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Abstract The activation of microglia has been recognized for over a century by
their morphological changes. Long slender microglia acquire a short sturdy ramified
shape when activated. During the past 20 years, microglia have been accepted as an
essential cellular component for understanding the pathogenic mechanism of many
brain diseases, including neurodegenerative diseases. More recently, functional
studies and imaging in mouse models indicate that microglia are active in the
healthy central nervous system. It has become evident that microglia release several
signal molecules that play key roles in the crosstalk among brain cells, i.e., astro-
cytes and oligodendrocytes with neurons, as well as with regulatory immune cells.
Recent studies also reveal the heterogeneous nature of microglia diverse functions
depending on development, previous exposure to stimulation events, brain region
of residence, or pathological state. Subjects to approach by future research are still
the unresolved questions regarding the conditions and mechanisms that render
microglia protective, capable of preventing or reducing damage, or deleterious,
capable of inducing or facilitating the progression of neuropathological diseases.
This novel knowledge will certainly change our view on microglia as therapeutic
target, shifting our goal from their general silencing to the generation of treatments
able to change their activation pattern.
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BDNF Brain derived neurotrophic factor
CNS Central nervous system
CNTF Ciliary neurotrophic factor
DAMPs Damage- or Danger-associated molecular patterns
EP2 Prostanoid receptor subtype 2
GABA Gamma aminobutyric acid
GDNF Glia derived neurotrophic factor
GM-CSF Granulocyte/macrophage colony stimulating factor
HIV-1 Human immunodeficiency virus
IFNγ Interferon gamma
IGF1 Insulin-like growth factor 1
IL1 Interleukin 1
iNOS Inducible nitric oxide synthase
InsP3 Inositol trisphosphate
LPS Lipopolysaccharides
LTP Long time Potentiation
M-CSF Macrophage colony-stimulating factor
MHC Class I molecules of histocompatibility major complex
NGF Nerve growth factor
NMDA N-methyl-d-aspartate
NO Nitric Oxide
NT Neurotrophin
PAMPs Pathogen-associated molecular patterns
PGE2 Prostaglandin E2
PRRs Pattern recognition receptors
RANTES Regulated on activation, normal T cell expressed and secreted—

chemokine CCL5
RNS Reactive nitrogen species
ROS Reactive oxygen species
Rs Receptors
SDF-1α Stromal cell-derived factor
SIRPα Signal regulatory protein α
SRs Scavenger receptors
TGFβ Transforming growth factor-β
TLRs Toll-like receptors
TNFα Tumor necrosis factor α
TSPs Thrombospondins
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Introduction

Microglia are the resident immune cells of the central nervous system (CNS),
accounting for approximately 10 % of the total cell number in the healthy mam-
malian brain (Prinz and Priller 2014). They derive from myeloid progenitors, being
related to peripheral monocyte-macrophages (Ginhoux et al. 2010). Microglial cell
progenitors originating in the yolk sac migrate and colonize the CNS during
embryonic development, before the blood–brain barrier is established, differentiat-
ing and becoming confined into the CNS. Throughout the life, microglia appear to be
capable of local self-renewal. Adult healthy animals show very little exchange
between blood and brain parenchyma (Mildner et al. 2007). Thus, maintenance of
their population normally does not depend on recruitment of circulating progenitors.
However, monocytes invading the brain have been observed under pathological
conditions, such as blood–brain barrier damage by trauma or severe inflammation
and ischemic vascular damage (Ajami et al. 2007; Casano and Peri 2015; Kierdorf
et al. 2013), where they transform into microglia with a ramified phenotype (Mildner
et al. 2007). The environment provided by the brain parenchyma appears to be key
for microglia phenotype. Astrocytes-conditioned medium induces morphological
and functional changes of microglia and blood monocytes in culture (Sievers et al.
1994; Ramirez et al. 2005; Tichauer et al. 2007; von Bernhardi and Ramírez 2001;
Orellana et al. 2013), an effect that is at least partly mimicked by adenosine
triphosphate (ATP) or adenosine. Other mediators capable of modifying microglia
activation are cytokines released from astrocytes, including transforming growth
factor β (TGFβ), macrophage colony-stimulating factor (M-CSF), and
granulocyte/macrophage colony stimulating factor (GM-CSF) (Schilling et al. 2001;
Alarcón et al. 2005; Flores and von Bernhardi 2012; Herrera-Molina et al. 2012;
Tichauer et al. 2014; Tichauer and von Bernhardi 2012).

