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Introduction

Abstract This collected volume represents an output of a training school held in
Madrid on 12–14 February 2014, under the coverage of the ISCH COST Action
IS1104 project on “The EU in the new complex geography of economic systems:
models, tools and policy evaluation”. It focuses on complex networks and on
dynamic methods applied to the study of economic and social interactions and offers
an ample view of current research on complex network analysis. Three different and
interdisciplinary, but complementary, aspects of networks are put together in a single
piece, namely, (1) theoretical features of complex networking, (2) applied network
analysis to social and economic issues and (3) dynamical aspects of systems and
networks.

In 12–14 February 2014, under the coverage of the ISCH COST Action IS1104
project on ‘The EU in the new complex geography of economic systems: models,
tools and policy evaluation’—a research group financed by the European Com-
mission (http://www.gecomplexity-cost.eu/home/)—a very active training school
in Madrid at the Faculty of Economics of UNED (National Distance Education
University) (http://www.dmae.upct.es/~training/index.html) took place.

This training school was focused on complex networks theory and applications
to economics and to economic dynamics generated by differential and difference
equations. The courses have been delivered by experts in these fields, some of them
within the Action as well as very well-recognized specialists outside the Action.

This collected volume represents an output of that meeting. It is focused on
complex networks and dynamic methods applied to the study of economic and social
interactions. Some of the excellent papers discussed in Madrid’s training school
form the main structure of the book. However, in order to add further value to the
volume, we invited other leading experts to contribute.

One of the most interesting aspects of this volume is that it offers an ample
view of current research on complex network analysis. Three different and inter-
disciplinary, but complementary, aspects of networks are put together in a single
piece, namely, (1) theoretical features of complex networking, (2) applied network
analysis to social and economic issues and (3) dynamical aspects of systems and
networks. These topological objects have become a major tool for the description of
agent-based systems, and indeed they can be considered to be the skeleton of every
complex system. The structure and the dynamics of these systems can be regarded
as emergent properties of the set of connections (the links) between their constituent

ix
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x Introduction

parts (the nodes). Hence, almost every discipline dealing with complex systems—
particularly economics, but also sociology, biology and even physics—has included
complex network analysis in its toolbox, opening new trends in these disciplines.

More specifically, this formalism is essential for every contemporary social
science. Social forces, whether manifested through neighbourhoods, schools, com-
munities or firms, impact much of what constitutes modern economic life. A
non-trivial part of these interactions takes place within a social network. In a social
network, agents have their own reference group that may influence their behaviour.
In turn, the agents’ attributes and their behaviour affect the formation and the
structure of the social network.

Moreover, network structures involving economic actors have often a territorial
dimension and emerge across space at different aggregation levels: at the macro-
level, countries represent the nodes and their interactions—in the form of commod-
ity and financial trade or migration flows—constitute their links. At the meso-level,
economic entities in between the micro- and the macro-layers such as industries,
local institutions and markets are taken as the nodes and their interactions—input-
output interlinkages, partnerships and decisional processes, local exchanges of
information and of goods and factors—are the links. Finally at the micro-level,
single economic agents such as firms, households or even individuals are the
nodes and their interactions or relationships—family and friendship ties, goods and
knowledge exchanges and so on—are their links

As it has been commented, scholarly interest in social interactions has rapidly
expanded in many areas of economics and has led to numerous methodological and
empirical advances. For econometricians and those scholars centred in measure-
ment, a primary challenge is the complete integration of the measurement of social
interactions with the joint processes of group formation and subsequent behaviours
within groups. Much of the methodological progress focused on the identification
of social interaction, and, in turn, such identification relies on features of different
types of data.

Accordingly, phenomena as diffusion processes, contagion and consensus have
attracted the interest not only of economists but also of sociologists and social
psychologists. Salient studied examples include friendship networks among ado-
lescents, coauthorship networks among scientists and trade networks between
countries but also diffusion of innovations in markets or of any kind of information
(markets, rumours, etc.) As stated above, these phenomena take place in an agent-
based system, so complex network analysis is the basic mathematical tool for their
description. Hence, several efforts have been tributed to diffusion phenomena in
complex networks that combine the statistical mechanics of complex networks
themselves with the theory of dynamical systems, which describe the usually
nonlinear dynamical phenomena.

Dynamical systems have a long history, but its development in the last decades
has been exponential. In continuous time, via differential and partial differential
equations, and discrete time, via difference equations, the applications of dynamical
systems to physics, biology, economy and other branches of science have increased
as well. In most of the papers focused in applications of dynamical systems, there is
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a dichotomy between order and complexity. On one hand, it is expected that models
behave in a predictive way, but on the other hand, it is well known that this order
may not appear for all the models, which often generates trajectories which are
called chaotic or complex. Although this complexity has been understood for several
cases, for instance, one-dimensional difference equations, we must remark that it is
a branch of mathematics that presents a huge number of interesting open problems.

A Brief Summary of the Book

The book is divided into three parts. Part I gives a general introduction to complex
networks looking at the main tools of analysis both from the theoretical and
empirical perspectives. In chapter ‘Complex Network Analysis and Non-
linear Dynamics’, Luis M. Varela and Giulia Rotundo review complex
network and nonlinear dynamical models and methods relevant for socioeconomic
issues and pertinent to the theme of new economic geography starting from
their foundations. Applications of the formalism to economics, finance, epidemic
spreading of innovations and regional trade and developments are briefly reviewed,
as well as to other relevant socioeconomic issues. In chapter ‘An Overview of
Diffusion in Complex Networks’, Dunia López-Pintado assesses a series of
theoretical contributions on diffusion in random networks, starting with reference
epidemiological models such as the susceptible-infected-susceptible model, which
describes the spread of an infectious disease in a population. The interaction
structure is considered as a heterogeneous sampling process characterized by
the degree distribution, and the author provides a detailed characterization of
the diffusion threshold, above which the spreading of the infectious agent to a
significant fraction of the population and its persistence is secured. Finally, a general
diffusion model is introduced to describe the diffusion of a new product, idea,
behaviour, etc. In chapter ‘Opinion Dynamics on Networks’, Ugo Merlone, Davide
Radi and Angelo Romano survey some of the most recent contributions on opinion
dynamics, illustrate Galam’s model of rumour diffusion and extend it to consider
more general networks. These networks are used to describe more complicated
social spaces where agents can interact and exchange opinions about the rumour at
stake even if seated at different tables of the social space. In chapter ‘Econometric
Aspects of Social Networks’, Mariano Matilla-García and Jesus Mur aim to
show why and how is it possible to use econometric analysis tools in the empirical
study of social networks. Current technical limitations and open challenges are
considered. The authors draw also connections between the recent econometric
literature (identification and estimation) on networks and the literature on spatial
econometrics. Finally, in chapter ‘An Overview of the Measurement of Segregation:
Classical Approaches and Social Network Analysis’, Antonio Rodriguez-Moral
and Marc Vorsatz present a comprehensive overview of the literature on the
measurement of segregation. Particularly they review those contributions focusing
on two specific dimensions of segregation, the evenness and exposure dimensions—
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two of the five dimensions of segregation in the multidimensional framework
defined by Massey and Denton (The dimensions of residential segregation. Soc
Forces 67(2):281–315, 1988). Some of the most relevant segregation measures,
developed within the classical statistical approach and within the framework of
social network analysis, are also discussed.

Part II deals with applications of complex network analysis to theoretical
and empirical issues in economics. In chapter ‘An Investigation of Interregional
Trade Network Structures’, Roberto Basile, Pasquale Commendatore, Luca De
Benedictis and Ingrid Kubin investigate the interregional trade network structures
linking the European regions at the NUTS-2 level. Using social network analysis,
the authors analyse the regional data and identify the topological properties of the
European Regional Network deriving its main local and global centrality measures.
Focusing on the local structures of the network, the authors apply the triadic census
approach detecting the frequency at which specific patterns of trade emerge. The
unit of analysis is a triad, i.e. a group of three regions and their possible trade rela-
tionships. The empirical analysis is complemented by a three-region new economic
geography model. This model tries to clarify, from the theoretical point of view,
the relationship between trade costs, market competition and the patterns of trade
in a three-region context identified by the triadic census analysis. In chapter ‘The
Empirics of Macroeconomic Networks: A Critical Review’, Giorgio Fagiolo deals
with the recent empirical literature applying complex network analysis to the
analysis of macroeconomic systems. The author focuses on three macroeconomic
networks describing interactions between world countries: international trade,
finance and migration or mobility. He examines the empirical evidence concerning
the topological properties of such networks. Moreover, he considers the implications
of such properties on the dynamics of countries performance and shock diffusion via
a comparative analysis of the different properties of the three types of network under
study. In chapter ‘Bank Insolvencies, Priority Claims and Systemic Risk’, Spiros
Bougheas and Alan Kirman review the interdisciplinary literature—spurred by
the 2008 global financial crisis—interested in the design of bankruptcy resolution
procedure and priority rules for banks. The authors assess various arguments put
forward by both economists and financial law scholars focusing on the allocation
of priority rights among the bank creditors. It is shown that, within a deeply
connected interbank network, this choice has substantial consequence on the total
loss of the economy due to existence of systemic risk inherent in deeply connected
interbank system. Finally, in chapter ‘Complex Networks in Finance’, Anna Maria
D’Arcangelis and Giulia Rotundo survey the literature that applies the complex
network approach to the analysis of financial data dealing with correlation matrix
and systemic risk. These authors also explore the complex network structure of
integrated ownership and control of corporations and interbank networks. Finally,
they contribute to the literature that applies complex network analysis in the
area of investments and managed portfolios, providing new results concerning the
ownership distribution of stockholdings through mutual funds across European
countries.
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Part III, which concludes the book, is dedicated to the theory of dynamical
systems and networks dynamics and their applications to economic issues. Chap-
ter ‘A Formal Setting for Network Dynamics’ by Ian Stewart is an introduction
to coupled cell networks, a formal setting in which to analyse general features
of dynamical systems that are coupled together in a network. Such networks are
common in many areas of application. The nodes (‘cells’) of the network represent
system variables, and directed edges (‘arrows’) represent how variables influence
each other. Cells and arrows are assigned types, which determine the form of
admissible differential equations—i.e. those compatible with the network structure.
In chapter ‘Dynamics on Large Sets and Its Applications to Oligopoly Dynamics’
Jose S. Cánovas and Maria Muñoz Guillermo consider discrete dynamical
systems with a high-dimensional phase space. The authors explain some techniques
which allow them to apply dynamical systems analysis to oligopoly models.
Chapter ‘Attracting Complex Networks’ by Giovanny Guerrero, Jose A. Langa
and Antonio Suarez focuses on the concept of global attractor, which is crucial
when the dynamics on complex networks is considered. In the last decades, there has
been an intensive research in the geometrical characterization of global attractors.
However, there still exists a weak connection between the asymptotic dynamics
of a complex network and the structure of associated global attractors. Finally, in
chapter ‘Good Old Economic Geography’, Tönu Puu discusses classical economic
modelling in continuous two-dimensional geographical space. This author examines
some ingenious models due to Harold Hotelling and Martin Beckmann concerning
population growth and migration and spatial market equilibrium, respectively. He
also introduces some models of business cycles and discusses the issue of the shape
of market areas, focusing on transversality and stability of structures

Acknowledgements First of all we would like to acknowledge the help of the scientific and local
organization committees and of the speakers and students participating in the training school
on complex networks and dynamics held in Madrid on 12–14 February 2014 at UNED and
promoted by the COST Action IS1104 on ‘The EU in the new complex geography of economic
systems: models, tools and policy evaluation’. Especially, the venue provided by UNED has greatly
contributed to the creation of an atmosphere of deep and fruitful discussion.

Our special thanks go to the external anonymous referees for their careful work which helped
greatly to improve the quality of the chapters.

We are very grateful to the editors of the series ‘Lecture Notes in Economics and Mathematical
Systems’ and especially to Walter Trockel and Herbert Dawid. Finally, we would like to give
our appreciation to Katharina Wetzel-Vandai, Ruth Milewski and Sivachandran Ravanan for their
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Complex Network Analysis and Nonlinear
Dynamics

Luis M. Varela and Giulia Rotundo

Abstract This chapter aims at reviewing complex network and nonlinear dynami-
cal models and methods that were either developed for or applied to socioeconomic
issues, and pertinent to the theme of New Economic Geography. After an intro-
duction to the foundations of the field of complex networks, the present summary
introduces some applications of complex networks to economics, finance, epidemic
spreading of innovations, and regional trade and developments. The chapter also
reviews results involving applications of complex networks to other relevant
socioeconomic issues.

Keywords Complex networks • Computer simulations • Market and financial
models • Regional trade and development • Social networks • Statistical
mechanics

1 Introduction

Complex networks have been proved during the latest decades as an essential
formalism in order to describe the many situations in which agent-based models
are required (Albert and Barabási 2002; Newman 2003; Pastor-Satorras et al. 2003;
Boccaletti et al. 2006; Newman et al. 2006). Starting with the papers of Watts and
Strogatz (1998) and of Barabási and Albert (1999) in the late nineties, this formalism
has been accepted in the basic tool set of a growing number of disciplines like
physics, biology, computer science, sociology, epidemiology, and economics among
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4 L.M. Varela and G. Rotundo

others. This is so, because the skeleton of any complex system can be described by
a network arising from the interactions of the many parts of which it is made up of.
Hence, network theory is now considered to be one of the pillars in the theory of
complex systems.

Complex system theory investigates how relationships between parts give rise
to the collective (emergent) behaviors of a system and how the system interacts
and forms relationships with its environment. The definition of complex systems
is not unanimous, but one of the most popular visions states that a complex
system is one made up of many parts with nonlinear interaction between them.
These systems are open, nested systems, with memory and feedback loops, which
may show emergent patterns and are structurally founded in dynamic networks of
multiplicity. This definition emphasizes the importance of both the network of the
system constituents and the nonlinear coupling between them. Therefore, one should
expect that the relevant dynamics of complex systems is inherently nonlinear, and
so that a combined study of complex networks and dynamic systems is a need for
the development of the field of complex systems. Undoubtedly, structure decisively
conditions the behavior of a dynamic system, and hence the interactions among the
massive amount of their individual parts must be collectively considered, which is
the main role of the network analysis. Indeed, the relationship between the dynamics
and the topology of complex networks is a nowadays a central issue of network
theory and, therefore, in its applications (see, e.g. Wang 2002 and Boccaletti et al.
2006 and references therein). Networks of coupled dynamical systems have been
extensively considered in nonlinear dynamics since they can exhibit non trivial
emergent phenomena, such as autowaves, Turing patterns, spiral waves, and spatio-
temporal chaos, with applications to a plethora of large-scale real systems (Chua
1998). Specifically, synchronization phenomena have been extensively considered,
as well as the evolution of the networks themselves (rewiring, growth, and so on)
(Boccaletti et al. 2006).

In the present chapter, we briefly review the fundamental structural and dynamic
properties of complex networks, and we consider some applications of this for-
malism to the understanding of nonlinear phenomena, including epidemiological
models, synchronization in networks and financial contagions, games on networks,
and clustering of network nodes and geographical information. Moreover, we
present some novel results for epidemiological models of flu and sexually transmit-
ted diseases (STDs), and we review the mean-field theory of contagion in networks.

The chapter is divided in four sections. The first one is this introduction, the
second contains a review of the theory of complex networks; in Sect. 3 we present
some applications of this theory to the analysis of nonlinear phenomena, including
some novel results for flu and STDs and, finally, Sect. 4 summarizes the main
conclusions of the chapter.
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2 Theory of Complex Networks

In this section we briefly review some of the main results in the theory of complex
networks developed during the last two decades. The theory of complex networks
has evolved from the branch of mathematics known as graph theory, within which
these objects were traditionally considered. Probably the best known of all of
them—besides the regular graph or lattice—was Erdös and Renyi’s random graph
(Erdös and Rényi 1959).

Probably the most significant result in the contemporary theory of networks was
the introduction of small-world networks by Watts and Strogatz (1998) (WS), trying
to describe the transition from a regular lattice to a random graph. Beyond its
mathematical interest, this new type of network successfully gives account of the
“six degrees of separation” concept, uncovered by the social psychologist Milgram
in the late 1960s (Milgram 1967). This is a well-known emergent property of many
social networks in which the average path length (i.e. the average number of steps
one has to take across the network for connecting two given individuals) is notably
smaller than that in a regular lattice. Purely random networks also exhibit the small-
world property, but, as we shall see, they give rise to far sparsely connected networks
(low clusterization) to accurately describe social networks.

The second major advance in the theory of complex networks took place the
year after Watts and Strogatz’s paper in Nature, when Barabási and Albert (1999)
introduced scale-free networks, which mimic many situations where the networks
show vertex connectivities that follow a scale-free power-law distribution. They
were able to prove that this emergent property followed from the continuous
expansion of the network due to the addition of new vertices, and the preferential
attachment of the new nodes to those sites that are already well connected. Of
course, this new type of network showed the small-world property, but, in contrast
with WS networks, they were able to describe situations where a high degree of
heterogeneity between the agents’ connectivity exists. This new type of network
completed the network ecosystem, and the theory was then in place to describe
any possible connection pattern in agent-based systems, which opened the door to
the explosive expansion of the theory of complex networks themselves and their
applications. In what follows we summarize some of the most important results
reported since then for the structure and dynamics of these fascinating objects.

A network (graph) is formally described as a pair .V;E/, where V is a set of
nodes (vertices), and E is a set of links (edges) defined by two nodes that represent
the source and the end of the link Suppress. The assignment of labels to the elements
of the network is called graph labelling, and the special case of coloring is among
the most important labelling schemes. A graph is said to be k-colorable if it can be
assigned a k-colouring, i.e. a labelling of the graph’s vertices with colors such that
no two vertices sharing an edge have the same color. The smallest number of colors
needed to color a graph G is called its chromatic number, and is often denoted as
�.G/. Associated to this concept is that of chromatic polynomial, which counts the
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number of ways a graph can be coloured using no more than a given number of
colors.

Networks can be classified according to several criteria:

1. According to the directionality of the links, they can be either directed or
undirected graphs.

2. Networks can be classified as weighted or unweighted depending on whether
different weights are associated to their edges.

3. Sparse and fully connected networks differ in the fraction of interconnected
nodes.

4. Depending on their time evolution, networks can be classified into static and
evolving.

5. Depending on their node degree probability distribution, they can be classified
as: regular (deterministic), exponentially distributed Watts-Strogatz networks,
scale-free Albert-Barabási network, fully random graphs, general uncorrelated
networks and others.

Another important type of networks are bipartite networks, formed by two
disjoint sets of nodes U and V such that every node in U is connected to a node
in V . The adjacency matrix of a bipartite network is of the form:

Aij D
�

0 B
B 0

�
(1)

Some important properties of these networks are:

(a) A graph is bipartite if and only if it does not contain an odd cycle.
(b) A graph is bipartite if and only if its chromatic number is less than or equal to 2.
(c) The spectrum of a graph is symmetric if and only if it’s a bipartite graph.

The most frequently employed method for the representation of the vertex
connectivity in networks with N nodes is the adjacency matrix A D .aij/ 2 R

N�N ,
whose rows and columns are the nodes of the network, and whose term aij > 0

corresponds to the weight of the link from node i to node j, which in an unweighted
network is always set to aij D 1 for the non null elements (if the network is
directional, other criteria have been introduced). In this case, and when the network
is undirected -the links connecting two edges acts bidirectionally- the matrix A is
symmetric aji D aji for all nodes i, j. The absence of links is given by zero elements
aij D 0. This matrix contains much useful information about the network including
the so called spectrum of the graph, given by the set of eigenvalues of Aij. On
the other hand, a path from node ih1 to node ihk in the network is a sequence of
unique nodes ih1 ; ih2 ; � � � ; ihk such that aihj ;ihjC1

¤ 0, and can be detected through the

power of the adjacency matrix Ahk . These paths are relevant for studying diffusion
processes as well as the relevance of nodes.
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This matrix allows the calculation of others related to it such as the degree matrix,

Di;j WD
�

deg.vi/ if i D j
0 otherwise

(2)

or the Laplacian matrix, Lij D Dij � Aij or

Li;j WD
8<
:

deg.vi/ if i D j
�1 if i ¤ j and vi is adjacent to vj

0 otherwise
(3)

Spectral graph theory is the study of the properties of a graph by means of the
characteristic polynomial, eigenvalues, and eigenvectors of its adjacency matrix or
Laplacian matrix. Some interesting results are: (1) zero is always an eigenvalue of
this matriz since the sum of all the elements of every row and column is zero. Indeed,
the multiplicity of this eigenvalue gives the number of connected components of the
graph. (2) As usual, the smallest non-zero eigenvalue of the Laplacian matrix gives
the spectral gap, and its second smallest eigenvalue is the algebraic connectivity (or
Fiedler value) of the graph, which measures the connectivity degree of the graph,
with applications in robustness and synchronizability of networks.

2.1 Structure of Complex Networks

The analysis of the structure of networks is made using a set of relevant parameters
that allow the classification of these objects. In the rest of this subsection we
introduce some of the most important and frequently used (Fig. 1).

Fig. 1 (a) Example of chemical distance. (b) Average path length in a SW network with N D 200

and p D 0:3 and the number of connections to nearest neighbours in ring topology k D 6
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• Small-worlds: relatively short path between any two nodes, defined as the
number of edges along the shortest path connecting them. The connectedness
can also be measured by means of the diameter of the graph, d, defined as
the maximum distance between any pair of its nodes. Networks do not support
the definition of a “distance”. They are no proper metric space although some
attempts to introduce a metric on hidden metric space have been made Serrano
et al. (2008). Hence, a chemical distance between two vertices lij must be
introduced, which is defined by the number of steps from one vertex to the other
following the shortest path. Associated to this distance emerges the one of the
most important measures for describing the structure of a complex network is the
so called average path length between connected nodes

< l >D 2

N.N � 1/

X
i<j

lij D
X
l

p.l/ (4)

Contrary to what happens in a regular lattice -in which < l >� pN- in most
real networks, < l > is a very small quantity (small-world) that scales with the
number of nodes as < l >� logN.

• Centrality Centrality measures the relative importance of the vertices of a net-
work in terms of a real-valued function, where the values produced are expected
to provide a ranking which identifies the most important node. Obviously,
importance is highly dependent on the context and a criteria of importance must
be provided. Several types of centrality have been introduced:

– Degree centrality: number of connections a node has, CD.v/ D deg.v/. This
is a direct measure of how exposed a given vertex v is to whichever it flows
through the network.

– Closeness centrality, defined for vertex i as

QCi D 1P
j dij

(5)

where dij is the distance of node i to node j.
– Path centrality: To go from one vertex to another in the network, following the

shortest path, a series of other vertices and edges are visited. The ones visited
more frequently will be more central in the network.

– Betweenness centrality, number of shortest paths that pass through a given
node for all the possible paths between two nodes. Measures the “importance”
of a node in a network, and it is given by

CB.v/ D Number of shortest paths including v

Total number of shortest paths

D
X

s¤v¤t2V

�st.v/

�st
(6)



Complex Network Analysis and Nonlinear Dynamics 9

Fig. 2 (a) The node in blue has the largest betweenness centrality, as does the node in navy blue
in (b) (Source of (b): Claudio Rocchini, Wikipedia)

– Eigencentrality: a measure of the influence of a node in a network (Fig. 2).
– Katz centrality: Katz centrality is a generalization of degree centrality that

measures the number of all nodes that can be connected through a path,
penalizing the contributions of distant nodes.

CKatz.i/ D
1X
kD1

nX
jD1

˛k.Ak/ji (7)

where 0 < ˛ < 1 is an attenuation factor. This centrality measure is related to
the very famous PageRank,

Pi D ˛
X
j

Aji

QCj

L. j/
C 1 � ˛

N
(8)

with L.i/ D P
j aij is the number of neighbors of node i, used by Google to

rank websites in their search engine results.
– Bonacich centrality, which allows for negative values of the attenuation

factor ˇ.

CBON.i/ D eTi .
1

ˇ

1X
kD1

.ˇA/k/1 D 1

ˇ

1X
kD1

nX
jD1

ˇk.Ak/ij (9)

Closely related to those centrality coefficients is the so called core-periphery
coefficient, introduced by Holme (2005). This core-periphery coefficient
measure if the network is divided in a core that is both distance, and densely
connected and central in terms of graph distance and a sparsely connected
periphery, and it is defined as

ccp.G/ D CŒVcore.G/�

CŒV.G/�
�
�
CŒVcore.G0/�
CŒV.G0/

�
G2G .G/

(10)
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where G .G/ is the ensemble of graphs with the same set of degrees as G. and
Vcore.G/ is the k core (i.e. a maximal subgraph with the minimum degree k)
with maximal closeness.

• Clustering coefficient: This coefficient provides a quantitative measure of the
degree to which links in a network follow a transitive property (i.e. if i is linked
to j, and j is linked to k, then i may or may not be connected to k). Such transitive
links are very common in social networks, and realistic structures must take this
into account. The local clustering coefficient of node i of a set of ki nodes linked
to node i is defined as the ratio between the number Ei of edges that actually
exist between these ki nodes and the total number Ci D ki.ki � 1/=2 . This
clustering coefficient provides a measure of the local connectivity structure of the
network, i.e. how close the local neighbors of a given node are to being a clique
(complete graph). This coefficient was introduced by Watts and Strogatz (1998)
to determine whether a graph is a small-world network. The global clustering
coefficient is defined as the ratio between the total number of closed triplets and
the total number of connected triplets of networks (Fig. 3). The average clustering
coefficient

< C >D 1

N

X
j

Cj (11)

can be introduced, as well as the clustering spectrum for vertices of degree k,

< C.k/ >D 1

Np.k/

X
j

ıkjkCj (12)

in the usual way.

Fig. 3 Calculation of the global clustering coefficient
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Fig. 4 WS distribution (left column) and AB distribution (right column)

• Degree distribution: The degree distribution, p.ki/ is the probability that a given
node i has a definite number of edges, ki. In directed networks an in-degree and
an out-degree are to be defined, but in undirected network both coincide. These
degree distribution can fall in two categories: those within the basin of attraction
of the Gaussian distribution (exponential distribution with all their moments
finite) and those in the basin of attraction of some other Lévy distribution
(subexponential, fat-tailed distributions). The degree distributions associated to
the main four types of complex networks introduced above are (Fig. 4 shows
those for WS and AB networks):

p.k/ �

8̂
<̂
ˆ̂:

ı.k � k0/ regular lattice�N
k

�
pk.1 � p/N�k random network

e��k WS networks
k�˛ AB networks

(13)

Of course, these distributions open the doors to defining the whole set of
moments of the degree of nodes. Specifically, we can mention the average degree

< k >D 1

N

X
i

ki D
X
k0

k0p.k0/ (14)

A network is called sparse if its average degree remains finite when taking the
limit N �. In real (finite) networks, < k >� N. Of course, real networks are



12 L.M. Varela and G. Rotundo

usually correlated, i.e. the degrees of the nodes are not in general independent.
This must be described by a conditional probability distribution p.k0jk/ which
represents the probability of a k-node pointing to a k-node. For an uncorrelated
network,

p.k0jk/ D k0

< k >
p.k0/ (15)

independent of k, while for a correlated network this probability depends on the
degree of both linked nodes. p.k/ and p.k0jk/ are not independent, but they are
related by a detailed balance condition arising form the fact that the number
of nodes of degree k linked to nodes of degree k0 equals the number of nodes
of degree k0 linked to nodes of degree k. On the other hand, in terms of these
conditional probability the average degree of the nearest neighbours of vertices
of degree k can be calculated as

< knn >D
X
k0

k0p.kjk/ (16)

If < knn > is an increasing (decreasing) function of the degree k the mixing
is assortative (disassortative) meaning that highly connected nodes tend to be
linked to other highly (lowly) connected nodes, i.e. there exists a bias in favor
of connections between network nodes with similar (dissimilar) characteristics
(Pastor-Satorras et al. 2003).

• Nestedness index (Araujo et al. 2010). This concept was originally introduced in
the context of ecological studies (Atmar and Patterson 1993). A bipartite network
formed by islands and species—linked if the former inhabits the latter—is said
to be nested if the species that exist on a few islands tend always to be found also
on those islands inhabited by many different species. It indicates the likelihood
of a node being linked to the neighbours of the nodes with larger degrees. The
mean topological overlap between nodes (Almeida-Neto et al. 2008) has been
introduced to quantify nestedness.

3 Dynamics of and on Complex Networks

We have previously mentioned that complex networks are at the root of the structure
and dynamics of complex systems. As usual -and in this case probably to a much
larger extent than in simple conventional systems- there exists a strong interplay
between structure and dynamics, so it is difficult to say if the observed equilibrium
structure is a cause or a consequence of the dynamics. Without entering into such
philosophical questions, there are different dynamic processes that one can consider
in complex networks:

– Synchronization of networks and collective dynamics.
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– Evolution of the network itself (evolving networks, rewiring).
– Spreading processes (epidemics, rumors).

Closely associated to dynamics is the concept of robustness, which can be defined
as the ability of the network to withstand failures and perturbations. These concepts
have been extensively reviewed in the past (see the reviews of Boccaletti et al. 2006
and of Arenas et al. and the references therein Arenas et al. 2008) and the reader is
referred to this literature for in-depths treatments.

4 Nonlinear Phenomena on Complex Networks

This section shows some applications of nonlinear dynamics on complex networks
for the study of economic and financial problems. The need for new and more
fundamental understanding of economic and financial crises has fostered the
development of studies on the structure and dynamics of economic and financial
networks. In such networks, nodes may represent firms, banks, or even countries,
and links represent their mutual interaction, be it cross-ownership, credit-debt,
or trade relationships. The network structure allows to focus on the propagation
of shocks and on resilience, which show quite different behavior depending on
the structure of the network (da Fontoura Costa et al. 2011; Schweitzer et al.
2009a). This section is organized in four subsections: Epidemiological models,
Synchronization in networks and financial contagions, Games on networks, and
Clustering of network nodes and geographical information.

4.1 Epidemiological Models

Understanding risk, unfolding different sources of risk, preventing failure on large
systems, spreading of crises, and large crashes, are among the major tasks to
undertake in modern economic and financial literature. Conventional epidemiolog-
ical models have been used as models of propagation and contagion well beyond
the limits of medical epidemiology. They have indeed served as models of any
kind of diffusion in social and economic contexts, where large populations with
a complex pattern of interaction among agents exist (spreading of rumours or
information, diffusion in markets and financial markets, etc.). From this perspective,
epidemiological models have also been reconsidered in terms of transmission of
financial shocks. For instance, the average lifetime and persistence of viral strains
on the Internet is examined in Pastor-Satorras and Vespignani (2001). It so happens
that the spreading pattern depends crucially on the properties of the social network
and on the diffusion (or contagion) mechanism underlying the complex network
(López-Pintado 2008; Barrat et al. 2008). A key factor is the scale-free feature
of the network, and a relevant result is the absence of a critical threshold for the



14 L.M. Varela and G. Rotundo

spread of computer viruses. That means that any virus is going to propagate—
unless properly blocked (Pastor-Satorras and Vespignani 2002). In Barthélemy et al.
(2005) simulation studies proved that assortative networks have an early burst,
against the late spread in disassortative networks. This also gives recommendations
on vaccination policies: blocking the infection at the level of hubs is the optimal
choice.

Compartmental models are a special kind of epidemic models that split the
population over a discrete set of states (or compartments) depending on their health
status with respect to the disease. Individuals can change state as time goes by.
Probably the best known of all these models is that by Kermack and McKendrick
(1927), a cornerstone in the mathematical modelling of epidemics introduced in
order to understand the evolution of infected patients observed in epidemics such
as the London (1665–1666) or Bombay (1906) plagues or cholera (London 1865).
This deterministic model uses three compartments corresponding to Susceptible
(S), Infected (I) and Recovered (R) for classifying the population, whose size is
supposed to be fixed (i.e., no births, deaths due to disease, or deaths by natural
causes). No incubation period is allowed so the disease is passed instantaneously and
a final immunity is acquired by the individuals. The mechanism that the pathogen
uses for its propagation is the direct contact between the susceptible and the
infected individuals, assuming homogeneous mixing of a completely homogeneous
population (no age, spatial, or social structure). This hypothesis states that the per
capita rate of acquisition of the disease by the susceptible individuals is directly
proportional to the density of infective individuals, and it is a typical mean-field
assumption. These assumptions leads to the following set of equations (Kermack
and McKendrick 1927):

dS.t/

dt
D �ˇS.t/I.t/

dI.t/

dt
D ˇS.t/I.t/ � � I.t/

dR.t/

dt
D � I.t/ (17)

These compartmental models focus on a specific set of characteristics, and divide
network nodes in subsets (compartments) that are homogeneous with respect to
the specific characteristic. For instance, in a vaccination program, the study of the
possible propagation of the infection can be done in accord to the different age
ranges. In such context, it is natural to draw network links among the compartments.
The relevance of the structure of the network has also been shown on the resilience:
assortative networks resist random attacks better than others, but not to targeted
attacks (Albert et al. 2000; Chen and Cheng 2015).

Underlying the epidemic spreading there is always a complex network defined
by the contacts of the individuals that support the contagion. The topology of
this network drastically determines the propagation of the disease. Essentially,
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in homogeneous exponentially distributed networks the number of contacts of a
given individual can be replaced under certain circumstances by its average value,
neglecting fluctuations in the number of contacts (mean-field theory). This is not
possible in epidemic diseases where fluctuations in the number of contacts of
the individuals are important (e.g. sexually transmitted diseases), but is relatively
accurate in diseases like flu. For diseases travelling in homogeneous networks the
infection rate ˇ—which controls the epidemic dynamics together with the recovery
rate, �—is given by the probability of infection per contact, � times the average
number of contacts of a given characteristic individual, ˇ D � < k >. This is,
of course, not possible in the case of heterogeneous scale-free networks, in which
the average number of contacts is not a good representative of the distribution, or
fluctuations are too important to define an “average individual”.

One of the main predictions of the SIR model is the existence of an epidemiolog-
ical threshold, i.e. a cut-off for the infection rate below which the epidemic disease
is not capable of infecting a significant fraction of the population and dies out. In
the specific case of the Kermack-McKendrick SIR model this is given by the basic
reproductive number

R0 D ˇS

�
(18)

This variable quantifies the number of secondary infections coming from a primary
case in a completely susceptible population, and R0 D 1 is the critical value that
divides the region where the outbreak peters out (R0 < 1, PI < 0) from that where
the epidemic spreads (R0 > 1, PI > 0). The specific value R0 D 1 corresponds to an
endemic behaviour, with a finite fraction of the population infected in the asymptotic
limit, t!1.

The description of flu epidemic spreading demands an epidemiological model
of the different states the individual goes through during the infection period.
Moreover, the network structure must be provided, and since in this case the effect of
hubs is negligible, it may be reduced to a mere number, the average connectivity of
the network, hki, which amounts to a mean-field level of description. Furthermore,
a good description of the epidemiology of the disease must be used. In our case, in
order to describe the propagation of an epidemic of avian flu in Galicia (Spain) we
proposed a compartmental model based on the well-known SEIR model, including
an incubation period of exposed individuals E.t/ and the possibility that a fraction
of those exposed to the virus recover without being effectively infective at any point
of the process (see Fig. 5a). Moreover, we allowed for the seed of a fraction of
infective individual from outside the region at a rate ı. This is a deterministic model
since the factors intervening in the process are controllable and a deterministic
differential equation system governs the whole process (Fig. 5b). However, the most
natural way to describe an epidemic disease is by means of stochastic models,
which describe the process of propagation of the infective agent in a probabilistic
way. These models are used when random fluctuations or heterogeneities of the
system are important, such as in small or isolated populations. They have several
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Fig. 5 Deterministic modified SEIR compartmental model (a) and its associated system of
nonlinear differential equations (b)

advantages over the deterministic model, since they study the dynamic of the
illness at an individual level instead of on a collective fashion. However, they
normally demand numerical simulations. Deterministic models are approximations
of the corresponding stochastic models (Nåsell 2002) where the latter are Markov
population processes with continuous time and discrete state space, and the former
take the form of ordinary differential equations.

The propagation of epidemic diseases on scale-free networks has been studied
by Pastor-Satorras and Vespignani (2001), who proved the absence of an epidemic
threshold and its associated critical behavior. This is the case when there is a large
heterogeneity in the degree of contacts of the individuals, as in the case of sexually
transmitted diseases.

The analogy of financial contagion with epidemiological models is well evi-
denced by attention-capturing titles as “When Belgium sneezes, the world catches
a cold”,1 “Why Does The U.S. Sneeze When Europe Gets A Cold?”,2 that echo
the sentence of Metternich “When France sneezes, Europe catches a cold”.3 Such
sentence was pointing out the relevance of France. Nowadays, such studies point out
that the interlinking between national economies is so high that even small countries
may trigger a crisis.4

The difficulty of a straightforward connection between the structure of the
economic network and the propagation of shocks, attacks and crises, resides in the
fact that they are weighted fully connected networks (complete graphs). Therefore,
the crux of the issue is keeping only the most relevant links. Networks examined
in Garas et al. (2010) are the Corporate Ownership Network (CON) and the
International Trade Network (ITN). Such networks are nearly fully connected, so
thresholds are considered for the detection of non trivial structure (Fagiolo et al.
2007). To identify the uneven roles of different countries in the global economic
network, the k-shell decomposition method is used.

1http://phys.org/news/2010-11-belgium-world-cold.html.
2http://www.npr.org/2011/08/18/139714695/why-does-the-u-s-sneeze-when-europe-gets-a-cold.
3http://www.enotes.com/homework-help/metternich-said-when-france-sneezes-europe-catches-
120443.
4“The Worlds Most Contagious Countries” https://twistedeconotwist.wordpress.com/2010/11/27/
the-worlds-most-contagious-countries-heres-the-list/.

http://phys.org/news/2010-11-belgium-world-cold.html
http://www.npr.org/2011/08/18/139714695/why-does-the-u-s-sneeze-when-europe-gets-a-cold
http://www.enotes.com/homework-help/metternich-said-when-france-sneezes-europe-catches-120443
http://www.enotes.com/homework-help/metternich-said-when-france-sneezes-europe-catches-120443
https://twistedeconotwist.wordpress.com/2010/11/27/the-worlds-most-contagious-countries-heres-the-list/
https://twistedeconotwist.wordpress.com/2010/11/27/the-worlds-most-contagious-countries-heres-the-list/
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In graph theory, the concept of k-shell is related to the colouring number of a
graph. It has been applied in many areas, including social networks (Li et al. 2013).
By definition, the k-shell of a graph G is a maximal connected subgraph of G in
which all vertices have degree at least k. Equivalently, it is one of the connected
components of the subgraph of G formed by repeatedly deleting all vertices of
degree less than k. The k-core is the k-shell corresponding to the highest k. A
nucleus of twelve countries has been found to be quite dangerous in the spread of
economic crises. Only six of them are large economies, while the other are medium
or small economies. Therefore, the position in the network is quite relevant: while it
is clear that large economies and big financial institutions affect the entire network,
it turns out that the position in the network makes the potential failure of some
small-medium economies and institutions could be as dangerous as the failure of
the big ones. Such remarks are in line with the paper “Too interconnected to fail”
(Markose et al. 2012), that can be grouped in the same discussion line as the papers
“Too central to fail” (Battiston et al. 2012), and “Too big to fail” (White 2014).5

All such papers consider financial networks. The specific characteristics of Credit
Default Swaps are examined in Markose et al. (2012). In Battiston et al. (2012)
several perspectives contribute to introduce the DebtRank, a centrality measure that
states the level of risk of financial institutions. In White (2014) it is shown that the
potential loss incurred by saving financial institutions is lower than that of allowing
them to fail, due to the nonlinear cascade effects on the network.

Usually, the spread of the economic crisis through a global economic network
is examined through the construction of specific models. In Garas et al. (2010) a
Susceptible-Infected-Recovered epidemic model is built: the probability of infection
depends on the strength of economic relations between the pair of countries, and
its strength on the target country. This allows to introduce a ranking of countries
in accord to their crises spreading power, that can be used as a further centrality
measure. In Chen and Cheng (2015) the credit-debt relation among each couple of
financial institutions is specifically modeled.

An interesting phenomenon is the fact that as the average number of connections
of each node increases, the probability of default first increases and then drops (Chen
and Ghate 2011; Elliott et al. 2014). In fact, the set up of financial links connects the
network initially, allowing shocks to propagate; but, as the number of links increases
further, organizations are better shielded against other’s failures. Beside the specific
models for the banks, financial ties among companies are well modeled through
the cross-shareholding network. In this context, the integration of a company is the
percentage of its shares sold to other companies. It plays a role different from the
number of connections: increased dependence on other organizations lowers the
sensitivity to own investments (Elliott et al. 2014).

5Such ideas and concepts became popular through the book A.R. Sorkin (2009) “Too Big to Fail:
Inside the Battle to Save Wall Street”, Viking Press; and through the movie “Too big to fail” (2011)
HBO movie.
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4.2 Synchronization in Networks and Financial Contagions

The theoretical approach to phase synchronization that was used by Huygens in
the seventeenth century (Bennett et al. 2002) was only a first step for the study
of complete synchronization of coupled chaotic systems (Wu 2007). In this form
of synchronization, the state variable of individuals converge towards each other’s
value. In the last decades, the research of coupled systems started with Fujisaka and
Yamada (1983) and was followed by the research on the synchronization on coupled
chaotic systems (Pecora and Carroll 2015). Such research lines were applied to the
modelization of many natural phenomena. Synchronization has been shown to have
potentially catastrophic effects in constructions (for instance: bridge resonance),
earthquakes, economics and finance (Arenas et al. 2008). By way of example, the
synchronization of many market agents on short position lead to an increase of
supply not well balanced by demand, so triggering price drawdowns and, eventually,
large financial crashes (Kaizoji 2009; Malevergne and Sornette 2001; Sieczka et al.
2011; Sornette and Andersen 2002). In behavioral finance, herding is addressed
as the main cause of synchronization. In fact, herding behavior shows aggregation
and imitation. When it concerns financial market investors, it may lead to the same
position either buying, thus causing high rises in prices, or selling, thus causing
drawdowns and even crashes in the case of Harmon et al. (2011). However, the
reaction on buy or sell are far from being symmetric. Another behavioral finance
concept, the so called blindness to small changes, describes the under-reaction to
positive or small news, and the over-reaction to negative or quite alarming news. The
coupling of this concept with earthquake models has been used for describing the
interaction among worldwide markets, and for showing the propagation of market
value cascades and avalanches (Andersen et al. 2011; Bellenzier et al. 2016).

The theme of avalanches has been widely studied also in the Self-Organized
Criticality (SOC) models. A key example is the Bak and Sneppen (BS) model. The
model was developed for describing the co-evolution of species. in that context the
disappearance of the less fit species also causes changes in the fitness value of the
species that are directly connected to it. The model shows a critical threshold for
avalanches. The distribution of avalanches follows a power-law distribution. This
model can be seen as a first approximation to the interaction among market agents
for the replication of stylized facts (Rotundo and Ausloos 2007; Petroni et al. 2007).
While the original BS model was developed on lattices, several extensions have
been studied using methods from nonequilibrium statistical mechanics (Lee and Lee
2009; Moreno and Vazquez 2002; Ausloos and Petroni 2014; Rotundo and Scozzari
2009). As expected, the time span and number of network nodes involved in each
avalanche depend on the structure of the network. In the framework of systemic
risk and financial fragility, it is straightforward to move from the concept of less
fit species to the idea of less fit firm, and to generalize from SOC to a general
framework for models of cascade and contagion processes on networks (Lorenz
et al. 2009; Rotundo and Scozzari 2009).
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4.3 Games on Networks

A paradigmatic model in game theory is the Prisoner’s Dilemma (PD): two prisoners
(players of the game) have to decide wether to remain silent (cooperate) or betray the
other player. Each of them incurs in the worst situation when he cooperates and the
other betrays. Nash equilibria appear when each player is maximizing their payoff,
conditioned to the decision of the other. Therefore, the information available to each
player is of utmost relevance. When the 2-player game is extended to n players, it is
reasonable to assume that each player has access to some—yet limited—amount of
information on the decisions of the others. Therefore, the topology of the network
becomes relevant due to the possibility of each player to establish links and access
to the information of the other nodes. Statistical mechanics methods are suitable
for detecting the optimal Nash equilibria in random as well as scale free networks
(Hauert and Szabó 2005; Szabó and Fath 2007).

Of course, many extensions of the PD model have been studied. For instance,
evolutionary game theory is designed to capture the essentials of the characteristic
interactions among individuals through the evolution of cooperation. The interplay
among network structure, clustering and behavioral strategies constitutes an intrigu-
ing link between only apparently unrelated disciplines. They are all represented in
the framework of game theory, which links the individual behavior to the collective
state of equilibrium. On large networks, typical questions are the detection of the
percentage of cooperators versus betrayers. Depending on the parameters of the
specific model under examination, critical phase transitions may be found. Models
have been developed that fall into the universality class of directed percolation on
square lattices and mean-field-type transitions on regular small world networks and
random regular graphs (Hauert and Szabó 2005).

Evolutionary game theory is the extension of game theory to evolving popula-
tions. The population dynamics may concern any evolving set of individual units,
ranging from lifeforms in biology to economic or financial agents in economic and
financial models. Evolutionary games are not limited to a sequence of game at each
step of the evolution, but also consider the frequency of the changes in the strategy
(Perc and Szolnoki 2010; Szabó and Fath 2007).

Lattices serve as structure for defining the connection of the players, and open the
way to spatial models. In Guan et al. (2006), Szabó and Tőke (1998), and Szabó et al.
(2005) the update of a strategy is based on a random selection of nearest neighbours,
and the target is understanding the density of cooperators versus betrayers.

Other network structures have been examined. For instance, in Chen et al. (2007),
the PD is explored on community networks. Simulation results show that the average
degree plays a universal role in cooperation occurring on random networks, small-
world networks, star networks, and scale-free networks (Chen et al. 2007; Du
et al. 2009b,c; Pinheiro et al. 2013; Rong et al. 2007; Shang and Wang 2015;
Szolnoki et al. 2008; Tang et al. 2006; Wu 2007; Wu et al. 2007). When PD are
studied on growing networks of contacts generated via preferential attachment, the
correlation among individual increases, and this improves the amount of cooperating
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players (Santos and Pacheco 2005), while the opposite result occurs when a network
becomes assortative mixing by degree (Rong et al. 2007). Nash equilibria have
been used also for the optimal design of networks, in relation to the optimal
transport and optimal navigation problem (Gulyás et al. 2014). Learning has been
shown to be another relevant factor for the emergence of cooperators (Du et al.
2009c,a). In conclusion, (evolutionary) game theory constitutes a still growing field
of application for complex networks, statistical mechanics, and optimization.

4.4 Clustering of Network Nodes and Geographical
Information

Real life networks—like transport networks and Internet—are quite naturally
embedded in a spatial dimension (Gastner and Newman 2006). The information on
the geographical location of economic and financial networks has been considered
in studies on the Gross Domestic Product (GDP) (Ausloos and Lambiotte 2007;
Gligor and Ausloos 2008a,b; Miśkiewicz and Ausloos 2008; Miśkiewicz and
Ausloos 2008; Redelico et al. 2009). A technique that is used for both economic and
financial data consists in building a network of distances based on the correlation
matrix calculated from the time series of the objects under observation. Of course,
each of the entries of the empirical estimate of the correlation matrix is non zero,
and thus it corresponds to a full network. Thus, techniques for extracting the most
relevant information are applied. One of them is the Minimum Spanning Tree
(MST). The MST is an acyclic network that connects all the nodes of the networks
through the most relevant links. It has been applied on both economic and financial
data. For instance, in Miśkiewicz and Ausloos (2008) it is shown that the distance
among countries decreases as the year progresses, and this is interpreted as a sign
of globalization (Miśkiewicz and Ausloos 2010).

In finance, MST has been used for detecting the backbone of the correlation
among financial markets, together with other techniques, like the Maximally Planar
Graph and Maximally Filtered Graph (Massara and Matteo 2011; Tumminello et al.
2005, 2007). The combination of tools from statistical physics and network theory
allow to test the centrality of economic sector and their evolution during the years
(Aste et al. 2010; Pozzi et al. 2008).

Another approach for passing from a complete network to a (usually) complex
network consists in keeping only nodes with a connectivity higher than k. This leads
to k-shells and k-cores and has been applied to both economic and financial data
(Garas et al. 2012). On economic data, it leads to cluster of countries. Another
possibility for working on a non complete network is keeping the links that have
weights over a specific threshold (Garas et al. 2010).

A different way to explore the economic links among companies, even those
belonging to different countries, has been studied in Braha et al. (2011), where
a complex networks perspective on interfirm organizational networks is proposed
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by mapping, analyzing and modeling the spatial structure of a large inter-firm
competition network across a variety of sectors and industries within the United
States. A probabilistic model for the growth of the network is proposed, and it is
shown that it is able to reproduce experimentally observed characteristics.

However, the analysis of ownership and control allows to detect economic super-
entities that span over different countries. In fact, trans-national corporations form
a giant bow-tie structure and a large portion of control flows to a small tightly-knit
core of financial institutions. This raises new important issues both for researchers
and policy makers (Vitali et al. 2011a).

Difficulties in the analysis arise from the fact that such networks show strongly
connected components, which lead to circular relations in clusters (Schweitzer et al.
2009b). The proper value for the ownership through intermediaries can be disen-
tangled through the calculus of integrated ownership (Rotundo and D’Arcangelis
2010b, 2013; Rotundo 2011; Vitali et al. 2011b). Questions on the maximal
concentration in markets give rise to nonlinear optimization problems, that also
involve the network structure (Rotundo and D’Arcangelis 2013). Networks of
companies can be explored also through the board interlocks (D’Errico et al. 2008;
Rotundo and D’Arcangelis 2010a). The coupling of information available from
such different networks gives an example of application of networks of networks
(Dorogovtsev and Mendes 2003).

5 Conclusions

In the present contribution we have summarized the main measures of complex
networks with an eye on the combination of these topological objects with nonlinear
models as a way to describe the phenomenology of complex systems. Specifically,
we have analysed epidemiological compartmental models in combination with
complex networks and we have briefly reviewed the main applications these
formalisms have found in financial contagions. Moreover, we reviewed on games on
networks and also on the usefulness of network nodes for analyzing geographical
aspects of economic and financial networks.
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An Overview of Diffusion in Complex Networks

Dunia López-Pintado

Abstract We survey a series of theoretical contributions on diffusion in random
networks. We start with a benchmark contagion process, referred in the epidemi-
ology literature as the Susceptible-Infected-Susceptible model, which describes the
spread of an infectious disease in a population. To make this model tractable, the
interaction structure is considered as a heterogeneous sampling process character-
ized by the degree distribution. Within this framework, we distinguish between the
case of unbiased-degree networks and biased-degree networks. We focus on the
characterization of the diffusion threshold; that is, a condition on the primitives of
the model that guarantees the spreading of the product to a significant fraction of the
population, and its persistence. We also extend the analysis introducing a general
diffusion model with features that are more appropriate for describing the diffusion
of a new product, idea, behavior, etc.

Keywords Degree distribution • Diffusion threshold • Endemic state •
Homophily • Random networks
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1 Introduction

In this chapter we discuss a number of different models of diffusion, where by
diffusion (or contagion) we mean the process by which information (or any kind
of signal) travels along a population of agents that are influenced by each other in
some well defined way. The general objective is to understand how the network

D. López-Pintado (�)
CORE, Université catholique de Louvain, Louvain-la-Neuve, Belgium

Department of Economics, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013
Seville, Spain
e-mail: dlopez@upo.es

© Springer International Publishing Switzerland 2016
P. Commendatore et al. (eds.), Complex Networks and Dynamics,
Lecture Notes in Economics and Mathematical Systems 683,
DOI 10.1007/978-3-319-40803-3_2

27

mailto:dlopez@upo.es


28 D. López-Pintado

structure determines the reach of the process. This question is relevant for many
different disciplines, ranging from sociology and economics to molecular biology
and neurology.

In economics, technological diffusion has been a central topic of industrial
organization and development which has lead to many well-known contributions
(e.g., Rogers 1995; Conley and Udry 2001, among others). The issue of diffusion
has also been extensively analyzed in the game theoretic literature where we can
distinguish between models of learning (Bala and Goyal 1998), opinion formation
Golub and Jackson (2012a,b,c) and network games (Morris 2000; Galeotti et al.
2010; Jackson and Yariv 2007). Finally, a direct application of diffusion is the study
of disease transmission in a population, an issue which has been addressed widely
in the epidemiology literature (e.g., Bailey 1975; Pastor-Satorrás and Vespignani
2001a,b). These last contributions build on the theoretical framework of random
networks which provides a natural setup for the study of complex systems (Bollobás
2001; Erdös and Rényi 1959).

The purpose of this chapter is to present a series of models to extend those
proposed in epidemiology. In doing so, we aim to understand diffusion not only
of an infectious disease in a population, but also of an idea, a product, a cultural fad,
or a technology. Our results focus on the characterization of the diffusion threshold,
a condition on the primitives of the model which guarantees the spreading of the
product (to a significant fraction of the population) and its persistence.

In Sect. 1 we study a benchmark contagion process referred in the literature
as the Susceptible-Infected-Susceptible (SIS) model. The interaction structure is
considered as the realization of a random sampling process characterized by the
degree distribution, where the degree of an agent refers to the number of agents
sampled by this agent. Within this framework, we distinguish between the case
of unbiased-degree networks and biased-degree networks. In the first case, agents
are homogeneous with respect to how much they are observed by others. Thus,
heterogeneity in this framework is only related to the number of observations taken
by agents before making a choice, but all agents are equally influential. In the second
case, however, the number of agents observed by an agent roughly coincides with the
number of agents observing such an agent. Thus, this framework can be considered
as an approximation of an undirected network, where if agent i is influenced by
agent j then j is influenced by i. The results we present shed light on the relevance
of the degree distribution on the predictions of the model. In particular, we report
how the diffusion threshold changes due to first order stochastic dominance shifts
and mean-preserving spreads in the degree distribution.

In Sect. 2, we extend the previous analysis to account for general contagion
processes which embody different models, including those based on best-response
dynamics of coordination games, imitation dynamics, etc. We find that the diffusion
threshold crucially depends on the contagion process. Thus, it becomes a relevant
empirical question to determine which models are more appropriate for which
applications. For instance, the well-known result that scale-free degree distributions
exhibit a zero epidemic threshold for the SIS model is not robust to other contagion
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processes.1 In particular, for those contagion processes in which the relative number
of adopters (with respect to the size of the sample) is what determines the adoption
rate (and not just absolute exposure), degree distributions with intermediate variance
might be more appropriate for fostering diffusion.

In Sect. 3, we generalize the model even further to include the issue of homophily
(i.e., the tendency of agents to associate with others similar to themselves). To do so,
agents are distinguished by their types (e.g., race, gender, age, religion, profession).
The interaction patterns are biased by types and different types of individuals might
have different proclivities for adoption. In this context, we can analyze how such
biases in interactions together with heterogeneity in susceptibility for adopting the
new product (idea, disease, etc.) affect the reach of the process. For example, how
does the diffusion of a new product that is more attractive to one age group depend
on the interaction patterns across age groups? The main result is that homophily
actually facilitates diffusion. That is, having a higher rate of homophily allows the
diffusion to get started within the more vulnerable type and this can generate the
critical mass necessary to diffuse the behavior or infection to the wider society.

2 The SIS Model

Consider a new product, an infectious disease, or an idea spreading in a population.
Our objective is to analyze whether diffusion occurs. That is, if we start with
an infinitesimal small fraction of initial adopters, would the product be adopted
by a significant fraction of the population and become endemic? In order to
answer this question theoretically we make several crucial assumptions. On the
one hand, the contagion process considered is the standard Susceptible-Infected-
Susceptible model (SIS hereafter) introduced in the epidemiology literature to study
the diffusion of an infectious disease in a population.2 On the other hand, we
introduce a directed random sampling process to describe how agents are influenced
by each other.

Formally, assume a continuum of agents N D Œ0; 1�. Agents can be in two
possible states: active (infected) or passive (susceptible). A passive agent can
become active, and conversely, an active agent can become passive. The SIS
model assumes the simplest possible process of contagion characterized by the
following parameters. A passive agent becomes active with a probability � > 0

when interacting with an active agent. Conversely, with a probability ı > 0 an

1The existence of a zero epidemic threshold for scale-free networks was first shown by Pastor-
Satorrás and Vespignani (2001a).
2The so-called SIS model has extensively been studied in the literature (see e.g., Pastor-Satorrás
and Vespignani 2001a; Jackson and Rogers 2007, etc.).
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active agent can become passive again.3 The crucial parameter of the model is the
(effective) spreading rate denoted by � D �

ı
, which measures how contagious the

behavior is. In this setting, the system must always remain in continuous flux since
the particular identity of active and passive agents is permanently changing. The
objective in this context is to predict the convergence to some population profile
where the frequency of active agents remains stable over time. To make the approach
tractable, the dynamics is described in continuous time. Thus, the previously defined
probabilities � and ı are instead interpreted as rates. In addition, the stochastic
process is approximated by its deterministic counterpart.4

Let us consider that individuals observe each other before changing their states.
Assume that each agent is characterized by her degree. In particular, an agent has
degree d if she samples from the population (and is potentially influenced by) d other
agents per unit of time. Observation is typically directed; that is, if an agent observes
agent i, this does not imply that j observes i, although an approximation of an
undirected network will be considered as well. Let P.d/ be the degree distribution;
that is, the fraction of the population with degree d. Equivalently,P.d/ can be viewed
as the probability that a randomly selected node has degree d.

There are several focal degree distributions. For instance, if the population is
homogeneous then P.d/ D 1 for some degree d � 1. Moreover, empirical studies
have led to the conclusion that many complex networks are characterized by a scale-
free degree distribution (i.e., a fat-tailed property). Price (1965) was the first to find
such distributions in a network setting (in particular, in citation networks among
scientific articles). The scale-free distribution, or power-law distribution, can be
expressed as

P.d/ D bd��

where 2 < � � 3 and b is a positive normalizing constant. The main feature of
this distribution is that the relative probabilities of two different degrees (d,bd) only
depend on their ratio ( dbd ) and not on their absolute values. In these distributions, the
average degree cannot be conceived as a good estimate of the typical node degree
found in the network. In particular, the population has a significant fraction of hubs,
i.e., nodes with very high degree compared to the average.

Within the context of directed random networks, we consider two paradigmatic
cases depending on how agents choose who to observe: unbiased-degree (case 1)
and biased-degree (case 2). In case 1, agents select other agents completely at

3Note that in the context of a disease, it is implicitly assumed that there is no full immunization
and therefore a recovered person can catch the disease again. An obvious instance is the standard
flu.
4Benaïm and Weibull (2003) show that the continuous (deterministic) approximation is appropriate
when dealing with large populations. In particular, they find that if the deterministic population
flow remains forever in some subset of the state space, then the stochastic process will remain in
the same subset space for a very long time with a probability arbitrarily close to one, provided the
population is large enough.
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random and, thus, the probability of choosing an agent with degree d is precisely
P.d/. In case 2, agents are biased by the degree of others, so that an agent with
degree d is sampled d times more often than an agent with degree 1. Therefore,
the probability of selecting an agent with degree d is proportional to dP.d/. More
precisely, let Q.d/ be the probability of selecting an agent with degree d. Then

Q.d/ D P.d/ in case 1

whereas

Q.d/ D dP.d/

hdiP
in case 2

where hdiP D
X
d�1

dP.d/ is the average degree.

Note that Case 2 can be considered as an approximation of an undirected
network, as the number of the agents is observed by an agent is the same as the
(expected) number of times this agent is being observed. Note that, for some
applications (e.g., the diffusion of a disease) it is a more accurate description of the
reality as personal interaction is required for contagion. We analyze next the two
cases separately.

2.1 The SIS Model and Unbiased-Degree Random Networks

In this section we focus on the unbiased-degree network case which represents
the simplest framework to study random interactions characterized by a degree
distribution.

Let us first introduce some notation. Let �d.t/ denote the frequency of active
agents among those with degree d at time t and �.t/ be the total frequency of active
agents in the population at time t. Thus,

�.t/ D
X
d

P.d/�d.t/:

The adoption dynamics describes the evolution of �d.t/ as a function of the
parameters of the SIS model. For each d � 1 we have the following differential
equation:

�0
d.t/ D ��d.t/ı C .1 � �d.t//�d�.t/;

where the first term on the sum (��d.t/ı) tracks the transitions from active to
passive, whereas the second term tracks the transitions from passive to active
(.1��d.t//�d�.t/). To understand this term, note that the expected number of active
agents in the sample of an agent with degree d is d�.t/. Thus, the probability that a



32 D. López-Pintado

passive agent becomes active in the small interval of time from t to t C dt is given

by Œ1 � .1 � 	dt/d�.t/� and limdt!0
Œ1�.1�	dt/d�.t/�

dt D �d�.t/.
The stationary states of this dynamics can be computed by imposing that �0

d.t/ D
0 for all d. Therefore, for each d,

�d D �d�

1C �d�
;

where � D �
ı

is the (effective) spreading rate. The following fixed-point equation
characterizes the fraction of adopters in the stationary state:

� D H�;P.�/; (1)

where

H�;P.�/ D
X
d

P.d/
�d�

1C �d�
:

Notice that � D 0 is always a solution of Eq. (1), which implies that the state
where all agents are passive is stationary. Thus, in order to spread the “active state”
in the population, there must be an initial seed of active agents. To be more precise,
let us introduce the following two definitions:

We say that there is diffusion in the population if by seeding it randomly with
an infinitesimally small initial fraction of active agents, the behavior spreads to a
positive fraction of the population and becomes persistent.

We say that �� is the diffusion threshold if there is diffusion if and only if � > ��.

Theorem 1 (López-Pintado 2012) Let P be the degree distribution of a (unbiased-
degree) random network. The diffusion threshold for the SIS model is:

�� D 1

hdiP
The outline of the proof is the following. In this context, diffusion occurs

whenever Eq. (1) has a positive solution. It is straightforward to show that H�;P.�/ is
an increasing and concave function of �. Moreover, H�;P.0/ D 0 and H�;P.1/ < 1.
Therefore, as depicted in Fig. 1, there exists a positive solution of Eq. (1) if and only
if dH�;P.�/

d�
c�D0 D �

X
d

P.d/d > 1.

The diffusion threshold is inversely proportional to the average degree. That
is, the higher the average degree the easier it is to foster diffusion. Nevertheless,
Theorem 1 does not provide information about the reach of the process whenever
there is diffusion. We analyze this issue next.

We say that the adoption dynamics has reached an endemic state with a
fraction of adopters �� if this fraction remains constant in the upcoming periods.
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Equation (1) provides a characterization of the endemic states as a function of the
degree distribution. Notice that Eq. (1) has one solution (� D 0) when � � ��
and two solutions (� D 0 and a positive one) when � > ��, as depicted in Fig. 1.
Nevertheless, � D 0 is not a stable solution whenever � > ��. Thus, we define as
��.P/ to the (stable) endemic state of the diffusion process.

Two definitions are required before presenting the next result. Consider the
degree distributions P andeP. We say thateP first order stochastic dominates P if

xX
dD0

eP.d/ �
xX

dD0

P.d/ for all x:

The intuitive idea is that eP is obtained by shifting mass from P to place it on
higher values.

We can also say thateP is a mean-preserving spread of P ifeP and P have the same
mean and

xX
zD0

zX
dD0

eP.d/ �
xX

zD0

zX
dD0

P.d/ for all x:

This condition implies that eP has a (weakly) higher variance than P, but it also
implies a more structured relationship between the two. In fact the reverse is not true,
having a higher variance and the same mean is not sufficient for one distribution to
be a mean-preserving spread of another.

Proposition 1 Let P be the degree distribution of a (unbiased-degree) random
network and consider the SIS model. The following holds:

(1) IfeP first order stochastic dominates P then ��.eP/ � ��.P/.
(2) IfeP is a mean-preserving spread of P then ��.eP/ � ��.P/.

Before showing this result, let us describe the following two well-known
properties.
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• Property 1: If eP first order stochastic dominates P then, for all non-decreasing
functions f ,

X
d

f .d/eP.d/ �
X
d

f .d/P.d/:

and
• Property 2: IfeP is a mean-preserving spread of P then, for all concave functions f ,

X
d

f .d/P.d/ �
X
d

f .d/eP.d/:

Notice that the endemic state is characterized by Eq. (1) and since �d is
nondecreasing and concave (as a function of d), applying properties (1) and (2)
we obtain the desired result.

As illustrated in Fig. 2, the diffusion threshold decreases and the endemic state
increases with a first order stochastic dominance shift of the degree distribution (see
the graph on the left). This is a consequence of the fact that in the SIS contagion
process the higher the degree of an agent, the easier it is to become an adopter. We
also illustrate how, even though the diffusion threshold does not vary if we shift the
degree distribution with a mean-preserving spread, the endemic state decreases with
such a shift (see the graph on the right). The intuition for this is that an increase in
the degree of an agent increases her adoption rate, but it has a decreasing marginal
effect.

In the next section we analyze a biased-degree random network instead and find
critical differences with the degree-unbiased case.

)(*

P

P~

P~ FOSD P

P

P~

P~ MPS P
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l
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Fig. 2 The graphs represent qualitatively the endemic state (��) as function of the spreading rate
(�) for the degree distribution P andeP, whereeP first order stochastic dominates (FOSD) P in the
graph on the left andeP is a mean-preserving spread of P (MPS) in the graph on the right
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2.2 The SIS Model and Biased-Degree Random Networks

The methodology applied in the previous section is useful for understanding the
predictions on diffusion in a directed network, that is, a network where if i interacts
with j this does not imply that j interacts with i. This, of course, is a strong
assumption as many socioeconomic interactions among agents are bilateral in
nature and thus links in the network are undirected. We therefore can extend the
specification of the model proposed above in order to approximate an undirected
interaction structure. A tractable attempt to do so is to assume that sampling is not
performed uniformly at random but that, instead, it is biased by degree. That is, the
probability that an agent samples an agent with degree d is proportional not only to
P.d/ but also to d. This captures the idea that agents with higher degree are sampled
more often.5 Formally, as already highlighted in Sect. 1, in this case, the probability
that an agent samples another agent with degree d is:

Q.d/ D dP.d/

hdiP ;

where the average degree hdiP is used for normalization purposes.
Some additional notation is required before presenting the dynamics. Let 
.t/ be

the probability that an agent samples an active agent at time t. Thus,


.t/ D
X
d

Q.d/�d.t/: (2)

This is due to the fact that the probability that at the end of a link an agent has
degree d is Q.d/ (which in this case is different from P.d/). Following analogous
steps to those already presented in Sect. 2.1 we find that the adoption dynamics is
now described as follows:

�0
d.t/ D ��d.t/ı C .1� �d.t//�d
.t/;

where the first term of the sum (��d.t/ı) stands for the transition from active to
passive. The second term stands for the transition from passive to active (.1 �
�d.t//�d
.t/), where the expected number of adopters in a sample of size d is d
.t/.
The stationary states of this dynamics can be computed by imposing that �0

d.t/ D 0

for all d which leads to:

�d D �d


1C �d

for all d: (3)

5Pastor-Satorrás and Vespignani (2001a) used this specification.
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Substituting (3) in (2) we find that the fixed-point equation which characterizes the
value of 
 in the stationary state is


 D eH�;P.
/; (4)

where

eH�;P.
/ D 1

hdiP
X
d

P.d/
�d2


1C �d

:

The next result characterizes the diffusion threshold. To do so let us denote by˝
d2
˛
P

to the second order moment of the degree distribution P. That is,

˝
d2
˛
P D

X
d

d2P.d/:

Theorem 2 (Pastor-Satorrás and Vespignani 2001a) Let P be the degree distri-
bution of a (biased-degree) random network. The diffusion threshold for the SIS
model is:

�� D hdiPhd2iP
:

The outline of the proof is the following. There is diffusion if there exists a
positive solution of Eq. (4). In addition, it is straightforward to show that eH�;P.
/ is
an increasing and concave function of 
 , eH�;P.0/ D 0 and eH�;P.1/ < 1. Therefore,

there is diffusion if and only if deH�;P.
/

d�
c
D0 D �

hd2iPhdiP > 1.
Note that, unlike for the unbiased case, now the variance of the degree distri-

bution also determines the diffusion threshold as �� D hdiPhd2iP D
hdiP

hdi2
PCvar.p/

, where

var.P/ denotes the variance of distribution P.
As a consequence of Theorem 2, we provide the following comparative statics

results on the degree distribution.

Corollary 1 Let P be the degree distribution of a (biased-degree) random network
and consider the SIS model. The following holds:

(1) IfeP first order stochastic dominates P then ��.eP/ � ��.P/.
(2) IfeP is a mean-preserving spread of P then ��.eP/ � ��.P/.

This proof of this corollary is straightforward given the expression for the
diffusion threshold provided by Theorem 2. If we compare these results with those
obtained for the unbiased-degree case (Proposition 1), we find that for both cases
the diffusion threshold decreases with the density of the network. Nevertheless, the
effect of a mean-preserving spread is different as in the biased-degree case diffusion
is triggered more easily the higher the variance of the degree distribution. The
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intuition behind this finding relies on the relevant role that hubs (i.e., high-degree
nodes) play for diffusion in the biased-degree case, which is not as important in
the unbiased-degree case. In the biased-degree case, agents with high degree not
only observe many others, but are also observed by many others. Therefore, they
easily become infected and also infect others afterwards. For the unbiased-degree
case, however, agents with high degree are observed equally as much as any other
agent in the population and, thus, they do not necessary promote diffusion once they
become infected.

The study of the endemic state and how it depends on the degree distribution is
not straightforward (see Jackson and Rogers 2007). The main reason for this is that
the values of � (the fraction of adopters in the population) and 
 (the probability of
sampling an adopter) do not necessarily move in the same direction when there is
a shift in P. The next result shows that 
 increases with a mean-preserving spread
of the degree distribution. Nevertheless, this does not imply that � also increases. A
piece of notation is needed. Given P, let 
�.P/ denote the value of 
 in the (stable)
endemic state of the dynamics. Then the following result holds:

Proposition 2 (Jackson and Rogers 2007) Let P be the degree distribution of
a (biased-degree) random network and consider the SIS model. If eP is a mean-
preserving spread of P, then 
�.P/ � 
�.eP/.

The proof of this result is a direct consequence of Eq. (4), property (2) described
in Sect. 2.1, and the fact that �d2


1C�d

is a convex function of d.6

3 Beyond the SIS Model: General Adoption Rules

The SIS model corresponds with a specific contagion process, which is directly
imported from epidemiology. In social contexts, however, the diffusion of infor-
mation, or a behavior, often exhibits features that do not match well those of the
epidemic models. For instance, in the SIS formulation of diffusion, the transmission
of infection to a healthy agent depends on her total exposure to the disease, i.e., the
absolute number of infected neighbors. In the spread of many social phenomena,
there is a factor of coordination (or persuasion) involved and therefore relative
considerations are important (i.e., the number of infected versus non-infected).
Moreover, unlike in the SIS model, the adoption rate does not necessarily need to
increase linearly with the number of adopters. For instance, if agents adopt only if
a significant fraction of others have adopted (a threshold rule). Finally, in the SIS
model, the transition from active to passive occurs at a constant rate and therefore
does not depend on the behavior of others, something which seems artificial for
diffusion in many socioeconomic contexts. For all the reasons listed above, we now

6Jackson and Rogers (2007) were the first to analyze the diffusion proprieties of networks ordered
through the stochastic dominance of their degree distributions.
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present a general family of contagion models which extend the SIS model in several
directions.

We assume that in each period agents are in one of two states: active or passive
(as before). The agents’ actions are influenced by the actions of others, but in a
stochastic manner. A passive agent adopts the behavior at a rate described by an
adoption rule fd.a/ where d is her degree and a is the number of sampled agents
who have adopted the behavior. Conversely, an active agent becomes passive at a
rate given by gd.a/ where, again, d is her degree and a is the number of sampled
agents who have adopted the behavior. The adoption rules fd.a/ and gd.a/ are the
primitives of the diffusion process and must satisfy the following assumptions:

• fd.0/ D 0 for each d. In words, a passive agent cannot become active unless she
samples at least one active agent.

• fd.a/ is a non-decreasing function of a. In words, the adoption rate is non-
decreasing in the number of adopters in the sample.

• fd.1/ > 0 for some d such that P.d/ > 0. This is a technical condition and it
implies that there exists a certain degree such that the rate of adoption for agents
with such a degree, when only one agent in the sample is active, is positive.7

• gd.0/ D ı > 0 for all d. That is, the transition rate from active to passive, when
all agents in the sample are passive, is positive and constant for all degrees.

• gd.a/ is a non-increasing function of a. That is, the transition rate from active to
passive is non-increasing in the number of active agents in the sample.

This general approach encompasses a number of different models. Three simple
examples are the following.

First, the SIS model presented in the previous section corresponds with the
adoption rules fd.a/ D �a and gd.a/ D ı.

Second, consider the following Imitation model. Every period, a non-smoker
considers the possibility of smoking at a rate � > 0. This agent engages in smoking
if he or she happens to sample a smoker among those agents that influence him or
her. Conversely, at a rate ı a smoker considers the possibility of quitting smoking.
This agent decides to quit if him or her happens to sample among those agents
that influence him or her a non-smoker. This diffusion process corresponds with the
following specification of the adoption rules: fd.a/ D � a

d and gd.a/ D ı d�a
d .

Third, consider the following Majority threshold model.8 We consider again the
example of choosing whether to smoke or not. Every period, a non-smoker considers
the possibility of smoking at a rate � > 0. This agent engages in smoking behavior
if he or she observes that more than half of the agents that influence him or her are
smokers. Conversely, a smoker considers the possibility of quitting smoking at a rate
ı. This agent decides to quit if him or her observes that at least half of the agents

7For example, a rule where agents adopt only if at least two sampled agents have adopted does not
satisfy this assumption.
8These threshold models have been extensively analyzed in the literature (see Granovetter 1978,
Watts 2002, López-Pintado 2006, and Jackson and Yariv 2007).
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that influence him or her are non-smoker. This diffusion process corresponds with
the following specification of the adoption rules: fd.a/ D � if a

d > 0:5 and fd.a/ D 0

otherwise. Also, gd.a/ D ı if a
d � 0:5 and gd.a/ D 0 otherwise.

Notice that both in the Imitation model and the Majority threshold model relative
considerations (i.e., a

d instead of a) are important. Moreover, in the Majority
threshold model the adoption rules do not depend linearly on a. Finally, the
transition from active to passive, in both models, is not constant and crucially
depends on the behavior observed by the agent when making such a decision.

The diffusion threshold can also be calculated for these general models as
presented in the next result.

Theorem 3 (Jackson and López-Pintado 2013) Let P be the degree distribution
of a random network. The diffusion threshold for the general model is:

X
d

Q.d/d
fd.1/

ı
> 1

where Q.d/ D P.d/ in an unbiased-degree random network, whereas Q.d/ D dP.d/

hdiP
in a biased-degree random network.

Notice that Theorem 3 shows that the diffusion threshold depends on the degree
distribution and on the values of the adoption rules fd.1/ and gd.0/. The reason why
fd.a/ and gd.a/ for a > 1 does not appear in the condition is that in the initial periods
of the dynamics there is only a small fraction of adopters in the population and,
thus, the probability that an agent observes more than one adopter in her sample
is negligible. Nevertheless, as briefly explained below, further properties of the
adoption rule (e.g., the concavity of the rule) crucially affect other properties of the
diffusion process, as for example, the type of transition occurring at the diffusion
threshold (i.e., whether it is a second order phase transition or not).

The results obtained for the Imitation model are striking. The diffusion threshold
is �� D 1, both for the unbiased-degree and biased-degree random network. The
reason is that, in this case, all agents have the same probability of becoming an
adopter, independently of their degree. To see this, consider two agents i and j where
i has degree d and j has degree 2d. It is straightforward to show that the probability
that agent i observes a active agents in the sample coincides with the probability
that agent j observes 2a. Moreover, the Imitation model assumes that both agents, i
and j, would have the same probability of adopting as a

d D 2a
2d ).

For the Majority threshold model, we obtain that the diffusion threshold is
�� D 1=p.1/ for the unbiased random network, and �� D hdiP =p.1/ for the biased
random network. Notice that, in this case, only agents with degree 1 that happen to
sample an adopter will adopt in the initial periods of the dynamics, which is why
the diffusion threshold decreases with respect to p.1/. The diffusion threshold is
higher for the biased-degree case than for the unbiased-degree case. The reason is
that, in the former case, the agents with degree 1 are observed (in expectation) only
by 1 agent and thus are less efficient in spreading the behavior than in the later case
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where an agent with degree 1 is observed by the same number of agents as any other
agent in the population (i.e., roughly by hdiP other agents in each unit of time).9

To conclude, let us concentrate on absolute adoption rules, that is, on rules
satisfying that it is the total exposure to the activity what determines the adoption
rate. Formally, fd.a/ D f .a/ and gd.a/ D g.a/ for all d and 0 � a � d. We can
distinguish three focal absolute adoption rules, which are the following:

(a) f .a/ D 	a and g.a/ D ı (i.e., the SIS model), where the marginal impact on
adoption of having one more adopter in an agents’s sample is constant.

(b) f .a/ D 	
p
a and g.a/ D ı, where the marginal impact on adoption of having

one more adopter in an agent’s sample is decreasing.
(c) f .a/ D 	a2 and g.a/ D ı, where the marginal impact on adoption of having

one more adopter in an agents’s sample is increasing.

Corollary 2 Let P be the degree distribution of a random network. The diffusion
threshold for the absolute adoption rules (a), (b) and (c) is

�� D 1

hdiP
for an unbiased-degree random network, whereas it is

�� D hdiPhd2iP
for a biased-degree random network.

This corollary is a direct application of Theorem 3. Notice that the diffusion
threshold coincides for all the absolute adoption rules considered. Nevertheless, as
described in López-Pintado (2008), for cases (a) and (b) the endemic state ��.�/

exhibits a second order phase transition at the diffusion threshold � D ��. In other
words, the endemic state ��.�/ is a continuous function of the spreading rate and,
therefore, as � converges to ��, ��.�/ converges to �.��/. For case (c), however,
we obtain a discontinuity in the endemic fraction of adopters at � D �� (first order
phase transition or hysteresis) as illustrated in Fig. 3. This is due to the existence
of multiple stationary states of the adoption dynamics, depending on the size of the
initial seed of adopters.

