A Formal Setting for Network Dynamics

Ian Stewart

Abstract This chapter is an introduction to coupled cell networks, a formal setting
in which to analyse general features of dynamical systems that are coupled together
in a network. Such networks are common in many areas of application. The nodes
(‘cells’) of the network represent system variables, and directed edges (‘arrows’)
represent how variables influence each other. Cells and arrows are assigned types,
which determine the form of admissible differential equations-those compatible
with the network structure. By analogy with the modern theory of dynamical
systems, emphasis is placed on phenomena that are typical of entire classes of
model equations with a given network structure, rather than on specific models. Such
phenomena include symmetry and synchrony relations among cells, leading to a
clustering effect embodied in a quotient network described by a balanced colouring.
Rigid patterns of synchrony (those preserved by admissible perturbations) for
equilibria and periodic states are classified by the balanced colourings. Bifurcations
in which network structure can cause anomalous power-law growth rates are briefly
mentioned. The formal concepts are motivated and explained in terms of typical
examples.
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1 Introduction

In recent years it has become increasingly apparent that networks play a highly
significant role in many areas of science and technology. Examples include the
spread of epidemics, food webs in ecosystems, gene regulation, intercellular
signalling, neuroscience, market trading, control, and communications.
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The defining features of a network are a set of nodes, which interact through
a system of connections. In mathematics, such a structure has traditionally been
called a graph, but ‘network’ is more evocative. Nodes are also known as vertices
or dots, and connections as edges or lines; these may or may not be directed. We
will shortly rename nodes as ‘cells’ and directed edges as ‘arrows’ to emphasise the
extra structure that will be brought into play.

Many different aspects of network structure and behaviour have been studied,
ranging from statistical features to dynamics. Applications include the rate of
spread of an epidemic, stability of the population distribution in an ecosystem, the
development of organisms, broken connections in communications networks, ‘small
world’ phenomena, stock market crashes, and internet search engines. The literature
is vast, with many different viewpoints and philosophies, and we make no attempt to
summarise it here. Instead, we focus on one specific area: the nonlinear dynamics of
networks of coupled dynamical systems. By a dynamical system we mean a system
of ordinary differential equations in one or more variables, which we abbreviate to
‘ODE’.

Just over a decade ago an analogy between symmetric dynamical systems (Gol-
ubitsky et al. 1988) and network dynamics began to be explored (Golubitsky and
Stewart 2006; Golubitsky et al. 2005; Stewart et al. 2003). The aim was to apply,
in a network context, the modern philosophy of nonlinear dynamics. This approach
was pioneered by Poincaré (1881, 1882, 1885, 1886) in his work on the qualitative
theory of differential equations. Among other things, this viewpoint led him to
discover chaotic dynamics in the three-body problem for Newtonian gravitation
(Poincaré 1892, 1893, 1899). His qualitative approach to differential equations
was developed into a systematic theory by several mathematicians, especially in
the Soviet Union, and became firmly established as a new branch of mathematics
with the work of Arnold (1963), Smale (1967), and others. The central idea in this
approach to dynamics is that significant structural phenomena are invariant under
appropriate coordinate changes, and are thus determined purely by the fopology of
the trajectories in phase space—the phase portrait. For example, the presence of a
time-periodic state (limit cycle) is a topological feature, but the detailed waveform,
the period, and the shape of the cycle in phase space are not.

This approach deliberately ignores many details of the system, which have to
be supplied by other means—typically numerical solutions, because few interesting
nonlinear ODEs can be solved explicitly. So why do we need topological dynamics
when any specific problem can be understood by numerical computation? Often we
do not: numerical simulations provide all the answers required. However, numerical
solutions sometimes make little sense on their own—they reveal some form of
behaviour, but do not explain why it is occurring, or whether it is typical or unusual
in the appropriate context. Moreover, most real-world models include numerical
parameters that can take on many values, and it is often important to understand how
the solutions change as parameters vary. Some numerical schemes exist that can
explore such issues, but in general such questions may require infeasibly lengthy
calculations. Moreover, it can be difficult to organise the results into a sensible
description of the system’s behaviour. Topological dynamics can help here, because
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it provides a systematic framework for organising, classifying, and recognising the
basic types of behaviour. It relates them to each other, and allows insights to be
transferred from one area of application to others. It is in some ways a coarse
instrument, but that is a virtue as well as a vice, because it removes inessential
information.

The pioneers of the subject realised that the topological approach can be a highly
effective approach to a basic, general question: ‘what can dynamical systems do?’.
The effect of this change of viewpoint was a bit like the zoological move from
butterfly-collecting to Linnaean taxonomy. Post-Linnaeus, you still had to collect
butterflies to find out what existed in nature, but you began to appreciate how they
related to other butterflies—and, more crucially, to other species.

Many special classes of dynamical system have extra structure. For example
Hamiltonian systems are defined by a Hamiltonian function, which is conserved
along trajectories and induces a symplectic structure, Smale (1967). Symmetric
dynamical systems are defined by ‘equivariant’ vector fields with specific symmetry
properties. In networks of coupled dynamical systems, the variables that appear
in the differential equation, and the form of that equation, respect the network
architecture. When the system has special structure, it is sensible to require the
permissible coordinate changes to preserve this structure. This restriction can lead
to new phenomena, invariant under this more limited type of coordinate change.
Examples, in these three contexts, are the topology of energy levels, the symmetry
group of a solution, and synchrony of specific nodes of a network.

Our focus here is on the network case. Network dynamics has been widely
studied in many specific settings. Often the network structure is treated informally.
However, it makes sense to develop a general overview by defining an appropriate
formal structure, analogous to that for general dynamical systems. Here we survey
some of the basic ideas in one systematic approach to this issue (Golubitsky and
Stewart 2006; Golubitsky et al. 2005; Stewart et al. 2003). The main motivation
in those papers was to seek analogies with symmetric dynamics (Golubitsky et al.
1988) and to devise alternatives when new issues arose. As they did.

1.1 Outline of Chapter

We begin by describing some examples of networks and their dynamics, to act as
motivation. This leads to a formal definition of a coupled cell network and the
corresponding class of ‘admissible’ differential equations. A key concept here is
the input set of a node, which determines how the rest of the network is coupled to
(drives) that cell.

Analogies with other special classes of dynamical systems help to motivate some
basic questions and concepts. In particular, we take inspiration from symmetric
dynamics, where the ODE respects a group of symmetry transformations.

An immediate obstacle arises, which causes technical difficulties, but cannot
easily be avoided. In symmetric dynamics, the composition of two symmetric (that
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is, equivariant, see Golubitsky et al. 1988) maps is always symmetric. The analogue
for network dynamics is false in general: the composition of two admissible maps
need not be admissible. However, there is a partial substitute: strongly admissible
maps. The composition of a strongly admissible map and an admissible map, in
either order, is always admissible.