Microglia, as member of the monocyte-macrophage family, function as
mononuclear phagocytes, recognizing and scavenging dead cells, pathogens and
several endogenous, and exogenous compounds. As mentioned in Chapter “Glial
Cells and Integrity of the Nervous System,” under physiological conditions and in
the absence of inflammatory stimuli, microglia are found in a “surveillance state,”
morphologically defined by having a small soma with long fine-ramified processes.
Surveillance microglia are highly dynamic, retracting and extending their processes
in response to environmental cues, interacting with blood vessels, neurons,
ependymal cells, and other glial cells (Nimmerjahn et al. 2005; Ramirez et al. 2005;
Chen and Trapp 2015; Heneka et al. 2015). They express constitutive markers like
Iba-1, and several other markers, such as MHC-I, MHC-II, FcR, CD68, depending
on the environmental cues they sense (Fig. 1), being involved in antigen presen-
tation, cytotoxic activation, phagocytosis, antibody-associated phagocytosis, etc.
An astrocyte labeled with antibody against glial fibrillary acidic protein (GFAP) is
also included to compare their morphologies. Microglial cell surveillance is highly
relevant for CNS development and function throughout life.
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Microglia Motility and Migration

Microglia exhibit two types of motility: the active movement of their processes,
sensing the environment, and their translocation in the brain parenchyma. Migration
is frequently observed during development, when invading cells migrate into the
CNS, and when recruited after an insult and migrate to the site of injury/stimulation.
As discussed in Chapters “Glial Cells and Integrity of the Nervous System and
Purine Signaling and Microglial Wrapping,” many molecules appear to signal for
microglia migration, including ATP, cannabinoids, chemokines, lysophosphatidic
acid, bradykinin, ion channels, and transporters (Davalos et al. 2005; Walter et al.
2003; Schwab 2001; Rappert et al. 2002; Schilling et al. 2004; Ifuku et al. 2007).

Although under nonstimulated conditions they do not migrate, real-time imaging
reveals that microglial processes are constantly moving (Davalos et al. 2005;
Nimmerjahn et al. 2005). Processes move rapidly toward an injury. Time-lapse
microscopy of brain slices from adult mice shows extensive migration of microglia
24 h after an injury (Carbonell et al. 2005).

Fig. 1 Labeling of glia by
activation markers.
Immunohistochemical
detection of glia activation
markers in hipocampal
cryosections obtained from
unstimulated adult mice
counterstaining with Harris
Haematoxylin. Iba-1 and
GFAP antibodies identified
microglia and activated
astrocytes, respectively.
MHC-I, MHC-II, FcR, and
CD68 identify microglia
populations that are
functionally different,
showing differences in their
morphology as well as in the
labeling pattern. Scale
bar = 10 µm
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Recruitment of microglia to a lesion involves several factors including
chemokines released from both neurons and glial cells, among others. Most of the
chemokines are released as soluble factors that form chemotactic gradients for cell
migration, although CX3CL1 (fractalkine) occurs also as a surface-bound molecule.
Microglial activation following neuropathological challenges affects the expression
of chemokine receptors (Kremlev et al. 2004), acting as a source and a target of
chemokines in an auto/paracrine fashion. Activation of CXCR3 receptor by che-
mokine CCL21 is linked to microglial migration (Rappert et al. 2002), and the
CCL2/CCR2 system appears to be crucial for the recruitment of peripheral
monocytes to the CNS, where they become microglia (Davoust et al. 2008; Mildner
et al. 2007; Prinz and Priller 2010). Expression of CCR, receptor for CCL2 ligands,
identifies functional subsets of microglia. The CX3CR1, the receptor for fractalk-
ine, is also a key molecule for the CNS-relevant macrophage subclassification
(Prinz and Priller 2010).

It is especially interesting that chemokines including CCL2, CCL21, or CX3CL1
also appear to serve as signals from endangered neurons to microglia (Biber et al.
2008). It has been suggested that CX3CL1 expressed by neurons could provide a
constitutive calming influence on CX3CR1-expressing microglia, thus representing a
neuron-to-microglia signaling system similar to those described for CD200/CD200R
or CD47/SIRP-1α. Interruption of this regulatory mechanism could facilitate
enhanced responses to activating signals. In fact, deficiency in fractalkine signaling
results in enhanced severity of CNS damage in several disease models (Cardona et al.
2006; Prinz and Priller 2010). Similarly, activation of CCR5 by the chemokine CCL5
“regulated on activation, normal T cell expressed and secreted” (RANTES),
supresses lipopolysaccharide (LPS)-induced expression of inflammatory cytokines,
such as interleukin (IL)1β, IL6 and tumor necrosis factor (TNF)α, and inducible nitric
oxide synthase (iNOS) in microglia. In contrast, motor neuron death after nerve
injury is accelerated in CCR5 knock-out animals, suggesting that CCR5-mediated
suppression of microglia toxicity protects neurons (Gamo et al. 2008).