9The study of how collective outcomes depend on the details of the contagion process has also
been highlighted by Young (2009), Galeotti and Goyal (2009), López-Pintado and Watts (2008),
etc.
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Fig. 3 The graphs represent qualitatively the endemic state (��) as function of the spreading rate
(�). The graph on the left corresponds to concave adoption rules such as (a) and (b), where there
is a second order phase transition at ��. The graph on the right corresponds to adoption rule (c),
where there is a first order phase transition at ��

4 Homophily

In this section we want to understand the effect that homophily has on diffusion,
something which despite its importance has received little attention in the diffusion
literature.10 Homophily is the tendency of agents to associate with others similar to
themselves. For example, young children in day care have higher rates of interaction
with other young children than with older children. Adults of a certain profession,
religion and education are more likely to interact with other adults with similar
characteristics. In addition we allow for heterogeneity in preferences regarding the
new product or behavior (or different susceptibilities for catching a disease). For
instance, children can be more vulnerable to some diseases than adults, a new movie
can be more attractive to women than men, etc. In particular, we examine whether
or not diffusion occurs in a heterogeneous and homophilous society.

To be consistent with the rest of the paper, we start analyzing homophily in the
SIS model, and extend later the analysis to more general models of diffusion in
random networks.

4.1 Homophily in the SIS Model

For ease of exposition, we assume that the population is only made of two groups
(the young and the elder). Agents in each group have different proclivities for getting
infected of a certain disease. In particular, imagine that the elder are more vulnerable
to this disease than the young. More precisely, if �1 is the spreading rate of the young

10There are some exceptions such as Currarini et al. (2009), Golub and Jackson (2012b), among
others.
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and �2 of the elder then �1 < �2. Let � be the probability that an individual interacts
with an individual of the same age range. We also allow for heterogeneity with
respect to the degree distribution. In particular, let Pi.d/ be the degree distribution of
individuals of type i. In this example it is reasonable to assume bilateral interaction
and, thus, let us focus on the biased-degree network case. Hence, conditional on
sampling an agent of type i, this agent will have degree d with probability Qi.d/ D
dPi.d/

hdii . The result on diffusion is the following:

Proposition 3 (Jackson and López-Pintado 2013) Let �0D 1�ed1�1ed2�2
zd1�1Czd2�2

2 �ed1�1ed2�2

,

whereedi D hd2ii
hdii . Diffusion occurs for the SIS model with homophily if and only if

one of the following conditions hold:

1) �1�2 > 1
zd1zd2

or

2) �1�2 � 1
zd1zd2

and � > �0

Recall that the condition for diffusion in the standard (homogenous) SIS model
is � > 1

zd , which is a particular case of the previous result. Note also that if we
considered, instead, an unbiased-degree random network, we obtain the same result
as in Proposition 3, but withedi D 1

hdii .
The most interesting scenario turns out to be one where one of the types would

foster diffusion if isolated, whereas the other would not (i.e., �1 < 1
zd1

and �2 > 1
zd2

).

In that scenario, we show that homophily either plays no role (if �1�2 > 1
zd1zd2

) or it

actually facilitates diffusion (if �1�2 < 1
zd1zd2

). Note that in the latter case diffusion
occurs only if the two types are sufficiently biased in interactions towards their own
types (i.e., � is sufficiently large).

4.2 Homophily Beyond the SIS Model

We now generalize the previous analysis beyond the SIS model with two types. Let
us assume that all relevant characteristics are captured by a finite set of m types
where m � 1 (e.g., agents in type i are male, aged 30–40, atheist and university
professors). Formally, the continuum of agents N D Œ0; 1� is partitioned by types

where ni denotes the fraction of agents of type i. Thus,
mX
iD1

ni D 1. Again, we

assume that agents have a degree which measures the number of individuals sampled
per unit of time. The distribution of degrees can be different across types (i.e., the
elderly might have lower mean and variance in degrees than teenagers) and thus
Pi.d/ indicates the degree distribution of individuals of type i.
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The random meeting process now incorporates biases across types. In particular,
the rate at which an agent of type i meets agents of other types is described by the
following matrix:

… D

0
B@

�11 : : : �1m
::: : : :

:::

�m1 : : : �mm

1
CA ;

where �ij is the probability that an agent of type i meets an agent of type j in any

given meeting. Thus,
mX
jD1

�ij D 1. To guarantee that a behavior that starts spreading

in one group reaches any other group we must assume that … is a primitive matrix,
that is, …t > 0 for some t.11

In any given period, an agent of type i with degree d expects to meet d�ij agent
of type j, and conditional on meeting an agents of type j, the probability that this
agent has degree d is

Qj.d/ D Pj.d/;

in the unbiased-degree network case, and

Qj.d/ D dPj.d/

hdiPj

;

in the biased-degree network case, where hdiPj is the average degree of Pj.12

Let �i;d.t/ denote the frequency of active agents at time t among those of type i
with degree d. Thus,

�i.t/ D
X
d

Pi.d/�i;d.t/

is the frequency of active agents at time t among those of type i, and

�.t/ D
X
d

ni�i.t/

is the overall fraction of active agents in the population at time t.

11Notice that …t D … � … � : : : � …, t times.
12In the biased-degree case, certain constraints on the parameters of the model would be required
in order to approximate it to an undirected network. For example, the number of interactions from
type i to type j should coincide with the number of interactions from type j to type i in a unit of
time. That is, n.i/ hdii �ij D n.j/ hdij �ji.
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Finally, the contagion model is defined with the general adoption rules fi;d.a/

and gi;d.a/ presented in Sect. 2 but note that these rules can differ across types. This
allows us to define 
i.t/ as the probability that an agent of type i samples an active
agent. Note that


i.t/ D
X
j

�ij

X
d

Qj.d/�j;d.t/: (5)

Let us now define the rates at which a passive agent becomes active and vice
versa. To do so, let rate0!1

i;d .t/ be the rate at which a passive agent of type i and
with degree d becomes active, whereas rate1!0

i;d .t/ stands for the reverse transition.
We assume that the number of infected agents in a sample follows a binomial
distribution with parameters d (number of draws) and 
i.t/ (probability of each draw
being active). That is,

rate0!1
i;d .t/ D

dX
aD0

fi;d.a/
�
d
a

�

i.t/

a.1 � 
i.t//
.d�a/;

rate1!0
i;d .t/ D

dX
aD0

gi;d.a/
�
d
a

�

i.t/

a.1 � 
i.t//
.d�a/:

The diffusion dynamics is described as follows:

�0
i;d.t/ D ��i;d.t/rate

1!0
i;d .t/C .1 � �i;d.t//rate

0!1
i;d .t/ (6)

where the right-hand side represents the increase in the level of active agents,
whereas the left-hand side represents the decrease in such a level due to the transition
of some active agents to passive.

As in a stationary state �0
i;d.t/ D 0 then

�i;d D
rate0!1

i;d

rate0!1
i;d C rate1!0

i;d

: (7)

We substitute Eq. (7) in Eq. (5) and find that the values for 
i in the steady states
are


i D Hi.
1; 
2 : : : 
n/;

where

Hi.
1; 
2 : : : 
n/ D
X
j

�ij

X
d

Qj.d/
rate0!1

i;d

rate0!1
i;d C rate1!0

i;d

:
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This system of equations characterizes the steady states for 
i, but from here
we can compute the steady states for the fraction of adopters of each type �i and
ultimately the overall fraction of adopters �.

The objective is to find conditions for diffusion. Note that � D 0 (i.e.,
.
1; 
2 : : : 
n/ D .0; 0; : : : ; 0/) is a steady state of the diffusion dynamics. We must
explore the stability of such state. If � D 0 is not stable, following fixed-point
arguments applied to monotone correspondences on lattices, it can be shown that
there exists another strictly positive steady state of the dynamics (see Jackson and
López-Pintado 2013 for details on this argument). From (5) and (6) we find


 0
i .t/ D

X
j

�ij

X
d

Qj.d/
	��j;d.t/rate

1!0
j;d .t/C .1 � �j;d.t//rate

0!1
j;d .t/



:

Note that near � D 0 (and assuming that there is an upper bound on the degree of
agents) we have that:

rate1!0
j;d .t/ D ı and .1 � �j;d.t//rate

0!1
j;d .t/ D dfjd.1/
j.t/

and thus we can rewrite


 0
i .t/ D

X
j

�ij

X
d

Qj.d/dfjd.1/
j.t/ � 
i.t/ı;

which can be expressed in matricial form as

� 0.t/ D ŒA� � �� ı

where

A D

0
B@

�11x1 : : : �1mxm
::: : : :

:::

�m1x1 : : : �mmxm

1
CA ;

and

xi D
X
d

Qi.d/d
fi;d.1/

ı
:

The term xi can be interpreted as the relative growth of adoption due to type i and
adjusted by the relative rates at which agents of type i will be met by other agents.

With this information we can now state the following result.
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Theorem 4 (Jackson and López-Pintado 2013) Diffusion occurs if the largest
eigenvalue of A is larger than 1.

Note that if we only have one type in the population then we can drop subindex i
and the condition for diffusion is

x D
X
d

Q.d/d
fd.1/

ı
> 1

which coincides with the condition provided in Theorem 3.
Assume now that there are two types with symmetry in how introspective groups

are in their meetings. Therefore, �11 D �22 D � . The result in this case is the
following:

Proposition 4 (Jackson and López-Pintado 2013) Let �0 D 1�x1x2

x1Cx2�x1x2
. Diffusion

occurs if and only if one of the following conditions hold:

1) x1x2 > 1 or
2) x1x2 < 1 and � > �0.

Note that if diffusion occurs within each type when isolated, it would also occur
when there is interaction among the two (in such a case x1 > 1 and x2 > 1 and
thus part (1) of the proposition holds). If diffusion does not occur among either
type when isolated, then it would not occur if there is interaction between them
(note that � > �0 cannot occur if both x1 and x2 are below 1). Finally, if diffusion
occurs among only one of the types when isolated, then it would occur among the
entire population if homophily is high enough. The intuition behind this result is
that having a higher rate of homophily allows the diffusion to get started within the
more vulnerable type, and this can generate the critical mass necessary to diffuse
the behavior to the wider society.

5 Conclusions

In this chapter we have surveyed a series of stylized models of diffusion in
networks. In order to make the analysis tractable, the interaction or influence
structure is described by an explicit sampling process where two extreme cases have
been considered: the unbiased-degree and the biased-degree case. In the former
case out-degree (information level) and expected in-degree (visibility level) of
agents are uncorrelated, whereas in the latter case these two measures coincide.
López-Pintado (2012) and Jackson and López-Pintado (2013) extend this idea to
comprise a wide array of sampling options depending on the level of correlation
assumed between agent’s in and out degree. The main focus of most of the work
surveyed in this chapter, however, is to discuss the hypothesis that more dense
and heterogeneous networks always favor diffusion, something which is true for
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standard epidemiology models but that does not generalize to other models of
diffusion based on coordination and imitation behavioral rules.

We have also tried to understand the effect that homophily has on diffusion,
concentrating on the concept of the diffusion threshold. That is, the spreading to
a significant fraction of the population of a new behavior when starting with a small
initial seed. Nevertheless, there are other issues which are not addressed here, but
that are relevant. For example, one could evaluate the size of the adoption endemic
state as a function of the homophily level.
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Opinion Dynamics on Networks

Ugo Merlone, Davide Radi, and Angelo Romano

Abstract Sociophysics has devoted a lot of attention to social influence and
opinion dynamics. Among the others, the pioneering works by Galam, where agents
randomly gather in groups of different size until consensus is reached, have been
used to analyze the spreading of rumors. Galam’s model however, considers only
special kinds of social spaces. In this chapter we survey some of the most recent
contributions on opinion dynamics, illustrate Galam’s model of rumor diffusion and
extend it to consider more general networks.

Keywords opinion dynamics • social networks • Galam’s model • rumor diffu-
sions • majority influence

1 Introduction

The study of opinion dynamics and consensus is a fascinating research area studied
by several disciplines. For example, social psychology has devoted considerable
attention in investigating how majority and minority can influence individuals’
opinions (Asch 1956; Moscovici et al. 1969). Consensus has also been analyzed
through mathematical modeling, as for example in DeGroot (1974) and Berger
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(1981). These approaches investigate the processes and the factors interacting to
have consensus in groups. Furthermore, there are models analyzing social influence
and strategic interaction where agents’ opinion is influenced by the others. For
example in Buechel et al. (2013), an analysis of how cultural factors change
individual opinions is provided in an overlapping setting and within a game
theoretical framework. According to this stream of research consensus (conformity)
on a specific opinion is reached as the results of strategic interactions among agents.

Another effort in the analysis of processes of social influence has been provided
by sociophysics. The backbone of this approach consists of the contributions by
Galam, see, e.g., Galam (1990, 2003, 2012), which provide a theoretical justification
for the frequently observed phenomenon of the diffusion of rumors within a
population such that the great majority of its members refuses to believe in it. For
example, in Galam (2003), there is a formalization of the spread of the notice in
which it was claimed that no plain crashed in the Pentagon on September 11. In
Galam’s model, individuals have two possible opinions about a rumor. One opinion
is ‘�’, individuals believe in the rumor, the other opinion is ‘C’, individuals do
not believe in the rumor. The rumor at stake is the object of the discussion within
different social spaces where members—separately in each group—discuss the
issue. Within each social space individuals line up to the opinion of the majority.
In case no majority can be reached, a bias is assumed in favor of ‘�’. The social
structure of the bias and the particular structure of the social space determine the
spreading of the rumor despite a small minority of the population believe in its
truthfulness.

In this chapter, we embed Galam’s model into a network perspective, showing
how it becomes a particular case in which networks consist of a collection of
connected components that are cliques. Then, we use the networks to describe more
complicated social spaces where agents can interact and exchange opinions about
the rumor at stake even if seated at different tables of the social space.

The road map of the Chapter is as follows. First, we present a brief review
of opinion dynamics on networks. Second, we present the features of Galam’s
model of rumor spreading. Third, we show how the social spaces considered in
Galam’s model can be seen as special cases of networks and extend this model to
more general ones. Finally, the results of the simulation and implications for future
research will be discussed.

2 Networks and Opinion Dynamics on Networks

In the last 50 years complex systems approaches have been widely employed to
understand, simulate, and analyze complex systems (Knoke and Kuklinski 1982;
Newman 2010). Among the others, network analysis has a particular attention on the
patterns of connections in a complex system (Newman 2010). Basically, in network
analysis complex systems are modeled as networks and consist of points linked
by lines (Newman 2010). In graph theory terminology, points are called nodes or
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vertices and lines are called edges (Knoke and Yang 2008). Nodes are the elements
and actors of a specific system while edges are connections among them. Some
suitable example of networks are the internet, the world wide web, and the social
networks (Newman 2010). For example, concerning the world wide web, nodes can
be considered the web pages while edges are the hyperlinks to switch from one page
to another.

The focus of network analysis is on relational data (Knoke and Yang 2008; Knoke
and Kuklinski 1982) because of the analysis of patterns of connection in which it
is possible to understand the basics of the structure of complex networks. Network
analysis can provide a further understanding of the regularities of these connection
patterns as well as the absence of relation among them (Newman 2010). For this
reason, the attributes of nodes within a network are not relevant in this kind of
analysis. Nevertheless, network analysis allows to understand how relations affect
individual behavior and the performance of a system.

Some important concepts of complex networks are centrality, small world effect,
and communities (Newman 2010). First, the property of centrality allows us to
have a picture of how important are some vertices rather one other. Among the
other measures of centrality, the degree of a node is a measure OF the number of
lines incident with it. Using this approach, it is possible to identify some central
elements within a system (Knoke and Yang 2008). Second, the small world effect
(Milgram 1967; Travers and Milgram 1969) refers to the fact that some networks
exhibit properties such as high clustering path lengths and short average (Watts and
Strogatz 1998). Third, another property which can arise from network analysis is the
presence of specific subnetworks in a network. The possibility to catch the presence
of subclusters, and links between these subclusters provides a further understanding
on the presence of cohesive subnetworks and thus on how a system is structured
(Newman 2010).

In particular, among the most influential network group ideas, we list cliques
which can be defined as a maximal complete subgraphs of three or more nodes and
can be thought of “as a collection of actors all of whom choose each other, and
there is no other actor in the group who also ‘chooses’ and is ‘chosen’ by all of the
members of the clique” (Wasserman and Faust 1994, p. 254). In the following we
will see the role of cliques in a well known model of opinion dynamics.

Network analysis has been widely implemented to analyze opinion dynamics,
see for example Valente (1996), Amblard and Deffuant (2004), and Altafini (2012).

In Valente (1996), the Author examines collective phenomena as collective action
and diffusion of innovation. In this case, network analysis is employed to understand
the presence of opinion leaders who can attract opinion, to change behavioral
boundaries of influences and to predict trajectories of diffusion.

As argued in Amblard and Deffuant (2004) one of the most used model
of opinion formation is the Ising-like influence dynamics of binary or discrete
opinions. In this paper the Authors analyze the influence of extreme beliefs on
opinion dynamics. In particular, they investigate the emergence of centrism or
extremism in small world networks. Some application of this model on opinion
dynamics in social networks can be found in Barrat and Weigt (2000) and Kuperman
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and Zanette (2002). In both Barrat and Weigt (2000) and Kuperman and Zanette
(2002), the Ising model is applied in small-world networks and provides further
understanding of opinion dynamics under situation of noise, disorder and imitation.

In Altafini (2012) opinions are analyzed in order to understand how the structure
of social networks communities can lead opinions to be divided in two main
polarized factions. In this kind of analysis individuals are the network nodes and
the relations in the networks are represented by edges. By contrast, in Benczik
et al. (2009) the Authors apply network analysis to the study of voter dynamics. In
particular, they investigate how relationships can change according to interpersonal
relations, how preferences affect the strength of connection within individuals in the
network and provide some insight into the analysis of consensus and polarization.
A model of the influence of conformity processes on opinion formation is presented
also in Buechel et al. (2015). There, the Authors present a model of opinion
formation in a social network in which individuals’ opinions are affected by
weighted average of opinions hold by their neighbours. This model provides a
further understanding of how conformity processes influence opinion leadership
and the quality of information aggregation. Another contribution which analyzes
the influence of different topologies on opinion dynamics is Weisbuch (2004).
Moreover, in Lorenz and Urbig (2007) different communication rules and strategies
are analyzed in order to understand consensus. Other interesting contributions about
the interplay between opinion dynamics and network topologies are Fortunato
(2004), and Fortunato (2005). In Stauffer and Meyer-Ortmanns (2004), opinion
dynamics are analyzed considering people connected in scale-free networks. For
a survey on social networks analysis and opinion dynamics see also Lorenz (2007).

3 Galam’s Model

As discussed in the introduction, Galam’s model provides a formalization to
understand how false information (specifically hoaxes or rumors) can be propagated
within a population (Galam 2003). In the Galam’s model we have different social
gatherings and discussions. At the beginning, at time 0, individuals having one of
two possible opinions (‘C’ and ‘�’) meet in different groups which can be thought
as tables with a fixed number of seats. In the course of time, t D 1; 2; : : : the same
individuals will meet again and again randomly in the same cluster configuration of
size groups, and change their opinion according to the majority influence exerted
within the specific group they belong to. Within each group the discussion is
assumed to follow a majority rule dynamics, with a bias in favor of ‘�’ in case
of a local doubt. Interestingly, this model shows how an opinion—despite being
supported by a minority—can, after several social gatherings, be propagated to the
whole population.

Formally, in Galam’s model we have a N-person (finite) population having only
two opinions, ‘C’ and ‘�’. At time t D 0; 1; 2; 3; : : : individuals seat randomly
at different tables T D fT1;T2; : : : ;TLg with L < N. The discussion takes place
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within the people seated at the same tables. Two individuals seating at two different
tables do not share any idea or opinion about the subject at stake. Each table
has a limited number of seats, given by jTrj, and

P
Tr2T jTrj D N. The vector

n D .jT1j ; jT2j ; : : : ; jTLj/ 2 R
L, indicating the number of seats for each table, is

known as social space, see Merlone and Radi (2014).
The social space does not change over time and an individual has probability

ak D k

N

X
Tr2T

ık;jTr j where ık;jTrj is the Kronecker’s delta, (1)

of seating at a table of size k D 1; 2; : : : ;K, where K is the size of the largest table
of the social space. Given the social space n, vector y D .y1; y2; : : : ; yL/ indicates a
generic seating configuration where yr 2 Œ0; jTrj�, r D 1; 2; : : : ;L, is the number of
agents with opinion ‘C’ seated at table Tr.

As shown in Merlone and Radi (2014), assuming y 2 S D f0; 1; : : : ;Ng agents
with opinion ‘C’, the probability of a seating configuration y, can be computed as
follows:

Py .y/ D
�jT1j
y1

� � � � �jTLj
yL

�
�N
y

� where

 
�
�

!
are binomial coefficients (2)

and this 8y 2 ˝y, where ˝y is the set of all possible seating configurations of y
agents with opinion ‘C’ given the social space n:

˝y D
(

y W 0 � yr � min .jTrj ; y/ ; r D 1; 2; : : : ;L and
LX

rD1

yr D y

)

Once seated, at each table of the social space individuals line up with a
consensual opinion. In particular, they agree with the majority at the table they seat.
As in Galam (2003), when opinion is exactly split at an even size table the outcome
is determined assuming a bias in favor of opinion ‘�’. This change of opinion is
described by the majority rule discussion function D

D .yr; jTrj/ D

8̂
<̂
ˆ̂:
jTrj if yr �

j jTr j
2

k
C 1

0 if yr �
j jTr j

2

k r D 1; : : : ;L

Therefore, the probability to move from a state i to a state j, where i and j is the
number of agents having opinion ‘C’, is given by
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Fig. 1 A one step opinion dynamics. First stage, people sharing the two opinions are moving
around. Gray have opinion ‘�’ while black have opinion ‘C’. No discussion is occurring with 9

gray and 15 black. Second stage right, people take place at the tables the social space consists of.
Third stage, within each group consensus has been reached. As a result, they are now 7 gray and
17 black. Last stage, people are again moving around with no discussion

pi;j D
X

y2!i;j

Pi .y/ (3)

where Pi is defined in (2) and !i;j 	 ˝i is the set of seating configurations such that,
starting with i agents with opinion ‘C’, after the discussion j agents end up with
opinion ‘C’:

!i;j D
(

y W y 2 ˝i and
LX

rD1

D .yr; jTrj/ D j

)
(4)

Figure 1 provides an example of how Galam’s model works with a population
of 24 agents and social space n D .3; 4; 4; 5; 8/. According to n entries, the social
space consists of 6 tables, with respective number of seats 3, 4, 4, 5 and 8.

Taking place at each time t D 1; 2; 3; : : :, the described mechanism of diffusion
of rumors can be formalized as an homogeneous Markov process .Yt/t�0 where Yt

is a random variable representing the number of agents with opinion ‘C’ at time t.
In particular, from the transition probability pij, 8i; j 2 S, it is possible to define the
transition matrix Mn D

�
pi;j
�
i;j2S, from which we have that the global dynamics of

such a process is described by the following theorem (see Merlone and Radi 2014
for details):

Theorem 1 (Merlone and Radi 2014) The stochastic process that describes the
diffusion of the opinions ‘C’ and ‘�’ in a population with N agents according to
Galam’s model is an absorbing Markov chain with the property that consensus on
opinion ‘C’, state N (all agents of the population believe that the rumor is fake), and
consensus on opinion ‘�’, state 0 (all agents believe in the rumor), are absorbing
states. Another absorbing state, namely N=2, exists if and only if the social space
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consists of two identical tables with an odd number of seats. No other absorbing
state exists.

This theorem specifies that, excluding the special case of a social space consisting
of two identical tables with odd number of seats, the possible long-run outcome
of the Galam’s model is consensus either on opinion ‘�’ or on opinion ‘C’. The
probability to converge to one of such absorbing states depends on the initial
distribution of opinions among the members of the population. In this respect,
Theorem 1 allows us to use standard technique on absorbing Markov chain, see,
e.g. Ibe (2009), to compute the absorption probability (the probability that the chain
that starts in a transient state will be absorbed in a specific absorbing state) and
the mean time to absorption (the expected number of transitions until the process
reaches an absorbing state, given that it starts from a particular transient state).

Let us consider the example depicted in Fig. 1, for which the absorbing Markov
chain is characterized by only two absorbing states: N, consensus on opinion ‘C’
and 0, consensus on opinion ‘�’.

Although as long as we deal with the original Galam’s model, it is possible
to rely on the closed form expression derived in Merlone and Radi (2014), when
considering more complex social spaces makes such a calculation non trivial.
Therefore, as suggested in Merlone et al. (2015), we use simulation to compute
the transition probability matrix. In particular, for each initial state from 0 to N,
we randomly assign the agents to the seats and compute the state of the process
at the next time. This is replicated 100;000 times in order to provide an accurate
estimation of the transition probabilities (3). This way we obtain the transition
matrices. For example, when considering the social space introduced in Fig. 1, the
transition matrix is reported in (5).

M D

2
6666666666666666666666666666666666666666666666666664

1:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

1:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:99 0:00 0:00 0:01 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:96 0:00 0:00 0:03 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:91 0:00 0:00 0:06 0:01 0:02 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:82 0:00 0:00 0:10 0:04 0:04 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:71 0:00 0:00 0:14 0:07 0:07 0:00 0:00 0:01 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:57 0:00 0:00 0:17 0:10 0:11 0:00 0:01 0:03 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:41 0:00 0:00 0:19 0:14 0:15 0:00 0:02 0:07 0:01 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:25 0:00 0:00 0:20 0:16 0:17 0:00 0:05 0:13 0:03 0:00 0:01 0:01 0:01 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:11 0:00 0:00 0:17 0:16 0:16 0:00 0:08 0:19 0:06 0:00 0:03 0:03 0:02 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:03 0:00 0:00 0:11 0:12 0:13 0:00 0:11 0:22 0:09 0:00 0:06 0:07 0:05 0:00 0:01 0:01 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:00 0:00 0:00 0:05 0:06 0:07 0:00 0:12 0:21 0:12 0:00 0:09 0:14 0:08 0:00 0:02 0:03 0:01 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:00 0:00 0:00 0:01 0:01 0:02 0:00 0:09 0:15 0:11 0:00 0:10 0:20 0:11 0:00 0:06 0:08 0:05 0:00 0:00 0:01 0:00 0:00 0:00 0:00

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:04 0:07 0:06 0:00 0:09 0:21 0:10 0:00 0:11 0:16 0:10 0:00 0:01 0:04 0:00 0:00 0:00 0:00

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:01 0:02 0:02 0:00 0:05 0:17 0:07 0:00 0:11 0:21 0:13 0:00 0:04 0:14 0:03 0:00 0:00 0:00

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:02 0:09 0:04 0:00 0:08 0:22 0:11 0:00 0:06 0:27 0:07 0:00 0:00 0:04

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:03 0:01 0:00 0:04 0:17 0:08 0:00 0:07 0:35 0:09 0:00 0:00 0:14

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:01 0:00 0:00 0:01 0:10 0:04 0:00 0:06 0:37 0:10 0:00 0:00 0:31

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:04 0:02 0:00 0:04 0:31 0:08 0:00 0:00 0:51

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:01 0:00 0:00 0:02 0:22 0:06 0:00 0:00 0:69

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:01 0:12 0:03 0:00 0:00 0:84

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:04 0:01 0:00 0:00 0:95

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 1:00

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 1:00

3
7777777777777777777777777777777777777777777777777775

: (5)

From such a matrix, following Kemeny and Snell (1960), it is possible to
compute the absorption probabilities and expected time of convergence to consensus
as in Merlone and Radi (2014). They are represented graphically together with the



56 U. Merlone et al.

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

 j

 

 

 b
0

 b
24

0 2 4 6 8 10 12 14 16 18 20 22 24
0

5

 j

(a) (b)

Fig. 2 Figure 1 example: (a) absorbing probability to states 0 (gray circles) and 24 (black circles);
(b) expected time of convergence to consensus (either 0 or 24)

expected time of convergence to the absorbing states. The left side of these figures
represents the probabilities to converge, starting from state j 2 S, to the respective
absorbing states. The right side of the figures represents the expected time, zj, of
convergence to absorbing states for each initial state j 2 S. As we are considering
discrete states the dashed lines are there for illustrative purpose only. In this case,
Fig. 2a depicts the absorption probabilities of state N D 24 (0) by black dots (gray
dots) for each state. We observe that for all states smaller or equal than 9, probability
to converge to absorbing states 0 and 24 are 1 and 0 respectively. On the other hand,
from states equal or larger than 21 the probability to converge to the absorbing
state 0 and 24 are 0 and 1 respectively. As it concerns the remaining transient
states the probability to converge to either absorbing state is strictly positive, and
there is uncertainty about the final outcome of the process of opinion diffusion.
Clearly, the probability to converge to the absorbing state N D 24 increases as the
initial number of agents with opinion‘C’ increases and, conversely, the probability
to converge to the absorbing state N D 0 decreases. By the absorbing probabilities
we can identify the so-called stochastic killing point, i.e., the larger initial state for
which the probability to be absorbed into the state 0 is equal to or larger than the
probability to be absorbed into the state N, see, e.g. Galam (2003) and Merlone and
Radi (2014). For a given N-person population, the stochastic killing point depends
on the different configurations of the social space and is used as an indicator of the
rumor diffusion. In particular, the larger the killing point, the higher is the possibility
that the rumor spreads among the population. The other important information is
depicted in Fig. 2b and it is the mean time to absorption, that is the time required
to the rumor either to spread to all members of the population or to decay. As
shown in Fig. 2b, starting with 9 (or less) agents not believing in the rumor, on the
average, it takes not more than two iterations for a rumor to spread; on the contrary,
starting with 21 (or more) not believing in the rumor, on the average, no more than
two iterations are necessary for the rumor decay. Finally, when the initial number
of agents not believing in the rumors is between 9 and 21, the average number
of iterations to converge to a final consensus is 5 iterations, although the final
consensus cannot be determined a priori. These convergence times are consistent
with Galam (2003), which indicate that a rumor either spreads or decays quickly
among a population.
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4 Extending Galam’s Model to Networks

The social space in Galam’s model can be considered as a social network in
which the nodes represent the seats and the connected components are cliques and
represent the tables. This way agents communicate only if seated at nodes belonging
to the same clique. Considering the example depicted in Fig. 1, the network consists
of 5 cliques with respectively 3, 4, 4, 5 and 8 nodes. We remark that the network
implicit in Galam’s model does not change over time; by contrast, the assignment
of each agent to a single node (seat) is randomly determined at each time period.
Specifically, each agent has the same probability to be assigned to any node of the
network and this probability is constant over time.

As social networks can be represented using a graph theoretic notation (Wasser-
man and Faust 1994, p. 95) we use such a notation to formalize our model. In
particular, a social network with an undirected dichotomous relation can be modeled
by a graph G .N ;L / where N is a set of nodes—in our case the seats—and a set
of lines L between pairs of nodes. In our model we have a line between two seats
if and only if agents seated at those seats can communicate. In order to formalize
social spaces we recall some basic definitions.

Definition 1 (Subgraph (Wasserman and Faust 1994, p. 97)) A graph GS is a
subgraph of G if the set of nodes of GS is a subset of the set of nodes of G , and the
set of lines in GS is a subset of the set of lines in G .

Definition 2 (Complete Graph (Wasserman and Faust 1994, p. 102)) If all lines
are present, then all nodes are adjacent, and the graph is said to be complete.

Definition 3 (Walk (Wasserman and Faust 1994, p. 105)) A walk is a sequence
of nodes and lines, starting and ending with nodes in which each node is incident
with the lines following and preceding it in the sequence.

Definition 4 (Path (Wasserman and Faust 1994, p. 107)) A path is a walk in
which all nodes and all lines are distinct.

Definition 5 (Connected Graph (Wasserman and Faust 1994, p. 109)) A graph
is connected if there is a path between every pair of nodes in the graph.

Definition 6 (Component (Wasserman and Faust 1994, p. 109)) The connected
subgraphs in a graphs are called components. A component of a graph is a maximal
connected subgraph.

Definition 7 (Clique (Wasserman and Faust 1994, p. 254)) A clique in a graph
is a maximal complete subgraph of three or more nodes.
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Fig. 3 Some general networks obtained by adding further links to the one considered in Fig. 1.
(a) All tables connected to a 3-size table. (b) All tables connected to the 4-size table. (c) All tables
connected to the 5-size table. (d) All tables connected to the 8-size table

With these definitions it follows

Proposition 1 Any social spaces considered in Galam (2003), Bischi and Merlone
(2010), and Merlone and Radi (2014), can be formalized as a network in which all
components are cliques.

As a consequence of this formalization it is evident that more general networks
can be obtained adding further links as illustrated in Fig. 3.

We illustrate how these additional links may affect the dynamics considering
a particular opinion configuration in the social space illustrated in Fig. 1. We can
assess the role of the additional links by comparing the Figs. 4 and 5. In both cases
the initial opinion is 9 agents with opinion ‘�’ (gray) and 15 with opinion ‘C’
(black). When no additional links are considered we end up with 12 agents with
each opinion (Fig. 4), on the contrary the mere presence of four links makes the
final configuration consisting of respectively 14 gray and 10 black agents (Fig. 5).
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Fig. 4 A one step opinion dynamics starting from 9 agents with opinion ‘�’ (gray) and 15 with
opinion ‘C’ (black) and no additional link between tables

Fig. 5 A one step opinion dynamics starting from 9 agents with opinion ‘�’ (gray) and 15 with
opinion ‘C’ (black) and four additional links between tables

Obviously, these additional links affect the discussion and increase the complex-
ity of the model. Indeed, as illustrated in Fig. 5, after discussion, some agents may
end up with an opinion that is different from those of the other members of the clique
they would belong to if no additional links were considered. This occurs, because
agents with links to other tables may be influenced by agents not belonging to their
clique. This is clearly an element of novelty with respect to Galam’s original model.

As we have seen the social spaces considered in Galam’s original model (Galam
2003) are special cases of networks in which all components are cliques. As we
allow influence between agents seating at different tables the network density
increases as well the complexity of interaction.

This further complexity influences the opinion dynamics as these additional links
may affect the number of situations in which the bias in favor of opinion ‘�’ plays
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a role. We recall that, following Galam’s framework, the bias of the majority rule
function is the agents propensity to believe the rumor (opinion ‘�’) when there is
not a clear majority within the discussion group that does not believe in the rumor.
This bias, together with the configuration of network or discussion groups, affects
the killing point and is responsible for the possible diffusion of the rumor despite
only a minority of the entire population believe in it.

It is interesting to observe how the killing point and the expected time of con-
vergence of the network considered in Fig. 1 are affected when different additional
links are considered as illustrated in Fig. 3. Nevertheless, we do not expect large
differences as the diameter and the density of the networks with additional links
is the same; furthermore such a density is slightly larger than the one of the
original network. As mentioned above, when considering large social spaces we
have to resort to simulation. This holds especially when introducing new links as,
in this case, the calculation of transition probability is not trivial. Therefore, for the
networks considered in Fig. 3 we used simulation. Also in this case we run 100;000

runs in order to obtain estimations of the transition probabilities (3); for the sake of
brevity we omit the matrices. The killing point and the expected time of convergence
for each social network, are presented in Figs. 6, 7, 8, and 9.

When comparing Fig. 2a to Figs. 6a, 7a, 8a, and 9a, the additional links have
some effects on the killing point which moves around 15. By contrast, comparing
Fig. 2b to Figs. 6b, 7b, 8b, and 9b, we can notice that the additional links introduced
in the networks depicted in Figs. 3a–d do not reduce significantly the expected
number of steps to convergence to an absorbing state. As matter of facts, the time to
converge to an absorbing state depends on the degree of connectivity of the network;
for example, in a network in which all nodes are directly connected convergence
would occur in a single step. In this respect, the density of the networks represented
in Fig. 3a–d is only slightly larger than the one without additional links. This justifies
the small differences in terms of the time to converge to absorbing states.
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Fig. 6 Case of all tables connected to the 3-size table (Fig. 3a). Depending on the initial state
j 2 S: (a) probability to converge to the absorbing states 0 (gray circles) and 24 (black circles);
(b) expected time of convergence to consensus (either 0 or 24)
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Fig. 7 Case of all tables connected to the 4-size (Fig. 3b). Depending on the initial state j 2 S:
(a) probability to converge to the absorbing states 0 (gray circles) and 24 (black circles);
(b) expected time of convergence to consensus (either 0 or 24)
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Fig. 8 Case of all tables connected to the 5-size table (Fig. 3c). Depending on the initial state
j 2 S: (a) probability to converge to the absorbing states 0 (gray circles) and 24 (black circles);
(b) expected time of convergence to consensus (either 0 or 24)
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Fig. 9 Case of all tables connected to the 8-size table (Fig. 3d). Depending on the initial state
j 2 S: (a) probability to converge to the absorbing states 0 (gray circles) and 24 (black circles);
(b) expected time of convergence to consensus (either 0 or 24)

5 Conclusions and Further Research

We extended Galam’s opinion spreading model in order to consider more complex
social spaces such as networks. The original model can be obtained as particular
case in which the connected components of the network are cliques.

With the proposed network representation it is possible to extend the discussion
to more general social spaces. This way, Galam’s model can be extended to consider
opinion diffusion on general networks and it is possible to consider more small
world like situations (Milgram 1967; Travers and Milgram 1969). Analyzing some
examples of possible configurations of social spaces which consider forms of inter
table discussion, we provide evidence that this kind of interactions can alter the



62 U. Merlone et al.

dynamics of rumor diffusion. Moreover, we show how adding even a small number
of links may affect the opinion diffusion.

Our contribution represents a first attempt to generalize the social space as
proposed in Galam in order to consider more complex structures. In particular,
the use of networks to specify a social space offers the possibility to analyze
several discussion groups configuration. A detailed investigation of the effects
deriving by considering different network configurations is left to further research.
Given the complexity of interactions, writing the closed formulas for the transition
probabilities can be cumbersome. Therefore, as illustrated by the examples in
this chapter, a strategy to analyze rumors diffusion on such networks is given by
simulation.
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Econometric Aspects of Social Networks

Mariano Matilla-García and Jesús Mur

Abstract This chapter aims to show why and how is it possible to use econo-
metric analysis tools to the empirical study of social networks, what are the
current technical limitations and the open challenges, and what are the theoretical
(micro)economic underpinnings of the (few) recent econometric models that serve
to analyze social interactions in form of networks, neighborhoods, and groups. The
chapter tries also to devise the links between the recent econometric literature (iden-
tification and estimation) on networks and the literature in spatial econometrics.

Keywords Interactions • Neighborhoods • Networks • Spatial econometrics •
W matrix

1 Introduction

In the last 30 years, there has been a renaissance of interest among economists in
the social determinants of individual behavior and aggregate outcomes. Regional,
urban, labor and family economics are specific areas that have made use of networks
formed by neighborhoods. Broadly speaking, neighborhoods do not require to
be defined by geographical proximity, rather they can rely on the notion “social
proximity”, from which spatial proximity is a particular form of proximity. Social
proximity enriches the scope of economic interaction studies, and it does through
the existence and conformation of social networks.

Much of the interest has been on peer effects that are widespread in many
economic domains, being education and labor economics two of most prominent
fields where peer effects have been studied. Peer group influences are understood to
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produce imitative behavior due to an intrinsic (genetic) desire to behave like others
in the group or due to an economic optimal behavior in the sense that the cost of an
action depends on whether the others do the same.

Peer effects are important in as much as there is some kind of social multiplier,
which is one of the main interests of this chapter. Consider the following example.1

A policy maker wants to improve high-school graduation rates and to this end she is
going to (randomly) provide college scholarships. She has two possibilities: either
to choose students from across a set of high-schools, or to choose them among one
or two (but no more) high-schools. It is evident that there will be a direct effect
on those selected students, and if only these direct effects are taking into account
when making a decision by the policy maker, then the second alternative makes no
meaning. However because students of the same school form networks, there can
be a more appealing advantage for the second alternative; namely, concentrating the
scholarships in one school facilitates that granted students induce peer effects that
affect all students in the school, including those who were not granted, but that are
in the network. In other words, there is an amplification of the consequences thanks
to the existence of a network. Identifying these multiplier is a central objective of
the econometric research in social networks. Social networks have applications in
other social and economic contexts, and the relevant literature has shown interest is
areas where spillovers occur between industries that share some degree of similarity
(industrial, technological or locational) or between individuals.

In this chapter we are particularly concerned with econometric modelization and
estimation problems that appear when dealing with social networked data sets. We
try to provide a synoptic view that may be insightful to theorists and practitioners.
Econometric analysis tools for the empirical study of social networks are generally
based on linear models. We explore the main current available techniques, and
show some technical limitations and challenges. We also try to devise the links
between the recent econometric literature on networks and the fairly well established
literature based on statistical tools and methods develop in spatial econometrics.
In doing so, the role play by sociomatrices are crucial. These matrices are also
important when considering the problem of identifying social interactions in various
empirical contexts. Somehow econometric identification in networks is a variation
of the classical identification problem of simultaneous equations systems that reflect
the specific structure of social interactions models.

One reason social networks matter in social interactions analysis is because they
facilitate identification by breaking the reflection problem. Unidentification is not
a minor problem because, at the end, it refers to the recovering of the structural
parameters from the reduced form parameters. If this is not possible, we can not
discriminate between the different mechanisms of social interaction, which is the
main objective of this literature; at the best, we will be able to test for the existence
of social interaction. It is clear that identification is not an econometric issue, but it
depends on the fundamentals of the model and the way the sampling information is

1The same example has been used throughout the literature on neighborhoods effects.
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collected. In this sense, the question of how individuals interact is a key point, as
highlighted by Bramoullé et al. (2009), who demonstrate that it is easier to attain
identification in the case that individuals interact in groups, like peers in the same
classroom, than in a single network, like friendship relationships. Nonlinearities,
heterogeneity, measures for the ties among individuals, : : : are other factors usually
employed in the literature to attain identification.

A typical social interaction model has to cope with, at least, three basic problems:
simultaneity, because of the presence of lags of the endogenous variable in the
right hand side of the equation; the existence of unobservable effects in the case of
group interactions which, if correlated with the observable x variables, results in the
correlated effect of Manski (1993), and the selection bias or the endogenous group
membership problem related to the way individuals in the network form their own
reference group. Some innovative lines, appeared recently in this strand of literature,
refer to the use of centrality measures in the networks, reflecting that the nodes
(individuals) have different bargaining power, and the introduction of dynamics into
the models. Both issues raise econometric technicalities that are under discussion in
the literature.

To this end Sect. 2 deals with exploring the long tradition in economics in
the study of social interactions and the reasons for the current renaissance under
the umbrella of social networks. Social networks models provide a elemental
focus on the microeconomic structure of interactions emphasizing heterogeneity
in these interactions across individual pairs. Section 3 presents the microeconomic
fundamentals for agents to interact through a network and shows how is it possible
that economic based decisions give rise to the possibility of using linear econometric
models, like the well-known linear-in-means models, among others. The correct
identification of the model allows for the estimation of peer effects and other direct
effects. These effects are then used to the estimation of social multipliers. As
stated in Sect. 4, the ‘reflection problem’ of Manski (1993) directly points to the
identification issue as one of the main concerns in the field, that must be checked,
by the econometrician, case-by-case. Section 5 is devoted to connections between
micro-foundations and econometric inference on network models. Section 6 focuses
on the specification of econometric models of social networking. To some extent,
this literature has evolved paralleling the literature on spatial econometrics because
the two deal with similar problems in which interaction is a central point. We review
the most recent econometric literature, appeared mainly in the last decade, dealing
with all these problems. The results seem to be satisfactory in the sense that the
researcher has an adequate toolkit to cope with them. Finally, Section7 returns back,
once again, to Manski (1993), to the problem of identifying the reference group for
each individual. Often, applied literature assumes that the econometrician has this
information but this is a very demanding hypothesis. We introduce the key points of
a long standing discussion that is taking place, on the same question, in the spatial
econometrics literature: how to specify the adjacency or weighting matrix. The most
common and simple approach consist in building this matrix exogenously using
prior knowledge from the researcher, which may lead directly to unidentified models
if this information is wrong. There are other proposals that suggest estimate the
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matrix from the data which are, from our perspective, a step forward on a journey,
yet long and complex. Another way of approaching the problem focuses, directly, on
the endogenous treatment of the adjacency matrix which requires of some additional
information, in the form of instrumental variables and the like. Section 8 revises the
most popular and, perhaps, useful software in the field. The chapter finishes with a
brief section of conclusions and final thoughts.

2 Social Interactions Through Social Networks

Social interactions are central to social sciences and, particularly, for economics.
Social networks clearly can help to the understanding and to the study of social
interactions. This is so mainly because social interactions studied via social
networks seem adequate to solve a relevant problem in the social sciences, namely,
the observation of large differences in outcomes in the absence of statistical relevant
differences in the fundamentals.

The term ‘social network’, as used in this chapter, has to be distinguished
from the platforms (social network services or sites) that serve to build social
networks or social relations among people who share related interests, activities,
backgrounds or, in general, real-life connections. Mostly these platforms are web-
based providing means for users to interact, to share information, opinions in
different forms. In this regard, social networks platforms or sites or services are,
broadly speaking, social media. These social network services provides means for
social interaction; therefore, they are also an object of scholarly research as they
play a key role allowing people to interact on a regular basis, or even sporadically.
These interactions influence our decisions, preferences, information, constrains and
expectations.

Of course, social networks have been subject of scholar study before the
existence of Internet. Understanding how social networks (interactions) influences
economic activity has been central for economics since Adam Smith, particularly
in The Theory of Moral Sentiments (more clearly than in The Wealth of Nations)
where Smith focused on explaining economic behavior of economic agents that
interact mainly with acquaintances or a reduced number of connected agents. In
this framework, social networks facilitate particular forms of externalities in which
the decisions or actions of a reference group affect an individual’s preferences. The
reference group can be relatives, neighbors, friends, peers, and so on, depending
on the context where the decisions or actions are taking place. As in Smith, these
actions or interactions are not necessarily regulated by price mechanism.

Perhaps the most remarkable initial contribution to the economic literature on
social interactions is Schelling’s (1971; 1972) formal analysis on the influence of
social groups in individual behavior. Of particular interest is how Schelling’s models
have implications for the sorting of agents (individuals) and activities (firms) across
the space. Segregation across space is a possible equilibrium when there are some
type of interaction models even for individuals that are eager and content to live in
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an integrated neighborhood, as long her/his group does not form a small minority.
This line of reasoning based on interactions (possible, non-market interactions) also
help in explaining cities agglomerations, massive fast social movements and fashion
followers. Apart from Schelling, earlier less formal contributors to the literature
on social interactions are Veblen’s (1934) analysis of conspicuous consumption,
Duesenberry (1949) and Leibenstein (1950). If social interactions are central since
the origins of economic analysis and some relevant scholars were aware of it, how
is it possible that economists did not pay enough attention to its study?

Scholar economists did pay attention to social interaction. The heart of noncoop-
erative game theory encourage economists to understand all interactions as games,
being markets special cases of interactions. Once that economics has broadened its
scope, it is realistic to treat and analyze non-market economic interactions. This
is the case for studying the evolutions of institutions and social norms, employ-
ment patterns, schooling outcomes, participation in welfare programs, residential
segregation, crime rates, diffusion of ideas, human ecology, organizational studies,
industrial agglomerations, and urban design, among others. All these topics have
been covered by economic analysis, although not all of them by means of social
network analysis.

The study of social interactions via social networks is more recent. The main
reason for this delay is the (scarce) availability of data, together with the inherent
difficulty of drawing inferences from the data. From this viewpoint social network
analysis is part of the network science, which considers and represents individuals
by nodes and the connections among them by as links (edges). Network science
not only considers complex networks as social networks, but also telecommuni-
cations networks, computer networks, biological networks, and semantic-cognitive
networks.

Many, but not all, market services and goods are contracted upon via networks
and therefore the prices, products and the terms of trade that evolve and appear
in such networked markets can crucially depend on who is connected to whom.
It makes sense that, for centuries, many economic interactions have been held
provided that there was a social network. Currently, depending on the size of the
market, this is also true. This has been extensively studied for the job market where
networks have the role of transmitting information to workers about the specifics job
opportunities, and also the role of transmitting information to firms on the potential
fit of different workers. In general, there are transactions that might benefit from
placing them within the context of a network of transactions as long as the network
might help to circumvent difficulties inherent in a given transaction, for example,
those where reputation and repeated relationships are critical to make transactions.

Non-market economic issues like diffusion of opinions, behaviors (criminal,
philanthropic actions, charity), technology and, even, diseases, are also clear
situations where social networks make a role. The same network role appears in
learning processes at any cognitive stage, making education a preferred target of
network analysis (Benhabib et al. 2011).

What does make the network important, either in market or non-market activi-
ties? The activation of a social multiplier which happens when the marginal utility to
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one person of undertaking an action increases with the average amount of the action
taken by her/his peers. Social networks (its existence and iarchitecture) facilitates,
and qualifies, that a change in fundamentals had a direct effect on behavior and
an indirect effect of the same sign. That is, the behavior of your peers affects
fundamentally your own decisions via indirect effects. The result of these indirect
effects is the social multiplier. The size of the social multiplier depends on the social
network. Phenomena like market crashes, industrial locations, social norms seem to
be characterized by large variations in the endogenous variable relative to a (small)
change in the fundamentals.

Economic fundamentals are also able to explain the formation and evolution of
social networks. Agents (individuals and firms) choose their relationships based on
the payoffs that emerge as a function of the network. Naturally, there are well-
established and known ways that explain the formation of networks in general. In
this context, individuals choose friendship that make them happy (benefit them),
also firms choose other firms with which to make transactions or companies pick
out which workers to hire to improve specific purposes (reducing risk, for example).
As anticipated in this chapter and also in others chapters of this book, there are other
ways that explain the formation and creation of networks, like the random network
approach, which try reproduce some observed features of social networks.

An important point is that social network is worthy to be studied as long as we
can carry some kind of empirical analysis. That is to say that we want to look for
regularities and patterns, and also, if possible, we want to make some inferences for
causal and non-causal economic relationships. These objectives are, by no means,
straightforward to accomplish

As way of example, Patacchini and Zenou (2010) work with the National
Longitudinal Survey of Adolescent Health (AddHealth), analyzing the role of
conformism (that is, the strategy of blending with the surrounding and to do nothing
to draw attention to oneself) in juvenile crime from a network perspective. The
main hypotheses are that conformism and deterrence are key factors to explain
teenagers decisions to commit crimes. The Survey offers information on the
friendship network for each teenager but there are severe problems of identification
and measurement due to simultaneity (the reflection problem) and endogeneity
(self-selection and unobserved correlated group effects). Conformity means peer
effects and deterrence a collection of other conditioning factors (family ties,
residential neighborhood, school environment, etc.) that leads the authors to a mixed
autoregressive model or (spatial) lag model. Using the same Survey, AddHealth,
Hsieh and Lee (2014) analyze peer effects on academic achievement, GPA index,
and smoking behaviour once again through a social network approach. The authors
exploit the information about the friendship network of each teenager assuming
that young people in small groups tend to obtain higher average GPA and a better
(least) smoking behaviour. To a great extent, both assumptions are corroborated in
the study, which reinforces the importance of the group of close friends. A correct
treatment of this issue implies consider the endogeneity in the friendship network
formation and the selection bias.
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The works of Patacchini and Zenou and Hsieh and Lee are, from our view point,
outstanding examples of the singularities inherent to this delicate research field
which requires of very specific analytical techniques. The following section deals
with economic based models that make possible that the observed social network
data can be used for conducting econometric studies.

3 Micro-Foundations for Econometric Analysis

We consider that social interaction takes place within a network of N agents.
A model of social interactions studies the joint behavior of the agents who are
members of this network. The primary aim is to probabilistically describe the agent
choices, that we will refer by yi, which are made from a set of possible outcomes
Yi. For each i, we denote with y�i the choices of others in the network, which are
potential sources of social interactions.

Each agent in the network is described by a vector of attributes, say, x�
i . This

vector contains observable (to other agents and to the econometrician) and non-
observable attributes relative to agent i, so x�

i D Œxi; zi�, where z refers to a non-
observable set of attributes.

Agent choices fyiI i D 1; 2; ::;Ng represent the maximization of some payoff
function. As we represent economic agents interacting through the network, it is
reasonable that a decision may affect the actions of other agents via the three key
elements, which provide the micro-foundations to the decision problem: preferences
(represented by the payoff function), constraints (captured in the set Yi), and
expectations, that is, some structure on the beliefs each agent possesses about
behaviors of others in the network.

The payoff function is an utility function for which agent’s utility depends on:
individual’s (1) own action and (2) own attributes, network member’s (3) actions
and (4) attributes. A common form of utility function is

Ui D vi
�
x�
i ; x��i; �

�
yi � 1

2
y2
i C ˇ � f . yi; y�i; �/; (1)

with jˇj < 1.
vi.�/ is a private part of the utility function that depends on members’ attributes,

but also (see below) on the network. The middle term reflects the private costs of
action. f .�/ is a social component of utility that depends on agent own actions, other
agents actions and also (see below) on the network structure.

In the private part of the utility function, network effects are known, since
Manski (1993), as contextual-effects or exogenous-effects, capturing the direct
influence of others’ attributes on i’s decisions. In the social part of the utility
function, network influences are known as endogenous-effects (also referred as
peers-effects), capturing the influence of the decisions of the members of the
network on own actions of agent i.
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The network structure is introduced in the utility function through We (endoge-
nous) and Wx (exogenous) sociomatrices or adjacency matrices. Both matrices can
be the same or can be different. These matrices can be redefined to normalize the
information of their rows and columns.

A typical and recently appeared formulation using these matrices is Blume et al.
(2015):

vi.Wx; X/ D x�
i �� CWx.i/Xı

where X is a N 
K matrix of networked agents’ attributes and Wx.i/ denotes the ith
row of the matrix. The second term captures contextual (exogenous) effects on i’s
behavior. The first term indicates that marginal private utility is linear in individual’s
attributes. Provided that x�

i incorporates non-observable (private) characteristics of
agent i, it is convenient to rewrite that expression as follows

vi.Wx; X/ D xi� CWx.i/Xı C ui

where ui refers to a vector of random agent-level attributes describing agent i, so
accounting for individual heterogeneity unobservable to the econometrician. For
simplicity many studies suppose that there is only one observable attribute and also
one non-observable characteristic, although it is not compulsory because results are
easily generalized. To complete, notice that Wx.i/X DPj !x;ijXj so the product can
be understood as a contextual weighted average of agent peers’ attribute vectors.

On the other hand, the term f . yi; y�i; �/ captures endogenous effects
f . yi; y�i; We/, and its form depends on whether we model social interactions as
emerging from social norms or from strategic complementarities. Particularly, we
can consider the average action of agent i’s peers, that is

Wey D
X
j

!e;ijyj:

In this case, agent i can obtain utility of the following type

f . yi; y�i; We/ DWeyyi D
X
j

!e;ijyj � yi

which implies that an agent gets pleasure from jointing or matching with peers.
Therefore the utility function (1) will be

Ui D
�
�xi C ıWx.i/XC ui

�
yi � 1

2
y2
i C ˇ �Weyyi; (2)

where 0 < ˇ < 1.
Symmetrically, the agent can obtain disutility when not conforming with net-

work’s members, that is, there is social pressure (social norm) to conform, and
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therefore the utility function (1) can be characterized as

Ui D
�
�xi C ıWx.i/XC ui

�
yi � 1

2
y2
i C

1

2
ˇ � . yi �Wey/2 ; (3)

where �1 < ˇ < 0. The last term is a distance between agent i’s action and the
weighted average of networked members.

Utility functions (2) and (3) posit the existence of both endogenous and
exogenous social interactions. Particularly, the marginal utility associated with an
change in yi increases with respect to the average action of network members, Wey.
In the two utility functions of (2) and (3), the ˇ parameter captures the strength of
any endogenous social interaction through the network:

@Ui

@yi@Wey
D ˇ

which reflects that own- and peer-effects are complements.
On the other hand, the marginal utility of yi also varies with member attributes:

@Ui

@yi@WxX
D ı;

which indexes the strength of exogenous effects or contextual effects. Notice
that this effect is common to the two utility configurations, hinting that both
characterizations are, in this sense, equivalent.

Summing up, Ui. yi; y�i/, in any of the configurations, shows that an agent’s
utility depends upon her or his own choice and the choices of others. To look for
the best response function of each agent, it is considered that all actions are chosen
simultaneously under a setting where information is incomplete. Each agent makes a
decision to maximize expected utility given their private information and the public
information about others, that is, given Œx; zi� 2 RNC1. To form beliefs (expectations)
there is a priori probability distribution � of the set of all Œx; zi�, i D 1; : : : ;N. Then,
a conditional distribution of � given Œx; zi� reflects agent i’s belief on others members
attributes (see Blume et al. 2011 for more details on expectation formations).

To find the best response in this simultaneously incomplete information game,
the Bayes-Nash equilibrium concept is required. An equilibrium action is such that
no agent can increase her or his utility by changing her action given the actions of
all other agents in the network, assuming that beliefs are correct.

Interestingly for the aim of this chapter, the first order condition for optimal
action with (1), given the strategy profiles of other agents, generates the following
best response function

yi D �

1C ˇ
xi C ı

1C ˇ
WxXC ˇ

1C ˇ
WeE .y jx /C 1

1C ˇ
ui: (4)
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The econometric model implied by (4) leads, after configuring or restricting
sociomatrices, to the well-known linear in means model introduced by Manski
(1993) and followed by other scholars. Particularly, linear-in-means models have
the following (shared) sociomatrix for each member of the network:

wij D
(

.N � 1/�1 if i ¤ j

0 if i D j
: (5)

Notice that the econometrician have a dataset formed from a random sample of
networks, so it is possible that agents belong to one network but not others, and
therefore i’s agent could be non-networked with j’s agent. Given this sociomatrix,
model (4) reduces to

yi D �

1C ˇ
xi C ı

1C ˇ
NxC ˇ

1C ˇ
E .Ny jx /C 1

1C ˇ
ui; (6)

where agents actions vary with the average action of those whom s(he) is directly
connected, Ny, her or his own observed attributes, xi, the average attributes of direct
peers, Nx, and unobserved attributes, ui.

Interestingly, neighborhoods can also serve as a mean to analyze social effects
(see Durlauf 2004). Neighborhood’s based models generate sociomatrices from
agents’ relative locations. Unlike linear-in-means model agents, those models
are not partitioned into non-overlapping structures, but an i’s agent can have
connections with more than one neighborhood and hence her influence can be more
widespread than other agent with less connections. For this kind of models the
sociomatrix is of the following form

wij D
(

.nh/
�1 if j 2 nh

0 if j … nh
;

where nh is the number of agents in neighborhood h, which are agents to whom a
given agent, say i, is connected with.

Linear-in-mean models (either via neighborhood or other channels) share the
facts that social interactions are generated through level of group-specific averages
and that there is only one type of connection between agents. Sociologists have
insisted in that is worthy considering much richer social networks so that the
network allows for heterogeneity of interactions across pairs of agents. Different
kinds of connections in a social network have an impact on network potential
outcomes.

Sociomatrices can cope with this demand. The basic linear-in-means model
assumes that W is symmetric binary, that the edges of the network are bidirectional,
and that there is transitivity in the structure. To this end wij are either 1 or 0. For each
pair of agents i and j, wij D 1 if these agents are socially connected and 0 otherwise.
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However, W can express richer specifications of social relations by allowing the
elements of the sociomatrix to be arbitrary real numbers. In such models, the degree
of influence j has on i is measured by the magnitude and sign of the real number wij.

For example, connections between agents can be separate in two groups, say,
strong and weak. Agent i can have a given number of weak connections, niW , and
strong connections niW . Then, the sociomatrix has the following form

wij D

8̂
<̂
ˆ̂:

.niW C 
niS/�1 if j is weakly connected to i,


.niW C 
niS/�1 if j is strongly connected to i,

0 otherwise

where parameter 
 is a ratio of the strength of strong to weak connections.
The behavioral equation of (4) provides also an intuitive bridge between social

interaction and spatial interaction. Such equation can be interpreted as a SAR
model with one spatial lag. Indeed, sociomatrix We could capture the strength
of the social interactions between two agents, but also the effect of any kind of
social or geographical distance. This relationship has been defended in Lee (2007),
Bramoullé et al. (2009) and Lee et al. (2010), allowing for a social structure also
in the error term. In particular, spatial-type autocorrelations in the errors assume
that the vector of shocks, for a given agent of a given group, consists of the sum of
group-specific fixed affects and a stochastic group-specific component. Such group
relations are characterize by another sociomatrix, let us say Wu, coincident or not
with Wx and/or We.

3.1 Economic Identification

It has been said that the Bayes-Nash equilibrium equation (4) embraces a rich
variety of network structures, which in fact indicates that linear models, like those
is studied and applied in the literature, are economically well-founded. Although
micro-foundation is important, researchers have focused more their attention in
analyzing under what circumstances (conditions) the models implied by (4) are
identified.

Identification is central in these types of models, so it is worth to extend a bit
more its treatment before going into the econometric details. In short, identification
means the ability to recover .�; ı; ˇ/ from the set of observables. In this micro-
motivated setting, it implies to identify the parameters of the utility function. Let us
write the model of (4) in matrix form as

y D ��XC ı�WxXC ˇ�WeE .y jx /C Qu:
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Provided that y are observed, the econometrician faces the following sampling
analog model

y D ��XC ı�WxXC ˇ�WeyC Qu;

which can be solved for y

y D �I � ˇ�We
� �1

�
��XC ı�WxX

�C �I � ˇ�We
��1 Qu:

In continuation, let us assume, for simplicity, that sociomatrices are the same
and that there are only endogenous effects in the model. The last equation therefore
simplifies to

y D �I � ˇ�W
��1

�
��X

�C �I � ˇ�W
��1 Qu: (7)

Taking into account the series expansion

�
I � ˇ�W

� �1 D
1X
kD0

ˇ�kWk;

Eq. (7) is

y D
1X
kD0

ˇ�kWkX�� C
1X
kD0

ˇ�kWk Qu

After simple algebraic manipulations, the last equation can be written as

y D ��XC
"�

��ˇ�� 1X
kD0

ˇ�kWkC1

#
XC

" 1X
kD0

ˇ�kWk

#
Qu:

The last expression displays the social multiplier effect, introduced in the
example of Sect. 1 and motivates the importance of networks effects. Consider now a
policy (public or private) which increases by d the ith agent’s value of xi. The change
affects, firstly the outcome of agent i by d��. Then, agent i0s friends will best reply to
the increase in agent i0s outcome, and therefore all friends of agent i will experience
outcome variation, particularly d��ˇ�W. As a consequence of this second round
of reactions, agent i0s friends’ friends change (as best response) their outcomes by
d��ˇ�2W2. In general, in the k-round, the change will be d��ˇ�k�1Wk�1. The long-
run or full effect of the initial change in xi on the optimal response will be

d�� �I � ˇ�W
� �1;

which is understood as the social multiplier.
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Notice that according to the notion of social multiplier, policy-makers can take
advantage of the structure of the social network W to efficiently target interventions;
they can do it at low cost, as long as the cost of perturbing xi does not vary with i.
For this result to be operational, it is needed that endogenous (but also exogenous)
effects can be identified and distinguished from other sources of heterogeneity.
Put it differently, outcomes of members in a common network tend to covary.
Isolating (identifying) the true nature of this covariance, either from spillovers or
from heterogeneity is useful. The distribution of outcomes can just be modified by
adding or deleting networks’ links, being then a potential powerful political tool.

It is now evident the important role of sociomatrices. As in the context of spatial
econometrics and spatial statistics, sociomatrices have been considered central
pieces of analysis and, generally, as known (given) for the researcher. It is possible
that sociomatrices are chosen for theoretical reasons, but also is possible that they
are just empirical constructions. It is therefore a common assumption to consider
the W matrix as given.

The fact that the vast majority of applied and theoretical studies have considered
that We and Wx are the same is a limitation, because is not well motivated
why these weights must coincide. Moreover, it seems more feasible to obtain
information about exogenous-effect matrix, Wx, than for We which captures a
primitive proclivity to act similarly to others. Sometimes the Wx can be thought
of formed from some type of (social or even physical) distance. Recent theoretical
research on how to identify the model consists on looking for the restrictions that
allow for identification when there is only knowledge of Wx, but not from We.

The distinction between We and Wx is well established in a spatial econometrics
context and, more important, this literature has dealt recently with the issue of
unknown sociomatrices, pointing that they do not necessarily have to be known
(Sect. 7 abounds on this issue). In practice, the observer-researcher has informa-
tion about connections between individuals or firms, but not the sociomatrices
themselves. In this context, the researcher needs to interpret the data on direct
connections in terms of sociomatrices. Consider, for example, the case of a dataset
formed from a survey where respondents indicate to whom they are connected, but
not the weights corresponding to each relation. Once again this fact highlights the
link between network econometric literature and spatial econometric literature.

4 The Reflection Problem and the Lack of Identification

As indicated, in the last decades there has been a revival of the interest in social
interaction, neighborhood effects and social dynamics, which has spurred the
research on the subject. At the same time, applied literature has receive a strong
impulse especially after the seminal works of Manski (1993), Brock and Durlauf
(2001) and Moffitt (2001). The first of them coined the term ‘reflection problem’
that appears when, observing the behavior of a population, we try to infer whether
the behavior in a group influences the decisions of the individuals that is part of the
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same group. It is difficult to disentangle if the collective behavior of the group is
causing the decisions of the individuals or the former is a mere reflection of the last
ones. This problem appears explicitly in Eq. (4), where E. y jx/ integrates yi, and has
been the reason of a long-standing econometric discussion.

A consequence of the reflection is that renders the model unidentified, unless the
researches introduces additional information. For example in the case of the simple
model in (6), it is immediate to obtain that E. y jx/ D .� C ı/E.x/. The reduced
form follows from the sample analog of E.x/; then we obtain:

yi D �

1C ˇ
xi C ıˇ C .ı C ˇ/

1C ˇ
xC 1

1C ˇ
ui (8)

It is possible to test for the presence of social effects in the equation, given that the
composite parameter ıˇC.ıCˇ/

1Cˇ
will be different from zero whenever ı or ˇ, or both,

are different from zero; however is not possible separate the effects of contextual
and endogenous factors. The variance of the error term can not help us to attain
identification.

The social interaction model in Manski (1993) is a bit more elaborated but the
conclusions remain the same: identification is problematic in these kind of models
and must be checked case-by-case. For instance, the problem with the example of
(6) is that the conditional mean of y is proportional to the mean characteristics
of the agents in the network, E. y jx/ D .� C ı/E.x/. In order to break with this
constraint we would need more heterogeneity in the form, for example, of a sample
made of several networks, a sequence of sociomatrices with weights different
from that of (5), nonlinearities (Brock and Durlauf 1995) or directly resorting to
experimentalism (Keane 2010).

The identification problem is closely related to how individuals interact. We
can distinguish two main approaches: through social networks (a structure made
of nodes, individuals, that are tied by some specific type of dependence such as
friendship, scientific collaboration, spatial location, etc) or in groups (there is a
partition of the population in subsets so that each individual is affected by all others
in their group but none outside it; classical examples are mates in a classroom or
segregation patterns). As shown in Bramoullé et al. (2009), identification is easier
in the case of group interaction where, in general, it suffices that at least two groups
have different size (of course, there must be social effects in the model); this is
their Proposition 2, where identification arises due to the impact of group sizes
on reduced-form coefficients within each group. In the case of interaction through
social networks and according to Proposition 3 in Bramoullé et al. (2009), the
conditions are the existence of social interactions, as before, plus the restriction
that the endogenous sociomatrix, We, its square, W2

e and the identity matrix, I, be
linearly independent. In this case, identification arises from the use of instrumental
variables built as powers of the sociomatrix that multiply the x’s variables. A
sufficient condition is the existence of intransitive triads in the network which
imply that the friends’ friends are not necessarily my friends or that the neighbors’
neighbors are not necessarily my neighbors.
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5 Model Specification

The model of Manski (1993) has become an obliged reference for the applied
literature due of its simplicity, consistency and flexibility:

yi D 
0 C 
1E . y jg /C E .x jg /
0


2 C x
0

i
3 C ui (9)

where yi is the outcome of individual i (qualifications, productivity of the factory,
housing value, etc.), xi are a set of k factors that directly affect the outcome
of individual i (ability, formation, appliances in the house, etc.) and g attributes
characterizing the reference group for i. There is social interaction because the
behavior of i varies with the collective behavior of the group, given that 
1 ¤ 0,
and also because the exogenous factors corresponding to the group have an impact
on the behavior of i, given that 
2 ¤ 0. Of course, the econometrician observes
. y; x; g/ and then builds the sample (linear) analog of (9) as:

yi D 
0 C 
1WeiyCWxiX
2 C x
0

i
3 C ui (10)

In the following, to simplify the notation, we assume that the two adjacency
matrices are the same We D Wx D W. The sample size is N. In the case of social
networks, W is a general .N 
 N/ matrix with zeros in the diagonal (individual i
is not considered as being part of its own reference group; the exception is Manski
1993), with nonnegative weights, not necessarily symmetric and typically subject to
some normalization (row/column sum to one, maximum eigenvalue, etc.; Corrado
and Fingleton 2012, for details). In the case of group interaction, the size of each
group is NjI j D 1; 2; : : : ;G and the adjacency matrix is block-diagonal where each
matrix in the diagonal is

�
Nj 
 Nj

�
.

The treatment of an equation like that of (10) presents some difficulties. The first
is simultaneity, a problem very well-known in the spatial econometrics literature and
connected to the presence of the lag of the outcome variable in the right hand side
of the equation, Wy. It is clear that if factory A0s decisions affect factory B0s actions
and vice-versa, this generates a conventional simultaneous equations problem. In
short, we cannot regress directly factory A0s actions on factory B0s. The econometric
toolkit contains a great variety of estimation algorithms suitable for this case (IV,
GMM, QML, etc.).

A second question, more subtle, is the correlation between unobservables
which arises in the case of group interaction. If there are unobserved effects
in a behavioral equation, that is structured in groups, it is natural to think that
these unobservables vary across groups. Let us call the unobserved effects as
�jI j D 1; 2; : : : ;G. Moreover, it is very likely that the unobservables are also
correlated with the observed characteristics of the individuals (with the x variables),
so that E

�
�jI xj

� ¤ 0. This is the correlated effect introduced by Manski (1993)
as E

�
�j

ˇ̌
xjI g

� D g
0

� being � a conformable vector of linear parameters. The
unobservables arise from a variety of sources. For example, we may think in the
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case or unobserved preferences encouraging that individuals tend to locate where
there are other individuals of the same type, like in the models of social segregation
(Schelling 1978) or the tendency for the companies to cluster in space to benefit
from different types of agglomeration economies (Fujita and Thisse 2002). The
two cases are endogenous group membership models, and it is very likely that
the unobservables are correlated with the characteristics of the individuals in the
groups. For the case of exogenous group membership models, the unobservables
may represent contextual, or environmental, influences such as school ethos, sense
of security in the neighborhood or confidence in the political institutions of a region.
The meaning of all these unobservables is rather clear in the respective model, but
they are hardly measurable by the econometrician.

The consequences of the correlated effect are well-known in the econometric
literature, implying that the LS estimation of Eq. (10) yields inconsistent estimates
of all the 
 0s. In particular the LS estimate of 
2 and 
3 will be severely upward
biased as the covariance between the x0s and the unobserved effect, �j, increases.
Note that part of the regressors represent the average across individuals in a
group, which likely increments the correlation between the unobservable and the
observable terms. Thus, endogeneity due to correlated unobservables is a new risk
factor for identification.

Consistent estimation of (10) requires breaking the correlation between the x0s
and the unobservables. Moffitt (2001) suggests a randomization assignment of
individuals to groups, which can be useful if the source of such correlation is a
endogenous group membership. More simple is the solution of Bramoullé et al.
(2009) which, similar to the within transformation in the panel data literature,
consists in taking local differences to eliminate the unobservables:

.I�W/y D .I�W/
0C
1.I�W/WyC.I�W/WX
2C.I�W/X
3C.I�W/u
(11)

This transformation is useful in the case that the adjacency matrix has been
row-standardized. However, there is a price to pay for this transformation: bits of
information have been lost to compensate for the presence of correlated effects,
which makes identification more difficult. Now the identity and the powers of the
adjacency matrix, up to order three, must be linearly independent in order to ensure
identification in model (11); simply, the diameter of the network should be greater
than or equal to three (where diameter means the maximal distance, in terms of
connections, between two nodes in the network). Bramoullé et al. (2009) show that
if a model is identified after local differences,will be also identified when taking
global differences (the deviations are obtained with respect to network means, not
with respect to the group means).

The endogenous group membership is a different question which leads directly
to inconsistent LS estimates. In this case, the model is made of two structural
equations. One is the behavioral equation of (9) whereas the second describes
how the groups are formed. It is clear that each individual decides to join a given
group based on personal utility maximization considerations. This function may
depend on several factors, among which should appear the individual and group
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average characteristics and mean structural errors from (9). The consequence is that,
ignoring the endogenous group membership pattern, leads to a model that is, once
again, unidentified. The LS estimates will be inconsistent because the x0s regressors
of (9) are not independent from the error terms of the equation. This is know as the
selection bias in the econometrics literature. The consequences are identical to the
correlated unobservables issue; in fact, group membership selection equation gives
specific form to this correlation. Section 7 resumes this discussion.

6 Estimation Issues

The technicalities for estimating social interaction models have evolved somewhat
in parallel to the spatial econometrics literature; in fact, often is difficult distinguish
between both kind of models. Starting from (10), it is usual to capture the group
unobservables through a fixed effect in the equation so that (Lee 2010):

yj D 
1Wjyj CWjX2j
2 C X1j
3 C �j˛j C uj (12)

where yj, X1j and X2j are the vector and matrices of the Nj observations in group
j (X2j contains the contextual variables and X1j the personal attributes of the
individuals forming the group; both sets of variables can coincide); ˛j is the fixed
effect of the j-th group and �j a

�
Nj 
 1

�
vector of ones. The error term is assumed

to be i:i:d:N.0; �2/ and the adjacency matrix corresponding to this group, Wj, is
exogenous, known by the econometrician and conforms to usual rules (Kelejian
and Prucha 2001). In the peer effects model this matrix has a specific form:

Wj D 1
Nj

�
�j�

0

j � Ij
�

.

Lee (2007) points that model (12) is not identified in the presence of unobserv-
ables and suggests to use the within equation, equivalent to the local differences
of Bramoullé et al. (2009). Identification in this case is attained when different
groups have different numbers of members. Identification can be weak, especially if
the size of the groups is very large. Note that the within transformation is useful
only for the peer effects model. In a more general case, where the adjacency
matrix reflects other interaction mechanisms, Lee and Yu (2010) develop the so-
called orthonormal transformation using the eigenvectors of the matrix Wj D
1
Nj

�
�j�

0

j � Ij
�

. Multiplying the model by the eigenvectors matrix eliminates the

unobservables from the equation, at the price of disturbing some of the basic
properties of the (transformed) adjacency matrix such as zero diagonal terms and
row (column) normalization.

Under quite general conditions, Lee (2007) obtains the conditional ML esti-
mates, CMLE, corresponding to the within equation of (12), conditional on the
means equation. CMLE have optimal asymptotic properties: identification unique-
ness, consistency and asymptotic normality. The asymptotic is solved under two
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scenarios: small group interaction, where the average size of the groups (N) is
bounded, and large group interaction, where both the size and the number of groups
increases (as a regularity condition, the growth rate of the number of groups should
be higher than that of the average size). The convergence rate of the CMLE of
the endogenous interaction effect, O
1; is the usual

p
N in the case of small group

interaction, but it is scaled down in the case of large group interaction
p
N=N.

However, the rate of convergence of the CMLE for the contextual effects, O
2, and
direct effects, O
3, remain unaffected:

p
N=N for the contextual effects and

p
N for the

direct effects. This means that is more difficult to obtain accurate estimates of the
contextual or endogenous effects (in the case of large group interaction) than for the
direct effects.

The IV estimation algorithm reproduces this general picture. Lee (2007) shows
that the within equation can be estimated by IV and that there is a best IV vector,
whose variables are not collinear if the groups have different size. The use of LS
to estimate contextual and direct effects from the within equation would only be
justified in the large interaction case when N=G!1. In this situation the interaction
is distorted by the increasing density of each group which dominates the converge.
Moreover, the rate of convergence of the LS estimates for the direct effects would
be
p NN, smaller than the usual

p
N.

The model of (12) has received several extensions. Lee et al. (2010) introduce
a pattern of dependence between the disturbances of the individuals connected
in the network, with the purpose of capturing the selection bias effect due to the
endogenous group formation; that is:

uj D Mjuj C "j (13)

Mj is a new adjacency matrix for group j (it can be the same, Wj D Mj) and "j is a
vector of error terms not necessarily normal, i:i:d:.0; �2/. The quasi ML estimates,
QMLE, have good properties for the small-world case (N increases because the
number of groups,G, increases but the average size of the groups remains bounded).
The parameters are identified even if the groups have the same size, based on the
mean regression function and the correlation structure of the dependent variable.
However, care should be taken in the case of using a unique adjacency matrix
(Wj DMj) because if 
1�3C
2 D 0, the contextual effects, 
2, are indistinguishable
from the error correlation coefficient, . In fact, this is the well-known problem
of Common Factors (Davidson 2000) which implies that the model of (12) plus
the common factors restriction is observationally equivalent to the model yı

j D
Xı

1j
3 C uı
j Iuı

j D Wı
j uı

j C "ı
j (0ı0 means ‘after orthonormal transformation’).

The QMLE are consistent and, in the small-word scenario, asymptotically normally
distributed at the usual rate of

p
N; they are efficient relative to the Generalized

Two-Stages Least Squares estimator, G2SLSE, based on IV estimates (Kelejian and
Prucha 1999).
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Liu and Lee (2010) warn against the routinely row(column)-normalization of the
adjacency matrix because this practice removes valuable information in terms of
centrality of the individuals. Bonacich (1987), develops a simple centrality index
based in the sum of the rows in the adjacency matrix, the so-called indegress.
He summarizes the situation: higher value of the index means more centrality in
the network and more bargaining power. It is evident that if we row-standardize
the matrix, this information would be lost. Using the original, not row-normalized
adjacency matrix, the parameter space for the endogenous and correlation effects
coefficients must be adjusted to the spectral radius of the matrix (Kelejian and
Prucha 2001).

Another difficulty appears in the case of combining no row-normalization and
unobserved fixed effects. The problem is that the partial likelihood approach, that
factorizes the join distribution function into the product of the likelihood function
of the transformed data and the conditional likelihood function of the sufficient
statistic for the transformation, is not feasible. Lee et al. (2010) develop 2SLS and
GMM estimation algorithms to compensate the gap; both are adjusted to account
for a K=

p
N order bias due to the increasing number of IVs that appears for the

mean regression equation (K is related to the number of groups). Adjusted 2SLS
and GMM estimators are

p
Nconsistent and asymptotically normally distributed.

