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Abstract This chapter aims at reviewing complex network and nonlinear dynami-
cal models and methods that were either developed for or applied to socioeconomic
issues, and pertinent to the theme of New Economic Geography. After an intro-
duction to the foundations of the field of complex networks, the present summary
introduces some applications of complex networks to economics, finance, epidemic
spreading of innovations, and regional trade and developments. The chapter also
reviews results involving applications of complex networks to other relevant
socioeconomic issues.
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1 Introduction

Complex networks have been proved during the latest decades as an essential
formalism in order to describe the many situations in which agent-based models
are required (Albert and Barabási 2002; Newman 2003; Pastor-Satorras et al. 2003;
Boccaletti et al. 2006; Newman et al. 2006). Starting with the papers of Watts and
Strogatz (1998) and of Barabási and Albert (1999) in the late nineties, this formalism
has been accepted in the basic tool set of a growing number of disciplines like
physics, biology, computer science, sociology, epidemiology, and economics among
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others. This is so, because the skeleton of any complex system can be described by
a network arising from the interactions of the many parts of which it is made up of.
Hence, network theory is now considered to be one of the pillars in the theory of
complex systems.

Complex system theory investigates how relationships between parts give rise
to the collective (emergent) behaviors of a system and how the system interacts
and forms relationships with its environment. The definition of complex systems
is not unanimous, but one of the most popular visions states that a complex
system is one made up of many parts with nonlinear interaction between them.
These systems are open, nested systems, with memory and feedback loops, which
may show emergent patterns and are structurally founded in dynamic networks of
multiplicity. This definition emphasizes the importance of both the network of the
system constituents and the nonlinear coupling between them. Therefore, one should
expect that the relevant dynamics of complex systems is inherently nonlinear, and
so that a combined study of complex networks and dynamic systems is a need for
the development of the field of complex systems. Undoubtedly, structure decisively
conditions the behavior of a dynamic system, and hence the interactions among the
massive amount of their individual parts must be collectively considered, which is
the main role of the network analysis. Indeed, the relationship between the dynamics
and the topology of complex networks is a nowadays a central issue of network
theory and, therefore, in its applications (see, e.g. Wang 2002 and Boccaletti et al.
2006 and references therein). Networks of coupled dynamical systems have been
extensively considered in nonlinear dynamics since they can exhibit non trivial
emergent phenomena, such as autowaves, Turing patterns, spiral waves, and spatio-
temporal chaos, with applications to a plethora of large-scale real systems (Chua
1998). Specifically, synchronization phenomena have been extensively considered,
as well as the evolution of the networks themselves (rewiring, growth, and so on)
(Boccaletti et al. 2006).

In the present chapter, we briefly review the fundamental structural and dynamic
properties of complex networks, and we consider some applications of this for-
malism to the understanding of nonlinear phenomena, including epidemiological
models, synchronization in networks and financial contagions, games on networks,
and clustering of network nodes and geographical information. Moreover, we
present some novel results for epidemiological models of flu and sexually transmit-
ted diseases (STDs), and we review the mean-field theory of contagion in networks.

The chapter is divided in four sections. The first one is this introduction, the
second contains a review of the theory of complex networks; in Sect. 3 we present
some applications of this theory to the analysis of nonlinear phenomena, including
some novel results for flu and STDs and, finally, Sect. 4 summarizes the main
conclusions of the chapter.
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2 Theory of Complex Networks

In this section we briefly review some of the main results in the theory of complex
networks developed during the last two decades. The theory of complex networks
has evolved from the branch of mathematics known as graph theory, within which
these objects were traditionally considered. Probably the best known of all of
them—besides the regular graph or lattice—was Erdös and Renyi’s random graph
(Erdös and Rényi 1959).

Probably the most significant result in the contemporary theory of networks was
the introduction of small-world networks by Watts and Strogatz (1998) (WS), trying
to describe the transition from a regular lattice to a random graph. Beyond its
mathematical interest, this new type of network successfully gives account of the
“six degrees of separation” concept, uncovered by the social psychologist Milgram
in the late 1960s (Milgram 1967). This is a well-known emergent property of many
social networks in which the average path length (i.e. the average number of steps
one has to take across the network for connecting two given individuals) is notably
smaller than that in a regular lattice. Purely random networks also exhibit the small-
world property, but, as we shall see, they give rise to far sparsely connected networks
(low clusterization) to accurately describe social networks.

The second major advance in the theory of complex networks took place the
year after Watts and Strogatz’s paper in Nature, when Barabási and Albert (1999)
introduced scale-free networks, which mimic many situations where the networks
show vertex connectivities that follow a scale-free power-law distribution. They
were able to prove that this emergent property followed from the continuous
expansion of the network due to the addition of new vertices, and the preferential
attachment of the new nodes to those sites that are already well connected. Of
course, this new type of network showed the small-world property, but, in contrast
with WS networks, they were able to describe situations where a high degree of
heterogeneity between the agents’ connectivity exists. This new type of network
completed the network ecosystem, and the theory was then in place to describe
any possible connection pattern in agent-based systems, which opened the door to
the explosive expansion of the theory of complex networks themselves and their
applications. In what follows we summarize some of the most important results
reported since then for the structure and dynamics of these fascinating objects.