Microglia-Mediated Phagocytosis

Microglia are the professional phagocytes of the CNS. Phagocytosis is a key
function during development as well as in the normal and pathological adult brain
(Neumann et al. 2009). During development, microglia remove apoptotic cells,
mediated by an “eat me” signal produced by apoptotic cells to microglia
(Marin-Teva et al. 2004). They are also involved in synapse removal (Stevens et al.
2007) and in pruning synapses in the developing and postnatal brain (see
Chapter “Purine Signaling and Microglial Wrapping” for a complete description on
microglial wrapping).

Phagocytosis depends on different mechanisms (Table 1). Pathogens are rec-
ognized by Toll-like receptors (TLRs), and apoptotic neurons are recognized by
various receptor systems, including asialoglycoprotein-like-, vitronectin-, and
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phosphatidylserine receptors (Witting et al. 2000). Multiple factors regulate
phagocytosis, including ATP, through the metabotropic P2Y6 receptor (Inoue et al.
2009). The P2Y6 receptor is upregulated when neurons are damaged and could be a
trigger for phagocytosis (Koizumi et al. 2007). In contrast, activation of P2X7
receptors suppresses phagocytosis, whereas inhibition of P2X7 expression by
shRNA or oxATP/BBG restores phagocytosis (Fang et al. 2009). The ciliary
neurotrophic factor (CNTF), glia derived neurotrophic factor (GDNF), and M-CSF
potentiates phagocytic by microglia (Chang et al. 2006; Lee et al. 2009;
Mitrasinovic and Murphy 2003). Substrate-bound complement component C1q
enhance both FcR and CR1-mediated phagocytosis (Webster et al. 2000), whereas
the prostanoid receptor subtype 2 (EP2), downregulates phagocytosis (Liang et al.
2005; Shie et al. 2005).

Table 1 Receptors and regulatory molecules associated with microglial cell functions

Function Microglial
receptors

Regulatory
molecules

References

Phagocytosis Apoptotic cells Asialoglycoprotein-
like-,vutronectin- &
phophatidyiserine Rs

Witting et al. (2000)

Metabotropic P1
adenosine Rs,
metabotropic P2Y
& ionotropic P2X
purinoRS

ATP Inoue et al. (2009);
Koizumi et al. (2007);
Fang et al. (2009);
Kirischuk et al. (1995);
Lalo et al. (2008)

GDNF Rs GDNF, NO Chang et al. (2006)

CNTFRα CNTF Lee et al. (2009)

Pathogens TLRs Inflammatory
cytokines and
chemokines

Olson and Miller
(2004)

Development Neurogenesis
(genesis,
differentiation &
migration)

TLRs IL-1β, IL-6, IFNγ Shigemoto-Mogami
et al. (2014); Aarum
et al. (2003); Walton
et al. (2006); Nakanishi
et al. (2007); Cepko
et al. (1996)

Programmed cell
death (phagocytosis)

TNFα Rs1
(TNFR1)

NGF, superoxide
ions, TNFα

Frade and Barde
(1998); Marin-Teva
et al. (2004); Sedel
et al. (2004)

Synaptogenesis IL-10 receptors TSPs,
anti-inflammatory
cytokine IL-10

Chamak et al. (1995);
Moller et al. (1996);
Lim et al. (2013)

Synaptic maturation KARAP\DAP12 Roumier et al. (2004)

Synapse removal
(synaptic pruning)

Fractalkine
receptor
(CX3CR1)

CX3CL1 Paolicelli et al. (2011)

Complement Rs3
(CR3)

MHC1,
complement
components (C3,
C1q)

Corriveau et al. (1998);
Goddard et al. (2007);
Schafer et al. (2012);
Stevens et al. (2007)

(continued)
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Table 1 (continued)

Function Microglial
receptors

Regulatory
molecules

References

Adult life Modulation of
neuronal activity

Rs fir
beurotransmitters,
neuropeptides &
neuromodulators

Cytokines & RNs
(TGFβ-1, NO)

Li et al. (2012);
Herrera-Molina and
von Bernhardi (2005);
Tichauer et al. (2007)

Neuronal
surveillance

Fractalkine Rs
(CX3CR1),
purinergic Rs
P2Y12

ATP & gap
junction proteins

Davalos et al. (2005);
Liang et al. (2009);
Haynes et al. (2006)

Synaptic plasticity
(involved in learning
& behavior)

Fractalkine
receptor
(CX3CR1)

CX3CL1 Paolicelli et al. (2011);
Rogers et al. (2011)

NT, inflammatory
cytokines (IL-1β,
TNFα)

Schmid et al. (2009);
Goshen et al. (2007);
Beattie and Malenka
(2002); Loscher et al.
(2003); Avital et al.
(2003); Labrousse et al.
(2009)

Neurogenesis in
adult brain

Neurotransmitter
Rs

NT & regulatory
cytokines (IGF1,
BDNF, IL4)