We include a brief discussion of symmetries of networks, an important area that
combines (often in an uneasy alliance) features of symmetric dynamics and network
dynamics.

One important issue in network dynamics is the possibility of synchrony,
in which two (or more) cells have identical time series. One way to approach
synchrony is through the concept of a balanced colouring of the cells. Suppose that
the state of the network exhibits some pattern of synchrony; that is, certain cells are
synchronous with others. Assign the same colour to all cells that are synchronous
with each other. Intuitively, synchronous cells should receive the same input from
the network: if not, the synchrony would be destroyed. The most natural way to
ensure this is if the corresponding input sets match up in a manner that preserves
colours. That is, cells with the same colour have inputs that are related by a colour-
preserving permutation. This is the balance condition.

(An alternative is that some kind of cancellation of inputs takes place, but this
would be ‘accidental’ and would disappear after a small admissible perturbation—
unless the network equations have extra special features. In such cases, a generalised
form of the balance condition must still apply.)

The above statement can be made precise. Balanced colourings define a distin-
guished class of subspaces of phase space that are invariant under any admissible
map. The dynamics on this subspace leads to the pattern of synchrony determined
by the colours. In contrast, an unbalanced colouring does not have this invariant
subspace property.

If cells with the same colour are identified, the result is a ‘quotient network’ on a
smaller number of cells, whose dynamics corresponds to synchronous dynamics in
the original network with the corresponding pattern of synchrony.

There are some stronger results which apply to suitable equilibrium and periodic
states. Say that a pattern of synchrony is rigid if it persists after any sufficiently small
admissible perturbation of the ODE. Then rigid synchrony of equilibria defines a
balanced colouring. So does rigid synchrony of periodic states; the current proof
uses a mild technical hypothesis but it seems likely that this can be removed. There
is also a version of this theorem for patterns of phase-related cells, rather than
synchronous ones. It leads to a characterisation of conditions under which clusters
of synchronous cells have a ‘rotating wave’ spatio-temporal symmetry.

The final topic is bifurcation theory, where states of the system undergo
qualitative changes as some parameter varies. In particular we remark that network
architecture can create anomalous bifurcation behaviour—that is, different form the
typical bifurcations in general dynamical systems. As an illustration we exhibit an
example of anomalous power-law growth of the amplitude of bifurcating branches
of periodic states in a three-cell feed-forward network.
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2 Network Diagrams and Admissible Maps

2.1 Motivation

The theory of networks goes back to the work of Euler (1741) on the puzzle
of the Konigsberg bridges. Contrary to common belief, he did not introduce the
concept of a graph in its familiar geometric form; instead, he employed a symbolic
representation of paths and argued combinatorially, Wilson (1985). However, the
standard graphical representation soon followed. The main ingredients for a graph
are a set of nodes, represented by dots, connected by a set of edges, represented
by lines. The edges may be undirected (line segments) or directed (arrows). The
main objects of study initially were the combinatorics and topology of graphs. As
the subject developed, extra structure was imposed: directed edges were assigned
numerical probabilities, connection strengths, flow rates, or durations (for example
in critical path analysis).

In applications, especially to neuroscience, ODEs are associated with a given
network, and the form of these equations reflects the network architecture. For
example in a neuroscience model, nodes might represent neurons and edges axons,
coupled via electrical signals passing along the axons. The state of each node i is
represented by a variable x;, which might be a scalar or a vector. Each node typically
has an internal dynamic, an ODE that determines how it would behave if it were not
coupled to other nodes. Connections from one node to another lead to coupling
terms in the equations: if there is an input from node j to node i, then dx;/dt is a
function of both x; and x;.

Example 1 The B1G model of diabetes, Topp et al. (2000), takes the form

G=a—(b+c)G

. dG?
I:'B(e—i-Gz) -

B = (—g + hG —iG*)/B

Here dots are time derivatives. The terms G = glucose level, I = insulin level, and g =
beta-cell mass depend on time ¢. The other terms a, b, ¢, d, e, f, g, h, i are parameters,
whose value is constant during any particular run of the model or in any particular
real system.

The network structure arises when we consider which variables depend on which.
Here:

* The change in G depends on G, I but not on S.
* The change in I depends on G, I, and S.
* The change in 8 depends on G, 8 but not on /.
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It is natural to encode these relationships as the network (called a block diagram
in some areas of application) shown in Fig. 1. Here each variable is represented
by a cell symbol (circle, square, hexagon) and arrows show which variable affects
any given cell variable. The different cell symbols indicate different ‘cell types’,
meaning that the form of the equation is different for those cells. The different arrow
symbols (solid, dotted, and so on) indicate different ‘arrow types’, meaning that the
form of the coupling is different for those cells.

In such a representation individual cell or arrow symbols have no further meaning
on their own. Their interpretation depends on the entire diagram. For example,
in this case the coupling from G and B to I is not a sum of terms in G and
separately, but a combination of both variables. Coupling terms need not be additive;
for example in the equation for G the variable I appears as a product cIG.

Example 2 Consider an ODE representing three coupled FitzHugh-Nagumo neu-
rons:

v = vi(@a—v) (w1 — 1) —w; —cvy w1 = bvy —yw
Uy = va(a—v2)(va — 1) —wy — cv3 Wo = bvy — yws €))]
f)3 = U3(Cl — U3)(U3 — 1) — W3 — CVUq W3 = bU3 —yws

Here v; is the membrane potential of cell i, w; is a surrogate for an ionic current, and
a, b, y are parameters with0 <a < 1,b> 0,y > 0.

In (1) the dynamic equations are the same for each neuron, subject to appropriate
permutations of the variables. In other words, the individual neurons are identical,
and the couplings are also identical. So in this case the natural diagram is a ring of
three identical cells (same cell symbol) with identical unidirectional coupling (same
arrow symbol). See Fig. 2.

The state space of cell i is now 2-dimensional, with variables (v;, w;). Because
the variables enter the equations in the same manner for each i, subject to the cyclic

@
P'//‘ Yy
“—(®

Fig. 1 Network representation of the SIG model

ra

Fig. 2 Network representation of a ring of three identical FitzHugh-Nagumo neurons with
identical unidirectional coupling
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permutation, the cells have the same type and so do the arrows. In the diagram, we
represent this by using circles for all three cells and the same kind of arrow for all
three couplings.

2.2 Modelling

A network diagram does not specify an ODE as such. In particular it tells us
nothing about the functional form of the equations. Instead, the diagram acts as
a schematic representation of which variables affect which, and specifies when the
same equation arises for corresponding variables. So each diagram determines a
class of ODEs that ‘respect the network structure’. Moreover, certain dynamical
features may be common to all ODEs in this class, and are thus typical features
for that network. These include possible patterns of synchrony, phase relations in
periodic states, and a singularity-theoretic interpretation of homeostasis (Golubitsky
and Stewart 2016a,b). Other features depend on the precise equations. So the formal
theory separates the features that are typical for all networks with a given diagram
from those that are special, and depend on the precise terms in the equations.