All the models discussed up to now are static, assuming contemporaneous
effects; however, social networks are dynamic by nature. Dynamics is a relatively
new strand of development in the literature of social networks where there are
not many contributions so far. Manski (1993) admitted the utility of dynamics
specifications such as:

yit D 
0 C 
1Et�1 . y jg /C Et�1 .x jg /
0


2 C x
0

it
3 C uitI Et .uitI x/ ¤ 0 (14)

where Et and Et�1 denote expectations taken at periods t and t � 1. That is, non
social forces, like the personal attributes of the agent, operates contemporaneously
but there is a delay with respect to the impact of social forces, endogenous and/or
exogenous. The unobservables are permanent characteristics so that the correlation
with the group features is different from zero whenever the expectation is taken. The
sample analog of the last equation leads to a recursive model:

yjt D 
1Wjyjt�1 CWjX2jt�1
2 CX1jt
3 C �j˛j C ujtI j D 1; : : : ;GI t D 1; : : : ;T

(15)

For which we need of panel series for each individual. Now the sample size is
NT D G
 NN
T. The problem of simultaneity disappears which facilitates inference.
In fact, this equation can be estimated using standard methods such as LS (if the time
span is large) conditional ML, etc.
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Lee and Yu (2012) consider a fully dynamic spatial panel data model that is
suitable for social network models:

yt D �0Wtyt C �1Wt�1yt�1 C �2yt�1 C X1t�1 CWtX2t�2 C ˛0 C �ct C utI t D 1; : : : ;T

(16)

The network, of size N, does not contain groups. There is a simultaneous and a
lag endogenous interaction effect, measured by �0 and �1, a purely autoregressive
impact, �2, to capture short-term dynamics in the personal scores, a contempora-
neous contextual effect, �2; (which can be lagged) and a direct effect, �1. There
are unobservables related to time (ct is the unobserved term for period t) and also
to individuals (˛0 is a .N 
 1/ vector); finally uit � i:i:d:.0; �2/. Moreover, Lee
and Yu (2012) allow that the adjacency matrix changes from period to period,
WtI t D 1; : : : ;T, (assuming that it is exogenous and known by the econometrician).
These matrices are all row-normalized.

The unobserved temporal effects are eliminated using a orthogonal transfor-
mation to each cross-section, and the personal unobservables after concentrating
out the ˛i0 .i D 1; : : : ;N/ terms from the log-likelihood function using first-order
conditions. This facilitates the obtention of the QMLE for the parameters of interest,
� 0s and � 0s.

Lee and Yu (2012) show that the dynamic network model of (9) is identified
and that the QMLE are consistent, under usual regularity conditions and a large
interaction cross-section (N is an increasing function of T and T goes to infinity).
The QMLE are asymptotically normally distributed. The rate of convergence
depends on the relation between N and T, for which three situations can be
distinguished: (1)- if N=T ! 0, then the QMLE converge to a centered normal
distribution with a finite covariance matrix, at a rate

p
.N � 1/ T; (2) if N=T ! � <

1, the incidental parameter problem emerges (together with the question of initial
conditions) in the form of a bias of magnitude O.T�1/ that disappears as T goes to
infinity; the asymptotic distribution is normally non-centered; (3) if N=T ! 1, the
distribution function degenerates.

Social networks are entities in permanent transformation, whose behavior, in
the long run, is dynamic. In fact a network consists of ties between individuals
that change over time. In general, these connections are not to be seen as transient
events, such as telephone calls or email traffic at a given point in time, but should
be regarded as states with a tendency to endure over time such as friendship,
commercial relations or migration flows, all of which are very stable but exhibit
gradual changes over time (in fact, they can be interpreted as Markovian processes).
Snijders et al. (2010) work out a general approach to model the dynamic evolution of
a social network based on the interdependency between ties and behaviors. Between
the simple recursive model of (15) and the simultaneous dynamic model of (16)
or the fully endogenous model of Snijders et al. (2010) there is a large variety of
candidates to introduce dynamics into the social interaction equations. This strand
of literature seems very promising and fruitful.
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7 Identifying Reference Groups

This is the title of one of the sections in the seminal article of Manski (1993).
The concern of Manski is that, commonly, it is assumed that the researcher knows
the reference group for each individual, same as the individuals themselves who
should correctly perceive all endogenous and contextual effects. This is, indeed, the
case with most of the applications in social networks where the dyadic information
on the nodes emerges naturally such as peer effects at schooling. However there
are situations where the connections are not so clear, as in the case of friendships
networks or real estate markets. Moreover the group boundaries are often arbitrary,
partly reflecting limitations arising from the availability of disaggregated data, as
in local crime rates (Calvó-Armengol et al. 2009) or technology diffusion models
(Comin and Mestieri 2014). In these and related cases, the question of specifying the
adjacency matrix is in the center of the discussion, although the issue has remained
at a low level in the literature on modelling social networks. However, the issue has
received quite attention from a spatial econometrics perspective. We think that this
discussion may have some interest here.

Overall, we can identify in this literature two general approaches to theW
question: (1) specifying the matrix exogenously; (2) estimating the matrix from
the data. The exogenous approach is by far the most popular but requires an
important prerequisite, the individuals must be located in a certain support with
a well-defined metric (Harris et al. 2011). In this case, we can use, for example, the
k-nearest neighbors, kernel functions based on some measure of distance between
the individuals, a pure binary criteria based on some notion of proximity or nearness
between individuals, etc.

The second approach considers the physical characteristics of the network
together with the nature of the data, and takes many forms. Kooijman (1976), for
example, suggests build the weights of the adjacency matrix so as to maximize
the value of some cross-sectional correlation coefficient (Moran’s I, for example).
Griffith (1996) proposes to find a W that absorbs all the cross-sectional effects from
the data (arising either from the endogenous effect or from the endogenous group
formation process); Fernández et al. (2009), in the same vein, propose a specification
of W based on a measure of entropy, while the LSM (local statistical model) of Getis
and Aldstadt (2004) tries to find, for each individual, a critical distance beyond
which there is no direct interaction with other mates in the network. The weights,
exceeding the threshold, are set to zero but inside the threshold are fixed proportional
to a certain interaction measure.

This approach also includes the proposals whereW is directly extracted from the
data. This is a complex problem because of the large number of parameters that
should be estimated if the weights of the adjacency matrix, !ij, are not restricted.
Meen (1996) sets out the problem in a SUR framework where the interaction
between the individuals occurs in the error terms. The W matrix is unknown
but can be estimated from the SUR residuals. Bhattacharjee and Holly (2013)
and Bhattacharjee and Jensen-Butler (2013) improve Meen’s algorithm, based on
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the restrictions of symmetry, zero diagonal terms and row-normalization of the
matrix. Beenstock and Felsenstein (2012) extend the discussion to a cross-sectional
autoregressive model.

The algorithms assume panel data, that the model is correctly specified, a finite N
and the asymptotics is with T. Under these circumstances, Bhattacharjee and Jensen-
Butler (2013) show that their optimization procedure identifies a unique adjacency
matrix, which is consistently estimated as T goes to infinity. The estimates of the
adjacency matrix support a CLT which offers an adequate framework for testing for
drivers of social interaction. Finally Ahrens and Bhattacharjee (2015) develop a two
step Lasso estimator that, in a panel data framework, mimics two-stage least squares
(2SLS) to account for endogeneity of the spatial lag. The condition for identifying
W requires that each unit/node in the sample is affected by only a limited number
of other units which they called approximate sparsity of the spatial weights matrix;
also strict exogeneity of the regressors (others than the spatial lag) across space is
required, as they become the source of instruments to tackle with the endogeneity
problem. Roughly, the procedure is

p
T consistent.

Another relevant problem related toW is that, in many circumstances, the
assumption of exogeneity is not reasonable. For example, Waldinger (2011), in
the case of research productivity, points out that sorting of individuals affects
the estimation of peer effects, as highly productive scientists often choose to co-
locate: staff members self-select into departments with peers of similar level and
departments tend to appoint new staff compatible with the existing staff; all of which
inflates the pure peers effect. In a different context, Conley and Topa (2002), for
the case of the spatial pattern of unemployment in Chicago, use several weighting
matrices based on generalized measures of socio-economic distance between the
Census tracts that involve physical distance, travel time, as well as differences in
ethnic and occupational distribution.

The endogeneity of the adjacency matrix has severe consequences on inference
given that usual 2SLS and GMM algorithms will produce non valid instruments;
neither the QML methods will be appropriate, as shown in Lee et al. (2010). To our
knowledge, there are few papers attempting to cope with this problem, all of which
coincide, one way or another, in the use of instruments to safeguard inference.

Kelejian and Piras (2014) specify a network interaction model with endogenous
effects (no contextual variables are included), unobservables and endogenous
regressors:

yt D �0Wtyt C Yt$ C X1t�1 C ˛0 C utI t D 1; : : : ;T (17)

where Yt is a N
q matrix of observations on q endogenous variables at time t and $

the associated vector of parameters. The error term is not necessarily i:i:d:.0; �2/.
The weights in the adjacency matrix, !ij;t, are assumed to be endogenous so that
their mean exists and depends on a set of r variables; r1 of them, in the pij;t .r1 
 1/

vector, are observable whereas r2 are unobservable, in the qij;t .r2 
 1/ vector, so
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that:

E
	
!�
ij;t


 D f
�
pij;tI qij;t

� I i; j D 1; : : : ;NI t D 1; : : : ;T (18)

f is an unknown function and the dot denotes that the corresponding weight
is different from zero. The adjacency matrix is allowed to change from period to
period. Kelejian and Piras (2014) develop the IV estimators for the case of (17)–
(18), where T is finite and N increases. The instruments are a combination of all the
exogenous elements in the system (that is, the p and the x variables plus a feasible
set of m variables do not included in Eq. (17) but related with the Y variables). The
IV estimates thus obtained are consistent and asymptotically normally distributed at
a rate

p
NT :

Qu and Lee (2015) generalize the work of Kelejian and Piras above. As before,
the weights of the matrix are not predetermined but depend on a set of observable
random variables, !ij;t D h

�
ZI ıij

�
where h is a bounded unknown function, ıij a

measure of distance in the corresponding physical or social support of the network
between individuals i and j, Z another set of k3 interaction factors, linearly dependent
on p2 exogenous variables in D, which is .k3 
 p2/:

Z D D� C � (19)

� contains the corresponding set of parameters. For example, in international
economics, Z may refer to economic distance between two economies while D are
import-export flows; or, in migration models, Z accounts for information flows and
D accumulated migrants in the destination country. Qu and Lee (2015) use a simple
autoregressive model with only one cross-section (T D 1), and no endogenous
regressors nor unobservables in the right hand side:

y D �0WyCX1�1 C u (20)

The endogeneity of the weights arises because the error terms of (19) and (20)

have a joint distribution,
�

uiI �0

i

�0

� i:i:d: .0I†u;�/ where †u;� D
�

�2
u �

0

u;�

�u;� †�

�

being �u;� a covariance vector and †� a .k3 
 k3/ covariance matrix, �2
u is a scalar.

Under this setting, Qu and Lee (2015) obtain the 2SIV estimators, using control
function approach to account for the endogeneity of the weights (there is a second
source of endogeneity in (20), which is Wy), QMLE and GMM, using the strong
exogeneity of the x variables. The three estimators are consistent and asymptotically
normally distributed at a rate

p
N: 2SIV and GMM avoid the calculus of the

Jacobian term, which can be computationally demanding for the large sample case.
As it is well-known, QMLE are asymptotically efficient under normality but is
not longer efficient in the absence of normality. The 2SIV uses only mean linear
moments; it is less efficient than the QMLE. The GMM adds proper quadratic
moment conditions and can be asymptotically as efficient as the QMLE under
normality; it is more efficient than the 2SIV.
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The framework of (19)–(20), with the same endogeneity structure, appears in
Hsieh and Lee (2014) where the authors present a model of endogenous friendship
formation, and possible selection bias. The endogeneity in the adjacency matrix
arises because the weights are parameterized through a logit model on a set of
exogenous (observed) and latent (unobserved) variables that describe the (unknown)
position of each individual in the social space of the group. The link decisions may
remain independent of each other decisions in the network, which requires that the
utility function behind the binary variable equation be separable. However, relations
in a social network are characterized by homophily, transitivity and clustering which
point to dependency in the individual decisions. The resulting specification, called
Selection Corrected SAR model (SCSAR), breaks with the correlation between the
error terms � and u but is highly nonlinear. Hsieh and Lee (2014) introduce Bayesian
MCMC procedures for the two cases of dependent and independent decision, that
seem to work properly.

8 Computational Software

One characteristic of social network analysis is that most of the available software is
free and/or open sourced. A second, also important characteristic, is the value given
to visualization. Visual representation of social networks is vital to understand the
network data and convey the result of the analysis. This explains why many of the
analytic available software requires to have modules for network visualization. In
general, this software aims the user to be able to interact with the representation,
manipulate the structures, shapes and colors to reveal hidden patterns. The goal
is to help data analysts to make hypothesis, intuitively discover patterns, isolate
singularities or faults during data sourcing.

Generally, network analysis software consists of either packages based on graph-
ical user interfaces (GUIs), or packages built for scripting/programming languages.
Widely used and well-documented GUI packages include freeware software like
NetMiner, UCINet, Pajek; opensource software like GUESS, ORA, Cytoscape,
Gephi and muxViz; and also private GUI packages (mainly directed at business
customers) like: Orgnet, which provides training on the use of its software, Polinode,
Keyhubs, KeyLines, KXEN and Keynetiq.

Commonly used and well-documented scripting tools used for network analysis
include: NetMiner with Python scripting engine, the StatNet suite of packages for
the R statistical programming language, igraph, which has packages for R and
Python, muxViz (based on R statistical programming language and GNU Octave)
for the analysis and visualization of multilayer networks.2

2Readers interested in software aspects of social networks analysis are recommended to visit the
NetWiki web page where they can find updated information about current available software. The
content of this section has clearly benefited from the information contained in that webpage.
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9 Concluding Remarks

One of the main points that this chapter highlights is that the econometric treatment
of social network (interaction) analysis is closely similar to what is known by
spatial econometric methods. In ample terms, the very nature of social interaction
models and spatial economics have a common origin, namely, the social multiplier.
Distance can be understood in physical terms, but not only. Social distances, as a
term inclusive of notions like political, linguistic, cognitive, and genetic distances—
among others—are the common epycenters of spatial econometrics and social
network analysis. It is therefore not a surprise that the evolution of both strings,
although through different avenues, has lead to share the main technical issues, as
for example the role of the sociomatrices W-type, and the identification concerns. It
is also expected the solutions eventually provided might serve for both (connected)
lines of research.
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An Overview of the Measurement
of Segregation: Classical Approaches
and Social Network Analysis

Antonio Rodriguez-Moral and Marc Vorsatz

Abstract We present a comprehensive overview of the literature on the measure-
ment on segregation. With a focus on the evenness and exposure dimensions—two
of the five dimensions of segregation in the multi-dimensional framework defined
by Massey and Denton (Soc Forces 67(2):281–315, 1988)—we introduce some of
the most relevant segregation measures developed under the classical statistical
approach and under the social networks analysis framework. We also briefly
describe two different approaches for the definition of segregation measures when
using social networks, namely the use of descriptive graph statistics and the use of
spectral graph theory.

Keywords Assortative mixing • Graph statistics • Homophily • Network •
Segregation • Spectral graph theory

JEL-Numbers: C0, D85, Z13

1 Introduction

The term segregation is often used to refer to the “unequal” distribution of two or
more groups of people according to some characteristic like race, religion, gender,
income, or wealth, across different social units or positions. Hutchens (2001) refers
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to segregation as a shortcut for the more cumbersome “inequality in the distribution
of people across groups”, while noting that “it should, however, be clear that they
are one and the same.” Following this perspective, ethnic residential segregation
would address the unequal distribution of people belonging to different ethnic
groups across neighborhoods, while occupational segregation would address the
way in which some groups (e.g. women or minorities) are unequally represented in
different occupational classes. In an alternative but related view, segregation refers
to restrictions on the interactions between people, or to restrictions on the access
of people or organizations to specific resources or physical space. Along this line,
some authors—for example, Berry (1958) and Hunt and Walker (1974)—define
segregation as a form of isolation which places limits upon contact, communication,
and social relations, while van der Zanden (1972) defined segregation as a process
or state whereby people are separated or set apart.

Segregation has been, and continues to be, a source of great concern; see, among
many others, Benabou (1993)—who finds that underemployment is more extensive
the easier it is for high-skill workers to isolate themselves from others—Borjas
(1995)—who finds that ethnic residential segregation influence inter-generational
mobility—Poterba (1997) and Goldin and Katz (1999)—who show how ethnic
fragmentation results in less spending on education—Easterly and Levine (1997)
and Alesina and La Ferrara (2005)—who show how ethnic fragmentation reduces
growth—Edin et al. (2003)—who estimate the causal effect on labor market
outcomes of living in ethnic “enclaves” within metropolitan areas—Card and
Rothstein (2007)—who study the effects of school and neighborhood segregation
on the relative SAT scores of black students across different metropolitan areas—
Kling et al. (2007)—who, although found no consistent evidence of neighborhood
effects on adult earnings or welfare participation in the U.S. Moving to Opportunity
(MTO) program, did find some positive effects on teenagers—and Zenou (2009)—
who studies the connection between ethnic identity and the labor market outcome
of immigrants in different European countries.

It is then clear that empirical work on segregation requires to transform per-
ceptions of segregation into something measurable, that can be used either in a
normative way, such as when striving for low segregation in a population, or in
a positive way, with the goal of comparing specific outcomes across different
groups, settings, or time points. For example, to determine whether the distribution
of women across occupations has become less segregated (or more equal) over
time, or to compare different districts of a city, or several cities, in terms of the
ethnic segregation of neighborhoods, we require measures of segregation that can
work with these variables in cross-sectional and inter-temporal analytical settings.
Developing accurate measures of segregation is also a necessary first step in
assessing the causes of separation between groups and the social and the economic
consequences of these patterns, and in formulating appropriate policies for them.

The objective of this work is thus to present a comprehensive overview of the
literature on the measurement on segregation. First, we introduce the “classical”
statistical approach to the measurement of segregation, and the multi-dimensional
framework proposed by Massey and Denton (1988). We briefly describe some of
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the most relevant segregation measures found in the literature along two of the
dimensions in that framework (evenness and exposure). We then introduce the
analysis of segregation under the social networks framework, and briefly describe
some of the most relevant measures of segregation in this area, which build either
on descriptive graph statistics or on spectral graph theory. Finally, we conclude.

2 The Classical Setting

Consider a set N D f1; 2; : : : ; ng of n individuals that, for simplicity, we will call a
society. These individuals live in a spatial region C (e.g. a city), which is composed
of a finite set M D f1; 2; : : : ;mg of m subareas or units (e.g. neighborhoods or
census tracts). Also, there is a set G of k mutually exclusive groups that forms a
partition of the society. One can think of a group g 2 G as a subset of members of
the society that share a particular attribute such as religion or ethnicity. Let ng;i be the
number of individuals of group g 2 G who live in subarea i 2 M, ni the total number
of individuals who live in subarea i 2 M, and ng the total population of group g 2 G.
Note that ng DP

i2M ng;i, ni DP
g2G ng;i, and n DPi2M ni DP

g2G ng. Thus, the
distribution of individuals belonging to each group across subareas can be expressed
by a g
mmatrix N D .ng;i/g2G;i2M . Let N denote the set of all those matrices. Given
matrix N, we can define the concentration and density column vectors of group g as
cg.N/ D .ng;i=ni/i2M and dg.N/ D .ng;i=ng/i2M , respectively. Whenever there is no
room for confusion we will drop the matrix N to which all these operators refer to.
Let cg;i and dg;i be the i�th elements of cg and dg, respectively. The proportion of
group g in the total population is defined as cg D ng=n.

For example, if there are only two groups X and Y in a spatial region C1 with
four subareas, we could have

N1 D
�

8 4 0 4

16 16 4 12

�
:

So, the density and concentration vectors for group X would be cX.N1/T D
.1=3; 1=5; 0; 1=4/ and dX.N1/T D .1=2; 1=4; 0; 1=4/. An alternative distribution
for region C1 could be

N0
1 D

�
2 8 4 2

9 18 15 6

�
:

Let us also consider a second region C2, with the following distribution of
individuals of groups X and Y, in this case across five subareas:

N2 D
�

4 2 3 0 3

6 6 12 3 9

�
:
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Given this information, one would like to know if the segregation in region C1 is
reduced when the distribution moves from N1 to N0

1. Similarly, is region C2, under
distribution N2, more or less segregated than region C1 under distribution N1?

The main type of mathematical device developed to measure segregation are
segregation indices. Formally, a normalized segregation index is a function S W
N ! Œ0; 1� that maps any distribution N into the unit interval. Reardon and
Firebaugh (2002) introduce various approaches to multi-group segregation indices.
In what follows, we consider the so-called disproportionality approach according
to which one assesses the variability of the values of cg;i across units. Let R D
.cg;i=cg/g2G;i2M be the g 
 m disproportionality matrix. The ratio rg;i reflects the
extent to which group g is disproportionately represented in subarea i 2 M with
respect to its overall ratio cg. Then, let W.N/ be the weighted average of all
deviations of rg;i, measured by a disproportionality function f :

W.N/ D
X
g2G

cg
X
i2M

ni
n
f .rg;i/:

There are many possible disproportionality functions, which will lead to different
segregation indices; what is required from an appropriate disproportionality function
f is that (a) f .1/ D 0, so a group g that is neither under- nor over-represented in
subarea i does not contribute to segregation, and (b) the segregation measure W.N/

satisfies the disproportionality axiom for segregation: segregation is zero only when
rg;i D 1 for all g and i, otherwise segregation is greater than zero.

It is important to note that all the functions defined for the segregation indices
included in this section are such that the maximum value W.N/ is obtained when
each unit contains individuals from a single group—see Reardon and Firebaugh
(2002):

maxfW.N/g D P
g2G

cg

" P
i2MWrg;iD0

ni
n � f .0/C P

i2MWrg;iD1=cg

ni
n � f .1=cg/

#

D P
g2G

cgŒ.1 � cg/f .0/C cg � f .1=cg/�:

The normalized segregation index S.N/ is then equal to the ratio between the
weighted average disproportionality and its maximum possible value:

S.N/ D W.N/

maxfW.N/g :

The probably most widely used segregation measure is the dissimilarity index,
defined originally in its two-group version by Jahn et al. (1947) and Duncan and
Duncan (1955). In its generalized, multi-group version (Morgan 1975 and Sakoda
(1981)), D is obtained from disproportionality function f .rg;i/ D 1

2

ˇ̌
rg;i � 1

ˇ̌
. In this
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case, the maximum of W.N/ is maxfW.N/g DPg2G cg.1 � cg/, also known as the
Simpson’s interaction index I.N/. The dissimilarity index then becomes:

D.N/ D 1

2I.N/

X
g2G

cg
X
i2M

ni
n

ˇ̌
rg;i � 1

ˇ̌ D 1

2I.N/

X
g2G

X
i2M

ni
n

ˇ̌
cg;i � cg

ˇ̌
:

In its two-group version, D reduces to

D.N/ D 1

2 n cX .1 � cX/

X
i2M

nijcX;i � cXj:

Some algebraic manipulation gives an alternative way of computing D from the
deviations of the density of both groups in each subarea:

D.N/ D 1
2 n cX .1�cX/

P
i2M nijcX;i � cX;i cX � cX C cX;i cXj

D 1
2 n cX .1�cX/

P
i2M jni cX;i .1 � cX/� ni cX .1 � cX;i/j

D 1
2

ˇ̌̌P
i2M ni cX;i

n cX
�

P
i2M ni .1�cX;i/

n .1�cX/

ˇ̌̌

D 1
2

P
i2M

ˇ̌̌
nX;i

nX
� nY;i

nY

ˇ̌̌

D 1
2

P
i2M
jdX;i � dY;ij:

One interesting feature of the dissimilarity index is that it summarizes the degree
to which subareas mirror the demographic balance of the larger area. If integration is
completely even throughout the considered area, then each subarea must contain the
same share of group X as in the whole region. To see this, let n�

X;i be the population
of group X associated with this complete integration on subarea i 2 M. Then, it must
be true that n�

X;i=nX � nY;i=nY D 0. Actual levels of nX;i deviate from n�
X;i by some

amount, say n�
X;i, so that nX;i D n�

X;i C n�
X;i. It follows that

D.N/ D 1
2

P
i2M

ˇ̌
ˇ nX;i
nX
� nY;i

nY

ˇ̌
ˇ D 1

2

P
i2M

ˇ̌
ˇ n�

X;iCn�
X;i

nX
� nY;i

nY

ˇ̌
ˇ D 1

2

P
i2M

ˇ̌
ˇ n�

X;i

nX

ˇ̌
ˇ :

Thus, D is the fraction of the group X population that would have to move in
order to achieve complete integration. Note that the 1=2 in the formula indicates
that in order to achieve this balance, at most one-half of group X individuals
would actually have to move; only the individuals living in subareas where they
are relatively overrepresented have to move to subareas where they are relatively
underrepresented. For distribution N0

1, we obtain that D.N0
1/ D 1

8
, so 2 individuals

(1=8 of the total group population of 16) from group X would have to move in order
to obtain complete integration, going from subarea 2 to subareas 1 and 3, ending up
with the following distribution N00

1 , for which D equals 0:

N00
1 D

�
3 6 5 2

9 18 15 6

�
:
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Duncan and Duncan (1955) was probably the first systematic attempt to provide an
extensive analysis of measures of residential segregation. Their main conclusion was
that there is little information provided by the various segregation indices introduced
until then that is not captured by the dissimilarity index. This conclusion, shared by
Taeuber and Taeuber (1965), contributed to the popularity of the dissimilarity index,
making it the standard index of residential segregation for over 20 years. However,
the consensus built around the dissimilarity index was challenged by Cortese et al.
(1976), which opened another period of debate until the mid 1980s.1 At that point
an important step forward was made by James and Taeuber (1985), who—drawing
on Schwartz and Winship (1980) work on inequality measurement—developed a
set of four criteria, based on how segregation indices must react to changes in the
groups distribution between subareas. Shortly later a crucial advance was made by
Massey and Denton (1988), not only with respect to how to define segregation but
also with respect to how it should be measured. In the context of racial segregation
of city neighborhoods Massey and Denton (1988) defined segregation as the degree
to which two or more groups live separately from one another. In an effort to
bring some order to the field, they undertook a systematic analysis of nineteen
segregation indices they identified from a review of the extant literature. By looking
at residential segregation as the result of various social phenomena, they argued that
segregation is not a unidimensional concept, but encompasses the following five
distinct dimensions of variation.

1. Evenness refers to the distribution differences of social groups across subareas.
2. Exposure addresses the degree of potential contact of a group with other groups.
3. Concentration is the amount of relative physical space occupied by a group in a

given geographical area.
4. Centralization reflects the degree to which a group is spatially distributed close

to the center of an urban area.
5. Clustering refers to the degree of agglomeration, i.e., the extent to which areas

inhabited by members from a social group adjoin one another in space.

Figure 1 illustrates the differences among the five dimensions of segregation by
means of a simple example: the distribution of households within a city with a square
layout, where each square is occupied by either a minority family (black squares)
or by a majority family (white squares). In each case, the city is subdivided in 16
geographical subareas, each comprising a 3 
 3 square. We can observe in the first
column that, when considering the evenness dimension, the upper pattern displays
a high level of segregation, since each subarea is occupied by individuals from a
single group (either all white or all black), while the lower pattern displays a low
level of segregation, since in each subarea the proportion of black squares is roughly

1This debate can be recreated through Cohen et al. (1976), Cortese et al. (1976), Taeuber and
Taeuber (1976), Winship (1977, 1978), Falk et al. (1978), Kestembaum (1980), Coleman et al.
(1982), Lieberson and Carter (1982), White (1983), James and Taeuber (1985), and the many
references therein.
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Fig. 1 The dimensions of segregation

the same as in the overall region (1/2). Column 3 shows that segregation in the
concentration dimension arises when the minority group occupies a small proportion
of land within the city, regardless of whether these small areas are contiguous or they
are not. On the other hand, column 5 shows that a high degree of clustering arises
from a residential structure where minority areas are arranged contiguously, creating
one large agglomeration, whereas a low level of clustering means that minority areas
are widely scattered around the urban environment.

At this point it is important to note that the concrete measurement of the five
dimensions requires different kinds of data. Measures of evenness and exposure
only require information about the population of the different groups in every
subarea, so they can defined on the set of matrices N . On the other hand, measures
of concentration, centralization, and clustering need some sort of geographical or
spatial data. Consequently, we concentrate for the moment on the dimensions of
evenness and exposure, and will come back formally to the other dimensions in the
next section. Also, in a historical context, note that most of the empirical analysis
of segregation in economics has focused until lately on the study of evenness and
exposure. This could be due to the fact that, from a conceptual perspective, it is
easier to define and derive indices for these two dimensions.

2.1 Evenness

Massey and Denton (1988) recommend using the dissimilarity index in most cases.
Two commonly mentioned benefits of the dissimilarity index are that it is easy
to compute and interpret and that it can be consistently computed with available
census data over long periods of time. Some of its main drawbacks are that (a) it is
strongly affected by random factors when the number of minority members is small
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relative to the number of units, (b) it is insensitive to the redistribution of minority
members among units with minority proportions above or below the city’s minority
proportion, and (c) it fails to satisfy the adapted Pigou-Dalton “transfer principle”
from the literature on the measurement of income inequality to the measurement of
segregation (James and Taeuber 1985). Alternatives to the dissimilarity index are
the Gini index (Gini 1921), the entropy or information index (Theil 1972 and Theil
and Finizza 1971), or the Atkinson index (Atkinson 1970).

From a formal point of view the multi-group Gini index G.N/ is obtained if
f .rg;i/ D 1=2 �Pj2M nj=n � jrg;i � rg;jj, which takes into account absolute deviations
of all pairwise comparisons in the region. This results in a measure of average
disproportionality

W.N/ D
X
g2G

cg
X
i2M

ni
n
f .rg;i/ D 1

2

X
g2G

cg
X
i2M

X
j2M

ninj
n2

ˇ̌
rg;i � rg;j

ˇ̌
:

Its maximum value is, as for the dissimilarity index, the Simpson’s interaction index
I.N/. The resulting generalized Gini index is defined as

G.N/ D 1

2I.N/

X
g2G

cg
X
i2M

X
j2M

ninj
n2

ˇ̌
rg;i � rg;j

ˇ̌ D 1

2I.N/

X
g2G

X
i2M

X
j2M

ninj
n2

ˇ̌
cg;i� cg;j

ˇ̌
:

The multi-group index reduces to the standard expression of the Gini index in the
case of two groups:

G.N/ D 1

2 n2 cX .1 � cX/

X
i2M

X
j2M

ni nj jcX;i � cX;jj:

The entropy or Theil information theory index2 H.N/ measures the weighted
average deviation of each subarea from the region-wide “entropy” or diversity.
Although Theil originally derived H from information theory, Reardon and Fire-
baugh (2002) prove that it corresponds to the disproportionality function f .rg;i/ D
rg;i ln.rg;i/. Then,

W.N/ D
X
g2G

cg
X
i2M

ni
n
f .rg;i/ D

X
g2G

cg
X
i2M

ni
n
rg;i ln.rg;i/:

2Often referred to as the Shannon index, after the related work on information theory (Shannon
1948; Shannon and Weaver 1949; see also Khinchin 1957). Its application to the analysis of
segregation was introduced by Theil and Finizza (1971) in an analysis of racial entropy in the
Chicago public schools.
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Its maximum value is E.N/ � maxfW.N/g D P
g2G cg ln.1=cg/, which is known

as Theil’s entropy index. The resulting generalized Theil index is defined as

H.N/ D 1

E.N/

X
g2G

cg
X
i2M

ni
n
rg;i ln.rg;i/ D 1

E.N/

X
g2G

X
i2M

ni
n
cg;i ln

�
cg;i

cg

�
:

In the two-group case the entropy E of the whole region and the entropy Ei of a
given subarea i 2 M reduce to

E.N/ D cX ln

�
1

cX

�
C .1 � cX/ ln

�
1

1 � cX

�

and

Ei.N/ D cX;i ln

�
1

cX;i

�
C .1 � cX;i/ ln

�
1

1 � cX;i

�
:

The information index H is then equal to

H.N/ D
X
i2M

�ni
n

��E � Ei

E

�
:

The family of Atkinson segregation indices A were introduced by James and
Taeuber (1985) for the two-group case. They are based on the Atkinson inequality
indices (Atkinson 1970), and are defined as

Ab.N/ D
�

1

n cX .1 � cX/

� ˇ̌ˇ̌̌X
i2M

�
1 � cX;i/

1�b � cbX;i � ni
�ˇ̌ˇ̌̌

1
1�b

:

For a given distribution N the specific Atkinson index depends on the value of
the shape parameter b. For small values of the shape parameter, 0 < b < 0:5,
subareas where the proportion of the group is smaller than the region’s average
contribute more to the segregation index; for large values of the shape parameter,
0:5 < b < 1:0, the reverse is true. When the shape parameter is b D 0:5 all subareas
are weighted equally. The Atkinson segregation index has been generalized to the
multi-group case by Frankel and Volij (2008), who define the generalized Atkinson
index as

Aw.N/ D 1 �
X
i2M

Y
g2G

�
cg;i
�wg

;

where w D .w1; : : : ;wk/ is a vector of k fixed non-negative weights that sum to
one. When all weights are equal, we obtain the symmetric Atkinson index, which
reduces to an increasing transformation of the original index defined by James and
Taeuber (1985) in the two-group case, preserving the same properties.
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An alternative concept and associated mathematical device for measuring seg-
regation in the evenness dimension is that of segregation curves. Being aware of
the similarities between the large body of research on income inequality and the
research that had been developed in parallel on occupational segregation—already
noticed by Duncan and Duncan (1955) and Winship (1978)—Hutchens (1991) took
the analytic framework used to analyze income inequality—Lorenz curves—and
translated it to the problem of analyzing occupational segregation in the two-group
case. de la Vega and Volij (2014) adapt a similar mathematical device, borrowed
from the literature on the value of information to extend the Lorenz criterion
to the multi-group case. This allows them to define a partial ordering of cities
(distributions), according to the informativeness of their neighborhoods (units).
Given a city, the location of a randomly selected individual is seen as a signal that
provides information about the group he belongs to. In this sense, the collection of
distributions of the various groups across locations can be seen as an experiment
in the sense of Blackwell (1951, 1953), one in which locations play the role of
signals and groups play the role of states of nature. A city whose locations are more
informative than another city’s locations is then considered more segregated than
the latter. This correspondence between informativeness and segregation allows to
construct a partial order of cities. de la Vega and Volij (2014) show that any partial
segregation order of cities that satisfies four basic axioms that go back to James
and Taeuber (1985) must be consistent with the partial segregation order induced
by the informativeness of their neighborhoods, which then can be regarded as a
generalization of the standard order based on segregation curves. When restricted to
the two-group case, this partial ordering coincides with the Lorenz partial ordering
derived from segregation curves.

2.2 Exposure

Rather than measuring segregation as a departure from some abstract ideal of
evenness, exposure indices try to measure the experience of segregation from the
viewpoint of the average individual. Although measurement indices for exposure
and evenness are usually correlated empirically, they are conceptually distinct.
Members of a minority group can be evenly distributed among residential areas
of a city, but at the same time experience little exposure to majority members if they
comprise a relatively large share of the city. Conversely, if the areas they occupy
comprise a small proportion of the city, minority members tend to experience high
levels of exposure to majority members, no matter what the level of evenness.

Early research on exposure measurement was done by Bell (1954). However,
after the 1955 consensus around the dissimilarity index, exposure was largely
forgotten until Lieberson and Carter (1982) reintroduced the isolation index and its
counterpart, the interaction index. More precisely, the isolation index P�

g;g.N/ equals
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the probability that a randomly drawn member of group g shares a neighborhood
with a member from the same group; that is,

P�
g;g.N/ D

X
i2M

�
ng;i

ng

��
ng;i

ni

�
D
X
i2M

dg;i cg;i D dT
g cg:

Related to the interaction index is the isolation index, which reflects the
probability that a member of group g interacts with a member of a distinct group
h in her neighborhood:

P�
g;h.N/ D

X
i2M

�
ng;i

ng

��
nh;i

ni

�
D
X
i2M

dg;i ch;i D dT
g ch:

The main objections to the isolation index are that it confounds population
composition with segregation patterns in such a way that the resulting index value
heavily reflects the former and that it creates asymmetrical measures of segregation
when it is more desirable to have a single measure for both groups. However,
the isolation index can be normalized to control for population composition and
eliminate the asymmetry mentioned above. Then, one obtains the well-known
correlation ratio 2 (White 1986):

2
g.N/ D P�

g;g.N/� cg

1 � cg
D

P
i2M

ni � c2
g;i

n cg .1 � cg/2
� cg

1 � cg
:

Stearns and Logan (1986) argue that 2
g constitutes an independent dimension

of segregation, but Massey and Denton (1988) hold that it actually encompasses
both the exposure and evenness dimensions. In fact, being derived from P�

g;g.N/; 2
g

displays some properties associated with an exposure measure, but normalization
also gives it the qualities of an evenness index. Massey and Denton (1988)
demonstrated this duality empirically and argued that it is better to use D and P�
as separate measures of evenness and exposure. Nonetheless, Jargowsky (1996) has
shown that one version of 2

g yields a better and more concise measure of segregation
when one wishes to measure segregation between multiple groups simultaneously.

3 Segregation in Social Networks

A natural way to capture the dimensions of concentration, centralization, and
clustering, and, to some extent, the spatial aspects of segregation, is to introduce
a graph-theoretical approach.3

3Massey and Denton (1988) propose some indices as the most appropriate for these three
dimensions. A large body of research in the literature relates to the definition of spatial measures,
see Reardon and O’Sullivan (2004) and Cohn and Jackman (2011) for a detailed account.
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Formally, a graph is a pair .V;E/, where V denotes its set of v nodes (vertices)
and E denotes its set of e edges (links or ties). Each edge in E is a pair of vertices,
with the edge connecting distinct nodes i and j written as .i; j/. We assume that the
graph connectivity is defined through a binary, irreflexive, and symmetric relation
on V 
 V . This relation induces a v 
 v adjacency matrix A such that ai;j D 1

if i and j are connected and ai;j D 0 otherwise. Observe that this framework can
be straightforwardly extended to asymmetric connections, for example, when i is
connected to j but j is not connected to i. We do not allow for self-loops (hence
ai;i D 0) or overlapping links; i.e., there cannot be more than one link between i
and j. Such a graph is known as a simple graph. The degree of a node i 2 V is
i DPj2V ai;j.

Nodes have attributes, which model some properties of interest. Enumerative or
discrete attributes are those that lack any particular ordering and represent properties
like ethnicity, gender, etc. Scalar attributes, on the other hand, are those that can be
represented by a scalar variable (typically by integers or real numbers) and model
properties like age, income, etc. For simplicity, we will only consider a single node
attribute t that, depending on the context, can be an enumerative or a scalar attribute.
Let t D .ti/i2V be the column vector that represents the attributes of all nodes. We
consider the situation when V is equal to the set of all individuals N. An alternative
but very much related approach would be to assume V D M. Hence, for us, a
network is a tuple R D hN; t; Ai.

In social networks, individuals have a disproportionately strong tendency to
associate with others who are similar to them in characteristics such as age,
nationality, language, socioeconomic status, educational level, political beliefs, etc.
This property, called homophily by Lazarsfeld and Merton (1954), is also known
in the broader context of generic networks as assortative mixing (see, Newman
2003). One consequence of homophily is that social networks show a large degree of
homogeneity with regard to many sociodemographic, behavioral, and intrapersonal
characteristics. As it happens with segregation, homophily limits people’s social
worlds in a way that has some powerful implications for the information they
receive, the attitudes they form, and the interactions they experience.4

From a statistical perspective, assortative mixing in a network simply means that
the attributes of nodes correlate across edges; that is, given the link .i; j/ 2 E the
values ti and tj tend to be more similar than those in a randomly chosen unconnected
pair. If attributes are enumerative, a simple way to quantify the degree of assortative
mixing in a graph consists of measuring the increase in the fraction of edges that join
nodes of the same type with respect to the fraction we would expect to find if edges

4Empirical studies have found strong evidence of homophily with respect to age (e.g. Verbrugge
1977, Marsden 1988, and Burt 1991), education (e.g. Marsden 1987 and Kalmijn 2006), income
(e.g. Laumann 1966 and Laumann 1973), ethnicity (e.g. Baerveldt et al. 2004 and Ibarra 1995)
or geographical distance (e.g. Campbell 1990 and Wellman 1996). Homophily has been found to
matter in a wide range of social interactions such as friendship and marriage, job market outcomes,
speed of information diffusion, speed or learning, consensus reaching and even social mobility (see
Currarini et al. 2009, Brammoullie and Kranton 2007, and Golub and Jackson 2012a,b).
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were formed at random in the network. This measure is known as the modularity Q
of the network (see Newman 2003). Formally, given two nodes i; j 2 N, let ı.ti; tj/
denote the Kronecker delta function; that is, ı.ti; tj/ D 1 whenever ti D tj and
ı.ti; tj/ D 0 otherwise. Then, the total number of edges that join nodes of the same
type is equal to

P
.i;j/2E ı.ti; tj/ D 1

2

P
i;j2N ai;j ı.ti; tj/.

Calculating the expected number of edges that would form between nodes of
the same type at random requires that we clearly specify what “at random” means.
Different models of random network formation have been studied, for example the
one known as Erdös-Rènyi random graphs, in which edges form independently with
the same probability p. However, this simple random network model does not work
well as benchmark for measuring assortativity, since if some nodes have very high
degrees, then their attribute value will show up in more connected pairs, and this
will skew the fraction of same-type edges when compared to the one expected in the
Erdös-Rènyi model. The solution is to use a different random network model known
as the configuration model, in which edges are formed at random while preserving
the nodes degrees. In this model the probability that two nodes i; j 2 N are connected
by a link is given by pi;j D .i � j/=.2 � e/. Hence, the configuration model implies
preferential attachment (Barabási and Albert 1999)—the higher the degrees of two
nodes, the more likely they are to connect. Consequently, under the configuration
model, the expected number of edges connecting nodes with the same attribute value
is 1

2

P
i;j2N pi;j ı.ti; tj/ D 1

2

P
i;j2N

i�j
2e ı.ti; tj/. Then, the modularity Q of network R

with respect to attribute t is given by

Q.R/ D 1

2e

X
i;j2N

�
ai;j � ij

2e

�
ı.ti; tj/:

As noted by Newman (2010), this measure is strictly less than 1, takes positive
values if the number of links between nodes of the same type exceeds what we
would expect by chance (in which case we say that the network displays assortative
mixing), and negative ones otherwise (in which case we say that the network
displays disassortative mixing). Although the value of Q.R/ is always less than 1, in
general it does not achieve a value of Q.R/ D 1 even for a perfectly mixed network,
defined as one in which all the links run only between same-type nodes. In that case,P

i;j2N ai;j ı.ti; tj/ D 2e, and then

maxfQ.R/g D 1

2e

0
@2e �

X
i;j2N

ij

2e
ı.ti; tj/

1
A D 1 �

X
i;j2N

ij

.2e/2
ı.ti; tj/:

Then we can define the normalized modularity as

OQ.R/ D Q.R/

maxfQ.R/g D

P
i;j2N

�
ai;j � ij

2e

�
ı.ti; tj/

2e� P
i;j2N

� ij
2e

�
ı.ti; tj/

:
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If the node attribute under consideration is a scalar quantity, then there is addi-
tional information to be taken into account, and the appropriate measure becomes
a covariance measure C.R/ which can be seen as a network-based generalization
of the Pearson correlation coefficient. Let �.t/ be the mean value of t observed at
either end of a link:

�.t/ D

P
i;jN

ai;jti
P
i;j2N

ai;j
D
P
i2N

iti
P
i2N

i
D 1

2e

X
i2N

iti:

Similar, the variance of t is:

Var.t/ D 1

2e

X
i;j2N

ai;j.ti � �.t//2 D 1

2e

X
i2N

i.ti � �.t//2:

The covariance is then

C.R/ D

P
i;j2N

ai;j.ti � �.t//.tj � �.t//

P
i;j2N

ai;j
D 1

2e

X
i;j2N

ai;jtitj � �.t/2D 1

2e

X
i;j2N

�
ai;j � ij

2e

�
titj:

As in the case of the modularity measure, it is useful to normalize this measure
by its maximum value so that it ranges from �1 to 1. This results in a normalized
covariance measure that has the following functional form:

OC.R/ D C.R/

Var.t/
D

P
i;j2N

�
ai;j � ij

2e

�
titj

P
i;j2N

�
iı.i; j/� ij

2e

�
titj

:

A simple example illustrates the measurement of assortative mixing by a
enumerative or scalar attribute. Consider the network depicted in Fig. 2. Each node
color represents the node’s ethnicity, while each node’s label represents the node’s
age. A quick visual inspection of the graph suggests that this network displays
assortative mixing by node color (since nodes link mostly to other nodes of the
same color), but disassortative mixing by age (since nodes with higher age values

Fig. 2 Measurement of
assortative mixing 45
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link mostly to nodes with lower values). This is confirmed by the values of OQ.R/

and OC.R/, which result in 0.31 and �0:21, respectively.
The measures of assortative mixing introduced above provide some general

insight of whether individuals with the same characteristics stick together and, in
terms of the dimensions of Massey and Denton (1988), they are clearly connected to
the dimension of exposure. Yet, several other measures, which can be classified into
two approaches, have been suggested. The descriptive graph statistics approach uses
mathematical devices similar to those introduced for the measurement of modularity
in graphs. Different segregation problems can then be studied depending on the
type of node attribute that is considered in the analysis; for example, the analysis
of occupational segregation by gender, or the analysis of residential segregation by
ethnicity can be modeled as a problem of assortative mixing by an enumerative
attribute, while the analysis of residential segregation by income may be modeled
as a case of assortative mixing by a scalar attribute. The spectral graph theory
approach, on the other hand, uses a different way of representing and analyzing
the graph associated with a network, by using a set of matrices associated with the
graph, rather than the matrix that represents the graph of vertices and edges itself. It
then proceeds by computing some characteristic values of those associated matrices,
such as their eigenvalues and eigenvectors, which reveal some structural properties
of the original graph.

3.1 Measures Based on Descriptive Graph Statistics

In what follows, we consider the enumerative attribute t that can take values from the
set of groups G. That is, the notation ti D g indicates that individual i 2 N belongs
to group g 2 G. With this notation at hand, we obtain the n 
 k type indicator
matrix T, where ti;g D 1 if individual i 2 N is a member of group g, or ti;g D 0

otherwise. Given the set R of networks with the generic element R D hN; T; Ai,
we can define segregation measures or indices at three levels: (1) A network-level
segregation index S W R ! R, (2) a group-level segregation index Sg W R ! R

k,
and (3) a node-level segregation index Si W R! R

n.
Following Bojanowski and Corten (2014), let the mixing matrix M D

.mghy/k�k�2 associated to the adjacency matrix A be a three-dimensional distribution
of all the dyads (pairs of nodes) in the graph, based on the following characteristics:
(1) The group g to which the first node in the dyad belongs, (2) the group h to which
the second node in the dyad belongs, and (3) whether the two nodes in the dyad
are connected in the analyzed network. In particular, mgh1 denotes the number of
connections between individuals of group g and group h. Similarly, mgh0 denotes
the number of links between type g nodes and type h nodes that are not present
in the network. One can look at the mixing matrix as a single matrix composed of
two different layers, the “contact layer” mixing matrix NM D �

mgh1

�
g;h2G and the

“non-contact layer” mixing matrix QM D �mgh0

�
g;h2G. Both of these matrices can be
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expressed in terms of the Kronecker delta function:

mgh1 �
X

i;j2NWtiDg;tjDh

ai;j D
X
i;j2N

ai;j ı.ti; g/ ı.tj; h/

and

mgh0 �
X

i;j2NWtiDg;tjDh

.1 � ai;j/ D
X
i;j2N

.1 � ai;j/ ı.ti; g/ ı.tj; h/:

The values of the contact layer mixing matrix NM can be conveniently calculated
as NM D TTAT. We also use the + sign to denote summation over a particular
subscript when dealing with marginal distributions of the mixing matrix. Some of
these marginal distributions represent useful descriptive statistics of the network
graph:

• mghC D mgh1 C mgh0 denotes the total number of potential links between nodes
of type g and nodes of type h. Thus, mghC D ng � nh whenever g ¤ h, while
mggC D ng � .ng � 1/.

• mgC1 DPh2G mgh1 denotes the total number of observed links between nodes of
type g and all other nodes in the network (including also within-group links for
group g). Thus, mgC1 DPi2NWtiDg i.

• mgCC D P
h2G

.mgh1Cmgh0/ D mgC1CmgC0 denotes the total number of potential

links between nodes of type g and all other nodes in the network.
• mCC1 D P

g2G
P

h2G mgh1 denotes the total number of links actually formed in
the network.

A straightforward way of measuring segregation in social networks consists of
collecting and analyzing some descriptive statistics of the network graph, usually
related to proportions and ratios of between-group and within-group links across the
graph. For example, for group g the total number of within-group (segregative) links
found in the network is mgg1, and the total number of between-group (integrative)
links is .mgC1 �mgg1/. Then, let W.R/ DPg2G mgg1 D Tr. NM/ be the total number

of within-group links and B.R/ DPg2G.mgC1�mgg1/ D mCC1�Tr. NM/ be the total
number of between-group links in the network. Given a group g 2 G, the density of
within-group and between-group links, denoted by wg.R/ and bg.R/, respectively,
are equal to

wg.R/ D mgg1

mggC

and

bg.R/ D mgC1 � mgg1

mgCC � mggC
:
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Segregation indices can then be constructed by comparing some of these
statistics, as observed in the network, either among themselves or against some
benchmark that represents null segregation. Additionally, a segregation index may
consider only information on connected nodes, in which case it will be derived
exclusively from the contact layer mixing matrix NM, or it may also consider
information about isolated nodes, in which case it will include statistics derived
from the non-contact layer mixing matrix QM. There are supporting arguments
for both approaches. One could argue that isolated nodes in a network should
not play any role in segregation, since they do not contribute any “relational”
information. On the other hand, one could argue that disconnected nodes may be
a source of opportunities for creating links, and thus adding isolated nodes from
a given (minority) group creates additional opportunities for integration (reducing
segregation) in the form of between-group links. This decision is specially relevant
when analyzing segregation in a dynamic context, i.e. when modeling social
dynamics that may result in (or be affected by) segregation.

We introduce below four of the most relevant network segregation indices based
on descriptive network statistics, and provide some detail on them. Of these, the
GAM index, and the segregation matrix index do not use an equivalent random
network as a benchmark for baseline segregation. The assortativity coefficient and
the Coleman’s homophily index do. None of these indices use information about
isolation nodes. For other relevant indices we refer the reader to Bojanowski and
Corten (2014), who also study whether all these indices satisfy a series of properties
that can be considered desirable, and provide some empirical examples of their
application.

1. The Assortativity Coefficient
The assortativity coefficient was proposed by Newman and Girvan (2003) and
Newman (2003), in the context of analyzing mixing patterns in networks of
sexual contacts and marriage matching. First, we define a proportions matrix
P derived from the mixing matrix M:

.pgh/g;h2G D
�
mgh1

mghC

�
g;h2G

The matrix P normalizes the contact layer of the mixing matrix M by computing,
for each dyad of node types hg; hi, the proportion of links actually formed in
the network (mgh1) over the total number of possible links that could be formed
between them (mghC). The assortativity coefficient is then defined as

AC.R/ D

P
g2G

pgg � P
g2G

pgCpCg

1 � P
g2G

pgCpCg
:
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The assortativity coefficient is, in fact, the normalized modularity measure OQ.R/

of assortative mixing by group membership of the graph, expressed in the mixing
matrix terminology. The index reaches its maximum value of 1 when all the
links are within-group, in which case the diagonal entries of P sum up to 1. The
minimum value of AC does not necessarily take the value �1, but rather depends
on the relative number of links in each group. It is equal to

min fAC.R/g D
�P

g2G
pgC pCg

1 � P
g2G

pgC pCg
:

Finally, the index assumes the value of 0 when pgh D pgC pCh, that is, when
group memberships in connected dyads are stochastically independent.

2. The GAM Index
Gupta et al. (1989) define a multi-group segregation index (which we will refer to
as the GAM index) in order to assess the “within-group mixing” in a population.
Let the “proportions matrix” Q associated to the mixing matrix M be such that

.qgh/g;h2G D
�
mgh1

mgC1

�
g;h2G

:

So, qgh is the proportion of the number of links from nodes in group g to nodes in
group h over the total number of links formed from nodes in group g. The GAM
index is then

GAM.R/ D

P
g2G

qgg � 1

k � 1
:

Values of the GAM index vary between �1=.k � 1/ when qgg D 0 for all g 2 G
and 1 when

P
g2G qgg D k for all g 2 G. As reported by Newman (2003),

the GAM index may give misleading results in those networks with perfect
integration except for a group that, representing a small share of the total number
nodes, has perfect assortative mixing. In these cases such a small group can have
a disproportionately large effect on the value of the GAM index. Then, the value
of the GAM index will signal that the network has very strong assortative mixing,
when in fact it does not. The reason for this lies in the fact that the GAM index
gives equal weight to each group, as opposed to giving it to each edge, as the AC
index does.

3. The Segregation Matrix Index
The segregation matrix index proposed by Fershtman (1997), based on the
relative number and intensity of inward to outward interactions, is intended to
serve as a measure of the cohesiveness of a group. Fershtman (1997) defines a
cohesive group as a social group of actors who prefer to interact with one another
more than with others and reveal a highly self-preference segregative attitude.
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The SMI index is defined for directed graphs at the group level. Bojanowski and
Corten (2014) generalize the original measure for two-groups to any number of
groups by properly formulating the densities of within-group and between-group
links in the network. Formally, the multi-group index SMI for group g is

SMIg.R/ D wg.R/� bg.R/

wg.R/C bg.R/
:

Values of the SMI index for group g range from -1 for minimum segregation
(when type-g nodes only form between-group links, so wg.R/ D 0) to +1 for
maximum segregation (when type-g nodes only form within-group links, so
bg.R/ D 0)).
The SMI index suffers from two main limitations. First, the index expresses
cohesiveness properly provided there are equal probabilities for each node to
participate in edge formation. In large networks in which that probability may be
significantly small, or in networks in which situational limitations obstruct free
social interactions, the SMI index is not appropriate for describing cohesiveness.
Second, networks may exist in which some hierarchical structures (formed by
a node that links only to a cluster of nodes from the same group but the reverse
links are not formed in the network) are not really cohesive groups, and additional
criteria are needed to exclude them from being defined as such.

4. Coleman’s Homophily Index
Coleman (1958) introduces a group-level segregation measure for directed
networks that represents the propensity of an individual from group g to create
a link to someone else from the same group, as opposed to choosing randomly.
Formally, let

m�
gg1 D

X
i2NWtiDg

ipg D
X

i2NWtiDg

i
ng � 1

n � 1

be the expected number of within-group links for group g in a random network
R�, where pg D .ng � 1/=.n � 1/ is the probability for a node of type g to
link to another node from the same group in network R� (and which can be
approximated by ng=n for large n and large ng). Coleman’s Homophily Index for
group g 2 G is then computed as

CHIg.R/ D

8̂̂
<
ˆ̂:

mgg1�m�
gg1P

tiDg
i�m�

gg1
if mgg1 > m�

gg1

mgg1�m�
gg1

m�
gg1

if mgg1 < m�
gg1

:

CHIg.R/ varies between �1 (individuals are perfectly avoiding their own group)
and 1 (perfect segregation). The index takes the value 0 if and only if the observed
number of within-group links is exactly equal to the expected number under
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random choice, given the total degree of a group. The corresponding network-
level index CHI.R/ has been introduced in Bojanowski and Corten (2014):

CHI.R/ D

8̂<
:̂

W.R/�W�.R/P
i2N

i�W�.R/
if W.R/ > W�.R/

W.R/�W�.R/

W�.R/
if W.R/ < W�.R/

;

where W�.R/ DPg2G
P

tiDg.i.ng� 1//=.n� 1/ is the expected value of W.R/

in the equivalent random network R�.

3.2 Measures Based on Spectral Graph Theory

All segregation measures defined in the previous section result from analyzing a
social network through the graph that directly represents it as a structured collection
of vertices and edges, and then deriving properties on segregation (or assortative
mixing) from that graph. Spectral graph theory is the study and exploration of
graphs through some characteristic values naturally associated with a graph, such
as its eigenvalues and eigenvectors. Spectral graph theory starts with a different
way of representing and analyzing the graph associated with a network, by using a
set of matrices associated with the graph, rather than the adjacency matrix itself. It
then proceeds by computing some characteristic values of those associated matrices,
such as their eigenvalues and eigenvectors, which then reveal some properties and
structure of the original graph.

1. Spectral Segregation Index
Echenique and Fryer Jr. (2007) were the first to propose a segregation index
based on social interactions. Their spectral segregation index SSI is based upon
two premises: (1) a measure of segregation should disaggregate to the level
of individuals and (2) an individual is more segregated the more segregated
are the individuals to whom he interacts with. They also recover important
empirical results on segregation patterns that formerly were only obtained under
the more restrictive dissimilarity index. Although defined at the group level, the
SSI can be easily defined down to the node level giving segregation values for
individual nodes. It can also be aggregated flexibly to provide segregation scores
for network components and for the network as a whole.
The procedure to obtain these indices is as follows. Given the row-stochastic
matrix P that describes the percentage of time individuals spend with each
other—in particular, pi;j is the fraction of time i spends with j—the group-level
index SSIg.R/ is computed by determining first the subgraph of R that contains
only interactions between members of g, denoted by Pg. All individuals belong-
ing to a different group are eliminated from the network and, consequently, from
the matrix P. Such a subgraph Pg generally contains more than one strongly
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connected component, so the next step is to calculate the SSI for each component
separately. Let � be a (strongly connected) component of Pg. The SSI for group
g in � , denoted by SSIg.Pg;� / is equal to the spectral radius of the sub-stochastic
matrix Pg;� , which is the largest absolute value of the eigenvalues of Pg;� . The
segregation of a node (individual) i in this component is denoted by SSIi.Pg;� /,
and is the i-th entry of the principal eigenvector of the matrix Pg;� , normalized
so that the vector average is SSIg.Pg;� /. The segregation measure of group g is a
weighted average over the segregation measures of group g in all components of
Pg. In particular,

SSIg.Pg/ D
X

�

d�
g SSI.P

g;� /;

where d�
g D 1

ng

P
�

P
i2Pg;� SSIi.Pg;� / is the share of individuals of group g found

in the component � . Alternatively, the SSI of group g can also be expressed as
the average over the individual segregation levels:

SSIg.Pg/ D 1

ng

X
�

X
i2Pg;�

SSIi.Pg;� /:

To see how the SSI is applied consider Fig. 3, which corresponds to the
motivating example in Echenique and Fryer Jr. (2007). The society is composed
of two groups, blacks and whites. Each dot represents one individual. It is
also assumed that individuals only interact with their horizontal and vertical
neighbors. So, individual (A,1) spends 50 % of her time with each (A,2) and
(B,1) each. The subgraph Pblacks consists therefore of two connected components
Pblacks;1 and Pblacks;2.
The SSI for the black group is determined by taking a weighted average over
the spectral radii of the two black connected components. Since SSI.Pblacks;1/ D
0:72, SSI.Pblacks;2/ D 0:25, and 80 % of the blacks reside in component 1 and
20 % in component 2, the segregation of the black group is SSI.Pblacks/ D 0:8 �
0:72C 0:2 � 0:25 D 0:63.

Fig. 3 Calculation of the SSI
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According to Echenique and Fryer Jr. (2007), the following four main features of
SSI give this segregation index some important advantages over their alternatives.
First, it is invariant to arbitrary partitions of a city. Second, it allows to investigate
how segregated multiple minority groups are within and between cities. Third, it
allows for analysis of the full distribution of segregation, allowing researchers
to move beyond aggregate statistics, which can be misleading. And finally, there
are inherent multiplicative effects captured by SSI which other indices omit given
the fact that it is built based on a social network framework.

2. Spectral Homophily Index
In the context of analyzing how homophily—through the segregation patterns it
induces—affects the speed of a learning process in a network, Golub and Jackson
(2012a) introduce the spectral homophily index SHI, a measure of homophily in
networks.
The definition of the SHI starts with considering a matrix associated to the
network graph, the so-called interaction matrix F. To define F, let pg;h be the
probability of a type-g node forming a link with a type-h node. Then qg;h D
ng nh pg;h is the total contribution to the degrees of nodes of type g from links
to nodes of type h. Also, let g

�
qg;h

� D P
h2G

qg;h be the total degree of nodes of

type g. The interaction matrix F indicates the expected fraction of their links that
nodes of type g will have with nodes of type h. Each entry .g; h/ in F is computed
as fg;h D qg;h

g.qg;h/
.

Note that, using the mixing matrix terminology, qg;h D mgh1, g
�
qg;h

� D
mgC1, fg;h D mgh1=mgC1, and therefore F is the same matrix as the proportions
matrix Q used to define the GAM index. The spectral homophily index SHI
is then set equal to the second-largest eigenvalue of the interaction matrix F,
SHI.R/ D �2 ŒF�.
The SHI index is therefore based on first simplifying the overall interaction
matrix to that of the expected interaction across groups, and then looking at a
particular part of the spectrum of that matrix. Golub and Jackson (2012a) note
how, on an intuitive level, homophily makes it possible to draw a boundary in
the group structure of a network, separating it into two blocks so that there are
relatively few links across the boundary and relatively many links not crossing
the boundary (staying inside each of the two blocks that result from the split).
Since the second-largest eigenvalue of a matrix captures the extent to which it
can be broken into two blocks with relatively little interaction across the blocks,
the SHI index picks up fault lines in the group structure, which should reveal
segregation patterns.

3. Random walk-based segregation index
Ballester and Vorsatz (2014) propose a segregation index that builds on the
following random-walk process on the network graph. Pick any two individuals
from a given group g 2 G at random and suppose that the first of the two
individuals moves over the network in such a way that in the first period she
advances from her area of residence to some neighboring area (observe that
V D M). In each subsequent period, she either moves from her current position
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in the network to some adjacent node (this event happens with probability
0 � ˛ < 1/ or the process stops (this event happens with probability 1 � ˛).
Hence, the parameter ˛ can be interpreted as the degree of spatial mobility. The
(normalized) random-walk based segregation index for group g is then defined as
the probability that the two randomly chosen individuals meet when the random
walk of the first individual terminates.
From a formal point of view let P be the m 
 m row-stochastic matrix that
collects the exogenous transition probabilities between nodes; that is, pi;j is the
probability that an individual currently at node i moves to node j. This probability
is linked to the adjacency matrix A and, for example, one could assume that
pi;j D ai;j=i. Also, let Q be the m 
 m matrix such that qi;j is the probability
that a walk ends in node j, conditional on that it started in node i. Since it can be
shown that Q D .1 � ˛/.I � ˛P/�1P, the normalized measure at the group level
can be written as

O�g.R; ˛/ D � ng
n

��1 �Pi2M dg;i
P

j2M qi;j cg;j

D � ng
n

��1 � dT
g Q cg

D � ng
n

��1 � dT
g .1 � ˛/.I � ˛P/�1P cg:

A simple example clarifies the application of the index. Consider the network
depicted in Fig. 4.
There are two ethnic groups, blacks and whites. Two whites reside in neighbor-
hoods 1 and 3, three whites in neighborhood 4, and one white in neighborhood 2.
Moreover, three blacks live in neighborhood 3 and one black in neighborhoods
1, 2 and 4 each. The transition matrix P is such that all links (self-links
included) are equally likely to be chosen. Since dT

blacks D .1=6; 1=6; 1=2; 1=6/,
dT
whites D .1=4; 1=8; 1=4; 3=8/, cTblacks D .1=3; 1=2; 3=5; 1=4/, and cTwhites D

.2=3; 1=2; 2=5; 3=4/, it is easy to verify that O�blacks.R; 0:85/ D 1:05 and
O�whites.R; 0:85/ D 0:97, respectively.

Fig. 4 Calculation of the random-walk based segregation index
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This index has several favorable attributes. First, it is a natural spatial general-
ization of the isolation index to networks. In fact, �g reduces to the isolation index
of group g if the sociogeographical network is empty and individuals interact
only in the neighborhoods they reside in. Second, if ˛ D 0, it captures the
clustering dimension of Massey and Denton (1988) as the measure reduces to the
homophily index introduced by Currarini et al. 2009 and only direct connections
count. Finally, it also captures directly the dimension of centralization because
the index can be shown to be equal to

O�g.R; ˛/ D
�ng
n

��1

wT
g P cg;

where wg is the principal eigenvector of .1 � ˛/dg1T C ˛PT that essentially
underlies Google’s PageRank index (Brin and Page (1998)). That is, the vector
wg assesses the centrality of the different nodes in the network for group g.

4 Conclusion

Most of the classical statistical methods introduced in the literature on the mea-
surement of segregation were aimed to assess the heterogeneity in population
compositions among areas. To a very large extent, these measures were derived
around the data provided by the public authorities. More recently, sociologists and
economists have tried to be explicit about the processes through which segregation
arises; namely, through social interactions. Building upon the theoretical tool of
graph theory, two main roads can here be identified. First, the use of descriptive
graph statistics, such as ratios of within-group and between-group links in a
network, which can be expressed in a compact way through the mixing matrix
associated to a graph. Second, the use of spectral graph theory, which provides a set
of general theoretical tools for a mean-field approach to the analysis of networks,
built upon characteristic values of matrices associated to the network graph.

One drawback of the literature is that the employed measures are silent about the
particular processes that may lead to the formation of the observed network structure
that is characteristic of segregation. According to Ackland (2013) and Wimmer
and Lewis (2010) there are three main reasons why segregation forms. First, it
may be due to the presence of homophily, which can in principle operate with
respect to any attribute. However, when the attribute in question can be modified
by the individual (as for example with cultural preferences), it becomes difficult
to distinguish the direction of causality, i.e. whether attributes and preferences are
influencing link formation or whether they are influenced by existing links. Second,
there may be opportunity structures that influence link formation. For example,
a reduced group size and social or spatial proximity can be factors influencing
whether two individuals form a social tie. The smaller a group the more likely
is that its members will form links outside of the group, and proximity between
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two individuals, either in their spatial location or in their social or institutional
environments, can also influence the probability of them forming a link (this is
known as the propinquity mechanism). Finally, there are other mechanisms that
are not related to the attributes of actors in a dyad, but influence link formation
and therefore the level of segregation in a network. Among these mechanisms we
can mention some balance mechanisms (or network effects) like reciprocity and
transitivity that have been empirically documented. Consequently, it seems desirable
to develop measures that can “unpack” the contributions of each of these before-
mentioned mechanisms to the level of segregation in a given social network.
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An Investigation of Interregional Trade
Network Structures

Roberto Basile, Pasquale Commendatore, Luca De Benedictis,
and Ingrid Kubin

Abstract We provide empirical evidence on the network structure of trade flows
between European regions and discuss the theoretical underpinning of such a
structure. First, we analyze EU regional trade data using Social Network Analysis.
We describe the topology of this network and compute local and global centrality
measures. Finally, we consider the distribution of higher order statistics, through
the analysis of local clustering and main triadic structures in the triad census of
interregional trade flows. In the theoretical part, we explore the relationship between
trade costs and trade links. As shown by Behrens (J Urban Econ 55(1):68–92,
2004), Behrens (Reg Sci Urban Econ 35(5):471–492, 2005a) and Behrens (J Urban
Econ 58(1):24–44, 2005b) in a two-region linear new economic geography (NEG)
model, trade costs and the local market size determine, even with finite trade costs,
unconditional autarky and unilateral trade, that is, a one-directional flow from one
region to the other. Following these contributions and guided by the empirical
evidence, we clarify the relationship between market competition, trade costs and
the patterns of trade in a three-region NEG model. We identify a larger set of trade
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network configurations other the three elementary ones that occur at the dyadic level
between two regions (no trade, one-way trade, reciprocated two-way trade), and
relate the model with the triad census.

Keywords EU regional trade data • European trade flows • Social network
analysis • Three-region new economic geography model • Triad census

1 Introduction

In this paper we provide some empirical evidence on the network structure of
trade flows at the regional level in Europe and we discuss the possible theoretical
underpinning of such a structure. In the empirical part of the paper, we look at the
EU regional trade data recently produced by the PBL Netherlands Environmental
Assessment Agency (Thissen et al. 2013a,b, 2015), and we analyze it using Social
Network Analysis tools (Wasserman and Faust 1994). We take advantage of both
the binary structure of the European regional trade network (analyzing the presence
and absence of regional trade flows) and of its weighted counterpart (making use
of the distribution of the value of trade flows, measured in millions of Euros). We
use the latter to construct a meaningful threshold to restrict the density of the binary
structure, and, following De Benedictis and Tajoli (2011) and De Benedictis et al.
(2014), we visualize the trade network at different levels of the threshold, define and
describe the topology of the network and produce some of the main local and global
centrality measures for the different European regions. Finally,

. . . since the most interesting and basic questions of social structure arise with regard to
triads (Hanneman and Riddle 2005),

we account for the distribution of higher order statistics of the network, through
the analysis of local clustering and the main triadic structures in the triad census of
interregional trade flows.

Given the explicit assumption that trade costs, together with regional markets
size, are as for the gravity model of international trade (De Benedictis and Tajoli
2011; Anderson 2011; Head and Mayer 2014) among the main determinants of
inter-regional trade flows, the network analysis of regional trade flows in Europe
informs the main topological properties of the data that must be reflected in the
modeling of such trade flows.

From the theoretical point of view we explore how changes in crucial
parameters—especially a reduction in trade costs—may favor the creation of trade
links. The theoretical framework we adopt is a three-region linear new economic
geography (NEG) model. We have chosen the linear version of a NEG model
to overcome a crucial weakness of the standard approach as developed in the
literature beginning from Krugman (1991). Indeed, in the standard NEG model all
regions trade with each other as long as trade costs are finite. This follows from
the isoelastic demand function—because of the specific assumption on consumer’s
CES preferences—and the ad valorem, proportional to price, iceberg trade costs. In
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the linear version of the NEG model, as developed by Ottaviano et al. (2002), this
is not necessarily true. As shown by Behrens (2004, 2011, 2005a) for a two-region
linear NEG model, trade costs and the dimension of the local market may determine
unconditional autarky even in the presence of finite trade costs and asymmetric
patterns of trade, that is a one-directional flow from one region to the other. Of
crucial importance is the size and density of the industrial sector, that even in
the presence of symmetric bilateral trade costs, may induce differences in local
prices—with a lower price in the larger market. As stated by Behrens:

price competition and trade costs endogenously create interregional asymmetries in market
access and give rise to one-way trade in differentiated products (Behrens 2005a, p. 473).

The same result is obtained by Okubo et al. (2014, OPT). These authors remark
that while the NEG and trade literature stress

the importance of trade barriers for the intensity of competition and the spatial pattern of
the global economy,

it pays much less attention to the reverse relationship:

the impact of competition on the nature and intensity of trade as well as on the location of
economic activities.

OPT capture the intensity of competition in domestic markets within a linear
NEG model by assuming two regions with asymmetric population sizes.

Following the above mentioned contributions, our theoretical analysis aims
to clarify the relationship between the intensity of competition, trade costs and
the patterns of trade. Differently from the previous literature, and guided by the
empirical evidence, we will consider a three-region model.1 This allows us to
identify a larger set of trade network configurations other than three elementary
ones that occur at the dyadic level between two regions (no trade, one-way trade
from one region to the other, reciprocated two-way trade), and relate the model with
characteristics of the triad census. We also elaborate on how the structure of a trade
network can be modified as trade costs vary. In order to focus on the properties of
the short-run equilibrium and on the emergence of network structures in this time
framework, we exclude factor migration.

The paper is structured as follows: Sect. 2 presents some stylized facts on
the dominant interregional trade patters in Europe. Section 3 presents the basic
economic framework of the theoretical model, i.e. a three-region NEG linear model
with asymmetric trade costs and all possible configurations of trade flows between
two regions. In Sect. 3 we derive the short-run equilibrium and determine the trade
costs thresholds that determine all network configurations. Section 4 reports a brief
discussion and concludes.

1In the NEG literature, Ago et al. (2006), Melitz and Ottaviano (2008) and Behrens (2011) put also
forward three-region linear models à la Ottaviano et al. (2002). However, they limit their analysis
to specific trade cost structures.
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2 Interregional Trade Network in Europe: Some
Stylized Facts

In this section we perform an empirical analysis of the interregional trade network
in Europe in 2010 using a new dataset on constructed trade flows between the
European NUTS-2 regions. The aim is to provide some stylized facts about
interregional trade patterns in Europe. In particular, through a triad census analysis,
we want to identify the dominant triadic types, that is the frequency of each possible
triadic structure, in the directed binary European regional trade network.

Interregional trade data are noticeably missing from European regional
databases. The only database on interregional trade in goods and services at the
NUTS-2 territorial aggregation level, fully consistent with international trade data
between the Member States and with the rest of the world, is produced by the PBL
Netherlands Environmental Assessment Agency (Thissen et al. 2013a,b, 2015).
These data are estimated by essentially breaking down international trade flows and
national Supply and Use Tables to the regional level (see Thissen et al. 2015, for an
overview of the methodology used in the construction of the data). Importantly, the
methodology used is a parameter-free approach and therefore deviates from earlier
methods based on the gravity model that suffer from analytical inconsistencies.
Unlike a gravity model estimation, the methodology stays as close as possible to
observed data without imposing any geographical trade patterns. The resulting data
can therefore be used as such in our trade network analysis.

Nevertheless, as pointed out by Thissen et al. (2013a), one has to keep in mind
that the constructed interregional trade data are inferred from other data sources
and are not measured as a flow from one region to another. Given the compatibility
constraints with macro variables, some bias in the trade flows between regions inside
a country or between regions of different countries, might result from the weighting
procedure used in the construction of the data. In particular the number of positive
trade flows is extraordinary high with respect to other international trade data at
the national level, such as the Comtrade UN database. The number of zeros in the
regional trade matrix is minimal, meaning that the resulting trade network is almost
a fully connected one. Therefore, we opted to use the information contained in the
data to distinguish the main regional trade flows from the flows being lower than
a chosen threshold w. Then, we exploit only the resulting binary structure of the
truncated regional trade matrix, focusing on the relative dimension of trade links
rather than on the individual absolute value of trade flows between pair of regions.

The version of the bi-regional trade database used in our empirical work
comprises 267 
 267 D 71;289 observations of intra- or interregional trade flows
among European regions for the year 2010 (Thissen et al. 2015). Export and import
flows (both priced free on board) are measured in values (million of euros) and
divided into six product categories (aggregates AB, CDE, F, GHI, JK and LMNOP
of the NACE rev. 1.1). For our purposes, we only use the aggregate CDE, which
includes “Mining and quarrying” (Section C), “Manufacturing” (Section D) and
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“Electricity, gas and water supply” (Section E). The countries covered by the data
are the countries of the EU-27 (Croatia is not included).

We explore this new dataset through network analysis. As in De Benedictis et al.
(2014), we visualize the trade network, define and describe the topology of the
binary network and produce some of the main network’s statistics (i.e. local and
global centrality measures). We also calculate higher order statistics, enriching the
analysis with the reports on local clustering and the triad census of inter-regional
trade links.

In general terms, the fundamental unit of analysis necessary to study regional
trade flows is at the dyadic level rs: if between region r—the exporting region—
and region s—the importing region—trade takes place, two levels of information
are recorded. The first one is about the existence of a trade link, and it is a binary
measure that takes the value one if a trade link exists and zero otherwise. The second
is about the intensity of the trade relation between the two regions r and s, and is
a continuous measure that is conditional on the associated binary measure: if the
binary measure is zero, the only possible value that the intensity of the relation
can take is zero; if the binary variable is one, the intensity of the relation takes
real positive values. Since trade flows are directional, it is not in general correct to
impose any kind of symmetry, and the value of trade flows between r and s will not
be equivalent to the value of trade flows between s and r.

Even if the fundamental unit of analysis is at the dyadic level rs, the decision of
agents from region r to trade with agents of region s is not taken in isolation, but it
must consider the (best) possible option of trading with region k as an alternative.
This is true for both r and s: dyadic trade flows do not occur in isolation. This
motivates the use of network analysis in studying the relation between r and s,
extending to the nth level the logic behind the study of the so-called third-region
(k) effect.

More formally, a trade network N D .V;L;P;W/ consists of a graph G D .V;L/,
with V D 1; 2; : : : ; n being a set of nodes (the regions, labeled with the respective
NUTS-2 code) and L a set of links between pairs of vertices (e.g., trade partnership),
plus P, the additional information on the vertices, and W the additional information
on the links of the graph. The additional information included in the line value
function W captures the intensity of trade between r and s (in million of euros). The
information on the vertices (P) assembles different properties or characteristics of
the regions (regions’ labels, GDP, population, and so on). As mentioned, the trade
graph is a directed graph in nature, since lrs 2 f0; 1g indicates the existence or not
of some exports from region r to region s, and lrs ¤ lsr.

The graph associated to the EU regional trade network, G D .V;L/, has
an average dimension of 267 vertices (V D 1; : : : ; 267) and 70,898 trade links
(L D 1; : : : ; 70;898) out of 71,022 possible links (i.e. there are only 124 zeros,
0.27 %). Indeed, as the data is constructed, the EU regional trade network is strongly
connected, that is almost every vertex r is reachable from every s by a direct
walk. However, for many dyadic observations the amount of exports is negligible.
Thus, in order to visualize the network and to compute local and global centrality
measures we use the information associated with the intensity of the links to define
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Table 1 Trade network properties for different thresholds

Full w>25 mln. w>500 mln. w>1000 mln. w>2500 mln.

% of intra-European trade 100.0 91.0 24.4 10.0 1.3

Number of nodes (regions) 267 266 217 100 13

Number of links 70,898 20,086 834 200 12

% of zeros 0.27 71.72 98.82 99.71 99.98

Density 0.998 0.283 0.018 0.003 0.001

Degree centralization 0.002 0.717 0.988 0.997 0.999

Degree SD 0.006 0.181 0.026 0.030 0.115

Eigenvector centralization 0.001 0.572 0.894 0.894 0.583

Eigenvector SD 0.006 0.297 0.162 0.204 0.322

Clustering 0.999 0.690 0.227 0.138 0.000

The density of a graph is the frequency of realized edges relative to potential edges. The clustering
coefficient measures the proportion of vertex triples that form triangles (transitivity)

an appropriate threshold for the selection of links, and then exploit the binary
information of the resulting network.