A network (graph) is formally described as a pair .V; E/, where V is a set of
nodes (vertices), and E is a set of links (edges) defined by two nodes that represent
the source and the end of the link Suppress. The assignment of labels to the elements
of the network is called graph labelling, and the special case of coloring is among
the most important labelling schemes. A graph is said to be k-colorable if it can be
assigned a k-colouring, i.e. a labelling of the graph’s vertices with colors such that
no two vertices sharing an edge have the same color. The smallest number of colors
needed to color a graph G is called its chromatic number, and is often denoted as
�.G/. Associated to this concept is that of chromatic polynomial, which counts the
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number of ways a graph can be coloured using no more than a given number of
colors.

Networks can be classified according to several criteria:

1. According to the directionality of the links, they can be either directed or
undirected graphs.

2. Networks can be classified as weighted or unweighted depending on whether
different weights are associated to their edges.

3. Sparse and fully connected networks differ in the fraction of interconnected
nodes.

4. Depending on their time evolution, networks can be classified into static and
evolving.

5. Depending on their node degree probability distribution, they can be classified
as: regular (deterministic), exponentially distributed Watts-Strogatz networks,
scale-free Albert-Barabási network, fully random graphs, general uncorrelated
networks and others.

Another important type of networks are bipartite networks, formed by two
disjoint sets of nodes U and V such that every node in U is connected to a node
in V . The adjacency matrix of a bipartite network is of the form:

Aij D
�

0 B
B 0

�
(1)

Some important properties of these networks are:

(a) A graph is bipartite if and only if it does not contain an odd cycle.
(b) A graph is bipartite if and only if its chromatic number is less than or equal to 2.
(c) The spectrum of a graph is symmetric if and only if it’s a bipartite graph.

The most frequently employed method for the representation of the vertex
connectivity in networks with N nodes is the adjacency matrix A D .aij/ 2 R

N�N ,
whose rows and columns are the nodes of the network, and whose term aij > 0

corresponds to the weight of the link from node i to node j, which in an unweighted
network is always set to aij D 1 for the non null elements (if the network is
directional, other criteria have been introduced). In this case, and when the network
is undirected -the links connecting two edges acts bidirectionally- the matrix A is
symmetric aji D aji for all nodes i, j. The absence of links is given by zero elements
aij D 0. This matrix contains much useful information about the network including
the so called spectrum of the graph, given by the set of eigenvalues of Aij. On
the other hand, a path from node ih1 to node ihk in the network is a sequence of
unique nodes ih1 ; ih2 ; � � � ; ihk such that aihj ;ihjC1

¤ 0, and can be detected through the

power of the adjacency matrix Ahk . These paths are relevant for studying diffusion
processes as well as the relevance of nodes.
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This matrix allows the calculation of others related to it such as the degree matrix,

Di;j WD
�

deg.vi/ if i D j
0 otherwise

(2)

or the Laplacian matrix, Lij D Dij � Aij or

Li;j WD
8<
:

deg.vi/ if i D j
�1 if i ¤ j and vi is adjacent to vj

0 otherwise
(3)

Spectral graph theory is the study of the properties of a graph by means of the
characteristic polynomial, eigenvalues, and eigenvectors of its adjacency matrix or
Laplacian matrix. Some interesting results are: (1) zero is always an eigenvalue of
this matriz since the sum of all the elements of every row and column is zero. Indeed,
the multiplicity of this eigenvalue gives the number of connected components of the
graph. (2) As usual, the smallest non-zero eigenvalue of the Laplacian matrix gives
the spectral gap, and its second smallest eigenvalue is the algebraic connectivity (or
Fiedler value) of the graph, which measures the connectivity degree of the graph,
with applications in robustness and synchronizability of networks.

2.1 Structure of Complex Networks

The analysis of the structure of networks is made using a set of relevant parameters
that allow the classification of these objects. In the rest of this subsection we
introduce some of the most important and frequently used (Fig. 1).

Fig. 1 (a) Example of chemical distance. (b) Average path length in a SW network with N D 200

and p D 0:3 and the number of connections to nearest neighbours in ring topology k D 6
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• Small-worlds: relatively short path between any two nodes, defined as the
number of edges along the shortest path connecting them. The connectedness
can also be measured by means of the diameter of the graph, d, defined as
the maximum distance between any pair of its nodes. Networks do not support
the definition of a “distance”. They are no proper metric space although some
attempts to introduce a metric on hidden metric space have been made Serrano
et al. (2008). Hence, a chemical distance between two vertices lij must be
introduced, which is defined by the number of steps from one vertex to the other
following the shortest path. Associated to this distance emerges the one of the
most important measures for describing the structure of a complex network is the
so called average path length between connected nodes

< l >D 2

N.N � 1/

X
i<j

lij D
X

l

p.l/ (4)

Contrary to what happens in a regular lattice -in which < l >� p
N- in most

real networks, < l > is a very small quantity (small-world) that scales with the
number of nodes as < l >� log N.

