a wave propagating in a straight
elastic tube with a length of 0.05 m, a wall thickness of 0.001 m, and an inner
diameter of 0.01 m. Both ends of the tube are fixed. From t D 0 s until t D 0:003 s,
the pressure at the left boundary is set to 1333.2 Pa. After this time, the inlet pressure
is set to zero. At the right boundary, the pressure is zero at all times. The fluid has
a density of 103 kg/m3 and a dynamic viscosity of 3:0 � 10�3 Pa � s. The structure is
assumed to be elastic and compressible with a density of 1:2�103 kg/m3, the Young’s
modulus 3:0�105 N/m2, and the Poisson’s ratio 0.3. The flow solver uses a mesh with
20 800 cells, whereas the structure mesh has 6 400 cells. The initial solution of the
displacement is computed based on an extrapolation from previous time steps for
each numerical method under consideration.

All numerical experiments were conducted using the coupling library preCICE
and the simulation toolbox OpenFOAM. We give a brief summary of both:

preCICE3 is a library for flexible numerical coupling of single-physics solvers.
It is developed at the Technische Universität München and the University of
Stuttgart. preCICE uses a partitioned black-box coupling approach and offers a
wide variety of runtime configurable aspects of numerical coupling like serial and
parallel as well as explicit and implicit coupling schemes. For more information,
refer to [18].

OpenFOAM4 was used for the fluid and the structure simulations based on a
second order finite volume discretization of the incompressible Navier–Stokes
equation for the fluid. Instead of the standard pressure implicit with splitting of
operator (PISO) algorithm, it uses a coupled solution algorithm as described in [9].
For more information, refer to, e.g., [4].

Convergence Criterion. To test convergence, we use a criterion that checks both
forces and displacements based on the relative residuals

kxk
d � Qxk

dk2
kxk

dk2
Š
< �rel ^ kxk

f � Qxk
f k2

kxk
f k2

Š
< �rel with �rel D 10�5

3http://www5.in.tum.de/wiki/index.php/PreCICE_Webpage
4http://www.openfoam.org/

http://www5.in.tum.de/wiki/index.php/PreCICE_Webpage
http://www.openfoam.org/
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Table 1 Two-dimensional flow around a fixed cylinder flap (FSI3
benchmark). Averaged iteration counts per time step for the
S-system (1) and the V-system (2), the IQN-ILS method, the IQN-
ILS mapping with acceleration based on manifold mapping and the
parameter-free IQN-MVJ method.

System Method
Reuse 0 Reuse 4 Reuse 8
nf nc nf nc nf nc

S IQN-ILS 14:8 0:0 5:4 0:0 5:0 0:0

S IQN-ILS-MM 6:4 48:5 6:0 34:9 5:9 34:4

S IQN-MVJ 6:1 0:0 — — — —

V IQN-ILS 26:2 0:0 7:7 0:0 6:5 0:0

V IQN-ILS-MM 8:9 98:9 4:8 30:9 5:1 34:3

V IQN-MVJ 7:6 0:0 — — — —

where

Qxk
d D

(
S ı F.xk

d/ for the S � system;
S.xk

f / for the V � system
and Qxk

f D
(

F ı S.xk
f / for the S � system;

F.xk
d/ for the V � system:

S-System versus V-System. Switching our coupling pattern from the S-system (1)
to the V-system (2) induces more parallelism. More specifically, the time for one
iteration is reduced by a factor of two if we have parallelized both solvers to
appropriate numbers of cores such that their runtime per time step is equal. For the
total time step, we thus benefit from the enhanced parallelism of the V-system if the
number of iterations required per time step is less than twice the number of iterations
required for the S-system. Tables 1 and 2 show that the iteration counts using the
IQN-ILS method for both systems are comparable for the FSI3 test case (Table 1) if
an appropriate number of previous time steps is reused. The results for the flexible
tube (Table 2) show a disadvantage of the V-system in terms of convergence. For the
more sophisticated IQN method accelerated with the manifold mapping (IQN-ILS-
MM) and the robust parameter-free variant IQN-MVJ, the V-system yields iteration
counts (of the fine model) comparable to those of the S-system for both scenarios.
Note that these good iteration counts for the V-system are only due to the efficiency
of the quasi-Newton approach. The pure fixed-point iteration (if converging) for
the V-systems obviously would require exactly twice as many iterations as for the
S-system.

Convergence Boost by Manifold Mapping. For IQN-ILS-MM, we use coarse
models of the fluid with 2 600 cells (tube) / 5 981 cells (FSI3), respectively, and
800 cells (tube) / 82 cells (FSI3) for the structure. In addition, viscous effects are
ignored for the coarse fluid model. Table 2 shows the iteration counts. The manifold
mapping technique substantially reduces the number of fine model iterations for the
S-system as well as for the V-system. Note that the number of fine model evaluations
for the flexible tube was reduced to only a slightly higher number than the best result
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Table 2 Three-dimensional flow through a flexible tube. Averaged iteration counts
per time step for the S-system (1) and the V-system (2), the IQN-ILS method, the
IQN-ILS mapping with acceleration based on manifold mapping and the parameter-
free IQN-MVJ method.

System Method
Reuse 0 Reuse 8 Reuse 16 Reuse 24
nf nc nf nc nf nc nf nc

S IQN-ILS 17:0 0:0 6:8 0:0 5:9 0:0 5:8 0:0

S IQN-ILS-MM 6:9 55:4 5:4 34:0 5:5 32:0 5:9 34:9

S IQN-MVJ 7:19 0:0 — — — — — —

V IQN-ILS 30:4 0:0 11:3 0:0 9:8 0:0 9:2 0:0

V IQN-ILS-MM 6:9 95:0 4:8 41:0 4:6 35:4 4:5 32:9

V IQN-MVJ 8:68 0:0 — — — — — —

for the S-system, whereas the number of iterations for the IQN-ILS method alone
applied to the V-system is almost twice as high as for the S-system.

Parameter-Free Robustness with MVJ. Lines three and six in Tables 1 and 2
show the averaged iteration numbers for the coupling using the Jacobian updates
based on the minimization of the distance to the Jacobian of the previous time step.
For both sequential and the parallel coupling, this method yields good convergence
with no reuse of previous time step information. Thus, we consider the MVJ method
as a very robust, generally applicable, and efficient coupling method which could,
in a further step, also be combined with the manifold mapping algorithm to further
increase its efficiency.

5 Conclusions

An overview of state-of-the-art coupling schemes for the partitioned simulation of
FSIs has been given. By considering the fluid and structure solvers as black-boxes,
the convergence of the coupling iterations is often hampered by slow convergence.
Quasi-Newton methods and the multi-level technique manifold mapping have been
applied to solve this convergence problem. The standard staggered execution of
fluid–structure coupling iterations is accelerated by those methods, as well as a
parallel or simultaneous execution of the flow and structure solvers. The IQN-MVJ
method incorporates the information from previous time steps implicitly, avoiding a
manual tuning of the number of time steps reused. The manifold mapping technique
results in the least amount of coupling iterations per time step and is not sensitive
to the number of time steps reused. Optimal combinations of the presented methods
represent a very powerful, flexible, and robust toolbox for partitioned fluid–structure
simulations and presumably also other multi-field simulations.
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Rhino 3D to Abaqus: A T-Spline Based
Isogeometric Analysis Software Framework

Yicong Lai, Lei Liu, Yongjie Jessica Zhang, Joshua Chen, Eugene Fang,
and Jim Lua

Abstract This chapter presents a novel software framework for T-spline based
isogeometric analysis (IGA), interfacing between computer aided design (CAD)
and finite element analysis environment for “design-through-analysis” concept. The
framework is built on Rhinoceros 3D (Rhino) and SIMULIA Abaqus (Abaqus). This
framework has three primary steps: creating CAD surface in Rhino with T-spline
Plugin, converting surface T-spline representations into volumetric T-spline, and
performing analysis with T-spline models in Abaqus through its user element
subroutine. Both 2D and 3D examples are provided in the end to demonstrate our
T-spline based IGA software framework.

1 Introduction

Non-uniform rational B-spline (NURBS) is the standard mathematical represen-
tation for geometry in most commercial computer aided design (CAD) software.
Finite element analysis (FEA) has been widely used in most commercial computer
aided engineering (CAE) software. Geometry designed in CAD software must
undergo an approximating discretization process known as meshing, so that it can
be used for analysis in CAE software. A seminal effort to integrate CAD and CAE,
termed isogeometric analysis (IGA) [1], gained great attention as a new “design-
through-analysis” methodology. It enabled direct analysis of the designed geometry
without meshing.

T-spline [2] was introduced as a generalization of NURBS allowing local
refinement. The introduction of the Autodesk T-Splines Plugin for Rhino in 2004
(http://www.tsplines.com/) provides designers the tool to create and manipulate
T-spline geometries. T-spline basis functions have been incorporated into IGA [3],
further generalizing the “design-through-analysis” framework. Analysis-suitable
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T-splines in IGA were characterized [4], and various methods were developed to
construct volumetric T-splines for IGA [5–9]. Open-source NURBS based IGA
implementations [10, 11] were introduced, but they are primarily used in research.
Recent efforts have increased accessibility of T-spline based IGA to industry. Data
structures for T-spline based IGA were developed [12, 13]. Moreover, NURBS
based IGA was implemented in Abaqus [14]. Although the improvements of IGA
are vast, it is still at the beginning stage in industry. So far, T-spline based IGA
implementations have not yet been available in many commercial software like
Abaqus.

In this chapter, we present a novel CAD-CAE software framework for T-spline
based IGA. Since Rhino and Abaqus are built for engineering design and analysis
specifically, here we develop a T-spline based IGA software framework upon them.
Users can benefit from the strengths of both software. This framework allows:

• Boundary value problem (BVP) specification on T-spline geometry;
• Volumetric T-spline construction from surface representation;
• Efficient and compact trivariate T-spline data structure; and
• Abaqus T-spline IGA user element subroutine based on Bézier extraction.

The reminder of this chapter is organized as follows. Section 1 overviews the
framework and the pipeline. Section 3 describes surface T-spline geometry creation
and BVP specification. Section 4 presents T-spline data structure. Section 5 explains
how volumetric T-splines are constructed from surface T-splines. Section 6 presents
our T-spline Abaqus user subroutine. Finally, section 7 shows numerical results and
draws conclusions.

2 Software Framework and Pipeline Overview

To integrate Rhino with Abaqus, the framework uses Rhino with the T-spline
plugin to create and manipulate T-spline geometries, and uses Abaqus for analysis
through its user element subroutines (UEL/UELMAT). The framework incorporates
two self-developed plugins as shown in Fig. 1, the Rhino plugin in the grey and
blue blocks and the Abaqus plugin in the red block. This framework requires the
following software environment:

• Rhinoceros 3D, Version 5 or newer;
• Autodesk T-splines Plugin for Rhino, Version 3.4 or newer;
• SIMULIA Abaqus Unified FEA, Version 6.0 or newer; and
• Intel FORTRAN, Version 11 or newer.

As shown in Fig. 1, surface geometry is created in Rhino first. With the Rhino
plugin, BVP problem is specified and the geometry is pre-processed, ending up with
Abaqus input files. Depending on whether a 2D or 3D geometry is needed, users can
choose whether to construct volumetric T-splines. For a 2D case, a Rhino .iga file is
directly converted into Abaqus .inp file and .bezier file. For a 3D case, .TSM files
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Fig. 1 Rhino 3D to Abaqus Software Pipeline Overview.

are saved and converted to our .STSP file for volumetric T-spline construction, and
then Abaqus .inp file and .bezier file are generated for analysis. When the analysis
is completed through the Abaqus plugin, a post-processing function is called in the
Abaqus plugin to generate the .odb file for visualization. Based on the results, the
user can go back to Rhino to refine or modify the geometry.

3 Geometry Generation and BVP Specification

Our software framework supports both surface and volumetric T-splines. Since
Rhino only supports surface modeling, surface T-splines must undergo a conversion
process to become volumetric T-splines. Currently, we support two types of
volumetric T-spline geometries. The first type is a 3D geometry created by sweeping
a surface T-spline patch, and the second type is the geometry with genus-zero cube
topology which can be created using the conformal parametric mapping method[7].
Fig. 2 shows three T-spline surface models designed in Rhino. (a) and (b) show 2D
open surfaces which can be used in analysis directly or converted to volumetric
T-spline via sweeping. (c) shows a structure with genus-zero topology and six
patches, which can be converted into volumetric T-spline via parametric mapping.

In Rhino, all the boundary conditions are applied on relevant control points. In the
pre-processing step, the Rhino plugin extracts the information of these control points
and writes to Abaqus .inp file. To apply boundary conditions, we use the T-Spline
plugin selection node sets [15] to choose desired control points. The platform is
currently limited to specifying Dirichlet boundary conditions, but extending to other
boundary conditions is straightforward. For the material properties, simple isotropic
material properties are supported currently. The users can specify the Young’s
Modulus E and the Poisson’s Ratio �.
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Fig. 2 (a) A 2D quarter of a plate with a hole; (b) a 2D notch structure prepared for sweeping; and
(c) a quarter cylinder with genus-zero cube topology.

Fig. 3 (a) A T-mesh with three representative faces/elements, the corner face F1, the edge face
F2, and the interior face F3; (b) a corner face in .TSM data format. Abbreviations are: l-link, v-
vertex, g-grip, F-face, e-edge; and (c) a corner element in .STSP data format. Abbreviations are:
AC-Associate Corner, DI-Duplicated Node Index, DN-Duplicated Node, F- Element, L-Parametric
Length, RL-Relative Location, RN-Regular Node, TJ-T-Junction.

4 T-Spline Data Structure

In this section, we first explain the commercial .TSM data structure used in Rhino.
Then, we introduce our .STSP/.VTSP data structure and explain the conversion
between them.

4.1 TSM Data Format

The .TSM file originated from “half edge” data structure[13] which contains
parametric and physical information of a T-spline control mesh (T-mesh). Fig. 3(a)
shows three representative faces or elements of a T-mesh. F1 is a corner face, F2 is
an edge face, and F3 is an interior face. Fig. 3(b) takes a corner face as an example
to show detailed components in a .TSM face, including links, vertices, grips, faces,
and edges.
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Link {previous, next, opposite, vertex, face, edge, type}. Links tie the topology
of a surface together. Every edge, face, or vertex refers to a link to determine its
location. The first 3 values indicate the id of the previous, next, and opposite links.
For example, in Fig. 3(b), the previous, next, and opposite links of l5 are l9, l6, and l0,
respectively. Each link has an associated vertex, face, and edge which are the three
values following the opposite link. For example, l5 originates from v0 and belongs
to F1, associating to e0. The type indicates what kind of node the link starts from,
either a regular node (Type 0), a T-junction (Type 1), or an L-junction (Type 2). For
example, the type of l5 is 0 since it starts from a regular node while the type of l8 is
1 since it starts from a T-junction. Note that the T-junction can break one edge into
multiple links. Here, the T-junction g8 breaks the edge e2 into l7 and l8.

Vertex {link, direction}. A vertex is the origin of a link. The direction that the
link points away from the vertex is stored as one of the North (N), South (S), East
(E), and West (W). For example, v0, v1, v2, and v3 are four vertices of the corner
face F1 in Fig. 3(b).

Grip {x, y, z, weight}. A grip, equivalent to a control point, is defined by its x,
y, z coordinates and weight. A grip may be parent of one or more other grips. This
kind of grips is also known as compound grips. For example, in Fig. 3(b), g0 is a
compound grip which is the parent of g4, g5, and g6.

Face {start link, flag}. A face is used to represent an element in the T-mesh, and
it is defined by a start link and a flag. The connectivity of a face is given by the
counter-clockwise cycle of links at its borders, starting from its start link. The flag
of a face stores various properties of this face like if the face is hidden or not.

Edge {link, interval}. An edge connects vertices in the T-mesh. It is defined by
a link and an interval. Its link is one of the two links running along it, while the
“interval” is its parametric length.

4.2 STSP/VTSP Data Format and Conversion

Let us first define four types of control points for our T-spline data structure,
including the regular node, the duplicated node, the T-junction node, and the
extraordinary node. A regular node is a control point with valence 4. A duplicated
node is a duplication of its neighbor, see the green dots in Fig. 3(c). A T-junction is
a control point that is analogical to the hanging nodes in classical finite elements,
see the orange dot. For T-junction nodes, we record the edge it locates as well as
its index. An extraordinary node is an interior control point with valence other
than 4, and not a T-junction. In our data structure, regular node, T-junctions, and
extraordinary nodes are used to describe the connectivity of elements. Regular nodes
are often the parents of duplicated nodes. A corner regular node is the parent of three
duplicated nodes while a boundary regular node is the parent of one duplicated node.
For example, in Fig. 3(c), RN1 is the parent of DN1, DN2, and DN3, and RN2 is the
parent of DN4. According to the algorithm introduced in [16], extraordinary nodes
cannot be the parents of duplicated nodes.
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The .STSP/.VTSP data structure is efficient in storing surface and volumetric
T-spline information. This data structure is designed especially for the convenience
of extracting knot vectors. It is compact, concise, and easy to interpret and fit into the
commercial software. Our data format contains two types of data, the control point
data and the element data. The former contains the basic information of T-spline
control points, and the latter contains connectivity, parametric length, T-junctions,
and duplicated nodes in the element.

1. Control Point {x, y, z, weight, type}. A control point is defined by its x, y, z
coordinates, weight, and type. For the type, we use 0 to represent the regular
node, 1 for duplicated node, 2 for T-junction node, and 3 for extraordinary node.

2. Element {Corner ID1�4, Parametric Length1�2, T-junction ID1�4, Number
of Duplicated Nodes, (Duplicated Node ID, Associated Corner, Relative
Location)1�totalnumber}. The first four values are the indices of the four corners
of this element. The next two values specify the parametric length of the edges.
The following four values are the T-junction indices for each edge. If there is
a T-junction on one edge, we record its index at the corresponding position,
otherwise we put “-1” there. For example, in Fig. 3(c), there is a T-junction on the
third edge. Assuming its index is TJ3, we record the T-junctions as “-1 -1 TJ3 -1”.
Following the T-junctions, the next value indicates the total number of duplicated
nodes, which is 5 for a corner element and 2 for an edge element. The remaining
values specify the relative location of the duplicated nodes with respect to the
associated corner of this element. A duplicated node has three consecutive values,
the global index, the corner in the T-mesh to which it belongs, and the relative
location of this node to the corner.

.TSM to .STSP Conversion. To obtain a logical order of the duplicated nodes,
we introduce an STSP plane to help extract the T-spline information from the .TSM
patch in Rhino. Fig. 4(a) shows the STSP plane with the center point labeled as 8.
This plane is a designed pattern to store the relative location of duplicated nodes with
respect to their associated corners. The edge interval length between a duplicated
node and its associated corner is zero. This information is further used in extracting
knot vectors. For open surface topologically equivalent to a unit square, there are
four types of corner elements. Thus, the STSP plane has four subsquares, each
of which can be applied to one certain type of corner element or edge element to
store the duplicated nodes information. For example, the green square in Fig. 4(a)
can be applied to the corner element in Fig. 4(b) while the orange square can be
applied to the corner element in Fig. 4(c). In Fig. 4(b), there are three nodes that
have duplicated nodes, g0, g1, and g3. Since g0 has three duplicated nodes g4, g5,
and g6, we first put g0 at the center of the STSP plane which is position 8. In this way,
g4, g5, and g6, are located at positions 3, 4, and 5 in the STSP plane, respectively.
This indicates g4 is associated with the corner 0 at the relative location of 3 in the
STSP plane. Thus, we record the relative location of this duplicated node as “4 0 3”.
Similarly for g5 and g6, we record them as “5 0 4” and “6 0 5,” respectively. We can
apply the same rule to the remaining g1 and g3 with only one duplicated node each.
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Fig. 4 (a) The STSP plane; (b) a corner element applied to the green square in (a); and (c) another
corner element applied to the orange square in (a). The red edges have zero length.

Fig. 5 Sample element data line for the T-mesh element in Fig. 4(a).

We put g1 and g3 at the center of STSP plane and g7 and g8 can be recorded as “7
1 5” and “8 3 3,” respectively. Similarly, Fig. 4(c) shows the relative location of all
duplicated nodes in another corner element.

To convert the .TSM data to the .STSP data, we first follow the face link loop to
find all the vertices and grips of this element. The four grips at the corners determine
the connectivity of this element. They are also the first four values in our data format.
With the links, we extract the edge interval associated with the links and record them
as parametric length. Then we loop through each grip to order the information of
duplicated nodes. We count the total number of duplicated nodes and then record
the relative position using the STSP plane. Suppose this element has an edge length
of 100 in both parametric directions and has no T-junction, its representation “ 0 1
2 3 100 100 -1 -1 -1 -1 5 4 0 3 5 0 4 6 0 5 7 1 5 8 3 3 ” is shown in Fig. 5.

After .TSM to .STSP data format conversion, we obtain all the information of the
T-mesh. If only a 2D geometry is required for analysis, we directly extract the knot
vectors and calculate the T-spline surface. If there are extraordinary nodes in the
T-mesh. We use the interval duplication method [16] to deal with it. If 3D geometry
is needed for analysis, we convert .TSM file to .VTSP file.

.TSM to .VTSP Conversion. We extend the designed pattern from STSP plane
to VTSP cube in 3D case. Fig. 6(a) shows the VTSP cube and its labels. In 3D, we
put each corner of this element to the center of the cube and for each duplicated
node we record its relative location in the cube using the same way as in 2D
case. As the example shown in Fig. 6(b), g6 is associated with corner 1 in the
element. After putting corner 1 to the center of the cube which is position 17, g6
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Fig. 6 (a) The VTSP cube; and (b) a corner element applied to the green cube in (a). The red edges
have zero length.

is located at position 23 automatically. Thus we record the duplicated node g6 as
“6 1 23”. Other duplicated nodes can be recorded in the same way. With everything
recorded, the information is then used in knot vector extraction and volumetric T-
spline construction.

5 Volumetric T-Spline Construction

After data structure conversion, we perform volumetric T-spline construction, using
the parametric mapping algorithm [7]. The algorithm first identifies the eight corner
nodes on the boundary surface and then maps the surface patch to a unit cube. The
interior domain is adaptively subdivided using octree subdivision until each face
or edge contains at most one T-junction. Two boundary layers are inserted between
the input boundary and subdivision results using the pillowing technique to preserve
the input boundary representation. Then, templates are applied around extraordinary
nodes to build a valid T-mesh. Finally, the knot vectors are extracted and volumetric
T-splines are constructed.

In our approach, instead of inserting two boundary layers, we pillow the 6 patches
one by one, resulting in one boundary layer. The reason is that for CAD model
with sharp edges, the original method may generate elements with bad quality
and introduce unnecessary extraordinary nodes. Our modified method improves
the quality and no new extraordinary node is introduced. We use a 16�16 cube
to show the difference between these two methods. Fig. 7(a) shows the original
input boundary representation. Fig. 7(b) shows the constructed T-splines in Bézier
representations using the original algorithm, and Fig. 7(c) shows the results in Bézier
representations using the modified algorithm. Note that in the modified method, the
one layer inserted is used as the zero-length layer, so they are not extracted for
Bézier representations. Finally, the Bézier operators [12] are calculated, which are
used for IGA in Abaqus.
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Fig. 7 Comparison between the original method and the modified method. (a) The boundary
representation of the cube; (b) the constructed volumetric T-splines using the original method [7];
and (c) the T-splines using our modified method.

6 Abaqus IGA and Visualization

With the surface or constructed volumetric T-spline, the plugin generates an Abaqus
.inp file and a .bezier file. The Abaqus .inp file contains T-spline control point
coordinates, element connectivities, and the BVP information. The .bezier file
is our self-defined file format containing information of T-spline control point
weight and Bézier operators. Both files are read into the UELMAT through the
User EXTERNAL DataBase (UEXTERNALDB) in Abaqus. The T-spline based
UELMAT uses Bézier operator to compute the T-spline basis functions, we then
build the stiffness matrix and force vector for the analysis[12].

Abaqus does not support the visualization of user-defined elements. So post-
processing is necessary to project the results to a finite element mesh for visual-
ization. In addition to Abaqus, other software like ParaView can also be used for
visualization. For linear elastic problems, the displacement can be extracted from the
.fil file generated by Abaqus. Then, the nodal values of each element are computed
based on the analysis results.

7 Numerical Results and Conclusion

Using the three geometries in Fig. 2, linear elastic problems with a Young’s modulus
of 10,000 and a Poisson ratio of 0.3 are solved here, see Fig. 8. The first example
shows the displacement and normal strain of a quarter of plate with a hole, which
was designed directly in Rhino. The quarter plate is constrained from moving
along the horizontal direction at the right edge and vertical direction at the bottom
edge. The second example shows the displacement and normal strain of a notch
structure under bending, which was created by sweeping the geometry in Fig. 2(b).
The generated 2D notch model has one extraordinary node. After dealing with it
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Fig. 8 Analysis results. (a-c) 2D plate with a hole; (d-f) 3D notch structure; and (g-i) 3D quarter
cylinder.

with the interval duplication method [16], we sweep the geometry to obtain the
volumetric T-spline. There is no further requirements for dealing the generated
partial extraordinary nodes and we can directly obtain the Bézier extraction matrix.
The geometry is fixed at the top and bottom while a load is applied at the tip of the
notch structure. The third example shows the deformation and strain of a quarter
cylinder, which was created using the conformal parametric mapping method [7].
The cylinder is fixed at one end and the load is applied at the other end.

In conclusion, this chapter presented a novel integrated CAD-CAE T-spline IGA
software framework based on Rhino and Abaqus. The framework can solve both
surface and volumetric T-spline problems. In particular, this framework realizes
the transformation from Rhino surface T-splines to volumetric T-splines based on
efficient STSP/VTSP data structures. Three examples were given to demonstrate our
software framework. Generalizing this platform to arbitrary topology geometry is
possible [6]. We are planning to implement this algorithm, enabling a more general
set of geometries in the future.
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A Multithreaded Recursive and Nonrecursive
Parallel Sparse Direct Solver

Ercan Selcuk Bolukbasi and Murat Manguoglu

Abstract Sparse linear system of equations often arises after discretization of the
partial differential equations (PDEs) such as computational fluid dynamics, material
science, and structural engineering. There are, however, sparse linear systems
that are not governed by PDEs, some examples of such applications are circuit
simulations, power network analysis, and social network analysis. For solution of
sparse linear systems one can choose using either a direct or an iterative method.
Direct solvers are based on some factorization of the coefficient matrix such as the
LU, QR, or singular value decompositions and are known to be robust. Classical
preconditioned iterative solvers, on the other hand, are not as robust as direct
solvers and finding an effective preconditioner is often problem dependent. Due
to their sequential nature, direct solvers often have limited parallel scalability. In
this chapter, we present a new parallel recursive sparse direct solver that is based
on the sparse DS factorization. We implement our algorithm using MIT’s Cilk
programming language which is also a part of the Intel C++ compiler. We show the
scalability and robustness of our algorithm and compare it to Pardiso direct solver.

1 Introduction

The chip producers can no longer efficiently increase the clock frequency of a
processor. The Moore’s law which originally stated that the number of transistors
doubled every 2 years [18], is, however, still valid. The Moore’s law could be
translated as the number of cores double every 2 years today. As a result of
this paradigm shift, researchers have been working on parallelizing the existing
sequential algorithms in order to effectively use all the cores of the processors.
A more innovative approach is to design a completely parallel algorithm with
parallelism in mind.

Solution of sparse linear systems is required by many applications in science
and engineering. Often, the linear solution step is the main performance bottleneck.
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There are two main classes of linear system solvers, namely direct and iterative
methods. While iterative solvers are not as robust as direct solvers [19], iterative
solvers are considered to scale better on parallel computers. There are many parallel
sparse direct solver implementations some of the most well known of these are
SuperLU [5, 15], MUMPS [1], PARDISO [23–26], and WSMP [7, 8]. All of these
direct solvers, however, are based on some form of the classical LU factorization,
performed in parallel. After factorization, the system is solved using the computed
factors via forward and backward sweeps. For most sparse systems there are some
dependencies between unknowns, which limit the parallelism in factorization phase
and, due to fill in, this is even more pronounced during the triangular solution phase.

To alleviate these drawbacks of the existing direct solvers we have developed a
new general parallel sparse direct solver [2] based on the sparse DS factorization [3].
The idea of the DS factorization is first introduced in [20–22] for banded linear
systems which is called the SPIKE algorithm due the structure of the S matrix.
A recursive banded DS factorization is introduced in [21] which applies recursion
on the S matrix. Our approach, on the other hand, is to apply the recursion on the
smaller reduced system. A generalization of the banded DS factorization to sparse
linear systems and its hybrid (direct/iterative) implementation, in which the reduced
system is solved iteratively, is given in [16, 17].

Given a banded or sparse linear system of equations and number of blocks,

Ax D f (1)

The DS decomposition factors A into two matrices D and S such that,

A D DS (2)

where D is just the block diagonal of A. Hence the splitting A D D C R where R is
the remaining block off-diagonal entries of A. There is no computation to obtain D.
The S matrix, on the other hand, is obtained by S D D�1A or taking advantage of
the fact that the block diagonals of S is identity,

S D D�1.D C R/: (3)

We obtain S D I C G which involves solving independent systems in parallel to
obtain G D D�1R. After obtaining the DS factorization, if we multiply both sides
of the Equation (1) with D�1 from left,

D�1Ax D D�1f ; (4)

and obtain a new system

Sx D g (5)
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(a) An example sparse coefficient matrix. (b) D matrix corresponding to the sparse
matrix.

(c) R matrix such that A = D+R for the
small example.

(d) Smatrix for the smaller example, light
color indicates the matrix entries can
be relatively small if the matrix is di-
agonally or block diagonally dominant.

Fig. 1 The coefficient matrix and the corresponding D, R, and S matrices using 4 partitions.

where g D D�1f . The new system in Equation (5) contains a smaller subsystem
which did not exist in the original system of equations. The reduced system is
obtained by identifying the indices, c, of the columns which contain nonzeros in
R matrix. Then, the reduced system is formed simply by selecting the rows and
columns, c, from the S matrix (i.e., S.c;c/).

For a small example the sparsity structure of A, D, R, S , and S.c;c/ is given in
Figures 1(a), 1(b), 1(c), 1(d), 2 respectively.

The reduced system could be formed

S.c;c/x.c/ D g.c/: (6)
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Fig. 2 Extracted reduced
system S.c;c/.

The smaller reduced subsystem can be solved independently and the complete
solution can be retrieved also in parallel using one of the following two methods:

x D g � G.W;c/x.c/ (7)

or equivalently

x D g � D�1.R.W;c/x.c//: (8)

The difference between these approaches is that the first one requires G matrix to be
formed completely, while in the second approach we only need to compute a partial
G just enough to form S.c;c/. However, it involves additional triangular solves which
are independent and completely parallel.

Note that the size of the reduced system is highly dependent on the initial
structure of the matrix. In fact sparse matrix partitioning tools that are designed to
minimize the communication volume in parallel sparse matrix vector multiplication
and load balance can be used in sparse DS factorization. The objective of the
partitioning in DS factorization is to decrease the size of the reduced system and,
hence, to improve the parallel scalability. Furthermore, for the factorization to exist,
D must be nonsingular. To achieve this, one can apply a nonsymmetric permutation
to strengthen the diagonal entries.

The rest of the chapter is organized as follows. In Section 2, we introduce
the new recursive sparse solver and its variations. Programming and computing
environments are described and numerical results on sparse linear systems obtained
from the University of Florida Sparse Matrix Collection are given in Section 3.
Finally, we conclude and summarize the results in Section 4.

2 The Recursive Sparse DS Factorization

Before we apply the recursive algorithm on the linear system, we apply symmetric
and nonsymmetric permutations as mentioned before. In the following pseudocode
the linear systems Ax D f are assumed to be the permuted system.
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Algorithm 1 The Algorithm
1: procedure RDS(A; x; f ; t) F to solve Ax D f with t number of threads
2: DC R A
3: Identify nonzero columns of R and store their indices in c
4: (a) ŒG; g� D�1ŒR; f �
5: (b) g D�1f
6: S I C G
7: if t � 4 then
8: RDS(S.c;c/; x.c/; g.c/; t=2)
9: else

10: x.c/ S�1
.c;c/g.c/

11: end if
12: (a) x g� G.W;c/x.c/
13: (b) x g� D�1.R.W;c/x.c//
14: end procedure

The pseudocode of the recursive DS factorization is given as follows:
Two options are indicated with (a) and (b). They are mathematically equivalent

but computationally not. If we choose option (a), the G matrix needs to be formed
explicitly which is expensive since linear systems with multiple right-hand sides
need to be solved in parallel where D is the coefficient matrix (Line 4). Obtaining
the final solution in option (a) is just a matrix vector multiplication (Line 12). Option
b, on the other hand, requires a matrix vector multiplication followed by a parallel
triangular solve with a single right-hand side (Line 13) and G is no longer need to
be computed (Line 5). In our implementation, in all variations, we are (sequentially)
using Pardiso direct solver for each of the diagonal blocks in D. Even if we choose
option (b), we still need to solve the reduced system. Note that the reduced system
is formed using only certain entries from G. The system we form to solve for G has
R matrix as the right-hand side. This allows us to use the feature that is provided
in Pardiso to allow one to compute only certain entries of the solution vector if
the right-hand side is sparse. Therefore, in order to keep the computational costs
lower, if we choose option (b) we use the sparse right-hand side feature of Pardiso
and compute just some entries of G that is required to form the reduced system.
Before factorization, we reorder and partition the initial matrix once, and since
the smaller reduced system maintains a similar sparsity structure as the reordered
original system we do not need to repartition at every recursive call.

3 Numerical Results

We implement our algorithms using the Intel Cilk Plus which is an extension of C
and C++ languages [11]. In our work it is used to ensure efficient multithreading
with recursion. Intel MKL is a library of mathematical subroutines such as BLAS,
LAPACK, ScaLAPACK, and sparse linear system solvers [12]. In our implementa-
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tions, all BLAS and Sparse BLAS operations are called from the available routines
in Intel MKL version 10.3 [10]. As the direct solver we use Pardiso version 4.1.2.

For symmetric and nonsymmetric permutations we use METIS and HSL MC64,
respectively. METIS is a collection of algorithms for graph partitioning, finite
element mesh partitioning, and fill-reducing ordering for sparse matrices [13, 14].
It is used in our work to gather the nonzero values in the diagonal blocks as much
as possible by setting it to minimize the communication volume. METIS finds a
symmetric permutation of matrices and works on undirected graphs. In order to
obtain a partitioning for nonsymmetric matrices, we use a symmetric matrix that
matches to the structure of our nonsymmetric matrix (i.e., using .jAjT C jAj/).
Version 5.1.0 of METIS is used in our work. Some of the matrices that are used
in our experiments have zero values on their main diagonals. Since having even one
zero value in the main diagonal means that our matrix is indefinite and the diagonal
blocks could be singular, we apply a nonsymmetric permutation. HSL MC64 is a
collection of Fortran codes to find a column permutation vector to ensure that the
matrix will have only nonzero entries on its main diagonal [9]. The permutation
vector created by HSL MC64 is used if the matrix is indefinite.

In addition to two recursive variations of the DS factorization based sparse solver,
we have also implemented two nonrecursive variations where the reduced system is
directly solved via Pardiso. For comparison there are many available parallel sparse
direct solvers, in this chapter we compared our results with multithreaded Pardiso
direct solver. For many problem types, Pardiso has been shown to be one of most
efficient direct solvers available today [6]. Furthermore, Pardiso is provided as a part
of Intel MKL.

In summary, we implemented 4 variations of the DS factorization based sparse
solver:

• Nonrecursive DS factorization using the sparse right-hand side feature of PAR-
DISO in its computations (DS-NR-SP)

• Nonrecursive DS factorization without using the sparse right-hand side feature
of PARDISO (DS-NR-NS)

• Recursive DS factorization using the sparse right-hand side feature of PARDISO
(DS-RE-SP)

• Recursive DS factorization without using the sparse right-hand side feature of
PARDISO (DS-RE-NS)

In our naming convention RE, NR, SP, and NS stand for recursive algorithm,
nonrecursive algorithm, using the sparse right-hand side feature (i.e., not computing
the G matrix explicitly) and not using the sparse right-hand side feature (i.e.,
computing the G matrix), respectively.

For all runs using the sparse DS factorization based solver, we set the number
of partitions to be equal to the number of threads. The matrices used for testing are
retrieved from University of Florida Sparse Matrix collection [4]. The properties of
matrices are given in Table 1. We use a right-hand side vector that consists of all
ones.
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Table 1 Properties of test matrices, n, nnz, and dd stand for the number of
rows and columns and the number of nonzeros, respectively.

# Matrix Name n nnz Problem domain

1 ASIC_320k 321,821 1,931,828 Sandia, circuit simulation

2 ASIC_680ks 682,712 1,693,767 Circuit simulation

3 crashbasis 160,000 1,750,416 Optimization

4 ecology2 999,999 4,995,991 2D=3D

5 Freescale1 3,428,755 17,052,626 Circuit simulation

6 hvdc2 189,860 1,339,638 Power network

7 Kaufhold 160,000 1,750,416 Counter-example

8 Lin 256,000 1,766,400 Structural

9 majorbasis 160,000 1,750,416 Optimization

10 Raj1 263,743 1,300,261 Circuit simulation

11 rajat21 411,676 1,876,011 Circuit simulation

12 scircuit 170,998 958,936 Circuit simulation

13 stomach 213,360 3,021,648 2D=3D

14 torso3 259,156 4,429,042 2D=3D

15 transient 178,866 961,368 Circuit simulation

16 xenon2 157,464 3,866,688 Materials

For all numerical experiments, we use a single node of the Nar cluster. Nar is
the High Performance Computing Facility of Middle East Technical University
Department of Computer Engineering. A single node of Nar contains 2 x Intel
Xeon E5430 Quad-Core CPU (2.66 GHz, 12 MP L2 Cache, 1333 MHz FSB) and
16 GB Memory. Nar uses an open source Linux distribution developed by Fermi
National Accelerator Laboratory (Fermilab) and European Organization for Nuclear
Research (CERN), Scientific Linux v5.2 64bit, as its operating system. Since each
node has 8 cores, we run the algorithms using up to 8 threads.

In Table 2, the speed improvement of the recursive DS factorization algorithm
(RDS) and multithreaded Pardiso is compared to single threaded Pardiso runs.
Timings include the total time to reorder, factorize, and solve the given linear
system. We ran all the variations of the RDS algorithm. In the table, due to limited
space, all RDS runs presented are using DS-RE-SP variation of the algorithm except
for three cases. For matrix #6 we are using DS-RE-NS, for matrices #10 and #15
we are using DS-NR-SP variations of the algorithm since DS-RE-SP does not give
a comparable relative residual to multithreaded Pardiso. Also note that the recursive
versions of the solver is defined when the number of partitions is equal to or greater
than 4. Hence, we are using the nonrecursive DS-NR-SP for all cases if the number
of threads is 2. In Table 3, 2-norm of the final relative residuals are given. Based on
the results of the runs, the proposed algorithm is faster than Pardiso using 8 threads
for 10 cases out of 16 obtaining comparable relative residuals. We note that for the
cases where RDS performs worse than multithreaded Pardiso, sequential solution
time is very short and hence we could not expect much improvement to begin with.
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Table 2 Speedup of
multithreaded Pardiso and
RDS algorithms compared to
the Sequential Pardiso time
for all test matrices using 2,4,
and 8 threads.

Sequential PARDISO RDS
# Time (s) 2 4 8 2 4 8

1 13,88 1,92 2,74 3,39 1,93 2,71 3,52

2 104,30 1,99 3,91 7,18 1,99 3,84 7,04

3 3,74 1,89 3,34 3,60 1,96 3,90 7,33

4 7,49 1,89 3,39 4,57 1,92 3,82 7,57

5 7,64 1,84 3,03 3,37 1,91 3,78 6,42

6 0,45 1,29 1,55 1,96 - 5,63 11,25

7 0,04 1,33 2,00 2,00 0,31 0,40 0,27

8 81,50 1,90 3,37 3,35 0,93 2,59 6,17

9 14,50 1,90 3,42 4,41 1,99 3,61 5,27

10 0,84 1,83 2,80 4,42 1,65 2,47 4,00

11 1,05 1,88 3,00 1,67 1,78 2,69 3,75

12 1,02 1,06 1,52 1,28 0,68 0,92 0,97

13 10,73 1,95 3,55 5,09 1,96 3,78 5,80

14 59,32 1,89 3,54 3,16 1,96 3,66 3,11

15 0,43 1,79 2,69 3,91 1,48 1,95 2,39

16 15,95 1,91 3,56 4,68 1,95 3,68 5,86

Table 3 Relative residual norms for RDS and Pardiso using 2, 4, and 8
threads.

PARDISO RDS
# 2 4 8 2 4 8

1 1,41E-10 9,03E-11 5,31E-11 1,12E-15 1,47E-15 1,16E-15

2 9,45E-08 9,45E-08 9,45E-08 6,19E-10 8,40E-10 8,13E-10

3 2,20E-15 2,20E-15 2,19E-15 2,20E-15 2,01E-14 2,44E-14

4 1,31E-16 1,31E-16 1,29E-16 1,32E-16 2,04E-16 1,71E-16

5 1,79E-10 1,79E-10 1,85E-10 4,47E-15 7,11E-15 1,03E-15

6 2,80E-09 2,80E-09 2,85E-09 - 9,51E-11 1,24E-10

7 9,72E-15 9,72E-15 9,72E-15 1,26E-16 3,14E-04 6,51E-16

8 8,81E-16 8,07E-16 7,16E-16 5,63E-16 3,70E-13 6,13E-13

9 1,71E-15 1,71E-15 1,70E-15 1,09E-16 9,61E-05 2,91E-11

10 6,16E-10 4,50E-10 6,47E-10 4,67E-07 1,21E-08 1,04E-08

11 7,97E-06 8,38E-06 1,16E-05 4,93E-07 3,18E-04 9,96E-05

12 2,03E-09 1,60E-09 1,59E-09 4,63E-15 1,73E-15 1,44E-15

13 7,71E-16 7,64E-16 7,52E-16 7,65E-16 3,20E-15 3,27E-15

14 1,02E-15 1,01E-15 9,93E-16 4,80E-15 2,11E-15 8,59E-16

15 1,42E-06 1,56E-06 1,68E-06 1,96E-10 1,80E-10 1,47E-10

16 4,39E-12 4,37E-12 4,35E-12 9,41E-12 2,21E-11 5,23E-11
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Fig. 3 The average and the best speed improvements obtained using RDS and Pardiso compared
to the sequential time with Pardiso.