In a conventional approach to modelling, the equations are set up from the
beginning using specific terms that reflect known (or presumed) aspects of the
biology or physics of the system being modelled. For example, the term dG*/(e +
G?) in the BIG model tends to a constant d for large G, modelling a feature of the
insulin response to large glucose levels. Other ODEs consistent with the network
architecture need not behave in that manner, but would probably not be appropriate
to model diabetes. Having set up specific equations that incorporate various
assumptions of this kind, they can then be studied analytically or numerically to
see how solutions behave. In circumstances when there is strong justification for
choosing a particular formula, this type of model is an accurate representation of
the real system.

However, especially in biology, there is often a lot of flexibility in the choice
of formula, and the literature typically considers many variants. This is where
the ‘model-independent’ philosophy presented here differs from this conventional
‘model-dependent’ approach. It offers some advantages by distinguishing between
aspects of the solution that are sensitive to the precise formula employed, and those
that are relatively robust and depend mainly on the network architecture. Specific
models are still important; for example, to work out which parameter values lead
to particular types of behaviour. But they can be used in the context of knowledge
of what kind of behaviour should be expected on the basis of the network structure.
This avoids the danger of attributing predicted behaviour to a specific formula, when
it is mainly a result of the network structure and would occur for other formulas.

This viewpoint shifts the emphasis to a two-stage approach. First, understand
model-independent features. Second, consider model-dependent features in the
context of the model-independent ones to find out what extra information or insight
the specific choice of model adds. The first step motivates defining a formal setting
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for network dynamics and working out the general principles that apply. The initial
aim is to use the network structure to define a natural class of differential equations
whose structure is compatible with a given network. We say that these ODEs are
‘admissible’ for that network.

There are several general formulations in the literature. For example, Kuramoto
(1984) considers nonlinear internal dynamics plus linear coupling:

dx;
m = fi(xi) + Z,: a;x; ()

with nonlinear f; and constants a;; for some set of input nodes j. The idea is that each
cell has a nonlinear internal dynamic f;, and the couplings are linear, given by the
matrix (a;;). The form (2) can be motivated as a pragmatic low-order approximation
to more complicated equations, where linearity corresponds to weak coupling, but
this form of coupling is very special. In particular it is not preserved by any obvious
type of coordinate change beyond linear maps, contrary to the spirit of topological
dynamics. However, it also has some advantages: a specific internal dynamic f;(x;),
and removal of couplings by setting the relevant a;; to zero.

Another common choice is to assume that the nodes represent ‘phase oscillators’,
whose state space is a circle S!, and a state # € S' describes the phase of the
oscillator. In this model the amplitudes of the oscillations are ignored.

Which formalism is appropriate depends on the questions being asked. The
choice described in this chapter avoids restrictive assumptions on the form of
the ODEs. It therefore provides a suitable context to study ‘generic’ or ‘typical’
phenomena in network dynamics, offering a useful perspective on more specific
models, and it helps to explain some of their features.

3 Coupled Cell Networks and Systems

We now begin to set up a formal structure for network dynamics.

For reasons loosely related to the motivating examples, and to distinguish the
topic from standard graph theory, the terms ‘node’ and ‘directed edge’ were replaced
by ‘cell’ and ‘arrow’ in early work. For consistency with the literature, we do the
same here.

Definition 1 A coupled cell network satisfies the following conditions:

(1) There is a finite set % of cells, usually identified with the standard set € =
{1,2,...,n}.

(2) There is a finite set & of arrows.

(3) Each arrow e has a head cell 77 (e) € € and a tail cell T (e) € €.

(4) Cells are classified into rypes. Formally, this is done by defining an equivalence
relation ~¢ on %, called cell equivalence. Cells are equivalent if they have the
same type.
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(5) Arrows are also classified into fypes by defining an equivalence relation ~g on
&, called arrow equivalence. Arrows are equivalent if they have the same type.

(6) Types satisfy two compatibility conditions. If e, e, € & are arrow-equivalent,
then 7 (e;) and % (ey) are cell-equivalent, and 7 (e;) and 7 (e;) are cell-
equivalent.

From now on we often shorten ‘coupled cell network’ to ‘network’. A network
can be represented graphically by its diagram. Here cells are drawn as dots, circles,
squares, hexagons, and so on, with a different symbol for each type. Arrows are
drawn as arrows, similarly decorated to distinguish types by using dotted or wavy
lines, different shapes of arrowhead, and so on. Each arrow e runs from .7 (e) to
F(e). The diagram is a directed labelled graph, where the ‘labels’ are graphical
representations of the cell and arrow types.

Warning: An arrow can have the same head and tail, forming a self-connection
from a cell to itself. Two distinct arrows (of the same or different types) can have
the same head and the same tail, giving multiple connections between the two cells.
Arrows of this kind arise naturally in connection with a basic construction, the
‘quotient network’, which is related to synchrony; the entire formalism works much
better if they are permitted from the start. See Sect. 7.

Figure 3 shows a few examples, and we take the opportunity to illustrate some
basic types of network architecture (that is, topology) at the same time.

Tacit conventions are often used to simplify such diagrams. For example in the
‘all-to-all’ network, pairs of equivalent arrows in opposite directions are shown as

O—=[2] @OF=[2 OFr=20,

unidirectional coupling bidirectional coupling symmetric coupling

® O ®
0 o & o 0EASo
b e

\ "/ Y,
®

®— -3 ORR20
CoZER==e)
[l

bidirectional
ring

]

\

o
1

\

(CO——06

feed-forward

Fig. 3 A sample of coupled cell networks
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a single line with two heads. Some examples have a single cell type and a single
arrow type; others do not. The final ‘typical’ example illustrates a few possibilities
consistent with the formalism, and has no special significance.

A network is connected if the underlying graph (ignoring cell and arrow types
and arrow directions) is connected; that is, any two nodes are joined by a path
of mutually adjacent edges. It is path-connected (another term widely used is
transitive) if any two nodes of the underlying graph are joined by a directed path
of mutually adjacent edges. It is disconnected if it is not connected, in which case it
breaks up into connected components. The examples include some self-connections,
multiple arrows (of the same type or different types), and a multiple self-connection.

3.1 Global Symmetries

Symmetries of ODESs have a strong effect on their solutions (Golubitsky et al. 1988;
Golubitsky and Stewart 2002a). We therefore make a few remarks about symmetries
here and expand on them later.

A (global) symmetry of a network is a permutation of its cells that preserves
the network architecture: how many arrows of each type input to each cell, and
how they are connected in the network. Among the examples in Fig. 3, the two-cell
network labelled ‘symmetric coupling’ has symmetry group Z,, generated by the
transposition (12). The unidirectional ring has cyclic group symmetry Zs generated
by the 5-cycle (12345). So does the bidirectional ring, as drawn, because it has two
types of arrow. If the dotted arrows were of the same type as the solid ones, the
symmetry group would be the dihedral group 5. The all-to-all connected network
has symmetry group Ss, consisting of all permutations of the cells.