• Centrality Centrality measures the relative importance of the vertices of a net-
work in terms of a real-valued function, where the values produced are expected
to provide a ranking which identifies the most important node. Obviously,
importance is highly dependent on the context and a criteria of importance must
be provided. Several types of centrality have been introduced:

– Degree centrality: number of connections a node has, CD.v/ D deg.v/. This
is a direct measure of how exposed a given vertex v is to whichever it flows
through the network.

– Closeness centrality, defined for vertex i as

QCi D 1P
j dij

(5)

where dij is the distance of node i to node j.
– Path centrality: To go from one vertex to another in the network, following the

shortest path, a series of other vertices and edges are visited. The ones visited
more frequently will be more central in the network.

– Betweenness centrality, number of shortest paths that pass through a given
node for all the possible paths between two nodes. Measures the “importance”
of a node in a network, and it is given by

CB.v/ D Number of shortest paths including v

Total number of shortest paths

D
X

s¤v¤t2V

�st.v/

�st
(6)
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Fig. 2 (a) The node in blue has the largest betweenness centrality, as does the node in navy blue
in (b) (Source of (b): Claudio Rocchini, Wikipedia)

– Eigencentrality: a measure of the influence of a node in a network (Fig. 2).
– Katz centrality: Katz centrality is a generalization of degree centrality that

measures the number of all nodes that can be connected through a path,
penalizing the contributions of distant nodes.

CKatz.i/ D
1X

kD1

nX
jD1

˛k.Ak/ji (7)

where 0 < ˛ < 1 is an attenuation factor. This centrality measure is related to
the very famous PageRank,

Pi D ˛
X

j

Aji

QCj

L. j/
C 1 � ˛

N
(8)

with L.i/ D P
j aij is the number of neighbors of node i, used by Google to

rank websites in their search engine results.
– Bonacich centrality, which allows for negative values of the attenuation

factor ˇ.

CBON.i/ D eT
i .

1

ˇ

1X
kD1

.ˇA/k/1 D 1

ˇ

1X
kD1

nX
jD1

ˇk.Ak/ij (9)

Closely related to those centrality coefficients is the so called core-periphery
coefficient, introduced by Holme (2005). This core-periphery coefficient
measure if the network is divided in a core that is both distance, and densely
connected and central in terms of graph distance and a sparsely connected
periphery, and it is defined as

ccp.G/ D CŒVcore.G/�

CŒV.G/�
�

�
CŒVcore.G0/�

CŒV.G0/

�
G2G .G/

(10)
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where G .G/ is the ensemble of graphs with the same set of degrees as G. and
Vcore.G/ is the k core (i.e. a maximal subgraph with the minimum degree k)
with maximal closeness.

• Clustering coefficient: This coefficient provides a quantitative measure of the
degree to which links in a network follow a transitive property (i.e. if i is linked
to j, and j is linked to k, then i may or may not be connected to k). Such transitive
links are very common in social networks, and realistic structures must take this
into account. The local clustering coefficient of node i of a set of ki nodes linked
to node i is defined as the ratio between the number Ei of edges that actually
exist between these ki nodes and the total number Ci D ki.ki � 1/=2 . This
clustering coefficient provides a measure of the local connectivity structure of the
network, i.e. how close the local neighbors of a given node are to being a clique
(complete graph). This coefficient was introduced by Watts and Strogatz (1998)
to determine whether a graph is a small-world network. The global clustering
coefficient is defined as the ratio between the total number of closed triplets and
the total number of connected triplets of networks (Fig. 3). The average clustering
coefficient

< C >D 1

N

X
j

Cj (11)

can be introduced, as well as the clustering spectrum for vertices of degree k,

< C.k/ >D 1

Np.k/

X
j

ıkjkCj (12)

in the usual way.

Fig. 3 Calculation of the global clustering coefficient



Complex Network Analysis and Nonlinear Dynamics 11

Fig. 4 WS distribution (left column) and AB distribution (right column)

• Degree distribution: The degree distribution, p.ki/ is the probability that a given
node i has a definite number of edges, ki. In directed networks an in-degree and
an out-degree are to be defined, but in undirected network both coincide. These
degree distribution can fall in two categories: those within the basin of attraction
of the Gaussian distribution (exponential distribution with all their moments
finite) and those in the basin of attraction of some other Lévy distribution
(subexponential, fat-tailed distributions). The degree distributions associated to
the main four types of complex networks introduced above are (Fig. 4 shows
those for WS and AB networks):

p.k/ �

8̂
<̂
ˆ̂:

ı.k � k0/ regular lattice�N
k

�
pk.1 � p/N�k random network

e��k WS networks
k�˛ AB networks

(13)