As an example, excluding all dyadic observations lower than 25 million of euros,
the remaining flows almost cover the 90 % of the total intra-Europe inter-regional
trade in the aggregate sector CDE (i.e. imports+exports, which amount to almost
3,000 billions of Euros) (see Table 1). Adopting a threshold of w > 25 the number
of edges (and so the density) is substantially reduced, from 70,898 to 20,086 (from
0.998 to 0.285), and one region (PT15) appears as an isolate. The density of the
truncated network indicates that the inter-regional trade network is not regular and is
far from being complete, or in other terms if the heterogeneity in the strength of links
is used to select their presence, this heterogeneity is reflected in the connectivity of
the network.2

The choice of the threshold of w > 25, simply based on the criterion to
cover the 90 % of the total intra-Europe inter-regional trade, may certainly appear
arbitrary. A valid assessment of the robustness of our analysis to alternative choices
of the threshold therefore requires a preliminary exploration of the distribution of
interregional export values to ascertain whether any discontinuity takes place in the
neighborhood of 25. To perform this check, we report in Fig. 1 the estimated kernel
density of interregional export values. The visual inspection of the graph shows a
reasonably smooth distribution and does not reveal any relevant jump at the cut
off of 25. This evidence supports our choice. As a “litmus test”, the results of the
network analysis turned out to be robust to any alternative choice of the threshold
just around 25 (for example 20 or 30 millions). With these results in hand, we can
safely proceed by considering the interregional trade network resulting from the
application of the threshold of w > 25 as our benchmark. Moreover, we assess the

2The sub-network including links with w > 25 is still weakly connected, but not strongly
connected, that is not every vertex r is reachable from every s by a directed walk.
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Fig. 1 Density of interregional trade flows

sensitivity of our analysis to alternative thresholds much further from 25 (namely
for w > 500, w > 1000 and w > 2500, accounting for about 25, 10 and 1 % of the
total intra-Europe trade) (see Table 1).

With a threshold of w > 500 or higher, the percentage of inter-regional European
trade covered by data used to define the trade network gets substantially reduced,
and with a threshold of w > 1000 the majority of European regions are excluded
from the analysis and appear as isolates (see also Fig. 2), so that the number of zeros
become exorbitant. This can be easily visualized using a sociogram for the different
levels of threshold.

In Fig. 2, each European region is represented by a node in the topological space.
The application of a so called force-directed algorithm on the regional trade data
with valued links makes regions which are strongly connected close to each others,
while regions which are not connected tend to be located far apart (Freeman 1979).
However, the position of each region does not depend only on its bilateral links
but also on the indirect effect of others: the trade partners of its trade partners will
contribute to determine the region’s position in the network. The role of the third-
region effect clearly emerges from the visualizations in Fig. 2.

Figure 2 represents the directed network of European trade partners at the
regional level in 2010. Nodes are European regions identified by NUTS-2 codes,
(P DAT11, : : : , UKN0), while links are weighted by the strength of trade flows
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Fig. 2 Regional Trade in Europe: 2010. The figure represents the network of European trade
partners at the regional level in 2010. Panel (a) visualizes all trade links with weight (exports)
w � 25 (million of euros); panel (b) visualizes trade links with w � 500; panel (c) visualizes
trade links with w � 1000; and panel (d) visualizes trade links with w � 2500. Regions (nodes)
are identified by their NUTS-2 codes. Colors indicate homogeneous clusters defined according to
modularity (with 12 clusters) (Color figure online)

(values in million of euros) (W D fFR71; UKD3 D 251:69g ; : : : ; fITC4; ITG1
D 5349:30g). Panels (a), (b), (c) and (d) visualize all trade links with weight
w � 25I 500I 1000I 2500, respectively.

As shown in panel (d) the main European trade flows are between Italian
regions (ITG1, ITC4, ITE4) and Spain (ES51), on one side, and German landers
(DE11, DE12, DE21, DEA1) and France (FR10), on the other. Considering links
of lesser strength (panel(c)) reinforces the impression that intra-national trade
constitutes a substantial part of the structure of the European regional trade. New
communities emerge (e.g. the Nordic countries, Poland, Greece) and the previous
ones get reinforced by the inclusion of new links: the Italy-Spain community now
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includes some Portuguese, Austrian, Hungarian and Slovakian regions; and the
Germany-France community is now enlarged to regions in Belgium, UK and the
Netherlands. Colors indicate homogeneous cluster/community/modules of regions
defined according to modularity (Newman 2006).3

Regions like ITC4, DE12, DE21 are at the center of the network, while regions
like FI20, PL43, EE00, at the extreme left of the visualizations in Fig. 2, or PT30,
BG32, PT15, at the extreme right, are at the boundaries of the network structure.
The EU regional trade network displays a core-periphery structure, with the more
active regions (i.e. with higher w) at the core. Also other regions are at the center of
the visualizations in Fig. 2: UKE3, CZ01, NL12 are visually central, but their level
of w is not among the highest percentiles of the distribution of w’s. Their position
depends on their respective links with their major trade partners. With respect to
peripheral regions they are in fact preferentially linked with central regions. As
pointed out above, indeed, centrality depends on direct links but can also depend
on the centrality of regional trade partners. To clarify these issues, we will report
the evidence of different centrality measures.

The simplest measure of centrality of Vr is the number of its neighbors (the num-
ber of direct trade connections region r has), namely its degree. The standardized
degree centrality of a vertex is its degree divided by the maximum possible degree
(Wasserman and Faust 1994; Newman 2003; Jackson 2008):

Cd
r D

dr
n � 1

D
Pn

s¤r lrs

n � 1
(1)

Since, in simple directed graphs like the one depicted in Fig. 2, a region can be
both an exporter (a sender) and an importer (a receiver), we can compute both the
in-degree of a region, dr D Pn

s¤r dsr, as the number of incoming links (imports)
to region r, and the out-degree, dr D Pn

s¤r drs, as the number of out-going links
(exports) from region r towards its trade partners.

Imposing the condition w > 25 as a reasonable threshold that maintain the
characteristics of the full network without assuming too much homogeneity between
the different European regions (as shown in Table 1), standardized in-degree and
out-degree distributions for the European interregional trade network in 2010 are
shown in Fig. 3. In both cases a strongly asymmetric and bimodal distribution
emerges, suggesting that there are two distinct dominant groups of regions with
low and medium standardized degrees, while a small fraction of vertices has a high
in-degree (out-degree).

More specifically, the first ten central regions in terms of in-degree are Ìle
de France (FR10), Lombardia (ITC4), Oberbayern (DE21), Stuttgart (DE11),
Dusseldorf (DEA1), Arnsberg (DEA5), Koln (DEA2), Giessen (DE71), Cataluna

3Networks with high modularity have dense connections between the nodes within modules
but sparse connections between nodes in different modules. We use modularity to detect the
community structure of the EU regional trade network. See Newman (2006) on this issue.
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Fig. 3 In-degree and out-degree distribution. Histogram and density plots

(ES51) and Karlsruhe (DE12), with a level of Cd
r > 0:63 (the regions are inner

linked with a little bit more than 63 % of possible regional partners, with a strength
of w > 25), with German landers at a core of European markets in terms of imports.
If we look at regions as exporters, the first ten regions are, respectively, ITC4, DE21,
DE11, DE71, DEA5, DE12, NL33, DEA1, DE25, DE13, with a level of Cd

r > 0:66

(the regions are outer linked with a little bit more than 66 % of possible regional
partners, with a strength of w > 25), with the role of Germany even more prominent.
Seven out of ten regions are in the both top-tens, the more connected importing
regions are also the most connected exporting regions. More broadly, in-degree
and out-degree are positively correlated with a Pearson coefficient of 0.9. There
are however some notable exceptions: UK12 is in the top-twenty as an importer,
ranking 95th as an exporter.

The scatter plot of in-degree versus out-degree (both derived using Eq. (1)) is
depicted in Fig. 4. The French region of Ìle de France (FR10), as previously men-
tioned, is the EU region with highest In-degree, a characteristic strictly associated
with its level of regional GDP, highlighted by the dimension of the dot representing
the position of the region in the degree-space. The German regions of Stuttgart
(DE11) and Oberbayern (DE21) and the Italian region of Lombardia (ITC4) lead
the EU regions in terms of out-degree. The scatter plot clearly confirms the positive
correlation between In-degree and Out-degree, but also shows the level of dispersion
of the EU regional trade centralities. A notable case is the one of the Great Britain
regions of Inner London (UKI1) and Outer London (UKI2) showing a level of in-
degree much higher than the level of out-degree, depending on the lesser importance
of regional manufacturing with respect to service production and trade.
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Fig. 4 Scatterplot of in-degree and out-degree centralities. The scatterplot confronts the level of
in-degree with the level of out-degree for each EU region. Regions of the same country share the
same color. The size of the dots is proportional to regional GDP. Dots are labeled according to
NUT-2 codes (Color figure online)

Beyond the degree distribution itself, it is interesting to understand the manner
in which regions of different degrees are linked with each other. To this end, we
plot the average neighbor degree versus vertex degree (Fig. 5). This plot suggests
that, while there is a tendency for regions of higher degrees to link with similar
regions, nodes of intermediate degree tend to link with regions of both intermediate
and higher degrees. This issue can be better analyzed using a global measure of
centrality, namely the eigenvector centrality.4

4The degree centrality (Cd
r ) is classified as a local measure of centrality since it takes into

consideration only the direct links of a node, its nearest neighborhood, regardless of the position of
the node in the network’s structure. Contrary to the local measures, global measures of centrality
uncover the effect of others at a higher level of connection, including the direct and the indirect
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Fig. 5 Average neighbor degree versus vertex degree (log-log scale)

Figure 6 shows the Eigenvector centrality distribution for the European interre-
gional trade network. Again a right skewed bimodal distribution emerges. The ten
most central regions (in terms of Eigenvector centrality) are, in order, Ìle de France
(FR10), Oberbayern (DE21), Lombardia (ITC4), Stuttgart (DE11), Dusseldorf
(DEA1), Arnsberg (DEA5), Koln (DEA2), Karlsruhe (DE12), Darmstadt (DE71)
and Rhone-Alpes (FR71).

Last but not least, we explore the new dataset through network analysis to
evaluate to what extent two regions that both trade with a third region are likely
to trade with each other as well. This notion corresponds to the social network
concept of transitivity and can be captured numerically through an enumeration
of the proportion of vertex triples that form triangles (i.e., all three vertex pairs
are connected by edges), typically summarized in a so-called clustering coefficient.
Table 1 shows that, with w > 25, about 70 % of the connected triples close to form
triangles. With higher thresholds of exports (w > 500, w > 1000 and w > 2500),
this fraction steeply decreases.

More deeply, the role of the third region can be studied (and properties can be
tested) using the Triad Census (the count of the various type of triads in the network)
as a tool (Wasserman and Faust 1994). Classical triad census analysis applies to
single, directed and binary network, and we will follow the tradition in this respect.

effect of potentially all nodes in the network. In particular, the eigenvector centrality captures the
idea that the more central the neighbors of a vertex are, the more central that vertex itself is. In
other words, eigenvector centrality gives greater weight to a node the more it is connected to other
highly connected nodes. Thus, it is often interpreted as measuring a node’s network importance.
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Fig. 6 Eigenvector centrality distribution

Taking the three nodes Vs, Vr and Vk, where s ¤ r ¤ k, we can call them a triple,
if we also consider the presence or absence of links between the different nodes we
have a triad. Tsrk is the triad involving Vs, Vr and Vk. If the network is composed of

n nodes, there are

�
n
3

�
D n.n�1/.n�2/

6
triads. In the EU regional trade network there

are, therefore, 3,136,805 triads.
As far as possible realizations of triads, since there are three nodes in a triad, and

each node can be connected to two other nodes, this give rise to six possible links.
Since each link can be present or absent, there are 26 D 64 possible realizations
of the triads. Excluding isomorphic cases (e.g. if Vs, Vr and Vk are not linked,
Tsrk;Trks and Tksr are isomorphic), we remain with 16 isomorphism classes for
64 different triad states. These classes, represented in Fig. 7, range from the null
subgraph to the subgraph in which all three dyads formed by the vertices in the triad
have mutual directed links. The figure is from Wasserman and Faust (1994, p. 566)
as reproduced in De Nooy et al. (2011). The different classes are labeled with as
many as four characters, according to the M-A-N labeling scheme of Holland and
Leinhardt (1970), where the first character gives the number of Mutual dyads in
the triad, the second the Asymmetric ones, the third the number of Null dyads, and
lastly, the forth one, if present, is used to distinguish further among the types (e.g.
the two 030 triads—panel 9 and 10 in Fig. 7—can be distinguished by the transitivity
of the dyad 9 and the cyclic links of dyad 10). The four letters in the forth character
are “U” (for up), “D” (for down), “T” (for transitive) and “C” (for cyclic).

For every network it is possible to calculate the frequencies of the 16 classes.
In Table 2 we report the triad census for the European regional trade network at
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Fig. 7 Triads in a digraph. The figure is from Wasserman and Faust (1994, p. 566) as reproduced
in De Nooy et al. (2011). The triples of directional relations are called triads. Among the numbers
at the bottom of each panel, the first one is progressive from 1 to 16 and indicates all the possible
cases of triads, while the second is the M-A-N labeling scheme of Holland and Leinhardt (1970):
the first character gives the number of Mutual dyads in the triad, the second the Asymmetric ones,
the third the number of Null dyads, and lastly, the forth one, if present, is used to distinguish further
among the types (e.g. 003 triad as 0 Mutuals, 0 Asymmetrics and 3 Nulls)

different levels of threshold w. Every triadic census, reported in columns 4 to 8, is
calculated excluding isolated regions and zero valued edges, e.g., in the last column
of Table 2 the triad census is calculated for the 13 regions and 12 edges of the trade
network with w > 2500. Here we discuss only our preferred structure (i.e., w > 25).

The fifth column in Table 2 shows that the large majority of triads in the EU
regional trade is represented by empty-graph structures (corresponding to the 003
MAN code, row 1 in Table 2); followed by single and mutual edges (012 and 102
MAN codes, rows 2 and 3 in Table 2); and then by stars (in-stars 021U, out-stars
021D, and especially mutual stars, 201 MAN code, rows 5, 4 and 11 in Table 2).
One noteworthy characteristic of the EU regional trade network is the prevalence of
mutual edge + (double) Out structures (111U and 120U MAN codes, rows 8 and 13
in Table 2) over mutual edge + (double) In structures (111D and 120D MAN codes,
rows 7 and 12 in Table 2). It seems that when two regions establish a mutual trade
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relationship this fosters them to export to, more that to import from, a third region.
This tendency persists at different level of threshold w (as can be seen in columns
6–8 in Table 2). This aspect of the EU regional trade network will be discussed and
theoretically motivated in the subsequent sections.

Overall, the evidence emerging from our analysis suggests interesting insights on
the interregional trade network in Europe, which also inform our theoretical model
described in the following sections. First, it emerges that the interregional trade
network (and, thus, the European economic integration) is far from being complete
since most regions do not trade (or trade with a very low intensity) with all other
regions, but they rather select their partners. This first stylized fact clearly emerges
once we neglect bilateral trade flows lower than 25 millions of euros. Second,
interregional trade flows, partners and links in Europe are strongly heterogeneous,
with a relatively small number of regions playing a central role in the network
structure, both in terms of number of links and amount of intra-Europe trade flows
accounted. In particular, our findings clearly show that distance matters also in trade
between regions and that the emerging clusters are characterized by geographic
proximity. Specifically, the national homogeneity of clusters gives evidence that
national borders are relevant for regional analysis of EU trade flows. Finally, from
the triadic census analysis it emerges that the tendency to reciprocate trade links
(i.e., closing triangles) is limited and mutual edge patterns tend to prevail.

3 General Framework

In this section, we build a three-region linear new economic geography (NEG)
model along the lines of the evidence emerged from the empirical analysis of the
EU regional trade network.

3.1 Basic Assumptions

The economy is composed of three regions (labeled suitably r, s and k). There
are two sectors, Agriculture (A-sector) and Manufacturing (M-sector). Workers
and entrepreneurs are the two types of agents operating in the economy, each of
them is endowed with a factor of production, unskilled labor (L-factor) and human
capital (E-factor).5 L can be used in both sectors; whereas E is specific to M.

5A crucial difference between human and, for example, knowledge capital is that the former is
embodied into the owner, whereas the second is separated. In a NEG model, this difference enters
into play only when factor migration is allowed. When human capital is considered, changes in real
incomes alters the migration choice also via the so-called “price index effect” so that changes in
local prices may affect the long-run distribution of the industrial sector. Instead, when knowledge
capital is concerned, factor movements are only driven by regional nominal profit differentials.
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Production in the A-sector involves a homogeneous good, whereas in the M-sector
the output consists of N differentiated varieties. The three regions are symmetric—
they have the same endowment of L and are characterized by the same production
technology and consumption preferences—except for their distance. This translates
into regional differences in trade costs.

3.2 Production

The A-sector is characterized by perfect competition and constant returns to scale.
The production of 1 unit of the homogeneous good requires only unskilled workers
as an input. Without loss of generality, we assume that 1 unit of labor gives 1 unit of
output. The A-good is also chosen as numéraire. In the M-sector, instead, (Dixit-
Stiglitz) monopolistic competition and increasing returns prevail. In this sector,
identical firms produce differentiated varieties with the same technology involving
a fixed component, 1 entrepreneur, and a variable component,  units of unskilled
labor for each unit of the differentiated variety. Total cost TC for a firm i producing
qi output units corresponds to:

TC.qi/ D �i C wqi

where w is the wage rate, �i represents the remuneration of the entrepreneur and the
operating profit. Given consumers’ preference for variety (see below) and increasing
returns, each firm will always produce a variety different from those produced by the
other firms (no economies of scope are allowed). Moreover, since one entrepreneur
is required for each manufacturing firm, the total number of firms/varieties, N,
always equates the total number of entrepreneurs, E D N. Denoting by �r the share
of entrepreneurs located in region r the number of regional varieties produced in
that region is:

nr D �rN D �rE:

A new economic geography (NEG) model in which the mobile factor is human capital (or,
alternatively, skilled labor or entrepreneurship) is known as Footloose Entrepreneur (FE) model
(developed originally in Forslid and Ottaviano 2003); a NEG model in which the mobile factor
is separated from the owner (such as physical or knowledge capital) is labeled Footloose Capital
(FC) model (developed firstly in Martin and Rogers 1995). As mentioned above, this distinction
becomes relevant moving from the short to the long-run when factor migration is allowed. Even if
the basic structure of the model is equivalent for FC and FE models, we consider the factor specific
to the M-sector an entrepreneur.
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3.3 Utility Function

Following Ottaviano et al. (2002), to represent individual preferences we adopt a
quasi-linear utility function. As we shall see, a crucial difference of this modeling
strategy with respect to the standard CES approach is a CIF price (price at
destination) which falls as the number of local competing firms rises. This implies
a stronger dispersion force (given by the competition effect). Another difference is
that it allows to highlight alternative patterns of trade (autarky, one-way, two-way
trade) as shown by Behrens (2004, 2005b, 2011) and by Okubo et al. (2014) for the
case of two-region economies.

The utility function is composed of a quadratic part defining the preferences
across the M goods and a linear component for the consumption of the A-good:

U D ˛

NX
iD1

ci �
�

ˇ � ı

2

� NX
iD1

c2
i �

ı

2

 
NX
iD1

ci

!2

C CA (2)

where ci is the consumption choice concerning the variety i; ˛ represents the
intensity of preferences for the manufactured varieties, with ˛ > 0; ı represents
the degree of substitutability across those varieties, ı > 0; and where the taste for
variety is measured by the (positive) difference ˇ � ı > 0.

The representative consumer’s budget constraint is:

NX
iD1

pici C CA D yC CA (3)

where CA is the individual endowment of the agricultural good which is assumed
sufficiently large to allow for positive consumption of this good in equilibrium; pi is
the price of variety i inclusive of transport costs and y is the income of the individual
agent (unskilled worker or entrepreneur).

3.4 Trade Costs

The three regions constitute the nodes of a network economy in which the links
are the flows of commodities (esp. those produced in the M-sector). The existence,
direction and magnitude of these flows depend on the size of trade costs. There are
three types of flows/links between two regions—labeled let’s say r and s—a one
directional link from r to s, where r is the exporting region and s the importing
region; a one directional link from s to r, where s is the exporting region and r the
importing region; and a bidirectional link between r and s, where both regions export
to and import from the other. Including also the possibility of no links, the maximum
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number of possible network structures involving three regions is 64; excluding the
“isomorphic” cases this number reduces to 16 (see the discussion on triad census
above).

Differently from Ago et al. (2006), according to whom the three regions are
equally spaced along a line, and from Behrens (2011), according to whom two
regions in a trade bloc are at the same distance from a third outside region, we
assume that the distance between regions is not necessarily the same. Moreover,
we assume identical bilateral trade costs, so that the cost of trading industrial
commodities from r to s and from s to r is identical, that is, Trs D Tsr; and no
cost of trading goods within a region, that is, Trr D 0. Moreover, we do not assume
an a priori specific trade costs configuration,6 that is, Trs ¤ Trk and/or Trk ¤ Tsk
and/or Trs ¤ Tsk.

Letting r; s and k be the three regions under consideration, the trade cost matrix
can be written as:

0
@ 0 Trs Trk
Trs 0 Tsk
Trk Tsk 0

1
A

4 Short-Run Equilibrium

We limit our analysis to the equilibrium that emerges in the short run, contingent
on given regional shares of entrepreneurs .�r; �s; �k/, leaving for future work the
analysis of the entrepreneurial migration processes that characterize the long run.

4.1 Equilibrium Determination

Solving for CA the budget constraint (3), substituting into the utility function (2) and
then differentiating with respect to ci, we obtain the following first-order conditions
(i D 1; : : : ;N):

@U

@ci
D ˛ � .ˇ � ı/ ci � ı

NX
iD1

ci � pi D 0

6A specific configuration could emerge after empirical analysis. We could have, for example, a
“hub and spoke” structure by letting: Trs � Trk � Tsk , with Trs ¤ Trk and/or Trk ¤ Tsk . This
would stress the locational advantage of region r (the “hub”) with respect to s and k (the “spokes”).
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from which

pi D ˛ � .ˇ � ı/ ci � ı

NX
iD1

ci :

The linear demand function is

ci. p1; : : : ; pN/ D ˛

.N � 1/ı C ˇ
� 1

ˇ � ı
pi C ı

.ˇ � ı/Œ.N � 1/ı C ˇ�

NX
iD1

pi

D a � .bC cN/pi C cP

where P DPN
iD1 pi, 0 � pi � Qp � aCcP

bCcN and

a � ˛

.N � 1/ı C ˇ
; b � 1

.N � 1/ı C ˇ
; c � ı

.ˇ � ı/Œ.N � 1/ı C ˇ�
:

The indirect utility is given by:

V D SC yC CA

where S corresponds to the consumer’s surplus:

S D U.c. pi/; i 2 Œ0;N�/ �
NX
iD1

pici. pi/� CA

D a2N

2b
C bC cN

2

NX
iD1

p2
i � aP � c

2
P2:

The consumer’s demand originating from region s—but it could be region r or
region k, after a suitable change in the subscripts—for a good produced in region
r—but it could be region s or k—is

crs D a � .bC cN/prs C cPs

where crs is the demand of a consumer living in region s for a good produced in
region r; prs is the price of a good produced in region r and consumed in region s;
and Ps is the price index in region s, with

Ps D nrprs C nspss C nkpks:

Notice that, following from the assumption of symmetric behavior of firms,
prices differ across regions—segmenting markets—only because of trade costs.
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Short-run equilibrium requires that in each segmented market demand equals
supply:

crs D qrs

where qrs is the output produced in region r—but it could be region s or k—that is
brought to a market in region s—but it could be region r or k.

In order to derive the short-run solutions, we only consider region r (but the
same reasoning applies to region s or k after a suitable change in the subscripts).
The operating profit of a representative firm in region r is:

�r D . prr � /qrr.Lr C �rE/

C . prs �  � Trs/qrs.Ls C �sE/

C . prk �  � Trk/qrk.Lk C �kE/:

From the profit maximization procedure and market segmentation, considering
further than N D E, the first-order conditions follow:

@�r

@prr
D ŒaC .bC cE/C cPr � 2prr.bC cE/�.Lr C �rE/ D 0

@�r

@prs
D ŒaC .C Trs/.bC cE/C cPs � 2prs.bC cE/�.Ls C �sE/ D 0

@�r

@prk
D ŒaC .C Trk/.bC cE/C cPk � 2prk.bC cE/�.Lk C �kE/ D 0

Taking into account trade costs and letting Qpr D aCcPr
bCcN > , profit-maximizing

prices correspond to

prr D aC cPr C .bC cE/

2.bC cE/
D Qpr

2
C 

2
(4)

prs D
(

aCcPsC.CTrs/.bCcE/

2.bCcE/
D Qps

2
C 

2
C Trs

2
if Trs � Qps � 

Qps if Trs > Qps � 
(5)

prk D
(

aCcPkC.CTrk/.bCcE/

2.bCcE/
D Qpk

2
C 

2
C Trk

2
if Trk � Qpk � 

Qpk if Trk > Qpk � 
(6)

where prr is the price that a firm located in r sets in its own market, prs the price that
such a firm sets in market s, prk the price set in market k, Qps D aCcPs

bCcE the reservation

price of a consumer living in region s and Qpk D aCcPk
bCcE that of a consumer living in

region k.
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Using the demand and price functions, we can write:

qrr D .bC cE/. prr � / (7)

qrs D
�

.bC cE/. prs � � Trs/ if Trs � Qps � 

0 if Trs > Qps � 
(8)

qrk D
�

.bC cE/. prk �  � Trk/ if Trk � Qpk � 

0 if Trk > Qpk � 
: (9)

According to expressions (5)–(6) and (8)–(9), if a firm located in r quotes in
market s (or in market k) a price larger than the reservation price for consumers
resident in s (or in k), the export from region r to region s (or k) is zero.7 The
boundary condition for trade as reported in these expression is crucial for the
following analysis.

The indirect utility for r is given by

Vr D Sr C yC CA

where Sr corresponds to the consumer’s surplus:

Sr D a2E

2b
C bC cE

2

�
�rp

2
rr C �sp

2
sr C �kp

2
kr

�
E � aPr � c

2
P2
r :

We group all the 16 possible network structures created by the trade flows
between the regions into four cases: (1) no trade occurs between all the regions;
(2) one-way or two-way trade occurs between region r and s and region k is in
autarky; (3) one-way or two-way trade occurs between regions r and s and r and k,
but regions s and k do not trade with each other (what is called in the triad census
terminology a “star” structure); (4) one-way or two-way trade occurs between
any two-regions in the economy. For all network structures we derive the relevant
conditions as determined by the relationship between trade costs and the distribution
of the industrial activity. Some specific cases will be developed in some detail to
understand the effects on the three regions of the creation of a new link. As we shall
see, there is a one-to-one correspondence between the trade network structures and
the triad census taxonomy so that we can match each trade network configuration to
a triad as reported in Fig. 7.

7See Behrens (2004, 2005b, 2011). On the empirical relevance of the zero in the trade flow matrix,
see Melitz (2003).
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4.2 Case (1) All Autarkic Regions

First we consider the case in which all the regions are in autarky. This corresponds
to triad 1 in Fig. 7. Due to the isomorphic properties, we focus only on region r.

Region r is in autarky when conditions Trs > Qps �  and Trk > Qpk �  apply.
Using the Eqs. (4), (5) and (6) and the expression for the reservation price, these
“no-trade” conditions can be written as:

Trs >
2.a� b/

2bC c�sE
D eTs and Trk >

2.a� b/

2bC c�kE
D eTk

where @eTs
@�s
D � 2.a�b/

.2bCc�sE/2 cE < 0 and @eTk
@�k
D � 2.a�b/

.2bCc�kE/2 cE < 0.

These results have two important implications: (1) a lower degree of local compe-
tition increases the likelihood of interregional trade—making more permeable the
local market in s (or in k) for firms located in r; (2) reducing distance—i.e. trade
costs—between regions r and s (or between r and k) has a similar impact. That is,
closer regions have a more accessible market.

If trade costs are too high, then no trade occurs among the three regions and firms
only sell in the local market. From (4), (5) and (6), considering the linear demand
non-negativity constraint, we obtain the price index for region r:

Pr D a.2 � �r/C �r.bC cE/

2bC c�rE
E

and the equilibrium prices and quantities:8

prr D aC .bC c�rE/

2bC c�rE
qrr D .bC cE/. prr � /

prs D 2pss �  qrs D 0

prk D 2pkk �  qrk D 0:

As shown by these expressions, the equilibrium prices and quantities depend
negatively on the number of local firms �r. This is a manifestation of the so-called
local competition effect: the larger is the number of firms competing in the local
market, the lower the price firms are able to set (and the smaller the output they are
able to sell).

Taking into account our symmetry assumption, according to which the regions
are endowed with the same number of L, the equilibrium short-run profit for a firm

8Note that analogous expressions can be obtained for s or for k by simple switching r and s or r
and k.
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located in region r, which sells only to the local market, corresponds to:9

�r D . prr � /2.bC cE/

�
L

3
C �rE

�
D .bC cE/

�
a � b

2bC c�rE

�2 �L
3
C �rE

�
:

Finally, we obtain the indirect utility of an entrepreneur resident in r:

Vr D Sr C �r C CA D .a� b/2.bC cE/Œ3�rE.3bC c�rE/C 2bL�

6b.2bC c�rE/2
C CA :

4.3 Case (2) Trade Only Occurs Between Two Regions

We now consider the case where (one-way or two-way) trade occurs but only
between two regions. This implies that, because of high trade costs, the third region
has no trade links with the other two. We focus on the possible links between regions
r and s; the region in autarky is, therefore, k. Due to the isomorphic properties, the
same analysis applies for the links between regions r and k (with s in autarky) or
regions s and k (with r in autarky).

There are two subcases: (2.A) one-way trade from region r to region s (isomor-
phic to the link going in the opposite direction from s to r) corresponding to triad 2

in Fig. 7; and (2.B) two-way trade between r and s, corresponding to triad 3.
Considering the subcase (2.A), from Eqs. (4), (5) and (6), we deduce that one-

way trade from region r to region s occurs as long as:

2.a � b/

2bC c�rE
D eTr < Trs �eTs D 2.a� b/

2bC c�sE
: (10)

That is, the region with the larger share of entrepreneurs has a higher chance to
be the exporting region, taking advantage of the lower competition in the destination
market.

When only one-way trade from region r to region s is allowed, then firms in
region r are able to sell both in their local market and in the outside market s.
Firms in region s, as before, only produce for the local market but now they have to
compete not only with each other but also with firms located in r.

9Notice that the assumption of identical workers population has no significant impact on the short-
run analysis and it can be easily removed; whereas in the long run, it determines the regional
entrepreneurial shares and, via these shares, the trade flows.
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We also derive the conditions of “no trade” between regions r and k and between
regions s and k:

max

�
2.a� b/

2bC c�rE
;

2.a� b/

2bC c�kE

�
D max

�eTr;eTk
�

< Trk (11)

max

�
2.a� b/C cE�rTrs
2bC c .�r C �s/E

;
2.a� b/

2bC c�kE

�
D max

�eTks;eTk
�

< Tsk: (12)

Looking at the expression (12), we note that the boundary condition for a one-
directional link from region k to region s is more restrictive than before,eTks < eTs

since Trs < eTs, taking into account the competition coming from the third region r.
Moreover, from these conditions, it follows that the distance from r to s is shorter
than the distance from s to k (Trs < Tsk). This can be proven considering that 1)
Trs � eTks from the condition Trs � eTs in (10) and 2) eTks < Tsk from (12). Putting
together 1) and 2), we have Trs < Tsk.

The price indexes when only one-way trade from r to s occurs are:

Pr D a.2 � �r/C �r.bC cE/

2bC c�rE
E

Ps D aŒ2 � .�r C �s/�C Œ.�r C �s/C Trs�r�.bC cE/

2bC c.�r C �s/E
E

Pk D a.2� �k/C �k.bC cE/

2bC c�kE
E

and the equilibrium prices and quantities:

prr D aC .bC c�rE/

2bC c�rE
qrr D .bC cE/. prr � /

pss D aC ŒbC c.�r C �s/E�C Trs
2
c�rE

2bC c.�r C �s/E
qss D .bC cE/. pss � /

pkk D aC .bC c�kE/

2bC c�kE
qkk D .bC cE/. pkk � /

prs D pss C Trs
2

qrs D .bC cE/. prs �  � Trs/

prk D 2pkk �  qrk D 0

psr D 2prr �  qsr D 0

psk D 2pkk �  qsk D 0

pkr D 2prr �  qkr D 0

pks D 2pss �  qks D 0:
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As these equations show, the creation of a one-directional trade link from region
r to region s affects negatively the price applied by local firms in region s. Moreover,
the competition effect is reinforced since now they have to compete not only with
the other local firms but also with the firms located in region r.

Due to lack of space, from now on we do not derive explicit results for profits
and indirect utilities—given that, especially the second ones become more and more
complicated as the number of links increases. Brief comments on the short-run
effects of a link creation on all the regions will be provided for some of the trade
network configurations. Indeed, as we shall see, the creation of a link may have an
effect not only on the two regions involved but also on the third. Analogously, the
presence of a third region may alter the effect of the new link on the two regions
directly involved. This is a version of the so-called “third-region” effect.

The equilibrium profits for the case of one-way trade from r to s are:

�r D .bC cE/


. prr � /2

�
L

3
C �rE

�
C . prs �  � Trs/

2

�
L

3
C �sE

��

�s D .bC cE/


. pss � /2

�
L

3
C �sE

��

�k D .bC cE/. pkk � /2

�
L

3
C �kE

�
:

The effect of the creation of a one-directional link (i.e. one-way trade or exports)
from region r to region s has a positive effect on the welfare of region r (the
exporting region). Indeed, the opening of the new market (the one in region s/—
and the generation of the profit accruing from it—causes an increase in the overall
profit of the r-firms (i.e. the firms located in region r). The impact on the welfare of
region s (the importing region), instead, is ambiguous due to the counterbalancing
of two opposite effects: the one on the consumer’s surplus—that we call “the surplus
effect”—which is positive and the one on profits—that we call “the profit effect”—
which is negative. The first is induced by the larger availability of manufactured
goods traded in the local market; whereas the second by the stronger competition
that the s-firms have to suffer in the local market coming from the r-firms. The
“surplus effect”, which is smaller at the beginning of the integration process,
may overcome the “profit effect”, with further trade liberalization, depending on
parameter values and on the regional distribution of the industrial sector.

Moving on to the subcase (2.B), when trade costs are reduced enough, two-way
trade between region r and s is allowed, implying that with respect to the previous
situation, now also firms in s are able to compete in both markets. Two-way trade
between region r and region s occurs as long as

Trs � min

�
2.a� b/

2bC c�rE
;

2.a� b/

2bC c�sE

�
D min

�eTr;eTs
�

: (13)
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For future reference, we also derive the conditions for “no trade” between region
r and k and between region s and k:

max

�
2.a� b/C cE�sTrs
2bC c .�r C �s/E

;
2.a� b/

2bC c�kE

�
D max

�eTkr;eTk
�

< Trk (14)

max

�
2.a� b/C cE�rTrs
2bC c .�r C �s/E

;
2.a� b/

2bC c�kE

�
D max

�eTks;eTk
�

< Tsk: (15)

First of all we notice that, due to additional competition coming from the s-firms
operating in the market in region r, also the condition for a one directional link from
region k to region r is more restrictive. Second, from the above conditions, it follows
that the trade distance between r and s is the shortest, that is, Trs < min.Trk;Tsk/.
This can be proven considering that, as shown before, Trs < Tsk. Moreover, consider
that (1) Trs < eTkr from the condition Trs � eTr in (13); and (2)eTkr < Trk from (14).
Putting together (1) and (2), we have that Trs < Trk as well.

The price indexes when two-way trade from r to s occurs are:

Pr D aŒ2 � .�r C �s/�C Œ.�r C �s/C Tsr�s�.bC cE/

2bC c.�r C �s/E
E

Ps D aŒ2 � .�r C �s/�C Œ.�r C �s/C Tsr�r�.bC cE/

2bC c.�r C �s/E
E

Pk D a.2� �k/C �k.bC cE/

2bC c�kE
E

and the equilibrium prices and quantities:

prr D
aC ŒbC c.�r C �s/E�C Trs

2
c�sE

2bC c.�r C �s/E
qrr D .bC cE/. prr � /

pss D
aC ŒbC c.�r C �s/E�C Trs

2
c�rE

2bC c.�r C �s/E
qss D .bC cE/. pss � /

pkk D aC .bC c�kE/

2bC c�kE
qkk D .bC cE/. pkk � /

prs D pss C Trs
2

qrs D .bC cE/. prs � � Trs/

prk D 2pkk �  qrk D 0

psr D prr C Trs
2

qsr D .bC cE/. psr � � Trs/

psk D 2pkk �  qsk D 0

pkr D 2prr �  qkr D 0

pks D 2pss �  qks D 0
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As these equations show, the effect of the link creation from s to r affects prr:
compared with the previous case, a firm located in r applies a lower price in the
local market and faces competition not only from local firms but also from those
located in region s.

The equilibrium profits for the case of two-way trade between r and s are:

�r D .bC cE/


. prr � /2

�
L

3
C �rE

�
C . prs � � Trs/

2

�
L

3
C �sE

��

�s D .bC cE/


. pss � /2

�
L

3
C �sE

�
C . psr �  � Trs/

2

�
L

3
C �rE

��

�k D .bC cE/. pkk � /2

�
L

3
C �kE

�
:

The effect of the creation of a “link back” from region s to region r, generating
two-way trade between the two regions, has an ambiguous impact on region r due
the counterbalancing of the two effects mentioned above: The first effect, on profit,
is negative, due to the additional competition in the local market coming from the
s-firms; whereas the second, on the consumer’s surplus, is positive due to the larger
availability of manufactured commodities for the r-consumers (the consumers living
in region r). The impact on region s, instead, is positive due to the additional profits
accruing to the s-firms from the market located in r.

4.4 Case (3) One of the Regions Trade with the Other Two
but the Other Two Do Not Trade with Each Other

This third case includes six possible network structures collected in two groups. To
the first group, composed of three cases, belong those structures characterized by
the existence of one-directional links only, that is, by one-way trade flows only; to
the second group belong those structures characterized by one or two bidirectional
links. In what follows, we assume that region r always trades with the other two, but
these, regions s and k, do not trade with each other. The conditions determining the
first group of network structures are listed below:

3.A.1 One-way trade from region r to region s and from region r to region k—
corresponding to triad 4 in Fig. 7—occurs as long as:

2.a� b/

2bC c�rE
D eTr < Trs � eTs D 2.a� b/

2bC c�sE

2.a� b/

2bC c�rE
D eTr < Trk �eTk D 2.a� b/

2bC c�kE
:
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3.A.2 One-way trade from region r to region s and from region k to region r—
corresponding to triad 6 in Fig. 7—occurs as long as:

2.a� b/

2bC c�rE
D eTr < Trs �eTs D 2.a� b/

2bC c�sE

2.a� b/

2bC c�kE
D eTk < Trk �eTr D 2.a � b/

2bC c�rE
:

3.A.3. One-way trade from region s to region r and from region k to region r—
corresponding to triad 5 in Fig. 7—occurs as long as:

2.a� b/

2bC c�sE
D eTs < Trs �eTsr D 2.a� b/C cE�kTrk

2bC c .�r C �k/E

2.a� b/

2bC c�kE
D eTk < Trk �eTkr D 2.a� b/C cE�sTrs

2bC c .�r C �s/E
:

As before, the inequalities holding for cases 3.A.1–3.A.2 confirm that the region
with the smaller (larger) share of entrepreneurs has a higher chance to be the
importing (exporting) region. Looking at case 3.A.3, we note that the boundary
condition for a one-directional link from region s (k) to region r takes into account
the competition coming from the third region k (s).

An important remark is useful at this stage: there are many ways in which
new links can be added to an existing network structure, taking into account all
the isomorphic configurations. Therefore the way we are proceeding (the order
we are using) in our analysis—adding one link after the other and looking at the
consequences (for example on prices, profits and short-run welfare) of a new link—
is not the only possible.

In what follows we study in detail the case 3.A.1 (leaving the analysis of cases
3.A.2 and 3.A.3 to another contribution).

The price indexes when one-way trade from r to s and from to r to k occurs are:

Pr D a.2 � �r/C �r.bC cE/

2bC c�rE
E

Ps D aŒ2 � .�r C �s/�C Œ.�r C �s/C Trs�r�.bC cE/

2bC c.�r C �s/E
E

Pk D aŒ2 � .�r C �k/�C Œ.�r C �k/C Trk�r�.bC cE/

2bC c.�r C �k/E
E
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and the equilibrium prices and quantities:

prr D aC .bC c�rE/

2bC c�rE
qrr D .bC cE/. prr � /

pss D
aC ŒbC c.�r C �s/E�C Trs

2
c�rE

2bC c.�r C �s/E
qss D .bC cE/. pss � /

pkk D
aC ŒbC c.�r C �k/E�C Trk

2
c�rE

2bC c.�r C �k/E
qkk D .bC cE/. pkk � /

prs D pss C Trs
2

qrs D .bC cE/. prs �  � Trs/

prk D pkk C Trk
2

qrk D .bC cE/. prk �  � Trk/

psr D 2prr �  qsr D 0

psk D 2pkk �  qsk D 0

pkr D 2prr �  qkr D 0

pks D 2pss �  qks D 0:

As we have seen before, looking at the price applied by firms located in region k,
the creation of a one directional link from r to s reduces pkk because now local firms
located in region k have to face additional competition from the firms located in r.

The equilibrium profits for the case of one-way trade from r to s and from to r to
k are:

�r D . prr � /2

�
L

3
C �rE

�
.bC cE/

C . prs �  � Trs/
2

�
L

3
C �sE

�
.bC cE/

C . prk � � Trk/
2

�
L

3
C �kE

�
.bC cE/

�s D .bC cE/. pss � /2

�
L

3
C �sE

�

�k D .bC cE/. pkk � /2

�
L

3
C �kE

�
:

Concerning the welfare analysis, adding a one-directional link from r to k has
a positive effect on r with an increase in profits for firms and in the surplus for
consumers located in that region. As before, the effect of trade liberalization on k is
ambiguous with an initial reduction in welfare (with respect to the case of autarky).
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With further trade liberalization welfare increases and it may rise above the autarky
level depending on parameter values and on the distribution of entrepreneurs.

Turning to the case in which one or two bidirectional links exist, three are the
possible configurations. The corresponding “trade conditions” are reported below:

3.B.1. Two-way trade between r and s and one-way trade from r to k—
corresponding to triad 8 in Fig. 7—occurs as long as:

Trs � min

�
2.a� b/

2bC c�rE
;

2.a� b/

2bC c�sE

�
D min

�eTr;eTs
�

(16)

2.a� b/C cE�sTrs
2bC c .�r C �s/E

D eTkr < Trk �eTk D 2.a� b/

2bC c�kE
: (17)

Moreover, for future reference, we add the condition of “no trade” between s and
k:

Tsk > max

�
2.a� b/C cE�rTrk
2bC c .�r C �k/E

;
2.a� b/C cE�rTrs
2bC c .�r C �s/E

�
D max

�eTsk;eTks
�

:

(18)
3.B.2. Two-way trade between r and s and one-way trade from k to r—
corresponding to triad 7 in Fig. 7—occurs as long as:

Trs � min

�
2.a� b/

2bC c�rE
;

2.a� b/C cE�kTrk
2bC c .�r C �k/E

�
D min

�eTr;eTsr
�

(19)

2.a� b/

2bC c�kE
D eTk < Trk �eTkr D 2.a� b/C cE�sTrs

2bC c .�r C �s/E
: (20)

Moreover, for future reference, we add the condition of “no trade” between s and
k:

Tsk > max

�
2.a� b/

2bC c�kE
;

2.a� b/C cE�rTrs
2bC c .�r C �s/E

�
D max

�eTk;eTks
�

: (21)

3.B.3. Two-way trade between r and s and between r and k—corresponding to
triad 11 in Fig. 7—occurs as long as:

Trs � min

�
2.a� b/

2bC c�rE
;

2.a� b/C cE�kTrk
2bC c .�r C �k/E

�
D min

�eTr;eTsr
�

Trk � min

�
2.a� b/C cE�sTrs
2bC c .�r C �s/E

;
2.a� b/

2bC c�kE

�
D min

�eTrk;eTk
�

:
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We study in some detail cases 3.B.1 and 3.B.3. Considering case 3.B.1, the price
indexes when two-way trade between r to s and one-way trade from r to k occurs
are:

Pr D aŒ2 � .�r C �s/�C Œ.�r C �s/C Trs�s�.bC cE/

2bC c.�r C �s/E
E

Ps D aŒ2 � .�r C �s/�C Œ.�r C �s/C Trs�r�.bC cE/

2bC c.�r C �s/E
E

Pk D aŒ2 � .�r C �k/�C Œ.�r C �k/C Trk�r�.bC cE/

2bC c.�r C �k/E
E

and the equilibrium prices and quantities:

prr D aC ŒbC c.�r C �s/E�C Trs
2
c�sE

2bC c.�r C �s/E
qrr D .bC cE/. prr � /

pss D
aC ŒbC c.�r C �s/E�C Trs

2
c�rE

2bC c.�r C �s/E
qss D .bC cE/. pss � /

pkk D
aC ŒbC c.�r C �k/E�C Trk

2
c�rE

2bC c.�r C �k/E
qkk D .bC cE/. pkk � /

prs D pss C Trs
2

qrs D .bC cE/. prs �  � Trs/

prk D pkk C Trk
2

qrk D .bC cE/. prk �  � Trk/

psr D prr C Trs
2

qsr D .bC cE/. psr �  � Trs/

psk D 2pkk �  qsk D 0

pkr D 2prr �  qkr D 0

pks D 2pss �  qks D 0

The equilibrium profits for the case of two-way trade from r to s and one-way
trade from r to k are:

�r D . prr � /2

�
L

3
C �rE

�
.bC cE/

C . prs �  � Trs/
2

�
L

3
C �sE

�
.bC cE/
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C . prk �  � Trk/
2

�
L

3
C �kE

�
.bC cE/

�s D .bC cE/


. pss � /2

�
L

3
C �sE

�
C . psr � � Trs/

2

�
L

3
C �rE

��

�k D .bC cE/. pkk � /2

�
L

3
C �kE

�
:

The effect of creating a link from r (the exporting region) to k (the importing
region) on these two regions—as trade costs are reduced below the threshold—are
analogous to those highlighted previously. It is positive on r and ambiguous on k
depending on the distribution of entrepreneurs and on parameter values; whereas
the effect on the welfare of the third region—at least in the short-run—is nil.

Moving on to case 3.B.3, the price indexes when two-way trade between r and s
and from r to k occurs are:

Pr D aC ŒC Trs�s C Trk�k�.bC cE/

2bC cE
E

Ps D aŒ2 � .�r C �s/�C Œ.�r C �s/C Trs�r�.bC cE/

2bC c.�r C �s/E
E

Pk D aŒ2 � .�r C �k/�C Œ.�r C �k/C Trk�r�.bC cE/

2bC c.�r C �k/E
E

and the equilibrium prices and quantities:

prr D
aC .bC cE/C �Trs

2
�s C Trk

2
�k
�
cE

2bC cE
qrr D .bC cE/. prr � /

pss D
aC ŒbC c.�r C �s/E�C Trs

2
c�rE

2bC c.�r C �s/E
qss D .bC cE/. pss � /

pkk D
aC ŒbC c.�r C �k/E�C Trk

2
c�rE

2bC c.�r C �k/E
qkk D .bC cE/. pkk � /

prs D pss C Trs
2

qrs D .bC cE/. prs � � Trs/ : : :

prk D pkk C Trk
2

qrk D .bC cE/. prk �  � Trk/

psr D prr C Trs
2

qsr D .bC cE/. psr �  � Trs/
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psk D 2pkk �  qsk D 0

pkr D prr C Trk
2

qkr D .bC cE/. pkr � � Trk/

pks D 2pss �  qks D 0:

The equilibrium profits for the case of two-way trade between r and s and from
r to k are:
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L
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C �kE

�
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L

3
C �kE

��
:

Comparing the first expression with the previous case, the effect of adding a link
from k to r on the profits of region r is negative; whereas the effect on the overall
welfare for region r is difficult to assess due to the counterbalancing of the negative
effect on profits and the positive effect on the consumer’s surplus. The effect on
region s’ welfare is negative: due to the negative impact on profits; whereas the
effect on consumer’s surplus is zero for that region. The opposite holds for region k,
the overall effect on welfare is positive: this is due to the positive impact on profit;
whereas also for this region the impact on the consumer’s surplus is nil.

4.5 Case (4) One-Way Trade or Two-Way Trade is Present
Between Any Two Region

This fourth case includes seven possible network structures that can be divided into
four groups: (4.A) the first group is composed of two structures characterized by
the existence of only one-directional links; (4.B) the second of three structures
characterized by the existence of one bidirectional link and two one-directional
links; (4.C) the third of a single structure characterized by the existence of two
bidirectional links and one directional link; (4.D) and the fourth of the single
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structure characterized by all bidirectional links. The conditions determining these
network structures are reported below:

4.A. All regions are involved in one-way trade:
4.A.1 One way trade from r to s, from r to k and from s to k—corresponding to
triad 9 in Fig. 7—occurs as long as:

2.a � b/

2bC c�rE
D eTr < Trs �eTs D 2.a� b/

2bC c�sE

2.a � b/

2bC c�rE
D eTr < Trk �eTrk D 2.a� b/C cE�sTrs

2bC c.�s C �k/E

2.a� b/

2bC c�sE
D eTs < Tsk �eTsk D 2.a� b/C cE�rTrs

2bC c.�r C �k/E
:

4.A.2 One way trade from r to s, from k to r and from s to k—corresponding to
triad 10 in Fig. 7—occurs as long as:

2.a� b/

2bC c�rE
D eTr < Trs �eTs D 2.a� b/

2bC c�sE

2.a � b/

2bC c�kE
D eTk < Trk �eTr D 2.a� b/

2bC c�rE

2.a� b/

2bC c�sE
D eTs < Tsk �eTk D 2.a� b/

2bC c�kE
:

4.B. Two regions are involved in two-way trade with each other and in one-way
trade with the third region:
4.B.1 Two-way trade between r and s, one-way trade from r to k and from s to
k—corresponding to triad 13 in Fig. 7—occurs as long as:

Trs < min

�
2.a� b/

2bC c�rE
;

2.a� b/

2bC c�sE

�
D min

�eTr;eTs
�

2.a � b/

2bC c�rE
D eTr < Trk �eTrk D 2.a� b/C cE�sTrs

2bC c.�s C �k/E

2.a� b/

2bC c�sE
D eTs < Tsk �eTsk D 2.a� b/C cE�rTrs

2bC c.�r C �k/E
:
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4.B.2 Region r and s are involved in two-way trade between each other; one way
trade from region k to region r and from region s to region k. This structure—
corresponding to triad 14 in Fig. 7—occurs as long as:

Trs � min

�
2.a� b/C cE�kTrk

2bC c.�r C �k/E
;

2.a� b/

2bC c�sE

�
D min

�fTsr;eTs
�

2.a� b/C cE�sTrs
2bC c.�s C �k/E

D eTrk < Trk �eTkr D 2.a � b/C cE�sTrk
2bC c.�r C �s/E

2.a� b/C cE�rTrs
2bC c.�r C �s/E

D eTks � Tsk <eTk D 2.a� b/

2bC c�kE
:

4.B.3 Regions r and s are involved in two-way trade between each other; one way
trade from region k to region r and from region k to region s. This structure—
corresponding to triad 12 in Fig. 7—occurs as long as:

Trs � min

�
2.a� b/C cE�kTrk

2bC c.�r C �k/E
;

2.a� b/C cE�kTsk
2bC c.�s C �k/E

�
D min

�eTsr;eTrs
�

2.a� b/

2bC c�kE
D eTk < Trk �eTkr D 2.a� b/C cE�sTrs

2bC c.�r C �s/E

2.a� b/

2bC c�kE
D eTk < Trk �eTks D 2.a� b/C cE�rTrs

2bC c.�r C �s/E
:

4.C. One-way trade between two regions that are both involved in two-way trade
with the third region: Two way trade between r and s and r and k and one way
trade from s to k—corresponding to triad 15 in Fig. 7—occurs as long as:

Trs < min

�
2.a � b/C cE�kTrk

2bC c.�r C �k/E
;

2.a� b/

2bC c�sE

�
D min

�eTsr;eTs
�

Trk < min

�
2.a � b/C cE�sTrs

2bC c.�r C �s/E
;

2.a� b/C cE�sTrs
2bC c.�s C �k/E

�
D min

�eTkr;eTrk
�

2.a� b/C cE�rTrs
2bC c.�r C �s/E

D eTks � Tsk <eTsk D 2.a� b/C cE�rTrs
2bC c.�r C �k/E

:
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4.D. All regions are involved in two-way trade: This structure—corresponding to
triad 16 in Fig. 7—occurs as long as:

Trs � min

�
2.a� b/C cE�kTrk

2bC c.�r C �k/E
;

2.a� b/C cE�kTsk
2bC c.�s C �k/E

�
D min

�eTsr;eTrs
�

Trk � min

�
2.a� b/C cE�sTrs

2bC c.�r C �s/E
;

2.a� b/C cE�sTrs
2bC c.�s C �k/E

�
D min

�eTkr;eTrk
�

Tsk � min

�
2.a� b/C cE�rTrs

2bC c.�r C �s/E
;

2.a� b/C cE�rTrs
2bC c.�r C �k/E

�
D min

�eTks;eTsk
�

:

Considering case 4.A.1, the price indexes are:

Pr D a.2� �r/C �r.bC cE/

2bC c�rE
E

Ps D aŒ2 � .�r C �s/�C Œ.�r C �s/C Trs�r�.bC cE/

2bC c.�r C �s/E
E

Pk D aC .C �rTrk C �sTsk/.bC cE/

2bC cE
E

and the equilibrium prices and quantities:

prr D aC .bC c�rE/

2bC c�rE
qrr D .bC cE/. prr � /

pss D
aC ŒbC c.�r C �s/E�C Trs

2
c�rE

2bC c.�r C �s/E
qss D .bC cE/. pss � /

pkk D
aC .bC cE/C �Trk

2
�r C Tsk

2
�s
�
cE

2bC cE
qkk D .bC cE/.pkk � /

prs D pss C Trs
2

qrs D .bC cE/. prs � � Trs/

prk D pkk C Trk
2

qrk D .bC cE/. prk � � Trk/

psr D 2prr �  qsr D 0

psk D pkk C Tsk
2

qsk D .bC cE/. psk � � Tsk/

pkr D 2prr �  qkr D 0

pks D 2pss �  qks D 0:
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The equilibrium profits for the case 4.A.1 are:

�r D . prr � /2

�
L

3
C �rE

�
.bC cE/

C . prs �  � Trs/
2

�
L

3
C �sE

�
.bC cE/

C . prk �  � Trk/
2

�
L

3
C �kE

�
.bC cE/

�s D .bC cE/


. pss � /2

�
L

3
C �sE

�
C . psr � � Trs/

2

�
L

3
C �rE

��

�k D .bC cE/. pkk � /2

�
L

3
C �kE

�

According to this configuration, a creation of a link from s to k has a negative
effect on profits and on welfare for r (with no effect on consumer’s surplus in this
region). It has a positive effect on region s profits and on this region welfare (with
no effect on consumer’s surplus). Finally, the effect on k is ambiguous, since the
negative effect on profit is counterbalanced by the positive effect on the consumer’s
surplus.

Considering case 4.B.1, the price indexes are:

Pr D aŒ2 � .�r C �s/�C Œ.�r C �s/C Trs�s�.bC cE/

2bC c.�r C �s/E
E

Ps D aŒ2 � .�r C �s/�C Œ.�r C �s/C Trs�r�.bC cE/

2bC c.�r C �s/E
E

Pk D aC .C �rTrk C �sTsk/.bC cE/

2bC cE
E

and the equilibrium prices and quantities:

prr D
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2
c�sE

2bC c.�r C �s/E
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pss D
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2
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2bC c.�r C �s/E
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2
�r C Tsk
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cE

2bC cE
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prs D pss C Trs
2

qrs D .bC cE/. prs � � Trs/
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prk D pkk C Trk
2

qrk D .bC cE/. prk � � Trk/

psr D prr C Trs
2

qsr D .bC cE/. psr � � Trs/

psk D pkk C Tsk
2

qsk D .bC cE/. psk � � Tsk/

pkr D 2prr �  qkr D 0

pks D 2pss �  qks D 0:

The equilibrium profits for the case 4.B.1 are:

�r D . prr � /2

�
L

3
C �rE

�
.bC cE/

C . prs �  � Trs/
2

�
L

3
C �sE

�
.bC cE/

C . prk � � Trk/
2

�
L

3
C �kE

�
.bC cE/

�s D . pss � /2

�
L

3
C �sE

�
.bC cE/

C . psr � � Trs/
2

�
L

3
C �rE

�
.bC cE/

C . psk � � Tsk/
2

�
L

3
C �kE

�
.bC cE/

�k D .bC cE/. pkk � /2

�
L

3
C �kE

�
:

In this configuration, the creation of a link from s to r has a negative effect on
profits for firms located in region r and a positive effect on the surplus of consumers
located in that region, with an ambiguous overall effect on welfare. The effect on
welfare of region s is positive due to the increase in profits, whereas the effect on
the consumer’ surplus is nil. The creation of such a link has no short-run effect on
region k.

Considering case 4.C, the price indexes are:

Pr D aC .C �sTrs C �kTrk/.bC cE/

2bC cE
E

Ps D aŒ2 � .�r C �s/�C Œ.�r C �s/C Trs�r�.bC cE/

2bC c.�r C �s/E
E

Pk D aC .C �rTrk C �sTsk/.bC cE/

2bC cE
E
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and the equilibrium prices and quantities:

prr D aC .bC cE/C �Trs
2

�s C Trk
2

�k
�
cE

2bC cE
qrr D .bC cE/. prr � /

pss D
aC ŒbC c.�r C �s/E�C Trs

2
c�rE

2bC c.�r C �s/E
qss D .bC cE/. pss � /

pkk D
aC .bC cE/C �Trk

2
�r C Tsk

2
�s
�
cE

2bC cE
qkk D .bC cE/. pkk � /

prs D pss C Trs
2

qrs D .bC cE/. prs � � Trs/

prk D pkk C Trk
2

qrk D .bC cE/. prk �  � Trk/

psr D prr C Trs
2

qsr D .bC cE/. psr �  � Trs/

psk D pkk C Tsk
2

qsk D .bC cE/. psk �  � Tsk/

pkr D prr C Trk
2

qkr D .bC cE/. pkr � � Trk/

pks D 2pss �  qks D 0:

The equilibrium profits for the case 4.C are:

�r D . prr � /2

�
L

3
C �rE

�
.bC cE/

C . prs �  � Trs/
2

�
L

3
C �sE

�
.bC cE/

C . prk �  � Trk/
2

�
L

3
C �kE

�
.bC cE/

�s D . psr �  � Trs/
2

�
L

3
C �rE

�
.bC cE/

C . pss � /2

�
L

3
C �sE

�
.bC cE/

C . psk �  � Tsk/
2

�
L

3
C �kE

�
.bC cE/

�k D

. pkr � � Trk/

2

�
L

3
C �rE

�
C . pkk � /2

�
L

3
C �kE

��
.bC cE/:
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According to this configuration, compared to the case 4.B.1, the creation of a
link from k to r determines for region r a reduction in profits; however, since the
consumer’s surplus in this region is increased, the overall effect on region r welfare
is ambiguous. The effect on region s’s welfare is negative due to the impact of
stronger competition in r on the profits of s-firms accruing from the market in r.
Finally, the effect on k is positive due to the profits accruing to k-firms from the
market in r.

Considering case 4.D, the price indexes are:

Pr D aC .C �sTrs C �kTrk/.bC cE/

2bC cE
E

Ps D aC .C �rTrs C �kTsk/.bC cE/

2bC cE
E

Pk D aC .C �rTrk C �sTsk/.bC cE/

2bC cE
E

and the equilibrium prices and quantities:

prr D
aC .bC cE/C �Trs

2
�s C Trk

2
�k
�
cE

2bC cE
qrr D .bC cE/. prr � /

pss D
aC .bC cE/C �Trs

2
�r C Tsk

2
�k
�
cE

2bC cE
qss D .bC cE/. pss � /

pkk D
aC .bC cE/C �Trk

2
�r C Tsk

2
�s
�
cE

2bC cE
qkk D .bC cE/. pkk � /

prs D pss C Trs
2

qrs D .bC cE/. prs � � Trs/

prk D pkk C Trk
2

qrk D .bC cE/. prk �  � Trk/

psr D prr C Trs
2

qsr D .bC cE/. psr � � Trs/

psk D pkk C Tsk
2

qsk D .bC cE/. psk �  � Tsk/

pkr D prr C Trk
2

qkr D .bC cE/. pkr � � Trk/

pks D pss C Tsk
2

qks D .bC cE/. pks �  � Tsk/:
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The equilibrium profits for the case 4.D are:

�r D . prr � /2

�
L

3
C �rE

�
.bC cE/

C . prs � � Trs/
2

�
L

3
C �sE

�
.bC cE/

C . prk �  � Trk/
2

�
L

3
C �kE

�
.bC cE/

�s D . psr � � Trs/
2

�
L

3
C �rE

�
.bC cE/

C . pss � /2

�
L

3
C �sE

�
.bC cE/

C . psk �  � Tsk/
2

�
L

3
C �kE

�
.bC cE/

�k D . pkr � � Trk/
2

�
L

3
C �rE

�
.bC cE/

C . pks �  � Tsk/
2

�
L

3
C �sE

�
.bC cE/

C . pkk � /2

�
L

3
C �kE

�
.bC cE/:

According to this configuration, the creation of a link from k to s has the
following short-run effect on the three regions’ welfare: The effect on region r’s
welfare is negative since the impact of stronger competition in s reduces the profits
that are accruing to r-firms from the market in s. The effect on s is ambiguous:
indeed the negative effect on profits is counterbalanced by the increase in the surplus
of consumers living in that region. Finally, the effect on k is positive given to the
profits accruing to the k-firms originating from the market in s.

4.6 From Theory Back to Triad Census: A Special Case as an
Example

In the previous section, we derived conditions on the trade costs for the occurrence
of different triad patterns. In this section, we illustrate how these conditions can
be used to corroborate the empirically found regularities in the trade network as
summarized in Table 2.
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One striking result of the triad census was that triad 3 (Mutual edge) and triad
8 (Mutual edge + Out) are much more often found than triad 7 (Mutual edge +
In), which means that when two regions establish a mutual trade relationship this
fosters them to export to, more than to import from, a third region. Theory suggests
that more trade links come into existence with lower trade costs. This leads to the
following interpretation: If in a triplet of regions all trade costs are very high, no
trade occurs. If in a triplet of regions, bilateral trade costs between regions r and
s are lower, then mutual trade occurs between those two regions. If in a triplet of
regions, trade costs between another pair of regions—say between r and k—are
lower as well, then unilateral trade from region r to region k is much more often
found (resulting in triad 8) than trade in the opposite direction (which would lead
to triad 7). There is an economic rationale for this difference that relies on third
country effects, i.e. on the network structure: exporting from region r to region k is
comparatively easy, because in region k no third country competition is yet present
(there is no trade from s to k). Trade in the opposite direction—i.e. exporting from
region k to region r—is more difficult, since in region r also competing firms from
the third country, i.e. from region s, are already present.

In order to focus on these network effects, we assume as simplification a uniform
distribution of firms, i.e. �r D �s D �k D 1

3
. Then, the conditions for the occurrence

of triad 8 (16), (17) and (18) reduce to

Trs � min

 
2.a� b/

2bC c 1
3
E

;
2.a� b/

2bC c 1
3
E

!

2.a� b/C cE 1
3
Trs

2bC c 2
3
E

< Trk � 2.a� b/

2bC c 1
3
E

Tsk > max

 
2.a� b/C cE 1

3
Trk

2bC c 2
3
E

;
2.a� b/C cE 1

3
Trs

2bC c 2
3
E

!
:

The second equation can only hold if

2.a� b/C cE 1
3
Trs

2bC c 2
3
E

<
2.a� b/

2bC c 1
3
E

which can be easily transformed into the first condition, that is also the condi-
tion (13) holding for triad 3, i.e. for bilateral trade. Therefore, if bilateral trade
between region r and region s exists and if Trk sufficiently falls, than exports from
region r to region k may start—triad 8 may come into existence.
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Instead, Triad 7 is characterized by the conditions (19), (20) and (21), that by
setting �r D �s D �k D 1

3
simplify to :

Trs � min

 
2.a� b/

2bC c 1
3
E

;
2.a� b/C cE 1

3
Trk

2bC c 2
3
E

!

2.a� b/

2bC c 1
3
E
D eTk < Trk �eTkr D

2.a� b/C cE 1
3
Trs

2bC c 2
3
E

Tsk > max

 
2.a � b/

2bC c 1
3
E

;
2.a� b/C cE 1

3
Trs

2bC c 2
3
E

!
:

The second equation can only hold if

2.a� b/

2bC c 1
3
E

<
2.a� b/C cE 1

3
Trs

2bC c 2
3
E

which can be transformed into

2.a� b/�
2bC c 1

3
E
� < Trs

which contradicts the first equation. Therefore, triad 7 is not a possible outcome
of a reduction in Trk.

Summing up, for an equal distribution of firms, we can show that a reduction in
Trk may lead to triad 8, while triad 7 is not possible. The result might change for
unequal distributions, but this analysis is left for further studies.

5 Final Remarks

Some stylized facts emerging from the network analysis of interregional trade flows
have confirmed that the European economic integration is still largely incomplete:
most regions do not trade with any other region, but they rather select their partners,
and a relatively small number of regions play a central role in the network structure.
Moreover, the triad census analysis has revealed that the large majority of triads in
the EU regional trade is represented by empty-graph structures (autarky), followed
by single and mutual edges. This suggests that regions select their partners engaging
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mostly in bilateral trade. In addition, when two regions, say r and s, establish a
mutual trade relationship, a third region, say k, is more likely to participate as an
importer rather than as an exporter.

In order to shed more light to the processes that shape the specific network
structure, we used a three-region footloose entrepreneur model. This model stresses
the fact that an integrated market, for example the one composed of regions r
and s, is more difficult to access than a non-integrated market (for example that
represented by region k) due to stronger competition. Therefore, for region r or s is
easier to export towards k (with an outward link) than the other way round (for k
to export towards r or s, with an inward link). Using the model, we derived explicit
conditions on the bilateral trade cost for the occurrence of each of the 16 possible
triads. For a special case, we exemplified how these conditions can be used to draw
interferences on the network structure. Based on this evidence, it has been possible
to envisage a specific sequence of links generation. This sequence starts from the
case of full autarky, with no links; it proceeds to the creation of a one-directional
link, for example from r to s; next, a bidirectional link between r and s comes
into existence, then a further link towards a third region k and, finally, a second
bidirectional link, for example between r and k is created. Implicit in this sequence,
there is a corresponding reduction of trade costs, which characterizes the process of
European integration. However, this can be assessed only by looking at time series
data and we leave this to future work.
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See Table 3.
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The Empirics of Macroeconomic Networks:
A Critical Review

Giorgio Fagiolo

Abstract This chapter critically surveys the recent empirical literature applying
complex-network techniques to the study of macroeconomic dynamics. We focus
on three important macroeconomic networks: international trade, finance and migra-
tion/mobility. We discuss both the empirical evidence on the topological properties
of these networks and econometric works that identify the impact of network
properties on macroeconomic dynamics. Results indicate that a detailed knowledge
of macroeconomic networks is necessary to better understand the dynamics of
country income, growth and productivity, as well as the diffusion of crises.

Keywords Complex networks • Diffusion of economic shocks • International
finance • International migration • International trade • Macroeconomic networks

1 Introduction

In the last two decades, the empirical and theoretical research on economic networks
has boomed.1 Economists have indeed become increasingly aware that the dynamics
of economic systems may be strongly influenced by the patterns of interactions
among their constituent units (e.g., firms, consumers, institutions, industries, coun-
tries). Understanding how the structure of social and economic interactions is
shaped and evolves across time, and how it affects—and it is influenced by—
economic dynamics, becomes therefore crucial in order to describe, predict and
control fundamental economic phenomena such as, among others, country growth,
economic development, and the diffusion of global crises.

1See Schweitzer et al. (2009), De Martí and Zenou (2009), Jackson (2010), Easley and Kleinberg
(2010), and Jackson and Zenou (2015).
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Using an admittedly coarse-grained criterion, existing studies addressing from a
complex-network perspective the study of economic and social interactions can be
classified in three main classes: (1) micro; (2) meso; and (3) macro. Micro studies
address economic networks where nodes (i.e. vertices in the graph) are microeco-
nomic agents, such as firms, banks, financial institutions and consumers.2 Links in
microeconomic networks may represent, depending on the context, buying/selling
or borrowing/lending relationships, knowledge and information exchanges, and
so on. Meso-economic networks deal instead with interactions among economic
entities (nodes) located in-between the micro and the macro layer of the economy.
These can be products, technologies and industries (Hidalgo et al. 2007; Acemoglu
et al. 2012), connected by links assessing, e.g., their technological similarity or their
input-output relations, both within countries and at the level of global value chains
(Cerina et al. 2015).

Macroeconomic networks—the topic of this chapter—focus instead on interac-
tions among world countries, which play the role of nodes in the graph. Links
in macro-networks describe the ways in which world countries may interact.
These range from international trade, financial/banking relations, and foreign direct
investment (i.e. mergers and acquisitions or green-field investment) all the way to
permanent cross-border human migration and temporary international mobility.3

The starting point of this literature is that the study of macroeconomic linkages
from a complex-network perspective is important to understand macroeconomic
dynamics. For example, macroeconomic linkages may be responsible in transmit-
ting internationally economic fluctuations and other types of shocks occurring at
the country level (Galvão et al. 2007). In presence of non-linear transmission mech-
anisms, understanding the topology of these interaction structure becomes crucial
to predict how a shock hitting a certain country may be amplified and diffused to
other regions of the world economy. Furthermore, the position of a country in the
macroeconomic network at a certain point in time may impact the trajectories of
its subsequent growth and development. For instance, the relative centrality and
embeddedness of a country in the network of international financial relationships
may act either as a shield against (or an amplifier of) shocks transmitted from other
countries, thus influencing its subsequent economic performance.

In this chapter we shall critically survey some of the recent literature on
macroeconomic networks. In particular, we will focus on three classes of bilateral
international linkages, i.e. trade, finance and human migration/mobility. We will
organize the discussion in such a way to answer two main questions, namely: (1)
How do macroeconomic networks look like? (2) Can we employ the knowledge
of the topology of macroeconomic networks to better understand and predict

2Cf., among others, May et al. (2008), Guerrero and Axtell (2013), and Saito et al. (2007).
3A parallel line of research, which we will not discuss here, has explored infrastructure networks
connecting world countries, which facilitate how people and goods move across space and borders
(e.g., air, cargo and maritime transportation networks; cf. Barrat et al. 2004; Hua and Zhu 2009;
Kaluza et al. 2011; Woolley-Meza et al. 2011).
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macroeconomic dynamics? In other words, we are not only interested in empirically
characterizing the shape of macroeconomic networks, but also to use this informa-
tion as predictor for the behavior of world countries in the macroeconomy.

This rest of this chapter is organized as follows. Section 2 sets the stage and
formally defines macroeconomic networks using complex-network concepts. In
Sect. 3, we discuss the existing empirical evidence on the structure of macroe-
conomic networks. Section 4 presents some examples dealing with the impact
of network structure on macroeconomic dynamics. Finally, Sect. 5 concludes and
sketches out some topics for future research.

2 Macroeconomic Networks

Macroeconomic networks are graph-based descriptions of bilateral linkages among
pairs of world countries. More formally, at any given point in time t (e.g., a year),
consider the graph where nodes are the elements of the set Ct D f1; 2; : : : ;Ntg
of world countries4 and links between any pair of countries .i; j/, i; j 2 Ct, and
i ¤ j, represent an existing “type of interaction” between them (e.g., international
trade, finance, migration/mobility). Links may be directed if one can in principle
differentiate between the effect of i on j and that of j on i; and weighted if directed
or undirected links may be associated to their intensity. In the most general terms,
a macroeconomic network for a given interaction type � is defined as a sequence of
network snapshots:

MN.�/t D fCt;W.�/tg; t D 1; : : : ;T (1)

where W.�/t is a weighted, possibly asymmetric, Nt 
 Nt matrix fully representing
the structure of weighted (directed) links in place among world countries at time
t for the interaction type �, and T is the number of time periods which we have
information about.5

This chapter mainly discusses three interaction types, which we will shortly
describe in the following sections.

4Of course, the number of world countries to be considered in the analysis at time t may depend
not only on those actually existing at t but also on data availability at that period of time.
5Due to data availability, misreporting and the presence of zero flows, Ct may also depend, in
principle, on the type of interaction �. In what follows, we will focus on cases when one restricts
the analysis on the minimal set of countries present in all interaction layers, so that Ct.�/ D Ct.
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2.1 The International-Trade Network

In the second half of the last century, the volume and value generated by the
exchange of goods and services across international borders (aka international trade)
have boomed. During the “second wave of globalization”6 the share of world trade
to GDP has more than doubled, increasing from 25 to 60 %.7 Such a spectacular
trend has been achieved not only intensively (i.e., through increases of trade flows
between countries already trading in the past), but also extensively (i.e., via newly
created trade relationships). Indeed, according to the estimates in Felbermayr and
Kohler (2006), about 40 % of world trade growth after 1950 came from newly-
established bilateral trading relationships.

This process has generated an intricate web of trade linkages, which currently
connects the great majority of world countries, channels a huge economic value,
and facilitates cross-border technological diffusion (Keller 2004) and global human
mobility (Egger et al. 2012). It is therefore of a paramount importance to understand
its structure, as well as its socio-economic, political and geographical determinants.

Research addressing the properties of international trade from a complex-
network perspective has flourished in the last years (Fagiolo et al. 2009).8

The object of analysis is the International-Trade Network (ITN), aka World Trade
Web (WTW) or World Trade Network (WTN), which is the graph representation of
bilateral trade flows among world countries across the years. In its simplest form,
the ITN is binary and undirected, that is a link represent the existence of a positive
trade relationship (import and/or export) between any two countries. Differentiating
between the existence of import vs export relationships makes the graph directed.
If any existing (directed or undirected) link is associated to the (deflated) value
expressed in a common currency (e.g., USD) the ITN becomes a weighted graph.
In the directed case, it is customary to weight each directed link with the value of
exports (or imports). If the graph is undirected, links between countries .i; j/ may
typically represent total trade (i.e. the sum of imports and exports).

Data to study how the ITN is shaped and evolves are easily available, both at the
aggregate level and at the commodity-specific one.9 This chapter mostly deals with

6By “second wave of globalization” we mean the period from 1945 onwards, as opposed to the
“first wave of globalization” (1800–1914). The two waves are separated by a slump in international
trade occurred between the two world Wars (Baldwin and Martin 1999).
7World Development Indicators Online (WDI) database, see http://data.worldbank.org/data-
catalog/world-development-indicators.
8Quantitative approaches to the study of trade in terms of networks have been pioneered in sociol-
ogy and political sciences. For instance, the seminal paper by Snyder and Kick (1979) triggered a
fruitful literature mostly aimed at testing some flavor of “world system” or “dependency” theories
using social-network analysis techniques, see e.g. Nemeth and Smith (1985), Sacks et al. (2001),
Breiger (1981), Smith and White (1992), Kim and Shin (2002) and Mahutga (2006), and the
discussion in Fagiolo et al. (2010).
9See for example COMTRADE (comtrade.un.org), the BACI dataset at CEPII (cepii.fr) or data
on trade in goods and services at UNCTAD (unctadstat.unctad.org). Additional data are available

http://data.worldbank.org/data-catalog/world-development-indicators
http://data.worldbank.org/data-catalog/world-development-indicators
comtrade.un.org
http://cepii.fr
unctadstat.unctad.org
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aggregate representations of the ITN, i.e. where linkages describe aggregate export
and import flows. However, data allow one to construct as many interaction layers
of the network as data on trade about specific commodities become available. This
permits to correlate the properties of different product-specific layers of the ITN to
understand potential complementarities and substitutability (Barigozzi et al. 2010;
Dalin et al. 2012; D’Odorico et al. 2014). We will also focus on approaches that do
not discriminate between trade for goods and trade for services. Indeed, as discussed
in De Benedictis et al. (2014), service trade is still poorly analyzed from a complex-
network perspective, mostly because of a lack of reliable data that cover a large
number of countries for a sufficiently long period of time.10 Finally, due to space
constraints, we will not be able to properly account for the vast literature on trade
networks and international relations (Wilkinson 2002; Hafner-Burton et al. 2009),
including conflicts and military alliances (Polachek 1980; Dorussen and Ward 2010;
Kinne 2012; Jackson and Nei 2015).

2.2 The International-Financial Network

Despite its undeniable economic importance, merchandise trade represents only
one of the many possible economic linkages existing between world countries.
Another substantial role is played by financial relationships, which typically channel
a much higher value than what merchandize trade does. For example, in 2012, the
dollar value of world merchandise exports was close to US$18.5 trillion,11 whereas
total cross-border holdings of securities reached US$43.6 trillion.12 It is therefore
extremely important quantify and explore the network of such bilateral financial
relationships, and possibly compare them with those of the ITN.13

from individual researchers, e.g. Andrew Rose (http://faculty.haas.berkeley.edu/arose/), Kristian
Gleditsch (privatewww.essex.ac.uk/~ksg/), Robert Feenstra (cid.econ.ucdavis.edu), and Arvind
Subramanian and Shang-Jin Wei (users.nber.org/~wei/data.html), among others. See also De
Benedictis et al. (2014) for a tutorial-like presentation of the main properties of the ITN using
the BACI dataset. See also the WIOD dataset (wiod.org), which provides time-series data of world
input-output tables for 40 countries worldwide.
10See, however, Egger et al. (2016) for a recent attempt bridging trade in goods and trade in
services.
11See wto.org/english/news_e/pres14_e/pr721_e.htm.
12To this figure, one should also add the value of total foreign-direct investments (FDIs) flows,
which in 2012 reached US$ 1.4 trillion, cf. oecd.org.
13Due to space constraints and the focus on macroeconomic relations, we cannot survey here the
extremely interesting and influential literature on micro and meso financial networks, especially the
contributions addressing systemic risk (Cf. e.g. the work of Stefano Battiston and co-authors: See
for instance Battiston et al. 2012a,b). The interested reader is referred to the reviews by Hasman
(2013) and Chinazzi and Fagiolo (2013).

http://faculty.haas.berkeley.edu/arose/
privatewww.essex.ac.uk/~ksg/
cid.econ.ucdavis.edu
users.nber.org/~wei/data.html
http://wiod.org
http://wto.org/english/news_e/pres14_e/pr721_e.htm
http://oecd.org
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Financial data that can be used to build a network representing cross-border
financial relationships among world countries is provided by the IMF in its Coor-
dinated Portfolio Investment Survey (CPIS). Data include cross-border portfolio
investment holdings of equity securities, long-term debt securities and short-term
debt securities listed by country of residence of issuer. Overall, one has complete
bilateral data for roughly 70 countries for the period 2001–2010 (Schiavo et al. 2010;
Chinazzi et al. 2013), which can be employed to define a multi-graph representation
of the International Financial Network (IFN), with three disaggregated layers and
an aggregate one.