The other networks illustrated have trivial symmetry group.

Networks can also have ‘local’ symmetries, known formally as input isomor-
phisms, see Definition 2. These have a significant influence, and are central to
network dynamics, but their role is less transparent.

4 Admissible Maps

We repeat that the central role of a coupled cell network is to encode a space of
ODEs whose couplings model the architecture of the network. We then seek features
that are ‘typical’ for all ODEs in this space, as explained below. The formalism does
not, and is not intended to, pin down a specific ODE. Instead, it determines a class
of ODEs compatible with the network, allowing us to distinguish features that are
typical of this class from those that are not.
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4.1 Cell Phase Spaces

In order to define an ODE, or a class of them, we need to specify the variables,
or phase space, and the functions that appear as components of the vector field.
For networks, we choose variables that respect the network structure. For each cell
¢ € € define a cell phase space P.. In general, this should be a smooth manifold. To
avoid too much manifold formalism (tangent bundles on the like) we will assume for
most of this chapter that P, = R is a real vector space. For local bifurcation theory,
this case is all we need. However, for some purposes other choices are necessary; in
particular, systems of phase oscillators correspond to choosing P. = S!, the circle.

The role of cell-equivalence is to identify the phase spaces of equivalent cells.
That is, if cells c, d are cell-equivalent then P, and P, are required to be equal. The
overall phase space of the network is the direct sum

Pz@PC

cEE

4.2 Input Sets

Networks have a new feature, compared to symmetric systems. Not only can
they have global symmetries: they can have ‘partial symmetries’ in which some
subnetwork has the same structure as some other subnetwork. This concept is most
useful when the subnetworks concerned encode the inputs to cells, because a partial
symmetry of this type in effect states that the cells concerned ‘have the same kinds
of couplings’.

Definition 2 Let c,d € €. The input set of c is the set I(c) of all arrows e such that
F(e) = c.

An input isomorphism B : 1(c) — I(d) is a bijection between their input sets that
preserves arrow type. That is, e is arrow-equivalent to B(e) for all 8 and all e € I(c).
(It follows that B~ (f) is arrow-equivalent to f for all f € I(d).)

If there exists an input-isomorphism B : I(c) — I(d) we say that ¢, d are input-
isomorphic or input-equivalent.

The input set is important because it encodes which cells are connected to which,
and by which type of arrow. Input-equivalent cells receive the same couplings from
the relevant cells of the network.

Example 3 Let ¢ be the network of Fig. 4. The input sets of the five cells are shown
in Fig. 5.

It is clear from the figure that cells 1 and 2 are input-isomorphic, and so are
cells 3 and 5. However, cells 1 and 3 are not input-isomorphic. Although they both
receive two inputs, the arrow-types are different.
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f=]
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Fig. 4 A 5-cell network
[.—[] 0
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Fig. 5 Input sets of the 5-cell network. From left to right: 1(1),1(3),1(4),1(2),1(5). Strictly, the
arrows constitute the input set, but is convenient to show the head and tail cells as well

] ©®

The set of all input-isomorphisms from cell ¢ to cell d is denoted by
B(c,d)

These maps are closed under composition in the following sense. If a, b, ¢ are input-
equivalent cells, and & € B(a,b), 8 € B(b,c), then fo € B(a, c). Composition is
not always defined, but when it is, it is associative.

It follows that for any ¢ € % the set B(c, ¢) is a finite group, the vertex group
of ¢. ‘Cell group’ might be a more more consistent choice of terminology, but this
choice avoids overusing the word ‘cell’.

The union # = |J,,B(c.d) is in general not a group, because its elements
may not compose. Technically, it is a groupoid, Brandt (1927), Higgins (1971)
and Brown (1987). The groupoid structure can be viewed as a side-effect of the
formalism rather than a vital ingredient. It does have a few useful implications, but
its main influence to date has been through the vertex groups. See Golubitsky and
Stewart (2006) for further discussion.

4.3 Admissible Maps

To each network ¢, and each specific choice of cell coordinates x, that preserves
cell type,we associate the space of all ODEs that are compatible with the network
architecture. Such ODE:s are called coupled cell systems or network ODEs.
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To define these ODEs, we associate to ¢ a space of admissible vector fields.
When all P; are real vector spaces, we refer to these as admissible maps. (The
tangent space of R” at any point is R".)

Example 4 Consider once more the network of Fig. 4. Here there are two cell types
and four arrow types.

Choose coordinates (xi, x, X3, X4, x5) for cells 1,2, 3,4, 5. By cell-equivalence,
P, = Py and P3 = Ps. Admissible ODEs take the following form:

X1 = f(x1,x2,x3)

Yo = f(x2,x1,X5)

X3 = g(x3,x1,X4) 3
Xy = h(xq, X1, %2, X3)

X5 = g(xs, x2,x4)

for arbitrary smooth functions

f:P1XP2XP3—>P1
g:P3XP1XP4—>P3
h:P4XP1XP2XP3—>P4

(The overline in the fourth equation indicates symmetry, see below.)

First, we explain how this form is obtained from the network. Consider the first
equation, for cell 1. The vector field component is f(x;, x, x3). The first entry x;
is the cell coordinate, and it represents the internal state of that cell. The other
two entries x, x3 are the input coordinates—those of the tail cells of the two input
arrows to cell 1, as in Fig. 5. Similarly the equations for cells 2-5 comprise the cell
coordinate and the input coordinates, with the cell coordinated being distinguished.
We do this because the cell coordinate is not represented by an arrow. (It would
be possible to add an explicit self-connection to represent this variable; however,
this arrow would naturally be distinguished from any other self-connections in any
case.)

A glance at Fig. 5 shows that cells 1 and 2 are input-equivalent; that is, they have
have the same input sets aside from the numbering of cells. Each cell receives one
dashed arrow and one arrow with a dot. Admissibility means that the same function
f occurs for cells 1 and 2. The variables are written in an order that respects this
equivalence: corresponding variables come from tail cells of arrows of the same
type.

The equation for cell 3 has a different function g, because cell 3 is not input-
equivalentto cells 1 or 2. Because cell 5 is input-equivalent to cell 3, we use the same
g in that equation, with variables again corresponding via the input isomorphism.

In cell 4 we encounter a new feature. Two input arrows are equivalent, those
from cells 1 and 2. Therefore there exists an input-isomorphism from /(4) to itself,



252 I. Stewart

which swaps these two arrows. Admissibility requires / to be symmetric in those
two variables; that is, h(x4, X1, X2, x3) = h(x4, X2, X1, x3). Conventionally the overline
on the variables xy, x; in (3) indicates this symmetry.