Of course, these distributions open the doors to defining the whole set of
moments of the degree of nodes. Specifically, we can mention the average degree

< k >D 1

N

X
i

ki D
X

k0

k0p.k0/ (14)

A network is called sparse if its average degree remains finite when taking the
limit N �. In real (finite) networks, < k >� N. Of course, real networks are
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usually correlated, i.e. the degrees of the nodes are not in general independent.
This must be described by a conditional probability distribution p.k0jk/ which
represents the probability of a k-node pointing to a k-node. For an uncorrelated
network,

p.k0jk/ D k0

< k >
p.k0/ (15)

independent of k, while for a correlated network this probability depends on the
degree of both linked nodes. p.k/ and p.k0jk/ are not independent, but they are
related by a detailed balance condition arising form the fact that the number
of nodes of degree k linked to nodes of degree k0 equals the number of nodes
of degree k0 linked to nodes of degree k. On the other hand, in terms of these
conditional probability the average degree of the nearest neighbours of vertices
of degree k can be calculated as

< knn >D
X

k0

k0p.kjk/ (16)

If < knn > is an increasing (decreasing) function of the degree k the mixing
is assortative (disassortative) meaning that highly connected nodes tend to be
linked to other highly (lowly) connected nodes, i.e. there exists a bias in favor
of connections between network nodes with similar (dissimilar) characteristics
(Pastor-Satorras et al. 2003).

• Nestedness index (Araujo et al. 2010). This concept was originally introduced in
the context of ecological studies (Atmar and Patterson 1993). A bipartite network
formed by islands and species—linked if the former inhabits the latter—is said
to be nested if the species that exist on a few islands tend always to be found also
on those islands inhabited by many different species. It indicates the likelihood
of a node being linked to the neighbours of the nodes with larger degrees. The
mean topological overlap between nodes (Almeida-Neto et al. 2008) has been
introduced to quantify nestedness.

3 Dynamics of and on Complex Networks

We have previously mentioned that complex networks are at the root of the structure
and dynamics of complex systems. As usual -and in this case probably to a much
larger extent than in simple conventional systems- there exists a strong interplay
between structure and dynamics, so it is difficult to say if the observed equilibrium
structure is a cause or a consequence of the dynamics. Without entering into such
philosophical questions, there are different dynamic processes that one can consider
in complex networks:

– Synchronization of networks and collective dynamics.
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– Evolution of the network itself (evolving networks, rewiring).
– Spreading processes (epidemics, rumors).

Closely associated to dynamics is the concept of robustness, which can be defined
as the ability of the network to withstand failures and perturbations. These concepts
have been extensively reviewed in the past (see the reviews of Boccaletti et al. 2006
and of Arenas et al. and the references therein Arenas et al. 2008) and the reader is
referred to this literature for in-depths treatments.

4 Nonlinear Phenomena on Complex Networks

This section shows some applications of nonlinear dynamics on complex networks
for the study of economic and financial problems. The need for new and more
fundamental understanding of economic and financial crises has fostered the
development of studies on the structure and dynamics of economic and financial
networks. In such networks, nodes may represent firms, banks, or even countries,
and links represent their mutual interaction, be it cross-ownership, credit-debt,
or trade relationships. The network structure allows to focus on the propagation
of shocks and on resilience, which show quite different behavior depending on
the structure of the network (da Fontoura Costa et al. 2011; Schweitzer et al.
2009a). This section is organized in four subsections: Epidemiological models,
Synchronization in networks and financial contagions, Games on networks, and
Clustering of network nodes and geographical information.

4.1 Epidemiological Models

Understanding risk, unfolding different sources of risk, preventing failure on large
systems, spreading of crises, and large crashes, are among the major tasks to
undertake in modern economic and financial literature. Conventional epidemiolog-
ical models have been used as models of propagation and contagion well beyond
the limits of medical epidemiology. They have indeed served as models of any
kind of diffusion in social and economic contexts, where large populations with
a complex pattern of interaction among agents exist (spreading of rumours or
information, diffusion in markets and financial markets, etc.). From this perspective,
epidemiological models have also been reconsidered in terms of transmission of
financial shocks. For instance, the average lifetime and persistence of viral strains
on the Internet is examined in Pastor-Satorras and Vespignani (2001). It so happens
that the spreading pattern depends crucially on the properties of the social network
and on the diffusion (or contagion) mechanism underlying the complex network
(López-Pintado 2008; Barrat et al. 2008). A key factor is the scale-free feature
of the network, and a relevant result is the absence of a critical threshold for the



14 L.M. Varela and G. Rotundo

spread of computer viruses. That means that any virus is going to propagate—
unless properly blocked (Pastor-Satorras and Vespignani 2002). In Barthélemy et al.
(2005) simulation studies proved that assortative networks have an early burst,
against the late spread in disassortative networks. This also gives recommendations
on vaccination policies: blocking the infection at the level of hubs is the optimal
choice.