In Figure 3(a), the average speed improvement of RDS is compared against the
average speed improvement for Pardiso for all problems. The improvement of RDS
more pronounced as the number of threads (i.e., cores) is increased from 4 to 8.

In Figure 3(b), we plot the best speed improvement for both RDS and Pardiso.
Again, the improvement is more pronounced as the number of threads increase.

4 Conclusions

We present a recursive sparse DS factorization based direct solver. The results
show that on a multicore environment, the scalability of the proposed algorithm
is better than the classical LU factorization based solvers in most examples. The
improvement is more pronounced if the number of cores is large.
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Macroscopic First Order Models of
Multicomponent Human Crowds with
Behavioral Dynamics

N. Bellomo, S. Berrone, L. Gibelli, and A.B. Pieri

Abstract This paper presents a new approach to the behavioral dynamics of
human crowds. Macroscopic first order models are derived based on mass con-
servation at the macroscopic scale, while methods of the kinetic theory are used
to model the decisional process by which walkers select their velocity direction.
The present approach is applied to describe the dynamics of a homogeneous crowd
in venues with complex geometries. Numerical results are obtained using a finite
volume method on unstructured grids. Our results visualize the predictive ability
of the model. Solutions for heterogeneous crowd can be obtained by the same
technique where crowd heterogeneity is modeled by dividing the whole system into
subsystems identified by different features.

1 Plan of the Paper

The modeling of crowd dynamics can be developed, at the three scales, namely
microscopic (individual based), macroscopic (corresponding to the dynamics of
mean averaged quantities), and to the intermediate mesoscopic (corresponding to
the dynamics of a probability distribution function over the microscopic scale state
of individuals), see the book [11]. The latter approach is such that interactions are
modeled at the micro-scale, while mean quantities, such as local number density
and linear momentum, are obtained by velocity weighted moments of the aforesaid
probability distribution.

A critical analysis of the advantages and drawbacks of the different scales
selected for the modeling approach is discussed in various papers, [3, 7, 9] where it
is stated that the present state of the art does not yet allow well-defined hallmarks
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to support an optimal choice. A detailed investigation has been carried out to
understand the complex dynamics at the microscopic scale, see, among others, [13]
and [15]. These models can contribute to implement both meso-scale models [5]
and hybrid models [1], where the state of the system is defined in probability over
the velocity direction and deterministically over the velocity.

Macroscopic, hydrodynamic, models are of great interest in that they are far less
computationally demanding than those at the other two scales. This requirement is
particularly important when dealing with complex flows such as coupling pedestrian
flows to vehicular traffic networks [10]. However, macroscopic models suffer a
number of drawbacks. Firstly, the heterogeneous behavior of walkers gets lost in
the averaging process needed by their derivations. An additional difficulty, well
documented in the paper by Hughes [18], consists in modeling the process by which
walkers select their velocity, namely direction and speed, in a crowd. The nonlocal
feature of interactions is a further issue to be taken into account in the modeling
approach, as walkers are not classical particles and modify their velocity before
encountering a wall. Finally, a challenging problem is the study of propagation of
anomalous behaviors, which might be induced by panic conditions [16], that can
induce large deviations in the collective dynamics. Due to all the aforementioned
motivation the term social dynamics has been introduced in [2] to enhance the
heterogeneous behavior of walkers, who might modify their strategy induced by
interaction not only with other individuals, but also with the specific features of the
environment where they walk.

The present paper aims at tackling the aforesaid drawbacks in the case of
macroscopic first order models. These are simply obtained by mass conservation
equations, which involve local density and mean velocity closed by phenomenolog-
ical models relating the local mean velocity to local density distribution. Although
this approach is a simple way of looking at the dynamics, substantial developments
are needed with respect to the existing literature, to achieve a realistic modeling
of the decision process by which individuals select the velocity direction and
adjust their velocity to the local density conditions, as well as to deal with the
heterogeneous behavior of the crowd.

The contents of the paper are presented as follows: Section 2 defines the mathe-
matical structure underlying the modeling approach, which consists in a system of
mass conservation equations for a crowd subdivided into various populations, which
can be called after [6], functional subsystems. More specifically two structures
are derived which correspond to homogeneous and to heterogeneous populations.
Section 3 shows how specific models can be derived according to the aforesaid
structure. More specifically, two classes of models are proposed corresponding to
the structures defined in Section 2. Section 4 presents numerical results obtained by
solving the simple case of a homogeneous crowd in a complex domain. Section 5
looks ahead to research perspectives.
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2 Mathematical Structures

Let us consider the dynamics of a crowd in a domain˙ , which may include internal
obstacles and inlet/outlet segments on the boundary @˙ . This section searches for
appropriate mathematical structures, which can provide the conceptual basis for
the derivation of first order macroscopic models. It is assumed that the state of the
system is described by local density and mean velocity to be viewed as dependent
variables of the differential system. However, since we deal with first order models,
it is also necessary looking for a functional relation linking the mean velocity to the
density.

Dimensionless quantities are used according to the following definitions:

• � WD n=nM is the ratio between the number density n of individuals per unit area
and the number nM corresponding to the highest admissible packing density.

• � WD v=vM is the dimensionless local mean velocity obtained by referring the
dimensional velocity v to the highest limit of the mean velocity vM , which can be
reached by a walker in a low density limit in optimal environmental conditions.

Density and velocity depend on time and space coordinates, that is: � D
�.t; x/ DW �.t; x; y/ and � D �.t; x/ DW �.t; x; y/. The independent variables time
t and space x are also dimensionless with respect to a characteristic dimension
` of ˙ and `=vM , respectively. Moreover, following [2], we introduce a number
of dimensionless parameters that account for some specific features of the crowd
already discussed in previous papers based on the kinetic theory approach:

• ˛ 2 Œ0; 1� models the quality of the environment where ˛ D 1 stands for the
optimal quality of the environment, which allows to reach high velocity, while
˛ D 0 stands for the worst quality, which prevents the motion;

• ˇ 
 0 models the attraction toward the direction of the highest density gradient,
where ˇ D 0 stands for the highest search of the less congested areas, while
increasing value of ˇ denotes increasing attraction to follow what the other do.

These parameters are used in this section only at a formal level, while their
physical meaning will be made precise in the next section devoted to derivation
of specific models.

In this present paper, two models are considered. One corresponds to a crowd
with homogeneous walking ability, while the other to a crowd subdivided into
different populations featured by different walking abilities.

• Homogeneous crowd: Let us first consider the derivation of the mass conservation
equation for a homogeneous crowd, where all individuals have the same walking
ability. Classically, the said equation writes as follows:

@t�C rx .� �/ D 0 : (1)
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The closure of the equation can be obtained by modeling the dependence of
� on � by a phenomenological relation of the type � D �Œ��.˛; ˇ/, so that the
conservation equation formally writes as follows:

@t�C rx .� �Œ��.˛; ˇ// D 0 ; (2)

where square brackets denote that functional relations must be used, rather than
functions, to link the local mean velocity to the local density. In the present study,
walkers select their preferred directions based not only on the local density, but
also on density gradients. Therefore, specific models can be obtained by some
heuristic interpretations of physical reality leading to � D �Œ�� and inserting
such model into Eq.(2), which is the mathematical structure to be used for the
modeling.

• Heterogeneous crowd: Let us now consider a more general framework, where
walkers are subdivided into a number n of populations corresponding to different
levels of expressing their walking abilities. Therefore, the state of the system is
defined by a set of dimensionless number densities

�i D �i.t; x/ ; �.t; x/ D
nX

iD1
�i.t; x/ ; (3)

The subscript corresponds to a discrete variable, modeling the walking ability of
each population i D 1; : : : ; n, being i D 1 and i D n to the lowest and highest
motility, respectively.

The new structure simply needs the following modification:

@t�i C rx .�i� iŒ��.˛; ˇ// D 0; i D 1; : : : ; n ; (4)

where the modeling of the mean velocity differs for each population � i D � iŒ��.
Therefore, the structure consists in a system of n nonlinear PDEs.

Remark 2.1. Structures defined by Eqs. (2) and (4) constitute the underlying frame-
work to derive specific models. In all cases, the derivation depends on the envi-
ronment, where the crowd moves, not only its quality, but also its shape. In fact,
the model requires implementing nonlocal interaction with the walls. The formal
structures proposed in this section need two types of parameters, namely ˛, ˇ,
corresponding to two specific features of the dynamics.

3 Derivation of Models

Let us now consider the derivation of specific models consistent with the frame-
works presented in the preceding section. Therefore, two different classes of models
are derived in the following subsections according to conceivable requirements of
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applications. More in detail, we consider both homogeneous and heterogeneous
populations in absence of social interactions, that would allow individuals to shift
from one subpopulation to the other.

Let us first consider the simple case of a homogeneous crowd, where all
individuals behave in the same manner. Derivation of models requires simply to
describe analytically the dependence of � on the local density distribution. Polar
coordinates are used for the velocity variable, so that

� D � .cos � i C sin � j/ WD � !; (5)

where � is the angle between � and the x-axis of an orthogonal system in the plane,
i and j are the unit vector of the aforesaid axes, � is the velocity modulus of �
occasionally called speed.

The idea that walkers adjust their dynamics according to a decision process,
which can be modeled by theoretical tools of game theory [21], has been developed
in a sequel of papers [1, 2, 4, 5] devoted to crowd dynamics.

In detail, the modeling proposed in this paper takes advantage of the approach to
individual based interaction proposed in [2], where the decision process is supposed
to act according to the following sequence:

1. Walkers move along the direction !, forming an angle � with respect to the x-
axis, selected according to a decision process which account the following trends:
search of the exit, avoid walls, search of less congested areas, and attraction
toward the density gradients. Details are given in the following.

2. Once the direction ! has been selected, walkers adjust their velocity modulus
to the so-called local perceived density ��� along !. This quantity is defined,
according to [8], as follows:

��� D ��� Œ�� D �C @��
p
1C .@��/2

�
.1 � �/H.@��/C �H.�@��/

	
, (6)

where @� denotes the derivative along the direction � , while H.�/ is the Heaviside
function H.� 
 0/ D 1, and H.� < 0/ D 0. Therefore, positive gradients increase
the perceived density up to the limit � D 1, while negative gradients decrease it
down to the limit � D 0 in a way that

@�� ! 1 ) ��� ! 1 ; @�� D 0 ) ��� D � ; @�� ! �1 ) ��� ! 0 :

(7)

3. The relation � D �.��� I˛/ between � and ��� depends on the quality of the
environment. In the attempt of reproducing empirical data [12, 17, 19, 20, 22, 23],
such a relation is modeled by is modeled by a polynomial of ��� fulfilling the
following constraints: �.0/ D ˛I � 0.0/ D 0I �.1/ D 0I � 0.1/ D 0, where prime
denotes derivative with respect to ��� .
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The first step of the above process leads to the following expression of the
preferred direction:

!.�; xIˇ/ D .1 � �/�T C � Œˇ�S C .1 � ˇ/�V � Œ1 � exp.�d=dw/�

k.1 � �/�T C � Œˇ�S C .1 � ˇ/�V � Œ1 � exp.�d=dw/�k ; (8)

where

�S D ��V D r�
jjr�jj

, (9)

while the parameter ˇ may account for panic conditions [2].
In Equation (8), the role of the nonlocal interactions with the wall and obstacles

has been modeled by adapting the hallmarks of [2] to this present case. More
specifically, we define the boundary parameter dw and the cell distance from the
wall, d. Then, the contribution of velocity components �S and �V is assumed
to decrease exponentially while approaching the wall and becomes naught at the
boundary.

The second and third step yield the following polynomial expression:

� D �Œ�� D ˛.1 � 3 ��� 2 C 2 ���
3
/Œ��: (10)

These two quantities can be inserted into the framework Eq. (1), which writes as
follows:

@t�C rx

�
˛ �.1 � 3 ��� 2 C 2 ���

3
/!.�; xIˇ/

�
D 0 : (11)

Let us now consider the case of a heterogeneous crowd. The reference mathe-
matical structure is now given by Eq. (4), which consists in a system of n PDEs.
Hence, the modeling problem consists in modeling the mean velocity � i for each
population of walkers, which, as an example, can correspond to slow, mean, and fast
individuals. Hereinafter, the model is presented in the case of a system in absence of
boundaries, referring the technical generalization to the approach proposed above.
By assuming that walkers exploit the quality of the environment depending also on
the quality of their walking ability, the following model is obtained:

� i D � iŒ�� D ˛
i

n
.1 � 3 ��� 2 C 2 ���

3
/Œ�� (12)

which inserted into the structure yields

@t�i C rx




�i ˛
i

n
.1 � 3 ��� 2 C 2 ���

3
/Œ��!i.�; xIˇ/

�

D 0 ; i D 1; : : : ; n ; (13)
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where the preferred direction !i is now computed for all components of the fluid
viewed as a mixture.

The models proposed in this section assume that the parameter ˇ is a constant.
This assumption can be improved by letting ˇ depend on �. In fact, high density
induce individuals to look of less congested area. Then one can assume heuristically
that ˇ decreases with the density. This matter is further discussed in the last section.

4 Applications and Simulations

4.1 Computational Method

Equation (11) is integrated using finite volumes [14]. This method has the advantage
to be globally mass conserving and to be easily extended to complex geometries.
In the following we denote ˙ the computational domain. We then introduce a
tessellation of ˙ into N polygons T D SN

iD1 Pi where Pi \ Pj D ¿ for
two disconnected polygons and Pi \ Pj D fe; vg if two adjacent polygons .i; j/
share a common edge e or a common vertex v. The effective hexagonal grid is
generated using polymesher [24]. For a given polygon P 2 T , the integral form of
Equation (11) reads

“

P

@�

@t
D �

X

e2E

Z

e

�
˛ �.1 � 3 ��� 2 C 2 ���

3
/!.�; xIˇ/

�
� neds; (14)

where E denotes the set of all edges of polygon P and ne the outward-pointing unit
normal to edge e. Integrals involved in Equation (14) are approximated using the
midpoint rule.

Quantities defined by Equation (6) and Equations (8)–(10) must then be com-
puted at edge centers e1=2 while the left-hand side of (14) requires density computed
at cell center G. Finally, we need to solve

@�G.P/

@t
� � 1

A .P/

X

e2E
�.e1=2/l.e/

�
˛.e1=2/ �F.e1=2/!.�.e1=2/; e1=2Iˇ/

� � ne; (15)

where A .P/ is the area of polygon P and l.e/ stands for the length of edge e. To
compute the preferred direction !, the perceived density ��� , and the mean speed �
we need to compute density gradients at edge centers which in turn involve density
at cell centers.

The definition of the target direction �T which enter in Equation (8) is an open
choice. In the present study, we find suitable to use the normalized Darcy velocity
�r�D=kr�Dk for porous media as local target direction which has the strong
advantage to provide admissible (compatible with domain boundaries) velocity
directions. In practice, a Poisson equation for the pressure field �D is solved once
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for all at the beginning. High and low pressure are imposed at entrances and exits,
respectively, while a nonpenetrability condition is used at the solid walls. As a
result, the preferred direction is a trade-off between hydrodynamic velocity �T and
behavioral velocity �S.

4.2 Numerical Results

We test our computational model on two different geometries both presented in
Figure 1. These geometries have been chosen to be representative of common
situations. One represents a convergent–divergent corridor with length 10m and with
throat at 5m. This configuration has been selected to underline the capability of the
present numerical approach to deal with curvilinear boundaries. In this case, people
go from left to right, toward the exit. The second represents a square room with two
exits at upper-left and upper-right corners with room entrance located at the bottom
side. People initially move northward and then divide into two groups which exit
the room from both sides. For the first configuration, two different dynamics are
studied, namely ˇ D 0:5 and ˇ D 0. Results are presented in Figure 2. Numerical
results for the second configuration are reported in Figure 3 and correspond to the

Fig. 1 Geometries for the
two test cases. Bottom panel:
two-exits room. Top panel:
convergent corridor. Red
indicates exits whereas blue
indicates entrance.
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Fig. 2 Crowd density distribution for the convergent corridor case. Left panels: ˇ D 0:5. Right
panels: ˇ D 0:0. From top to bottom: t=0; t=2; t=5; t=8.

cases ˇ D 0:5, ˇ D 0:25, and ˇ D 0. Numerical experiments indicate that values of
ˇ > 0:5 produce regions with density passing the threshold � D 1, which denotes
the onset of an incident and localized injury of walkers.

Setting parameter ˇ D 1=2 we expect the preferred velocity to be exactly the
hydrodynamics velocity �T . When ˇ D 0, people in the crowd try to avoid high
density regions and include in their decisional process a direction �V opposite to
density gradients. These behaviors are correctly reproduced by the macroscopic
model. In particular, when the parameter ˇ approaches zero, the crowd progressively
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Fig. 3 Crowd density distribution for the two-exits room case. Left panels: ˇ D 0:5. Center
panels: ˇ D 0:25. Right panels: ˇ D 0:0. From bottom to top: t=0; t=1; t=2; t=3; and t=4.



Macroscopic First Order Models of Multicomponent Human Crowds with. . . 305

starts dispersing which traduces into a larger crowd patch when compared to the case
ˇ D 0:5, see both Figure 2 and Figure 3. Besides, Figure 3 shows how the initial
compact crowd patch separates faster while decreasing ˇ.

5 Looking Ahead to Further Developments

This paper initiated a new approach to modeling crowd dynamics by conservation
equations at the macroscopic scale closed by phenomenological relations modeling
a decisional process by which walkers select their velocity direction and speed. This
process includes the attempt of walkers to avoid the impact with walls. Simulations
have been carried out for a homogeneous population only. Therefore a natural
development consists in a detailed computational analysis of the heterogeneous
case. However, various ideas toward research plans can be given in addition to the
aforementioned obvious one. Let us discuss three of them selected according to the
author bias.

1. The modeling of the parameter ˇ can be refined by assuming that it depends
on the local density. A natural way to achieve this improvement consists in
weighting the parameter ˇ so as to get a more realistic representation of the
dynamics and avoid densities above the threshold � D 1.

2. Heterogeneity of the velocity distribution can be modeled by two scale models
describing the dynamics of the velocity at the microscopic scale coupled with
the mass conservation equations. The micro-scale model should be obtained by
theoretical tools of stochastic games recently reviewed in [6].

3. Models with social dynamics can be obtained as natural development of the
heterogeneous population model by inserting on the right-hand side of the
conservation equations a source term modeling transition from one population
to the other.

Moreover, some of the reasonings presented in this paper can be transferred to
second order models involving mass and momentum equations. The key point is
now the modeling of the decision process leading to the acceleration term in the
linear momentum equation.
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Energy Inequalities and Outflow Boundary
Conditions for the Navier–Stokes Equations

Norikazu Saito, Yoshiki Sugitani, and Guanyu Zhou

Abstract Artificial boundary conditions play important roles in numerical
simulation of real-world flow problems. A typical example is a class of outflow
boundary conditions for blood flow simulations in large arteries. The common
outflow boundary conditions are a prescribed constant pressure or traction, a
prescribed velocity profiles, and a free-traction (do-nothing) conditions. However,
the flow distribution and pressure field are unknown and cannot be prescribed at the
outflow boundary in many simulations. Moreover, with those boundary conditions,
we are unable to obtain energy inequalities. This disadvantage may cause numerical
instability in unstationary 3D simulations. In this paper, we examine some outflow
boundary conditions for the Navier–Stokes equations from the viewpoint of energy
inequalities. Further, we propose an energy-preserving unilateral condition and
review mathematical results including the well-posedness, variational inequality
formulations, and finite element approximations.

1 Introduction

In numerical simulation of real-world flow problems, we often encounter some
issues concerning artificial boundary conditions. A typical and important example
is the blood flow problem in large arteries, where the blood is assumed to be a
viscous incompressible fluid (cf. [6, 14]). The blood vessel is modeled by a branched
pipe as illustrated, for example, in Fig. 1. We are able to give a velocity profile at
the inflow boundary S and the flow is supposed to be a perfect non-slip on the wall
C. Then, the blood flow simulation is highly dependent on the choice of artificial
boundary conditions posed on the outflow boundary 	 .

To be more specific, let ˝ � R
d, d D 2; 3, be a bounded domain and let

the boundary @˝ be composed of three parts S, C, and 	 . Those S, C, and 	
are assumed to be smooth surfaces, although the whole boundary @˝ itself is not
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Fig. 1 Inflow boundary S,
physical boundary (vessel
wall) C and outflow boundary
	 D 	1 [ 	2.

smooth; see Fig. 1. Then, for T > 0, we consider the Navier–Stokes equations

ut C .u � r/u D r � �.u; p/C f ; r � u D 0 in˝ � .0;T/; (1a)

u D b onS � .0;T/; (1b)

u D 0 onC � .0;T/; (1c)

ujtD0 D u0 on˝ (1d)

for the velocity u D .u1; : : : ; ud/ and the pressure p with the density � D 1 and
the kinematic viscosity � of the viscous incompressible fluid under consideration.
Therein, �.u; p/ D .�i;j.u; p// D �pI C 2�D.u/ denotes the stress tensor, where
D.u/ D .Di;j.u// D �

1
2

�ru C ruT
��

the deformation-rate tensor and I the identity
matrix. The prescribed functions f D f .x; t/ and u0 D u0.x/ denote the external
force and initial velocity, respectively. Moreover, b D b.x; t/ denotes the prescribed
inflow velocity with bj@S D 0. Below, we set �.u; p/ D �.u; p/n, where n denotes
the outward normal vector to @˝, which is called the traction vector on @˝. For a
vector-valued function v defined on @˝, its normal and tangential components are
denoted, respectively, as vn D v �n and vT D v�vnn. Thus, �n.u; p/ D �.u; p/ �n and
�T.u/ D �.u; p/� �n.u; p/n are normal and tangential traction vectors, respectively.
We write as � D �.u; p/, �n D �.u; p/, and �T D �T.u/ if there is no fear of
confusion.

As a common outflow boundary condition, the free-traction condition or the so-
called do-nothing condition

� D 0 on 	 (2)

is still frequently used so far (cf. [7, 8]).
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However, it is difficult to obtain reasonable flow rates at outflow boundaries 	j

with (2). Formaggia et al. [5] proposed the so-called defective boundary condition
in order to ensure prescribed flow rate,

Z

	j

un d	j D Qj .j D 1; 2/

by Lagrange multiplier technique. Vignon-Clementel et al. [15] introduced the
resistance boundary condition

�n C p0 C Rj

Z

	j

un d	j D 0; �T D 0 on 	j .j D 1; 2/ (3)

by setting the resistance Rj at 	j. Herein, p0 denotes the pressure at the reference
position. For example, Rj is chosen as Rj D .4�L/=.a2j	jj/, where L is the distance
from the reference position to 	j, a the radius of tube, and j	jj the area of 	j to obtain
the flow which is consistent with the Hagen–Poiseuille flow. On the other hand,
Bruneau and Fabrie [3] proposed a certain nonlinear boundary condition from the
viewpoint of the energy inequality. To describe it, we introduce a function satisfying

r � g D 0 in˝; g D bonS; g D 0onC: (4)

For example, we could take the solution .g; �/ of the Stokes equations r ��.g; �/ D
0 in ˝ with (4). Then, we find .u; p/ as the perturbation from .g; �/, that is,

u D v C g; p D q C �: (5)

Then, if there exists a positive constant MT , which depends only on the prescribed
data, satisfying

sup
0	t	T

Z

˝

jvj2 dx C 2�

Z T

0

Z

˝

Di;j.v/Di;j.v/ dxds � MT ; (6)

we say that the energy inequality is satisfied. This inequality is of use. It plays
a crucial role in the construction of a solution of the Navier–Stokes equations.
Furthermore, it is connected with the stability of numerical schemes from the view-
point of numerical computation. That is, it is preferred that the energy inequality
does not spoiled after discretizations. However, it is not certain the energy inequality
to hold under (2). Bruneau and Fabrie [3] proposed

�.u; p/ D �1
2
Œun��v C �.g; �/ on 	 (7)

to realize (6), where Œa�� D maxf0;�ag. See also [2, 4]. Bazilevs et al. [1] introduce
the regularized traction vector Q�.u; p/ D �.u; p/C Œun��u and applied the resistance
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condition (3) to obtain

Q�.u; p/ � n C R
Z

	

un d	 C p0 D 0; Q�.u; p/ � Œ Q�.u; p/ � n�n D 0 on 	 :

This condition is equivalently written as

� D �Œun��u �



R
Z

	

un d	 C p0

�

n: (8)

If b D 0 (then we can take g D 0 and � D 0), we derive the energy inequality
under this condition. They offered several numerical results for medical problems
and did not give any mathematical considerations. As a matter of fact, they described
that (cf. [1, Rem. 4.1]) “We found that the addition of this term is important for
the overall stability of the computations. In its absence we sometimes experience
rapid divergence, the outlet of the descending branch of the aorta being the
most vulnerable location for initiation of outflow instabilities. . . . ”. On the other
hand, Labeur and Wells [11] considered essentially the same condition as (8) with
R D p0 D 0, where they studied energy stable hybrid discontinuous finite element
method.

However, if applying (7), we need to get .g; �/ before computation. We offered
another boundary condition that ensures (6) to hold in [16]. That is, we propose a
unilateral boundary condition of Signorini’s type which is given as

un 
 0; �n 
 0; un�n D 0; �T D 0 on 	: (9)

This is a generalization of (2) in the sense that

un > 0 on ! � 	 ) �n D 0 on !;

un D 0 on ! � 	 ) �n 
 0 on !:

In the actual computation, (9) should be combined with (3). Condition (9) is
described by inequalities so that it is not suitable for computation directly. Instead,
its penalty approximation

�n D 1

"
Œun��; �T D 0 on	 (10)

is of use, where " > 0 denotes the penalty parameter. As a matter of fact, Bazilevs’
condition (8) is corresponding to a special choice of " (cf. [16, §1]).

In the present paper, we review mathematical results for the Navier–Stokes
and Stokes equations under (9) that are recently established in [13] and [16]. In
Section 2, we briefly state the well-posedness of the problems. Our analysis is
an application of the theory of variational inequalities. However, because of the
limitation of the page number, we mention only the summary of results and skip



Outflow Boundary Conditions 311

the detail of analysis. Instead, we present variational formulations for a model
Stokes problem in Section 3. Finite element approximation to the Stokes problem
is introduced, and the stability and convergence results are stated in Section 4. All
results will be stated without the proofs; See Saito et al. [13] and Zhou and Saito
[16] for the complete proofs.

2 Well-Posedness

As is clearly stated in Introduction of Kashiwabara [9], weak solutions of Leray–
Hopf’s class are not suitable for the purpose of application to numerical analysis. We
are strongly motivated by [9] and interested in constructing of strong solutions of
Ladyzhenskaya’s class (cf. Ladyzhenskaya [12]). That is, we want to find functions

u 2 L1.0;TI H1.˝/d/; ut 2 L2.0;TI H1.˝/d/ \ L1.0;TI L2.˝/d/;

p 2 L1.0;TI L2.˝//

that satisfy the Navier–Stokes equation (1) with the unilateral boundary condi-
tion (9) in the sense of distributions.

To this end, it suffices to find .v; q/ satisfying the following perturbed Navier–
Stokes problem (recall (5)):

(NS) For t 2 .0;T/, find .v; q/ such that

vt C ..v C g/ � r/v C .v � r/g � r � �.v; q/ D F; r � v D 0 in˝;

v D 0 onS [ C;

vn C gn 
 0; �n.v C g; q C �/ 
 0 on	;

.vn C gn/�n.v C g; q C �/ D 0; �T.v/ D ��T.g/ on	;

vjtD0 D v0 on˝;

where F D f � gt � .g � r/g and v0 D u0 � g.0/.

Actually, under some appropriate assumptions on F, U0, and .g; �/, we suc-
ceeded in proving that (cf. [16, Theorem 2]) there exists a unique solution of (NS)
satisfying

v 2 L1.0;TI H1.˝/d/; vt 2 L2.0;TI H1.˝/d/ \ L1.0;TI L2.˝/d/;

q 2 L1.0;TI L2.˝//:

For the penalty problem (1) with (10), we consider the following perturbed
problem:
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(NS") Let " > 0. For all t 2 .0;T/, find .v"; q"/ such that

v";t C .v" C g � r/v" C .v" � r/g � r � �.v"; q"/ D F; r � v" D 0 in˝;

v" D 0 onS [ C;

�n.v" C g; q" C �/ D 1

"
Œv"n C gn��; �T.v"/ D ��T.g/ on	;

v"jtD0 D v0 on˝:

Then, there exists a unique solution of (NS") satisfying

v" 2 L1.0;TI H1.˝/d/; v";t 2 L2.0;TI H1.˝/d/ \ L1.0;TI L2.˝/d/;

q" 2 L1.0;TI L2.˝//

for a sufficiently small "; See [16, Theorem 3].
We proved those results by converting (NS) and (NS") into suitable variational

formulations after having re-defined the traction vectors as functionals. In the next
section, we will illustrate those variational formulation by using a model Stokes
problem.

3 Model Stokes Problem

In order to exemplify the variational formulation of (NS), we consider a (non-
stationary) model Stokes problem which is given as

� ��u C rp D f ; r � u D 0 in ˝; (11a)

u D 0 on S [ C; (11b)

un C gn 
 0; on 	; (11c)

�n C ˛n 
 0; .un C gn/.�n C ˛n/ D 0; �T C ˛T D 0 on 	; (11d)

where f and ˛ are prescribed vector-valued functions.
For the sake of simplicity, we restrict our attention to a polyhedral domain ˝ �

R
d, d D 2; 3, with a polygon (line segment) 	 . We use the standard Lebesgue

and Sobolev spaces, for example, L2.˝/, H1.˝/, L2.	 /, and H1=2.	 /. The basic
function spaces of our consideration are

V D fv 2 H1.˝/d j v D 0 on S [ Cg and Q D L2.˝/:

They are Hilbert spaces equipped with the norms kvk1 D kvkH1.˝/d and kqk D
kqkL2.˝/, respectively. The space Q0 denotes the set of all L2.˝/ functions with the
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zero mean value. A convex subset K D fv 2 V j vn C gn 
 0 on 	 g of V plays
an important role. We also use the so-called Lions–Magenes space H1=2

00 .	 /. Below

we set M D H1=2
00 .	 / and k�k1=2;	 D k�k

H
1=2
00 .	 /

.

Let

.�; �/ D the standard inner product of L2.˝/d;

ŒŒ�; ��� D ŒŒ�; ���.Md/0;Md D the duality pairing between .Md/0 and Md:

We use the following forms:

a.u; v/ D 2�

Z

˝

Di;j.u/Di;j.v/ dx .u; v 2 H1.˝/d/I

b.p; u/ D �
Z

˝

p.r � u/ dx .p 2 Q; u 2 H1.˝/d/:

Below we assume

f 2 L2.˝/d; ˛ 2 .Md/0:

Then, the variational formulation of (11) is described as (cf. [13, Theorem 10]):

(VI) Find .u; p/ 2 K � Q such that

a.u; v � u/C b.p; v � u/ 
 .f ; v � u/ � ŒŒ˛; v � u�� .8v 2 K/;

b.q; u/ D 0 .8q 2 Q/:

As a matter of fact, (VI) is not a new problem. In a classical monograph, Kikuchi
and Oden [10], Chapter 7 is devoted to similar problems. However, their problem
contains the traction condition � D h. More precisely, they suppose that C is divided
into two parts C1;C2 and consider

u D 0 on S [ C1; �.u; p/ D h on C2

instead of (11b). Then, supposing

	 \ .S [ C1/ D ;; (12)

we can prove that there exists a domain constant � > 0 satisfying

�
�kqk C k�kH�1=2.	 /

	 � sup
v2H1.˝/d ;vjS[C1D0

R
˝

q.r � v/ dx C R
	
�vn d	

kvk1 (13)
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for any .q; �/ 2 L2.˝/ � H�1=2.	 / (cf. [10, Theorem 7.2]). This inequality is
usually referred to as the coupled Babuška–Brezzi condition. The well-posedness
and error estimates of the corresponding penalty problem are direct consequences
of this result from the general theory. In contrast, we are interested in establishing a
formulation without the traction boundary condition. Unfortunately, if C2 D ;, (13)
is not available and it makes analysis somewhat difficult. Moreover, we do not prefer
assuming (12). Consequently, we have to develop a totally new method of analysis
in this paper. In particular, we offer a new device to treat the pressure part; see [13].

4 Finite Element Approximation

As a regularization of Œs��.s 2 R/, we introduce a function �ı W R ! R that satisfies

�ı is a non-increasing C1 functionI

j�ı.s/ � Œs��j � Cı .s 2 R/I
ˇ
ˇ
ˇ
ˇ

d

ds
�ı.s/

ˇ
ˇ
ˇ
ˇ � C .s 2 R/I

�ı.s/ D 0 .s 
 0/; 0 � �ı.s/ � �s .s < 0/:

where ı 2 .0; 1� is regularized parameter and C’s are independent of ı. For example,
we can take

�ı.s/ D
(
0 .s 
 0/

.
p

s2 C ı2 � ı/ .s < 0/:

For penalty parameter " 2 .0; 1�, we consider the following penalty problem:

(PE©;•) Find .u; p/ 2 V � Q such that

a.u; v/C b.p; v/ � 1

"

Z

	

�ı.un C gn/vn d	 D .f ; v/ � ŒŒ˛; v�� .8v 2 V/;

b.q; u/ D 0 .8q 2 Q/:

We use the so-called P1 bubble/P1 (P1b/P1) elements for discretization. Let
fThgh be a regular family of triangulations of ˝. As the granularity parameter, we
have employed h D maxfhT j T 2 Thg, where hT denotes the diameter of T . We
introduce the following function spaces:

Vh D fvh 2 C0.˝/ j vh D 0onS [ C; vhjT 2 ŒP .d/
1 ˚ spanf'Tg�d .8T 2 Th/g;

Qh D fqh 2 C0.˝/ j qhjT 2 P
.d/
1 .8T 2 Th/g; Mh D f�h D vhnj	 j vh 2 Vhg;
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where P
.d/
k denotes the set of all polynomials in x1; : : : ; xd of degree � k, and

'T D QdC1
iD1 �T;i with �T;1; : : : ; �T;dC1 the barycentric co-ordinates of T .

Let us denote by Sh the d � 1 dimensional triangulation of 	 inherited from Th.
We obviously have

Mh D f�h 2 C.	 / j �hjS 2 P
.d�1/
1 .8S 2 Sh/; �hj@	 D 0g:

Moreover, we introduce a projection operator ƒ W Q ! Q0 by setting

ƒq D q � m.q/ with m.q/ D 1

j˝j
Z

˝

q dx .q 2 Q/:

Then, the finite element approximation for (PE";ı;h) reads as follows:

(PE©;•;h) Find .uh; ph/ 2 Vh � Qh such that

a.uh; vh/C b.ph; vh/ � 1

"

Z

	

�ı.un C gn/vhn d	 D .f ; vh/ � ŒŒ˛; vh�� .8vh 2 Vh/;

b.qh; uh/ D 0 .8qh 2 Qh/:

Then, we proved the following results (cf. [13, Theorems 14, 15, and 23]):

Theorem 1. There exists a unique solution .uh; ph/ 2 Vh � Qh of (PE";ı;h) , and we
have

kuhk1 C kOphk C
�
�
�
�
1

"
�ı.uhn C gn/C kh

�
�
�
�

M0

h

� C�;

where Oph D %ph and kh D m.ph/.

Hereinafter, C� denotes a positive constant depending only on˝, kf k, kgk1, and
k˛k.Md/0 . If making some additional assumptions, we will obtain some fine stability
estimates.

Theorem 2. Assume

(A1) the family fShgh is of quasi-uniform;
(A2) there exists 	1 � 	 with j	1j > 0 which is independent of h, ", ı, and ˝

such that uhn C gn > 0 on 	1.

Then, the solution .uh; ph/ 2 Vh � Qh of (PE";ı;h) admits the following estimates:

kuhk1 C kphk C
�
�
�
�
1

"
�ı.uhn C gn/

�
�
�
�

M0

h

� C�I
�
�
�
�
1

"
�ı.uhn C gn/

�
�
�
�

M0

C 1p
"

kŒuhn C gn��kL2.	 / � C�



1C ı

"

�

:
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Remark 1. Condition (A2) is not restrictive; if jbj is sufficiently large and h; "; ı are
suitably small, it is natural to suppose this condition.

Remark 2. If ı � c0" with some c0 > 0, we have kŒuhn C gn��k	 ! 0 as " ! 0.

Theorem 3. Assume that (A1) and (A2) are satisfied. Let .u; p/ and .uh; ph/ be
solutions of (PDE) and (PE";ı;h), respectively, and suppose that .u; p/ 2 H2.˝/d �
H1.˝/ and �n.u; p/ C ˛n 2 M. Moreover, assume that h � c1" with a constant
c1 > 0. Then, we have

ku � uhk1 C kOp � Ophk � C��.
p
"C

p
ı C p

h/;

where Op D %p, Oph D %ph, C�� denotes a positive constant depending only on ˝,
jujH2 , jpjH1 , k�n.u; p/C ˛nkM, kf k, kgk1 and k˛k.Md/0 . If, furthermore,

(A3) there exists 	0 � 	 with j	0 \ 	1j > 0 such that un C gn > 0 on 	0,

then we have

ku � uhk1 C kp � phk � C��.
p
"C

p
ı C p

h/:
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Numerical Studies on the Stability of Mixed
Finite Elements Over Anisotropic Meshes
Arising from Immersed Boundary Stokes
Problems

Ferdinando Auricchio, Franco Brezzi, Adrien Lefieux, and Alessandro Reali

Abstract Motivated by a recently proposed local refinement strategy for immersed
interface problems, in this work we aim at dealing with the behavior of mixed finite
elements for the Stokes problem in (strongly) anisotropic mesh situations, leading
to severely distorted elements. In fact, the majority of the theoretical results present
in the finite element literature has been carried out under the assumption of well-
shaped elements. In the case such a condition is not satisfied, the inf-sup constant
may degenerate, thus leading to the instability of the system.

To this aim, we herein use a generalized eigenvalue test problem that allows
to conveniently investigate the behavior of different mixed finite elements over
anisotropic mesh patterns, arising, e.g., in immersed interface Stokes problems. We
then test and study the numerical stability of two 2D finite element pairs, namely the
Hood-Taylor (P2=P1) and the Hood-Taylor (PC2 =P1) with a velocity field enhanced
by a cubic bubble. On the contrary to the results presented in [3], we herein provide
additional results on the potential presence of spurious modes and their locations.
The present results corroborate those obtained in more complex cases described in
[3] and [4].
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1 Introduction

In a previous work (see [3]), the present authors discussed the inf-sup stability of
mixed finite elements for the incompressible Stokes problem (namely, P2=P1 and
PC2 =P1, i.e., the Hood-Taylor and the Hood-Taylor with an additional bubble in the
velocity field) on anisotropic elements (i.e., elements very small angles).

More precisely, in [3], we presented a local remeshing strategy in the context
of an immersed boundary approach for 2D problems with triangles. The simple
idea is to keep the element geometry fixed and to proceed to a local (element-wise)
remeshing, ergo highly anisotropic triangles are introduced in the remeshed ones.
The use of anisotropic triangles is known to be allowed within the finite element
method, as long as the largest angle of a triangle is bounded away from � (see, e.g.,
[5] and [1] for an extended discussion). However, their use within the mixed finite
element largely remains an open problem, in particular from a theoretical point of
view (see Appendix C in [10]).

In [3] our results are in accordance with those in [2]. More precisely, we showed
that the P2=P1 element fails to be inf-sup stable in the context of our locally
anisotropic remeshing, but that PC2 =P1 passes all our numerical tests. Additionally
to [2], we showed that the instability of the Hood-Taylor element occurs in some
very specific cases and, as a consequence, the Hood-Taylor element maybe used
within the locally anisotropic remeshing approach for a very large set of problems
without showing any sign of inf-sup stability issues. The present work deals with
these findings in more details.

In the present work, we provide additional results to those published in [3],
emphasizing on the set of problems which can be used with the Hood-Taylor
element. Starting from the smallest generalized eigenvalue (SGE) test presented in
[3], we discuss in detail the spurious modes associated with P2=P1, not only by
looking at the numerical inf-sup constant, but also by looking at the first 8 pressure
modes (i.e., those associated with the smallest eigenvalues of the SGE test). We
also analyze their associated eigenvectors, to discuss the locations of the spurious
modes. On the contrary to the work performed in [3], we present the SGE tests on
three simple meshes, instead of only one. The results presented here are coherent
with those obtained with more complex problems in [3, 4] and [10].

In Section 2, we shortly present the anisotropic local refinement strategy and
the context in which the method has been developed. In Section 3, we present the
incompressible Stokes problem both in weak and discrete forms, as well as the inf-
sup condition and the associated error estimates. We further stress the importance
of having inf-sup stable elements, and how anisotropic elements may adverse
the inf-sup stability. In Section 11 we present the numerical tests and results. In
Appendix A.1, we provide the complete set of results.
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2 An Anisotropic Local Remeshing Strategy

In this section we provide a very short introduction to the motivations for the
anisotropic local remeshing strategy presented in [3]. Firstly, in Section 2.1, we
discuss the geometry of the problem, which includes an immersed boundary and
how a mesh can be associated with such a problem. Secondly, in Section 2.2, we
discuss the construction of a discrete immersed boundary and a mesh the locally
anisotropic remeshing strategy.

2.1 Geometry

In this section we recall some geometric aspects of the problem, i.e., the problem
of the construction of a mesh conveniently discretizing the considered physical
domain. Two approaches are available: “fitted” or “unfitted” (cf. Fig. 1).

In the fitted strategy the discretized domain fits the boundary of the problem,
while in the unfitted one the physical domain is a subset of the discretization. More
precisely, in the unfitted case, we consider a problem defined on ˝ � R

2 such that
a part of the boundary of @˝, denoted by 	 (named immersed boundary), is not
fitted a priori by the triangulation of Ő , with ˝ � Ő . The part of the boundary @˝
that is fitted by the triangulation of Ő is denoted by ˙ .

The “unfitted” strategy presented in Figure 1(c) avoids the difficulties and the
costs connected with the generation during the pre-processing phase of fitted meshes
in complicated situations.