‘We mention one feature of the formalism that is sometimes misunderstood. When
symmetries of this kind are not appropriate in a model, they should be removed by
drawing the network using distinct arrow types. Symmetry is an option, not a general
requirement.

We now describe, informally, a procedure for writing down admissible maps.
Formal definitions are given in Golubitsky et al. (2005), Sect. 3.

For each cell ¢ € ¥, choose cell coordinates x. on P.. (In general, x, may be
multidimensional.) Phase space P then comprises all n-tuples

X = (xc)ce(lo”

A vector field on P, adapted to cell coordinates, comprises components f,,c € €
such that

fo:P— P,

For admissibility we impose extra conditions on the f. that reflect network architec-
ture, as follows:

Definition 3 Let ¢ be a network. A vector field f : P — P is ¥-admissible if:

(1) Domain Condition: For every cell ¢, the component f,. depends only on the cell
variable x, and the input variables x 7 () where e € I(c).

(2) Symmetry Condition: If c is a cell, f. is invariant under all permutations of tail
cell coordinates for equivalent input arrows.

(3) Pullback Condition: If cells ¢ # d are input-equivalent, the components f;, f;
are identical as functions. The variables to which they are applied correspond
under some (hence any, by condition (2)) input-isomorphism.

Formally, conditions (2) and (3) are combined into a single pullback condition
applying to any pair c, d of cells, equal or different.

Example 4 exhibits consequences of all three conditions.

Associated with any admissible map f is an admissible ODE or coupled cell
system

& 4

e
If f also depends on a (possibly multidimensional) parameter A, and is admissible
as a function of x for any fixed A, we have an admissible family of maps and ODEs.
Such families arise in bifurcation theory.
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4.4 Strongly Admissible Maps

A special class of admissible maps plays a key role in the theory, mainly as a
technical tool in proofs. Equivariant dynamics has a very useful feature: composing
two equivariant maps yields an equivariant map. However, simple examples show
that admissible maps often lack this property. It can be regained by considering a
more restrictive class of maps:

Definition 4 A strongly admissible map is a map g such that:

(1) g depends only on x, for each cell c.
(2) If ¢, d are cell-equivalent then g, = gy.

It follows that g(x) = (g1(x1), ..., gn(xs)), where g. = g4 whenever c, d are cell-
equivalent.

Proposition1 Let f : P — P be admissible and let g : P — P be strongly
admissible. Then

(1) Ifg is invertible (that is, a diffeomorphism) then g~

(2) Both fg and gf are admissible.

is also strongly admissible.

For some networks, other types of map can compose with admissible maps to
give admissible maps. See Golubitsky and Stewart (2016b).

S Global Symmetries

The formalism for networks introduced in Golubitsky et al. (2005) and Stewart
et al. (2003) originally emerged from symmetric dynamics, specifically symmetric
networks of coupled oscillators, for example Golubitsky and Stewart (1986). We
enlarge on our earlier remarks about global symmetry and make them more precise.

Definition 5 Let ¢ be a network with cells 4" and arrows &. A (global) symmetry
of ¢ is a permutation 7w of € such that the set of arrows from cell ¢ to cell d is
isomorphic to the set of arrows from cell 7 (c) to cell w(d). That is, the number
of arrows of given type is the same in both cases. (It therefore extends naturally to
a permutation acting on & that preserves arrow-type, but it is more convenient to
consider the action on cells. The two formulations are equivalent.)

The(global) symmetry group of ¢ is the group formed by all such permutations
7, and is denoted by Sym(%).

The action of 7 on arrows induces one on cells, by requiring 7(7 (e)) =
T (n(e)), or w(#(e)) = H#(n(e)), or both. (These conditions are consistent
because equivalent arrows have equivalent heads and tails.)
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There is a connection between admissible maps and symmetric (that is, equivari-
ant) maps. These satisfy

f(r(x) = nf(x)

where 7 acts by permuting indices on x, and f.
Theorem 1 Any < -admissible map is Sym(¥)-equivariant.

Example 5 In general the converse is not true: equivariant maps need not be
admissible. The ‘easy’ way for this to occur is when the functions have the wrong
domains. But satisfying the domain condition and being equivariant need not imply
admissibility. To see why, consider Fig. 6.

This network has dihedral group D5 symmetry, determined by all rotations and
reflections of the pentagon. There are two types of arrow: short-range (solid) and
long-range (dashed).

Consider a global symmetry that fixes celll. It is either the identity, or it acts on
cells by the reflectional permutation (25)(34).

The vertex group B(1, 1) is larger. Because there are no multiple arrows, we can
define its action on arrows by considering the effect on their tail cells. It contains
the identity, (25)(34), but also (25) and (34) on their own. Here (25) interchanges
the short arrows inputting to cell 1, and (34) interchanges the long arrows inputting
tocell 1.

The map

X2X4 + X3X5
X1X4 + X3X5
S =] x1x4 + x0x5
X1X3 + X2X5
X1X3 + X2X4

is Ds-equivariant but not admissible. It is obtained by making f; invariant under
(25)(34) but not under (25) or (34). Then we use pullback to define the other
components.

An analogous admissible map would have f(x) = xpx4 + X2x3 + X3x5 + X4X5,
invariant under the whole of B(1, 1).

Fig. 6 Network with

dihedral group D5 symmetry / “ \
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Examples like this need to be borne in mind when applying equivariant dynamics
and bifurcation theory to symmetric networks. In principle the extra constraints
on admissible maps could change the generic behaviour. This effect occurs, for
example, in steady-state bifurcation for some regular networks (Stewart 2014;
Stewart and Golubitsky 2011), causing higher singularities to be generic. Such
networks, however, are very unusual.

5.1 Fixed-Point Subspaces

In equivariant bifurcation theory, it is proved that any symmetric ODE possesses
a class of subspaces that are invariant under any equivariant map. These are the
fixed-point subspaces of subgroups X' of the overall symmetry group I", defined by

Fix(X)={x:0x=x Yo € X}

Suppose that the system concerned is an admissible ODE for a symmetric network.
Since all admissible maps are equivariant, Fix(X') is invariant under all admissible
maps. Antoneli and Stewart (2006, 2007, 2008) explore links between symmetry
and synchrony in networks, showing in particular that there can be subspaces other
than fixed-point subspaces with this invariance property—even when arrows are
deemed equivalent if and only if they are related by a symmetry. This again shows
that it is necessary to be careful when applying equivariant dynamics to symmetric
networks; however, examples of this type are also rare.

6 Quotient Networks and Synchrony

A basic question in network dynamics is: when are two cells synchronous? We
define synchrony by identical time-series: if x = x(¢) is a solution of an admissible
ODE, we say that cells ¢, d are synchronous on x if x.(t) = x,(¢) for all times ¢. This
definition is a strong one, and many applications employ a weaker version in which
the time series are close together, or are equal most of the time. However, it lets us
prove precise theorems that yield useful insights.