Compartmental models are a special kind of epidemic models that split the
population over a discrete set of states (or compartments) depending on their health
status with respect to the disease. Individuals can change state as time goes by.
Probably the best known of all these models is that by Kermack and McKendrick
(1927), a cornerstone in the mathematical modelling of epidemics introduced in
order to understand the evolution of infected patients observed in epidemics such
as the London (1665–1666) or Bombay (1906) plagues or cholera (London 1865).
This deterministic model uses three compartments corresponding to Susceptible
(S), Infected (I) and Recovered (R) for classifying the population, whose size is
supposed to be fixed (i.e., no births, deaths due to disease, or deaths by natural
causes). No incubation period is allowed so the disease is passed instantaneously and
a final immunity is acquired by the individuals. The mechanism that the pathogen
uses for its propagation is the direct contact between the susceptible and the
infected individuals, assuming homogeneous mixing of a completely homogeneous
population (no age, spatial, or social structure). This hypothesis states that the per
capita rate of acquisition of the disease by the susceptible individuals is directly
proportional to the density of infective individuals, and it is a typical mean-field
assumption. These assumptions leads to the following set of equations (Kermack
and McKendrick 1927):

dS.t/

dt
D �ˇS.t/I.t/

dI.t/

dt
D ˇS.t/I.t/ � � I.t/

dR.t/

dt
D � I.t/ (17)

These compartmental models focus on a specific set of characteristics, and divide
network nodes in subsets (compartments) that are homogeneous with respect to
the specific characteristic. For instance, in a vaccination program, the study of the
possible propagation of the infection can be done in accord to the different age
ranges. In such context, it is natural to draw network links among the compartments.
The relevance of the structure of the network has also been shown on the resilience:
assortative networks resist random attacks better than others, but not to targeted
attacks (Albert et al. 2000; Chen and Cheng 2015).

Underlying the epidemic spreading there is always a complex network defined
by the contacts of the individuals that support the contagion. The topology of
this network drastically determines the propagation of the disease. Essentially,
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in homogeneous exponentially distributed networks the number of contacts of a
given individual can be replaced under certain circumstances by its average value,
neglecting fluctuations in the number of contacts (mean-field theory). This is not
possible in epidemic diseases where fluctuations in the number of contacts of
the individuals are important (e.g. sexually transmitted diseases), but is relatively
accurate in diseases like flu. For diseases travelling in homogeneous networks the
infection rate ˇ—which controls the epidemic dynamics together with the recovery
rate, �—is given by the probability of infection per contact, � times the average
number of contacts of a given characteristic individual, ˇ D � < k >. This is,
of course, not possible in the case of heterogeneous scale-free networks, in which
the average number of contacts is not a good representative of the distribution, or
fluctuations are too important to define an “average individual”.

One of the main predictions of the SIR model is the existence of an epidemiolog-
ical threshold, i.e. a cut-off for the infection rate below which the epidemic disease
is not capable of infecting a significant fraction of the population and dies out. In
the specific case of the Kermack-McKendrick SIR model this is given by the basic
reproductive number

R0 D ˇS

�
(18)

This variable quantifies the number of secondary infections coming from a primary
case in a completely susceptible population, and R0 D 1 is the critical value that
divides the region where the outbreak peters out (R0 < 1, PI < 0) from that where
the epidemic spreads (R0 > 1, PI > 0). The specific value R0 D 1 corresponds to an
endemic behaviour, with a finite fraction of the population infected in the asymptotic
limit, t ! 1.

The description of flu epidemic spreading demands an epidemiological model
of the different states the individual goes through during the infection period.
Moreover, the network structure must be provided, and since in this case the effect of
hubs is negligible, it may be reduced to a mere number, the average connectivity of
the network, hki, which amounts to a mean-field level of description. Furthermore,
a good description of the epidemiology of the disease must be used. In our case, in
order to describe the propagation of an epidemic of avian flu in Galicia (Spain) we
proposed a compartmental model based on the well-known SEIR model, including
an incubation period of exposed individuals E.t/ and the possibility that a fraction
of those exposed to the virus recover without being effectively infective at any point
of the process (see Fig. 5a). Moreover, we allowed for the seed of a fraction of
infective individual from outside the region at a rate ı. This is a deterministic model
since the factors intervening in the process are controllable and a deterministic
differential equation system governs the whole process (Fig. 5b). However, the most
natural way to describe an epidemic disease is by means of stochastic models,
which describe the process of propagation of the infective agent in a probabilistic
way. These models are used when random fluctuations or heterogeneities of the
system are important, such as in small or isolated populations. They have several
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Fig. 5 Deterministic modified SEIR compartmental model (a) and its associated system of
nonlinear differential equations (b)

advantages over the deterministic model, since they study the dynamic of the
illness at an individual level instead of on a collective fashion. However, they
normally demand numerical simulations. Deterministic models are approximations
of the corresponding stochastic models (Nåsell 2002) where the latter are Markov
population processes with continuous time and discrete state space, and the former
take the form of ordinary differential equations.