Butovsky et al. (2006);
Parkhurst et al. (2013);
Ribeiro Xavier et al.
(2015)

Inflammatory
cytokines (IL1-β,
IL-6 TNFα)
(inhibition)

Ribeiro Xavier et al.
(2015); Ben-Hur et al.
(2003); Monje et al.
(2003); Koo and
Duman (2008)

TLRs (TLR2,
TLR4)

Rolls et al. (2007)

Synaptic stripping MHC class F
receptors

NGF, NT-4/5,
TGFβ1, GDNF,
FGF, IL-3

Nakajima et al. (2007);
Trapp et al. (2007);
Oliveira et al. (2004);
Huh et al. (2000)

TNFα, IL-6, NO Nakajima et al. (2005)

Pathophysiological
conditions

Neurodegeneration
(phagocytosis,
production factors
with inflammatory
and
immunoregulatory
effect)

SRs Chemokines
(CCL2, CCL21,
CX3CL1,
CXCL10,
CXCL12)

Rappert et al. (2004);
Koenigsknecht and
Landret (2004);
Alarcón et al. (2005);
Murgas et al. (2012);
Bezzi et al. (2001);
Stewart et al. (2010);
van Weering et al.
(2011)

TLRs (TLR2,
TLR4,TLR9)

Inflammatory
cytokines (IL1-,
IL-6, TNFα, IFNγ)

Murgas et al. (2012);
Bezzi et al. (2001);
Mount et al. (2007);
Chakrabarty et al.
(2010)

(continued)

Microglia Function in the Normal Brain 73



As the resident immune cells of the CNS, microglia are the first line of defense
against exogenous threats. The pattern recognition receptors (PRRs), abundantly
expressed in microglia, detect infectious agents and assist in the control of the
adaptive immunity and the cooperative activities of effector cells (Beurel et al.
2010; Hanisch et al. 2008; Padovan et al. 2007). In addition to pathogen detection
by pathogen-associated molecular patterns (PAMPs), several PRRs, including
TLRs, also bind endogenous molecules that are generated or modified upon tissue
injury. These molecules are classified as damage- or danger-associated molecular
patterns (DAMPs) (Bianchi 2007; Kono and Rock 2008; Matzinger 2007). The
TLRs 1–9 and co-receptors, like CD14 are widely expressed in cells of the innate as
well as adaptive immune system, but also in nonimmune cells (Schaffler et al.
2007). In the brain, TLRs are mainly expressed in glia, although some has been
detected in neurons (Aravalli et al. 2007b; Carpentier et al. 2008; Hanisch et al.
2008; Okun et al. 2009; Konat et al. 2006).

The stimulation of TLRs triggers various programs of microglial activation and
activates secretion of cytokines and chemokines (Aravalli et al. 2007b; Okun et al.
2009). Several reports indicate the importance of TLRs in various CNS diseases
including infection, trauma, stroke, neurodegeneration, and autoimmunity (Babcock
et al. 2006; Caso et al. 2007; Lehnardt et al. 2002; Nau and Bruck 2002; Nguyen
et al. 2004).

Participation of Microglia in Development

Microglia are intimately involved in the development of the nervous system
(Table 1). They have roles both in neurogenesis and neuronal death. Microglia
appears to have both detrimental and supportive effects on neurogenesis (Ekdahl et al.
2009), which could depend in the activation state of microglia (Schwartz et al. 2006).

Table 1 (continued)

Function Microglial
receptors

Regulatory
molecules

References

Hypoxia, cerebral
ischemia,
autoimunity

Chemokine Rs
(CXCR3, CCR3,
CCR5, CXCR4)

ROS Block et al. (2006)

Cytokine Rs RNS (NO) Murgas et al. (2012)

M-CSFR Mitrasinovic and
Murphy (2002)

TLRs Stewart et al. (2010);
Lotz et al. (2005);
Tahara et al. (2006)
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Differentiation of neural precursors in culture requires the presence of soluble factors
secreted by microglia (Nakanishi et al. 2007; Walton et al. 2006). Those factors are
also involved in directing migration of newly generated neural cells (Aarum et al.
2003).

The role of microglia for neuronal loss by programmed cell death during
development has been described in several brain regions, including the retina,
where the pro-apoptotic action of microglia is mediated through nerve growth factor
(NGF) (Frade and Barde 1998). Similarly, microglia induce apoptotic death of
Purkinje neurons by releasing superoxide ions (Marin-Teva et al. 2004), and
motoneurons apoptosis via secretion of TNFα in the embryo (Sedel et al. 2004).