A very strong kind of synchrony occurs for any admissible ODE, and is
associated with a subspace of phase space that is invariant under all admissible maps
f. Here cells synchronise in clusters, so that all cells in a given cluster have identical
time-series. To introduce this idea we return to Example 4.

Example 6 In Fig.7 (right) we have assigned ‘colours’ to the cells, shown as grey
shading and diagonal hatching. In this example, cells 1 and 2 have the same colour,
and cells 3 and 5 have the same colour. So the set of cells ¥ is partitioned into
three subsets, determined by ‘same colour’; namely {1, 2}, {3, 5}, {4}. (Technically
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Fig. 7 Left: Balanced e

colouring of the 5-cell [II @ »
network. Right: 4/ \ / W\ [I‘
Corresponding quotient 4 4 2

network @‘ "@ ..@ @ / ’@

these can be considered as the equivalence classes for the equivalence relation ‘same
colour’, but intuitively it seems simpler to think about colours.)

A given network can be coloured in many ways, but this choice has a special
feature, which becomes apparent if we look for solutions in which cells of the same
colour are synchronous. That is, we set x; = xp = u, X3 = X5 = v, X4 = W, SO

(o1, x2, X3, X4, X5) = (4, u, v, W, V)

The admissible ODE (3) now becomes

iw=f(u,u,v)
iw=f(u,u,v)
v =g,u,w) (&)

w = h(w,u,u,v)
v = g(v,u,w)

Although we have five equations in only three unknowns, the system is not
overdetermined because the second equation is the same as the first, and the fifth
is the same as the third.

If we project (u, u, v, w, v) to (u, v, w) we get a restricted ODE

i = f(u,u,v)
v =g, u,w)

w = h(w,u,u,v)

We recognise this as an admissible ODE for a smaller network, in which cells of
the same colour are identified with a single cell, and input sets of arrows remain
unchanged (but tail cells with the same colour are identified). This quotient network
is shown in Fig. 7 (left).

This construction works because the space

A ={(u,u,v,w,v) :u € P;,v € P3,w € Py}

is invariant under all admissible maps, hence under the flow of the corresponding
ODEs. It has the pleasant feature that the space of restricted ODEs is precisely
the space of admissible ODEs for the quotient network, provided the same cell
coordinates are used.
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Here the quotient network has a double arrow from cell 1 to cell 4, and
a self-connection from cell 1 to itself. However, the original network does not
have multiple arrows (pointing in the same direction). Multiple arrows and self-
connections are natural consequences of the restricted ODE. The equation for w
involves two entries u, corresponding to the two arrows from cell 1 to cell 4; the
equation for # has two entries u: one for the cell coordinate and another for the
input coordinate from cell 2. The ‘single-arrow’ network formalism in Stewart
et al. (2003) failed to take proper account of this effect, leading to complications
when characterising restricted ODEs (Dias and Stewart 2004). The modified ‘multi-
arrow’ formalism of Golubitsky et al. (2005) relates the space of restricted ODEs
to a network in a satisfactory manner by permitting multiple arrows and self-
connections.

7 Balanced Colourings

It so happens that in Fig.7 cells are coloured according to input-equivalence.
However, this type of colouring does not always produce a consistent synchrony
relation. The next step is to characterise those that do.

Definition 6 A colouring of a network ¢ is a map
k:% —>K

where K is a finite set, whose members are called colours.

We say that ¢, d have the same colour if k(c) = k(d), and write ¢ ~ d.

A colouring k of a network is balanced if whenever cells ¢, d have the same
colour, there exists an input isomorphism f : I(¢) — I(d) such that i and 8(i) have
the same colour for all i € 7 (I(i)).

Informally, a colouring is balanced if there exists a colour-preserving input
isomorphism for any two cells of the same colour. In particular, cells of the same
colour must be input-equivalent, so a balanced colouring is a refinement of input
equivalence. That is, if ¢ ~ d then ¢ ~; d.

Definition 7 The polydiagonal defined by a colouring k of ¢ is the space
Ay ={xeP:k(c)=k(d) = x.=x4}

That is, cells of the same colour are synchronous for x € A.

Theorem 2 A polydiagonal Ay is invariant under every admissible map if and only
if k is balanced.

One consequence is that when k is balanced, initial conditions that have the
pattern of synchrony defined by k (that is, lie in Ay) give rise to solutions that remain
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inside A;. However, this result does not guarantee that the pattern of synchrony is
stable: perturbations that break the synchrony could cause the solution to deviate
from Ay instead of returning close to it. This kind of stability depends on the
admissible vector field; more precisely, on its component transverse to Ay.

Definition 8 Let k be a balanced colouring on ¢, with colour set K. The associated
quotient network 9 has K as its set of cells (that is, there is one cell per colour).

The cell type of cell i € K is that of any cell ¢ € ¥ with colour i (that is,
k(c) =0).

The arrows in /(i) in %, are obtained from the input set /(c) of any cell ¢ with
colour i by copying each arrow e to create an arrow with head k(.7(e) and tail
k(7 (e)), of the same type as e.

The set of arrows of % is the union of the /(i) as i runs through K.

Deville and Lerman (2015) have reformulated the notion of quotient in a more
general manner, in terms of network fibrations. Nijholt et al. (2016) have developed
this idea in a very interesting manner to set up a form of semigroup equivariance for
some classes for networks, which explains many hitherto puzzling phenomena.

Example 7 We now return to Example 6 in the light of the above definition of a
balanced colouring.

First, we check that the colouring in Fig. 7 (left) is balanced.

Cells 1 and 2 have the same colour. So we must check that their input sets are
coloured in the same manner.

Cell 1 has two input arrows: one from cell 2 (with a dot for its head) and one
from cell 3 (dashed line).

Cell 2 has two input arrows: one from cell 2 (with a dot for its head) and one
from cell 3 (dashed line).

The tail cells are (2,3) and (1,5) respectively. Corresponding cells 1 and 2 have
the same colour, and corresponding cells 3 and 5 have the same colour.

Similarly, cells 3 and 5 have the same colour and their input sets match up in a
way that preserves colours.

Finally, cell 4 has a different colour from all other cells so there is nothing more
to check.

Figure 7(right) shows the corresponding quotient network. This has one cell
for each colour. For convenience we label these by representatives 1, 3, 4 of
those colours. Arrows are drawn to mimic the input sets in the original network,
Fig. 7(left).

We emphasise that although in this particular case colours correspond to input-
equivalence classes of cells, colouring by input-equivalence need not be balanced.
On the other hand, many other balanced colourings may exist, depending on the
network.