The propagation of epidemic diseases on scale-free networks has been studied
by Pastor-Satorras and Vespignani (2001), who proved the absence of an epidemic
threshold and its associated critical behavior. This is the case when there is a large
heterogeneity in the degree of contacts of the individuals, as in the case of sexually
transmitted diseases.

The analogy of financial contagion with epidemiological models is well evi-
denced by attention-capturing titles as “When Belgium sneezes, the world catches
a cold”,1 “Why Does The U.S. Sneeze When Europe Gets A Cold?”,2 that echo
the sentence of Metternich “When France sneezes, Europe catches a cold”.3 Such
sentence was pointing out the relevance of France. Nowadays, such studies point out
that the interlinking between national economies is so high that even small countries
may trigger a crisis.4

The difficulty of a straightforward connection between the structure of the
economic network and the propagation of shocks, attacks and crises, resides in the
fact that they are weighted fully connected networks (complete graphs). Therefore,
the crux of the issue is keeping only the most relevant links. Networks examined
in Garas et al. (2010) are the Corporate Ownership Network (CON) and the
International Trade Network (ITN). Such networks are nearly fully connected, so
thresholds are considered for the detection of non trivial structure (Fagiolo et al.
2007). To identify the uneven roles of different countries in the global economic
network, the k-shell decomposition method is used.

1http://phys.org/news/2010-11-belgium-world-cold.html.
2http://www.npr.org/2011/08/18/139714695/why-does-the-u-s-sneeze-when-europe-gets-a-cold.
3http://www.enotes.com/homework-help/metternich-said-when-france-sneezes-europe-catches-
120443.
4“The Worlds Most Contagious Countries” https://twistedeconotwist.wordpress.com/2010/11/27/
the-worlds-most-contagious-countries-heres-the-list/.
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http://www.enotes.com/homework-help/metternich-said-when-france-sneezes-europe-catches-120443
http://www.enotes.com/homework-help/metternich-said-when-france-sneezes-europe-catches-120443
https://twistedeconotwist.wordpress.com/2010/11/27/the-worlds-most-contagious-countries-heres-the-list/
https://twistedeconotwist.wordpress.com/2010/11/27/the-worlds-most-contagious-countries-heres-the-list/
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In graph theory, the concept of k-shell is related to the colouring number of a
graph. It has been applied in many areas, including social networks (Li et al. 2013).
By definition, the k-shell of a graph G is a maximal connected subgraph of G in
which all vertices have degree at least k. Equivalently, it is one of the connected
components of the subgraph of G formed by repeatedly deleting all vertices of
degree less than k. The k-core is the k-shell corresponding to the highest k. A
nucleus of twelve countries has been found to be quite dangerous in the spread of
economic crises. Only six of them are large economies, while the other are medium
or small economies. Therefore, the position in the network is quite relevant: while it
is clear that large economies and big financial institutions affect the entire network,
it turns out that the position in the network makes the potential failure of some
small-medium economies and institutions could be as dangerous as the failure of
the big ones. Such remarks are in line with the paper “Too interconnected to fail”
(Markose et al. 2012), that can be grouped in the same discussion line as the papers
“Too central to fail” (Battiston et al. 2012), and “Too big to fail” (White 2014).5

All such papers consider financial networks. The specific characteristics of Credit
Default Swaps are examined in Markose et al. (2012). In Battiston et al. (2012)
several perspectives contribute to introduce the DebtRank, a centrality measure that
states the level of risk of financial institutions. In White (2014) it is shown that the
potential loss incurred by saving financial institutions is lower than that of allowing
them to fail, due to the nonlinear cascade effects on the network.

Usually, the spread of the economic crisis through a global economic network
is examined through the construction of specific models. In Garas et al. (2010) a
Susceptible-Infected-Recovered epidemic model is built: the probability of infection
depends on the strength of economic relations between the pair of countries, and
its strength on the target country. This allows to introduce a ranking of countries
in accord to their crises spreading power, that can be used as a further centrality
measure. In Chen and Cheng (2015) the credit-debt relation among each couple of
financial institutions is specifically modeled.

An interesting phenomenon is the fact that as the average number of connections
of each node increases, the probability of default first increases and then drops (Chen
and Ghate 2011; Elliott et al. 2014). In fact, the set up of financial links connects the
network initially, allowing shocks to propagate; but, as the number of links increases
further, organizations are better shielded against other’s failures. Beside the specific
models for the banks, financial ties among companies are well modeled through
the cross-shareholding network. In this context, the integration of a company is the
percentage of its shares sold to other companies. It plays a role different from the
number of connections: increased dependence on other organizations lowers the
sensitivity to own investments (Elliott et al. 2014).