More precisely, existing data allow to build the IFN in five different cases: (1) all
financial investments (Total Portfolio Investments, TPI); (2) equity securities (ES);
(3) debt securities (TDS); (4) long-term debt securities (LTDS) and (5) short-term
debt securities (STDS). More formally, one can build a 5-layer weighted-directed
multigraph, where each directed link is weighted by the value of security—in
millions of current dollars—issued by the origin node and held by the target. This
involves aggregating first the debt layers (iv) and (v) to generate an aggregate
debt layer; and then merging equity and debt to get the TPI layer. At any level
of aggregation, the generic entry wt

ij.k/ of the corresponding weight matrix Wt.k/
for layer k at time t represents the actual stock of assets k issued by country j, and
held by country i at time t.

Notice that data used to build the IFN record year’s end holdings of securities
reported at the economy level, from the asset side (more reliable than liability side),
like equity, long-term and short-term debt instruments, securities held as reserve
assets and securities held by international organizations. Data do not record instead
FDIs,14 loans, holdings of domestic securities (issued and held by residents of the
same country) and securities acquired under reverse repurchase agreements.

An additional source of network data that can be employed to study financial
relations among countries comes from the Bank for International Settlements (BIS)
locational statistics on exchange-rate adjusted changes in cross-border bank claims.
Data record flows of financial capital channeled through the banking system in every
country, and are well-suited for an analysis of geographical patterns in financial
linkages across countries (Reyes and Minoiu 2011). Using these data, one may build
a network representation of the global banking network (GBN), where weighted
links describe estimates of flows, obtained as changes in cross-border banking
stocks (aggregated at the country level) including loans, deposits, debt securities,
and other bank assets.

14FDIs are another important channel of interaction between world countries. Typically a
large part of cross-border FDIs are done in terms of direct M&A between firms of two
countries. Using alternative data sources (e.g., Thomson Reuters Mergers and Acquisitions
database, see http://thomsonreuters.com/en/products-services/financial/hedge-funds/mergers-and-
acquisitions.html), one may build, for each given time window, an international M&A network
where nodes are countries and (direct) links represent acquirer-target M&A operations (in number
of in total value). Interesting issues that can be addressed with this network concern, e.g., the
geographical localization of clusters of countries engaged in M&A activities and the persistency
over time of investment flows.

http://thomsonreuters.com/en/products-services/financial/hedge-funds/mergers-and-acquisitions.html
http://thomsonreuters.com/en/products-services/financial/hedge-funds/mergers-and-acquisitions.html
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2.3 The International Networks of Permanent Migration
and Temporary Mobility

Beside commercial and financial transactions, world countries interact also through
cross-border movement of people. If one considers legal permanent migration alone,
existing statistics show an unprecedented level of cross-border flows in the last
years, leading to an overall migrant world population of about 190 million in 2010.15

Current estimates predict that in 2050 the population of migrants will achieve 405
million, more than twice the figure for 2010. Quantifying international migration in
a globalized world becomes therefore crucial in order to provide policy makers with
the right tools.

A network approach to international migration must however face the fact that
finding detailed bilateral data is extremely difficult. Data problems are especially
acute when compared to higher-frequency data on international trade and finance
flows. Nevertheless, thanks to the combined efforts by the United Nations Popu-
lation Division, the Statistics Division of the United Nations, the World Bank and
the University of Sussex, a reliable source about bilateral international permanent
migration compiled using the United Nations Global Migration Database has been
made available to the community of researchers (Ozden et al. 2011).

Starting from about 3500 individual census and population register records
from more than 230 destination countries and territories from across the globe,
the final database comprises five origin-destination 226
226 matrices for each
decade in the period 1960–2000. For each year t D 1960; : : : ; 2000, the generic
element .i; j/ of each matrix records the stock of migrants (corresponding to the last
completed census round) originating in country i and present in destination j. One
can therefore employ these five origin-destination 226
226 matrices Wt to build a
time-sequence of weighted-directed networks describing bilateral migration stocks
among N D 226 countries. Therefore, the International-Migration Network (IMN)
at time t D 1960; : : : ; 2000 is defined by a weighted matrix whose generic element
.i; j/ represents the stock of migrants originated in country i and present at time t in
country j.

Permanent (legal) migration does not of course account for all existing cross-
border people movements. In addition to illegal migration, which is almost by
definition not measurable, people move also temporarily across borders for business
or leisure purposes. Data about temporary international human mobility do actually
exist and allow for a complex-network analysis of the phenomenon. In particular,
the World Tourism Organization (UNWTO, www2.unwto.org) collects data about
arrivals and departures of people traveling to a different country with respect to their
usual place of residence, and stay there for less than one consecutive year. Outbound
data are based on incoming visitors registered by the destination country and
encompass both leisure and professional travelers, excluding border and seasonal

15See http://publications.iom.int/bookstore/free/WMR_2010_ENGLISH.pdf.

www2.unwto.org
http://publications.iom.int/bookstore/free/WMR_2010_ENGLISH.pdf
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workers as well as long term students. Data are available forN D 213 countries from
1995 onwards, and allow for the construction of the international human temporary
mobility network (IHTMN). This is defined as the network characterized in each
year t by the N 
 N weight matrix Wt, whose generic entry wt

ij records the number
of travellers who left from country i and arrived in country j during year t.

3 Empirical Evidence

This section surveys some of the empirical evidence on macroeconomic networks.
In particular, we will discuss differences and similarities in the observed topology
of the ITN, IFN and IMN. We shall begin describing research on the ITN, as
historically most of the efforts have been initially addressed towards the exploration
of the web of international trade.

3.1 Topological Properties of the ITN

Despite the ITN is a very dense graph as compared to other real-world networks
(its density is close to 1

2
), from an international-trade perspective one is left with the

puzzle that half of all possible bilateral relations are not exploited. In other words,
most countries do not trade with all the others, but they rather select their partners.
In the period 1950–2000, the ITN has shown a marked increase in the number
of directed linkages and a (weak) positive trend in density (De Benedictis and
Tajoli 2011; Garlaschelli and Loffredo 2005). This occurs irrespective of whether
one factors in or not any increase in the number of countries in the sample, due
e.g. to improvements in data collection or new-born countries. Therefore, trade
globalization has not only increased the connections among countries that were
already trading back in 1950, but it did so by embedding in the trade web the
newcomers over the years, inducing a stronger trade integration.

The ITN is also a very heterogenous network. For example, the distribution of the
number of export and import partners of each country (i.e., in-degree and out-degree
in network jargon) has become more and more bimodal over the years, with a group
of very tightly connected countries co-existing with another group holding a smaller
number of inward and outward links, thus preventing one to talk of a representative
country in terms of trade patterns. Furthermore, the distribution of country imports,
exports and total trade all follow log-normal densities (Fagiolo et al. 2008), implying
that a few countries exporting and importing a lot exist side-by-side many countries
characterized by very low trade levels.

Another relevant feature of the ITN is its disassortative nature: countries that hold
many trade partners typically trade with countries holding a few links (Fagiolo et al.
2010). This is relatively less true from a weighted perspective: countries that import
or export a lot tend to do so from and to countries characterized by low export and
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import levels, but there is a small number of very intensively connected countries
trading with very similar partners.

Despite trade globalization, the ITN is still a strongly modular network. Due
to geographic, economic and political reasons, countries have been forming over
time relatively stable modular patterns of multilateral trade relations, possibly
interacting among them, which can be easily identified through network analysis.
A first interesting property is that countries that trade more tend to form intense
trade triangles in their neighborhoods (i.e., clustering patterns, cf. Fagiolo 2007).
This hints to the presence of a core of tightly connected countries in the ITN (Fan
et al. 2014). Indeed, at least in year 2000, it turns out that the ten richest countries
in terms of total trade are responsible of about 40 % of the total trade flows, a
quite strong indication in favor of the existence of a rich club in the weighted
ITN. More generally, community-detection techniques (Fortunato 2010) allow to
identify several clusters of countries forming tightly-connected trade groups, each
one relatively disconnected with respect to others (Barigozzi et al. 2011; Piccardi
and Tajoli 2015). These groups tend to mimic geographical partitions of the world
in macro areas but are less overlapping with existing preferential trade agreements
(PTAs), confirming previous findings hinting to an ambiguous role of PTAs in
explaining trade (Rose 2004). Despite communities of countries in the ITN are easy
to identify, their statistical significance is still an open issue (Piccardi and Tajoli
2012). Indeed, inter-community linkages are far from being irrelevant, providing
support for the ITN as a globalized trading system.

As mentioned above, the ITN has undergone some structural changes over
the second decade of the last century. Trade globalization has occurred through
intensive and extensive processes leading to denser but more bimodal network, with
a stronger core. This does not mean, however, that the periphery of the network
has become more and more marginal (De Benedictis and Tajoli 2011). Indeed, both
the overall betweenness centralization of the network (Vega Redondo 2007) and the
average path length between the countries (Albert and Barabási 2002) have been
decreasing over time, meaning that hubs have become less important and countries
formerly located in the periphery moved closer to the core, not necessarily through
exclusive trade connections made with the hubs.

Notwithstanding trade globalization has induced structural changes in the ITN in
the period 1950–2000, one can still learn from the past evolution of the network to
project its future evolution. Indeed, as shown in Fagiolo et al. (2009), the Markovian
nature of the ITN dynamics allows to predict its long-run state. Their analysis
suggests that the architecture of the ITN will probably evolve towards a more
polarized (Pareto) distribution for link weights (i.e., export flows), implying an
increasingly large majority of links carrying moderate trade flows and a small bulk
of very intense trade linkages.
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3.2 Finance, Migration and Trade

We now discuss differences and similarities between the ITN and other two
macroeconomic networks that we have introduced so far, namely the IFN and the
IMN.

3.2.1 IFN vs. ITN

Comparing the IFN with the ITN can give interesting insights as to the degrees of
integration of real vs. financial world markets. The existing contributions (see e.g.
Schiavo et al. 2010) stress the fact that real markets are typically more integrated
than financial ones, and that the international movement of financial assets tends
to be mediated by a small number of financial centers. Indeed, the IFN is much
less dense than the ITN. Furthermore, the vast majority of countries have a very
large number of partners in the ITN, whereas the IFN has a more core-periphery
structure, where an elite of countries connected with everybody else coexists with a
second group of nodes characterized by average connectivity, and a peripheral group
featuring poorly-connected countries. Another interesting difference between the
ITN and the IFN concerns the heterogeneity of country portfolios of link weights.
Results suggest that the intensity of financial links is less homogeneous than in
the ITN. Once again, this is consistent with the fact that trade in financial assets
is channelled through a few large financial centers, whereas trade for goods occurs
more directly.

The IFN and the ITN share a strongly disassortative nature (as measured e.g. by
the correlation between node degree or strength and node average nearest-neighbor
degree or strength). In the case of the IFN this hints to the presence of financial
centers intermediating a large fraction of trades in financial assets, or with the
existence of benchmark securities entering almost every portfolio. The fact that
disassortativity is much lower in the weighted case suggests that the bulk of capital
flows occurs between a small subgroup of financial centers: since the connections
between hubs and spokes are not very strong, the resulting correlation between node
strength and average nearest-neighbor strength is likely to decrease.

Both networks exhibit a strong rich-club effect, especially when one explicitly
considers link weights. Indeed, as mentioned, the top ten countries in terms of node
strength account for more than 40 % of world trade in goods. This share grows
to above 60 % in the case of the IFN. In general, countries belonging to the core
appear to be those with higher per-capita GDP in both networks. Interestingly, these
countries are also the most central in the network, e.g. according to measures of
random-walk betweenness centrality (Fisher and Vega-Redondo 2006).
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3.2.2 IMN vs. ITN

When comparing the IMN with the ITN over the period 1960–2000, several
differences stand out (Fagiolo and Mastrorillo 2014). First, despite both networks
are extremely dense, the ITN has gone through a steady density increase over the
years, and became more dense than the IMN in 2000. As expected, the ITN is
also more symmetric than the IMN, as testified, for instance, by the percentage of
reciprocated directed links. This is because a trade channel is easier to reciprocate
than a migration corridor. Second, as already noticed in Fagiolo and Mastrorillo
(2013), the IMN features a much more marked small-world and modular structure,
with average-path lengths smaller than in the ITN.

As far as weighted topology is concerned, a very strong and positive correlation
is typically observed between ITN and IMN link weights: if any country i exports a
higher trade value to country j, in j there is also a larger stock of migrants originated
in i. This positive association, however, is far from being perfect, as the cloud of
points describing ITN-IMN link weights displays a lot of noise. Nevertheless, such
a variation can be explained by larger country economic/demographic sizes and
smaller distances in a gravity-like fashion. This suggests that traditional country-
level explanatory variables such as real GDP and population, as well as geographical
distance, may drive much of the observed correlation in the two networks.

A positive correlation also emerges when one compares node-specific network
statistics (e.g., node degree and strength, average nearest-neighbor degree and
strength, node clustering coefficients, etc.) between the two networks. For example,
if a country has more trade channels (respectively, trades more), it also carries more
migration channels (respectively, holds larger immigrant/emigrant stocks). Again, it
is easy to see that this positive relation is mostly explained by country demographic
and economic size. Furthermore, countries trading with countries that either trade
with many other partners or trade a lot are also connected to countries that hold a
lot of migration channels or stocks, i.e. both average nearest-neighbor degree and
strength are positively correlated in the two networks.

However, unlike what happens for degrees and strength, smaller levels of average
nearest-neighbor degree and strength are associated to larger demographic and
economic country sizes. This is because both networks display a marked (binary and
weighted) disassortative behavior: the partners of more strongly connected nodes are
weakly connected. However, larger countries (i.e. with higher levels of real GDP and
population) also hold larger degrees and strengths. Therefore, countries with larger
levels of average nearest-neighbor degree and strength are smaller, in both economic
and demographic terms.

4 Impact on Macro-Economic Dynamics

In the previous section, we have discussed some empirical evidence related to
the topological properties of macroeconomic networks describing country linkages
concerning international trade, finance and migration. We now ask whether the
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structure of these networks can affect macroeconomic dynamics. More precisely,
we are interested in investigating if the overall position and embeddedness of world
countries in these networks, as well as their direct and indirect connectivity, can
constrain and influence the processes going on over the networks. Such processes
may include, for example, economic growth and development of countries and
macro-regions, as well as diffusion of shocks that originate locally and possibly
percolate globally.

As we shall see, the answers to these questions are in generally encouraging,
indicating that networks matter in explaining macroeconomic dynamics. However,
the identification of causal linkages going from network structure to dynamic
processes over the network can be strongly limited by endogeneity issues. Indeed,
network structure can affect macroeconomic dynamics, but the latter is likely to
impact, in turn, the structure of the network over time. This conceptual issue poses
several methodological hurdles to both theoretical and empirical research trying to
single out the net effect of network structure on node behaviors.16

4.1 Diffusion of Shocks in the International Trade Network

Since international trade is one of the most important channels of interaction among
world countries, and data are easily available at a sufficient level of commodity
disaggregation for a long time span, the ITN has been often used as a testbed to
understand how locally-originated shocks diffuse throughout the system.17 The idea
is very simple. Suppose that countries are connected via weighted trade links, as
proxied by a time-snapshot of the ITN, and that a negative shock hits a given
country. Assume a set of rules that govern the way in which this initial shock is
possibly transmitted to the neighbors of the shocked country, to the neighbors of
neighbors, and so on. By shocking one after the other all world countries, and
observing each time how shock diffusion evolves, impact other countries, and
possibly dies away, one may understand the relative importance of each country
as a crisis propagator.

Following this intuition, Lee et al. (2011) study a simple dynamic model of shock
diffusion over the ITN. In the model, countries are characterized by their capacity
(proxied by their GDP). Every time a negative shock hits a country, all its incoming
and outgoing link weights are decreased by a certain percentage. If the decrease in
total country trade exceeds some fraction of its capacity, the shock is transmitted

16Another subtle and potentially important issue arising in dealing with econometric models
involving networks is the existing interdependency between dyadic observations. This might bias
results in e.g. gravity-like estimations due to the omissions of higher-level correlation between
triads and, more generally, cliques; see, e.g., Ward et al. (2013).
17See also Foti et al. (2013). They study a simple model of diffusion where, after the system is
shocked, a local rebalancing of supply and demand is assumed to occur in order to mitigate the
effects of the shock.
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to all its trade neighbors. This may initiate an avalanche of shocks, as also some of
the neighbors can then transmit it to their neighbors. The process terminates when
all countries hit by the shock do not transmit it to any other additional country.
An interesting statistic describing the diffusion process is the number of countries
that are eventually hit by an initial shock originated from a given country (call it
“avalanche size”). Interestingly, the Authors show that there exist a certain range
of model parameters that allow the avalanche-size distribution to become a power
law (i.e., a Pareto distribution). This implies that countries play very heterogeneous
roles in their ability to propagate local crises to the system, and there exists a small
but not irrelevant number of countries that, once hit by a shock, are able to diffuse
it worldwide. Big countries (in terms of GDP) tend to be the most disruptive, but
this is not the end of the story. Indeed, the position of the country in the ITN and
its local embeddedness in the web of indirect connections plays a very crucial role
in explaining avalanche size. This is because the way in which countries may be
hit by a shock and transmit it to their neighbors may be either direct or indirect. It
is direct if the link with the neighbor that has transmitted the shock is so strong, as
compared to its GDP, that the capacity threshold is exceeded right away. Conversely,
the shock transmission may be indirect if, for example, country A withstands a first
shock transmitted by neighbor B, but then it is hit by a second shock transmitted by
neighbor C, who is also neighbor of B, which was hit by the shock transmitted by B,
and did not withstand it, thus transmitting it to its neighbors, among which there is
A. All countries belonging to any single avalanche can then be associated to a direct
vs indirect chain of diffusion. By repeating this exercise for all major avalanches
generated in the simulations, Lee et al. (2011) show that indirect patterns account
for a very large percentage of chains of reaction. This confirms that second and
third order effects in the ITN are crucial to understand how shocks propagate in the
system (Abeysinghe and Forbes 2005).

4.2 Embeddedness in the IFN and Post-crisis Country
Performance

The recent financial crisis has clearly stressed the potential problems arising from
increasing financial market interconnectedness. However, the impact of higher
degrees of connectivity on the players in a financial network is far from being
straightforward. On the one hand, indeed, a more connected network may favor
diffusion of small shocks and therefore be conducive to systemic crises. On the
other hand, players that are more connected and central in the network may more
easily dissipate the shocks that hit them thanks to a sort of portfolio-diversification
effect. Furthermore, despite the probability of contagion is small when connectivity
is high, the system-level consequences of defaults may be widespread and difficult
to isolate (Gai and Kapadia 2010).
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In order to understand the interplay between player connectivity and network
embeddedness in the macroeconomic financial network, Chinazzi et al. (2013) have
performed an econometric study to examine the ability of network-based measures
to explain cross-country differences in the way countries in the IFN have been hit
by the recent financial crisis. More specifically, two indicators of country “crisis
intensity” are considered, one real (i.e., the 2009–2008 Change in real GDP) and
the other financial (i.e., volatility-adjusted stock-market returns between Sep 15,
2008 and Mar 31, 2009). These measures, following the literature on early-warning
systems (Lane and Milesi-Ferretti 2011), are regressed against a number of country
controls (e.g., credit market regulation, real GDP per capita, bank credit to private
sector over GDP, current account over GDP) and a set of network-based measures
controlling for country position in the IFN, including node degree and strength,
clustering coefficients and centrality indicators. The Authors perform two sets of
regression exercises. In the first one, a cross-section specification is fitted to the
data, where crisis measures (referring to the post-crisis period) are regressed against
controls and network measures in year 2006. Despite the timing chosen for the
cross-section regression, this exercise may still suffer form omitted variable biases
and endogeneity issues. Therefore, a second set of regressions is performed, this
time in a dynamic panel framework, using a Generalized Method of Moments
(GMM) estimator to reduce endogeneity biases.

Overall, the results of these two sets of econometric exercises are consistent. To
begin with, country network indicators exert a significant, nonlinear, and stable role
in explaining both real and financial impact of the crisis on a country. Higher local
connectivity seem to shield countries from severe impact via a risk diversification
effect. However, a higher global embeddedness in the IFN (e.g., a higher binary
clustering or centrality) exposes a country to a higher vulnerability, especially if
the country is not within the rich-club of the IFN. This result also indicates that first
(e.g., node degree) and higher (e.g., clustering or centrality) order network indicators
are both important to fully characterize the position of a country in the network,
and can offer interesting insights about the way local and global network properties
interact in influencing node behavior.

4.3 Temporary Human Mobility and Country Income

Distinguishing between local and global network properties is very important to
understand the effect that network topology can have on macroeconomic dynamics.
In graphs characterized by a sufficient heterogeneity, e.g. in the way link weights
are distributed across pairs of nodes, local node connectivity (e.g., measured by
node degree or strength) and global node importance (e.g., measured by centrality
indicators) can indeed strongly differ. For instance, a node that is not strongly
connected locally, may be indeed linked with very globally important nodes in the
network, thus becoming itself very important despite holding a few connections.
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Conversely, very locally connected nodes may end up being not that central from a
global point of view in the network.

From an econometric perspective, this means that global centrality indicators
may increase the explanatory power of regressions where country characteristics
like income, growth or productivity are described in terms of country-specific
characteristics and local country connectivity in the network. This intuition is
exploited in Fagiolo and Santoni (2015), who explore the network determinants
of country per-capita income and labor productivity. Traditional explanations have
stressed the importance of physical and human capital, the efficiency with which
capital is used, and international technological diffusion. In particular, the latter is
known to be enhanced by cross-border flows of trade, people and ideas. Therefore,
net of trade openness and other factors, the level of integration of world countries
in the international network of human mobility is a good candidate to explain
country income and productivity. How can such an integration level be measured?
Starting from temporary human mobility data (see Sect. 2.3), one can consider
countries in the IHTMN and define two related set of integration indicators. The
first one is simply country mobility openness in the network, i.e. the sum of arrivals
and departures from and to a given country, divided by its population.18 Mobility
openness is a local network proxy for foreign technology exposure, as it considers
only first-order links with direct partners, and has been shown to significantly
explain the variation in country income and productivity, net of trade openness and
other factors by Andersen and Dalgaard (2011). The second integration measure is a
set of country global centrality indicators (i.e., eigenvector and Katz centrality) that
assign to each country a score that is increasing in its overall relative connectivity
with respect to the whole network. These are global integration measures insofar the
importance of a country is defined in terms of how much it is connected with other
countries that are themselves important, and so on. Therefore, country openness
takes into account only a limited subset of all the information contained in the
network, which is instead fully accounted for by global centrality indicators.

Including global centrality measures in regressions explaining country income
and productivity—together with standard country controls, and trade/mobility
openness—gives interesting insights. Indeed, once all potential endogeneity prob-
lems are dealt with, either with an instrumental-variable approach or via a GMM
estimation, one finds that, net of country mobility openness, being more globally
central in the IHTMN consistently induces higher income and productivity. This
implies that the impact of human mobility in the international technological-
diffusion process depends not only on how many direct partners a country has (and
how strongly it is connected with them), but mostly on whether such a country is
embedded in a web of relationships that connect her with other influential partners
in the network.

18This parallels trade openness, defined as the sum of import and exports divided by country GDP.
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4.4 International Migration and Trade

In the previous examples, we have discussed econometric frameworks wherein one
can identify, net of possible endogeneity issues, the impact of first and higher order
network properties on country-specific performance indicators. More generally,
similar methodological techniques can be employed to single out the causal effect
that the position of a country in a certain macroeconomic network may have on the
behavior of countries in other macroeconomic networks.19

An interesting application of such an approach concerns the relationship between
international migration and trade. Several studies, indeed, find quite a robust evi-
dence suggesting that bilateral migration affects international-trade flows (Gaston
and Nelson 2011; Egger et al. 2012). As argued in Gould (1994), for example, trade
between any two countries .i; j/ may be enhanced by the stock of immigrants present
in either country and coming from the other one (mji and mij). This is because
migrants originating in j and present in i (and vice versa) may foster imports of
goods produced in their mother country (bilateral consumption-preference effect) or
reduce import transaction costs thanks to their better knowledge of both home- and
host-country laws, habits, and regulations. Again, such a bilateral information effect
only takes into account the direct impact of migrants from either countries present
in the other one to explain bilateral trade, i.e. a first-order effect. However, in line
with the discussion in the previous section, one may posit that trade between any
two countries can be fostered not only by bilateral-migration effects, but also thanks
to migrants coming from other “third parties” and, more generally, by the overall
connectivity and centrality of both countries in the IMN (Rauch 1999; Felbermayr
et al. 2010; Felbermayr and Toubal 2012). This is because the better a pair of
countries is connected in the IMN, the larger the average number of third countries
that they share as origin of immigration flows and the more likely the presence of
strong third-party migrant communities in both countries. This may further enhance
trade via both preference and information effects. Moreover, it may happen that two
countries are relatively well connected in the IMN (in both binary and weighted
terms) even if they share a very limited number of non-overlapping third parties. In
such a case, one may ask whether a cosmopolitan environment engendered by the
presence of many ethnic groups in both countries can be trade enhancing—and if so
why.

To test this idea, Fagiolo and Mastrorillo (2014) fit a battery of gravity models of
trade where country centrality in the IMN is added as a further explanatory factor.20

They find that pairs of countries that are more central in the IMN also trade more.
This mainly occurs through a third-country effect: the more a pair of countries is

19Of course here causality is exogenously assumed by means of theoretical arguments, and not
tested econometrically.
20See Sgrignoli et al. (2015) for a complementary analysis that explores similar issues using a
product-specific trade perspective.
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central in the IMN, the more they share immigrants coming from the same third-
country, and the stronger the impact of forces related to consumption preferences
and transaction-cost reduction. Furthermore, results suggest that also inward third-
party migrants coming from corridors that are not shared by the two countries can
be trade enhancing, in addition to common inward ones. This can be due to either
learning processes of new consumption preferences by migrants whose origins
are not shared by the two countries (e.g. facilitated by an open and cosmopolitan
environment) or by the presence in both countries of second-generation migrants
belonging to the same ethnic group.

5 Concluding Remarks

This chapter has surveyed some of the recent literature on macroeconomic networks,
with particular emphasis on the networks of international trade, finance, permanent
migration and temporary mobility. We have argued that describing interactions
among world countries using a complex-network approach offers several empirical
and theoretical insights. Overall, considering world countries as embedded in a
complex web of relationships allows one to identify a wealth of additional and non-
trivial empirical facts concerning the patterns of interactions at the macroeconomic
level. Furthermore, econometric exercises show that these higher-order structures,
and more generally the relative positions of countries in the networks, have substan-
tial implications as to the dynamics of country performance and shock diffusion.
In other words, macroeconomic networks do matter: direct and indirect connections
among countries are indeed relevant to better understand macroeconomic dynamics.

Despite these very promising results, research on macroeconomic networks
is still in its infancy and much remains to be done. A first important area that
requires more efforts concerns the theory behind empirically-observed properties
and econometric evidence. Indeed, theoretical models, possibly micro-founded,
delivering as their (equilibrium) outcomes predictions about the topology of the
networks should be developed and taken to the data, in order to validate the internal
mechanisms proposed as explanations for the observed network regularities. Some
effort in this direction has been made in the case of the ITN. Examples are the work
on null statistical network models (Squartini et al. 2011a,b; Fronczak and Fronczak
2012) and stochastic models of trade network evolution (Riccaboni and Schiavo
2010), as well as the contributions by Fernando Vega-Redondo and co-authors on
the dynamics of globalization (Dürnecker and Vega-Redondo 2012).

Another interesting avenue for further research is the integration of multi-
layer network techniques (Kivelä et al. 2014) in the study of macroeconomic
networks. Indeed, existing contributions have so far investigated the properties
of different macroeconomic networks as they were independent from each other.
In reality, world countries are connected at the same time through different
types of linkages, including international trade, finance, investment, migration and
mobility, infrastructures. From a complex-network perspective, considering all these
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interaction dimensions together means building a time-sequence of multi-layer
networks where every time snapshot of the multi-layer is composed of a fixed
number of nodes (i.e., countries) that may be connected by several different types
of links, each representing a different interaction channel. Studying how multi-
layer macroeconomic networks evolve over time would allow to better understand
how different interaction channels correlate among them and cause each other, and
eventually to dig deeper into the relationship between the role of a country in the
global macroeconomic network and its economic performance.

Finally, a very promising line of research attempts to go beyond the spatial
disaggregation of nodes in terms of countries by providing a finer level for the
geographical breakdown of spatial units. For example, instead of building networks
where nodes are countries, one may think, data permitting, to study macro networks
where nodes are sub-national entities such as regions or other administrative units
(see, for example, other chapters in this volume dealing with complex networks
and geographical economics). If data about both intra-national and across-country
links are available, such a perspective could greatly enhance our understanding of
community structures and shock diffusion mechanisms.
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Bank Insolvencies, Priority Claims
and Systemic Risk

Spiros Bougheas and Alan Kirman

Abstract We review an extensive literature debating the merits of alternative
priority structures for banking liabilities put forward by financial economists, legal
scholars and policymakers. Up to now, this work has focused exclusively on the
relative advantages of each group of creditors to monitor the activities of bankers.
We argue that systemic risk is another dimension that this discussion must include.
The main message of our work is that when bank failures are contagious then when
regulators assign priority rights need also to take into account how the bankruptcy
resolution of one institution might affect the survival of other institutions that
have acted as its creditors. When the network structure is fixed the solution is
straightforward. Other banks should have priority to minimize the risk of their
downfall. However, if the choice of policy can affect the structure of the network,
policy design becomes more complex.This is a fruitful avenue for future research.

Keywords Banks • Priority rules • Systemic risk

JEL: G21, G28

1 Introduction

There is a hierarchy among a firm’s creditors that is relevant when the firm becomes
insolvent. The hierarchy reflects the allocation of priority rights among the creditors
such that those higher in the hierarchy are paid in full before any other parties below
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receive any compensation.1 This differential protection offered by the allocation
of property rights has been designed to optimize the ability of the firm to raise
funds from financial markets. Since the 2008 global financial crisis there has been
a lot of interest in the design of bankruptcy resolution procedures and priority rules
for banks.2 What is striking is the large variety of both bankruptcy procedures
(Berkovitch and Israel 1999) and priority rules applied across the globe (Lenihan
2012; Wood 2011). Some countries have had for some time some form of depositor
preference rule (e.g. Australia, Switzerland and United States). Other countries have
either only recently introduced or are in the process of introducing such rules. These
include Greece, Portugal, Hungary, Latvia and Romania that have to implement
such rules as part of the conditions that they need to meet in order to participate in
EU/IMF programmes. In the UK the Vickers report recommends the introduction of
a depositor preference rule (ICB Report 2011).

Most of the arguments offered for the support of proposals concerning priority
rules are based on the incentives that these rules provide to depositors and other
creditors to monitor the activities of bank managers. However, as Dewatripont
and Freixas (2012) point out bankruptcy rules that might be optimal responses
to individual bank failures might not be efficient when the crisis is systemic. In
particular, they observe that adequate liquidity provision to solvent institutions
might be sufficient to avert contagion throughout the system in the case of a single
bank failure but not so during a systemic crisis. In the latter case, liquidity shortages
and the depression of asset prices used as collateral (fire sales) might demand
support for both solvent and insolvent institutions.

In this paper we review various arguments put forward by both economists
and legal scholars supporting either existing or new proposals for priority rules in
banking. Our main focus is on the relative positions on the ladder of depositors
and other financial institutions linked through the interbank market. In our review
we include both theoretical arguments and related empirical evidence. Reading this
literature we were surprised by the absence of any arguments related to systemic risk
issues. In the penultimate section of the paper we argue that the choice of priority
rules can have considerable implications for the propagation of failures across the
financial system.

2 Priority Rules in Practice

As we indicated above there are variations in bankruptcy procedures and rules
applied around the globe. To focus the discussion we begin by taking a close look
at one such priority structure, namely, that of US bank balance sheets as presented
in Wood (2011).

1There is an extensive literature in financial economics that studies the optimal design of
bankruptcy procedures; see von Thadden et al. (2010) for a recent review of the relevant literature.
2See Walter (2004) for a description of the actual process of bankruptcy resolution followed in US
during the financial crisis.
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1. Super-priority creditors (secured creditors)

(a) creditors with security interests over collateral
(b) sale and repurchase agreements (repos)

2. Priority creditors

(a) retail depositors
(b) life/pension insurance claimants
(c) employee remuneration and benefits
(d) unpaid taxes

3. Pari passu creditors

(a) banks
(b) bondholders

4. Subordinated creditors (tier structure)

(a) senior subordinated
(b) junior subordinated
(c) preferred shares

5. Equity shareholders
6. Expropriated creditors

(a) foreign currency creditors

Right at the top of the list (most senior instruments) we find contracts secured by
collateral. During systemic events it is the collapse of the prices of the underlying
assets pledged as collateral that dries up the liquidity of the financial system. Before
the 2008 financial crisis many banks had pledged as collateral very similar assets
created though the securitization of mortgages. One of the causes of the crisis has
been the enhanced uncertainty that surrounded the valuation of these assets. As some
institutions attempted to obtain liquidity by selling these assets, they drove their
prices down, directly affecting the value of collateral pledged by other institutions.
This led to further drops in prices (fire sales). This phenomenon has been extensively
researched in recent years and also lies behind the Dewatripont and Freixas (2012)
argument for a differential treatment of failing banks during a systemic crisis.3

In case of insolvency, assets not pledged as collateral will be distributed to other
creditor following the above seniority structure.

What is most relevant for our purposes is the relative positions of retail depositors
and banks. The ‘banks’ entry in the above table mainly captures transactions in
the interbank market (loans of durations from 1 day to 3 months). The interbank

3For a general analysis, see Shleifer and Vishny (1992). More recently, this work has been applied
to banking to explain fire sales, market freezes, market spirals and related phenomena (see, for
example, Acharya et al. 2011; Bebchuk and Goldstein 2011; Brunnermeier and Pedersen 2009;
Caballero and Simsek 2013; Diamond and Rajan 2011) For a more thorough review of this
literature, see Shleifer and Vishny (2010).
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market provides the links that connect the banking network. The severity, in terms
of aggregate losses, of a financial crisis depends on the exact structure of the
network and the magnitude of initial losses. There is an extensive literature studying
the structure of such a network and its implications for systemic risk.4 While the
relationship between connectedness and systemic risk is complex some general
patterns have been identified: for example, for low values of initial losses a higher
degree of connectedness is good news as the losses are spread out and thus the
impact on any particular institution is minimized; in contrast, when initial losses are
large a high degree of connectedness can be harmful as it increases the likelihood of
multiple failures (see Acemoglu et al. 2015a).

The particular structure shown above reflects the enactment by the US Congress
of the 1991 Federal Deposit Insurance Corporation Improvement Act that was
followed by the 1993 Depositor Preference Act. Both acts were part of the policy
response to the 1980s Savings and Loans crisis. The purpose for introducing the
1991 Act was to shift some of the risk of bank failures away from taxpayers and
uninsured depositors and more to other creditors thus reducing the cost of federally
provided insurance. Similar concerns led to the introduction of explicit rules in
the Single Resolution Mechanism specifying protective measures for the depositor
guarantee scheme.5 Thus, deposits are senior to bonds and interbank market loans
which, in turn, are senior to subordinated debt.6 As we observed earlier, the above
structure is not universal and the relative positions of uninsured depositors and other
creditors varies from country to country.

There is a variety of both theoretical and informal arguments that have been
advanced in support of various priority rules.

3 Theoretical Arguments

There is a long debate about whether uninsured depositors have the incentives to
monitor the activities of banks.7 Calomiris and Kahn (1991) have argued that by its
very nature demandable debt (demand deposits), that allows depositors to withdraw
their funds at will, offers the required market discipline device. As Diamond and
Dybvig (1983) have shown the role of demand deposits is to provide insurance to
depositors against idiosyncratic liquidity risk. More specifically, the contract offers

4For reviews of the literature see Allen and Babus (2009) and Bougheas and Kirman (2015a).
5See Regulation (EU) No 806/2014 of the European Parliament Council of July 2014. http://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32014R0806.
6By tier structure we imply that the entries under subordinated debt are also ordered according to
seniority.
7Beyond their effects on the incentives to monitor, changes in priority rules can have other
consequences. Such changes would affect the prices of those claims whose priority has been
affected, potentially changing their ownership and thus the entities affected in the case of
bankruptcy (see Danisewicz et al. 2015).

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32014R0806
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32014R0806
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risk-averse depositors flexibility with the timing of their withdrawals while at the
same time allows banks to invest in long-term illiquid projects. However, inherent
in the design is the possibility of a bank run where all depositors withdraw their
funds at the same time. These runs are not only rational, given the beliefs that each
depositor holds about the actions of other depositors, but can also be ex ante optimal
(Allen and Gale 2007). That is the decision of depositors to trust their funds to banks
can be ex ante efficient as long as the probability of runs is relatively small. Runs
in the Diamond and Dybvig (1983) framework are pure sunspot phenomena. Put
differently, they arise as because of coordination failures and it is not clear why
in such environments depositors would be appropriate monitors. However, Jacklin
and Bhattacharya (1988) allow the investment of banks to be risky and show that
widespread runs can be generated by a small number of informed depositors who
receive early signals about the bank’s performance. It seems in that model informed
depositors are performing the monitoring role.

Rochet and Tirole (1996) offer support for the argument that the most suitable
monitors for banks are other banks and therefore interbank loans should be junior
to deposits. They argue that interbank exposures generated through transactions in
the interbank market provide strong incentives for banks to monitor other banks.8

Clearly, the effectiveness of such incentives would depend on whether or not
banks believe that the government will intervene in their favour during a crisis. If
they believe that the government is likely to come to the rescue, of at least large
institutions, then they might consider that some transactions in that market do not
bear any risk. Since the 1998 global financial crisis a growing literature is attempting
to address the vulnerability of financial systems to institutions that are ‘Too-Big-To-
Fail’ (Kaufamn 2014).

Along similar lines, Birchler (2000) has argued in favor of depositor preference
on the grounds that other creditors, like banks, have an informational advantage
relative to a large number of small depositors.9 Moreover, he argues that offering
a standardized product to depositors with priority rights is a more efficient way
of raising funds than having each depositor sign a bilateral contract with a bank.
Therefore, his framework explains why the balance sheets of borrowers include a
whole variety of debt instruments that differ according to their seniority status. The
introduction of a priority list reduces the amount of resources devoted to socially
inefficient information gathering. Such an arrangement it seems is ideal for banks
that raise funds from a large number of uninformed investors.

While each of the above studies clearly supports either depositor or bank
preference, Freixas et al. (2004) offer a more mixed view. In their model banks
provide two types of services. They screen potential applicants thus improving the
pool of loans that they offer and monitor firms that receive loans to ensure they

8Their argument bears some similarity to the one used for supporting the seniority of bank claims
on the balance sheets of other firms (see Longhofer and Santos 2000).
9His work is an application to banking of earlier theoretical work on the role of seniority on
corporate balance sheets (see, for example, Diamond 1993; Hart and Moore 1995).
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perform well. Banks are subject to both liquidity and solvency shocks. The role
of the interbank market is to redistribute funds from liquid to illiquid institutions,
however, insolvent institutions cannot be prevented from using the market to gamble
for resurrection. The optimal seniority status of interbank market loans depends on
which of the two moral hazard problems associated with two services provided by
banks is the most severe. When market discipline is weak then monitoring services
become important. In this case, the only banks that seek funds from the interbank
market are those that are illiquid and solvent banks and should not be penalized
by excessive risk premia. Thus, it is optimal that interbank market loans are either
secured or senior to other claims. In contrast, when the screening constraint binds
then the interbank market loans cannot be secured and the premia must reflect the
cost of insolvency.

The majority of studies that analyze the seniority structure of bank loans focus
on the interbank market where loans are not secured. However, on the liability side
of the balance sheets of banks we find other claims by financial institutions that
are secured and therefore occupy the top step in the hierarchy ladder. Bolton and
Oehmke (2015) analyze the seniority status of derivatives. They conclude that while
these claims enhance value by providing risk management solutions, their seniority
status can lead to inefficiencies as it transfers risk to other liabilityholders, such as
depositors.

Lastly, there are also studies arguing that the most suitable monitors of bank
activities are subordinated debtholders. The idea is that the market will provide
the discipline required for reducing risk taking activities.10 Theoretical work by
Blum (2002) sheds some doubt about the efficacy of this policy. Requiring banks
to hold some prespecified amount of subordinated debt may not prevent banks
from pursuing high-risk activities and even worse might induce them to undertake
even higher-risk activities. The reason is that protection by limited liability offers
incentives to banks to decrease the cost of debt by increasing the amount of their
borrowing as soon as the interest rate is fixed by the market. Thus there is a trade-
off between the benefits derived from obtaining information about what banks do
and the costs associated with the increase in balance sheet risk.

At this point we notice that, with the one exception the work by Rochet and Tirole
(1996), research in this area does not directly address the issue of contagion.

4 Informal Arguments

Overall, the types of arguments that have been offered in favour of one priority rule
over another follow the theoretical literature discussed above by advocating that
the party most suited to monitor the activities of banks should be relatively low
in the priority hierarchy. This particular debate has focused on five types of bank

10See Evanoff (1993) and Herring (2004) for support of this view.
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creditors: insured depositors, uninsured depositors, international depositors, other
banks and subordinated debtholders. However, there are many researchers and legal
scholars who put more emphasis on the implementation of rules arguing that often
preference rules have unintended consequences.

Among domestic depositors only those with uninsured claims have an incentive
to monitor their banks.11 Do they do it? The evidence is mixed. Jordan (2000)
studying a sample of banks that failed in New England during the 1990s finds that
uninsured depositors respond to bad news. At times these depositors not only react
in a severe fashion but also start as early as 2 years before the bank is closed. The
author concludes that the ability of banks to raise funds in the insured deposit market
delays the closure of banks by dampening the effects due to the actions of uninsured
depositors. A similar conclusion is reached by Billett et al. (1998) who analyzed
announcements of credit rating changes for bank holding companies (BHCs) for
the period January 1990 through December 1995. They find that banks increase
their use of insured deposits after they have been downgraded by Moody’s. Thus
they conclude that an increase in the interest rate that they have to pay to attract
uninsured deposits, or even the withdrawal of uninsured deposits, may not have a
significant effect on banks’ risk taking decisions.

Other scholars have warned about unintended consequences of depositor prefer-
ence rules. For example, Kaufman (1997) criticizing the 1993 Depositor Preference
Act observed that depositor priority rules can be circumvented by nonpreferred
claimants who effectively become preferred claimants when the borrower secures
their funding by offering them collateral.12 Thomson (1994) and Marino and
Bennett (1999) have argued that while the regulation seems to have worked with
small bank failures it had unintended consequences with troubled larger institutions.
Because the latter have a higher proportion of unsecured and international deposits,
they faced a greater risk from the actions of those parties’ national governments to
protect them.13

Concerns have also been expressed more recently by Partnoy and Skeel (2007)
and Perotti (2010) in response to bankruptcy privileges granted in 2005 in both
the US and Europe to overnight secured credit and derivatives that have effectively
allowed these lenders to claim priority over all other creditors in case of default.
They assert that while such regulations reduce considerably the cost of borrowing
at the same time they eliminate all the incentives the privileged creditors have to
monitor the borrowers. In times of financial trouble these are the creditors who
keep providing funds to stressed institutions exactly because the last minute loans
that they offer are secured. Along the same lines Hirschhorn and Zervos (1990)
argue that if a large enough proportion of nondepositor claims becomes secured,
depositor preference could increase the cost of bank failures to the deposit insurance

11See Mantripragada (1992) for support of this view from a legal perspective.
12There is a similarity between this argument and the theoretical argument put forward by Bolton
and Oehmke (2015) related to the role of derivatives.
13The 1993 Act placed international deposits very low on the priority ladder.
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agency. Their empirical analysis indicates that depositor preference will lead to a
considerable increase in collateralization thus taking away funds during a resolution
that would have been available for distribution to depositors..

As we have already observed unintended consequences are also associated with
proposals aiming to delegate the monitoring role to subordinated debtholders. The
evidence comes primarily from comparing yields of subordinated bonds and the
performance of the issuing banks and, once more, is mixed (see Evanoff and Wall
2002; Flannery and Sorescu 1996; Goyal 2005; Hancock and Kwast 2001; Sironi
2003).

Lastly, we turn our attention to the interbank market that is the main focus of our
work. Evidence about the monitoring role played by creditors in this market comes
from Furfine (2001) who collected every Fedwire funds transfer made during the
first quarter of 1998. The main empirical findings of this study are: (a) banks with
higher profitability, higher capital ratios, and fewer problem loans are charged lower
interest rates on federal funds loans, and (b) larger institutions have an advantage
as they pay lower interest rates on borrowed funds and charge higher interest rates
on their loans. The evidence seems to suggest that banks can efficiently monitor
other banks, however, there are also some potential problems. Firstly, the advantage
of larger banks is consistent with the belief that these banks are ‘Too-Big-To-Fail’.
Secondly, the rates reflect only counterparty risk. Thirdly, the study was conducted
during a calm period in financial markets. Taken together these three arguments raise
concerns about the ability of banks to monitor themselves during systemic events.

5 Priority Claims and Systemic Risk

The literature on the optimal design of the priority structure of banking liabilities
has exclusively focused on the incentives that alternative structures provide for
risk taking and monitoring at the institutional level. As a consequence, the main
arguments put forward are based at the relative abilities of various creditors
to monitor the activities of bank managers. However, we argue that given the
interconnectedness of the banking system, restricting the scope of the design at the
institutional level might be potentially socially harmful. Cross-banking exposures
through the interbank market imply that a failure of one institution can harm other
directly linked institutions potentially leading to a cascade of failures throughout
the system. In general, the level of systemic risk (potential aggregate losses) is
not independent of the priority structure of bank liabilities.14 In order to keep the
argument as simple as possible, in what follows, we are going to ignore all other

14Our analysis might also be relevant for other sectors of the economy as interconnectedness
is not an exclusive feature of the financial system. For example, Acemoglu et al. (2015b)
study how interindustry input-output linkages can magnify small idiosyncratic shocks to produce
macroeconomic tail risk. But this is attributed to the fact that they observe the emergence of a
strongly skewed distribution of firm sizes. They argue as did Gabaix (2011) that a small shock to a
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Table 1 Bank balance sheet Assets Liabilities

LF: Loans to firms DH : Deposits by households

LB: Loans to other banks DB: Deposits by other banks

R: Reserves E: Equity

reasons for generating a priority structure mentioned above and concentrate on
systemic risk. Therefore, we will concentrate on total losses ignoring their division
between depositors and bank equityholders. In fact, from a welfare point of view we
need to compare total losses. There might be strong arguments to protect depositors
(this can be the case, for example, if the goal is to protect the intermediation process
by ensuring that depositors trust their savings with the financial system) but in such
cases there are other instruments (e.g. deposit insurance) that can be employed to
address such objectives.

For our analysis we consider a network of banks linked through the interbank
market. Table 1 show a typical bank’s balance sheet.

The entries LB and DB correspond to the links of the network. As it turns out
our main arguments do not depend on the exact structure of the interbank network.
However, it is important to keep in mind that the sum of all the interbank loans across
the banking system is equal to the sum of all deposits by other banks across the
banking system. Equity is defined as E � LFCLBCR�DH�DB. As long as E > 0

the bank is solvent. However, when E < 0 the value of the assets falls below the
value of liabilities and the bank becomes insolvent. In the latter case, the bankruptcy
procedure will decide the division of assets among the bank’s liabilityholders. In
particular, a bankruptcy procedure specifies rules to allocate the remaining assets to
the failing bank’s liabilityholders, in our case, other banks and depositors.15 There
are two broad rules that every bankruptcy procedure must satisfy:

Definition 1 (Priority Rules) They specify a hierarchy among creditors such that
in liquidation a group of creditors must be satisfied in full before any other group of
creditors lower in the ladder receive any payments.

Definition 2 (Pro-Rata Rule) All creditors belonging, according to priority rules,
to the same level are compensated proportionately to the amount of their individual
claims.

Given that our main interest is in understanding the relationship between priority
rules and systemic losses, in the following discussion, we treat each group as a single
agent.

large firm can produce major events. To do the same here would require considering also the size
distribution of banks and their place in the network.
15Actual capital requirement regulations imply that there will be regulatory intervention as soon as
equity falls below a prespecified threshold.
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We consider a bank that has to write-off some of its loans to firms and we assume
that these losses are higher than the value of its equity so that the bank becomes
insolvent. We would like to figure out how alternative priority rules affect not only
losses born by the liabilityholders of the failing bank but also by the liabilityholders
of other affected banks. The structure of the interbank network will determine
which banks will be affected but this will not have any effect on our results. As
we explained above, in terms of social welfare, ultimately what matters are the total
losses to depositors and equityholders throughout the banking system.

Dividing the failing bank’s loans to other banks, LB, among its liabilityholders
is, in principle, straightforward. These loans represent deposits of the failed bank
at other banks and they can be reallocated at full value. However, the allocation of
loans to firms, LF , and reserves, R, where the latter might include a variety of assets
differing to their degree of market liquidity, might be problematic. As we explained
above these two groups of assets might have to be liquidated at depressed market
prices below corresponding book values (fire sales) further magnifying initial losses.
Let l denote the fraction of the book value of assets recovered by liquidation (for
simplicity we assume that is the same for all assets) and V.> E/ the value of loans
written-off.

We are going to consider two cases. Firstly, we are going to analyze the model
for the case when book and market values are the same. Put differently, we will
ignore fire sales. For this case will show that priority rules do not matter. Then, we
will introduce fire sales and show that the choice of priority rules can affect the
magnitude of welfare losses due to systemic events.

5.1 No Fire Sales

We first consider the case when l D 1 (no fire sales). Then the total losses suffered
by depositors and other banks is equal to V � E. The exact division of these losses
between the two groups of liabilityholders will depend on the priority rule. Let x 2
Œ0; 1� denote the fraction of these losses born by depositors. Therefore, the total
losses for the failing bank are equal to EC x.V � E/. The analysis of what happens
with other affected banks who were creditors of the failing bank and those who
were affected because of subsequent failures is greatly simplified by the existence
of a unique clearing vector of payments that settles the obligations of all members
of the banking system (see Acemoglu et al. 2015a; Eisenberg and Noe 2001). This
important result implies that our main conclusions follow directly from what we
know about the bank that failed originally. The total losses of the banks that were
direct creditors to the failing bank due to this first round of liquidation are at most
equal to .1�x/.V�E/. If the losses are equal to the last expression implies that this
second round of liquidations was sufficient to absorb the losses. Clearly, the losses
were born by their equityholders and maybe, depending on the priority rule, also
by their depositors. If, in contrast, some of the losses were absorbed by other banks
then the process is repeated. Notice that some banks that survived earlier rounds of
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liquidations might not do so in subsequent rounds. What it is clear is that at the end
of the clearing process the total losses will be equal to V that is equal to the initial
losses. Clearly, total losses are independent of the structure of the network and the
priority rules of bankruptcy. However, the priority rules matter for the division of
these losses between depositors and equityholders.

Proposition 1 In the absence of fire sales neither the structure of the interbank
network nor the priority rules matter for total losses. Priority rules matter for the
division of losses between depositors and equityholders.

5.2 Fire Sales

Next, we consider what happens when l < 1 (fire sales). In the following analysis
we assume that the network structure is independent of the priority rule. Our only
objective in this paper is to show that the design of priority rules has potentially
serious implications for the magnitude of systemic losses. Nevertheless, a complete
analysis needs to consider that the choice of priority rules might affect the formation
of the interbank network.

For the moment we focus on the bankruptcy procedure of the initial failing bank
ignoring any subsequent rounds.16 The post-liquidation value of the failing bank’s
assets is equal to LBCl.RCLF�V/. Notice that the losses are equal to .1�l/.RCLF�
V/ and are decreasing in l. Clearly, the losses borne by other banks are greater under
depositor priority. This matters for the value of total losses of the financial system
because of fire sales. The higher the losses borne by banks the higher the probability
that other banks will become insolvent and the higher the value of total losses given
that liquidations are costly. Now, the structure of the financial network matters for
the value of total losses, however, for a fixed network structure the value of total
losses is higher under depositor priority. The following Proposition summarizes.

Proposition 2 Suppose that the formation of the banking network is independent of
the structure of priority rules. Then, when liquidation is costly (fire sales) the value
of total losses under depositor priority is at least as high as the total losses under
bank priority.

The intuition is straightforward. When bank claims are senior to depositor claims
the likelihood of further liquidations declines. When liquidation is costly (fire sales)
the total losses of the banking system increase with the number of failing banks.

While the above analysis is too simplistic, as it ignores the incentives that priority
structure offer for creating links in the network as well as the incentives that priority
rules offer to different parties to monitor the bank’s activities, we hope that it makes
clear that ignoring systemic risk considerations when designing policy rules might
be unwise.

16The existence and uniqueness of the clearing vector is not violated when l < 1, see Acemoglu
et al. (2015a).
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6 Conclusion

The recent global financial crisis has made it painfully clear how important the
design of the regulatory framework, that encompasses both rules and institutions, is
for reducing the economy-wide losses associated with systemic events.17 We have
argued that we need to consider carefully those rules that allocate priority rights
among the various groups of bank creditors. There is an ongoing literature on this
subject, however, it has mainly been concentrated on single bank resolutions rather
than systemic events. The choice of priority rules can have a considerable effect on
the total losses in the economy due to a systemic event. We have demonstrated how
important this choice is for the simple case where the network structure is unaffected
by the choice of priority rules. Future research should aim to explore this issue for
the case when the interbank network is endogenous. It might be very well the case
that when we allow for the choice of priority rues to affect the formation of links
in the interbank market, our simple results above do not hold anymore. If different
priority rules encourage or discourage certain entities from investing in the assets of
certain others then rather than monitoring when faced with an enhanced risk, banks
may prefer to invest elsewhere. While to analyse this might be a formidable task,
given its significance for systemic risk policy design, cannot be ignored.18
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Complex Networks in Finance

Anna Maria D’Arcangelis and Giulia Rotundo

Abstract The present paper can be considered as divided in two parts: in the first
one, we provide a review of the methods of complex networks that have been mainly
used in the applications to the analysis of financial data. We focus on the following
topics: the usage of the correlation matrix, systemic risk, integrated ownership and
control, board of directors, interbank networks, and mutual funds holdings structure.
The second part shows this last subject and provides new analyses.

The main findings outline that there are substantial differences in geographical
allocation among the different European fund managers. Five larger European
countries dominate the market of mutual funds. The belonging of UK and Swiss opt-
outs of the eurozone could be a probable explanation for our results on community
detection, that give a snapshot of a sort of “geographical organization” of the core
of mutual funds portfolios.

Keywords Complex networks • Correlation matrix • Financial markets •
Integrated ownership • Mutual funds • Systemic risk

1 Introduction

The nouns graphs and networks refer to the same abstract structure, although they
are used in different scientific areas for different purposes. Indeed, networks became
popular after the exploitation of social networks in the 030s and 050s (Borgatti et al.
2009), while the foundation of the formal building of a graph dates back to Euler,
who first presented his results on the Koenigsberg bridges problem in 1735. The
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river crossing the old Prussian city of Koenigsberg had two islands connected by
seven bridges, and the problem was to find a path to make a complete tour of the
city crossing each bridge only once.

The formalization proposed by Euler differed from classic geometrical problems
because it did not involve distances of meters: the land was represented through
circles (nodes, units, elements), and the bridges through lines (edges, arches, links).
This abstraction highlights the main characteristics of the problems. The proof that
was given of the impossibility of the existence of such a path is based on the count
of the number of edges connecting each node (node degree). Still now, the detection
of paths with specific features constitutes a relevant task in graph theory, and it has a
wide range of practical applications, from the optimal design of databases and print
of electronic circuits to the travelling salesman problem.

The approach outlined above differs from the methods of combinatorics, which
date back to a few centuries before, and leads to probability theory. In the middle of
the twentieth century, the insertion of the probability theory into graphs boosted a
new field of studies, random graphs.

Paul Erdos and Alfréd Rényi’s famous cooperation generated a series of papers,
the most well known of which introduced the Erdos-Rényi model of random graphs
(Newman et al. 2006). Targets in random graph theory are the detection of the prob-
ability of the presence of a specific property (defined through a variable) in graphs
drawn from a particular distribution. This constitutes a meeting point with problems
rising from Physics, like the percolation theory that characterizes the connectedness
of random graphs. Physicists were already familiar with regular graphs/networks
(lattices), mostly in the framework of ferromagnetism and statistical mechanics. The
main input for passing from “simple” networks to complex networks raised from
the studies in social sciences (Albert and Barabasi 2002). Empirical data evidenced
that, besides the randomness, the network was not showing a trivial structure, but
revealed features that do not occur in simple networks. Hence, the term “complex”.
Nowadays, complex networks constitute an active and promising area of scientific
research, widely inspired by the empirical analysis of real-world networks. It is
part of network science, coded by the United States National Research Council as
“the study of network representations of physical, biological, and social phenomena
leading to predictive models of these phenomena”.

Excellent reviews are available on the theory and applications of complex
networks in several different areas (Albert and Barabasi 2002; Barrat et al. 2004;
Boccaletti et al. 2006; Borgatti et al. 2009; Bougheas and Kirman 2014; Pastor-
Satorras et al. 2003; Varela Cabo et al. 2015; Newman et al. 2006; Nature, focus
issue 2013).

In financial markets research, literature records a fast growth in scientific produc-
tion, mostly grounded in Physics, and an increase in the level of cross-disciplinary
perspectives. First, concepts for the analysis of social networks found a proper
representation, and, later, the literature recorded a burst of studies tackling research
issues that can be conveniently managed through complex networks. Most of the
studies have an empirical approach and provide a good base for the development
of new mathematical models, econometric analysis, and open new perspectives
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for understanding large-scale phenomena such as the contagion channels in the
financial system, the interconnections among financial institutions and markets and
the analysis of systemic risk and financial stability. In other words, the relevance and
role of single elements in the network can be evidenced, and critical areas identified.

In this chapter, the discussion of the papers analysing financial data with methods
of complex networks will be conducted into four sections: analysis of the correlation
matrix, systemic risk, integrated ownership and control, and the most recent studies
on mutual funds holdings structure. The last topic will be discussed in detail with
the presentation of new results on mutual funds holdings connections.

Since we are interested in financial markets, we do not delve on theoretical results
that are not applied to our specific focus, nor on many applications of complex
networks on Economics: such as GDP, considering clustering (Ausloos and Gligor
2008; Gligor and Ausloos 2007, 2008), focusing on the dynamic evolution of the
system (Miskiewicz and Ausloos 2006, 2010), and Granger causality (Caraiani
2013), just to cite a few.

For the same reason, we are not extending our review to the rapidly expanding
literature on International Trade Network (Bhattacharya et al. 2008; De Benedictis
and Tajoli 2011; Garas et al. 2010; Garlaschelli and Loffredo 2004; Schweitzer et
al. 2009).

2 Correlation Matrix

How strongly correlated are the stock markets? What is the level of market
randomness and dependence? How does the structure change during expansions
and recessions? These are the main questions addressed by the papers that use
complex networks for the study of the correlation matrix. Correlation matrices play
a relevant role in the paramount financial problem of optimal portfolio selection
(Elton et al. 2014; Markowitz 1952). In Econometrics, several tools have been
developed for their analysis: from ARCH/GARCH models to vector autoregression,
principal component analysis and copulas. The perspective of complex networks,
besides offering a different approach for a proper correction of the correlation matrix
(Aste and Di Matteo 2010; Pantaleo et al. 2011), mainly uses the network approach
to build a network structure among financial quantities, and introduces a distance
inversely dependent on correlation.

In 1999, Mantegna proposed the distance is di;j D 1
2

p
1 � �i;j, where �i;j 8i, j

are the correlation coefficient computed between all pairs of stocks of the portfolio
by considering the synchronous time evolution of the difference of the logarithm of
daily stock price (Mantegna 1999).

It can be proved that di;j is a mathematical distance. Another benefit of using di;j
instead of �i;j is that the most correlated stocks are the closest, which means that the
distance is the shortest. Since �i;j are gathered into a matrix, also di;j constitute the
distance matrix D (Caldarelli 2008).
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Soon, it was clear that correlation matrices, as well as their deterministic
transform into distance matrices, are far from being random networks (Bonanno et
al. 2003; Caldarelli 2008). Therefore, it was straightforward to look for the origins
of the dependence. Of course, D constitutes a complete network, gathering too
much information. A proper analysis must evidence and filter main features and
characteristics. One of the most used quantities for such a filtering is the Minimum
Spanning Tree (MST). The MST is a sub-network that keeps all the n nodes of
the network, but only the n� 1 links with the minimum weight, provided that
the connected components remain connected. Originally used to detect the lightest
routes on a graph, it is calculated through a recursive algorithm. One advantage of
using the MST is the possibility of building proper visualization of the structure of
the closest stocks in distance matrix D.

The minimal spanning tree (MST) is attractive because it provides an arrange-
ment of stocks, which selects the most relevant connections of each element of the
set, and hierarchies can be settled. In Mantegna (1999), the technique is applied to
a portfolio of stocks of the S&P 500 index, and it provides a taxonomy that shows
the clustering of many groups of stocks, which are homogeneous from an economic
point of view.

An interesting aspect on the network analysis of correlation is given by the
progressive change of the graph structure, as the time horizon decreases, from a
complex organisation to a simple form (where clusters are sparser), so adding further
insights and empirical evidence for discussion of the hypotheses of dependence and
independence that are most used in financial market models (Bonanno et al. 2004).
The MST also proves that during crises the distance among markets decreases
(Sandoval and De Paula Franca 2012), and investment signals may be detected
(Brookfield et al. 2013). Further techniques for filtering information from the
correlation network, like the Planar maximally filtered graph, have been explored
to overcome the strong dependence of the presence of links in the MST on the time
lag selected for the analysis (Pozzi et al. 2008).

The MST has been applied also to time series of global currencies. In this case,
the geographical proximity plays a key role in showing the differences of European
and Asian clusters, and the interdependence of the currencies of countries at E.U.
borders. As expected, the key currencies belong to major economic countries and
the U.S. dollar plays the role of primary currency for its remarkable influence.
Therefore, each currency depends on the U.S. dollar and on the key currency of
the region where this belongs. The predominance of the U.S. dollar is also proved
in other studies (Naylor et al. 2007), which analyse a different sample of worldwide
currencies and use another metric distance function, the Gower one (Gower 1986).
This result is in line with the U.S. hub role detected by the MST in the international
trade networks (Maeng et al. 2012).

The MST has been applied to the distance matrix calculated on correlations
among GDP. The structural topology of the MST, sampled at different times, allows
the identification of different clusters of countries based on their indebtedness and
economic ties. The main results show that with the debt crisis, the less and most
affected Eurozone’s economies are shaped as a cluster in the MST. In recent papers
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(Ausloos and Miskiewicz 2010; Miskiewicz and Ausloos 2010), MST, entropy and
other indices are used to prove that the mean distance between the most developed
countries, decreased from 1960 to 2000, which can be considered a proof of
economic globalization of these countries.

It can be concluded that the correlation matrix has inspired several studies,
mostly conducted by physicists, and has contributed to the development of the study
of distances, clusters and induced hierarchies on networks.

3 Systemic Risk

Banking has attracted a number of dedicated studies, mainly fostered by the 2008
subprime crisis. Terms like “Too big to fail” soon became part of common talks, and
had a relevant role in the public debate on bank saving policies for the recent crises.

In finance, systemic risk is the default risk of an entire financial system. The
concept expressed by the phrase “Too big to fail” (TBTF) is that a single financial
institute may hold so much credit, that saving it -instead of letting it fail- becomes
economically convenient to prevent the failure of the entire financial system. The
phrasing was already in use when the crisis in 2008 made the concept prominent
and gave a big impulse to the reform of financial legislation (White 2014). TBTF
financial institutions are not necessarily banks: in principle, any company that
primarily holds financial instruments (such as stocks, bonds, loans, derivatives, etc.)
as assets on its balance sheet is exposed to the risk of debtors’ insolvency. The term
cascades outlines that the insolvency of one institution has negative consequences
on others, becoming a contagion if the outcome is as bad as causing their insolvency.
The larger the financial institution, the worse the effect on the economy, the more
likely is the decision of policymakers to intervene by providing support to the
financial institutions. The drawback is that these actions also create moral hazard
and expectations for the institution’s owners and managers, opening the door to
possibly even bigger and deeper crises.

The development of a regulatory system needs a clear understanding of risk
exposure and its monitoring. In order to achieve these goals, scientific literature has
mainly exploited the concept of centrality on the network, and simulation models of
contagions.

Studies on the topology of networks have led to the development of techniques
for ranking the centrality of nodes in a network. The more a node is central, the more
it is relevant for the property under observation. Such rankings are often referred
to as centrality measures, although most of them are not measures in accord to
mathematical terms.

Financial networks mirror regional and sectorial organization (Allen and Babus
2009; Bellenzier and Grassi 2013; Bellenzier et al. 2015). Therefore, the empirical
estimate of quantities that are standard in complex networks—clustering coefficient
and shortest path length besides centrality—has highlighted regional disparities
(Boss et al. 2004).
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Specific features of banks can be captured by ad hoc models that assess the
systemic relevance of a given institution to the contribution of heterogeneity in
network structures and concentration of counterparty exposures (Cont et al. 2013;
Bougheas and Kirman 2014).

The problem of the optimal network design is quite relevant for the propagation
of crises (Leitner 2005; Bougheas and Kirman 2014; López-Pintado 2006), which
cause financial earthquakes when triggering responses from a large portion of the
financial system (Vitting Andersen et al. 2011). Usually, empirical estimates require
large data set that are not so easy to retrieve and manage. Specific network-based
measures for ranking the relevance of nodes have been developed (Battiston et al.
2010, 2012; Bellenzier et al. 2015), suggesting that the debate should include issues
eventually even more serious than TBTF, such as Too central to fail (impacting those
who are important via network effects) and Too correlated to fail (similar portfolios
and/or strategies).

Likewise, in Too interconnected to fail (TITF) (Markose et al. 2012) the 2007
credit crisis was empirically reconstructed through data. Dense clustering and
mutual exposure identify the TITF institutions, where super spreaders dominate in
terms of network centrality and connectivity. Studies focusing on the role of shocks
on the overall stability of the financial system (Allen and Gale 2000; D’Errico et al.
2009; Gabbi et al. 2012; Steinbacher et al. 2013) and policies for market regulation
are well represented in literature (Gai et al. 2011; Gai and Kapadia 2010; Halaj and
Kok 2015).

We can conclude this section with a remark about the above-mentioned models
of financial contagion: they do not constitute the only contribution to understanding
the extent and consequences of the failure of a financial institution as pinpointed in
(Bougheas and Kirman 2014).

4 Integrated Ownership and Control: Complex Networks
of the Shareholding Matrix, and Directorate Interlocks

Indirect ownership is quite a relevant issue, mostly when dealing with antitrust
measures, and it is very relevant for detecting Chinese boxes and tunnelling. In order
to outline the phenomenon, let us consider a company A that does not buy directly
shares of a company B (direct ownership); but A holds sAC shares of an intermediary
company C that, in turn, owns sCB shares of B. In this way, no direct ownership of
A in B is recorded, but, actually, A owns sABD sAC 
 sCB share (indirect ownership).
Given the cross-shareholding matrix A D �

sij
� 2 Rnxn, the ownership through one

intermediary is given by the matrix productA2 D A
A. Analogously, the ownership
through two intermediaries is given by A2 D A 
 A, and, in general, the ownership
through n intermediaries is given by An.

Therefore, the total ownership, through direct ownership, and through any
number of intermediaries, is given by Y D AC A2 C � � � C An C � � � D .I � A/�1A,
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where I is the identity matrix. Corrections to prevent double counting due to loops
(Chapelle and Szafarz 2005, 2007) give rise to the integrated ownership matrix
V D diag

�
I � A

�
Y, where A D �

aij
�
, and aij D Pn

kD1skj, so the value depends
only on the column j. The elements of V D �

vij
�

represent the number of shares
that the company in column j holds in the company in the row i, counting both
direct and integrated ownership through any possible path in the networks. Issues
on convergence do not raise because sij < 1;8i; j D 1; : : : ; n. Results are quite
different, depending on the country. Italian companies listed in the MIB30 index
do not show long chains of control, and the existing ones can be easily explained
following the raise and settlement of the single companies. On the contrary, the
Japanese market shows clear signs of tunnelling, and some examples have been
detected for the German market (Flath 1992).

The availability of large databases has moved the investigation from small
national data set to the international ownership network and techniques from
complex networks have produced further results. For instance, the estimate of the
assortativity coefficient shows the strong tendency to form high-connected groups
(Rotundo and D’Arcangelis 2010a).

Transnational corporations are confirmed to form a giant bow-tie structure, where
the central nodes belong to a strongly connected component. Nodes in the strongly
connected component are connected by cross-shareholdings, since each of them
owns some shares of the others. Such strong component constitutes a small tightly-
knit core of financial institutions, eventually TITF; therefore, raising important
issues on market contagions, resilience and concentration both for researchers
and policy makers (Rotundo and D’Arcangelis 2010a, b, 2014; D’Arcangelis and
Rotundo 2014; Rotundo 2011; Bougheas and Kirman 2014; Vitali et al. 2011). For
instance, the node out-degree is a quantitative measure of portfolio diversification
of the company corresponding to the node. The detection of the eventual power law
decay in the histogram of the quantities of interest becomes a standard estimate in
Econophysics, since it opens the way to models. Quite interestingly, the histogram
of the out-degree and the change of the value of the exponent of the power law
clearly show the disappearance of the middle-sized investments through ownership
(in favour to the return to the core business), in line with practical managerial issues
more than to instances of market expansion.

The concept of integrated ownership is quite different from control. Let us
consider the following example: a chain of ownership A-B-C where sAB D 51 % and
sBC D 51 %. Thus, sACD (51)2Š 26 %. This means that A controls B, B controls C,
but A does not have a sufficient number of shares to control C. Therefore, different
ways to achieve control must be considered (Chapelle and Szafarz 2005, 2007;
Rotundo and D’Arcangelis 2010b).

Interlocked directorates refer to the practice of members of corporate boards
of serving on the boards of multiple companies. As early as 1969, the debate on
the flaw of fair competition through the interlocking directorate was quite active,
especially in reference to laws enacted in 1914. In fact, the inter-organizational élite
co-optation can be seen as a cooperative strategy between economic organizations
for reducing sources of uncertainty.
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Empirical evidences show that links -although dynamically evolving- are persis-
tent, with a stable core, and they involve companies managed by families strong
at the local level (Bellenzier and Grassi 2013). A recent analysis (Rotundo and
D’Arcangelis 2010b) shows that companies listed in the stock exchange for a long
time share the board of directors, whilst newcomers enter the market buying shares.
Interlocks among companies can be described as links, and the analysis of the
subsequent network is straightforward.

The application of centrality measures shows positive correlation among the
rank of interlock and firm value, but positive correlation with betweenness and
flow-betweenness, representing the intensity of the relationship between companies,
capturing the volume of information flowing from one company to another through
the interlocks (Croci and Grassi 2014; Grassi 2010; Grassi et al. 2008).

Understanding a complex system is quite different from controlling it. We may
conclude that the role of social interaction is quite relevant, since the board of
directors have their weight in achieving control (Chapelle and Szafarz 2005, 2007;
Rotundo and D’Arcangelis 2010b) and further studies are available on the personal
connections among important managers.

5 Investment Decisions and Institutional Investors

Complex network methodologies have been applied to the field of financial markets
for many purposes. The methodology is suitable to highlight the impact of networks
of investors and managers on investment decisions or directly on stock prices.
Besides the applications to the interdependence of stock markets, to systemic risks
and to integrated ownership and control, complex network methodologies have
recently begun to be used in the area of investments and managed portfolios.

Aiming to construct an index of attractiveness of various capital markets, a
recent research (Cetorelli and Peristiani 2013) carries out an in-depth analysis of
the “patterns of relationships” among financial centres. Using network analysis,
the Authors show that although the London Stock Exchange, the Deutsche Börse,
and the Hong Kong Stock Exchange became more competitive, the U.S. exchanges
remained the favourite destination for foreign issuers which wish to cross–list on
multiple exchanges. Along the same line, other Authors (Lucarelli et al. 2012)
apply network centrality measures to the indirect network between trading venues
(regulated Stock Exchanges and Alternative Trading Venues, ATVs) with the aim
to observe the dynamics of simultaneously traded European stocks from 2005
to 2009. Their results show that the advancement of Alternative Trading Venues
eroded the isolated-centrality of major Stock Exchanges (above all London); in
contrast, degree-centrality significantly increased for the majority of the Stock
Exchanges analysed in their sample. The introduction of multi-trading venues does
not deteriorate connectivity of cross-listed relationships, unveiling that multi-trading
co-exists with secondary market cross-listing.



Complex Networks in Finance 217

The investment management industry has been playing an increasingly important
role in the financial system, especially in the most advanced economies. In recent
decades, credit intermediation has been progressively shifting from the banking
to the non-banking sector, particularly to the asset management industry (through
different investment vehicles such as mutual funds, hedge funds, exchange-traded
funds, private equity funds, pension funds). Focusing on mutual funds, the number
of mutual funds in the U.S. reached 79,669 in 2014 with a value of 31.38 trillion
U.S. dollars for the total assets under management.1 U.S. mutual funds account for
roughly half the global asset under management in the world. Europe has an equally
important role with 9.576 trillion of asset under management. Such a crucial role for
the asset management industry has obvious paybacks for financial intermediation:
investors gain a better diversification of their portfolios and grant a more stable
financing of the real economy even during periods of distressed market conditions.
Other benefits of the asset management vehicles over banks concern the stability of
the financial system: the banks are exposed to solvency and liquidity risks (due to
their typical short term funding) whereas the investment risk of the shares issued by
mutual funds relapses on end investors.

Focusing on this field, complex network methodologies have been firstly used to
analyse how information is disseminated among mutual fund managers in financial
markets and how the diffusion of such news influences stock prices. Focusing
on connections between mutual fund managers and corporate board members
via shared education (the connection is their attendance of the same school), a
research (Cohen et al. 2008) identifies the transmission of insider information
and finds that managers favour the investment on companies they are connected
through their network. Placing larger bets on “connected firms”, which have
performed significantly better than non-connected ones, mutual fund managers have
significantly improved their performance.

The availability of data on holdings of a sample of US actively managed equity
mutual funds (Augustiani et al. 2015) allows other Authors to examine the effect
of mutual fund connections, through managerial sharing, on performance and
stock holding commonalities. Their analysis of return correlations and portfolio
holdings shows that more interconnected funds managers tend to buy and sell
similar stocks, hence increasing the similarity of portfolio holdings and undermining
the distinctiveness of their investment strategy. Assessing performance effects,
the Authors find that highly connected funds significantly underperform weakly
connected funds by about 1.4 % on a yearly risk-adjusted basis. Conversely, fund
family performance remains almost unaffected by the intensity of fund connections,
and greater fund connections can significantly enhance family-level profit margins.

A subsequent research focused on tie between analysts and companies (Cohen et
al. 2010) investigate the dissemination of information in security markets through
the recommendations of sell-side equity analysts used to study the impact of

1The largest fund management companies worldwide as of December 2014 are Blackrock,
Vanguard Asset Management, State Street Global Advisors and Fidelity Investments.
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social networks on agents’ ability to gather superior information about firms. The
hypothesis is here that school ties between analysts and senior corporate officers
provide comparative information advantages in the production of analyst research.
The main result is that equity analysts outperform on their stock recommendations
when they have an educational link to that company. Results are strong, so much
that a strategy of going long (for the recommendations to purchase given by analysts
with school ties) and going short (for the buy recommendations of analysts without
ties) returns a performance of 6.60 % per year. The Authors’ conclusion is that
analysts’ social networks facilitate the direct transfer of information, or alternatively
that these networks simply allow analysts to better assess managerial quality. Even if
the Authors do not always use complex network measures, the merit of these papers
is to highlight the importance of network structures and interactions among agents
in the analysis of information flow and price evolution in security markets.

The metrics from network analysis allows to analyse the impact of Sovereign
Wealth Fund (SWF) equity investments on target firm operating performance (Del
Giudice et al. 2014). The aim of the paper is to investigate whether target firms,
which are better connected to each other by means of the SWF investments, gain
benefits in terms of higher performance. The results indicate that more central firms
in the SWF-target firm network have better operating performance and that the effect
is related to the size of the stake acquired, is larger if the investment is direct and in
the domestic country and if the SWF is run by a politician.

The analysis of the relationship between the location of the fund in its network
and the investment performance, risk taking, and flows is the object of a paper
focused on pension funds (Rossi et al. 2015). Using data on a large set of
UK pension fund accounts over the period 1984–2004, the Authors investigate
whether network centrality explains managers’ investment performance, risk-taking
behaviour, and flows. The centrality of the management company providing the fund
is derived from the number of connections it has with other management companies
through their commonality in managing for the same fund sponsors or through the
same fund consultants. In detail, individual pension fund accounts can be connected
by their sharing of the same consultant and/or the same manager. The results show
that a fund-manager’s (relative) degree of centrality in a network positively affects
risk-adjusted returns and growth in assets under management and that this effect is
particularly strong for large fund managers, even after controlling for size. Once
a central position has been established, the manager tends to reduce risk-taking
behaviour and reduces the chances of getting fired by institutional clients.