In early postnatal development, elimination of excess synapses—known as
synaptic pruning—appears also to be a microglia-mediated mechanism. Mice
lacking fractalkine receptor (CX3CR1), have reduced numbers of brain microglia,
and show impairment of synaptic pruning, resulting in an abnormally high number
of synaptic spines (Paolicelli et al. 2011).

On the other hand, microglia are also involved in the formation of new
synapses, especially in the early postnatal brain. Microglia stimulate synaptoge-
nesis by secreting the extracellular matrix proteins thrombospondins (TSPs)
(Moller et al. 1996), which are also produced by astrocytes (Christopherson et al.
2005). TSP1 interacts with the integrin-associated protein CD47, which is regu-
lated by signal regulatory protein (SIRP)α, a transmembrane protein expressed by
neurons and macrophages (Matozaki et al. 2009). The SIRPα-CD47 complex is
involved in the regulation of migration and phagocytosis, immune homeostasis,
and neuronal networks, playing homeostatic roles in the immune system, and
participating in synaptic patterning (Umemori and Sanes 2008). Microglia also
serve roles on the functional maturation of synapses (Paolicelli and Gross 2011).
Behavioral abnormalities, including impairment of social interaction and
autistic-like behavior (Tang et al. 2014; Zhan et al. 2014) have been reported on
several models of microglial cell dysfunction.

Participation of Microglia in Adult Life

As the name implies, surveillance microglia actively survey the parenchyma, to
rapidly activate upon appearance of a threat to the CNS. Microglial activation in
response to various stimuli correlates with conspicuous morphological changes.
Microglia reduce the complexity and shortens their branched processes (Fig. 2).
Several stages can be identified, including process withdrawal, and formation of
new processes allowing mobility in the tissue (Lynch 2009; Stence et al. 2001;
Streit et al. 2005).

Microglia is a nonhomogeneous population, their activation being a highly
regulated process. Thus, activated microglia can acquire distinct functional states
(Hanisch and Kettenmann 2007; Perry et al. 2007; Perry and Holmes 2014;
Schwartz et al. 2006). Activation is not an all-or-none process, but varies depending
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on the stimulation context (Hanisch and Kettenmann 2007; von Bernhardi et al.
2015b; Areschoug and Gordon 2009). Multiple signals converge to maintain or
change their functional state and to regulate their specific functional repertoire
(Table 1). Activation is triggered when microglia detect the appearance, abnormal
concentration, or altered format of molecules that serve as signals (Block and Hong
2005; Block et al. 2007; Hanisch and Kettenmann 2007). The involvement of two
signaling systems has been proposed, an “on” receptor-mediated signaling corre-
sponding to a novel molecule that is recognized by microglia triggering activation;
and an “off” receptor-mediated signaling that persistently signals to maintain
microglia in a certain default activation state (Biber et al. 2007; Hanisch and
Kettenmann 2007; Kettenmann et al. 2011).

“On” signals include structures associated with bacterial cell walls, viral
envelopes, or their DNAs and RNAs, typically identified as signs of infection.
Pathogen structures are sensed through PRRs, such as TLRs (Hanisch et al. 2008)
and Scavenger Receptors (SRs) (Ozeki et al. 2006; Godoy et al. 2012; Murgas et al.
2014). Molecules released after tissue damage are also signals, and they induce
especially robust microglial responses (Nimmerjahn et al. 2005; Lu et al. 2010;
Napoli and Neumann 2009). Intracellular proteins or serum factors can activate

Fig. 2 Inflammatory activation-dependent morphological changes of microglia.
Immunohistochemical labeling of the constitutive identity marker Iba-1 and the phagocytic
activation-specific marker CD68, and counterstaining with Harris Haematoxylin, of hipocampal
cryosections obtained from inflammatory unstimulated and stimulated young mice. Low (4×)
magnification microphotographs of hippocampal section labeled with CD68 show slender-shaped
microglia evenly distributed. In contrast, the distribution of microglia in the hippocampus becomes
more cluster-like. At high magnification, activated microglia shows shorter sturdier processes.
CD68-labeled microglia show an amoeba-like shape with a big cell body and very short processes,
whereas Iba-1 shows many cells with long, although studier processes than those observed in
unstimulated animales. Scale bar = 100 µm in the right panel and 10 µm in the higher
magnification microphotographs at the left
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microglia when they are induced upon stress, appear in new compartments or suffer
biochemical modifications (Hanisch et al. 2008; Lehnardt et al. 2008; Rubartelli and
Lotze 2007), as well as some neurotransmitters indicating impaired neuronal
activity (Boucsein et al. 2003; Haynes et al. 2006). This, both pathogen- and
damage-associated molecular patterns (PAMPs/DAMPs, respectively), activate
microglia.