5Such ideas and concepts became popular through the book A.R. Sorkin (2009) “Too Big to Fail:
Inside the Battle to Save Wall Street”, Viking Press; and through the movie “Too big to fail” (2011)
HBO movie.
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4.2 Synchronization in Networks and Financial Contagions

The theoretical approach to phase synchronization that was used by Huygens in
the seventeenth century (Bennett et al. 2002) was only a first step for the study
of complete synchronization of coupled chaotic systems (Wu 2007). In this form
of synchronization, the state variable of individuals converge towards each other’s
value. In the last decades, the research of coupled systems started with Fujisaka and
Yamada (1983) and was followed by the research on the synchronization on coupled
chaotic systems (Pecora and Carroll 2015). Such research lines were applied to the
modelization of many natural phenomena. Synchronization has been shown to have
potentially catastrophic effects in constructions (for instance: bridge resonance),
earthquakes, economics and finance (Arenas et al. 2008). By way of example, the
synchronization of many market agents on short position lead to an increase of
supply not well balanced by demand, so triggering price drawdowns and, eventually,
large financial crashes (Kaizoji 2009; Malevergne and Sornette 2001; Sieczka et al.
2011; Sornette and Andersen 2002). In behavioral finance, herding is addressed
as the main cause of synchronization. In fact, herding behavior shows aggregation
and imitation. When it concerns financial market investors, it may lead to the same
position either buying, thus causing high rises in prices, or selling, thus causing
drawdowns and even crashes in the case of Harmon et al. (2011). However, the
reaction on buy or sell are far from being symmetric. Another behavioral finance
concept, the so called blindness to small changes, describes the under-reaction to
positive or small news, and the over-reaction to negative or quite alarming news. The
coupling of this concept with earthquake models has been used for describing the
interaction among worldwide markets, and for showing the propagation of market
value cascades and avalanches (Andersen et al. 2011; Bellenzier et al. 2016).

The theme of avalanches has been widely studied also in the Self-Organized
Criticality (SOC) models. A key example is the Bak and Sneppen (BS) model. The
model was developed for describing the co-evolution of species. in that context the
disappearance of the less fit species also causes changes in the fitness value of the
species that are directly connected to it. The model shows a critical threshold for
avalanches. The distribution of avalanches follows a power-law distribution. This
model can be seen as a first approximation to the interaction among market agents
for the replication of stylized facts (Rotundo and Ausloos 2007; Petroni et al. 2007).
While the original BS model was developed on lattices, several extensions have
been studied using methods from nonequilibrium statistical mechanics (Lee and Lee
2009; Moreno and Vazquez 2002; Ausloos and Petroni 2014; Rotundo and Scozzari
2009). As expected, the time span and number of network nodes involved in each
avalanche depend on the structure of the network. In the framework of systemic
risk and financial fragility, it is straightforward to move from the concept of less
fit species to the idea of less fit firm, and to generalize from SOC to a general
framework for models of cascade and contagion processes on networks (Lorenz
et al. 2009; Rotundo and Scozzari 2009).
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4.3 Games on Networks

A paradigmatic model in game theory is the Prisoner’s Dilemma (PD): two prisoners
(players of the game) have to decide wether to remain silent (cooperate) or betray the
other player. Each of them incurs in the worst situation when he cooperates and the
other betrays. Nash equilibria appear when each player is maximizing their payoff,
conditioned to the decision of the other. Therefore, the information available to each
player is of utmost relevance. When the 2-player game is extended to n players, it is
reasonable to assume that each player has access to some—yet limited—amount of
information on the decisions of the others. Therefore, the topology of the network
becomes relevant due to the possibility of each player to establish links and access
to the information of the other nodes. Statistical mechanics methods are suitable
for detecting the optimal Nash equilibria in random as well as scale free networks
(Hauert and Szabó 2005; Szabó and Fath 2007).

Of course, many extensions of the PD model have been studied. For instance,
evolutionary game theory is designed to capture the essentials of the characteristic
interactions among individuals through the evolution of cooperation. The interplay
among network structure, clustering and behavioral strategies constitutes an intrigu-
ing link between only apparently unrelated disciplines. They are all represented in
the framework of game theory, which links the individual behavior to the collective
state of equilibrium. On large networks, typical questions are the detection of the
percentage of cooperators versus betrayers. Depending on the parameters of the
specific model under examination, critical phase transitions may be found. Models
have been developed that fall into the universality class of directed percolation on
square lattices and mean-field-type transitions on regular small world networks and
random regular graphs (Hauert and Szabó 2005).

Evolutionary game theory is the extension of game theory to evolving popula-
tions. The population dynamics may concern any evolving set of individual units,
ranging from lifeforms in biology to economic or financial agents in economic and
financial models. Evolutionary games are not limited to a sequence of game at each
step of the evolution, but also consider the frequency of the changes in the strategy
(Perc and Szolnoki 2010; Szabó and Fath 2007).

Lattices serve as structure for defining the connection of the players, and open the
way to spatial models. In Guan et al. (2006), Szabó and Tőke (1998), and Szabó et al.
(2005) the update of a strategy is based on a random selection of nearest neighbours,
and the target is understanding the density of cooperators versus betrayers.