Γ

Ω

Σ

Ωi

(a) Physical domain (b) Fitted grid (c) Unfitted grid

Fig. 1 Fitted and unfitted discretizations of the physical region˝:˝i is the interior (non physical)
domain, 	 is the immersed boundary, ˙ D @ Ő is the external boundary, and Ő WD ˝ [˝i [ 	
is the discretized domain.
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2.2 Discrete Immersed Boundary and Local Remeshing

We assume that a regular triangulation OT of Ő (named background mesh) and
the interface 	 satisfy the conditions presented in [9], that is, the boundary 	
crosses once two triangle edges. We note that there always exists a sufficiently fine
triangulation of Ő such that the conditions are fulfilled for any smooth immersed
boundary. The reconstructed boundary of 	 is denoted 	h and it is the linear
interpolation of all intersections with the background mesh edges. It follows that the
reconstructed interface is a segment in each intersected element, and it defines a new
domain˝h such that @˝h D ˙[	h. Domain˝h is referred to as the computational
domain. The linear reconstruction of 	 is not a limitation of the method we propose
and, in the case with a curved immersed boundary, isoparametric elements may be
used, as well as more complex algorithms, to describe the boundary.

For triangles cut by the immersed boundary we consider the two cases, depending
if the subelement belonging to ˝h is: a) a triangle, or b) a quadrilateral. Since we
wish to work only with triangles we consider subdividing the quadrilateral into two
triangles. This subdivision of the quadrilateral is not unique, but we point out that the
Delaunay triangulation leads to the best subdivision, i.e., it minimizes the distortion
of the triangles by ensuring the best choice of element ratios (with the element ratio
defined as � D h=r, with h the diameter of the element and r the radius of its
inscribed circle, see, e.g., [6]). The union of uncut elements belonging of OT to ˝h

and the remeshed ones defines a partition denoted hereafter as Tr. Notice that Tr is
a partition of ˝h. More details are given in [3].

3 Model Problem: The Incompressible Stokes Problem

Let ˙ D ˙D [ ˙N where ˙D denotes the part of the external boundary on which
we impose a Dirichlet boundary condition and ˙N (with meas.˙N/ > 0) the part
on which we impose a Neumann boundary condition, whose value is assumed to be
zero without loss of generality such that the term after integration by parts over ˙N

vanishes. On the other hand, on 	 , we consider a homogeneous Dirichlet boundary
condition but nonhomogeneous Dirichlet boundary conditions can be applied as
well. Neumann boundary conditions on 	 are not considered here because they
can be enforced “naturally” in the variational formulation, and as a consequence,
they are easier to tackle and a different framework might be more suitable than the
present one.
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3.1 The Incompressible Stokes Problem

3.1.1 Continuous Weak Formulation

The model problem we consider in this chapter is given by a standard weak form of
the incompressible Stokes equations.

The weak formulation of the incompressible Stokes problem reads:

Problem 1. Find .u; p/ 2 V.˝/ � Q.˝/ such that
Z

˝

ru W rv �
Z

˝

p div .v/ D
Z

˝

f � v 8v 2 V0.˝/; (1a)

Z

˝

q div .u/ D 0 8q 2 Q.˝/: (1b)

As functional spaces, with a standard notation for the Sobolev spaces, we employ

V.˝/ WD fv 2 ŒH1.˝/�2I vj˙D D uD and vj	 D 0g; (2a)

V0.˝/ WD fv 2 ŒH1.˝/�2I vj˙D D 0 and vj	 D 0g; (2b)

Q.˝/ WD L2.˝/: (2c)

For the incompressible Stokes problem, u is the velocity of the flow and p is
the hydrostatic pressure, more precisely a Lagrange multiplier associated with the
incompressibility constraint (see (1b)).

3.1.2 Discrete Formulation

We provide an example of the discretized Stokes problem using the locally
anisotropic strategy (Tr contains anisotropic triangles) with P2=P1.

The discrete counter part of Problem 1 reads

Problem 2. Find .uh; ph/ 2 Vh � Qh such that
Z

˝h

ruh W rvh �
Z

˝h

ph div .vh/ D
Z

˝h

f � vh 8vh 2 Vh
0; (3a)

Z

˝h

qh div .uh/ D 0 8qh 2 Qh: (3b)

The finite element spaces (Hood-Taylor) are given by

Vh WD fv 2 C0.˝h/I vjT 2 ŒP2�2; vj˙h
D

D uD & vj	h D 0;8T 2 Trg; (4a)

Vh
0 WD fv 2 C0.˝h/I vjT 2 ŒP2�2; vj˙h

D
D 0 & vj	h D 0;8T 2 Trg; (4b)

Qh WD fq 2 C0.˝h/I qjT 2 ŒP1�;8T 2 Trg: (4c)



324 F. Auricchio et al.

In this work, we also consider the so-called PC2 =P1 element defined by

Vh WD fv 2 C0.˝h/I vjT 2 ŒP2 ˚ B3�
2; vj˙h

D
D uD; vj	h D 0;8T 2 Trg (5a)

Vh
0 WD fv 2 C0.˝h/I vjT 2 ŒP2 ˚ B3�

2; vj˙h
D

D 0; vj	h D 0;8T 2 Trg (5b)

where B3 denotes the space of cubic bubble functions (see [7] for more details) and
the discrete pressure space is given in Equation (4c).

The interest for PC2 =P1 over P2=P1 will be cleared in subsequent sections.

3.2 The Inf-Sup Condition and Error Estimates

Given the approximations uh D Pn
iD1 Ni Oui and ph D Pm

iD1 Mi Opi, where Ni and Mi

are the finite element bases for Vh
0 and Qh (with n and m the number of degrees of

freedom, respectively) the discrete incompressible Stokes problem in matrix form
reads

�
A BT

B 0

 � Ou
Op
�

D
� Of

Og
�

; (6)

where A, B are the stiffness and divergence matrices, respectively. Explicit defini-
tions are provided in [3].

The Euclidean norm is given by jjOvjj20 D OvT Ov with Ov 2 R
n. We also consider the

norm defined by the stiffness matrix A, that is jjOvjj2A D OvTAT Ov and its associated
dual norm given by jjOvjj2A0

D OvTA�T Ov. Let Oq 2 R
m, then the norm used for the

pressure field is given by jj Oqjj2M D OqTMT Oq and its associated dual norm by jj Oqjj2M0

D
OqTM�T Oq, where M is the pressure mass matrix.

It is well known that a key component for (6) to have a unique solution is the
satisfaction of the following condition (see [7]):

Inf-sup: 9ˇh > 0 (independent of h) such that

max
Ov2Rnnf0g

OvTBT Oq
jjOvjjA 
 ˇhjj OqjjM 8Oq 2 R

m: (7)

Being OuI and OpI the vectors of analytical solutions, an error estimate is given by
(see [7]):

jj OuI � OujjA � C
�
jjOfjjA0 C ˇ�1h jjOgjjM0

�
; (8)

jj OpI � OpjjM � C
�
ˇ�1h jjOfjjA0 C ˇ�2h jjOgjjM0

�
; (9)

where C denotes a general constant independent of h and ˇh.
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We clearly can see from (8) and (9) that if ˇh ! 0 as the element ratio � ! 1
(i.e., when the triangle gets highly distorted), then the error for the pressure may
not be bounded and it depends on 1=ˇ2h , while the velocity field may also not be
bounded but it depends only on 1=ˇh. Notice that Og is empty only if uD D 0, which
does not occur in practice. In that specific case, the velocity error is bounded and
the pressure error depends only on 1=ˇh.

4 Numerical Tests

In the following numerical tests, we wish to evaluate the numerical inf-sup constant
ˇh (see Equation (10)). The constant ˇh can easily be evaluated by solving the
following generalized eigenvalue problem (see, e.g., [11] and [8]):

BA�1BTq D �Mq: (10)

The numerical inf-sup constant is given by the square root of the smallest � if
meas.˙N/ > 0 or by the square root of second smallest � if meas.˙N/ D 0. Indeed,
in the latter case, the smallest � is always zero since Ker.BT/ � f1g.

4.1 Smallest Generalized Eigenvalue Test Problems

We propose a constant flow problem with two sets of boundary conditions (see
Fig. 2). The analytical solution for Problem D and Problem N is given by Equa-
tion (11). The test consists in moving an “immersed boundary” (depicted in red in
Fig. 2) as a ! 0 or b ! 0, applying the locally anisotropic remeshing (examples
are shown in Fig. 3), and by solving the eigenproblem (10). The tests are performed
on three meshes, while in [3] only one mesh is considered. The mesh patterns used
in these tests are depicted in Fig. 3.

8
ˆ̂
<

ˆ̂
:

ux.x; y/ D 1;

uy.x; y/ D 0;

p.x; y/ D 0:

(11)
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a b

Dirichlet

Dirichlet

telhciri
D

n na
mue

N
(a) Problem D: with Dirichlet

boundary conditions on y =
±1.

a b

Neumann

Neumann

telhciri
D

nna
mue

N

(b) Problem N: with Neumann
boundary conditions on y =
±1.

Fig. 2 Boundary value problems under consideration for the eigenproblem (10). The Neumann
condition here is intended as the free-stress condition.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Fig. 3 The three background meshes (i.e., the partitions OT ) used for the SGE tests. The immersed
boundary is depicted in dashed red. The computational domain ˝h is depicted in blue. The
remeshed partition Tr is also represented. The quadrilateral subdivision into triangles is represented
in dashed black.

4.2 Eigenvalue and Eigenvector Analysis

We perform the tests with two mixed finite elements: P2=P1 (see (4)) and PC2 =P1
(see (5) and (4c) for the pressure space). It is known that both finite element schemes
are inf-sup stable with isotropic meshes (see, e.g., [7] for a detailed presentation and
stability proofs). We first provide a summary of the result regarding stability of the
finite elements in Table 1. We then go into the details by analyzing the first smallest
square rooted � and its associated eigenvectors in case � depends on a or b (Fig. 4).



Numerical Inf-Sup Studies from an Anisotropic Remeshing 327

Table 1 Summary of the results: if an element passes the test it is
denoted by P (i.e., � does not depend on a nor b). On the contrary,
if an element fails the test, the table shows the number of spurious
modes (i.e., how many � depends on a or b).

Mesh: 1 2 3

a! 0
P2=P1 P P P

PC

2 =P1 P P P

b! 0
P2=P1 1 2 P

PC

2 =P1 P P P

(a) Problem D

Mesh 1 2 3

a! 0
P2=P1 P P P

PC

2 =P1 P P P

b! 0
P2=P1 P P P

PC

2 =P1 P P P

(b) Problem N

Fig. 4 Problem D for P2=P1 with b! 0 and Mesh 1. There is 1 O.
p

b/ spurious mode.

From Table 1, it may be observed that the instability of P2=P1 comes from a
single spurious pressure mode on corners with Dirichlet boundary conditions (see
Figs. 4, 5, 6, and 7). For Problem N and for Problem D with the Mesh 3, the pair is
stable for all tests, even when the smallest element area is O.b2/. These results are in
accordance with the observations made in [3]. Indeed, they provide an explanation
for the stability of the Hood-Taylor element in the test “Flow around a disk” in [3]
and with the fluid–structure interaction of a rigid leaflet in [4]. The PC2 =P1 element
passes all tests. Detailed values are provided in Table A.1.
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Fig. 5 Problem D for P2=P1
with b! 0 and Mesh 1. The
spurious mode is localized
only on the node that is on the
smallest element area and not
connected to other elements.
This result is in accordance
with the results of more
general test performed in [3].
This test provides a clear
location for the spurious
mode.

4

7

61

2

3

5
8

Fig. 6 Problem D for P2=P1 with b! 0 and Mesh 2. There are 2 O.
p

b/ spurious modes.

A.1 Spurious Mode Eigenvectors
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1
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3

4
5

6

7

8

(a) Mode 1: O(
√
b).

1

2

3

4

5

6

7

8

(b) Mode 2: O(
√
b).

Fig. 7 Problem D for P2=P1 with b! 0 and Mesh 2. This result is consistent with the results of
Problem D with Mesh 1. Indeed, we have two elements in corners and thus two spurious modes.
For Problem D with Mesh 3 there are no elements in a corner and as consequence the element is
stable.

Table A.1 First 8 squared rooted values of the eigenvalues and associated eigenvectors of (10)
with Problem D for P2=P1 and b! 0 on Mesh 1 and 2. The eigenvectors are orthogonalized with
the Gram–Schmidt process.

ˇh 2.11e-03 3.27e-01 4.80e-01 6.38e-01

1 -1.11e-06 9.41e-01 -1.71e-01 -1.92e-01

2 5.56e-07 -2.98e-01 -5.97e-02 -4.35e-01

3 -1.67e-06 1.53e-01 7.55e-01 3.26e-01

4 2.22e-06 -5.33e-02 -5.04e-01 -8.58e-03

5 -1.00e+00 -1.58e-06 -2.22e-06 -5.92e-07

6 1.69e-12 1.15e-06 -6.95e-02 1.50e-01

7 2.83e-12 -7.36e-08 1.87e-01 -4.04e-01

8 -4.47e-11 2.02e-08 -3.17e-01 6.83e-01

(a) Mesh 1

ˇh 1.81e-03 2.13e-03 4.33e-01 6.35e-01

1 9.99e-01 -3.33e-02 -6.84e-06 2.57e-07

2 -6.84e-06 6.08e-08 -1.00e+00 -1.81e-02

3 5.16e-07 4.83e-07 2.32e-02 -5.28e-01

4 -2.28e-07 -1.83e-06 -8.38e-03 7.04e-01

5 3.33e-02 9.99e-01 -1.94e-07 1.55e-06

6 3.80e-14 -5.39e-12 -3.87e-06 2.10e-01

7 -4.15e-12 1.93e-11 -1.46e-06 -3.50e-01

8 3.39e-13 3.63e-12 5.20e-07 2.10e-01

(b) Mesh 2
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Stabilized Lagrange–Galerkin Schemes
of First- and Second-Order in Time for the
Navier–Stokes Equations

Hirofumi Notsu and Masahisa Tabata

Abstract Two stabilized Lagrange–Galerkin schemes for the Navier–Stokes equa-
tions are reviewed. The schemes are based on a combination of the Lagrange–
Galerkin method and Brezzi–Pitkäranta’s stabilization method. They maintain the
advantages of both methods: (i) They are robust for convection-dominated problems
and the systems of linear equations to be solved are symmetric; and (ii) Since the P1
finite element is employed for both velocity and pressure, the numbers of degrees
of freedom are much smaller than that of other typical elements for the equations,
e.g., P2/P1. Therefore, the schemes are efficient especially for three-dimensional
problems. The one of the schemes is of first-order in time by Euler’s method and
the other is of second-order by Adams–Bashforth’s method. In the second-order
scheme an additional initial velocity is required. A convergence analysis is done
for the choice of the velocity obtained by the first-order scheme, whose theoretical
result is also recognized numerically.

1 Introduction

In this chapter, we review two stabilized Lagrange–Galerkin schemes for the
Navier–Stokes equations. The one is of first-order in time and the other is of
second-order. We also discuss the choice of the initial velocities for the (two-step)
second-order scheme.

The Lagrange–Galerkin (LG) method is a finite element method combined with
the method of characteristics and is known to be powerful for flow problems. The
idea is based on the discretization of the material derivative along the trajectory of
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the fluid particle and its approximation is natural from a physical point of view.
The LG method has common advantages, robustness for convection-dominated
problems and symmetry of the resultant matrix to be solved.

Many authors have proposed and analyzed stable LG schemes for flow prob-
lems, cf. [1, 3, 14, 18] and the references therein. The stable means that the
scheme requires a pair of finite elements for velocity and pressure satisfying the
conventional inf-sup condition [7], e.g., P2/P1. In order to perform efficiently
three-dimensional computation by the LG method, we have originally proposed
a stabilized LG scheme of first-order in time for the Navier–Stokes equations
in [9, 10], which employs a cheap P1/P1 finite element thanks to Brezzi–Pitkäranta’s
pressure-stabilization [4]. Since the additional term of the stabilization method is
also symmetric, the stabilized LG scheme maintains the advantages of the LG
method.

Optimal error estimates of the stabilized LG scheme of first-order in time have
been established in [11, 12]. Combining the idea of [3, 6], we have proposed a
stabilized LG scheme of second-order in time to prove optimal error estimates
in [13]. After reviewing these results for the Navier–Stokes equations, we discuss
the choice of an initial velocity needed at the first time step of the two-step scheme,
the stabilized LG scheme of second-order in time. We present a simple choice of the
velocity to show the best possible error estimate for the velocity in the L2.˝/-norm.

The chapter is organized as follows. In Section 2 stabilized LG schemes of
first- and second-order in time for the Navier–Stokes equations are introduced. In
Section 3 the convergence results for the schemes are presented. In Section 4 the
choice of the initial velocities for the second-order scheme is discussed. In Section 5
convergence results obtained in the previous section are recognized numerically. In
Section 6 the conclusions are stated.

2 Stabilized LG Schemes of First- and Second-Order in Time

We prepare the function spaces and the notation to be used throughout the chapter.
Let ˝ be a bounded domain in R

d.d D 2; 3/, 	 	 @˝ the boundary of
˝, and T a positive constant. For a non-negative integer m we use the Sobolev
spaces Hm.˝/, H1

0.˝/, and W1;1
0 .˝/. We use the same notation .�; �/ to represent

the L2.˝/ inner product for scalar-, vector-, and matrix-valued functions. The
norms on L2.˝/d.D H0.˝/d/, H1.˝/d and W1;1

0 .˝/d are simply denoted by
k � k0 D k � kL2.˝/d , k � k1 D k � kH1.˝/d , k � k1;1 D k � kW1;1.˝/d , respectively, and
the notations k � k0 and k � k1 are employed not only for vector-valued functions
but also for scalar-valued ones. Let L20.˝/ be a subspace of L2.˝/ defined by
L20.˝/ 	 fq 2 L2.˝/I .q; 1/ D 0g. We often omit ˝ and/or d if there is
no confusion. The superscript “T” stands for the transposition. We employ c to
represent a positive constant independent of discretization parameters in space and
time, h and �t, and it may take different values at different places.
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We consider the Navier–Stokes problem; find .u; p/ W ˝ � .0;T/ ! R
d � R

such that

Du

Dt
� r � �2�D.u/

	C rp D f in ˝ � .0;T/; (1a)

r � u D 0 in ˝ � .0;T/; (1b)

u D 0 on 	 � .0;T/; (1c)

u D u0 in ˝; at t D 0; (1d)

where u is the velocity, p is the pressure, f W ˝ � .0;T/ ! R
d is a given external

force, u0 W ˝ ! R
d is a given initial velocity, � > 0 is a viscosity, D.u/ 	

Œru C .ru/T �=2 is the strain-rate tensor, and D=Dt 	 @=@t C u � r is the material
derivative.

The weak formulation of (1) can be written as follows; find .u; p/ W .0;T/ !
V � Q such that, for t 2 .0;T/,

�Du

Dt
.t/; v

�
C A

�
.u; p/.t/; .v; q/

� D .f .t/; v/; 8.v; q/ 2 V � Q; (2)

with u.0/ D u0, where V 	 H1
0.˝/

d and Q 	 L20.˝/ are the function spaces for
velocity and pressure, and a, b, and A are bilinear forms defined by

a.u; v/ 	 2�
�
D.u/;D.v/

�
; b.v; q/ 	 �.r � v; q/;

A
�
.u; p/; .v; q/

� 	 a.u; v/C b.v; p/C b.u; q/:

Let �t be a time increment and tn 	 n�t for n 2 N [ f0g. For a function g
defined in ˝ � .0;T/ we denote generally g.�; tn/ by gn. Let g.n�1/� be a second-
order approximate function of gn defined by

g.n�1/� 	 2gn�1 � gn�2:

Let X W .0;T/ ! R
d be a solution of the system of ordinary differential equations,

dX

dt
D u.X; t/: (3)

Then, it holds that for smooth u

Du

Dt
.X.t/; t/ D d

dt
u
�
X.t/; t

�
:

Let X.�I x; tn/ be the solution of (3) subject to an initial condition X.tn/ D x. For a
velocity w W ˝ ! R

d let X1.w; �t/ W ˝ ! R
d be a mapping defined by

X1.w; �t/.x/ 	 x � w.x/�t:
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Based on Euler’s and (two-step) Adams–Bashforth’s methods along the trajectory
of the characteristic-curve X.tI x; tn/, we can consider first- and second-order
approximations of .Du=Dt/.x; tn/ as follows:

first-order:
un � un�1 ı X1.un�1; �t/

�t
.x/;

second-order:
3un � 4un�1 ı X1.u.n�1/�; �t/C un�2 ı X1.u.n�1/�; 2�t/

2�t
.x/;

where the symbol “ı” stands for the composition of functions, .vıw/.x/ 	 v.w.x//,
for v W ˝ ! R

d and w W ˝ ! ˝.
X1.w; �t/.x/ is called an upwind point of x with respect to the velocity w and

the time increment�t. The next proposition gives sufficient conditions to guarantee
that all upwind points by X1.w; �t/ are in ˝ and that its Jacobian is around 1.

Proposition 1 ([16, 20] ).

(i) Let w 2 W1;1
0 .˝/d be a given velocity. Then, under the condition �tjwj1;1 <

1, X1.w; �t/ W ˝ ! ˝ is bijective.
(ii) Furthermore, under the condition �tjwj1;1 � 1=4, the estimate 1=2 � J 	

det.@X1.w; �t/=@x/ � 3=2 holds.

For the sake of simplicity we assume that˝ is a polygonal .d D 2/ or polyhedral
.d D 3/ domain. Let Th D fKg be a triangulation of N̋ .D S

K2Th
K/, hK a diameter

of K 2 Th, and h 	 maxK2Th hK the maximum element size. We consider a regular
family of triangulations fThgh#0 satisfying the inverse assumption [5], which leads
to the next inverse inequalities:

kvhk0;1 � ch�d=6kvhk1; kvhk1;1 � ch�d=2kvhk1; 8vh 2 Vh: (4)

Let Xh, Mh, Vh, and Qh be function spaces defined by Xh 	 fvh 2 C. N̋ /dI vhjK 2
P1.K/d; 8K 2 Thg, Mh 	 fqh 2 C. N̋ /I qhjK 2 P1.K/; 8K 2 Thg, Vh 	 Xh \ V ,
and Qh 	 Mh \ Q, respectively, where P1.K/ is the space of linear functions on
K 2 Th. Let NT 	 bT=�tc be a total number of time steps, ı0 a positive constant,
and .�; �/K the L2.K/d inner product. We define the bilinear forms Ch and Ah by

Ch.p; q/ 	 ı0
X

K2Th

h2K.rp;rq/K ;

Ah
�
.u; p/; .v; q/

� 	 a.u; v/C b.v; p/C b.u; q/ � Ch.p; q/:

The bilinear form Ch is known as Brezzi–Pitkäranta’s pressure-stabilization [4].
Assume f 2 C.Œ0;T�I L2.˝/d/. Suppose that an approximate function u0h 2 Vh of

u0 is given. Our stabilized LG scheme of first-order in time for (1) [9, 10, 12] is to
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find f.un
h; pn

h/gNT
nD1 � Vh � Qh such that, for n D 1; � � � ;NT ,

�un
h � un�1

h ı X1.un�1
h ; �t/

�t
; vh

�
C Ah

�
.un

h; p
n
h/; .vh; qh/

� D .f n; vh/;

8.vh; qh/ 2 Vh � Qh: (S1)

Suppose that approximate functions ui
h 2 Vh of ui 2 V , i D 0; 1, are given. Our

stabilized LG scheme of second-order in time for (1) [13] is to find f.un
h; pn

h/gNT
nD2 �

Vh � Qh such that, for n D 2; � � � ;NT ,

1

2�t

�
3un

h � 4un�1
h ı X1.u

.n�1/�
h ; �t/C un�2

h ı X1.u
.n�1/�
h ; 2�t/; vh

�

CAh
�
.un

h; p
n
h/; .vh; qh/

� D .f n; vh/; 8.vh; qh/ 2 Vh � Qh: (S2)

3 Convergence Results

In this section we state the convergence results for the schemes (S1) and (S2).
We use the next norms and seminorm, kuk`1.X/ 	 maxfkunkXI n D 0; � � � ;NTg,

kuk`2.X/ 	 f�t
PNT

nD1 kunk2Xg1=2, and jpjh 	 fPK2Th
h2K.rp;rp/Kg1=2 for X D

L2.˝/ and H1.˝/. Let D�t and D
.2/

�t be the backward difference operators of first-

and second-order in �t defined by D�tun 	 .un � un�1/=�t and D
.2/

�t un 	 .3un �
4un�1 C un�2/=.2�t/, respectively.

Hereafter, for the sake of simplicity, we assume that the solution of problem (1)
is smooth enough, and that the Stokes problem is regular, i.e., for any g 2 L2.˝/d

the solution .w; r/ 2 V � Q of the Stokes problem,

A
�
.w; r/; .v; q/

� D .g; v/; 8.v; q/ 2 V � Q;

belongs to H2.˝/d � H1.˝/ and the estimate kwk2 C krk1 � cRkgk0 holds, where
cR is a positive constant independent of g, w, and r. The latter assumption holds,
e.g., if ˝ is convex in R

2, cf. [7]. For the initial velocity u0h 2 Vh, we always set
the first component of a Stokes projection of .u0; 0/ 2 V � Q, where, in general, the
Stokes projection . Owh; Orh/ 2 Vh � Qh of .w; r/ 2 V � Q is defined by the solution of
the variational problem:

Ah
�
. Owh; Orh/; .vh; qh/

� D A
�
.w; r/; .vh; qh/

�
; 8.vh; qh/ 2 Vh � Qh: (5)

We note that Owh satisfies for .w; r/ 2 H2.˝/d � H1.˝/

k Owh � wki D O.h2�i/; i D 0; 1: (6)

The next theorem holds for scheme (S1).



336 H. Notsu and M. Tabata

Theorem 1 ( [12] ). There exist positive constants h1 and c1 independent of h and
�t such that, for any pair .h; �t/ satisfying h 2 .0; h1� and �t � c1hd=4, the
solution .uh; ph/ D f.un

h; p
n
h/gNT

nD1 � Vh � Qh of scheme (S1) satisfies

kuh � uk`1.H1/; kph � pk`2.L2/ D O.�t C h/;

kuh � uk`1.L2/ D O.�t C h2/: (7)

For scheme (S2) we need initial velocities u0h and u1h. As mentioned above u0h is
taken as the first component of the Stokes projection (5) of .u0; 0/. Supposing the
following hypothesis on u1h and p1h, we have the convergence results for scheme (S2).

Hypothesis 1. .u1h; p
1
h/ 2 Vh � Qh satisfies

b.u1h; qh/ � Ch.p
1
h; qh/ D 0; 8qh 2 Qh;

ku1h � u1k1; jp1h � p1jh;
p
�tkD�tu

1
h � D�tu

1k0;
p
�tkp1h � p1k0 D O.�t2 C h/;

ku1h � u1k0 D O.�t2 C h2/:

Theorem 2 ([13]). Suppose that Hypothesis 1 holds. Then, there exist positive
constants h2 and c2 independent of h and�t such that, for any pair .h; �t/ satisfying
h 2 .0; h2� and �t � c2hd=6, the solution .uh; ph/ D f.un

h; p
n
h/gNT

nD2 � Vh � Qh of
scheme (S2) satisfies

kuh � uk`1.H1/; kph � pk`2.L2/ D O.�t2 C h/;

kuh � uk`1.L2/ D O.�t2 C h2/: (8)

4 Choice of u1h for Scheme (S2)

In order to supply an initial velocity u1h 2 Vh of scheme (S2) we use scheme (S1).

At first we set .u1h; p
1
h/ 	 .Qu QN�t

h ; Qp QN�t
h / for the solution f.Qum

h ; Qpm
h /g QN�t

mD1 � Vh �Qh such
that, for m D 1; � � � ; QN�t,

� Qum
h � Qum�1

h ı X1.Qum�1
h ; �/

�
; vh

�
C Ah..Qum

h ; Qpm
h /; .vh; qh// D .Qf m; vh/;

8.vh; qh/ 2 Vh � Qh; (9)

where Qu0h 	 u0h, � 2 .0;�t�, QN�t 	 b�t=�c, and Qf m 	 f .�;m�/. When we employ
scheme (9) with � D �t2, Hypothesis 1 is satisfied from Theorem 1 and its proof,
cf. [12]. Then, Theorem 2 holds. This choice of .u1h; p

1
h/ is not so efficient since the

number of iteration QN�t is proportional to NT .
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Next, we consider a simple choice of .u1h; p
1
h/ by scheme (9) with � D �t ( QN�t D

1), i.e., the solution .u1h; p
1
h/ of (S1), which leads to the following result:

Proposition 2. There exist positive constants h3 and c3 independent of h and �t
such that, for any pair .h; �t/,

h 2 .0; h3�; �t � c3h
d=5; (10)

the solution .uh; ph/ D f.un
h; p

n
h/gNT

nD2 � Vh � Qh of scheme (S2) with .u1h; p
1
h/, the

solution of (S1), satisfies

kuh � uk`1.H1/; kph � pk`2.L2/ D O.�t3=2 C h/; (11)

kuh � uk`1.L2/ D O.�t2 C h2/: (12)

Remark 1. The above proposition implies that there is no loss of convergence order
for the velocity in the L2.˝/-norm, cf. (8).

Before the proof we prepare equations for the error. Let .Ouh; Oph/.t/ 2 Vh � Qh

be the Stokes projection of .u; p/.t/ by (5) for t 2 Œ0;T�, and let en
h 	 un

h � Oun
h and

�n
h 	 pn

h � Opn
h. We have that

.D�te
1
h; vh/C Ah

�
.e1h; �

1
h/; .vh; qh/

� D hR1h; vhi; 8.vh; qh/ 2 Vh � Qh; (13a)

.D
.2/

�t en
h; vh/C Ah

�
.en

h; �
n
h/; .vh; qh/

� D hRn
h; vhi; 8.vh; qh/ 2 Vh � Qh; (13b)

for n 
 2, where

Rn
h 	

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

Du1

Dt
� D�t Ou1h � u0h � u0h ı X1.u0h; �t/

�t
.n D 1/;

Dun

Dt
� D

.2/

�t Oun
h � 2

�t

˚
un�1

h � un�1
h ı X1.u

.n�1/�
h ; �t/

�

C 1

2�t

˚
un�2

h � un�2
h ı X1.u

.n�1/�
h ; 2�t/

�
.n 
 2/:

Proof of Proposition 2. Since the difference between the schemes in Theorem 2 and
Proposition 2 is the choice of u1h only, we outline the proof by focusing on the
estimates of u1h, i.e., ku1h � u1ki, i D 0; 1, which determine the final convergence
orders. For the detail of the rest of the proof, we refer to [13].

We prove (11). There exists a positive constant h0 independent of h and �t such
that for any h 2 .0; h0� and �t � hd=5

ku0hk0;1 � kukC.L1/ C 1; (14a)

�tku0hk1;1 � 1=4; (14b)
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which are proved in a similar way to [12] by using (4) and (6). We need h3 � h0
and c3 � 1. From Proposition 1 and (14b) there exists a unique solution .u1h; p

1
h/

of (S1). (14a) and (6) lead to

kR1hk0 � c.�t C h/: (15)

Substituting .D�te1h; 0/ into .vh; qh/ in (13a), we have

kD�te
1
hk20 C a.e1h;D�te

1
h/C b.D�te

1
h; �

1
h/ � kR1hk0kD�te

1
hk0: (16)

From (13a) with qh D 0 and the definitions of .u0h; p
0
h/ and .Ou0h; Op0h/, we also have

b.D�te
1
h; qh/ D Ch.D�t�

1
h ; qh/; 8qh 2 Qh:

Combining the above relation with (16) and using (15), we get

D�t

�
�kD.e1h/k20 C ı0

2
j�1h j2h

�
C 1

2
kD�te

1
hk20 � c.�t2 C h2/;

which yields

ku1h � u1k1; jp1h � p1jh;
p
�tkD�tu

1
h � D�tu

1k0 � c.�t3=2 C h/: (17)

Let˘h W C. N̋ /d ! Xh be the Lagrange interpolation operator, which has a property
k˘hw � wki D O.h2�i/, i D 0; 1, for w 2 H2.˝/d. From the first inequality of (17)
we have

ku1�h k0;1 � kukC.L1/ C 1; (18a)

2�tku1�h k1;1 � 1=4; (18b)

by the estimates,

�
�u1�h

�
�
0;1 � k˘hu1�k0;1 C ku1�h �˘hu1�k0;1

� k˘hu1�k0;1 C 2ku1h �˘hu1k0;1 C ku0h �˘hu0k0;1
� k˘hu1�k0;1 C ch�d=6.ku1h �˘hu1k1 C ku0h �˘hu0k1/ (by (4))

� ku2k0;1 C c
˚
�t2 C h�d=6.�t3=2 C h/

�
(by u1� D u2 C O.�t2/)

� kukC.L1/ C c
˚
c23h

2d=5 C c3=23 h2d=15 C h1�d=6� (by (10))

� kukC.L1/ C 1 (if h3 is small enough);

2�t
�
�u1�h

�
�
1;1 � 2�t.2ku1h �˘hu1k1;1 C ku0h �˘hu0k1;1 C k˘hu1�k1;1/
� 2�t

˚
ch�d=2.ku1h �˘hu1k1 C ku0h �˘hu0k1/C k˘hu1�k1;1

�
(by (4))
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� c�t
˚
h�d=2.�t3=2 C h/C 1

�

� c
˚
c5=23 C c3h

1�3d=10 C c3h
d=5� (by (10))

� 1=4 (if c3 and h are small enough):

From (18b) scheme (S2) works for n D 2. Thanks to (18a), we can get the estimate
kR2hk0 D O.�t3=2 C h/. We omit the rest of the proof of (11), cf. [13].

We prove (12). From (18b) the existence of the solution .uh; ph/ D f.un
h; p

n
h/gNT

nD2
of scheme (S2) with .u1h; p

1
h/, the solution of (S1), and its stability in `1.L1/-norm

are ensured under (10). Substituting .e1h;��1h/ into .vh; qh/ in (13a), we have

.D�te
1
h; e

1
h/C 2�kD.e1h/k20 C ı0j�1h j2h � kR1hk0ke1hk0;

which leads to

ke1hk0 � ke0hk0 C�tkR1hk0 � c.�t2 C h2/ (19)

by dropping the last two terms in the left-hand side and using (6) and (15). Thus, we
have

ku1h � u1k0 D O.�t2 C h2/: (20)

For n 
 2, substituting .en
h;��n

h/ into .vh; qh/ in (13b) and using the next identity

of .D
.2/

�t en
h; e

n
h/ [15] and estimate of kRn

hk0 [12],

.D
.2/

�t en
h; e

n
h/ D 1

�t

n3

4
ken

hk20 � ken�1
h k20 C 1

4
ken�2

h k20 C 1

4
ken

h � 2en�1
h C en�2

h k20

C 1

2

�ken
h � en�1

h k20 � ken�1
h � en�2

h k20
�o
;

kRn
hk0 � c.ken�1

h k0 C ken�2
h k0 C�t2 C h2

�
;

we have

1

�t

n3

4
ken

hk20 � ken�1
h k20 C 1

4
ken�2

h k20 C 1

2

�ken
h � en�1

h k20 � ken�1
h � en�2

h k20
�o

� c.ken�1
h k20 C ken�2

h k20 C�t4 C h4/;

which implies (12) by Gronwall’s inequality and (20). ut
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5 Numerical Results

In this section two- and three-dimensional test problems are computed by
scheme (S2) with .u1h; p

1
h/, the solution of (S1), in order to recognize the convergence

results of Proposition 2 numerically.
Quadrature formulae [17] of degree five for d D 2 and 3 are employed for the

computation of the integrals of composite functions in (S2) and (9). We set ı0 D 1.
The system of linear equations is solved by MINRES [2].

Example 1. In problem (1) we set˝ D .0; 1/d, T D 1, and � D 10�k, k D 1; � � � ; 4.
The functions f and u0 are given so that the exact solution is as follows:

for d D 2:

u.x; t/ D
�@ 

@x2
;�@ 
@x1

�
.x; t/; p.x; t/ D sinf�.x1 C 2x2 C t/g; ˛0 D p

3=.2�/;

 .x; t/ 	 ˛0 sin2.�x1/ sin2.�x2/ sinf�.x1 C x2 C t/g;

for d D 3:

u.x; t/ D rot.x; t/; p.x; t/ D sinf�.x1 C 2x2 C x3 C t/g; ˛1 D 8
p
3=.27�/;

1.x; t/ 	 ˛1 sin.�x1/ sin2.�x2/ sin2.�x3/ sinf�.x2 C x3 C t/g;
2.x; t/ 	 ˛1 sin2.�x1/ sin.�x2/ sin2.�x3/ sinf�.x3 C x1 C t/g;
3.x; t/ 	 ˛1 sin2.�x1/ sin2.�x2/ sin.�x3/ sinf�.x1 C x2 C t/g:

These solutions are normalized so that kukC.L1/ D kpkC.L1/ D 1.

Let N be the division number of each side of the domain. We set N D 16, 32,
64, 128, and 256 for d D 2 and N D 16, 32, and 64 for d D 3, and (re)define
h 	 1=N. Example 1 is solved by scheme (S2) with .u1h; p

1
h/, the solution of (S1).

For the solution .uh; ph/ of the scheme we define the relative errors Er1 and Er2 by

Er1 	 kuh �˘huk`2.H1/ C kph �˘hpk`2.L2/
k˘huk`2.H1/ C k˘hpk`2.L2/

; Er2 	 kuh �˘huk`1.L2/

k˘huk`1.L2/
:

We set �t D h in order to observe the convergence order of (12). The right-hand
sides of (11) and (12) become of order O.�t3=2 C h/ D O.�t/ and O.�t2 C h2/ D
O.�t2/, respectively. Figure 1 shows the graphs of Er1 versus �t (the left two, left:
d D 2, right: d D 3) and Er2 versus �t (the right two, left: d D 2, right: d D 3)
in logarithmic scale, where the symbols are summarized in Table 1. We can see that
the slopes of Er1 are between 1 and 2, and that Er2 is almost of second-order in�t.
These results are consistent with Proposition 2.
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Fig. 1 Graphs of Er1 vs.�t (the left two, left: d D 2, right: d D 3) and Er2 vs. �t (the right two,
left: d D 2, right: d D 3) in logarithmic scale for �t D h.

Table 1 Symbols used in
Figure 1.

�

d 10�1 10�2 10�3 10�4

2 ı � 4 O
3  � N H

6 Conclusions

We have reviewed stabilized Lagrange–Galerkin schemes of first- and second-
order in time for the Navier–Stokes equations and their convergence results. Since
the schemes maintain the advantages of the stable LG method and the pressure-
stabilization method, i.e., robustness for convection-dominated problems, symmetry
of the resulting matrix to be solved, and small number of degrees of freedom, they
are efficient especially in three-dimensional problems.

The first-order scheme can be used to supply an initial velocity at the first step
of the second-order scheme. When we employ the first-order scheme with a small
time increment of order�t2, the optimal error estimates of the second-order scheme
are obtained in the consumption of computation time. A more efficient way is to set
the initial velocity from the first-step solution of the first-order scheme with the
time increment �t. Then, the best possible convergence order for the velocity in the
L2.˝/-norm is kept, which is recognized numerically.

It is known that a rough numerical quadrature may cause instability of LG
schemes, cf. [8, 19], since the composite functions of LG schemes are not smooth.
Recently, the instability has been overcome by a locally linearized velocity tech-
nique in [20], which can also be applied to the stabilized LG schemes in this chapter.
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Part VI
Biomedical Applications



On Three-Dimensional ALE Finite Element
Model For Simulating Interstitial Medium
Deformation in the Presence of a Moving Needle

Yannick Deleuze, Marc Thiriet, and Tony W.H. Sheu

Abstract The effects of inserted needle on the subcutaneous interstitial flow are
studied. A goal is to describe the physical stress affecting cells during acupuncture
needling. The convective Brinkman equations are considered to describe the flow
through a fibrous medium. Three-dimensional simulations are carried out employing
an ALE finite element model. Numerical studies illustrate the acute physical stress
developed by the implantation of a needle.

1 Introduction

In recent years, computational techniques have been widely used by researchers to
investigate and simulate biological flow within three-dimensional context. Applica-
tions include blood flow models, air flow models in the respiratory tract, interstitial
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flow models, and chemical mediators transport. Most of the structure and fluid
interactions have been considered with simplified rigid wall or deformable wall
models.

Methods to predict flows that account for moving domains or domain deforma-
bility using the finite element method are based on fixed mesh methods or moving
mesh methods. On the one hand, fixed mesh methods include the immersed
boundary formulation and the fictitious domain formulation. These methods are well
adapted to moving bodies in the fluid or fluid–structure computation with interface
of a highly geometric complexity. On the other hand, moving mesh methods include
the Lagrangian method, the moving finite element method, the deformation map
method, the geometric conservation law method, the space/time finite element
method, and the arbitrarily Lagrangian–Eulerian (ALE) method for the solution of
fluid dynamic problems.

The mathematically rigorous ALE framework has been well accepted to be
applicable to simulate transport phenomena in time and allows some freedom in the
description of mesh motion. A theoretical analysis of the ALE method can be found
in [5, 8]. However, ALE equations are computationally expensive when considering
a large domain because of the necessity of continuously updating the geometry of
the fluid and structural mesh. Interface tracking with time discretization also raises
some implementation questions. The implementation of the ALE method can be
done in FreeFem++ [2].

Study of biological flows plays a central role in acupuncture research. For a
description of the underlying acupuncture mechanism, one can refer to [3, 14,
15]. Interstitial flow models take into account interstitial fluid, cell membrane
interaction, and fiber interactions [10]. Mastocytes, among other cells, are able
to respond to fluidic stimuli via mechanotransduction pathways leading to the
degranulation and liberation of chemical mediators [7]. Degranulation mechanisms
include interaction of the cell membrane with interstitial and cytosolic flow [16].
Ion transport in narrow ion channels is another challenging task to model. Indeed,
degranulation of chemical mediators upon stimulation can be triggered by a rapid
Ca2C entry in the cytosol [12].

Modeling the three-dimensional interstitial flow in tissues is extremely challeng-
ing for a large number of reasons: a complex geometry of the tissue, an accurate
constitutive description of the behavior of the tissue, and flow rheology are only a
few examples. Macroscopic models for incorporating complex microscopic struc-
ture are essential for applications [1, 10, 12, 19, 20]. In the context of acupuncture,
the interstitial flow has been modeled by the Brinkman equations [3, 19, 20].

In this paper, a porous medium formulation of the interstitial fluid is presented
for modeling mastocyte-needle interaction in deformable connective tissues. This
formulation is based on a conventional ALE characteristic/Galerkin finite element
model for an unsteady flow thought a porous medium modeled by the incompress-
ible Brinkman’s equations in a three-dimensional moving domain. The motion of
the needle in the fluid is taken into account. The main features of the model can be
summarized as follows:
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1. The loose connective tissue of the hypodermis is constituted of scattered cells
immersed in extracellular matrix. The extracellular matrix contains relatively
sparse fibers and abundant interstitial fluid. The interstitial fluid contains water,
ions, and other small molecules. Such a fluid corresponds to plasma without
macromolecules and interacts with the ground substance, thereby forming a
viscous hydrated gel that can stabilize fiber network [11, 13].