The “off” receptor-mediated signaling is due to the loss of constitutive control
signaling in the normal CNS, as observed with ligand-receptor systems
CD200-CD200R, CX3CL1- CX3CR1, and CD172a-CD47 (Barclay et al. 2002;
Brooke et al. 2004; Cardona et al. 2006; Hoek et al. 2000). Thus, the “on signals”
are identified as a sign of threat to the CNS homeostasis. Whereas in the “off
signal,” the loss of regulation is the signal.

The CNS show regional variations in glial and neuronal cell populations as
well as in their environment. For example, the different vulnerability of CA1
versus CA3 neurons depends on the regional microglia response upon stimulation
(Hanisch and Kettenmann 2007), with hippocampal neuronal cell death and glial
activation depending on the chemokine/receptor system CXCL10/CXCR3
(van Weering et al. 2011).

As discussed in Chapter “Glial Cells and Integrity of the Nervous System,”
acute self-limited activation of microglia should be deemed as protective, given
microglia primarily support and protect the structural and functional integrity of the
CNS. Although research has mostly focused on the detrimental consequences of
microglia-mediated neuroinflammation, and their potentiation of neuronal damage,
it is now accepted that microglia activation is important for protection and repair of
the diseased and injured brain. However, the final outcome will depend on the
environmental context and timeframe of action (Hellwig et al. 2013; Kierdorf and
Prinz 2013; von Bernhardi et al. 2015b). When encountering a mild injury or
impairment, microglia could act immediately to repair and offer trophic support,
and even reduce activating synaptic input by remodeling synapses (Trapp et al.
2007; Wake et al. 2009). However, the everyday activity of microglia is very
difficult to assess (Hanisch and Kettenmann 2007). Thus, in general there is much
more evidence on the failure and harmful contributions of microglia than on their
physiological roles.

Microglia serve several functional roles, modulating neuronal activity and via-
bility in culture and in the adult brain through direct contact with neurons (Li et al.
2012; Kohman et al. 2013) and through their release of soluble mediators, including
cytokines and reactive species (Herrera-Molina and von Bernhardi 2005; Ramírez
et al. 2008; Ramirez et al. 2005; Tichauer et al. 2007; von Bernhardi and Eugenin
2004; Glass et al. 2010; Di Filippo et al. 2010; von Bernhardi and Eugenin 2012).

Microglia play an active role in the functional integrity of the CNS and its
normal physiological performance even affecting learning and behavior (Ziv et al.
2006; Ziv and Schwartz 2008), through their effect, together with T cells, at various
levels. Both synaptic contacts and neuron trophism could depend on factors pro-
duced by activated microglia. Microglia express several neurotrophins (Elkabes
et al. 1996; Kim and de Vellis 2005; Ferrini and De Koninck 2013), releasing many
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factors with powerful neurotrophic actions (Morgan et al. 2004). A number of
cytokines appear to have roles in the maturating CNS. In the adult CNS, IL1 drives
astrocytes proliferation in response to injury (Giulian et al. 1988).

Microglia also contribute to the plasticity of the CNS through support of neu-
rogenesis in adult individuals (Butovsky et al. 2006; Ziv et al. 2006; McPherson
et al. 2011; Ekdahl et al. 2003), which appears to depend on certain subpopulations
of microglia (Ribeiro Xavier et al. 2015). Microglia have neurotransmitter receptors
and are responsive to serotonin (5-HT) (Pocock and Kettenmann 2007) and cyto-
kine levels, and can influence precursor cells, showing a positive regulation of
neurogenesis by 5-HT and a negative regulation by stress and elevated glucocor-
ticoids (Kempermann 2002; Kempermann and Kronenberg 2003). Thus, under
certain conditions, microglia can adopt a pro-neurogenic phenotype, which involves
the expression of neurotrophins and regulatory cytokines, such as insulin-like
growth factor 1 (IGF1), BDNF, and IL4 (Parkhurst et al. 2013; Chen and Trapp
2015; Ribeiro Xavier et al. 2015). However, in inflammatory activation states,
microglia consistently appears to inhibit neurogenesis (Monje et al. 2003;
Nakanishi et al. 2007).

Similar to the synaptic pruning observed during development, microglia keep a
structural role in circuit refinement throughout life. The role of microglia in
removing synapses, is known as “synaptic stripping.” It is also observed in response
to focal inflammation (Trapp et al. 2007). The “stripping” predominantly removes
excitatory glutamatergic synapses, thus limiting neuronal excitability and glutamate
excitotoxicity (Linda et al. 2000). Microglia scan synapses, establishing contacts
with them that last a few minutes. In ischemia, contacts become longer, lasting for
around an hour (Wake et al. 2009). These long lasting interactions often result in
the disappearance of that synaptic contact. Any abnormalities in synaptic perfor-
mance could activate microglia. However, the signal for microglia to remove a
synapsis is poorly understood. The specificity of this action is associated with major
histocompatibility complex (MHC) class F receptors, which are present in both
neurons and microglia (Cullheim and Thams 2007) (see Chapter “Purine Signaling
and Microglial Wrapping” for further reading on synaptic stripping).