The fact that many mutual funds around the world have suffered from negative
returns during the global financial crisis emphasizes how volatility can rapidly
spread among previously unrelated assets in times of high uncertainty and turbu-
lence. This observation provides the starting point for an investigation (Azmi and
Smith 2010) of the spread of the current crisis in the correlation networks amongst
a sample of mutual funds across seven regions globally. Using the data of equity
funds in ten countries representing seven regions, the Authors select two funds from
each country based on the highest net asset value and built a correlation network of
the weekly mutual fund log-returns over the period from April 7, 2006 to April 27,
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2009. They show that the losses in financial assets within certain countries could
spread and follow a cascade or epidemic flow like model along their correlations.
A first conclusion that that can be drawn from the analysis is the rapid spread
of the credit crisis amongst previously uncorrelated markets and countries. The
correlation networks under examination do not cause the transmission chain of
collapse, but they are tied to it. Such architecture encourages the excesses of the
global financial crisis, motivates aggressive risk taking and pushes some asset prices
to unsustainable levels, increasing financial fragility.

A second stream of research uses complex networks techniques in order to detect
connections among mutual fund holdings and relates complex networks measures
to the dynamic of risk and return. The collection of the ten largest positions of
18 Vanguard and Fidelity family funds (Solis 2009) provides a new approach to
visualizing the way stocks are affiliated to mutual funds as a bipartite graph, and
computes network summary statistics. The stock network has a high clustering
coefficient (indicating “prominent” stock hubs), which suggests that the managers’
selection of stocks is not made independently as if the network were that of a
purely random graph with similar expected number of links. The higher diameter
and average degree distance between two vertices (6 and 2.91 vs. 3 and 2.01 for
the random graph) suggests a small-world behaviour, due to the highly connected
network of stocks, mostly blue-chips, which populate the mutual funds sample.

In a more complete study, focusing their attention on the indirect connections
among holdings resulting from common ownership of a sample of mutual funds
from 1980 to 2008, Anton and Polk (2013) find that pairs of stocks held in many
mutual funds’ portfolios show future excess correlation between stock returns. The
Authors demonstrate that this “common ownership effect” is stronger for common
owners who are experiencing extreme positive or negative flows in low-float stocks.
Based on these results, the paper supports a cross-stock-reversal trading strategy
that exploits the information in ownership connections and generates significant
abnormal returns of more than 9 % per year, controlling for market, size, value,
momentum, and other characteristics. Following a similar approach in identifying
pairs of mutual funds linked by common portfolio holdings, Blocher shows that
spillover effects associated with the fund flows of an investor’s network neighbours
account for roughly 2 % per quarter and are the result of crowded trades, since they
are completely reversed in the subsequent year (Blocher 2013).

In the same stream, Braverman and Minca demonstrate that the network of
common asset holdings is useful to identify systemic funds (Braverman and Minca
2014). Using quarterly equity mutual fund holdings data ranging from January 2003
to December 2012, they analyse the interrelations due to common asset holdings
and construct a measure of fund vulnerability for the shocks of their neighbours
in the network. The Authors demonstrate that this “vulnerability index” is useful
in predicting returns in periods of mass liquidations, since it helps in identifying
vulnerable funds based on asset holdings and the liquidity characteristics of the
stocks.

Guo, Minca and Wang analyze the topology of the network of common asset
holdings, a network in which nodes represent managed portfolios and edge weights
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capture the impact of liquidations (Guo et al. 2015). Focusing only on the sub-
graph of weak links (those that lead to significant liquidations), the Authors analyze
the degree centrality and find that this measure follows power law distribution and
is correlated with returns. For individual portfolios, higher degree is associated
with future higher return in the long run, but it may negatively affect the perfor-
mance during financial crises. At the aggregate level, stronger connectivity among
portfolios is associated with higher systemic risk. Exploring network clustering,
they identify a small number of communities, densely linked, that concentrate a
significant proportion of the portfolios.

D’Arcangelis and Rotundo explore the commonalities in the holdings of Italian
funds investing in domestic stocks (D’Arcangelis and Rotundo 2014). Following the
empirical evidence that shows that fund managers take common decisions on stock
holdings, both for benchmark constraints and for style management decisions, the
Authors use the methodology of complex network analysis, to describe the way
in which stocks are related to mutual funds and to detect the implications of the
interactions. The results highlight a large core group of portfolios that have many
stocks in common; while other funds invest in a wider variety of stocks. These
results confirm empirical findings on US market (Solis 2009) and show that Italian
mutual funds holdings are highly interconnected, suggesting the existence of a
small-world behaviour and the tendency of mutual funds managers to steadily invest
in a restricted number of well-established high capitalization stocks (blue chips).
They also test the impact of overlap on performance and risk (raw performance,
Sharpe Ratio, standard deviation, beta coefficient and fund tracking error), and find
that the overlap is predictive of performance similarity, at least for the samples
involving blue chip stocks, even though comparison with and influence of many
other factors are not to be completely disregarded. The intersection of small cap
holdings, usually exploited for tactical asset allocation purposes, is not feasible to
conveniently differentiate final performance of funds. The results support the thesis
of substantial passive management of institutional portfolios, realized through the
investment in a portfolio of a limited number of stocks, which are selected by
mathematical algorithms in order to optimize the solution of the index-tracking
problem.

5.1 Mutual Funds Holdings: A Network Analysis

The data used for the analysis are the holdings of 215 European mutual funds, as
listed in the database made available by Morningstar Italy in December 31st, 2015.
The funds legal address is in Europe, and their investment focus is the European
equity market. In detail, the parameters used in the data query from Morningstar
request that the funds belong to one of the following categories: EURO Large Cap,
Europe Large Cap Blend, Europe Large Cap Growth, Europe Large Cap Value. The
Bloomberg database has been used to check the equity exposure for each of the 272
mutual funds coming out from the query. This check caused the reduction from 272
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Table 1 Funds primary
benchmark of the funds of the
sample (Source: Bloomberg)

Fund primary benchmark No of funds Sample (%)

MSCI Europe NR USD 96 44:65

MSCI EMU NR USD 72 33:49

MSCI Europe Value NR USD 29 13:49

MSCI Europe Growth NR USD 17 7:91

MSCI Europe NR EUR 1 0:47

to the final 215 list of funds, because some funds do not authorize the disclosure of
the composition of their portfolios. The selected funds belong to investment houses
of 14 European countries.2

For each fund in the different categories, we have registered all the stock holdings
ranked in terms of weight: the equity sample contains 1603 stocks belonging to 51
different countries.3 The sampled funds adopt similar benchmarks, confirming their
belonging to comparable categories: 92.5 % of funds are related to MSCI Europe
Indices (44.2 % to MSCI Europe NR and 21.4 % to MSCI Euro NR EUR), STOXX
Europe Indices and FTSE Indices, 4.2 % are not benchmarked and only 3.26 %
are related to minor benchmarks. Following the benchmark attribution by the site
Morningstar Italy, 44.65 % and 33.49 % of the funds are represented by the MSCI
Europe and by the MSCI EMU indices (Table 1).

We have started our analysis by building a network on the mutual funds stock
holdings. A link is drawn from mutual fund i to stock j if mutual fund i owns
stocks of company j. Links are only drawn from a mutual fund to a stock. Therefore,
starting and ending nodes of each link belong to different sets. Networks showing
this property are named bipartite.

We represent the funds-stocks network through a matrix A. Rows of AD (aij)
correspond to funds, and columns relate to stocks. The weights of the network links
aij are the percentages of stock j held by fund i. In our sample, matrix A has 215 rows
and 1603 columns. The binary matrix BD sign(A) is well suitable for projecting the
network into the space of relationships among mutual funds as follows: two funds
are connected if they have at least one stock in common. The funds-funds matrix C
is then created through matrix multiplication: CDBBT . For any two funds i and j,
the elements cij report the number of stocks common to both funds i and j.

Lastly, the stocks-stocks matrix DD (dij) is defined as DDBTB. For any two
stocks i and j, the elements dij report the number of funds that own shares of both
stocks i and j.

2Five European countries mostly contribute to the group of 215 mutual funds: Germany (18 funds),
France and Italy (45 funds each), United Kingdom (59 funds), Switzerland (26 funds). Other
22 funds belong to investment houses of 9 other European countries. Due to the exiguity of the
samples, they have been gathered into the category “Others”.
3In the sample of stocks, the ones belonging to the five most represented countries (DE, FR, IT,
SW, UK) account for the 57.08 % of the sample.
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5.1.1 Analysis of the Overall Funds-Funds Network

The funds-funds network is a non directed matrix, as witnessed by the symmetry
of matrix C, which shows the overlap of investments among fund i and fund j.
However, this information is biased by the dimension of both funds i and j, since
funds with more holdings could be more overlapped only due to the number of
different stocks in which they are invested. Considering matrix A, the size of funds
can be calculated at once as (sign(AT) e), where eD (1,1,1, : : : 1)T is a vector with
1063 components. In matrix B, the size of each fund is reported in the elements
on the diagonal. In order to overcome the issue, we have divided each element in
matrix C by the maximum between the dimension of funds i and j, so obtaining the
symmetric matrix FD cij/max(bii, bjj).

The elements on the diagonal were set equal to zero to avoid counting the size
of the fund. Each of the 215 rows of F represents the average overlap of the fund
on row i with the remaining 214 funds of the sample. The result is a vector of 215
cells (each representing the mean overlap of fund in a row with the other funds in
the columns), whose statistics (mean, median and mode, skewness and kurtosis) are
summarized in Table 2 (column full sample).

The analysis has been repeated calculating the mean of each of the rows of F
within the columns of funds belonging to the single country (DE, FR, IT, SW, UK
and “Other”); this average represents the mean overlap of the fund of row i with the
other funds of that country. The statistics on these country vectors are shown in the
respective columns of Table 2.

The Jaque-Bera test4 is used to check the null hypothesis that data come from a
normally distributed population. The results show that normality holds on the full
sample and does not hold on subsamples.

Table 2 Mean overlap of the F normalized funds-funds matrix

Funds-funds matrix (normalized sample, average values)
Full sample DE SW FR IT UK Other

Mean 0.0526 0.0643 0.0577 0.0537 0.0498 0.0499 0.0475
Median 0.0545 0.0656 0.0608 0.0553 0.0497 0.051 0.0605
Mode 0.0606 0.0397 0.0514 0.0514 0.0514 0.027 0.0606
Skewness �0.0282 �0.007 �0.3082 �0.188 0.3507 0.1348 �0.4827
Kurtosis 2.0354 1.9451 1.9045 2.0763 2.5952 1.7755 1.8971
Jarque Bera
h 1 0 0 0 0 1 1

4If h D 1, the hypothesis of normality is rejected, h D 0 means that it is accepted.
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5.1.2 The Analysis of Centrality

On the basis of this sample, we have calculated nowadays standard measures of
centrality on networks. At a first analysis, the node degree or “degree centrality”
(that indicates the number of neighbours of a node) reveals that our network is
nearly a complete one. The betweenness centrality is the number of shortest paths
going through the node under examination in relation to the total number of shortest
paths of the network. As this measure of centrality indicates if a node can be
“intermediary” within the network, it assumes a specific meaning for portfolios like
mutual funds. A high value of the betweenness centrality unveils funds that “bridge”
different groups: a fund with the higher betweenness owns stocks that are owned by
different groups, which would not overlap otherwise.

Whether the network is not showing well distinct groups, the fund with the
maximal betweenness is not investing in the core investment target of most mutual
funds, so its eventual crash is not as relevant in other applied problems, for instance
in the spread of epidemics or in the true collapse of a bridge. This is exactly our case.
The entire group is so highly connected that the values of the betweenness centrality
do not provide an informative discriminant analysis. Similarly, those funds high on
eigenvector centrality are linked to well-connected portfolios and may influence
many others in the network either directly or indirectly through their connections.

Another centrality measure that can be applied to the funds-funds matrix is the
k-shell decomposition (Garas et al. 2012), which tries to detect the most influential
nodes in the network of funds. Therefore, our analyses on K-shell does not lead
to meaningful partitions. The application of the Louvain method of community
detection (Blondel et al. 2008) reaches a similar conclusion.

In conclusion, results state that the funds in our network are highly connected and
their portfolios exhibit close overlaps. These results can be the consequence of the
adoption of similar investment policies in presence of different but highly correlated
benchmarks.

5.1.3 Analyses Considering the Benchmark

Such a conclusion suggested we should look into it further. Therefore, we have
repeated the analysis on two sub-portfolios obtained by insulating the stocks
belonging to the benchmark and those out of the benchmark. The aim is to detect
the possibility of different behaviour of fund managers in the management of the
market based and the tactical components of the portfolios under management.

We have extracted the constituents of the MSCI Europe index from the MSCI
site5: of the 442 constituents of the MSCI Europe, as many as 440 of them are
present in the sample of 1603 stocks of our funds-stock matrix. Then we have built
two separate networks: the funds-stock in the benchmark (215 rows
 440 columns)

5Available at https://www.msci.com/constituents.

https://www.msci.com/constituents
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Fig. 1 Bar diagram of the k-shell of the funds-funds network calculated on the out-of-benchmark
stock sample. (a) Entire distribution (b) having removed the peak at 146

and the funds stocks out of benchmark (215 rows
 1163). Looking at the results
on the first subsample, the conclusions on the degree centrality and on the k-shell
decomposition do not change much. The fluctuations of the values do not lead
to significant differences. A quite different picture emerges when considering the
second network built on out-of-benchmark stocks. The k-shell degree shows a large
group of 146 funds showing high peak at 146, a second group of 18 funds with
values between 122 and 100 and a residual group of funds with k-shell under the
value of 100 (see Fig. 1a, b).

This is quite different from the nearly complete connection of the previous
networks, and also quite far from the ubiquitous power law behaviour. In fact, there
are many nodes with a high node-degree. This means that the connections among
funds are very dense also in the out-of-benchmark sample, which means that even
if the investment is diversified with a tactical and unsystematic component of the
portfolio, such diversification is not strong enough: a situation completely different
from what expected in presence of a power law distribution (for an example, refer
to Fig. 2b of D’Arcangelis and Rotundo 2014).

Starting from the percentage of weights of the five most significant countries of
the sample,6 a geographical analysis of the three k-shell groups reveals that

– apart from Great Britain funds, whose frequency falls from 27.4 % in the full
sample to 21.9 %, the subsample of the most connected stocks (k-shell value
equal to 146) does not signal any outlier;

– the percentage incidence of UK holdings increases with the decreasing value of
k-shell, supporting the existence of much bigger diversification benefits in UK
funds;

6Germany 8.4 %, Switzerland 12.1 %, Italy and France 20.9 % each, UK 27.4 % and the residual
Countries 10.1 %.
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Fig. 2 Histogram of the betweenness (fund-funds matrix on out-of-benchmark sample). The tail
of the distribution is well fit by a power law f(x) D cx�’ with coefficients (with 95 % confidence
bounds): c D 488.7 (27.2, 950.1), ’ D 1.81 (1.589, 2.031). Goodness of fit: SSE: 0.0005668,
R-square: 0.991, Adjusted R-square: 0.9897, RMSE: 0.008999

– Italy and Germany show an antithetic behaviour relative to UK, with a strong
underweight in the group of funds with minimum k-shell (under 100), supporting
the evidence of more concentrated portfolios.

In contrast, the betweenness centrality shows a power law behaviour (see Fig. 2).
This means that there is a continuum of values in the relative overlap of funds, with
the usual implications when it comes to resilience to spread of volatility, contagions
and financial fragility.

5.1.4 A Country-Based Analysis of Fund-Fund Network

Moreover, the analysis of the funds-funds matrix was performed also on separate
subsamples of funds belonging to each of the five single countries under examina-
tion (Germany, Switzerland, France, Italy and UK, and the residual class “Others”).
In this case, indeed, the mean has been calculated for each row of the funds-funds
matrix, whose dimension is related to the number of funds of the country in the
network. The result of this operation is a vector with 215 components, where each
value shows the mean of the stocks that overlap the fund in the rest of the sample
(the elements on the diagonal were set equal to 0). Table 3 shows the mean of this
vector.

Germany funds qualify as the most connected network. In fact, the German
funds in the subsample funds-funds matrix (18 rows and columns) have the highest
overlap (0.0781 is the highest value on the main diagonal, and also the maximum
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Table 3 Mean overlap on
the single country normalized
funds-funds matrices

Country DE SW FR IT UK Others

DE 0.078 0.068 0.069 0.057 0.061 0.066
SW 0.068 0.063 0.062 0.055 0.055 0.051
FR 0.069 0.062 0.057 0.049 0.049 0.049
IT 0.057 0.055 0.049 0.047 0.050 0.046
UK 0.061 0.055 0.049 0.050 0.047 0.046
Others 0.063 0.048 0.047 0.044 0.044 0.051

Table 4 Mean overlap of the
single country stocks-stocks
matrices

DE SW FR IT UK

DE 3.052 1.978 2.954 1.442 1.497
SW 1.978 2.291 1.930 0.961 1.644
FR 2.954 1.930 3.223 1.423 1.441
IT 1.442 0.961 1.423 0.944 0.717
UK 1.497 1.644 1.441 0.717 1.293

element in the matrix). Moreover, the overall connection of German funds to the
funds of the other countries is the higher (the sum of the connections to FR, IT,
SW, UK and “Others” is equal to 0.3211, and is highest than all the other sums).
Similar conclusions hold for the Swiss funds, with the second highest value on the
main diagonal, that shows the total connection among the Swiss funds. The overall
connection to the funds of other countries is the higher and equals 0.29. Italian funds
reveal an opposite behaviour, showing the lower value of internal connection (0.443)
and also the minimum overlap with the funds of the other countries (the sum of the
connections with German, French, Swiss, UK and “Other” funds equals 0.253).

5.1.5 Analysis of the Overall Stocks: Stocks Network

The stocks-stocks matrix D is defined as DDBTB. For any two stocks i and j, the
elements dij report the number of funds that own shares of both stocks i and j. The
stocks-stocks network is a non directed matrix, as witnessed by the symmetry of
matrix D.

The mean of each of the rows of D represents the mean overlap of the stock on
row i with the remaining of the stocks of the sample, divided by countries. It is the
mean of all the values in the submatrix corresponding to the rows and columns listed
for each block in Table 4, that sums up the findings of the calculation of the means
on the country blocks of the vector of the means of the overlap values in each row.

The results show that German stocks reveal the maximum overlap both with
foreign and domestic stocks. The conclusion is that in the sample under examination
German stocks are diffused to the utmost degree. A similar behaviour is detectable
also for French stocks, which reveal the maximum overlap with other French stocks
(France/FranceD 3.22); the mean value of the overlap with stocks of other countries
is 7.748 and is the second value (France has the minimum overlap 0.944 in the
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Table 5 Mean overlap on
the single country
stocks-stocks matrices

DE SW FR IT UK

DE 0.915 0.670 0.884 0.670 0.625
SW 1.491 0.801 1.040 1.102 0.722
FR 1.544 1.166 1.736 0.694 1.079
IT 1.082 0.779 1.199 0.942 0.765
UK 0.592 0.500 0.598 0.418 0.432

sample with Italian stocks). Going through the rows of Table 4, we can notice that
also Swiss stocks are more connected with the other Swiss stocks (Switzerland-
SwitzerlandD 2.29) than with the stocks of other countries, but the overlap with
German stocks is also very high (1.97).

Of the five countries examined, only Italy and the United Kingdom have a value
on the main diagonal that is not the maximum in their row; therefore, for these
countries, the overlap among domestic stocks is lower than with those of other
countries. Italy and United Kingdom stocks are mainly bought jointly with stocks of
other geographical areas: the maximum overlap of United Kingdom stocks is with
Swiss stocks; the maximum overlap of Italian stocks is with German and French
ones.

Lastly, the overlap between Italy and the UK is always very weak. Further, we
may add the comment that Italy has a marginal weight in international benchmarks
and that the result of the United Kingdom could be partially due to its disposition to
minimize exchange rate risks and avoid costly hedging strategies.

Following the methodology used for the funds-funds network, we have built the
stocks-stocks matrix on separate subsamples based on the domicile of the funds in
the sample (Germany, France, Italy, Switzerland, and UK, and the residual class
“Others”).

The difference between the country-based analyses in Tables 4 and 5 lies in the
different data of each cell in the stocks-stock matrix: in Table 4, the cell contains the
mean overlap of domestic and international funds that share the couple of stocks
in the corresponding row and column; indeed, in Table 5, such funds are only
domestic (ref. to the row). For instance, in the cell corresponding to DE (row) and
UK (column) the value 0.625 is the overlap between DE stocks and UK stocks,
considered as a block, owned exclusively by DE funds. The results converge towards
the conclusions detected from previous tests: French mutual fund managers confirm
to be inclined to overweight the percentage of French stocks in their portfolios
and are at the same time exposed to German stocks; Italian funds combine mainly
French and German stocks, the same conclusion is valid for Swiss managers. The
exposition of UK funds to other countries holdings is systematically low (the row
corresponding to United Kingdom has the minimum values of the entire matrix), the
consequence is that we detect an intrinsic tendence of these actors towards a strong
diversification.

The node-degree in the stocks-stocks network is the number of links connected to
the nodes. It can be calculated through the KoutD sign(D) e, where eD (1,1,1, : : : 1)T
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Fig. 3 Node degree of the single country stocks-stocks matrices

is a vector with 215 rows. A node i showing a high degree signals a stock that is
associated to many other stocks in the portfolios of the sample mutual funds. A
high mean node-degree means that stock i is connected to many others because
they appear together in the portfolios of many funds. Figure 3 shows a behaviour
different from the power law, although showing a small number of couples of stocks
belonging to many funds, and a higher number of couples of stocks belonging to a
few funds.

Due to the high connectivity of the matrix, the results of betweenness and k-shells
are not performing a clear discriminant analysis; therefore, we have proceeded with
the analysis of two well distinct sub-groups: the stocks belonging to the benchmark
and the ones out-of-the-benchmark.

5.1.6 Analyses of the Stocks-Stocks Matrix for Benchmark Constituents

On the benchmark, the node-degree is far from the classic power law. Counting
the nodes whose degree equals zero, we can notice that there are 1161 stocks that
do not belong to the ownership of the same mutual fund with other stocks in the
benchmark. The node degree has a peak concentrated on the mode at 428 (343
nodes). Since the remaining nodes have values ranging nearly uniformly from 50 to
437, we may conclude that the stocks in the benchmark either do not belong to the
same mutual funds of other stocks or are the most frequently bought with other 343
stocks of the benchmark. Non zero elements in the betweenness show a power law
behaviour, which implies that there are a few elements (with high betweenness) that
lay in paths connecting communities (Fig. 4).
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Fig. 4 Histogram of the betwenness for stocks belonging to the benchmark. General model
Power1: f(x) D cx�’ Coefficients (with 95 % confidence bounds): c D 2.463 (1.402, 3.525),
’ D 0.9394 (0.7462, 1.133). Goodness of fit: SSE: 0.0068, R-square: 0.9605, Adjusted R-square:
0.9556, RMSE: 0.02916

Table 6 Geographical allocation of the community structure—benchmark sample

Group n. DE (%) SW (%) FR (%) IT (%) UK (%) Other (%)

1 147 17:69 0:68 27:89 11:56 1:36 40:82

2 120 0:00 21:67 0:00 0:00 46:67 31:67

3 88 1:14 17:05 1:14 0:00 50:00 30:68

4 85 28:24 0:00 36:47 8:24 2:35 24:71

The analysis of k-shells shows that there are two very different groups: one at 400
and one at 50. The one around 400 contains 419 elements, confirming the existence
of a large group of highly connected nodes.

The presence of groups is well outlined by the Louvain method for communities’
detection (Blondel et al. 2008). Table 6 shows four communities with a specific
geographic concentration. Starting from the geographical percentage coverage of
the sample of stocks (DE 11.59 %, SW 9.55 %, FR 16.59 %, IT 5.45 and UK
23.64), the analysis shows that Group 2 and Group 3 have a strong concentration
on Swiss and UK stocks, whereas the stocks of the other countries (Germany,
France and Italy) are concentrated in Group 1 and Group 4. The fact that the
UK and Switzerland are non-Eurozone countries may be a tentative explanation
for the results that give a snapshot of a sort of “geographical organization” of the
communities. The output of the Louvain method for the out-of-benchmark matrix
is strongly different, as it does not show a clear geographical allocation within the
groups.
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Fig. 5 Histogram of the node
degree of the stocks-stocks
matrix of the
out-of-benchmark stocks.
General model Power1:
f(x) D cx�’. Coefficients
(with 95 % confidence
bounds): a D 624.9 (509.7,
1760), ’ D 1.559 (1.2, 1.918).
Goodness of fit: SSE:
0.003182, R-square: 0.9643,
Adjusted R-square: 0.9592,
RMSE: 0.02132

5.1.7 Analysis of the Stocks-Stocks Matrix: Out-of-Benchmark Stocks

The statistics of the stocks out-of-benchmark are quite different from the ones in the
benchmark. The node degree has a power law tail distribution. This is in accord with
the strategic asset allocation of non-benchmark stocks. In fact, there are a few that
are bought by the many mutual funds, and many that are bought by a few mutual
funds (Fig. 5). The comparison with the node degree of the entire stocks-stocks
network shows lower values in the middle part of the distribution.

The values of betweenness are all concentrated around the mode, with a very few
elements with high betweenness. This is in favour of the hypothesis of the presence
of groups, with some elements bridging them. The analysis of k-shells shows a quite
interesting behaviour, where the highest value at 200 reveals a k-core of overlapping
stocks, while the minimum of the k-shell is 3 and the highest number of stocks are
in the first bin of the bar diagram (Fig. 6).

The presence of scaling and the absence of well-insulated groups of specific
dimension is confirmed also by the Louvain method for communities detection
(Blondel et al. 2008). Twenty groups are detected, and the presence of many small
groups and a few large ones is clear, although the peaks around 140 and 160
deviate from the power law (Fig. 7). Such groups do not reflect any geographical
grouping homogeneity. Therefore, the result is quite different from the result on the
benchmark. The absence of country-based grouping confirms the fact that out-of-
benchmark stocks are bought by mutual funds mostly for tactical asset allocation
purposes without a particular interest in geographical distribution. We leave the
investigation of other causes for such grouping to future work.
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Fig. 6 Bar diagram of the k-shell of the stocks-stocks matrix calculated on the not-benchmark

Fig. 7 Size of communities (20 communities with sizes 189, 157, 155, 147, 134, 101, 58, 50, 40,
33, 32, 14, 10, 9, 8, 8, 6, 4, 4, 4). The peaks around 140 and 160 deviate from the power law,
although the presence of many small groups and a few large communities is clear. The regression
line is f(x) D b*x�’c, Coefficients (with 95 % confidence bounds): b D 41.27 (�138.9, 221.4),
’ D 1.781 (0.06896, 3.494), c D 0.03919 (�0.02474, 0.1031). Goodness of fit: SSE: 0.01607,
R-square: 0.8996, Adjusted R-square: 0.8709, RMSE: 0.04791



232 A.M. D’Arcangelis and G. Rotundo

6 Conclusions

The present work has examined a sample of equity mutual funds investing in
European stocks and presents various analyses mainly based on the complex
network approach applied to stock holdings. The main results show that stocks are
connected through the mutual fund owners they have in common and that there
are substantial differences in geographical allocation among the different European
fund managers. Five larger European countries dominate the market of mutual
funds. United Kingdom and Switzerland are the less overlapped, while the highest
overlap is among Germany and France. Italy is quite close to Germany and France
for the overlap and selection of stocks, but it shows a lower diversification, like
the United Kingdom, by looking at funds as a whole. The belonging of UK and
Swiss opt-outs of the Eurozone, whose consequence is the exchange rate risk for non
domestic investors, could be a probable explanation for our results on community
detection that give a snapshot of a sort of “geographical organization” of the core
of mutual fund portfolios, the part associated to the benchmark. The results of the
different analyses provide valuable input for further research. In particular, we leave
to future work the analysis of managers’ behaviour non compliant with geographical
allocation of holdings.
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A Formal Setting for Network Dynamics

Ian Stewart

Abstract This chapter is an introduction to coupled cell networks, a formal setting
in which to analyse general features of dynamical systems that are coupled together
in a network. Such networks are common in many areas of application. The nodes
(‘cells’) of the network represent system variables, and directed edges (‘arrows’)
represent how variables influence each other. Cells and arrows are assigned types,
which determine the form of admissible differential equations-those compatible
with the network structure. By analogy with the modern theory of dynamical
systems, emphasis is placed on phenomena that are typical of entire classes of
model equations with a given network structure, rather than on specific models. Such
phenomena include symmetry and synchrony relations among cells, leading to a
clustering effect embodied in a quotient network described by a balanced colouring.
Rigid patterns of synchrony (those preserved by admissible perturbations) for
equilibria and periodic states are classified by the balanced colourings. Bifurcations
in which network structure can cause anomalous power-law growth rates are briefly
mentioned. The formal concepts are motivated and explained in terms of typical
examples.

Keywords Bifurcation • Dynamics • Network • Symmetry • Synchrony

1 Introduction

In recent years it has become increasingly apparent that networks play a highly
significant role in many areas of science and technology. Examples include the
spread of epidemics, food webs in ecosystems, gene regulation, intercellular
signalling, neuroscience, market trading, control, and communications.
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The defining features of a network are a set of nodes, which interact through
a system of connections. In mathematics, such a structure has traditionally been
called a graph, but ‘network’ is more evocative. Nodes are also known as vertices
or dots, and connections as edges or lines; these may or may not be directed. We
will shortly rename nodes as ‘cells’ and directed edges as ‘arrows’ to emphasise the
extra structure that will be brought into play.

Many different aspects of network structure and behaviour have been studied,
ranging from statistical features to dynamics. Applications include the rate of
spread of an epidemic, stability of the population distribution in an ecosystem, the
development of organisms, broken connections in communications networks, ‘small
world’ phenomena, stock market crashes, and internet search engines. The literature
is vast, with many different viewpoints and philosophies, and we make no attempt to
summarise it here. Instead, we focus on one specific area: the nonlinear dynamics of
networks of coupled dynamical systems. By a dynamical system we mean a system
of ordinary differential equations in one or more variables, which we abbreviate to
‘ODE’.

Just over a decade ago an analogy between symmetric dynamical systems (Gol-
ubitsky et al. 1988) and network dynamics began to be explored (Golubitsky and
Stewart 2006; Golubitsky et al. 2005; Stewart et al. 2003). The aim was to apply,
in a network context, the modern philosophy of nonlinear dynamics. This approach
was pioneered by Poincaré (1881, 1882, 1885, 1886) in his work on the qualitative
theory of differential equations. Among other things, this viewpoint led him to
discover chaotic dynamics in the three-body problem for Newtonian gravitation
(Poincaré 1892, 1893, 1899). His qualitative approach to differential equations
was developed into a systematic theory by several mathematicians, especially in
the Soviet Union, and became firmly established as a new branch of mathematics
with the work of Arnold (1963), Smale (1967), and others. The central idea in this
approach to dynamics is that significant structural phenomena are invariant under
appropriate coordinate changes, and are thus determined purely by the topology of
the trajectories in phase space—the phase portrait. For example, the presence of a
time-periodic state (limit cycle) is a topological feature, but the detailed waveform,
the period, and the shape of the cycle in phase space are not.

This approach deliberately ignores many details of the system, which have to
be supplied by other means—typically numerical solutions, because few interesting
nonlinear ODEs can be solved explicitly. So why do we need topological dynamics
when any specific problem can be understood by numerical computation? Often we
do not: numerical simulations provide all the answers required. However, numerical
solutions sometimes make little sense on their own—they reveal some form of
behaviour, but do not explain why it is occurring, or whether it is typical or unusual
in the appropriate context. Moreover, most real-world models include numerical
parameters that can take on many values, and it is often important to understand how
the solutions change as parameters vary. Some numerical schemes exist that can
explore such issues, but in general such questions may require infeasibly lengthy
calculations. Moreover, it can be difficult to organise the results into a sensible
description of the system’s behaviour. Topological dynamics can help here, because
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it provides a systematic framework for organising, classifying, and recognising the
basic types of behaviour. It relates them to each other, and allows insights to be
transferred from one area of application to others. It is in some ways a coarse
instrument, but that is a virtue as well as a vice, because it removes inessential
information.

The pioneers of the subject realised that the topological approach can be a highly
effective approach to a basic, general question: ‘what can dynamical systems do?’.
The effect of this change of viewpoint was a bit like the zoological move from
butterfly-collecting to Linnaean taxonomy. Post-Linnaeus, you still had to collect
butterflies to find out what existed in nature, but you began to appreciate how they
related to other butterflies—and, more crucially, to other species.

Many special classes of dynamical system have extra structure. For example
Hamiltonian systems are defined by a Hamiltonian function, which is conserved
along trajectories and induces a symplectic structure, Smale (1967). Symmetric
dynamical systems are defined by ‘equivariant’ vector fields with specific symmetry
properties. In networks of coupled dynamical systems, the variables that appear
in the differential equation, and the form of that equation, respect the network
architecture. When the system has special structure, it is sensible to require the
permissible coordinate changes to preserve this structure. This restriction can lead
to new phenomena, invariant under this more limited type of coordinate change.
Examples, in these three contexts, are the topology of energy levels, the symmetry
group of a solution, and synchrony of specific nodes of a network.

Our focus here is on the network case. Network dynamics has been widely
studied in many specific settings. Often the network structure is treated informally.
However, it makes sense to develop a general overview by defining an appropriate
formal structure, analogous to that for general dynamical systems. Here we survey
some of the basic ideas in one systematic approach to this issue (Golubitsky and
Stewart 2006; Golubitsky et al. 2005; Stewart et al. 2003). The main motivation
in those papers was to seek analogies with symmetric dynamics (Golubitsky et al.
1988) and to devise alternatives when new issues arose. As they did.

1.1 Outline of Chapter

We begin by describing some examples of networks and their dynamics, to act as
motivation. This leads to a formal definition of a coupled cell network and the
corresponding class of ‘admissible’ differential equations. A key concept here is
the input set of a node, which determines how the rest of the network is coupled to
(drives) that cell.

Analogies with other special classes of dynamical systems help to motivate some
basic questions and concepts. In particular, we take inspiration from symmetric
dynamics, where the ODE respects a group of symmetry transformations.

An immediate obstacle arises, which causes technical difficulties, but cannot
easily be avoided. In symmetric dynamics, the composition of two symmetric (that
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is, equivariant, see Golubitsky et al. 1988) maps is always symmetric. The analogue
for network dynamics is false in general: the composition of two admissible maps
need not be admissible. However, there is a partial substitute: strongly admissible
maps. The composition of a strongly admissible map and an admissible map, in
either order, is always admissible.

We include a brief discussion of symmetries of networks, an important area that
combines (often in an uneasy alliance) features of symmetric dynamics and network
dynamics.

One important issue in network dynamics is the possibility of synchrony,
in which two (or more) cells have identical time series. One way to approach
synchrony is through the concept of a balanced colouring of the cells. Suppose that
the state of the network exhibits some pattern of synchrony; that is, certain cells are
synchronous with others. Assign the same colour to all cells that are synchronous
with each other. Intuitively, synchronous cells should receive the same input from
the network: if not, the synchrony would be destroyed. The most natural way to
ensure this is if the corresponding input sets match up in a manner that preserves
colours. That is, cells with the same colour have inputs that are related by a colour-
preserving permutation. This is the balance condition.

(An alternative is that some kind of cancellation of inputs takes place, but this
would be ‘accidental’ and would disappear after a small admissible perturbation—
unless the network equations have extra special features. In such cases, a generalised
form of the balance condition must still apply.)

The above statement can be made precise. Balanced colourings define a distin-
guished class of subspaces of phase space that are invariant under any admissible
map. The dynamics on this subspace leads to the pattern of synchrony determined
by the colours. In contrast, an unbalanced colouring does not have this invariant
subspace property.

If cells with the same colour are identified, the result is a ‘quotient network’ on a
smaller number of cells, whose dynamics corresponds to synchronous dynamics in
the original network with the corresponding pattern of synchrony.

There are some stronger results which apply to suitable equilibrium and periodic
states. Say that a pattern of synchrony is rigid if it persists after any sufficiently small
admissible perturbation of the ODE. Then rigid synchrony of equilibria defines a
balanced colouring. So does rigid synchrony of periodic states; the current proof
uses a mild technical hypothesis but it seems likely that this can be removed. There
is also a version of this theorem for patterns of phase-related cells, rather than
synchronous ones. It leads to a characterisation of conditions under which clusters
of synchronous cells have a ‘rotating wave’ spatio-temporal symmetry.

The final topic is bifurcation theory, where states of the system undergo
qualitative changes as some parameter varies. In particular we remark that network
architecture can create anomalous bifurcation behaviour—that is, different form the
typical bifurcations in general dynamical systems. As an illustration we exhibit an
example of anomalous power-law growth of the amplitude of bifurcating branches
of periodic states in a three-cell feed-forward network.
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2 Network Diagrams and Admissible Maps

2.1 Motivation

The theory of networks goes back to the work of Euler (1741) on the puzzle
of the Königsberg bridges. Contrary to common belief, he did not introduce the
concept of a graph in its familiar geometric form; instead, he employed a symbolic
representation of paths and argued combinatorially, Wilson (1985). However, the
standard graphical representation soon followed. The main ingredients for a graph
are a set of nodes, represented by dots, connected by a set of edges, represented
by lines. The edges may be undirected (line segments) or directed (arrows). The
main objects of study initially were the combinatorics and topology of graphs. As
the subject developed, extra structure was imposed: directed edges were assigned
numerical probabilities, connection strengths, flow rates, or durations (for example
in critical path analysis).

In applications, especially to neuroscience, ODEs are associated with a given
network, and the form of these equations reflects the network architecture. For
example in a neuroscience model, nodes might represent neurons and edges axons,
coupled via electrical signals passing along the axons. The state of each node i is
represented by a variable xi, which might be a scalar or a vector. Each node typically
has an internal dynamic, an ODE that determines how it would behave if it were not
coupled to other nodes. Connections from one node to another lead to coupling
terms in the equations: if there is an input from node j to node i, then dxi=dt is a
function of both xi and xj.

Example 1 The ˇIG model of diabetes, Topp et al. (2000), takes the form

PG D a� .bC cI/G

PI D ˇ

�
dG2

eC G2

�
� fI

P̌ D .�gC hG � iG2/=ˇ

Here dots are time derivatives. The termsG = glucose level, I = insulin level, and ˇ =
beta-cell mass depend on time t. The other terms a; b; c; d; e; f ; g; h; i are parameters,
whose value is constant during any particular run of the model or in any particular
real system.

The network structure arises when we consider which variables depend on which.
Here:

• The change in G depends on G; I but not on ˇ.
• The change in I depends on G; I, and ˇ.
• The change in ˇ depends on G; ˇ but not on I.
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It is natural to encode these relationships as the network (called a block diagram
in some areas of application) shown in Fig. 1. Here each variable is represented
by a cell symbol (circle, square, hexagon) and arrows show which variable affects
any given cell variable. The different cell symbols indicate different ‘cell types’,
meaning that the form of the equation is different for those cells. The different arrow
symbols (solid, dotted, and so on) indicate different ‘arrow types’, meaning that the
form of the coupling is different for those cells.

In such a representation individual cell or arrow symbols have no further meaning
on their own. Their interpretation depends on the entire diagram. For example,
in this case the coupling from G and ˇ to I is not a sum of terms in G and ˇ

separately, but a combination of both variables. Coupling terms need not be additive;
for example in the equation for G the variable I appears as a product cIG.

Example 2 Consider an ODE representing three coupled FitzHugh-Nagumo neu-
rons:

Pv1 D v1.a � v1/.v1 � 1/� w1 � cv2 Pw1 D bv1 � �w1

Pv2 D v2.a � v2/.v2 � 1/� w2 � cv3 Pw2 D bv2 � �w2

Pv3 D v3.a � v3/.v3 � 1/� w3 � cv1 Pw3 D bv3 � �w3

(1)

Here vi is the membrane potential of cell i, wi is a surrogate for an ionic current, and
a; b; � are parameters with 0 < a < 1, b > 0; � > 0.

In (1) the dynamic equations are the same for each neuron, subject to appropriate
permutations of the variables. In other words, the individual neurons are identical,
and the couplings are also identical. So in this case the natural diagram is a ring of
three identical cells (same cell symbol) with identical unidirectional coupling (same
arrow symbol). See Fig. 2.

The state space of cell i is now 2-dimensional, with variables .vi;wi/. Because
the variables enter the equations in the same manner for each i, subject to the cyclic

Fig. 1 Network representation of the ˇIG model

Fig. 2 Network representation of a ring of three identical FitzHugh-Nagumo neurons with
identical unidirectional coupling
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permutation, the cells have the same type and so do the arrows. In the diagram, we
represent this by using circles for all three cells and the same kind of arrow for all
three couplings.

2.2 Modelling

A network diagram does not specify an ODE as such. In particular it tells us
nothing about the functional form of the equations. Instead, the diagram acts as
a schematic representation of which variables affect which, and specifies when the
same equation arises for corresponding variables. So each diagram determines a
class of ODEs that ‘respect the network structure’. Moreover, certain dynamical
features may be common to all ODEs in this class, and are thus typical features
for that network. These include possible patterns of synchrony, phase relations in
periodic states, and a singularity-theoretic interpretation of homeostasis (Golubitsky
and Stewart 2016a,b). Other features depend on the precise equations. So the formal
theory separates the features that are typical for all networks with a given diagram
from those that are special, and depend on the precise terms in the equations.

In a conventional approach to modelling, the equations are set up from the
beginning using specific terms that reflect known (or presumed) aspects of the
biology or physics of the system being modelled. For example, the term dG2=.eC
G2/ in the ˇIG model tends to a constant d for large G, modelling a feature of the
insulin response to large glucose levels. Other ODEs consistent with the network
architecture need not behave in that manner, but would probably not be appropriate
to model diabetes. Having set up specific equations that incorporate various
assumptions of this kind, they can then be studied analytically or numerically to
see how solutions behave. In circumstances when there is strong justification for
choosing a particular formula, this type of model is an accurate representation of
the real system.

However, especially in biology, there is often a lot of flexibility in the choice
of formula, and the literature typically considers many variants. This is where
the ‘model-independent’ philosophy presented here differs from this conventional
‘model-dependent’ approach. It offers some advantages by distinguishing between
aspects of the solution that are sensitive to the precise formula employed, and those
that are relatively robust and depend mainly on the network architecture. Specific
models are still important; for example, to work out which parameter values lead
to particular types of behaviour. But they can be used in the context of knowledge
of what kind of behaviour should be expected on the basis of the network structure.
This avoids the danger of attributing predicted behaviour to a specific formula, when
it is mainly a result of the network structure and would occur for other formulas.

This viewpoint shifts the emphasis to a two-stage approach. First, understand
model-independent features. Second, consider model-dependent features in the
context of the model-independent ones to find out what extra information or insight
the specific choice of model adds. The first step motivates defining a formal setting
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for network dynamics and working out the general principles that apply. The initial
aim is to use the network structure to define a natural class of differential equations
whose structure is compatible with a given network. We say that these ODEs are
‘admissible’ for that network.

There are several general formulations in the literature. For example, Kuramoto
(1984) considers nonlinear internal dynamics plus linear coupling:

dxi
dt
D fi.xi/C

X
j

aijxj (2)

with nonlinear fi and constants aij for some set of input nodes j. The idea is that each
cell has a nonlinear internal dynamic fi, and the couplings are linear, given by the
matrix .aij/. The form (2) can be motivated as a pragmatic low-order approximation
to more complicated equations, where linearity corresponds to weak coupling, but
this form of coupling is very special. In particular it is not preserved by any obvious
type of coordinate change beyond linear maps, contrary to the spirit of topological
dynamics. However, it also has some advantages: a specific internal dynamic fi.xi/,
and removal of couplings by setting the relevant aij to zero.

Another common choice is to assume that the nodes represent ‘phase oscillators’,
whose state space is a circle S

1, and a state 
 2 S
1 describes the phase of the

oscillator. In this model the amplitudes of the oscillations are ignored.
Which formalism is appropriate depends on the questions being asked. The

choice described in this chapter avoids restrictive assumptions on the form of
the ODEs. It therefore provides a suitable context to study ‘generic’ or ‘typical’
phenomena in network dynamics, offering a useful perspective on more specific
models, and it helps to explain some of their features.

3 Coupled Cell Networks and Systems

We now begin to set up a formal structure for network dynamics.
For reasons loosely related to the motivating examples, and to distinguish the

topic from standard graph theory, the terms ‘node’ and ‘directed edge’ were replaced
by ‘cell’ and ‘arrow’ in early work. For consistency with the literature, we do the
same here.

Definition 1 A coupled cell network satisfies the following conditions:

(1) There is a finite set C of cells, usually identified with the standard set C D
f1; 2; : : : ; ng.

(2) There is a finite set E of arrows.
(3) Each arrow e has a head cell H .e/ 2 C and a tail cell T .e/ 2 C .
(4) Cells are classified into types. Formally, this is done by defining an equivalence

relation �C on C , called cell equivalence. Cells are equivalent if they have the
same type.
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(5) Arrows are also classified into types by defining an equivalence relation �E on
E , called arrow equivalence. Arrows are equivalent if they have the same type.

(6) Types satisfy two compatibility conditions. If e1; e2 2 E are arrow-equivalent,
then H .e1/ and H .e2/ are cell-equivalent, and T .e1/ and T .e2/ are cell-
equivalent.

From now on we often shorten ‘coupled cell network’ to ‘network’. A network
can be represented graphically by its diagram. Here cells are drawn as dots, circles,
squares, hexagons, and so on, with a different symbol for each type. Arrows are
drawn as arrows, similarly decorated to distinguish types by using dotted or wavy
lines, different shapes of arrowhead, and so on. Each arrow e runs from T .e/ to
H .e/. The diagram is a directed labelled graph, where the ‘labels’ are graphical
representations of the cell and arrow types.

Warning: An arrow can have the same head and tail, forming a self-connection
from a cell to itself. Two distinct arrows (of the same or different types) can have
the same head and the same tail, giving multiple connections between the two cells.
Arrows of this kind arise naturally in connection with a basic construction, the
‘quotient network’, which is related to synchrony; the entire formalism works much
better if they are permitted from the start. See Sect. 7.

Figure 3 shows a few examples, and we take the opportunity to illustrate some
basic types of network architecture (that is, topology) at the same time.

Tacit conventions are often used to simplify such diagrams. For example in the
‘all-to-all’ network, pairs of equivalent arrows in opposite directions are shown as

Fig. 3 A sample of coupled cell networks
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a single line with two heads. Some examples have a single cell type and a single
arrow type; others do not. The final ‘typical’ example illustrates a few possibilities
consistent with the formalism, and has no special significance.

A network is connected if the underlying graph (ignoring cell and arrow types
and arrow directions) is connected; that is, any two nodes are joined by a path
of mutually adjacent edges. It is path-connected (another term widely used is
transitive) if any two nodes of the underlying graph are joined by a directed path
of mutually adjacent edges. It is disconnected if it is not connected, in which case it
breaks up into connected components. The examples include some self-connections,
multiple arrows (of the same type or different types), and a multiple self-connection.

3.1 Global Symmetries

Symmetries of ODEs have a strong effect on their solutions (Golubitsky et al. 1988;
Golubitsky and Stewart 2002a). We therefore make a few remarks about symmetries
here and expand on them later.

A (global) symmetry of a network is a permutation of its cells that preserves
the network architecture: how many arrows of each type input to each cell, and
how they are connected in the network. Among the examples in Fig. 3, the two-cell
network labelled ‘symmetric coupling’ has symmetry group Z2, generated by the
transposition .12/. The unidirectional ring has cyclic group symmetry Z5 generated
by the 5-cycle .12345/. So does the bidirectional ring, as drawn, because it has two
types of arrow. If the dotted arrows were of the same type as the solid ones, the
symmetry group would be the dihedral group D5. The all-to-all connected network
has symmetry group S5, consisting of all permutations of the cells.

The other networks illustrated have trivial symmetry group.
Networks can also have ‘local’ symmetries, known formally as input isomor-

phisms, see Definition 2. These have a significant influence, and are central to
network dynamics, but their role is less transparent.

4 Admissible Maps

We repeat that the central role of a coupled cell network is to encode a space of
ODEs whose couplings model the architecture of the network. We then seek features
that are ‘typical’ for all ODEs in this space, as explained below. The formalism does
not, and is not intended to, pin down a specific ODE. Instead, it determines a class
of ODEs compatible with the network, allowing us to distinguish features that are
typical of this class from those that are not.
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4.1 Cell Phase Spaces

In order to define an ODE, or a class of them, we need to specify the variables,
or phase space, and the functions that appear as components of the vector field.
For networks, we choose variables that respect the network structure. For each cell
c 2 C define a cell phase space Pc. In general, this should be a smooth manifold. To
avoid too much manifold formalism (tangent bundles on the like) we will assume for
most of this chapter that Pc D R

nc is a real vector space. For local bifurcation theory,
this case is all we need. However, for some purposes other choices are necessary; in
particular, systems of phase oscillators correspond to choosing Pc D S

1, the circle.
The role of cell-equivalence is to identify the phase spaces of equivalent cells.

That is, if cells c; d are cell-equivalent then Pc and Pd are required to be equal. The
overall phase space of the network is the direct sum

P D
M
c2C

Pc

4.2 Input Sets

Networks have a new feature, compared to symmetric systems. Not only can
they have global symmetries: they can have ‘partial symmetries’ in which some
subnetwork has the same structure as some other subnetwork. This concept is most
useful when the subnetworks concerned encode the inputs to cells, because a partial
symmetry of this type in effect states that the cells concerned ‘have the same kinds
of couplings’.

Definition 2 Let c; d 2 C . The input set of c is the set I.c/ of all arrows e such that
H .e/ D c.

An input isomorphism ˇ W I.c/! I.d/ is a bijection between their input sets that
preserves arrow type. That is, e is arrow-equivalent to ˇ.e/ for all ˇ and all e 2 I.c/.
(It follows that ˇ�1. f / is arrow-equivalent to f for all f 2 I.d/.)

If there exists an input-isomorphism ˇ W I.c/ ! I.d/ we say that c; d are input-
isomorphic or input-equivalent.

The input set is important because it encodes which cells are connected to which,
and by which type of arrow. Input-equivalent cells receive the same couplings from
the relevant cells of the network.

Example 3 Let G be the network of Fig. 4. The input sets of the five cells are shown
in Fig. 5.

It is clear from the figure that cells 1 and 2 are input-isomorphic, and so are
cells 3 and 5. However, cells 1 and 3 are not input-isomorphic. Although they both
receive two inputs, the arrow-types are different.
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Fig. 4 A 5-cell network

Fig. 5 Input sets of the 5-cell network. From left to right: I.1/; I.3/; I.4/; I.2/; I.5/. Strictly, the
arrows constitute the input set, but is convenient to show the head and tail cells as well

The set of all input-isomorphisms from cell c to cell d is denoted by

B.c; d/

These maps are closed under composition in the following sense. If a; b; c are input-
equivalent cells, and ˛ 2 B.a; b/; ˇ 2 B.b; c/, then ˇ˛ 2 B.a; c/. Composition is
not always defined, but when it is, it is associative.

It follows that for any c 2 C the set B.c; c/ is a finite group, the vertex group
of c. ‘Cell group’ might be a more more consistent choice of terminology, but this
choice avoids overusing the word ‘cell’.

The union B D S
c;d B.c; d/ is in general not a group, because its elements

may not compose. Technically, it is a groupoid, Brandt (1927), Higgins (1971)
and Brown (1987). The groupoid structure can be viewed as a side-effect of the
formalism rather than a vital ingredient. It does have a few useful implications, but
its main influence to date has been through the vertex groups. See Golubitsky and
Stewart (2006) for further discussion.

4.3 Admissible Maps

To each network G , and each specific choice of cell coordinates xc that preserves
cell type,we associate the space of all ODEs that are compatible with the network
architecture. Such ODEs are called coupled cell systems or network ODEs.
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To define these ODEs, we associate to G a space of admissible vector fields.
When all Pi are real vector spaces, we refer to these as admissible maps. (The
tangent space of Rn at any point is Rn.)

Example 4 Consider once more the network of Fig. 4. Here there are two cell types
and four arrow types.

Choose coordinates .x1; x2; x3; x4; x5/ for cells 1; 2; 3; 4; 5. By cell-equivalence,
P2 D P1 and P3 D P5. Admissible ODEs take the following form:

Px1 D f .x1; x2; x3/

Px2 D f .x2; x1; x5/

Px3 D g.x3; x1; x4/

Px4 D h.x4; x1; x2; x3/

Px5 D g.x5; x2; x4/

(3)

for arbitrary smooth functions

f W P1 
 P2 
 P3 ! P1

g W P3 
 P1 
 P4 ! P3

h W P4 
 P1 
 P2 
 P3 ! P4

(The overline in the fourth equation indicates symmetry, see below.)
First, we explain how this form is obtained from the network. Consider the first

equation, for cell 1. The vector field component is f .x1; x2; x3/. The first entry x1

is the cell coordinate, and it represents the internal state of that cell. The other
two entries x2; x3 are the input coordinates—those of the tail cells of the two input
arrows to cell 1, as in Fig. 5. Similarly the equations for cells 2–5 comprise the cell
coordinate and the input coordinates, with the cell coordinated being distinguished.
We do this because the cell coordinate is not represented by an arrow. (It would
be possible to add an explicit self-connection to represent this variable; however,
this arrow would naturally be distinguished from any other self-connections in any
case.)

A glance at Fig. 5 shows that cells 1 and 2 are input-equivalent; that is, they have
have the same input sets aside from the numbering of cells. Each cell receives one
dashed arrow and one arrow with a dot. Admissibility means that the same function
f occurs for cells 1 and 2. The variables are written in an order that respects this
equivalence: corresponding variables come from tail cells of arrows of the same
type.

The equation for cell 3 has a different function g, because cell 3 is not input-
equivalent to cells 1 or 2. Because cell 5 is input-equivalent to cell 3, we use the same
g in that equation, with variables again corresponding via the input isomorphism.

In cell 4 we encounter a new feature. Two input arrows are equivalent, those
from cells 1 and 2. Therefore there exists an input-isomorphism from I.4/ to itself,
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which swaps these two arrows. Admissibility requires h to be symmetric in those
two variables; that is, h.x4; x1; x2; x3/ � h.x4; x2; x1; x3/. Conventionally the overline
on the variables x1; x2 in (3) indicates this symmetry.

We mention one feature of the formalism that is sometimes misunderstood. When
symmetries of this kind are not appropriate in a model, they should be removed by
drawing the network using distinct arrow types. Symmetry is an option, not a general
requirement.

We now describe, informally, a procedure for writing down admissible maps.
Formal definitions are given in Golubitsky et al. (2005), Sect. 3.

For each cell c 2 C , choose cell coordinates xc on Pc. (In general, xc may be
multidimensional.) Phase space P then comprises all n-tuples

x D .xc/c2C

A vector field on P, adapted to cell coordinates, comprises components fc; c 2 C
such that

fc W P! Pc

For admissibility we impose extra conditions on the fc that reflect network architec-
ture, as follows:

Definition 3 Let G be a network. A vector field f W P! P is G -admissible if:

(1) Domain Condition: For every cell c, the component fc depends only on the cell
variable xc and the input variables xT .e/ where e 2 I.c/.

(2) Symmetry Condition: If c is a cell, fc is invariant under all permutations of tail
cell coordinates for equivalent input arrows.

(3) Pullback Condition: If cells c ¤ d are input-equivalent, the components fc; fd
are identical as functions. The variables to which they are applied correspond
under some (hence any, by condition (2)) input-isomorphism.

Formally, conditions (2) and (3) are combined into a single pullback condition
applying to any pair c; d of cells, equal or different.

Example 4 exhibits consequences of all three conditions.
Associated with any admissible map f is an admissible ODE or coupled cell

system

dx

dt
D f .x/ (4)

If f also depends on a (possibly multidimensional) parameter �, and is admissible
as a function of x for any fixed �, we have an admissible family of maps and ODEs.
Such families arise in bifurcation theory.
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4.4 Strongly Admissible Maps

A special class of admissible maps plays a key role in the theory, mainly as a
technical tool in proofs. Equivariant dynamics has a very useful feature: composing
two equivariant maps yields an equivariant map. However, simple examples show
that admissible maps often lack this property. It can be regained by considering a
more restrictive class of maps:

Definition 4 A strongly admissible map is a map g such that:

(1) gc depends only on xc for each cell c.
(2) If c; d are cell-equivalent then gc D gd.

It follows that g.x/ D .g1.x1/; : : : ; gn.xn//, where gc D gd whenever c; d are cell-
equivalent.

Proposition 1 Let f W P ! P be admissible and let g W P ! P be strongly
admissible. Then

(1) If g is invertible (that is, a diffeomorphism) then g�1 is also strongly admissible.
(2) Both fg and gf are admissible.

For some networks, other types of map can compose with admissible maps to
give admissible maps. See Golubitsky and Stewart (2016b).

5 Global Symmetries

The formalism for networks introduced in Golubitsky et al. (2005) and Stewart
et al. (2003) originally emerged from symmetric dynamics, specifically symmetric
networks of coupled oscillators, for example Golubitsky and Stewart (1986). We
enlarge on our earlier remarks about global symmetry and make them more precise.

Definition 5 Let G be a network with cells C and arrows E . A (global) symmetry
of G is a permutation � of C such that the set of arrows from cell c to cell d is
isomorphic to the set of arrows from cell �.c/ to cell �.d/. That is, the number
of arrows of given type is the same in both cases. (It therefore extends naturally to
a permutation acting on E that preserves arrow-type, but it is more convenient to
consider the action on cells. The two formulations are equivalent.)

The(global) symmetry group of G is the group formed by all such permutations
� , and is denoted by Sym.G /.

The action of � on arrows induces one on cells, by requiring �.T .e// D
T .�.e//, or �.H .e// D H .�.e//, or both. (These conditions are consistent
because equivalent arrows have equivalent heads and tails.)
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There is a connection between admissible maps and symmetric (that is, equivari-
ant) maps. These satisfy

f .�.x// D �f .x/

where � acts by permuting indices on xc and fc.

Theorem 1 Any G -admissible map is Sym.G /-equivariant.

Example 5 In general the converse is not true: equivariant maps need not be
admissible. The ‘easy’ way for this to occur is when the functions have the wrong
domains. But satisfying the domain condition and being equivariant need not imply
admissibility. To see why, consider Fig. 6.

This network has dihedral group D5 symmetry, determined by all rotations and
reflections of the pentagon. There are two types of arrow: short-range (solid) and
long-range (dashed).

Consider a global symmetry that fixes cell1. It is either the identity, or it acts on
cells by the reflectional permutation .25/.34/.

The vertex group B.1; 1/ is larger. Because there are no multiple arrows, we can
define its action on arrows by considering the effect on their tail cells. It contains
the identity, .25/.34/, but also .25/ and .34/ on their own. Here .25/ interchanges
the short arrows inputting to cell 1, and .34/ interchanges the long arrows inputting
to cell 1.

The map

f D

2
666664

x2x4 C x3x5

x1x4 C x3x5

x1x4 C x2x5

x1x3 C x2x5

x1x3 C x2x4

3
777775

is D5-equivariant but not admissible. It is obtained by making f1 invariant under
.25/.34/ but not under .25/ or .34/. Then we use pullback to define the other
components.

An analogous admissible map would have f1.x/ D x2x4 C x2x3 C x3x5 C x4x5,
invariant under the whole of B.1; 1/.

Fig. 6 Network with
dihedral group D5 symmetry
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Examples like this need to be borne in mind when applying equivariant dynamics
and bifurcation theory to symmetric networks. In principle the extra constraints
on admissible maps could change the generic behaviour. This effect occurs, for
example, in steady-state bifurcation for some regular networks (Stewart 2014;
Stewart and Golubitsky 2011), causing higher singularities to be generic. Such
networks, however, are very unusual.

5.1 Fixed-Point Subspaces

In equivariant bifurcation theory, it is proved that any symmetric ODE possesses
a class of subspaces that are invariant under any equivariant map. These are the
fixed-point subspaces of subgroups ˙ of the overall symmetry group � , defined by

Fix.˙/ D fx W �x D x 8� 2 ˙g

Suppose that the system concerned is an admissible ODE for a symmetric network.
Since all admissible maps are equivariant, Fix.˙/ is invariant under all admissible
maps. Antoneli and Stewart (2006, 2007, 2008) explore links between symmetry
and synchrony in networks, showing in particular that there can be subspaces other
than fixed-point subspaces with this invariance property—even when arrows are
deemed equivalent if and only if they are related by a symmetry. This again shows
that it is necessary to be careful when applying equivariant dynamics to symmetric
networks; however, examples of this type are also rare.

6 Quotient Networks and Synchrony

A basic question in network dynamics is: when are two cells synchronous? We
define synchrony by identical time-series: if x D x.t/ is a solution of an admissible
ODE, we say that cells c; d are synchronous on x if xc.t/ D xd.t/ for all times t. This
definition is a strong one, and many applications employ a weaker version in which
the time series are close together, or are equal most of the time. However, it lets us
prove precise theorems that yield useful insights.

A very strong kind of synchrony occurs for any admissible ODE, and is
associated with a subspace of phase space that is invariant under all admissible maps
f . Here cells synchronise in clusters, so that all cells in a given cluster have identical
time-series. To introduce this idea we return to Example 4.

Example 6 In Fig. 7 (right) we have assigned ‘colours’ to the cells, shown as grey
shading and diagonal hatching. In this example, cells 1 and 2 have the same colour,
and cells 3 and 5 have the same colour. So the set of cells C is partitioned into
three subsets, determined by ‘same colour’; namely f1; 2g; f3; 5g; f4g. (Technically
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Fig. 7 Left: Balanced
colouring of the 5-cell
network. Right:
Corresponding quotient
network

these can be considered as the equivalence classes for the equivalence relation ‘same
colour’, but intuitively it seems simpler to think about colours.)

A given network can be coloured in many ways, but this choice has a special
feature, which becomes apparent if we look for solutions in which cells of the same
colour are synchronous. That is, we set x1 D x2 D u; x3 D x5 D v; x4 D w, so

.x1; x2; x3; x4; x5/ D .u; u; v;w; v/

The admissible ODE (3) now becomes

Pu D f .u; u; v/

Pu D f .u; u; v/

Pv D g.v; u;w/

Pw D h.w; u; u; v/

Pv D g.v; u;w/

(5)

Although we have five equations in only three unknowns, the system is not
overdetermined because the second equation is the same as the first, and the fifth
is the same as the third.

If we project .u; u; v;w; v/ to .u; v;w/ we get a restricted ODE

Pu D f .u; u; v/

Pv D g.v; u;w/

Pw D h.w; u; u; v/

We recognise this as an admissible ODE for a smaller network, in which cells of
the same colour are identified with a single cell, and input sets of arrows remain
unchanged (but tail cells with the same colour are identified). This quotient network
is shown in Fig. 7 (left).

This construction works because the space

� D f.u; u; v;w; v/ W u 2 P1; v 2 P3;w 2 P4g

is invariant under all admissible maps, hence under the flow of the corresponding
ODEs. It has the pleasant feature that the space of restricted ODEs is precisely
the space of admissible ODEs for the quotient network, provided the same cell
coordinates are used.
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Here the quotient network has a double arrow from cell 1 to cell 4, and
a self-connection from cell 1 to itself. However, the original network does not
have multiple arrows (pointing in the same direction). Multiple arrows and self-
connections are natural consequences of the restricted ODE. The equation for Pw
involves two entries u, corresponding to the two arrows from cell 1 to cell 4; the
equation for Pu has two entries u: one for the cell coordinate and another for the
input coordinate from cell 2. The ‘single-arrow’ network formalism in Stewart
et al. (2003) failed to take proper account of this effect, leading to complications
when characterising restricted ODEs (Dias and Stewart 2004). The modified ‘multi-
arrow’ formalism of Golubitsky et al. (2005) relates the space of restricted ODEs
to a network in a satisfactory manner by permitting multiple arrows and self-
connections.

7 Balanced Colourings

It so happens that in Fig. 7 cells are coloured according to input-equivalence.
However, this type of colouring does not always produce a consistent synchrony
relation. The next step is to characterise those that do.

Definition 6 A colouring of a network G is a map

k W C ! K

where K is a finite set, whose members are called colours.
We say that c; d have the same colour if k.c/ D k.d/, and write c �k d.
A colouring k of a network is balanced if whenever cells c; d have the same

colour, there exists an input isomorphism ˇ W I.c/! I.d/ such that i and ˇ.i/ have
the same colour for all i 2 T .I.i//.

Informally, a colouring is balanced if there exists a colour-preserving input
isomorphism for any two cells of the same colour. In particular, cells of the same
colour must be input-equivalent, so a balanced colouring is a refinement of input
equivalence. That is, if c �k d then c �I d.

Definition 7 The polydiagonal defined by a colouring k of G is the space

�k D fx 2 P W k.c/ D k.d/ H) xc D xdg

That is, cells of the same colour are synchronous for x 2 �.

Theorem 2 A polydiagonal�k is invariant under every admissible map if and only
if k is balanced.

One consequence is that when k is balanced, initial conditions that have the
pattern of synchrony defined by k (that is, lie in �k) give rise to solutions that remain
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inside �k. However, this result does not guarantee that the pattern of synchrony is
stable: perturbations that break the synchrony could cause the solution to deviate
from �k instead of returning close to it. This kind of stability depends on the
admissible vector field; more precisely, on its component transverse to �k.

Definition 8 Let k be a balanced colouring on G , with colour set K. The associated
quotient network Gk has K as its set of cells (that is, there is one cell per colour).

The cell type of cell i 2 K is that of any cell c 2 C with colour i (that is,
k.c/ D i).

The arrows in I.i/ in Gk are obtained from the input set I.c/ of any cell c with
colour i by copying each arrow e to create an arrow with head k.H .e/ and tail
k.T .e//, of the same type as e.

The set of arrows of Gk is the union of the I.i/ as i runs through K.

Deville and Lerman (2015) have reformulated the notion of quotient in a more
general manner, in terms of network fibrations. Nijholt et al. (2016) have developed
this idea in a very interesting manner to set up a form of semigroup equivariance for
some classes for networks, which explains many hitherto puzzling phenomena.

Example 7 We now return to Example 6 in the light of the above definition of a
balanced colouring.

First, we check that the colouring in Fig. 7 (left) is balanced.
Cells 1 and 2 have the same colour. So we must check that their input sets are

coloured in the same manner.
Cell 1 has two input arrows: one from cell 2 (with a dot for its head) and one

from cell 3 (dashed line).
Cell 2 has two input arrows: one from cell 2 (with a dot for its head) and one

from cell 3 (dashed line).
The tail cells are (2,3) and (1,5) respectively. Corresponding cells 1 and 2 have

the same colour, and corresponding cells 3 and 5 have the same colour.
Similarly, cells 3 and 5 have the same colour and their input sets match up in a

way that preserves colours.
Finally, cell 4 has a different colour from all other cells so there is nothing more

to check.
Figure 7(right) shows the corresponding quotient network. This has one cell

for each colour. For convenience we label these by representatives 1, 3, 4 of
those colours. Arrows are drawn to mimic the input sets in the original network,
Fig. 7(left).

We emphasise that although in this particular case colours correspond to input-
equivalence classes of cells, colouring by input-equivalence need not be balanced.
On the other hand, many other balanced colourings may exist, depending on the
network.

Theorem 2 is the first and weakest in a series of results that demonstrate the
central role played by balanced colourings. Intuitively, the result is straightforward:
if two cells remain synchronised as time passes, the inputs to those cells must also be
synchronised. however, this does not necessarily imply that the states of those input
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cells are synchronised. Nonetheless, this ought to be the case for most admissible
vector fields, and the proof of Theorem 2 is relatively straightforward: it just requires
a sensible choice of admissible vector field.

Theorem 3 Let k be a balanced colouring of G . Then

(1) The restriction of any G -admissible map to �k is Gk-admissible.
(2) Every Gk-admissible map is a restriction to �k of a G -admissible map.

Another way to say (2) is that every Gk-admissible map on �k lifts to a G -admissible
map on P.

If f is G -admissible, the restricted map f j�k determines the dynamics under f of
the synchronous clusters determined by the colouring k.

8 Rigid Synchrony for Equilibria

In dynamical systems theory an equilibrium x0 of an ODE Px D f .x/ is said to
be hyperbolic if no eigenvalues of the derivative (or Jacobian) Dx f jx0 lie on the
imaginary axis. It can then be proved that if g is a small perturbation of f there
exists a unique equilibrium y0 of the ODE Px D g.x/ with y0 near x0. See Hirsch and
Smale (1974) and Guckenheimer and Holmes (1983).

Definition 9 A hyperbolic equilibrium x0 of a network ODE Px D f .x/ is rigid if its
pattern of synchrony is preserved by any sufficiently small admissible perturbation.
That is, suppose that g D f C "p is any admissible perturbation of f and "

is sufficiently small. Let y0 be the unique perturbed equilibrium near x0. Then
whenever x0

c D x0
d, we have y0

c D y0
d.

Golubitsky et al. (2005) prove the Rigid Equilibrium Theorem:

Theorem 4 Let x0 be a hyperbolic rigid equilibrium of a network ODE. Define
the relation � by c � d () y0

c D y0
d for the perturbed equilibrium y0 of any

sufficiently small admissible perturbation of f . Then � is balanced.

Briefly: rigid synchrony patterns of equilibria are balanced. Another very
different proof can be found in Aldis (2010).

9 Rigid Synchrony and Phase Relations for Periodic States

The Rigid Equilibrium Theorem 4 has an analogue for periodic states. We introduce
this idea with an example, the coupled FitzHugh-Nagumo equations (1) represented
by a ring of three identical cells with unidirectional coupling as in Fig. 2. This
network has Z3 symmetry, which has implications for periodic states.
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When a D b D � D 0:5 and c D 0:8, the origin is a stable equilibrium for the
full six-dimensional system, and the cells undergo a synchronous oscillation. That
is, their time-series are identical. However, when a D b D � D 0:5 and c D 2, the
system has a stable periodic state in which successive cells are one third of a period
out of phase. Figure 8, which shows the pattern for the vj; the same pattern occurs
for the wj. This state is a discrete rotating wave. It has spatio-temporal symmetry:

x2.t/ D x1.t � T=3/ x3.t/ D x1.t � 2T=3/

That is, x.t/ is invariant if we permute the labels using the 3-cycle � D .123/ and
shift phase by T=3. So

�x.tC T=3/ D x.t/

where xi D .vi;wi/. Thus x.t/ is fixed by .�;T=3/ 2 � 
 S
1, where S1 is the circle

group of phase shifts modulo the period.
The Equivariant Hopf Theorem (Golubitsky and Schaeffer 1985; Golubitsky and

Stewart 2002b; Golubitsky et al. 1988) provides conditions under which phase-
related states of this type occur; the H=K Theorem (Buono and Golubitsky 2001)
classifies the possible spatio-temporal symmetries. This theorem has been applied to
analyse central pattern generators for quadruped locomotion. Different gait patterns
exhibit different phase relations between various legs, and these can be read off from
the network structure of the central pattern generator by considering symmetries.
See Buono (2001), Buono and Golubitsky (2001), Collins and Stewart (1993a,b),
Golubitsky and Stewart (2002a).

Example 8 Figure 9 shows a chain of 7 identical cells with identical couplings,
driven by a ring of three cells 1, 2, 3. (There is nothing special about the numbers
here, and both 3 and 7 can be replaced by arbitrary positive integers for appropriate
chains.)

Fig. 8 Periodic oscillations
of the 3-cell ring exhibiting a
1
3
-period out of phase

periodic solution. Time series
of v1 (thick solid), v2 (thin
solid), v3 (dashed)

2

1

15 20 25 30

–1

–2
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Fig. 9 Balanced colouring of a feed-forward chain leading to travelling wave

The colouring shown is balanced, and the corresponding quotient network is
the Z3-symmetric ring of Fig. 2. With suitable admissible equations, this ring
supports a rotating wave with 1/3 period phase shifts as above. Therefore, lifting,
the original chain supports a state with three synchronous clusters, formed by cells
f3kC 1g; f3kC 2g; f3kg, with xi; xiC1 being synchronous except for a phase shift of
one third of a period. The effect is similar to a travelling wave in which cells 1, 2, 3,
4, : : : ‘fire’ in turn, and cells i; i� 3; i� 6; : : : are synchronous.

The 7-cell chain has no global symmetry, but its symmetric 3-cell quotient
implies that certain synchronised states in the chain can behave in a manner that
is typical of symmetric rings of cells.

This example motivates (and illustrates the answer to) an interesting converse
question: if certain cells have identical time-series apart from a phase shift, does
this imply some kind of global symmetry of the network? Remarkably, the answer,
subject to reasonable conditions, is ‘yes’. But, as Example 8 shows, we mist first
pass to a quotient.

The main condition required is rigidity: the phase relation must stay unchanged
(as a proportion of the period) after any sufficiently small admissible perturbation
of the underlying ODE. To state this precisely, we need the following concept form
dynamical systems theory. A periodic state x.t/ is hyperbolic if it has no Floquet
exponent on the imaginary axis. Hyperbolicity implies that after a small perturbation
of the vector field there exists a unique periodic orbit near x.t/ in the C1 topology,
Katok and Hasselblatt (1995), and its period is near that of x.t/. Thus we may talk
of ‘the’ perturbed periodic state.

Definition 10 Suppose that x.t/ is a hyperbolic periodic state of period T of a G -
admissible ODE. A phase relation

xc.t/ D xd.t � 
/ c; d 2 C ; 
 2 R=TZ (6)

is rigid if for all sufficiently small admissible perturbations the perturbed periodic
state Qx.t/ satisfies

Qxc.t/ D Qxd.t � 
/ c; d 2 C ; 
 2 R= QTZ

where QT is the period of Qx.t/.
The T=3 and 2T=3 phase shifts in the rotating wave state for the coupled

FitzHugh-Nagumo system is rigid. This can be proved for any rotating wave state
arising by Hopf bifurcation in a symmetric system, indeed for any such state
consistent with the H=K Theorem.

When 
 D 0 in (6) we say that cells c and d are rigidly synchronous.
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Intuitively, whenever (6) holds, we expect the states xI.c/.t/ and xI.d/.t/ of the
input sets of cells c and d to be phase-related by the same 
 , up to some input
isomorphism. Taken literally, this statement is false: the inputs states could differ
in a way that does not affect the coupling to cells c; d. But we expect such a
relationship to be destroyed by most small perturbations. For several years this belief
was conjectural (Stewart and Parker 2007); the main difficulty in proving it was to
keep track of how the periodic state perturbed.

We now introduce a mild technical condition, which some authors include in the
definition of a coupled cell network:

Definition 11 A network is cell-homogeneous if all cell-equivalent cells are input-
equivalent.

Assuming this condition, Golubitsky et al. (2010) proved the Rigid Synchrony
Theorem:

Theorem 5 Suppose that G is a cell-homogeneous path-connected network and
two cells c; d are rigidly synchronous. Then there exists an input isomorphism ˇ W
I.c/! I.d/ such that for all j 2 T .d/ cells j and ˇ�. j/ are rigidly synchronous.

Corollary 1 Suppose that G is a cell-homogeneous path-connected network. Then
the colouring K in which cells have the same colour if and only if they are rigidly
synchronous is balanced.

Their method is inspired by singularity theory, and requires studying a space
of perturbations large enough to destroy any spurious synchrony but small enough
to control. Shortly afterwards, Golubitsky et al. (2012) extended their methods to
handle nonzero phase shifts, obtaining the Rigid Phase Theorem:

Theorem 6 Suppose that G is a cell-homogeneous path-connected network and
two cells c; d are rigidly phase related by a phase shift that is a proportion 
 of
the period of the perturbed periodic state. Then there exists an input isomorphism
ˇ W I.c/! I.d/ such that for all j 2 T .d/ cells j and ˇ�. j/ are phase related by a
phase shift that is the same proportion of the period of the perturbed periodic state.

It is conjectured that the condition of cell-homogeneity can be removed, and it
seems likely that the methods of Golubitsky et al. (2010, 2012) can be modified to
prove this, but this issue is currently unresolved.

A key consequence had already been observed in Stewart and Parker (2008):

Theorem 7 Suppose that G is a cell-homogeneous path-connected network and
two cells c; d are rigidly phase related by a phase shift that is a proportion 
 of the
period of the perturbed periodic state. Let G1 be the quotient of G by the balanced
coloring corresponding to rigid synchrony of cells. Then there exist integers m; k
such that 
 D m=k, G1 has a global group of symmetries that is the cyclic group
Zk, and all rigid phase relations between cells are determined by a discrete rotating
wave consistent with these symmetries.
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Informally: whenever a rigid phase shift is observed in a periodic state for a
path-connected network, it is a consequence of a global cyclic-group symmetry of
the quotient network in which rigidly synchronous cells are identified.

10 Bifurcations

Informally, a bifurcation occurs in a family of ODEs

dx

dt
D f .x; �/

with a parameter � when the qualitative description of states changes near some
parameter value �0. For example the number of steady states may change as � passes
through �0, or a stable steady state may become unstable and throw off a periodic
cycle.

Local bifurcation, where the states branch along different curves in .x; �/-space,
is governed by the eigenvalues of the Jacobian matrix J D Dxf j.x;�/. If an eigenvalue
of J is zero at some point .x0; �0/ then typically a new branch of steady states
appears. If a complex conjugate pair of eigenvalues are purely imaginary, equal
to˙i!, then typically there is a Hopf bifurcation to a branch of time-periodic states
with frequency close to 2�=!, Hassard et al. (1981). Such eigenvalues are said to
be critical.

For standard dynamical systems, ‘typically’ here requires the critical eigenvalues
to be simple. Moreover, they should pass through the imaginary axis with nonzero
speed as � passes through �0. In equivariant dynamics, symmetry constraints
can force eigenvalues to be multiple, and new phenomena occur. A notable one
is spontaneous symmetry-breaking, where solutions have less symmetry than the
equations (Golubitsky and Stewart 2002a; Golubitsky et al. 1988).

In networks, local bifurcation is more complicated. The network architecture can
have a strong effect not only on the eigenvalues, but also on the nonlinearities along
the bifurcating branch. For example, there exist networks for which ‘typical’ steady-
state bifurcation is more degenerate, in a singularity-theoretic sense, than the usual
transcritical or pitchfork bifurcations. This affects the typical growth rate of the
bifurcating branch (Stewart 2014; Stewart and Golubitsky 2011).

Instead of symmetry-breaking bifurcations, networks can exhibit synchrony-
breaking bifurcations. Here a state with some pattern of synchrony loses stability
and the pattern of synchrony changes: some cells that were synchronous cease
to be synchronous. The interplay between network architecture and eigenval-
ues (and eigenvectors) of the Jacobian plays a central role in the theory of
synchrony-breaking bifurcations. Rink and Sanders (2012, 2013a, 2014) explain this
relationship in terms of a modified type of equivariance, using semigroups rather
than groups.