2. The Darcys law is used to approximate fibers of the media as a continuum and
allows us to compute the actual microscopic flow phenomena that occur in the
fibrous media.

3. Brinkman’s law then allows us to describe the flow field around solid bodies such
as the embedded cells in extracellular matrix.

4. Transient convective Brinkman’s equations are applied to simulate the interstitial
flow in a fibrous medium driven by a moving needle.

Although the previously stated approach cannot give information on microscopic
events, it can describe macroscale flow patterns in porous media. Focus is given to
the effects of interstitial fluid flow during implantation of an acupuncture needle
until the tip has reached the desired location within the hypodermis. The objective
of this work is to give a description of the physical stress (shear stress and pressure)
influencing tissue and cells.

2 Methods

Due to biological complexity, the interstitium is considered as a fluid-filled porous
material. The interstitial flow is simulated using the incompressible convective
Brinkman equation.

2.1 Flow Equations

The governing equations of the unsteady flow of an incompressible fluid through a
porous medium (with mass density �, dynamic viscosity �, and kinematic viscosity
� D �=�) can be derived as [17]:

�

˛f



@ Nu
@t

C Nu � r

 Nu
˛f

��

� �r2 Nu C 1

˛f
r.˛f pf / D ��

P
Nu in˝.t/; (1)

r � Nu D 0; (2)

Nu.x; 0/ D Nu0.x/; (3)

where ��

P Nu denotes the Darcy drag, P the Darcy permeability, Nu the averaged
velocity vector, and pf the pressure. The averaged velocity is defined as

Nu D ˛f uf ; (4)
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where uf is the fluid velocity and

˛f D fluid volume

total volume
(5)

is the fluid volume fraction. This volume fraction corresponds to the effective
porosity of the medium. The fluid fractional volume ˛f is taken as a space-dependent
parameter to model the distinguished properties of an acupoint.

The system of equations (1–2) is applied to the case of a flow driven by the
motion of a needle in the deformable domain˝.t/ [3]. The domain boundary can be
decomposed into three surfaces: the needle boundary denoted by 	1, an impervious
boundary (wall) denoted by 	2, the mastocyte membrane denoted by 	3, and the
open boundary on the sides denoted by 	4. The classical no-slip condition is applied
to the needle surface 	1, the rigid wall 	2, and the cell surface 	3. At the outer
boundary 	4 a traction-free boundary condition is prescribed. Thus, the entire set of
boundary conditions reads as

Nu D vneedle; on 	1; (6)

Nu D 0; on 	2; (7)

Nu D 0; on 	3; (8)

��r Nu � n C pf n D 0; on 	4: (9)

2.2 Finite Element Model

The governing equations in section 2.2.1 are solved using the finite element
software FreeFem++ [6]. This code programs the discrete equations derived from
the finite element weak formulation of the problem presented in section 2.2.3 using
a characteristic/Galerkin model to stabilize convection terms.

2.2.1 Scaling and Setting for Numerical Simulations

L denotes the characteristic length, that is, the needle width and V is the characteris-
tic velocity set to be the needle maximum velocity. Rescaling the variables leads to

x0 D x
L ; t0 D t

.L=V/ ; p0 D pf

.�V2/
; u0 D Nu

V : (10)

In the resulting dimensionless form, after removing the prime in the rescaled
variables, the dimensionless incompressible convective Brinkman equations read as

1

˛f

@u
@t

C 1

˛f
u � r



u
˛f

�

� 1

Re
r2u C 1

˛f
r.˛f p/ D � 1

Da Re
u; (11)

r � u D 0: (12)
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where Re is the Reynolds number and Da is the Darcy number. The previous
dimensionless parameters are defined as

Re D �LV
�
; Da D P

L2 : (13)

In considering the above dimensionless governing equations, the normalized bound-
ary conditions on the domain boundary are prescribed as

u D v on 	1; (14)

u D 0 on 	2; (15)

u D 0 on 	3; (16)

� 1

Re
ru � n C pn D 0 on 	sides: (17)

2.2.2 ALE Implementation on Moving Meshes

In the present paper, the ALE framework built in FreeFem++ is employed to
compute the flow in the moving domain. In the current problem setting, the motion
of needle is prescribed with respect to time. The boundary of the domain is thus
exactly known at each time so that an area preserving mesh can be precisely
generated.

The framework of the ALE approach employed is briefly described below. Let
˝.t/ be the domain at each time t with regular boundary @˝.t/. In the Eulerian
description, the fluid is described by

u.x; t/ and p.x; t/;8x 2 ˝.t/: (18)

To follow a moving domain, one can define the ALE map as

QA W Q! � R
C ! R

2 .Qx; t/ ! QA .Qx; t/ WD QAt; (19)

such that !.t/ D QA . Q!; t/, where Q! is the reference computational domain. Given
an ALE field Qq W Q! � R

C ! R, its Eulerian description is given by

8x 2 ˝.t/; q.x; t/ D Qq. QA �1t .x/; t/ (20)

In ALE framework, the computational domain velocity (or ALE velocity or grid
velocity) is defined as

Qa.Qx; t/ D @ QA

@t
.Qx; t/; 8Qx 2 Q!; (21)
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so that we can get

a.x; t/ D Qa. QA �1t ; t/: (22)

The ALE time-derivative is defined as

@q

@t

ˇ
ˇ
ˇ
ˇ QA

D d

dt
q. QA .Qx; t/; t/; (23)

and the following identity holds:

@q

@t

ˇ
ˇ
ˇ
ˇ QA

D .a:r/q C @q

@t
: (24)

A general method is used to construct the mapping or, equivalently, the domain
velocity a. The domain velocity is computed by solving the following Laplace
equation subjected to the Dirichlet boundary condition [4]:

� r2a D 0; aj@˝ D v: (25)

In the ALE framework, equations (11–12), subject to a prescribed needle motion,
become

@.u=˛f /

@t

ˇ
ˇ
ˇ
ˇ QA

C




u
˛f

�a
�

�r
�

u
˛f

� 1

Re
r2u C 1

˛f
r.˛f p/ D � u

Da Re
; (26)

r � u D 0: (27)

The solutions u and p are sought subject to the initial condition (3) and the boundary
conditions (7–9) described in section 2.2.1.

2.2.3 Finite Element Discretization

The convective incompressible Brinkman equations are approximated with the
method of characteristics for the nonlinear convection term and a Galerkin method
for the rest of the spatial derivative terms. The time discretization gives

1

�t



unC1

˛f
�



un

˛f

�

ı Xn

�

� 1

Re
r2unC1 C 1

˛f
r.˛f p

nC1/ D � unC1

Da Re
; (28)

r � unC1 C "pnC1 D 0; (29)



On 3D ALE Finite Element Model For Simulating Interstitial Medium Deformation 353

in ˝nC1. Note that Xn is approximated by Xn � x �
�

un

˛f
� an

�
.x/�t. A small sta-

bilization parameter " is introduced following the so-called artificial compressibility
method.

For all ' 2 H1=2.	1/, let us introduce the product space

V' D ˚
.w; q/ 2 ŒH1.˝/�2 � L2.˝/;w D ' on 	needle;w D 0 on 	wall

�
: (30)

Let

.a; b/ D
Z

˝nC1

ab dx: (31)

The weak formulation becomes the following finite dimensional linear system: find
.unC1; pnC1/ 2 Vg such that
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�
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˛f pnC1;r �



w
˛f

��

C 1

Da Re

�
unC1;w

� D 0;

�r � unC1; q
�C "

�
pnC1; q

� D 0;

(32)

for all .w; q/ 2 V0.
The Taylor–Hood P2–P1 elements are adopted to ensure satisfaction of the

LBB stability condition [9]. Note that temporal accuracy order of the presented
characteristic/Galerkin method is one. Meshes are generated within FreeFem++ and
mesh adaptation is performed prior to simulations so as to enhance mesh quality
around the needle and the cell.

3 Results

In the present work, the needling direction is perpendicular to the skin surface. In
practice, it is possible that the needling direction is oblique to the skin surface. The
simulation results show that the insertion of an acupuncture needle can influence
interstitial fluid flow. The computed velocity field shows that at a location away
from the needle, the effect of the stress field vanishes (Fig. 1). Furthermore, when
the needle reaches its maximum speed, the interstitial pressure gradient becomes
higher at a location close to the needle tip (Fig. 2). The changes in the interstitial
fluid flow and the high pressure gradient can affect the activities of the mastocyte
pools in the stimulated area.
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Fig. 1 The predicted contours of velocity along the z-direction resulting from the needle (blue)
motion in interstitial fluid.

Another subject of interest is the effects of the fluidic stimuli on an interstitial
cell. Local mechanical forces can trigger the activation of mechanoresponsive
proteins on the cell surface [14, 18] so that CaCC is allowed to enter the cytosol
via pressure and shear stress gated ion channels. Simulations are carried out by
considering fixed cells and no-slip boundary condition prescribed at the cell surface.
Figure 3 shows the pressure contours on the surface of a cell added closely to
the needle. The pressure on the cell surface is higher in the region closest to the
needle tip.

4 Conclusions

The proposed three-dimensional ALE finite element model is able to describe the
interstitial flow and pressure from the macroscopic point of view when a needle
is inserted and moving within the hypodermis. High local fluid pressure and shear
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Fig. 2 The predicted contours of velocity along the z-direction resulting from the needle (blue)
motion in interstitial fluid.

stress on cells are most likely to appear near the needle tip region. However, the
proposed method does not allow the rotation of the needle to be taken into account.
When considering the rotation of the needle, a large deformation of the tissue is
observed with the twisting of the fibers around the needle, that in turn makes the
corresponding change in interstitial flow. A fluid/structure model taking into account
the mechanics of the fibers should then be considered. This study has shown that the
numerical prediction of the interstitial pressure and shear stress is an essential tool
to gain a better understanding of the mechanism involved in acupuncture needling.
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Fig. 3 The predicted pressure contours on the needle and cell surfaces as the needle moves toward
the cell.
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Time-Dependent Outflow Boundary Conditions
for Blood Flow in the Arterial System

JaeHyuk Kwack, Soonpil Kang, Geetha Bhat, and Arif Masud

Abstract We present time-dependent outflow boundary conditions for blood flow
simulations in the arterial system. The new method allows for embedding clinically
obtained patient-specific data into the patient-specific geometric models of the
circulation system. Blood rheology is accounted for by shear-rate dependent
models for blood. Our recently developed stabilized finite element method for non-
Newtonian fluid models is extended to include downstream effects by incorporating
clinically measured downstream resistance via a novel functional form for the out-
flow boundary conditions. Patient-specific flow-rate and pressure profiles measured
clinically (e.g., ultrasound device, CT, or MRI) are used to determine time-
dependent resistance functions. For verification of the new method, we compare
the clinically measured time-dependent resistance outflow boundary conditions to
the constant pressure, constant resistance, and the impedance outflow boundary con-
ditions. Numerical tests verify that the time-dependent outflow boundary conditions
proposed in this work impose the most accurate downstream effects that are caused
by the non-Newtonian behavior of blood as well as the geometrical complexity
of the branching arteries. Our numerical tests show that the reduced geometry
with the proposed outflow boundary conditions results in an order of magnitude
reduction in computational cost as compared to that of the full arterial geometry
model.
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1 Introduction

Blood is composed of various cell types (i.e., red blood cells, white blood cells,
and platelets) that are suspended in blood plasma (i.e., water, dissipated proteins,
glucose, mineral ions, hormones, and carbon dioxide). The complex rheological
response of blood is a function of a variety of interactions between cells and plasma,
that manifest themselves via shear-rate dependent viscous stress and viscoelastic
stress [1–5]. A literature review shows that several mathematical models have been
developed for the non-Newtonian behavior of fluids [6–11]. Masud and Kwack have
developed variational multi-scale (VMS)-based stabilized methods for viscoelastic
[12, 13] and shear-rate dependent [14–16] non-Newtonian fluids wherein a variety
of convergent finite elements are presented. Blood flow simulations in the human
cardiovascular system that account for the complexity of the patient-specific
geometries, transition to turbulence in arteries, and blood–artery interactions have
also been reported in the literature [17–23].

The cardiovascular system is comprised of the heart and blood vessels that
form a closed network. Developing a computational model for the entire system
is not only difficult due to its geometric complexity, but it is also computationally
expensive. Consequently, developing appropriate outflow boundary conditions that
can take into account the effects of the circulation system downstream of the zone
of interest is an essential ingredient of blood flow modeling. With appropriate
boundary conditions applied on the outflow surfaces, blood flow simulations can
be carried out only in the zones of interest, it can substantially reduce the cost
of computation while preserving the accuracy of the physics involved. To account
for the downstream effects, Olufsen [24] introduced dynamic boundary conditions
in the impedance spectra for large systemic arteries, while Esmaily-Moghadam
et al. [25] presented outflow boundary conditions that prevent backflow in blood
flow simulations. A sophisticated method for the constant resistance and impedance
outflow boundary conditions is proposed by Vignon-Clementel et al. [26].

The present paper is inspired by [26] wherein we develop a systematic procedure
to embed clinically measured flow parameters via a transient resistance function
that describes the outflow boundary condition. An outline of the paper is as follow:
Section 2 presents a VMS-based stabilized method for incompressible shear-rate
dependent fluids. It includes strong form of the governing equations along with the
shear-rate dependent non-Newtonian constitutive model. The nonlinear stabilized
form is presented next. The outflow boundary conditions for the constant pressure,
the constant resistance, the impedance, and the time-dependent resistance function
are introduced in Section 3. Section 4 presents numerical tests in simple channel
geometry, as well as in idealized arterial tree geometry. Conclusions are drawn in
Section 5.
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2 A Variational Multi-Scale (VMS) Framework for
Non-Newtonian Fluids

Masud and Kwack have developed a VMS framework for shear-rate dependent non-
Newtonian fluids [14–16] and non-Newtonian viscoelastic fluids [12, 13]. In the
present work the VMS-based formulation for shear-rate dependent fluids [15] is
employed. The governing equations for shear-rate dependent fluids are given by
momentum balance equations:

�v;t C �v � rv � r � � v .v/C rp D f in 
 � �0;TŒ (1)

r � v D 0 in 
 � �0;TŒ (2)

where v,t is the time derivative of the velocity field v, p is the thermodynamic
pressure, � is the density, f is the body force vector, � v D 2� .�/ " .v/ is shear-rate
dependent stress tensor, " .v/ is the rate-of-deformation tensor, � is the shear-
rate defined as � WD p

2" .v/ W " .v/, and �(� ) is shear-rate dependent viscosity.
Although different forms of �(� ) are admissible for the shear-rate dependent stress
tensor � v , we have employed the Carreau-Yasuda model [6] for the viscosity
function.

� .�/ WD �1 C .�0 � �1/ .1C .��/a/
.n�1/=a (3)

The VMS-stabilized formulation [15] is based on an overlapping sum decompo-
sition of the trial solution (i.e., v) and weighting function (i.e., w) into coarse- or
resolvable-scales and fine- or subgrid-scales.

v .x; t/ D v .x; t/
„ƒ‚…

coarse scale

C v0 .x; t/
„ ƒ‚ …
fine scale

; w .x/ D w .x/
„ƒ‚…

coarse scale

C w0 .x/
„ƒ‚…
fine scale

(4)

Substituting (4) in the standard Galerkin forms for (1) and (2) leads to splitting
of the weak forms into coarse-scale and fine-scale sub-problems. The derivation for
the VMS-based stabilized formulation is comprised of two steps: First, the fine-scale
sub-problem is solved locally to extract a model for the fine scales, and then the fine-
scale model is embedded in the coarse-scale variational equation. The details of the
derivation are given in [15] along with the specification of the appropriate spaces
of functions. Herein we present the final nonlinear stabilized form for the shear-rate
dependent fluids where V D fv; pg is the vector of unknown velocity and pressure
fields and W D fw; qg is the vector of the corresponding weighting functions.

Bstab .W;V/ D Lstab .W/ (5)

where B .�; �/ is linear with respect to the first slot and is nonlinear with respect to
the second slot.
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Bstab .W;V/

D B .W;V/ C .�;	 .�v;t C �v � rv� 2�r � " .v/ � 2r� � " .v/ C rp//
(6a)

Lstab .W/ D L .W/C .�;	 f / (6b)

B .W;V/ D � .w; v;t/C � .w; v � rv/C .rw; 2�" .v// � .r � w; p/C .q;r � v/
(6c)

L .W/ D .w; f /C .w;h/�h
(6d)

where .�; �/ D
Z




.�/ d
 is the L2(˝)—inner product, and B(W, V) and L(W)

are the variational forms emanating from the underlying standard Galerkin method.
The stabilization terms in (6a) and (6b) are defined as follows:
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� D � .�rv � w C .r � v/w C v � rw/C � .r .r � w/C&w/

C r� � ..r � w/ 1 C rw/C rq
(7b)

where be represents bubble functions that are employed to expand the fine-scale
velocity field.

The VMS-stabilized form in (5) inherits features of Streamline Upwind/Petrov-
Galerkin (SUPG) method [27], and Galerkin/Least-Square (GLS) method [28],
as discussed in [29]. It is implemented in the 3D context using hexahedral and
tetrahedral elements with equal-order linear and quadratic Lagrange shape functions
for the velocity and pressure fields. The method involves consistent mass and
tangent tensors for nonlinear solution procedures as presented in [15].

3 Outflow Boundary Conditions (Outflow BCs)

The narrower downstream branches in the arterial system result in an increased
resistance to the flow of blood. Appropriate boundary conditions (BCs) can account
for these downstream effects on the zone of interest that constitutes our computa-
tional domain. In this section, we discuss four types of outflow BCs along with their
weak forms. The first three conditions (i.e., constant pressure, constant resistance,
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and impedance boundary conditions) have been presented in the literature and we
have employed them to verify the accuracy of our proposed method that embeds
the clinically measured data as time-dependent resistance BC in our computational
scheme. In the numerical section, we compare these different BCs in terms of how
accurately they impose the downstream effects on to the computational domain.

3.1 Constant Pressure BC

A common procedure for applying outflow boundary condition is to apply Neumann
boundary condition with constant pressure over the outlet surfaces. Accordingly, the
traction term in (6d) is expressed as follows:

.w;h/�out
D .w;Pmeann/�out

(8)

where �out is the outlet surface, Pmean is the mean pressure on �out, n is the normal
vector to the outflow surface. Even though this BC satisfies the mean values of
pressure at each outlet, the pressure is not a function of time; therefore, this BC
cannot represent pressure variations from the downstream network.

3.2 Constant Resistance BC

The downstream resistance can be assumed to have a linear relation between the
flow-rate and the pressure. The mean pressures and flow-rates at outlets determine
the constant resistance values at these outlets.

R D Pmean=Qmean (9)

where Pmean and Qmean are the mean pressure and flow-rate for one cardiac cycle at
the outlet, respectively. Taylor and colleagues [26] presented a weak form for the
constant resistance BC as follows:

.w;h/�out
D



w;n



R
Z

�out

v � n ds C n � � v � n
�

� � v � n
�

�out

(10)

Although the constant resistance BC produces transient pressure profiles at
outlets in [26], it turns out that the variation in the pressure between systole and
diastole is much larger than that of the actual pressure profile in the downstream
network. In addition, the constant resistance BC does not produce time lag between
flow-rate and pressure profiles that is usually observed in the downstream branches.
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3.3 Impedance BC

The lack of time lag and the excessive pressure variation due to the constant
resistance BC leads us to impedance BC. The impedance is determined in frequency
domain as follows:

bZ DbP=bQ (11)

wherebP and bQ are the Fourier transforms of pressure and flow-rate for one cardiac
cycle at the outlet, respectively. Z(t) is the inverse Fourier transform ofbZ, and it is
embedded in the outflow BC as presented in [26].

.w;h/�out
D



w;n


1

T

Z t

t�T
Z .t � t1/

Z

�out

v .t1/ � n dsdt1 C n � � v � n
�

� � v � n
�

�out

(12)

The impedance BC produces time lag between pressure and flow-rate profiles as
well as lowers the pressure variation between systole and diastole as compared to the
constant resistance BC as described in Section 3.2. However, round-off errors from
the Fourier transforms of pressure and flow-rate as well as from the inverse Fourier
transform ofbZ may cause spurious oscillations in the numerical results. Round-off
errors depend on complexity of the profiles, as discussed in Section 4.

3.4 Clinically Calibrated Time-Dependent Resistance BC

In order to accurately represent the observed time lags and pressure variations
at outflow, we assume that downstream resistance varies during a cardiac cycle.
Downstream blood rheology invariably manifests its non-Newtonian behavior due
to relatively smaller diameters; downstream resistance dynamically varies with
changes in flow-rate and pressure conditions. To incorporate patient-specific data
in the simulation, patient-specific pressure and flow-rate profiles can be measured
in the clinical setting. If the measured profiles do not vary abruptly between multiple
cardiac cycles, then measured data can be used to construct reliable resistance
profiles for a typical cardiac cycle. From these measured pressure and flow-rate
values obtained as function of time, one can determine the time plot of resistance at
that cross-section, as follows:

R.t/ D P.t/=Q.t/ (13)

where P(t) and Q(t) are the pressure and flow-rate profiles for a generic cardiac cycle
at the outlet, respectively. The corresponding BC is updated from (10), as follows:
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4 Numerical Results

The VMS-based stabilized method for shear-rate dependent fluids (i.e., equations
(5)–(7)) with four different types of outflow BCs presented in (8), (10), (12), and
(14) is implemented for equal-order, linear and quadratic, hexahedral and tetrahedral
elements. We present two numerical test cases to verify our method and provide a
comparative study between the four types of outflow BCs.

4.1 Unidirectional Flow in a Rectangular Channel

The first test case is flow in a rectangular channel of dimension 10 cm � 1 cm � 1 cm
as presented in Figure 1. We have adjusted the height of the channel to keep
it in the range of the diameter of human carotid artery. At the inflow we apply
mean profiles for flow-rate and pressure that are typically encountered in the
human carotid artery during a typical cardiac cycle. A parabolic velocity profile
with flow-rate shown in Figure 2 is prescribed as the inflow boundary condition
at x D 0, and the four types of outflow BCs are applied at x D 10 cm (i.e., on
the blue surface in Figure 1). Non-slip BC is imposed at y D 0 and y D 1.0 cm
while slip BC is applied at z D 0 and z D 1.0 cm. The material parameters used
in the Carreau-Yasuda model employed here are as follows: �1D 0.005 Pa � sec,
�0 D 0.056 Pa � sec, �D 1.902 sec, n D 0.22, and a D 1.25. Density � of the fluid is
set equal to 1050.0 kg/m3. The time duration for one cardiac cycle is equal to 1.0 sec
and �t for time integration is set equal to 0.01 sec. In order to minimize the effects

Fig. 1 A channel with
hexahedral and tetrahedral
element
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Fig. 2 Flow-rate and
pressure profiles
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Fig. 3 Impedance for one
cardiac cycle

-15000

-10000

-5000

0

5000

10000

15000

20000

0.0 0.2 0.4 0.6 0.8 1.0

Im
pe

da
nc

e
(M

Pa
˙s

ec
/m

3 )

Time (sec)

from the stationary initial conditions, three cardiac cycles are simulated and the data
from the last cycle is used for post-processing.

Using the flow-rate and pressure profiles given in Figure 2, constant resistance,
impedance, and time-dependent resistance values are computed via (9), (11), and
(13), respectively. The constant resistance applied in this test is 1736.8 MPa � sec/m3.
The computed impedance and time-dependent resistance profiles for one cardiac
cycle are presented in Figures 3 and 4, respectively.

We employed linear and quadratic, hexahedral and tetrahedral elements for this
study and all the element types produced numerically converged solutions. Figure 5
shows numerical results with different outflow BCs: the black and red lines show
computed flow-rate and computed pressure at the outlet, and the blue line is the
pressure profile used for the mean pressure in (8), constant resistance in (10),
impedance in (12), and time-dependent resistance in (14). Figure 5(a) shows that
the constant pressure BC generates stationary pressure at the outlet. The constant
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Fig. 4 Time-dependent
resistance for one cardiac
cycle
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resistance BC generates much larger variation in the computed pressure (i.e., red
line in Figure 5(b)) as compared to the actual pressure variation (i.e., blue line
in Figure 5(b)) without any time lag from the computed flow-rate. The pressure
variation for impedance BC (i.e., red line in Figure 5(c)) virtually lies on top of
the actual pressure profile (i.e., blue line in Figure 5(c)). In Figure 5(d) for the
time-dependent resistance BC, the computed pressure at the outlet (i.e., red line
in Figure 5(d)) overlies the observed pressure for (14) (i.e., blue line in Figure 5(d)).
In summary, the impedance and time-dependent resistance BCs produce the most
accurate downstream effects for shear-rate dependent flows with one outlet in this
test case.

4.2 Idealized Arterial Geometry

This numerical section investigates the effects of outflow BCs (e.g., constant
resistance, impedance, and time-dependent resistance BCs) for multiple outlets.
First, we construct and simulate idealized arterial tree geometry (i.e., full geometry)
including all downstream branches (i.e., the vertical length from the inlet to the
outlet at the bottom is equal to 116.8 cm) in Figure 6. Second, we reduce the full
geometry to only the upstream main branches (see the right-hand side in Figure 6),
and then at the location of outlets of the reduced geometry (i.e., the vertical length
from the inlet to the outlets is equal to 43.7 cm), we measure flow-rates and
pressure profiles from the computations performed on the full idealized arterial tree
geometry. These computed values are then used to determine constant resistance,
impedance, and time-dependent resistance data for outflow BCs. The simulated
results from the full geometry also serve as reference solutions for the numerical
results from the reduced geometry with various outflow BCs prescribed. Two types
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Fig. 5 Flow-rate and pressure profiles at the outlets. (a) Constant pressure BC. (b) Constant
resistance BC. (c) Impedance BC. (d) Time-dependent resistance BC

Fig. 6 Idealized arterial geometry and the reduced model

of downstream branches (i.e., stenosed branch and healthy branch) are designed
in the full geometry in order to create unsymmetrical downstream effects. Table 1
shows mesh characteristics for the full geometry as well as the reduced geometry.
Both geometries employ quadratic tetrahedral (T10) element, and are subject to the
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Table 1 Mesh
characteristics for the
idealized arterial geometry
and the reduced geometry

Full geometry Reduced geometry

No. of elements 127,144 9,569
No. of nodes 217,365 16,687
No. of unknowns 869,460 66,748
No. of CPUs 24 12
Wall time (sec) 11,018 1,599
 1,616
CPU time (sec) 264,432 19,128
 19,392

same cardiac cycle (i.e., time period T D 0.9 sec) with the same time increment
(i.e., &t D 0.01 sec). In order to minimize the effects of the stationary initial flow
conditions, three cardiac cycles are simulated and the data from the last cycle is used
for post-processing.

4.2.1 Idealized Arterial Tree Geometry

The diameter at the inlet of the most upstream branch is 1.26 cm and it sym-
metrically bifurcates into two daughter branches with diameter 0.98 cm each.
The bifurcation angle is 60.0 degree. After the first bifurcation, the two daughter
branches with a diameter Dp unsymmetrically bifurcate into a large branch with
diameter 0.911Dp, and a small branch with diameter 0.584Dp, as presented in
Olufsen [24]. From the second bifurcation onwards, the bifurcation angle is set equal
to 30.0 degree. Each branch keeps the same diameter (i.e., Di) along a length, 20Di.
The healthy branch (i.e., the right branch in Figure 7) is constructed by following the
above geometric ratios. For the stenosed branch (i.e., the left branch in Figure 7),
we assume that the smaller downstream arteries are blocked at the bifurcations.
Consequently, only large branches are constructed, while maintaining the same
change in the diameters at the corresponding bifurcation locations as in the healthy
branch. Table 2 presents the diameters as well as lengths of all the branches of the
full geometry shown in Figure 7.

A parabolic velocity profile is prescribed at the inflow as Dirichlet BC wherein
we have employed patient-specific flow-rate that is typically observed in the human
femoral artery. The constant pressure BC is applied at each outlet surface with
Pmean D 1,500 Pa. Figure 8 shows the velocity magnitude in the upstream branches.
Since the stenosed branch has larger downstream resistance as compared to the
healthy branch due to its blocked smaller arteries, the healthy branch (i.e., right
bottom portion in Figure 8) shows larger velocity magnitude than in the stenosed
branch (i.e., left bottom portion in Figure 8). Figure 9(a) shows the prescribed flow-
rate (i.e., black line) and computed pressure (i.e., blue line) profiles at the inlet, and
Figure 9(b) and (c) shows computed flow-rate (i.e., black lines) and pressure (i.e.,
blue lines) profiles at the beginning parts of the stenosed branch and the healthy
branch, respectively. The stenosed branch in Figure 9(b) shows higher pressure and
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Fig. 7 Full geometry and
labels for diameters and
lengths of branches

Table 2 Diameters and lengths of full geometry

Label a b c d e f g h i

Diameter (mm) 12.6 9.8 5.72 3.34 1.95 3.04 5.21 4.75 2.77
Length (mm) 252 196 114.4 66.7 38.9 60.8 104.2 95 55.4
Label j k l m n o p q
Diameter (mm) 4.33 8.93 8.14 7.42 2.53 3.94 6.76 6.16
Length (mm) 86.6 178.6 162.8 148.4 50.5 78.9 135.2 123.2

lower flow-rates than the healthy branch in Figure 9(c). It shows that the downstream
resistance in the stenosed branch is much larger than that in the healthy branch.
The measurements in Figure 9(b) and (c) are used to determine the parameters
to be employed in the outflow BCs for the reduced geometric model presented
below. They also serve as the reference solutions because they include all nonlinear
downstream effects including the non-Newtonian effects of blood.

4.2.2 Reduced Artery Geometry with Constant Resistance Outflow BC

Using equation (9) with the mean flow-rates and pressure shown in Figure 9(b) and
(c) yields the constant resistance values at outlets. The constant resistance Rs at the
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Fig. 8 Velocity magnitude
contour in upstream branches

stenosed outlet is equal to 276.5 MPa � sec/m3, while the constant resistance Rh at the
healthy outlet is equal to 145.8 MPa � sec/m3. Figure 10 shows computed flow-rate
and mean pressure profiles at the stenosed and the healthy outlets for one typical
cardiac cycle. The constant resistance outflow BC generates the same shape of the
profiles for the flow-rates (see the profiles in Figure 10(a) and (b)). The computed
pressure profiles with the constant resistance outflow BC are substantially different
from the reference solutions as presented in Figure 10(c) and (d).

4.2.3 Reduced Artery Geometry with Impedance Outflow BC

Employing the flow-rate and pressure profiles given in Figure 9(b) and (c) in
equation (11) results in impedance functions at stenosed and healthy branches and
is presented in Figure 11. Since the stenosed branch has larger resistance than the
healthy branch, the amplitude of impedance function for the stenosed branch is
larger than the amplitude for the healthy branch. Figure 12 shows the computed
flow-rate and mean pressure profiles at the stenosed and healthy outlets for one
cardiac cycle. As compared to the constant resistance outflow BC, the impedance
outflow BC results are apparently better in the profile of flow-rate and pressure at
the outlets. However, the computed surface mean pressure in Figure 12(c) and (d)
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Fig. 9 Flow-rate and pressure profiles at the inlet and the locations of the outlets for the reduced
geometry. (a) Inlet. (b) Stenosed branch. (c) Healthy branch

shows oscillations with a higher frequency than that of the heart rate. One possibility
is that the round-off errors from the Fourier and the inverse Fourier transforms for
the calculation of the impedance function are introducing the artificial oscillation in
the numerical solution. Depending on the complexity of the patient-specific profiles
for pressure and flow-rate, this numerical oscillation may become significant and
therefore pollute the numerical simulations. This seems to be an obvious drawback
of the impedance boundary condition for practical application to patient-specific
cases.

4.2.4 Reduced Artery Geometry with Time-Dependent Resistance
Outflow BC

Using equation (13) with the flow-rate and pressure profiles given in Figure 9(b) and
(c) we develop time-dependent resistance functions at the stenosed and the healthy
branches. These are presented in Figure 13. Due to the blockage of the smaller
arteries, time-dependent resistance function for the stenosed branch (i.e., red line
in Figure 13) is always higher than the resistance function for the healthy branch
(i.e., blue line in Figure 13). Figure 14 shows the computed flow-rate and pressure
profiles at each outlet for one cardiac cycle. In Figure 14(c) and (d), the surface mean
pressure profile computed with the time-dependent resistance outflow BC matches
well with the reference pressure profile that was computed with the full arterial tree
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Fig. 10 Computed flow-rate and mean pressure profiles with the constant resistance outflow BC.
(a) Flow-rate at the stenosed outlet. (b) Flow-rate at the healthy outlet. (c) Mean pressure at the
stenosed outlet. (d) Mean pressure at the healthy outlet

geometry. If we compare these pressure profiles to the results for other three outflow
BCs, the simulation with the time-dependent outflow BC is more accurate than the
other BCs.

5 Conclusions

We have presented a stabilized finite element method for incompressible shear-
rate dependent fluids that is augmented with patient-specific outflow BC that
is developed based on clinically measured pressure and flow-rate profiles. We
formulate time-dependent downstream resistance function at each outlet with the
patient-specific data, and apply it at the outlet surface as a weakly imposed boundary
condition. For verification of the new method, we have implemented the constant
pressure outflow BC, the constant resistance outflow BC, and the impedance outflow
BC. We provide a comparative study of the three types of BCs with the proposed
outflow BC in simple rectangular channel geometry, as well as idealized arterial tree
geometry.
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Fig. 11 Impedance functions
for the outlets
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Fig. 12 Computed flow-rate and mean pressure profiles with the impedance outflow BC. (a) Flow-
rate at the stenosed outlet. (b) Flow-rate at the healthy outlet. (c) Mean pressure at the stenosed
outlet. (d) Mean pressure at the healthy outlet
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Fig. 13 Time-dependent
resistance functions for the
outlets

Fig. 14 Computed flow-rate and mean pressure profiles with the time-dependent resistance
outflow BC. (a) Flow-rate at the stenosed outlet. (b) Flow-rate at the healthy outlet. (c) Mean
pressure at the stenosed outlet. (d) Mean pressure at the healthy outlet

The constant pressure outflow BC produces a stationary pressure at the outlet
that does not account for the transient effects from the downstream branches.
The constant resistance outflow BC produces the same profiles for flow-rate and
pressure; therefore, it cannot reproduce the time lag between flow-rate and pressure.
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In addition the induced transient downstream effects are substantially different
from that of the reference solution. The impedance outflow BC generates similar
profiles for the flow-rate and the pressure as are in the reference data; however, the
computed pressure profiles show high-frequency oscillations that never exist in the
full geometry including all downstream branches. This is due to numerical error
that is initiated by round-off errors that arise in the calculation of the impedance
function. This is a significant weakness of the impedance BC for application to
patient-specific cases. The proposed outflow BC (i.e., clinically measured time-
dependent resistance outflow BC) produces most accurate results when compared
to the reference solutions. In addition, it accurately predicts time lag between flow-
rate and pressure as shown in Figure 14.

The proposed outflow BC is able to reproduce most accurate downstream effects
when compared with the competing methods. With this outflow BC, we can
considerably reduce the size as well as the complexity of the geometry for patient-
specific models by ignoring the downstream branches, and this can substantially
decreases the computational costs both in storage and in time. For the second
test case involving idealized arterial tree geometry, the reduced geometry with the
proposed outflow BC took 19,188 sec in CPU time, while the full geometry took
264,432 sec. This results in 13.8 times reduction in the cost of computation with the
reduced geometry (see Table 1) as compared to the full arterial tree geometry.
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A Geometrical-Characteristics Study
in Patient-Specific FSI Analysis of Blood
Flow in the Thoracic Aorta

Hiroshi Suito, Kenji Takizawa, Viet Q.H. Huynh, Daniel Sze, Takuya Ueda,
and Tayfun E. Tezduyar

Abstract This chapter is on fluid–structure interaction (FSI) analysis of blood flow
in the thoracic aorta. The FSI is handled with the Sequentially Coupled Arterial
FSI technique. We focus on the relationship between the aorta centerline geometry
and the wall shear stress (WSS) distribution. The model centerlines are extracted
from the CT scans, and we assume a constant diameter for the artery segment. Then,
torsion-free model geometries are generated by projecting the original centerline to
its averaged plane of curvature. The WSS distributions for the original and projected
geometries are compared to examine the influence of the torsion.

1 Introduction

In this chapter, we examine the relationship between the geometrical characteristics
of the thoracic aorta and the wall shear stress (WSS) distribution, which is thought
to play an important role in development of cardiovascular diseases. Thoracic-
aortic aneurysm is one of the life-threatening diseases, which is defined as a
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condition of dilatation of the aorta to greater than 1.5 times its normal diameter [1].
The aneurysm slowly grows with the advancing age of the patient and increases
its diameter, and may eventually rupture. An aortic aneurysm may be treated
with surgery or endovascular repair, depending on the predicted rupture risk and
condition of the patient [2]. An important factor in determining the treatment
method is balancing the rupture risk against the complications of the operation itself.
It has been reported in many articles that the rupture risk is proportional to the
aneurysm size. However, the natural development history of these aneurysms has
not been fully understood [3].

Another clinically important question is where the aneurysm would occur, as the
aneurysm location is relevant to the treatment risks and prognostic implications.
Our target in this chapter is the thoracic aorta, which consists of the ascending
aorta, aortic arch, and descending aorta. The ascending aorta rises up from the heart
and curves posteriorly (aortic arch). After the strong curve of the aortic arch, the
aorta goes downward to the abdomen (descending aorta). The aortic arch has a wide
variety of shapes, and the curvature and torsion distributions present from the aortic
arch to the descending aorta vary from patient to patient.

The WSS is thought to play an important role in the natural history of the
progress of atherosclerosis in aortic aneurysms. The WSS distribution is derived
from the flow field, which is governed by the flow equations, initial and boundary
conditions, physical parameters involved in the equations, and the geometry of the
flow domain. Here, we concentrate on the domain geometry, which is different from
patient to patient and is expected to be an important factor in distinguishing the
high-risk patients from other patients and in predicting where the aneurysm would
develop. Differences in the blood vessel geometry bring about differences in the
flow characteristics, which generate different WSS distributions. To gain insight in
this context, we provide a fluid–structure interaction (FSI) analysis of the blood flow
and examine how the WSS distribution depends on the geometrical characteristics.

In our analysis, the centerlines of the aorta models are extracted from the CT
scans, and we assume a constant diameter for the artery segment. We focus on
the torsion, which is defined by the Frenet–Serret formulas. We generate torsion-
free model geometries by projecting the original centerline to its averaged plane of
curvature. We compare the WSS patterns corresponding to the original and projected
geometries and discern the influence of the torsion.

The computational methods and problem setup are summarized in Section 2. The
results are presented in Section 3, and the concluding remarks are given in Section 4.

2 Computational Methods and Problem Setup

The arterial FSI analysis is handled with the Sequentially-Coupled Arterial FSI
(SCAFSI) technique [4–9], which is quite often suitable for classes of FSI problems
with temporally-periodic FSI dynamics. First we carry out the structural mechanics
computation to obtain the deformation of the artery under an observed blood
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pressure profile in a cardiac cycle. Then we do the fluid mechanics computation
over a mesh that moves to follow the lumen as the artery deforms. The fluid
mechanics computations with the moving meshes are carried out with the space–
time variational multiscale (ST-VMS) method [9–13], which is the VMS version
of the Deforming-Spatial-Domain/Stabilized ST (DSD/SST) method [14–18]. The
VMS components of the ST-VMS method are from the residual-based VMS method
given in [19, 20]. For mesh moving and remeshing methods, we refer the interested
reader to [9, 13, 18, 21–29]. Earlier work [30] showed that a single pair of fluid and
structural mechanics computations gives results that are very comparable to those
obtained with full FSI computation, especially in terms of the WSS values.

Simplified geometries for the thoracic aorta are used in this study. Branches such
as the brachiocephalic trunk, left common carotid artery, and left subclavian artery
are neglected. Moreover, we assume a constant diameter for the aorta because our
focus is on understanding the differences brought about by the shape of the aorta
centerline. We consider three patient-specific cases, identified as Case A, Case B,
and Case C. The lumen diameter is 3.0 cm in all three cases. The three cases have
different curvature and torsion distributions. Figure 1 shows the original geometries
for the three cases, indicated by the suffix WT. Figure 2 shows the torsion-free
geometries, indicated by the suffix TF, obtained by projecting the original centerline
to its averaged plane of curvature.

The fluid mechanics meshes are made of 4-node tetrahedral elements, and
the structural mechanics meshes 8-node hexahedral elements. We build layers of
refined fluid mechanics meshes near the arterial walls. The blood is assumed to
be a Newtonian fluid. The density and kinematic viscosity are 1.0�103 kg/m3 and
4.0�10�6 m2/s. A velocity waveform pulsating over the cardiac cycle (with period
T D 1:0 s) is applied as a plug flow at the proximal (inflow) boundary. Figure 3
shows the flow-rate waveform at the inflow boundary. The material model for the
arterial wall structure is neo-Hookean. The density, Young’s modulus, Poisson’s
ratio, and wall thickness are 1.0�103 kg/m3, 400 kPa, 0.4 and 0.3 cm. Since no
residual stresses are considered in the computations, the pressure is applied in the
range 0 to 40 mm Hg.

Fig. 1 Original
(with-torsion) models for the
three cases.
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Fig. 2 Projected
(torsion-free) models for the
three cases.
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Fig. 3 Flow-rate waveform at the inflow boundary.

The mesh-moving method is based on solving the large-deformation solid
mechanics equations, as in [25], and the constitutive model in those equations is
St. Venant–Kirchhoff, also as in [25], with a Poisson’s ratio of 0.0. The initial
fluid mechanics mesh serves as the reference configuration in this large-deformation
model. The mesh motion is driven by the motion of the fluid mechanics mesh at
the interface, which is obtained by projection from the motion of the structural
mechanics mesh there. For more on the computational conditions, see [31].