Participation of Microglia in Pathophysiological Conditions

Both the absence of protective functions served by microglia, or their abnormal or
excessive activation (von Bernhardi 2007; von Bernhardi et al. 2015b), could led to
functional impairment and eventually to development of a disease of the CNS. The
relevance of microglia activation and subsequent proliferation in aging, in which
condition they adopt an “activated-like” morphology (Fig. 3; see Chapter “Age-
dependent Changes in the Activation and Regulation of Microglia” for further
reading on aging) (Conde and Streit 2006; Gavilan et al. 2007; von Bernhardi 2007;
von Bernhardi et al. 2015b) as well as in many pathological contexts have been
discussed over the past years (von Bernhardi et al. 2010; Heneka et al. 2014; Perry
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and Holmes 2014; Heneka et al. 2015; Hu et al. 2015; von Bernhardi et al. 2015a;
Yirmiya et al. 2015).

Any disturbance on brain homeostasis, as observed in infection, trauma, ische-
mia, altered neuronal activity, and both acute and chronic neurological injuries and
diseases, induces profound changes in microglial cell shape, gene expression and
functional behavior in which is defined as microglial cell activation (Hanisch and
Kettenmann 2007; Block et al. 2007; Colton and Wilcock 2010; Colton 2009;
Davoust et al. 2008; Graeber and Streit 2010; Streit et al. 2005; van Rossum and
Hanisch 2004). Activated microglia show enlarged cell bodies and short and sturdy
processes (Fig. 2). They can become motile and be actively recruited to the injury
site following chemotactic gradients, and can also increase their proliferation. This
phenotype is also correlated with functional changes occurring in complex and
broad spectrum responses (Table 1). The range of microglial cell activities covers
induction and release of multiple factors with inflammatory and immunoregulatory
effects, phagocytotic activities to clear debris, damaged cells, or pathogens, pro-
duction of neurotrophins and interaction with damaged neurons. Inflammatory
response goes from responses centered around the production and release of
inflammatory cytokines, such as TNFα, IL1β, and IL6 to release of factors with an
anti-inflammatory effect (Casano and Peri 2015; Hu et al. 2015; Chen and Trapp
2015). Although some authors consider inflammatory microglia as detrimental, and
anti-inflammatory regulatory microglia as neuroprotective, this rigid classification
fails to recognize the complexity of microglial cell function and regulation (Fenn
et al. 2014). Furthermore, regulatory microglia do not show always neuroprotective
effects (Cherry et al. 2014).

The role of microglia-mediated phagocytosis in neurodegeneration has been
established by several experimental approaches. Microglia are needed for removal
of the dendritic trees of interneurons in the dentate gyrus after entorhinal cortex

Fig. 3 Activation of hippocampal microglia with aging. Hippocampal cross section obtained from
9-, 13-, and 16-month old mice were labeled for Iba-1 and counterstaining with Harris
Haematoxylin, a monocyte-macrophage identity marker that labels constitutively microglia, to
compare the morphological features as the animal ages. At 9-months-old animals, microglia have
long and ramified processes, which persisted at 13 months of age. In contrast, microglia from
16-month-old mice begins to shorten their processes, which become sturdier and the cell body
increases in size. Scale bar = 10 µm
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lesions (Rappert et al. 2004). In response to the lesion, microglia accumulate at the
molecular layer in the dentate gyrus, mediated by signaling through the chemokine
receptor CXCR3. Deletion of CXCR3 results in the failure of microglia recruitment,
and the dendritic trees of interneurons are preserved.

Microglia also phagocytose molecules and debris such as myelin or amyloid
deposits. Several studies report that Aβ is taken up by microglia in culture through
mechanisms depending on Scavenger Receptors (Koenigsknecht and Landreth
2004; Alarcón et al. 2005; Cornejo and von Bernhardi 2013; Murgas et al. 2012),
among others.

As discussed in Chapter “Age-dependent Changes in the Activation and
Regulation of Microglia,” there is increasing evidence for altered chemokine sig-
naling in diverse CNS diseases such as Alzheimer’s disease (AD) or multiple
sclerosis (Gebicke-Haerter et al. 2001; Trebst et al. 2008) which may involve
microglia activation (Stewart et al. 2010). Microglial cells from AD brains may
have elevated levels of CCR3 and CCR5 receptors (Gebicke-Haerter et al. 2001).
CXCL10 and its receptor CXCR3 have been linked to various CNS pathologies
(van Weering et al. 2011). Studying the mechanisms by which this system mediates
N-methyl-d-aspartate (NMDA)-induced neuronal toxicity in the hippocampus, the
authors demonstrated that astrocytes and microglia cooperate to deliver the effect
and that the deficiency in either the ligand or the receptor diminished or enhanced
cell death depending on the tissue subregion and that microglia was the responsible
cellular element by which this difference in neuronal vulnerability is organized.