Theorem 2 is the first and weakest in a series of results that demonstrate the
central role played by balanced colourings. Intuitively, the result is straightforward:
if two cells remain synchronised as time passes, the inputs to those cells must also be
synchronised. however, this does not necessarily imply that the states of those input
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cells are synchronised. Nonetheless, this ought to be the case for most admissible
vector fields, and the proof of Theorem 2 is relatively straightforward: it just requires
a sensible choice of admissible vector field.

Theorem 3 Let k be a balanced colouring of 4. Then

(1) The restriction of any 4-admissible map to Ay is 9-admissible.
(2) Every 9-admissible map is a restriction to Ay of a 4-admissible map.

Another way to say (2) is that every ¢,-admissible map on Ay /ifts to a ¢-admissible
map on P.

If f is ¢-admissible, the restricted map f| 4, determines the dynamics under f of
the synchronous clusters determined by the colouring k.

8 Rigid Synchrony for Equilibria

In dynamical systems theory an equilibrium x° of an ODE x = f(x) is said to
be hyperbolic if no eigenvalues of the derivative (or Jacobian) D, f|,0 lie on the
imaginary axis. It can then be proved that if g is a small perturbation of f there
exists a unique equilibrium y° of the ODE i = g(x) with y° near x°. See Hirsch and
Smale (1974) and Guckenheimer and Holmes (1983).

Definition 9 A hyperbolic equilibrium x° of a network ODE i = f (x) is rigid if its
pattern of synchrony is preserved by any sufficiently small admissible perturbation.
That is, suppose that g = f + ep is any admissible perturbation of f and ¢
is sufficiently small. Let y° be the unique perturbed equilibrium near x°. Then

0_,0 0_ .0
whenever x; = x;, we have y; = y,.

Golubitsky et al. (2005) prove the Rigid Equilibrium Theorem:

Theorem 4 Let x° be a hyperbolic rigid equilibrium of a network ODE. Define
the relation ~ by c ~ d <— y?. = yg for the perturbed equilibrium y° of any
sufficiently small admissible perturbation of f. Then ~ is balanced.

Briefly: rigid synchrony patterns of equilibria are balanced. Another very
different proof can be found in Aldis (2010).

9 Rigid Synchrony and Phase Relations for Periodic States

The Rigid Equilibrium Theorem 4 has an analogue for periodic states. We introduce
this idea with an example, the coupled FitzHugh-Nagumo equations (1) represented
by a ring of three identical cells with unidirectional coupling as in Fig.2. This
network has Z3; symmetry, which has implications for periodic states.
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Whena = b = y = 0.5 and ¢ = 0.8, the origin is a stable equilibrium for the
full six-dimensional system, and the cells undergo a synchronous oscillation. That
is, their time-series are identical. However, whena = b = y = 0.5 and ¢ = 2, the
system has a stable periodic state in which successive cells are one third of a period
out of phase. Figure 8, which shows the pattern for the v;; the same pattern occurs
for the w;. This state is a discrete rotating wave. It has spatio-temporal symmetry:

00 =x(=T/3)  x30) =x1(t—2T/3)

That is, x(#) is invariant if we permute the labels using the 3-cycle p = (123) and
shift phase by 7/3. So

px(t+ T/3) = x(1)

where x; = (v;, w;). Thus x(¢) is fixed by (p,T/3) € I' x S!, where S! is the circle
group of phase shifts modulo the period.

The Equivariant Hopf Theorem (Golubitsky and Schaeffer 1985; Golubitsky and
Stewart 2002b; Golubitsky et al. 1988) provides conditions under which phase-
related states of this type occur; the H/K Theorem (Buono and Golubitsky 2001)
classifies the possible spatio-temporal symmetries. This theorem has been applied to
analyse central pattern generators for quadruped locomotion. Different gait patterns
exhibit different phase relations between various legs, and these can be read off from
the network structure of the central pattern generator by considering symmetries.
See Buono (2001), Buono and Golubitsky (2001), Collins and Stewart (1993a,b),
Golubitsky and Stewart (2002a).

Example 8 Figure 9 shows a chain of 7 identical cells with identical couplings,
driven by a ring of three cells 1, 2, 3. (There is nothing special about the numbers
here, and both 3 and 7 can be replaced by arbitrary positive integers for appropriate
chains.)

Fig. 8 Periodic oscillations 2r
of the 3-cell ring exhibiting a [
%-period out of phase
periodic solution. Time series
of vy (thick solid), v, (thin
solid), vs (dashed)
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Fig. 9 Balanced colouring of a feed-forward chain leading to travelling wave

The colouring shown is balanced, and the corresponding quotient network is
the Zs-symmetric ring of Fig.2. With suitable admissible equations, this ring
supports a rotating wave with 1/3 period phase shifts as above. Therefore, lifting,
the original chain supports a state with three synchronous clusters, formed by cells
{3k + 1}, {3k + 2}, {3k}, with x;, x;1 being synchronous except for a phase shift of
one third of a period. The effect is similar to a travelling wave in which cells 1, 2, 3,
4, ... fire’ in turn, and cells i,i — 3,7 — 6, . . . are synchronous.

The 7-cell chain has no global symmetry, but its symmetric 3-cell quotient
implies that certain synchronised states in the chain can behave in a manner that
is typical of symmetric rings of cells.

This example motivates (and illustrates the answer to) an interesting converse
question: if certain cells have identical time-series apart from a phase shift, does
this imply some kind of global symmetry of the network? Remarkably, the answer,
subject to reasonable conditions, is ‘yes’. But, as Example 8 shows, we mist first
pass to a quotient.

The main condition required is rigidity: the phase relation must stay unchanged
(as a proportion of the period) after any sufficiently small admissible perturbation
of the underlying ODE. To state this precisely, we need the following concept form
dynamical systems theory. A periodic state x(f) is hyperbolic if it has no Floquet
exponent on the imaginary axis. Hyperbolicity implies that after a small perturbation
of the vector field there exists a unique periodic orbit near x(¢) in the C' topology,
Katok and Hasselblatt (1995), and its period is near that of x(¢). Thus we may talk
of ‘the’ perturbed periodic state.

Definition 10 Suppose that x(7) is a hyperbolic periodic state of period T of a ¢-
admissible ODE. A phase relation
X (1) = xq4(t — 6) c,de¥, 0eR/TZ (6)

is rigid if for all sufficiently small admissible perturbations the perturbed periodic
state x(r) satisfies

() =%(1t—-0) cde¥, 0ecR/TL

where 7 is the period of (7).

The T/3 and 2T/3 phase shifts in the rotating wave state for the coupled
FitzHugh-Nagumo system is rigid. This can be proved for any rotating wave state
arising by Hopf bifurcation in a symmetric system, indeed for any such state
consistent with the H/K Theorem.