3 Results and Discussion

Figures 4–5 show the WSS at the peak systolic state (t D 0:2 s) for Cases A, B, and
C. We do not attach significance to the high WSS seen in all cases near the inflow
boundary, because it is caused by the plug flow profile specified at that boundary.
In Cases A and B, shown in Figures 4 and 5, the high WSS around the aortic arch
seems to be intensified by the torsion there. In Figure 4, it can also be seen that the
high WSS area expands downstream in a spiral way. In Case C, shown in Figure 6,
the situation is different. The high-WSS area seen around the aortic arch in Case
C-TF loses intensity and is dispersed in Case C-WT. We note that the high WSS
is seen not only at the aortic arch but also at the descending aorta because of the
torsion effect.
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Fig. 4 WSS for Case A.

Fig. 5 WSS for Case B.

4 Concluding Remarks

We have presented a geometrical-characteristics study in patient-specific FSI anal-
ysis of blood flow in the thoracic aorta. The FSI was handled with the SCAFSI
technique, and the fluid mechanics computations were based on the ST-VMS
method. The centerlines of the aorta models were extracted from the CT scans,
and we used a constant diameter for the artery segment. In our study, we focused
on the effect of the torsion on the WSS. For this purpose, torsion-free model
geometries were generated by projecting the original centerline to its averaged plane
of curvature, where the centerline has almost the same curvature but without the
torsion. We summarize our observations in two items.
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Fig. 6 WSS for Case C.

1. In Cases A and B, the WSS in the aortic arches is intensified in the presence of
torsion. The area of high WSS expands downstream.

2. In Case C, the high-WSS area can be seen also in the descending aorta in the
presence of torsion, where the WSS is not high when there is no torsion. In this
patient’s case, the aortic aneurysm was at the descending aorta.

These observations suggest that torsion has a significant effect on the WSS
distribution in blood vessels, and a statistical identification of that effect would be a
reasonable next step.
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Particle Method Simulation of Thrombus
Formation in Fontan Route

Ken-ichi Tsubota, Koichi Sughimoto, Kazuki Okauchi, and Hao Liu

Abstract A computer simulation was carried out for thrombus formation under the
influence of blood flow after Fontan operation. Blood was modeled by computed
particles assigned as normal blood or thrombus. Blood flow was calculated using a
moving particle semi-implicit method. In a model of blood coagulation that causes
thrombi, a normal blood particle changed to a thrombus when its shear rate was
lower than a threshold. A spring force was employed to express the coagulation, and
was substituted into the NS equations as the external force to couple the coagulation
and the blood flow. In simulations, thrombus formation was affected by blood flow
behaviors, such as stagnation and recirculation. The atrio-pulmonary connection
(APC) square model showed the highest incidence for thrombus formation in the
right atrium due to flow stagnation, followed by the APC round, whereas no
thrombus was formed in the total cavopulmonary connection model. This result
suggests that local hemodynamic behavior associated with the complex channel
geometry plays a major role in thrombus formation in the Fontan route.

1 Introduction

It has long been suggested that thrombus formation is greatly affected by blood
flow behavior [1, 2]. Flow stagnation causes venous thrombus, as referred to in
Virchow’s triad [3], in which the deposition of blood cells at low flow velocity is
a key mechanical factor [4–8]. Conversely, a high fluid shear stress induces von
Willebrand factor release followed by platelet activation and aggregation [9, 10],
resulting in arterial thrombus formation. Thus, between flow stagnation and high
flow velocity, blood flow plays different roles in thrombus formation [1], and both
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flow states should be considered to better understand the mechanism of thrombosis
and aid the further development of improved treatments.

This study focuses on thrombosis of single ventricle patients, where a thrombus
formation by flow stagnation likely to occur. Single ventricle is defined as a
heart with only one ventricle connected with atria, or with two ventricles but
unable to sustain separately pulmonary and systemic circulations [11]. Single
ventricle generally undergoes “Fontan circulation” that is the reconstructed blood
flow circulation by cardiac operation. Classical Fontan, namely atrio-pulmonary
connection (APC), has been strongly associated with a dilatation of the right atrium
that could occur over time, causing arrhythmia and thickening of the atrial wall,
thereby resulting in thrombus formation [12–16]. Converting the venous return
flow from the inferior vena cava (IVC) from the APC to a total cavopulmonary
connection (TCPC) by placing a conduit has gained acceptable outcomes [17–19].
However, the reason why a TCPC is superior to an APC remains controversial in
terms of hemodynamics [20] and coagulation [15, 16].

In this study, a two-dimensional (2D) computer simulation of thrombus forma-
tion in the Fontan route was carried out using a particle method [21–25]. In a
model of blood coagulation that causes thrombi, a normal blood particle changed
to a thrombus when its shear rate was lower than a threshold. A spring force was
employed to express the coagulation, and was substituted into the NS equations as
the external force to couple the coagulation and the blood flow [21, 25]. Simple
hemodynamics models of an APC and a TCPC were created for simulations of
thrombus formation under the influence of blood flows.

2 Methods

Blood coagulation was assumed to occur at local flow stagnation. Hemodynamics in
the Fontan route was simulated using equations of continuity and Navier– Stokes. In
a computer simulation of thrombus formation, blood coagulation and its associated
hemodynamics was coupled using a particle method.

2.1 Particle Method for Fluid Analysis

A blood region was discretized by an assembly of computed particles. Incompress-
ible viscous flow of the blood, which was based on the equation of continuity

D�

Dt
D 0 (1)
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and the NS equations

Du
Dt

D �1
�

rP C �

�
r2u C f; (2)

was expressed by calculating particle motion using the moving particle semi-
implicit (MPS) method [22]. In Eqs. (1) and (2), � is density, t is time, u is velocity,
P is pressure, � is viscosity, f is external force, and D/Dt is the material derivative.
Gradient r and Laplacian r2 of physical quantities are discretized by a particle
interaction model [22].

2.2 Biomechanics Model of Stagnation Thrombus Formation

Two types of blood component, normal blood and thrombus, were considered in a
computer simulation of thrombus formation [25], and their properties were assigned
to a computed blood particle (Fig. 1). To express thrombus formation at flow
stagnation according to Virchow’s triads [3], a spring force, fij

C, for coagulation,
was applied between two thrombus particles i and j [21]:

f C
ij D �f C

ji D �kC
�ˇ
ˇrij

ˇ
ˇ � rC

0

� rij
ˇ
ˇrij

ˇ
ˇ

�ˇ
ˇrij

ˇ
ˇ < rC

cut

�
; (3)

In Eq. (3), rij D rj � ri and ri are rj the position vectors of particles i and j,
respectively; r0

C is the natural length of the spring; kC is the spring constant; and
r0

C is the threshold distance for particle interaction. In the MPS method for solving
blood flow, the blood coagulation was coupled with the blood flow by substituting
fij

C into the NS equation (2) as the external force f [21, 23, 24]. A normal blood
particle was assumed to change to a thrombus when it neighbored another thrombus
particle and its principal shear strain rate

:
� (a measure of stagnation, and hereafter

called shear rate) was smaller than a threshold
:
�

C
th.

Fig. 1 Model of thrombus formation with particle method. Blood particle i changes to a thrombus
if shear rate

:
� i is smaller than a threshold

:
�

C
th. Coagulation is expressed by connecting a thrombus

particle to other thrombus particles by springs.
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Fig. 2 Two-dimensional model of blood flow channel for atrio-pulmonary connection (APC) and
total cavopulmonary connection (TCPC) of Fontan route. (a) APC square, (b) APC round, and (c)
TCPC.

2.3 Hemodynamics Models of Fontan Route

Two-dimensional adult-sized Fontan geometries of a blood flow channel were
modeled as an APC square, an APC round, and a TCPC (Fig. 2). “Square” or
“round” in APC models denotes the shape of the right lower corner of the right
atrium (RA). APC models were designed as an adult patient in failing Fontan with
dilated right atrium. To focus on the difference mainly between the failing Fontan
patient with dilated right atrium and the patient with TCPC route, the size of the
APC square model was designed as follows: the square right atrium of 80 mm in
length on each side, the vena cavae of 40 mm in length and 20 mm in width, and
the pulmonary artery (PA) of 100 mm in length and 14 mm in width. The right
atrium of the APC round model has the rounded lower right corner with a 30-mm
curvature radius. With regard to the size of the TCPC model, the length and width
of the extracardiac conduit was 73 and 20 mm, respectively.

The blood flow velocity in the inferior vena cavae, as the inlet boundary
condition, was set at 0.1025 � 0.2083 m/s to express the velocity condition at rest
and during exercise (0.5 W/kg and 1.0 W/kg) (Table 1), whereas the flow from the
superior vena cava was set from 0.0808 to 0.0814 m/s. Here, the velocity values
in the two dimensions were determined from published measurements [14]. At the
pulmonary arteries as the outlet boundary condition, free-outflow and zero-pressure
conditions were assumed. A non-slip condition was assumed at the wall. The
density and the kinematic viscosity of the blood were set as 1.06 � 103 kg/m3 and
4.43 � 10�6 m2/s, respectively, giving the Reynolds number an order of a hundred.
Thus, the 2D hemodynamics of the Fontan route was determined by the channel
geometries of blood flow and velocity values at the vena cavae.
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Table 1 Velocity from the SVC and IVC. 3D data is referenced from published measurements
[14]. IVC inferior vena cava; SVC superior vena cava; 2D two-dimensional; 3D three-dimensional.

SVC IVC
3D 2D mean velocity 3D 2D mean velocity
l/min/m2 m/s l/min/m2 m/s

Rest 1.26 0.0808 1.6 0.1025
0.5 W/kg 1.27 0.0814 2.58 0.1654
1.0 W/kg 1.27 0.0814 3.25 0.2083

With respect to the set of simulation parameters, the spatial resolution was
d0 D 1 mm in terms of mean particle distance, and the total number of computed
particles was 15,925 in the APC square, 15,224 in the APC round, and 11,142 in the
TCPC. In Eq. (2) of the coagulation force, kC D 5.0 � 10�2 N/m; r0 D d0; and r0

C

D1.5d0. A threshold shear rate for blood coagulation was set as
:
�

C
th D 0.

3 Results and Discussion

3.1 Effects of Fontan Route Geometry

Thrombus formation was simulated for the APC and TCPC models with the venous
velocity at rest. In the APC square, the blood flow stagnated at the lower right corner
of the atrium (Fig. 3a). Accordingly, thrombus was formed and grown at the corner
of the atrium (Fig. 3b). A portion of the thrombus was collapsed by fluid flow, and
flew out from the atrium into PA. In the APC round, the blood flow showed less
stagnation in the atrium, and thus thrombus formation was moderate (Fig. 4a). The
TCPC route showed a smooth flow from the vena cavae to the pulmonary arteries
without significant stagnation, resulting in thrombus hardly formed (Fig. 4b).

3.2 Effects of Venous Flow Velocity

To examine the effects of blood flow velocity at the vena cavae, thrombus formation
was compared among three velocity conditions at rest as well as in the presence
of light and moderate exercise using the APC square model. The results showed
that every condition resulted in thrombus formation at the right lower corner over
time (Fig. 5). A lower flow rate caused more thrombus formation. A reduction in
thrombus formation was observed during mild exercise (0.5 W/kg), whereas this
was more evident during moderate exercise (1.0 W/kg).
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Fig. 3 Simulation result by APC square model with inflow velocity at rest. (a) Flow velocity and
(b) thrombus formation according to blood flow.

4 Discussion and Conclusion

A 2D computer simulation method based on a simple coagulation rule and local
complex hemodynamics demonstrated the mechanism of thrombus formation in
the Fontan route. TCPC is superior to the classical APC in terms of preventing
thrombus formation. The flow channel geometry of the APC route stagnates the
blood flow, which in turn facilitates thrombus formation. A slower venous flow from
the IVC is more likely to form a thrombus. The results of this study suggest that a
complex local flow based on the geometry of the blood vessel is a major factor
that influences thrombus formation in the Fontan route. The proposed simulation
model can contribute to the assessment and prediction of the most efficient surgical
approach that would simultaneously minimize the occurrence of local thrombus
formation.

Conversion from the APC to the TCPC by using a conduit may ameliorate
venous flow delivery to the lungs [26], ensuring a better quality of life. Although
the indication and timing for TCPC conversion is mainly determined through
experience-based decisions [18, 27, 28], the underlying mechanism of thrombus
formation in the RA and the reason why the TCPC is superior to the classical
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Fig. 4 Simulated flow velocity (top row) and thrombus formation (bottom row) for (a) APC round
and (b) TCPC.

Fig. 5 Thrombus formation of APC square by different inflow velocities of vena cava at (a) rest,
(b) light exercise (0.5 W/kg), and (c) moderate exercise (1.0 W/kg).

route in terms of hemodynamics [29, 30] and prevents thrombus formation are
not conclusive yet. The simulation results demonstrated that thrombus formation
is largely influenced by the following: 1) the configuration of the Fontan route from
the vena cavae to the PA and 2) the speed of the flow in the Fontan pathway.
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It was shown that once a thrombus is created, it grows in size, and a portion of
the thrombus is disengaged and released into the outflow toward the PA. Thrombi
embolization into the PA in a Fontan patient is life threatening; thus once a thrombus
is detected, a TCPC conversion is required immediately [31]. In this respect,
simulation results demonstrated that the shape of the Fontan route greatly influences
thrombus formation process via local blood flow dynamics, as well as the flow rate
from the IVC (i.e., cardiac output). This point is also related with treatment with
anticoagulation therapies such as warfarin [32].

The simulation results shown here were based on rather simplified models; they
should be improved to include detailed coagulation systems, three-dimensional fluid
mechanics by patient-specific cardiovascular geometries, and endothelial injuries.
These improvements will realize quantitative estimation of a risk of thrombosis for
single ventricle patients.
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1 Introduction

Aorta is the main artery of our circulatory system; the investigation of its hemody-
namics in physiological and pathological conditions is still one of the major topic
of vascular biomechanics because it represents a driving factor in the evaluation
of mechanisms underlying the aortic diseases, such as dissection or aneurysm,
which are characterized by high mortality if untreated [6]. In particular, thanks to
the developments of new endovascular technologies such as thoracic endovascular
repair (TEVAR), which is rapidly replacing the classical open-surgery, a lot of
attention is paid to the hemodynamics analysis of thoracic aorta, (see, e.g., [1, 11]),
i.e., the aortic region from the sino-tubular junction to the celiac bifurcation. Such
an analysis accounts also for aortic arch embedding the supra-aortic branches,
which is considered the new frontier for further developments of endovascular
approaches aimed at treating challenging clinical situations located in the region
close to the heart (see, e.g., [18]). Furthermore, there are several aspects that
make aortic hemodynamics very peculiar from patient to patient. First of all, the
morphology of the arch triggers special features (see, e.g., [3]) that generally have
a major impact on the fluid dynamics. Other aspects refer to the flow regime
and the disturbances of the flow that in dependence on the patient’s conditions
require special numerical treatments. In this work we aim at performing a sensitivity
analysis of morphological aspects by comparing numerical results about three cases:
(i) an idealized aortic arch with a candy cane shape; (ii) a patient-specific healthy
arch; (iii) a patient-specific dissected aorta. For the idealized aortic arch case we
also compare the obtained results with respect to the theoretical and experimental
literature dedicated to curved pipes.

2 Fluid Model and Numerical Method

The fluid problem is modeled by the incompressible Navier–Stokes equations
(that is, a Newtonian isothermal fluid with a homogeneous density and viscosity
distribution). Such an approximation is known to be acceptable in the aorta (see,
e.g., [7]). In particular, we solve

�



@u
@t

C u � ru
�

C rp � r � � �ru C ruT
� D f; (1)

r � u D 0; (2)

where � is the density (1:06 g=cm3), � is the dynamic viscosity (4 cP), u is the
velocity, p is the pressure, and f a possible load.

For the geometries of interest, the analytical solutions of equations (1–2) are not
available and we need to resort to numerical approximations. As for a consolidated
practice, computational tools provide reliable quantitative results to investigate
physiopathological conditions (see, e.g., [7]).
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In particular, we consider a classical finite element approximation applied to
the primitive variable formulation of the incompressible fluid equations given
in (1–2). The special nature of the problem requires care in the selection of the
piecewise polynomial approximation of the discrete velocity and pressure fields.
In our case, we use piecewise linear pressures while velocities are approximated
by piecewise linear functions added by a cubic correction (called “bubble”). We
use unstructured tetrahedral meshes within the LifeV Library (https://www.lifev.
org). Time advancing is obtained by a second order BDF scheme with an algebraic
splitting of velocity and pressure computation—Yosida scheme, see [16]. Initial
conditions are set to zero, their impact on the solution is negligible after simulating
a judicious number of heart beats [17]. Boundary conditions are specified later on
(see section 4.1).

3 Considered Geometries

In the present work, we consider three vascular geometries.

• A simplified candy cane geometry, depicted in Fig. 1, basically represented by
four parameters: pipe diameter a (3:2 cm), curvature radius R (2:9 cm), proximal
L1 (5 cm), and distal extension L2 (14 cm) of the pipe.

• A healthy patient-specific aorta: a dataset of medical images has been acquired
at Ospedale Maggiore in Milano (Italy), using a Siemens SOMATOM Definition
Flash Dual-Source CT Scanner, able to capture 10 time frames per cardiac cycle.
The original computed tomography angiography set refers to a 72-year-old male
patient and covers the entire length of the thoracic and abdominal aorta from

Fig. 1 Considered geometries, from left to right: the candy cane, the healthy and pathological
aortas

https://www.lifev.org
https://www.lifev.org
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the aortic root to the bifurcation into the iliac arteries. From this set, the region
including the aortic arch has been selected and a level set segmentation has been
performed.

• A pathological patient-specific aorta: this anatomy is obtained by the segmen-
tation of pre-operative multislice computed tomography regarding a 51-year-old
male patient suffering hypertension and having an asymptomatic post-dissecting
thoracic aortic aneurysm. It is worth noting that in this case we do not include the
distal tract of the descending aorta. As a matter of fact, the presence of the false
lumen and of one entry tear complicates the simulation and are, however, out of
our region of interest, i.e., ascending, arch, and proximal descending aorta.

Both healthy and pathological aortas have an average diameter of 2.8cm.

4 Boundary Conditions

We assumed different boundary conditions when performing the different test cases
as detailed in the following. The prescription of boundary conditions in computa-
tional hemodynamics is critical. In patient specific cases, we typically experience
a lack of measures that prevents a completely data-driven analysis. Simplifying
assumptions and surrogate models are necessary to have mathematically consistent
problems to simulate. Here we present some possible choices aiming at being
reliable for the aortic problems and at having significantly comparable cases.

4.1 Inflow Conditions

1. Steady inflow: we choose as an almost flat profile given by the equation:

f .r/ D
(
1 r � ˛a;
.r�a/
.˛�1/a r > ˛a;

(3)

where r is the radial coordinate, ˛ is an adimensional smoothing factor, set to 0:8
in our simulations.

This choice is motivated by the fact that at the entrance of the arch flow
is not fully developed. Actually, flow patterns are the result of the complex
interaction with the leaflets of the valves. In absence of a complete modeling of
this interaction, flat profile is a choice more reliable than fully developed flow [3].

As a matter of fact, the inlet flow in our simulations is not yet fully developed.
We believe that this is not an analysis drawback because, at the inlet of the arch,
the flow is mainly driven by the heart during systolic phase with a profile close
to a flat shape more than to a fully developed paraboloid (see [3]).
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Fig. 2 Considered pulsatile physiological entry-flow rate (see [10])

2. Unsteady inflow: For the unsteady test cases, on the inflow section, we modulate
the flat profile in eq. (3) by a time waveform retrieved from [10] and displayed in
Fig. 2.

4.2 Outflow Conditions

Outlet conditions are critical for the reliability of the simulations. A popular
approach is to incorporate the presence of distal districts by means of surrogate
low fidelity and low dimensional models like lumped parameter systems. In simple
idealized cases we can simply prescribe homogeneous Neumann conditions when
no peripheral circulation needs to be included. This motivates the following choices.

• 3-elements Windkessel outflow: For the patient-specific aortas, we prescribed a
classical 3-elements Windkessel modeling of the distal circulation. This means
that the peripheral impedance at each outflow section is represented by two
resistances R1 and R2 and one compliance C (RCR model). The specific values
of those parameters are taken from [8].

• Traction free outflow: For the candy cane geometries, we impose the free-
stress boundary condition. As there is only one outflow boundary and this choice
basically shifts the pressure only up to a hydrostatic constant.

• Wall boundary condition: we prescribe null velocity on the lumen walls.
Despite such an approach is commonly adopted in literature, a more accurate
model would include the interaction of fluid and structure, but the computational
costs would be significantly higher and the accuracy advantage questionable
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because the structural model for the arterial wall (differently from the blood
model given by the Navier–Stokes equations) is affected by several uncertainties.

5 Numerical Tests

As mentioned before we consider three geometries and four numerical tests.

1. Candy cane geometry with constant entry-flow rate, whose value is the maximal
flow rate at the systolic peak of the pulsatile physiological entry flow (347
cm3=s), see Fig. 2, and free-stress outflow.

2. Candy cane geometry with a pulsatile physiological entry-flow rate (see Fig. 2)
and free-stress outflow.

3. Healthy aorta geometry with a pulsatile physiological entry-flow rate (see Fig. 2)
and 3-Windkessel outflows (see section 4).

4. Pathological aorta geometry with a pulsatile physiological entry-flow rate (see
Fig. 2) and 3-Windkessel outflows (see section 4).

In what follows, we first present a discussion on the flow and wall shear stress in
curved pipes for steady and pulsatile flows; however we do not review extensively
previous contributions, since our main objective is to discuss trends observed in
simplified geometries with respect to the two patient-specific geometries at hand.
Nevertheless, we provide many important references on the subject for the interested
reader. We conclude by comparing the flows and wall shear stresses in the patient
specific aortas with respect to the results obtained with the candy cane geometry.
Simulations are carried out with the CCC Object Oriented library LifeV (www.
lifev.org), in particular with the solvers developed in the Emory-Pavia branch
described in [16].

5.1 Curved Pipes

Steady flows in curved pipes with a constant curvature are characterized by the
following adimensional group, known as the Dean number (see [12]):

D WD Re

r
a

R
D 2�Q

��

r
1

aR
;

where Q is the flux, a is the radius of the pipe, R the radius of curvature, and Re is
the Reynolds number, i.e., (Re D 2�Ua=�) with U the inflow mean velocity.

The maximum Dean number for our application is about 2717 with the maximal
entry flux-rate being of 347 cm3=s at the systolic peak (see Fig. 2) and, as a
consequence, our application belongs to the category of large Dean numbers for
which no analytical solutions exist (see [12]). It is worth pointing out that not all

www.lifev.org
www.lifev.org
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Fig. 3 Streamlines (top) and velocity contour plots (bottom) for the four cases considered. From
left to right: candy cane steady, candy cane pulsatile, healthy patient, pathological case. The cross
sections displayed are taken in the center of the aortic arch. Bottom side corresponds to the internal
bend. Results refer to the systolic peak for the three rightmost (unsteady) simulations

the definitions of the Dean numbers are consistent, which renders cumbersome the
comparisons of the results with the literature (see [2] for a discussion on the subject).

Major results from the analysis of Dean’s equations are, firstly, that symmetric
secondary flows are introduced since the curvature of the pipe induces a gradient
of pressure from the inner bend to the outer one and, secondly, that the fastest flow
tends to be pushed toward the outer bend as the Dean number grows (see [12]).
These analytical and numerical results assume that the flow is fully developed. For
such a high Dean number used in our application, we would therefore expect the
fastest flow to be much closer to the outward part of the bend than the one we obtain
(see Figs. 3 and 4). The discrepancy comes from the fact that we do not employ
a fully developed but a flat profile in inflow (see Sec. 4). Instead, we observe two
vortexes on the inner part of the arch; a similar result is obtained in [13] with an
experimental setting and a flat inflow profile (see also [3]). A major implication is
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Fig. 4 Streamlines and speed at systolic peak. From left to right, we have: steady and unsteady
flows in candy cane, unsteady flows in the healthy and pathological aorta

that with fully developed flows we would expect the wall shear stress to be much
higher on the outward part of the arch. Instead, it clearly appears in Fig. 5 that a
high wall shear stress occurs near the two vortexes as observed in Fig 3. We may
also observe in Fig. 5(b) a very low wall shear stress on the inner part of the arch.

Oscillatory flows in curved pipes were first studied in [9] (see again, e.g., [2, 3,
12] for an extensive review) and a major result is the possible presence of a Stokes
boundary layer (or oscillatory boundary layers), as it can clearly be observed in
Fig. 3 by the presence of reversed eddies. More complex flow patterns with multiple
vortexes are also observed since we employ a physiological pulsatile entry flow, as
in [5]. As opposed to [5] in which symmetry of the secondary flows is assumed,
we can see in Fig. 3 that the secondary flows are not symmetric, as shown in, e.g.,
[15], while the symmetry is always present in the steady entry flow case with finite
curvature, as shown in [14].

Another major difference between steady and pulsatile flows in curved pipes is
that, in the case of pulsatile flows, the maximal axial speed is pushed toward the
inner bend, as clearly observed in Fig. 4. As a consequence, the wall shear stress
is higher in the inner part of the pipe, as it can be seen in Fig. 5, and as opposed
to the steady flow case, in particular with fully developed entry flows, as shown
experimentally in [4] and theoretically in [9].

5.2 Patient-Specific Aortas

Two important shared trends are observed from the pulsatile entry flow analysis
between the simplified geometry and the patient-specific ones:

1. the highest axial speed is bended toward the inner part of the bend (see Fig. 4);
2. high wall shear stress remains on the lower part of the aorta (see Fig. 5).
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Fig. 5 Wall shear stresses for the different cases under investigation

Furthermore, for the healthy aorta, the flow boundary layer appears to be of the
same size as the candy cane with a pulsatile entry flow and the speed is of the same
order of magnitude. On the contrary, due to a strong bending in the pathological
aorta much faster flow is observed at the inner part of the arch, as well as a
much thinner boundary layer. Also, results in Fig.3 suggest completely different
and irregular flow patterns from the idealized and patient-specific aortas; meaning
that irregular diseased conditions may even accelerate and drive the evolution of the
pathology.

However, it clearly appears that only a patient-specific analysis can provide a
precise distribution of the wall shear stress which is severely impacted from the
changes of topology of the aorta wall. Also, the pathological aorta bluff induces a
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boundary-layer flow separations, resulting in a disturbed flow in the upper part of
the descending aorta, leading thus to a much greater Reynolds number in this part
of the aorta.

6 Conclusion

As well known, numerical results in computational hemodynamics are majorly
influenced by the vascular geometry and the prescription of the boundary conditions.
Image and geometrical processing techniques enable an accurate reconstruction of
patient-specific cases, while for the boundary conditions the gap between available
measures and needed data for the mathematical consistency of the problems to
solve is still challenging. In this paper, we tested our numerical solver on nontrivial
cases for the aortic flow. Aorta has a complex fully 3D morphology that triggers
specific flow patterns and simplifying assumptions in the numerical process may
prevent a correct capturing of the relevant features. In cross-checking our results
and comparing available experimental data, we assess the reliability of our specific
numerical solver while pointing out the importance of an accurate reconstruction of
the patient-specific geometry and of the selection of boundary data.
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An Image-Based Computational Framework
for Analyzing Disease Occurrence
and Treatment Outcome in Patients
with Peripheral Arterial Disease

Shaolie S. Hossain

Abstract Peripheral arterial disease (PAD) is generally attributed to the progressive
vascular accumulation of lipoproteins that lead to the formation of atherosclerotic
plaques in the lower extremities. The disease process is largely regulated by the local
hemodynamics and biophysical conditions. In this work, an isogeometric analysis
framework is presented to analyze blood flow and vascular deposition of circulating
nanoparticles (NPs) in the superficial femoral artery (SFA) of a PAD patient
followed up over 24 months. The patient-specific geometry of the blood vessel and
the hemodynamic conditions are derived from magnetic resonance imaging (MRI),
performed at baseline and 24-months after stent-implantation. A dramatic improve-
ment in blood flow dynamics is observed post-intervention resulting in a 500 %
increase in peak flow rate as a consequence of luminal enlargement. Furthermore,
flow simulations reveal a 32 % drop in mean oscillatory shear index, indicating
reduced disturbed flow post-intervention. The same patient-specific data is then used
to predict in silico the vascular deposition of systemically injected nanomedicine.
These NPs are targeted to inflammatory cell adhesion molecules (CAMs) such as
vascular cell adhesion molecules (VCAM-1) that are known to overexpress at the
diseased site. Results show that VCAM-1 directed NPs preferentially accumulate
near the stenosis in the baseline configuration. Such selective deposition of NPs
within the stenosis could be effectively used for the detection and treatment of
plaques forming in the SFA. The proposed MRI-based computational protocol can
be used to analyze data from clinical trials to explore possible correlations between
hemodynamics and disease progression in PAD patients, and potentially predict
disease occurrence as well as the outcome of an intervention.
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1 Introduction

Peripheral arterial disease (PAD) is a vascular disease inducing the progressive for-
mation of plaques (atherogenesis), specifically in the arteries that carry blood to the
limbs, head, kidneys, and stomach [1–4]. These blockages can lead to impaired leg
function, reduced quality of life, and possibly loss of limb. PAD management can be
categorized into pharmacological (lipid lowering treatments), surgical (deployment
of stents, revascularization, and vascular surgery), and a combination of the two
[1, 5]. The first step in atherogenesis generally is the accumulation of circulating
low density lipoprotein particles into the sub-intimal space of the arterial wall
[6]. This accumulation is generally higher at sites of disturbed flow [7–12], where
typically larger rates of endothelial cell (EC) proliferation and apoptosis, higher vas-
cular permeability, over-expression of EC adhesion molecules (ICAM1, VCAM1,
E-selectin), and the release of chemo-attractants from ECs are observed [13, 14].
This clearly emphasizes the importance of an accurate determination of the local
flow field to potentially predict the occurrence of the disease and the outcome of any
intervention. The main objective of this work is to bring together a number of avail-
able technologies to build a patient-specific computational framework that can be
used to analyze data from clinical trials to provide insights into PAD management.

To that end, the geometry and hemodynamic conditions for an SFA of a PAD
patient are extracted from MR imaging at baseline and 24-months post-stent-
implantation. Then finite element-based isogeometric analysis [15, 16] is used to
simulate the blood flow dynamics within the SFA over a full cardiac cycle. Near wall
quantities like time-averaged wall shear stress (TAWSS) and oscillatory shear index
(OSI) are also investigated. Finally, the vascular transport of systemically injected
nanoparticles (NPs), targeted to different inflammatory vascular molecules such as
VCAM-1 that are known to overexpress at the diseased site, is analyzed. These
CAMs are regarded as early markers of atherosclerosis due to their upregulation
at the site of inflammation. Possible relationship between local hemodynamics and
particle distribution pattern is also studied.

2 MRI Data Acquisition and Mesh Generation

The MRI data utilized in this analysis were obtained from the Effect of Lipid Mod-
ification on PAD after Endovascular Intervention Trial (ELIMIT) [17]. The patients
underwent MR imaging of the distal SFA at baseline, 6-months, 12-months, and 24-
months with a 3.0 T system (Signa Excite, GE Healthcare, Milwaukee, Wisconsin)
using a unilateral phased array coil with a field of view (FOV) of 8 cm (along z-
axis) and 12 cm (in plane x and y axes; Pathway Biomedical, Inc.). The geometries
were extracted from proton-density-weighted (PDW) fast spin-echo scans. ELIMIT
participants were also imaged using gated 2D phase-contrast (2D-PC) sequences,
acquired at select locations within the corresponding PDW volumes—typically
proximally and distally to SFA lesions. Gated 2D-PC were acquired during the
same exam with slice-thickness D 4 mm, repetition time (TR) D 10.6 ms, echo time
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(TE) D 4.97 ms, echo train length (ETL) D 1, bandwidth D 244 Hz/pixel, 20 frames
per cardiac cycle, and phase-contrast encoding velocity (VENC) of 120 cm/s. Serial
MRI scans were carefully co-registered across follow-up visits using anatomical
landmarks (artery, vein, and muscle) [17]. Velocity profiles over the cardiac cycle
were obtained at each location using the luminal cross-sectional areas (region of
interest [ROI]), the mean signal intensity of the ROIs, and the VENC factor.

An image-based modeling pipeline, as detailed in [18], is adopted to construct
hexahedral solid NURBS meshes from the MR images of the SFA. Briefly,
the image quality is first improved by passing the raw imaging data through a
preprocessing pipeline for enhancing the contrast, filtering noise, classifying and
segmenting regions of various materials. The target surfaces (the blood vessel wall)
are then extracted by isocontouring the pre-segmented imaging data, followed by
the extraction of the vascular skeleton (vessel centerlines) [19, 20]. Finally, an
optimized skeleton-based sweeping method is used to construct hexahedral control
meshes employing an in-house numerical code [18], from which hexahedral solid
NURBS are constructed (Fig. 1).

Fig. 1 MRI-based computational model—the problem setup. The geometry of the superficial
femoral artery (SFA) and the inflow conditions are extracted from the patient-specific MRI data.
The adhesion of spherical NPs to the vessel walls of the SFA is mediated by ligand–receptor
interactions. The main governing equations and boundary conditions for the problem are included.
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3 Governing Equations and Solution Approach

A continuum-based approach was adopted to simulate blood flow and particle trans-
port within the SFA. The details of the governing equations and the methodology
are reported elsewhere [21–24]. Briefly, considering blood as an incompressible
Newtonian fluid with a dynamic viscosity (�) of 0.003 Pa-s and a density (�) of
1060 kg/m3, blood flow was assumed to be governed by the unsteady Navier–Stokes
equations for incompressible flow subjected to appropriate boundary conditions (see
Fig. 1). An inflow velocity profile was specified at the inlet, a no-slip boundary
condition was prescribed at the rigid and impermeable wall, and a traction-free
outflow boundary condition was set at the branch outlet. In order to analyze the
flow field characteristics and its near wall behavior, two wall shear-based quantities
were calculated over a cardiac cycle with a time period T:
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The surface traction vector ts, defined as the tangential component of the traction
vector, is calculated from ts D t � .t � n/n, where the traction vector t is computed
from the stress tensor � using the relation t D �n. Here, OSI characterizes the
changes in flow direction and the velocity gradient during a cardiac cycle, and can
range from 0 (unidirectional flow) to 0.5 (oscillatory flow).

Treating the nanoparticles (NPs) as passive scalars, the mass transport of the
particles is assumed to be governed by an unsteady scalar advection–diffusion
equation [25, 26]. A bolus of NP is located at the inlet of the artery segment for
the entire duration of simulation (see Fig. 1). This translates to a Dirichlet boundary
condition with a volumetric concentration C0 prescribed at the inlet, where C0

denotes NP concentration within the bolus. At the outflow, a homogenous Neumann
boundary condition is specified. A special Robin-type boundary condition [21] is
prescribed at the lumen-wall interface to account for NP deposition to the vessel
wall (Fig. 1). The mass flux of particles diffusing through the lumen-wall interface
and adhering to the vessel wall is assumed to be a function of particle size dp, local
wall shear rate S, and probability of adhesion Pa, defined as the probability of having
at least one ligand–receptor bond (see Fig. 1). The propensity of a particle to adhere
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Table 1 Particle adhesion parameters used in the simulation

Parameters Values

Surface density of ligand molecules mlD 1015 #/m2

Surface density of receptor molecules mrD 1013 #/m2

Ligand-receptor affinity constant at zero load Ka
0D 2.3� 10-17 m2

Characteristic length of ligand-receptor bond �D 1� 10-10m
Dynamic viscosity of water �D 0.001 N-s/m2

NP-substrate separation distance, at equilibrium &D 0.68 nm
Boltzmann’s constant kBTD 4.142� 10-21 J
Drag coefficient on the spherical particle F

sD 1.668

firmly to the vessel wall withstanding dislodging hydrodynamic forces is strongly
influenced by the physico-chemical properties of the NPs. Accordingly, Decuzzi
et al. [27] modeled Pa as a function of physiological parameters like target receptor
density and local WSS, as well as certain design parameters including particle shape,
size, ligand type, and density:

Pa ' ˛1˛2�
�
dp=2

�2
exp

�

�ˇ�S

˛2
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where, ˛1 D mlK0
A; ˛2 D mrŒ1 � .1 � &

dp=2
/
2
�; and ˇ D �6FS

kBT . A summary of the
parameters and their values used is provided in Table 1. This particle firm-adhesion
model, which has been validated in vitro in a previous work [21] for spherical
particles in point-contact with the vessel wall, is utilized herein to account for NP
wall deposition. For a more comprehensive description of the modeling approach
and parameter selection, see [21, 28] and the references therein.

The governing equations are solved by applying finite element-based isogeo-
metric analysis [23, 29] using quadratic NURBS to describe the exact geometry as
well as the solution space [16, 18]. A residual-based variational multiscale method
[30] is implemented to solve the system of equations, utilizing a Newton–Raphson
procedure with a multi-stage predictor–corrector algorithm applied at each time
step. The generalized �’ method [31, 32], an implicit second-order time-accurate
method that is also unconditionally stable, is used for time advancement. The
readers are referred to the numerical procedures described in [16, 24, 29, 33, 34]
for further details.

4 Results and Discussion

In Fig. 2, the velocity magnitude is presented for baseline (top) and 24-months post-
intervention case. Significant luminal enlargement is observed post-intervention
because of stent-implantation, resulting in a 453 %, 313 %, and 264 % increase
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Fig. 2 Velocity magnitude is
shown for baseline (top) and
24-months post-intervention
(P.I.) at three different
cross-sections: (I.) proximal,
(II.) mean, and (III.) distal. In
addition, three different times
in the cardiac cycle are
presented: end-diastole
(column A), post-peak systole
(column B), and post-systole
(column C).

in cross-sectional area at the stenosis (“mean”), proximal and distal locations,
respectively. At baseline, the velocity magnitude levels seem to drop noticeably
from the proximal to the distal sections consistently during the cardiac cycle because
of flow restriction at the stenosis. However, this phenomenon appears to be less
pronounced around peak systole. Mean flow velocity magnitude measured via PC
MRI also shows markedly decreased values distal to the SFA narrowing (data
not shown here, see [35]). On the other hand, because of the implanted stent in
the 24-months post-intervention SFA geometry blood flow is no longer restricted,
resulting in a 500 % increase in peak flow rate [35]. Consequently, there is less of a
variation in velocity magnitude between proximal and distal slices in contrast with
the baseline case.

Fig. 3 reports the spatial distribution of TAWSS and OSI. In the baseline case,
alternate areas of lower (<1 Pa) and higher (>5 Pa) TAWSS regions appear near
the stenosis. 24-months after stent-implantation, relatively lower levels of TAWSS
magnitude (<5 Pa) are observed that also appear to be more uniformly distributed
throughout the SFA segment when compared with the baseline case. At 24-months
post-intervention, OSI levels appear to diminish considerably (32 % drop in mean
OSI), especially near the original constriction, in some areas by a factor of two,
when compared with the baseline case, signifying reduced disturbed flow post-
intervention. It appears that regions of relatively higher OSI generally correspond to
lower WSS values.

Next, the computational tool is used to predict the wall deposition patterns in
a simulation of systemically injected NPs in the pre- and post-intervention SFA to
explore possible use of nanomedicine in the non-invasive imaging and treatment
of PAD patients. To that end, the vessel wall deposition of vascular cell adhesion
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Fig. 3 Left panel shows the vascular distribution patterns for time-averaged wall shear stress
(TAWSS) in Pa at (a) baseline and (b) 24-months post-intervention, while the right panel depicts
the same for the oscillatory shear index (OSI)

Fig. 4 Receptor surface
density vs. wall shear stress
relationship determined by
curve fitting to in-vitro data
for TNF-˛ stimulated CAM
expression, obtained from
[36]. The respective CAM
(receptor) surface density mr

is reported as percent (%) of
unstimulated CAM
expression under static
conditions mr

0.

molecule (VCAM-1) directed particles is investigated. First, a phenomenological
model (see Fig. 4) correlating CAM expression to local WSS as detailed in [21, 28,
36] is utilized to estimate the surface density of the target receptor with respect to
their unstimulated expression under static conditions (see Fig. 5A).

Spherical NPs (dp D 100 nm) uniformly coated with anti-VCAM-1 antibodies
(aVCAM1-NPs) are introduced into the bloodstream by placing a bolus of NPs
at the SFA inlet. Carried by the blood flow, these NPs can recognize VCAM-1
expression (receptors) and firmly adhere to the vessel wall through ligand-receptor
bond formation. Flow-coupled particle transport simulations are then carried out
for ten cardiac cycles. The resulting spatial distribution of NPs in terms of particle
surface density (cm-2) is presented in Fig. 5B for the baseline and 24-months
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Fig. 5 A) The panel on the left shows the normalized surface density of VCAM-1 molecules
(mr/mr

0), estimated as a function of the local wall shear rates at (a) baseline and (b) 24-months
post-intervention (P.I.). B) The panel on the right depicts the spatial distribution patterns for 100 nm
spherical nanoparticles adhering on the superficial femoral artery (SFA) in terms of #/cm2 for (a)
baseline and (b) 24-months post-intervention (P.I.) configurations.

post-intervention cases. In addition to local hemodynamics, receptor surface density
appears to modulate particle adhesion, resulting in a spatially inhomogeneous
particle distribution pattern in both cases. That is, the higher the receptor density
and higher the OSI, the greater the particle concentration at a given site. aVCAM-
1 NPs appear to preferentially accumulate near the diseased region with a surface
density up to 1.9 times higher than the mean in the baseline case. This is encouraging
from a therapeutic (and diagnostic) perspective as this may potentially translate to a
higher drug/imaging agent concentration in the targeted area (i.e., the stenosis).

In order to investigate possible spatial correlation between local hemodynamics
and NP adhesion, the OSI and aVCAM-1 NP distribution color maps were merged
for the baseline and 24-months post-intervention cases (see Fig. 6 for the baseline
case). Qualitatively there appears to be a strong spatial correlation between the two
quantities throughout the computational domain, except for small areas very close
to the inlet and outlet boundaries. Generally regions of high OSI are associated with
regions of greater aVCAM-1 deposition. In a similar qualitative comparison made
between TAWSS and aVCAM-1, the spatial correlations are not as evident, espe-
cially in the baseline case (data not shown here, see [35]). In regions downstream of
the stenosis, the aVCAM-1 NP deposition seems to follow the pattern of high OSI
values rather than that of low TAWSS values.
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Fig. 6 Two different contours, (a) OSI and (b) aVCAM-1 NP concentration (normalized), are
merged (c) for baseline configuration. Here the unrolled geometries are presented. Bright yellow
regions in (c) indicate high OSI along with higher concentrations of aVCAM-1 particles.