A very surprising synchrony-breaking bifurcation occurs at Hopf bifurcation
in a 3-cell feed-forward network, Fig. 10. Generic Hopf bifurcation in a general
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Fig. 10 A 3-cell
feed-forward network

dynamical system creates a bifurcating branch of equilibria whose amplitude grows
like �1=2. However, Elmhirst and Golubitsky (2006) proved that typically there is a
bifurcating branch of periodic states in which cell 1 is steady, the amplitude of cell
2 grows like �1=2, and the amplitude of cell 3 has the anomalous growth rate �1=6.

There is an analogous result for a feed-forward chain of m nodes. Hopf
bifurcation can then lead to states that grow like �1=18 in the fourth node, �1=54

in the fifth node, and so on. This has been proved by Rink and Sanders (2013b)
using a far-reaching generalisation of the notion of symmetry for networks. See also
Rink and Sanders (2012, 2013a, 2014).

There is also a potential application to a nonlinear filter that selects and amplifies
periodic oscillations close to a specific frequency (Golubitsky et al. 2009; McCullen
et al. 2007).

11 Conclusions

The main message of this chapter is very simple. Networks are becoming increas-
ingly important as models of many real systems, across the whole range of
sciences. Moreover, the dynamics of networks has its own special flavour and
differs considerably from the standard theory of dynamical systems. There is
now a growing understanding of network dynamics, which in particular makes
it possible to distinguish typical phenomena common to many networks with a
given architecture from special phenomena that depend on the modelling equations.
Among them are patterns of synchrony and phase relations, but the approach is not
limited to these types of behaviour.

Placing network dynamics in a formal, abstract setting makes the above distinc-
tion clear, and offers several benefits, which are already sufficiently interesting to
justify setting up such a formalism. Many types of behaviour become comprehensi-
ble and natural within this setting. On the other hand, it is important to recognise that
the general abstract results must be augmented by special considerations, either for
classes of networks with extra structure, or for specific models. The area of network
dynamics is developing rapidly with many new results and open questions.
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Dynamics on Large Sets and Its Applications
to Oligopoly Dynamics

Jose S. Cánovas and María Muñoz Guillermo

Abstract In this chapter we analyze discrete dynamical systems with a phase
space on a high dimensional space. We explain some techniques which allow us
to make some approaches to the system analysis with special emphasis to oligopoly
dynamics.

Keywords Chaos • Oligopoly dynamics • Synchronization • Topological
entropy.

1 Introduction

Oligopolies are models in which several firms compete in one market in such a
way the interaction between them plays a crucial role in the market evolution.
The models can be stated either on continuous or discrete time, but with the same
common problem: when the number of firms increases, the dynamics, that is, the
market evolution is hard to analyze because the number of equations increases,
which implies that analytical results are unknown and numerical tools, including
simulations valid for one and two dimensional systems are not valid.

In this chapter we study oligopoly models given by systems of difference
equations, that is, in discrete time. Our aim is to give some ideas and techniques
which can be useful for obtaining partial results on oligopoly models for an arbitrary
number of firms. Of course, our approach is partial and there are many Open
questions and problems involving this topic, some of them presented along the
chapter.

Our results follow two different lines: On one hand, we look for symmetries in
the models in order to reduce the dimension of the phase space. Then we may study
a simplified model, embedded in the original one. The idea is that such simplified
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model can be analyzed using well-known techniques and later on, we study whether
the whole system, at least locally, follows the dynamics of the simplified one.

On the other hand, we look for dynamical results which may have some meaning
in economics as, for instance, what conditions must fulfill a firm to disappear from
the market, that is, the firm will no longer produce in future. In these results we
work with particular cases of the model.

The chapter is organized as follows. First, we introduce some basic mathematical
tools on discrete dynamical systems and difference equations. The dynamical
notions will be applied to analyze well-known oligopoly models when the number
of firms increases. First, we introduce a general framework, which is applied to
each concrete model, which is piecewise linear in Sect. 3 and non piecewise linear
in Sect. 4.

2 Mathematical Tools

The models considered in this chapter are given by difference equations, which are
expressions with the form

�
x.tC 1/ D ft.x.t//;
x.0/ D x0;

where ft W X ! X, t 2 N, is a sequence of maps on a metric space X into itself and
x0 2 X. The solution of the above difference equation is called orbit or trajectory of
x0 under ft. When the sequence of maps is constant, that is; ft D f , t 2 N, we have
an autonomous difference equation, which is usually seen as a discrete dynamical
system, usually denoted by the pair .X; f /. Then, the orbit of x0 under f , denoted
Orb.x0; f / is given by the sequence f t.x0/, t � 0, where f t D f ı f t�1, t > 1, f 1 D f ,
and f 0 is the identity on X.

Although one can study topological properties of dynamical systems, in this
chapter we are interested in the case X D R

n�, where R� represents the set of non
negative real numbers. There is a huge literature on discrete dynamical systems
either for the one dimensional case, when n D 1 (see e.g. Block and Coppel
1992, Alsedá et al. 1993 or de Melo and van Strien 1993) or for higher dimensions
and even general topological (metric) spaces (see e.g. Aoki and Hiraide 1994 and
Devaney 1989). Here, we introduce some basic results and notation on dynamical
systems on general metric spaces which can be easily translated for real maps.

2.1 Periodic Orbits and Topological Dynamics

We consider a metric space .X; d/, which is usually compact, and a continuous
map f W X ! X, and recall that .X; f / denotes a discrete dynamical system. Note
that all the definitions below can be expressed either in terms of the map f or the
system .X; f /.
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To understand the dynamics of f , we have to introduce some definitions, which
have topological roots, to obtain some knowledge of the system (see e. g. Block and
Coppel 1992 or Sharkovsky et al. 1997). A point x 2 X is periodic when f t.x/ D x
for some t � 1. The smallest positive integer satisfying this condition is called the
period of x. Periodic points of period 1 are called fixed points. Denote by F. f /, P. f /
and Per. f / the sets of fixed and periodic points and periods of f , respectively.

Periodic orbits are the simplest orbits that a discrete dynamical system can
generate, but there are many other classes of orbits that make the dynamics richer.
For x 2 X, define its !-limit set, !.x; f /, as the set of limit points of its orbit
Orb.x; f /. If !.x; f / is finite, then it is a periodic orbit, but often, the dynamical
behavior of a single orbit can be very complicated or unpredictable, and usually the
word chaos is used to refer to dynamical systems which are able to produce such
complicated orbits as we discuss below.

Previously, note that to understand the dynamics it is enough to do it on small
subsets of X called attractors, which are non empty compact sets A that attracts all
trajectories starting in some neighborhood U of A, that is, for all x 2 U we have
that

lim
t!1 dist. f t.x/;A/ D 0;

where dist.x;A/ D minfd.x; y/ W y 2 Ag. When U is the whole space X we have a
global attractor. The existence of attractors makes easier the understanding of the
dynamics, which in principle may be very complex. The existence and approximate
location of attractors are usually given by the absorbing sets, namely, a subset B � X
is an absorbing set if for any bounded set D of X there is t0 D t0.D/ such that
f t.D/ � B for all n � t0.

There are many definitions of chaos, but we will focus our interest in the
following well-known ones. The map f is chaotic in the sense of Li and Yorke (LY-
chaotic) (Li and Yorke 1975) if there is an uncountable set S � X (called scrambled
set of f ) such that for any x; y 2 S, x ¤ y, we have that

lim inf
t!1 d. f t.x/; f t.y// D 0;

lim sup
t!1

d. f t.x/; f t.y// > 0:

Li and Yorke’s definition of chaos became famous because of the famous
result period three implies chaos which linked periodic orbits and unpredictable
dynamical behavior for continuous interval maps. Note, that the definition implies
the comparison between two orbits or limit points of orbits. Another well-known
chaos definition, inspired by the notion of sensitivity respect to the initial conditions
(Guckhenheimer 1979), was given by Devaney (1989) as follows. The map f is
said to be chaotic in the sense of Devaney (D-chaotic) if it fulfills the following
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properties:

• The map f it is transitive, which in absence of isolated points means that there is
x 2 X such that !.x; f / D X.

• The set of periodic points P. f / is dense on X.
• It has sensitive dependence on initial conditions, that is, there is " > 0 such

that for any x 2 X there is an arbitrarily close y 2 X and t 2 N such that
d. f t.x/; f t.y// > ".1

Both Li–Yorke chaos and sensitivity to initial conditions are in the dynamical
systems folklore.

There are a lot of different dynamics between periodic orbits and chaotic
behavior, so it is interesting to explain what simple dynamics are. In fact, sometimes,
the chaotic behavior can be also taken as the opposite of simple (or ordered)
behavior. We say that f is strongly simple (ST-simple) if any !-limit set is a periodic
orbit of f . We say that an orbit Orb.x; f /, x 2 X, is approximated by periodic orbits
if for any " > 0 there is y 2 P. f / and t0 2 N such that d. f t.x/; f t.y// < " for
all t � t0. The map f is LY-simple (Smítal 1986) if any orbit is approximated by
periodic orbits. Finally f is Lyapunov stable (L-simple) (Fedorenko et al. 1990) if it
has equicontinuous powers.

The above definitions are quite difficult to verify and, specially when we are
working with models which in principle may depend on several parameters, we need
some practical methods to try to measure the dynamical complexity of the system.
One of them is given by topological entropy, which was introduced in the setting of
continuous maps on compact topological spaces by Adler et al. (1965) and Bowen
(1971).2 It is remarkable that both definitions agree when the set X is metric and
compact. It is a conjugacy invariant3 which is usually taken as a criterion to decide
whether the dynamic is complicated or not according to the topological entropy
h. f /, which will be defined below, is greater than zero or not. Here we introduce
the equivalent definitions by Bowen (1971) when .X; d/ is a compact metric space.
Given " > 0; we say that a set E � X is .t; "; f /-separated if for any x; y 2 E;

x ¤ y; there exists k 2 f0; 1; : : : ; t � 1g such that d. f k.x/; f k.y// > ". Denote by
s .t; "; f / the biggest cardinality of any maximal .t; "; f /-separated set in X: Then the
topological entropy of f is

h .f / D lim
"!0

lim sup
t!1

1

t
log s .t; "; f / :

1It is proved in Banks et al. (1992) that the first two conditions in Devaney’s definition implies the
third one. The definitions is presented in the original form because of the dynamical meaning of
sensitive dependence on initial conditions.
2Dinaburg (1970) gave simultaneously a Bowen like definition for continuous maps on a compact
metric space.
3Two continuous maps f W X ! X and g W Y ! Y are said to be topologically conjugate if there is
an homeomorphism ' W X ! Y such that g ı ' D ' ı f . In general, conjugate maps share many
dynamical properties.
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There is an equivalent definition using spanning sets as follows. We say that a set
F � X .t; "; f /-spans X if for any x 2 X there exists y 2 F such that d. f i.x/; f i.y// <

" for any i 2 f0; 1; : : : ; t � 1g. Denote by r .t; "; f / the smallest cardinality of any
minimal .t; "; f /-spanning set in X: Then, topological entropy can be computed as

h . f / D lim
"!0

lim sup
t!1

1

t
log r .t; "; f / :

The above definitions do not depend on the metric d, and give us a nice
interpretation of topological entropy (see Alsedá et al. 1993, p. 188) as follows.
Imagine that we have a magnifying glass through which we can distinguish two
point if and only if they are more than "-apart. If we know t points of two orbits
given by x and y, that is, .x; f .x/; : : : ; f t�1.x// and .y; f .y/; : : : ; f t�1.y//, then we
can distinguish between x and y if and only if max1�i�t d. f i.x/; f i.y// > ". Hence,
s .t; "; f / gives us how many points of the space X we can see if we know the pieces
of orbits of length t. Then we take the exponential growth rate with t of this quantity,
and finally the limit of this as we take better and better magnifying glasses. Then we
obtain the topological entropy.

In general, the above chaos definitions are not equivalent and their relations
with topological entropy are not homogeneous. For instance, it has been proved
that D-chaotic maps are LY-chaotic (Huang and Ye 2002), but the converse is false
(Smítal 1986). On the other hand, positive topological entropy implies LY-chaos
(Blanchard et al. 2002)4 and the converse is also false (Smítal 1986). In Balibrea and
Snoha (2003) and Kwietniak and Misiurewicz (2005) it is studied the relationship
between topological entropy and D-chaos. ST-simple maps are LY-simple maps but
the converse is false (Smítal 1986).

More popular than topological entropy are the so-called Lyapunov exponents (see
Oseledets 1968), which are defined when differentiable structures are considered.
Namely, assume that X is a smooth finite dimensional manifold and f W X ! X is a
C1C˛ map. Denote, as usual, by TxX the tangent space at x and the derivative dx f W
TxX ! Tf .x/X. The Lyapunov exponent at x 2 X in the direction of v 2 TxX n f0g by

lyex.x; v/ D lim
t!1

1

t
log jjdx f t.v/jj

if this limit exists. An invariant measure � is a probability measure on the Borel
sets of X such that �. f�1.A// D �.A/ for any Borel set A 	 X. This invariant
measure � is ergodic if the equality f�1.A/ D A implies that �.A/ is either 0 or 1.
The multiplicative ergodic Theorem states that the above limit exists for �-almost all
point in X. We use Lyapunov exponents in particular cases where chaos is associated
to have positive Lyapunov exponents.

4See also Sumi (2003) which almost simultaneously states the same result for C2 diffeomorphisms
on compact manifolds of dimension greater than one.
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Next, we study the particular case of real maps, starting by the one dimensional
case. We will see how the above results are sharpened for continuous interval maps.
In addition, we will give some notions on the dynamics of several dimensions real
maps.

2.2 Dynamics of Continuous Interval Maps

In general, for one dimensional maps, the relevant results are given when X D
Œa; b� � R is a compact interval, usually Œ0; 1� due to linear conjugacy. In this setting,
Sharkovsky’s Theorem is a remarkable result which helps to distinguish between
simple and complicated dynamics. Recall Sharkovsky’s order of natural numbers

3 >s 5 >s 7 >s : : : >s 2 � 3 >s 2 � 5 >s : : : >s 22 � 3 >s 22 � 5 >s : : :

: : : >s 2k � 3 >s 2k � 5 >s : : : >s 23 >s 22 >s 2 >s 1:

Applying Sharkovsky’s Theorem (see Sharkovsky et al. (1997) or Alsedá et al.
(1993). Also Du (2004) for an “easy” proof) one can see that for any continuous
map f W R ! R with one periodic point holds that either Per. f / D S.m/ D
fk W m >s kg [ fmg, with m 2 N; or Per. f / D S.21/ D f2n W n 2 N [ f0gg. A
map is of type m 2 N [ f21g if Per. f / D S.m/. A map f is called S-chaotic if
Per. f / D S.m/, m D 2rq, r � 0 and q > 1 odd.

On the other hand, for one dimensional dynamics the topological entropy is
an useful tool to check the dynamical complexity of a map because it is strongly
connected with the notion of horseshoe (see Alsedá et al. 1993, p. 205). We say that
the map f W Œ0; 1� ! Œ0; 1� has a k-horseshoe, k 2 N, k � 2, if there are k disjoint
subintervals Ji, i D 1; : : : ; k, such that J1 [ : : : [ Jk 	 f .Ji/, i D 1; : : : ; k.5

The following result shows some equivalences among the above definitions of
chaos and order (see Sharkovsky et al. 1997, Smítal 1986 and Block and Coppel
1992). Note that the situation is simpler than in the general case.

Theorem 1 Let f W Œ0; 1�! Œ0; 1� be a continuous map. Then

(a) The map f has positive topological entropy if and only if the map f is S-chaotic.
(b) If f is D-chaotic, then h. f / > 0.
(c) If f is either ST-simple or L-simple, then h. f / D 0.
(d) If h. f / > 0, then f is LY-chaotic, but the converse is false in general. If f is

LY-simple, then h. f / D 0. The union of LY-chaotic and LY-simple continuous
maps is the set of continuous interval maps.

5Since Smale’s work (see Smale 1967), horseshoes have been in the core of chaotic dynamics,
describing what we could call random deterministic systems.
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The nature of the above result is topological. If we consider another points of
view, we can obtain more information giving rise to apparently strange paradoxes.
For instance, there exist maps with positive entropy, and therefore chaotic in some
sense, such that the orbit of almost all points in Œ0; 1� (with respect to the Lebesgue
measure) converges to a periodic orbit.

Although we will come back to this point later, let us show how to get such
example. Consider f a C3 unimodal map such that f .0/ D f .1/ D 0. Recall that a
map f is said to be unimodal if there is c 2 Œ0; 1�, called turning point such that f jŒ0;c/

is strictly increasing and f jŒc;1� is strictly decreasing. The Schwarzian derivative (see
Singer 1978 or Thunberg 2001) is then given by

S. f /.x/ D f
000

.x/

f 0.x/
� 3

2

 
f

00

.x/

f 0.x/

!2

;

at those points whose first derivative does not vanish. Assume that S. f /.x/ < 0

and that there is a locally attracting periodic orbit, that is, a periodic orbit P D
fx1; : : : ; xpg for which there exists a neighborhood V of P such that for any x 2 V
the distance d. f t.x/;P/ D min1�i�p d. f t.x/; xi/ tends to zero as t tends to infinity.
The logistic map f .x/ D 3:83 x.1�x/ is a good example of such behavior; almost all
trajectory converges to a periodic orbit of period 3, while the topological entropy is
positive (see e.g. Block et al. 1989). This example, and many others in the literature,
shows that it is important to study the dynamics from several points of view.

2.3 Piecewise Monotone Maps: Entropy and Attractors

Usually, one dimensional difference equations models in science are given by
piecewise monotone maps. A continuous interval map is piecewise monotone if
there is a finite partition of Œ0; 1�, 0 D x0 < x1 < : : : < xk D 1, such that f jŒxi;xiC1�

is monotone for 0 � i < k. Note that a piecewise monotone map may have constant
pieces. The extreme points, which can be isolated or contained in a subinterval of
extreme points, of f will be called turning points (turning intervals if the extreme
points form a subinterval). For a piecewise monotone map f , let c. f / denote the
number of pieces of monotonicity of f . If g is another piecewise monotone map,
it is easy to see that c. f ı g/ � c. f /c.g/. Hence, the sequence c. f t/ gives the
number of monotonicity pieces of f t and the following result due to Misiurewicz
and Szlenk (see Misiurewicz and Szlenk 1980), shows that for piecewise monotone
maps topological entropy can be easily understood.

Theorem 2 Let f W Œ0; 1� ! Œ0; 1� be a continuous and piecewise monotone map.
Then

h. f / D lim
t!1

1

t
log c. f t/:
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Note that c. f t/ � c. f /t, and so h. f / � log c. f /. Hence, a consequence of
Misiurewicz–Szlenk Theorem is that homeomorphisms on the interval have zero
topological entropy. On the other hand, following Theorem 2, we can easily see
that the logistic map f .x/ D 4x.1 � x/ and the tent map g.x/ D 1 � j2x � 1j
have topological entropy log 2, since c. f t/ D c.gt/ D 2t for all t 2 N. However,
computing topological entropy can be a very complicated task, but we will see in
what follows how to make these computations for a suitable class of maps.

The dynamics of smooth enough piecewise monotone maps are well-known in
the following sense. Following (Milnor 1985), a metric attractor is a subset A �
Œ0; 1� such that f .A/ 	 A, O.A/ D fx W !.x; f / � Ag has positive Lebesgue measure,
and there is no proper subset A0 ¦ A with the same properties. The set O.A/ is called
the basin of the attractor.

By van Strien and Vargas (2004), the regularity properties of f imply that there
are three possibilities for its metric attractors for a class of piecewise monotone
maps, called multimodal maps, fulfilling the following assumptions. There are c1 <

c2 < : : : < ck, creating a partition on Œ0; 1�, such that f is strictly monotone on each
element of the partition. f is C3 and f is non flat on the turning points c1; : : : ; ck„
that is, for x close to ci, i D 1; 2; : : : ; k,

f .x/ D ˙j�i.x/jˇi C f .ci/;

where �i is C3, �i.ci/ D 0 and ˇi > 0. Then, the metric attractors of such
multimodal maps can be of one of the following types:

(A1) A periodic orbit.
(A2) A solenoidal attractor, which is basically a Cantor set in which the dynamic

is quasi periodic. More precisely, the dynamic on the attractor is conjugated
to a minimal translation, in which each orbit is dense on the attractor. The
dynamic of f restricted to the attractor is simple, neither positive topological
entropy nor Li–Yorke chaos can be obtained. Its dynamic is often known as
quasi-periodic.

(A3) A union of periodic intervals J1; : : : ; Jk, such that f k.Ji/ D Ji and f k.Ji/ D Jj,
1 � i < j � k, and such that f k is topologically mixing. Topologically mixing
property implies the existence of dense orbits on each periodic interval (under
the iteration of f k).

Moreover, if f has an attractor of type (A2) and (A3), then they must contain the
orbit of a turning point, and therefore its number is bounded by the turning points.
In addition, if Sf .x/ < 0, then the total number of attractors is bounded by k. From a
practical point of view, in a computer simulation we are able to show the existence
of attractors of type (A1) and (A3), and only attractors of type (A3) are able to
exhibit unpredictable dynamics. As a conclusion of this, if all the turning points of f
are attracted by periodic orbits, then the map f will not exhibit physically observable
chaos, although it can be topologically chaotic.
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The Lyapunov exponents on the turning points can be computed by

lyex.ci/ D lim
t!1

1

t
log j. f t/0.ci/j D lim

t!1
1

t
log j f 0.. f t�1/.ci//j;

for i D 1; 2; : : : ; k, and all of them are negative when the map f is free of attractors
of type (A3). So, positive Lyapunov exponents imply the existence of observable
chaos.

2.4 Computing Topological Entropy

The above definition of topological entropy is not useful in practice, and counting
monotone pieces of an iterated map f t is not easy. In addition, an exact computation
of topological entropy for continuous interval maps cannot be done in general, but
there are several papers devoted to compute it approximately for unimodal maps
(see Block et al. 1989) bimodal maps, that is, with three monotone pieces (see
Block and Keesling 1992) and four monotone pieces (see Cánovas and Muñoz-
Guillermo 2014c). In general, it is possible to make computations for arbitrarily
large monotone pieces whenever the number of so-called kneading sequences will
not be big enough (see Cánovas and Muñoz-Guillermo 2014b).

Now, we introduce the unimodal case where the topological entropy can be
computed by using kneading sequences as follows. Let f be an unimodal map with
maximum (turning point) at c. Let k. f / D .k1; k2; k3; : : :/ be its kneading sequence
given by the rule

ki D
8<
:
R if f i.c/ > c;
C if f i.c/ D c;
L if f i.c/ < c:

We fix that L < C < R. For two different unimodal maps f1 and f2, we fix their
kneading sequences k. f1/ D .k1

n/ and k. f2/ D .k2
n/. We say that k. f1/ � k. f2/

provided there is m 2 N such that k1
i D k2

i for i < m and either an even number of
k10
i s are equal to R and k1

m < k2
m or an odd number of k10

i s are equal to R and k2
m < k1

m.
Then it is proved in Block et al. (1989) that if k. f1/ � k. f2/, then h. f1/ � h. f2/. In
addition, if km. f / denotes the first m symbols of k. f /, then if km. f1/ < km. f2/, then
h. f1/ � h. f2/.

The algorithm for computing the topological entropy is based in the fact that the
tent family

gk.x/ D
�
kx if x 2 Œ0; 1=2�;

�kxC k if x 2 Œ1=2; 1�;
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with k 2 Œ1; 2�, holds that h.gk/ D log k. The idea of the algorithm is to bound the
topological entropy of an unimodal maps between the topological entropies of two
tent maps. The algorithm is divided in four steps:

Step 1. Fix " > 0 (fixed accuracy) and an integer n such that ı D 1=n < ".
Step 2. Find the least positive integerm such that km.g1Ciı/, 0 � i � n, are distinct

kneading sequences.
Step 3. Compute km. f / for a fixed unimodal map f .
Step 4. Find r the largest integer such that km.g1Crı/ < km. f /. Hence log.1 C

rı/ � h. f / � log.1C .rC 2/ı/.

The algorithm is easily programmed. We usually use Mathematica, which has
the advantage of computing the kneading invariants of tent maps without round off
errors, improving in practice the accuracy of the method. We will show in Sect. 4
some examples of computing the topological entropy for our models.

2.5 Dynamics in Higher Dimension

Things are more complicated when n > 1, and discrete dynamical systems as far to
be understood in an analytic way. The common agreement among researchers is that
in general one dimensional results cannot be extended to general higher dimension
dynamical systems. As a keynote example, one can easily check that Sharkovsky’s
Theorem does not hold for two dimensional maps: rational rotations on the plane are
a good example of that. Although there are some results on limit sets (see Agronsky
and Ceder 1991/1992b or Agronsky and Ceder 1991/1992a) and good result for
some types of two dimensional maps like triangular or skew product ones (see
Kloeden 1979, Kolyada 1992 or Kolyada and Snoha 1992/1993) and antitriangular
ones (see Cánovas and Linero 2001 or Balibrea et al. 2004), the dynamics on two
dimensional maps is still quite unexplored and usually papers dealing with models
constructed on higher dimensional spaces have to show numerical experiments and
simulations.

In this paper we are going to analyze the models trying to reduce the dimension.
This can be done if the system has a global attractor with dimension smaller than the
ambient space. Another way is to work with models that have some symmetry prop-
erties. The problem can be stated as follows. Assume that f W X ! X is a C1C˛ map
on a manifold X with dimension n and there is a submanifold Y � X with dimension
m such that f .Y/ 	 Y, due to symmetric properties. Hence, any orbit starting with
an initial condition x 2 Y will remain in Y along the trajectory. Since m < n, it is
possible that the dynamics of f on Y can be understood, and from this knowledge,
we can derive some properties on the dynamics of f on the whole space X.

For instance, assume that f jY is chaotic in the sense of Li and Yorke, that is,
there exists an uncountable scrambled subset S � Y � X. It is clear that f itself
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is also chaotic in the sense of Li and Yorke. The same happens if f jY has positive
topological entropy, but it is not true in general if f jY is Devaney chaotic. Moreover,
it may happen that f jY is Li–Yorke chaotic, but for any neighborhoodN of Y one has
that the trajectory of any x 2 N n Y converges to a periodic orbit, which will make
unobserved the existence of Li–Yorke chaos. So, we are interested in analyzing not
only the dynamics of f jY but also when the trajectories outside Y may converge or
synchronize with trajectories inside Y.

This can be easily done if the attractor inside Y is a periodic orbit, because
at least locally, Jacobian matrices along the periodic orbit give you the key: the
spectral radius of the product of such Jacobian matrices has modulus smaller than
one.6 The problem arises when the attractor is chaotic. This paper mainly considers
one-dimensional chaotic attractors of piecewise monotone maps. We refer the reader
to Ashwin et al. (1996) for a precise description on transverse and normal Lyapunov
exponents that we will use in the next section. Anyway, we should mention that all
the results are local and, as far as we know, no global results are known.

2.6 Spectral Theory for a Type of Symmetric Matrix

Before finishing this mathematical section, we will analyze a matrix type that
appears in several problems. In particular, we are interested in the eigenvalues of
a class of square matrices with n rows, and the form

A.a; b/ D

0
BBBBBBB@

a b b : : : b b
b a b : : : b b
b b a : : : b b

: : : : : : : : : : : : : : : : : :

b b b : : : a b
b b b : : : b a

1
CCCCCCCA

;

where a; b 2 R, b ¤ 0. The characteristic polynomial is

p.t/ D

ˇ̌̌
ˇ̌
ˇ̌
ˇ̌̌
ˇ̌
ˇ

a � t b b : : : b b
b a � t b : : : b b
b b a � t : : : b b

: : : : : : : : : : : : : : : : : :

b b b : : : a � t b
b b b : : : b a � t

ˇ̌̌
ˇ̌
ˇ̌
ˇ̌̌
ˇ̌
ˇ

6A periodic orbit can be an attractor when spectral radius has modulus one, but in general the
converse is not true.
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D

ˇ̌
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌
ˇ

a � tC .n � 1/b b b : : : b b
a � tC .n � 1/b a � t b : : : b b
a � tC .n � 1/b b a � t : : : b b

: : : : : : : : : : : : : : : : : :

a � tC .n � 1/b b b : : : a � t b
a � tC .n � 1/b b b : : : b a � t

ˇ̌
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌
ˇ

D .a � tC .n � 1/b/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌
ˇ̌
ˇ

1 b b : : : b b
1 a � t b : : : b b
1 b a � t : : : b b

: : : : : : : : : : : : : : : : : :

1 b b : : : a � t b
1 b b : : : b a � t

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌
ˇ̌
ˇ

;

and hence it is clear that solving the equation

a � tC .n� 1/b D 0;

we obtain the eigenvalue

t D .n � 1/bC a:

On the other hand, solving the equation

a � t D b;

which implies t D a � b, we have that

A.a; b/� .a � b/In D

0
BBBBBBB@

b b b : : : b b
b b b : : : b b
b b b : : : b b

: : : : : : : : : : : : : : : : : :

b b b : : : b b
b b b : : : b b

1
CCCCCCCA

;



Dynamics on Large Sets and Its Applications to Oligopoly Dynamics 279

where In is the identity matrix of n rows. Then, t D a�b is an eigenvalue of A.a; b/.
The equation of its eigenspace is obtained by equating

0
BBBBBBB@

b b b : : : b b
b b b : : : b b
b b b : : : b b

: : : : : : : : : : : : : : : : : :

b b b : : : b b
b b b : : : b b

1
CCCCCCCA

0
BBBBBBB@

x1

x2

x3

: : :

xn�1

xn

1
CCCCCCCA
D

0
BBBBBBB@

0

0

0

: : :

0

0

1
CCCCCCCA

;

and then x1 C x2 C : : : C xn D 0. Then, the eigenspace of eigenvalue a � b has
dimension n � 1. As a consequence, the eigenspace of the eigenvalue .n � 1/bC a
has dimension 1. Therefore, a � b and .n � 1/bC a are the eigenvalues of A.a; b/

with multiplicity n � 1 and 1, respectively.

3 Oligopoly Dynamics: Theocharis’ Model

In oligopoly models, a number of firms compete in a market in such a way the
interaction between them plays a crucial role in the market evolution. The rules are
usually given by assumptions that we make on e.g. demand functions, cost functions
or decisions on future productions. For a wide range of different scenarios the reader
can see Bischi et al. (2010). The basic idea is that, if we have n firms and ˘i is the
profit for each firm, which will be assumed to be smooth enough, the optimization
of profits can be the key for describing ways of how firms organize their future
productions. At the end of the process, we have a system of difference equations

xi.tC 1/ D fi.x1.t/; : : : ; xn.t//; i D 1; : : : ; n;

where xi is the variable that firm i wants to control, basically quantities or price, and
fi are called reaction functions, which give you the evolution of variables xi with
time.

Of course, the reaction functions need not be linear maps and then, the analysis
of the dynamics of the systems, that is, the evolution with time of all the possible
initial states is quite hard to analyze in general. However, there are several ideas that
can be used to give some partial results on the dynamics, as it is shown below.

To fix ideas, we will always assume that qi are the quantities of goods produced
by each firm.7 The reaction functions can have different forms according to the way
that firms will organize their future productions. Perhaps the simplest case is naive
expectations on future productions, in such a way firms choose the maximum of ˘i

7From now on, we denote the production with the letter “q” instead of “x” because this is the usual
notation for that.
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at time t to be the quantity produced in time tC 1. Then, maximizing the profit, that
is, solving the equation

@˘i

@qi
.q1; : : : ; qn/ D 0;

we obtain the reaction function for firm i, which will have the general form

fi.q1; : : : ; qn/ D gCi.Q � qi/;

where Q DPn
iD1 qi is the total market supply, and gCi W RC ! R

C, RC D Œ0;1/,
is a one-dimensional map depending on parameter Ci 2 R

m. In addition, the closure
of the support of the map gCi is given by

Clfq 2 R
C W gCi.q/ > 0g D Œ0; qCi �;

and therefore the map gCi has an absolute maximum value xMi .
Of course, there are more sophisticated ways of generating the function fi, i D

1; 2; : : : ; n. For instance, under adaptive expectations we may assume that

fi.q1; : : : ; qn/ D .1 � �i/qi C �igCi.Q � qi/;

where �i 2 Œ0; 1�. Notice that �i D 1 gives us the case of naive expectations. Another
alternatives which do not imply a optimization process can be see e.g. Bischi and
Baiardi (2015) as for instance

fi.q1; : : : ; qn/ D qi C �i˘i.q1; : : : ; qn/;

or

fi.q1; : : : ; qn/ D qi C @˘i

@qi
.q1; : : : ; qn/:

Below, we will show some examples on different oligopoly models that we can
construct by assuming different economic conditions. We restrict ourselves to the
case of naive and adaptive expectations.

3.1 Theocharis’ Model

In Theocharis’ model (see Theocharis 1959), it is assumed that inverse demand
function gives the price in the form p D a � bQ and cost functions Ci.qi/ D ciqi,
i D 1; 2; : : : ; n. Let Qi D Q � qi, for i D 1; 2; : : : ; n denote the residual supply.
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Hence, the profit functions are given by

˘i.q1; : : : ; qn/ D .a � bQ/qi � ciqi

and then one easily obtains from the first order condition that

ga;b;ci.q1; : : : ; qn/ D a � ci
2b
� 1

2
Qi;

and hence, for naive expectations we have that

fi.q1; : : : ; qn/ D max f0; ga;b;ci.q1; : : : ; qn/g

D max

�
0;

a � ci
2b
� 1

2
Qi

�
;

because obviously a firm cannot produce a negative quantity. For adaptive expecta-
tions we have

fi.q1; : : : ; qn/ D max f0; .1� �i/qi C �iga;b;ci.q1; : : : ; qn/g

D max

�
0; .1� �i/qi C �i

�
a � ci

2b
� 1

2
Qi

��
:

For other kinds of above mentioned adjustments we will have

fi.q1; : : : ; qn/ D max f0; qi C �iŒ.a � bQ/qi � ciqi�g ;

and

fi.q1; : : : ; qn/ D max f0; qi C �i.a� ci � bQi � 2bqi/g :

In Theocharis’ model, all the firms react following naive expectations, but in
general, firms can react in different ways, not all of them following the same strategy
and, even more, they could change their strategies with time. Therefore, even in this
simple case we are forced to make assumptions to simplify the different models that
we can generate.

Basically, these simplifications consist of making the market more homogeneous,
that is, assuming that all the constants characterizing each firms are the same for the
firms which share a common strategy. In this case, this means that some of the
firms following e.g. naive expectations have the same marginal costs ci while if they
follow adaptive expectations, then the adaptive constant � is the same for all the
firms. Then, the model has some symmetries which lead us to a simplified model
defined on a subset (submanifold) on the phase space. The idea is to try to analyze
and obtain some information of the whole model from the simplified one. Let us
show it with an example based on Theocharis’ assumptions.
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First, we consider the naive expectations case, where the system of difference
equations reads as

qi.tC 1/ D max

�
0;

a� ci
2b
� 1

2
Qi

�
;

for i D 1; 2; : : : ; n. Note that at those points which make the reaction functions
smooth enough, the Jacobian matrix is equal to

J D

0
BBBBB@

0 �1=2 �1=2 : : : �1=2

�1=2 0 �1=2 : : : �1=2

�1=2 �1=2 0 : : : �1=2

: : : : : : : : : : : : : : :

�1=2 �1=2 �1=2 : : : 0

1
CCCCCA

;

which is symmetric and therefore with non complex eigenvalues. By Sect. 2.6 we
see that J has two eigenvalues 1

2
and 1�n

2
with multiplicity n� 1 and 1, respectively.

The second eigenvalue can be obtained as well by noticing that the linear system of
difference equations

y.tC 1/ D J � y.t/

leaves invariant the subset fy D .y1; : : : ; yn/ 2 R
n W y1 D y2 D : : : D yng which is a

linear subspace of dimension 1. On this subspace, the above system reads as

y.tC 1/ D 1 � n

2
y.t/:

When n > 1, that is, the model is not a monopoly, the determinant jJ� Inj ¤ 0 and
hence the system of equations

qi D a � ci
2b
� 1

2
Qi; i D 1; 2; : : : ; n;

has a unique solution, called Cournot equilibrium, which will be stable provided
n D 3 and asymptotically stable when n < 3. If n > 3, then 1�n

2
< �1 and Cournot

equilibrium is unstable. The existence of Cournot points allows us to define another
reaction for the firms, that is,

fi.q1; : : : ; qn/ D qi;

where qi is the ith coordinate of Cournot equilibrium (see Hommes et al. 2011).
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Note that Cournot equilibrium is also a fixed point when we consider adaptive
expectations and solve the system of equations

qi D .1 � �i/qi C �i

�
a � ci

2b
� 1

2
Qi

�
; i D 1; 2; : : : ; n:

In this case, the Jacobian matrix is

J D

0
BBBBB@

1 � �1 ��1=2 ��1=2 : : : ��1=2

��2=2 1 � �2 ��2=2 : : : ��2=2

��3=2 ��3=2 1 � �3 : : : ��3=2

: : : : : : : : : : : : : : :

��n=2 ��n=2 ��n=2 : : : 1 � �n

1
CCCCCA

;

which is no longer symmetric. To obtain significative results, we must to make extra
assumptions to simplify the model, which can be easily done by assuming that all
firms make their adjustment with the same constant �i D � for i D 1; : : : :; n. Hence,
the Jacobian reads as

J D

0
BBBBB@

1 � � ��=2 ��=2 : : : ��=2

��=2 1 � � ��=2 : : : ��=2

��=2 ��=2 1 � � : : : ��=2

: : : : : : : : : : : : : : :

��=2 ��=2 ��=2 : : : 1 � �

1
CCCCCA

;

and eigenvalues can be easily obtained as shown in Sect. 2.6. Namely, solving the
equation 1 � � � t D ��=2 we obtain the eigenvalue t D 1 � �=2, which has
an eigenspace of dimension n � 1, while 1 � � nC1

2
is the other eigenvalue. This

eigenvalue can be obtained as well by noticing that the linear system of difference
equations

y.tC 1/ D J � y.t/

leaves invariant the subset fy D .y1; : : : ; yn/ 2 R
n W y1 D y2 D : : : D yng which is a

linear subspace of dimension 1. On this subspace, the above system reads as

y.tC 1/ D
�

1 � �
nC 1

2

�
y.t/:

Recall that � 2 Œ0; 1�, and then the absolute value j�=2� 1j < 1. On the other hand,
for the other eigenvalue we have that j1 � � nC1

2
j � 1 provided � 2 Œ0; 4

nC1
�. Note

that for n D 2; 3 the eigenvalues are bounded by 1 in modulus for any value of �.
For n � 4, then we have to reduce the value of � to obtain that Cournot equilibrium
is asymptotically stable.
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Note however that our models are not linear because of the maximum operator.
Because of this, the quantity that a single firm may produce is bounded by � a�ci

2b ,
and so the production is contained in the interval Œ0; � a�ci

2b �. If we take the equations

qi.tC 1/ D .1� �/qi.t/C �

�
a � ci

2b
� 1

2
Qi.t/

�
; i D 1; 2; : : : ; n

and sum up them, we obtain

Q.tC 1/ D .1 � �/Q.t/C �

�
na� nc

2b
� n � 1

2
Q.t/

�
;

where c D .c1 C : : :C cn/=n is the average marginal cost. The fixed point of above
equation is Q D n.a�c/

.nC1/b . Hence, the set

S D f.q1; : : : ; qn/ W q1 C : : :C qn D Q; qi � 0; i D 1; : : : ; ng

is invariant and any orbit with initial conditions on S converges to Cournot
equilibrium. To obtain clear results for the evolution of initial conditions outside S
we must make another additional assumption, which is that firms are homogeneous,
that is, ci D c for all i D 1; 2; : : : ; n. Then, it is proved in Cánovas et al. (2008) that,
under naive expectations, any orbit starting outside S converges to a 2-periodic
point .0; 0; : : : ; 0/ and . a�c

2b ; a�c
2b ; : : : ; a�c

2b /, that is, in one time all the firms will
produce nothing, while in the next period of time they produce the maximum
quantity allowed. It is interesting to point out that the average profit for the 2-
periodic point is given by

prof1 D ˘i.0; 0; : : : ; 0/C˘i.
a�c
2b ; a�c

2b ; : : : ; a�c
2b /

2

D .a � n
a� c

2
/
a � c

4b
� c

a� c

4b

D .a � c/2

4b
� n

.a� c/2

8b
D .a � c/2

4b

�
1 � n

2

�
;

while the profit at Cournot equilibrium
�

a�c
.nC1/b ; a�c

.nC1/b ; : : : ; a�c
.nC1/b

�
is

prof2 D ˘i

�
a � c

.nC 1/b
;

a � c

.nC 1/b
; : : : ;

a � c

.nC 1/b

�

D
�
a � n

a � c

.nC 1/

�
a � c

.nC 1/b
� c

a � c

.nC 1/b

D .a � c/2

.nC 1/b
� n

.a � c/2

.nC 1/2b
D .a� c/2

.nC 1/b

�
1 � n

nC 1

�
:
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In the case of Theocharis’ model, when � D 1, we have that prof1 is always
negative, while prof2 is positive, although decreasing with the number of firms n. It
is unclear whether such scheme is repeated under adaptative expectations. When all
the firms are homogeneous, then the set

� D f.q; q; : : : ; q/ 2 R
n W q � 0g

is invariant, and then the system of difference equations on � reduces to the single
difference equation

q.tC 1/ D max

�
0; �

a� c

2b
C .1 � �

2
.nC 1//q.t/

�
:

Clearly, then hyperplane q1C : : :Cqn D 0 is orthogonal to �. Since this hyperplane
is in fact the eigenspace ker.J � 1

2
In/, then the dynamics outside � synchronizes

to �, that is, the dynamics of � characterizes the dynamics of the n-dimensional
model. Let us remark that the model is not linear, but it is locally linear in the sense
that for any point in the interior of the feasible set Œ0; � a�ci

2b �n the model is linear.

3.2 Non Homogeneous Models

Now, we consider two different ways to make firms non homogeneous. First, they
have the same reaction function but their marginal cost may be different, namely
c1 � c2 � : : : � cn. Then, the symmetric properties of the system do not hold, � is
no longer invariant and Cournot equilibrium is not placed on it. In addition, under
some assumptions, Cournot coordinates may become negative, which is not possible
since we assumed each firm produces at leat zero, and then firms may disappear
from the market when naive expectations are assumed (see Cánovas 2009). In
particular, if a C cn � 2ci, i D 1; : : : ; n � 1, then, under some assumptions, the
model evolves to a monopoly in which the only active firm produces the constant
output .a � cn/=2b. The above mentioned assumptions are the following:

• n D 2; 3; 4:

• n D 5 and aC c5 < 2c1.
• n � 6 and n.a� c/ < 3.a� cn/.

One can see that, when the number of firms increases, the conditions to evolve to
a monopoly are more difficult to be fulfilled by the system. If aC cn > 2cn�1, the
system still can reduce the number of firms and evolve to a duopoly when aC cn C
cn�1 � 3ci, i D 1; : : : ; n � 2, and one of the following conditions are satisfied:

• n D 3.
• n D 4 and aC c4 < c1 C c2.
• n D 5 and aC c5 < 2c1.
• n � 6 and n.a� c/ < 3.a� cn/.
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In both cases, monopoly and duopoly, the results are given by the fact that for
n D 1 or 2 the system converges to the Cournot equilibrium. If a C cn C cn�1 >

3cn�2, then we could investigate whether the system may reduce the number of
firms, but we have the problem that the model with three firms does not converge
to the Cournot equilibrium unless their production were contained in the set S (for
three firms). Therefore, reducing firms from the system is only possible when firms
collaborate for that. Let us consider the following example when only two marginal
costs c1 and cn, c1 > cn, are possible. Suppose that m firms produce at marginal cost
c1. Then, we have two different Cournot coordinates

q1 D
aC nc � .nC 1/c1

.nC 1/b
D a � .n �mC 1/c1 C .n� m/cn

.nC 1/b
;

and

qn D
aC nc � .nC 1/cn

.nC 1/b
D aC mc1 � .mC 1/cn

.nC 1/b
:

The condition q1 � 0 is necessary to have that the first m firms disappear from the
market. Such condition is fulfilled when

aC .n �m/cn � .n �mC 1/c1: (1)

However, if we have that q1.t/ D : : : D qm.t/ D 0 for some time t, then the
remaining firms have to produce at this time qmC1.t/ C : : : C qn.t/ D n�m

n�mC1
a�cn
b .

Otherwise, the piecewise linear model given by firms m C 1; : : : ; n will converge
to the two periodic point given by .0; 0; : : : ; 0/ and . a�c

2b ; a�c
2b ; : : : ; a�c

2b /, and zero
production implies that the first m firms will start to produce again. Note that the
system has new symmetries and now the set

�2 D f.
m‚ …„ ƒ

q1 : : : ; q1;

n�m‚ …„ ƒ
qn; : : : ; qn/ W q1; qn 2 R

Cg

is invariant, and on it, the system reads as

8<
:
q1.tC 1/ D max

n
0; a�c1

2b � .mC1/q1.t/C.n�m/qn.t/
2

o
;

qn.tC 1/ D max
n
0; a�cn

2b � mq1.t/C.n�mC1/qn.t/
2

o
:

If condition (1) is fulfilled, then .0; a�cn
b.n�mC1/

/ is a fixed point and hence a Cournot
point of the system. Now, the Jacobian matrix

J D
��mC1

2
� n�m

2

�m
2
� n�mC1

2

�

has eigenvalues 1=2 and �.nC 1/=2, as it is expected.
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Question 1 It is unclear whether the above results can be translated for adaptative
expectations. More precisely, what are the conditions on the marginal costs
to guarantee that the production qi.t/ of the less efficient firms satisfy that
limt!1 qi.t/ D 0:

The second possibility of making the model non homogenous is by assuming that
firms make their adjustments following different strategies, that is, different reaction
functions. To fix ideas, denote by fN the reaction function under naive expectations,
fA under adaptive expectations and fC when the firm plays Cournot. Assume that
n1 first firms react by using fN , n2 firms do it using fN and n � n1 � n2 firms play
Cournot. Then the system can be written by

8<
:
qi.tC 1/ D fN.q1.t/; ; ; :qn.t//; i D 1; : : : ; n1;

qi.tC 1/ D fA.q1.t/; ; ; :qn.t//; i D n1 C 1; : : : ; n1 C n2;

qi.tC 1/ D fC.q1.t/; ; ; :qn.t//; i D n1 C n2 C 1; : : : ; n:

The Jacobian J at Cournot point is

0
BBBBBBBBBBBBBBBBBBBB@

0 �1=2 : : : �1=2 �1=2 �1=2 : : : �1=2 �1=2 : : : �1=2

�1=2 0 : : : �1=2 �1=2 �1=2 : : : �1=2 �1=2 : : : �1=2

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

�1=2 �1=2 : : : 0 �1=2 �1=2 : : : �1=2 �1=2 : : : �1=2

��=2 ��=2 : : : ��=2 1 � � ��=2 : : : ��=2 ��=2 : : : ��=2

��=2 ��=2 : : : ��=2 ��=2 1 � � : : : ��=2 ��=2 : : : ��=2

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

��=2 ��=2 : : : ��=2 ��=2 ��=2 : : : 1 � � ��=2 : : : ��=2

0 0 : : : 0 0 0 : : : 0 0 : : : 0

0 0 : : : 0 0 0 : : : 0 0 : : : 0

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

0 0 : : : 0 0 0 : : : 0 0 : : : 0

1
CCCCCCCCCCCCCCCCCCCCA

which has eigenvalues 0, with an eigenspace of dimension n� n1 � n2, 1=2 with an
eigenspace of dimension n1 � 1, 1 � �=2, which has an eigenspace of dimension
n2�1, and two unknown eigenvalues v1 and v2. The values of v1 and v2 will give us
the stability conditions of Cournot equilibrium. However, they are hard to compute,
so we consider the system defined in the space

�3 D f.
n1‚ …„ ƒ

q1 : : : ; q1;

n2‚ …„ ƒ
q2; : : : ; q2;

n�n1�n2‚ …„ ƒ
q; : : : ; q/ W q1; q2 2 R

Cg;



288 J.S. Cánovas and M.M. Guillermo

where q is the Cournot equilibrium. Then �3 is invariant and the system on it reads
as

8̂̂
<
ˆ̂:
q1.tC 1/ D max

n
0; a�c

2b � n�n1�n2

2
q � .n1�1/q1.t/Cn2q2.t/

2

o
;

q2.tC 1/ D max
n
0; q2.t/C �

�
a�c
2b � n�n1�n2

2
q � n1q1.t/C.n2C1/q2.t/

2

�o
;

q3.tC 1/ D q:

As the third function is constant which implies zero rows in the Jacobian matrix, we
can consider the system as 2 dimensional with Jacobian matrix

J D
�

1�n1

2
� n2

2

�� n1

2
1 � � n2C1

2

�
:

Clearly, the stability of the reduced system will imply the stability of the general
system. The eigenvalues of J are

3 � n1 � �.1C n2/˙
q
n2

1 C 2n1.1C �.n2 � 1//C .�.n2 C 1/� 1/2

4
;

which are always real numbers depending on n1 and n2, that is, the firms playing
Cournot do not have influence in the system stability. They are equal to 1 when
� D 0, which is not an interesting case, and equal to �1 when

� D 4.n1 � 3/

n1 � 3.n2 C 1/
:

It can be easily seen numerically that
ˇ̌
ˇ̌̌
ˇ̌
3 � n1 � �.1C n2/C

q
n2

1 C 2n1.1C �.n2 � 1//C .�.n2 C 1/� 1/2

4

ˇ̌
ˇ̌̌
ˇ̌

is bounded by 1, and then, the stability of the system depends on the number
ˇ̌̌
ˇ̌
ˇ̌
3 � n1 � �.1C n2/�

q
n2

1 C 2n1.1C �.n2 � 1//C .�.n2 C 1/� 1/2

4

ˇ̌̌
ˇ̌
ˇ̌ (2)

which is hard to study analytically in detail. When n1 D 0, that is, all the firms play
naive expectations, the above value is

ˇ̌̌
ˇ̌3 � �.1C n2/�

p
.�.n2 C 1/� 1/2

4

ˇ̌̌
ˇ̌ D

( ˇ̌ˇ 2��.1Cn2/

2

ˇ̌
ˇ if �.n2 C 1/ � 1;

1
2
if �.n2 C 1/ � 1:
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The value
ˇ̌
ˇ 2��.1Cn2/

2

ˇ̌
ˇ can be greater than 1 when �.1Cn2/ � 2, that is, �.1Cn2/�2

2
D

1, which implies

� D 4

1C n2

;

and again the condition � 2 Œ0; 4
1Cn2

� must be fulfilled to have a stable system.
Similarly, when n2 D 0, we get that n1 � 3. For both values greater than one,
the following table shows the stability pairs .n1; n2/, that is the pairs .n1; n2/ such
that (2) is smaller than 1, for some values of �.

• For � D 0:9, the pairs .n1; n2/ are .1; 1/, .1; 2/, .2; 1/.
• For � D 0:8, the pairs .n1; n2/ are .1; 1/, .1; 2/, .2; 1/.
• For � D 0:7, the pairs .n1; n2/ are .1; 1/, .1; 2/, .1; 3/, .2; 1/.
• For � D 0:6, the pairs .n1; n2/ are .1; 1/, .1; 2/, .1; 3/, .2; 1/.
• For � D 0:5, the pairs .n1; n2/ are .1; 1/, .1; 2/, .1; 3/, .1; 4/, .2; 1/, .2; 2/.
• For � D 0:25, the pairs .n1; n2/ are .1; 1/, .1; 2/, .1; 3/, .1; 4/, .1; 5/, .1; 6/,

.1; 7/, .1; 8/, .2; 1/, .2; 2/, .2; 3/, .2; 4/.

In the above case, the reaction functions remain unchanged along the process,
but firms may decide to change their reaction functions with time (see Hommes
et al. 2011, Droste et al. 2002, Bischi et al. 2015 or Baiardi et al. 2015). This can
be defined using a skew product map as follows. Consider ˙ D f.xn/1

nD0 W xn 2
fN;A;Cg; n � 0g be the infinite sequences of letters in the alphabet fN;A;Cg.8 The
shift map � W ˙ ! ˙ is then defined by �..xn/1

nD0/ D .xnC1/
1
nD0 D .xn/1

nD1. Let
T W ˙n 
 .RC/n ! ˙n 
 .RC/n be given by

T..x1
i /; : : : .xni /; q1; : : : ; qn/ D .�.x1

i /; : : : ; �.xni /; fx1
0
.q1; : : : ; qn/; : : : ; fxn0 .q1; : : : ; qn//:

The map T contains all the possible trajectories for initial productions when the
firms have the freedom of choosing the reaction function. Of course, we should
restrict the map T by some rules, endogenous or not, which reduces the size of ˙n.

Question 2 It is an open question to provide tools to analyze the above map T, as
well as finding rules to reduce the size of ˙n.

4 Non (Piecewise) Linear Oligopolies

The above section was devoted to analyze a model which is piecewise linear. There
are many oligopoly models which are not piecewise linear. Here, we consider two
of them given by two different reaction functions which are unimodal. In particular,

8From now on we denote .xn/
1
nD0 by .xn/ if there is no ambiguity on that.
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we assume that we are working with maps f W RC ! R
C smooth enough and such

that the following hypothesis are fulfilled:

h0. There is a map g W RC ! R
C such that there is xM 2 .0; x0/ such that gj.0;xM/ is

strictly increasing and gj.xM;x0/ is strictly decreasing. The maximum xM is called
the turning point of g.

h1. g�1.0/ D f0; x0g, x0 2 R
C.

h2. g.x/ > 0 for x 2 .0; x0/.
h3. Then f .x/ D maxf0; g.x/g.

The two examples we are going to analyze are Puu’s model (see Puu 1991),
where f .x/ D maxf0;

p
x=c� xg and Kopel’s model (see Kopel 1996) where f .x/ D

maxf0; ax.1 � x/g is given by the well-known logistic map. The oligopoly is then
defined under naive expectations by

qi.tC 1/ D f .Qi.t//; i D 1; : : : ; n;

and under adaptive expectations by

qi.tC 1/ D maxf0; .1� �/qi.t/C �g.Qi.t//g; i D 1; : : : ; n:

In the next section, we are going to analyze both oligopolies showing some
differences between them. Previously, we gave a general framework for analyzing
these models following the ideas used in the piecewise linear Theocharis’ model. If
all the firms are homogeneous, the space

� D f.q; q; : : : ; q/ 2 R
n W q � 0g

is invariant by the model. On � the model reads as

q.tC 1/ D f ..n � 1/q.t// D maxf0; g..n� 1/q.t//g

under naive expectations and

q.tC 1/ D maxf0; .1� �/q.t/C �g..n� 1/q.t//g

for adaptive expectations. Let q0 > 0 be such that g.q0/ D 0. Then, under naive
expectations we get positive productions when q 2 .0;

q0

n�1
/. Since g is unimodal,

let qM be the turning point of g, and note that g.qM/ is the maximum output given
by the system. When g.qM/ � q0

n�1
, we have that g has a 2-horseshoe, and therefore

we prove that the dynamics on � is topologically chaotic because its topological
entropy is equal to log 2. In addition, if g.qM/ >

q0

n�1
, then there is an interval

J containing the turning point such that f .J/ D f0g and numerical simulations
will show that all the orbits go eventually to zero (moreover, when we take initial
conditions outside �, numerical simulations show that all the outputs go to zero). In
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other words, the set [n�0f�n.J/ seems to have full Lebesgue measure on .0;
q0

n�1
/

and therefore the chaotic dynamics lies in a residual set of apparently zero Lebesgue
measure.

When adaptive expectations are assumed, the linear part .1��/q goes to infinite
as q tends to infinite, while the nonlinear part �g..n � 1/q/ tends to minus infinite,
and so it is not guaranteed the existence of q0 as above. If such number q0 exists,
that is, there is q0 D q0.n/ such that .1 � �/q C �g..n � 1/q/ D 0, then there is
qM 2 .0; q0/ such that .1 � �/q C �g..n � 1/q/ attains its maximum value at qM ,
and the above reasoning made for naive expectations makes sense in the adaptive
expectations case.

On �, the Jacobian matrix is

J D

0
BBBBB@

1 � � �g0..n � 1/q/ �g0..n � 1/q/ : : : �g0..n � 1/q/

�g0..n � 1/q/ 1 � � �g0..n � 1/q/ : : : �g0..n � 1/q/

�g0..n � 1/q/ �g0..n � 1/q/ 1 � � : : : �g0..n � 1/q/

: : : : : : : : : : : : : : :

�g0..n � 1/q/ �g0..n � 1/q/ �g0..n � 1/q/ : : : 1 � �

1
CCCCCA

under adaptive expectations. Naive expectations are obtained by letting � D 1.
Consider the vector .1; 1; : : : ; 1/ and note that

J �

0
BB@

1

1

: : :

1

1
CCA D .1 � �C �.n� 1/g0..n � 1/q//

0
BB@

1

1

: : :

1

1
CCA :

On the other hand, the subspace generated by the vectors

f.1;�1; 0; 0; : : : ; 0/; .0; 1;�1; 0; : : : ; 0/; : : : ; .0; 0; : : : 0; 1;�1/gg

is orthogonal to � and

J �

0
BBBBBBBBBBB@

0

: : :

0

1

�1

0

: : :

0

1
CCCCCCCCCCCA

D .1� � � �g0..n � 1/q//

0
BBBBBBBBBBB@

0

: : :

0

1

�1

0

: : :

0

1
CCCCCCCCCCCA

:
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Hence, on �, the Lyapunov exponent is given by

lyexjj.q/ D lim
m!1

1

m

m�1X
iD0

log j1 � �C �.n � 1/g0..n� 1/q.i//j

while the normal Lyapunov exponent is

lyex?.q/ D lim
m!1

1

m

m�1X
iD0

log j1 � � � �g0..n � 1/q.i//j

where q.i/ ranges the orbit of .q; q; : : : ; q/ for some q � 0. Fixing an invariant
measure � on �, note that lyexjj.q/ and lyex?.q/ are well defined for almost all
q related to �. In addition, lyexjj.q/ will provide us information on the dynamics
on �, while lyex?.q/ informs us on when initial conditions outside � converge to
attractors on �, that is, when firms locally synchronize (see Ashwin et al. (1996) for
more information). The fact that firms do synchronize is very important because it is
a commonly accepted fact, although we will show in our examples that sometimes
they fail to synchronize.

In the remaining of this chapter, we are going to consider the above general
description to see how Puu’s and Kopel’s oligopolies behave. We will show that
there are two big differences between these models: the role of the parameters and
the synchronization properties.

4.1 Puu’s Oligopoly

Puu’s oligopoly was introduced in fact as a duopoly in Puu (1991). The assumptions
for the model are a demand function (in inverse form) given by p D 1

Q and linear
cost functions Ci D ciqi for each firm i D 1; 2; : : : ; n. Then the profit function is
given by

˘i D qi
Q
� ciqi:

Then, the reaction function is gci.Qi/ D
p
Qi=c � Qi.

The first important thing regarding this model is that, when all the firms are
homogenous, the parameter c does not play any role, it is just a change of scale.
To see this, consider the homeomorphism '.x/ D x=c, and note that if gc.x/ Dp
x=c � x, then

.'�1 ı gc ı '/.x/ D g1.x/ D px � x;



Dynamics on Large Sets and Its Applications to Oligopoly Dynamics 293

and

'�1..1� �/'.x/C �gc.'.x/// D .1 � �/xC �g1.x/ D .1 � �/x � �.
p
x � x/;

for all x � 0. Then, it is straightforward to see that the model with parameter c ¤
1 and the model with parameter 1 are conjugated via the linear homeomorphism
' 
' 
 : : :
'. So, we may assume that c D 1 without any restriction, and we have
to take care on � and the number of firms n.

Once we have reduced the number of significative parameters, we are going to
analyze how the map shapes. Consider the auxiliary map

g.x/ D .1 � �/xC �
�p

.n � 1/x � .n � 1/x
�

D .1 � n�/xC �
p

.n � 1/x;

which we can call the best reply to the rest of the industry. The maximum xM of g
has to satisfy the condition

1 � �nC �.n � 1/

2
p

.n � 1/xM
D 0;

which reduces to

p
.n � 1/xM D �.n � 1/

2.�n� 1/
;

which is positive if and only if �n� 1 > 0, which implies that � > 1=n. In that case

xM D �2.n � 1/

4.�n� 1/2
:

Hence, we have two possible shapes for g as follows:

• If � � 1=n, the map g is an homeomorphism on Œ0;C1/ with two fixed points,
0 which is repulsive, and n�1

n2 , which does not depend on � and attracts all the
orbits on � starting on .0;C1/.

• If � > 1=n, the map g is unimodal. It gives non negative outputs at the intervalh
0;

�2.n�1/

.�n�1/2

i
, which ranges the interval Œ0; g.xM/� D

h
0;

�2.n�1/

4.�n�1/

i
. The condition

g.xM/ � �2.n� 1/

.�n � 1/2

is equivalent to

�2.n � 1/

4.�n� 1/
� �2.n � 1/

.�n � 1/2
;
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which reduces to

� � 5

n
: (3)

The Cournot equilibrium can be computed easily from the equations

p
Qi �Qi D qi; i D 1; 2; : : : ; n;

which gives us

p
Qi D Q; i D 1; 2; : : : ; n;

and hence

p
Qi D

p
Q1; i D 2; 3; : : : ; n:

Taking into account that qi � 0 for all i D 1; 2; : : : ; n, we conclude that qi D q1 for
all i D 2; 3; : : : ; n and therefore the Cournot equilibria lie on �. The equation

p
.n � 1/q D nq

gives us the Cournot coordinates q0 D 0 and

q D n � 1

n2
:

The Jacobian at the non negative Cournot equilibrium is

J D

0
BBBBB@

1 � � �� n�2
2.n�1/

�� n�2
2.n�1/

: : : �� n�2
2.n�1/

�� n�2
2.n�1/

1 � � �� n�2
2.n�1/

: : : �� n�2
2.n�1/

�� n�2
2.n�1/

�� n�2
2.n�1/

1 � � : : : �� n�2
2.n�1/

: : : : : : : : : : : : : : :

�� n�2
2.n�1/

�� n�2
2.n�1/

�� n�2
2.n�1/

: : : 1 � �

1
CCCCCA

with eigenvalues 1� n�
2.n�1/

, with multiplicity n� 1, and 1C �
2
.n� 4/. The first one

has modulus smaller than one if and only if

n�

2.n� 1/
< 2;

which implies that

� <
4.n� 1/

n
D 4 � 4

n
;
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which is fulfilled for � 2 Œ0; 1� when n � 2. The second eigenvalue has modulus
greater than one when n � 5 and exactly one for n D 4. For n D 2 and 3, the
modulus is smaller than one if

�

2
.4 � n/ < 2;

which gives us

� <
4

4 � n
;

which is always fulfilled for n D 2 and 3. As a consequence, the Cournot
equilibrium is locally asymptotically stable provided n D 2 and 3. Next, we compute
with accuracy 10�5 the topological entropy and estimate the (normal) Lyapunov
exponents.

The topological entropy is zero when the number of firms is equal to 2, 3 and
4. From Fig. 1, we check that when the number of firms increases, the set of �’s
producing zero topological entropy decreases. This means that when the number of
firms increases, the complexity also increases. Similarly, when the number of firms
increases, the set of �’s producing topological entropy log 2 increases, which is due
to the fact that � > 5=n. Recall that in this case, although we have positive entropy,

Fig. 1 The topological entropy of Puu’s oligopoly on the invariant subset � is computed with
accuracy 10�5 when the number of firms is 5 (top-left), 10 (top-right), 15 (down-left) and 20
(down-right), respectively
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Fig. 2 Bifurcation diagrams of Puu’s oligopoly on the invariant subset � when the number of
firms is 5 (top-left), 10 (top-right), 15 (down-left) and 20 (down-right), respectively. A sample of
length 25,000 of orbits starting at the turning point is computed, drawing the last 250 points

numerically one cannot observe any kind of complexity: the bifurcation diagrams of
Fig. 2 show the classical double period bifurcation scheme when � � 5=n, but when
� > 5=n we obtain a fixed point at 0, where the profit function ˘i W .q1; : : : ; qn/ D
qi
Q � cqi is not defined. In addition, the model is no longer C1 when � > 5=n and
then Lyapunov exponents cannot be computed (see Cánovas (2015) for a precise
explanations of the above facts). So, we must concentrate to compute Lyapunov
exponents when � < 5=n, whose results are shown in Fig. 3.

Figure 3 shows that, at least for the values of � making the model smooth enough,
the normal Lyapunov exponent is negative, which will imply that at least locally,
there is a synchronization of firms. This synchronization may be chaotic when the
Lyapunov exponent is positive. We repeat our computations for firms ranging from 2
to 25. Since the topological entropy is zero for 2, 3 and 4 firms, there is not a chance
of obtaining a chaotic synchronization. However, it appears when the number of
firms is greater than 5. In particular, Fig. 4 shows the values of � producing such
chaotic synchronization.

From an economic point of view, Fig. 5 is remarkable. It shows the average profit
of firms along two orbits, one of them starting at the turning point and the other one
at Cournot equilibrium. We see that the average profit is higher when the orbit starts
at the turning point, even when the orbit lies in a chaotic attractor. Although it is a
simulation, we see a big difference with Theocharis’ piecewise linear model.
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Fig. 3 Normal Lyapunov exponent estimations (solid lines) and the Lyapunov exponent estima-
tions (dashed lines) for 5 firms (top-left), 10 (top-right), 15 (down-left) and 20 (down-right). A
sample of 250,000 points starting at the turning point is computed for the estimations

Fig. 4 For each number of firms, the range of �’s which produce local chaotic synchronization
is showed. Note that obviously, � values decrease when the number of firms increases due to the
expression � < 5=n

4.2 Kopel’s Oligopoly

This model was introduced by Kopel (1996) with different economic assumptions.9

One of them considers linear demand function (in inverse form) p D ˛ � ˇQ and

9As in the case of Puu’s oligopoly, Kopel’s oligopoly was introduced first as a duopoly. In addition,
the reaction function was obtained under different demand and cost functions.
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Fig. 5 Estimations of the average profit at Cournot equilibrium (solid lines) and at the turning
point (dashed lines) for 5 firms (top-left), 10 (top-right), 15 (down-left) and 20 (down-right).
A sample of 250,000 points of the orbit starting at the turning point is taken for making the
estimations

cost functions ci D d C ˛qi � ˇqiQi.1C 2a/C 2ˇ˛qiQ2
i , in such a way the profit

function is

˘i D .˛ � ˇQ/qi � .dC ˛qi � ˇqiQi.1C 2a/C 2ˇ˛qiQ
2
i /;

and maximizing the profit we obtain the reaction functions ga.Qi/ D aQi.1 �Qi/.
When we consider an homogeneous model, it is not possible to reduce the

number of parameters and then, all of them, a, � and the number n of firms must be
considered when we analyze the system. This is due to the well-known fact that the
dynamics of the logistic map changes when the parameter a ranges in the parameter
space. In addition, the auxiliary map

g.x/ D .1 � �/xC �a.n� 1/x.1� .n � 1/x/

is always quadratic, and hence the turning point given by

xM D 1 � �C a�.n� 1/

2a�.n� 1/2
D 1 � �

2a�.n� 1/2
C 1

2.n� 1/
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always exist. The map g gives positive outputs at the interval
h
0;

1��C�a.n�1/

�a.n�1/2

i
,

which ranges in the interval Œ0; g.xM/� D
h
0;

.1��C�a.n�1//2

4�a.n�1/2

i
. The condition

g.xM/ � 1 � �C �a.n � 1/

�a.n� 1/2

is equivalent to

.1 � �C �a.n� 1//2

4�a.n� 1/2
� 1 � �C �a.n� 1/

�a.n � 1/2
;

which is fulfilled when a � 1
n�1

and it reduces to

� � 3

a.n� 1/� 1
(4)

if a > 1
n�1

.
For Kopel’s model, the number of Cournot equilibrium points can be outside the

set � and therefore we may have more than one non null equilibrium. The Cournot
points contained in � are computed by solving the equation

.1 � �/qC �a.n � 1/q.1� .n � 1/q/ D q;

which gives us q D 0 and

q D a.n� 1/� 1

a.n� 1/2
:

The Jacobian matrix at the positive Cournot point is

J D

0
BBBBBB@

1 � � ��
2�a.n�1/

.n�1/
��

2�a.n�1/

.n�1/
: : : ��

2�a.n�1/

.n�1/

��
2�a.n�1/

.n�1/
1 � � ��

2�a.n�1/

.n�1/
: : : ��

2�a.n�1/

.n�1/

��
2�a.n�1/

.n�1/
��

2�a.n�1/

.n�1/
1 � � : : : ��

2�a.n�1/

.n�1/

: : : : : : : : : : : : : : :

��
2�a.n�1/

.n�1/
��

2�a.n�1/

.n�1/
��

2�a.n�1/

.n�1/
: : : 1 � �

1
CCCCCCA

;

with eigenvalues 1��.aC1/C 2�
n�1

, with multiplicity n�1, and 1C�.1�a.n�1//.
Note that 2�

n�1
> �.aC 1/ if and only if n < 1C 2

aC1
which is not possible. Then,

the first one has modulus smaller than one if and only if

�.aC 1/� 2�

n � 1
< 2;
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which implies that

� >
2n� 2

.aC 1/.n � 1/� 2

if .aC 1/.n� 1/ < 2, which is fulfilled for � 2 Œ0; 1�, and

� <
2n � 2

.aC 1/.n� 1/� 2
;

if .aC 1/.n � 1/ > 2. The second eigenvalue has modulus smaller than one when
a.n� 1/ > 1 and

�.a.n� 1/� 1/ < 2;

which gives us

� <
2

a.n � 1/� 1
:

When n D 2 and a > 3, there are two symmetric Cournot points at

 
aC 1Cp.aC 1/.a � 3/

2a
;
aC 1 �p.aC 1/.a� 3/

2a

!

and
 
aC 1 �p.aC 1/.a� 3/

2a
;
aC 1Cp.aC 1/.a� 3/

2a

!
:

The stability regions for that points can be seen in Kopel (1996). When n > 2,
the existence of such Cournot equilibrium points can be checked by numerical
computations, and it seems that finding analytical equations is complicated since
we have to solve polynomial equations with degree higher than 5.

If Fig. 6 we compute the topological entropy for 2, 3 and 4 firms. We note that
the topological entropy increases with the number of firms, and the region with
positive topological entropy smaller than log 2 is really thin. The regions of constant
topological entropy log 2 corresponds to parameter values making the model non-
smooth, and therefore we cannot compute Lyapunov exponents in that parameter
regions.

However, for normal Lyapunov exponents we have a completely different
situation that those we found in Puu’s model. Namely, the parameter region where
normal Lyapunov exponents are negative is reduced when the number of firms
increases and so, the dynamics observed within the set � are not observed outside
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Fig. 6 The topological entropy for 2 (up), 3 (middle) and 4 firms (down) with accuracy 10�5 of
Kopel’s model. The topological entropy (left-side) and the level curves (right-side) are shown with
parameters a 2 Œ2; 7� and � 2 Œ0; 1�
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Fig. 7 Normal Lyapunov exponent estimations for 2 (left), 3 (middle) and 4 firms (right), with a
sample of 250,000 points of the orbit starting at the turning point. The parameter regions where
our estimations are negative are represented in blue (Color figure online)

Fig. 8 In blue color, parameter regions where our estimations of the normal Lyapunov exponent
is negative and the Lyapunov exponent is positive are shown for 2 (left), 3 (middle) and 4 firms
(right), with a sample of 250,000 points starting from the turning point (Color figure online)

this set. In other words, usually the firms do not synchronize their productions. In
Fig. 7 we represent the parameter regions where the normal Lyapunov exponents
are negative and in Fig. 8 we show the subregions where, in addition, the Lyapunov
exponents are positive, and therefore a chaotic synchronization can be observed.
As we can see, these regions decrease when the number of firms increase. Even
more, for five firms our experiments do not show the existence of negative normal
Lyapunov exponents.

4.3 Non Linear Non Homogeneous Oligopolies

As in the Theocharis’ case, non homogeneous oligopolies can be constructed
combining two ideas. We may assume that economic constants of firms are different,
for instance different costs, and all the firms follow the same adjustment process,
for instance naive expectations. On the other hand, we may assume that economic
constants are the same but firms use a different method to plan their future
productions. Of course, we can combine both of them, which probably is more
realistic but in general hard to handle when the number of firms increases. Below
we analyze the first case.
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4.3.1 Reduction of Firms

Assume that our model is given by

qi.tC 1/ D maxf0; .1� �/qi.t/C �gci.Qi.t//g; i D 1; 2; : : : ; n;

where gci is the reaction function under naive expectations depending on the
parameter ci, which is possibly a vector. It is not difficult to realize that if we
want that some firms, say m of them, will not produce in a future time, then their
Cournot coordinates must be zero. If we assume that the disappearing firms are for
i D 1; : : : ;m, then all the fixed points of the system must be

0
@

m‚ …„ ƒ
0; : : : ; 0; qmC1; : : : ; qn

1
A ; (5)

where .qmC1; : : : ; qn/ are the Cournot coordinates of the oligopoly model consisting
on n �m firms with equations

qi.tC 1/ D maxf0; .1� �/qi.t/C �gci.Q
m
i .t//g; i D mC 1; : : : ; n; (6)

where Qm
i D Qi � .q1 C : : : C qm/. Hence, the dynamics of the reduced n � m

dimensional oligopoly is very important and its knowledge is necessary to be able
to guarantee that when the m-th first firms do not produce, then they will not produce
anything in future. Of course, it is easier to give negative results, that is, when the
reduction of firms cannot occur. For instance, we can state the following result.

Theorem 3 Assume that ci D c for all i D m C 1; : : : ; n, and the map f .x/ D
.1 � �/x C �gci..n � m � 1/x/ is unimodal such that f .xM/ � x0, where x0 is the
first positive real number such that f .x0/ D 0. Then, there exists t0 such that the

orbit with initial condition

0
@

m‚ …„ ƒ
0; : : : ; 0;

n�m‚ …„ ƒ
q; : : : ; q

1
A, q > 0, satisfies that qi.t0/ > 0 for

i D 1; 2; : : : ;m.

Proof Clearly, the result follows if we prove that, for some q > 0, the solution of
the difference equation

�
q.tC 1/ D maxf0; f .q.t//g;
q.0/ D q;

can take values smaller than ", for some fixed " > 0. Let J D Œa; b� be such
that f .x/ � x0 for all x 2 J. Since f is unimodal, we have that Œ0; q0� �
f .Œ0; a�/ \ f .Œb; q0�/, that is, f has a 2-horseshoe. By Block and Coppel (1992),
there is a compact set � containing 0, invariant by f , such that the dynamics of f j�
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is transitive. As a consequence, there are solutions of the above difference equation
that goes arbitrary close to zero when time evolves, and the proof concludes.�

If we analyze the hypothesis of Theorem 3 for our two models, we realize that
they are satisfied when the number of firms is big enough. In addition, the strict
inequalities of expressions (3) and (4) gives us the opposite conditions for Puu’s
and Kopel’s oligopolies, respectively. In the case of Puu’s oligopoly, for a fixed �,
the number of firms n �m must satisfy

� >
5

n � m

to fulfill conditions of Theorem 3. For Kopel’s model the condition is

� >
3

a.n� m � 1/� 1
:

It is more difficult to obtain positive results, which must be based on the fact
that the orbits of the system are big enough for any time in such a way that the m-
th firms always choose the null production as their best replies. If the map f .x/ D
.1� �/xC �gc..n �m � 1/x/ is unimodal, then there is a maximum value xM such
that Œ f 2.xM/; f .xM/� is invariant by f and contains all its dynamic information. Hence
f 2.xM/ is the smallest value that the difference equation

�
q.tC 1/ D maxf0; f .q.t//g;
q.0/ D q;

can take after a sufficiently large number of iterations. If .0; xi0/ is the support of
fi.x/ D .1 � �/xC �gci.x/, i D 1; 2; : : : ;m, that is, the interval such that fi.x/ > 0

for all x 2 .0; xi0/, then if the initial conditions are in the set

A D
8<
:
0
@

m‚ …„ ƒ
0; : : : ; 0; q; : : : ; q

1
A W qi 2 Œf 2.xM/; f .xM/�; i D mC 1; : : : ; n

9=
; ;

and

.n �m/f 2.xM/ � xi0; i D 1; 2; : : : ;m; (7)

then all the future productions qi.t/ D 0 for t � 1 and i D 1; 2; : : : ;m. The problem
is whether the set A attracts all the possible orbits of the oligopoly, which in general,
is a very complicated question.

Hopefully, the conditions (5) and (7), which are necessary conditions for firms
to disappear from the market, can be checked in some cases. For instance, consider
Puu’s oligopoly with n firms and assume that for i D 1; : : : ;m, the marginal cost
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ci D c1, and ci D cn for i D mC 1; : : : ; n, in such a way that c1 � cn. Then, the non
null Cournot point is

q1 D : : : D qm D .n � 1/
cn.n �m/� c1.n � m � 1/

.c1mC cn.n � m//2

qmC1 D : : : D qn D .n� 1/
c1m � cn.m � 1/

.c1mC cn.n �m//2
:

Note that qn > 0 and q1 � 0 if and only if

cn.n � m/ � c1.n � m � 1/;

which gives us condition (5). On the other hand, xM D �2.n�m�1/

4cn.1C�.m�n//2 and x1
0 D

�2

c1.2��1/2 , and hence condition (7) reads as

.n �m/
�2.n � m � 1/

4cn

 
1C 2

.n � m/�C 1p

..n �m/� � 1/2

C2

vuut2

s
1

..n �m/� � 1/2
� 1

.n �m/� � 1

1
CA � �2

c1.2� � 1/2
:

For naive expectations, we have � D 1 and the above expression simplifies to

.n� m/
.n �m � 1/

4

 
1C 2

n� mC 1

n� m � 1
C 2

r
1

n � m � 1

!
� cn

c1

:

When n � m � 5 Theorem 3 states that reducing firms is not possible. For n D 3

and m D 1 the above conditions reduces to c1=c3 � 2, but the a sufficient condition
is c1=c3 � 1

3
.1C 2

p
7/ ' 2:09716754070972 (see Cánovas and Muñoz-Guillermo

2014a). In general, we think that it is quite difficult and technical to improve the
above results.