Other network structures have been examined. For instance, in Chen et al. (2007),
the PD is explored on community networks. Simulation results show that the average
degree plays a universal role in cooperation occurring on random networks, small-
world networks, star networks, and scale-free networks (Chen et al. 2007; Du
et al. 2009b,c; Pinheiro et al. 2013; Rong et al. 2007; Shang and Wang 2015;
Szolnoki et al. 2008; Tang et al. 2006; Wu 2007; Wu et al. 2007). When PD are
studied on growing networks of contacts generated via preferential attachment, the
correlation among individual increases, and this improves the amount of cooperating
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players (Santos and Pacheco 2005), while the opposite result occurs when a network
becomes assortative mixing by degree (Rong et al. 2007). Nash equilibria have
been used also for the optimal design of networks, in relation to the optimal
transport and optimal navigation problem (Gulyás et al. 2014). Learning has been
shown to be another relevant factor for the emergence of cooperators (Du et al.
2009c,a). In conclusion, (evolutionary) game theory constitutes a still growing field
of application for complex networks, statistical mechanics, and optimization.

4.4 Clustering of Network Nodes and Geographical
Information

Real life networks—like transport networks and Internet—are quite naturally
embedded in a spatial dimension (Gastner and Newman 2006). The information on
the geographical location of economic and financial networks has been considered
in studies on the Gross Domestic Product (GDP) (Ausloos and Lambiotte 2007;
Gligor and Ausloos 2008a,b; Miśkiewicz and Ausloos 2008; Miśkiewicz and
Ausloos 2008; Redelico et al. 2009). A technique that is used for both economic and
financial data consists in building a network of distances based on the correlation
matrix calculated from the time series of the objects under observation. Of course,
each of the entries of the empirical estimate of the correlation matrix is non zero,
and thus it corresponds to a full network. Thus, techniques for extracting the most
relevant information are applied. One of them is the Minimum Spanning Tree
(MST). The MST is an acyclic network that connects all the nodes of the networks
through the most relevant links. It has been applied on both economic and financial
data. For instance, in Miśkiewicz and Ausloos (2008) it is shown that the distance
among countries decreases as the year progresses, and this is interpreted as a sign
of globalization (Miśkiewicz and Ausloos 2010).

In finance, MST has been used for detecting the backbone of the correlation
among financial markets, together with other techniques, like the Maximally Planar
Graph and Maximally Filtered Graph (Massara and Matteo 2011; Tumminello et al.
2005, 2007). The combination of tools from statistical physics and network theory
allow to test the centrality of economic sector and their evolution during the years
(Aste et al. 2010; Pozzi et al. 2008).

Another approach for passing from a complete network to a (usually) complex
network consists in keeping only nodes with a connectivity higher than k. This leads
to k-shells and k-cores and has been applied to both economic and financial data
(Garas et al. 2012). On economic data, it leads to cluster of countries. Another
possibility for working on a non complete network is keeping the links that have
weights over a specific threshold (Garas et al. 2010).

A different way to explore the economic links among companies, even those
belonging to different countries, has been studied in Braha et al. (2011), where
a complex networks perspective on interfirm organizational networks is proposed
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by mapping, analyzing and modeling the spatial structure of a large inter-firm
competition network across a variety of sectors and industries within the United
States. A probabilistic model for the growth of the network is proposed, and it is
shown that it is able to reproduce experimentally observed characteristics.

However, the analysis of ownership and control allows to detect economic super-
entities that span over different countries. In fact, trans-national corporations form
a giant bow-tie structure and a large portion of control flows to a small tightly-knit
core of financial institutions. This raises new important issues both for researchers
and policy makers (Vitali et al. 2011a).

Difficulties in the analysis arise from the fact that such networks show strongly
connected components, which lead to circular relations in clusters (Schweitzer et al.
2009b). The proper value for the ownership through intermediaries can be disen-
tangled through the calculus of integrated ownership (Rotundo and D’Arcangelis
2010b, 2013; Rotundo 2011; Vitali et al. 2011b). Questions on the maximal
concentration in markets give rise to nonlinear optimization problems, that also
involve the network structure (Rotundo and D’Arcangelis 2013). Networks of
companies can be explored also through the board interlocks (D’Errico et al. 2008;
Rotundo and D’Arcangelis 2010a). The coupling of information available from
such different networks gives an example of application of networks of networks
(Dorogovtsev and Mendes 2003).

5 Conclusions

In the present contribution we have summarized the main measures of complex
networks with an eye on the combination of these topological objects with nonlinear
models as a way to describe the phenomenology of complex systems. Specifically,
we have analysed epidemiological compartmental models in combination with
complex networks and we have briefly reviewed the main applications these
formalisms have found in financial contagions. Moreover, we reviewed on games on
networks and also on the usefulness of network nodes for analyzing geographical
aspects of economic and financial networks.
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