5 Conclusions

An isogeometric analysis framework has been used to predict the blood flow
and vascular deposition in a simulation of systemically injected nanomedicines
into the SFA of a PAD patient. Upon intervention, a dramatic improvement in
blood flow dynamics has been documented by the in-silico simulations showing a
32 % reduction in OSI and an approximate 500 % increase in overall peak blood
flow rate. Also, it has been observed that systemically injected nanomedicines,
targeted to inflammatory vascular molecules such as VCAM-1, would preferentially
accumulate near the stenosis in the baseline configuration. In particular, for the
VCAM-1 targeted 100 nm nanoparticles, the vascular accumulation has shown a
maximum at the stenosis with a surface density up to 1.9 times higher than the mean.
This high, specific vascular accumulation could be effectively used for the non-
invasive detection and treatment of plaques forming in the SFA. The development
of accurate image-guided patient-specific predictive tools, such as the isogeometric
analysis framework presented here, can help in assessing disease burden, and
monitor progression/regression of atherosclerosis in response to therapeutic and
interventional treatment.
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Modal Analysis of Liquid–Structure Interaction

Roger Ohayon and Jean-Sébastien Schotté

Abstract The computation of the linear vibrations of structures partially filled with
liquids is of prime importance in various industries such as aerospace, naval, civil
and nuclear engineering. Here, a formulation is proposed for the modal analysis of
incompressible liquids in elastic tanks taking into account sloshing, pressurization
and elastogravity effects obtained through an adapted procedure of linearization.
A corresponding finite element formulation is then presented.

1 Introduction

The case of structures partially filled with liquids (propellants, cooling liquids,
liquid natural gas, etc.) is very common and many industrial domains are interested
in this issue especially in the transport and aerospace industries (for instance, for
liquid propelled launchers and satellites). Computational aspects of fluid–structure
interaction and sloshing (with or without surface tension effects) may be found in
[1, 4–7, 9, 13, 15, 16, 22]. We are here interested in the linear vibrational response
of elastic structures partially filled with a liquid. As we are primarily concerned
with the low frequency domain, the liquid may be considered as inviscid and
incompressible (for compressibility effects, we refer to [13–15]). As a result, the
liquid small motions are irrotational. This constraint can be taken into account
through various procedures [2, 8]. Using a scalar description for the fluid, alternative
symmetric variational formulations have been derived [10, 13].
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In the present work, through a specific derivation of the linearized equations
of the coupled system, particular phenomena, such as tank ullage gas pressure
and elastogravity stiffness effects, are analyzed [17, 18, 20]. Firstly, the nonlinear
equations are posed, followed by an adapted linearization procedure. Secondly a
finite element discretization, leading to a symmetric matrix system, is presented
through an appropriate variational formulation.

2 Boundary Value Equations in the Deformed Configuration

We suppose that the referential is a Galilean frame. Thermo-mechanical coupling is
not considered here, therefore all mechanical parameters of the system are supposed
given at a nominal temperature and are considered constant during the observation
time. The dynamic state of this coupled problem is characterized by the structure
displacement field US.x; t/, the fluid velocity field vF.x; t/, the fluid pressure field
P.x; t/, and the tank ullage gas pressure PG.x; t/, which are the unknown fields of
the problem. The description of the system is given in Fig. 1. Each domain will be
designated with a ’ when it refers to its time-dependent position.

2.1 Fluid Boundary Value Problem

We consider an inviscid heavy fluid with a free surface 	 inside a deformable
structure. The tank ullage is filled by an inert pressurized gas (no phase or chemical
transformations are taken into account). The local equations are written on the
deformed configuration, denoted by’.

Fig. 1 Structure partially
filled with liquid
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�F dvF

dt
D �rxP C �F g in ˝ 0F (1a)

d�F

dt
C �F rx:v

F D 0 in ˝ 0F (1b)

P D PG on 	 0 (1c)

vF:n0F C vS:n0S D 0 on †0i (1d)

Equation (1a) is the momentum balance equation of the inviscid heavy fluid and
equation (1b) expresses the mass conservation of the fluid (continuity equation).
Equation (1c) is the equilibrium equation of the fluid free surface when capillarity
forces are neglected. Equation (1d) yields the sliding condition on the structure wall
for an inviscid fluid. This system is completed with Cauchy initial conditions.

2.2 Structure Boundary Value Problem

The structure is supposed elastic (H denotes the tensor of elastic coefficients) and
submitted to external surface forces, including the external and internal pressures.

Divx� C �S g D �S a in ˝ 0S (2a)

� D H © in ˝ 0S (2b)

© D 1

2

�
Dx.U

S/C tDx.U
S/
�

in ˝ 0S (2c)

� n0S D text � Pext n0S on †0f (2d)

� n0S D �PG n0S on †0g (2e)

� n0S D �P n0S on †0i (2f)

Equation (2a) is the local balance of momentum (in a fixed frame of reference)
where a is the structure acceleration. Equations (2b) and (2c) yield the classical
definition of the Cauchy’s stress tensor ff and strain tensor " (Dx denotes the gradient
operator of a vector), and their relation through Hooke’s law. In equation (2d), Pext is
the external pressure (the atmospheric pressure, for instance) and text are additional
local surface loads (thrust or aerodynamic forces, for instance).

2.3 Local Equations in the Tank Ullage Gas

The tank ullage being supposed to be pressurized by a gas, a simple gas behavior
model will be used to represent its effect on the dynamics of the fluid–structure
system. As the acoustic phenomena in the gas enclosed in the tank ullage are
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generally decoupled from the low frequency fluid–structure vibrations which are
the frequency range of interest of the present paper, the acoustic field in the gas
will be indeed represented by a uniform value PG.t/ in ˝G and the isentropic law of
transformation of a perfect gas will be used [12, 18] :

PGj˝ 0Gj� D PG
0 j˝Gj� in˝ 0G (3)

where � is the heat capacity ratio of the gas.

3 Equilibrium Configuration for the Coupled System

The geometry of the reference state will be described by the variable X. In the
reference configuration, the structure and fluid are supposed at rest. The local
equations defining this reference state are then :

vF
0 D 0 in ˝F (4a)

rXP0 D �F
0 g in ˝F (4b)

P0 D PG
0 on 	 (4c)

vS
0 D 0 in ˝S (4d)

DivX� 0 C �S
0 g D 0 in ˝S (4e)

� 0 D H "X.u
S
0/ in ˝S (4f)

"X.uS
0/ D 1

2

�
DX.u

S
0/C tDX.u

S
0/
�

in ˝S (4g)

� 0 nS D text
0 � PextnS on †f (4h)

� 0 nS D �PG
0nS on †g (4i)

� 0 nS D �P0nS on †i (4j)

where text
0 is the stationary part of the external loads. The external pressure Pext

is supposed to be a constant field. To solve this problem, a nonlinear iterative
procedure is generally needed since these equations are written on domains whose
position depends on the unknowns .uS

0;u
F
0/ [21].

4 Linearized Local Equations

The solution of the static problem (4) is supposed known and we are interested
here in the small amplitude response of the coupled system around this static
reference state (described by the variable X). Using the procedure developed in [20],
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a first order Taylor expansion of the nonlinear dynamic equations (1,2,3) around
the equilibrium position yields the expression of the linearized equations. In the
following, ıŒh�.u/ will denote the derivative of a function h with respect to the
displacement U, at the static position U D 0 and in direction u.

4.1 Linearization of the Fluid Equations

To linearize equation (1a), we first need to differentiate the gradient term rxP which
is a spatial derivative with respect to the coordinates x of the deformed fluid domain,
depending, by definition, on the displacement U since x D X C U. Using the
following relation :

ıŒrxP�.uF/ D rXıŒP�.u
F/ � rX

�
rXP0:uF

�
(5)

and the value of rXP0 given by (4b), we finally obtain

ıŒrxP�.uF/ D rXpL .u
F/ � rX.�

F
0 g:uF/ (6)

where pL .u
F/ D ıŒP�.uF/ is the Lagrangian pressure fluctuation in the liquid, i.e.,

the variation of the pressure observed when following a fluid particle.
Using the classical linearization of the acceleration term (the convection term

disappears) and the fact that the Lagrangian density fluctuation ıŒ�F�.uF/ in an
incompressible liquid is null, the linearized version of Euler’s equation (1a) can
be written:

�F
0

@2uF

@t2
D rX

�
�F
0 g:uF � pL .u

F/
�

(7)

Using the classical expression of the Lagrangian derivative, the mass conserva-
tion equation (1b) can be written

@�F

@t
C vF:rx�

F C �F rx:v
F D 0 (8)

The linearization of this equation can be achieved with the same approach as
previously. Considering that the liquid is at rest in its equilibrium position (vF

0 D 0),
that it is supposed incompressible (ıŒ�F�.uF/ D 0) and that its density in the
reference state is homogeneous (rX�

F
0 D 0), then the linearized form of the mass

conservation equation (8) can be written

@

@t

�
�F
0 rX:u

F
�

D 0 (9)
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The same approach applied to equation (1d) yields the following linearized
equation:

@

@t

�
uF:nF C uS:nS

�
D 0 (10)

We deduce therefore that the continuity of the normal displacement is satisfied at
any time t as soon as it is satisfied by the initial conditions. The linearized equations
of the fluid around the reference state are finally (8t 2 R

C):

�F
0

@2uF

@t2
D rX

�
�F
0 g:uF � pL .u

F/
�

in ˝F (11a)

rX:u
F D 0 in ˝F (11b)

pL D pG on 	 (11c)

uF:nF C uS:nS D 0 on †i (11d)

where pG D ıŒPG�.uF;uS/ is the pressure fluctuation in the gas when the fluid
and structure are deformed. To these equations, we add Cauchy initial conditions.
Equation (9) has been simplified by supposing that the initial conditions satisfy the
mass conservation equation.

4.2 Linearization of the Structural Equations

The local equations of the structure (2) are now linearized using the same approach.
However, to simplify the derivation of the equations, before the differentiation,
we use a Lagrangian transformation to write those equations in the reference
configuration, as follows:

DivX.FS/ D �S
0

d2US

dt2
� �S

0 g in ˝S (12a)

S.US/ D HE.uS
0 C US/ (12b)

FS nS D text det.F/ktF�1nSk � Pext det.F/ tF�1nS on †f (12c)

FS nS D �PG det.F/ tF�1nS on †g (12d)

FS nS D �P det.F/ tF�1nS on †i (12e)

In these equations, E is the (nonlinear) Green-Lagrange strain tensor and F is the
transformation gradient tensor, defined by F D DX.x/. The linearization of (12a) is
classical and gives

DivX

�
DX.u

S/� 0 C H"0.uS/
�

D �S
0

@2uS

@t2
(13)
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where

� 0 D H E.uS
0/ (14)

"0.uS/ D ıŒE�.uS/ (15)

For the differentiation of equation (12e), the following term has to be computed:

ıŒP det.F/ tF�1�.uS/ D ıŒP�.uS/ I C P0 ıŒdet.F/ tF�1�.uS/ (16)

In the first term of this expression, we recognize a Lagrangian fluctuation of the
pressure on the fluid–structure interface which is denoted by pS

L .u
S/. Let us remark

that this term is defined as a pressure fluctuation related to a structural point and then
is different from the Lagrangian pressure fluctuation pL .u

F/ defined previously in
equation (6) for a fluid particle. This difficulty is a consequence of the sliding of the
inviscid liquid on the structure wall.

To explicit the second term of (16), we use the following expressions:

ıŒdet.F/�.u/ D Tr
�
DXu

	
I D .rX:u

S/ I (17)

ıŒtF�1�.u/ D �tDXu (18)

Then, we obtain

ıŒdet.F/ tF�1�.uS/ D .rX:u
S/ I � tDX.u

S/ (19)

Using this relation in (16) yields the linearized expression of (12e):
�

DX.u
S/� 0 C H "0.uS/

�
nS D �pS

L .u
S/ nS � P0 	.uS/ (20)

where the vector 	 is defined as

	.uS/ D .rX:u
S/nS � tDX.u

S/ nS (21)

The comparison of this expression with the following one, that we would have
obtained by a direct differentiation of the right-hand term of equation (2f):

ıŒ�Pn0S d†0�.uS/ D �pS
L .u

S/nS d† � P0 ıŒn0S d†0�.uS/ (22)

shows that 	 can be interpreted as the linearization of the normal vector rotation:

	.uS/ d† D ıŒn0S d†0�.uS/ (23)

The same treatment can be applied to equation (12d). However, for equa-
tion (12c), we have to deal with the external force term text. The differentiation
of this term yields

ı
h
text det.F/ktF�1nSk

i
.uS/ D ıŒtext�.uS/C text

0 ı
h

det.F/ktF�1nSk
i
.uS/ (24)
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A direct computation of the second term can be avoided if we remember that

ı
h

det.F/ktF�1nSk
i
.uS/ dS D ıŒdS0�.uS/ (25)

where dS and dS0 are, respectively, the elementary surfaces on the reference
and actual geometries. Since, from (23), we have 	.uS/dS D ıŒn0 dS0�.uS/ D
ıŒn0�.uS/ dS C n ıŒdS0�.uS/ and n:ıŒn0�.uS/ D 0, we can deduce from (21) that

ı
h

det.F/ktF�1nSk
i
.uS/ D nS:	.uS/ D rX:u

S � nS:DX.u
S/nS (26)

Finally, the linearized expression of (12c) can be written
�

DX.u
S/� 0 C H"0.uS/

�
nS D td C Qt.uS/C text

0 nS:	.uS/ � Pext 	.uS/ (27)

where we have distinguished two terms in the variation of the external surface loads
ıŒtext�.uS/: a dynamic time-dependent part td and a position-dependent part Qt.uS/.
Let us verify that if the external surface load text is a pressure, i.e., text D �PtnS,
then equations (24) and (25) lead to coherent expressions of (27) and (20):

ıŒtext� d†C text
0 nS:	 d† D ıŒ�Ptn0S� d† � Pt0 nS ıŒd†

0�

D �ıŒPt� nS d† � Pt0 ıŒn0S d†0� (28)

By using (23), we denote then that expressions (20) and (27) are equivalent.
The linearized equations of the structure established in this section are summa-

rized hereafter:

DivXs.uS/ D �S
0

@2uS

@t2
in ˝S (29a)

s.uS/ D DX.u
S/ � 0 C H "0.uS/ in ˝S (29b)

s nS D td C Qt.uS/C text
0 nS:	.uS/ � Pext 	.uS/ on †f (29c)

s nS D �pG.uS;uF/ nS � PG
0 	.u

S/ on †g (29d)

s nS D �pS
L .u

S/ nS � P0 	.uS/ on †i (29e)

To these equations, Cauchy initial conditions have to be added.

4.3 Linearization of the Gas Equation

The differentiation of the gas equation (3) yields

ıŒPG�.uS;uF/ j˝Gj� C PG
0� j˝Gj��1 ı

h
j˝ 0Gj

i
.uS;uF/ D 0 (30)
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Since the gas volume j˝ 0Gj is defined by

j˝ 0Gj D
Z

˝0

G

d˝ 0 D
Z

˝G

det.F/ d˝ (31)

Using the relation (17) and Stokes theorem, we obtain

ı
h
j˝ 0Gj

i
.uS;uF/ D

Z

˝G

rX:u d˝ D �
Z

†g

uS:nS d† �
Z

	

uF:nF d	 (32)

Finally the linearized equation of the gas can be written

pG.uS;uF/ D PG
0�

j˝Gj

 Z

†g

uS:nS d†C
Z

	

uF:nF d	

!

in ˝G (33)

Equations (11), (29), and (33) form the coupled problem we want to solve.
In these equations, all the spatial derivatives are carried out with respect to the
coordinate vector X and then, for sake of convenience, this subscript X will be
omitted in the following.

5 Fluid–Structure Problem Solving

5.1 Potential Fluid Variational Formulation

Taking the curl of equation (11a) shows that the small motions uF of an incom-
pressible fluid are irrotational and then can be represented by the gradient of a
displacement potential ' defined by

r ^ uF D 0 H) uF D r' (34)

However, this relation does not ensure the uniqueness of '. Therefore, it is necessary
to specify a unicity condition on ', generically written `.'/ D 0, where ` is a linear
form such that `.1/ ¤ 0. This unicity condition will be chosen explicitly in the
following.

This new variable ' can be substituted to uF in the fluid equations, in particular
in (11a) which yields, after integration with respect to X:

pL D �F
0 g:r' � �F

0

@2'

@t2
C � (35)

where � is an integration constant which represents a uniform pressure in the fluid
whose value depends on the choice of the unicity condition `.'/. The expression
(35) of pL as a function of ' allows to eliminate pL from the equations. However,
before establishing the variational formulation, we choose to introduce a scalar
variable � to describe the normal component of the fluid free surface displacement:

� D uF:nF D r':nF on 	 (36)
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Since nF D iz on 	 , the local equations of the boundary problem (11) are now
written for an incompressible fluid in terms of .'; �; �; pG/ as follows:

�' D 0 in ˝F (37a)

nF:r' D uS:nF on †i (37b)

nF:r' D � on 	 (37c)

�F
0 g � D ��F

0

@2'

@t2
C � � pG on 	 (37d)

pG D PG
0�

j˝Gj
Z

†i[†g

uS:nS d† in ˝G (37e)

`.'/ D 0 (37f)

where equation (37e) has been obtained from (33) by considering the following
relation given by the integration of property (11b) on the fluid domain:

0 D
Z

†i

uF:nF d†C
Z

	

uF:nF d	 (38)

The equation (37e) shows that, due to the incompressibility of the fluid, pG is now a
function depending only of the tank wall deformation uS.

From the local equations (37a), (37b), and (37c), we can write the following
variational formulation for the liquid, where C`' is the admissible space of solutions
' defined by (considering t as a parameter)

C`
' D ˚

' 2 H 1.˝F/=`.'/ D 0
�

(39)

For ' 2 C`';wehave8 ı' 2 C`'

F .'; ı'/ � B.�; ı'/ D C .ı';uS/ (40)

withF .'; ı'/ D �F
0

Z

˝F

r':rı' d˝ (41)

B.�; ı'/ D �F
0

Z

	

� ı' d	 (42)

C .ı';uS/ D �F
0

Z

†i

uS:nF ı' d† (43)

In this expression, F is the symmetric positive semi-definite bilinear form asso-
ciated with the fluid kinetic energy and C is the classical fluid–structure coupling
operator.
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We also consider the following relation equivalent to (38), which expresses the
incompressibility of the fluid:

�B.�; 1/ D C .1;uS/ (44)

The variational formulation corresponding to the local equation (37d) is written

For� 2 C�;wehave8 ı� 2 C�;

Sg.�; ı�/C B




ı�;
@2'

@t2

�

� �

�F
0

B.ı�; 1/C pG

�F
0

B.ı�; 1/ D 0 (45)

with Sg.�; ı�/ D �F
0 g
Z

	

� ı� d	 (46)

where C� is the admissible space for �, defined as C� D ˚
� 2 L 2.	 /

�
and Sg is the

symmetric positive definite bilinear form associated with the fluid gravity potential
energy.

A final equation is obtained from the expression (37e) of pG:

�G pG

�F
0

� B.�; 1/ D Cg.1;uS/ (47)

with Cg.ı';uS/ D �F
0

Z

†g

uS:nS ı' d† (48)

and�G D �F
0
2 j˝Gj
PG
0�

(49)

5.2 Structure Variational Formulation

From the local equations of the structure given in (29), a variational formulation for
the structure can be written, where Cu D ˚

uS 2 H 1.˝S/
3
�

denotes the admissible
space (considering t as a parameter). In the following, the fluid pressure P0 in
the reference configuration will be replaced by its expression obtained from (4b)
and (4c):

P0.X/ D PG
0 C �F

0 g:X (50)

where O (the origin of the position vector X) is a point of the liquid free surface.
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Then the variational principle for the structure is written

Given f ext;find uS 2 Cu such that8 ıu 2 Cu;

.KE C KG C KP C Kt/.uS; ıu/C M



@2uS

@t2
; ıu
�

C pG

�F
0

Cg.1; ıu/ � � �

C
Z

†i

pS
L .u

S/nS:ıu C .�F
0 g:X/	.uS/:ıu d† D f ext.ıu/ (51)

withKE.uS; ıu/ D
Z

˝S

H "0.uS/ W Dx.ıu/ d˝ (52)

KG.uS; ıu/ D
Z

˝S

Dx.u
S/ � 0 W Dx.ıu/ d˝ (53)

KP.uS; ıu/ D
Z

†f

Pext	.uS/:ıu d†C
Z

†g[†i

PG
0	.u

S/:ıu d† (54)

Kt.uS; ıu/ D �
Z

†f

Qt.uS/:ıu C nS:	.uS/ text
0 :ıu d† (55)

M .uS; ıu/ D
Z

˝S

�S
0 uS:ıu d˝ (56)

f ext.ıu/ D
Z

†f

td:ıu d† (57)

where KE is the elastic stiffness operator of the structure deformed in its static
configuration. If these initial deformations uS

0 are small, "0 tends to " and KE is then
the standard symmetric positive stiffness operator. M is the classical symmetric
positive definite operator associated with the mass of the structure and KG is the
symmetric operator, due to the initial prestress � 0 in the structure, classically known
as the geometric stiffness. KP is the stiffness operator arising from the follower
force effect of the initial pressures applied on the structure external and internal
walls (the external pressure Pext and the pressurization PG

0). Kt is a similar term due
to the presence of a static external surface load text which can also be a follower
force. f ext is a linear form representing the dynamic part of this load.

We need now an expression of pS
L .u

S/ as a function of the unknowns uS and uF.
This expression is obtained by considering a fluid particle in contact with a structural
point of the fluid interface in the reference configuration. At time t, the pressure at
this structural point is P.US/ and the pressure of the same fluid particle is P.UF/.
The difference can be written as follows:

P.US/ � P.UF/ D rxP:.US � UF/ (58)
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By differentiating this expression at the reference configuration and in the direction
.uS;uF/, we obtain

pS
L .u

S/ � pL .u
F/ D rXP0:.uS � uF/ D �F

0 g:.uS � uF/ (59)

Since the expression of pL is given by (35), we can write the following
expression:

pS
L .u

S/ D �F
0 g:uS � �F

0

@2'

@t2
C � (60)

By introducing this relation into the previously given variational formulation of
the structure, we obtain

9 uS 2 Cusuchthat8 ıu 2 Cu; (61)

KT.uS; ıu/CpG

�F
0

Cg.1; ıu/� �

�F
0

C .1; ıu/CM



@2uS

@t2
; ıu
�

CC



@2'

@t2
; ıu
�

Df ext.ıu/

withKT.uS; ıu/ D .KE C KG C KP C Kt C Kg/.uS; ıu/ (62)

Kg.uS; ıu/ D
Z

†i

.�F
0 g:uS/ nS:ıu C .�F

0 g:X/ 	.uS/:ıu d† (63)

where Kg is the stiffness operator related to the follower force effect of the fluid
hydrostatic pressure on the structure wall (it can be shown that this operator is
symmetric [18]).

5.3 Finite Element Discretization

The classical finite element method is applied to discretize the space part of the
unknown fields. We consider here compatible meshes for the structure and the fluid.
Since ' belongs to C`' , the condition `.'/ D 0 has to be taken into account in strong
form. One way to do is to choose `.'/ such that one component i of ' is equal to 0
(`.'/ D 'i D 0). Then, all the row and columns associated with these zero values
are removed from the matrix system. To simplify the notations, vectors of nodal
values will be denoted by the same letter as the associated continuous variable.
The matrix operators associated with the bilinear and linear forms are denoted as
follows:

B.ı�; '/ H) tıB' and B.ı�; 1/ H) tıb (64)
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The fluid equation (40) shows that ' can be expressed as a function of  and uS.
After a finite element discretization of this equation, since F is invertible [13], we
obtain the following expression:

' D F�1 tC uS C F�1B  (65)

In the frequency domain (after a Fourier transform), denoting by ! the circular
frequency, the discretization of equations (61), (45), (44), and (47), using the
elimination relation (65), leads to the following symmetric matrix system:

0

B
B
@

2

6
6
4

KT 0 �c cg

0 Sg �b b
�tc �tb 0 0
tcg

tb 0 ��G

3

7
7
5 � !2

2

6
6
4

MCCF�1 tC CF�1B 0 0
tBF�1 tC tBF�1B 0 0

0 0 0 0
0 0 0 0

3

7
7
5

1

C
C
A

0

B
B
@

uS



�=�F
0

pG=�F
0

1

C
C
AD

0

B
B
@

fext

0
0

0

1

C
C
A

(66)

6 Applications

In order to compute the vibrations of a pressurized elastic structure containing an
inviscid incompressible liquid with a free surface, one has to solve equation (66)
in the frequency domain (and then obtain the time response by an inverse Fourier
transform). To reduce the CPU-time, a modal synthesis method could be used [20].
It is based on the projection of the liquid equation onto its sloshing eigenmodes
which are the liquid eigensolutions of equations (37) for a rigid motionless cavity
(uS D 0). Equation (37e) shows that, if the structure is undeformed, pG D 0. Then,
the sloshing modes .�˛; �˛/ cos.!˛t/ are solutions of:


�
Sg �b

�tb 0



� !2˛
�

tBF�1B 0
0 0

�

˛

�˛=�
F
0

�

D



0
0

�

(67)

If the matrix tBF�1B is denoted by M	 , we deduce that the sloshing eigenmodes
of the liquid are only described by their free surface normal displacement ˛ which
are the solutions of the eigenvalue problem Sg ˛ D !2˛ M	 ˛ with tb ˛ D 0,
where Sg is the gravity potential energy operator, M	 is the mass operator of
the liquid in a rigid motionless cavity, condensed on its free surface, and � has
the role of a Lagrange multiplier associated with the incompressibility condition
tb ˛ D 0 (which represents the fluid volume invariance). Since Sg and M	 are
symmetric, the eigenmodes ˛ are real, orthogonal and form a basis for the liquid
free surface deformations. Let us also remark that Sg being nonsingular, there is no
zero-frequency sloshing modes.

Several examples of application of the linearized fluid–structure formulation
presented here have been published during the past few years. The possibility to
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predict the coupling between the vibrations of the structure and the liquid sloshing
using this formulation has been illustrated on test cases and on some more realistic
examples [7, 19] and then validated by comparison with experimental results [18].
An application to the specific case of free structures containing liquids and a
validation by comparison with some benchmark results have been published in [17].
The nonlinear effect of the hydrostatic pressure on the hydroelastic vibrations of a
plate has also been analyzed in [21].

7 Conclusions and Perspectives

This paper presents a new way of deriving the linearized variational formulation for
fluid–structure problems involving a deformable structure and an internal inviscid
liquid with a free surface. Damping phenomena in the fluid and at the interfaces
(fluid–structure and free surface) are of prime importance and are under study (first
results can be found in [11]). From numerical point of view, isogeometric analysis
[3] could be worthwhile of investigation for tanks of complex geometry.
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A Fluid–Structure Interaction Algorithm Using
Radial Basis Function Interpolation Between
Non-Conforming Interfaces

Simone Deparis, Davide Forti, and Alfio Quarteroni

Abstract We consider a fluid–structure interaction (FSI) problem discretized by
finite elements featuring two different grids that do not necessarily agree on the
interface separating the computational domain of the fluid from the one of the
structure. After identifying a master domain (the structural domain) and a slave
domain (the fluid domain), we build up two radial basis function (RBF) inter-
grid operators, one ˘fs from master to slave, and the other ˘sf from slave to
master. Then, we enforce the kinematic condition by equating the fluid velocity
at the interface as the image through ˘fs of the temporal derivative of the structural
displacement. On the other hand, the dynamic interface condition is fulfilled via a
variational method where the strong form of the structural normal stress is obtained
as the image through ˘sf of the strong form of the fluid normal stress. A numerical
verification is carried out for a straight cylinder and for a patient-specific arterial
bypass geometry. This new method is easy to implement and optimally accurate.

1 Introduction and Model Description

In this paper we propose a new method for the coupling of an FSI problem featuring
two finite element grids that are non-conforming at the interface separating the
computational fluid domain ˝ f from the computational structure domain ˝s. This
method is based on a suitable way to enforce the kinematic condition and (the
strong form of) the dynamic condition via the use of two distinct RBF interpolation
operators, one from ˝ f to ˝s and the other from ˝s to ˝ f . In our FSI model, the
incompressible Navier–Stokes equations are written in ALE coordinates, whereas
the linear elasticity model for the structure in a Lagrangian frame of reference. A
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third field, the so-called geometry problem, allows to determine the displacement of
the fluid domain df which defines, in turn, the ALE map. In this paper we compute
df as the harmonic extension of the trace of the solid displacement Ods at the reference
fluid structure interface O	 , to the fluid reference domain Ő f � R

3:

�� Odf D 0 in Ő f ; Odf D Ods on O	 ; (1)

complemented with boundary conditions on @ Ő f n O	 . The solution of the geometry
problem Odf defines the ALE map At.Ox/ D Ox C Odf .Ox; t/ 8Ox 2 Ő f , and consequently
the current fluid domain configuration at time t

˝
f
t D fx D At.Ox/j Ox 2 Ő f g:

The Navier–Stokes equations written in ALE coordinates read

�f
@uf

@t

ˇ
ˇ
ˇ
ˇOx

C �f ..uf � w/ � r/uf � r � � f D 0 in ˝ f
t ; (2)

r � uf D 0 in ˝ f
t ; (3)

uf D hf on 	 f
D; � f nf D gf on 	 f

N ; uf ı At D @ Ods

@t
on O	 ;

where @
@t

ˇ
ˇOx D @

@t C w � r is the ALE derivative, w.x/ D @At.x/
@t is fluid domain

velocity, uf and pf are the velocity and pressure of the fluid, respectively, and
O	 is the common interface between the fluid and the structure on the reference

configuration. We denoted by �f the density of the fluid and by � f the Cauchy stress
tensor defined for a Newtonian fluid as � f D �f .ruf C.ruf /

T/ � pf I; with I being
the identity tensor, �f the dynamic viscosity of the fluid, and nf the outward unit
normal vector to @˝ f

t . The functions hf and gf indicate the Dirichlet and Neumann
data applied at the Dirichlet and Neumann boundaries 	 f

D and 	 f
N , respectively, of

˝
f
t . Note that 	 f

D, 	 f
N , and 	 provide a disjoint partition of the boundary of˝ f

t , i.e.,
their pairwise intersection is empty and N	 f

D [ N	 f
N [ N	 D @˝

f
t . Although 	 f

D, 	 f
N and

	 f depend on time t, we do not explicit it in the notation.
The structure dynamics is governed by the conservation of momentum law:

O�s
@2 Ods

@t2
� rOx �˘ . Ods/ D 0 in Ő s; (4)

Ods D hs on O	 s
D; ˘ . Ods/ Ons D 0 on O	 s

N ; ˘ . Ods/ Ons C O� f Onf D 0 on O	 ; (5)

where Ő s denotes the reference domain occupied by the structure (the ves-
sel wall) at rest, Ons represents the outward unit normal vector to @ Ő s, O� f D
.detŒF�/F�T � f , F D I C rOx Ods is the deformation gradient tensor, and ˘ . Ods/ is
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the first Piola–Kirchhoff stress tensor [5]. The function hs indicates the Dirichlet
data applied on the Dirichlet boundary O	 s

D of Ő s, O	 s
N is the Neumann boundary,

and O	 s
D, O	 s

N , O	 provide a disjoint partition of @ Ő s.
The coupling between the fluid, the structure, and the geometry subproblems

is ensured by imposing the geometry adherence, the continuity of the velocity
(kinematic condition), and the continuity of the normal stresses at the interface.
We notice that the resulting system is nonlinear due to the convective term in the
fluid momentum equation and to the moving fluid domain.

In Section 2 we first introduce a discretization in space and time of both the
fluid problem, the structural problem and the geometry problem. In our spatial
finite element discretization we allow the fluid computational grid to be non-
conforming with the structural grid at the interface. Even worse, the two interfaces
could be non-conforming, a situation that arises when the two subdomains are
triangulated independently, for instance, when dealing with an FSI problem in
arterial vessels whose geometry is obtained from clinical images. A critical issue
at the numerical level is the way the kinematic and dynamic coupling conditions are
fulfilled. For readers’ convenience we start in Section 2.1 by providing the complete
algebraic formulation in the conforming case. Then, we treat in Section 2.2 the
non-conforming case: after identifying a master domain (the structural domain)
and a slave domain (the fluid one), we build up two RBF inter-grid operators: ˘fs

from master to slave and ˘sf from slave to master. Then, we enforce the kinematic
condition by equating the fluid velocity at the interface as the image through ˘fs

of the temporal derivative of the structural displacement. On the other hand, the
dynamic interface condition is fulfilled via a variational method where the strong
form of the structural normal stress is obtained as the image through ˘sf of the
strong form of the fluid normal stress. The new algebraic formulation differs very
slightly from the conforming one. Section 3 is devoted to the numerical solution via
a preconditioned Newton algorithm of the coupled algebraic system, while Section 4
addresses the numerical verification of our approach on an FSI problem for a straight
flexible cylinder. Finally, in Section 5 we address the case of a patient-specific
geometry of a femoropopliteal bypass. We discuss the computational efficiency of
our method as well as its numerical accuracy.

2 Space and Time Discretizations

For space discretization, we consider a Galerkin finite element approximation using
P1–P1 Lagrange polynomials for the representation of the fluid variables uf and
pf , respectively, stabilized by the SUPG-ALE method [1, 2]. P1 finite elements
are also used for the structure displacement Ods and the harmonic extension Odf .
We approximate the time derivative in the fluid momentum equation by means of
the implicit Euler method. For the structure, we use two-steps backward-difference
method

d�t
nC1 � 2d�t

n C d�t
n�1 � O��1s �t2Asd�t

nC1 D 0; (6)
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Fig. 1 Conforming (left) and non-conforming (right) fluid–structure meshes.

where d�t
n is an approximation of Ods at time tn D �t n and As is the finite element

stiffness matrix associated with �rOx �˘ . Ods/.
We treat the system of equations modeling the fluid–structure interaction in a

monolithic fashion, i.e., we solve the FSI problem for all the unknown variables
at the same time. Furthermore, we use a fully implicit scheme for which all the
nonlinearities of the problem are treated implicitly.

In Sections 2.1 and 2.2 we report the fully discrete form of the nonlinear FSI
system when conforming and non-conforming fluid–structure interface meshes are
considered, respectively. In Fig. 1 we show an example of conforming and non-
conforming fluid–structure meshes at the interface.

2.1 Conforming Fluid–Structure Interface Meshes

We assume first that at the (common) interface 	 between the fluid domain ˝ f
t and

the solid domain ˝s
t the fluid and solid meshes are the same, see Fig. 1(a). After

space and time discretization, at each time step, the resulting nonlinear FSI system
to be solved reads:

0

B
B
@

F.unC1
F ;dnC1

f / 0 IT
	 f 0

0 S �IT
	 s 0

I	 f �I	 s=�t 0 0

0 �I	 s 0 G

1

C
C
A

0

B
B
@

unC1
F

dnC1
s

�nC1
dnC1

f

1

C
C
A D

0

B
B
@

bf

bs

�I	 s=�t dn
s

0

1

C
C
A : (7)

In Eq. (7), we denote by �nC1 the vector of normal stresses (in weak form) at the
fluid–structure interface and unC1

F D .unC1
f ; pnC1

f /T . The diagonal blocks on the left-
hand side of (7) account for the discretized fluid (F), structure (S), and geometry
(G) problems, respectively. We remark that F is nonlinear due to the presence of
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the convective term and the motion of the fluid domain. The matrices I	 f and I	 s

are the restriction of fluid and structure vectors to the interface and account for
the continuity of velocities and the geometry adherence on 	 , which are imposed
strongly. Their transposes account for the continuity of the normal stresses, which
is imposed weakly.

2.2 Non-Conforming Fluid–Structure Interface Meshes

We consider now the case of non-conforming fluid and structure interfaces, as
illustrated in Fig. 1(b). We propose a method which is able to handle both non-
conforming meshes and slightly non-conforming geometries. The first case implies
that the interface 	 is discretized using two different meshes depending on the
side which is considered. This non-conformity is usually tackled using the mortar
method [3, 9, 11]. As for the mortar method, we need to identify the so-called master
and slave domains ˝slave and ˝master, respectively, that will play a different role.
In the method proposed here, we assume the structure domain to be the master,
Ő s 	 ˝master, while the fluid one represents the slave, ˝ f

t 	 ˝slave. In FSI
problems, the normal stresses in weak form at the interface are usually computed as
residuals of the fluid and structure equations. In (7) they are represented by �. When
dealing with non-conforming meshes, they have to be represented by two different
vectors, �f on the fluid side and �s on the solid one.

When using non-conforming meshes, the interface coupling conditions become
more involved with respect to the conforming case since an interpolation or
a projection procedure has to be performed to enable the transfer of physical
information between two different grids. In our method, this procedure is carried out
using the rescaled localized radial basis functions (RL-RBF) interpolant proposed
in [6]. We remark that other interpolants can be used as well, however, we choose
RL-RBF since it allows to consider also slightly non-conforming geometries, i.e.,
those for which 	 f and 	 s do not exactly coincide.

We define the two matrices representing the interpolation between the two sides
of the interface and denote them by ˘sf , from 	 f to 	 s, and ˘fs, from 	 s to 	 f .
˘sf needs not to be the adjoint of ˘fs, neither their multiplication should yield the
identity matrix. In particular, this is not the case when using RL-RBF.

To better understand the way Eq. (7) is generalized to the non-conforming case,
we reformulate it using the redundant variables �f (the normal stresses in weak form
from the fluid side) and �s (the normal stresses in weak form from the structure
side), and set �f D �s.D �/. Then, Eq. (7) can be equivalently reformulated as:
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0

B
B
B
B
B
@

F.unC1
F ;dnC1

f / 0 IT
	 f 0 0

0 S 0 �IT
	 s 0

0 0 �I I 0

I	 f � 1
�t I	 s 0 0 0

0 �I	 s 0 0 G

1

C
C
C
C
C
A

0

B
B
B
B
B
@

unC1
F

dnC1
s

�nC1
f

�nC1
s

dnC1
f

1

C
C
C
C
C
A

D

0

B
B
B
B
B
@

bf

bs

0

� 1
�t I	 s dn

s

0

1

C
C
C
C
C
A

: (8)

Here I is the identity matrix.
In the non-conforming case, the kinematic coupling condition becomes

unC1
f D ˘fs PdnC1

s on 	 f ; (9)

which, after discretization, reads

unC1
f j	 f D ˘fs�t�1

�
dnC1

s j	 s � dn
s j	 s

�
on 	 f : (10)

Eq. (10) replaces row 4 in Eq. (8).
We focus now on the coupling condition of the normal stresses at the fluid–

structure interface. Since we are interested in interpolating quantities with the RL-
RBF interpolant, we have to work with the stresses in their strong form. A simple
and efficient way is to use the mass matrices of the interface on each side. In fact,
denoting by �nC1

s the weak form of the normal stresses on 	 s at time tnC1, and by
M	 s and M	 f the mass matrices associated with the structure and fluid sides of the
interface, respectively, the discrete form of the dynamic coupling condition follows:

M�1	 s�
nC1
s D ˘sf M

�1
	 f �

nC1
f or �nC1

s � M	 s˘sf M
�1
	 f �

nC1
f D 0 on 	 s: (11)

This equation replaces row 3 in Eq. (8). In Eq. (11), we notice that M�1
	 f �

nC1
f is an

approximation of the strong form of the normal stresses on 	 f ; ˘sf .M�1	 f �
nC1
f / is

an interpolation of the normal stresses on the side of 	 s, still in strong form, and
M	 s.˘sf M�1	 f �

nC1
f / is again in weak form but on 	 s. Note that order of magnitude

of the entries of �nC1
f depend on the mesh size used to discretize ˝ f

t , that of the

entries of M	 s.˘sf M�1	 f �
nC1
f / depend on the mesh size of Ő s, while the order of

magnitude of those of M�1
	 f �

nC1
f and ˘sf .M�1	 f �

nC1
f / are independent of the mesh

sizes.
To summarize, in the non-conforming case Eq. (8) has to be replaced by:

0

B
B
B
B
B
@

F.unC1
F ;dnC1

f / 0 IT
	 f 0 0

0 S 0 �IT
	 s 0

0 0 �˘sf M�1	 f M�1	 s 0

I	 f � 1
�t˘fsI	 s 0 0 0

0 �˘fsI	 s 0 0 G

1

C
C
C
C
C
A

0

B
B
B
B
B
@

unC1
F

dnC1
s

�nC1
f

�nC1
s

dnC1
f

1

C
C
C
C
C
A

D

0

B
B
B
B
B
@

bf

bs

0

� 1
�t˘fsI	 s dn

s

0

1

C
C
C
C
C
A

:
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Upon eliminating �nC1
s using Eq. (11), we end up with the reduced nonlinear FSI

system:

0

B
B
B
B
B
B
@

F.unC1
F ;dnC1

f / 0 IT
	 f 0

0 S �IT
	 s M	 s˘sf M�1

	 f 0

I	 f � 1
�t˘fsI	 s 0 0

0 �˘fsI	 s 0 G

1

C
C
C
C
C
C
A

0

B
B
B
@

unC1
F

dnC1
s
�nC1

f

dnC1
f

1

C
C
C
A

D

0

B
B
B
B
@

bf

bs

� 1
�t˘fsI	 s dn

s

0

1

C
C
C
C
A
;

(12)

which should be regarded as the generalization of Eq. (7) to the non-conforming
case. Note that we have highlighted with a box those blocks that have actually
changed.

Remark: System (12) can be interpreted as the matrix representation of a finite
element formulation of the FSI in the non-conforming case that generalizes the
one in the conforming case by means of suitable inter-grid interface finite element
operators. Full details are given in [7].