4.3.2 Non Homogeneous Adjustments

As in Theocharis’ model, we may assume that firms make their adjustments
following different strategies, that is, different reaction functions. To fix ideas,
recall that we denote by fN the reaction function under naive expectations, fA under
adaptive expectations and fC when the firm plays Cournot. Note that for Puu’s
oligopoly there is one possibility of choosing a Cournot coordinate, but there can
be many possibilities when Kopel’s model is considered. In general, we consider
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˙ D f.xn/1
nD0 W xn 2 fN;A;Cg; n � 0g be the infinite sequences of letters in the

alphabet fN;A;Cg. Let T W ˙n 
 .RC/n ! ˙n 
 .RC/n be given by

T..x1
i /; : : : .xni /; q1; : : : ; qn/ D .�.x1

i /; : : : ; �.x1
i /; fx1

0
.q1; : : : ; qn/; : : : ; fxn0 .q1; : : : ; qn//:

Again, we do not know how the dynamics of the map T can be analyzed, even
when firms change their strategies in a periodic way.

5 Conclusions

We present a general framework to study, at least partially, oligopoly dynamics when
the number of firms increases. These ideas are applied to Theocharis’ model, which
is piecewise linear, and two well-known non linear models due to Puu and Kopel.
Our simulations show that, when the firms are homogeneous, Puu’s oligopoly can
be studied from its dynamics along the diagonal set where all the firms produce the
same. However, in general, the same does not happen for Kopel’s oligopoly.

Our results are partial and some open problems are stated along the chapter.
Probably, the most important one is to model the change of firms’ strategies along
the time, and develop mathematical techniques that will be useful to describe the
models, finding analytical results that can go further than numerical simulations.
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Attracting Complex Networks

G. Guerrero, J.A. Langa, and A. Suárez

Abstract Real phenomena from different areas of Life Sciences can be described
by complex networks, whose structure is usually determining their intrinsic dynam-
ics. On the other hand, Dynamical Systems Theory is a powerful tool for the study
of evolution processes in real situations. The concept of global attractor is the
central one in this theory. In the last decades there has been an intensive research
in the geometrical characterization of global attractors. However, there still exists
a weak connection between the asymptotic dynamics of a complex network and
the structure of associated global attractors. In this paper we show that, in order
to analyze the long-time behavior of the dynamics on a complex network, it is the
topological and geometrical structure of the attractor the subject to take into account.
In fact, given a complex network, a global attractor can be understood as the new
attracting complex network which is really describing and determining the forwards
dynamics of the phenomena. We illustrate our discussion with models of differential
equations related to mutualistic complex networks in Economy and Ecology.

Keywords Complex networks • Dynamics • Structure of global attractor

1 Introduction

In any real phenomena complexity plays a crucial role, which can be characterized
from the following items:

– The reality under study is composed of a set of simpler elements.
– These elements organize a network of connections, building a complex system.
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– The weight of the links between nodes plays an important role.
– And finally, either the elements or the relationships between them evolves in

time, i.e, the network possesses an intrinsic dynamics.

The description of real phenomena as complex networks has emerged as a
powerful tool to understand the behavior of models in Life and Social Sciences.
In particular, it is observed that there is a strong relation between the topological
structure of the network (described as nodes, links and strength in connections) and
the forwards dynamics of the phenomena (Figs. 1 and 2).

On the other hand, the theory of Dynamical Systems has a long history
in the Applied Mathematics. Indeed, Dynamical Systems is a very well suited
methodology for modelization as we get

– From a real phenomena, a complex graph.
– From a graph, a mathematical formulation of each expression, describing the

weight of links and the dynamics of connections.
– The network is then analyzed by a system of (ordinary or partial) differential

equations.

Fig. 1 From topology of the network to its dynamics
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Fig. 2 The dynamics of a complex network associated to a real phenomena, modelled by a system
of differential equations, can be characterized by the global attractor. When available, this attracting
complex network describes all the future scenarios of the phenomena
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Thus, a possible strong mathematical formalism to study a Complex Network
is to describe it as a Dynamical System. Indeed, the theory of dynamical systems
becomes a powerful tool for the modelization of many different and important
real phenomena for multiple scientific areas. In particular, the study of compact
attracting invariant sets has developed a large and deep research area, providing
essential information for an increasing number of models from Physics, Biology,
Economics, Engineering and others. Indeed, the analysis of qualitative properties of
semigroups in general phase spaces (infinite-dimensional Banach spaces or general
metric spaces) has received a lot of attention throughout the last four decades (see,
for instance, Babin and Vishik (1983, 1992), Hale (1988), Ladyzhenskaya (1991),
Robinson (2001), Sell and You (2002), Temam (1988) or Vishik (1992)). In this
framework, the global attractor is a very consistent concept describing the long-
time behavior of dynamical systems. A global attractor is an invariant compact
set in the phase space determining all the asymptotic dynamics of the system
under consideration. The study of the structure of the global attractor has received
a lot of attention, going to a broad theory related to gradient systems, Morse
Decomposition, Morse-Smale systems or chaotic dynamics in the attractor (see, for
instance, Carvalho et al. 2015; Conley 1978; Hale et al. 1984; Sell and You 2002).

Our aim in this paper is to highlight the structure of a global attractor as a
complex network. Indeed, there is a natural relation between a phenomenological
complex network and the (even more complex) network given by the geometrical
characterization of the global attractor.

For instance, consider the following two dimensional competitive Lotka-Volterra
system describing the interactions between two species which compete for the same
resources

�
u0.t/ D �1u � ˇ1u2 � �1uv;

v0.t/ D �2v � ˇ2v2 � �2vu:

In this model the phenomenological network would be composed just by two
connected nodes. However, the long-time behavior of the system is determined by
the global attractor, one of its possible structures is described in Fig. 3.

In this work we give mathematical evidence on the fact that is the description of
these attracting complex networks what is really determining the future scenarios
of the real phenomena. Thus, the global attractor, and the analysis of its structure
as a dynamical complex network, emerge as a key concept to explain how the
architecture of reality is transformed into an abstract attracting network determining
the future behavior of the phenomena.

In Sect. 2 we describe the main concepts and results related to dynamical
systems, the existence of the global attractor and its internal characterization. In
Sect. 3 we describe a general model by a system of differential equations related to
mutualistic complex networks associated to Ecological and Economical phenomena
in which cooperation among nodes plays an essential role. We will describe the
geometrical structure of the associated global attractor. To illustrate the results, in
Sect. 4 we present a simplified three dimensional (3D) model for which all the ideas



312 G. Guerrero et al.
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Fig. 3 From the real network to the dynamical complex network given by the structure of its
global attractor

of this work can be highlighted by drawing some graphs and pictures. In a final
Section we write some conclusive remarks and open questions for a further research
in the near future.

2 Dynamical Systems and Attractors

Suppose we have a system of ordinary or partial differential equations defined in a
(finite or infinite-dimensional) Banach space X

8̂̂
<
ˆ̂:

du

dt
D F.u.t//

u.0/ D u0 2 X

(1)

with u.t/ the unknown at time t � 0 and F W X ! X a nonlinear operator on
X: Suppose (1) has existence and uniqueness of solution u.tI u0/, for all t � 0: A
family fT.t/ W t > 0g is called a continuous semigroup if

.a/ T.0/ D IX , with IX being the identity in X,

.b/ T.tC s/ D T.t/T.s/, for all t; s 2 R
C and

.c/ the map R
C 
 X 3 .t; x/ 7! T.t/x 2 X is continuous.
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T.t/ on X describes the dynamics of each element u 2 X. The phase space X
represents the framework in which the dynamics described by T.t/ is developed.
In general, T.t/u0 D u.tI u0/ is the solution of (1) at time t with initial condition u0.

2.1 Global Attractors

First we recall the definition of a global attractor for a nonlinear semigroup
fT.t/ W t > 0g (Babin and Vishik 1992; Hale 1988; Ladyzhenskaya 1991; Robinson
2001; Temam 1988).

Definition 1 A set A 	 X is a global attractor for fT.t/ W t � 0g if it is

(i) compact,
(ii) invariant under fT.t/ W t � 0g, i.e. T.t/A D A for all t � 0; and

(iii) attracts bounded subsets of X under fT.t/ W t � 0g; that is, for all B � X
bounded

lim
t!C1 dist.T.t/B;A / �! 0

where dist.D;A/ WD supd2D infa2A dist.d; a/ is the Hausdorff semidistance
between two sets D;A � X.

A global solution for a semigroup fT.t/ W t � 0g is a continuous function � W
R ! X such that T.t/�.s/ D �.t C s/ for all s 2 R and all t 2 R

C. We say that
� W R! X is a global solution through z 2 X if it is a global solution with �.0/ D z.
The global attractor can be characterized as the collection of all globally defined
bounded solutions:

Lemma 1 If a semigroup T.�/ has a global attractorA , then

A D fy 2 X W there is a bounded global solution � W IR! X with �.0/ D yg:

It is well known that global attractors for semigroups are unique. For the
existence, we have the following general result (see Carvalho et al. 2013).

Theorem 1 There exists a global attractor for a semigroup T.�/ if and only if there
exists a compact attracting set of bounded sets, i.e., a compact set K � X such that
dist.T.t/C;K/! 0 as t! C1, for all C � X bounded.

Definition 2 We say that u� 2 X is an equilibrium point (or stationary solution) for
the semigroup T.t/ if T.t/u� D u�; for all t � 0:

Definition 3 The unstable set of an invariant set � is defined by

Wu.�/ D fz 2 X W there is a global solution � W IR! X for T.t/
satisfying �.0/ D z and such that limt!�1 dist.�.t/; �/ D 0g:
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2.2 Attracting Complex Networks

In this section we will describe the geometrical structure of the global attractor.

Definition 4 Let fT.t/ W t � 0g be a semigroup on X. We say that an invariant set
E � X for the semigroup fT.t/ W t � 0g is an isolated invariant set if there is an
� > 0 such that E is the maximal invariant subset in the neighbourhood O�.E/.

A disjoint family of isolated invariant sets is a family fE1; � � � ;Eng of isolated
invariant sets with the property that,

O�.Ei/\ O�.Ej/ D ¿; 1 � i < j � n;

for some � > 0.

2.2.1 Morse Decomposition of a Global Attractor

Next we introduce the notion of a Morse decomposition for the attractor A of a
semigroup fT.t/ W t � 0g (see Conley (1978), Rybakowski (1987) or Sell and You
(2002)). We start with the notion of an attractor-repeller pair.

Definition 5 Let fT.t/ W t � 0g be a semigroup with a global attractor A . We say
that a non-empty subset A of A is a local attractor if there is an � > 0 such that
!.O�.A// D A, where !.B/ is the !-limit set of B, defined as

!.B/ D fx 2 X W S.tn/xn ! x; for some xn 2 B; tn !1g:

The repeller A� associated with a local attractor A is the set defined by

A� WD fx 2 A W !.x/ \ A D ¿g:

The pair .A;A�/ is called an attractor-repeller pair for fT.t/ W t � 0g.
Note that if A is a local attractor, then A� is closed and invariant.

Definition 6 Given an increasing family ¿ D A0 � A1 � � � � � An D A , of
nC 1 local attractors, for j D 1; � � � ; n, define Ej WD Aj \ A�

j�1. The ordered n- tuple
E WD fE1;E2; � � � ;Eng is called a Morse decomposition for A .

An equivalent definition of a Morse decomposition for the attractor A of a
semigroup fT.t/ W t � 0g can be found at Aragão-Costa et al. (2011).

Definition 7 Let fT.t/ W t � 0g be a semigroup with a global attractor A and
E D fE1;E2; � � � ;Eng is a Morse decomposition of A . We say that the semigroup is
dynamically gradient if for a given global solution � W R! A of fT.t/ W t � 0g
i) either �.t/ 2 Ei, for all t 2 R and some i D 1; � � � ; n;

ii) or there exist 1 � i < j � n such that Ej
t!�1 �.t/

t!1! Ei.
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2.2.2 Lyapunov Functions

Definition 8 We say that a semigroup fT.t/ W t � 0g with a global attractor A and
a disjoint family of isolated invariant sets E D fE1; � � � ;Eng is a gradient semigroup
with respect to E if there exists a continuous function V W X ! R such that

(i) Œ0;1/ 3 t 7! V.T.t/x/ 2 R is non-increasing for each x 2 X;
(ii) V is constant in Ei, for each 1 � i � n; and

(iii) V.T.t/x/ D V.x/ for all t � 0 if and only if x 2
nS

iD1

Ei.

In this case we call V a Lyapunov functional related to E.

For gradient semigroups, the structure of the global attractor can be described as
follows:

Theorem 2 Let fT.t/ W t � 0g a gradient semigroup with respect to the finite set
E WD fE1;E2; � � � ;Eng. If fT.t/ W t � 0g has a global attractor A , then A can be
written as the union of the unstable manifolds related to each set in E, i.e,

A D
n[

jD1

Wu
�
Ej
�

: (2)

Remark 1 When Ej are equilibria u�
j , the attractor is described as the union of the

unstable manifolds associated to them

A D
n[

jD1

Wu
�
u�
j

�
:

This description shows a geometrical picture of the global attractor, in which all
the stationary points are ordered by connections related to its level of attraction or
stability.

Observe that each node given by a partially feasible equilibrium point in the
attractor represents an attracting complex network in the original one. Thus, the
attractor can be understood as a new complex dynamical network describing all the
possible feasible future networks. It contains all the abstract information related to
future scenarios of the model.

2.2.3 Energy Levels

Any Morse decomposition E D fE1; � � � ;Eng of a compact invariant set A leads to
a partial order among the isolated invariant sets Ei; that is, we can define an order
between two isolated invariant sets Ei and Ej if there is a chain of global solutions

f�`; 1 � ` � rg (3)
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with

lim
t!�1 �`.t/ D E`

and

lim
t!1 �`.t/ D E`C1

1 � ` � r � 1; with E1 D Ei and Er D Ej:

This implies that, given any dynamically gradient semigroup with respect to the
disjoint family of isolated invariant sets E D fE1; � � � ;Eng, there exists a partial
order in E. In Aragão-Costa et al. (2012) it is shown that there exists a Morse
decomposition given by the so-called energy levels N D fN1;N2; � � � ;Npg, p � n:

Each of the levels Ni, 1 � i � p is made of a finite union of the isolated invariant
sets in E and N is totally ordered by the dynamics defined in (3). The associated
Lyapunov function has different values in any two different level-sets of N and any
two elements of E which are contained in the same element of N (same energy level)
are not connected.

2.2.4 Structural Stability: Robustness Under Perturbation

A detailed understanding of the behaviour of isolated invariant sets and their associ-
ated unstable manifolds is one of the key facts used to prove the characterization of
attractors as the union of unstable manifolds. Moreover, similar properties are used
to prove that a gradient system with a finite number of hyperbolic equilibria (see
Hale 1988; Henry 1981) can be completely characterized by the internal dynamics
between equilibria: every global solution connects two different equilibria and there
are no homoclinic structures connecting equilibria (see Carvalho and Langa 2009;
Carvalho et al. 2013).

It has been proved in Aragão-Costa et al. (2011) that a semigroup fT.t/ W t � 0g
is gradient with respect to E if and only if it is dynamically gradient with respect to
E. Indeed, we have the following result

Theorem 3 Given a disjoint family of isolated invariant sets E D fE1; � � � ;Eng for
a semigroup T.t/, the following three properties are equivalent:

i) T.�/ is dynamically gradient;
ii) there exists an associated ordered family of local attractor-repellers; and
iii) there exists a Lyapunov functional related to E.

Moreover, in Carvalho and Langa (2009) (see also Arrieta et al. 2012 and
Carvalho et al. 2007) it is shown that a dynamically gradient system (then, a gradient
one or a system with a Morse decomposition of its global attractor) is robust under
small perturbation of the parameters and/or the linear and nonlinear operator in
the equations. This means that the structure of a gradient-like global attractor is
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robust under perturbation. Indeed, the results in Carvalho and Langa (2009) show
dynamically gradient nonlinear semigroups are stable under perturbation, so that
we conclude that gradient semigroups are stable under perturbation as well; that
is, the existence of a continuous Lyapunov function is robust under perturbation of
parameters (see Carvalho et al. (2015) and the references therein).

3 Mutualistic Complex Networks: Real Phenomena

In the last decade there has been an intensive interdisciplinary research on mutualis-
tic complex networks, mainly based on Ecology models (see, for instance, Allesina
and Tang 2012, Bascompte et al. 2003, Bascompte et al. 2006, Bascompte and
Jordano 2007, Bastolla et al. 2009, Okuyama and Holland 2008, Rohr et al. 2014,
Saavedra et al. 2011, Suweis et al. 2013 and Thébault and Fontaine 2010). The
results have also been applied to complex networks in Economy, in particular
to the modellization of the cooperative interactions between designers and their
contractors in the New York City garment industry. Indeed, this industry is
characterized by a dynamic environment where resource exchanges among firms
and survival depends on mutualistic connections between firms (see Saavedra et al.
2009a,b).

In general, a mutualistic network implies dozens or even hundreds of nodes
building a complex net of interdependencies. In Saavedra et al. (2009a,b), nodes
correspond to an individual designer or contractor firm, and links between nodes
indicate that a designer exchanged money for the contractors production services. In
Bascompte et al. (2003, 2006), Bascompte and Jordano (2007), Bastolla et al. (2009)
and Saavedra et al. (2011), nodes show density of population of different species in
a particular environment. Mutualism means collaborative interaction between nodes
(species) of mutual benefits for both of them. We found two different set of species
(two modes network leading to bipartite graphs): plant and pollinators, or plant and
seed dispersal, or firms of different business groups (see Fig. 4).

One of the main discovers in this framework, it that, despite of its different
nature, most of these mutualistic networks show a similar structure. What is
more, a common architecture (similar patter formation), which in fact explains the
robustness of the network (Bascompte et al. 2003, 2006; Bascompte and Jordano
2007; Bastolla et al. 2009; Saavedra et al. 2011). Robustness is defined as the
strength of the net to lose its components under perturbation. This is why these
complex networks in Ecology have been defined as the architecture of Biodiversity
(Bascompte and Jordano 2007).

The main characteristics of these networks are the following:

(a) Distribution degree: measures the distribution of the number of connections. It
is observed heterogeneity, in the sense that

1. Most of the species are specialists: they are connected to a small number of
nodes.

2. A few species are generalists, they are connected to a huge number of nodes.
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A1

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

Fig. 4 Mutualistic complex network: a bipartite graph; each part (A—fourteen nodes- and P—
twelve nodes) is in competition among its group. Links represent cooperative interactions between
the two groups in the graph

(b) Nestedness: show a patron of interdependencies in which a specialist connects
with subsets of the set of connections of a generalist.

(c) Asymmetries: The connections between two species have different weights
depending the direction of connection. Specialists of one group tend to have
a strong interaction with generalists of the other group.

The consequence of this network structure is robustness. In particular, for
Ecological systems:

– The nestedness configuration allows alternative routes for the persistence of the
system: there exists a low number of intermediate connections to join any two
nodes.

– Generalists tend to be very spread and common species, very robust to changes.
This is crucial, as specialists then tend to depend of abundant species, allowing
their coexistence.

– New invasive species tend also to interact with generalist, being then well
integrated to the whole network.

– Asymmetries allows the network to coexist even if a specialist dies.

3.1 The Abstract Model: Dynamical System Approach

Bascompte et al. (2006) (see also Rohr et al. 2014; Saavedra et al. 2011), after a
description of the phenomenological properties on mutualistic complex network,
introduce the following model in order to study the forwards dynamics of nodes and
relations in the net.
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Suppose that the P nodes of a group (and the A nodes of the other group) are in
competition and P-nodes and A-nodes have cooperative links.

8̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:̂

dSpi
dt
D ˛piSpi �

PX
jD1

ˇpijSpiSpj C
AX

kD1

�pikSpiSak
1C hP

PA
lD1 �pilSal

dSai
dt
D ˛aiSai �

AX
jD1

ˇaijSaiSaj C
PX

kD1

�aikSaiSpk
1C hA

PP
lD1 �ailSpl

Spi.0/ D Spi0 ;
Sai.0/ D Sai0

(4)

with pi 2 fp1; : : : ; pPg, ai 2 fa1; : : : ; aAg; ˛pi and ˛ai represent the intrinsic growth
rates, ˇpij � 0 and ˇaij � 0 competitive interactions, �pij � 0 and �aij � 0 the
mutualistic interactions, hA � 0 and hP � 0 can be interpreted as handling times.

With this mathematical model of differential equations, which has an associated
dynamical system fT.t/ W t � 0g, we are able to describe all the main structure
properties of the network. Note that the original network is drawn into the abstract
model, given by the positiveness or nullness of the mutualistic �pij ; �aij parameters,
related to the associated adjacency matrix of the network.

From now on, we assume that hA D hP D 0. The following results have been
proved in Guerrero et al. (2015):

Theorem 4

a) Assume that ˇ D minfˇpij ; ˇaijg < 1, �1 D maxf�pijg, �2 D maxf�aijg and

�1�2 <
1C ˇ.P � 1/

P

1C ˇ.A � 1/

A
: (5)

Then, there exists a unique positive solution of (4), for all t > 0.
b) Assume that ˇ D ˇpij D ˇaij , �1 D �pij , �2 D �aij , ˛ D ˛pi D ˛ai > 0 for all i; j

and

�1�2 >
1C ˇ.P � 1/

P

1C ˇ.A � 1/

A
: (6)

Then, any positive solution of (4) blows up in finite time.

Furthermore, in order to simplify some of the following calculations, we consider
that the competition and mutualistic matrices are of mean-field type, that is ˇpij D
ˇ1, ˇaij D ˇ2, �pij D �1 and �aij D �2.

Let n D P C A: Denote by ˛i D ˛pi for i D 1; : : : ;P and ˛i D ˛ai for i D
1; : : : ;A. Observe that in this case, (4) can also be written as

dSi
dt
D Si.˛i CM  S.t//; i D 1; : : : ; n; (7)
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for S.t/ D .Sp1.t/; : : : ; SpP.t/; Sa1 .t/; : : : ; SaA.t// WD .SP.t/; SA.t//, and

M D

B1 �1

�2 B2

�
.PCA/�.PCA/

:

where, for k D 1; 2;

Bk D

2
6664
�1 �ˇk � � � �ˇk

�ˇk �1 � � � �ˇk
:::

:::
: : :

:::

�ˇk �ˇk � � � �1

3
7775

and

�k D

2
6664

�k �k � � � �k
�k �k � � � �k
:::

:::
: : :

:::

�k �k � � � �k

3
7775 :

As we are interested in positive solutions, we define the positive cone

IRnC D fu 2 IRn W ui � 0; for all i D 1; : : : ; ng:

Recall that, given an initial condition .SP0 ; SA0 / D f.Spi0 ; Sai0/ fi D 1; : : : ; ngg,
T.t/.SP0 ; SA0/ D .SP.t/; SA.t// denotes the solution of (4) at time t starting in
.SP0 ; SA0/ at time 0.

Theorem 5 Suppose (5), then (4) has a global attractor A � IRn associated to
fT.t/ W t � 0g:

Once we know the existence of a global attractor, we can try to describe it as an
attracting complex network. In this sense, the structure of the attractor becomes the
crucial complex network to take into account.

Note that the set of equilibria (stationary points) for (4) is given by solving the
system of equations

Si.˛i CM  S/ D 0; i D 1; : : : ; n:

Denote by E WD fE1;E2; � � � ;Emg � IRPCA the set of equilibria related to (4).
Observe that if M is a regular matrix, at most, there is only one equilibrium with all
its components strictly positive, give by the solution of the linear system ˛ C M 
S D 0, where ˛ D .˛1; : : : ; ˛n/. Any other equilibria possesses, at least, one null
component.



Attracting Complex Networks 321

Definition 9 A matrix M 2 IRn�n is said to be Volterra-Lyapunov stable if there
exists a positive diagonal matrix D > 0 such that DM C MtD is negative definite,
i.e., ut.DM CMtD/u < 0 for all u 2 IRn:

Definition 10 We say that an equilibrium u� is globally asymptotically stable in a
region D � R

n if

lim
t!C1 dist.T.t/u; u�/ D 0; for all u 2 D:

In Takeuchi (1996), the following result is proved:

Theorem 6 Suppose M in (7) is Volterra-Lyapunov stable. Then there exists a
unique globally stable equilibrium in the positive cone IRnC.

The following result comes from Guerrero et al. (2015), and describes a Morse
decomposition on global attractor for (4)

Theorem 7 Assume (5). Then

a) There exists a Morse decomposition of the global attractor on the positive cone,
with E WD fE1;E2; � � � ;Emg the set of positive equilibria.

b) The associated dynamical system is gradient with respect to E:

c) Thus, the global attractor can be described by

A D
m[
iD1

Wu .Ei/ : (8)

It is important to observe that each equilibrium is a vector in IRPCA and that
its P C A components correspond to the P C A nodes of the phenomenological
complex network. In this sense, it is remarkable that each of the stationary points is
highlighting a subnet of the former complex network. Indeed, the strictly positive
components of each equilibrium point out a subset of nodes and connections of the
original network. In particular, the first local attractor in E; is indeed the complex
network of the phenomena showing the future biodiversity of the Ecological system,
or the joint success (firms which do not disappear) in an Economical framework.

Note that (a) and (8) is not only saying that all the asymptotic behavior of
the system is concentrated around A , but it is describing the way in which the
attraction takes place. In particular, it is not only showing that there exists a unique
globally stable equilibrium in the positive cone IRnC, but how this stationary point is
connected to any other, building some energy levels which organize the attraction
rates. In summary, all the equilibria are ordered and oriented connected, i.e., the
connections are just in one direction, determined by the forwards dynamical of the
system. In this sense, it is the structure of the global attractor which is showing a
complex network with a natural intrinsic dynamics. In fact, as each node of this
attracting network is a subnet of the former network, the global attractor in this
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case can be understood as a network of subnetworks of the original one, which,
moreover, is dynamically organized to describe all the possible future scenarios of
the phenomena.

4 A 3D Model

To illustrate our ideas, we now develop a simple model from (4) (see Guerrero
et al. 2014), so that we can make some pictures in order to highlight our previous
conclusions.

Thus, we consider a model consisting of three differential equations, two nodes
in the first group (u1 and u2) and just another node in the second group (u3) with
cooperative relations with the first ones. We have

8̂̂
<
ˆ̂:

u0
1 D u1.˛1 � u1 � ˇu2 C �1u3/

u0
2 D u2.˛2 � u2 � ˇu1 C �1u3/

u0
3 D u3.˛3 � u3 C �2u1 C �2u2/;

.u1.0/; u2.0/; u3.0// D .u0
1; u

0
2; u

0
3/;

(9)

where ˛1; ˛2; ˛3 2 IR, 0 < ˇ < 1; �1; �2 > 0 and we suppose positive initial data.
Assume that

�1�2 <
1C ˇ

2
:

Then, there exists a unique solution for (9), and we can define a semigroup which
possesses a global attractor A � IR3: Observe that, in this case, the initial real
network is just composed of three nodes, connected as show in the figure:

For (9), it is easy to show that the eight stationary points

E WD ˚Eijk
�

; i; j; k D 0; 1;

are given by

E000 D .0; 0; 0/; E100 D .˛1; 0; 0/; E010 D .0; ˛2; 0/; E001 D .0; 0; ˛3/;

E011 D
�

0;
˛2 C �1˛3

1 � �1�2

;
˛3 C �2˛2

1 � �1�2

�
;

E101 D
�

˛1 C �1˛3

1 � �1�2

; 0;
˛3 C �2˛1

1 � �1�2

�
;
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E110 D
�

˛1 � ˇ˛2

1 � ˇ2
;

˛2 � ˇ˛1

1 � ˇ2
; 0

�
;

E111 D

0
BBBBB@

˛1.1 � �1�2/ C ˛2.�1�2 � ˇ/ C ˛3�1.1 � ˇ/

.1 � ˇ/.1 C ˇ � 2�1�2/
˛1.�1�2 � ˇ/ C ˛2.1 � �1�2/ C ˛3�1.1 � ˇ/

.1 � ˇ/.1 C ˇ � 2�1�2/
.˛1 C ˛2/�2 C ˛3.1 C ˇ/

1 C ˇ � 2�1�2

1
CCCCCA

t

:

4.1 Stability of Equilibria

To analyze the stability of these points, we calculate the eigenvalues of the Jacobian
matrix at a stationary point .u1; u2; u3/ given by

J.u1; u2; u3/ D

0
B@

˛1�2u1�ˇu2C�1u3 �ˇu1 �1u1

�ˇu2 ˛2�2u2�ˇu1C�1u3 �1u2

�2u3 �2u3 ˛3�2u3C�2.u1 C u2/

1
CA :

We have the following result (see Guerrero et al. 2014):

Theorem 8

a) Assume that the three components of E111 are strictly positive, then E111 is locally
stable.

b) When the components of E111 are strictly positive then the semi-trivial stationary
points E011, E101 and E110 are unstable.

c) Assume that E111 exists. Then, it is globally asymptotically stable in the interior
of IR3C: As a consequence, system (9) is permanent, i.e., asymptotically there
exists coexistence of the three nodes.

d) The global attractorA � IR3 is given by

A D
1[

i;j;kD0

Wu
�
Eijk
�

:

This simplified model allows us to describe in detail the dependence of the
associated attracting networks on parameters, showing that, in particular, to a fix
phenomenological network of three species (Fig. 5), corresponds a bigger and more
complex set of possible future configurations given by different architectures of the
global attractor, described from the equilibria and his oriented connections, as show
in the Fig. 6.
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A1

P2P1

Fig. 5 Phenomenological simple network in the 3D case

Fig. 6 Two possible attracting complex networks in the 3D case. Left network shows the case in
which E111 exists and it is asymptotically globally stable; in this case E111 is the stationary point
with the lower energy level. In the right picture E111 is not present, and the global configuration of
the attracting network changes, now with E011 as the asymptotically globally stable equilibrium.
Other networks could be also reached, depending the values of the parameters in (9). Observe
that all this network of possible attracting networks correspond to the same phenomenological
characterization given in Fig. 5

Item (d) of Theorem 8 shows that the global attractor is gradient-like. In fact,
as the associated semigroup for (9) is dynamically gradient, the stationary points
in the global attractor are the Morse sets of an associated Morse decomposition
of it. In particular, we can order the equilibria by energy levels (given by the
associated Lyapunov functional), which describes the hierarchy on how the long-
time dynamics develops with respect to positive solutions (see Fig. 7).
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Fig. 7 Organization of stationary points in the global attractor by Energy Levels. Upper level
shows the minimum energy (given by the Lyapunov function), attracting every strictly positive
solution. Blue arrows shows the direction of the forwards dynamics. The second level is achieved
if E111 does not exists and any of the E110;E101 or E011 exists. The third level is only reached if any
of the equilibria in upper levels are not present. E000 D .0; 0; 0/ is asymptotically globally stable
only if any of the stationary points in an upper level exist (Color figure online)

5 Conclusions

We now enumerate some conclusions and open problems of the approach we have
developed in this chapter.

(a) From a real phenomena we build a complex network of nodes and connections.
To model the dynamics on this complex network we build a system of ordinary
or partial differential equation with an associated dynamical system.

(b) A new complex network appears, described by the structure of the global
attractor of the dynamical system, which includes dynamics and dependence
on parameters.

(c) New mathematically open problems appear:

1. The dependence of the structure of an attractor on parameters of the system
is usually unknown.

2. In this sense, a theory on Attractor Bifurcation on parameters would be
needed.

3. It still remains the challenging problem of dynamical complex networks,
i.e., a network with time dependent parameters.
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Good Old Economic Geography

Tönu Puu

Abstract This chapter discusses classical economic modelling in continuous two-
dimensional geographical space, focusing some ingenious models due to Harold
Hotelling and Martin Beckmann concerning population growth and migration, and
spatial market equilibrium, respectively. It also adds some modelling of business
cycles, and discusses the issue the shape of market areas. Focus is on transversality
and stability of structure.

Keywords Business cycle diffusion • Continuous geographical space • Interre-
gional trade • Migration • Structural stability

1 Introduction

Upon the advent of the New Economic Geography some 15 years ago, the present
author wrote that space was important, but it needed not to be reinvented so many
times. Maybe he was wrong. During his student years economics textbooks, such
as those by Erich Schneider in Kiel started with spatial issues such as Launhardt’s
“funnels” after an introduction dealing with demography. This is history, and no
economics textbook mentions such issues any longer.

According to Joseph Shumpeter’s monumental history (Schumpeter 1954),
Johann Heinrich von Thünen’s pioneering work on land use of 1826 (von Thunen
1826) provided the first true mathematical model in economics. He also rated his
capacity high above David Ricardo’s, and above any contemporary, maybe with the
exception of Augustin Cournot.

In what follows we find reason to deplore that von Thünen was degraded to an
“agricultural economist”, when in truth he produced the most general theory for
interregional specialization and trade ever proposed.

The founding of the Regional Science Association through Walter Isard and
other pioneers marked the birth of a new interdisciplinary research field where
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economists and geographers collaborated. To understand economic phenomena in
space needs insights from both fields. Geographers understand the nature of space
through their familiarity with map projections in a way economists never do, but
they tend to base models on simple ad hoc assumptions and analogies, such as
the gravity hypothesis. The economist’s concepts of optimizing agents can put
the models on a more stable footing. At the same time the openness of this new
interdisciplinary field provided for access for physicists and mathematicians. After
all, Cournot had been a mathematician. These people contributed most interesting
ideas to regional science. I will only exemplify with physicist Sir Alan Wilson and
his most innovative “entropy model” (Wilson 1970).

But, regional science separated from economics, and space, with issues such as
location and land use, no longer belonged to the core of economic theory. So, maybe
economists indeed need to reinvent space.

Now, space can be treated as a discrete set of locations connected through links or
as a continuous two-dimensional plane. The first alternative is good for applications,
but one loses intuition for the geometry of shape and size. Every assumption of
continuity, be it time or space, is always an abstraction, which itself can never
be verified as an assumption. Only indirectly can continuous models be checked
through the conclusions they yield, quite as in physics.

As most modelling, be it in regional science, or the new economic geography,
is concerned with matrices that have no visuality, we in the present chapter intend
to show some examples of the intuitive attraction of models in continuous space as
von Thünen and many other pioneers saw it.

2 Spatial Trade and Pricing

One of the most innovative models ever contributed to economics is the one
proposed by Martin J Beckmann in 1952 (Beckmann 1952). It is, to say the least,
nonstandard, even conceptually, and therefore it never gained popularity. Probably
there even was a methodological block for potential readers, as economists almost
never used concepts or methods of this kind from vector analysis, calculus of
variations, and partial differential equations.

The same year 1952 Paul A Samuelson treated the same problem, though space
is treated as a discrete set of nodes, joined by arcs. Space is represented as abstract
matrices of incidence, distance, and transportation costs. So, the intuitive notions
of size and shape slip out of one’s hands. In stead of arriving at two simple partial
differential equations as Beckmann does, Samuelson’s model ends up in a mess of
conditions with no link to visualisation.

Beckmann’s purpose is to model a spatially extended economy where trade
moves in a continuous 2D flow. There are continuously distributed sources of excess
supply and sinks of excess demand over space. Goods are entered into or withdrawn
from the flow to provide equilibrium over space as a whole if the region considered
is insulated, which, however, is not necessary; there may also be exports or imports
all along its exterior.
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2.1 Concepts

The concept of flow is central, mathematically a two-dimensional vector field
over the space R considered, changing direction and volume with its basing point
.x1; x2/ 2 R � R

2.

� D


�1 .x1; x2/

�2 .x1; x2/

�
(1)

The direction 
 is the actual direction of trade flow on a map of the region studied

�

j�j D


cos 


sin 


�
D
 dx1

ds
dx2

ds

�
(2)

where s denotes a path parameter, and the volume j�j is the actual volume of
commodities transported in the trade flow

j�j D
q

�2
1 C �2

2 (3)

How excess supply/demand is related to the flow (in economics, unlike physics,
incompressible, as traded merchandise is not altered in volume due to any kind of
“pressure”) is formalized through the divergence operator, written r ��. It is defined
as follows

r� � D @�1

@x1

C @�2

@x2

(4)

This is definitely a nonstandard differential operator to economists. However, it
can be intuitively explained as follows: Consider a flow passing a small box. The
flow has a horizontal component �1 and a vertical �2. While passing the box the
horizontal component increases by @�1

@x1
and the vertical by @�2

@x2
. If the sum is positive

then the addition to the flow must be withdrawn from a local source (excess supply),
if it is negative, then there is a local sink (excess demand) that sucks from the flow.

The reader must not think that the shape of a rectangular box or its size are
essential. A very general theorem due to Gauss (or Green in 2D) ascertains that
the divergence is related to local source/sink density, whatever the shape or size of
“box”. For mathematical detail see Puu (1997, 2002).

So shrinking size to zero, we equate divergence in every point to excess demand,
formally r � � C z .x1; x2/ D 0, where z .x1; x2/ is local excess demand. This is an
equilibrium condition for local consumption, production, and trade in the flow. It
just guarantees that every not locally produced item consumed is withdrawn from
the trade flow, and every not locally consumed item is entered into it. This is all
well known stuff to any engineer. As one of the applications is hydrodynamics for
compressible or incompressible fluids, economists who have not quite understood
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Beckmann’s model have called it hydrodynamic analogy. As we will see this is
extremely unfair, as Beckmann’s model contains other elements that have nothing
whatever to do with hydrodynamics.

Stated in this way, local excess demand z .x1; x2/ is a given datum in each
location. This needs not be so, we can make it dependent on local commodity price.
Beckmann in his later addition actually uses this. Assuming excess demand to be a
decreasing function of price, he is able to prove both uniqueness and stability for a
linearized dynamic version of the model (Beckmann 1976).

But we wait with introducing price as it turns up as a Lagrange multiplier of the
market equilibrium constraint as Beckmann formulates the model.

The flow � is a vector field with two components �1 and �2, both dependent on
the space coordinates x1; x2. We also need a scalar field � .x1; x2/ that represents
local transportation cost for hauling the commodities in the flow over any given
point. Written in this way transport is independent of direction 
 , but it can be
made direction-dependent, for instance in the case when we deal with a Manhattan
distance metric instead of the Euclidean. Beckmann’s model is valid also for such
cases.

2.2 The Model

We are now ready to state Beckmann’s model: Minimize total transportation cost on
the region R:

C D
“

R

� .x1; x2/ j�j dx1dx2 (5)

subject to the spatial equilibrium constraint

r � � C z .x1; x2/ D 0 (6)

using a Lagrange function p .x1; x2/ associated with the constraint.
Note that such a calculus of variations problem is non-standard even in math-

ematical physics. Total transportation cost C is defined as the product of local

transportation cost � and the volume of flow j�j D
q

�1 .x1; x2/
2 C �2 .x1; x2/

2

integrated over all points of the region R. It can, by the way, be shown that this
cost expression equals the total of all individual transports taken from source to sink
along the optimal routes.

Beckmann’s optimization problem is solved by the vector equation

�
�

j�j D rp D
"

@p
@x1
@p
@x2

#
(7)
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to which we add the equilibrium constraint

r � � C z .x1; x2/ D 0

which we state once more for convenience.
These two equations describe the solution to the interregional trade and pricing

problem. Note that though Beckmann stated optimization as a planning problem for
all transports, the same result is obtained if we consider any number of independent
individual transport operators.

As p .x1; x2/ is associated with a scarcity constraint, economic intuition says that
it is an imputed price, which is indeed verified if we consider what the optimality
condition tells us:

Goods are transported (1) in the direction of the price gradientrp, and (2) in this
direction prices increase with transportation cost, neither more nor less. Intuitively
this makes perfect sense. Prices change over space, from a given point the rate of
increase/decrease depends on direction. Prices tell us where in the neighbourhood
the commodity is scarce, and transporters make the largest profit by moving them
in the direction where the gain is maximal, i.e. the gradient direction. Further, if
the gains from trading are larger than transportation cost it would make sense to
increase the flow, if the gains are less trade is unprofitable and should be decreased.
The system of interregional trade can be in equilibrium if and only if the gains from
trade exactly equal the cost of transportation.

Mathematically, we can now take the square of the optimality condition. Though
it represents two differential equations, the unit vector squared multiplies to scalar

unity, i.e.,
�

�

j�j
�2 D 1, whereas .rp/2 D

�
@p
@x1

�2 C
�

@p
@x2

�2

by definition. Thus, we

get one single partial differential equation for price:

�
@p

@x1

�2

C
�

@p

@x2

�2

D � .x1; x2/
2 (8)

Its structure even suggests a constructive method for solution. Say that we know
a curve for constant price in x1; x2 space. The equation suggests that if we for any
point on it draw a circle with radius 1=� it encloses the area that can be covered
using up one monetary unit. We do this for many points, not forgetting to adjust
the radius as � changes from point to point in space. The envelope to such a family
of circles then is the next constant price curve, and the gradient directions (D flow
lines) become orthogonal to any so constructed family of constant price curves. And
so it goes, from the new constant price curve we can construct the next, and so on.
The idea is illustrated in Fig. 1, and obviously suggests some algorithm for solving
the partial differential equation for pricing.

However, recall that a partial differential equation requires some boundary
condition for a solution. In the case illustrated it was the starting curve of constant
prices. The outcome, i.e. the price surface over the region depends on the boundary
condition.
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Fig. 1 Method of constructing new constant price curves starting with one initial one, in this case
the hyperbola passing the centres of all the circles. Take any point on the hyperbola and draw a
circle with radius 1=�. Do this for as many circles as needed, and draw an envelope touching all the
circles. As transportation cost varies over space, the radius must be adjusted anew for each point.
The lowest envelope is shown, and the whole shading illustrates the family of price contours. The
starting curve can be regarded as a boundary condition. The accuracy of the method, of course,
becomes better the smaller increments in transportation costs we take. This pedestrian procedure
could be the basis for constructing an algorithm for numerical solution of price and flow structure
in Beckmann’s model

2.2.1 Examples

As example, suppose transportation cost is zero in the origin of x1; x2 space and

increases with radius vector, i.e., � D
q
x2

1 C x2
2, and our PDE reads

�
@p
@x1

�2 C�
@p
@x2

�2 D x2
1 C x2

2. Then both p D 1
2

�
x2

1 C x2
2

�
and p D 1

2

�
x2

1 � x2
2

�
solve the

equation, as illustrated in Figs. 2 and 3. In the first case we have a von Thünen type
of ring shaped structure with radial flows, in the second there is a shear structure.
The corresponding price surfaces are of bowl type and saddle type respectively.
Which depends on the kind of boundary conditions. Also the mountain type p D
� 1

2

�
x2

1 C x2
2

�
would fit the PDE. Actually, in Fig. 2 it is not obvious if the flow is

outward (bowl) or inward (mountain). This depends on the equilibrium condition
and the distribution of excess demand, which, admittedly, is a tougher issue.

As mentioned in a rejoinder Beckmann also extended the equilibrium model
to a linearized dynamic version of the type current at the time. It is interesting to
note that he proved that if excess demand z .x1; x2; p/ was dependent on price with
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Fig. 2 Radial flow and
circular price contours as one
solution to the case where

� D
q
x2

1 C x2
2

Fig. 3 Hyperbola shaped
flow lines and price contours,
for the same transportation

cost function � D
q
x2

1 C x2
2:

as in the previous illustration
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@z
@p � 0, then equilibrium was stable. By the same assumption it was also proved
that equilibrium was unique. In this context it is essential that we make clear what
equilibrium means. It refers to the spatial structure of commodity price p .x1; x2/,
and the flow of trade � D .�1 .x1; x2/ ; �2 .x1; x2// which evens out local excesses
of supply and demand. No doubt, as there are goods traded and excess demand from
local consumption or excess supply from local production there is something going
on all the time. So, equilibrium implies that things are just repeated from one period
to next, if we may say so in the abstract context of continuous time.

2.3 Multi-Commodity Production Economy

Another extension, suggested by Beckmann and the present author in 1985 (Beck-
mann and Puu 1985) is to extend the originally one commodity market to multiple
commodities that are all produced, consumed, and transported. The most interesting
outcome of this is perhaps that in each location the productive activity is chosen
which is most profitable just there. This leads to a uniqueness theorem stating
that everywhere just one commodity is both produced and transported. Hence
production is specialized and space is broken up in production regions—just as
in von Thünen’s original model from 1826. von Thünen’s theory has never been
acknowledged as the most general model ever produced for specialization and
trade, assuming neither comparative advantages (Ricardo), nor spatially trapped
production resources (Heckscher/Ohlin). This still holds in our generalization from
1985—capital and labour are freely movable and hence equalize capital rents
and wage rates over space, only land stays where it is and yields different rents
depending on location. Note that, like von Thünen, we assume no differences
in fertility or the like—the same technology applies everywhere, so land rent
differences result solely from location in the whole layout of economic space.
However, unlike von Thünen, we do not just refer to agricultural activities, but to
any kind of economic activity.

Passing to the formal model, assume any number of commodities producable by
Cobb-Douglas technologies with constant returns to scale when all inputs can be
varied, ˛iCˇiC �i D 1. Ki;Li denote capital and labour inputs, and Mi the input of
land (or space).

Qi D AiK
˛i
i Lˇi

i M
�i
i

As there are constant returns, we can divide through by Mi, which is the more
reasonable as it converts output and inputs to areal densities. Thus

Qi

Mi
D Ai

�
Ki

Mi

�˛i
�
Li
Mi

�ˇi
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or, introducing lower case symbols for the densities:

qi D Aik
˛i
i l

ˇi
i (9)

Now, assume costless mobility of capital and labour resulting in equalized capital
rent r and wage rate w over the entire region. Profit per unit land area thus becomes:

gi D piqi � rki � wli

Optimizing gi with respect to ki; li under the constraint of the production function
results in the well known Cobb-Douglas conditions

ki D ˛i
pi
r
qi

and

li D ˇi
pi
w
qi

Substituting in the profit expression, recalling that �i D 1 � ˛i � ˇi,

gi D �ipiqi

which as stated is land rent.
However, substituting for capital and labour inputs in the production function (9),

we can solve for output (areal density)

qi D �iA
1
�i
i

�pi
r

� ˛i
�i
�pi
w

� ˇi
�i

and substitute back in the land rent expression. We get profit as dependent on (local)
commodity price alone:

gi D cip
1
�i
i (10)

where

ci D �iA
1
�i
i

�˛i

r

� ˛i
�i

�
ˇi

w

� ˇi
�i

(11)

is a compound constant depending on the parameters alone, i.e., the Cobb-Douglas
parameters, and further the capital rent and wage rate.

Price, of course, like land rent, are functions of the space coordinates (as are
inputs of capital and labour which have been substituted out at this stage).
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Now, potential entrepreneurs will, of course, choose the production activity at
each location which yields maximum profit, i.e. for which

gi .x1; x2/ D g .x1; x2/ D max
j

gj .x1; x2/ (12)

holds.

2.4 Specialization

The obvious question now arises whether there can be a mix up of activities, so that
the condition (12) holds for several or even all i?

For an answer, assume that the commodities are also transported. We already
have the PDE for the price of transported goods .rp/2 D �2. Now the goods are
different. We may still assume that the same transportation cost metric applies for
all, but they differ with respect to weight and bulkiness. Hence, we put transportation
cost as �id .x1; x2/, where d .x1; x2/ represents the common metric, and �i are
commodity specific. Hence .rpi/2 D �2

i d .x1; x2/
2.

To connect price gradient to areal profit gradient, we take the gradient of gi D
cip

1
�i
i , substituting back for pi in terms of gi:

rgi D c�i
i

�i
g1��i
i rpi

Finally, substituting for rpi and taking squares

�
@gi
@x1

�2

C
�

@gi
@x2

�2

D
�
c�i
i

�i
g1��i
i

�2

�2
i d .x1; x2/

2 (13)

This is a proper PDE, even if it is not quite as simple as the one we dealt with,
due to the appearance of gi in the right hand side. It can be fitted to a curve in x1; x2

space—as we know it even has to in order to yield a solution. And then it results
in a potential land rent surface for commodity number i. The equation for another
activity can be fitted to the same curve as boundary condition, but as its PDE is
different the coincidence only holds on the curve. If they do, i.e., yield the same
land rent, then the curve is a “cultivation zone boundary”.

That the potential land rent surfaces intersect along curves of dimension 1 only
follows from transversality, emerged with catastrophe theory, and discussed in the
sequel of the chapter in connection with the formation of market areas. However,
transversality was tacit already in von Thünen’s analysis, even if it was formalized
only more than a Century later.

The choice of maximum possible land rent everywhere, breaks up space into spe-
cialization zones. Actually we have a specialization theorem: only one commodity
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in each location can be both locally produced and traded. There may yet be any
number of goods produced for only local consumption, or any number just flowing
past the location without any local production.

2.4.1 Examples

To visualize the issue of transversality and the specialization we take some
illustrative examples. We need solutions to the differential equation (13), restated
for convenience

.rgi/2 D
�
c�i
i

�i
g1��i
i

�2

�2
i d .x1; x2/

2

where

.rgi/2 D
�

@gi
@x1

�2

C
�

@gi
@x2

�2

To be sure that they intersect in a specialization boundary curve, let us fix the
condition rgi D 1 when x1x2 D 1. Recall that we anyhow need a boundary
condition to at all get a solution for a PDE—in this case it is a hyperbola at unit
height.

We have lots of parameters to choose from; capital rent r and wage rate w, the
parameters of the production function, ˛i; ˇi; �i D 1�˛i�ˇi and Ai, and, finally, the
product specific transportation rate �i. As we do not need that many to fit examples,
fix r D w D 1.

(i) Then, let us first take ˛i D ˇi D �i D 1
3
, Ai D 1, and �i D 1. From (11) then

ci D 1, and the PDE reads: .rgi/2 D
�

3g
2
3

i

�2

d .x1; x2/
2. Suppose the until

now unspecified transport cost metric is d D
q
x2

1 C x2
2.

.rgi/2 D 9g
4
3

i

�
x2

1 C x2
2

�2

and its solution, which also satisfies the boundary condition is gi D .x1x2/
3.

This is then the profit, imputable as land rent if the activity i is chosen.
(ii) As another case take ˛j D ˇj D 3

8
, �j D 1

4
, Aj D 8, and �j D 1

72
. Then

�rgj�2 D 16g
3
2

j

�
x2

1 C x2
2

�2

with solution gi D .x1x2/
4. which too satisfies the boundary condition.
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Fig. 4 The profit surfaces for the two exemplified productive activities and their intersection. Note
that in order to increase visibility we display the surfaces in logarithmic scale vertically

The two surfaces are illustrated in Fig. 4. It is clear that they intersect along
the common boundary curve, which hence becomes a boundary for specialization
zones, as the productive activity is chosen which yields the highest rent imputed to
land.

The only way specialization can be avoided would be if the surfaces not only
shared the same boundary, but coincided over 2-dimensional land patches, so could
this happen? The answer is no, because the surfaces are different, generated by
different PDE. Note that this does not refer to our particular examples, it is a fact
of intersecting surfaces in general. Two surfaces intersect along curves, they do not
coincide. They can, of course, intersect again somewhere else, but this intersection
again is a curve. This is regulated by the topological principle of transversality,
which states that the sum of the dimensions of intersecting manifolds must be equal
to the sum of the dimensions of the intersection manifold and the embedding space.
Thus, 2 C 2 D 1 C 3, surfaces on left, curve and embedding space on right. But
2C 2 < 2C 3. For the same reason, a third surface, resulting from a third activity,
would intersect the two previous ones along curves, but both of them only at a point
2C 1 D 0C 3, new surface and intersection curve of the previous on the left, point
and embedding space on the right.

We will consider transversality again below, in the context of market areas.
The choice of most profitable activity everywhere results in a unique land rent

surface shown in Fig. 5. It can be considered a generalization of von Thünen’s
theory. In stead of an “isolated state” surrounded by cultivation zones and eventually
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Fig. 5 Example of land rent
landscape, and specialization
zones for the multi-product
economy, with land rent
maxima and minima in a
regular square pattern

“wilderness”, it shows an “integrated state” with multiple “central cities” (local land
rent maxima) and “wildernesses” that contract to multiple land rent minima.

We leave the interregional trade model for a while, but return to it by the
end of the chapter for some topological considerations. General models such as
Beckmann’s may be illustrated by specific geometric examples, but only when
considering topology can we enter into qualitative issues pertinent to structural
stability.

3 Population Growth and Dispersal

Concepts from vector analysis were used even before, by Harold Hotelling in 1921
(Hotelling 1921). The contribution appeared as a master degree thesis. It is so little
known that it was not even included in the tiny volume of Hotelling’s (always
ingenious) collected works in economics. Ultimately it was published by Sir Alan
Wilson in his journal Environment and Planning. To the knowledge of the present
author it was never commented on by any economist except Martin Beckmann and
the present author (Beckmann and Puu 1990). The model was reinvented in 1951 by
Skellam (1951) in mathematical ecology, 30 years later, and gave rise to thousands
of scientific contributions.

The model combines a Malthusian (logistic) type of population growth and spa-
tial dispersal modelled through the Laplacian differential operator. The arguments
for growth are the same for Hotelling and Skellam, whereas the arguments for
dispersal from densely to sparsely populated areas differ.

Both argue that close to zero population it tends to grow exponentially, whereas
close to the limiting sustainable size the rate becomes drastically smaller. Should it
ever overshoot the sustainable size, it is bound to decrease, quite as Thomas Malthus
once suggested.
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As for dispersal, Hotelling claims that whenever production occurs under
decreasing returns, it is better to move to another place where population is less
dense and per capita production therefore higher. Unfortunately, Hotelling never
puts this argument in a shape suitable for a mathematical model. Skellam, in con-
trast, argues that animal populations move at random. Hence from a concentration
area more animals are likely to move out than in from the surroundings. The
argument is in fact better than Hotelling’s, and it is by no means easy to straighten
out and formalize what Hotelling had in mind.

Denote sustainable population s, taken as a constant over time and space. Actual
population changes with time and over locations, so we have p .x1; x2; t/ : The
Malthusian growth (today we would say logistic) is simply dp

dt D � .s � p/ p, and it
has a closed form solution p D s

1Cce�� t easily obtainable through variable separation
and integration by parts.

As for the dispersion, consider that space is different from time. Of course,
geographical space has two dimensions, time only one, but this is not the point.
More fundamental is that time has a forward direction. In contrast, even in a one
dimensional space, left and right are equivalent. So, if we have to measure the
difference of a variable, such as p, in a point with that in its neighbourhood, we

have one difference to the right, measured by the derivative dp
dx

ˇ̌
ˇC, and another to the

left, measured by the derivative dp
dx

ˇ̌
ˇ�. If dp

dx

ˇ̌
ˇC > 0 the value of p increases as we

move to the right from the point, if dp
dx

ˇ̌
ˇ� > 0, the value, however, decreases as we

move to the left. To get the net effect for moving away from a point we have to form

the difference dp
dx

ˇ̌
ˇC � dp

dx

ˇ̌
ˇ�. In the limit of infinitesimal moves this difference goes

to the second derivative d2p
dt2

. Hence the second derivative, which is independent of
reversal of the directions, is the lowest of relevance for linear spatial processes.

Again, we can treat the two space dimensions separately in terms of a box and
form

r2p D @2p

@x2
1

C @2p

@x2
2

(14)

This is the Laplacian, and it measures the difference of the value of a variable in a
point with its values in all its neighbourhood. If it is positive there is a net increase if
we leave the point, if negative we deal with a net decrease. This Laplacian turns up
in all physical processes involving diffusion, such as the heat equation. Incidentally
it is the composite of two differential operators we already introduced, the gradient
and the divergence, i.e., r2p D r � rp. Taking the gradient makes a vector field
out of the scalar field of p, then applying the divergence makes it a scalar field
anew. Anyhow, there are again stringent explanations in terms of Gauss’s or Green’s
theorem.

Using this operator both Hotelling and Skellam formulated the combined system

dp

dt
D � .s� p/ pC ır2p (15)
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Unfortunately it has no closed form solution. Equations of this type are currently
much studied in connection to chemical applications, and go under the heading of
reaction-diffusion equations.

3.1 Model with Production

To see something more of possible solutions, we end this section with a related
system, proposed by the present author, which, though more complicated, in fact
has a solution. It also adds some more realism to the growth part of the model.

Humans are not solely dependent on the subsistence means given by nature, but
produce their own means of subsistence. Suppose we have a production function
with increasing/decreasing returns.

q D 2˛ˇp2 � ˛p3

Here ˛ is a technical efficiency parameter, whereas ˇ is a measure for “optimal
scale”, the point where production switches from increasing to decreasing returns.

Then rephrasing the growth part of the Hotelling-Skellam equation

dp

dt
D �

�
q

p
� !

�
pC ır2p

so that per capita production triggers birth, whereas ! is a given death rate, we
obtain

dp

dt
D �

�
2˛ˇp � ˛p2 � !

�
pC ır2p

Next define two new compound parameters

a D ˇ �
r

ˇ2 � !

˛
; b D ˇ C

r
ˇ2 � !

˛

and rescale the measurement units of time and space so that � D ı D 1. Then
factorizing:

dp

dt
D .b � p/ .p � a/ pCr2p

This equation has a closed form solution:

p D b

1C e
� bp

2
.x1Cx2Cp

2. b
2 �a//

(16)



344 T. Puu

Fig. 6 Example of a stationary population wave with densely and sparsely populated areas. It can
also be taken as a momentary picture of a moving wave that eventually goes to a homogenous state
with either maximum sustainable or extinct population

For a D b
2

we get a standing wave as illustrated in Fig. 6 with regions of
high and low population density. Low local population growth is compensated by
immigration, and high growth by emigration. When the wave moves, population
density can go to maximum or extinction.

4 Diffusion of Business Cycles

Business cycle models such as the celebrated Samuelson 1939 model (Samuelson
1939) were usually set in discrete time. This was natural at the time because in the
wake of Keyensian macroeconomics national accounting using periodized empirical
data emerged. Before that national income was just an abstraction, defined as current
interest on national wealth, itself defined as the discounted value of all expected
future incomes for all agents belonging to the economy. This was the idea of, for
instance, Erik Lindahl 1939 who departed from some Wicksellian ideas.

On the other hand economic growth as suggested by Sir Roy Harrod in 1948 was
modelled in continuous time, and remained so. Growth remained a pure abstraction,
as exponential growth can never be fitted to anything real. It is curious that the
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“balanced growth” rate defined by Harrod was considered unstable by himself.
Something, his many followers forgot.

What happened if the actual growth rate deviated from the balanced rate, was,
however, modelled by Phillips a few years later in 1954 (Phillips 1954). This is the
model we will start out from. So we stick to continuous time, as it makes no harm
in theoretical digression. Though we make some amendments. First, Phillips, like
Harrod and Samuelson, proposed linear models. Harrod’s was first order, producing
just exponential growth, though unstable. Phillips and Samuelson proposed second
order equations, producing cycles. But also those were linear and so they could
not produce sustained bounded oscillation. Either all movement died out, or the
oscillations grew in amplitude beyond any limit—even in the negative.

In 1950 Sir John Hicks (Hicks 1950) suggested bounds to the oscillations, the
“floor” and the “ceiling”, for the Samuelson model making it nonlinear. This was
never done for the Phillips model, only in 1989 the present author suggested an
accelerator with a cubic nonlinearity (Puu 1989). We will keep to this case.

Another change is that we put the model in a spatial context, which was never
done for any of the models discussed above. As a matter of fact Metzler (1949)
proposed interregional trade models where local income triggered imports and
exterior income triggered exports. Export surplus would thus be proportional to the
difference of income in the surrounding of a location and in the location itself. In
continuous space this seems to be a perfect case for using the Laplacian, discussed
above, in fact much better than in the Hotelling model for population dispersal.
So, we also reformulate the Phillips model for an open economy with interregional
exports and imports.

Recall some simple facts from national (or, rather, regional) accounting. Income
denoted Y, is generated by investment and consumption expenditures, Y D I C C.
It is disposed on consumption C and a residual saving S, so Y D SCC, and, S D I.
According to legend in capital theory, in the primitive society, saving, i.e., abstaining
from immediate consumption, and investment represented the same act. In modern
society this is no longer so, the producing sector invests in capital, whereas the
consumers provide space for it through abstaining from consumption. The equality
S D I has been considered as an equilibrium condition, or an accounting identity, in
which case savings also include unintentional saving due to shortage of goods, and
investments include unintended inventory investments of unsold goods, as these by
definition are considered investments.

As for the determinants of the items, a simple assumption always used in
macroeconomics takes consumption as a given fraction c of income, C D cY, so
S D .1 � c/ Y. This is called multiplier theory, because if we take investments as
given, Y D cY C I can be solved for Y D 1

1�c I. As c < 1, the multiplier 1
1�c > 1

“multiplies up” investments or any increment of those.
As for investments, one needs to consider that they are defined as changes in

capital stock K. As goods that go in the income are produced, one needs some
simple assumption about production and the services of capital that are used in
the process. The simplest of such assumptions is, again, to assume proportionality,
i.e., to put K D aY. This, however, concerns the capital stock needed—it is by no
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means sure that actual capital stock at any time equals this. As investments are the
change of capital stock, I D a4Y, where 4Y denotes the increment of income. In
discrete time we would measure the increment as a difference of incomes in two
subsequent periods, in continuous time we would use the time derivative, I D adY

dt .
As investments are part in the formation of income, but themselves depend on the
rate of change of income, this “principle of acceleration” tends to accelerate changes
in the system. Hence the name.

These elements were what Harrod used I D S, or adY
dt D .1 � c/ Y, which

provided his first order differential equation with its simple solution Y D Ae
1�c
a t

for the (unstable) balanced growth rate.
To produce an oscillatory system in discrete time, Samuelson used delayed

action. In continuous time Phillips used adaptation, which amounts to the same.

4.1 The Phillips Model

First, income is not always equal to the sum of investments and consumption—
it increases in proportion to the difference of this sum and actual income, dY

dt /
ICC� Y D I � cY � Y. For simplicity we delete the adaptation coefficient and put

dY

dt
D I � .1 � c/Y (17)

As for investments, Phillips assumes that investments are not always equal to
what they should be adY

dt , they are only adjusted to the extent actual investments fall
short of this value, i.e.,

dI

dt
D a

dY

dt
� I (18)

One can now differentiate (17) once more, substitute from the (18) for dI
dt , and

use (17) as it stands to eliminate I, so getting the reduced form:

d2Y

dt2
� .aC c � 2/

dY

dt
C .1 � c/Y D 0 (19)

with solution

Y D Ae˛t cos .!t C '/

where

˛ D 1

2
.aC c/ ; ! D 1

2

q
4a� .aC c/2

and A; ' are arbitrary, determined by initial conditions.
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This is the Phillips model of 1948 (Phillips 1954). But it is still linear so it can
only produce oscillations that either die out or explode.

4.2 Cubic Nonlinearity

Now, suppose we replace the linear accelerator I D adY
dt by I D adY

dt � a
�
dY
dt

�3
,

as suggested by the present author in 1989 (Puu 1989). The argument runs along
the lines outlined by Sir John Hicks for the discrete time model. Investments can
become negative, i.e., disinvestments, which happens when income decreases so
fast that there is no point in replacing all the depreciating capital. However, there is
a lower limit, a floor, to the negative disinvestment. If income during a depression
decreases so fast that capital stock could be reduced by more than its natural
depreciation, then nobody would actively destroy working capital. It is better to
leave it idle in expectation of the next upswing. Likewise, there is a ceiling; if
income increases so fast that manpower or raw materials become short there is no
point in building up excess capacity in terms of capital. Hicks imposes the upper
limit, the ceiling on income and not on investment, but it seems even better to apply
it to investment as it is an issue for decisions, whereas income is just an outcome of
the process.

This accounts for the limits. There is also a good argument for the actual bending
in the opposite of the cubic. The public sector would always act contracyclically
in terms of policy. Further, there are always long run investment projects in
infrastructure and the like, both in the private and the public sector which could
better be carried out in depression when resources are underutilized and therefore
cheap than in an overheated prosperity period.

With this linear/cubic accelerator the Phillips equation is converted to:

d2Y

dt2
.1 � c/ Y � .aC c � 2/

dY

dt
C a

�
dY

dt

�3

D 0

It has no longer any simple closed form solution, but it closely relates to physical
models much studied by Rayleigh (1894).

4.3 Interregional Trade Added

We will not make any study of the nonlinear equation before we also introduced
space. Therefore we first have to reformulate the income equation so that it suits an
open economy with exports and imports. It now reads Y D ICCCX�M, where X
denotes exports and M imports. Metzler (1949) suggested the intuitively reasonable
assumption that exports are proportional to income in the exterior, imports to income
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in the interior. We already have the Laplacian as measure for interregional income
differences, so, assuming a constant propensity to import, we get the new building
block X � M D mr2Y. As this export surplus enters quite as investments, we can
assume exactly the same delayed adaptation mechanism, and so finally arrive at the
equation

d2Y

dt2
C .1 � c/Y � .aC c � 2/

dY

dt
� a

�
dY

dt

�3

�mr2Y D 0 (20)

where

r2Y D @2Y

@x2
1

C @2Y

@x2
2

It does not seem so easy to solve, but intuitively we can find an obvious solution
for Y .x1; x2; t/. If the sides of this surface at any location and any time is flat,
then r2Y D 0. Further, if income grows or decreases at constant rates always
and everywhere, also d2Y

dt2
D 0. Finally, if the constant growth rate dY

dt is zero, or

equals ˙
q

aCc�2
a then the PDE is identically satisfied everywhere and at all times.

It remains to piece the assumptions

d2Y

dt2
D 0; r2Y D 0;

dY

dt
D

8̂
<̂
ˆ̂:
�
q

aCc�2
a

0

C
q

aCc�2
a

(21)

together.
The result is shown in Fig. 7. The oscillating waves are pyramids that are erected,

erased, reversed and then erected again, over and over in a never ending process.
The picture shows four pyramids on a square, two in the process of erection, two in
excavation at a frozen point of time. This definitely is a solution, at least for the case
where boundary conditions prescribe that income is always at rest on the edges of
the square. But the same solution could give us only one, four as in the picture, or
sixteen small pyramids.

The question is if they are attractive. All the subdivisions coexist, and numerics
indicate that the system goes to one pattern of the type according to initial
conditions. If we start with a smooth sinusoid wave with sixteen extrema, then the
pattern seems to be attracted to the pyramid solution with sixteen bases, if we start
with just one smooth wave, we get just one pyramid.

Myerscough (1973, 1975) investigated the problem for the simpler case of one
space dimension, modelling oscillations in overhead lines subject to a strong side
wind. He could actually prove that such saw-toothed oscillating patterns were attrac-
tors. However, we just chose the square region for convenience, which by no means
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Fig. 7 Momentary picture of pyramid shaped waves

is as evident as fixing a line to two posts, so creating a fixed interval in 1D. A good
reminder that for PDE the boundary conditions are essential parts of the problem.

5 Market Areas

The shape of market areas has interested economists and geographers alike. An ideal
shape would be circular, but circles cannot tessellate the plane without overlapping
or empty corners, Among regular shapes only equilateral triangles, squares, and
hexagons can. Walter Christaller in 1933 (Christaller 1933) observed that market
areas in Bavaria had approximately hexagonal shapes, and August Lösch in 1940
(Lösch 1940) presented a thorough analysis for nested hexagonal market areas. It
is, by the way, curious that we still speak of the Christaller-Lösch theory as if they
had collaborated. In truth Christaller got the printing of his little thesis sponsored
by SS Reichsführer Heinrich Himmler, whereas Lösch refused oath of fidelity to
the Führer, and therefore was denied the “venia legendi” (permit to teach). Lösch
lived on the verge of starvation, and died from a trivial infection by the end of the
war, whereas Christaller immediately upon the Soviet victory joined the communist
party.

5.1 Hexagonality

In fact, the hexagon among the three tessellations is the most compact. It has been
known to solve the isoperimetric problem, having the shortest boundary for a cell
of given area. Charles Darwin was astonished at the inherited wisdom of the bees
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who built hive cells of hexagonal crosssection (rather than square or triangular), and
took it as the ultimate proof for survival of the fittest, as natural selection had chosen
those bees who could best economize with wax and labour.

The case for market areas is a bit different (and more complicated) than the
isoperimetric problem. It concerns average or total distance to all points of the
enclosure from its centre. The total distance from the centre to all points of an n-gon
of unit area is

1C cot �
n ln tan

�
�
4
C �

2n

�
3
p
n cos �

n sin �
n

(22)

We get 0:4036 for the triangle, 0.3826 for the square, and 0.3761 for the hexagon.
So, the hexagon is indeed the most economical shape, but savings of transport
distance (Dcost) are only 1.43 % as compared to the squares. Any change of location
structure involves considerable relocation costs, so, if market areas indeed are
hexagonal, can this tiny gain on transportation cost explain a transit from squares to
hexagons?

Hexagons abound in all kinds of natural structures. Among the most curious
cases is the skeleton of Aulonia Hexagona described by d’Arcy Wentworth-
Thompson in his remarkable book 1917 (Thompson 1917), a spherical radiolarian
seemingly made up of hexagonal cells. However, it is known that for mathematical
reasons a sphere cannot be paved by hexagons, as this would result in a wrong
topological genus number. Yet one has to look very carefully at the radiolarian to
discover a few pentagons. As an Israeli geographer once put it; “there must be at
least one pentagon on the sphere”.

Hence, one must find a better reason for the abundance of hexagons than
optimality of shape. In the case of market areas, we can easily offer one.

A tessellation has not only the characteristic of shape, but also of the number of
cells meeting in a corner: Three for hexagons, four for squares, six for triangles.
Maybe this characteristic is more relevant than shape?

5.2 Launhardt Funnels

Therefore, consider how Wilhelm Launhardt in 1885 once explained the emergence
of market areas. Referring to Fig. 8, consider the 2D geographical plane. Three
firms are located. The vertical sticks have the height of the mill prices charged.
Local delivered prices are these mill prices accrued by transportation costs. If
transportation costs are independent of location and the same for all competitors,
then delivered prices generate surfaces that take conical shapes. One speaks of
Launhardt “funnels”. Consumers choose the lowest price represented by the lowest
surface at their location.
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Fig. 8 Three Launhardt
“funnels” for delivered price,
with the intersection curves
projected down on the base
plane to provide market
boundaries

Two such price surfaces intersect along a curve, which defines the market
boundary, separating market areas. As there are three firms in the picture, we get
three such boundary curves, which intersect in a point.

The crucial question is, can we add a fourth firm so that its delivered price surface
intersects the same point as the three already existent? For an answer, sure we can
add one more firm, but the intersection is extremely unlikely. Two surfaces intersect
along a curve, three in a point, but the intersection of four would be an exceptional
and unlikely occurrence.

All this is regulated formally by the principle of transversality. It states that
the sum of dimensions of the intersecting manifolds must equal the sum of the
dimensions of the intersection manifold and the embedding space. For example:

2C 2 D 1C 3, two surfaces intersect along a curve in space
2C 1 D 0C 3, a third surface intersects this curve in a point
2C 0 D‹C 3, no way for a fourth surface to intersect a point

So, recall that hexagons intersect three by three, squares four by four. Accord-
ingly it is the meeting of three market areas in a point, not four, that is transverse,
or structurally stable. If a hexagonal tessellation is subject to some disturbance, is
perturbed, then it remains hexagonal. For a square tessellation, on the contrary, every
tiny perturbation makes a meeting of four areas split into two disjoint intersections
of three. It is therefore structurally unstable.

On a map of national states, we only see four country incidence where the map
has been drawn by an administrator with pen and ruler, never where national state
boundaries are results of wars and negotiations. Then the number of countries
meeting is always three. Of course, the shape of national states is not exactly
hexagonal, as they have so different sizes, and as there are natural barriers in terms
of oceans, but the principle applies.
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6 Topology of the Beckmann Model

Now that we got acquainted with topological issues, it is time to return to the
Beckmann model, because structural stability and transversality have something to
say also about this case, though the results are quite different from those for the
case of market areas, in favour of square rather than hexagonal shapes. It depends
on what we apply structural stability to. For market areas it was to the incidence of
market areas, in the Beckmann case we apply it to the flow structure.

A model such as Beckmann’s, by its very elegance and generality tends to be a
final statement, quite as the case of general economic equilibrium. Examples can be
supplied, but it is difficult to say anything more.

6.1 Structural Stability

Fortunately, the present author came across some most useful results due to Mexican
mathematician M.M. Peixoto dating from 1977 (Peixoto 1977). His remarkable
contribution makes it possible to characterize structurally stable flows associated
with ordinary differential equations, such as those of the Beckmann model.

Recall that once we solved the partial differential equation for � .x1; x2/, we could
derive the ordinary differential equations for the transportation routes x1 .s/ ; x2 .s/,

where s is just an arc length parameter, defined as s D R q
dx2

1 C dx2
2. They were

stated as

dx1

ds
dx2

ds

�
D
(

@�
@x1
@�
@x2

or dx1

ds D @�.x1;x2/

@x1
; dx2

ds D @�.x1;x2/

@x2
. As the right hand sides are known, they are a pair

of coupled ordinary differential equations which can be solved provided they are
simple enough.

We will not try to actually solve them, but to get some information about the
global portrait of these flow lines.

By the theorem for existence and uniqueness of solutions to ODE, there is
one and only one solution curve through each point, unless both right hand sides
vanish. When they do we have singular points, something awkward in older
differential calculus, but the most interesting points in the present context. After all,
regular solutions only provide non-intersecting flow lines, which are topologically
equivalent to parallel straight lines, and therefore trivial.

We get a global picture, a phase portrait, of the flow of trade through only
considering these singular points and the trajectories joining them.

Now Peixoto’s remarkable theorem of 1977 (Peixoto 1977) states that, for a
structurally stable flow,
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Fig. 9 Elementary triangle in a stable flow with stable node, unstable node and saddle point as
vertices, and the connecting trajectories with flow directions indicated. Note that to the stable node
there is only inflow, and from the unstable node only outflow. The saddle has one ingoing and one
outgoing trajectory

(i) There are only a finite number of isolated singular points.
(ii) These are stable nodes SN, unstable nodes UN, or saddle points SP.

(iii) There are no heteroclinic (or homoclinic) saddle connections, i.e. such that go
out from the unstable manifold of a saddle and in to the stable manifold of
another (or the same) saddle.

So, consider the smallest possible building blocks of the phase portrait spoken
of, a triangle with three corners and three connecting edges. They can only look as
in Fig. 9. This is because there cannot be two nodes of the same type, as in a triangle
they would be connected by an arc, and on this arc the direction of flow could not be
oriented in a consistent way. There cannot be two saddles either, because Peixoto’s
theorem forbids this. Remains only one possibility, a singular point of each kind,
SN, UN, and SP.

If we like in the case of market areas want organize regular tessellation elements,
we can organize the elementary triangles cyclically, six for a triangle (Fig. 10), eight
for a square (Fig. 11), and twelve for a hexagon (Fig. 12).

Any of these can be fitted together to form a regular tessellation. We should,
however, note one fact. Using the triangle and the hexagon result in the same type of
flow pattern. There are twice as many hexagons as triangles or the other way around.
So, in fact, these result in only one case, a mixed triangular-hexagonal tessellation.
Also the number of unstable nodes is twice or half the number of stable nodes.
However, a pure hexagonal tessellation does not occur, as it is an unstable structure
and violates Peixoto’s conditions.

The other stable type of tessellation is the square, where the numbers of stable
and unstable nodes are equal. We display this case in Fig. 13. In the picture we also
filled in a couple of typical regular (non-intersecting) trajectories for the trade flow,
and the orthogonal curves marking the constant price contours. The empty circles
represent one kind of nodes, the filled the other. The saddles are not marked, but are
located at the corners of the square patterns, towards which the trajectories seem to
be attracted.
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Fig. 10 Six elementary triangles arranged cyclically to create a triangular tessellation element

Fig. 11 Eight elementary triangles arranged cyclically to create a square tessellation element

6.2 Structure Change

To finish, as there are two stable regular tessellations, one may want to work out
the transitions between them. This can be done using the elliptic umblic catastrophe
as defined by René Thom 1972 (Thom 1975). We describe the transitions in two
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Fig. 12 Twelve elementary triangles arranged cyclically to create a hexagonal tessellation element

pictures, Fig. 14 displaying the catastrophe surface in parameter space, a; b; c as
they appear in Thom’s “canonical” form:

� D x3
1 � 3x1x

2
2 C ax1 C bx2 C c

�
x2

1 C x2
2

�
(23)

Figure 15 shows in five small medallions the types of change we encounter in
x1; x2 phase space as we cross the catastrophe surface. The thin “waist” in parameter
space and the central medallion represent just the leading terms x3

1 � 3x1x2
2, a; b; c

all being zero. This corresponds to the pure hexagonal pattern, which is the most
unstable case we can find. Passing this point in the horizontal direction we see the
transition from one triangular/hexagonal case to the other hexagonal/triangular case
(passing the extremely unstable “monkey saddle” pattern). Passing it in the vertical,
we see a transformation of one square tessellation to another.

Things may relate better to the preceding discussion if we put the leading terms
of the catastrophe in a global version such as

� D 1

2
sin
�
x1 C

p
3x2

�
sin
�
x1 �
p

3x2

�
sin .2x1/ (24)
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Fig. 13 Piece of a global square flow/price contour pattern. The price curves are almost circular
around the nodes, but deform to squares when the saddle points are approached. The orthogonal
flow lines start out and end almost radially, but they have intermediate parts that are attracted to the
saddle points

of which Thom’s normal form is a Taylor expansion. At every zero for � in x1; x2

phase space, the Taylor series is

� D x3
1 � 3x1x

2
2 C o .5/

We do not need to be concerned about the higher order terms. The perturbations,
of first and second order multiplied by perturbation parameters a; b; c are essential.
They can be obtained by other periodic functions producing first and second order
terms with appropriate local Taylor expansions, but we chose to not mess things up
through writing these down.
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Fig. 14 Elliptic umblic catastrophe surface in parameter space

Fig. 15 The corresponding different flow patterns in phase space. Unstable monkey saddle in the
middle, surrounded by square tessellation medallions up and down, hexagonal/triangular right and
left

The global changes in phase space obtained through variations of a; b; c resulting
in the vertical and horizontal passages described, can now be displayed in Figs. 16
and 17.

Note that all these characterisations are topological, they apply to all distorted
cases obtained by stretching without cutting or gluing. Further, note that the
examples use regular patterns; of course they can be combined. A very detailed
account of structural stability applied to the stable patterns for the Beckmann model
and their transitions can be found in Puu (1993).
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Fig. 16 Global transformation of square tessellation through the monkey saddle case

Fig. 17 Global hexagonal/triangular tessellation passing through the monkey saddle case
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