When 6 = 0 in (6) we say that cells ¢ and d are rigidly synchronous.
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Intuitively, whenever (6) holds, we expect the states x;(¢)(¢) and x;4)(¢) of the
input sets of cells ¢ and d to be phase-related by the same 6, up to some input
isomorphism. Taken literally, this statement is false: the inputs states could differ
in a way that does not affect the coupling to cells c¢,d. But we expect such a
relationship to be destroyed by most small perturbations. For several years this belief
was conjectural (Stewart and Parker 2007); the main difficulty in proving it was to
keep track of how the periodic state perturbed.

We now introduce a mild technical condition, which some authors include in the
definition of a coupled cell network:

Definition 11 A network is cell-homogeneous if all cell-equivalent cells are input-
equivalent.

Assuming this condition, Golubitsky et al. (2010) proved the Rigid Synchrony
Theorem:

Theorem 5 Suppose that G is a cell-homogeneous path-connected network and
two cells ¢, d are rigidly synchronous. Then there exists an input isomorphism B :
I(c) — I(d) such that for all j € 7 (d) cells j and B*(j) are rigidly synchronous.

Corollary 1 Suppose that 9 is a cell-homogeneous path-connected network. Then
the colouring K in which cells have the same colour if and only if they are rigidly
synchronous is balanced.

Their method is inspired by singularity theory, and requires studying a space
of perturbations large enough to destroy any spurious synchrony but small enough
to control. Shortly afterwards, Golubitsky et al. (2012) extended their methods to
handle nonzero phase shifts, obtaining the Rigid Phase Theorem:

Theorem 6 Suppose that 4 is a cell-homogeneous path-connected network and
two cells c¢,d are rigidly phase related by a phase shift that is a proportion 6 of
the period of the perturbed periodic state. Then there exists an input isomorphism
B : I(c) — I(d) such that for all j € 7 (d) cells j and B*(j) are phase related by a
phase shift that is the same proportion of the period of the perturbed periodic state.

It is conjectured that the condition of cell-homogeneity can be removed, and it
seems likely that the methods of Golubitsky et al. (2010, 2012) can be modified to
prove this, but this issue is currently unresolved.

A key consequence had already been observed in Stewart and Parker (2008):

Theorem 7 Suppose that 4 is a cell-homogeneous path-connected network and
two cells ¢, d are rigidly phase related by a phase shift that is a proportion 0 of the
period of the perturbed periodic state. Let 9, be the quotient of ¢ by the balanced
coloring corresponding to rigid synchrony of cells. Then there exist integers m, k
such that 0 = m/k, 9 has a global group of symmetries that is the cyclic group
Zy, and all rigid phase relations between cells are determined by a discrete rotating
wave consistent with these symmetries.
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Informally: whenever a rigid phase shift is observed in a periodic state for a
path-connected network, it is a consequence of a global cyclic-group symmetry of
the quotient network in which rigidly synchronous cells are identified.

10 Bifurcations

Informally, a bifurcation occurs in a family of ODEs

dx
— =[x A)

de
with a parameter A when the qualitative description of states changes near some
parameter value 4. For example the number of steady states may change as A passes
through A, or a stable steady state may become unstable and throw off a periodic
cycle.

Local bifurcation, where the states branch along different curves in (x, 1)-space,
is governed by the eigenvalues of the Jacobian matrix J = D,f|( 1. If an eigenvalue
of J is zero at some point (xp, A¢) then typically a new branch of steady states
appears. If a complex conjugate pair of eigenvalues are purely imaginary, equal
to £iw, then typically there is a Hopf bifurcation to a branch of time-periodic states
with frequency close to 27 /w, Hassard et al. (1981). Such eigenvalues are said to
be critical.

For standard dynamical systems, ‘typically’ here requires the critical eigenvalues
to be simple. Moreover, they should pass through the imaginary axis with nonzero
speed as A passes through A¢. In equivariant dynamics, symmetry constraints
can force eigenvalues to be multiple, and new phenomena occur. A notable one
is spontaneous symmetry-breaking, where solutions have less symmetry than the
equations (Golubitsky and Stewart 2002a; Golubitsky et al. 1988).

In networks, local bifurcation is more complicated. The network architecture can
have a strong effect not only on the eigenvalues, but also on the nonlinearities along
the bifurcating branch. For example, there exist networks for which ‘typical’ steady-
state bifurcation is more degenerate, in a singularity-theoretic sense, than the usual
transcritical or pitchfork bifurcations. This affects the typical growth rate of the
bifurcating branch (Stewart 2014; Stewart and Golubitsky 2011).

Instead of symmetry-breaking bifurcations, networks can exhibit synchrony-
breaking bifurcations. Here a state with some pattern of synchrony loses stability
and the pattern of synchrony changes: some cells that were synchronous cease
to be synchronous. The interplay between network architecture and eigenval-
ues (and eigenvectors) of the Jacobian plays a central role in the theory of
synchrony-breaking bifurcations. Rink and Sanders (2012, 2013a, 2014) explain this
relationship in terms of a modified type of equivariance, using semigroups rather
than groups.

A very surprising synchrony-breaking bifurcation occurs at Hopf bifurcation
in a 3-cell feed-forward network, Fig. 10. Generic Hopf bifurcation in a general
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Fig. 10 A 3-cell S
feed-forward network L\ \Z,

dynamical system creates a bifurcating branch of equilibria whose amplitude grows
like A'/2. However, Elmhirst and Golubitsky (2006) proved that typically there is a
bifurcating branch of periodic states in which cell 1 is steady, the amplitude of cell
2 grows like A!/2, and the amplitude of cell 3 has the anomalous growth rate A'/°,

There is an analogous result for a feed-forward chain of m nodes. Hopf
bifurcation can then lead to states that grow like A!/!® in the fourth node, A'/>*
in the fifth node, and so on. This has been proved by Rink and Sanders (2013b)
using a far-reaching generalisation of the notion of symmetry for networks. See also
Rink and Sanders (2012, 2013a, 2014).

There is also a potential application to a nonlinear filter that selects and amplifies
periodic oscillations close to a specific frequency (Golubitsky et al. 2009; McCullen
et al. 2007).

11 Conclusions

The main message of this chapter is very simple. Networks are becoming increas-
ingly important as models of many real systems, across the whole range of
sciences. Moreover, the dynamics of networks has its own special flavour and
differs considerably from the standard theory of dynamical systems. There is
now a growing understanding of network dynamics, which in particular makes
it possible to distinguish typical phenomena common to many networks with a
given architecture from special phenomena that depend on the modelling equations.
Among them are patterns of synchrony and phase relations, but the approach is not
limited to these types of behaviour.

Placing network dynamics in a formal, abstract setting makes the above distinc-
tion clear, and offers several benefits, which are already sufficiently interesting to
justify setting up such a formalism. Many types of behaviour become comprehensi-
ble and natural within this setting. On the other hand, it is important to recognise that
the general abstract results must be augmented by special considerations, either for
classes of networks with extra structure, or for specific models. The area of network
dynamics is developing rapidly with many new results and open questions.
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