3 Numerical Solution

We focus on solving Eq. (12) using the Newton method. The solution of (12) at time
tn D n�t is denoted by Xn D .un

F;d
n
s ;�

n
f ;d

n
f /

T . At each time step, we compute a

sequence of approximations XnC1
1 , XnC1

2 , etc., until the numerical solution converges
up to a prescribed tolerance. The generic k C 1 iteration of the Newton method
applied to (12) is described as follows. Starting from an approximation of XnC1

k , we
compute the residual RnC1

k D .rnC1
F;k ; r

nC1
S;k ; r

nC1
�;k ; r

nC1
G;k /

T :

RnC1
k D

0

B
B
B
@

bf

bs

� 1
�t˘fsI	 s dn

s
0

1

C
C
C
A

�

0

B
B
B
@

F.unC1
F ;dnC1

f / 0 IT
	 f 0

0 S �IT
	 s M	 s˘sf M�1

	 f 0

I	 f � 1
�t˘fsI	 s 0 0

0 �˘fsI	 s 0 G

1

C
C
C
A

0

B
B
B
@

unC1
F;k

dnC1
s;k

�nC1
f ;k

dnC1
f ;k

1

C
C
C
A
:

Then, we compute the Newton correction ıXnC1
k D .ıunC1

F;k ; ıd
nC1
s;k ; ı�

nC1
f ;k ; ıd

nC1
f ;k /

T

by solving

JFSI ıXnC1
k D �RnC1

k ; (13)

being JFSI the exact FSI Jacobian matrix. Linear system (13) is solved by
the GMRES method preconditioned by FaCSI [8]. Finally, we update the
solution, i.e., XnC1

kC1 D XnC1
k C ıXnC1

k . We stop the Newton iterations when
kRnC1

k k1=kRnC1
0 k1 � �, being RnC1

0 the residual at the first Newton iteration and
� a given tolerance.
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4 FSI in a Straight Flexible Cylinder

In this example we consider a classical benchmark problem in which the fluid
geometry consists in a straight cylinder of length L D 5 cm and radius R D 0:5

cm, surrounded by a structure of constant thickness h D 0:1 cm. The fluid density
is �f D 1:0 g=cm3, the dynamic viscosity is �f D 0:03 g=.cm s/; the structure
is characterized by a density O�s D 1:2 g=cm3, a Young’s modulus Es D 3 � 106

dyne=cm2, and a Poisson’s ratio �s D 0:3. The structure is clamped at both ends. At
the fluid inflow we prescribe a constant normal stress � � n D 1:33 � 104 dyne=cm2

for t � 0:003 s, while a homogeneous Neumann boundary conditions is used at the
fluid outflow.

In our simulations we consider 3 sets of fluid–structure meshes: in Fig. 2 we
report a front view of them while in Table 1 we report their corresponding number
of degrees of freedom. In Fig. 3 we show a post-processing of the solutions obtained
at time t D 0:005 s using the three different set of meshes considered. Furthermore,
in Fig. 4 we compare the solutions obtained for each set by plotting the values of the
pressure and the magnitude of the solid displacements with respect to time at two
specific locations. In Fig. 4(b) and Fig. 4(c) we show that the results obtained using
non-conforming meshes match almost exactly those obtained in the conforming
case, even when the fluid mesh is much finer than the solid one (Set 3).

Fig. 2 Front view of the different sets of fluid–structure meshes used. In Set 1 we consider
conforming meshes. In Set 2 we keep the same meshes of Set 1 but we rotate the fluid mesh
such that the fluid and structure interfaces are non-conforming. In Set 3 the structure mesh is the
same of Set 1 but the fluid one is finer.

Table 1 Straight flexible tube example: number of degrees of freedom (DoF) used
for each set of fluid–structure meshes considered.

Set Fluid DoF Structure DoF Coupling DoF Geometry DoF Total

1 137’280 53’856 13’056 102’960 307’152

2 137’280 53’856 13’056 102’960 307’152

3 840’360 53’856 48’372 630’270 1’572’858



A FSI Algorithm Using RBF Interpolation Between Non-Conforming Interfaces 447

Fig. 3 Post-processing of the results obtained at time t D 0:005 s. In the upper row we show the
fluid pressure, while in the middle row the magnitude of the structure displacement, for the three
set of meshes considered. The deformation of the fluid and structure domains is magnified by a
factor 10 for visualization purposes.
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(c) Solid displacement at PS.

Fig. 4 On the left we show the locations where results are taken in the fluid (PF) and the structure
(PS). In the two right-most figures we report the evolution of the fluid pressure and the magnitude
of the solid displacement at the point PF and PS, respectively.

We also compared the performance of our solver when using the meshes of Set 1
and Set 2, for which the total number of degrees of freedom is the same. The average
number of Newton iterations is the same and equal to 2.9, while the average number
of linear solver iterations per Newton step is 20 in both cases. Finally, we observe
that in the simulations performed, dealing with non-conforming meshes increases
the average computational time per time step of about 15% with respect to the
conforming case.
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5 FSI in a Patient-Specific Femoropopliteal Bypass

We consider a blood flow simulation in a patient-specific femoropopliteal bypass.
To estimate accurately the Wall-Shear Stress (WSS) distribution [10] we consider
a fluid mesh featuring a boundary layer refinement that is non-conforming with
respect to the one of the vessel wall, see Fig. 5. The blood is characterized by
a density �f D 1 g=cm3 and a dynamic viscosity �f D 0:0035 g=.cm s/. The
Young’s modulus of the vessel wall is Es D 4 � 106 dyne=cm2 and the Poisson’s
ratio is �s D 0:45. Patient-specific measured inflow and outflow flow rates are
imposed at the inflow and outflow sections of the fluid domain while we prescribe a
homogeneous Dirichlet boundary conditions at the occluded branch. The time step
considered is �t D 0:001 s. In Fig. 6 we show the WSS distributions computed at
two different time steps during the heart-beat simulated. We notice that, although
non-conforming meshes are used here, both the WSS magnitude and distribution
are in good agreement with those reported in [4] where conforming fluid–structure
meshes were adopted.
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Fig. 5 Bypass geometry and zoom over the inflow and outflow surfaces of the non-conforming
fluid–structure meshes.
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Fig. 6 WSS distributions at times t D 0:17 s (top) and at t D 0:34 s (bottom).
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Elasto-Capillarity Simulations Based on the
Navier–Stokes–Cahn–Hilliard Equations

E.H. van Brummelen, M. Shokrpour-Roudbari, and G.J. van Zwieten

Abstract We consider a computational model for complex-fluid–solid interac-
tion (CSFI) based on a diffuse-interface model for the complex fluid and a
hyperelastic-material model for the solid. The diffuse-interface complex-fluid model
is described by the incompressible Navier–Stokes–Cahn–Hilliard (NSCH) equa-
tions with preferential-wetting boundary conditions at the fluid–solid interface. The
corresponding fluid traction on the interface includes a capillary-stress contribu-
tion, and the dynamic interface condition comprises the traction exerted by the
non-uniform fluid–solid surface tension. We present a weak formulation of the
aggregated CSFI problem, based on an arbitrary-Lagrangian–Eulerian formulation
of the NSCH equations and a proper reformulation of the complex-fluid traction and
the fluid–solid surface tension. To validate the presented CSFI model, we present
numerical results and conduct a comparison to experimental data for a droplet on a
soft substrate.

1 Introduction

Complex fluids are fluids that consist of multiple constituents, e.g., of multiple
phases of the same fluid (gas, liquid or solid) or of multiple distinct species (e.g.,
water and air). The interaction of such complex fluids with elastic solids leads to
multitudinous intricate physical phenomena. Examples are durotaxis, viz., seem-
ingly spontaneous migration of liquid droplets on solid substrates with an elasticity
gradient [17], or capillary origami, viz., large-scale solid deformations induced
by capillary forces [16]. Complex fluid–solid interaction (CFSI) is moreover of
fundamental technological importance in a wide variety of applications, such as
inkjet printing and additive manufacturing.

Despite significant progress in models and computational techniques for the
interaction of solids and classical fluids (see [4, 19] for an overview), and for
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complex fluids separately (see, e.g., [1, 2, 10–12, 14]), CSFI has remained essen-
tially unexplored. A notable exception is the computational CFSI model based on
the Navier–Stokes–Korteweg equations in [5].

In this contribution we consider a computational model for CSFI based on a
diffuse-interface complex-fluid model and a hyperelastic solid model with a Saint
Venant–Kirchhoff stored-energy functional. The diffuse-interface complex-fluid
model is described by the incompressible Navier–Stokes–Cahn–Hilliard (NSCH)
equations. The interaction of the complex fluid with the solid substrate is represented
by dynamic and kinematic interface conditions and a preferential-wetting boundary
condition. The traction exerted by the complex fluid on the fluid–solid interface
comprises a non-standard capillary-stress contribution, in addition to the standard
pressure and viscous-stress components. The dynamic condition imposes equilib-
rium of this complex-fluid traction, the traction exerted by the hyperelastic solid and
the traction due to the non-uniform fluid–solid surface tension. We present a weak
formulation of the aggregated CSFI problem, based on an arbitrary-Lagrangian–
Eulerian (ALE) formulation of the NSCH system and a suitable weak representation
of the complex-fluid traction and the non-uniform fluid–solid surface tension.

To evaluate the capability of the considered CSFI model to describe elasto-
capillary phenomena, we consider numerical experiments for a test case pertaining
to a droplet on a soft substrate, and we present a comparison to experimental data
from [18].

The remainder of this contribution is organized as follows. Section 2 presents a
specification and discussion of the considered CSFI problem. In Section 3 we treat
the weak formulation of the aggregated fluid–solid interaction problem. Section 4
is concerned with numerical experiments and results. Concluding remarks are
presented in Section 5.

2 Problem Statement

To accommodate the complex-fluid–solid system, we consider a time interval
.0;T/ � R>0 and two simply connected time-dependent open subsets ˝f

t � R
d

(d D 2; 3) and ˝s
t � R

d, which hold the complex-fluid and solid, respectively.
The fluid–solid interface corresponds to 	t WD @˝f

t \ @˝s
t ¤ ;. We assume

that the time-dependent configuration ˝t WD int.cl˝f
t [ cl˝s

t / is the image
of a time-dependent transformation O� acting on a fixed reference domain
Ő WD int.cl Ő f [ cl Ő s/ such that ˝f

t D O� Ő f and ˝s
t D O� Ő s. The restrictions

of O� to Ő f and Ő s are denoted by O�f and O�s, respectively. The reference domains
Ő f WD ˝f

0 and Ő s WD ˝s
0 are identified with the initial configurations.
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2.1 Navier–Stokes–Cahn–Hilliard Complex-Fluid Model

We consider a complex fluid composed of two immiscible incompressible con-
stituents, separated by a thin diffuse interface. The behavior of the complex
fluid is described by the NSCH equations. The two species are identified by an
order parameter ' W ˝f

t ! Œ�1; 1�. Typically, ' is selected as either volume
fraction [1, 11, 12] or mass fraction [10, 14], such that ' D 1 (resp. ' D �1)
pertains to a pure species-1 (resp. species-2) composition of the fluid, and ' 2
.�1; 1/ indicates a mixture. Depending on the definition of the phase indicator '
as mass or volume fraction, and the definition of mixture velocity as mass-
averaged or volume-averaged species velocity, various forms of the NSCH equations
can be derived. In mass-averaged-velocity formulations, the mixture is generally
quasi-incompressible. In volume-averaged-velocity formulations, the mixture is
incompressible. We select ' as volume fraction and consider a volume-averaged-
velocity formulation. The behavior of the complex fluid is described by [2, 12]:

@t.�u/C r � .�u ˝ u/C rp � r � � C Q��r � .r' ˝ r'/ D 0

r � u D 0

@t' C r � .'u/ � ��� D 0

�C Q���' � Q���1W 0.'/ D 0

9
>>>>>=

>>>>>;

in ˝f
t (1)

with � WD �.'/ D �1.1C '/=2C �2.1 � '/=2 as mixture density, u W ˝f
t ! R

d as
volume-averaged mixture velocity, p D p W ˝f

t ! R as pressure, � D �rsu as
viscous-stress tensor and � W ˝f

t ! R as chemical potential. The mixture viscosity
is defined as � WD �.'/ D �1.1C '/=2C �2.1 � '/=2. The parameter Q� is related
to the fluid–fluid surface tension � by 2

p
2 Q� D 3 � , and � > 0 designates mobility.

The energy density associated with mixing of the constituents is represented by the
standard double-well potential W.'/ D 1

4
.'2 � 1/2. The parameter � > 0 controls

the thickness of the diffuse interface between the fluid constituents.
Suitable initial conditions for (1) are provided by a specification of the initial

phase distribution and the initial velocity, according to '.0; �/ D '0 and u.0; �/ D u0,
with '0 W ˝f

0 ! Œ�1; 1� and u0 W ˝f
0 ! R

d exogenous data. Equations (11), (13),
and (14) are typically furnished with Dirichlet or Neumann boundary conditions:

u D gu
D on 	 u

D

' D g'D on 	 '
D

� D g�D on 	 �
D

�pn C �n � Q��@n'r' D gu
N on 	 u

N

�Q��@n' D g'N on 	 '
N

�@n� D g�N on 	 �
N

(2)

with n the exterior unit normal vector to @˝f
t . The right-hand sides in (2) correspond

to exogenous data. It generally holds that 	 .�/
D \ 	 .�/

N D ;. The Neumann condition
in (21) provides a specification of the fluid traction on the boundary 	 u

N . If 	 �
N

corresponds to a material boundary, homogeneous data g�N D 0 provide phase
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conservation at the boundary. Indeed, from (13), the Neumann condition in (23)
and the Reynolds transport theorem it follows that:

d

dt

Z

˝f
t

' D
Z

@˝f
t n	 �N

�
�@n� � '.un � wn/

� �
Z

	
�

N

'.un � wn/C
Z

	
�

N

g�N (3)

with un and wn the normal velocities of the fluid and of the boundary, respectively.
Material boundaries satisfy un D wn and, accordingly, the penultimate term in (3)
vanishes. Therefore, the contribution of 	 �

N to production of ' vanishes if g�N D 0.
An important alternative to (22) is the nonlinear Robin-type condition

Q��@n' C � 0W.'/ D 0 on	W (4)

with �W.'/ D 1
4
.'3�3'/.�2��1/C 1

2
.�1C�2/ the surface tension of the complex-

fluid–solid interface, and �1 > 0 and �2 > 0 the fluid–solid surface tensions of
species 1 and 2, respectively; see [13]. Note that �W.�/ provides an interpolation of
the pure-species fluid–solid surface tensions, i.e., �W.1/ D �1 and �W.�1/ D �2.
Equation (4) describes preferential wetting of 	W by the two fluid components. In
particular, the angle �s D arccos..�2 � �1/=�/ corresponds to the static contact
angle between the diffuse interface and 	W (interior to fluid 1). Interaction of the
complex fluid (1) with a solid substrate is modeled by Dirichlet condition (21),
(homogeneous) Neumann condition (23), and preferential-wetting condition (4).

2.2 Hyperelastic Saint Venant–Kirchhoff Solid Model

We consider a hyperelastic solid with Saint Venant–Kirchhoff stress-strain relation.
Denoting the initial density of the solid by O� WD �0 W Ő s ! R>0, the solid
deformation O�s W Ő s ! ˝s

t satisfies the equation of motion:

O�@2t O�s � Or � OP D 0 in Ő s (5)

with OP the first Piola–Kirchhoff stress tensor and Or� the divergence operator in
the reference configuration. For hyperelastic materials, Or � OP is the vector-valued
function such that � R Ő s Ox � . Or � OP/ D W 0. O�sI Ox/ for all Ox 2 C10 . Ő s;Rd/, with W
the stored-energy functional, W 0. O�sI �/ its Fréchet derivative at O�s, and C10 . Ő s;Rd/

the class of Rd-valued smooth functions with compact support in Ő s. Denoting by
F WD F. O�s/ the deformation tensor and by E WD 1

2
.FTF � I/ the Green–Lagrange

strain tensor, the Saint Venant–Kirchhoff relation specifies the strain-energy density
associated with O�s as 1

2
�L.tr E/2 C �L.tr E2/ with �L and �L the Lamé parameters.

The identification of the reference configuration and the initial configuration
yields the initial condition O�s

0 D Id. Equation (5) is generally furnished with
Dirichlet or Neumann conditions:

O�s D g O�D on O	 O�D OPOn D g O�N on O	 O�N (6)

with g O�D and g O�N deformation and traction data on O	 O�D and O	 O�N, respectively.
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2.3 Interface Conditions

The complex fluid (1) and solid (5) are interconnected at the interface by kinematic
and dynamic interface conditions. The kinematic condition identifies the mixture
velocity and the structural velocity at the interface. This condition can be interpreted
as a Dirichlet boundary condition for fluid velocity in accordance with (21):

u D gu
D WD @t O�s ı O��1on 	t � 	 u

D (7)

Kinematic condition (7) constitutes a partial solid-wall condition for (1). The
condition is complemented by a homogeneous Neumann condition (23) to impose
conservation of phase, and wettability boundary condition (4).

The dynamic condition imposes equilibrium of the fluid and solid tractions and
the traction exerted on the interface by the fluid–solid surface tension. The traction
due to the fluid–solid surface tension is given by the Young–Laplace relation for
non-uniform surface tension according to ˙ fs D �W.'/� n C r	 �W.'/, with � as
the additive curvature of 	t and r	 .�/ the tangential gradient on 	t; see, e.g., [9]. We
adopt the convention that curvature is negative if the osculating circle in the normal
plane is located in the fluid domain. The complex fluid in (1) exerts traction ˙ f WD
pn��nC Q��@n'r' on the interface; cf. (21). Note the capillary-stress contribution,
Q��@n'r', to the fluid traction. The traction exerted by the solid (5) is Ȯ s WD � OPOn
with On the exterior unit normal vector to @ Ő s; cf. (6). To account for the fact that fluid
traction and surface-tension traction are expressed in the current configuration and
solid traction is expressed in the reference configuration, we consider the dynamic
condition in distributional form:

Z

O	
Ov � Ȯ s dOs D �

Z

	t

� Ov ı O��1� � �˙ f C˙ fs
�

ds 8Ov 2 C10 . O	 / (8)

with dOs and ds the surface measures carried by O	 and 	t, respectively. A precise
interpretation of (8) based on weak traction evaluation is presented in Section 3.2.

3 Weak Formulation

In this section we present a consistent weak formulation of the fluid–solid interac-
tion problem in Section 2. We first consider a weak ALE formulation of the NSCH
system (1) in Section 3.1. Section 3.2 presents a weak formulation of aggregated FSI
problem, including a weak formulation of the solid subsystem (5) and an appropriate
weak formulation of the traction exerted by the fluid on the solid at the interface in
conformity with the dynamic condition.
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3.1 ALE Formulation of NSCH Equations

To accommodate the motion of the fluid domain, we consider a weak formulation
of (1) in ALE form. The weak formulation is set in the current configuration. The
deformation of the fluid domain, O�f, induces domain velocity Ow WD @t O�f. To derive
the ALE formulation, we note that
Z

˝f
t

z@t D d

dt

Z

˝f
t

z �
Z

˝f
t

r�� wz/�
Z

˝f
t

 @tz D d

dt

Z

˝f
t

z �
Z

˝f
t

zr�. w/ (9)

for all Oz 2 C1. Ő f/ and  2 C1.˝f
t /, with z D Oz ı O��1 and w D Ow ı O��1. The

identities in (9) follow from the transport theorem and @t.Oz ı O��1/ D �w � rz.
From (9) it follows that (11) and (13) subject to (2) can be recast into the weak ALE
form:

dth�u; vi C AN.u;w; 'I v/C B.p; v/ D LN.u;w; '; pI v/ 8Ov 2 C1. Ő f;Rd/

dth'; zi C AC.u;w; '; �I z/ D LC.u;w; '; �I z/ 8Oz 2 C1. Ő f/
(10)

with h�u; vi D R
˝f

t
v � �u and h'; zi D R

˝f
t
z', and

AN.u;w; 'I v/ D
Z

˝f
t

rv W �� � �u ˝ .u � w/ � Q��r' ˝ r'�

L N.u;w; '; pI v/ D
Z

	 u
N

v � gu
N �

Z

@˝f
t n	 u

N

v �˙ f �
Z

@˝f
t

v � �u.un � wn/

AC.u;w; '; �I z/ D
Z

˝f
t

rz � ��r� � '.u � w/
�

(11)

LC.u;w; '; �I z/ D
Z

	
�

N

z g�N C
Z

@˝f
t n	 �N

z �@n� �
Z

@˝f
t

z'.un � wn/

B.p; v/ D
Z

˝f
t

�p r � v

From (12) and (14), the Neumann condition in (22) and the wetting condition (4),
we moreover infer:

B.q; u/ D 0 8q 2 C1.˝f
t /

AP.'I�; y/ D LP.'; y/ 8y 2 C1.˝f
t /

(12)

with

AP.'I�; y/ D
Z

˝f
t

y
�
� � Q���1W 0.'/� �

Z

˝f
t

ry � Q��r' �
Z

	W

y� 0W.'/

LP.'; y/ D
Z

	
'

N

y g'N �
Z

@˝f
t n.	W[	 'N /

y Q��@n'

(13)

It is important to note that the fluid–solid interface satisfies 	t � 	W \	 �
N \	 u

D .
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The configuration of the fluid domain, O�f, can be constructed in various manners.
We select O�f D h O�sj

O	
as the harmonic extension of the trace of the solid displacement

on the interface onto Ő f. Accordingly, it holds that Ow D @th O�sj
O	
.

3.2 Aggregated Fluid–Solid Interaction Problem

From the equation of motion of the solid in (5), we infer the weak formulation:

d2t h O� O�s; Oxi C W 0. O�sI Ox/ D
Z

O	 O�
N

Ox � g O�N �
Z

@ Ő sn. O	[ O	 O�
N/

Ox � Ȯ s �
Z

O	
Ox � Ȯ s (14)

for all Ox 2 C1. Ő s;Rd/. The ultimate term in (14) constitutes the solid traction
on the interface. The dynamic condition imposes that this term coincides with the
right-hand side of (8). Noting that 	t � @˝f

t n 	 u
N , equations (10)–(11) convey that

the fluid-traction contribution can be expressed as:

�
Z

	t

x �˙ f D
Z

	t

`x � �u.un � wn/C dth�u; `xi CAN.u;w; 'I `x/CB.p; `x/ (15)

where `x represents an appropriate lifting of x, viz. any suitable function ˝f
t ! R

d

such that `xj	t D x and `x vanishes on @˝f
t n 	t. The right member of (15) provides

a weak formulation of the traction functional in the left member of (15), in the sense
that the identity (15) holds for all solutions of (1) for which the left-hand side of (15)
is defined, but the right-hand side is defined for a larger class of solutions to (1) with
weaker regularity; see also [15, 21, 22]. The contribution of the fluid–solid surface
tension in the right-member of (8) can be reformulated as:

�
Z

	t

x � ��W.'/�n C r	 �W.'/
� D C . O�s; 'I x/C

Z

@	t

( � ��w.'/ x
�

(16)

with

C . O�s; 'I x/ D
Z

	t

�w.'/r	 Id	t W r	 x (17)

and Id	t the identity on 	t and ( the exterior unit normal vector to @	t in the tangent
bundle of 	t; see [3, 7]. Let us note that the right member of (17) depends implicitly
on the solid deformation O�s via the shape of the interface 	t. The second term in
the right member of (16) cannot generally be bounded in weak formulations, and it
must vanish by virtue of boundary conditions on O�s or x.

To provide a setting for the weak formulation of the fluid–solid interaction
problem, let L2.!/ denote the class of square-integrable functions on any ! � R

d,
H1.!/ the Sobolev space of functions in L2.!/ with weak derivatives in L2.!/, and
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H1
0;„.!/ the subspace of functions that vanish on„ � @˝. For a vector space X.!/

of scalar-valued functions, X.!;Rd/ is the extension to the corresponding vector
space of R

d-valued functions. Given a vector space V and a time interval .0;T/,
W.0;TI V/ represents a (suitable) class of functions from .0;T/ into X.!/.

We collect the ambient spaces for the fluid and solid variables into1:

V WD H1
0;	 u

D
.˝f

t ;R
d/ � L2.˝f

t / � H1

0;	
'

D
.˝f

t / � H1

0;	
�

D
.˝f

t / � H1

0;	
O�

D

. Ő s;Rd/ (18)

For conciseness, we assume gu
Dj	 u

Dn	t D 0, g'D D 0, g�D D 0, and g O�D D Id. The
aggregated fluid–solid interaction problem can then be condensed into:

Find .u; p; '; �; O�s � Id/ 2 W.0;TI V/ such that almost everywhere in .0;T/ W
dth�.u C `wj	t

/; v C `xj	t
i C AN

�
u C `wj	t

;w; 'I v C `xj	t

�C B.p; v C `xj	t
/

C B.q; u C `wj	t
/C dth'; zi C AC.u C `wj	t

;w; '; �I z/C AP.'I�; y/
C d2t h O� O�s; Oxi C W 0. O�s; Ox/C C . O�s; 'I x/ D LA.v; z; y; Ox/ 8.v; q; z; y; Ox/ 2 V

(19)

with w D @th O�sj
O	

ı O��1 and x D Ox ı O��1, and the aggregated linear form:

LA.v; z; y; Ox/ D
Z

	 u
N

v � gu
N C

Z

	
�

N

z g�N C
Z

	
'

N

y g'N C
Z

	
O�

N

Ox � g O�N

It is to be noted that O�s � Id represents solid displacement. Furthermore, by virtue
of .v C `xj	t

/j	t D Oxj O	 ı O��1 and .u C `wj	t
/j	t D @t O�j O	 ı O��1, the test spaces for

the equations of motion of the fluid and the solid and the trial spaces for the fluid
and solid velocity in (19) are essentially continuous across the interface.

4 Numerical Experiments

To evaluate the predictive capabilities of the presented CFSI model, we consider
numerical approximations of (19) for the experimental setup in [18]. The test case
concerns a 13:8 pl droplet on a soft substrate; see Fig. 1 (left). We characterize the
substrate by a nearly incompressible solid with Saint Venant–Kirchhoff constitutive
behavior, with Lamé parameters �L D QE=.2C 2 Q�/ and �L D Q� QE=.1C Q�/.1 � 2 Q�/,
and Young’s modulus QE D 3 k Pa and Poisson ratio Q� D 0:499. The surface tension
of the interface between the droplet (fluid 1) and ambient fluid (fluid 2) is � D

1The admissible solid deformations must in fact satisfy auxiliary conditions at the interface to
ensure that the surface-tension contributions are well-defined. Detailed treatment of this aspect is
beyond the scope of this work.
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Fig. 1 Illustration of the considered experimental configuration (left) and the corresponding
computational setup (right).

46m N=m. The fluid/solid surface tension of fluid 1 (resp. fluid 2) is �1 D 36m N=m
(resp. �2 D 31m N=m). The diffuse-interface thickness is set to � D 2�m. Our
interest is restricted to steady solutions and, hence, �1, �2, O�, �, and � are essentially
irrelevant. For completeness, we mention that we select matched fluid densities � D
�1 D �2 D 1:26 pg=.�m/3, matched fluid viscosities � D �1 D �2 D 1412m Pa s,
solid density O� D 12:6 pg=.�m/3, and mobility � D 0:01 .�m/3 �s=pg. We refer to
Fig. 1 for further details of the experimental configuration.

We incorporate the rotational symmetry of the experimental setup in the discrete
approximation of (19). The considered approximation spaces are based on a locally
refined mesh, adapted to the diffuse interface; see Fig. 1 (right). We apply Raviart–
Thomas compatible B-spline approximations for velocity (u) and pressure (p) with
order ..3; 2/; .2; 3// and 2, respectively; see [6, 8]. The order parameter (') and
chemical potential (�) are approximated by means of quadratic B-splines. The solid
deformation ( O�s) and the deformation of the fluid domain ( O�f) are approximated
with quadratic B-splines as well. Let us note that by virtue of the C1-continuity
of the solid deformation, the interface 	t corresponds to a C1 manifold. The
temporal discretization of (19) is based on backward Euler approximation of the
time derivatives, with time step 0:5ms. In each time step, the aggregated fluid–solid
interaction problem is solved by means of subiteration with underrelaxation; see,
for instance, [20].

Figure 2 (left) presents a comparison of the computed interface configuration, 	t,
at t 2 f0; 0:5; 1; 2; 4; 8; 16g ms and experimental data from [18]. At t D 16ms, the
interface has essentially reached its equilibrium deformation. The surface tension of
the fluid–fluid interface yields a localized load on the fluid–solid interface near the
contact line, resulting in a kink in the surface deformation of the soft substrate. In
addition, the fluid–fluid surface tension leads to an increased pressure in the droplet
relative to the ambient pressure (see also Fig. 2 (right)), viz. Laplace pressure, and
a corresponding depression of the substrate. Comparison of the experimental and
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Fig. 2 Comparison of the computed fluid–solid interface configuration 	t at t 2
f0; 0:5; 1; 2; 4; 8gms (grey) and at t D 16ms (black) and rendering of experimental results
from [18] (left), and magnification of the contact-line region at t D 16ms with deformed fluid
and solid meshes and computed pressure distribution (right).

computed results conveys that the fluid–solid interface elevation at the contact line is
underestimated by approximately 25%. The underestimation can be attributed to the
regularizing effect of the diffuse interface. It is anticipated that further reduction of
the diffuse-interface thickness (�) and corresponding refinement of the mesh leads to
an increase in the fluid–solid interface elevation at the contact line. The indentation
of the substrate below the droplet is noticeably overestimated. In this regard, it is to
be mentioned that on account of the nearly incompressible behavior of the solid, its
volume at t D 16ms has decreased by only 0:16% relative to the initial volume.

Figure 2 (right) presents a magnification of the contact-line region at t D 16ms
with the fluid and solid meshes in the actual configuration and the computed
pressure distribution in the complex fluid. It is noteworthy that the pressure in the
diffuse interface exhibits a localized minimum at the contact line. The pressure in the
droplet is virtually uniform with value p � 520Pa, which is close to the theoretical
Laplace pressure 2�=R in a droplet on a rigid substrate with radius R D 178�m and
surface tension � D 46m N=m.

5 Conclusion

We presented a model for the interaction of a complex fluid with an elastic
solid, in which the complex fluid is represented by the NSCH equations and the
solid is characterized by a hyperelastic material with a Saint Venant–Kirchhoff
stored-energy functional. The interaction between the fluid and the solid at their
mutual interface is described by a preferential-wetting condition in addition to
the usual kinematic and dynamic interface conditions. The fluid traction on the
fluid–solid interface comprises a non-standard capillary-stress contribution, and the
dynamic condition contains a contribution from the non-uniform fluid–solid surface
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tension. A weak formulation of the CFSI problem was presented, based on an ALE
formulation of the NSCH system and a suitable reformulation of the complex-fluid
traction and the fluid–solid surface-tension traction.

Numerical results were presented for a stationary droplet on a soft solid substrate,
based on finite-element approximation of the weak formulation of the aggregated
CFSI problem. Comparison of the computed results with experimental data for
the considered test case exhibited very good agreement in the contact-line region.
The substrate depression below the droplet was noticeably overestimated relative
to the experimental data. In view of the close agreement between the computed
pressure in the droplet and the theoretical Laplace pressure, it appears that the
discrepancy between the computed and observed depression is to be attributed to
corresponding differences in the constitutive behavior of the solid substrate. The
overall good agreement between the computed and experimental data indicates the
potential of computational CFSI models based on the NSCH equations to predict
elasto-capillary phenomena.
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Fluid–Structure Interaction Modeling and
Isogeometric Analysis of a Hydraulic Arresting
Gear at Full Scale

Ming-Chen Hsu, Chenglong Wang, Michael C.H. Wu, Fei Xu,
and Yuri Bazilevs

Abstract Fluid–structure interaction (FSI) analysis of a full-scale hydraulic arrest-
ing gear used to retard the forward motion of an aircraft landing on an aircraft-carrier
deck is performed. The simulations make use of the recently developed core and
special-purpose FSI techniques for other problem classes, specialized to the present
application. A recently proposed interactive geometry modeling and parametric
design platform for isogeometric analysis (IGA) is directly employed to create the
arresting gear model, and illustrates a natural application of IGA to this problem
class. The fluid mechanics and FSI simulation results are reported in terms of the
arresting gear rotor loads and blade structural deformation and vibration. Excellent
agreement is achieved with the experimental results for the arresting gear design
simulated in this work.

1 Introduction

Military aircraft, during landing on the deck of an aircraft carrier, ejects a “hook”
that engages a wire connected to a tape drum. The resultant tape-drum angular
momentum is transferred to the rotor inside a hydraulic energy absorber (or a
hydraulic arresting gear). The rotor, which is a steel structure several feet in
diameter, accelerates rapidly, reaching speeds of 800 rpm. The rotor acceleration
is then arrested by the drag forces coming from the surrounding water inside the
arresting gear. This, in turn, puts the wire in tension and rapidly slows the aircraft
forward motion. The rotor speed and blade topology, geometry, and structural
design play a critical role in the performance of the device, both in its function
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to arrest the motion of landing aircraft, as well as in its ability to withstand
the internal hydrodynamic loads and perform multiple consecutive aircraft arrests
without failure. As a result, accurate prediction of rotor loads and the structure
response to these loads is important, requiring advanced modeling and simulation,
which we undertake in this work using isogeometric analysis (IGA) [1, 2] and fluid–
structure interaction (FSI) [3].

The paper is outlined as follows. In Section 2, we describe the geometry of the
Virginia Tech (VT) arresting gear design [4], which belongs to the Model 64 [5]
energy absorber system. We describe a novel technique for IGA analysis-suitable
geometry construction of the arresting gear design. We make use of a recently
proposed interactive geometry modeling and parametric design platform [6], which
is based on the Rhino 3D CAD software [7] with an embedded visual programming
tool Grasshopper [8]. Rhino 3D gives the user access to complex geometry modeling
functionality with objects such as NURBS and T-splines, while Grasshopper is
employed for the generative algorithm approach to arresting gear geometric design.
In Section 3, we present the governing equations involved in the FSI model and
summarize the numerical formulations employed. In Section 4, we present the
results of standalone fluid and structural mechanics, and FSI analyses of the VT
arresting gear at full scale.

2 Geometry Modeling and Meshing for the Arresting Gear
FSI Analysis

In this work we simulate the Virginia Tech (VT) arresting gear design described
in [4] and shown in Figure 1 (Left). We consider a full-scale model with slightly
simplified geometry, but with all the important structural components represented.
The VT model has experimental data available for hydrodynamic loads acting on the
rotor operating at speeds ranging from 200 rpm to 800 rpm, which are typical rotor
speeds during the aircraft arrest. The availability of experimental data enables one
to perform methods validation at full scale, and to assess the computational effort
needed for this challenging problem class.

Fig. 1 Left: Schematic representation of the VT hydraulic arresting gear [4]. Right: Rotor solid
model.
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The VT arresting gear design includes two main parts: A rotating turbine (rotor)
and a stationary reel (stator). The rotor diameter is 43.5 in. There are nine blades on
the rotor side and eight vanes on the stator side, with a small gap present between the
rotor blades and stator vanes. The rotor cross-section geometry is shown in Figure 2
(Left), while the key rotor geometric parameters and dimensions are summarized in
table of Figure 2 (Right).

Using this data input, the arresting gear fluid-mechanics domain geometry is
created with the help of the interactive geometry modeling and parametric design
platform described in [6]. The generative algorithm employed for the rotor design
is depicted in Figure 3. The algorithm, which is implemented using the visual
programming interface Grasshopper, takes the rotor parametric input and, using the
existing Rhino 3D functionality, constructs the underlying NURBS model of the
arresting gear geometry. The resulting rotor geometric model is shown in Figure 1
(Right). The stator geometry is constructed in an analogous fashion. Figure 4 shows
the complete arresting gear geometry, as well as a view of the model interior

hh

r 

R 

th

td
ht

Parameters Name Unit (in)
Hub thickness th 0.4

Hub height hh 7.96
Inner radius r 3.48
Outer radius R 21.75

Disc thickness td 1.0
Tip height ht 4.35

Blade thickness tb 0.348

Fig. 2 Left: Rotor cross-section with dimensions. Right: Arresting gear rotor dimensions.

Fig. 3 Generative algorithm for parametric geometry design of the arresting gear rotor expressed
in a visual programming interface Grasshopper.
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Fig. 4 Left: NURBS-based IGA model of the VT arresting gear, including rotor, stator, and outer
casing. Right: NURBS-based IGA model of the VT arresting gear with a zoom on the sliding
interface between rotor and stator domains.

Fig. 5 Left: Rotor blade with clamped boundary conditions. Right: Tetrahedral mesh of the
arresting gear fluid-mechanics domain.

showing the sliding interface design. The sliding interface is needed for the fluid
mechanics part of the FSI problem to account for the relative motion between the
rotor and stator components. It is interesting to note that such objects as sliding
interfaces may also be modeled within the proposed design platform, which is
an added benefit of the approach employed. In the FSI simulations presented
later in this article, the rotor blades are assumed to be flexible and modeled as
isogeometric Kirchhoff–Love shells [9, 10]. The blade structural components are
also created inside the parametric design platform. Figure 5 (Left) shows one of
the blades superposed on the rotor model. Although the parametric design platform
was created to build analysis-suitable models for IGA, here we take advantage of the
modeling tool’s direct compatibility with automatic FEM mesh generation software,
and create the arresting gear fluid-mechanics domain mesh that consists of linear
tetrahedral elements. The finest mesh makes use of about 2 million tetrahedra, and
is shown in Figure 5 (Right).
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3 Governing Equations and Numerical Methods

The hydrodynamics of the arresting gear is governed by the Navier–Stokes equa-
tions of incompressible flows, which are posed on a moving spatial domain and
written in the Arbitrary Lagrangian–Eulerian (ALE) frame [11] as follows:

�1



@u
@t

ˇ
ˇ
ˇ
ˇOx

C .u � Ou/ � ru � f1

�

� r � � 1 D 0; (1)

r � u D 0: (2)

Here �1 is the fluid density, u is the velocity, f1 is the body force per unit mass, and
Ou is the velocity of the fluid mechanics domain. The Cauchy stress, � 1, is given by

� 1 .u; p/ D �pI C 2�" .u/ ; (3)

where p is the pressure, I is the identity tensor, � is the dynamic viscosity, and " .u/
is the strain-rate tensor defined as

" .u/ D ru C ruT

2
: (4)

The time derivative in Eq. (1) is taken with respect to the fixed referential-domain
coordinates Ox. All space derivatives are taken with respect to spatial coordinates of
the current configuration x.

The governing equations of structural mechanics are written in the Lagrangian
frame [12] and consist of the local balance of linear momentum:

�2



d2y
dt2

� f2

�

� r � � 2 D 0: (5)

Here �2 is the structural mass density, f2 is the body force per unit mass, � 2 is the
Cauchy stress, and y is the unknown structural displacement. The time derivative
in Eq. (5) is taken with respect to the fixed material coordinates of the structure
reference configuration.

Compatibility of the kinematics and tractions is enforced at the fluid–structure
interface, namely

u � dy
dt

D 0; (6)

� 1n1 C � 2n2 D 0; (7)

where n1 and n2 are the unit outward normal vectors to the fluid and structural
mechanics domains, respectively.
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To discretize the arresting gear hydrodynamics, the ALE–VMS method [13, 14]
and weakly enforced essential boundary conditions [15–17] are employed. The
former is an extension of the residual-based variational multiscale large eddy
simulation turbulence model [18] to moving domains using the ALE technique,
while the latter acts as a “near-wall model” in that it relaxes boundary-layer
resolution requirements to achieve good accuracy of fluid solution and loads
prediction on meshes without excessive boundary-layer refinement [19–24].

In the arresting gear design the stator is located in close proximity of the rotor,
leaving only a small gap as the rotor blades pass the stator vanes during the
device operation. To capture the complex dynamics of arresting gear rotor–stator
interaction, the sliding-interface technique from [25, 26] is employed.

The structural mechanics of rotor blades and stator vanes is modeled using
Kirchhoff–Love shells [9, 10]. These are discretized using IGA based on NURBS [1,
2] and make use of only displacement degrees of freedom. Using rotation-free IGA
shells to model the blades presents a good combination of efficiency, accuracy, and
robustness.

The coupled FSI problem is formulated using an augmented Lagrangian
approach for FSI, which was originally proposed in [27] to handle boundary-fitted
mesh computations with non-matching fluid–structure interface discretizations.
While at the fluid–structure interface the fluid mechanics mesh follows the motion
of the blades, the outer boundaries of the rotor subdomain are restricted to only
undergo rigid rotation. This choice of domain motion preserves the geometry of the
sliding interface.

The rest of the mesh motion is obtained by solving the equations of elastostatics
with Jacobian-based stiffening [28–33]. The generalized-˛ method [34–36] is
employed to advance to FSI equations in time, while block-iterative coupling
strategy [3, 33, 37, 38] is used to solve the coupled FSI system at each time step.

4 Simulations of the VT Arresting Gear Model

4.1 Mesh Convergence Study for the Fluid Mechanics
Simulation

We first perform standalone fluid mechanics computations assuming the structure is
rigid and rotor speed is prescribed. Four cases corresponding to rotor speeds ranging
from 200 rpm to 800 rpm at 200 rpm intervals are computed. Furthermore, mesh
refinement in each case is performed to assess the mesh resolution requirements in
achieving the desired level of accuracy in the rotor hydrodynamic torque prediction.
Table 1 shows the element and time-step sizes employed in the mesh convergence
study. For this study the simulations are started impulsively and continued until a
statistically stationary value of the rotor torque is achieved. The results of the mesh
refinement study are shown in Table 1 and Figure 6. In all cases, the converged
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Table 1 Mesh statistics for the refinement study.

Torque (ft lb) Mesh 1 Mesh 2 Mesh 3 Mesh 4 Experiment

Mesh size (in) 3.0 2.0 1.0 0.5 N/A

Time-step size (s) 7:5� 10�4 5:0� 10�4 2:5� 10�4 1:25� 10�4 N/A

Number of elements 16,395 49,644 314,462 2,008,047 N/A

200 rpm 4,690 6,294 6,215 6,116 6,196

400 rpm 17,734 23,714 26,559 24,730 24,782

600 rpm 37,726 50,963 59,948 56,924 55,760

800 rpm 63,991 87,302 107,043 104,733 99,128

Fig. 6 Rotor-torque values
obtained in the mesh
refinement study of the
hydraulic arresting gear.
Excellent mesh convergence
results are achieved for all
rotor speeds. Note that the
mesh corresponding to the
blue curve gives reasonably
accurate results while
consisting of only slightly
over 300,000 elements.
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results are in very good agreement with the experimental torque data. Note that, a
coarse mesh of around 300,000 elements is already capable of producing accurate
rotor loads, especially for lower-rpm cases.

4.2 Ramp-Up Simulation

In this section we present a standalone fluid mechanics arresting gear ramp-up
simulation, which is representative of the device operation during the aircraft arrest.
For this, we employ the second finest mesh in Table 1, and prescribe time-dependent
rotor speed. We assume the rotor angular acceleration decreases from 670.2 rad/s2 to
zero within 0.25 s, at which point the rotor reaches the terminal speed of 800 rpm.
The resulting rotor torque time history is shown in Figure 7. Within 0.25 s, the
torque rapidly climbs to a statistically stationary value that is consistent with the
impulsive-start simulation results presented in Table 1 and Figure 6.
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Fig. 7 Time history of the
rotor hydrodynamic torque
for the terminal rotor speed of
800 rpm. Experimentally
measured torque value at
constant rotor speed of
800 rpm is plotted for
comparison.
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Fig. 8 Isosurfaces of water speed for the ramp-up simulation at different time instances showing
the development of complex, recirculating turbulent flow.