A mechanism involving microglia, astrocytes, and chemokines has been pro-
posed for glutamate toxicity (Bezzi et al. 2001). Binding of CXCL12 (stromal
cell-derived factor, SDF-1α) to its receptor CXCR4 in astrocytes, results in Inositol
trisphosphate (InsP3) production, [Ca2+]i increase, and release of TNFα. The
binding of TNFα to its receptor triggers signaling, through autocrine a paracrine
mechanism that causes prostaglandin E2 (PGE2) production. The PGE2, in turn,
induces the release of glutamate, which can participate in glia-glia or glia-neuron
communication, but can also initiate neurotoxicity. In the latter situation, SDF-1α
would also act on microglia, thus driving enhanced TNFα release from both glial
populations and ultimately causing massive glutamate release.

AD is associated with a significant elevation of TLR expression in the brain
(Letiembre et al. 2009; Walter et al. 2007). Treatment with Aβ potentiated TLR2
and TLR4-mediated responses, while inhibiting TLR9 in mouse microglia cultures,
(Lotz et al. 2005). At the same time, all three receptors (TLR2, TLR4, and TLR9)
stimulated the uptake of Aβ by microglia (Tahara et al. 2006). The levels of TLRs
in CNS are generally upregulated in many neurodegenerative diseases, including
multiple sclerosis, Parkinson’s disease, and amyotrophic lateral sclerosis
(ALS) (Okun et al. 2009).

Microglia activation, in turn, upregulates the synthesis of TLRs (Kielian et al.
2005; McKimmie and Fazakerley 2005). Similarly, the levels of TLRs in microglia
are increased following hypoxia (Ock et al. 2007) and cerebral ischemia (Ziegler
et al. 2007) and by inflammatory processes; for example, TNFα stimulates
expression of TLR2 in cultured mouse microglia (Syed et al. 2007).
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TLRs also regulate microglial death following pathological activation. TLR4
triggers microglial apoptosis via autocrine production of interferon gamma (IFNγ),
whereas TLR2 is coupled to caspase-8-dependent apoptotic pathways (Lehnardt
et al. 2007). Similarly, TLR2 participate in microglial apoptosis following human
immunodeficiency virus (HIV-1) infection (Aravalli et al. 2007a, 2008).

A link of neurodegenerative processes in AD to microglial TLR4 is suggested
because Aβ fibers bind to CD14, the co-receptor for LPS signaling via TLR4
(Fassbender et al. 2004). CD14 and TLR-dependent mechanisms appear to promote
Aβ clearance and participate in inflammatory responses of microglia (Fassbender
et al. 2004; Landreth and Reed-Geaghan 2009; Reed-Geaghan et al. 2009; Tahara
et al. 2006). Pronounced CD14 immunoreactivity is observed in microglia close to
AD lesion sites in AD brains (Liu et al. 2005). Importantly, a microglial
CD36-TLR4-TLR6 complex appears to promote inflammation in response to Aβ
(Stewart et al. 2010).

However, TLR signaling can also be neuroprotective, by both driving clearance
of infectious agents, and by organizing CNS-intrinsic as well as immune
system-mediated support of neural cell survival, tissue preservation, and CNS
functioning (Glezer et al. 2007; Hanisch et al. 2008). Thus, a critical issue is to
understand the mechanisms by which TLRs could engage in detrimental or in
beneficial programs.

Concluding Remarks

Microglia affects the development, structure, and function of neuronal networks.
They constantly monitor the status of synaptic contacts and receive information
from neuronal activity. Multiple activation states of microglia may allow for the
existence of microglia with different functions, which dynamically interact with
neurons and potentiate their plastic capabilities. Furthermore, they appear to be also
able to remodel neuronal connectivity and thus participate in physiological
processes.

Commitment to distinct reactive phenotypes depending on their activation
profile would then have a variable effect on neurons. It will be important to identify
the nature of such instructing signals as they govern functional orientations of
microglia. Little is also known about the heterogeneity of microglia, i.e., the dif-
ferences in functional capacities of individual microglial populations within dif-
ferent CNS regions. Finally, in pathological situations with blood-derived
monocytes/macrophages infiltrating the CNS, features and functions of resident
microglia and the newly invading cells may complement each other, with both
detrimental and beneficial consequences (Shechter et al. 2009; Simard et al. 2006).
Understanding this various issues will be especially interesting to develop
migroglia-based strategies for the management of several impairments of the ner-
vous system.
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