Figure 8 shows the flow speed isosurfaces at three different time instances as
the rotor spins inside the arresting gear. The flow quickly transitions to turbulence
and appears to be fully developed and statistically stationary soon after the terminal
rotor speed is achieved. The full turbulent cascade, from large vortices to small
eddies, is present inside the arresting gear, which is causing additional resistance to
rotor motion. Instantaneous pressure contours on the rotor are shown in Figure 9.
Note that the pressure distribution is not symmetric, which is in part due to the
unsteady, turbulent nature of the flow, and in part due to the asymmetry of the
arresting gear geometry stemming from the different number of rotor blades and
stator vanes employed. Additionally, although the flow is unsteady and pressure
fluctuates significantly, maximum pressure loads act somewhere between the blade
midspan and tip.
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Fig. 9 Pressure (in psi) on the rotor surface at a time instant after the terminal rotor speed is
reached. Note that the pressure solution is completely nonsymmetric, which is a consequence of the
unsteady, turbulent nature of the flow, and the asymmetry of the arresting gear geometry stemming
from the different number of rotor blades and stator vanes employed.

Fig. 10 Fluid mechanics domain built with an assumption of a solid blade superposed with the
blade structural shell midsurface. This discretization choice creates a geometric and parametric
mismatch between the fluid and structural meshes at their interface. However, such situations are
naturally handled in the FSI framework employed in this study.

4.3 FSI Simulation

In this section we present FSI simulation results for the VT arresting gear model. In
the model the casing and middle plate are assumed to be rigid, while the rotor blades
and stator vanes are assumed to be flexible, and modeled as rotation-free Kirchhoff–
Love shells. Because the fluid mechanics mesh is built with an assumption of a solid
blade, while a shell model is used for the blade structure, the fluid and structural
meshes are mismatched both geometrically and parametrically at their interface (see
Figure 10). However, the FSI framework employed here is naturally suited for such
situations [27].

We perform FSI simulations using ramp-up conditions described in Section 4.2,
which lead to the terminal rotor speed of 800 rpm. We test two cases corresponding



472 M.-C. Hsu et al.

Fig. 11 Left: Rotor blade deflection contours superposed with the flow speed isosurfaces for Case
1. Right: One spatial location on the blade midsurface where the displacement time history is
analyzed.
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Fig. 12 Blade displacement magnitude at location No. 288.

to the blade thickness of 0.348 in (Case 1) and 0.226 in (Case 2). Figure 11 (Left)
shows instantaneous blade-structure deformed configuration and the surrounding
turbulent flow field for Case 1.

We extract the displacement history for one spatial location, labeled No. 288,
and shown in Figure 11 (Right). The displacement magnitude at both locations
is shown, in the time and frequency domains, in Figure 12. Although the thinner
Case 2 exhibits displacement levels that are 2.5 times larger than Case 1, the blade
displacement magnitudes are relatively small compared to the device length scale in
both cases. The frequency of rotor-stator interaction (i.e., the frequency at which the
rotor blade passes the stator vane) is 106.67 Hz. That frequency is clearly visible in
the frequency-domain displacement plots. Several harmonics of that frequency are
also excited in the blade response, which is especially pronounced for the thinner
blade at location No. 288. Contours of the blade displacement and MIPE are shown
in Figures 13 and 14.
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Fig. 13 Contours of blade displacement magnitude.

Fig. 14 Contours of MIPE.
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Fig. 15 Rotor-torque time history for FSI and rigid-rotor simulations, the latter denoted by “CFD
torque.”

The rotor-torque time history, including comparison between the FSI and
rigid-rotor simulations, is shown in Figure 15. Due to the relatively small blade
deformation, the mean values of the torque are similar for the FSI and rigid-rotor
simulations. As expected, the thinner blade gives a more pronounced FSI effect. The
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frequency content, however, is quite different for the FSI and rigid-rotor simulations,
especially for Case 2. In the FSI computation much higher frequencies are produced
in the rotor-torque signal than in the rigid-rotor computation.

5 Conclusion

In this work we developed a “pipeline” for geometry modeling and predictive FSI
simulation of hydraulic arresting gears at full scale. A parametric modeling platform
recently proposed in [6] was adapted to generate analysis-suitable IGA models for
this complex system. The FSI simulations were carried out for the VT arresting gear
model using a combination of IGA to discretize the structural mechanics part, and
FEM to discretize the hydrodynamics part of the coupled problem. Careful mesh
convergence studies were performed for standalone fluid and structural analyses
of the VT arresting gear model. One of the findings of the mesh convergence
study was that despite the underlying complexity of the turbulent flow inside the
arresting gear, a relatively modest size of fluid mechanics mesh was needed to
accurately capture the rotor hydrodynamic loads. This good accuracy is attributable
to the use of the ALE-VMS technique with weakly enforced boundary conditions as
the underlying numerical methodology. The FSI simulations produced rotor blade
displacements that are relatively low compared to the device length scale. However,
the vibrational response predicted the presence of multiple highly pronounced
frequencies, especially for the thinner blade design. This finding is intriguing and
needs to be investigated in the future work.
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Finite-Element/Boundary-Element Coupling
for Inflatables: Effective Contact Resolution

T.M. van Opstal

Abstract The finite-element/boundary-element technique for inflatable structures
has been utilized successfully for airbag simulations. Its virtues in resolving the
complex contact problem in such cases have been demonstrated in 2D in van Opstal
et al. (Comput. Mech. 50(6):779–788, 2012) and theoretically motivated in 3D in
van Opstal et al. (Comput. Mech. Comput. Methods Appl. Mech. Eng. 284:637–
663, 2015). In this contribution, this is extended to a 3D test case, demonstrating the
merits of this technique for real-world applications. Secondly, it is shown how this
technique naturally fits into and greatly profits from an isogeometric setting.

1 Introduction

A fluid–structure interaction technique for the simulation of inflatable structures
is introduced. The presented finite-element/boundary-element (FEBE) technique
couples an isogeometric finite-element discretization of a flexible shell structure
with an isogeometric boundary-element discretization of a Stokes fluid. This tech-
nique was introduced in [18] for planar problems and extended to 3D in [19]. One
of the marked advantages of this approach is the contact mechanism, lubrication,
which is an inherent attribute of the flow model. Its role in preventing contact
was theoretically substantiated, but only demonstrated in the planar setting. In the
present work, we demonstrate the effectiveness of the contact mechanism in the
isogeometric and three-dimensional setting, discussing various aspects pertaining
to the accurate resolution of the traction responsible for contact prevention.

An extensive body of literature already covers the interface of the fields of fluid–
structure interaction and contact mechanics. If the problem under consideration
requires that the gap between two contact surfaces may vanish, an interface tracking
technique may be applied, sometimes locally [5, 15], e.g., [3, 7, 21]. If, however, a
problem allows for a finite gap to be maintained between the contacting surfaces,

T.M. van Opstal (�)
Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491
Trondheim, Norway
e-mail: timo.vanopstal@math.ntnu.no

© Springer International Publishing Switzerland 2016
Y. Bazilevs, K. Takizawa (eds.), Advances in Computational Fluid-Structure
Interaction and Flow Simulation, Modeling and Simulation in Science, Engineering
and Technology, DOI 10.1007/978-3-319-40827-9_37

477

mailto:timo.vanopstal@math.ntnu.no


478 T.M. van Opstal

arbitrary Lagrangian–Eulerian [4] and space-time [14] techniques can be used to
compute problems as challenging as the disreefing of parachute clusters [11–13]
and 1000 spheres falling through a tube [6]. In this work a finite (but arbitrarily
small) gap will likewise be maintained in contact regions.

The target application for the current approach is inflatable structures. These
typically undergo large deformations with ubiquitous self-contact during the infla-
tion process, which often starts from a complex, folded initial configuration.
Correct simulation is contingent to the resolution of every single contact mode
throughout the process. To tackle this type of problem, contact treatment based on
the lubrication effect inherent to viscous flow is highly advantageous:

1. it avoids explicit contact detection, which becomes prohibitively expensive and
non-robust for complex geometries such as folded inflatables.

2. accuracy is not impaired by artificial terms added to the model for soft contact
treatment, such as in, e.g., [17].

Correct simulation of the contact mechanics is contiguous to the accurate resolution
of the lubrication tractions, which increase singularly as the contact gap closes.
Thus, after recapitulating the mathematical model in §2, accurate approximation
and solution through isogeometric analysis and adaptive quadrature schemes are
covered in §3. The resulting methodology is demonstrated in a numerical test case,
a deflating balloon, in §4. Finally, conclusions are drawn in §5.

2 Mathematical Model of an Inflatable Structure

The governing equations of the fluid–structure interaction are elaborated in [19].
In this section, this model is recapitulated concisely, and we refer to [19] for full
details. An inflatable structure occupies a boundary segment 	t at time t, which,
together with a fixed inflow boundary segment 	in encloses the interior domain ˝t

of the inflatable. This is schematized in fig. 1. The configuration � W .0;T/�	 7! 	t

maps a material point in the reference manifold x 2 	 to its position on the current
manifold �.t; x/ 2 	t, and is sometimes abbreviated as �t.�/ WD �.t; �/. Throughout,
entities related to the reference manifold are underlined.

The flow on both the interior and exterior domains, resp. ˝t and R
3 � ˝t, are

governed by the boundary integral formulation introduced in §2.1. The motion of
the inflatable structure itself is governed by a shell formulation, cf. §2.2. Finally, the
coupling of these two subsystems, as well as a condition enforcing compatibility
between fluid and structure solutions, is treated in §2.3.

2.1 Boundary Integral Formulation of the Fluid

The flow interior and exterior to the flexible structure is described by Stokes flow,
supplemented by Dirichlet conditions g on the boundary @˝ t and suitable radiation
conditions in the far-field. It will be more convenient to pull back the formulation



Finite-Element/Boundary-Element Coupling for Inflatables: Effective Contact. . . 479

x0 x1

x2

Ωt

Γt

Γ
Γin

θt

Fig. 1 Schematic geometry of an inflatable structure for the case d D 3. The reference and current
domains are overlayed, as they coincide over 	in.

to the reference configuration, denoting the boundary condition by g D g ı @˝ t and
the traction jump across @˝ t due to the interior and exterior flows by � j. The weak
formulation of the direct boundary integral equation becomes

given g 2 H1=2.@˝/, find .� j; �/ 2 H�1=2.@˝/ � R such that

aft.� j;  /C bt.� j; (/C bt. ; �/ D Fft.g;  / 8. ; (/ 2 H�1=2.@˝ t/ � R (1)

with bilinear forms

aft.�;  / WD hVt�; iH1=2.@˝/;

bt. ; (/ WD (h ; Jtn ı �tiH1=2.	 / C (h ; Jtn ı �tiH1=2.	in/
;

Fft.�;  / WD h.1C �/Jt�=2C .1 � �/Kt�; iH1=2.@˝/;

and boundary integral operators

.Vt /i WD Jt
1

8�

I

@˝




ıik
1

r
C .xi � yi/.xk � yk/

r3

�

ı .�t � �t/ k.y/Jt ds.y/;

.Kt�/i WD Jt
3

4�

I

@˝



.xi � yi/.xk � yk/.xj � yj/nj.y/

r5

�

ı .�t � �t/�k.y/Jt ds.y/;

with i; k 2 f0; 1; 2g, r D jx � yj the Euclidean distance and

Jt WD ..t0 � r	 �t/ � .t1 � r	 �t// � n (2)

the determinant of the Jacobian of the map �t. In the above, n and t˛ , ˛ 2 f0; 1g
denote the normal and tangent vectors to @˝. Furthermore, the composition with
.�t � �t/ serves to transport the kernel of the integral operator to the reference
manifold.

In (1), the Lagrange multiplier � constrains the kernel of the boundary integral
operator Vt. This kernel is related to the undefined average pressure level p0,
similar to the Stokes PDE with pure Dirichlet boundary conditions. Furthermore,
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0 � � � 1 denotes the viscosity ratio between the fluids interior and exterior to
@˝, where the respective limits � ! 0 and � ! 1 correspond to the separate
interior and exterior problems.

One of the advantages that the Stokes model gives is an automatic mechanism
for contact prevention, namely lubrication. It is shown in [16, Thms. 33,40] that, as
two smooth material boundaries advance each other, the fluid opposes this motion
with a repulsive traction of singular strength of O.h�3/, where h is the distance
between the boundaries. Thus, the fluid formulation has a built-in contact prevention
mechanism which avoids the highly nontrivial explicit treatment of self-contact
which characterizes folded inflatable structures.

We conclude this section with a number of remarks:

1. The boundary integral formulation (1) gives a direct relation between the
Dirichlet and Neumann data at the boundary, mapping velocities imposed by
the structure to the tractions imposed on the structure, which is precisely the
relation typically required in a fluid–structure interaction problem. No meshing
and approximation of the interior domain is thus required, although the solution
in the interior can be reconstructed a posteriori if desired.

2. Contrary to a discretization based on a volumetric formulation, it is not more
expensive to treat the flow in the exterior domain concurrently, it simply amounts
to adjusting the ratio �. Moreover, when the conditions in both fluids are
the same, � D 1 and we see that the problem actually becomes cheaper to
approximate, as the dual layer operator Kt need not be assembled.

2.2 Parametrization-Free Kirchhoff–Love Structure

We now turn to the equation governing the configuration � , which is assumed to
be a member of a Bochner space. A Bochner space L2.0;TI Y/ contains functions
f W Œ0;T� ! Y , such that

R T
0

kf .t; �/k2Y dt < 1. First and second time derivatives
are denoted P.�/ and R.�/, respectively. We set X WD H2.	 / \ H1

0.	 / and write the
structure problem as

given .�0; �1/ 2 H2.	 / � L2.	 / and F 2 L2.0;TI L2.	 //, find � 2 .�0 C f� 2
L2.0;TI X/ W P� 2 L2.0;TI L2.	 /g/ such that

h R�t; �iX C W 0.�tI �/ D F.tI �/ a:e: t 2 .0;T/; 8� 2 X; (3a)

�0 D �0; (3b)

P�0 D �1: (3c)

In this problem, F is an external load, �0 and �1 are the initial position and
velocity, and W is the internal energy of a Kirchhoff–Love shell, given in terms
of a configuration � as

W.�/ D 1

2

Z

	

„ijkl
�
"ij.�/"kl.�/C –2�ij.�/�kl.�/

�
ds; (4)
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where

"ij.�/ WD 1
2
.˘ ij � �mIi�mIj/;

�ij.�/ WD ˘minmIj � �mIinmIj;

are the components of the membrane and bending strains; and

„ijkl WD (ıijıkl C 1
2
.1 � (/.ıikıjl C ıilıjk/;

is the constitutive tensor of the Saint Venant–Kirchhoff material law, which is
especially suited to the anticipated small strains and large rotations [1]. The tensor
˘ ij WD ıij � ninj denotes the projection into the tangent space of 	 and fiIj denotes
the jth component of the gamma gradient of component i of a vector function f .

The structural model introduces two model parameters, – and ( , which represent
the flexural rigidity and Poisson’s ratio, respectively.

This form of the Kirchhoff–Love energy has been dubbed parametrization-free
in [19] as it is formulated on the stress-free state 	 , without reference to some
parametrization of this surface. The main advantage is conceptual: eliminating the
superfluous and arbitrary parametrization from the formulation. Implementation
aspects for this formulation are treated in [19].

2.3 Transmission Conditions and Full Problem

Standard Dirichlet–Neumann coupling is employed between the fluid and the
structure. The kinematic condition imposes a velocity on the fluid at the interface
and reads

g D
( P�t on 	 ;

qn on 	in;
(5a)

with q W 	in ! R the normal inflow velocity. The dynamic condition imposes
continuity of tractions at the fluid–structure interface

F.tI �/ D �$hJt� j; �i: (5b)

with Jt the determinant of �t, according to (2). The model parameter $ can be
interpreted as a coupling strength and arises in the nondimensionalization [19]
by agglomeration of several parameters (such as the Young’s modulus) from the
dimensional models.
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In addition to the coupling conditions, an auxiliary condition is to be satisfied,
connected to the incompressibility of the fluid encapsulated by the structure. The
configuration provided by the structural equation of motion (3) has to conserve the
volume, i.e., Qt.�t/ D 0 with

Qt.�t/ D 1

3
.n; x/@˝ t

�


1

3
.n; x/@˝ �

Z t

0

Z

	in

q ds dt

�

; (6)

where the first term is the current volume, the second the initial volume, and the last
the total influx until time t. This auxiliary constraint is imposed by the Lagrange
multiplier method, and it is proven in [19] that this Lagrange multiplier can be seen
as the total excess pressure p0 required to uniformly expand the inflatable structure
to the correct volume. This constant pressure coincides with the undetermined mode
constrained from the fluid subproblem (1).

The above discussion leads to the aggregated FSI model, composed of the
weak form of the interior and exterior fluid boundary integral equations (1),
the Lagrangian equation of motion for the structure (3) augmented with the
compatibility condition and coupled through the transmission conditions (5):

given q 2 L2.0;TI L2.	in// and .�0; �1/ 2 X � L2.	 /, find .�t; � j; p0; �/ 2 .�0 C
X/ � H�1=2.@˝/ � R � R such that

h R�t; �iX C W 0.�tI �/C p0Q
0
t.�tI �/C �Qt.�t/C$hJt� j; �iX

C aft.� j;  /C bt.� j; (/C bt. ; �/ � Fft. P�t;  / D Fft.q.t; �/n;  /
a:e: t 2 .0;T/; 8.�;  ; �; (/ 2 X � H�1=2.@˝/ � R � R; (7a)

�0 D �0; (7b)

P�0 D �1; (7c)

where we extend q and P�t by 0 on 	 and 	in, respectively.

3 Approximation and Solution

In treating the discretization and solution of the mathematical model (7), emphasis
is put on lubrication and contact mechanics. It was mentioned in §2.1 that the
magnitude of the traction forces grow as O.h�3/with h the gap size between smooth
surfaces in contact. Thus, an isogeometric matching-mesh discretization, which
provides the required smoothness and geometrical exactness, is presented in §3.1.
As the gap size h vanishes, local contributions to the boundary integrals become
more singular on account of the 1=r and 1=r2 dependence of the kernels of Vt and Kt.
The accurate evaluation of integrals in such circumstances is treated in §3.2. Finally,
as the fluid–structure coupling is anticipated to be strong when contact occurs, we
outline the partitioned iterative procedure for resolving the coupled system in §3.3.
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3.1 Subdivision Surface Approximation Spaces

Two considerations have lead to the choice of approximation space for this problem.
Firstly, a C1-continuous basis is desired to have a rotation free discretization of
the shell structure, and facilitates contact treatment through the lubrication effect.
The theoretical results depend on a smooth representation of the fluid boundary. In
that case, there is a time at which the gap width is much smaller than the diameter
of the contact surface, and the fluid response resembles lubrication. Secondly, an
unstructured basis is required, to be able to represent complex geometries, such as
folded inflatables; and to perform local refinement where it is required to resolve
fine geometrical features and near-singular tractions in near contact.

One of the natural candidates is subdivision surfaces with the Catmull–Clark
subdivision scheme [2]. Recently, (truncated) hierarchical refinement has been
presented for this basis in [20, 22]. One of the freely available CAGD packages
in which subdivision surface geometries can be designed is Blender™, which has
been used in this context.

Catmull–Clark subdivision surfaces can be seen as an extension of cubic B-
splines to unstructured grids composed of quadrilaterals. Defining the valence of
a vertex as the number of edges terminating there, we observe that interior vertices
of a Cartesian mesh are of valency four. An interior vertex of valency other than four
is called an extraordinary vertex (EV). To extend the definition of the spline basis
near an EV, a subdivision mask is introduced, in this case the Catmull–Clark mask,
which preserves C1-continuity almost everywhere. As such a mask only provides
an implicit definition of the basis functions at specific points, Stam’s approach [10]
is used to evaluate the basis functions and their gradients in numerical quadrature.
This approach involves l levels of virtual refinement, such that the quadrature point
lies in a sub-element away from the EV, and can be evaluated as a regular basis
function.

As the domains of the fluid and structure subproblems coincide, it is convenient
to use the discretization of the structure for the fluid as well. Thus, this approach
can be seen as a matching mesh approach, such that any geometrical approximation
is avoided. The advantages are twofold. Firstly, errors due to geometrical approx-
imation, which are significant in the BEM [9], are now entirely eliminated. One
can imagine especially in the pervading near-contact modes, that inaccuracies in the
tractions due to geometrical approximation may easily become disastrous, due to the
O.h�3/ relation to the gap size h. Secondly, we completely eliminate the volumetric
meshing step, which is otherwise a formidable challenge in the light of the complex
initial geometries and large deformations characterizing inflatable structures.
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3.2 Boundary-Element Approximation of the Fluid

To evaluate the singular integrals on product domains in the boundary-element
problem for the fluid, the regularizing transformations described in [8] are used.
The convergence rates for standard Gauss quadrature rules are known for this set of
transformations and class of integrands, cf. [8]. This suggests an adaptive quadrature
scheme in which the quadrature order is increased until some heuristic criterion is
met. Let F�;q be the approximation of the integral over element � with quadrature
order q. In this work, the criterion jF�;q�1 � F�;qj < 10�7 is used.

It is observed that this adaptive procedure converges and that the amount of
evaluations requiring an order q decreases rapidly with q, cf. fig. 2: selection of
a scheme of q > 10 is approximately 104 times less likely than selection of the
scheme q D 3. In fig. 2 it can also be seen how many levels would be required if an
order q scheme would be evaluated near an extraordinary vertex. Such an evaluation
would require the .l � 1/th power of the subdivision matrix, which can be cached
once per level. Observe that the number of required levels grows only very slowly
and that in this case 8 such levels are required.

3.3 Partitioned Iterative Solution

Monolithic solution of a discretization of (7) is untractable, as this requires
linearization of the coupling terms. In fact, this leads to hypersingular integrals, i.e.,
integrands with singularities stronger than those in (7). Despite the strongly coupled
nature of this problem due to lubrication, a partitioned scheme is therefore preferred.
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Fig. 2 The blue histogram shows the number of occurrences of a quadrature order q from a sample
of 109 element evaluations in the simulation of §4. The red line shows the required number of levels
l in Stam’s algorithm to evaluate an order q Gauss rule.
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Thus, the fluid and structure subproblems, the . ; (/ and .�; �/ terms of (7),
respectively, are solved separately. The required damping for stability of the coupled
problem is introduced through the dissipative implicit Euler time-integration scheme
applied to the structure.

A subiteration step within our partitioned procedure starts with a linear extrap-
olation of the initial data (provided by the solution at the previous time interval),
which serves as a first approximation of the new coupled solution. Within a fluid–
structure subiteration, a structural solve is performed first, to ensure compatibility
of the fluid boundary data. The subiteration is considered converged if (1) the norm
of the structure residual is below the tolerance before a Newton solve is performed
and, in addition, (2) the norm of the fluid update is below that same tolerance.

4 Deflation of a Balloon

The prime objective of the numerical experiment presented here is to assess the
accuracy of the solution method to resolve the complex self-contact that often arises
in the simulation of inflatable structures. To this end, as in [18], an inverted problem
is considered, namely the deflation of a balloon.

The initial geometry @˝ contains 320 elements in 	in and 832 elements in 	 .
Both these subsets contain 4 extraordinary vertices of valence 3. A small random
perturbation is applied to 	 away from @	 so that @˝ remains connected. The
random perturbations cause the structure to wrinkle instead of contract uniformly,
rendering the structural response closer to reality. The initial configuration is plotted
in fig. 3.

The model parameters are ( D 0; – D 5:77 10�4 corresponding to a flexible
shell; � D 1 corresponding to identical fluids in the interior and exterior; and

Fig. 3 Initial configuration
for the deflation of a balloon.
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Fig. 4 Snapshots of the configuration and fluid traction at different time levels during the deflation
process. The color coding corresponds to the vertical component of the traction, � j2 and m.A/
denotes the volume of set A.

$ D 10�5. The outflow q is constant in time and has a sine-shaped profile with
a magnitude such that the volume would vanish at T D 212. The time step size is
� D 4 and the tolerance in the partitioned solver TOL is set to 10�6, settings for
which only 1–2 subiterations are required at each time level.

In fig. 4, snapshots of the deflation process are shown. Recall that the plotted
traction component � j2 does not include the contribution of the total excess pressure
p0n. The action of the lubrication effect can clearly be observed along horizontal
folds, where the vertical component is positive (red) on upper surfaces and negative
(blue) on lower surfaces and close to zero elsewhere in fig. 4a–4c. Thus, the collapse
of the structure under the action of the total excess pressure p0n, which is uniform
over 	t, is observed to be counteracted locally by � j to prevent contact.
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As the limits of the color bars are identical, it is clear that the magnitude of these
lubrication forces increases as the deflation proceeds. At the same time, the folds
in the fabric become gradually sharper. The deflation process is terminated at t D
1:31 103, cf. fig. 4(d). As can be seen from this snapshot, a large downward traction
is exerted on the part of the structure near 	in, where the outflow condition (5a) is
prescribed. The outflux q does not correspond to the velocity of 	in. The segments
therefore seem to recede and no lubrication force is instigated. Ultimately, this self-
intersection is therefore not due to insufficient resolution of the fluid response, but
rather to the artificial problem setup where a structure is deflated instead of inflated.

5 Conclusions

In this chapter we have presented an FEBE method for the simulation of inflatable
structures. A Kirchhoff–Love shell with low flexural rigidity, discretized with the
finite-element method (using a Catmull–Clark subdivision surface basis) is coupled
with a boundary-element method discretization of both the interior and exterior
fluid. It is advantageous to let the fluid inherit the structural mesh, as this leads to a
geometrically exact matched discretization at the fluid–structure interface, which in
turn enables accurate approximation of contact forces. The coupled system may be
advanced in a partitioned iterative fashion.

We have furthermore assessed the capabilities of this method in the presence
of multiple modes of self-contact, by considering a deflation problem, in which
the fluid response is anticipated to be dominated by lubrication forces. It was
observed that the computed traction forces effectively prevent self-intersection of
the structure, although very large deformations are sustained.
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Recent Advances in Fluid–Structure Interaction
Simulations of Wind Turbines

A. Korobenko, X. Deng, J. Yan, and Y. Bazilevs

Abstract In this chapter the numerical challenges of simulating aerodynamics and
fluid–structure interaction (FSI) of wind turbines are summarized, and the recently
developed computational methods that address these challenges are presented.
Several wind-turbine computations at full scale and with full complexity of the
geometry and material composition are presented, which illustrate the accuracy,
robustness, and general applicability of the methods developed for this problem
class.

1 Introduction

Wind energy is one of the fastest growing power production sectors with a signifi-
cant remaining cost reduction potential. Nowadays the wind energy cost is compa-
rable to conventional power sources such as coal, natural gas, and nuclear energy.
Further cost reduction is possible through advanced research and developments
enhanced with high-precision predictive modeling methods and tools. It is our belief
that advanced computational analysis of wind turbines, including time-dependent,
full-scale fluid–structure interaction (FSI) simulation needs to be incorporated into
the wind-turbine design process to improve their performance under a wide range
of operating conditions and to prevent failure of the main turbine components.
During wind-turbine operation, or at the stage of experimental testing, advanced
data-driven simulations can serve as a valuable tool to produce high-fidelity outputs
for quantities of interest for which measurements are not readily available.

Accurate and robust full-machine wind-turbine FSI simulations, however, engen-
der several significant challenges when it comes to modeling of the aerodynamics.
In the near-tip region of the offshore horizontal-axis wind-turbine (HAWT) blades
the flow Reynolds number is O(107), which results in fully turbulent, wall-bounded
flow. In order to accurately predict the blade aerodynamic loads in this regime, the
numerical formulation must be stable and sufficiently accurate in the presence of
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thin, transitional turbulent boundary layers. In a case of vertical-axis wind turbines
(VAWT) the aerodynamic complexity of a problem is further increased. The wind-
turbine blades experience rapid and large variations in the angle of attack resulting
in an air flow that is constantly switching from being fully attached to being
fully separated, even under steady wind and rotor speeds. Another challenge is to
represent how the turbulent flow features generated by the upstream blades affect
the aerodynamics of the downstream blades. In addition, as the flexibility in VAWTs
does not come from the blades, which are practically rigid (although blades deform
at high rotational speeds), but rather from the tower itself, and its connection to the
rotor and ground, the challenge remains to be able to simulate a spinning rotor that
is mounted on a flexible tower. These computational challenges are addressed in this
book chapter.

In what follows, the book chapter presents computational techniques for
advanced FSI simulations of both horizontal- and vertical-axis wind-turbine
designs, ranging from a few kW to multi-MW systems. In Section 2 we briefly
recall the aerodynamics and structural mechanics modeling approaches and novel
mesh moving techniques for objects in relative motions. In Section 3 we present
an FSI computation of a 5 MW offshore wind-turbine undergoing yawing motion,
and an FSI computation of a well-known VAWT design. We conclude the section
with an aerodynamic simulation of a 5 MW offshore wind-turbine rotor in an
atmospheric boundary layer (ABL). In Section 4 we draw conclusions.

2 Methods for Modeling and Simulations

2.1 Governing Equations at the Continuum Level

To perform the HAWT and VAWT simulations, we adopt the FSI framework
developed in [9]. The wind-turbine aerodynamics is governed by the Navier–Stokes
equations of incompressible flows. The incompressible-flow assumption is valid
for the present application because the Mach number is low. The Navier–Stokes
equations are posed on a moving spatial domain, and are written in the arbitrary
Lagrangian–Eulerian (ALE) frame [20] as follows:

�1



@u
@t

ˇ
ˇ
ˇ
ˇOx

C .u � Ou/ � ru � f1

�

� r � � 1 D 0; (1)

r � u D 0; (2)

where �1 is the fluid density, f1 is the external force per unit mass, u and Ou are
velocities of the fluid and fluid mechanics domain, respectively. The stress tensor
� 1 is defined as

� 1 .u; p/ D �pI C 2�" .u/ ; (3)
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where p is the pressure, I is the identity tensor, � is the dynamic viscosity, and " .u/
is the strain-rate tensor given by

" .u/ D 1

2

�ru C ruT
�
: (4)

In Eq. (1),
ˇ
ˇ
ˇOx denotes the time derivative taken with respect to a fixed referential

domain spatial coordinates Ox. The spatial derivatives in the above equations are taken
with respect to the spatial coordinates x of the current configuration.

The governing equations of structural mechanics written in the Lagrangian frame
consist of the local balance of linear momentum, and are given by

�2



d2y
dt2

� f2

�

� r � � 2 D 0; (5)

where �2 is the structural density, f2 is the body force per unit mass, � 2 is the
structural Cauchy stress, and y is the unknown structural displacement vector.

At the fluid–structure interface, compatibility of the kinematics and tractions is
enforced, namely

u � dy
dt

D 0; (6)

� 1n1 C � 2n2 D 0; (7)

where n1 and n2 are the unit outward normal vectors to the fluid and structural
mechanics domain at their interface. Note that n1 D �n2.

The above equations constitute the basic formulation of the FSI problem at
the continuous level. The aerodynamics formulation makes use of the FEM-
based ALE–VMS approach [8, 20, 32] augmented with weakly enforced boundary
conditions [2, 4]. The former acts as a turbulence model, while the latter relaxes
the mesh size requirements in the boundary layer without sacrificing the solution
accuracy. The ALE–VMS technique was successfully applied to several challenging
problems, including full-scale 3D aerodynamics and FSI of horizontal- and vertical-
axis wind turbines [5, 6, 8, 11, 11, 24, 25], FSI of compliant hydrofoils [1],
patient-specific cardiovascular FSI [32], and FSI of bioprosthetic heart valves [19].

The structural mechanics of wind-turbine blades is modeled using a combination
of a rotation-free multilayer composite Kirchhoff–Love shell [6, 13, 23, 25] and
beam/cable [27] formulations. Both are discretized using IGA [17, 21] based on non-
uniform rational B-splines (NURBS) [26]. This approach gives a good combination
of accuracy due to the higher-order and higher-continuity representation of the
geometry and solution, and efficiency due to the lack of rotational degrees of
freedom in the formulation.
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For a variety of discretization options, FSI coupling strategies, and applications
to a large class of problems in engineering the reader is referred to the recent book
on computational FSI [10].

2.2 Special Techniques for Handling Nonmatching Interfaces

In order to simulate complicated FSI scenarios, such as rotor yawing for HAWTs, or
even basic operation for VAWTs, additional computational techniques are required.
In the case of HAWT rotor yawing motion, the entire gearbox undergoes rotation
parallel to the tower axis, and this rotation must be transferred to the rotor and
hub without interfering with the rotor spinning motion. In the case of basic VAWT
operation, the air flow spins the rotor, which is connected to a flexible tower with
struts. Furthermore, the moving-mesh aerodynamics formulation for this expanded
problem class can no longer have a fixed sliding interface. For example, in the case
of the rotor yawing motion, in order to keep the good quality of the aerodynamics
mesh and prevent the rotor blades from crossing the boundary of the rotor cylindrical
domain, it is preferred that the sliding interface follows the motion of the gearbox,
while accommodating the spinning rotor and deforming blades.

To accommodate the spinning motion of the rotor superposed on the global
elastic deformation of the structure, and to maintain a moving-mesh discretization
with good boundary-layer resolution critical for aerodynamics accuracy, the sliding
interface technique [3, 18, 24] is “upgraded” to handle more complex structural
motions [11, 14]. While at the fluid–structure interface the fluid mechanics mesh
follows the rotor motion, the outer boundary of the cylindrical domain that encloses
the rotor is only allowed to move as a rigid object. The rigid-body motion part is
extracted from the rotor structural mechanics solution (see, e.g., [33]), and is applied
directly to the outer boundary of the cylindrical domain enclosing the rotor. The
inner boundary of the domain that encloses the cylindrical subdomain also moves
as a rigid object. It follows the motion of the cylindrical subdomain, but with the
spinning component of the motion removed. The fluid mechanics mesh motion in
the interior of the two subdomains is governed by the equations of elastostatics with
Jacobian-based stiffening [22, 28, 38, 40–42] to preserve the aerodynamic mesh
quality. Continuity of the kinematic and traction variables across the nonmatching
sliding interface is enforced weakly.

We note that in application of the FEM to flows with moving mechanical
components, alternatively to the sliding interface approach, the Shear–Slip Mesh
Update Method [15, 16, 43] and its more general versions [38, 39] may also be
used to handle objects in relative motion. A recently developed set of space-
time (ST) methods can serve as a third alternative in dealing with objects in
relative motion. The components of this set include the ST/NURBS Mesh Update
Method [34, 36, 37], ST interface tracking with topology change [29], and ST
computation technique with continuous representation in time [35].
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3 Numerical Examples

3.1 FSI Simulation of an Offshore Wind Turbine with Yawing

We first show an FSI simulations of a 5 MW offshore wind turbine undergoing
yawing motion [14]. The wind-turbine rotor is positioned at 80 m above ground and
is tilted by 5ı to avoid the blade hitting the tower as the rotor spins. (Another way to
have sufficient tower clearance is to “prebend” the rotor blades. See [7] for details.)
Furthermore, the wind-turbine rotor plane is initially placed at 15ı relative to the
wind direction. A fixed yawing rotational speed is applied to the gearbox to slowly
turn the rotor into the wind at 0.03 rad/s. The inflow wind speed is set to 11.4 m/s.
The initial rotor speed is set to 12.1 rpm, and the rotor is allowed to spin freely
during the prescribed yawing motion.

The structural mechanics mesh of the full turbine has 13,273 quadratic NURBS
shell elements and two quadratic NURBS beam elements. The aerodynamics mesh
has a total of 5,458,185 linear elements. Triangular prisms are employed in the blade
boundary layers, and tetrahedral elements are used elsewhere in the aerodynamics
domain. The size of the first boundary-layer element in the wall-normal direction is
1 cm. The time step of 0.0001 s is employed in the computation.

Snapshots of the vorticity isosurfaces colored by flow speed are shown in Fig-
ure 1. Figure 2 shows the time history of the aerodynamic torque axial component
(i.e., the component in the direction of the vector aligned with the axis of rotation).
As the rotor turns into the wind, the value is increasing, as expected, and, as the
rotor passed the point of maximum power production, the aerodynamic torque value

Fig. 1 Left: NURBS-based
IGA structural model of a
HAWT showing a portion of
the sliding interface. Right:
Snapshot of vorticity colored
by air speed as the rotor spins
and yaws.
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Fig. 2 Time history of the aerodynamic torque for the FSI simulation with yawing.

starts to decrease. The level of the computed aerodynamic torque is consistent with
the earlier simulations for this wind turbine operating under similar wind- and rotor-
speed conditions (see, e.g., [5, 6, 9, 30, 31, 36]).

3.2 FSI Simulation of a Windspire VAWT

To illustrate an application of the wind-turbine FSI framework to VAWTs, we briefly
present an FSI simulation of a 1.2 kW machine designed by Windspire Energy,
which is a three-bladed, medium-solidity Darrieus turbine. For more information
about the VAWT model the reader is referred to a companion paper [11], where the
focus is on VAWT simulation, validation using field-test data, and assessment of
turbine self-starting issues.

The total height of the VAWT tower is 9.0 m, and the rotor height is 6.0 m.
The rotor uses the DU06W200 airfoil profile with the chord length of 0.127 m, and
is of the Giromill type with straight vertical blade sections attached to the main
shaft with horizontal struts. The rotor and struts are made of aluminum, and the
tower is made of steel. Quadratic NURBS are employed for both the beam and shell
discretizations. The total number of beam elements is 116, and total number of shell
elements is 7,029.

The aerodynamics mesh has about 8 M elements, which are linear triangular
prisms in the blade boundary layers, and linear tetrahedra elsewhere. The boundary-
layer mesh is constructed using 18 layers of elements, with the size of the first
element in the wall-normal direction of 0.0003 m, and growth ratio of 1.1.
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Fig. 3 FSI simulation of a Windspire VAWT. Top-Left: Time history of the rotor speed. Bottom-
Left: Top view of the wind-turbine structure in the reference and current configuration illustrating
the range of the tower-tip displacement during operation. Right: Vorticity colored by air speed
illustrating the air-flow complexity.

We fix the inflow wind speed at 11.4 m/s, and consider the initial rotor speed
of 4 rad/s. The VAWT is allowed to spin freely and accelerate under the action of
incoming wind. The time step in the computation is set to 2:0 � 10�5 s.

Figure 3 shows the snapshots of vorticity colored by velocity magnitude. The
flow is fully turbulent and requires relatively fine boundary-layer resolution for
accurate aerodynamic load prediction. Also, Figure 3 shows the time history of rotor
speed. A gradual increase in the rotor speed is observed, suggesting a possibility that
the rotor may eventually reach the speed necessary for efficient operation. Finally,
Figure 3 shows the snapshots of the top view of the VAWT structure in the reference
and current configurations. The tip displacement amplitude is predicted to be about
12 cm, which we find reasonable given the tower height of 9 m, and one of the
VAWT design objectives being that the structure is not too flexible.
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3.3 Effect of Atmospheric Boundary Layer

In the numerical examples presented so far the simulations were carried out
under simplified constant uniform wind speed conditions. In this section we
investigate the influence of ABL on the turbine performance. The ALE–VMS
formulation for stratified turbulent incompressible flows is adopted to perform a
pure aerodynamic simulation of a full-scale 5 MW offshore wind-turbine rotor
in an ABL with temperature stratification. The formulation couples the Navier–
Stokes equations of incompressible flows with the Boussinesq approximation, and
a scalar advection–diffusion equation for the temperature field. More details on the
numerical formulation can be found in [12].

The rotor speed is set to 9 rpm, which gives the optimal tip-speed ratio for 8 m/s
wind speed, and which is also the geostrophic wind speed used in the computation.
The time-step size of 2:0�10�4 s is employed. The flow is initialized using the LES
data interpolated to the interior of the rotor mesh, and the computation is started
impulsively. Figure 4 shows vorticity isosurfaces at t D 8:5 s. Due to the presence
of the inversion layer, tip vortices travel with different speeds, faster near the top
and slower near the bottom of the domain. As a result, the perfect helical pattern
of tip vortices, which is expected in the case of uniform flow, is no longer present.
As the rotor turns and blades travel in and out of the inversion layer, they introduce
a certain amount of mixing in the flow (see Figure 4). This inversion-layer mixing
propagates downstream and gives a complex and largely unstudied wake behavior.
The rotor-thrust time history is shown in Figure 5, where thrust is plotted for each
individual blade. The presence of ABL produces an 18% fluctuation in the thrust
load during the cycle. This indicates that stratification strongly affects the transient

Fig. 4 Wind-turbine rotor in an ABL. Left: Flow speed (in m/s) contours on a 2D slice of
the problem domain showing mixing of the inversion layer in the rotor wake. Right: Vorticity
isosurfaces colored by flow speed (in m/s) at t D 8:5 s.
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Fig. 5 Wind-turbine rotor in an ABL. Time history of the thrust force acting on each blade.

rotor loads, and should be considered in the structural and FSI analyses of offshore
wind-turbine blades, especially for the prediction of fatigue damage and remaining
useful life of these structures.

4 Conclusions

In this book chapter we targeted more advanced FSI simulations of wind turbines,
such as rotor yawing for HAWTs, and full-machine FSI of VAWTs. Structural
models of wind-turbine designs were constructed and discretized using the recently
proposed IGA-based rotation-free shell and beam formulations. This approach
presents a good combination of accuracy due to the structural geometry represen-
tation using smooth, higher-order functions, and efficiency due to the fact that only
displacement degrees of freedom are employed in the formulation. The ALE–VMS
technique for aerodynamics modeling was augmented with an improved version of
the sliding interface formulation, which allows the interface to move in space as a
rigid object and accommodates the global turbine deflections in addition to the rotor
spinning motion.

Using advanced FSI techniques developed, we were able to simulate a large-
scale 5 MW HAWT undergoing yawing motion. We also present FSI simulations of
full-scale Darrieus VAWT. The numerical examples presented in this book chapter
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illustrate the successful application of the proposed techniques to the FSI simulation
of wind turbines at full scale. Finally, in the last example, we simulated a full-
scale 5 MW offshore wind-turbine rotor in a thermally stratified ABL and observed
significant variations in the rotor-blade thrust during the rotation cycle. In the near
future we plan to combine the newly developed ALE–VMS formulation of stratified
flows with our full-machine FSI framework to simulate wind turbines operating in
an ABL. These simulations will likely produce more realistic structural mechanics
response of the blades, and will give us better understanding of the turbulent wake
structures created downstream the turbine.
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